forked from TensorDuck/pyFrustration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrosetta_functions_mpi.py
106 lines (78 loc) · 4.35 KB
/
rosetta_functions_mpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import pyrosetta as pyr
import numpy as np
import os
import sys
import numpy.random as random
from mpi4py import MPI
import time
from pyrosetta import Pose
#from pyrosetta import MPIJobDistributor
from pyrosetta.rosetta.protocols.relax import ClassicRelax
from pyrosetta.toolbox import cleanATOM
from pyrosetta.toolbox import get_secstruct
from pyrosetta.toolbox import mutate_residue
from pyrosetta import teaching as pyrt
import mdtraj as md
#from pyrosetta.rosetta.protocols.minimization_packing import PackRotamersMover
#from mutants import mutate_residue
def compute_local_frustration(native_file, nresidues=35, savedir=None, mutation=False, ndecoys=1000, pack_radius=10., mutation_scheme="simple", relax_native=False, rcutoff=0.5, pcutoff=0.8, use_hbonds=False, configurational_traj_file=None, configurational_dtraj=None, use_config_individual_pairs=False, configurational_parameters={"highcutoff":0.9, "lowcutoff":0., "stride_length":10, "decoy_r_cutoff":0.5}, remove_high=None, min_use=10, save_pairs=None):
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
# Create unique scratch dir for mpi runs
if rank == 0:
scratch_head_dir = "%s/mpi_scratch" % (os.getcwd())
if not os.path.isdir(scratch_head_dir):
os.mkdir(scratch_head_dir)
scratch_dir = "%s/scratch_%f" % (scratch_head_dir, time.time())
os.mkdir(scratch_dir)
for i in range(1, size):
comm.send(scratch_dir, dest=i, tag=3)
else:
scratch_dir = comm.recv(source=0, tag=3)
comm.Barrier()
if savedir is None:
savedir = os.getcwd()
if rank == 0:
print "Computing Local Frustration"
print "Using %d Threads" % size
if not os.path.isdir(savedir):
os.mkdir(savedir)
if use_hbonds:
weights = [1.0, 0.55, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
order = [pyrt.fa_atr, pyrt.fa_rep, pyrt.fa_sol, pyrt.lk_ball_wtd, pyrt.fa_elec, pyrt.hbond_lr_bb, pyrt.hbond_sr_bb, pyrt.hbond_bb_sc, pyrt.hbond_sc]
else:
weights = [1.0, 0.55, 1.0, 1.0, 1.0, 1.25]
order = [pyrt.fa_atr, pyrt.fa_rep, pyrt.fa_sol, pyrt.lk_ball_wtd, pyrt.fa_elec, pyrt.pro_close]
weights = weights[:-1]
order = order[:-1]
assert len(weights) == len(order)
scorefxn_custom = pyrt.ScoreFunction()
for thing, wt in zip(order,weights):
scorefxn_custom.set_weight(thing, wt)
native_pose = pyr.pose_from_pdb(native_file)
close_contacts, close_contacts_zero, contacts_scores = determine_close_residues_from_file(native_file, probability_cutoff=pcutoff, radius_cutoff=rcutoff)
if relax_native:
relaxer = ClassicRelax()
relaxer.set_scorefxn(pyrt.get_fa_scorefxn())
relaxer.apply(native_pose)
native_pair_E = compute_pairwise(native_pose, scorefxn_custom, order, weights, use_contacts=close_contacts, nresidues=nresidues)
if mutation:
decoy_avg, decoy_sd = compute_mutational_pairwise_mpi(native_pose, scorefxn_custom, order, weights, ndecoys=ndecoys, nresidues=nresidues, pack_radius=pack_radius, mutation_scheme=mutation_scheme, use_contacts=close_contacts, contacts_scores=contacts_scores, remove_high=remove_high)
else:
decoy_avg, decoy_sd, decoy_list = compute_configurational_pairwise_mpi(scorefxn_custom, order, weights, native_file, configurational_traj_file, scratch_dir, configurational_dtraj=configurational_dtraj, configurational_parameters=configurational_parameters, use_config_individual_pairs=use_config_individual_pairs, native_contacts=close_contacts_zero, nresidues=nresidues, pcutoff=pcutoff, min_use=10)
if rank == 0:
if not use_config_individual_pairs:
np.save("%s/decoy_E_list" % savedir, decoy_list)
np.savetxt("%s/decoy_E_list.dat" % savedir, decoy_list)
else:
if save_pairs is not None:
for i in range(np.shape(save_pairs)[0]):
pidx = save_pairs[i][0]
pjdx = save_pairs[i][1]
this_E_list = decoy_list[pidx][pjdx]
np.savetxt("%s/decoy_E_list_%d-%d.dat" % (savedir, pidx, pjdx), this_E_list)
if rank == 0:
np.savetxt("%s/native_pairwise.dat" % savedir, native_pair_E)
np.savetxt("%s/decoy_avg.dat" % savedir, decoy_avg)
np.savetxt("%s/decoy_sd.dat" % savedir, decoy_sd)