diff --git a/economic_indicator.py b/economic_indicator.py index 79de816..628b4be 100644 --- a/economic_indicator.py +++ b/economic_indicator.py @@ -103,7 +103,7 @@ def return_indicator(self, geogrid_data): avg_salary=self.get_avg_salary(worker_composition) # base_ouput=self.get_total_output(self.base_industry_composition) output=self.get_total_output(industry_composition) - max_output=4e9 + max_output=5e9 max_workers_per_km_sq=7500 print(output) # total_output=base_ouput+new_ouput diff --git a/innovation_indicator.py b/innovation_indicator.py index 7ad32ec..2e774bb 100644 --- a/innovation_indicator.py +++ b/innovation_indicator.py @@ -23,9 +23,9 @@ def setup(self,occLevel=3,saveData=True,modelPath='tables/innovation_data',quiet self.kno_model = None self.RnD_pc = None - self.kno_bounds = [-12,-7] - self.rnd_bounds = [3,6] - self.sks_bounds = [-11,-5] + self.kno_bounds = [-11,-7] + self.rnd_bounds = [4,5] + self.sks_bounds = [-16,-5] def return_indicator(self, geogrid_data): industry_composition = self.grid_to_industries(geogrid_data) diff --git a/mobility_indicator.py b/mobility_indicator.py index aec5229..21f83cf 100644 --- a/mobility_indicator.py +++ b/mobility_indicator.py @@ -30,16 +30,18 @@ def train(self): X_df=pd.DataFrame(data['X']) Y_df=pd.DataFrame(data['Y']) all_df=pd.concat([X_df, Y_df], axis=1) - numerical_cols=[col for col in X_df.columns] +# numerical_cols=[col for col in X_df.columns] + static_types=[k for k in self.types_def if k not in self.int_types_def] + numerical_cols=[col for col in X_df.columns if col not in static_types] # neigh = LinearRegression(n_neighbors=3) self.co2_model, self.co2_model_features= fit_rf_regressor( all_df, cat_cols=[], numerical_cols=numerical_cols, - y_col='avg_co2', n_estimators=10) + y_col='avg_co2', n_estimators=50) self.pa_model, self.pa_model_features= fit_rf_regressor( all_df, cat_cols=[], numerical_cols=numerical_cols, - y_col='delta_f_physical_activity_pp', n_estimators=10) + y_col='delta_f_physical_activity_pp', n_estimators=50) co2_model_object={'model': self.co2_model, 'features': self.co2_model_features, # 'max': self.max_co2, 'min': self.min_co2 } @@ -70,10 +72,10 @@ def load_module(self): except: print('Model not yet trained. Training now') self.train() - self.min_co2=2.5 - self.max_co2=4 - self.min_pa=0.007 - self.max_pa=0.008 + self.min_co2=5 + self.max_co2=12 + self.min_pa=0 + self.max_pa=0.004 def return_indicator(self, geogrid_data, future_mobility=1): @@ -120,7 +122,7 @@ def main(): H = Handler('corktown', quietly=False) H.add_indicator(M) - geogrid_data=H.geogrid_data() + geogrid_data=H.get_geogrid_data() M.return_indicator(geogrid_data)