forked from esherm/geneTherapyPatientReportMaker
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutilities.R
177 lines (153 loc) · 5.71 KB
/
utilities.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# This source code file is a component of the larger INSPIIRED genomic analysis software package.
# Copyright (C) 2016 Frederic Bushman
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
stopifnot( require(stringr) )
sanitize <- function(string) {
result <- gsub("&", "\\&", string, fixed = TRUE)
result <- gsub("_", "\\_", result, fixed = TRUE)
result
}
#' Create a word bubble for genes weighted by abundance.
#' @param gene_abundance, a data frame of two cloumns
#' gene_name: name of the genes, chr
#' gene_abundance: weight, integer
#' @param max_num_words
#' @note it plots a word bubble
#' @note this function plots the top max_num_words words sorted by gene_abundance
#' @examples
#' abstracts <- getAbstracts("22238265")
#' counts <- cleanAbstracts(abstracts)
#' generate_word_bubble(counts) ## error to be expected
#' genecount=data.frame(gene_name=counts$word, gene_abundance=counts$freq)
#' generate_word_bubble(genecount)
#' generate_word_bubble(genecount, max_num_words=10)
generate_word_bubble <- function(gene_abundance, max_num_words=500) {
if(! require('PubMedWordcloud')) stop("Need PubMedWordcloud package")
## check if gene_abundance has the correct columns
if ( !all( c("gene_name", "gene_abundance")
%in% colnames(gene_abundance) ) ) stop(
"Expecting two columns:
gene_name as character
gene_abundance as integer")
counts <- data.frame(word=gene_abundance$gene_name,
freq=gene_abundance$gene_abundance )
plotWordCloud(counts,
scale=c(3,0.5),
min.freq=1, max.words=max_num_words,
rot.per = 0,
colors=c(colSets("Set1")[-6],colSets("Paired")))
}
#' convert date format to number of days.
#'
#' the format is "^[mdy]\d+\.\d*$" for example: m10, y7, d3.5, m3., m3.0.
#' @param vector of dates to convert
#' @return vector of days
mdy_to_day <- function(dates) {
dates <- sub("\\.$", "", sub("([dmy][0-9]+\\.*[0-9]*).*", "\\1", dates))
stopifnot(check_date_format(dates))
mdy_letter <- get_mdy_letter(dates)
mdy_value <- get_mdy_value(dates)
letter_value <- data.frame(letter=mdy_letter, value=mdy_value)
convert_to_day(letter_value)
}
#' the format is "^[mdy]\d+\.?\d*$"
#' @return TRUE if format is correct else FALSE
check_date_format <- function(dates) {
pattern <- "^[mdy]\\d+\\.?\\d*$"
all(str_detect(dates, pattern))
}
# only get m, d or y
get_mdy_letter <- function(dates) {
date_letter <- "^[mdy]"
str_extract(dates, date_letter)
}
# only get number(ignore m, d, y)
get_mdy_value <- function(dates) {
date_number <- "\\d+\\.?\\d*$"
mdy_value <- str_extract(dates, date_number)
as.numeric(as.character(mdy_value))
}
#' lookup table used in convert_to_day f
mdy_to_day_lookup <- data.frame(
letter=c('d', 'm', 'y'),
days=c(1, 30.5, 366)
)
#' convert to days
#' @param datafram with 2 cols: letter(d, m, y) and value(numeric).
#' @return days
convert_to_day <- function(letter_value) {
#preserve m/d/y of letter_value
lookupTableTranslation <- match(letter_value$letter, mdy_to_day_lookup$letter)
# days here per unit
let_val_days <- cbind(letter_value,
"days"=mdy_to_day_lookup[lookupTableTranslation,"days"])
let_val_days$value * let_val_days$days
}
gg_color_hue <- function(n) {
hues = seq(15, 375, length=n+1)
hcl(h=hues, l=65, c=100)[1:n]
}
sortFactorTimepoints <- function(timepoints){
tps <- mdy_to_day(timepoints)
names(tps) <- timepoints
factor(timepoints, levels=unique(names(sort(tps))))
}
as.sortedFactor <- function(unsortedFactor){
factor(unsortedFactor, sort(unsortedFactor))
}
prepSiteList <- function(sites){
sites <- unname(unlist(GRangesList(sites)))
mcols(sites) <- merge(as.data.frame(mcols(sites)),
sets[,c("GTSP", "Timepoint", "CellType")])
sites$Timepoint <- sortFactorTimepoints(sites$Timepoint)
sites
}
#Order barplot so "LowAbund" is always on the top of the plot
order_barplot <- function(barplotAbunds){
barplotAbunds <- arrange(barplotAbunds, estAbundProp)
barplotAbunds$ref <- with(barplotAbunds, paste0(Timepoint, ":", CellType))
Abunds <- split(barplotAbunds, barplotAbunds$ref)
Abunds <- lapply(Abunds, function(x){
genes <- x$maskedRefGeneName
pos_lowAbund <- grep("LowAbund", genes)
if(length(pos_lowAbund) == 0){
x <- x
}else if(length(genes) == 1){
x <- x
}else if(pos_lowAbund == 1){
new_genes <- c(genes[2:length(genes)], "LowAbund")
gene_order <- as.integer(sapply(new_genes, function(y){
grep(y, x$maskedRefGeneName)
}))
x <- x[gene_order,]
}else if(pos_lowAbund == length(genes)){
x <- x
}else{
pos_before <- pos_lowAbund-1
pos_after <- pos_lowAbund+1
new_genes <- c(genes[1:pos_before],
genes[pos_after:length(genes)],
"LowAbund")
gene_order <- as.integer(sapply(new_genes, function(y){
grep(y, x$maskedRefGeneName)
}))
x <- x[gene_order,]
}
x$ref <- NULL
x
})
barplotAbunds <- do.call(rbind, lapply(1:length(Abunds), function(i){Abunds[[i]]}))
barplotAbunds
}