This repository has been archived by the owner on Sep 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathGSASIIElem.py
947 lines (866 loc) · 33.4 KB
/
GSASIIElem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# -*- coding: utf-8 -*-
# Copyright: 2008, Robert B. Von Dreele & Brian H. Toby (Argonne National Laboratory)
########### SVN repository information ###################
# $Date: 2024-03-17 12:50:24 -0500 (Sun, 17 Mar 2024) $
# $Author: toby $
# $Revision: 5767 $
# $URL: https://subversion.xray.aps.anl.gov/pyGSAS/trunk/GSASIIElem.py $
# $Id: GSASIIElem.py 5767 2024-03-17 17:50:24Z toby $
########### SVN repository information ###################
"""
Routines used to define element settings follow.
"""
import math
import sys
import os.path
import GSASIIpath
GSASIIpath.SetVersionNumber("$Revision: 5767 $")
import copy
import numpy as np
import atmdata
import GSASIImath as G2mth
import ElementTable as ET
import GSASIIElem as G2elem
nxs = np.newaxis
Bohr = 0.529177
getElSym = lambda sym: sym.split('+')[0].split('-')[0].capitalize()
def GetFormFactorCoeff(El):
"""Read X-ray form factor coefficients from `atomdata.py` file
:param str El: element 1-2 character symbol, case irrevelant
:return: `FormFactors`: list of form factor dictionaries
Each X-ray form factor dictionary is:
* `Symbol`: 4 character element symbol with valence (e.g. 'NI+2')
* `Z`: atomic number
* `fa`: 4 A coefficients
* `fb`: 4 B coefficients
* `fc`: C coefficient
"""
Els = El.capitalize().strip()
valences = [ky for ky in atmdata.XrayFF.keys() if Els == getElSym(ky)]
FormFactors = [atmdata.XrayFF[val] for val in valences]
for Sy,FF in zip(valences,FormFactors):
FF.update({'Symbol':Sy.upper()})
return FormFactors
def GetEFormFactorCoeff(El):
"""Read electron form factor coefficients from `atomdata.py` file
:param str El: element 1-2 character symbol, case irrevelant
:return: `FormFactors`: list of form factor dictionaries
Each electrn form factor dictionary is:
* `Symbol`: 4 character element symbol (no valence)
* `Z`: atomic number
* `fa`: 5 A coefficients
* `fb`: 5 B coefficients
"""
Els = El.capitalize().strip()
valences = [ky for ky in atmdata.ElecFF.keys() if Els == getElSym(ky)] #will only be one
FormFactors = [atmdata.ElecFF[val] for val in valences]
for Sy,FF in zip(valences,FormFactors):
FF.update({'Symbol':Sy.upper()})
return FormFactors
def GetFFtable(atomTypes):
''' returns a dictionary of form factor data for atom types found in atomTypes
:param list atomTypes: list of atom types
:return: FFtable, dictionary of form factor data; key is atom type
'''
FFtable = {}
for El in atomTypes:
FFs = GetFormFactorCoeff(getElSym(El))
for item in FFs:
if item['Symbol'] == El.upper():
FFtable[El] = item
return FFtable
def GetEFFtable(atomTypes):
''' returns a dictionary of electron form factor data for atom types found in atomTypes
might not be needed?
:param list atomTypes: list of atom types
:return: FFtable, dictionary of form factor data; key is atom type
'''
FFtable = {}
for El in atomTypes:
FFs = GetEFormFactorCoeff(getElSym(El))
for item in FFs:
if item['Symbol'] == El.upper():
FFtable[El] = item
return FFtable
def GetORBtable(atomTypes):
''' returns a dictionary of orbital form factor data for atom types found in atomTypes
:param list atomTypes: list of atom types
:return: ORBtable, dictionary of orbital form factor data; key is atom type
'''
ORBtable = {}
for El in atomTypes:
ORBtable[El] = copy.deepcopy(atmdata.OrbFF[El])
return ORBtable
def GetMFtable(atomTypes,Landeg):
''' returns a dictionary of magnetic form factor data for atom types found in atomTypes
:param list atomTypes: list of atom types
:param list Landeg: Lande g factors for atomTypes
:return: FFtable, dictionary of form factor data; key is atom type
'''
MFtable = {}
for El,gfac in zip(atomTypes,Landeg):
MFs = GetMagFormFacCoeff(getElSym(El))
for item in MFs:
if item['Symbol'] == El.upper():
