-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtutorials.html
297 lines (293 loc) · 27 KB
/
tutorials.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
<!-- Do not edit this file. It is created by makeGitTutorial.py from info in GSASIIctrlGUI.py --!>
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html><head>
<title>GSAS-II Tutorial Index</title>
</head><body>
<img src="gsas2logo.png" align=right>
<h2>List of GSAS-II tutorials</H2><UL>
<p> A list of available tutorials appears below. Each tutorial is a
web page that can be opened using the link below, but most tutorials also need
to have example data files downloaded. This can also be done with links included below,
but it can be easier to access tutorials using
<b>Help/Tutorials</b> menu item.
When this menu entry is used from inside GSAS-II (unless "browse tutorial on web" is selected),
the data files are downloaded to a local directory and GSAS-II will start from that directory
for most file open commands. Most older tutorials have also been recorded as videos of the computer screen
along with narration. Where videos are available, links are provided below.
</p>
</UL><h4>Getting started</H4><UL>
<LI><A href="StartingGSASII/Starting GSAS.htm">Starting GSAS-II</A>
[link: <A href="https://anl.box.com/v/StartingGSAS">video</A>, no exercise files].
<blockquote><I>An introduction to GSAS-II with starting instructions and a brief description of the displays.</I></blockquote>
</UL><h4>Rietveld refinement</H4><UL>
<LI><A href="CWNeutron/Neutron CW Powder Data.htm">CW Neutron Powder fit for Yttrium-Iron Garnet</A>
[links: <A href="https://anl.box.com/v/NeutronCWPowderData">video</A>, <A href="CWNeutron/data" target="data">Exercise files</A>].
<blockquote><I>This shows a simple Rietveld refinement with constraints from CW neutron powder diffraction data.</I></blockquote>
<LI><A href="LabData/Laboratory X.htm">Fitting laboratory X-ray powder data for fluoroapatite</A>
[links: <A href="https://anl.box.com/v/LaboratoryX-">video</A>, <A href="LabData/data" target="data">Exercise files</A>].
<blockquote><I>This shows a simple Rietveld refinement with CuKa lab Bragg-Brentano powder data.</I></blockquote>
<LI><A href="CWCombined/Combined refinement.htm">Combined X-ray/CW-neutron refinement of PbSO4</A>
[links: <A href="https://anl.box.com/v/Combinedrefinement">video</A>, <A href="CWCombined/data" target="data">Exercise files</A>].
<blockquote><I>This shows Rietveld refinement of a structure with room temperature lab CuKa data and low temperature CW neutron data;
use is made of the lattice parameter offsets to account for thermal expansion.</I></blockquote>
<LI><A href="TOF-CW Joint Refinement/TOF combined XN Rietveld refinement in GSAS.htm">Combined X-ray/TOF-neutron Rietveld refinement</A>
[links: <A href="https://anl.box.com/v/TOFcombinedXNRietveldrefinemen">video</A>, <A href="TOF-CW Joint Refinement/data" target="data">Exercise files</A>].
<blockquote><I>This shows Rietveld refinement with high resolution synchrotron powder data and neutron TOF data</I></blockquote>
<LI><A href="Simulation/SimTutorial.htm">Simulating Powder Diffraction with GSAS-II</A>
[links: <A href="https://anl.box.com/v/SimTutorial-">video</A>, <A href="Simulation/data" target="data">Exercise files</A>].
<blockquote><I>This show how to create a simulated powder pattern from a lab diffractometer.</I></blockquote>
</UL><h4>Advanced Rietveld</H4><UL>
<LI><A href="BkgFit/FitBkgTut.htm">Fitting the Starting Background using Fixed Points</A>
[links: <A href="https://anl.box.com/v/FitBkgTut---">video</A>, <A href="BkgFit/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to get an initial estimate of background parameters from a suite of fixed points
before beginning Rietveld refinement.</I></blockquote>
<LI><A href="AutoBkg/AutoBkg.html">Using the "Auto Background" feature</A>
[link: <A href="AutoBkg/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to use the "Auto Background" feature in GSAS-II to get an estimate of background parameters for a
series of histograms with quite significant background levels. This estimate can be used to define a set of fixed points
or to define a "Fixed background histogram."</I></blockquote>
<LI><A href="LeBail/LeBailSucrose.htm">Le Bail Intensity Extraction in GSAS-II - Sucrose</A>
[link: <A href="LeBail/data" target="data">Exercise files</A>].
