-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPRProject_Main.py
771 lines (598 loc) · 27.6 KB
/
PRProject_Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
# Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import *
import seaborn as sns
from pprint import pprint
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier as DTC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVC
from skimage.feature import hog
from sklearn.svm import LinearSVC
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix
from numpy import linalg as LA
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn import metrics
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn import preprocessing
import itertools
import os, re, cv2, math
# tools for preprocessing on input data...resize and scaling
def resize_and_scale(img, size, scale):
img = cv2.resize(img, size)
return 1 - np.array(img, "float32")/scale
def reformat_tf(dataset, labels):
image_size = 28
num_labels = 10
num_channels = 1
dataset = dataset.reshape((-1, image_size, image_size)).astype(np.float32)
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
# Preprocessing with change input data size to fixed optimized size.
def process_usps_data(patch):
path_to_data = patch
img_list = os.listdir(path_to_data)
sz = (28,28)
validation_usps = []
validation_usps_label = []
for i in range(10):
label_data = path_to_data + str(i) + '/'
img_list = os.listdir(label_data)
for name in img_list:
if '.png' in name:
img = cv2.imread(label_data+name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
resized_img = resize_and_scale(img, sz, 255)
validation_usps.append(resized_img.flatten())
validation_usps_label.append(i)
validation_usps = np.array(validation_usps)
validation_usps_label= np.array(validation_usps_label)
return validation_usps, validation_usps_label
# Numeric confusion matrix function to describes the performance of a classifier.
def plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
# Normalizing input data...
def get_normed_mean_cov(X):
X_std = StandardScaler().fit_transform(X)
X_mean = np.mean(X_std, axis=0)
## Automatic:
# X_cov = np.cov(X_std.T)
# Manual:
X_cov = (X_std - X_mean).T.dot((X_std - X_mean)) / (X_std.shape[0] - 1)
return X_std, X_mean, X_cov
#################################################################################################################
## KNN
def Knn_Classifier(x_train,y_train,x_test,y_test):
#Find besk K for KNN classifier.
accuracies = []
kVals = range(1, 30, 2)
# loop over various values of `k` for the k-Nearest Neighbor classifier
for k in range(1, 30, 2):
# train the k-Nearest Neighbor classifier with the current value of `k`
knn = KNeighborsClassifier(metric='minkowski', p=2, n_neighbors=k, weights='distance')
knn.fit(x_train, y_train)
y_te_pred = knn.predict(x_test)
acc = accuracy_score(y_test, y_te_pred)
# evaluate the model and update the accuracies list
accuracies.append(acc)
print("k=%d, accuracy=%.2f%%" % (k, acc * 100))
bestk = int(np.argmax(accuracies))
print("k=%d achieved highest accuracy of %.2f%% on test data" % (kVals[bestk], accuracies[bestk] * 100))
# Create KNN model object to classification
knn = KNeighborsClassifier(metric='minkowski', p=2, n_neighbors=kVals[bestk], weights='distance')
knn.fit(usps_dataset_train, usps_labels_train)
# Evaluate prediction, Stimate scores...F1 and...
y_te_pred = knn.predict(usps_dataset_test)
acc = accuracy_score(usps_labels_test, y_te_pred)
prec = precision_score(usps_labels_test, y_te_pred, average="macro")
rec = recall_score(usps_labels_test, y_te_pred, average="macro")
f1 = f1_score(usps_labels_test, y_te_pred, average="macro")
print("Acc: %3.5f, P: %3.5f, R: %3.5f, F1: %3.5f" % (acc * 100, prec * 100, rec * 100, f1 * 100))
