forked from makaveli10/torchtrtz
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_weights.py
54 lines (45 loc) · 1.53 KB
/
generate_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""Python file to generate wts format of weights from torch models
Returns:
weights.wts: Saves the weights of the model.
"""
import argparse
from models.base_model import Model
def load_model(model_name: str) -> Model:
"""Load model based on given model_name
Args:
model_name (str): Name of the model to be loaded
Returns:
model (Model): Loaded Model Object
"""
if model_name == "VGG16":
from models.vgg import VGG16
model = VGG16()
elif model_name == "DenseNet121":
from models.densenet import DenseNet
model = DenseNet()
elif model_name == "AlexNet":
from models.alexnet import AlexNet
model = AlexNet()
elif model_name == "Inceptionv4":
from models.inception_v4 import InceptionV4
model = InceptionV4(config='models/inception_v4/config.json')
elif model_name == "WideResnet":
from models.resnet import WideResnet
model = WideResnet()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--model',
type=str,
default='VGG16',
help=
'state the model name (along with layer information) based on the README file'
)
parser.add_argument('--save-trt-weights',
type=str,
default='vgg16.wts',
help='save path for TensorRT weights')
args = parser.parse_args()
dl_model = load_model(args.model)
dl_model.generate_weights(args.save_trt_weights)