-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStockpricePrototype_2.py
449 lines (364 loc) · 14.2 KB
/
StockpricePrototype_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import sys
import tushare as ts
import time
import pandas
import math
from datetime import date
RDate=time.strftime("%Y-%m-%d",time.gmtime())
RYear=time.strftime("%Y",time.gmtime())
RMonth=time.strftime("%m",time.gmtime())
RQuarter=str(math.ceil( int(RMonth)/4 ) +1)
class HDR:
'to creat a class hold basic infomation for the handler'
Hancount=0
def __init__(self,name,display,defaultPara=''):
self.name=name
self.defaultPara=defaultPara
self.Hancount+=1
self.display=display
def __del__(self):
print('delete '+self.__class__.__name__)
def _Modifydpara(self,para):
self.defaultPara=para
def _display(self):
return self.display
def _Han(self,RecentPara=''):
if RecentPara:
return self.name+'('+RecentPara+')'
elif not self.defaultPara:
return self.name+'()'
else:
return self.name+'('+self.defaultPara+')'
class PST:
def __init__(self,hanset,itera,para,display):
self.hanset=hanset
self.iter=itera
self.para=para
self.display=display
def __del__(self):
print("del "+self.__class__.__name__)
def _display(self):
return (self.display)
def Pind(self,Para):
if not Para:
return
ParaArr=Para.split('|')
PArr2=[];
con=0
Mainco=-1
for PCell in ParaArr:
ParaArr[con]=PCell.split(',')
if len(ParaArr[con])>1:
Mainco=con
con+=1
RE=[]
con=0
self.NameSet=ParaArr[Mainco]
while con<len(ParaArr[Mainco]):
i=0
str=''
while i<len(ParaArr):
if i != Mainco:
str=str+"'"+ParaArr[i][0]+"'"
else:
str=str+"'"+ParaArr[i][con]+"'"
if i != len(ParaArr)-1:
str=str+","
i+=1
RE.append(str)
con+=1
# print (RE)
return RE
def sets(self,Para=''):
REArr=[]
# print(self)
Para=self.Pind(Para)
if Para:
if isinstance(Para,list):
con=0
while con<self.iter and con<len(Para):
REArr.append(self.hanset+'('+ Para[con]+')')
con+=1
else:
con=0
while con<self.iter:
REArr.append(self.hanset+'()' )
con+=1
# print (REArr)
return REArr
S_todayall= HDR('get_today_all','今日股票')
S_Srltequote= HDR('get_realtime_quotes','实时五档',"['sh','sz','hs300','sz50','zxb','cyb'] ")
S_Stodaytick= HDR('get_today_ticks','个股详情','000826')
H_all= HDR('get_hist_data','个股历史快捷','000826')
H_F_all= HDR('get_h_data','个股历史',"'000826','2010-01-01'" )
H_Stick= HDR('get_tick_data','个股大盘历史详细'," '000826',"+"'"+RDate+ "'")
H_F_all_handy= PST('get_h_data',1000,'','个股历史批量')
I_today= HDR('get_index','今日大盘')
B_S= HDR('get_sina_dd','大笔交易','000826,'+RDate )
IR_D= HDR('get_deposit_rate','存款利率')
IR_L= HDR('get_loan_rate','贷款利率')
IR_RRR= HDR('get_rrr','准备金利率')
IR_Shi= HDR('shibor_data','SHIBOR')
IR_SHiQuo= HDR('shibor_quote_data','SHIBOR_问询')
IR_SHiMa= HDR('shibor_ma_data','SHIBOR_MA')
IR_LPR= HDR('lpr_data','LPR')
