diff --git a/README.md b/README.md index 06fcfd4..9f65e89 100644 --- a/README.md +++ b/README.md @@ -1,373 +1,49 @@ ------------------------------------------------------------------------------- -CIS565: Project 5: WebGL -------------------------------------------------------------------------------- -Fall 2013 -------------------------------------------------------------------------------- -Due Friday 11/08/2013 -------------------------------------------------------------------------------- - -------------------------------------------------------------------------------- -NOTE: -------------------------------------------------------------------------------- -This project requires any graphics card with support for a modern OpenGL -pipeline. Any AMD, NVIDIA, or Intel card from the past few years should work -fine, and every machine in the SIG Lab and Moore 100 is capable of running -this project. - -This project also requires a WebGL capable browser. The project is known to -have issues with Chrome on windows, but Firefox seems to run it fine. - -------------------------------------------------------------------------------- -INTRODUCTION: -------------------------------------------------------------------------------- -In this project, you will get introduced to the world of GLSL in two parts: -vertex shading and fragment shading. The first part of this project is the -Image Processor, and the second part of this project is a Wave Vertex Shader. - -In the first part of this project, you will implement a GLSL vertex shader as -part of a WebGL demo. You will create a dynamic wave animation using code that -runs entirely on the GPU. - -In the second part of this project, you will implement a GLSL fragment shader -to render an interactive globe in WebGL. This will include texture blending, -bump mapping, specular masking, and adding a cloud layer to give your globe a -uniquie feel. - -------------------------------------------------------------------------------- -CONTENTS: -------------------------------------------------------------------------------- -The Project4 root directory contains the following subdirectories: - -* part1/ contains the base code for the Wave Vertex Shader. -* part2/ contains the base code for the Globe Fragment Shader. -* resources/ contains the screenshots found in this readme file. - -------------------------------------------------------------------------------- -PART 1 REQUIREMENTS: -------------------------------------------------------------------------------- - -In Part 1, you are given code for: - -* Drawing a VBO through WebGL -* Javascript code for interfacing with WebGL -* Functions for generating simplex noise - -You are required to implement the following: - -* A sin-wave based vertex shader: - -![Example sin wave grid](resources/sinWaveGrid.png) - -* A simplex noise based vertex shader: - -![Example simplex noise wave grid](resources/oceanWave.png) - -* One interesting vertex shader of your choice - -------------------------------------------------------------------------------- -PART 1 WALKTHROUGH: -------------------------------------------------------------------------------- -**Sin Wave** - -* For this assignment, you will need the latest version of Firefox. -* Begin by opening index.html. You should see a flat grid of black and white - lines on the xy plane: - -![Example boring grid](resources/emptyGrid.png) - -* In this assignment, you will animate the grid in a wave-like pattern using a - vertex shader, and determine each vertex’s color based on its height, as seen - in the example in the requirements. -* The vertex and fragment shader are located in script tags in `index.html`. -* The JavaScript code that needs to be modified is located in `index.js`. -* Required shader code modifications: - * Add a float uniform named u_time. - * Modify the vertex’s height using the following code: - - ```glsl - float s_contrib = sin(position.x*2.0*3.14159 + u_time); - float t_contrib = cos(position.y*2.0*3.14159 + u_time); - float height = s_contrib*t_contrib; - ``` - - * Use the GLSL mix function to blend together two colors of your choice based - on the vertex’s height. The lowest possible height should be assigned one - color (for example, `vec3(1.0, 0.2, 0.0)`) and the maximum height should be - another (`vec3(0.0, 0.8, 1.0)`). Use a varying variable to pass the color to - the fragment shader, where you will assign it `gl_FragColor`. - -* Required JavaScript code modifications: - * A floating-point time value should be increased every animation step. - Hint: the delta should be less than one. - * To pass the time to the vertex shader as a uniform, first query the location - of `u_time` using `context.getUniformLocation` in `initializeShader()`. - Then, the uniform’s value can be set by calling `context.uniform1f` in - `animate()`. - -**Simplex Wave** - -* Now that you have the sin wave working, create a new copy of `index.html`. - Call it `index_simplex.html`, or something similar. -* Open up `simplex.vert`, which contains a compact GLSL simplex noise - implementation, in a text editor. Copy and paste the functions included - inside into your `index_simplex.html`'s vertex shader. -* Try changing s_contrib and t_contrib to use simplex noise instead of sin/cos - functions with the following code: - -```glsl -vec2 simplexVec = vec2(u_time, position); -float s_contrib = snoise(simplexVec); -float t_contrib = snoise(vec2(s_contrib,u_time)); -``` - -**Wave Of Your Choice** - -* Create another copy of `index.html`. Call it `index_custom.html`, or - something similar. -* Implement your own interesting vertex shader! In your README.md with your - submission, describe your custom vertex shader, what it does, and how it - works. - -------------------------------------------------------------------------------- -PART 2 REQUIREMENTS: -------------------------------------------------------------------------------- -In Part 2, you are given code for: - -* Reading and loading textures -* Rendering a sphere with textures mapped on -* Basic passthrough fragment and vertex shaders -* A basic globe with Earth terrain color mapping -* Gamma correcting textures -* javascript to interact with the mouse - * left-click and drag moves the camera around - * right-click and drag moves the camera in and out - -You are required to implement: - -* Bump mapped terrain -* Rim lighting to simulate atmosphere -* Night-time lights on the dark side of the globe -* Specular mapping -* Moving clouds - -You are also required to pick one open-ended effect to implement: - -* Procedural water rendering and animation using noise -* Shade based on altitude using the height map -* Cloud shadows via ray-tracing through the cloud map in the fragment shader -* Orbiting Moon with texture mapping and shadow casting onto Earth -* Draw a skybox around the entire scene for the stars. -* Your choice! Email Liam and Patrick to get approval first - -Finally in addition to your readme, you must also set up a gh-pages branch -(explained below) to expose your beautiful WebGL globe to the world. - -Some examples of what your completed globe renderer will look like: - -![Completed globe, day side](resources/globe_day.png) - -Figure 0. Completed globe renderer, daylight side. - -![Completed globe, twilight](resources/globe_twilight.png) - -Figure 1. Completed globe renderer, twilight border. - -![Completed globe, night side](resources/globe_night.png) - -Figure 2. Completed globe renderer, night side. - -------------------------------------------------------------------------------- -PART 2 WALKTHROUGH: -------------------------------------------------------------------------------- - -Open part2/frag_globe.html in Firefox to run it. You’ll see a globe -with Phong lighting like the one in Figure 3. All changes you need to make -will be in the fragment shader portion of this file. - -![Initial globe](resources/globe_initial.png) - -Figure 3. Initial globe with diffuse and specular lighting. - -**Night Lights** - -The backside of the globe not facing the sun is completely black in the -initial globe. Use the `diffuse` lighting component to detect if a fragment -is on this side of the globe, and, if so, shade it with the color from the -night light texture, `u_Night`. Do not abruptly switch from day to night; -instead use the `GLSL mix` function to smoothly transition from day to night -over a reasonable period. The resulting globe will look like Figure 4. -Consider brightening the night lights by multiplying the value by two. - -The base code shows an example of how to gamma correct the nighttime texture: - -```glsl -float gammaCorrect = 1/1.2; -vec4 nightColor = pow(texture2D(u_Night, v_Texcoord), vec4(gammaCorrect)); -``` - -Feel free to play with gamma correcting the night and day textures if you -wish. Find values that you think look nice! - -![Day/Night