|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<img src=\"header.jpg\">\n" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "<h2> <span style=\"color:#0000C0\">Introduction</span></h2>\n" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "<B>C</B>lustering is a Machine Learning technique and it can be used also in data mining that involves the grouping of data points. Given a set of data points, we can use a clustering algorithm to classify each data point into a specific group. In theory, data points that are in the same group should have similar properties and/or features, while data points in different groups should have highly dissimilar properties and/or features. Clustering is a method of unsupervised learning and is a common technique for statistical data analysis used in many fields ( AI,ML,DATA MINING ,...) </br> \n", |
| 22 | + "\n", |
| 23 | + "<B>I</B>n our case Study , we will apply clustering on Images using k-means Algorithm then we will add a noise to image and reapply k-means Algorithm then filtring noise and use k-mean algorithm on the image After filtring \n", |
| 24 | + "<B>l</B>ibraries used : <B> Sklearn and Open Cv </B> " |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "## <span style=\"color:#0000C0\">Step 1 </span>: <B> Application of K-means on an Image ( Image Segmentation)</B> \n" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": 3, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [ |
| 39 | + { |
| 40 | + "name": "stdout", |
| 41 | + "output_type": "stream", |
| 42 | + "text": [ |
| 43 | + "Requirement already satisfied: opencv-python in c:\\users\\user\\anaconda3\\lib\\site-packages (4.4.0.44)\n", |
| 44 | + "Requirement already satisfied: numpy>=1.17.3 in c:\\users\\user\\anaconda3\\lib\\site-packages (from opencv-python) (1.18.5)\n", |
| 45 | + "Note: you may need to restart the kernel to use updated packages.\n" |
| 46 | + ] |
| 47 | + } |
| 48 | + ], |
| 49 | + "source": [ |
| 50 | + "pip install opencv-python" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 31, |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "from ipywidgets import interact,interactive,fixed,interact_manual\n", |
| 60 | + "import ipywidgets as widgets" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": 59, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "from sklearn.cluster import KMeans\n", |
| 70 | + "import cv2\n", |
| 71 | + "import pandas as pd\n", |
| 72 | + "import numpy as np \n", |
| 73 | + "import matplotlib.pyplot as plt\n", |
| 74 | + "\n", |
| 75 | + "def segm(k):\n", |
| 76 | + " image = cv2.imread('boy.jpg')\n", |
| 77 | + " (h1, w1) = image.shape[:2]\n", |
| 78 | + " image = image.reshape((image.shape[0] * image.shape[1], 3))\n", |
| 79 | + "\n", |
| 80 | + "\n", |
| 81 | + "\n", |
| 82 | + " clt = KMeans(n_clusters = k)\n", |
| 83 | + " labels = clt.fit_predict(image)\n", |
| 84 | + " quant = clt.cluster_centers_.astype(\"uint8\")[labels]\n", |
| 85 | + "\n", |
| 86 | + " \n", |
| 87 | + "\n", |
| 88 | + "#reshape the feature vectors to images\n", |
| 89 | + " quant = quant.reshape((h1, w1, 3))\n", |
| 90 | + " image = image.reshape((h1, w1, 3))\n", |
| 91 | + " \n", |
| 92 | + " plt.figure(figsize=(8,8))\n", |
| 93 | + " \n", |
| 94 | + " plt.imshow(image)\n", |
| 95 | + "\n", |
| 96 | + "\n", |
| 97 | + "\n" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": 60, |
| 103 | + "metadata": { |
| 104 | + "scrolled": true |
| 105 | + }, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "data": { |
