|
| 1 | +import itertools |
| 2 | +from collections.abc import Generator, Hashable, Sequence |
| 3 | +from dataclasses import dataclass |
| 4 | +from typing import Generic, TypeVar |
| 5 | + |
| 6 | +T = TypeVar("T", bound=int | str | Hashable) |
| 7 | + |
| 8 | + |
| 9 | +@dataclass(frozen=True) |
| 10 | +class TSPEdge(Generic[T]): |
| 11 | + """ |
| 12 | + Represents an edge in a graph for the Traveling Salesman Problem (TSP). |
| 13 | +
|
| 14 | + Attributes: |
| 15 | + vertices (frozenset[T]): A pair of vertices representing the edge. |
| 16 | + weight (float): The weight (or cost) of the edge. |
| 17 | + """ |
| 18 | + |
| 19 | + vertices: frozenset[T] |
| 20 | + weight: float |
| 21 | + |
| 22 | + def __str__(self) -> str: |
| 23 | + return f"({self.vertices}, {self.weight})" |
| 24 | + |
| 25 | + def __post_init__(self): |
| 26 | + # Ensures that there is no loop in a vertex |
| 27 | + if len(self.vertices) != 2: |
| 28 | + raise ValueError("frozenset must have exactly 2 elements") |
| 29 | + |
| 30 | + @classmethod |
| 31 | + def from_3_tuple(cls, x, y, w) -> "TSPEdge": |
| 32 | + """ |
| 33 | + Construct TSPEdge from a 3-tuple (x, y, w). |
| 34 | + x & y are vertices and w is the weight. |
| 35 | + """ |
| 36 | + return cls(frozenset([x, y]), w) |
| 37 | + |
| 38 | + def __eq__(self, other: object) -> bool: |
| 39 | + if not isinstance(other, TSPEdge): |
| 40 | + return NotImplemented |
| 41 | + return self.vertices == other.vertices |
| 42 | + |
| 43 | + def __add__(self, other: "TSPEdge") -> float: |
| 44 | + return self.weight + other.weight |
| 45 | + |
| 46 | + |
| 47 | +class TSPGraph(Generic[T]): |
| 48 | + """ |
| 49 | + Represents a graph for the Traveling Salesman Problem (TSP). |
| 50 | + The graph is: |
| 51 | + - Simple (no loops or multiple edges between vertices). |
| 52 | + - Undirected. |
| 53 | + - Connected. |
| 54 | + """ |
| 55 | + |
| 56 | + def __init__(self, edges: frozenset[TSPEdge] | None = None): |
| 57 | + self._edges = edges or frozenset() |
| 58 | + |
| 59 | + def __str__(self) -> str: |
| 60 | + return f"{[str(edge) for edge in self._edges]}" |
| 61 | + |
| 62 | + @classmethod |
| 63 | + def from_3_tuples(cls, *edges) -> "TSPGraph": |
| 64 | + return cls(frozenset(TSPEdge.from_3_tuple(x, y, w) for x, y, w in edges)) |
| 65 | + |
| 66 | + @classmethod |
| 67 | + def from_weights(cls, weights: list) -> "TSPGraph": |
| 68 | + """ |
| 69 | + Create TSPGraph from Weights (List of Lists) where the vertices |
| 70 | + are labeled with integers. |
| 71 | + """ |
| 72 | + triples = [ |
| 73 | + (x, y, weights[x][y]) |
| 74 | + for x, y in itertools.product(range(len(weights)), range(len(weights[0]))) |
| 75 | + if x != y # Filter out self-loops |
| 76 | + ] |
| 77 | + # return cls.from_3_tuples(*cast(list[tuple[T, T, float]], triples)) |
| 78 | + return cls.from_3_tuples(*triples) |
| 79 | + |
| 80 | + @property |
| 81 | + def vertices(self) -> frozenset[T]: |
| 82 | + return frozenset(vertex for edge in self._edges for vertex in edge.vertices) |
| 83 | + |
| 84 | + @property |
| 85 | + def edges(self) -> frozenset[TSPEdge]: |
| 86 | + return self._edges |
| 87 | + |
| 88 | + @property |
| 89 | + def weight(self) -> float: |
| 90 | + """Total Weight of TSPGraph.""" |
| 91 | + return sum(edge.weight for edge in self._edges) |
| 92 | + |
| 93 | + def __contains__(self, obj: T | TSPEdge) -> bool: |
