diff --git a/.travis.yml b/.travis.yml
index bdf2370..6acc210 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -37,7 +37,7 @@ addons:
env:
global:
- - DOLONGDOUBLE="-DDCPROGS_LONG_DOUBLE=OFF"
+ - DOLONGDOUBLE="-DHJCFIT_LONG_DOUBLE=OFF"
- UPLOADDOCS=false
matrix:
include:
@@ -48,7 +48,7 @@ matrix:
env: UPLOADDOCS=true
- os: linux
python: 3.5
- env: DOLONGDOUBLE="-DDCPROGS_LONG_DOUBLE=ON"
+ env: DOLONGDOUBLE="-DHJCFIT_LONG_DOUBLE=ON"
- os: osx
osx_image: xcode7.3
python: 2.7
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 698effd..5d0146e 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,5 +1,5 @@
########################
-# DCProgs computes missed-events likelihood as described in
+# HJCFIT computes missed-events likelihood as described in
# Hawkes, Jalali and Colquhoun (1990, 1992)
#
# Copyright (C) 2013 University College London
@@ -35,7 +35,7 @@ option(pythonBindings "Enable python bindings." on)
option(compileDocs "Compile c++11 documentation examples." on)
option(openmp "Enable OpenMP parallelization." on)
option(executenotebooks "Execute example Jupyter notebooks." on)
-CMAKE_DEPENDENT_OPTION(DCPROGS_USE_MPFR "Enable fallback to MPFR Multi precision" ON "UNIX" OFF)
+CMAKE_DEPENDENT_OPTION(HJCFIT_USE_MPFR "Enable fallback to MPFR Multi precision" ON "UNIX" OFF)
set(JUPYTER_KERNEL "" CACHE STRING "Jupyter kernel to run notebooks with defaults to python2 or python3 depending on python version")
# Provides backwards compatibility and prevents MACOS_RPATH warning
@@ -132,28 +132,28 @@ if(NOT HAS_CXX11_NOEXCEPT)
set(noexcept TRUE)
endif()
-if(NOT DCPROGS_LONG_DOUBLE)
- set(DCPROGS_LONG_DOUBLE False CACHE BOOL
+if(NOT HJCFIT_LONG_DOUBLE)
+ set(HJCFIT_LONG_DOUBLE False CACHE BOOL
"If True, will use long doubles rather than simple doubles.")
-endif(NOT DCPROGS_LONG_DOUBLE)
+endif(NOT HJCFIT_LONG_DOUBLE)
-if(NOT DCPROGS_USE_MPFR)
- set(DCPROGS_USE_MPFR False CACHE BOOL
+if(NOT HJCFIT_USE_MPFR)
+ set(HJCFIT_USE_MPFR False CACHE BOOL
"If True, will use MPFR arbitrary precision floats as fall back if regular double calculations fail.")
-endif(NOT DCPROGS_USE_MPFR)
+endif(NOT HJCFIT_USE_MPFR)
-if(DCPROGS_USE_MPFR)
+if(HJCFIT_USE_MPFR)
find_or_add_hunter_package(GMP)
find_or_add_hunter_package(MPFR)
include_directories(${PROJECT_SOURCE_DIR}/mpfr)
-endif(DCPROGS_USE_MPFR)
+endif(HJCFIT_USE_MPFR)
configure_file (
- "${PROJECT_SOURCE_DIR}/DCProgsConfig.h.in"
- "${PROJECT_BINARY_DIR}/DCProgsConfig.h"
+ "${PROJECT_SOURCE_DIR}/HJCFITConfig.h.in"
+ "${PROJECT_BINARY_DIR}/HJCFITConfig.h"
)
-# Save all DCPROGS headers in the same place in Windows
-install(FILES ${PROJECT_BINARY_DIR}/DCProgsConfig.h DESTINATION include/dcprogs)
+# Save all HJCFIT headers in the same place in Windows
+install(FILES ${PROJECT_BINARY_DIR}/HJCFITConfig.h DESTINATION include/HJCFIT)
include(${CMAKE_SCRIPTS}/documentation.cmake)
diff --git a/DCProgsConfig.h.in b/HJCFITConfig.h.in
similarity index 71%
rename from DCProgsConfig.h.in
rename to HJCFITConfig.h.in
index 5aab0f1..0b82f00 100644
--- a/DCProgsConfig.h.in
+++ b/HJCFITConfig.h.in
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,17 +18,17 @@
along with this program. If not, see .