a = usps_labels_test
b = y_te_pred
# Create confusion matrix.
plt.figure()
cfs = confusion_matrix(usps_labels_test.argmax(axis=1), y_te_pred.argmax(axis=1))
le = preprocessing.LabelEncoder()
enc = le.fit(usps_labels_test.argmax(axis=1))
class_names = enc.classes_
plot_confusion_matrix(cfs, classes=class_names, title='KNN Confusion matrix, without normalization')
print("Total calssification report:\n")
print(classification_report(usps_labels_test, y_te_pred))
plt.figure()
cfs2 = confusion_matrix(usps_labels_test.argmax(axis=1), y_te_pred.argmax(axis=1))
sns.heatmap(cfs2, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nKNN Classifier')
ylabel('True')
xlabel('Predicted label')
plt.show()
##########################################################################################################
# PCA Classifier
def PCA_Classifier(x_train,y_train,x_test,y_test,y_valid,y_test2,y_test3):
data = x_train
# Compute Covariance
data_cov = np.cov(data, rowvar=False)
# Stimate EigenValues/Vectores
e_vals, e_vecs = LA.eigh(data_cov)
# Sorting EigenValue/Vectores
idx = e_vals.argsort()[::-1]
e_vals = e_vals[idx]
e_vecs = e_vecs[:, idx]
# Constructor
def Dev_PCA(data, eigv):
y = np.matmul(data, eigv)
return y
# Find best d with (POV=95%)
def find_suitable_d(p, e_vals):
ps = np.sum(e_vals)
i = 0
pov = 0
a = 0
while (pov < p):
a += e_vals[i]
pov = a / ps
i += 1
return i
## Reconstruct PCA
def Rec_PCA(data_new, eigv):
y = np.matmul(data_new, np.transpose(eigv))
return y
## Splitor
def split_feature(e_vecs, d):
new_e_vecs = e_vecs[:, 0:d]
return new_e_vecs
# Start to finding suitable d
x = np.arange(1, data.shape[1] + 1)
d = find_suitable_d(0.95, e_vals)
print("Best Suitable d For Component PCA Is With (POV=95%) : ", d)
# PDA_data = Dev_PCA(data, split_feature(e_vecs, d))
# rec_data = Rec_PCA(PDA_data, split_feature(e_vecs, d))
# Normalizing mean, cov, data
#Normalizing...
X_std, X_mean, X_cov = get_normed_mean_cov(data)
X_std_validation, _, _ = get_normed_mean_cov(x_test)
#PCA component cons-reconstractor...
pca = PCA(n_components=d, whiten=True)
pca.fit(X_std)
X_red = pca.transform(X_std)
usps_labels_train = y_valid
usps_labels_test = y_test2
linclass2 = SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
linclass2.fit(X_red, y_valid)
X_red_validation = pca.transform(X_std_validation)
yhat_validation = linclass2.predict(X_red_validation)
# Create confusion matrix-color map
plt.figure()
pca_cm = confusion_matrix(y_test2, yhat_validation)
sns.heatmap(pca_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nPCA + SVC')
ylabel('True')
xlabel('Predicted label')
total = pca_cm.sum(axis=None)
correct = pca_cm.diagonal().sum()
print(d," Component PCA Accuracy: %0.2f %%" % (100.0 * correct / total))
#Numeric confusion matrix and stimating score,f1,accuracy...
plt.figure()
cfs3 = confusion_matrix(y_test2, yhat_validation)
le = preprocessing.LabelEncoder()
enc = le.fit(y_test2)
class_names = enc.classes_
plot_confusion_matrix(cfs3, classes=class_names, title='PCA Confusion matrix, without normalization')
print("Total calssification report:\n")
print(classification_report(y_test2, yhat_validation))
plt.show()
##########################################################################################################
# LDA
def LDA_Classifier(x_train,y_train,x_test,y_test,y_valid,y_test2):
#Normalizing input data...
