-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
99 lines (90 loc) · 4.99 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# data.py 训练测试时图片处理
from __future__ import print_function
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import os
import glob
import skimage.io as io
import skimage.transform as trans
#adjustData()函数主要是对训练集的数据和标签的像素值进行归一化
def adjustData(img,mask):
if(np.max(img) > 1):
img = img / 255.0
mask = mask /255.0
mask[mask > 0.5] = 1
mask[mask <= 0.5] = 0
return (img,mask)
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
# trainGenerator()函数主要是产生一个数据增强的图片生成器,不断生成图片
def trainGenerator(batch_size , train_path, image_folder, mask_folder, aug_dict, image_color_mode = "grayscale",
mask_color_mode = "grayscale", image_save_prefix = "image", mask_save_prefix = "mask",
flag_multi_class = False, num_class = 2, save_to_dir = None, target_size = (256,256),seed = 1):
image_datagen = ImageDataGenerator(**aug_dict)
mask_datagen = ImageDataGenerator(**aug_dict)#aug_dict控制处理范围和方法
image_generator = image_datagen.flow_from_directory(
train_path,#训练数据文件夹路径
classes = [image_folder],#类别文件夹,对哪一个类进行增强
class_mode = None,#不返回标签
color_mode = image_color_mode,#灰度,单通道模式
target_size = target_size,#转换后的目标图片大小
batch_size = batch_size,#每次产生的进行转换后的图片张数
save_to_dir = save_to_dir,#图片保存路径
save_prefix = image_save_prefix,#生成图片的前缀,提供save_to_dir时有效
seed = seed)
mask_generator = mask_datagen.flow_from_directory(
train_path,
classes = [mask_folder],
class_mode = None,
color_mode = mask_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = mask_save_prefix,
seed = seed)
train_generator = zip(image_generator, mask_generator)#组合成一个生成器
for (img,mask) in train_generator:#由于batch是4,所以一次返回两张,即img是一个4张灰度图片的数组,[4,256,256]
img,mask = adjustData(img,mask)#数据和标签的像素值进行归一化,返回的img依旧是[4,256,256]
yield (img,mask)#每次分别产出两张图片和标签
# testGenerator()函数主要是对测试图片进行规范,使其尺寸和维度上和训练图片保持一致
def testGenerator(test_path, num_image = 30, target_size = (256,256), flag_multi_class = False, as_gray = True):
for i in range(num_image):
img = io.imread(os.path.join(test_path,"%d.png"%i),as_gray = as_gray)
img = img / 255.0
img = trans.resize(img,target_size)
img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class) else img
img = np.reshape(img,(1,)+img.shape) #(1,)+(2,3) = (1,2,3)
#将测试图片扩展一个维度,与训练时的输入[4,256,256]保持一致
yield img
# geneTrainNpy()函数主要是分别在训练集文件夹下和标签文件夹下搜索图片,
# 然后扩展一个维度后以array的形式返回,是为了在没用数据增强时的读取文件夹内自带的数据
def geneTrainNpy(image_path,mask_path,flag_multi_class = False,num_class = 2,image_prefix = "image",mask_prefix = "mask",image_as_gray = True,mask_as_gray = True):
image_name_arr = glob.glob(os.path.join(image_path,"%s*.png"%image_prefix))
#相当于文件搜索,搜索某路径下与字符匹配的文件
image_arr = []
mask_arr = []
for index,item in enumerate(image_name_arr):#enumerate是枚举,输出[(0,item0),(1,item1),(2,item2)]
img = io.imread(item,as_gray = image_as_gray)
img = np.reshape(img,img.shape + (1,)) if image_as_gray else img
mask = io.imread(item.replace(image_path,mask_path).replace(image_prefix,mask_prefix),as_gray = mask_as_gray)
#重新在mask_path文件夹下搜索带有mask字符的图片(标签图片)
mask = np.reshape(mask,mask.shape + (1,)) if mask_as_gray else mask
img,mask = adjustData(img,mask,flag_multi_class,num_class)
image_arr.append(img)
mask_arr.append(mask)
image_arr = np.array(image_arr)
mask_arr = np.array(mask_arr)#转换成array
return image_arr,mask_arr
# 生成二值图片/灰度图: 1/255
def saveResult(save_path,npyfile):
for i, item in enumerate(npyfile):
img = item[:,:,0]
print(np.max(img), np.min(img))
#img = img/255
#img[img>=0.5]=1#此时1是浮点数,下面的0也是,灰度改成255
#img[img<0.5]=0
#print(np.max(img), np.min(img))
io.imsave(os.path.join (save_path, "%d.png"%i), img)