item['gfac'] = gfac
MFtable[El] = item
return MFtable
def GetBLtable(General):
''' returns a dictionary of neutron scattering length data for atom types & isotopes found in General
:param dict General: dictionary of phase info.; includes AtomTypes & Isotopes
:return: BLtable, dictionary of scattering length data; key is atom type
'''
atomTypes = General['AtomTypes']
BLtable = {}
isotope = General['Isotope']
for El in atomTypes:
ElS = getElSym(El)
if 'Nat' in isotope[El]:
BLtable[El] = [isotope[El],atmdata.AtmBlens[ElS+'_']]
else:
BLtable[El] = [isotope[El],atmdata.AtmBlens[ElS+'_'+isotope[El]]]
return BLtable
def getFFvalues(FFtables,SQ,ifList=False):
'Needs a doc string'
if ifList:
FFvals = []
for El in FFtables:
FFvals.append(ScatFac(FFtables[El],SQ)[0])
else:
FFvals = {}
for El in FFtables:
FFvals[El] = ScatFac(FFtables[El],SQ)[0]
return FFvals
def getBLvalues(BLtables,ifList=False):
'Needs a doc string'
if ifList:
BLvals = []
for El in BLtables:
if 'BW-LS' in El:
BLvals.append(BLtables[El][1]['BW-LS'][0])
else:
BLvals.append(BLtables[El][1]['SL'][0])
else:
BLvals = {}
for El in BLtables:
if 'BW-LS' in El:
BLvals[El] = BLtables[El][1]['BW-LS'][0]
else:
BLvals[El] = BLtables[El][1]['SL'][0]
return BLvals
def getMFvalues(MFtables,SQ,ifList=False):
'Needs a doc string'
if ifList:
MFvals = []
for El in MFtables:
MFvals.append(MagScatFac(MFtables[El],SQ)[0])
else:
MFvals = {}
for El in MFtables:
MFvals[El] = MagScatFac(MFtables[El],SQ)[0]
return MFvals
def GetFFC5(ElSym):
'''Get 5 term form factor and Compton scattering data
:param ElSym: str(1-2 character element symbol with proper case);
:return El: dictionary with 5 term form factor & compton coefficients
'''
import FormFactors as FF
El = {}
FF5 = FF.FFac5term[ElSym]
El['fa'] = FF5[:5]
El['fc'] = FF5[5]
El['fb'] = FF5[6:]
Cmp5 = FF.Compton[ElSym]
El['cmpz'] = Cmp5[0]
El['cmpa'] = Cmp5[1:6]
El['cmpb'] = Cmp5[6:]
return El
def GetBVS(Pair,atSeq,Valences):
Els = Pair.strip().split('-')
iAt = atSeq.index(Els[0])
iVal = Valences[iAt][0]
if Els[1] in ['O','F','Cl']:
iEls = ['O','F','Cl'].index(Els[1])
if iVal in atmdata.BVScoeff:
return atmdata.BVScoeff[iVal][iEls]
else:
return 0.0
elif Els[1] in ['Br','I','S','Se','Te','N','P','As','H','D']:
iEls = ['Br','I','S','Se','Te','N','P','As','H','D'].index(Els[1])
if Els[0] in atmdata.BVSnotOFCl:
return atmdata.BVSnotOFCl[Els[0]][iEls]
else:
return 0.0
else:
return 0.0
def CheckElement(El):
'''Check if element El is in the periodic table
:param str El: One or two letter element symbol, capitaliztion ignored
:returns: True if the element is found
'''
Elements = []
for elem in ET.ElTable:
Elements.append(elem[0][0])
if El.capitalize() in Elements:
return True
else:
return False
def FixValence(El):
'Returns the element symbol, even when a valence is present'
if '+' in El[-1]: #converts An+/- to A+/-n
num = El[-2]
El = El.split(num)[0]+'+'+num
if '+0' in El:
El = El.split('+0')[0]
if '-' in El[-1]:
num = El[-2]
El = El.split(num)[0]+'-'+num
if '-0' in El:
El = El.split('-0')[0]
return El
def GetAtomInfo(El,ifMag=False):
'reads element information from atmdata.py'
Elem = ET.ElTable
if ifMag:
Elem = ET.MagElTable
Elements = [elem[0][0] for elem in Elem]
AtomInfo = {}
if 'Q' in El: El = 'Q' #patch - remove Qa, etc.
ElS = getElSym(El)
if El not in atmdata.XrayFF and El not in atmdata.MagFF:
if ElS not in atmdata.XrayFF:
if ElS.endswith('0') and ElS[:-1] in atmdata.XrayFF:
ElS = ElS[:-1]
else:
ElS = 'H'
print('Atom type '+El+' not found, using '+ElS)
El = ElS
AtomInfo.update(dict(zip(['Drad','Arad','Vdrad','Hbrad'],atmdata.AtmSize[ElS])))
AtomInfo['Symbol'] = El
AtomInfo['Color'] = ET.ElTable[Elements.index(ElS)][6]
AtomInfo['Z'] = atmdata.XrayFF[ElS]['Z']
isotopes = [ky for ky in atmdata.AtmBlens.keys() if ElS == ky.split('_')[0]]
isotopes.sort()
AtomInfo['Mass'] = atmdata.AtmBlens[isotopes[0]]['Mass'] #default to nat. abund.