<blockquote><I>Shows the process of setting up a Le Bail fit, where reflection
intensities are treated as arbitrary, and how to converge the Le Bail
intensities before a combined Le Bail/Least-Squares fit that
optimizes lattice, peak shape and background parameters.</I></blockquote>
<LI><A href="CIFtutorial/CIFtutorial.html">Create a CIF for Publication</A>
[link: <A href="CIFtutorial/data" target="data">Exercise files</A>].
<blockquote><I>Shows how to create a full CIF for a project that includes the structure(s),
bond distances/angles/ the observed and computed data, etc as well as documentary
information about the sample(s), instrument(s) and the project in a way that allows
for updating the CIF without having to reenter any of that information. The tutorial
also explains how creation of template file can allow for reuse of that information.</I></blockquote>
<LI><A href="RietPlot/PublicationPlot.htm">Create a Publication-Ready Rietveld Plot</A>
[link: <A href="RietPlot/data" target="data">Exercise files</A>].
<blockquote><I>Shows how to create a customized version of a plot from a fit,
with enlarged letters, different colors or symbols which can be written
as a bitmap file, a pdf file or be exported to the Grace or Igor Pro
plotting programs.</I></blockquote>
<LI><A href="ParameterLimits/ParameterLimitsUse.html">Use of Parameter Limits</A>
[link: <A href="ParameterLimits/data" target="data">Exercise files</A>].
<blockquote><I>Shows how to set lower and upper limits on selected parameters to keep refinements from refining unreasonably.</I></blockquote>
<LI><A href="RigidBody/RigidBodyRef.html">Rietveld Fitting with Rigid Bodies</A>
[links: <A href="https://anl.box.com/v/RigidBodyRef">video</A>, <A href="RigidBody/data" target="data">Exercise files</A>].
<blockquote><I>Shows how to set up and refine with rigid bodies to simplify and improve the crystal structure model.</I></blockquote>
</UL><h4>Magnetic Structure Analysis</H4><UL>
<LI><A href="SimpleMagnetic/SimpleMagnetic.htm">Simple Magnetic Structure Analysis</A>
[links: <A href="https://anl.box.com/v/SimpleMagnetic">video</A>, <A href="SimpleMagnetic/data" target="data">Exercise files</A>].
<blockquote><I>Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data</I></blockquote>
<LI><A href="Magnetic-I/Magnetic Structures-I.htm">Magnetic Structure Analysis-I</A>
[link: <A href="Magnetic-I/data" target="data">Exercise files</A>].
<blockquote><I>Analysis of a simple antiferromagnet using Bilbao k-SUBGROUPSMAG from CW neutron powder data</I></blockquote>
<LI><A href="Magnetic-II/Magnetic-II.htm">Magnetic Structure Analysis-II</A>
[link: <A href="Magnetic-II/data" target="data">Exercise files</A>].
<blockquote><I>Analysis of a antiferromagnet with change of space group using Bilbao k-SUBGROUPSMAG from CW neutron powder data</I></blockquote>
<LI><A href="Magnetic-III/Magnetic-III.htm">Magnetic Structure Analysis-III</A>
[link: <A href="Magnetic-III/data" target="data">Exercise files</A>].
<blockquote><I>Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data</I></blockquote>
<LI><A href="Magnetic-IV/Magnetic-IV.htm">Magnetic Structure Analysis-IV</A>
[link: <A href="Magnetic-IV/data" target="data">Exercise files</A>].
<blockquote><I>Analysis of a Type IV antiferromagnet with a lattice centering change using Bilbao k-SUBGROUPSMAG from CW neutron powder data</I></blockquote>
<LI><A href="Magnetic-V/Magnetic-V.htm">Magnetic Structure Analysis-V</A>
[link: <A href="Magnetic-V/data" target="data">Exercise files</A>].
