-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
233 lines (188 loc) · 8.69 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import re
import argparse
import csv
import torch
import random
import numpy as np
import pandas as pd
from transformers import DistilBertTokenizerFast
from transformers import DistilBertForSequenceClassification, AdamW
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertForSequenceClassification
from dataset import PaperDataset, EditDataset
from sklearn.model_selection import train_test_split
from torch import nn
from tqdm import tqdm
from metrics import compute_metrics
# from bert import data
class BERT(nn.Module):
def __init__(self):
super(BERT, self).__init__()
options_name = "bert-base-uncased"
self.encoder = BertForSequenceClassification.from_pretrained(options_name)
def forward(self, text, label):
loss, text_fea = self.encoder(text, labels=label)[:2]
return loss, text_fea
def save_checkpoint(save_path, model, valid_loss):
if save_path == None:
return
state_dict = {'model_state_dict': model.state_dict(),
'valid_loss': valid_loss}
torch.save(state_dict, save_path)
print(f'Model saved to ==> {save_path}')
def load_checkpoint(load_path, model):
if load_path==None:
return
state_dict = torch.load(load_path, map_location=device)
print(f'Model loaded from <== {load_path}')
model.load_state_dict(state_dict['model_state_dict'])
return state_dict['valid_loss']
def evaluate(model, test_loader):
y_pred = []
y_true = []
for batch in test_loader:
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels, return_dict=False)
loss, output = outputs
y_pred.extend(torch.argmax(output, 1).tolist())
y_true.extend(labels.tolist())
print('Classification Report:')
metrics = compute_metrics(y_pred, y_true)
print(metrics)
def clean_txt(text):
# text = re.sub("'","",text)
text = re.sub("(\\W)+"," ",str(text))
return text
if __name__=='__main__':
RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
parser = argparse.ArgumentParser()
parser.add_argument('--num_epochs', type=int, default=10,
help='number of epochs')
parser.add_argument('--dataset', type=str, default='edit',
help='number of epochs')
args = parser.parse_args()
# tokenizer_name = 'bert-base-uncased'
tokenizer_name = 'distilbert-base-uncased'
tokenizer_path = f'tokenizer/{tokenizer_name}'
if os.path.exists(tokenizer_path):
# tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
tokenizer = DistilBertTokenizerFast.from_pretrained(tokenizer_path)
else:
print("download tokenizer")
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
# tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer.save_pretrained(tokenizer_path)
model_path = f'model/{tokenizer_name}'
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
if os.path.exists(model_path):
print("load pre-trained model")
model = DistilBertForSequenceClassification.from_pretrained(model_path)
# model = BertForSequenceClassification.from_pretrained(model_path,num_labels=num_label)
else:
print("download model")
model = BertForSequenceClassification.from_pretrained('distilbert-base-uncased')
# model = BertForSequenceClassification.from_pretrained('bert-base-uncased',num_labels=num_label)
model.save_pretrained(model_path)
if args.dataset == 'edit':
batch_size = 32
max_len = 128
# df = pd.read_csv('edits_identify_dataset.tsv', sep='\t')
df = pd.read_csv('clean_edits_2.tsv',sep='\t')
#create swap index
swap = np.random.randint(0,2,size=len(df))
df['Label'] = swap
# swap_index = np.where(swap==2)
df.loc[df['Label']==1,['Sen 1','Sen 2']] = df.loc[df['Label']==1,['Sen 2','Sen 1']].values
df_train, df_test = train_test_split(df, test_size=0.2, random_state=RANDOM_SEED)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
train_texts = list(zip(df_train['Sen 1'].tolist(), df_train['Sen 2'].tolist()))
train_labels = df_train['Label'].tolist()
val_texts = list(zip(df_val['Sen 1'].tolist(), df_val['Sen 2'].tolist()))
val_labels = df_val['Label'].tolist()
test_texts = list(zip(df_test['Sen 1'].tolist(), df_test['Sen 2'].tolist()))
test_labels = df_test['Label'].tolist()
train_dataset = EditDataset(train_texts, train_labels, tokenizer, max_len)
val_dataset = EditDataset(val_texts, val_labels, tokenizer, max_len)
test_dataset = EditDataset(test_texts, test_labels, tokenizer, max_len)
optim = AdamW(model.parameters(), lr=3e-5)
else:
batch_size = 16
max_len =500
# data = pd.read_csv('paper_outcome.tsv', sep='\t')
df = pd.read_csv('paper_features_2.tsv', sep='\t')
df['label'] = df['acceptance']
# data['text'] = data['abstract']
# data['text'] = data['abstract']+data['introduction']+data['conclusion']
# data['text'] = data['text'].apply(clean_txt)
df = df[['text','label']]
# df = df[df.text!='None']
df = df[df.text!='NoneNoneNone']
texts = df['text'].tolist()
labels = df['label'].tolist()
labels = [int(x) for x in labels]
num_label = 2
labels = [1 if x==0 else x for x in labels]
labels = [0 if x==2 else x for x in labels]
train_texts, test_texts, train_labels, test_labels = train_test_split(texts, labels, test_size=0.2, random_state=RANDOM_SEED)
test_texts, val_texts, test_labels, val_labels = train_test_split(test_texts, test_labels, test_size=0.5, random_state=RANDOM_SEED)
train_dataset = PaperDataset(train_texts, train_labels, tokenizer, max_len)
val_dataset = PaperDataset(val_texts, val_labels, tokenizer, max_len)
test_dataset = PaperDataset(test_texts, test_labels, tokenizer, max_len)
optim = AdamW(model.parameters(), lr=3e-5)
model.to(device)
model.train()
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=16, shuffle=True)
num_epochs = args.num_epochs
running_loss = 0.0
valid_running_loss = 0.0
train_loss_list = []
valid_loss_list = []
for epoch in range(num_epochs):
for batch in tqdm(train_loader):
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
loss.backward()
optim.step()
running_loss += loss.item()
if epoch%1 == 0:
model.eval()
with torch.no_grad():
# validation loop
for val_batch in val_loader:
input_ids = val_batch['input_ids'].to(device)
attention_mask = val_batch['attention_mask'].to(device)
labels = val_batch['label'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
valid_running_loss += loss.item()
# evaluation
average_train_loss = running_loss
average_valid_loss = valid_running_loss
train_loss_list.append(average_train_loss)
valid_loss_list.append(average_valid_loss)
# resetting running values
running_loss = 0.0
valid_running_loss = 0.0
best_valid_loss = float("Inf")
model.train()
# print progress
print('Epoch [{}/{}], Train Loss: {:.4f}, Valid Loss: {:.4f}'
.format(epoch+1, num_epochs,
average_train_loss, average_valid_loss))
# checkpoint
if best_valid_loss > average_valid_loss:
best_valid_loss = average_valid_loss
save_checkpoint(f'log/model_{args.dataset}_{max_len}.pt', model, best_valid_loss)
print('Finished Training!')
evaluate(model, test_loader)