-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
152 lines (114 loc) · 5.12 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from models import * # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *
class Detector():
def __init__(self):
self.cfg='cfg/yolov3-spp.cfg'
self.names='data/rbc.names'
self.weights='weights/loss4.75.pt'
self.source='0'
self.output='output'
self.img_size=416
self.conf_thres=0.25
self.iou_thres=0.5
self.fourcc='mp4v'
self.half=False
self.device=''
self.view_img=False
self.save_txt=False
self.agnostic_nms=False
self.classes=None
self.sum0=0
def change_source(self,text):
self.source=text
def get_sum(self):
return self.sum0
def detect(self):
save_img = False
img_size = (320, 192) if ONNX_EXPORT else self.img_size
out, source, weights, half, view_img, save_txt = self.output, self.source, self.weights, self.half, self.view_img, self.save_txt
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else self.device)
if os.path.exists(out):
shutil.rmtree(out)
os.makedirs(out)
model = Darknet(self.cfg, img_size)
attempt_download(weights)
if weights.endswith('.pt'):
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else:
load_darknet_weights(model, weights)
model.to(device).eval()
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True
dataset = LoadStreams(source, img_size=img_size, half=half)
else:
save_img = True
view_img = True
dataset = LoadImages(source, img_size=img_size, half=half)
names = load_classes(self.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
count=0
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
if img.ndimension() == 3:
img = img.unsqueeze(0)
pred = model(img)[0]
if self.half:
pred = pred.float()
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms)
for i, det in enumerate(pred):
person=False
sum=0
count += 1
if webcam:
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:]
if det is not None and len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum()
s += '%g %ss, ' % (n, names[int(c)]) # add to string
if names[int(c)]=="person" :
sum = '%g ' % n
person=True
for *xyxy, conf, cls in det:
if save_txt:
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
if save_img or view_img:
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
if person and count==20:
count=0
self.sum0=sum
print('There is ' +sum+ 'person(s) without helmet.')
if count==20:
count=0
if view_img:
if source.startswith('rtsp'):
im0 = cv2.resize(im0, (1280, 720))
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
# break
raise StopIteration
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*self.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)