************************/
-#ifndef DCPROGS_CONFIG_H
-#define DCPROGS_CONFIG_H
+#ifndef HJCFIT_CONFIG_H
+#define HJCFIT_CONFIG_H
#include
#include
#include
#include
#include
-#cmakedefine DCPROGS_USE_MPFR
+#cmakedefine HJCFIT_USE_MPFR
-#ifdef DCPROGS_USE_MPFR
+#ifdef HJCFIT_USE_MPFR
# include
#endif
@@ -47,18 +47,18 @@
#cmakedefine HAS_CXX11_CONSTRUCTOR_DELEGATE
#ifdef HAS_CXX11_CONSTEXPR
-# define DCPROGS_INIT_CONSTEXPR(TYPEANDNAME, VALUE) constexpr static TYPEANDNAME = VALUE
-# define DCPROGS_DECL_CONSTEXPR(TYPEANDNAME, VALUE) constexpr TYPEANDNAME
+# define HJCFIT_INIT_CONSTEXPR(TYPEANDNAME, VALUE) constexpr static TYPEANDNAME = VALUE
+# define HJCFIT_DECL_CONSTEXPR(TYPEANDNAME, VALUE) constexpr TYPEANDNAME
#else
-# define DCPROGS_INIT_CONSTEXPR(TYPEANDNAME, VALUE) const static TYPEANDNAME
-# define DCPROGS_DECL_CONSTEXPR(TYPEANDNAME, VALUE) const TYPEANDNAME = VALUE
+# define HJCFIT_INIT_CONSTEXPR(TYPEANDNAME, VALUE) const static TYPEANDNAME
+# define HJCFIT_DECL_CONSTEXPR(TYPEANDNAME, VALUE) const TYPEANDNAME = VALUE
#endif
// one should alway known when one is working on crapware
#cmakedefine MSVC
-#if defined(MSWINDOBE) && defined(DCPROGS_LIKELIHOOD_DLLEXPORT)
+#if defined(MSWINDOBE) && defined(HJCFIT_LIKELIHOOD_DLLEXPORT)
# undef MSWINDOBE
# define MSWINDOBE __declspec(dllexport)
#endif
@@ -66,7 +66,7 @@
# define MSWINDOBE
#endif
-#cmakedefine DCPROGS_PYTHON_BINDINGS
+#cmakedefine HJCFIT_PYTHON_BINDINGS
#cmakedefine NUMPY_NPY_LONG_DOUBLE
#cmakedefine NUMPY_NPY_BOOL
#cmakedefine NUMPY_NPY_ARRAY
@@ -81,48 +81,48 @@
#cmakedefine CXX_HAS_FLOAT_H_ISNAN
#ifdef CXX_HAS_STD_ISNAN
# include
-# define DCPROGS_ISNAN(X) std::isnan(X)
+# define HJCFIT_ISNAN(X) std::isnan(X)
#elif defined(CXX_HAS_ISNAN)
# include
-# define DCPROGS_ISNAN(X) ::isnan(X)
+# define HJCFIT_ISNAN(X) ::isnan(X)
#elif defined CXX_HAS___ISNAN
# include
-# define DCPROGS_ISNAN(X) __isnan(X)
+# define HJCFIT_ISNAN(X) __isnan(X)
#elif defined(CXX_HAS_FLOAT_H_ISNAN)
# include
-# define DCPROGS_ISNAN(X) _isnan(X)
+# define HJCFIT_ISNAN(X) _isnan(X)
#else
# error no macro defined for isnan
#endif
-#cmakedefine DCPROGS_LONG_DOUBLE
-#cmakedefine DCPROGS_PYTHON3
+#cmakedefine HJCFIT_LONG_DOUBLE
+#cmakedefine HJCFIT_PYTHON3
-#define DCPROGS_STACK_MATRIX_MAX 50
+#define HJCFIT_STACK_MATRIX_MAX 50
-namespace DCProgs {
-# ifdef DCPROGS_LONG_DOUBLE
- //! Types of reals across DCProgs.
+namespace HJCFIT {
+# ifdef HJCFIT_LONG_DOUBLE
+ //! Types of reals across HJCFIT.
typedef long double t_real;
# else
- //! Types of reals across DCProgs.
+ //! Types of reals across HJCFIT.
typedef double t_real;
# endif
//! Complex real type
typedef std::complex t_complex;
- //! Types of integers across DCProgs.
+ //! Types of integers across HJCFIT.
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE t_int;
- //! Types of unsigned integers across DCProgs.
+ //! Types of unsigned integers across HJCFIT.
typedef std::make_unsigned::type t_uint;
- //! Types of real matrices across DCProgs.
+ //! Types of real matrices across HJCFIT.
typedef Eigen::Matrix t_rmatrix;
- //! Types of real matrices across DCProgs guaranteed to be allocated on the stack. Max size DCPROGS_STACK_MATRIX_MAX by DCPROGS_STACK_MATRIX_MAX
- typedef Eigen::Matrix t_stack_rmatrix;
- //! Types of boolean matrices across DCProgs.
