Dense S-PTAM is an extension of the stereo SLAM system S-PTAM. Dense S-PTAM allows to reconstruct a complete 3D point cloud of the environment in real-time using as input the poses estimated by S-PTAM and the disparity maps computed from the stereo images. To compute the disparity the LIBELAS library is used.
(Dense S-PTAM video Online)
(Dense S-PTAM video Offline)
[1] Taihú Pire, Rodrigo Baravalle, Ariel D'Alessandro and Civera, Javier. Real-time and Locally Dense Stereo SLAM Journal Robotica, 2018. (Article in press).
[2] Ariel D'Alessandro, Taihú Pire, Rodrigo Baravalle. Hacia una densificación de sistemas SLAM dispersos basados en visión estéreo Actas de las IX Jornadas Argentinas de Robótica, Córdoba, Argentina, 2017.
Dense S-PTAM is released under GPLv3 license.
For a closed-source version of Dense S-PTAM for commercial purposes, please contact the authors.
If you use Dense S-PTAM in an academic work, please cite:
@article{pire2018dense,
title = {{Real-time and Locally Dense Stereo SLAM}},
author = {Pire, Taih{\'u} and Baravalle, Rodrigo and D'Alessandro, Ariel and Civera, Javier},
journal = {Journal Robotica},
year = {2018},
issn = {0263-5747},
doi = {}
note = {Article in press}
}
@inproceedings{dalessandro2017hacia,
title={Hacia una densificaci{\'o}n de sistemas {SLAM} dispersos basados en visi{\'o}n est{\'e}reo},
author={D'Alessandro, Ariel and Pire, Taih{\'u} and Baravalle, Rodrigo},
booktitle={Actas de las IX Jornadas Argentinas de Rob{\'o}tica.},
pages = {110--115},
year={2017},
month = {November},
organization = {Facultad Regional C{\'o}rdoba de la Universidad Tecnol{\'o}gica Nacional}
}
This site and the code provided here are under active development. Even though we try to only release working high quality code, this version might still contain some issues. Please use it with caution.
The dense-sptam
package provides a Dockerfile you could use to configure
and build the project. Note that the same instructions inside the Dockerfile
could be followed to setup an Ubuntu distro as well.
Create a dir for your catkin workspace and clone dense-sptam
package:
$ mkdir -p catkin/src
$ cd catkin/src
$ git clone [email protected]:cifasis/dense-sptam.git
$ cd dense-sptam
Inside the dense-sptam
package you'll find the Dockerfile
and a docker.sh
script to ease the docker setup. Just build and run the container.
Note: You need to have a proper SSH agent with SSH_AUTH_SOCK
environment
variable set.
$ ./docker.sh build
$ ./docker.sh run
The docker.sh run
command will mount the current $PWD/../../
dir to
/usr/src/dense_sptam
as your working dir inside the container.
Now you're inside the docker container, initialize a catkin workspace, clone the rest of the packages and build!
$ catkin init
$ cd src/
$ git clone [email protected]:lrse/ros-utils.git
$ git clone [email protected]:cifasis/sptam.git
$ git checkout origin/adalessandro/dense-sptam -b adalessandro/dense-sptam
$ cd ../
$ catkin build --cmake-args \
-DSHOW_TRACKED_FRAMES=OFF -DSHOW_PROFILING=OFF -DCMAKE_BUILD_TYPE=Release -DUSE_LOOPCLOSURE=OFF
Once everything is built, launch the nodes using one of the launchfiles provided, then play a ROS bag:
$ source devel/setup.bash
$ roslaunch src/dense-sptam/launch/kitti.launch &
$ rosbag play --clock path/to/your/kitti.bag
Using docker.sh run
the container is run with X11 socket shared, so you can
GUI tools like rviz
from within the container itself.
The dense node allows several configuration parameters. These can be set in the launch
file directly, as done in launch/kitti.launch
for example:
<param name="camera_frame" value="left_camera" />
Or you could set it in a YAML configuration file, e.g. configuration_files/kitti.yaml
:
frustum_near_plane_dist: 0.0001
and load it from the launch file, e.g. launch/kitti.launch
:
<rosparam command="load" file="$(find dense)/configuration_files/kitti.yaml" />
-
base_frame
: (string, default: "base_link") Reference frame for the robot. -
camera_frame
: (string, default: "camera") Reference frame for the left camera, used to get left camera pose from tf. -
map_frame
: (string, default: "map") Name for the published map frame. -
use_approx_sync
: (bool, default: false) Whether to use approximate synchronization for stereo frames. Set to true if the left and right Cameras do not produce identical synchronized timestamps for a matching pair of frames. -
output_dir
: (string, default: "clouds") Path where output is going to be stored Note that the dense node assumes directory exists. -
frustum_near_plane_dist
: (double, default: 0.1) Frustum culling near plane distance from camera center. -
frustum_far_plane_dist
: (double, default: 1000.0) Frustum culling far plane distance from camera center. -
voxel_leaf_size
: (double, default: 0) Point cloud are downsampled using this voxel leaf size before being published. -
disp_calc_method
: (string, default: "libelas") Method/library to compute disparity maps. Can be opencv or libelas. -
max_distance
: (double, default: 0) Discard point triangulated beyond this value (0 means disabled). -
stereoscan_threshold
: (double, default: 0) Points with distance below this value are considered a match during the fusion stage. -
fusion_heuristic
: (string, default: "inverseDepthDistances") Heuristic used to fusion matched points. One of: simpleMean, weigthDistances, inverseDepthDistances. -
local_area_size
: (int, default: 1) Number of previous keyframe that are considered to search for matches. -
libelas_ipol_gap
: (int, default: 0) Libelas library parameter (interpolate gaps smaller than this value). -
add_corners
: (bool, default: false) Libelas library parameter (add support points at image corners with nearest neighbor disparities). -
refinement_linear_threshold
: (double, default: 0) Keyframe pose updates with 3d distance greater than this value are refined in the refinement thread. -
refinement_angular_threshold
: (double, default: 0) Keyframe pose updates with angular distance greater than this value are refined in the refinement thread.
