Skip to content

Commit dd3d29e

Browse files
committedJun 18, 2024
add docstrings to gpu.h (wip)
1 parent 32828d5 commit dd3d29e

File tree

3 files changed

+280
-60
lines changed

3 files changed

+280
-60
lines changed
 

‎README.md

+21-9
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ invoked from the host using this library.
3636
3737
using namespace gpu; // CreateContext, CreateTensor, CreateKernel,
3838
// CreateShader, DispatchKernel, Wait, ToCPU
39-
// GPUTensor, Kernel, GPUContext, Shape, kf32
39+
// Tensor, Kernel, Context, Shape, kf32
4040
4141
static const char *kGelu = R"(
4242
const GELU_SCALING_FACTOR: f32 = 0.7978845608028654; // sqrt(2.0 / PI)
@@ -56,15 +56,14 @@ fn main(
5656
)";
5757
5858
int main(int argc, char **argv) {
59-
printf("\nHello, gpu.cpp\n\n");
60-
GPUContext ctx = CreateContext();
59+
Context ctx = CreateContext();
6160
static constexpr size_t N = 3072;
6261
std::array<float, N> inputArr, outputArr;
6362
for (int i = 0; i < N; ++i) {
6463
inputArr[i] = static_cast<float>(i) / 2.0; // dummy input data
6564
}
66-
GPUTensor input = CreateTensor(ctx, Shape{N}, kf32, inputArr.data());
67-
GPUTensor output = CreateTensor(ctx, Shape{N}, kf32);
65+
Tensor input = CreateTensor(ctx, Shape{N}, kf32, inputArr.data());
66+
Tensor output = CreateTensor(ctx, Shape{N}, kf32);
6867
Kernel op = CreateKernel(ctx, CreateShader(kGelu, 256, kf32), input, output);
6968
DispatchKernel(ctx, op);
7069
Wait(ctx, op.future);
@@ -83,6 +82,8 @@ the equivalent functionality is implemented using the WebGPU C API in
8382

8483
## Quick Start: Building and Running
8584

85+
*Tutorial App*
86+
8687
The only dependency of this library is a WebGPU implementation. Currently we
8788
recommend using the Dawn backend until further testing, but we plan to support
8889
emscripten (web) and wgpu (native) backends.
@@ -115,7 +116,6 @@ Welcome!
115116
--------
116117
117118
This program is a brief intro to the gpu.cpp library.
118-
119119
...
120120
121121
```
@@ -126,6 +126,8 @@ minutes. The gpu.cpp library itself is small so after building the Dawn backend
126126
the first time, subsequent builds of the library should take seconds on most
127127
personal computing devices.
128128

129+
*Using gpu.cpp as a Library*
130+
129131
You can build the library itself which builds a shared library that you can
130132
link against for your own projects. This builds a library that can be used in
131133
other C++ projects (most of the code is in `gpu.h`, plus some supporting code
@@ -135,8 +137,11 @@ in `utils/`).
135137
make libgpu
136138
```
137139

138-
((TODO(avh): link to a template repo that with gpu.cpp as a library already
139-
configured.))
140+
If you are starting a new project using gpu.cpp as a library dependency, we
141+
recommend starting by cloning the template project
142+
[https://github.com/AnswerDotAI/gpu.cpp-template](https://github.com/AnswerDotAI/gpu.cpp-template).
143+
144+
*Example Demos in `examples/`*
140145

141146
From there you can explore the example projects in `examples/` which illustrate
142147
how to use gpu.cpp as a library. For example a standalone version of the hello
@@ -165,6 +170,8 @@ Hello, gpu.cpp
165170
...
166171
```
167172

173+
*Machine Learning Kernel Implementations (WIP)*
174+
168175
A more extensive set of (machine learning-centric) kernels is implemented in
169176
`utils/test_kernels.cpp`. This can be built and run (from the top level
170177
directory) using:
@@ -176,6 +183,8 @@ make tests
176183
For more configurability and control of the build, see the `cmake` invocations
177184
in the `Makefile`, as well as the configuration in `Cmakelists.txt`.
178185

186+
*Resetting Build State / Removing Build Artifacts*
187+
179188
If you need to clean up the build artifacts, you can run:
180189

181190
```
@@ -232,12 +241,15 @@ convenient API with both both native (e.g. Dawn) and browser implementations.
232241
It uses WebGPU as a portable GPU API first and foremost, with the possibility
233242
of running in the browser being support being a convenient bonus.
234243

244+
For additional background on WebGPU as a portable native GPU API, see Elie
245+
Michel's talk [WebGPU is Not Just about the
246+
Web](https://www.youtube.com/watch?v=qHrx41aOTUQ).
247+
235248
Finally, the focus of gpu.cpp is general-purpose GPU computation rather than
236249
rendering/graphics on the GPU, although it might be useful for compute shaders
237250
in graphics projects - one of the examples is a small compute renderer,
238251
rendered to the terminal.
239252

240-
241253
## Contributing and Work-in-Progress
242254

243255
We welcome contributions! There's a lot of low hanging fruit - fleshing out

‎examples/render/run.cpp

+2-2
Original file line numberDiff line numberDiff line change
@@ -88,8 +88,8 @@ std::uint32_t getCurrentTimeInMilliseconds() {
8888

8989
int main(int argc, char **argv) {
9090

91-
constexpr size_t NROWS = 32;
92-
constexpr size_t NCOLS = 64;
91+
constexpr size_t NROWS = 32 * 10;
92+
constexpr size_t NCOLS = 64 * 10;
9393

9494
std::array<float, NROWS * NCOLS> screen;
9595

0 commit comments

Comments
 (0)
Please sign in to comment.