<blockquote><I>Analysis of a complex Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data</I></blockquote>
</UL><h4>Parametric sequential fitting</H4><UL>
<LI><A href="SeqRefine/SequentialTutorial.htm">Sequential refinement of multiple datasets</A>
[links: <A href="https://anl.box.com/v/SequentialTutorial">video</A>, <A href="SeqRefine/data" target="data">Exercise files</A>].
<blockquote><I>This shows the fitting of a structural model to multiple data sets collected as a function of temperature (7-300K).
This tutorial is the prerequisite for the next one.</I></blockquote>
<UL><LI><A href="SeqParametric/ParametricFitting.htm">Parametric Fitting and Pseudo Variables for Sequential Fits</A> <A href="#prereq">*</A>
[link: <A href="https://anl.box.com/v/ParametricFitting">video</A>, no exercise files].
<blockquote><I>This explores the results of the sequential refinement obtained in the previous tutorial; includes
plotting of variables and fitting the changes with simple equations.</I></blockquote>
</UL>
<LI><A href="TOF Sequential Single Peak Fit/TOF Sequential Single Peak Fit.htm">Sequential fitting of single peaks and strain analysis of result</A>
[links: <A href="https://anl.box.com/v/TOFSequentialSinglePeakFit">video</A>, <A href="TOF Sequential Single Peak Fit/data" target="data">Exercise files</A>].
<blockquote><I>This shows the fitting of single peaks in a sequence of TOF powder patterns from a sample under load; includes
fitting of the result to get Hookes Law coefficients for elastic deformations.</I></blockquote>
</UL><h4>Structure solution</H4><UL>
<LI><A href="FitPeaks/Fit Peaks.htm">Fitting individual peaks & autoindexing</A>
[links: <A href="https://anl.box.com/v/FitPeaks----">video</A>, <A href="FitPeaks/data" target="data">Exercise files</A>].
<blockquote><I>This covers two examples of selecting individual powder diffraction peaks, fitting them and then
indexing to determine the crystal lattice and possible space group. This is the prerequisite for the next two tutorials.</I></blockquote>
<UL><LI><A href="CFjadarite/Charge Flipping in GSAS.htm">Charge Flipping structure solution for jadarite</A> <A href="#prereq">*</A>
[no example data or video].
<blockquote><I>Solving the structure of jadarite (HLiNaSiB3O8) by charge flipping from Pawley extracted intensities
from a high resolution synchrotron powder pattern.</I></blockquote>
</UL>
<UL><LI><A href="CFsucrose/Charge Flipping - sucrose.htm">Charge Flipping structure solution for sucrose</A> <A href="#prereq">*</A>
[no example data or video].
<blockquote><I>Solving the structure of sucrose (C12H22O11) by charge flipping from Pawley extracted intensities
from a high resolution synchrotron powder pattern.</I></blockquote>
</UL>
<LI><A href="CFXraySingleCrystal/CFSingleCrystal.htm">Charge Flipping structure solution with Xray single crystal data</A>
[link: <A href="CFXraySingleCrystal/data" target="data">Exercise files</A>].
<blockquote><I>Solving the structure of dipyridyl disulfate by charge flipping and then refine the structure by least-squares.</I></blockquote>
<LI><A href="TOF Charge Flipping/Charge Flipping with TOF single crystal data in GSASII.htm">Charge flipping with neutron TOF single crystal data</A>
[link: <A href="TOF Charge Flipping/data" target="data">Exercise files</A>].
<blockquote><I>Solving the crystal structure or rubrene (C42H28) from single crystal neutron data
via charge flipping and then refine the structure by least squares.</I></blockquote>
<LI><A href="MCsimanneal/MCSA in GSAS.htm">Monte-Carlo simulated annealing structure determination</A>
[link: <A href="MCsimanneal/data" target="data">Exercise files</A>].
<blockquote><I>Solving the structures of 3-aminoquinoline and α-d-lactose monohydrate from powder diffraction data
via Monte Carlo/Simulated Annealing (MC/SA).</I></blockquote>
</UL><h4>PDF 1: RMCProfile Reverse Monte-Carlo PDF & S(Q) Modeling</H4><UL>
<LI><A href="RMCProfile-I/RMCProfile-I.htm">RMC Modeling with RMCProfile-I</A>
[link: <A href="RMCProfile-I/data" target="data">Exercise files</A>].