+ //! Types of real matrices across HJCFIT guaranteed to be allocated on the stack. Max size HJCFIT_STACK_MATRIX_MAX by HJCFIT_STACK_MATRIX_MAX
+ typedef Eigen::Matrix t_stack_rmatrix;
+ //! Types of boolean matrices across HJCFIT.
typedef Eigen::Matrix t_bmatrix;
- //! Types of initial state vectors across DCProgs.
+ //! Types of initial state vectors across HJCFIT.
typedef Eigen::Matrix t_initvec;
- //! Types of final state vectors across DCProgs.
+ //! Types of final state vectors across HJCFIT.
typedef Eigen::Matrix t_rvector;
//! Type of complex matrices.
typedef Eigen::Matrix t_cmatrix;
@@ -134,14 +134,14 @@ namespace DCProgs {
//! Type holding the bursts.
typedef std::vector t_Bursts;
-# ifdef DCPROGS_USE_MPFR
- //! Types of multi-precision float across DCProgs.
+# ifdef HJCFIT_USE_MPFR
+ //! Types of multi-precision float across HJCFIT.
typedef mpfr::mpreal t_mpfr_real;
- //! Types of multi-precision complex across DCProgs.
+ //! Types of multi-precision complex across HJCFIT.
typedef std::complex t_mpfr_complex;
- //! Types of multi-precision complex vector across DCProgs.
+ //! Types of multi-precision complex vector across HJCFIT.
typedef Eigen::Matrix t_mpfr_cvector;
- //! Types of multi-precision real matrix across DCProgs.
+ //! Types of multi-precision real matrix across HJCFIT.
typedef Eigen::Matrix t_mpfr_rmatrix;
# endif
@@ -158,17 +158,17 @@ namespace DCProgs {
bool eigen_nan(Eigen::DenseBase const &_matrix) {
for(typename Eigen::DenseBase::Index i(0); i < _matrix.rows(); ++i)
for(typename Eigen::ArrayBase::Index j(0); j < _matrix.cols(); ++j)
- if(DCPROGS_ISNAN(_matrix(i, j))) return true;
+ if(HJCFIT_ISNAN(_matrix(i, j))) return true;
return false;
}
// Check that quiet nan exists. Otherwise fails to compile here and now.
static_assert(std::numeric_limits::has_quiet_NaN == true,
- "Quiet NaN is not defined for the reals used by DCProgs.");
+ "Quiet NaN is not defined for the reals used by HJCFIT.");
//! The quiet NaN value
t_real static const quiet_nan = std::numeric_limits::quiet_NaN();
- t_uint static const dcprogs_stack_matrix = DCPROGS_STACK_MATRIX_MAX;
+ t_uint static const HJCFIT_stack_matrix = HJCFIT_STACK_MATRIX_MAX;
}
#endif
diff --git a/LaunchNotebook.bat b/LaunchNotebook.bat
new file mode 100644
index 0000000..4f7e123
--- /dev/null
+++ b/LaunchNotebook.bat
@@ -0,0 +1 @@
+jupyter notebook
\ No newline at end of file
diff --git a/cmake_modules/AllPythonBindings.cmake b/cmake_modules/AllPythonBindings.cmake
index ea416b9..bb03bfa 100644
--- a/cmake_modules/AllPythonBindings.cmake
+++ b/cmake_modules/AllPythonBindings.cmake
@@ -72,7 +72,7 @@ if(MSYS)
unset(NEED_CMATH_INCLUDE)
endif(MSYS)
-set(DCPROGS_PYTHON_BINDINGS True)
+set(HJCFIT_PYTHON_BINDINGS True)
if(tests)
if(NOT DEFINED TEST_INSTALL_DIRECTORY)
@@ -142,5 +142,5 @@ else()
endif(WIN32)
if(NOT PYTHON_VERSION VERSION_LESS "3.0.0")
- set(DCPROGS_PYTHON3 TRUE)
+ set(HJCFIT_PYTHON3 TRUE)
endif(NOT PYTHON_VERSION VERSION_LESS "3.0.0")
diff --git a/cmake_modules/documentation.cmake b/cmake_modules/documentation.cmake
index bdaca6f..c643a62 100644
--- a/cmake_modules/documentation.cmake
+++ b/cmake_modules/documentation.cmake
@@ -16,11 +16,11 @@ if(SPHINX_FOUND)
else()
set(SPHINX_EXTENSIONS "'sphinxcontrib.bibtex'")
endif(DOXYGEN_FOUND)
- if(DCPROGS_USE_MPFR)
- set(SPHINX_DCPROGS_USE_MPFR "True")
+ if(HJCFIT_USE_MPFR)
+ set(SPHINX_HJCFIT_USE_MPFR "True")
