-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodel.py
102 lines (81 loc) · 4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
import torchvision.models as models
import torch.nn.functional as F
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet18(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1] # delete the last fc layer
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
self.bn = nn.BatchNorm1d(embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
features = self.bn(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=2, drop_prob=0.2):
super(DecoderRNN, self).__init__()
self.caption_embeddings = nn.Embedding(vocab_size, embed_size)
# define the LSTM
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers,
dropout=drop_prob, batch_first=True)
# define a dropout layer
self.dropout = nn.Dropout(drop_prob)
# define the final, fully-connected output layer
self.fc = nn.Linear(hidden_size, vocab_size)
# initialize the weights
self.init_weights()
def forward(self, features, captions):
''' Forward pass through the network '''
# remove end token from captions
captions = captions[:,:-1]
# embed captions
caption_embeds = self.caption_embeddings(captions)
# concatenate the feature and caption embeds
inputs = torch.cat((features.unsqueeze(1),caption_embeds),1)
# the first value returned by LSTM is all of the hidden states throughout
# the sequence. the second is just the most recent hidden state
out, hidden = self.lstm(inputs)
# pass out through a droupout layer
out = self.dropout(out)
# put out through the fully-connected layer
out = self.fc(out)
return out
def init_weights(self):
''' Initialize weights for fully connected layer and lstm forget gate bias'''
# Set bias tensor to all 0.01
self.fc.bias.data.fill_(0.01)
# FC weights as xavier normal
torch.nn.init.xavier_normal_(fc.weight)
# init forget gate bias to 1
for names in self.lstm._all_weights:
for name in filter(lambda n: "bias" in n, names):
bias = getattr(self.lstm, name)
n = bias.size(0)
start, end = n//4, n//2
bias.data[start:end].fill_(1.)
# "Importantly, adding a bias of size 1 significantly improved
# the performance of the LSTM on tasks where it fell behind the
# GRU and MUT1. Thus we recommend adding a bias of 1 to the forget
# gate of every LSTM in every application; it is easy to do often
# results in better performance on our tasks. This adjustment is
# the simple improvement over the LSTM that we set out to discover."
# http://proceedings.mlr.press/v37/jozefowicz15.pdf
# https://discuss.pytorch.org/t/set-forget-gate-bias-of-lstm/1745/4
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
tokens = []
for i in range(max_len):
out, states = self.lstm(inputs, states)
out = self.fc(out.squeeze(1))
_, predicted = out.max(1)
tokens.append(predicted.item())
inputs = self.caption_embeddings(predicted)
inputs = inputs.unsqueeze(1)
return tokens