-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmake_dashboard.py
213 lines (154 loc) · 5.61 KB
/
make_dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
# coding: utf-8
# # Dashboard creation routines
# In[1]:
from impact import Impact
from distgen import Generator
import os
import json
import numpy as np
from pathlib import Path
import matplotlib as mpl
#mpl.use('Agg')
import matplotlib.pyplot as plt
plt.style.use('dark_background')
# In[2]:
from PIL import Image, ImageOps, ImageEnhance
def fig2data ( fig ):
"""
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
@param fig a matplotlib figure
@return a numpy 3D array of RGBA values
"""
# draw the renderer
fig.canvas.draw ( )
# Get the RGBA buffer from the figure
w,h = fig.canvas.get_width_height()
buf = np.frombuffer ( fig.canvas.tostring_argb(), dtype=np.uint8 )
buf.shape = ( w, h, 4 )
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll ( buf, 3, axis = 2 )
return buf
def fig2img ( fig ):
"""
@brief Convert a Matplotlib figure to a PIL Image in RGBA format and return it
@param fig a matplotlib figure
@return a Python Imaging Library ( PIL ) image
"""
# put the figure pixmap into a numpy array
buf = fig2data ( fig )
w, h, d = buf.shape
return Image.frombytes( "RGBA", ( w ,h ), buf.tobytes( ) )
# In[3]:
def iscreen(impact_object, screen='OTR2', k1='x', k2='y', dpi=72, title=None):
fig = impact_object.particles[screen].plot(k1, k2, return_figure=True, figsize=(5,4))
fig.dpi=dpi
if not title:
title = screen
fig.axes[2].set_title(title)
fig.tight_layout()
return fig2img(fig)
# In[4]:
def info_str(impact_object, name=''):
I = impact_object
H = impact_object.header
P = I.particles['initial_particles']
timestep = I.ele['change_timestep_1']
dt1 = timestep['dt']
s1 = timestep['s']
run_time = I.output['run_info']['run_time']
summary=f"""{name}
LUME-Impact running Impact-T
Distgen created particles at the cathode
Particles in openPMD-beamphysics format
{H['Np']:,} macroparticles
{H['Nbunch']} bunch of {I['species']}s
total charge: {I['total_charge']*1e12:.1f} pC
Processor domain: {H['Nprow']} x {H['Npcol']} = {H['Nprow']*H['Npcol']} CPUs
Space charge grid: {H['Nx']} x {H['Ny']} x {H['Nz']}
Timestep: {H['Dt']*1e12} ps to {s1} m,
then {dt1*1e12} ps until the end
Run time: {run_time/60:.1f} min
"""
return summary
def itext(impact_object, dpi=72, name=''):
text = info_str(impact_object, name=name)
fig, ax = plt.subplots(figsize=(5,4))
fig.dpi=dpi
fig.tight_layout()
ax.set_axis_off()
ax.text(0.1, 0.5, text, fontsize=13, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes)
return fig2img(fig)
# In[5]:
def make_dashboard(impact_object=None,
dat=None,
itime=None,
outpath='test/',
screen1='YAG02',
screen2='YAG03',
screen3='OTR2',
ylim=(0,2e-6),
ylim2=(0,2e-3),
name='lume-impact-live-demo'
):
"""
Makes a composite dashboard image from data dict
Returns the path to the figure written
"""
if impact_object:
I = impact_object
else:
itime = dat['isotime']
I = Impact.from_archive(dat['outputs']['archive'])
#G = Generator()
#G.load_archive(dat['archive'])
#return I # Debug
run_time = I.output['run_info']['run_time']
# Main figure
FIG0 = I.plot(['norm_emit_x','norm_emit_y'],
y2=['sigma_x', 'sigma_y', 'sigma_z'],
ylim=ylim, ylim2=ylim2,
figsize=(16,8), return_figure=True)
n_particle = I.particles['final_particles'].n_particle
title=f'Acquired settings at {itime}, simulation run time: {run_time/60:5.1f} min'
FIG0.tight_layout()
FIG0.axes[0].set_title(title)
DPI = 150 # test
FIG0.dpi=DPI
im0 = fig2img(FIG0)
# For short debugging runs
if screen1 not in I.particles:
screen1='initial_particles'
screen2='initial_particles'
screen3='final_particles'
# info text
#imtext = ImageOps.invert(itext(I, dpi=DPI).convert('RGB'))
imtext =itext(I, dpi=DPI, name=name)
im1 = iscreen(I, screen=screen1, k1='x', k2='y', dpi=DPI)
im2 = iscreen(I, screen=screen2, k1='x', k2='y', dpi=DPI)
#im3 = iscreen(I, screen=screen3, k1='x', k2='y', dpi=DPI)
im3 = imtext
im4 = iscreen(I, screen=screen3, k1='delta_z', k2='delta_energy', dpi=DPI)
im5 = iscreen(I, screen=screen3, k1='x', k2='y', dpi=DPI)
im99 = iscreen(I, screen='initial_particles', k1='x', k2='y', dpi=DPI, title='cathode')
SIZE = (im0.width + im1.width, im1.height+im2.height+im3.height)
ii = Image.new('RGB', SIZE)
invim0 = ImageOps.invert(im0.convert('RGB'))
ii.paste(im0, (0, 10))
ii.paste(im99, (0, im0.height))
ii.paste(im1, (im99.width, im0.height))
ii.paste(im2, (im99.width+im1.width,im0.height))
ii.paste(im3, (im0.width,0))
ii.paste(im4, (im0.width,im3.height))
ii.paste(im5, (im0.width,im4.height+im3.height))
fname = f'{name}-{itime}-dashboard.png'
fout = os.path.join(outpath, fname)
# Enhance contrast
#enhancer = ImageEnhance.Brightness(ii)
enhancer = ImageEnhance.Contrast(ii)
iout = enhancer.enhance(1.2)
iout.save(fout)
return fout
# In[7]:
#%%capture
#I0 = make_dashboard(dat=json.load(open('output/lume-impact-live-demo-2021-04-05T19:13:18-07:00.json')))