<blockquote><I>Big box modeling for real and reciprocal space diffraction data for SF6</I></blockquote>
<LI><A href="RMCProfile-II/RMCProfile-II.htm">RMC Modeling with RMCProfile-II</A>
[link: <A href="RMCProfile-II/data" target="data">Exercise files</A>].
<blockquote><I>Big box modeling for real and reciprocal space diffraction data for SrTiO3</I></blockquote>
<LI><A href="RMCProfile-III/RMCProfile-III.htm">RMC Modeling with RMCProfile-III</A>
[link: <A href="RMCProfile-III/data" target="data">Exercise files</A>].
<blockquote><I>Combined x-ray/neutron big box modeling for real and reciprocal space diffraction data for GaPO4</I></blockquote>
<LI><A href="RMCProfile-IV/RMCProfile-IV.htm">RMC Modeling with RMCProfile-IV</A>
[link: <A href="RMCProfile-IV/data" target="data">Exercise files</A>].
<blockquote><I>x-ray big box modeling with potential energy restraints for real and reciprocal space diffraction data for GaPO4</I></blockquote>
</UL><h4>PDF 2: PDFfit Pair Distribution Function Modeling</H4><UL>
<LI><A href="PDFfit-I/PDFfit-I.htm">Small Box PDF modeling with PDFfit-I</A>
[link: <A href="PDFfit-I/data" target="data">Exercise files</A>].
<blockquote><I>Small box modeling of G(r); introduction to PDFfit</I></blockquote>
<LI><A href="PDFfit-II/PDFfit-II.htm">Small Box PDF modeling with PDFfit-II</A>
[link: <A href="PDFfit-II/data" target="data">Exercise files</A>].
<blockquote><I>Small box modeling of G(r); using ISODISTORT mode analysis</I></blockquote>
<LI><A href="PDFfit-III/PDFfit-III.htm">Sequential PDF fitting with PDFfit-III</A>
[link: <A href="PDFfit-III/data" target="data">Exercise files</A>].
<blockquote><I>Small box modeling of G(r); sequential fitting of a temperature series of G(r)</I></blockquote>
<LI><A href="PDFfit-IV/PDFfit-IV.htm">Nanoparticle PDF fitting with PDFfit-IV</A>
[link: <A href="PDFfit-IV/data" target="data">Exercise files</A>].
<blockquote><I>Small box modeling of G(r); fitting G(r) from nanoparticles</I></blockquote>
</UL><h4>PDF 3: fullrmc Stochastic PDF & S(Q) Modeling</H4><UL>
<LI><A href="fullrmc-Ni/fullrmc-Ni.html">RMC & Rigid Body Modeling with fullrmc-I</A>
[link: <A href="fullrmc-Ni/data" target="data">Exercise files</A>].
<blockquote><I>Big box modeling with real space diffraction data for Ni</I></blockquote>
<LI><A href="fullrmc-SF6/fullrmc-SF6.html">RMC & Rigid Body Modeling with fullrmc-II</A>
[link: <A href="fullrmc-SF6/data" target="data">Exercise files</A>].
<blockquote><I>Multiple approaches to big box modeling for real and reciprocal space diffraction data for SF6</I></blockquote>
</UL><h4>Stacking Fault Modeling</H4><UL>
<LI><A href="StackingFaults-I/Stacking Faults-I.htm">Stacking fault simulations for diamond</A>
[link: <A href="https://anl.box.com/v/StackingFaults-I">video</A>, no exercise files].