AtomInfo['Isotopes'] = {}
for isotope in isotopes:
data = atmdata.AtmBlens[isotope]
if isotope == ElS+'_':
AtomInfo['Isotopes']['Nat. Abund.'] = data
else:
AtomInfo['Isotopes'][isotope.split('_')[1]] = data
AtomInfo['Lande g'] = 2.0
return AtomInfo
def GetElInfo(El,inst):
ElemSym = El.strip().capitalize()
if 'X' in inst['Type'][0]:
keV = 12.397639/G2mth.getWave(inst)
FpMu = FPcalc(GetXsectionCoeff(ElemSym), keV)
ElData = GetFormFactorCoeff(ElemSym)[0]
ElData['FormulaNo'] = 0.0
ElData.update(GetAtomInfo(ElemSym))
ElData.update(dict(zip(['fp','fpp','mu'],FpMu)))
ElData.update(GetFFC5(El))
else: #'N'eutron
ElData = {}
ElData.update(GetAtomInfo(ElemSym))
ElData['FormulaNo'] = 0.0
ElData.update({'mu':0.0,'fp':0.0,'fpp':0.0})
return ElData
def GetXsectionCoeff(El):
"""Read atom orbital scattering cross sections for fprime calculations via Cromer-Lieberman algorithm
:param El: 2 character element symbol
:return: Orbs: list of orbitals each a dictionary with detailed orbital information used by FPcalc
each dictionary is:
* 'OrbName': Orbital name read from file
* 'IfBe' 0/2 depending on orbital
* 'BindEn': binding energy
* 'BB': BindEn/0.02721
* 'XSectIP': 5 cross section inflection points
* 'ElEterm': energy correction term
* 'SEdge': absorption edge for orbital
* 'Nval': 10/11 depending on IfBe
* 'LEner': 10/11 values of log(energy)
* 'LXSect': 10/11 values of log(cross section)
"""
AU = 2.80022e+7
C1 = 0.02721
ElS = El.upper()
ElS = ElS.ljust(2)
filename = os.path.join(GSASIIpath.path2GSAS2,'inputs','Xsect.dat')
if not os.path.exists(filename): # patch 3/2024 for svn dir organization
filename = os.path.join(GSASIIpath.path2GSAS2,'Xsect.dat')
try:
xsec = open(filename,'r')
except:
print (f'**** ERROR - File Xsect.dat not found in directory {os.path.dirname(filename)}')
sys.exit()
S = '1'
Orbs = []
while S:
S = xsec.readline()
if S[:2] == ElS:
S = S[:-1]+xsec.readline()[:-1]+xsec.readline()
OrbName = S[9:14]
S = S[14:]
IfBe = int(S[0])
S = S[1:]
val = S.split()
BindEn = float(val[0])
BB = BindEn/C1
Orb = {'OrbName':OrbName,'IfBe':IfBe,'BindEn':BindEn,'BB':BB}
Energy = []
XSect = []
for i in range(11):
Energy.append(float(val[2*i+1]))
XSect.append(float(val[2*i+2]))
XSecIP = []
for i in range(5): XSecIP.append(XSect[i+5]/AU)
Orb['XSecIP'] = XSecIP
if IfBe == 0:
Orb['SEdge'] = XSect[10]/AU
Nval = 11
else:
Orb['ElEterm'] = XSect[10]
del Energy[10]
del XSect[10]
Nval = 10
Orb['SEdge'] = 0.0
Orb['Nval'] = Nval
D = dict(zip(Energy,XSect))
Energy.sort()
X = []
for key in Energy:
X.append(D[key])
XSect = X
LEner = []
LXSect = []
for i in range(Nval):
LEner.append(math.log(Energy[i]))
if XSect[i] > 0.0:
LXSect.append(math.log(XSect[i]))
else:
LXSect.append(0.0)
Orb['LEner'] = LEner
Orb['LXSect'] = LXSect
Orbs.append(Orb)
xsec.close()
return Orbs
def GetMagFormFacCoeff(El):
"""Read magnetic form factor data from atmdata.py
:param El: 2 character element symbol
:return: MagFormFactors: list of all magnetic form factors dictionaries for element El.