else()
- set(SPHINX_DCPROGS_USE_MPFR "False")
- endif(DCPROGS_USE_MPFR)
+ set(SPHINX_HJCFIT_USE_MPFR "False")
+ endif(HJCFIT_USE_MPFR)
endif(SPHINX_FOUND)
if (DOXYGEN_FOUND)
diff --git a/data/CMakeLists.txt b/data/CMakeLists.txt
index acb3d4d..af6974d 100644
--- a/data/CMakeLists.txt
+++ b/data/CMakeLists.txt
@@ -1,5 +1,5 @@
########################
-# DCProgs computes missed-events likelihood as described in
+# HJCFIT computes missed-events likelihood as described in
# Hawkes, Jalali and Colquhoun (1990, 1992)
#
# Copyright (C) 2013 University College London
@@ -17,7 +17,7 @@
if(pythonBindings)
- install(FILES CH82.scn CCO.scn CO.scn DESTINATION ${PYINSTALL_DIRECTORY}/dcprogs/data)
+ install(FILES CH82.scn CCO.scn CO.scn DESTINATION ${PYINSTALL_DIRECTORY}/hjcfit/data)
endif(pythonBindings)
diff --git a/documentation/CMakeLists.txt b/documentation/CMakeLists.txt
index 564d60f..bfb2592 100644
--- a/documentation/CMakeLists.txt
+++ b/documentation/CMakeLists.txt
@@ -1,5 +1,5 @@
########################
-# DCProgs computes missed-events likelihood as described in
+# HJCFIT computes missed-events likelihood as described in
# Hawkes, Jalali and Colquhoun (1990, 1992)
#
# Copyright (C) 2013 University College London
diff --git a/documentation/code/approx_survivor.cc b/documentation/code/approx_survivor.cc
index 87ca448..af79abd 100644
--- a/documentation/code/approx_survivor.cc
+++ b/documentation/code/approx_survivor.cc
@@ -6,31 +6,31 @@
int main() {
// Define parameters.
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
- DCProgs::ApproxSurvivor survivor(qmatrix, 1e-4);
+ HJCFIT::ApproxSurvivor survivor(qmatrix, 1e-4);
std::cout << survivor << std::endl;
std::cout << "AF values\n"
"---------\n\n";
std::cout << " * at time t=" << 1e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(1e-4), " ") << "\n"
+ << HJCFIT::numpy_io(survivor.af(1e-4), " ") << "\n"
<< " * at time t=" << 1.5e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(1.5e-4), " ") << "\n"
+ << HJCFIT::numpy_io(survivor.af(1.5e-4), " ") << "\n"
<< " * at time t=" << 2.0e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(2.0e-4), " ") << "\n"
+ << HJCFIT::numpy_io(survivor.af(2.0e-4), " ") << "\n"
<< " * at time t=" << 2.5e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(2.5e-4), " ") << "\n\n";
+ << HJCFIT::numpy_io(survivor.af(2.5e-4), " ") << "\n\n";
std::cout << " * Exponents: ";
- for(DCProgs::t_uint i(0); i < survivor.nb_af_components(); ++i)
+ for(HJCFIT::t_uint i(0); i < survivor.nb_af_components(); ++i)
std::cout << std::get<1>(survivor.get_af_components(i)) << " ";
std::cout << std::endl;
diff --git a/documentation/code/approx_survivor.py b/documentation/code/approx_survivor.py
index 86bb14a..a65225e 100644
--- a/documentation/code/approx_survivor.py
+++ b/documentation/code/approx_survivor.py
@@ -1,4 +1,4 @@
-from dcprogs.likelihood import QMatrix, ApproxSurvivor
+from HJCFIT.likelihood import QMatrix, ApproxSurvivor
# Define parameters.
qmatrix = QMatrix([ [-3050, 50, 3000, 0, 0],
diff --git a/documentation/code/determinanteq.cc b/documentation/code/determinanteq.cc
index 1de562b..f4991d4 100644
--- a/documentation/code/determinanteq.cc
+++ b/documentation/code/determinanteq.cc
@@ -6,40 +6,40 @@
int main() {
// Define parameters.
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
// Create determinant using a QMatrix and a matrix+nopen.