<blockquote><I>This shows how to simulate the diffraction patterns from faulted diamond.</I></blockquote>
<LI><A href="StackingFaults-II/Stacking Faults II.htm">Stacking fault simulations for Keokuk kaolinite</A>
[link: <A href="StackingFaults-II/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to simulate some diffraction patterns from well ordered Keokuk kaolinite (Al2Si2O5(OH)4) clay.</I></blockquote>
<LI><A href="StackingFaults-III/Stacking Faults-III.htm">Stacking fault simulations for Georgia kaolinite</A>
[link: <A href="StackingFaults-III/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to simulate some diffraction patterns from poorly ordered Georgia kaolinite (Al2Si2O5(OH)4) clay.</I></blockquote>
</UL><h4>Powder diffractometer calibration</H4><UL>
<LI><A href="CWInstDemo/FindProfParamCW.htm">Create Instrument Parameter File: Determine Starting Profile from a Standard</A>
[links: <A href="https://anl.box.com/v/FindProfParamCW">video</A>, <A href="CWInstDemo/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to determine profile parameters by fitting individual peaks
with data collected on a standard using a lab diffractometer and then same them for reuse.</I></blockquote>
<LI><A href="FPAfit/FPAfit.htm">Determining Profile Parameters with Fundamental Parameters</A>
[no example data or video].
<blockquote><I>This shows how to determine profile parameters by fitting
peaks that are computed using the NIST Fundamental Parameters Python
code.
Input is formulated to use FPA values similar to those in Topas.</I></blockquote>
<LI><A href="TOF Calibration/Calibration of a TOF powder diffractometer.htm">Calibration of a Neutron TOF diffractometer</A>
[links: <A href="https://anl.box.com/v/CalibrationofaTOFpowderdiffrac">video</A>, <A href="TOF Calibration/data" target="data">Exercise files</A>].
<blockquote><I>This uses the fitted positions of all visible peaks in a pattern of NIST SRM 660b La11B6
(a=4.15689Å) obtained in a multiple single peak fit. The positions are compared to those expected from the
known lattice parameters to establish the diffractometer constants (difC, difA, difB and Zero) used for
calculating TOF peak positions from d-spacings. In addition, the peak fitting includes the various profile
coefficients thus fully describing the instrument contribution to the peak profiles.</I></blockquote>
</UL><h4>2D Image Processing</H4><UL>
<LI><A href="2DCalibration/Calibration of an area detector in GSAS.htm">Calibration of an area detector</A>
[links: <A href="https://anl.box.com/v/CalibrationofanareadetectorinG">video</A>, <A href="2DCalibration/data" target="data">Exercise files</A>].
<blockquote><I>A demonstration of calibrating a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees.
This exercise is the prerequisite for the next one.</I></blockquote>
<UL><LI><A href="2DIntegration/Integration of area detector data in GSAS.htm">Integration of area detector data</A> <A href="#prereq">*</A>
[link: <A href="https://anl.box.com/v/Integrationofareadetectordatai">video</A>, no exercise files].
<blockquote><I>Integration of the image from a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees.</I></blockquote>
</UL>
<LI><A href="2DStrain/Strain fitting of 2D data in GSAS-II.htm">Strain fitting of 2D data</A>
[links: <A href="https://anl.box.com/v/Strainfittingof2DdatainGSAS-II">video</A>, <A href="2DStrain/data" target="data">Exercise files</A>].
<blockquote><I>This show how to determine 3 strain tensor values using the method of He & Smith (Adv. in X-ray Anal. 41, 501, 1997)
directly froom a sequence of 2D imges from a loaded sample.</I></blockquote>
<LI><A href="2DTexture/Texture analysis of 2D data in GSAS-II.htm">Texture analysis of 2D data</A>
[links: <A href="https://anl.box.com/v/Textureanalysisof2DdatainGSAS-">video</A>, <A href="2DTexture/data" target="data">Exercise files</A>].
<blockquote><I>This shows 3 different methods for determining texture via spherical harmonics from 2D x-ray diffraction images. </I></blockquote>
<LI><A href="DeterminingWavelength/DeterminingWavelength.html">Area Detector Calibration with Multiple Distances: Determine Wavelength</A>
[links: <A href="https://anl.box.com/v/DeterminingWavelength">video</A>, <A href="DeterminingWavelength/data" target="data">Exercise files</A>].
<blockquote><I>To get an accurate wavelength, without knowing the sample-to-detector distance accurately, images recorded with
several different distances can be used. This exercise shows how to determine the wavelength from such a series.
This exercise is the prerequisite for the next one.</I></blockquote>
<UL><LI><A href="CalibrationTutorial/CalibrationTutorial.html">Area Detector Calibration with Multiple Distances: Calibrate Detector Distances</A> <A href="#prereq">*</A>
[link: <A href="https://anl.box.com/v/CalibrationTutorial">video</A>, no exercise files].