each dictionary contains:
* 'Symbol':Symbol
* 'Z':Z
* 'mfa': 4 MA coefficients
* 'nfa': 4 NA coefficients
* 'mfb': 4 MB coefficients
* 'nfb': 4 NB coefficients
* 'mfc': MC coefficient
* 'nfc': NC coefficient
"""
Els = El.capitalize().strip()
MagFormFactors = []
mags = [ky for ky in atmdata.MagFF.keys() if Els == getElSym(ky)]
for mag in mags:
magData = {}
data = atmdata.MagFF[mag]
magData['Symbol'] = mag.upper()
magData['Z'] = atmdata.XrayFF[getElSym(mag)]['Z']
magData['mfa'] = [data['M'][i] for i in [0,2,4,6]]
magData['mfb'] = [data['M'][i] for i in [1,3,5,7]]
magData['mfc'] = data['M'][8]
magData['nfa'] = [data['N'][i] for i in [0,2,4,6]]
magData['nfb'] = [data['N'][i] for i in [1,3,5,7]]
magData['nfc'] = data['N'][8]
MagFormFactors.append(magData)
return MagFormFactors
def ScatFac(El, SQ):
"""compute value of form factor
:param El: element dictionary defined in GetFormFactorCoeff
:param SQ: (sin-theta/lambda)**2
:return: real part of form factor
"""
fa = np.array(El['fa'])
fb = np.array(El['fb'])
t = -fb[:,np.newaxis]*SQ
return np.sum(fa[:,np.newaxis]*np.exp(t)[:],axis=0)+El.get('fc',0.0)
def ScatFacDer(El, SQ):
"""compute derivative of form factor wrt SQ
:param El: element dictionary defined in GetFormFactorCoeff
:param SQ: (sin-theta/lambda)**2
:return: real part of form factor
"""
fa = np.array(El['fa'])
fb = np.array(El['fb'])
t = -fb[:,np.newaxis]*SQ
return -np.sum(fa[:,np.newaxis]*fb[:,np.newaxis]*np.exp(t)[:],axis=0)
def MagScatFac(El, SQ):
"""compute value of form factor
:param El: element dictionary defined in GetFormFactorCoeff
:param SQ: (sin-theta/lambda)**2
:param gfac: Lande g factor (normally = 2.0)
:return: real part of form factor
"""
mfa = np.array(El['mfa'])
mfb = np.array(El['mfb'])
nfa = np.array(El['nfa'])
nfb = np.array(El['nfb'])
mt = -mfb[:,np.newaxis]*SQ
nt = -nfb[:,np.newaxis]*SQ
MMF = np.sum(mfa[:,np.newaxis]*np.exp(mt)[:],axis=0)+El['mfc']
MMF0 = np.sum(mfa)+El['mfc']
NMF = np.sum(nfa[:,np.newaxis]*np.exp(nt)[:],axis=0)+El['nfc']
NMF0 = np.sum(nfa)+El['nfc']
MF0 = MMF0+(2.0/El['gfac']-1.0)*NMF0
return (MMF+(2.0/El['gfac']-1.0)*NMF)/MF0
#def SlaterFF(El,SQ,k,N):
def scaleCoef(terms):
''' rescale J2K6 form factor coeff - now correct?
'''
terms = copy.deepcopy(terms)
for term in terms:
z2 = 2.*term[1]/Bohr
k = 2*term[2]+1
term[0] *= np.sqrt((z2**k)/math.factorial(k-1))
return terms
def J2Kff(sq,terms):
def Transo(nn,z,s):
d = s**2+z**2
a = np.zeros((12,len(list(s))))
a[1,:] = 1./d
tz = 2.0*z
for nx in list(range(nn-1)):
a[nx+2,:] = (tz*(nx+1)*a[nx+1,:]-(nx+2)*(nx)*a[nx,:])/d[nxs,:]
return a[nn]
fjc = np.zeros_like(sq)
for term1 in terms:
for term2 in terms:
zz = (term1[1]+term2[1])/Bohr
nn = term1[2]+term2[2]
ff = term1[0]*term2[0]*Transo(nn,zz,sq)
fjc += ff
return fjc
def ClosedFormFF(Z,SQ,k,N):
"""Closed form expressions for FT Slater fxns. IT B Table 1.2.7.4
(not used at present - doesn't make sense yet)
:param Z: element zeta factor
:param SQ: (sin-theta/lambda)**2
:param k: int principal Bessel fxn order as in <jk>
:param N: int power
return: form factor
"""
Z2 = Z**2
