-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum_circuit_creator.py
296 lines (246 loc) · 8.39 KB
/
quantum_circuit_creator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
inputs = []
terms = []
d = []
row = []
m = 3 # Number of Qubits in the Input file containing the Truth Table
extra = m # To store a copy of m for future reference
from qiskit import QuantumProgram, CompositeGate
Q_obj = QuantumProgram() #Quantum object created
backend = 'local_qasm_simulator' #Backend is chosen
# filename = input("Enter name of the file: ")
filename = 'inputs.txt' # File containing the desired Truth Table
# access_mode = input("Enter file mode")
file_object = open(filename, 'r')
"""
Let's name the various qubits as A, B, C and so on.
"""
for i in range(0, m):
inputs.append(chr(i + 65))
"""
Separate the Input Qubits from its output value.
If the output is HIGH, append it to the list of minterms.
This will later help in reducing the Boolean expression.
"""
for i in range(pow(2, m)):
row = file_object.readline().rstrip()
row_qubits = row.split("-")
if (row_qubits[1] == '1'):
terms.append(i)
terms += d # appending all terms to work on a "copy" of the terms
"""
Designing a class to reduce the minterms.
By checking the HIGH output minterms, we can solve
the expression and minimise it using Quine–McCluskey algorithm.
Quine–McCluskey algorithm is used so that it can handle large number
of bits, unlike Karnaugh maps which can be used only up to 4 qubits.
"""
class Expression:
def __init__(self, x, l):
self.prime = True
self.m = [x]
self.val = bin(x)[2:]
while (len(self.val) < l):
self.val = '0' + self.val
self.ones = self.val.count('1')
def hd(self, x):
hd, pos = 0, 0
for i in range(len(x.val)):
if (self.val[i] != x.val[i]):
hd += 1
pos = i
if (hd > 1):
return -1
if (hd == 1 and (x.val.find('-') == self.val.find('-'))):
return pos
else:
return -1
def msIn(self, x):
ret = []
for i in self.m:
if (i in x):
ret += [i]
return ret, len(ret)
def __str__(self):
return self.val
def __eq__(self, x):
return self.val == x.val
def __lt__(self, x):
return self.m < x.m
def setTerms(terms, inputs):
fo = (len(terms), len(inputs))
for i in range(fo[0]):
terms.append(Expression(terms[i], fo[1]))
return terms[int(len(terms) / 2):]
def combineTerms(x): # O(n^2 +n) :(
ret = []
for i in x:
for j in x:
buf = i.hd(j)
if ((buf != -1) and (j.ones - i.ones == 1)):
i.prime = False
j.prime = False
fo = list(i.val)
v = Expression(1, 4)
v.m = []
v.m += i.m
v.m += j.m
fo[buf] = '-'
v.val = ''.join(fo)
v.ones = v.val.count('1')
ret.append(v)
for i in x:
if i.prime == True:
ret.append(i)
return ret
def lettersFromBinary(x):
ret = ''
for i in range(len(x)):
if (x[i] == '0'):
ret += inputs[i] + '|' + '.'
elif (x[i] == '1'):
ret += inputs[i] + '.'
return ret[:len(ret) - 1]
def expression_output(x):
buf = ''
for i in x:
fo = lettersFromBinary(i.val)
if (fo != ''):
buf += fo + ' + '
return buf[:len(buf) - 3]
def sizeImpl(x):
while (True):
buf = combineTerms(x)
if (x == buf):
break
x = buf
return x
def obtainGroups(x):
buf = list(x)
for i in range(len(x)):
if (x.count(x[i]) == 2) and x[i].val != '':
x[i].val = ''
buf.remove(x[i])
return buf
def manipulation(x):
ms = {}
ret = []
for i in x:
for k in i.m:
try:
ms[k].append(i)
except:
ms[k] = [i]
for i in ms:
if (len(ms[i]) == 1 and i not in d):
for j in ms[i]:
if (j not in ret):
ret.append(j)
for i in ret:
for j in i.m: ms.pop(j, None)
for i in d:
ms.pop(i, None)
while (len(ms) != 0):
currentLength, currentGroups, prime = 0, 0, 0
for i in ms:
for j in ms[i]:
nextGroups, nextLength = j.msIn(ms.keys())
if (nextLength > currentLength):
currentLength = nextLength
currentGroups = nextGroups
prime = j
ret.append(prime)
for i in currentGroups:
ms.pop(i, None)
return ret
def booleanReduction(x):
x = manipulation(obtainGroups(sizeImpl(setTerms(x, inputs))))
reduced_exp = '' + expression_output(x)
return reduced_exp
final_exp = '' + booleanReduction(terms)
print(final_exp)
expression = ''.join(final_exp.split()) # To remove any space both inside the expression as well as at the ends.
