forked from alexfrom0815/Online-3D-BPP-PCT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_tools.py
52 lines (45 loc) · 2.31 KB
/
evaluation_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import numpy as np
import torch
import tools
def evaluate(PCT_policy, eval_envs, timeStr, args, device, eval_freq = 100, factor = 1):
PCT_policy.eval()
obs = eval_envs.reset()
obs = torch.FloatTensor(obs).to(device).unsqueeze(dim=0)
all_nodes, leaf_nodes = tools.get_leaf_nodes_with_factor(obs, args.num_processes,
args.internal_node_holder, args.leaf_node_holder)
batchX = torch.arange(args.num_processes)
step_counter = 0
episode_ratio = []
episode_length = []
all_episodes = []
while step_counter < eval_freq:
with torch.no_grad():
selectedlogProb, selectedIdx, policy_dist_entropy, value = PCT_policy(all_nodes, True, normFactor = factor)
selected_leaf_node = leaf_nodes[batchX, selectedIdx.squeeze()]
items = eval_envs.packed
obs, reward, done, infos = eval_envs.step(selected_leaf_node.cpu().numpy()[0][0:6])
if done:
print('Episode {} ends.'.format(step_counter))
if 'ratio' in infos.keys():
episode_ratio.append(infos['ratio'])
if 'counter' in infos.keys():
episode_length.append(infos['counter'])
print('Mean ratio: {}, length: {}'.format(np.mean(episode_ratio), np.mean(episode_length)))
print('Episode ratio: {}, length: {}'.format(infos['ratio'], infos['counter']))
all_episodes.append(items)
step_counter += 1
obs = eval_envs.reset()
obs = torch.FloatTensor(obs).to(device).unsqueeze(dim=0)
all_nodes, leaf_nodes = tools.get_leaf_nodes_with_factor(obs, args.num_processes,
args.internal_node_holder, args.leaf_node_holder)
all_nodes, leaf_nodes = all_nodes.to(device), leaf_nodes.to(device)
result = "Evaluation using {} episodes\n" \
"Mean ratio {:.5f}, mean length{:.5f}\n".format(len(episode_ratio), np.mean(episode_ratio), np.mean(episode_length))
print(result)
# Save the test trajectories.
np.save(os.path.join('./logs/evaluation', timeStr, 'trajs.npy'), all_episodes)
# Write the test results into local file.
file = open(os.path.join('./logs/evaluation', timeStr, 'result.txt'), 'w')
file.write(result)
file.close()