-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathconway.py
362 lines (285 loc) · 12.6 KB
/
conway.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#!/usr/bin/env python3
# Copyright 2023 Allen Synthesis
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements Conway's Game of Life as a pseudo-random LFO kernel
Outputs 1-3 are 0-10V control voltages, outputs 4-6 are 5V gates
@author Chris I-B <[email protected]>
@year 2023
Throughout the program we frequently use `>> 3` instead of `//8` for doing integer division when converting
from bit indices to byte indices.
"""
from europi import *
from europi_script import EuroPiScript
from experimental.bitarray import *
from random import random as rnd
import math
# We re-use this constant a lot, so just save it for easy re-use
LOG2 = math.log(2)
# How many pixels are on the screen
NUM_PIXELS = OLED_HEIGHT * OLED_WIDTH
def stdev(l):
"""Return the standard deviation of a list of values
@param l The list of numbers we want to calculate the standard deviation of
@return The standard deviation of the values in @l
"""
mean = sum(l)/len(l)
return ( sum([((x - mean) ** 2) for x in l]) / len(l) )**0.5
def bitwise_entropy(arr):
"""Calculate the entropy of the bit string in a bytearray
@param arr A bytearray, treated as a bit string
@return the Shannon Entropy of the string, assuming a 50/50 chance of any bit being 1 or 0
"""
# Count how many bits are 1 in the whole bytearray
count1s = 0
for b in arr:
for i in range(8):
if b & (1 << i):
count1s += 1
# Make sure we don't have all-1 or all-0 in the array; handle those cases
num_bits = len(arr) << 3
if count1s == 0:
return 0.0
elif count1s == num_bits:
return 1.0
else:
# Calculate the entropy of the string
# E = sum(p(x) * log_2(p(x))) = sum(p(x) * log(p(x))) / log(2)
prob_1 = count1s / num_bits
p_x = [
1.0 - prob_1,
prob_1
]
return -sum([ p * math.log(p) for p in p_x]) / LOG2
class Conway(EuroPiScript):
def __init__(self):
# For ease of blitting, store the field as a bit array
# Each byte is 8 horizontally adjacent pixels, with the most significant bit
# on the left
self.field = bytearray(NUM_PIXELS >> 3)
self.next_field = bytearray(NUM_PIXELS >> 3)
# Keep 2 separate frame buffer instances so we don't need to recreate the FB objects when we draw
self.frame = FrameBuffer(self.field, OLED_WIDTH, OLED_HEIGHT, MONO_HLSB)
self.next_frame = FrameBuffer(self.next_field, OLED_WIDTH, OLED_HEIGHT, MONO_HLSB)
# Simple optimization; keep a list of spaces whose states changed & their neighbours
# This is initially empty as the field is entirely blank
# to save memory instead of using a List or Set object, we use a bit array with a length equal to
# the size of the field
self.num_changes = 0
self.changed_spaces = bytearray(NUM_PIXELS >> 3)
self.next_changed_spaces = bytearray(NUM_PIXELS >> 3)
# how many cells were born this tick?
self.num_born = 0
# how many cells died this tick?
self.num_died = 0
# how many cells are currently alive?
# this gets updated on every tick and on random spawns
self.num_alive = 0
# Set to True if we want to clear the field & respawn
self.reset_requested = False
# statically allocated array of the indices of the cells around the one we're considering
# this is just an optimization to avoid re-allocating this array
self.neighbourhood = [0, 0, 0, 0, 0, 0, 0, 0]
# keep the last few changes in population in a list to check if it's oscillating predictably
self.population_deltas = []
self.MAX_DELTAS = 12
# statically allocated array we use to store the sums of cells when checking for statis
self.statis_sums = [0] * self.MAX_DELTAS
@b1.handler
def on_b1():
self.reset_requested = True
@b2.handler
def on_b2():
self.reset_requested = True
@din.handler
def on_din():
self.reset_requested = True
def get_neigbour_indices(self, index):
"""Get the indices of the 8 bits adjacent to the given index
If we're on the top/left/bottom/right edge, wrap arround to the opposite row/column, treating the world
as a torus
Unfortunately we don't have enough RAM to save this in a lookup table, so we have to recalculate it
every time, which slows down the simulation
"""
row = index // OLED_WIDTH
col = index % OLED_WIDTH
def rowcol2index(r, c):
return (r % OLED_HEIGHT) * OLED_WIDTH + (c % OLED_WIDTH)
n = 0
for i in range(-1, 2):
for j in range(-1, 2):
if i != 0 or j != 0:
self.neighbourhood[n] = rowcol2index(row+i, col+j)
n += 1
def calculate_spawn_level(self):
"""Calculate what percentage of the field should contain new cells
We want to avoid having the spawn rate _too_ high as that can result in high CPU loads and RAM usage.
