-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathtest.py
141 lines (109 loc) · 4.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#coding=utf-8
import argparse
import os
import time
import logging
import random
import torch
import torch.backends.cudnn as cudnn
import torch.optim
from torch.utils.data import DataLoader
cudnn.benchmark = True
import numpy as np
import models
from data import datasets
from utils import Parser,str2bool
from predict import validate_softmax
parser = argparse.ArgumentParser()
parser.add_argument('-cfg', '--cfg', default='3DUNet_dice_fold0', required=True, type=str,
help='Your detailed configuration of the network')
parser.add_argument('-mode', '--mode', default=0, required=True, type=int,choices=[0,1,2],
help='0 for cross-validation on the training set; '
'1 for validing on the validation set; '
'2 for testing on the testing set.')
parser.add_argument('-gpu', '--gpu', default='0,1,2,3', type=str)
parser.add_argument('-is_out', '--is_out', default=False, type=str2bool,
help='If ture, output the .nii file')
parser.add_argument('-verbose', '--verbose', default=True, type=str2bool,
help='If True, print more infomation of the debuging output')
parser.add_argument('-use_TTA', '--use_TTA', default=False, type=str2bool,
help='It is a postprocess approach.')
parser.add_argument('-postprocess', '--postprocess', default=False, type=str2bool,
help='Another postprocess approach.')
parser.add_argument('-save_format', '--save_format', default='nii', choices=['nii','npy'], type=str,
help='[nii] for submission; [npy] for models ensemble')
parser.add_argument('-snapshot', '--snapshot', default=False, type=str2bool,
help='If True, saving the snopshot figure of all samples.')
parser.add_argument('-restore', '--restore', default=argparse.SUPPRESS, type=str,
help='The path to restore the model.') # 'model_epoch_300.pth'
path = os.path.dirname(__file__)
args = parser.parse_args()
args = Parser(args.cfg, log='train').add_args(args)
args.gpu = str(args.gpu)
ckpts = args.makedir()
args.resume = os.path.join(ckpts, args.restore) # specify the epoch
def main():
# setup environments and seeds
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
assert torch.cuda.is_available(), "Currently, we only support CUDA version"
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
Network = getattr(models, args.net) #
model = Network(**args.net_params)
model = torch.nn.DataParallel(model).cuda()
print(args.resume)
assert os.path.isfile(args.resume),"no checkpoint found at {}".format(args.resume)
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_iter = checkpoint['iter']
model.load_state_dict(checkpoint['state_dict'])
msg = ("=> loaded checkpoint '{}' (iter {})".format(args.resume, checkpoint['iter']))
msg += '\n' + str(args)
logging.info(msg)
if args.mode == 0:
root_path = args.train_data_dir
is_scoring = True
elif args.mode == 1:
root_path = args.valid_data_dir
is_scoring = False
elif args.mode == 2:
root_path = args.test_data_dir
is_scoring = False
else:
raise ValueError
Dataset = getattr(datasets, args.dataset) #
valid_list = os.path.join(root_path, args.valid_list)
valid_set = Dataset(valid_list, root=root_path,for_train=False, transforms=args.test_transforms)
valid_loader = DataLoader(
valid_set,
batch_size=1,
shuffle=False,
collate_fn=valid_set.collate,
num_workers=10,
pin_memory=True)
if args.is_out:
out_dir = './output/{}'.format(args.cfg)
os.makedirs(os.path.join(out_dir,'submission'),exist_ok=True)
os.makedirs(os.path.join(out_dir,'snapshot'),exist_ok=True)
else:
out_dir = ''
logging.info('-'*50)
logging.info(msg)
with torch.no_grad():
validate_softmax(
valid_loader,
model,
cfg=args.cfg,
savepath=out_dir,
save_format = args.save_format,
names=valid_set.names,
scoring=is_scoring,
verbose=args.verbose,
use_TTA=args.use_TTA,
snapshot=args.snapshot,
postprocess=args.postprocess,
cpu_only=False)
if __name__ == '__main__':
main()