/dense/dense_cloud
: Dense reconstruction point cloud. It only publishes the lastlocal_area_size
frames. Note that publishing the entire global point cloud would probably hog your system.
Dense node output is stored at the directory pointed by parameter output_dir
:
-
xxxxxx.pcd
: 3d dense reconstruction point clouds in.pcd
format. This file is named with its associated keyframe's id. -
xxxxxx.txt
: pose info for keyframe and pointcloud with same id. -
dense_node.log
: log info collected during the dense node run.
$ ./devel/lib/dense/kitti_ground_truth
usage: ./devel/lib/dense/kitti_ground_truth [in-calib] [in-poses] [in-velo] [out-cloud] [min-distance]
in-calib: input file from KITTI ground truth containing camera calibration parameters.
in-poses: input file from KITTI ground truth containing the list of poses.
in-velo: input folder from KITTI ground truth containing the velodyne binary clouds.
out-cloud: output folder where PCD point cloud are going to be stored.
min-distance: omit points that are closer than this distance threshold.
$ ./devel/lib/dense/kitti_ground_truth \
path/to/kitti/sequence/velodyne/calib.txt \
path/to/kitti/sequence/velodyne/poses.txt \
path/to/kitti/sequence/velodyne/raw/ \
path/to/output/pcd/ \
0.0
Processing: path/to/kitti/sequence/velodyne/raw/000000.bin
saved in: path/to/output/pcd/000000.pcd
[...]
Processing: path/to/kitti/sequence/velodyne/raw/004540.bin
saved in: path/to/output/pcd/004540.pcd
TOTAL: 4541 clouds
Note there's a float parameter named min_distance
at the end, which allows
to filter (omit) those points that are closer than this distance threshold.
This is useful as the velodyne laser may contain noisy points in the first meters,
which we may want to avoid.
$ ./devel/lib/dense/kitti_dmap_generator
usage: ./devel/lib/dense/kitti_dmap_generator [calibration] [configuration] [poses] [region_size] [pcd_path]
calibration: input file with camera calibration parameters.
configuration: input file with configuration parameters.
poses: input file containing pose info, outputted from dense node run.
region_size: project this number of closest keyframes (previous and next) for each depth map.
pcd_path: input/output folder where pcd files are read from and depth maps are going to be stored.
$ ./devel/lib/dense/kitti_dmap_generator \
configuration_files/kitti_cam_04_to_12.yaml \
configuration_files/kitti.yaml \
dense/node/output/poses.txt \
30 \
dense/node/output/pcd
Poses path: dense/node/output/poses.txt
pcd directory path: dense/node/output/pcd
frustumNearPlaneDist: 0.0001
frustumFarPlaneDist: 50
voxelLeafSize: 0.1
disp_calc_method: libelas
max_distance: 20
stereoscan_threshold: 0.25
local_area_size: 10
libelas_ipol_gap: 1000
add_corners: 0
refinement_linear_threshold: 0.01
refinement_angular_threshold: 0.001
region_size: 30
image_width: 1226
image_height: 370
camera_matrix: [707.0912, 0, 601.8873;
0, 707.0912, 183.1104;
0, 0, 1]
baseline: 0.537151
rotation: [1, 0, 0;
0, 1, 0;
0, 0, 1]
projection: [707.0912, 0, 601.8873, 0;
0, 707.0912, 183.1104, 0;
0, 0, 1, 0]
rotation: [1, 0, 0;
0, 1, 0;
0, 0, 1]
projection: [707.0912, 0, 601.8873, -379.8144999943973;
0, 707.0912, 183.1104, 0;
0, 0, 1, 0]
Processing: datasets/kitti/04/velodyne/pcd//000000.pcd
position: -5.55111e-17
0
2.22045e-16
Processing: datasets/kitti/04/velodyne/pcd//000001.pcd
position: 0.00128913
-0.0182162
1.31064
[...]
