|
| 1 | +__author__ = 'Febrian Imanda Effendy' |
| 2 | + |
| 3 | +import xlrd |
| 4 | +import numpy as np |
| 5 | +import math |
| 6 | + |
| 7 | +# sh = data.sheet_by_index(0) |
| 8 | +# print sh.name, sh.nrows, sh.ncols |
| 9 | +# for rx in range(sh.nrows): |
| 10 | +# print sh.row(rx) |
| 11 | +def getData(filename): |
| 12 | + data = xlrd.open_workbook(filename) |
| 13 | + sheet = data.sheet_by_index(0) |
| 14 | + return sheet |
| 15 | + |
| 16 | +DATA = getData("jester-data-1500.xls") |
| 17 | +SHEET_ROWS = DATA.nrows |
| 18 | +SHEET_COLUMN = DATA.ncols |
| 19 | + |
| 20 | +# Fungsi untuk mendapatkan rating dari 1 item berdasarkan user |
| 21 | +def getRating(user, item): |
| 22 | + return DATA.row(user)[item].value |
| 23 | + |
| 24 | +# Fungsi untuk mendapatkan rating dari seluruh item berdasarkan user |
| 25 | +def getItemRating(user): |
| 26 | + rating = [] |
| 27 | + for item in range(1, SHEET_COLUMN): |
| 28 | + rating += [getRating(user, item)] |
| 29 | + # return rating |
| 30 | + listRating = np.array(rating) |
| 31 | + return listRating |
| 32 | + |
| 33 | +# Fungsi untuk menghitung rata-rata dari list rating yang diberikan (numpy format) |
| 34 | +def getAverageRating(rates): |
| 35 | + total = [] |
| 36 | + for i in rates: |
| 37 | + temp = 0 if i >= 99 else i |
| 38 | + total.append(temp) |
| 39 | + listTotal = np.array(total) |
| 40 | + return np.mean(listTotal) |
| 41 | + |
| 42 | +# Fungsi untuk mendapatkan semua neighbour dari user |
| 43 | +def getNeighbours(user): |
| 44 | + neighbour = [] |
| 45 | + for i in range(SHEET_ROWS): |
| 46 | + if i != user : |
| 47 | + for j in range(SHEET_COLUMN): |
| 48 | + yUser = getRating(user, j) |
| 49 | + yNeighbour = getRating(i, j) |
| 50 | + if (yUser < 99) and (yNeighbour < 99) : |
| 51 | + neighbour += [i] |
| 52 | + break |
| 53 | + # return neighbour |
| 54 | + listNeighbours = np.array(neighbour) |
| 55 | + return listNeighbours |
| 56 | + |
| 57 | +# Fungsi untuk mendapatkan similiaritas dari 2 user yang dibandingkan |
| 58 | +def getSimiliarity(user1, user2): |
| 59 | + yAvgUser1 = getAverageRating(getItemRating(user1)) |
| 60 | + yAvgUser2 = getAverageRating(getItemRating(user2)) |
| 61 | + atas = 0 |
| 62 | + bawah = 0 |
| 63 | + for i in range(SHEET_COLUMN) : |
| 64 | + yUser1 = getRating(user1, i) |
| 65 | + yUser2 = getRating(user2, i) |
| 66 | + atas += (yUser1 - yAvgUser1) * (yUser2 - yAvgUser2) |
| 67 | + yUser1a = 0 |
| 68 | + yUser2a = 0 |
| 69 | + for i in range(SHEET_COLUMN) : |
| 70 | + yUser1a += (yUser1 - yAvgUser1) ** 2 |
| 71 | + yUser2a += (yUser2 - yAvgUser2) ** 2 |
| 72 | + bawah = math.sqrt(yUser1a * yUser2a) |
| 73 | + sim = atas / bawah |
| 74 | + return sim |
| 75 | + |
| 76 | +# Fungsi untuk mendapatkan 20 similiaritas terbesar menggunakan metode mergesort dengan O(nlog(n)) |
| 77 | +def getTopSimiliarity(listSim): |
| 78 | + listSim = np.sort(listSim, kind='mergesort') |
| 79 | + listSim = listSim[::-1] |
| 80 | + return listSim[1:21:1] |
| 81 | + |
| 82 | +# Fungsi untuk mendapatkan prediksi rating |
| 83 | +def getPredictedRating(user, item): |
| 84 | + yAvgUser = getAverageRating(getItemRating(user)) |
| 85 | + neighbours = getNeighbours(user) |
| 86 | + atas = 0 |
| 87 | + bawah = 0 |
| 88 | + # for i in range(SHEET_COLUMN): |
| 89 | + for j in range(len(neighbours)): |
| 90 | + similiarities = getSimiliarity(neighbours[j], user) |
| 91 | + tempRating = getRating(neighbours[j], item) |
| 92 | + rating = 0 if tempRating >= 99 else tempRating |
| 93 | + yAvgNeighbour = getAverageRating(getItemRating(neighbours[j])) |
| 94 | + print "User",user, " | User",neighbours[j], " - Similiarities :", similiarities, " - rating :", rating, " - avg :", yAvgNeighbour |
| 95 | + atas += similiarities * (rating - yAvgNeighbour) |
| 96 | + bawah += abs(similiarities) |
| 97 | + predicted = yAvgUser + (atas / bawah) |
| 98 | + return predicted |
| 99 | + |
| 100 | +# print getAverageRating(getItemRating(0)) |
| 101 | +print getPredictedRating(0, 100) |
0 commit comments