IR_LPRMa= HDR('lpr_ma_data','LPR_MA')
M_ms= HDR('get_money_supply','货币供给')
M_msbal= HDR('get_money_supply_bal','货币供给余量')
GDP_Y= HDR('get_gdp_year','GDP_Year')
GDP_Q= HDR('get_gdp_quarter','GDP_Quarter')
GDP_Y_for= HDR('get_gdp_for','GDP_Year_For')
GDP_Y_pull= HDR('get_gdp_pull','GDP_Year_Pull')
GDP_Y_ctb= HDR('get_gdp_contrib','GDP_Year_Contribution')
CPI_M= HDR('get_cpi','CPI_Month')
PPI_M= HDR('get_ppi','PPI_Month')
SR_Basic= HDR('get_stock_basics','基本面')
SR_Report= HDR('get_report_data','财务',RYear+','+RQuarter)
SR_Profit= HDR('get_profit_data','盈利',RYear+','+RQuarter)
SR_Opera= HDR('get_operation_data','运营',RYear+','+RQuarter)
SR_Growth= HDR('get_growth_data','成长',RYear+','+RQuarter)
SR_Debtpay= HDR('get_debtpaying_data','偿付',RYear+','+RQuarter)
SR_CashFlow= HDR('get_cashflow_data','现金流',RYear+','+RQuarter)
SR_Forcast= HDR('forecast_data','业绩预报',RYear+','+RQuarter)
MG_SH= HDR('sh_margins','融资融券_SH', "'"+RYear+"-01-01'" )
MG_SZ= HDR('sz_margins','融资融券_SZ',"'"+RYear+"-01-01'")
def allnum_sub(PDD,conj,imax):
i=0
while i<imax:
S=PDD.ix[i,conj]
if S!='--':
PDD.ix[i,conj]=float(S)
i+=1
return PDD
def allnum(PDD):
PDD=PDD[0]
#PDDBac=PDD
imax=PDD.shape[0]
jmax=PDD.shape[1]
conj=1
print(imax)
print(jmax)
while conj<jmax:
PDD=allnum_sub(PDD,conj,imax)
conj+=1
return [PDD]
def timefix(PDDataF):
i=0
Ti={'quarter':0,'month':1,'date':2,'opDate':3}
try:
N =Ti[ PDDataF.columns[0] ]
except:
return PDDataF
for M in PDDataF.ix[:,0]:
PDDataF.ix[i,0]=timefix_single(PDDataF.ix[i,0],N)
i+=1
return PDDataF
def timefix_single(STR,N):
if type(STR) == pandas.tslib.Timestamp:
return STR
if isinstance(STR,float):
STR=str(STR)
if(STR.find('.')!=-1 and N==1):
TS=STR.split('.')
STR+='/30'
if(TS[1]!='2' and TS[1]!='02'):
return pandas.to_datetime('30' + TS[1] + TS[0], format="%d%m%Y")
else:
return pandas.to_datetime('28' + TS[1] + TS[0], format="%d%m%Y")
if(STR.find('.')!=-1 and N==0):
B= STR.split('.')
B[1]=str( int(B[1])*3 )
return pandas.to_datetime('30' + B[1] + B[0], format="%d%m%Y")
if(STR.find('-')!=-1 and N==2 or N==3):
TS=STR.split('-')
return pandas.to_datetime(TS[2] + TS[1] + TS[0], format="%d%m%Y")
def savname():
# 要判断开市还是收市了 不用了没收市前都没数据
return time.strftime("%Y-%m-%d",time.gmtime())
def to_mongodb():
import pymongo
import json
conn=pymongo.Connection ('127.0.0.1',port =27017)
df=ts.get_tick_data('600848',date='2014-12-22')
conn.db.tickdata.insert(json.loads(df.to_json(orient ='records')))
def getallkeys(sdir):
dkeystr=str(sdir.keys() )
allkeys=[]
end=0
con=-1
Ocon=0
while(end!=200):
con=dkeystr.find("'",con+1)
if con==-1:
break
Ocon=con+1
con=dkeystr.find("'",con+1)
allkeys.append(dkeystr[Ocon:con])
end+=1
return allkeys
def _menu(lib):
keys=getallkeys(lib)
j=0
for key in keys:
lib_list=lib[key]
