|
| 1 | +import os |
| 2 | +import shutil |
| 3 | +import tempfile |
| 4 | +import unittest |
| 5 | + |
| 6 | +import pytest |
| 7 | + |
| 8 | +from transformers.models.xlm_roberta.tokenization_xlm_roberta import VOCAB_FILES_NAMES |
| 9 | +from transformers.testing_utils import ( |
| 10 | + require_sentencepiece, |
| 11 | + require_tokenizers, |
| 12 | + require_vision, |
| 13 | +) |
| 14 | +from transformers.utils import is_vision_available |
| 15 | + |
| 16 | +from ...test_processing_common import ProcessorTesterMixin |
| 17 | + |
| 18 | + |
| 19 | +if is_vision_available(): |
| 20 | + from transformers import TrOCRProcessor, ViTImageProcessor, XLMRobertaTokenizerFast |
| 21 | + |
| 22 | + |
| 23 | +@require_sentencepiece |
| 24 | +@require_tokenizers |
| 25 | +@require_vision |
| 26 | +class TrOCRProcessorTest(ProcessorTesterMixin, unittest.TestCase): |
| 27 | + text_input_name = "labels" |
| 28 | + processor_class = TrOCRProcessor |
| 29 | + |
| 30 | + def setUp(self): |
| 31 | + self.tmpdirname = tempfile.mkdtemp() |
| 32 | + |
| 33 | + vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: skip |
| 34 | + self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) |
| 35 | + with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
| 36 | + vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
| 37 | + |
| 38 | + image_processor = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") |
| 39 | + tokenizer = XLMRobertaTokenizerFast.from_pretrained("FacebookAI/xlm-roberta-base") |
| 40 | + processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer) |
| 41 | + processor.save_pretrained(self.tmpdirname) |
| 42 | + |
| 43 | + def tearDown(self): |
| 44 | + shutil.rmtree(self.tmpdirname) |
| 45 | + |
| 46 | + def get_tokenizer(self, **kwargs): |
| 47 | + return XLMRobertaTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) |
| 48 | + |
| 49 | + def get_image_processor(self, **kwargs): |
| 50 | + return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) |
| 51 | + |
| 52 | + def test_save_load_pretrained_default(self): |
| 53 | + image_processor = self.get_image_processor() |
| 54 | + tokenizer = self.get_tokenizer() |
| 55 | + processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer) |
| 56 | + |
| 57 | + processor.save_pretrained(self.tmpdirname) |
| 58 | + processor = TrOCRProcessor.from_pretrained(self.tmpdirname) |
| 59 | + |
| 60 | + self.assertIsInstance(processor.tokenizer, XLMRobertaTokenizerFast) |
| 61 | + self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) |
| 62 | + self.assertIsInstance(processor.image_processor, ViTImageProcessor) |
| 63 | + self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) |
| 64 | + |
| 65 | + def test_save_load_pretrained_additional_features(self): |
| 66 | + processor = TrOCRProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) |
| 67 | + processor.save_pretrained(self.tmpdirname) |
| 68 | + tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") |
| 69 | + image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) |
| 70 | + |
| 71 | + processor = TrOCRProcessor.from_pretrained( |
| 72 | + self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 |
| 73 | + ) |
| 74 | + |
| 75 | + self.assertIsInstance(processor.tokenizer, XLMRobertaTokenizerFast) |
| 76 | + self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) |
| 77 | + |
| 78 | + self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) |
| 79 | + self.assertIsInstance(processor.image_processor, ViTImageProcessor) |
| 80 | + |
| 81 | + def test_image_processor(self): |
| 82 | + image_processor = self.get_image_processor() |
| 83 | + tokenizer = self.get_tokenizer() |
| 84 | + processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) |
| 85 | + image_input = self.prepare_image_inputs() |
| 86 | + |
| 87 | + input_feat_extract = image_processor(image_input, return_tensors="np") |
| 88 | + input_processor = processor(images=image_input, return_tensors="np") |
| 89 | + |
| 90 | + for key in input_feat_extract.keys(): |
| 91 | + self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) |
| 92 | + |
| 93 | + def test_tokenizer(self): |
| 94 | + image_processor = self.get_image_processor() |
| 95 | + tokenizer = self.get_tokenizer() |
| 96 | + processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) |
| 97 | + input_str = "lower newer" |
| 98 | + |
| 99 | + encoded_processor = processor(text=input_str) |
| 100 | + encoded_tok = tokenizer(input_str) |
| 101 | + |
| 102 | + for key in encoded_tok.keys(): |
| 103 | + self.assertListEqual(encoded_tok[key], encoded_processor[key]) |
| 104 | + |
| 105 | + def test_processor_text(self): |
| 106 | + image_processor = self.get_image_processor() |
| 107 | + tokenizer = self.get_tokenizer() |
| 108 | + processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) |
| 109 | + input_str = "lower newer" |
| 110 | + image_input = self.prepare_image_inputs() |
| 111 | + |
| 112 | + inputs = processor(text=input_str, images=image_input) |
| 113 | + |
| 114 | + self.assertListEqual(list(inputs.keys()), ["pixel_values", "labels"]) |
| 115 | + |
| 116 | + # test if it raises when no input is passed |
| 117 | + with pytest.raises(ValueError): |
| 118 | + processor() |
| 119 | + |
| 120 | + def test_tokenizer_decode(self): |
| 121 | + image_processor = self.get_image_processor() |
| 122 | + tokenizer = self.get_tokenizer() |
| 123 | + processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) |
| 124 | + predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] |
| 125 | + |
| 126 | + decoded_processor = processor.batch_decode(predicted_ids) |
| 127 | + decoded_tok = tokenizer.batch_decode(predicted_ids) |
| 128 | + |
| 129 | + self.assertListEqual(decoded_tok, decoded_processor) |
0 commit comments