without specular mapping](resources/globe_nospecmap.png) - -Figure 4. Globe with night lights and day/night blending at dusk/dawn. - -**Specular Map** - -Our day/night color still shows specular highlights on landmasses, which -should only be diffuse lit. Only the ocean should receive specular highlights. -Use `u_EarthSpec` to determine if a fragment is on ocean or land, and only -include the specular component if it is in ocean. - -![Day/Night with specular mapping](resources/globe_specmap.png) - -Figure 5. Globe with specular map. Compare to Figure 4. Here, the specular -component is not used when shading the land. - -**Clouds** - -In day time, clouds should be diffuse lit. Use `u_Cloud` to determine the -cloud color, and `u_CloudTrans` and `mix` to determine how much a daytime -fragment is affected by the day diffuse map or cloud color. See Figure 6. - -In night time, clouds should obscure city lights. Use `u_CloudTrans` and `mix` -to blend between the city lights and solid black. See Figure 7. - -Animate the clouds by offseting the `s` component of `v_Texcoord` by `u_time` -when reading `u_Cloud` and `u_CloudTrans`. - -![Day with clouds](resources/globe_daycloud.png) - -Figure 6. Clouds with day time shading. - -![Night with clouds](resources/globe_nightcloud.png) - -Figure 7. Clouds observing city nights on the dark side of the globe. - -**Bump Mapping** - -Add the appearance of mountains by perturbing the normal used for diffuse -lighting the ground (not the clouds) by using the bump map texture, `u_Bump`. -This texture is 1024x512, and is zero when the fragment is at sea-level, and -one when the fragment is on the highest mountain. Read three texels from this -texture: once using `v_Texcoord`; once one texel to the right; and once one -texel above. Create a perturbed normal in tangent space: - -`normalize(vec3(center - right, center - top, 0.2))` - -Use `eastNorthUpToEyeCoordinates` to transform this normal to eye coordinates, -normalize it, then use it for diffuse lighting the ground instead of the -original normal. - -![Globe with bump mapping](resources/globe_bumpmap.png) - -Figure 8. Bump mapping brings attention to mountains. - -**Rim Lighting** - -Rim lighting is a simple post-processed lighting effect we can apply to make -the globe look as if it has an atmospheric layer catching light from the sun. -Implementing rim lighting is simple; we being by finding the dot product of -`v_Normal` and `v_Position`, and add 1 to the dot product. We call this value -our rim factor. If the rim factor is greater than 0, then we add a blue color -based on the rim factor to the current fragment color. You might use a color -something like `vec4(rim/4, rim/2, rim/2, 1)`. If our rim factor is not greater -than 0, then we leave the fragment color as is. Figures 0,1 and 2 show our -finished globe with rim lighting. - -For more information on rim lighting, -read http://www.fundza.com/rman_shaders/surface/fake_rim/fake_rim1.html. - -------------------------------------------------------------------------------- -GH-PAGES -------------------------------------------------------------------------------- -Since this assignment is in WebGL you will make your project easily viewable by -taking advantage of GitHub's project pages feature. - -Once you are done you will need to create a new branch named gh-pages: - -`git branch gh-pages` - -Switch to your new branch: - -`git checkout gh-pages` - -Create an index.html file that is either your renamed frag_globe.html or -contains a link to it, commit, and then push as usual. Now you can go to - -`.github.io/` - -to see your beautiful globe from anywhere. - -------------------------------------------------------------------------------- -README -------------------------------------------------------------------------------- -All students must replace or augment the contents of this Readme.md in a clear -manner with the following: - -* A brief description of the project and the specific features you implemented. -* At least one screenshot of your project running. -* A 30 second or longer video of your project running. To create the video you - can use http://www.microsoft.com/expression/products/Encoder4_Overview.aspx -* A performance evaluation (described in detail below). - -------------------------------------------------------------------------------- -PERFORMANCE EVALUATION -------------------------------------------------------------------------------- -The