-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_submission.py
47 lines (39 loc) · 1.34 KB
/
make_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import click
from click import option as opt, argument as arg
import numpy as np
import pandas as pd
import config
from dataset import idx_to_label
from utils import load_predictions
@click.command()
@arg('prediction-filenames', nargs=-1)
@opt('--submission-filename', type=str, required=True)
def main(
prediction_filenames,
submission_filename,
):
predictions_list = []
for filename in prediction_filenames:
predictions_list.append(load_predictions(filename))
predictions = np.vstack(predictions_list)
mean_predictions = np.mean(predictions, axis=0)
test_filenames = list(sorted(os.listdir(config.TEST_DIR_PATH)))
predictions_by_file = {}
for filename, file_predictions in zip(test_filenames, mean_predictions):
idx = np.argmax(file_predictions)
label = idx_to_label[idx]
predictions_by_file[filename] = label
sample_submission = pd.read_csv(config.SAMPLE_SUBMISSION_PATH)
sample_submission.drop('label', axis=1, inplace=True)
predictions_df = pd.DataFrame(
list(predictions_by_file.items()),
columns=['fname', 'label'],
)
submission_df = sample_submission.merge(predictions_df, on='fname')
submission_df.to_csv(
os.path.join(config.SUBMISSIONS_PATH, submission_filename),
index=False,
)
if __name__ == '__main__':
main()