- DCProgs::DeterminantEq det0(qmatrix, 1e-4);
- DCProgs::DeterminantEq det1(matrix, 2, 1e-4);
+ HJCFIT::DeterminantEq det0(qmatrix, 1e-4);
+ HJCFIT::DeterminantEq det1(matrix, 2, 1e-4);
std::cout << det0 << "\n\n" << det1 << "\n";
if( std::abs(det0(0) - det1(0)) > 1e-6
or std::abs(det0(-1) - det1(-1)) > 1e-6
or std::abs(det0(-1e2) - det1(-1e2)) > 1e-6)
- throw DCProgs::errors::Runtime("instanciations differ.");
+ throw HJCFIT::errors::Runtime("instanciations differ.");
if( std::abs( det0(-3045.285776037674) ) > 1e-6 * 3e3
or std::abs( det0(-162.92946543451328) ) > 1e-6 * 2e2 )
- throw DCProgs::errors::Runtime("Roots are not roots.");
+ throw HJCFIT::errors::Runtime("Roots are not roots.");
- DCProgs::DeterminantEq transpose = det0.transpose();
+ HJCFIT::DeterminantEq transpose = det0.transpose();
if( std::abs( transpose(-17090.192769236815) ) > 1e-6 * 2e5
or std::abs( transpose(-2058.0812921673496) ) > 1e-6 * 2e3
or std::abs( transpose(-0.24356535498785126) ) > 1e-6 )
- throw DCProgs::errors::Runtime("Roots are not roots.");
+ throw HJCFIT::errors::Runtime("Roots are not roots.");
- std::cout << " * H(0):\n" << DCProgs::numpy_io(det0.H(0)) << "\n\n"
- << " * H(-1e2):\n" << DCProgs::numpy_io(det0.H(-1e2)) << "\n\n";
+ std::cout << " * H(0):\n" << HJCFIT::numpy_io(det0.H(0)) << "\n\n"
+ << " * H(-1e2):\n" << HJCFIT::numpy_io(det0.H(-1e2)) << "\n\n";
- std::cout << " * d[sI-H(s)]/ds for s=0:\n" << DCProgs::numpy_io(det0.s_derivative(0)) << "\n\n"
- << " * d[sI-H(s)]/ds for s=-1e2:\n" << DCProgs::numpy_io(det0.s_derivative(-1e2)) << "\n\n";
+ std::cout << " * d[sI-H(s)]/ds for s=0:\n" << HJCFIT::numpy_io(det0.s_derivative(0)) << "\n\n"
+ << " * d[sI-H(s)]/ds for s=-1e2:\n" << HJCFIT::numpy_io(det0.s_derivative(-1e2)) << "\n\n";
return 0;
}
diff --git a/documentation/code/determinanteq.py b/documentation/code/determinanteq.py
index 2aef58b..07c6b46 100644
--- a/documentation/code/determinanteq.py
+++ b/documentation/code/determinanteq.py
@@ -1,6 +1,6 @@
from numpy import abs, all, array
-from dcprogs import internal_dtype
-from dcprogs.likelihood import DeterminantEq, QMatrix
+from HJCFIT import internal_dtype
+from HJCFIT.likelihood import DeterminantEq, QMatrix
# Define parameters.
matrix = [ [-3050, 50, 3000, 0, 0],
diff --git a/documentation/code/exact_survivor.cc b/documentation/code/exact_survivor.cc
index 9634ec4..370b12c 100644
--- a/documentation/code/exact_survivor.cc
+++ b/documentation/code/exact_survivor.cc
@@ -6,15 +6,15 @@
int main() {
// Define parameters.
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
- DCProgs::ExactSurvivor survivor(qmatrix, 1e-4);
+ HJCFIT::ExactSurvivor survivor(qmatrix, 1e-4);
std::cout << survivor << std::endl;
@@ -22,21 +22,21 @@ int main() {
std::cout << "AF values\n"
"---------\n\n";
std::cout << " * at time t=" << 1e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(1e-4), " ") << "\n"
+ << HJCFIT::numpy_io(survivor.af(1e-4), " ") << "\n"
<< " * at time t=" << 1.5e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(1.5e-4), " ") << "\n"
+ << HJCFIT::numpy_io(survivor.af(1.5e-4), " ") << "\n"
<< " * at time t=" << 2.0e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(2.0e-4), " ") << "\n"
+ << HJCFIT::numpy_io(survivor.af(2.0e-4), " ") << "\n"
<< " * at time t=" << 2.5e-4 <<":\n "
- << DCProgs::numpy_io(survivor.af(2.5e-4), " ") << "\n\n";
+ << HJCFIT::numpy_io(survivor.af(2.5e-4), " ") << "\n\n";
std::cout << "AF recusion matrices\n"
"--------------------\n\n";
- for(DCProgs::t_uint i(0); i < 5; ++i)
- for(DCProgs::t_uint m(1); m < 3; ++m)
- for(DCProgs::t_uint l(0); l <= m; ++l)
+ for(HJCFIT::t_uint i(0); i < 5; ++i)
+ for(HJCFIT::t_uint m(1); m < 3; ++m)
+ for(HJCFIT::t_uint l(0); l <= m; ++l)
std::cout << " * C_{" << i << m << l << "}:\n "
- << DCProgs::numpy_io(survivor.recursion_af(i, m, l), " ") << "\n\n";
+ << HJCFIT::numpy_io(survivor.recursion_af(i, m, l), " ") << "\n\n";
return 0;
}
diff --git a/documentation/code/exact_survivor.py b/documentation/code/exact_survivor.py
