-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathtrain_all.py
172 lines (131 loc) · 5.77 KB
/
train_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#coding=utf-8
import argparse
import os
import time
import logging
import random
import torch
import torch.backends.cudnn as cudnn
import torch.optim
from torch.utils.data import DataLoader
cudnn.benchmark = True
import numpy as np
import models
from data import datasets
from data.sampler import CycleSampler
from data.data_utils import init_fn
from utils import Parser,criterions
from predict import AverageMeter
import setproctitle # pip install setproctitle
parser = argparse.ArgumentParser()
parser.add_argument('-cfg', '--cfg', default='1_EESPNet_16x_PRelu_GDL_all', required=True, type=str,
help='Your detailed configuration of the network')
parser.add_argument('-gpu', '--gpu', default='0', type=str, required=True,
help='Supprot one GPU & multiple GPUs.')
parser.add_argument('-batch_size', '--batch_size', default=1, type=int,
help='Batch size')
parser.add_argument('-restore', '--restore', default='model_last.pth', type=str)# model_last.pth
path = os.path.dirname(__file__)
## parse arguments
args = parser.parse_args()
args = Parser(args.cfg, log='train').add_args(args)
# args.net_params.device_ids= [int(x) for x in (args.gpu).split(',')]
ckpts = args.makedir()
args.resume = os.path.join(ckpts,args.restore) # specify the epoch
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
assert torch.cuda.is_available(), "Currently, we only support CUDA version"
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
Network = getattr(models, args.net) #
model = Network(**args.net_params)
model = torch.nn.DataParallel(model).cuda()
optimizer = getattr(torch.optim, args.opt)(model.parameters(), **args.opt_params)
criterion = getattr(criterions, args.criterion)
msg = ''
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_iter = checkpoint['iter']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optim_dict'])
msg = ("=> loaded checkpoint '{}' (iter {})".format(args.resume, checkpoint['iter']))
else:
msg = "=> no checkpoint found at '{}'".format(args.resume)
else:
msg = '-------------- New training session ----------------'
msg += '\n' + str(args)
logging.info(msg)
# Data loading code
Dataset = getattr(datasets, args.dataset) #
train_list = os.path.join(args.train_data_dir, args.train_list)
train_set = Dataset(train_list, root=args.train_data_dir, for_train=True,transforms=args.train_transforms)
num_iters = args.num_iters or (len(train_set) * args.num_epochs) // args.batch_size
num_iters -= args.start_iter
train_sampler = CycleSampler(len(train_set), num_iters*args.batch_size)
train_loader = DataLoader(
dataset=train_set,
batch_size=args.batch_size,
collate_fn=train_set.collate,
sampler=train_sampler,
num_workers=args.workers,
pin_memory=True,
worker_init_fn=init_fn)
start = time.time()
enum_batches = len(train_set)/ float(args.batch_size) # nums_batch per epoch
losses = AverageMeter()
torch.set_grad_enabled(True)
for i, data in enumerate(train_loader, args.start_iter):
elapsed_bsize = int( i / enum_batches)+1
epoch = int((i + 1) / enum_batches)
setproctitle.setproctitle("Epoch:{}/{}".format(elapsed_bsize,args.num_epochs))
# actual training
adjust_learning_rate(optimizer, epoch, args.num_epochs, args.opt_params.lr)
data = [t.cuda(non_blocking=True) for t in data]
x, target = data[:2]
output = model(x)
if not args.weight_type: # compatible for the old version
args.weight_type = 'square'
if args.criterion_kwargs is not None:
loss = criterion(output, target, **args.criterion_kwargs)
else:
loss = criterion(output, target)
# measure accuracy and record loss
losses.update(loss.item(), target.numel())
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % int(enum_batches * args.save_freq) == 0 \
or (i+1) % int(enum_batches * (args.num_epochs -1))==0\
or (i+1) % int(enum_batches * (args.num_epochs -2))==0\
or (i+1) % int(enum_batches * (args.num_epochs -3))==0\
or (i+1) % int(enum_batches * (args.num_epochs -4))==0:
file_name = os.path.join(ckpts, 'model_epoch_{}.pth'.format(epoch))
torch.save({
'iter': i,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
},
file_name)
msg = 'Iter {0:}, Epoch {1:.4f}, Loss {2:.7f}'.format(i+1, (i+1)/enum_batches, losses.avg)
logging.info(msg)
losses.reset()
i = num_iters + args.start_iter
file_name = os.path.join(ckpts, 'model_last.pth')
torch.save({
'iter': i,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
},
file_name)
msg = 'total time: {:.4f} minutes'.format((time.time() - start)/60)
logging.info(msg)
def adjust_learning_rate(optimizer, epoch, MAX_EPOCHES, INIT_LR, power=0.9):
for param_group in optimizer.param_groups:
param_group['lr'] = round(INIT_LR * np.power( 1 - (epoch) / MAX_EPOCHES ,power),8)
if __name__ == '__main__':
main()