X_std, X_mean, X_cov = get_normed_mean_cov(x_train)
X_std_validation, _, _ = get_normed_mean_cov(x_test)
sc = StandardScaler()
X_train = sc.fit_transform(X_std)
X_test = sc.transform(X_std_validation)
lda = LDA(n_components=500)
X_train = lda.fit_transform(X_train, y_valid)
X_test = lda.transform(X_test)
classifier = RandomForestClassifier(max_depth=2, random_state=0)
classifier.fit(X_train, y_valid)
y_pred = classifier.predict(X_test)
cm = confusion_matrix(y_test2, y_pred)
print(cm)
print("LDA Accuracy : " + str(accuracy_score(y_test2, y_pred)))
plt.figure()
sns.heatmap(cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nLDA + RFC')
ylabel('True')
xlabel('Predicted label')
total = cm.sum(axis=None)
correct = cm.diagonal().sum()
print("LDA Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
cfs4 = confusion_matrix(y_test2, y_pred)
le = preprocessing.LabelEncoder()
enc = le.fit(y_test2)
class_names = enc.classes_
plot_confusion_matrix(cfs4, classes=class_names, title='LDA Confusion matrix, without normalization')
print("Total calssification report:\n")
print(classification_report(y_test2, y_pred))
plt.show()
###########################################################################################################
# Baysian with gussian distrbution
def Bayesian_Classifier(x_train,y_train,x_test,y_test,y_valid,y_test2):
fixed_x_test = x_test
fixed_y_test = y_test2
x_train, x_test, y_train, y_test = train_test_split(x_train, y_valid)
x_test = fixed_x_test
y_test = fixed_y_test
clf = GaussianNB()
clf.fit(x_train, y_train)
predicted = clf.predict(fixed_x_test)
expected = y_test
matches = (predicted == expected)
# accuracy = (matches.sum() / float(len(matches))) * 100
print(metrics.classification_report(expected, predicted))
plt.figure()
baysian = confusion_matrix(expected, predicted)
sns.heatmap(baysian, square=True, cmap='inferno')
title('Confusion Matrix:\nBayesian (Gussian) ')
ylabel('True')
xlabel('Predicted label')
total = baysian.sum(axis=None)
correct = baysian.diagonal().sum()
print("Bayesian With Gussian Distrbution Accuracy Is: %0.2f %%" % (100.0 * correct / total))
plt.figure()
cfs5 = confusion_matrix(expected, predicted)
le = preprocessing.LabelEncoder()
enc = le.fit(y_test2)
class_names = enc.classes_
plot_confusion_matrix(cfs5, classes=class_names, title='Bayesian( Gussian ) Confusion matrix, without normalization')
plt.show()
##########################################################################################################################
# QDA Classifier
def QDA_Classifier(x_train,x_test,y_test,y_valid):
qda = QDA()
qda.fit(x_train, y_valid)
y_te_pred = qda.predict(x_test)
acc = accuracy_score(y_test, y_te_pred)
# print(classification_report(usps_labels_test.argmax(axis=1), y_te_pred))
print(metrics.classification_report(y_test, y_te_pred))
plt.figure()
cfs2 = confusion_matrix(y_test, y_te_pred)
sns.heatmap(cfs2, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nQDA Classifier')
ylabel('True')
xlabel('Predicted label')
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(cfs2, classes=class_names, title='QDA Confusion matrix, without normalization')
total = cfs2.sum(axis=None)
correct = cfs2.diagonal().sum()
print("QDA Accuracy Is: %0.2f %%" % (100.0 * correct / total))
plt.show()
##########################################################################################################
# Logistic Regression Classifier
def Logistic_Regression_Classifier(x_train,x_test,y_test,y_valid):
lrc = LogisticRegression(random_state=0, solver='lbfgs',multi_class='multinomial')
lrc.fit(x_train, y_valid)
predicted = lrc.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
lrc_cm = confusion_matrix(y_test, predicted)
sns.heatmap(lrc_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nLRC')
ylabel('True')
xlabel('Predicted label')
total = lrc_cm.sum(axis=None)
correct = lrc_cm.diagonal().sum()
print("LRC Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(lrc_cm, classes=class_names, title='LRC Confusion matrix, without normalization')
plt.show()
###########################################################################################################
# Random Forest Classifier
def Random_Forest_Classifier(x_train,x_test,y_test,y_valid):
rfc = RandomForestClassifier(max_depth=15, n_estimators=20, max_features=5)
rfc.fit(x_train, y_valid)
predicted = rfc.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
rfc_cm = confusion_matrix(y_test, predicted)
sns.heatmap(rfc_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nRFC')
ylabel('True')
xlabel('Predicted label')
total = rfc_cm.sum(axis=None)
correct = rfc_cm.diagonal().sum()
print("RFC Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(rfc_cm, classes=class_names, title='RFC Confusion matrix, without normalization')
plt.show()
