-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathproximity_indicator.py
449 lines (403 loc) · 23.6 KB
/
proximity_indicator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 18 10:30:53 2020
@author: doorleyr
"""
from osm_amenity_tools import *
import pandas as pd
import networkx as nx
import json
import urllib
import numpy as np
from scipy import spatial
import pyproj
import random
import requests
from toolbox import Handler, Indicator
from indicator_tools import flatten_grid_cell_attributes
def approx_shape_centroid(geometry):
if geometry['type']=='Polygon':
centroid=list(np.mean(geometry['coordinates'][0], axis=0))
return centroid
elif geometry['type']=='MultiPolygon':
centroid=list(np.mean(geometry['coordinates'][0][0], axis=0))
return centroid
else:
print('Unknown geometry type')
class ProxIndicator(Indicator):
def setup(self,host='https://cityio.media.mit.edu/', *args,**kwargs):
# self.viz_type = kwargs['viz_type_in']
self.indicator_type = kwargs['indicator_type_in']
self.table_name= kwargs['table_name']
self.osm_config_file_path='./osm_amenities.json'
self.table_config_file_path='./tables/{}/table_configs.json'.format(self.table_name)
self.ua_nodes_path='./tables/{}/geometry/ped_nodes.csv'.format(self.table_name)
self.ua_edges_path='./tables/{}/geometry/ped_edges.csv'.format(self.table_name)
self.zones_path='./tables/{}/geometry/corktown_parcels_cs_types.geojson'.format(self.table_name)
self.params_path='./tables/{}/accessibility_params.json'.format(self.table_name)
self.table_configs=json.load(open(self.table_config_file_path))
self.scalers=self.table_configs['scalers']
self.all_poi_types=[tag for tag in self.table_configs['access_osm_pois'] + self.table_configs['access_zonal_pois']]
self.employment_types=['Office Tower', 'Mix-use', 'MCS', 'Ford Campus','Office', 'Light Industrial', 'Industrial']
self.residential_types=['Residential', 'Residential Low Density', 'Mix-use']
assert(all(poi in self.scalers for poi in self.all_poi_types))
self.radius=15 # minutes
self.dummy_link_speed_met_min=2*1000/60
self.host=host
# self.pois_per_lu={
# 'Residential': {'housing': 200},
# 'Office Tower': {'employment': 1200},
# 'Office': {'employment': 400},
# 'Plaza': {'parks': 1},
# 'Institutional': {'education': 1},
# 'Retail': {'groceries': 1, 'restaurants': 2},
# 'Park': {'parks': 4},
# 'Mix-use': {'restaurants': 2, 'shopping': 1, 'nightlife': 1, 'groceries': 1},
# 'Service': {'parking': 100}}
self.lbcs_to_pois={
'1100': 'housing',
'7240': 'parks',
"4100": 'education',
'2100': 'groceries',
'2200': 'restaurants',
}
self.agg_pois={'3rd Places': ['restaurants', 'groceries']}
def prepare_model(self):
print('Preparing model')
self.get_spatial_data()
self.get_base_pois()
self.create_transport_network()
self.create_sampling_grid()
self.estimate_baseline_accessibility()
self.prepare_interatve_analysis()
self.save_model_params()
def get_spatial_data(self):
local_epsg = self.table_configs['local_epsg']
self.projection=pyproj.Proj("+init=EPSG:"+local_epsg)
self.wgs=pyproj.Proj("+init=EPSG:4326")
cityIO_get_url=self.host+'api/table/'+self.table_name
with urllib.request.urlopen(cityIO_get_url+'/GEOGRID') as url:
self.geogrid=json.loads(url.read().decode())
self.updatable_nodes=[((feat['properties']['interactive']) or (feat['properties']['static_new'])) for feat in self.geogrid['features']]
self.geogrid_header=self.geogrid['properties']['header']
self.geogrid_ll=[self.geogrid['features'][i][
'geometry']['coordinates'][0][0
] for i in range(len(self.geogrid['features']))]
self.geogrid_x, self.geogrid_y=pyproj.transform(self.wgs, self.projection,
[self.geogrid_ll[p][0] for p in range(len(self.geogrid_ll))],
[self.geogrid_ll[p][1] for p in range(len(self.geogrid_ll))])
self.geogrid_xy=[[self.geogrid_x[i], self.geogrid_y[i]] for i in range(len(self.geogrid_x))]
def get_base_pois(self):
if len(self.table_configs['access_osm_pois'])>0:
print('Getting OSM data')
