forked from AI-FDU/ai-fdu-2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathans.py
127 lines (96 loc) · 4.14 KB
/
ans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import argparse
import numpy as np
import pandas as pd
from sklearn.preprocessing import label_binarize
from sklearn.svm import LinearSVC, SVC
from sklearn.linear_model import LogisticRegression
from fea import feature_extraction
from Bio.PDB import PDBParser
class SVMModel:
def __init__(self, kernel='rbf', C=1.0):
self.model = SVC(kernel=kernel, C=C, probability=True)
def train(self, train_data, train_targets):
self.model.fit(train_data, train_targets)
def evaluate(self, data, targets):
return self.model.score(data, targets)
class LRModel:
# todo
def __init__(self, C=1.0):
self.model = LogisticRegression(C=C, max_iter=10000)
def train(self, train_data, train_targets):
self.model.fit(train_data, train_targets)
def evaluate(self, data, targets):
return self.model.score(data, targets)
class LinearSVMModel:
# todo
def __init__(self, C=1.0):
self.model = LinearSVC(C=C, max_iter=10000)
def train(self, train_data, train_targets):
self.model.fit(train_data, train_targets)
def evaluate(self, data, targets):
return self.model.score(data, targets)
def data_preprocess(args):
# Load data
if args.ent:
diagrams = feature_extraction()[0]
else:
diagrams = np.load('./data/diagrams.npy')
cast = pd.read_table('./data/SCOP40mini_sequence_minidatabase_19.cast')
cast.columns.values[0] = 'protein'
data_list = []
target_list = []
for task in range(1, 56): # Assuming only one task for now
task_col = cast.iloc[:, task]
# todo
# Partition training and testing sets
train_set = task_col.isin([1, 2])
test_set = task_col.isin([3, 4])
# Generate training and testing targets
train_targets_all = np.ravel(label_binarize(task_col, classes=[1]))
test_targets_all = np.ravel(label_binarize(task_col, classes=[3]))
train_targets = train_targets_all[train_set]
test_targets = test_targets_all[test_set]
# Partition diagrams
train_data = diagrams[train_set]
test_data = diagrams[test_set]
data_list.append((train_data, test_data))
target_list.append((train_targets, test_targets))
return data_list, target_list
def main(args):
data_list, target_list = data_preprocess(args)
task_acc_train = []
task_acc_test = []
# Model Initialization based on input argument
if args.model_type == 'svm':
model = SVMModel(kernel=args.kernel, C=args.C)
else:
print("Attention: Kernel option is not supported")
if args.model_type == 'linear_svm':
model = LinearSVMModel(C=args.C)
elif args.model_type == 'lr':
model = LRModel(C=args.C)
else:
raise ValueError("Unsupported model type")
for i in range(len(data_list)):
train_data, test_data = data_list[i]
train_targets, test_targets = target_list[i]
print(f"Processing dataset {i+1}/{len(data_list)}")
# Train the model
model.train(train_data, train_targets)
# Evaluate the model
train_accuracy = model.evaluate(train_data, train_targets)
test_accuracy = model.evaluate(test_data, test_targets)
print(f"Dataset {i+1}/{len(data_list)} - Train Accuracy: {train_accuracy}, Test Accuracy: {test_accuracy}")
task_acc_train.append(train_accuracy)
task_acc_test.append(test_accuracy)
print("Training accuracy:", sum(task_acc_train)/len(task_acc_train))
print("Testing accuracy:", sum(task_acc_test)/len(task_acc_test))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SVM Model Training and Evaluation")
parser.add_argument('--model_type', type=str, default='svm', choices=['svm', 'linear_svm', 'lr'], help="Model type")
parser.add_argument('--kernel', type=str, default='rbf', choices=['linear', 'poly', 'rbf', 'sigmoid'], help="Kernel type")
parser.add_argument('--C', type=float, default=20, help="Regularization parameter")
parser.add_argument('--ent', action='store_true', help="Load data from file")
args = parser.parse_args()
main(args)