@@ -36,7 +36,7 @@ invoked from the host using this library.
36
36
37
37
using namespace gpu; // CreateContext, CreateTensor, CreateKernel,
38
38
// CreateShader, DispatchKernel, Wait, ToCPU
39
- // GPUTensor , Kernel, GPUContext , Shape, kf32
39
+ // Tensor , Kernel, Context , Shape, kf32
40
40
41
41
static const char *kGelu = R"(
42
42
const GELU_SCALING_FACTOR: f32 = 0.7978845608028654; // sqrt(2.0 / PI)
@@ -56,15 +56,14 @@ fn main(
56
56
)";
57
57
58
58
int main(int argc, char **argv) {
59
- printf("\nHello, gpu.cpp\n\n");
60
- GPUContext ctx = CreateContext();
59
+ Context ctx = CreateContext();
61
60
static constexpr size_t N = 3072;
62
61
std::array<float, N> inputArr, outputArr;
63
62
for (int i = 0; i < N; ++i) {
64
63
inputArr[i] = static_cast<float>(i) / 2.0; // dummy input data
65
64
}
66
- GPUTensor input = CreateTensor(ctx, Shape{N}, kf32, inputArr.data());
67
- GPUTensor output = CreateTensor(ctx, Shape{N}, kf32);
65
+ Tensor input = CreateTensor(ctx, Shape{N}, kf32, inputArr.data());
66
+ Tensor output = CreateTensor(ctx, Shape{N}, kf32);
68
67
Kernel op = CreateKernel(ctx, CreateShader(kGelu, 256, kf32), input, output);
69
68
DispatchKernel(ctx, op);
70
69
Wait(ctx, op.future);
@@ -83,6 +82,8 @@ the equivalent functionality is implemented using the WebGPU C API in
83
82
84
83
## Quick Start: Building and Running
85
84
85
+ * Tutorial App*
86
+
86
87
The only dependency of this library is a WebGPU implementation. Currently we
87
88
recommend using the Dawn backend until further testing, but we plan to support
88
89
emscripten (web) and wgpu (native) backends.
@@ -115,7 +116,6 @@ Welcome!
115
116
--------
116
117
117
118
This program is a brief intro to the gpu.cpp library.
118
-
119
119
...
120
120
121
121
```
@@ -126,6 +126,8 @@ minutes. The gpu.cpp library itself is small so after building the Dawn backend
126
126
the first time, subsequent builds of the library should take seconds on most
127
127
personal computing devices.
128
128
129
+ * Using gpu.cpp as a Library*
130
+
129
131
You can build the library itself which builds a shared library that you can
130
132
link against for your own projects. This builds a library that can be used in
131
133
other C++ projects (most of the code is in ` gpu.h ` , plus some supporting code
@@ -135,8 +137,11 @@ in `utils/`).
135
137
make libgpu
136
138
```
137
139
138
- ((TODO(avh): link to a template repo that with gpu.cpp as a library already
139
- configured.))
140
+ If you are starting a new project using gpu.cpp as a library dependency, we
141
+ recommend starting by cloning the template project
142
+ [ https://github.com/AnswerDotAI/gpu.cpp-template ] ( https://github.com/AnswerDotAI/gpu.cpp-template ) .
143
+
144
+ * Example Demos in ` examples/ ` *
140
145
141
146
From there you can explore the example projects in ` examples/ ` which illustrate
142
147
how to use gpu.cpp as a library. For example a standalone version of the hello
@@ -165,6 +170,8 @@ Hello, gpu.cpp
165
170
...
166
171
```
167
172
173
+ * Machine Learning Kernel Implementations (WIP)*
174
+
168
175
A more extensive set of (machine learning-centric) kernels is implemented in
169
176
` utils/test_kernels.cpp ` . This can be built and run (from the top level
170
177
directory) using:
@@ -176,6 +183,8 @@ make tests
176
183
For more configurability and control of the build, see the ` cmake ` invocations
177
184
in the ` Makefile ` , as well as the configuration in ` Cmakelists.txt ` .
178
185
186
+ * Resetting Build State / Removing Build Artifacts*
187
+
179
188
If you need to clean up the build artifacts, you can run:
180
189
181
190
```
@@ -232,12 +241,15 @@ convenient API with both both native (e.g. Dawn) and browser implementations.
232
241
It uses WebGPU as a portable GPU API first and foremost, with the possibility
233
242
of running in the browser being support being a convenient bonus.
234
243
244
+ For additional background on WebGPU as a portable native GPU API, see Elie
245
+ Michel's talk [ WebGPU is Not Just about the
246
+ Web] ( https://www.youtube.com/watch?v=qHrx41aOTUQ ) .
247
+
235
248
Finally, the focus of gpu.cpp is general-purpose GPU computation rather than
236
249
rendering/graphics on the GPU, although it might be useful for compute shaders
237
250
in graphics projects - one of the examples is a small compute renderer,
238
251
rendered to the terminal.
239
252
240
-
241
253
## Contributing and Work-in-Progress
242
254
243
255
We welcome contributions! There's a lot of low hanging fruit - fleshing out
0 commit comments