-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path004_median2array.py
47 lines (38 loc) · 1.72 KB
/
004_median2array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#it didnt satisfy the time complexity log(m+n)
class Solution:
def findMedianSortedArrays_myway(self, nums1, nums2):
merge_num = sorted(nums1 + nums2)
n = len(merge_num)
if n % 2 != 0:
return merge_num[n//2]
else:
return sum(merge_num[n // 2 - 1 : n // 2 + 1])/2.0
def findMedianSortedArrays(self, nums1, nums2):
m, n = len(nums1), len(nums2)
if m > n:
nums1, nums2, m, n = nums2, nums1, n, m
if n == 0:
raise ValueError
imin, imax, half_len = 0, m, (m + n + 1) // 2
while imin <= imax:
i = (imin + imax) // 2
j = half_len - i
if i < m and nums2[j - 1] > nums1[i]:
imin = i + 1
elif i > 0 and nums1[i - 1] > nums2[j]:
imax = i - 1
else:
if i == 0: max_of_left = nums2[j - 1]
elif j == 0: max_of_left = nums1[i - 1]
else: max_of_left = max(nums1[i - 1], nums2[j - 1])
if (m + n) % 2 == 1:
return max_of_left
if i == m: min_of_right = nums2[j]
elif j == n: min_of_right = nums1[i]
else: min_of_right = min(nums1[i], nums2[j])
return (max_of_left + min_of_right) / 2.0
print(Solution().findMedianSortedArrays(nums1 = [1,3], nums2 = [2]))
print(Solution().findMedianSortedArrays(nums1 = [0,0], nums2 = [0,0]))
print(Solution().findMedianSortedArrays(nums1 = [1,2], nums2 = [3,4]))
print(Solution().findMedianSortedArrays(nums1 = [], nums2 = [1]))
print(Solution().findMedianSortedArrays(nums1 = [2], nums2 = []))