- K1: [0, 0.5]
- K2: [-0.5, 0.5]
- AIN: [0, 1]
P = K1 + K2 * AIN => [-0.5, 1.0]
"""
base_spawn_level = k1.percent() / 2
# get the level of AIN, attenuverted by K2
cv_mod = ain.percent()/2
cv_att = k2.percent() - 1
cv_mod = cv_mod * cv_att
spawn_level = clamp(base_spawn_level + cv_mod, 0, 1)
return spawn_level
def reset(self):
"""Clear the whole field and spawn random data in it
"""
for i in range(len(self.field)):
self.next_field[i] = 0x00
self.num_alive = 0
self.population_deltas = []
# fill the field with random cells
fill_level = self.calculate_spawn_level()
for i in range(NUM_PIXELS):
x = rnd()
is_alive = get_bit(self.field, i)
if x < fill_level and not is_alive:
# if the space isn't already filled and we want to fill it
set_bit(self.field, i, True)
set_bit(self.next_field, i, True)
self.num_alive += 1
elif x >= fill_level and is_alive:
# if the space is filled and we want to clear it
set_bit(self.field, i, False)
set_bit(self.next_field, i, False)
self.num_alive -= 1
# Assume the whole field has changed
set_all_bits(self.changed_spaces, True)
self.num_changes = NUM_PIXELS
def draw(self):
"""Show the current playing field on the OLED
"""
oled.blit(self.frame, 0, 0)
oled.show()
def tick(self):
"""Calculate the state of the next generation
This checks the regions around every changed space in the previous generation, updating the
total population and counting how many births & deaths this generation had.
If a reset was requested, the field is cleared & randomly reset _before_ calculating the new generation
"""
self.num_born = 0
self.num_died = 0
self.num_changes = 0
if self.reset_requested:
self.reset_requested = False
self.reset()
for bit_index in range(NUM_PIXELS):
if not get_bit(self.changed_spaces, bit_index):
continue
self.get_neigbour_indices(bit_index)
num_neighbours = sum(1 for n in self.neighbourhood if get_bit(self.field, n))
if get_bit(self.field, bit_index):
if num_neighbours == 2 or num_neighbours == 3: # happy cell, stays alive
set_bit(self.next_field, bit_index, True)
else: # sad cell, dies
set_bit(self.next_field, bit_index, False)
self.num_died += 1
self.num_alive -= 1
self.num_changes += 1
set_bit(self.next_changed_spaces, bit_index, 1)
for n in self.neighbourhood:
set_bit(self.next_changed_spaces, n, 1)
else:
if num_neighbours == 3: # baby cell is born!
set_bit(self.next_field, bit_index, True)
self.num_alive += 1
self.num_born += 1
self.num_changes += 1
set_bit(self.next_changed_spaces, bit_index, 1)
for n in self.neighbourhood:
set_bit(self.next_changed_spaces, n, 1)
else: # empty space remains empty
set_bit(self.next_field, bit_index, False)
# swap field & next_field so we don't need to copy between arrays
tmp = self.next_field
self.next_field = self.field
self.field = tmp
tmp = self.next_frame
self.next_frame = self.frame
self.frame = tmp
tmp = self.next_changed_spaces
self.next_changed_spaces = self.changed_spaces
self.changed_spaces = tmp
set_all_bits(self.next_changed_spaces)
def check_for_stasis(self):
"""Check the population changes over time to see if we've reached a state of stasis
"""
# we must have at least MAX_DELTAS generations of data
if len(self.population_deltas) < self.MAX_DELTAS:
return False
# if there are no changes or everything is dead, we've reached static stasis
if self.num_changes == 0 or self.num_alive == 0:
return True
# if the population is oscillating up and down predicatbly, we've probably reached stasis
# check for 2, 3, and 4 step repetitions
for pattern_length in range(2, 5):
count = self.MAX_DELTAS // pattern_length
for i in range(count):
self.statis_sums[i] = sum(self.population_deltas[i*pattern_length:i*pattern_length+pattern_length])
# check the standard deviation
deviation = stdev(self.statis_sums[0:count])
mean = sum(self.statis_sums[0:count])/count
if deviation <= 1 and abs(mean) <= 1:
return True
return False
def main(self):
"""The main loop for the program
Handles setting the CV output, drawing to the OLED, and triggering the simulation
"""
turn_off_all_cvs()
self.reset()
in_stasis = False
while True:
# turn off the stasis gate while we calculate the next generation
cv6.off()
# turn on the FPS gate when we start calculating
cv4.on()
# calculate the next generation
self.tick()
# turn off the FPS gate when we're done calculating but before we draw
cv4.off()
# show the results on the OLED
self.draw()
# check for stasis conditions
self.population_deltas.append(self.num_born - self.num_died)
if len(self.population_deltas) > self.MAX_DELTAS:
self.population_deltas.pop(0)
in_stasis = self.check_for_stasis()
cv1.voltage(MAX_OUTPUT_VOLTAGE * bitwise_entropy(self.field))
if self.num_born > self.num_died:
cv5.on()
else:
cv5.off()
# Make sure we don't divide by zero
if self.num_alive > 0:
cv2.voltage(MAX_OUTPUT_VOLTAGE * self.num_born / self.num_alive)
else:
cv2.off()
# Prevent values greater than 1 & division-by-zero errors
hi = max(self.num_died, self.num_born)
low = min(self.num_died, self.num_born)
if (hi > 0):
cv3.voltage(MAX_OUTPUT_VOLTAGE * (low/hi))
else:
cv3.off()
# If we've achieved statis, set CV6 & trigger a reset
if in_stasis:
cv6.on()
self.reset_requested = True
if __name__ == "__main__":
Conway().main()