K2 = 16.0*SQ*np.pi**2
K2pZ2 = K2+Z2
K = np.sqrt(K2)
if k == 0:
if N == 1:
return 1.0/K2pZ2
elif N == 2:
return 2.0*Z/K2pZ2**2
elif N == 3:
return 2.0*(3.0*Z2-K2)/K2pZ2**3
elif N == 4:
return 24.0*Z*(Z2-K2)/K2pZ2**4
elif N == 5:
return 24.0*(5.0*Z2-10.0*K2*Z2+K2**2)/K2pZ2**5
elif N == 6:
return 240.0*(K2-3.0*Z2)*(3.0*K2-Z2)/K2pZ2**6
elif N == 7:
return 720.0*(7.0*Z2**3-35.0*K2*Z2**2+21.0*Z2*K2**2-K2**3)/K2pZ2**7
elif N == 8:
return 40320.0*(Z*Z2**3-7.0*K2*Z*Z2**2+7.0*K2**2*Z*Z2-Z*K2**3)/K2pZ2**8
elif k == 1:
if N == 2:
return 2.0*K/K2pZ2**2
elif N == 3:
return 8.0*K*Z/K2pZ2**3
elif N == 4:
return 8.0*K*(5.0*Z2-K2)/K2pZ2**4
elif N == 5:
return 48.0*K*Z*(5.0*Z2-3.0*K2)/K2pZ2**5
elif N == 6:
return 48.0*K*(35.0*Z2**2-42.0*K2*Z2+3.0*K2**2)/K2pZ2**6
elif N == 7:
return 1920.0*K*Z*(7.0*Z2**2-14.0*K2*Z2+3.0*K2**2)/K2pZ2**7
elif N == 8:
return 5760.0*K*(21.0*Z2**3-63.0*K2*Z2**2+27.0*K2**2*Z2-K2**3)/K2pZ2**8
elif k == 2:
if N == 3:
return 8.0*K2/K2pZ2**3
elif N == 4:
return 48.0*K2*Z/K2pZ2**4
elif N == 5:
return 48.0*K2*(7.0*Z2-K2)/K2pZ2**5
elif N == 6:
return 384.0*K2*Z*(7.0*Z2-3.0*K2)/K2pZ2**6
elif N == 7:
return 1152.0*K2*(21.0*Z2**2-18.0*K2*Z2+K2**2)/K2pZ2**7
elif N == 8:
return 11520.0*K2*Z*(21.0*Z2**2-30.0*K2*Z2+5.0*K2**2)/K2pZ2**8
elif k == 3:
if N == 4:
return 48.0*K**3/K2pZ2**4
elif N == 5:
return 384.0*K**3*Z/K2pZ2**5
elif N == 6:
return 384.0*K**3*(9.0*Z2-K2)/K2pZ2**6
elif N == 7:
return 11520.0*K**3*Z*(3.0*Z2-K2)/K2pZ2**7
elif N == 8:
return 11520.0*K**3*(33.0*Z2**2-22.0*K2*Z2+K2**2)/K2pZ2**8
elif k == 4:
if N == 5:
return 384.0*K2**2/K2pZ2**5
elif N == 6:
return 3840.0*K2**2*Z/K2pZ2**6
elif N == 7:
return 3840.0*K2**2*(11.0*Z2-K2)/K2pZ2**7
elif N == 8:
return 46080.0*K**5*(13.0*Z2-K2)/K2pZ2**8
elif k == 5:
if N == 6:
return 3840.0*K**5/K2pZ2**6
elif N == 7:
return 46080.0*Z*K**5/K2pZ2**7
elif N == 8:
return 46080.0*K**5*(13.0*Z2-K2)/K2pZ2**8
elif k == 6:
if N == 7:
return 46080.0*K**6/K2pZ2**7
elif N == 8:
return 645120.0*Z*K2**3/K2pZ2**8
elif k == 7:
if N == 8:
return 645120.0*K**7/K2pZ2**8
def BlenResCW(Els,BLtables,wave):
''' Computes resonant scattering lengths - single wavelength version (CW)
returns bo+b' and b"'
'''
FP = np.zeros(len(Els))
FPP = np.zeros(len(Els))
for i,El in enumerate(Els):
BL = BLtables[El][1]
if 'BW-LS' in BL:
Re,Im,E0,gam,A,E1,B,E2 = BL['BW-LS'][1:]
Emev = 81.80703/wave**2
T0 = Emev-E0
T1 = Emev-E1
T2 = Emev-E2
D0 = T0**2+gam**2/4.
D1 = T1**2+gam**2/4.
D2 = T2**2+gam**2/4.
FP[i] = Re*(T0/D0+A*T1/D1+B*T2/D2)+BL['BW-LS'][0]
FPP[i] = Im*(1/D0+A/D1+B/D2)
else:
FPP[i] = BL['SL'][1] #for Li, B, etc.
return FP,FPP
def BlenResTOF(Els,BLtables,wave):
''' Computes resonant scattering lengths - multiple wavelength version (TOF)
returns bo+b' and b"'
'''
FP = np.zeros((len(Els),len(wave)))
FPP = np.zeros((len(Els),len(wave)))
BL = [BLtables[el][1] for el in Els]
for i,El in enumerate(Els):
if 'BW-LS' in BL[i]:
Re,Im,E0,gam,A,E1,B,E2 = BL[i]['BW-LS'][1:]
Emev = 81.80703/wave**2
T0 = Emev-E0
T1 = Emev-E1
T2 = Emev-E2
D0 = T0**2+gam**2/4.
D1 = T1**2+gam**2/4.
D2 = T2**2+gam**2/4.