index 71c04c7..d401d07 100644
--- a/documentation/code/exact_survivor.py
+++ b/documentation/code/exact_survivor.py
@@ -1,4 +1,4 @@
-from dcprogs.likelihood import QMatrix, ExactSurvivor
+from HJCFIT.likelihood import QMatrix, ExactSurvivor
# Define parameters.
qmatrix = QMatrix([ [-3050, 50, 3000, 0, 0],
diff --git a/documentation/code/idealG.cc b/documentation/code/idealG.cc
index 3bfad60..48dc50e 100644
--- a/documentation/code/idealG.cc
+++ b/documentation/code/idealG.cc
@@ -7,25 +7,25 @@
int main() {
// Define parameters.
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
- DCProgs::IdealG idealG(qmatrix);
+ HJCFIT::IdealG idealG(qmatrix);
std::cout << idealG << std::endl;
- DCProgs::t_rmatrix const idealG_fa = (2e-4*qmatrix.ff()).exp()*qmatrix.fa();
+ HJCFIT::t_rmatrix const idealG_fa = (2e-4*qmatrix.ff()).exp()*qmatrix.fa();
if( ((idealG.fa(2e-4) - idealG_fa).array().abs() > 1e-8).any() )
- throw DCProgs::errors::Runtime("Not so ideal idealG");
+ throw HJCFIT::errors::Runtime("Not so ideal idealG");
- DCProgs::t_rmatrix const inversion = -0.5 * DCProgs::t_rmatrix::Identity(2, 2) - qmatrix.aa();
+ HJCFIT::t_rmatrix const inversion = -0.5 * HJCFIT::t_rmatrix::Identity(2, 2) - qmatrix.aa();
if( ((inversion * idealG.laplace_af(-0.5) - qmatrix.af()).array().abs() > 1e-8).any() )
- throw DCProgs::errors::Runtime("Not so ideal idealG");
+ throw HJCFIT::errors::Runtime("Not so ideal idealG");
return 0;
}
diff --git a/documentation/code/idealG.py b/documentation/code/idealG.py
index d322ba3..ed6140c 100644
--- a/documentation/code/idealG.py
+++ b/documentation/code/idealG.py
@@ -1,5 +1,5 @@
from numpy import dot, identity, abs, all
-from dcprogs.likelihood import QMatrix, IdealG, expm
+from HJCFIT.likelihood import QMatrix, IdealG, expm
qmatrix = QMatrix([ [-3050, 50, 3000, 0, 0],
[2./3., -1502./3., 0, 500, 0],
diff --git a/documentation/code/log10.cc b/documentation/code/log10.cc
index f4d5577..9a5bcc8 100644
--- a/documentation/code/log10.cc
+++ b/documentation/code/log10.cc
@@ -3,25 +3,25 @@
int main() {
- DCProgs::t_Bursts bursts{
+ HJCFIT::t_Bursts bursts{
{0.1, 0.2, 0.1}, /* 1st burst */
{0.2}, /* 2nd burst */
{0.15, 0.16, 0.18, 0.05, 0.1} /* 3rd burst */
};
- DCProgs::Log10Likelihood likelihood( bursts, /*nopen=*/2, /*tau=*/1e-2,
- /*tcrit=*/DCProgs::quiet_nan );
+ HJCFIT::Log10Likelihood likelihood( bursts, /*nopen=*/2, /*tau=*/1e-2,
+ /*tcrit=*/HJCFIT::quiet_nan );
std::cout << likelihood << std::endl;
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::t_real const result = likelihood(matrix);
+ HJCFIT::t_real const result = likelihood(matrix);
std::cout << "Computation: " << result << std::endl;
diff --git a/documentation/code/log10.py b/documentation/code/log10.py
index c733cf2..73adac7 100644
--- a/documentation/code/log10.py
+++ b/documentation/code/log10.py
@@ -1,5 +1,5 @@
from numpy import all, abs, NaN
-from dcprogs.likelihood import Log10Likelihood
+from HJCFIT.likelihood import Log10Likelihood
bursts = [ [0.1, 0.2, 0.1], # 1st burst
[0.2], # 2nd burst
diff --git a/documentation/code/missedeventsG.cc b/documentation/code/missedeventsG.cc
index 7bb3306..198ae0e 100644
--- a/documentation/code/missedeventsG.cc
+++ b/documentation/code/missedeventsG.cc
@@ -7,50 +7,50 @@
int main() {
// Define parameters.
