|
| 1 | +#! /usr/bin/env python3 |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +""" |
| 4 | +1. Before you start, run this script: https://github.com/tensorlayer/tensorlayer/blob/distributed/scripts/download_and_install_openmpi3_linux.sh |
| 5 | +2. Update the PATH with OpenMPI bin by running: PATH=$PATH:$HOME/local/openmpi/bin |
| 6 | + Update the PATH in ~/.bashrc if you want OpenMPI to be ready once the machine start |
| 7 | +3. Then XXXXX Milo please add this part |
| 8 | + mpirun -np 2 \ |
| 9 | + -bind-to none -map-by slot \ |
| 10 | + -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH \ |
| 11 | + -mca pml ob1 -mca btl ^openib \ |
| 12 | + python3 xxxxx.py |
| 13 | +""" |
| 14 | + |
| 15 | +import numpy as np |
| 16 | +import multiprocessing |
| 17 | +import tensorflow as tf |
| 18 | +import tensorlayer as tl |
| 19 | +from tensorlayer.layers import InputLayer, Conv2d, BatchNormLayer, DenseLayer, FlattenLayer, MaxPool2d |
| 20 | + |
| 21 | +tf.logging.set_verbosity(tf.logging.DEBUG) |
| 22 | +tl.logging.set_verbosity(tl.logging.DEBUG) |
| 23 | + |
| 24 | + |
| 25 | +def make_dataset(images, labels): |
| 26 | + img = tf.data.Dataset.from_tensor_slices(images) |
| 27 | + lab = tf.data.Dataset.from_tensor_slices(np.array(labels, dtype=np.int64)) |
| 28 | + return tf.data.Dataset.zip((img, lab)) |
| 29 | + |
| 30 | + |
| 31 | +def data_aug_train(img, ann): |
| 32 | + # 1. Randomly crop a [height, width] section of the image. |
| 33 | + img = tf.random_crop(img, [24, 24, 3]) |
| 34 | + # 2. Randomly flip the image horizontally. |
| 35 | + img = tf.image.random_flip_left_right(img) |
| 36 | + # 3. Randomly change brightness. |
| 37 | + img = tf.image.random_brightness(img, max_delta=63) |
| 38 | + # 4. Randomly change contrast. |
| 39 | + img = tf.image.random_contrast(img, lower=0.2, upper=1.8) |
| 40 | + # 5. Subtract off the mean and divide by the variance of the pixels. |
| 41 | + img = tf.image.per_image_standardization(img) |
| 42 | + return img, ann |
| 43 | + |
| 44 | + |
| 45 | +def data_aug_valid(img, ann): |
| 46 | + # 1. Crop the central [height, width] of the image. |
| 47 | + img = tf.image.resize_image_with_crop_or_pad(img, 24, 24) |
| 48 | + # 2. Subtract off the mean and divide by the variance of the pixels. |
| 49 | + img = tf.image.per_image_standardization(img) |
| 50 | + return img, ann |
| 51 | + |
| 52 | + |
| 53 | +def model(x, is_train): |
| 54 | + with tf.variable_scope("model", reuse=tf.AUTO_REUSE): |
| 55 | + net = InputLayer(x, name='input') |
| 56 | + net = Conv2d(net, 64, (5, 5), (1, 1), padding='SAME', b_init=None, name='cnn1') |
| 57 | + net = BatchNormLayer(net, is_train, act=tf.nn.relu, name='batch1') |
| 58 | + net = MaxPool2d(net, (3, 3), (2, 2), padding='SAME', name='pool1') |
| 59 | + |
| 60 | + net = Conv2d(net, 64, (5, 5), (1, 1), padding='SAME', b_init=None, name='cnn2') |
| 61 | + net = BatchNormLayer(net, is_train, act=tf.nn.relu, name='batch2') |
| 62 | + net = MaxPool2d(net, (3, 3), (2, 2), padding='SAME', name='pool2') |
| 63 | + |
| 64 | + net = FlattenLayer(net, name='flatten') |
| 65 | + net = DenseLayer(net, 384, act=tf.nn.relu, name='d1relu') |
| 66 | + net = DenseLayer(net, 192, act=tf.nn.relu, name='d2relu') |
| 67 | + net = DenseLayer(net, 10, act=None, name='output') |
| 68 | + return net |
| 69 | + |
| 70 | + |
| 71 | +def build_train(x, y_): |
| 72 | + net = model(x, is_train=True) |
| 73 | + cost = tl.cost.cross_entropy(net.outputs, y_, name='cost_train') |
| 74 | + L2 = 0 |
| 75 | + for p in tl.layers.get_variables_with_name('relu/W', True, True): |
| 76 | + L2 += tf.contrib.layers.l2_regularizer(0.004)(p) |
| 77 | + cost = cost + L2 |
| 78 | + accurate_prediction = tf.equal(tf.argmax(net.outputs, 1), y_) |
| 79 | + accuracy = tf.reduce_mean(tf.cast(accurate_prediction, tf.float32), name='accuracy_train') |
| 80 | + log_tensors = {'cost': cost, 'accuracy': accuracy} |
| 81 | + return net, cost, log_tensors |
| 82 | + |
| 83 | + |
| 84 | +def build_validation(x, y_): |
| 85 | + net = model(x, is_train=False) |
| 86 | + cost = tl.cost.cross_entropy(net.outputs, y_, name='cost_test') |
| 87 | + accurate_prediction = tf.equal(tf.argmax(net.outputs, 1), y_) |
| 88 | + accuracy = tf.reduce_mean(tf.cast(accurate_prediction, tf.float32), name='accuracy_test') |
| 89 | + return net, [cost, accuracy] |
| 90 | + |
| 91 | + |
| 92 | +if __name__ == '__main__': |
| 93 | + # Load CIFAR10 data |
| 94 | + X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False) |
| 95 | + |
| 96 | + # Setup the trainer |
| 97 | + training_dataset = make_dataset(X_train, y_train) |
| 98 | + training_dataset = training_dataset.map(data_aug_train, num_parallel_calls=multiprocessing.cpu_count()) |
| 99 | + # validation_dataset = make_dataset(X_test, y_test) |
| 100 | + # validation_dataset = training_dataset.map(data_aug_valid, num_parallel_calls=multiprocessing.cpu_count()) |
| 101 | + trainer = tl.distributed.Trainer( |
| 102 | + build_training_func=build_train, training_dataset=training_dataset, batch_size=128, |
| 103 | + optimizer=tf.train.RMSPropOptimizer, optimizer_args={'learning_rate': 0.0001} |
| 104 | + # validation_dataset=validation_dataset, build_validation_func=build_validation |
| 105 | + ) |
| 106 | + |
| 107 | + # There are multiple ways to use the trainer: |
| 108 | + # 1. Easiest way to train all data: trainer.train_to_end() |
| 109 | + # 2. Train with validation in the middle: trainer.train_and_validate_to_end(validate_step_size=100) |
| 110 | + # 3. Train with full control like follows: |
| 111 | + while not trainer.session.should_stop(): |
| 112 | + try: |
| 113 | + # Run a training step synchronously. |
| 114 | + trainer.train_on_batch() |
| 115 | + # TODO: do whatever you like to the training session. |
| 116 | + except tf.errors.OutOfRangeError: |
| 117 | + # The dataset would throw the OutOfRangeError when it reaches the end |
| 118 | + break |
| 119 | + |
| 120 | + # TODO: Test the trained model |
0 commit comments