FP[i] = Re*(T0/D0+A*T1/D1+B*T2/D2)+BL[i]['BW-LS'][0]
FPP[i] = Im*(1/D0+A/D1+B/D2)
else:
FPP[i] = np.ones(len(wave))*BL[i]['SL'][1] #for Li, B, etc.
return FP,FPP
def ComptonFac(El,SQ):
"""compute Compton scattering factor
:param El: element dictionary
:param SQ: (sin-theta/lambda)**2
:return: compton scattering factor
"""
ca = np.array(El['cmpa'])
cb = np.array(El['cmpb'])
t = -cb[:,np.newaxis]*SQ
return El['cmpz']-np.sum(ca[:,np.newaxis]*np.exp(t),axis=0)
def FPcalc(Orbs, KEv):
"""Compute real & imaginary resonant X-ray scattering factors
:param Orbs: list of orbital dictionaries as defined in GetXsectionCoeff
:param KEv: x-ray energy in keV
:return: C: (f',f",mu): real, imaginary parts of resonant scattering & atomic absorption coeff.
"""
def Aitken(Orb, LKev):
Nval = Orb['Nval']
j = Nval-1
LEner = Orb['LEner']
for i in range(Nval):
if LEner[i] <= LKev: j = i
if j > Nval-3: j= Nval-3
T = [0,0,0,0,0,0]
LXSect = Orb['LXSect']
for i in range(3):
T[i] = LXSect[i+j]
T[i+3] = LEner[i+j]-LKev
T[1] = (T[0]*T[4]-T[1]*T[3])/(LEner[j+1]-LEner[j])
T[2] = (T[0]*T[5]-T[2]*T[3])/(LEner[j+2]-LEner[j])
T[2] = (T[1]*T[5]-T[2]*T[4])/(LEner[j+2]-LEner[j+1])
C = T[2]
return C
def DGauss(Orb,CX,RX,ISig):
ALG = (0.11846344252810,0.23931433524968,0.284444444444,
0.23931433524968,0.11846344252810)
XLG = (0.04691007703067,0.23076534494716,0.5,
0.76923465505284,0.95308992296933)
D = 0.0
B2 = Orb['BB']**2
R2 = RX**2
XSecIP = Orb['XSecIP']
for i in range(5):
X = XLG[i]
X2 = X**2
XS = XSecIP[i]
if ISig == 0:
S = BB*(XS*(B2/X2)-CX*R2)/(R2*X2-B2)
elif ISig == 1:
S = 0.5*BB*B2*XS/(math.sqrt(X)*(R2*X2-X*B2))
elif ISig == 2:
T = X*X2*R2-B2/X
S = 2.0*BB*(XS*B2/(T*X2**2)-(CX*R2/T))
else:
S = BB*B2*(XS-Orb['SEdge']*X2)/(R2*X2**2-X2*B2)
A = ALG[i]
D += A*S
return D
AU = 2.80022e+7
C1 = 0.02721
C = 137.0367
FP = 0.0
FPP = 0.0
Mu = 0.0
LKev = math.log(KEv)
RX = KEv/C1
if Orbs:
for Orb in Orbs:
CX = 0.0
BB = Orb['BB']
BindEn = Orb['BindEn']
if Orb['IfBe'] != 0: ElEterm = Orb['ElEterm']
if BindEn <= KEv:
CX = math.exp(Aitken(Orb,LKev))
Mu += CX
CX /= AU
Corr = 0.0
if Orb['IfBe'] == 0 and BindEn >= KEv:
CX = 0.0
FPI = DGauss(Orb,CX,RX,3)
Corr = 0.5*Orb['SEdge']*BB**2*math.log((RX-BB)/(-RX-BB))/RX
else:
FPI = DGauss(Orb,CX,RX,Orb['IfBe'])
if CX != 0.0: Corr = -0.5*CX*RX*math.log((RX+BB)/(RX-BB))
FPI = (FPI+Corr)*C/(2.0*math.pi**2)
FPPI = C*CX*RX/(4.0*math.pi)
FP += FPI
FPP += FPPI
FP -= ElEterm
return (FP, FPP, Mu)
mapDefault = {'MapType':'','RefList':'','GridStep':0.25,'Show bonds':True,
'rho':[],'rhoMax':0.,'mapSize':10.0,'cutOff':50.,'Flip':False}
def SetupGeneral(data, dirname):
'''Initialize the General sections of the Phase tree contents. Should
be done after changes to the Atoms array.
Called by routine SetupGeneral (in :func:`GSASIIphsGUI.UpdatePhaseData`),
:func:`GSASIIphsGUI.makeIsoNewPhase`, :func:`SUBGROUPS.saveNewPhase`,
and in :func:`GSASIIscriptable.SetupGeneral`.
