-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprint_features.py
134 lines (111 loc) · 4.92 KB
/
print_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Artificial Neural Network
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.utils import class_weight
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import RFE
import argparse
import operator
import helper
def load_file(file_path, is_attack = 1, attacker_ips = '', slice_data = 0, slice_percent = 20, slice_number = 0, columns_to_drop = [], label = 0, total_labels = 3):
data = pd.read_csv(file_path)
data = data.dropna()
if is_attack == 0:
data = data.loc[operator.and_(data['ip_src'].isin(attacker_ips) == False, data['ip_dst'].isin(attacker_ips) == False)]
else:
data = data.loc[operator.or_(data['ip_src'].isin(attacker_ips), data['ip_dst'].isin(attacker_ips))]
print(np.size(data, axis = 0))
if slice_data == 1:
total_no = np.size(data, axis = 0)
batch = int(total_no*(slice_percent/100))
start = batch * slice_number
end = batch * (slice_number + 1)
if end > total_no:
end = total_no - 1
data = data.iloc[start:end, :]
data.drop(columns_to_drop, axis=1, inplace=True)
data.drop(data.columns[0], axis=1, inplace=True)
data = data.assign(Label=label)
for l in range(total_labels):
strlab = 'Label{}'.format(l)
if l == label:
data = data.assign(x = 1)
else:
data = data.assign(strlab = 0)
data.set_axis([*data.columns[:-1], strlab], axis=1, inplace=True)
print(data.columns)
return data
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--drop_aggregation', type=int, default=1)
parser.add_argument('--normal_path', default='biflow_Monday-WorkingHours_Fixed_Hour_0.csv')
parser.add_argument('--attack_paths', default='biflow_Friday-WorkingHours_PortScan.csv')
parser.add_argument('--attacker_ips', default='205.174.165.69,205.174.165.70,205.174.165.71,205.174.165.73,205.174.165.80,172.16.0.1,172.16.0.10,172.16.0.11')
parser.add_argument('--slice_normal', type=int, default=0)
parser.add_argument('--slice_attacks', default='0')
parser.add_argument('--slice_normal_percent', type=int, default=0)
parser.add_argument('--slice_attacks_percent', default='0')
parser.add_argument('--normal_slice_no', type=int, default=0)
parser.add_argument('--slice_attacks_number', default='0')
parser.add_argument('--number_of_features', type=int, default=5)
args = parser.parse_args()
columns_to_drop = ['ip_src', 'ip_dst', 'prt_src', 'prt_dst', 'proto']
if args.drop_aggregation == 1:
columns_to_drop.append('num_src_flows')
columns_to_drop.append('src_ip_dst_prt_delta')
attacker_ips = args.attacker_ips.split(',')
attack_paths = args.attack_paths.split(',')
total_classes = len(attack_paths) + 1
normal = load_file(
args.normal_path,
0,
attacker_ips,
args.slice_normal,
args.slice_normal_percent,
args.normal_slice_no,
columns_to_drop,
0,
total_classes)
XY = pd.concat([normal])
slice_attacks = args.slice_attacks.split(',')
slice_attacks_percent = args.slice_attacks_percent.split(',')
slice_attacks_number = args.slice_attacks_number.split(',')
print(slice_attacks_percent)
count = 1
for path in attack_paths:
attack = load_file(
str.strip(path),
1,
attacker_ips,
int(slice_attacks[count-1]),
int(slice_attacks_percent[count-1]),
int(slice_attacks_number[count-1]),
columns_to_drop,
count,
total_classes)
count += 1
XY = pd.concat([XY, attack])
del attack
column_names = list(normal.columns.values)
del normal
width = XY.shape[1]
length = XY.shape[0]
X = XY.iloc[:,0:width-total_classes-1].copy()
Y = XY.iloc[:,(width-total_classes-1)].copy()
Y_Labels = XY.iloc[:,(width-total_classes):].copy()
# Apply feature scaling to inputs only
scaler = StandardScaler()
Xtrans = scaler.fit_transform(X)
model = LogisticRegression(max_iter=2000)
rfe = RFE(estimator=model, step=1, n_features_to_select=1) # multicore
rfe.fit(Xtrans, Y.values)
numBestFeatures = rfe.n_features_
featureMask = rfe.support_
ranking = rfe.ranking_
for i in range(args.number_of_features):
print("{} : {} ".format(i+1, X.columns[list(ranking).index(i+1)]))