| 94 | + if isinstance(obj, TSPEdge): |
| 95 | + return any(obj == edge_ for edge_ in self._edges) |
| 96 | + else: |
| 97 | + return obj in self.vertices |
| 98 | + |
| 99 | + def is_edge_in_graph(self, x: T, y: T) -> bool: |
| 100 | + return frozenset([x, y]) in self.get_edges() |
| 101 | + |
| 102 | + def add_edge(self, x: T, y: T, w: float) -> "TSPGraph": |
| 103 | + # Validator to check if either x or y is in the vertex set to ensure |
| 104 | + # that the graph would be connected |
| 105 | + # Only use this validator if there exist at least 1 edge in the edge set. |
| 106 | + if self._edges and x not in self and y not in self: |
| 107 | + error_message = f"Adding the edge ({x}, {y}) may form a disconnected graph." |
| 108 | + raise ValueError(error_message) |
| 109 | + |
| 110 | + new_edge = TSPEdge.from_3_tuple( |
| 111 | + x, y, w |
| 112 | + ) # This would raise Vertex Loop error if x == y |
| 113 | + |
| 114 | + # Raise error if Multi-Edges |
| 115 | + if new_edge in self: |
| 116 | + error_message = f"({x}, {y}, {w}) is invalid." |
| 117 | + raise ValueError(error_message) |
| 118 | + |
| 119 | + return TSPGraph( |
| 120 | + edges=frozenset(self._edges | frozenset([TSPEdge.from_3_tuple(x, y, w)])) |
| 121 | + ) |
| 122 | + |
| 123 | + def get_edges(self) -> list[frozenset[T]]: |
| 124 | + return [edge.vertices for edge in self.edges] |
| 125 | + |
| 126 | + def get_edge_weight(self, x: T, y: T) -> float: |
| 127 | + if (x not in self) or (y not in self): |
| 128 | + error_message = f"{x} or {y} does not belong to the graph vertices." |
| 129 | + raise ValueError(error_message) |
| 130 | + |
| 131 | + # Find the edge with vertices (x, y) |
| 132 | + edge = next( |
| 133 | + (edge for edge in self.edges if frozenset([x, y]) == edge.vertices), None |
| 134 | + ) |
| 135 | + |
| 136 | + if edge is None: |
| 137 | + error_message = f"No edge exists between {x} and {y}." |
| 138 | + raise ValueError(error_message) |
| 139 | + |
| 140 | + return edge.weight |
| 141 | + |
| 142 | + def get_vertex_neighbors(self, x: T) -> frozenset[T]: |
| 143 | + if x not in self.vertices: |
| 144 | + error_message = f"{x} does not belong to the graph vertex set." |
| 145 | + raise ValueError(error_message) |
| 146 | + return frozenset( |
| 147 | + next(iter(edge.vertices - frozenset([x]))) |
| 148 | + for edge in self.edges |
| 149 | + if x in edge.vertices |
| 150 | + ) |
| 151 | + |
| 152 | + def get_vertex_degree(self, x: T) -> int: |
| 153 | + if x not in self.vertices: |
| 154 | + error_message = f"{x} does not belong to the graph vertices." |
| 155 | + raise ValueError(error_message) |
| 156 | + return sum(1 for edge in self.edges if x in edge.vertices) |
| 157 | + |
| 158 | + def get_vertex_argmin(self, x: T) -> T: |
| 159 | + """Returns the Neighbor of a Vertex with the Minimum Weight.""" |
| 160 | + return min( |
| 161 | + [(y, self.get_edge_weight(x, y)) for y in self.get_vertex_neighbors(x)], |
| 162 | + key=lambda tup: tup[1], |
| 163 | + )[0] |
| 164 | + |
| 165 | + def get_vertex_argmax(self, x: T) -> T: |
| 166 | + """Returns the Neighbor of a Vertex with the Maximum Weight.""" |
| 167 | + return max( |
| 168 | + [(y, self.get_edge_weight(x, y)) for y in self.get_vertex_neighbors(x)], |
| 169 | + key=lambda tup: tup[1], |
| 170 | + )[0] |
| 171 | + |
| 172 | + def get_vertex_neighbor_weights(self, x: T) -> Sequence[tuple[T, float]]: |
