Skip to content

Commit 0e6ddac

Browse files
committed
Add computing logo
Add and update computing logo to each notebook
1 parent 347840d commit 0e6ddac

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+774
-1921
lines changed

2018/Data-Capstone-Projects/911 Calls Data Capstone Project - Solutions.ipynb

+45-101
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,15 @@
11
{
22
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"___\n",
8+
"\n",
9+
"<a href='http://www.google.com'> <img src='Logo_Padded.png' /></a>\n",
10+
"___"
11+
]
12+
},
313
{
414
"cell_type": "markdown",
515
"metadata": {},
@@ -63,9 +73,7 @@
6373
{
6474
"cell_type": "code",
6575
"execution_count": 25,
66-
"metadata": {
67-
"collapsed": false
68-
},
76+
"metadata": {},
6977
"outputs": [],
7078
"source": [
7179
"import matplotlib.pyplot as plt\n",
@@ -102,9 +110,7 @@
102110
{
103111
"cell_type": "code",
104112
"execution_count": 27,
105-
"metadata": {
106-
"collapsed": false
107-
},
113+
"metadata": {},
108114
"outputs": [
109115
{
110116
"name": "stdout",
@@ -133,19 +139,15 @@
133139
},
134140
{
135141
"cell_type": "markdown",
136-
"metadata": {
137-
"collapsed": false
138-
},
142+
"metadata": {},
139143
"source": [
140144
"** Check the head of df **"
141145
]
142146
},
143147
{
144148
"cell_type": "code",
145149
"execution_count": 28,
146-
"metadata": {
147-
"collapsed": false
148-
},
150+
"metadata": {},
149151
"outputs": [
150152
{
151153
"data": {
@@ -250,9 +252,7 @@
250252
{
251253
"cell_type": "code",
252254
"execution_count": 29,
253-
"metadata": {
254-
"collapsed": false
255-
},
255+
"metadata": {},
256256
"outputs": [
257257
{
258258
"data": {
@@ -284,9 +284,7 @@
284284
{
285285
"cell_type": "code",
286286
"execution_count": 30,
287-
"metadata": {
288-
"collapsed": false
289-
},
287+
"metadata": {},
290288
"outputs": [
291289
{
292290
"data": {
@@ -318,9 +316,7 @@
318316
{
319317
"cell_type": "code",
320318
"execution_count": 31,
321-
"metadata": {
322-
"collapsed": false
323-
},
319+
"metadata": {},
324320
"outputs": [
325321
{
326322
"data": {
@@ -374,9 +370,7 @@
374370
{
375371
"cell_type": "code",
376372
"execution_count": 33,
377-
"metadata": {
378-
"collapsed": false
379-
},
373+
"metadata": {},
380374
"outputs": [
381375
{
382376
"data": {
@@ -406,9 +400,7 @@
406400
{
407401
"cell_type": "code",
408402
"execution_count": 34,
409-
"metadata": {
410-
"collapsed": false
411-
},
403+
"metadata": {},
412404
"outputs": [
413405
{
414406
"data": {
@@ -446,9 +438,7 @@
446438
{
447439
"cell_type": "code",
448440
"execution_count": 35,
449-
"metadata": {
450-
"collapsed": false
451-
},
441+
"metadata": {},
452442
"outputs": [
453443
{
454444
"data": {
@@ -498,9 +488,7 @@
498488
{
499489
"cell_type": "code",
500490
"execution_count": 37,
501-
"metadata": {
502-
"collapsed": false
503-
},
491+
"metadata": {},
504492
"outputs": [],
505493
"source": [
506494
"df['Hour'] = df['timeStamp'].apply(lambda time: time.hour)\n",
@@ -510,9 +498,7 @@
510498
},
511499
{
512500
"cell_type": "markdown",
513-
"metadata": {
514-
"collapsed": false
515-
},
501+
"metadata": {},
516502
"source": [
517503
"** Notice how the Day of Week is an integer 0-6. Use the .map() with this dictionary to map the actual string names to the day of the week: **\n",
518504
"\n",
@@ -522,9 +508,7 @@
522508
{
523509
"cell_type": "code",
524510
"execution_count": 38,
525-
"metadata": {
526-
"collapsed": false
527-
},
511+
"metadata": {},
528512
"outputs": [],
529513
"source": [
530514
"dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thu',4:'Fri',5:'Sat',6:'Sun'}"
@@ -533,29 +517,23 @@
533517
{
534518
"cell_type": "code",
535519
"execution_count": 39,
536-
"metadata": {
537-
"collapsed": false
538-
},
520+
"metadata": {},
539521
"outputs": [],
540522
"source": [
541523
"df['Day of Week'] = df['Day of Week'].map(dmap)"
542524
]
543525
},
544526
{
545527
"cell_type": "markdown",
546-
"metadata": {
547-
"collapsed": false
548-
},
528+
"metadata": {},
549529
"source": [
550530
"** Now use seaborn to create a countplot of the Day of Week column with the hue based off of the Reason column. **"
551531
]
552532
},
553533
{
554534
"cell_type": "code",
555535
"execution_count": 40,
556-
"metadata": {
557-
"collapsed": false
558-
},
536+
"metadata": {},
559537
"outputs": [
560538
{
561539
"data": {
@@ -595,9 +573,7 @@
595573
{
596574