print(str(j)+'. '+key+':')
i=0
for hdr in lib_list:
print('\t'+str(i)+'. '+hdr._display())
i+=1
j=j+1
def _SAVE(Type='excel',Path='C:\\Users\\macbook\Desktop\\',NA='TEST',para=''):
Type=Type.lower()
SAVEHDL={'excel':['to_excel','xlsx'],'csv':['to_csv','csv'],'hdf5':['to_hdf','h5'],'json':['to_json'],'mysql':['to_sql'],'mongodb':['to_mongodb']}
SAVEPATH= Path+NA
#Active the handler
if para!='':
para=','+para
try:
if len(SAVEHDL[Type])>1:
ST= SAVEHDL[Type][0] + "(" + "'" + SAVEPATH + "." + SAVEHDL[Type][1] +"'" + para + ")"
else:
ST= SAVEHDL[Type][0] + "(" + SAVEPATH + para + ")"
except:
print('jj')
else:
if not ST:
return 'ERROR'
else:
return ST
def _getdata(s_handle=[],para='',columns=['']): #colums should be keys arrays
dataset=[]
if isinstance(s_handle , HDR):
s_handle=[s_handle]
for part_han in s_handle:
data= pandas.DataFrame()
#handle=eval('ts.'+part_han)
#print('ts.'+part_han.han() )
if para=='':
data=eval( 'ts.'+part_han._Han() )
else:
#data=handle(para)
data=eval('ts.'+part_han._Han(para) )
if not columns[0] :
dataset.append( timefix(data) )
else:
dataset.append( timefix( data[columns] ) ) #columns is array
return dataset
if isinstance(s_handle, PST):
data= pandas.DataFrame()
if para=='':
Hans= s_handle.sets()
else:
Hans= s_handle.sets(para)
print(Hans) #test
for Han in Hans:
data=eval('ts.'+Han )
if not columns[0] :
dataset.append( data )
else:
dataset.append( data[columns] ) #columns is array
return dataset
def _intergralsheet(dataset):
'''
a = Series(range(5))
b = Series(np.linspace(4, 20, 5))
df = pd.concat([a, b], axis=1)
print df
df = DataFrame()
index = ['alpha', 'beta', 'gamma', 'delta', 'eta']
for i in range(5):
a = DataFrame([np.linspace(i, 5*i, 5)], index=[index[i]])
df = pd.concat([df, a], axis=0)
print df
'''
finaldata=pandas.DataFrame()
for datasheet in dataset:
finaldata=pandas.concat([finaldata,datasheet],axis=1)
#其中的axis=1表示按列进行合并,axis=0表示按行合并,并且,Series都处理成一列,所以这里如果选axis=0的话,将得到一个10×1的DataFrame。下面这个例子展示了如何按行合并DataFrame成一个大的DataFrame:
return [finaldata]
def main():
print("--------------Game Starting------------")
# print(dir(ts))
NameSpace=dir(ts)
# Make a self lib, Good for search
HTFlib={'TodayStock':[S_todayall,S_Srltequote,S_Stodaytick],'HistoryStock':[H_all,H_Stick,H_F_all,H_F_all_handy],'TodayIndex':[I_today],'TodayBig':[B_S],'InterestRate':[IR_D,IR_L,IR_RRR,IR_Shi,IR_SHiQuo,IR_SHiMa,IR_LPR,IR_LPRMa],'Monetory':[M_ms,M_msbal],'GDP':[GDP_Y,GDP_Q,GDP_Y_for,GDP_Y_pull,GDP_Y_ctb],'CPI':[CPI_M],'PPI':[PPI_M],'StockReport':[SR_Basic,SR_Report,SR_Profit,SR_Opera,SR_Growth,SR_Debtpay,SR_CashFlow,SR_Forcast],'Margin':[MG_SH,MG_SZ]}
while( input (" type 'R' to start everyday work ").lower()== 'r'):
routine_Bool=int( input('for stock or macro: 0 or 1 ' ) )