| 173 | + # Sort by Smallest to Largest |
| 174 | + return sorted( |
| 175 | + [(y, self.get_edge_weight(x, y)) for y in self.get_vertex_neighbors(x)], |
| 176 | + key=lambda tup: tup[1], # pair[1] is the weight (float) |
| 177 | + ) |
| 178 | + |
| 179 | + |
| 180 | +def adjacent_tuples(path: list[T]) -> zip: |
| 181 | + """ |
| 182 | + Generates adjacent pairs of elements from a path. |
| 183 | +
|
| 184 | + Args: |
| 185 | + path (list[T]): A list of vertices representing a path. |
| 186 | +
|
| 187 | + Returns: |
| 188 | + zip: A zip object containing tuples of adjacent vertices. |
| 189 | +
|
| 190 | + Examples |
| 191 | + >>> list(adjacent_tuples([1, 2, 3, 4, 5])) |
| 192 | + [(1, 2), (2, 3), (3, 4), (4, 5)] |
| 193 | +
|
| 194 | + >>> list(adjacent_tuples(["A", "B", "C", "D", "E"])) |
| 195 | + [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E')] |
| 196 | + """ |
| 197 | + iter1, iter2 = itertools.tee(path) |
| 198 | + next(iter2, None) |
| 199 | + return zip(iter1, iter2) |
| 200 | + |
| 201 | + |
| 202 | +def path_weight(path: list[T], tsp_graph: TSPGraph) -> float: |
| 203 | + """ |
| 204 | + Calculates the total weight of a given path in the graph. |
| 205 | +
|
| 206 | + Args: |
| 207 | + path (list[T]): A list of vertices representing a path. |
| 208 | + tsp_graph (TSPGraph): The graph containing the edges and weights. |
| 209 | +
|
| 210 | + Returns: |
| 211 | + float: The total weight of the path. |
| 212 | + """ |
| 213 | + return sum(tsp_graph.get_edge_weight(x, y) for x, y in adjacent_tuples(path)) |
| 214 | + |
| 215 | + |
| 216 | +def generate_paths(start: T, end: T, tsp_graph: TSPGraph) -> Generator[list[T]]: |
| 217 | + """ |
| 218 | + Generates all possible paths between two vertices in a |
| 219 | + TSPGraph using Depth-First Search (DFS). |
| 220 | +
|
| 221 | + Args: |
| 222 | + start (T): The starting vertex. |
| 223 | + end (T): The target vertex. |
| 224 | + tsp_graph (TSPGraph): The graph to traverse. |
| 225 | +
|
| 226 | + Yields: |
| 227 | + Generator[list[T]]: A generator yielding paths as lists of vertices. |
| 228 | +
|
| 229 | + Raises: |
| 230 | + AssertionError: If start or end is not in the graph, or if they are the same. |
| 231 | + """ |
| 232 | + |
| 233 | + assert start in tsp_graph.vertices |
| 234 | + assert end in tsp_graph.vertices |
| 235 | + assert start != end |
| 236 | + |
| 237 | + def dfs( |
| 238 | + current: T, target: T, visited: set[T], path: list[T] |
| 239 | + ) -> Generator[list[T]]: |
| 240 | + visited.add(current) |
| 241 | + path.append(current) |
| 242 | + |
| 243 | + # If we reach the target, yield the current path |
| 244 | + if current == target: |
| 245 | + yield list(path) |
| 246 | + else: |
| 247 | + # Recur for all unvisited neighbors |
| 248 | + for neighbor in tsp_graph.get_vertex_neighbors(current): |
| 249 | + if neighbor not in visited: |
| 250 | + yield from dfs(neighbor, target, visited, path) |
| 251 | + |
| 252 | + # Backtrack |
| 253 | + path.pop() |
| 254 | + visited.remove(current) |
| 255 | + |
| 256 | + # Initialize DFS |
| 257 | + yield from dfs(start, end, set(), []) |
| 258 | + |
| 259 | + |
| 260 | +def nearest_neighborhood(tsp_graph: TSPGraph, v, visited_=None) -> list[T] | None: |
| 261 | + """ |
| 262 | + Approximates a solution to the Traveling Salesman Problem |