"""
The obtained string expression has to be operated upon to
get the number of terms. For that, the number of '+' signs in the expression will help.
To find the additional number of qubits required to operate upon,
we have to find the number of individual qubits within the terms in the entire sequence.
Reason:
In QISKit, there is no OR gate. To implement OR gate, we have use Toffoli gate
which acts as AND gate and form OR gates. For example:
A OR B = NOT(NOT(A) AND NOT(B))
Toffoli gates are the quantum equivalent for AND gates. For every OR operation of
2 terms, we use a Tofolli gate and produce new qubits. Hence, the total number of
qubits to be initialised are the number of +'s and .'s in the simplified
boolean expression.
"""
no_of_plus = expression.count('+')
no_of_dots = expression.count('.')
no_of_extra_qubits = no_of_plus + no_of_dots
"""
Creation of Classical and Quantum registers.
Also, creation of the quantum circuit layout usinng those registers.
"""
qr = Q_obj.create_quantum_register("qr", m+no_of_extra_qubits)
cr = Q_obj.create_classical_register("cr", m+no_of_extra_qubits)
qc = Q_obj.create_circuit("Circuit", [qr], [cr])
list_expression = expression.split('+')
and_all_terms_list = []
for sub_expression in list_expression:
not_gate_list = [] # To store qubits having "Bar" or the NOT operator on them.
normal_gate_list = []
list_sub_expression = sub_expression.split('.')
"""
Let's separate the negated terms from the normal terms.
Put the bits having bar operator on them in different list
"""
for i in range(0, len(list_sub_expression)):
if(len(list_sub_expression[i])>1):
not_gate_list.append(list_sub_expression[i][0])
else:
normal_gate_list.append(list_sub_expression[i])
for ch in not_gate_list:
qc.x(qr[ord(ch)-65]) # Application of NOT gates to the bits having the Bar over them
merged_list = not_gate_list + normal_gate_list
for i in range(0, len(merged_list)-1):
ch1 = merged_list[i]
ch2 = merged_list[i+1]
"""
Application of Tofolli gate to the bits so that we can
perform AND operation on the bits. This is stored into a new qubit.
Hence, extra = extra + 1
"""
qc.ccx(qr[ord(ch1)-65], qr[ord(ch2)-65], qr[extra]) # The result is computed and stored in another qubit.
extra = extra + 1
for ch in not_gate_list:
qc.x(qr[ord(ch) - 65])
extra = extra - 1
qc.x(qr[extra])
and_all_terms_list.append(extra)
# To store the bits where the new qubits are stored after
# application of Toffoli gates
extra = extra + 1
for i in range(0, len(and_all_terms_list)-1):
qubit1 = and_all_terms_list[i]
qubit2 = and_all_terms_list[i+1]
"""
Now, all the terms have to be further implemented with AND gate to get to
the penultimate stage. Hence, we have to apply Toffoli gates which are used
as AND gates.
"""
qc.ccx(qr[qubit1], qr[qubit2], qr[extra])
extra = extra + 1
"""
Final application of NOT gate to get the result because we are trying to achieve this:
A ¦¦ B = NOT(NOT(A) AND (B))
Hence, we are applying the NOT gate to final qubit which holds the solution of the entire circuit.
"""
extra = extra - 1
qc.x(qr[extra])
"""
To generate the QASM Code fot the Quantum Circuit so that the working
and chronology of the operations is understood. It describes a sequential
order of execution of circuits along with operation of gates on the various
qubits.
"""
QASM_source = Q_obj.get_qasm("Circuit")
print(QASM_source)