-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
184 lines (157 loc) · 7.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import numpy as np
import os
import pandas as pd
import random
from tensorboardX import SummaryWriter
from model import C3D, fc
import cv2
def makecsv():
device = "cuda:0" if torch.cuda.is_available() else "cpu"
anomaly_path_burg = "D:/Hackathons/video surveilance/archive/Anomaly-Videos-Part-2/Burglary"
anomaly_path_fight = "D:/Hackathons/video surveilance/archive/Anomaly-Videos-Part-2/Fighting"
anomaly_burg = os.listdir(anomaly_path_burg)
anomaly_fight = os.listdir(anomaly_path_fight)
normal_path = "D:/Hackathons/video surveilance/archive/Testing_Normal_Videos/Testing_Normal_Videos_Anomaly"
normal = os.listdir(normal_path)
save_anomaly = "D:/Hackathons/video surveilance/archive/Anomaly csv"
save_normal = "D:/Hackathons/video surveilance/archive/Normal csv"
c3d_model = C3D().to(device)
c3d_model.load_state_dict(torch.load("D:/Hackathons/video surveilance/c3d weights.pickle"))
for vid in anomaly_burg:
cap = cv2.VideoCapture(os.path.join(anomaly_path_burg, vid))
frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
final = []
temp = []
inp = []
while(cap.isOpened()):
ret,frame = cap.read()
if ret == True:
frame = cv2.resize(frame, (112,112))
inp += [np.array(frame)]
if len(inp) == 16:
inp = np.array(inp).transpose(3,0,1,2)
inp = torch.Tensor(np.expand_dims(inp, axis=0)).to(device)
pred = c3d_model(inp).detach().cpu().numpy()
pred = list(pred/np.linalg.norm(pred))
temp += pred
inp = []
else:
break
cap.release()
seg_length = int(len(temp)//32)
if seg_length == 0:
continue
for i in range(0,32*seg_length, seg_length):
final += [np.average(temp[i:i+seg_length], axis = 0)]
final = np.array(final).reshape((32,4096))
pd.DataFrame(final).to_csv(os.path.join(save_anomaly, vid.split('.')[0] + '.csv'), index = False)
for vid in anomaly_fight:
cap = cv2.VideoCapture(os.path.join(anomaly_path_fight, vid))
frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
final = []
temp = []
inp = []
while(cap.isOpened()):
ret,frame = cap.read()
if ret == True:
frame = cv2.resize(frame, (112,112))
inp += [np.array(frame)]
if len(inp) == 16:
inp = np.array(inp).transpose(3,0,1,2)
inp = torch.Tensor(np.expand_dims(inp, axis=0)).to(device)
pred = c3d_model(inp).detach().cpu().numpy()
pred = list(pred/np.linalg.norm(pred))
temp += pred
inp = []
else:
break
cap.release()
seg_length = int(len(temp)//32)
if seg_length == 0:
continue
for i in range(0,32*seg_length, seg_length):
final += [np.average(temp[i:i+seg_length], axis = 0)]
final = np.array(final).reshape((32,4096))
pd.DataFrame(final).to_csv(os.path.join(save_anomaly, vid.split('.')[0] + '.csv'), index = False)
for vid in normal:
cap = cv2.VideoCapture(os.path.join(normal_path, vid))
frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
final = []
temp = []
inp = []
while(cap.isOpened()):
ret,frame = cap.read()
if ret == True:
frame = cv2.resize(frame, (112,112))
inp += [np.array(frame)]
if len(inp) == 16:
inp = np.array(inp).transpose(3,0,1,2)
inp = torch.Tensor(np.expand_dims(inp, axis=0)).to(device)
pred = c3d_model(inp).detach().cpu().numpy()
pred = list(pred/np.linalg.norm(pred))
temp += pred
inp = []
else:
break
cap.release()
seg_length = int(len(temp)//32)
if seg_length == 0:
continue
for i in range(0,32*seg_length, seg_length):
final += [np.average(temp[i:i+seg_length], axis = 0)]
final = np.array(final).reshape((32,4096))
pd.DataFrame(final).to_csv(os.path.join(save_normal, vid.split('.')[0] + '.csv'), index = False)
def loss(normal, abnormal, lambda1, lambda2):
MIL = F.relu(1-torch.max(abnormal)+torch.max(normal))
sparse = torch.sum(abnormal, dim = 1)
shifted_abnormal = torch.ones(abnormal.size()).to(abnormal.device)
for i in range(31):
shifted_abnormal[:,i+1,:] = abnormal[:,i,:]
abnormal = abnormal[:,1:,:]
shifted_abnormal = shifted_abnormal[:,1:,:]
similarity = torch.sum(torch.square(abnormal - shifted_abnormal), dim = 1)
final_loss = MIL + lambda1*similarity + lambda2*sparse
final_loss = torch.mean(final_loss, dim = 0)
return final_loss
def train(iterations, batch_size):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
model = fc().to(device)
#model.load_state_dict(torch.load("D:/Hackathons/video surveilance/model.pth"))
lambda1 = 0.00008
lambda2 = 0.00008
lambda3 = 0.01
anomaly_path = "D:/Hackathons/video surveilance/archive/Anomaly csv"
normal_path = "D:/Hackathons/video surveilance/archive/Normal csv"
anomaly = os.listdir(anomaly_path)
normal = os.listdir(normal_path)
optim = torch.optim.Adagrad(model.parameters(), lr = 0.001, weight_decay = lambda3)
loss_prev = 100
for j in range(iterations):
normal_files = np.array(normal)[random.sample(range(len(normal)), int(batch_size//2))]
anomaly_files = np.array(anomaly)[random.sample(range(len(anomaly)), int(batch_size//2))]
normals = []
anomalies = []
for i in range(int(batch_size//2)):
normals += [torch.Tensor(np.genfromtxt(os.path.join(normal_path, normal_files[i]), delimiter = ','))[1:,:]]
anomalies += [torch.Tensor(np.genfromtxt(os.path.join(anomaly_path, anomaly_files[i]), delimiter = ','))[1:,:]]
normals = torch.stack(normals, dim = 0).to(device)
anomalies = torch.stack(anomalies, dim = 0).to(device)
normal_pred = model(normals)
anomalies_pred = model(anomalies)
optim.zero_grad()
loss_val = loss(normal_pred, anomalies_pred, lambda1, lambda2)
loss_val.backward()
optim.step()
#wandb.log({'Loss':loss_val})
writer.add_scalar("Loss/loss", loss_val, j)
if loss_val < loss_prev:
torch.save(model.state_dict(), "D:/Hackathons/video surveilance/model.pth")
loss_prev = loss_val
if __name__ == '__main__':
#makecsv()
writer = SummaryWriter("D:/Hackathons/video surveilance/runs")
train(iterations = 10000, batch_size = 60)