forked from AI-FDU/ai-fdu-2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
132 lines (98 loc) · 4.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import argparse
import numpy as np
import pandas as pd
from sklearn.preprocessing import label_binarize
from sklearn.svm import SVC
from fea import feature_extraction
from Bio.PDB import PDBParser
class SVMModel:
def __init__(self, kernel='rbf', C=1.0):
self.model = SVC(kernel=kernel, C=C, probability=True)
def train(self, train_data, train_targets):
self.model.fit(train_data, train_targets)
def evaluate(self, data, targets):
return self.model.score(data, targets)
class LRModel:
# todo:
"""
Initialize Logistic Regression (from sklearn) model.
Parameters:
- C (float): Inverse of regularization strength; must be a positive float. Default is 1.0.
"""
"""
Train the Logistic Regression model.
Parameters:
- train_data (array-like): Training data.
- train_targets (array-like): Target values for the training data.
"""
"""
Evaluate the performance of the Logistic Regression model.
Parameters:
- data (array-like): Data to be evaluated.
- targets (array-like): True target values corresponding to the data.
Returns:
- float: Accuracy score of the model on the given data.
"""
class LinearSVMModel:
# todo
"""
Initialize Linear SVM (from sklearn) model.
Parameters:
- C (float): Inverse of regularization strength; must be a positive float. Default is 1.0.
"""
"""
Train and Evaluate are the same.
"""
def data_preprocess(args):
if args.ent:
diagrams = feature_extraction()[0]
else:
diagrams = np.load('./data/diagrams.npy')
cast = pd.read_table('./data/SCOP40mini_sequence_minidatabase_19.cast')
cast.columns.values[0] = 'protein'
data_list = []
target_list = []
for task in range(1, 56): # Assuming only one task for now
task_col = cast.iloc[:, task]
## todo: Try to load data/target
data_list.append((train_data, test_data))
target_list.append((train_targets, test_targets))
return data_list, target_list
def main(args):
data_list, target_list = data_preprocess(args)
task_acc_train = []
task_acc_test = []
# Model Initialization based on input argument
if args.model_type == 'svm':
model = SVMModel(kernel=args.kernel, C=args.C)
else:
print("Attention: Kernel option is not supported")
if args.model_type == 'linear_svm':
model = LinearSVMModel(C=args.C)
elif args.model_type == 'lr':
model = LRModel(C=args.C)
else:
raise ValueError("Unsupported model type")
for i in range(len(data_list)):
train_data, test_data = data_list[i]
train_targets, test_targets = target_list[i]
print(f"Processing dataset {i+1}/{len(data_list)}")
# Train the model
model.train(train_data, train_targets)
# Evaluate the model
train_accuracy = model.evaluate(train_data, train_targets)
test_accuracy = model.evaluate(test_data, test_targets)
print(f"Dataset {i+1}/{len(data_list)} - Train Accuracy: {train_accuracy}, Test Accuracy: {test_accuracy}")
task_acc_train.append(train_accuracy)
task_acc_test.append(test_accuracy)
print("Training accuracy:", sum(task_acc_train)/len(task_acc_train))
print("Testing accuracy:", sum(task_acc_test)/len(task_acc_test))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SVM Model Training and Evaluation")
parser.add_argument('--model_type', type=str, default='svm', choices=['svm', 'linear_svm', 'lr'], help="Model type")
parser.add_argument('--kernel', type=str, default='rbf', choices=['linear', 'poly', 'rbf', 'sigmoid'], help="Kernel type")
parser.add_argument('--C', type=float, default=20, help="Regularization parameter")
parser.add_argument('--ent', action='store_true', help="Load data from a file using a feature engineering function feature_extraction() from fea.py")
args = parser.parse_args()
main(args)