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
- DCProgs::t_real const tau(1e-4); // in seconds
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::t_real const tau(1e-4); // in seconds
// Create eG from prior knowledge of roots
- DCProgs::DeterminantEq determinant_eq(qmatrix, tau);
- std::vector af_roots{
+ HJCFIT::DeterminantEq determinant_eq(qmatrix, tau);
+ std::vector af_roots{
{ /*root=*/ -3045.285776037674, /*multiplicity=*/ 1},
{ /*root=*/ -162.92946543451328, /*multiplicity=*/ 1}
};
- std::vector fa_roots{
+ std::vector fa_roots{
{ /*root=*/ -17090.192769236815, /*multiplicity=*/ 1},
{ /*root=*/ -2058.0812921673496, /*multiplicity=*/ 1},
{ /*root=*/ -0.24356535498785126, /*multiplicity=*/ 1}
};
- DCProgs::MissedEventsG eG_from_roots( determinant_eq, af_roots,
+ HJCFIT::MissedEventsG eG_from_roots( determinant_eq, af_roots,
determinant_eq.transpose(), fa_roots );
// Create eG by giving home-made root-finding function.
- auto find_roots = [](DCProgs::DeterminantEq const &_det) {
- return DCProgs::find_roots(_det, 1e-12, 1e-12, 100, DCProgs::quiet_nan, DCProgs::quiet_nan);
+ auto find_roots = [](HJCFIT::DeterminantEq const &_det) {
+ return HJCFIT::find_roots(_det, 1e-12, 1e-12, 100, HJCFIT::quiet_nan, HJCFIT::quiet_nan);
};
- DCProgs::MissedEventsG eG_from_func(qmatrix, tau, find_roots);
+ HJCFIT::MissedEventsG eG_from_func(qmatrix, tau, find_roots);
// Create eG automaticallye
- DCProgs::MissedEventsG eG_automatic(qmatrix, tau);
+ HJCFIT::MissedEventsG eG_automatic(qmatrix, tau);
// Checks the three initialization are equivalent
- for(DCProgs::t_real t(tau); t < 10*tau; t += tau * 0.1) {
+ for(HJCFIT::t_real t(tau); t < 10*tau; t += tau * 0.1) {
if( ((eG_from_roots.af(t) - eG_from_func.af(t)).array().abs() > 1e-8).any()
or ((eG_from_roots.fa(t) - eG_from_func.fa(t)).array().abs() > 1e-8).any() )
- throw DCProgs::errors::Runtime("root != func");
+ throw HJCFIT::errors::Runtime("root != func");
if( ((eG_from_roots.af(t) - eG_automatic.af(t)).array().abs() > 1e-8).any()
or ((eG_from_roots.fa(t) - eG_automatic.fa(t)).array().abs() > 1e-8).any() )
- throw DCProgs::errors::Runtime("root != automatic");
+ throw HJCFIT::errors::Runtime("root != automatic");
}
return 0;
diff --git a/documentation/code/missedeventsG.py b/documentation/code/missedeventsG.py
index 9f983f1..7f880e2 100644
--- a/documentation/code/missedeventsG.py
+++ b/documentation/code/missedeventsG.py
@@ -1,5 +1,5 @@
from numpy import all, abs, arange
-from dcprogs.likelihood import QMatrix, DeterminantEq, MissedEventsG
+from HJCFIT.likelihood import QMatrix, DeterminantEq, MissedEventsG
# Define parameters.
qmatrix = QMatrix([ [-3050, 50, 3000, 0, 0],
diff --git a/documentation/code/qmatrix.cc b/documentation/code/qmatrix.cc
index 4b6aba9..fbfeef3 100644
--- a/documentation/code/qmatrix.cc
+++ b/documentation/code/qmatrix.cc
@@ -7,14 +7,14 @@
int main() {
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
std::cout << qmatrix << std::endl;
@@ -23,7 +23,7 @@ int main() {
if( ((qmatrix.matrix - matrix).array().abs() > 1e-12).any() ) return 1;
// Compute sum over rows, row by row.
- for(DCProgs::t_int i(0); i < qmatrix.matrix.rows(); ++i)
+ for(HJCFIT::t_int i(0); i < qmatrix.matrix.rows(); ++i)
std::cout << "sum(row[" << i << "]): " << qmatrix.matrix.row(i).sum() << std::endl;
// Compute sum over rows, but let eigen do it.
diff --git a/documentation/code/qmatrix.py b/documentation/code/qmatrix.py
index d20caba..d61d4fc 100644
--- a/documentation/code/qmatrix.py
+++ b/documentation/code/qmatrix.py
@@ -1,5 +1,5 @@
from numpy import sum, abs, all
-from dcprogs.likelihood import QMatrix
+from HJCFIT.likelihood import QMatrix
matrix = [ [-3050, 50, 3000, 0, 0],
[2./3., -1502./3., 0, 500, 0],
diff --git a/documentation/code/roots.cc b/documentation/code/roots.cc
index dbf605c..a69a6a2 100644
--- a/documentation/code/roots.cc
+++ b/documentation/code/roots.cc
@@ -7,30 +7,30 @@
int main() {
// Define parameters.
