-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect(edit).py
158 lines (121 loc) · 6.37 KB
/
detect(edit).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import argparse
import os
from argparse import ArgumentParser
from sys import platform
from models import * # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *
class Detector():
def __init__(self):
self.cfg='cfg/yolov3-spp.cfg'
def detect(self):
save_img = False
img_size = (320, 192) if ONNX_EXPORT else opt.img_size
out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
if os.path.exists(out):
shutil.rmtree(out)
os.makedirs(out)
model = Darknet(opt.cfg, img_size)
attempt_download(weights)
if weights.endswith('.pt'):
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else:
load_darknet_weights(model, weights)
model.to(device).eval()
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True
dataset = LoadStreams(source, img_size=img_size, half=half)
else:
save_img = True
view_img = True
dataset = LoadImages(source, img_size=img_size, half=half)
names = load_classes(opt.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
count=0
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
if img.ndimension() == 3:
img = img.unsqueeze(0)
pred = model(img)[0]
if opt.half:
pred = pred.float()
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
print(opt.classes)
for i, det in enumerate(pred):
person=False
sum=0
count += 1
if webcam:
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:]
if det is not None and len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum()
s += '%g %ss, ' % (n, names[int(c)]) # add to string
if names[int(c)]=="person" :
sum = '%g ' % n
person=True
for *xyxy, conf, cls in det:
if save_txt:
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
if save_img or view_img:
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
if person and count==20:
count=0
print('There is ' +sum+ 'person(s) without helmet.')
if count==20:
count=0
if view_img:
if source.startswith('rtsp'):
im0 = cv2.resize(im0, (1280, 720))
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if __name__ == '__main__':
parser: ArgumentParser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
parser.add_argument('--names', type=str, default='data/rbc.names', help='*.names path')
parser.add_argument('--weights', type=str, default='weights/loss4.75.pt', help='path to weights file')
# parser.add_argument('--source', type=str, default='rtsp://admin:[email protected]:554/stream1', help='source') # input file/folder, 0 for webcam
parser.add_argument('--source', type=str, default='0', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
opt = parser.parse_args()
print(opt)
x=Detector()
with torch.no_grad():
x.detect()