-
Notifications
You must be signed in to change notification settings - Fork 391
/
Copy pathstock_prediction (1).py
128 lines (96 loc) · 3.9 KB
/
stock_prediction (1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
import numpy as np
from pandas_datareader import DataReader
import datetime
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from pylab import rcParams
#pd.set_option("display.max_columns", None)
#pd.set_option("display.max_rows", 50)
stock = "AAPL"
start_date = datetime.datetime.now() - datetime.timedelta(days=365)
end_date = datetime.date.today()
df = DataReader(stock, "yahoo", start_date, end_date)
rows = df.values.tolist()
forecast_out = 30
df['Prediction'] = df[['Close']].shift(-forecast_out)
X = np.array(df.drop(['Prediction'],1))
X = X[:-forecast_out]
y = np.array(df['Prediction'])
Y = y[:-forecast_out]
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2) # split training and test data
# Convert lists into numpy arrays
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
# reshape the values as we have only one input feature
#x_train = x_train.reshape(-1,1)
#x_test = x_test.reshape(-1,1)
# Linear Regression model
clf_lr = LinearRegression()
clf_lr.fit(x_train,y_train)
y_pred_lr = clf_lr.predict(x_test)
# Support Vector Machine with a Radial Basis Function as kernel
clf_svr = SVR(kernel="rbf", C=1e3, gamma=0.1)
clf_svr.fit(x_train,y_train)
y_pred_svr = clf_svr.predict(x_test)
# Random Forest Regressor
clf_rf = RandomForestRegressor(n_estimators=100)
clf_rf.fit(x_train,y_train)
y_pred_rf = clf_rf.predict(x_test)
# Gradient Boosting Regressor
clf_gb = GradientBoostingRegressor(n_estimators=200)
clf_gb.fit(x_train,y_train)
y_pred_gb = clf_gb.predict(x_test)
x_forecast = np.array(df.drop(['Prediction'],1))[-forecast_out:]
lr_prediction = clf_lr.predict(x_forecast)
svm_prediction = clf_svr.predict(x_forecast)
rfg_prediction = clf_rf.predict(x_forecast)
gbr_prediction = clf_gb.predict(x_forecast)
lr_confidence = round(clf_lr.score(x_test,y_test), 2)
svm_confidence = round(clf_svr.score(x_test,y_test), 2)
rfg_confidence = round(clf_rf.score(x_test,y_test), 2)
gbr_confidence = round(clf_gb.score(x_test,y_test), 2)
plt.plot(svm_prediction, markerfacecolor='orange', label = "lr confidence: {}".format(lr_confidence)) #, marker = 'o')
plt.plot(lr_prediction, markerfacecolor='blue', label = "svm confidence: {} ".format(svm_confidence)) #, marker = 'o')
plt.plot(rfg_prediction, markerfacecolor='red', label = "rfg confidence: {}".format(rfg_confidence)) #, marker = 'o')
plt.plot(gbr_prediction, markerfacecolor='green', label = "gbr confidence: {} ".format(gbr_confidence)) #, marker = 'o')
plt.legend(loc=10)
plt.title(stock)
rcParams['figure.figsize'] = 15, 10
plt.grid(True)
plt.xticks(np.arange(0, 30, step=1))
plt.xlabel('Days')
plt.ylabel('Close Price')
#plt.subplots.axis('scaled')
plt.tight_layout()
plt.show()
print("Accuracy of Linear Regression Model: ", lr_confidence)
print("Accuracy of SVM-RBF Model: ", svm_confidence)
print("Accuracy of Random Forest Model: ", rfg_confidence)
print("Accuracy of Gradient Boosting Model: ", gbr_confidence)
'''
f,(ax1, ax2) = plt.subplots(1,2,figsize=(30,10))
# Linear Regression
ax1.scatter(range(len(y_test)),y_test,label="data")
ax1.plot(range(len(y_test)),y_pred_lr,color="green",label="LR model")
ax1.legend()
# Support Vector Machine
ax2.scatter(range(len(y_test)),y_test,label="data")
ax2.plot(range(len(y_test)),y_pred_svr,color="orange",label="SVM-RBF model")
ax2.legend()
f,(ax3,ax4) = plt.subplots(1,2, figsize=(30,10))
# Random Forest Regressor
ax3.scatter(range(len(y_test)),y_test,label="data")
ax3.plot(range(len(y_test)),y_pred_rf,color="red",label="RF model")
ax3.legend()
# Gradient Boosting Regressor
ax4.scatter(range(len(y_test)),y_test,label="data")
ax4.plot(range(len(y_test)),y_pred_gb,color="black",label="GB model")
ax4.legend()
'''