<blockquote><I>To get an accurate wavelength, without knowing the sample-to-detector distance accurately, images recorded with
several different distances can be used. After using the previous exercise to determine the wavelength,
this exercise calibrates the detector distances and shows examples of how to mask, integrate, and save those parameters
for future reuse.</I></blockquote>
</UL>
</UL><h4>Small-Angle Scattering</H4><UL>
<LI><A href="SAsize/Small Angle Size Distribution.htm">Small angle x-ray data size distribution (alumina powder)</A>
[links: <A href="https://anl.box.com/v/SmallAngleSizeDistribution">video</A>, <A href="SAsize/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to determine the size distribution of particles using data from a constant
wavelength synchrotron X-ray USAXS instrument. This is the prerequisite for the next tutorial</I></blockquote>
<UL><LI><A href="SAfit/Fitting Small Angle Scattering Data.htm">Fitting small angle x-ray data (alumina powder)</A> <A href="#prereq">*</A>
[links: <A href="https://anl.box.com/v/FittingSmallAngleScatteringDat">video</A>, <A href="SAfit/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to fit small angle scattering data using data from a constant wavelength synchrotron X-ray USAXS instrument. </I></blockquote>
</UL>
<LI><A href="SAimages/Small Angle Image Processing.htm">Image Processing of small angle x-ray data</A>
[links: <A href="https://anl.box.com/v/SmallAngleImageProcessing">video</A>, <A href="SAimages/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to reduce 2D SAXS data to create 1D absolute scaled data. </I></blockquote>
<LI><A href="SAseqref/Sequential Refinement of Small Angle Scattering Data.htm">Sequential refinement with small angle scattering data</A>
[links: <A href="https://anl.box.com/v/SequentialRefinementofSmallAng">video</A>, <A href="SAseqref/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to fit USAXS small angle scattering data for a suite of samples to demonstrate the
sequential refinement technique in GSAS-II for SASD and demonstrates fitting with a hard sphere structure
factor for non-dilute systems. </I></blockquote>
</UL><h4>Other</H4><UL>
<LI><A href="MerohedralTwins/Merohedral twin refinement in GSAS.htm">Merohedral twin refinements</A>
[links: <A href="https://anl.box.com/v/MerohedraltwinrefinementinGSAS">video</A>, <A href="MerohedralTwins/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to use GSAS-II to refine the structure of a few single crystal structures where there is merohedral twinning. </I></blockquote>
<LI><A href="TOF Single Crystal Refinement/TOF single crystal refinement in GSAS.htm">Single crystal refinement from TOF data</A>
[link: <A href="TOF Single Crystal Refinement/data" target="data">Exercise files</A>].
<blockquote><I>This shows how to refine the structure of sapphire (really corundum, Al2O3) from single crystal diffraction data
collected at the SNS on the TOPAZ instrument at room temperature. </I></blockquote>
<LI><A href="PythonScript/Scripting.htm">Scripting a GSAS-II Refinement from Python</A>
[link: <A href="PythonScript/data" target="data">Exercise files</A>].
<blockquote><I>This demonstrates the use of the GSASIIscriptable module. This uses a Python script to perform a refinement or
computation, but without use of the GSAS-II graphical user interface. This is a prerequisite for the next tutorial.</I></blockquote>
<UL><LI><A href="PythonScript/CommandLine.htm">Running a GSAS-II Refinement from the Command Line</A> <A href="#prereq">*</A>
[link: <A href="PythonScript/data" target="data">Exercise files</A>].
<blockquote><I>This shows a unix script that duplicates the previous Python Scripting GSAS-II tutorial. </I></blockquote>
</UL>
<LI><A href="ClusterAnalysis/Cluster and Outlier Analysis.htm">Cluster and Outlier Analysis</A>
[link: <A href="ClusterAnalysis/data" target="data">Exercise files</A>].