if(routine_Bool):
savingcont=0
Path='C:\\\\Users\\\\macbook\\\\Desktop\\\\研究数据\\\\个股\\\\AutoMacro\\\\'
NA=['GDP','CPI','SHIBOR','LPR','PPI','MS','RRR','MG_SH']
Type='excel'
Rou=[]
i=0
Rou.append(_getdata(GDP_Q,'',['quarter','gdp_yoy','pi_yoy','si_yoy','ti_yoy']) )
Rou.append(_getdata(CPI_M,'',['month','cpi']) )
Rou.append(_getdata(IR_Shi,'',['date','ON','1W','2W','1M','3M','6M','9M','1Y']) )
Rou.append(_getdata(IR_LPR,'',['date','1Y']) )
Rou.append(_getdata(PPI_M,'',['month','ppiip','ppi','qm','rmi','pi','cg','food','clothing','roeu','dcg']) )
Rou.append( allnum( _getdata(M_ms,'',['month','m2_yoy','m1_yoy','m0_yoy','cd','qm','ftd','sd','rests']) ) )
Rou.append( allnum(_getdata(IR_RRR,'',['date','now']) ) )
Rou.append(_getdata(MG_SH,'',['opDate','rzye','rzmre','rqyl','rqylje','rqmcl','rzrqjyzl']) )
for N in Rou:
if type(N[0])==pandas.DataFrame:
STail=_SAVE(Type,Path,NA[i],'')
print('Rou['+str(i)+'][0]'+'.'+STail)
eval('Rou['+str(i)+'][0]'+'.'+STail)
i+=1
else:
savingcont=0
Path='C:\\\\Users\\\\macbook\\\\Desktop\\\\研究数据\\\\股票历史\\\\' #change this
NA=['000826启迪桑德','000959首钢股份','300187永清环保','300284苏交所','600428中远航运','600896中海海盛','601808中海油服','601866中海集运','601919中国远洋','600276恒瑞医药','002004华邦健康','600470六国化工','600576万家文化','002432九安医疗']
#change this
Type='excel'
Rou=[]
i=0
Rou=_getdata(H_F_all_handy,'000826,000959,300187,300284,600428,600896,601808,601866,601919,600276,002004,600470,600576,002432|2013-01-01',['']) #change this
for na in NA:
STail=_SAVE(Type,Path,na,para="")
print('Rou['+ str(i)+']'+'.'+STail)
eval('Rou['+str(i)+']'+'.'+STail)
i+=1
if i == len(NA):
break
while( input(" type 'end' to end the program ").lower() !='end'):
_menu(HTFlib)
keys=getallkeys(HTFlib)
Key=input("--Key--: ")
if Key.isdigit():
Key=keys[int(Key) ]
Sub=(input("\t--Subscript--: ") )
Columns=input("--ColumnsKey like 'a,b,c,d'--: ").split(',')
para=input("--Para--")
Han=eval( 'HTFlib[Key]['+Sub+']')
dataset=_getdata(Han,para,Columns)
#dataset=_intergralsheet(dataset)
defaultNA=[]
if isinstance(Han, HDR):
defaultNA.append(savname()+Han.display)
elif isinstance(Han,PST):
for Han_NA in Han.NameSet:
defaultNA.append( savname()+Han_NA )
else:
for P_Han in Han:
defaultNA.append( savname()+P_Han.display )
Type='excel'
#Path='C:\\\\Users\\\\macbook\\\\Desktop\\\\'
Path='C:\\\\Users\\\\macbook\\\\Desktop\\\\研究数据\\\\股票历史\\\\'
NA_SET=input("type your nameset like 'a,b,c' :" ).split(',')
if not NA_SET[0]:
NA_SET=defaultNA
i=0
for NA in NA_SET:
STail=_SAVE(Type,Path,NA,para="")
print('dataset['+ str(i)+']'+'.'+STail)
eval('dataset['+str(i)+']'+'.'+STail)
i+=1
if i == len(NA_SET):
break
#TuHandle=eval('ts.'+NameSpace[N])
#Active
#TuHandle()
#eval('ts.'+NameSpace[N]+'()')
input("--------------End----------------")
main()