##################################################################################################################
# Multilayer Prceptron Classifier
def Multilayer_Prceptron_Classifier(x_train,x_test,y_test,y_valid):
mlp = MLPClassifier(alpha=1)
mlp.fit(x_train, y_valid)
predicted = mlp.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
mlp_cm = confusion_matrix(y_test, predicted)
sns.heatmap(mlp_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nMLP')
ylabel('True')
xlabel('Predicted label')
total = mlp_cm.sum(axis=None)
correct = mlp_cm.diagonal().sum()
print("MLP Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(mlp_cm, classes=class_names, title='MLP Confusion Matrix, without normalization')
plt.show()
#####################################################################################################################
# Ada Boost Classifier
def Ada_Boost_Classifier(x_train,x_test,y_test,y_valid):
abc = AdaBoostClassifier()
abc.fit(x_train, y_valid)
predicted = abc.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
abc_cm = confusion_matrix(y_test, predicted)
sns.heatmap(abc_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nAda Boost Classifier')
ylabel('True')
xlabel('Predicted label')
total = abc_cm.sum(axis=None)
correct = abc_cm.diagonal().sum()
print("Ada Boost Classifier Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(abc_cm, classes=class_names, title='Ada Boost Classifier Confusion Matrix, without normalization')
plt.show()
############################################################################################################################
# Decision Tree Classifier Classifier
def Decision_Tree_Classifier(x_train,x_test,y_test,y_valid):
dtc = DTC(max_depth=50)
dtc.fit(x_train, y_valid)
predicted = dtc.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
dtc_cm = confusion_matrix(y_test, predicted)
sns.heatmap(dtc_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nDecision Tree Classifier Classifier')
ylabel('True')
xlabel('Predicted label')
total = dtc_cm.sum(axis=None)
correct = dtc_cm.diagonal().sum()
print("Decision Tree Classifier Classifier Accuracy: %0.2f %%" % (100.0 * correct / total))
print("injaaaaaaaaaaaaaaaaa1:",confusion_matrix)
print("injaaaaaaaaaaaaaaaaa2:",y_test)
print("injaaaaaaaaaaaaaaaaa3:",predicted)
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(dtc_cm, classes=class_names, title='Decision Tree_Classifier Confusion Matrix, without normalization')
plt.show()
###############################################################################################################################
# Gaussian Process Classifier
def Gaussian_Process_Classifier(x_train,x_test,y_test,y_valid):
gpc = GaussianProcessClassifier(1.0 * RBF(1.0))
gpc.fit(x_train, y_valid)
predicted = gpc.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
gpc_cm = confusion_matrix(y_test, predicted)
sns.heatmap(gpc_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nGaussian Process Classifier Classifier')
ylabel('True')
xlabel('Predicted label')
total = gpc_cm.sum(axis=None)
correct = gpc_cm.diagonal().sum()
print("Gaussian Process Classifier Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(gpc_cm, classes=class_names, title='Gaussian Process Classifier Confusion Matrix, without normalization')
plt.show()
###################################################################################################################################
# Support Vector Machine classifier
def Support_Vector_Machine(x_train,x_test,y_test,y_valid):
svm = SVC(gamma=0.001)
svm.fit(x_train, y_valid)
predicted = svm.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
svm_cm = confusion_matrix(y_test, predicted)
sns.heatmap(svm_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nSupport Vector Machine Classifier Classifier')
ylabel('True')
xlabel('Predicted label')
total = svm_cm.sum(axis=None)
correct = svm_cm.diagonal().sum()
print("Support Vector Machine Classifier Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(svm_cm, classes=class_names, title='Support Vector MachineClassifier Confusion Matrix, without normalization')
plt.show()
########################################################################################################################################
# HOG + Linear SVM Classifier
def HOG_L_SVM(x_train,x_test,y_test2,y_valid):
features = np.array(x_train, 'int16')
labels = np.array(y_valid, 'int')
gg = np.array(x_test, 'int16')
list_hog_fd1 = []
for feature in gg:
fd = hog(feature.reshape((28, 28)), orientations=9, pixels_per_cell=(14, 14), cells_per_block=(1, 1),
visualise=False)
list_hog_fd1.append(fd)
hog_features1 = np.array(list_hog_fd1, 'float64')
# Extract the hog features
list_hog_fd = []
for feature in features:
fd = hog(feature.reshape((28, 28)), orientations=9, pixels_per_cell=(14, 14), cells_per_block=(1, 1),
visualise=False)
list_hog_fd.append(fd)
hog_features = np.array(list_hog_fd, 'float64')
lsvm = LinearSVC()
labels1 = np.array(y_test2, 'int')
lsvm.fit(hog_features, validation_usps_label)
y_pred = lsvm.predict(hog_features1)
print(metrics.classification_report(labels1, y_pred))
plt.figure()
lsvm_cm = confusion_matrix(labels1, y_pred)
sns.heatmap(lsvm_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nHOG + Linear SVM Classifier Classifier')
ylabel('True')
xlabel('Predicted label')
total = lsvm_cm.sum(axis=None)
correct = lsvm_cm.diagonal().sum()
print("HOG + Linear SVM Classifier Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(test_usps_label)
class_names = enc.classes_
plot_confusion_matrix(lsvm_cm, classes=class_names, title='HOG + Linear SVM Classifier Confusion Matrix, without normalization')
plt.show()
####################################################################################################################################
# Stochastic Gradient Descent
def Stochastic_Gradient_Descent(x_train,x_test,y_test,y_valid):
gpc = SGDClassifier()
gpc.fit(x_train, y_valid)
predicted = gpc.predict(x_test)
print(metrics.classification_report(y_test, predicted))
plt.figure()
gpc_cm = confusion_matrix(y_test, predicted)
sns.heatmap(gpc_cm, square=True, cmap='inferno')
title('Confusion Matrix-Color Map:\nStochastic Gradient Descent Classifier Classifier')
ylabel('True')
xlabel('Predicted label')
total = gpc_cm.sum(axis=None)
correct = gpc_cm.diagonal().sum()
print("Stochastic Gradient Descent Classifier Accuracy: %0.2f %%" % (100.0 * correct / total))
plt.figure()
le = preprocessing.LabelEncoder()
enc = le.fit(y_test)
class_names = enc.classes_
plot_confusion_matrix(gpc_cm, classes=class_names, title='Stochastic Gradient Descent Classifier\n Confusion Matrix, without normalization')
plt.show()
#################################################################################################################################################
################# Main fnction
def PRProject_Main(n):
if n == 1:
Knn_Classifier(usps_dataset_train, usps_labels_train, usps_dataset_test, usps_labels_test)
elif n == 2:
PCA_Classifier(usps_dataset_train, usps_labels_train, usps_dataset_test, usps_labels_test,
validation_usps_label, test_usps_label)
elif n == 3:
LDA_Classifier(usps_dataset_train, usps_labels_train, usps_dataset_test, usps_labels_test,
validation_usps_label, test_usps_label)
elif n==4:
Bayesian_Classifier(usps_dataset_train, usps_labels_train, usps_dataset_test, usps_labels_test,
validation_usps_label, test_usps_label)
elif n==5:
QDA_Classifier(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==6:
Logistic_Regression_Classifier(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==7:
Random_Forest_Classifier(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==8:
Multilayer_Prceptron_Classifier(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==9:
Ada_Boost_Classifier(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==10:
Decision_Tree_Classifier(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==11:
Gaussian_Process_Classifier(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==12:
Support_Vector_Machine(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==13:
HOG_L_SVM(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
elif n==14:
Stochastic_Gradient_Descent(usps_dataset_train, usps_dataset_test, test_usps_label, validation_usps_label)
if __name__ == "__main__":
# Reading USPS data
# Reading train data for preprocessing...
validation_usps, validation_usps_label = process_usps_data("USPS-data/Numerals/")
usps_data = np.reshape(validation_usps, (20000, 28, 28))
usps_dataset_train, usps_labels_train = reformat_tf(usps_data, validation_usps_label)
usps_dataset_train = np.reshape(usps_dataset_train, (20000, 784))
# Reading test data for preprocessing...
test_usps, test_usps_label = process_usps_data("USPS-data/Test/")
usps_data = np.reshape(test_usps, (1500, 28, 28))
usps_dataset_test, usps_labels_test = reformat_tf(usps_data, test_usps_label)
usps_dataset_test = np.reshape(usps_dataset_test, (1500, 784))
print("Handwritten Digit Recognition Project\n\nTo Choose your Method Run, First You Need To Install "
"Required Libraries\n\n")
print("1.Knn Classifier\n"
"2.PCA Classifier\n"
"3.LDA Classifier\n"
"4.Bayesian Classifier\n"
"5.QDA Classifier\n"
"6.Logistic Regression Classifier\n"
"7.Random Forest Classifier\n"
"8.Multilayer Prceptron Classifier\n"
"9.Ada Boost Classifier\n"
"10.Decision Tree Classifier\n"
"11.Gaussian Process Classifier\n"
"12.Support Vector Machine\n"
"13.HOG With LSVM\n"
"14.Stochastic Gradient Descent\n"
"Choosing The Number Of Method : ")
n = int(input())
PRProject_Main(n)