-
Notifications
You must be signed in to change notification settings - Fork 391
/
Copy pathoptimization.py
224 lines (186 loc) · 9.4 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import datetime
import numpy as np
import pandas as pd
import scipy.optimize as sco
import pandas_datareader as pdr
import matplotlib.pyplot as plt
from pypfopt import risk_models
from pypfopt import expected_returns
from pandas.plotting import register_matplotlib_converters
from pypfopt.efficient_frontier import EfficientFrontier
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
register_matplotlib_converters()
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
stocks = ['TGT', 'AMZN', 'NFLX', 'PG', 'NSRGY', 'MDLZ', 'MRK', 'MSFT', 'AAPL']
n = len(stocks) #number of stocks
start = datetime.datetime.now() - datetime.timedelta(days=365)
end = datetime.datetime.now() - datetime.timedelta(days=60)
df = pdr.get_data_yahoo(stocks, start=start, end=end)['Close']
print (df.tail())
returns = df.pct_change()
returns.plot(grid = True).axhline(y = 0, color = "black", lw = 2)
plt.legend(loc='upper right', fontsize=12)
plt.ylabel('Daily Returns')
def portfolio_annualised_performance(weights, mean_returns, cov_matrix):
returns = np.sum(mean_returns*weights ) *252
std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252)
return std, returns
def random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate):
results = np.zeros((3,num_portfolios))
weights_record = []
for i in range(num_portfolios):
weights = np.random.random(n)
weights /= np.sum(weights)
weights_record.append(weights)
portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, mean_returns, cov_matrix)
results[0,i] = portfolio_std_dev
results[1,i] = portfolio_return
results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev
return results, weights_record
returns = df.pct_change()
mean_returns = returns.mean()
cov_matrix = returns.cov()
num_portfolios = 50000
risk_free_rate = 0.021
def neg_sharpe_ratio(weights, mean_returns, cov_matrix, risk_free_rate):
p_var, p_ret = portfolio_annualised_performance(weights, mean_returns, cov_matrix)
return -(p_ret - risk_free_rate) / p_var
def max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate):
num_assets = len(mean_returns)
args = (mean_returns, cov_matrix, risk_free_rate)
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bound = (0.0,1.0)
bounds = tuple(bound for asset in range(num_assets))
result = sco.minimize(neg_sharpe_ratio, num_assets*[1./num_assets,], args=args,
method='SLSQP', bounds=bounds, constraints=constraints)
return result
def portfolio_volatility(weights, mean_returns, cov_matrix):
return portfolio_annualised_performance(weights, mean_returns, cov_matrix)[0]
def min_variance(mean_returns, cov_matrix):
num_assets = len(mean_returns)
args = (mean_returns, cov_matrix)
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bound = (0.0,1.0)
bounds = tuple(bound for asset in range(num_assets))
result = sco.minimize(portfolio_volatility, num_assets*[1./num_assets,], args=args,
method='SLSQP', bounds=bounds, constraints=constraints)
return result
def efficient_return(mean_returns, cov_matrix, target):
num_assets = len(mean_returns)
args = (mean_returns, cov_matrix)
def portfolio_return(weights):
return portfolio_annualised_performance(weights, mean_returns, cov_matrix)[1]
constraints = ({'type': 'eq', 'fun': lambda x: portfolio_return(x) - target},
{'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bounds = tuple((0,1) for asset in range(num_assets))
result = sco.minimize(portfolio_volatility, num_assets*[1./num_assets,], args=args, method='SLSQP', bounds=bounds, constraints=constraints)
return result
def efficient_frontier(mean_returns, cov_matrix, returns_range):
efficients = []
for ret in returns_range:
efficients.append(efficient_return(mean_returns, cov_matrix, ret))
return efficients
def display_calculated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate):
results, _ = random_portfolios(num_portfolios,mean_returns, cov_matrix, risk_free_rate)
max_sharpe = max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate)
sdp, rp = portfolio_annualised_performance(max_sharpe['x'], mean_returns, cov_matrix)
max_sharpe_allocation = pd.DataFrame(max_sharpe.x,index=df.columns,columns=['allocation'])
max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation]
max_sharpe_allocation = max_sharpe_allocation.T
max_sharpe_allocation