performance evaluation is where you will investigate how to make your -program more efficient using the skills you've learned in class. You must have -performed at least one experiment on your code to investigate the positive or -negative effects on performance. - -We encourage you to get creative with your tweaks. Consider places in your code -that could be considered bottlenecks and try to improve them. - -Each student should provide no more than a one page summary of their -optimizations along with tables and or graphs to visually explain any -performance differences. - -------------------------------------------------------------------------------- -THIRD PARTY CODE POLICY -------------------------------------------------------------------------------- -* Use of any third-party code must be approved by asking on the Google groups. - If it is approved, all students are welcome to use it. Generally, we approve - use of third-party code that is not a core part of the project. For example, - for the ray tracer, we would approve using a third-party library for loading - models, but would not approve copying and pasting a CUDA function for doing - refraction. -* Third-party code must be credited in README.md. -* Using third-party code without its approval, including using another - student's code, is an academic integrity violation, and will result in you - receiving an F for the semester. - -------------------------------------------------------------------------------- -SELF-GRADING -------------------------------------------------------------------------------- -* On the submission date, email your grade, on a scale of 0 to 100, to Liam, - liamboone@gmail.com, with a one paragraph explanation. Be concise and - realistic. Recall that we reserve 30 points as a sanity check to adjust your - grade. Your actual grade will be (0.7 * your grade) + (0.3 * our grade). We - hope to only use this in extreme cases when your grade does not realistically - reflect your work - it is either too high or too low. In most cases, we plan - to give you the exact grade you suggest. -* Projects are not weighted evenly, e.g., Project 0 doesn't count as much as - the path tracer. We will determine the weighting at the end of the semester - based on the size of each project. - - ---- -SUBMISSION ---- -As with the previous project, you should fork this project and work inside of -your fork. Upon completion, commit your finished project back to your fork, and -make a pull request to the master repository. You should include a README.md -file in the root directory detailing the following - -* A brief description of the project and specific features you implemented -* At least one screenshot of your project running. -* A link to a video of your project running. -* Instructions for building and running your project if they differ from the - base code. -* A performance writeup as detailed above. -* A list of all third-party code used. -* This Readme file edited as described above in the README section. +#CIS565: Project 5: WebGL +------------------------------------------------------------------------------- +# Part 1: +Part 1 implements three types of vertex shader: +## Sine-wave: + See here: [Live Demo](http://otaku690.github.io/Project5-WebGL/part1/vert_wave.html) + +![sine/cosine wave](resources/snapshot01.png) +## Simplex noise: + See here: [Live Demo](http://otaku690.github.io/Project5-WebGL/part1/simplex.html) + +![simplex noise](resources/snapshot02.png) +## Perlin noise: + See here: [Live Demo](http://otaku690.github.io/Project5-WebGL/part1/perlinNoise.html) + +![Pelin noise heightfield](resources/snapshot03.png) + This WebGL implementation of Perlin noise is based on [Perlin's IMPROVED noise algorithm](http://mrl.nyu.edu/~perlin/noise/) and + the corresponding [Direct3D Effects implementation](http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter26.html). + Because the permutation and gradient tables are stored as textures, filtering should be turned off on these textures: + + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_MAG_FILTER, context.NEAREST ); + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_MIN_FILTER, context.NEAREST ); + + +# Part 2: + Part 2 renders an Earth globe with the following effects: + * Day/night lighting + * Moving clouds + * Bump-mapped terrain + * Rim-light factor + * Cloud shadow + See here: [Live