| 109 | + "application/vnd.jupyter.widget-view+json": { |
| 110 | + "model_id": "5c4fac37a2eb4a438528ca109148fe02", |
| 111 | + "version_major": 2, |
| 112 | + "version_minor": 0 |
| 113 | + }, |
| 114 | + "text/plain": [ |
| 115 | + "interactive(children=(IntSlider(value=2, description='k', max=30, min=2), Output()), _dom_classes=('widget-int…" |
| 116 | + ] |
| 117 | + }, |
| 118 | + "metadata": {}, |
| 119 | + "output_type": "display_data" |
| 120 | + } |
| 121 | + ], |
| 122 | + "source": [ |
| 123 | + "interact(segm,k=widgets.IntSlider(min=2,max=30, step=1, value=2));" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "markdown", |
| 128 | + "metadata": {}, |
| 129 | + "source": [ |
| 130 | + "## <span style=\"color:#0000C0\">Step 2 </span> : <B>Add Noise to image</B> \n" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 62, |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [ |
| 138 | + { |
| 139 | + "data": { |
| 140 | + "text/plain": [ |
| 141 | + "<Figure size 1296x1728 with 0 Axes>" |
| 142 | + ] |
| 143 | + }, |
| 144 | + "metadata": {}, |
| 145 | + "output_type": "display_data" |
| 146 | + }, |
| 147 | + { |
| 148 | + "data": { |
| 149 | + "application/vnd.jupyter.widget-view+json": { |
| 150 | + "model_id": "9b96b564cc654f3f9c3e8c3b5032ed81", |
| 151 | + "version_major": 2, |
| 152 | + "version_minor": 0 |
| 153 | + }, |
| 154 | + "text/plain": [ |
| 155 | + "interactive(children=(Dropdown(description='mode', options=('gaussian', 'localvar', 'poisson', 'salt', 'pepper…" |
| 156 | + ] |
| 157 | + }, |
| 158 | + "metadata": {}, |
| 159 | + "output_type": "display_data" |
| 160 | + } |
| 161 | + ], |
| 162 | + "source": [ |
| 163 | + "import skimage.io\n", |
| 164 | + "import matplotlib.pyplot as plt\n", |
| 165 | + "img_path=\"eleph.jpg\"\n", |
| 166 | + "img = skimage.io.imread('boy.jpg')/255.0\n", |
| 167 | + "\n", |
| 168 | + "def plotnoise(mode):\n", |
| 169 | + " img_path=\"eleph.jpg\"\n", |
| 170 | + " img = skimage.io.imread('boy.jpg')/255.0\n", |
| 171 | + " \n", |
| 172 | + " if mode is not None:\n", |
| 173 | + " gimg = skimage.util.random_noise(img, mode=mode)\n", |
| 174 | + " plt.imshow(gimg)\n", |
| 175 | + " else:\n", |
| 176 | + " plt.imshow(img)\n", |
| 177 | + " plt.title(mode)\n", |
| 178 | + " plt.axis(\"off\")\n", |
| 179 | + "\n", |
| 180 | + "plt.figure(figsize=(18,24))\n", |
| 181 | + "r=4\n", |
| 182 | + "c=2\n", |
| 183 | + "interact(plotnoise,mode=[\"gaussian\",\"localvar\",\"poisson\",\"salt\",\"pepper\",\"s&p\",\"speckle\"])\n", |
| 184 | + "plt.show()" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "## <span style=\"color:#0000C0\">Step 3 </span> : <B>Denoising</B> \n" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": 94, |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [ |
| 199 | + { |
| 200 | + "data": { |
| 201 | + "application/vnd.jupyter.widget-view+json": { |
| 202 | + "model_id": "0f105e4e681349f2bcae8877d2ef661d", |
| 203 | + "version_major": 2, |
| 204 | + "version_minor": 0 |
| 205 | + }, |
| 206 | + "text/plain": [ |
| 207 | + "Button(description='denoising image', style=ButtonStyle())" |
| 208 | + ] |
| 209 | + }, |
| 210 | + "metadata": {}, |
| 211 | + "output_type": "display_data" |
| 212 | + }, |
| 213 | + { |
| 214 | + "data": { |
| 215 | + "application/vnd.jupyter.widget-view+json": { |
| 216 | + "model_id": "7cf5c17503404757b9146e6132c308aa", |
| 217 | + "version_major": 2, |
| 218 | + "version_minor": 0 |
| 219 | + }, |