osm_amenities=json.load(open(self.osm_config_file_path))['osm_pois']
tags_to_include=self.table_configs['access_osm_pois']
tags={t: osm_amenities[t] for t in tags_to_include}
# To get all amenity data
bounds_all=self.table_configs['bboxes']['amenities']
self.base_amenities=get_osm_amenies(bounds_all, tags, self.wgs, self.projection)
else:
self.base_amenities={}
# get zonal POI data (eg. housing per census tract)
if self.table_configs['access_zonal_pois']:
self.zones = json.load(open(self.zones_path))
for feat in self.zones['features']:
feat['properties']['centroid']=approx_shape_centroid(feat['geometry'])
def create_transport_network(self):
print('Building the base transport network')
self.edges=pd.read_csv(self.ua_edges_path)
self.nodes=pd.read_csv(self.ua_nodes_path)
nodes_lon=self.nodes['x'].values
nodes_lat=self.nodes['y'].values
self.nodes_x, self.nodes_y= pyproj.transform(self.wgs, self.projection,nodes_lon, nodes_lat)
kdtree_base_nodes=spatial.KDTree(np.column_stack((self.nodes_x, self.nodes_y)))
self.graph=nx.DiGraph()
for i, row in self.edges.iterrows():
self.graph.add_edge(row['from_int'], row['to_int'], weight=row['weight'])
self.pois_at_base_nodes={n: {t:0 for t in self.all_poi_types} for n in self.graph.nodes}
print('Finding closest node to each base POI')
# associate each amenity with its closest node in the base network
for tag in self.base_amenities:
for ai in range(len(self.base_amenities[tag]['x'])):
nearest_node=self.nodes.iloc[kdtree_base_nodes.query(
[self.base_amenities[tag]['x'][ai],
self.base_amenities[tag]['y'][ai]])[1]]['id_int']
self.pois_at_base_nodes[nearest_node][tag]+=1
if self.table_configs['access_zonal_pois']:
count=0
for f in self.zones['features']:
count+=1
if count%1000==0:
print('{} of {} zones'.format(count, len(self.zones['features'])))
if any(f['properties'][poi_type]>0 for poi_type in self.table_configs['access_zonal_pois']):
centroid_xy=pyproj.transform(self.wgs, self.projection,f['properties']['centroid'][0],
f['properties']['centroid'][1])
distance, nearest_node_ind=kdtree_base_nodes.query(centroid_xy)
nearest_node=self.nodes.iloc[nearest_node_ind]['id_int']
if distance<500: #(because some parcels are outside the network area)
for poi_type in self.table_configs['access_zonal_pois']:
if poi_type in f['properties']:
self.pois_at_base_nodes[nearest_node][poi_type]+=f['properties'][poi_type]
# Add links for the new network defined by the interactive area
#print('Adding dummy links for the grid network')
interactive_meta_cells={i:i for i in range(len(self.geogrid['features']))}
self.createGridGraphs(interactive_meta_cells,
kdtree_base_nodes)
def createGridGraphs(self, interactive_meta_cells,
kd_tree_nodes, dist_thresh=100):
"""
returns new networks including roads around the cells
"""
# create graph internal to the grid
# graph.add_nodes_from('g'+str(n) for n in range(len(grid_coords_xy)))
n_links_to_real_net=0
nrows, ncols=self.geogrid_header['nrows'], self.geogrid_header['ncols']
cell_size=self.geogrid_header['cellSize']
for c in range(ncols):
for r in range(nrows):
cell_num=r*ncols+c
if cell_num in interactive_meta_cells: # if this is an interactive cell
# if close to any real nodes, make a link
dist_to_closest, closest_ind=kd_tree_nodes.query(self.geogrid_xy[cell_num], k=1)
if dist_to_closest<dist_thresh:
n_links_to_real_net+=1
closest_node_id=self.nodes.iloc[closest_ind]['id_int']
self.graph.add_edge('g'+str(cell_num), closest_node_id, weight=dist_to_closest/self.dummy_link_speed_met_min)
self.graph.add_edge(closest_node_id, 'g'+str(cell_num), weight=dist_to_closest/self.dummy_link_speed_met_min)
# if not at the end of a row, add h link
if not c==self.geogrid_header['ncols']-1:
self.graph.add_edge('g'+str(r*ncols+c), 'g'+str(r*ncols+c+1), weight=cell_size/self.dummy_link_speed_met_min)
self.graph.add_edge('g'+str(r*ncols+c+1), 'g'+str(r*ncols+c), weight=cell_size/self.dummy_link_speed_met_min)
# if not at the end of a column, add v link
if not r==nrows-1:
self.graph.add_edge('g'+str(r*ncols+c), 'g'+str((r+1)*ncols+c), weight=cell_size/self.dummy_link_speed_met_min)
self.graph.add_edge('g'+str((r+1)*ncols+c), 'g'+str(r*ncols+c), weight=cell_size/self.dummy_link_speed_met_min)
def create_sampling_grid(self):
col_margin_left=self.table_configs['sampling_grid']['col_margin_left']
row_margin_top=self.table_configs['sampling_grid']['row_margin_top']
cell_width=self.table_configs['sampling_grid']['cell_width']
cell_height=self.table_configs['sampling_grid']['cell_height']
stride=self.table_configs['sampling_grid']['stride']
dXdCol=np.array([self.geogrid_x[1]-self.geogrid_x[0], self.geogrid_y[1]-self.geogrid_y[0]])
dXdRow=np.array([dXdCol[1], -dXdCol[0]]) # rotate the vector 90 degrees
grid_origin=np.array([self.geogrid_x[0], self.geogrid_y[0]])
sample_points_origin=grid_origin-row_margin_top*dXdRow-col_margin_left*dXdCol
sample_points=np.array([sample_points_origin+stride*j*dXdCol+stride*i*dXdRow for i in range(
int(cell_height/stride)) for j in range(int(cell_width/stride))])
self.sample_x, self.sample_y= list(sample_points[:,0]), list(sample_points[:,1])
self.sample_lons, self.sample_lats=pyproj.transform(self.projection,self.wgs,
self.sample_x, self.sample_y)
def estimate_baseline_accessibility(self):
print('Baseline Accessibility for sample nodes and grid nodes')
all_nodes_ids, all_nodes_xy=[], []
for ind_node in range(len(self.nodes_x)):
all_nodes_ids.append(self.nodes.iloc[ind_node]['id_int'])
all_nodes_xy.append([self.nodes_x[ind_node], self.nodes_y[ind_node]])
for ind_grid_cell in range(len(self.geogrid_xy)):
all_nodes_ids.append('g'+str(ind_grid_cell))
all_nodes_xy.append(self.geogrid_xy[ind_grid_cell])
kdtree_all_nodes=spatial.KDTree(np.array(all_nodes_xy))
# add the virtual links between sample points and closest nodes
MAX_DIST_VIRTUAL=30
all_sample_node_ids=[]
for p in range(len(self.sample_x)):
all_sample_node_ids.append('s'+str(p))
self.graph.add_node('s'+str(p))
distance_to_closest, closest_nodes=kdtree_all_nodes.query([self.sample_x[p], self.sample_y[p]], 5)
for candidate in zip(distance_to_closest, closest_nodes):
if candidate[0]<MAX_DIST_VIRTUAL:
close_node_id=all_nodes_ids[candidate[1]]
self.graph.add_edge('s'+str(p), close_node_id,
weight=candidate[0]/(self.dummy_link_speed_met_min))
# for each sample node, create an isochrone and count the amenities of each type
self.sample_nodes_acc_base={str(n): {poi_type:0 for poi_type in self.all_poi_types} for n in range(len(self.sample_x))}
for sn in self.sample_nodes_acc_base:
if int(sn)%200==0:
print('{} of {} sample nodes'.format(sn, len(self.sample_nodes_acc_base)))
isochrone_graph=nx.ego_graph(self.graph, 's'+str(sn), radius=self.radius, center=True,
undirected=False, distance='weight')
reachable_real_nodes=[n for n in isochrone_graph.nodes if n in self.pois_at_base_nodes]
for poi_type in self.all_poi_types:
self.sample_nodes_acc_base[sn][poi_type]=sum([self.pois_at_base_nodes[reachable_node][poi_type]
for reachable_node in reachable_real_nodes])
# same for geogrid nodes
self.grid_nodes_acc_base={str(n): {poi_type:0 for poi_type in self.all_poi_types} for n in range(len(self.geogrid_xy))}
for gn in self.grid_nodes_acc_base:
if int(gn)%200==0:
print('{} of {} geogrid nodes'.format(gn, len(self.grid_nodes_acc_base)))
base_lu=self.geogrid['features'][int(gn)]['properties']['type']
if ((base_lu in self.employment_types+self.residential_types) or self.updatable_nodes[int(gn)]):
isochrone_graph=nx.ego_graph(self.graph, 'g'+str(gn), radius=self.radius, center=True,
undirected=False, distance='weight')
reachable_real_nodes=[n for n in isochrone_graph.nodes if n in self.pois_at_base_nodes]
for poi_type in self.all_poi_types:
self.grid_nodes_acc_base[gn][poi_type]=sum([self.pois_at_base_nodes[reachable_node][poi_type]
for reachable_node in reachable_real_nodes])
def prepare_interatve_analysis(self):
print('Preparing for interactve updates. May take a few minutes.')