Demo](http://otaku690.github.io/Project5-WebGL/) + + ![Earth Global](resources/snapshot04.png) + + To create cloud shadow effect, the following steps are taken: + * Transform light rays to the lit point's tangent space. + * Calcuate the offset of texture coordinates on the lit point based on the light rays and the height of cloud. + * If the cloud density at the location of offsetted texture coordinates is not zero, then the lit point should be shadowed by the cloud. + +# Performance evaluation: + * Test with maximum texture size: + The maximum texture size on my Firefox browser is 8192. So I tried some daytime/nightime earth maps with 8192x4096 resolution: + + ![HiRes Earth](resources/snapshot05.png) + + The size of a 8192x4096 PNG file is 26 MB (3 MB for a JPG), and the page loading time is a bit too long ( OVER 5 sec. ) even running locally. + Compared to loading the whole images once, a Level-of-detail approach like that of Google Map is more feasible. \ No newline at end of file diff --git a/part1/custom.js b/part1/custom.js new file mode 100644 index 0000000..09aca32 --- /dev/null +++ b/part1/custom.js @@ -0,0 +1,225 @@ +(function() { + "use strict"; + /*global window,document,Float32Array,Uint16Array,mat4,vec3,snoise*/ + /*global getShaderSource,createWebGLContext,createProgram*/ + + var NUM_WIDTH_PTS = 32; + var NUM_HEIGHT_PTS = 32; + + var message = document.getElementById("message"); + var canvas = document.getElementById("canvas"); + var context = createWebGLContext(canvas, message); + if (!context) { + return; + } + + /////////////////////////////////////////////////////////////////////////// + + context.viewport(0, 0, canvas.width, canvas.height); + context.clearColor(1.0, 1.0, 1.0, 1.0); + context.enable(context.DEPTH_TEST); + + var persp = mat4.create(); + mat4.perspective(45.0, 0.5, 0.1, 100.0, persp); + + var eye = [2.0, 1.0, 3.0]; + var center = [0.0, 0.0, 0.0]; + var up = [0.0, 0.0, 1.0]; + var view = mat4.create(); + var eclipseTime = 0;; + + var permutation = [151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, + 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, + 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, + 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, + 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, + 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, + 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, + 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, + 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, + 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, + 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, + 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, + 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, + 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, + 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, + 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 ]; + + var grad = [ 1,1,0, -1,1,0, 1,-1,0, -1,-1,0, + + 1,0,1, -1,0,1, 1,0,-1, -1,0,-1, + + 0,1,1, 0,-1,1, 0,1,-1, 0,-1,-1, + + 1,1,0, 0,-1,1, -1,1,0, 0,-1,-1 ]; + + var permArray = new Uint8Array( permutation ); + var gradArray = new Uint8Array( grad ); + + mat4.lookAt(eye, center, up, view); + + var positionLocation = 0; + var heightLocation = 1; + var u_modelViewPerspectiveLocation; + var u_timeLocation; + + var u_permTexLoc; + var u_gradTexLoc; + var permTex = context.createTexture(); + var gradTex = context.createTexture(); + + + (function initializeShader() { + var program; + var vs = getShaderSource(document.getElementById("vs")); + var fs = getShaderSource(document.getElementById("fs")); + + var program = createProgram(context, vs, fs, message); + context.bindAttribLocation(program, positionLocation, "position"); + u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); + + u_timeLocation = context.getUniformLocation( program, "u_time" ); + u_permTexLoc = context.getUniformLocation( program, "u_permutation" ); + u_gradTexLoc = context.getUniformLocation( program, "u_grad" ); + context.useProgram(program); + })(); + + var heights; + var numberOfIndices; + + (function initializeGrid() { + function uploadMesh(positions, heights, indices) { + // Positions + var positionsName = context.createBuffer(); + context.bindBuffer(context.ARRAY_BUFFER, positionsName); + context.bufferData(context.ARRAY_BUFFER, positions, context.STATIC_DRAW); + context.vertexAttribPointer(positionLocation, 2, context.FLOAT, false, 