Generate one depth map (.dmap
) for only one frame in tsukuba:
usage: /path/to/tsukuba_ground_truth {color|depth} [in-file] [out-file]
Example:
/path/to/tsukuba_ground_truth depth /path/to/tsukuba_depth_L_00001.xml /path/to/tsukuba_depth_L_00001.dmap
To proccess the whole sequence, run in a terminal:
for i in $(ls /path/to/depth_maps/left/*.xml); do /path/to/tsukuba_ground_truth depth $i $i.dmap; done
Show coloured depth map:
$ python scripts/plot_depth_map.py -h
usage: plot_depth_map.py [-h] [--compare COMPARE] [--save SAVE]
[--clim_low CLIM_LOW] [--clim_high CLIM_HIGH]
dmap
positional arguments:
dmap dmap file
optional arguments:
-h, --help show this help message and exit
--compare COMPARE dmap file to compare
--save SAVE save image to output file
--clim_low CLIM_LOW plotter clim low bound
--clim_high CLIM_HIGH
plotter clim high bound
NOTE: Invalid (negative) depth values are mapped to -10
$ python scripts/plot_depth_map.py ${original_depth_map}.dmap
Show coloured absolute differences between both maps. Pixels not containing valid values on both maps are omitted and assigned a negative value.
$ python scripts/plot_depth_map.py ${depth_map}.dmap --compare ${another_depth_map}.dmap
Optional arguments --clim_low
and --clim_high
to specify the plotter clim bounds.
$ python scripts/plot_depth_map.py ${depth_map}.dmap --clim_low -3 --clim_high 50
Every dense node run will output useful log data to a file. This file is
located at output_dir/dense_node.log
.
Using the following script, the log data can be processed to get human-readable information:
$ python src/dense-sptam/scripts/profiling.py --help
usage: profiling.py [-h] [--hypothesis HYPOTHESIS] [--validated VALIDATED]
[--show]
dense_log sequence_name
positional arguments:
dense_log dense node log
sequence_name sequence name
optional arguments:
-h, --help show this help message and exit
--hypothesis HYPOTHESIS
set hypothesis points number
--validated VALIDATED
set validated points number
--show show images instead of saving
$ python scripts/profiling.py /path/to/dense_node.log $my_sequence_name
Keyframes processed per phase
Disparity: 243
Heuristic/fusion: 242
Refinement: 214
Mean time per phase (ms)
Disparity: 159.50617284
Heuristic/fusion: 75.5082644628
Refinement: 4.41588785047
Heuristic results (points)
Total points created: 29395295
Fusions/matches: 12049853
Outliers: 3828178
The above script can generate and show/save plots of the collected data. The --hypothesis
and --validated
options allow to set the respective point cloud size values to be shown
in the different plots. See compute_and_plot.sh
script for more info about this feature.
This script accounts for all computation and plotting at the same time:
$ scripts/compute_and_plot.sh
usage: scripts/compute_and_plot.sh <dense-log-file> <dense-pcd-dir> <dense-dmap-dir> <gt-dmap-dir> <sequence-name>
The following scripts are used to process two sets of depth maps, generated
from DENSE node output and ground truth. Arguments are the paths to directories
containing the .dmap
files:
$ python scripts/depth_map.py path/to/dense/dmaps/ path/to/velodyne/dmaps/
(Check other parameters)
Generated output consists in several npy files, used by the following script to plot the results:
$ python scripts/plot_dmap_error.py ${sequence_name}
Let's run and plot results for some benchmark dataset sequences.
Run dense node and play bag. Note that after bag has finished playing, all ros nodes are killed, so launchfile ends too.
$ roslaunch launch/kitti.launch & rosbag play --clock kitti_04.bag ; rosnode kill -a
Generate depth maps from dense node output. Note that this example assumes that output
dir path was the default one (at ~/.ros/clouds/
).
$ ./devel/lib/dense/kitti_dmap_generator \
configuration_files/kitti_cam_04_to_12.yaml \
configuration_files/kitti.yaml \
~/.ros/clouds/poses.txt \
30 \
~/.ros/clouds/
Finally, let's process and plot the results, comparing them with the ground truth:
$ cd scripts/
$ ./compute_and_plot.sh path/to/dense/dense_node.log path/to/dense/pcd/ path/to/dense/dmaps/ path/to/ground_truth/dmaps/ kitti
This will generate 5 png files in the scripts directory with the names kitti{1-5}.png
Same comments and descriptions as in previous example.
$ roslaunch launch/tsukuba.launch & rosbag play --clock tsukuba_daylight.bag ; rosnode kill -a
$ ./devel/lib/dense/kitti_dmap_generator \
configuration_files/tsukuba_cam.yaml \
configuration_files/tsukuba.yaml \
~/.ros/clouds/poses.txt \
30 \
~/.ros/dmaps/
Tsukuba dataset provides ground truth depth maps for left and right cameras. Note that we're always using left camera maps, so choose that as below.
$ cd scripts/
$ ./compute_and_plot.sh path/to/dense/dense_node.log path/to/dense/pcd/ path/to/dense/dmaps/ path/to/ground_truth/dmaps/ tsukuba
This will generate 5 png files in the scripts directory with the names tsukuba{1-5}.png