-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
50 lines (41 loc) · 1.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import numpy as np
from utils.utils import calculate_psnr
from utils.testutils import freely_select_from_image, select_by_edge
from scripts.config import Config
from models.mathematicalmodels.model import InpaintMathematical
from models.edgeconnect.model import EdgeConnect
from matplotlib import pyplot as plt
cfg = Config()
original_image = cv2.imread(cfg.test_im_path)
if (cfg.test_mask_method == "freely_select_from_image"):
input_image, mask, img_gray, edge_org = freely_select_from_image(original_image)
if (cfg.test_mask_method == "select_by_edge"):
input_image = select_by_edge(original_image)
# Opencv saves image channels as BGR, from now on to show those images correctly
# We convert images BGR2RGB
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
if (cfg.test_inpaint_method == "Mathematical"):
inpaint = InpaintMathematical(input_image, mask, cfg.freely_select_mask_size)
output = inpaint.run()
if (cfg.test_inpaint_method == "EdgeConnect"):
inpaint = EdgeConnect()
output, edge_generated = inpaint.single_test(input_image, mask, img_gray, edge_org)
# print(calculate_psnr(input_image, original_image))
# print(calculate_psnr(output, original_image))
fig=plt.figure(figsize=(3, 2))
fig.add_subplot(3, 2, 1)
plt.imshow(original_image)
fig.add_subplot(3, 2, 2)
plt.imshow(input_image)
fig.add_subplot(3, 2, 3)
plt.imshow(img_gray, cmap='gray')
fig.add_subplot(3, 2, 4)
plt.imshow(edge_org, cmap='gray')
fig.add_subplot(3, 2, 5)
plt.imshow(edge_generated, cmap='gray')
fig.add_subplot(3, 2, 6)
plt.imshow(output)
plt.show()
# Take output with pre-trained network