0, 0); + context.enableVertexAttribArray(positionLocation); + + if (heights) + { + // Heights + var heightsName = context.createBuffer(); + context.bindBuffer(context.ARRAY_BUFFER, heightsName); + context.bufferData(context.ARRAY_BUFFER, heights.length * heights.BYTES_PER_ELEMENT, context.STREAM_DRAW); + context.vertexAttribPointer(heightLocation, 1, context.FLOAT, false, 0, 0); + context.enableVertexAttribArray(heightLocation); + } + + // Indices + var indicesName = context.createBuffer(); + context.bindBuffer(context.ELEMENT_ARRAY_BUFFER, indicesName); + context.bufferData(context.ELEMENT_ARRAY_BUFFER, indices, context.STATIC_DRAW); + } + + var WIDTH_DIVISIONS = NUM_WIDTH_PTS - 1; + var HEIGHT_DIVISIONS = NUM_HEIGHT_PTS - 1; + + var numberOfPositions = NUM_WIDTH_PTS * NUM_HEIGHT_PTS; + + var positions = new Float32Array(2 * numberOfPositions); + var indices = new Uint16Array(2 * ((NUM_HEIGHT_PTS * (NUM_WIDTH_PTS - 1)) + (NUM_WIDTH_PTS * (NUM_HEIGHT_PTS - 1)))); + + var positionsIndex = 0; + var indicesIndex = 0; + var length; + + for (var j = 0; j < NUM_WIDTH_PTS; ++j) + { + positions[positionsIndex++] = j /(NUM_WIDTH_PTS - 1); + positions[positionsIndex++] = 0.0; + + if (j>=1) + { + length = positionsIndex / 2; + indices[indicesIndex++] = length - 2; + indices[indicesIndex++] = length - 1; + } + } + + for (var i = 0; i < HEIGHT_DIVISIONS; ++i) + { + var v = (i + 1) / (NUM_HEIGHT_PTS - 1); + positions[positionsIndex++] = 0.0; + positions[positionsIndex++] = v; + + length = (positionsIndex / 2); + indices[indicesIndex++] = length - 1; + indices[indicesIndex++] = length - 1 - NUM_WIDTH_PTS; + + for (var k = 0; k < WIDTH_DIVISIONS; ++k) + { + positions[positionsIndex++] = (k + 1) / (NUM_WIDTH_PTS - 1); + positions[positionsIndex++] = v; + + length = positionsIndex / 2; + var new_pt = length - 1; + indices[indicesIndex++] = new_pt - 1; // Previous side + indices[indicesIndex++] = new_pt; + + indices[indicesIndex++] = new_pt - NUM_WIDTH_PTS; // Previous bottom + indices[indicesIndex++] = new_pt; + } + } + + uploadMesh(positions, heights, indices); + numberOfIndices = indices.length; + })(); + + + (function animate(){ + /////////////////////////////////////////////////////////////////////////// + // Update + //console.time( "Matrix Setup"); + var model = mat4.create(); + mat4.identity(model); + mat4.translate(model, [-0.5, -0.5, 0.0]); + var mv = mat4.create(); + mat4.multiply(view, model, mv); + var mvp = mat4.create(); + mat4.multiply(persp, mv, mvp); + //console.timeEnd( "Matrix Setup"); + /////////////////////////////////////////////////////////////////////////// + // Render + //console.time( "screen clear"); + context.clear(context.COLOR_BUFFER_BIT | context.DEPTH_BUFFER_BIT); + //console.timeEnd( "screen clear"); + //console.time( "shader val prepare"); + //setup textures + context.activeTexture( context.TEXTURE0 ); + context.bindTexture( context.TEXTURE_2D, permTex ); + context.uniform1i( u_permTexLoc, 0 ); + + context.activeTexture( context.TEXTURE1 ); + context.bindTexture( context.TEXTURE_2D, gradTex ); + context.uniform1i( u_gradTexLoc, 1 ); + + //increae delta Time + context.uniform1f( u_timeLocation, eclipseTime ); + eclipseTime += 0.01; + context.uniformMatrix4fv(u_modelViewPerspectiveLocation, false, mvp); + //console.timeEnd( "shader val prepare"); + //console.time("Draw call"); + context.drawElements(context.LINES, numberOfIndices, context.UNSIGNED_SHORT,0); + //console.timeEnd("Draw call"); + window.requestAnimFrame(animate); + + })(); + + function initializeTexture( texture, data, format, width, height ) + { + context.bindTexture(context.TEXTURE_2D, texture); + + //gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB, gl.RGB, gl.UNSIGNED_BYTE, data ); + context.texImage2D( context.TEXTURE_2D, 0, format, width, height, 0, format, context.UNSIGNED_BYTE, data ) + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_MAG_FILTER, context.NEAREST ); + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_MIN_FILTER, context.NEAREST ); + + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_WRAP_S, context.REPEAT ); + context.texParameteri(context.TEXTURE_2D, context.TEXTURE_WRAP_T, context.CLAMP_TO_EDGE ); + context.bindTexture(context.TEXTURE_2D, null); + } + + initializeTexture( permTex, permArray, context.ALPHA, 256, 1 ); + initializeTexture( gradTex, gradArray, context.RGB, 16, 1 ); +}()); diff --git a/part1/perlinNoise.html b/part1/perlinNoise.html new file mode 100644 index 0000000..9a06fcc --- /dev/null +++ b/part1/perlinNoise.html @@ -0,0 +1,101 @@ + + + +Perlin Noise + + + + + +