'''
generalData = data['General']
atomData = data['Atoms']
generalData['AtomTypes'] = []
generalData['Isotopes'] = {}
RBModels = data.get('RBModels',{})
# various patches
if 'Isotope' not in generalData:
generalData['Isotope'] = {}
if 'Data plot type' not in generalData:
generalData['Data plot type'] = 'Mustrain'
if 'POhkl' not in generalData:
generalData['POhkl'] = [0,0,1]
if 'Map' not in generalData:
generalData['Map'] = mapDefault.copy()
if 'Flip' not in generalData:
generalData['Flip'] = {'RefList':'','GridStep':0.25,'Norm element':'None',
'k-factor':0.1,'k-Max':20.,}
if 'testHKL' not in generalData['Flip']:
generalData['Flip']['testHKL'] = [[0,0,2],[2,0,0],[1,1,1],[0,2,0],[1,2,3]]
if 'doPawley' not in generalData:
generalData['doPawley'] = False #ToDo: change to ''
if 'Pawley dmin' not in generalData:
generalData['Pawley dmin'] = 1.0
if 'Pawley dmax' not in generalData:
generalData['Pawley dmax'] = 100.0
if 'Pawley neg wt' not in generalData:
generalData['Pawley neg wt'] = 0.0
if '3Dproj' not in generalData:
generalData['3Dproj'] = ''
if 'doDysnomia' not in generalData:
generalData['doDysnomia'] = False
if 'Algolrithm' in generalData.get('MCSA controls',{}) or \
'MCSA controls' not in generalData:
generalData['MCSA controls'] = {'Data source':'','Annealing':[0.7,0.1,250],
'dmin':2.8,'Algorithm':'log','fast parms':[0.8,0.6],'log slope':0.9,
'Cycles':1,'Results':[],'newDmin':True}
if 'AtomPtrs' not in generalData:
generalData['AtomPtrs'] = [3,1,7,9]
if generalData['Type'] == 'macromolecular':
generalData['AtomPtrs'] = [6,4,10,12]
elif generalData['Type'] == 'magnetic':
generalData['AtomPtrs'] = [3,1,10,12]
if generalData['Modulated']:
if 'Super' not in generalData:
generalData['Super'] = 1
generalData['SuperVec'] = [[0.,0.,0.],False,1]
generalData['SSGData'] = {}
if '4DmapData' not in generalData:
generalData['4DmapData'] = mapDefault.copy()
generalData['4DmapData'].update({'MapType':'Fobs'})
atomData = data['Atoms']
for atom in atomData:
# if 'SS1' not in atom:
# atom += [[],[],{'SS1':{'waveType':'Fourier','Sfrac':[],'Spos':[],'Sadp':[],'Smag':[]}}]
if isinstance(atom[-1],dict) and 'waveType' in atom[-1]['SS1']:
waveType = atom[-1]['SS1']['waveType']
for parm in ['Sfrac','Spos','Sadp','Smag']:
if len(atom[-1]['SS1'][parm]):
wType = 'Fourier'
if parm == 'Sfrac':
if 'Crenel' in waveType:
wType = 'Crenel'
elif parm == 'Spos':
if not 'Crenel' in waveType:
wType = waveType
atom[-1]['SS1'][parm] = [wType,]+list(atom[-1]['SS1'][parm])
del atom[-1]['SS1']['waveType']
else:
generalData['Super'] = 0
if 'Modulated' not in generalData:
generalData['Modulated'] = False
if 'HydIds' not in generalData:
generalData['HydIds'] = {}
if generalData['Type'] == 'magnetic':
if 'SGGray' not in generalData['SGData']:
generalData['SGData']['SGGray'] = False
if 'Resolution' in generalData['Map']:
generalData['Map']['GridStep'] = generalData['Map']['Resolution']/2.
generalData['Flip']['GridStep'] = generalData['Flip']['Resolution']/2.
