-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathidentifier1.py
41 lines (32 loc) · 1.21 KB
/
identifier1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
### Model1
mnist = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test,axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
model.add(tf.keras.layers.Dense(128,activation='relu'))
model.add(tf.keras.layers.Dense(128,activation='relu'))
model.add(tf.keras.layers.Dense(10,activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train, y_train, epochs = 15)
model.save('handwritten.model1')
model = tf.keras.models.load_model('handwritten.model1')
image_number = 0
while os.path.isfile(f"digits/{image_number}.jpg"):
try:
img = cv2.imread(f"digits/{image_number}.jpg")[:,:,0]
img = np.invert(np.array([img]))
prediction = model.predict(img)
print(f"The number is probably a {np.argmax(prediction)}")
plt.imshow(img[0], cmap=plt.cm.binary)
plt.show()
except:
print("An exception occurred")
finally:
image_number += 1