+ + + + + + + + + + + + diff --git a/part1/simplex.html b/part1/simplex.html new file mode 100644 index 0000000..f188140 --- /dev/null +++ b/part1/simplex.html @@ -0,0 +1,87 @@ + + + +Vertex Wave + + + + + +
+ + + + + + + + + + + + diff --git a/part1/vert_wave.html b/part1/vert_wave.html index 57107ca..65532a2 100644 --- a/part1/vert_wave.html +++ b/part1/vert_wave.html @@ -14,10 +14,15 @@ attribute vec2 position; uniform mat4 u_modelViewPerspective; - + uniform float u_time; + varying float v_height; void main(void) { - float height = 0.0; + float s_contrib = sin( position.x*2.0*3.14159 + u_time ); + float t_contrib = cos( position.y*2.0*3.14159 + u_time ); + float height = s_contrib*t_contrib; + + v_height = height; gl_Position = u_modelViewPerspective * vec4(vec3(position, height), 1.0); } @@ -25,9 +30,11 @@ diff --git a/part1/vert_wave.js b/part1/vert_wave.js index b90b9cf..68b6ea3 100644 --- a/part1/vert_wave.js +++ b/part1/vert_wave.js @@ -26,21 +26,25 @@ var center = [0.0, 0.0, 0.0]; var up = [0.0, 0.0, 1.0]; var view = mat4.create(); + var eclipseTime = 0;; + mat4.lookAt(eye, center, up, view); var positionLocation = 0; var heightLocation = 1; var u_modelViewPerspectiveLocation; + var u_timeLocation; (function initializeShader() { var program; var vs = getShaderSource(document.getElementById("vs")); var fs = getShaderSource(document.getElementById("fs")); - var program = createProgram(context, vs, fs, message); - context.bindAttribLocation(program, positionLocation, "position"); - u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); - + var program = createProgram(context, vs, fs, message); + context.bindAttribLocation(program, positionLocation, "position"); + u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); + + u_timeLocation = context.getUniformLocation( program, "u_time" ); context.useProgram(program); })(); @@ -141,11 +145,14 @@ /////////////////////////////////////////////////////////////////////////// // Render context.clear(context.COLOR_BUFFER_BIT | context.DEPTH_BUFFER_BIT); - + + //increae delta Time + context.uniform1f( u_timeLocation, eclipseTime ); + eclipseTime += 0.01; context.uniformMatrix4fv(u_modelViewPerspectiveLocation, false, mvp); context.drawElements(context.LINES, numberOfIndices, context.UNSIGNED_SHORT,0); - - window.requestAnimFrame(animate); + + window.requestAnimFrame(animate); })(); }()); diff --git a/part2/earthlight1024.png b/part2/earthlight1024.png index 3532082..79db467 100644 Binary files a/part2/earthlight1024.png and b/part2/earthlight1024.png differ diff --git a/part2/frag_globe.html b/part2/frag_globe.html index 6aa5609..d454f3d 100644 --- a/part2/frag_globe.html +++ b/part2/frag_globe.html @@ -7,6 +7,7 @@ +
@@ -40,6 +41,7 @@ diff --git a/part2/frag_globe.js b/part2/frag_globe.js index 1d8a877..a96b154 100644 --- a/part2/frag_globe.js +++ b/part2/frag_globe.js @@ -17,6 +17,7 @@ var message = document.getElementById("message"); var canvas = document.getElementById("canvas"); var gl = createWebGLContext(canvas, message); + gl.getExtension( "OES_standard_derivatives"); if (!gl) { return; } @@ -285,8 +286,9 @@ gl.uniform1i(u_NightLocation, 4); gl.activeTexture(gl.TEXTURE5); gl.bindTexture(gl.TEXTURE_2D, specTex); - gl.uniform1i(u_EarthSpecLocation, 5); + gl.uniform1i(u_EarthSpecLocation, 5); gl.drawElements(gl.TRIANGLES, numberOfIndices, gl.UNSIGNED_SHORT,0); + gl.uniform1f( u_timeLocation, time ); time += 0.001; window.requestAnimFrame(animate); diff --git a/resources/snapshot01.png b/resources/snapshot01.png new file mode 100644 index 0000000..86cf65c Binary files /dev/null and b/resources/snapshot01.png differ diff --git a/resources/snapshot02.png b/resources/snapshot02.png new file mode 100644 index 0000000..b45fd0c Binary files /dev/null and b/resources/snapshot02.png differ diff --git a/resources/snapshot03.png b/resources/snapshot03.png new file mode 100644 index 0000000..69703e1 Binary files /dev/null and b/resources/snapshot03.png differ diff --git a/resources/snapshot04.png b/resources/snapshot04.png new file mode 100644 index 0000000..091ef9d Binary files /dev/null and b/resources/snapshot04.png differ diff --git a/resources/snapshot05.png b/resources/snapshot05.png new file mode 100644 index 0000000..10881ef Binary files /dev/null and b/resources/snapshot05.png differ