del generalData['Map']['Resolution']
del generalData['Flip']['Resolution']
if 'Compare' not in generalData:
generalData['Compare'] = {'Oatoms':'','Tatoms':'',
'Tilts':{'Otilts':[],'Ttilts':[]},
'Bonds':{'Obonds':[],'Tbonds':[]},'Vects':{'Ovec':[],'Tvec':[]},
'dVects':{'Ovec':[],'Tvec':[]},'Sampling':1.0}
if 'Sampling' not in generalData['Compare']:
generalData['Compare']['Sampling'] = 1.0
generalData['SpnIds'] = generalData.get('SpnIds',{})
# end of patches
cx,ct,cs,cia = generalData['AtomPtrs']
generalData['NoAtoms'] = {}
generalData['BondRadii'] = []
generalData['AngleRadii'] = []
generalData['vdWRadii'] = []
generalData['AtomMass'] = []
generalData['Color'] = []
if generalData['Type'] == 'magnetic':
generalData['MagDmin'] = generalData.get('MagDmin',1.0)
landeg = generalData.get('Lande g',[])
generalData['Mydir'] = dirname
badList = {}
for iat,atom in enumerate(atomData):
atom[ct] = atom[ct].lower().capitalize() #force to standard form
if generalData['AtomTypes'].count(atom[ct]):
generalData['NoAtoms'][atom[ct]] += atom[cx+3]*float(atom[cs+1])
elif atom[ct] != 'UNK':
Info = GetAtomInfo(atom[ct])
if not Info:
if atom[ct] not in badList:
badList[atom[ct]] = 0
badList[atom[ct]] += 1
atom[ct] = 'UNK'
continue
atom[ct] = Info['Symbol'] # N.B. symbol might be changed by GetAtomInfo
generalData['AtomTypes'].append(atom[ct])
generalData['Z'] = Info['Z']
generalData['Isotopes'][atom[ct]] = Info['Isotopes']
generalData['BondRadii'].append(Info['Drad'])
generalData['AngleRadii'].append(Info['Arad'])
generalData['vdWRadii'].append(Info['Vdrad'])
if atom[ct] in generalData['Isotope']:
if generalData['Isotope'][atom[ct]] not in generalData['Isotopes'][atom[ct]]:
isotope = list(generalData['Isotopes'][atom[ct]].keys())[-1]
generalData['Isotope'][atom[ct]] = isotope
generalData['AtomMass'].append(Info['Isotopes'][generalData['Isotope'][atom[ct]]]['Mass'])
else:
generalData['Isotope'][atom[ct]] = 'Nat. Abund.'
if 'Nat. Abund.' not in generalData['Isotopes'][atom[ct]]:
isotope = list(generalData['Isotopes'][atom[ct]].keys())[-1]
generalData['Isotope'][atom[ct]] = isotope
generalData['AtomMass'].append(Info['Mass'])
generalData['NoAtoms'][atom[ct]] = atom[cx+3]*float(atom[cs+1])
generalData['Color'].append(Info['Color'])
if generalData['Type'] == 'magnetic':
if len(landeg) < len(generalData['AtomTypes']):
landeg.append(2.0)
if 'Q' in atom[ct]:
atom[ct] = 'Q' #patch - remove 'QA', etc.
for Srb in RBModels.get('Spin',[]):
if Srb['Ids'][0] != atom[cia+8]:
continue
nSh = len(Srb['RBId'])
for iSh in range(nSh):
Info = G2elem.GetAtomInfo(Srb['atType'][iSh])
if Info['Symbol'] not in generalData['AtomTypes']:
generalData['AtomTypes'].append(Info['Symbol'])
generalData['Z'] = Info['Z']
generalData['Isotopes'][Info['Symbol']] = Info['Isotopes']
generalData['BondRadii'].append(Info['Drad'])
generalData['AngleRadii'].append(Info['Arad'])
generalData['vdWRadii'].append(Info['Vdrad'])
if Info['Symbol'] in generalData['Isotope']:
if generalData['Isotope'][Info['Symbol']] not in generalData['Isotopes'][Info['Symbol']]:
isotope = list(generalData['Isotopes'][Info['Symbol']].keys())[-1]
generalData['Isotope'][Info['Symbol']] = isotope
generalData['AtomMass'].append(Info['Isotopes'][generalData['Isotope'][Info['Symbol']]]['Mass'])
else:
generalData['Isotope'][Info['Symbol']] = 'Nat. Abund.'
if 'Nat. Abund.' not in generalData['Isotopes'][Info['Symbol']]:
isotope = list(generalData['Isotopes'][Info['Symbol']].keys())[-1]
generalData['Isotope'][Info['Symbol']] = isotope
generalData['AtomMass'].append(Info['Mass'])
generalData['NoAtoms'][Info['Symbol']] = atom[cx+3]*atom[cs+1]*Srb['Natoms'][iSh]
generalData['Color'].append(Info['Color'])
else:
generalData['NoAtoms'][Info['Symbol']] += atom[cx+3]*atom[cs+1]*Srb['Natoms'][iSh]
if generalData['Type'] == 'magnetic':
generalData['Lande g'] = landeg[:len(generalData['AtomTypes'])]
F000X = 0.
F000N = 0.
for i,elem in enumerate(generalData['AtomTypes']):
F000X += generalData['NoAtoms'][elem]*generalData['Z']
isotope = generalData['Isotope'][elem]
F000N += generalData['NoAtoms'][elem]*generalData['Isotopes'][elem][isotope]['SL'][0]
generalData['F000X'] = F000X
generalData['F000N'] = F000N
generalData['Mass'] = G2mth.getMass(generalData)
if badList:
msg = 'Warning: element symbol(s) not found:'
for key in badList:
msg += '\n\t' + key
if badList[key] > 1:
msg += ' (' + str(badList[key]) + ' times)'
#wx.MessageBox(msg,caption='Element symbol error')
raise ValueError("Phase error:\n" + msg)