-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneratetfrecords.py
185 lines (163 loc) · 5.17 KB
/
generatetfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
def del_all_flags(FLAGS):
flags_dict = FLAGS._flags()
keys_list = [keys for keys in flags_dict]
for keys in keys_list:
FLAGS.__delattr__(keys)
flags = tf.compat.v1.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('image_dir', '', 'Path to images')
FLAGS = flags.FLAGS
# TO-DO replace this with label map
def class_text_to_int(row_label):
if row_label == 'person':
return 1
if row_label == 'cup':
return 2
if row_label == 'food':
return 3
if row_label == 'tree':
return 4
if row_label == 'sky':
return 5
if row_label == 'pizza':
return 6
if row_label == 'knife':
return 7
if row_label == 'sweets':
return 8
if row_label == 'home':
return 9
if row_label == 'cheese':
return 10
if row_label == 'ring':
return 11
if row_label == 'stop':
return 12
if row_label == 'sandwitch':
return 13
if row_label == 'dolly':
return 14
if row_label == 'spool':
return 15
if row_label == 'watch':
return 16
if row_label == 'dog':
return 17
if row_label == 'cat':
return 18
if row_label == 'floor':
return 19
if row_label == 'tv':
return 20
if row_label == 'window':
return 21
if row_label == 'pc':
return 22
if row_label == 'shoes':
return 23
if row_label == 'ball':
return 24
if row_label == 'giraffe':
return 25
if row_label == 'chair':
return 26
if row_label == 'vase':
return 27
if row_label == 'hand':
return 28
if row_label == 'ring':
return 29
if row_label == 'pot':
return 30
if row_label == 'table':
return 31
if row_label == 'cofee':
return 32
if row_label == 'soupe':
return 33
if row_label == 'salade':
return 34
if row_label == 'cheese':
return 35
if row_label == 'bed':
return 36
if row_label == 'ciseaux':
return 37
if row_label == 'stop':
return 38
if row_label == 'home':
return 39
if row_label == 'books':
return 40
if row_label == 'sofa':
return 39
if row_label == 'mirror':
return 39
else:
None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.compat.v1.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(FLAGS.image_dir)
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
del_all_flags( tf.compat.v1.flags.FLAGS)
tf.compat.v1.app.run()