| 220 | + "text/plain": [ |
| 221 | + "Output()" |
| 222 | + ] |
| 223 | + }, |
| 224 | + "metadata": {}, |
| 225 | + "output_type": "display_data" |
| 226 | + } |
| 227 | + ], |
| 228 | + "source": [ |
| 229 | + "import cv2 as cv\n", |
| 230 | + "from matplotlib import pyplot as plt\n", |
| 231 | + " \n", |
| 232 | + "def blur_demo(image):\n", |
| 233 | + " blur = cv.blur(image,(3,3))\n", |
| 234 | + " return blur\n", |
| 235 | + " \n", |
| 236 | + "def boxFilter_demo(image):\n", |
| 237 | + " boxFilter = cv.boxFilter(image,-1,(3,3),normalize=True)\n", |
| 238 | + " return boxFilter\n", |
| 239 | + " \n", |
| 240 | + "def boxFilterF_demo(image):\n", |
| 241 | + " boxFilterF = cv.boxFilter(image,-1,(3,3),normalize=False)\n", |
| 242 | + " return boxFilterF\n", |
| 243 | + " \n", |
| 244 | + "def Gaussian_demo(image):\n", |
| 245 | + " gaussian = cv.GaussianBlur(image,(5,5),1)\n", |
| 246 | + " return gaussian\n", |
| 247 | + " \n", |
| 248 | + "def medianBulr(image):\n", |
| 249 | + " medianbulr = cv.medianBlur(image,5)\n", |
| 250 | + " return medianbulr\n", |
| 251 | + "\n", |
| 252 | + "\n", |
| 253 | + "\n", |
| 254 | + "\n", |
| 255 | + "\n", |
| 256 | + "from IPython.display import display\n", |
| 257 | + "button = widgets.Button(description=\"denoising image\")\n", |
| 258 | + "output = widgets.Output()\n", |
| 259 | + "\n", |
| 260 | + "display(button, output)\n", |
| 261 | + "\n", |
| 262 | + "def on_button_clicked(b):\n", |
| 263 | + " with output:\n", |
| 264 | + " src = cv.imread(\"pepper.JPG\")\n", |
| 265 | + " src = src[:,:,[2,1,0]]\n", |
| 266 | + " img1 = blur_demo(src)\n", |
| 267 | + " img2 = boxFilter_demo(src)\n", |
| 268 | + " img3 = boxFilterF_demo(src)\n", |
| 269 | + " img4 = Gaussian_demo(src)\n", |
| 270 | + " img5 = medianBulr(src)\n", |
| 271 | + " plt.figure(figsize=(30,20))\n", |
| 272 | + "\n", |
| 273 | + " \n", |
| 274 | + " plt.subplot(2,3,1),plt.imshow(src)\n", |
| 275 | + " plt.title(\"noised image\"),plt.xticks([]),plt.yticks([])\n", |
| 276 | + " plt.subplot(232),plt.imshow(img1)\n", |
| 277 | + " plt.title(\"blur_image\"),plt.xticks([]),plt.yticks([])\n", |
| 278 | + " plt.subplot(233),plt.imshow(img2)\n", |
| 279 | + " plt.title(\"boxFilter_image\"),plt.xticks([]),plt.yticks([])\n", |
| 280 | + " plt.subplot(234),plt.imshow(img3)\n", |
| 281 | + " plt.title(\"boxFilterF_image\"),plt.xticks([]),plt.yticks([])\n", |
| 282 | + " plt.subplot(235),plt.imshow(img4)\n", |
| 283 | + " plt.title(\"gaussian_image\"),plt.xticks([]),plt.yticks([])\n", |
| 284 | + " plt.subplot(236),plt.imshow(img5)\n", |
| 285 | + " plt.title(\"medianBulr_image\"),plt.xticks([]),plt.yticks([])\n", |
| 286 | + " plt.show()\n", |
| 287 | + " \n", |
| 288 | + " \n", |
| 289 | + "button.on_click(on_button_clicked)\n", |
| 290 | + "\n" |
| 291 | + ] |
| 292 | + } |
| 293 | + ], |
| 294 | + "metadata": { |
| 295 | + "kernelspec": { |
| 296 | + "display_name": "Python 3", |
| 297 | + "language": "python", |
| 298 | + "name": "python3" |
| 299 | + }, |
| 300 | + "language_info": { |
| 301 | + "codemirror_mode": { |
| 302 | + "name": "ipython", |
| 303 | + "version": 3 |
| 304 | + }, |
| 305 | + "file_extension": ".py", |
| 306 | + "mimetype": "text/x-python", |
| 307 | + "name": "python", |
| 308 | + "nbconvert_exporter": "python", |
| 309 | + "pygments_lexer": "ipython3", |
| 310 | + "version": "3.8.3" |
| 311 | + } |
| 312 | + }, |
| 313 | + "nbformat": 4, |
| 314 | + "nbformat_minor": 4 |
| 315 | +} |
0 commit comments