rev_graph=self.graph.reverse()
# find the sample nodes affected by each interactive grid cell
self.affected_sample_nodes={} # to create the geojson
self.affected_grid_nodes={} # to get the average accessibility. eg. from all housing cells
for gi in range(len(self.geogrid_xy)):
if self.updatable_nodes[gi]:
a_node='g'+str(gi)
affected_nodes=nx.ego_graph(rev_graph, a_node, radius=self.radius, center=True,
undirected=False, distance='weight').nodes
self.affected_grid_nodes[str(gi)]=[n for n in affected_nodes if 'g' in str(n)]
self.affected_sample_nodes[str(gi)]=[n for n in affected_nodes if 's' in str(n)]
self.from_employ_pois=['housing']
self.from_housing_pois=[poi for poi in self.all_poi_types if not poi=='housing']
def save_model_params(self):
output={'sample_nodes_acc_base': self.sample_nodes_acc_base,
'grid_nodes_acc_base': self.grid_nodes_acc_base,
# 'pois_per_lu': self.pois_per_lu,
# 'all_poi_types': self.all_poi_types,
'from_employ_pois': self.from_employ_pois,
'from_housing_pois': self.from_housing_pois,
'sample_lons': self.sample_lons,
'sample_lats': self.sample_lats,
# 'scalers': self.scalers,
'affected_grid_nodes': self.affected_grid_nodes,
'affected_sample_nodes': self.affected_sample_nodes,
'updatable_nodes': self.updatable_nodes}
json.dump(output, open(self.params_path, 'w'))
def load_module(self):
try:
params=json.load(open(self.params_path))
self.sample_nodes_acc_base=params['sample_nodes_acc_base']
self.grid_nodes_acc_base=params['grid_nodes_acc_base']
# self.pois_per_lu=params['pois_per_lu']
# self.all_poi_types=params['all_poi_types']
self.from_employ_pois=params['from_employ_pois']
self.from_housing_pois=params['from_housing_pois']
self.sample_lons=params['sample_lons']
self.sample_lats=params['sample_lats']
# self.scalers=params['scalers']
self.affected_grid_nodes=params['affected_grid_nodes']
self.affected_sample_nodes=params['affected_sample_nodes']
self.updatable_nodes=params['updatable_nodes']
except:
print('Parameters have not yet been saved. Preparing the model')
self.prepare_model()
def create_access_geojson(self, grids):
"""
takes lists of x and y coordinates and a list containing the accessibility
score for each point and tag category
"""
output_geojson={
"type": "FeatureCollection",
"properties": self.all_poi_types,
"features": []
}
for i in range(len(self.sample_lons)):
geom={"type": "Point","coordinates": [self.sample_lons[i],self.sample_lats[i]]}
props=[np.power(grids[str(i)][t]/self.scalers[t], 1) for t in self.all_poi_types]
feat={
"type": "Feature",
"properties": props,
"geometry": geom
}
output_geojson["features"].append(feat)
return output_geojson
def return_indicator(self, geogrid_data):
# =============================================================================
# Get accessibility results for each node
# =============================================================================
sample_nodes_acc={n: {t:self.sample_nodes_acc_base[n][t] for t in self.all_poi_types
} for n in self.sample_nodes_acc_base}
grid_nodes_acc={n: {t:self.grid_nodes_acc_base[n][t] for t in self.all_poi_types
} for n in self.grid_nodes_acc_base}
for gi, cell_data in enumerate(geogrid_data):
# if not type(usage)==list:
# print('Usage value is not a list: '+str(usage))
# usage=[-1,-1]
if self.updatable_nodes[gi]:
this_grid_lu=cell_data['name']
if this_grid_lu in self.types_def:
height=cell_data['height']
if this_grid_lu=='Park':
