You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-# D.Kwon, R.T.Shinohara, H.Akbari, C.Davatzikos, "Combining Generative Models for Multifocal Glioma Segmentation and Registration", MeI mage Comput Comput Assist Interv. 17(Pt 1):763-70, 2014, DOI:10.1007/978-3-319-10404-1_95
188
188
-# S.Bakas, K.Zeng, A.Sotiras, S.Rathore, H.Akbari, B.Gaonkar, M.Rozycki, S.Pati, C.Davatzikos, "Segmentation of gliomas in multimodam agnetic resonance imaging volumes based on a hybrid generative-discriminative framework", In Proc. Multimodal Brain Tumor Segmentation (BraTS) Challenge. 4:5-12, 2015.
To make pipeline construction using CaPTk easier, a bunch of utilities have been provided. They include
248
+
To make pipeline construction using CaPTk easier, a bunch of utilities have been provided:
249
+
249
250
-# Resizing
250
-
-# DICOM conversion
251
-
-# Sanity checking
252
-
-# Image header information
251
+
-# Resampling
252
+
-# Image information
253
253
-# Unique values in image
254
-
-# Changing pixel values.
255
-
256
-
For full details, run the command:
257
-
258
-
\verbatim
259
-
Utilities.exe -u
260
-
\endverbatim
254
+
-# Get smallest bounding box in mask (optional isotropic bounding box)
255
+
-# Test 2 images
256
+
-# Create mask from threshold
257
+
-# DICOM to NIfTI conversion
258
+
-# NIfTI to DICOM & DICOM-Seg conversion
259
+
-# Re-orient image
260
+
-# Cast image to another pixel type
261
+
-# Thresholding:
262
+
- Below
263
+
- Above
264
+
- Above & Below
265
+
- Otsu
266
+
- Binary
267
+
-# Convert file formats
268
+
-# Extract Image Series from Joined stack and vice-versa (4D <-> 3D)
269
+
-# Transform coordinates from world to image and vice-versa
270
+
-# Label similarity Metrics between 2 label images: pure mathematical formulations are given as output
271
+
-# BraTS similarity Metrics between 2 label images: special considerations for metrics are done in this mode because output needs to be BraTS-compliant.
272
+
-# Collect information from all images in a directory and put it in CSV
273
+
274
+
For a full list of this functionality and more details, please see the corresponding [How-To page](ht_utilities.html).
261
275
262
276
--------
263
277
264
278
\section gs_preprocessing Pre-processing
265
279
Image pre-processing is essential to quantitative image analysis. CaPTk pre-processing tools available under the "Preprocessing" menu are fully-parameterizable and comprise:
266
280
267
-
-<b>Denoising.</b> Intensity noise reduction in regions of uniform intensity profile is offered through a low-level image processing method, namely Smallest Univalue Segment Assimilating Nucleus (SUSAN) [1]. This is a custom implementation and does <b>NOT</b> call out to the original implementation distributed by FSL.
268
-
-<b>Co-registration.</b> Registration of various images to the same anatomical template, for examining anatomically aligned imaging signals in tandem and at the voxel level, is done using the Greedy Registration algorithm [5].
269
-
-<b>Bias correction.</b> Correction for magnetic field inhomogeneity is provided using a non-parametric non-uniform intensity normalization [2].
270
-
-<b>Intensity normalization.</b> Conversion of signals across modalities to comparable quantities using histogram matching [4].
271
-
-<b>Z-Scoring normalization.</b> Images are normalized using a z-scoring mechanism with option to do the normalization within the region of interest or across the entire image. In addition, there is an option to remove outliers & noise from the image by removing a certain percentage of the top and bottom intensity ranges [6].
272
-
-<b>Histogram Matching</b>
273
-
-<b>Skull Stripping (Deep Learning based)</b>
274
-
-<b>Mammogram Pre-processing</b>
281
+
- <b>Denoising.</b> Intensity noise reduction in regions of uniform intensity profile is offered through a low-level image processing method, namely Smallest Univalue Segment Assimilating Nucleus (SUSAN) [1]. This is a custom implementation and does <b>NOT</b> call out to the original implementation distributed by FSL.