<blockquote><I>This gives an example of using Cluster and Outlier Analysis with PWDR data.</I></blockquote>
</UL>
<A name=prereq>* Indented tutorials require the previous unindented tutorial as a prerequisite
<h3>Tutorials with video-recorded examples</H3>
<UL><LI><A href="https://anl.box.com/v/StartingGSAS">Starting GSAS-II</A></LI>
<LI><A href="https://anl.box.com/v/NeutronCWPowderData">CW Neutron Powder fit for Yttrium-Iron Garnet</A></LI>
<LI><A href="https://anl.box.com/v/LaboratoryX-">Fitting laboratory X-ray powder data for fluoroapatite</A></LI>
<LI><A href="https://anl.box.com/v/Combinedrefinement">Combined X-ray/CW-neutron refinement of PbSO4</A></LI>
<LI><A href="https://anl.box.com/v/TOFcombinedXNRietveldrefinemen">Combined X-ray/TOF-neutron Rietveld refinement</A></LI>
<LI><A href="https://anl.box.com/v/SimTutorial-">Simulating Powder Diffraction with GSAS-II</A></LI>
<LI><A href="https://anl.box.com/v/FitBkgTut---">Fitting the Starting Background using Fixed Points</A></LI>
<LI><A href="https://anl.box.com/v/RigidBodyRef">Rietveld Fitting with Rigid Bodies</A></LI>
<LI><A href="https://anl.box.com/v/SimpleMagnetic">Simple Magnetic Structure Analysis</A></LI>
<LI><A href="https://anl.box.com/v/SequentialTutorial">Sequential refinement of multiple datasets</A></LI>
<LI><A href="https://anl.box.com/v/ParametricFitting">Parametric Fitting and Pseudo Variables for Sequential Fits</A></LI>
<LI><A href="https://anl.box.com/v/TOFSequentialSinglePeakFit">Sequential fitting of single peaks and strain analysis of result</A></LI>
<LI><A href="https://anl.box.com/v/FitPeaks----">Fitting individual peaks & autoindexing</A></LI>
<LI><A href="https://anl.box.com/v/StackingFaults-I">Stacking fault simulations for diamond</A></LI>
<LI><A href="https://anl.box.com/v/FindProfParamCW">Create Instrument Parameter File: Determine Starting Profile from a Standard</A></LI>
<LI><A href="https://anl.box.com/v/CalibrationofaTOFpowderdiffrac">Calibration of a Neutron TOF diffractometer</A></LI>
<LI><A href="https://anl.box.com/v/CalibrationofanareadetectorinG">Calibration of an area detector</A></LI>
<LI><A href="https://anl.box.com/v/Integrationofareadetectordatai">Integration of area detector data</A></LI>
<LI><A href="https://anl.box.com/v/Strainfittingof2DdatainGSAS-II">Strain fitting of 2D data</A></LI>
<LI><A href="https://anl.box.com/v/Textureanalysisof2DdatainGSAS-">Texture analysis of 2D data</A></LI>
<LI><A href="https://anl.box.com/v/DeterminingWavelength">Area Detector Calibration with Multiple Distances: Determine Wavelength</A></LI>
<LI><A href="https://anl.box.com/v/CalibrationTutorial">Area Detector Calibration with Multiple Distances: Calibrate Detector Distances</A></LI>
<LI><A href="https://anl.box.com/v/SmallAngleSizeDistribution">Small angle x-ray data size distribution (alumina powder)</A></LI>
<LI><A href="https://anl.box.com/v/FittingSmallAngleScatteringDat">Fitting small angle x-ray data (alumina powder)</A></LI>
<LI><A href="https://anl.box.com/v/SmallAngleImageProcessing">Image Processing of small angle x-ray data</A></LI>
<LI><A href="https://anl.box.com/v/SequentialRefinementofSmallAng">Sequential refinement with small angle scattering data</A></LI>
<LI><A href="https://anl.box.com/v/MerohedraltwinrefinementinGSAS">Merohedral twin refinements</A></LI>
</UL>
<P>The video tutorials are also <A href=https://pan.baidu.com/s/1C1jq1amfuVmcY2n91cQcsg> mirrored in China</A></P>
<hr>
<address>created by makeGitTutorial.py</address>
Last modified: Wed Apr 17 13:26:20 2024
</body>