| 263 | + using the Nearest Neighbor heuristic. |
| 264 | +
|
| 265 | + Args: |
| 266 | + tsp_graph (TSPGraph): The graph to traverse. |
| 267 | + v (T): The starting vertex. |
| 268 | + visited_ (list[T] | None): A list of already visited vertices. |
| 269 | +
|
| 270 | + Returns: |
| 271 | + list[T] | None: A complete Hamiltonian cycle if possible, otherwise None. |
| 272 | + """ |
| 273 | + # Initialize visited list on first call |
| 274 | + visited = visited_ or [v] |
| 275 | + |
| 276 | + # Base case: if all vertices are visited |
| 277 | + if len(visited) == len(tsp_graph.vertices): |
| 278 | + # Check if there is an edge to return to the starting point |
| 279 | + if tsp_graph.is_edge_in_graph(visited[-1], visited[0]): |
| 280 | + return [*visited, visited[0]] |
| 281 | + else: |
| 282 | + return None |
| 283 | + |
| 284 | + # Get unvisited neighbors |
| 285 | + filtered_neighbors = [ |
| 286 | + tup for tup in tsp_graph.get_vertex_neighbor_weights(v) if tup[0] not in visited |
| 287 | + ] |
| 288 | + |
| 289 | + # If there are unvisited neighbors, continue to the nearest one |
| 290 | + if filtered_neighbors: |
| 291 | + next_v = min(filtered_neighbors, key=lambda tup: tup[1])[0] |
| 292 | + return nearest_neighborhood(tsp_graph, v=next_v, visited_=[*visited, next_v]) |
| 293 | + else: |
| 294 | + # No more neighbors, return None (cannot form a complete tour) |
| 295 | + return None |
| 296 | + |
| 297 | + |
| 298 | +def sample_1(): |
| 299 | + # Reference: https://graphicmaths.com/computer-science/graph-theory/travelling-salesman-problem/ |
| 300 | + |
| 301 | + edges = [ |
| 302 | + ("A", "B", 7), |
| 303 | + ("A", "D", 1), |
| 304 | + ("A", "E", 1), |
| 305 | + ("B", "C", 3), |
| 306 | + ("B", "E", 8), |
| 307 | + ("C", "E", 2), |
| 308 | + ("C", "D", 6), |
| 309 | + ("D", "E", 7), |
| 310 | + ] |
| 311 | + |
| 312 | + # Create the graph |
| 313 | + graph = TSPGraph.from_3_tuples(*edges) |
| 314 | + |
| 315 | + import random |
| 316 | + |
| 317 | + init_v = random.choice(list(graph.vertices)) |
| 318 | + optim_path = nearest_neighborhood(graph, init_v) |
| 319 | + # optim_path = nearest_neighborhood(graph, 'A') |
| 320 | + print(f"Optimal Cycle: {optim_path}") |
| 321 | + if optim_path: |
| 322 | + print(f"Optimal Weight: {path_weight(optim_path, graph)}") |
| 323 | + |
| 324 | + |
| 325 | +def sample_2(): |
| 326 | + # Example 8x8 weight matrix (symmetric, no self-loops) |
| 327 | + weights = [ |
| 328 | + [0, 1, 2, 3, 4, 5, 6, 7], |
| 329 | + [1, 0, 8, 9, 10, 11, 12, 13], |
| 330 | + [2, 8, 0, 14, 15, 16, 17, 18], |
| 331 | + [3, 9, 14, 0, 19, 20, 21, 22], |
| 332 | + [4, 10, 15, 19, 0, 23, 24, 25], |
| 333 | + [5, 11, 16, 20, 23, 0, 26, 27], |
| 334 | + [6, 12, 17, 21, 24, 26, 0, 28], |
| 335 | + [7, 13, 18, 22, 25, 27, 28, 0], |
| 336 | + ] |
| 337 | + |
| 338 | + graph = TSPGraph.from_weights(weights) |
| 339 | + |
| 340 | + import random |
| 341 | + |
| 342 | + init_v = random.choice(list(graph.vertices)) |
| 343 | + optim_path = nearest_neighborhood(graph, init_v) |
| 344 | + print(f"Optimal Cycle: {optim_path}") |
| 345 | + if optim_path: |
| 346 | + print(f"Optimal Weight: {path_weight(optim_path, graph)}") |
| 347 | + |
| 348 | + |
| 349 | +if __name__ == "__main__": |
| 350 | + import doctest |
| 351 | + |
| 352 | + doctest.testmod() |
| 353 | + sample_1() |
| 354 | + sample_2() |
0 commit comments