282
+
- <b>Co-registration.</b> Registration of various images to the same anatomical template, for examining anatomically aligned imaging signals in tandem and at the voxel level, is done using the Greedy Registration algorithm [5].
283
+
- <b>Bias correction.</b> Correction for magnetic field inhomogeneity is provided using a non-parametric non-uniform intensity normalization [2].
284
+
- <b>Intensity normalization.</b> Conversion of signals across modalities to comparable quantities using histogram matching [4].
285
+
- <b>Z-Scoring normalization.</b> Images are normalized using a z-scoring mechanism with option to do the normalization within the region of interest or across the entire image. In addition, there is an option to remove outliers & noise from the image by removing a certain percentage of the top and bottom intensity ranges [6].
286
+
- <b>Histogram Matching</b>
287
+
- <b>Skull Stripping (Deep Learning based)</b>
288
+
- <b>Mammogram Pre-processing</b>
289
+
- <b>BraTS Pre-processing Pipeline</b>
275
290
276
291
277
292
<B>NOTE:</B> An extended set of algorithms are available via the command line utility <b>Preprocessing</b>. For full details, run the command:
@@ -289,12 +304,13 @@ Preprocessing.exe -u
289
304
290
305
References:
291
306
292
-
-# S.M.Smith, J.M.Brady, "SUSAN - a new approach to low level image processing", Int. J. Comput. Vis. 23(1):45-78, 1997. DOI:10.102A :1007963824710
-# L.G.Nyul, J.K.Udupa, X.Zhang, "New Variants of a Method of MRI Scale Standardization", IEEE Trans Med Imaging. 19(2):143-50, 2000D OI:10.1109/42.836373
296
-
-# P.A.Yushkevich, J.Pluta, H.Wang, L.E.Wisse, S.Das, D.Wolk, "Fast Automatic Segmentation of Hippocampal Subfields and Medical Temporal Lobe Subregions in 3 Tesla and 7 Tesla MRI, Alzheimer's & Dementia: The Journal of Alzheimer's Association, 12(7), P126-127
297
-
-# T.Rohlfing, N.M.Zahr, E.V.Sullivan, A.Pfefferbaum, "The SRI24 multichannel atlas of normal adult human brain structure", Human Brain Mapping, 31(5):798-819, 2010. DOI:10.1002/hbm.20906
307
+
-# S.M.Smith, J.M.Brady, "SUSAN - a new approach to low level image processing", Int. J. Comput. Vis. 23(1):45-78, 1997, DOI:10.102A :1007963824710
-# S.P.Thakur, J.Doshi, S.Pati, S.M.Ha, C.Sako, S.Talbar, U.Kulkarni, C.Davatzikos, G.Erus, S.Bakas, "Brain Extraction on MRI Scans in Presence of Diffuse Glioma:
310
+
Multi-institutional Performance Evaluation of Deep Learning Methods and Robust Modality-Agnostic Training", NeuroImage 2020, DOI:10.1016/j.neuroimage.2020.117081
311
+
-# L.G.Nyul, J.K.Udupa, X.Zhang, "New Variants of a Method of MRI Scale Standardization", IEEE Trans Med Imaging. 19(2):143-50, 2000, DOI:10.1109/42.836373
312
+
-# P.A.Yushkevich, J.Pluta, H.Wang, L.E.Wisse, S.Das, D.Wolk, "Fast Automatic Segmentation of Hippocampal Subfields and Medical Temporal Lobe Subregions in 3 Tesla and 7 Tesla MRI", Alzheimer's & Dementia: The Journal of Alzheimer's Association, 12(7), P126-127, DOI:10.1016/j.jalz.2016.06.205
313
+
-# T.Rohlfing, N.M.Zahr, E.V.Sullivan, A.Pfefferbaum, "The SRI24 multichannel atlas of normal adult human brain structure", Human Brain Mapping, 31(5):798-819, 2010, DOI:10.1002/hbm.20906
298
314
299
315
--------
300
316
@@ -372,6 +388,7 @@ Detailed explanation of using the command line is available in the \ref How_To_G
0 commit comments