height=1
all_lbcs=flatten_grid_cell_attributes(
type_def=self.types_def[this_grid_lu], height=height,
attribute_name='LBCS', area_per_floor=self.geogrid_header['cellSize']**2,
return_units='capacity')
new_jobs=flatten_grid_cell_attributes(
type_def=self.types_def[this_grid_lu], height=height,
attribute_name='NAICS', area_per_floor=self.geogrid_header['cellSize']**2,
return_units='capacity')
n_new_jobs=sum([new_jobs[code] for code in new_jobs])
# if '1100' in all_lbcs:
# new_housing_capacity=all_lbcs['1100']
# else:
# new_housing_capacity=0
sample_nodes_to_update=self.affected_sample_nodes[str(gi)]
grid_nodes_to_update=self.affected_grid_nodes[str(gi)]
for n in sample_nodes_to_update:
# sample_nodes_acc[n.split('s')[1]]['housing']+=new_housing_capacity
sample_nodes_acc[n.split('s')[1]]['employment']+=n_new_jobs
for n in grid_nodes_to_update:
# grid_nodes_acc[n.split('g')[1]]['housing']+=new_housing_capacity
grid_nodes_acc[n.split('g')[1]]['employment']+=n_new_jobs
if any (code in self.lbcs_to_pois for code in all_lbcs):
for lbcs in all_lbcs:
if lbcs in self.lbcs_to_pois:
poi =self.lbcs_to_pois[lbcs]
n_to_add=all_lbcs[lbcs]
for n in sample_nodes_to_update:
sample_nodes_acc[n.split('s')[1]][poi]+=n_to_add
for n in grid_nodes_to_update:
grid_nodes_acc[n.split('g')[1]][poi]+=n_to_add
# =============================================================================
# Compute the indicator values and/or create geojson
# =============================================================================
indicators={}
for poi in self.from_employ_pois:
indicators[poi]={}
raw=np.mean([grid_nodes_acc[str(g)][poi
] for g in range(len(geogrid_data)
) if geogrid_data[g]['name'] in self.employment_types])
indicators[poi]['raw']=raw
indicators[poi]['norm']=min(1, raw/self.scalers[poi])
for poi in self.from_housing_pois:
indicators[poi]={}
raw=np.mean([grid_nodes_acc[str(g)][poi
] for g in range(len(geogrid_data)
) if geogrid_data[g]['name'] in self.residential_types])
indicators[poi]['raw']=raw
indicators[poi]['norm']=min(1, raw/self.scalers[poi])
for agg_poi in self.agg_pois:
this_agg_indicator_raw=np.mean([indicators[poi]['raw'] for poi in self.agg_pois[agg_poi]])
this_agg_indicator_norm=np.mean([indicators[poi]['norm'] for poi in self.agg_pois[agg_poi]])
# this_agg_indicator_raw=np.sum([indicators[poi]['raw'] for poi in self.agg_pois[agg_poi]])
# this_agg_indicator_norm=this_agg_indicator_raw/(np.sum([self.scalers[poi] for poi in self.agg_pois[agg_poi]]))
indicators[agg_poi]={'raw': this_agg_indicator_raw, 'norm': this_agg_indicator_norm}
indicators={k: v for k, v in indicators.items() if k not in self.agg_pois[agg_poi]}
self.value_indicators=[]
for poi in indicators:
self.value_indicators.append({'name': 'Access to {}'.format(poi),
'value': indicators[poi]['norm'],
'raw_value': indicators[poi]['raw'],
'viz_type': self.viz_type,
'units': 'Capacity'})
if self.indicator_type in ['heatmap', 'access']:
grid_geojson=self.create_access_geojson(sample_nodes_acc)
return grid_geojson
else:
return self.value_indicators
def main():
P= ProxIndicator(name='proximity', indicator_type_in='numeric',
table_name='corktown', viz_type_in='bar')
P.prepare_model()
# H = Handler('corktown', quietly=False)
# H.add_indicator(P)
#
# geogrid_data=H.get_geogrid_data()
#
# print(H.list_indicators())
# print(H.update_package())
#
# H.listen()
if __name__ == '__main__':
main()