"cell_type": "code",
597575
"execution_count": 41,
598-
"metadata": {
599-
"collapsed": false
600-
},
576+
"metadata": {},
601577
"outputs": [
602578
{
603579
"data": {
@@ -662,9 +638,7 @@
662638
{
663639
"cell_type": "code",
664640
"execution_count": 43,
665-
"metadata": {
666-
"collapsed": false
667-
},
641+
"metadata": {},
668642
"outputs": [
669643
{
670644
"data": {
@@ -821,9 +795,7 @@
821795
{
822796
"cell_type": "code",
823797
"execution_count": 44,
824-
"metadata": {
825-
"collapsed": false
826-
},
798+
"metadata": {},
827799
"outputs": [
828800
{
829801
"data": {
@@ -861,9 +833,7 @@
861833
{
862834
"cell_type": "code",
863835
"execution_count": 45,
864-
"metadata": {
865-
"collapsed": false
866-
},
836+
"metadata": {},
867837
"outputs": [
868838
{
869839
"data": {
@@ -918,9 +888,7 @@
918888
{
919889
"cell_type": "code",
920890
"execution_count": 47,
921-
"metadata": {
922-
"collapsed": false
923-
},
891+
"metadata": {},
924892
"outputs": [
925893
{
926894
"data": {
@@ -948,9 +916,7 @@
948916
{
949917
"cell_type": "code",
950918
"execution_count": 48,
951-
"metadata": {
952-
"collapsed": false
953-
},
919+
"metadata": {},
954920
"outputs": [
955921
{
956922
"data": {
@@ -972,9 +938,7 @@
972938
{
973939
"cell_type": "code",
974940
"execution_count": 49,
975-
"metadata": {
976-
"collapsed": false
977-
},
941+
"metadata": {},
978942
"outputs": [
979943
{
980944
"data": {
@@ -996,9 +960,7 @@
996960
{
997961
"cell_type": "code",
998962
"execution_count": 50,
999-
"metadata": {
1000-
"collapsed": false
1001-
},
963+
"metadata": {},
1002964
"outputs": [
1003965
{
1004966
"data": {
@@ -1019,9 +981,7 @@
1019981
},
1020982
{
1021983
"cell_type": "markdown",
1022-
"metadata": {
1023-
"collapsed": false
1024-
},
984+
"metadata": {},
1025985
"source": [
1026986
"____\n",
1027987
"** Now let's move on to creating heatmaps with seaborn and our data. We'll first need to restructure the dataframe so that the columns become the Hours and the Index becomes the Day of the Week. There are lots of ways to do this, but I would recommend trying to combine groupby with an [unstack](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html) method. Reference the solutions if you get stuck on this!**"
@@ -1030,9 +990,7 @@
1030990
{
1031991
"cell_type": "code",
1032992
"execution_count": 51,
1033-
"metadata": {
1034-
"collapsed": false
1035-
},
993+
"metadata": {},
1036994
"outputs": [
1037995
{
1038996
"data": {
@@ -1247,19 +1205,15 @@
12471205
},
12481206
{
12491207
"cell_type": "markdown",
1250-
"metadata": {
1251-
"collapsed": false
1252-
},
1208+
"metadata": {},
12531209
"source": [
12541210
"** Now create a HeatMap using this new DataFrame. **"
12551211
]
12561212
},
12571213
{
12581214
"cell_type": "code",
12591215
"execution_count": 52,
1260-
"metadata": {
1261-
"collapsed": false
1262-
},
1216+
"metadata": {},
12631217
"outputs": [
12641218
{
12651219
"data": {
@@ -1289,19 +1243,15 @@
12891243
},
12901244
{
12911245
"cell_type": "markdown",
1292-
"metadata": {
1293-
"collapsed": false
1294-
},
1246+
"metadata": {},
12951247
"source": [
12961248
"** Now create a clustermap using this DataFrame. **"
12971249
]
12981250
},
12991251
{
13001252
"cell_type": "code",
13011253
"execution_count": 53,
1302-
"metadata": {
1303-
"collapsed": false
1304-
},
1254+
"metadata": {},
13051255
"outputs": [
13061256
{
13071257
"data": {
@@ -1338,9 +1288,7 @@
13381288
{
13391289
"cell_type": "code",
13401290
"execution_count": 54,
1341-
"metadata": {
1342-
"collapsed": false
1343-
},
1291+
"metadata": {},
13441292
"outputs": [
13451293
{
13461294
"data": {
@@ -1461,9 +1409,7 @@
14611409
{
14621410
"cell_type": "code",
14631411
"execution_count": 55,
1464-
"metadata": {
1465-
"collapsed": false
1466-
},
1412+
"metadata": {},
14671413
"outputs": [
14681414
{
14691415
"data": {
@@ -1494,9 +1440,7 @@
14941440
{
14951441
"cell_type": "code",
14961442
"execution_count": 56,
1497-
"metadata": {
1498-
"collapsed": false
1499-
},
1443+
"metadata": {},
15001444
"outputs": [
15011445
{
15021446
"data": {
@@ -1550,9 +1494,9 @@
15501494
"name": "python",
15511495
"nbconvert_exporter": "python",
15521496
"pygments_lexer": "ipython3",
1553-
"version": "3.5.1"
1497+
"version": "3.6.3"
15541498
}
15551499
},
15561500
"nbformat": 4,
1557-
"nbformat_minor": 0
1501+
"nbformat_minor": 1
15581502
}

0 commit comments

Comments
 (0)