min_vol = min_variance(mean_returns, cov_matrix)
sdp_min, rp_min = portfolio_annualised_performance(min_vol['x'], mean_returns, cov_matrix)
min_vol_allocation = pd.DataFrame(min_vol.x,index=df.columns,columns=['allocation'])
min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation]
min_vol_allocation = min_vol_allocation.T
'''
print ("-"*80)
print ("Maximum Sharpe Ratio Portfolio Allocation\n")
print ("Annualised Return:", round(rp,2))
print ("Annualised Volatility:", round(sdp,2))
print ("\n")
print (max_sharpe_allocation)
print ("-"*80)
print ("Minimum Volatility Portfolio Allocation\n")
print ("Annualised Return:", round(rp_min,2))
print ("Annualised Volatility:", round(sdp_min,2))
print ("\n")
print (min_vol_allocation)
'''
plt.figure(figsize=(10, 7))
plt.scatter(results[0,:],results[1,:],c=results[2,:],cmap='YlGnBu', marker='o', s=10, alpha=0.3)
plt.colorbar()
plt.scatter(sdp,rp,marker='*',color='r',s=500, label='Maximum Sharpe ratio')
plt.scatter(sdp_min,rp_min,marker='*',color='g',s=500, label='Minimum volatility')
target = np.linspace(rp_min, 0.32, 50)
efficient_portfolios = efficient_frontier(mean_returns, cov_matrix, target)
plt.plot([p['fun'] for p in efficient_portfolios], target, linestyle='-.', color='black', label='efficient frontier')
plt.title('Calculated Portfolio Optimization based on Efficient Frontier')
plt.xlabel('annualised volatility')
plt.ylabel('annualised returns')
plt.legend(labelspacing=0.8)
plt.show();
display_calculated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate)
def display_ef_with_selected(mean_returns, cov_matrix, risk_free_rate):
max_sharpe = max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate)
sdp, rp = portfolio_annualised_performance(max_sharpe['x'], mean_returns, cov_matrix)
max_sharpe_allocation = pd.DataFrame(max_sharpe.x,index=df.columns,columns=['allocation'])
max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation]
max_sharpe_allocation = max_sharpe_allocation.T
max_sharpe_allocation
min_vol = min_variance(mean_returns, cov_matrix)
sdp_min, rp_min = portfolio_annualised_performance(min_vol['x'], mean_returns, cov_matrix)
min_vol_allocation = pd.DataFrame(min_vol.x,index=df.columns,columns=['allocation'])
min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation]
min_vol_allocation = min_vol_allocation.T
an_vol = np.std(returns) * np.sqrt(252)
an_rt = mean_returns * 252
print ("-"*80)
print ("Maximum Sharpe Ratio Portfolio Allocation\n")
print ("Annualised Return:", round(rp,2))
print ("Annualised Volatility:", round(sdp,2))
print ("\n")
print (max_sharpe_allocation)
print ("-"*80)
print ("Minimum Volatility Portfolio Allocation\n")
print ("Annualised Return:", round(rp_min,2))
print ("Annualised Volatility:", round(sdp_min,2))
print ("\n")
print (min_vol_allocation)
print ("-"*80)
print ("Individual Stock Returns and Volatility\n")
for i, txt in enumerate(df.columns):
print (txt,":","annualised return",round(an_rt[i],2),", annualised volatility:",round(an_vol[i],2))
print ("-"*80)
plt.show()
fig, ax = plt.subplots(figsize=(10, 7))
ax.scatter(an_vol,an_rt,marker='o',s=200)
for i, txt in enumerate(df.columns):
ax.annotate(txt, (an_vol[i],an_rt[i]), xytext=(10,0), textcoords='offset points')
ax.scatter(sdp,rp,marker='*',color='r',s=500, label='Maximum Sharpe ratio')
ax.scatter(sdp_min,rp_min,marker='*',color='g',s=500, label='Minimum volatility')
target = np.linspace(rp_min, 0.34, 50)
efficient_portfolios = efficient_frontier(mean_returns, cov_matrix, target)
ax.plot([p['fun'] for p in efficient_portfolios], target, linestyle='-.', color='black', label='efficient frontier')
ax.set_title('Portfolio Optimization with Individual Stocks')
ax.set_xlabel('annualised volatility')
ax.set_ylabel('annualised returns')
ax.legend(labelspacing=0.8)
plt.show();
display_ef_with_selected(mean_returns, cov_matrix, risk_free_rate)
stocks = df
n = 100000 # total port. value
# Calculate expected returns and sample covariance
mu = expected_returns.mean_historical_return(df)
S = risk_models.sample_cov(df)
# Optimise for maximal Sharpe ratio
ef = EfficientFrontier(mu, S)
raw_weights = ef.max_sharpe()
cleaned_weights = ef.clean_weights()
ef.portfolio_performance(verbose=True)
latest_prices = get_latest_prices(df)
da = DiscreteAllocation(cleaned_weights, latest_prices, total_portfolio_value=n)
allocation, leftover = da.lp_portfolio()
print("Discrete allocation:", allocation)
print("Funds remaining: ${:.2f}".format(leftover))