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
- DCProgs::DeterminantEq det(qmatrix, 1e-4);
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::DeterminantEq det(qmatrix, 1e-4);
// Find upper and lower bound
- DCProgs::t_real upper_bound = DCProgs::find_upper_bound_for_roots(det);
- DCProgs::t_real lower_bound = DCProgs::find_lower_bound_for_roots(det);
+ HJCFIT::t_real upper_bound = HJCFIT::find_upper_bound_for_roots(det);
+ HJCFIT::t_real lower_bound = HJCFIT::find_lower_bound_for_roots(det);
// computes eigenvalues of H(s) for given s
- auto get_eigenvalues = [&det](DCProgs::t_real _s) -> DCProgs::t_rvector {
- return Eigen::EigenSolver(det.H(_s)).eigenvalues().real();
+ auto get_eigenvalues = [&det](HJCFIT::t_real _s) -> HJCFIT::t_rvector {
+ return Eigen::EigenSolver(det.H(_s)).eigenvalues().real();
};
// Checks bounds are correct.
if((get_eigenvalues(lower_bound).array() < lower_bound).any())
- throw DCProgs::errors::Runtime("Incorrect lower bound.");
+ throw HJCFIT::errors::Runtime("Incorrect lower bound.");
if((get_eigenvalues(upper_bound).array() > upper_bound).any())
- throw DCProgs::errors::Runtime("Incorrect upper bound.");
+ throw HJCFIT::errors::Runtime("Incorrect upper bound.");
std::cout << "Root Determination\n"
"==================\n\n"
@@ -41,20 +41,20 @@ int main() {
<< get_eigenvalues(upper_bound).transpose() << "\n\n";
// Figure out bracket for each root.
- std::vector intervals
- = DCProgs::find_root_intervals(det, lower_bound, upper_bound);
+ std::vector intervals
+ = HJCFIT::find_root_intervals(det, lower_bound, upper_bound);
// Find root for each interval
- for(DCProgs::RootInterval const& interval: intervals) {
- auto brentq_result = DCProgs::brentq(det, interval.start, interval.end);
+ for(HJCFIT::RootInterval const& interval: intervals) {
+ auto brentq_result = HJCFIT::brentq(det, interval.start, interval.end);
std::cout << " * Root interval: [" << interval.start << ", " << interval.end << "]\n"
<< " Corresponding root: " << std::get<0>(brentq_result) << "\n\n";
}
// Look for roots in one go.
- std::vector roots = DCProgs::find_roots(det);
+ std::vector roots = HJCFIT::find_roots(det);
std::cout << " * All roots: ";
- for(DCProgs::Root const &root: roots) std::cout << root.root << " ";
+ for(HJCFIT::Root const &root: roots) std::cout << root.root << " ";
std::cout << "\n";
return 0;
diff --git a/documentation/code/roots.py b/documentation/code/roots.py
index 1ce8957..a4f1ccc 100644
--- a/documentation/code/roots.py
+++ b/documentation/code/roots.py
@@ -1,6 +1,6 @@
from numpy import all
-from dcprogs.likelihood import eig
-from dcprogs.likelihood import find_upper_bound_for_roots, find_lower_bound_for_roots, \
+from HJCFIT.likelihood import eig
+from HJCFIT.likelihood import find_upper_bound_for_roots, find_lower_bound_for_roots, \
find_root_intervals, brentq, find_roots, QMatrix, DeterminantEq
qmatrix = QMatrix([ [-3050, 50, 3000, 0, 0],
diff --git a/documentation/code/occupancies.cc b/documentation/code/vectors.cc
similarity index 50%
rename from documentation/code/occupancies.cc
rename to documentation/code/vectors.cc
index 9a2f5cf..8814ec2 100644
--- a/documentation/code/occupancies.cc
+++ b/documentation/code/vectors.cc
@@ -2,44 +2,44 @@
#include
#include
-#include
+#include
int main() {
// Define parameters.
- DCProgs::t_rmatrix matrix(5 ,5);
+ HJCFIT::t_rmatrix matrix(5 ,5);
matrix << -3050, 50, 3000, 0, 0,
2./3., -1502./3., 0, 500, 0,
15, 0, -2065, 50, 2000,
0, 15000, 4000, -19000, 0,
0, 0, 10, 0, -10;
- DCProgs::QMatrix qmatrix(matrix, /*nopen=*/2);
- DCProgs::t_real const tau(1e-4); // in seconds
+ HJCFIT::QMatrix qmatrix(matrix, /*nopen=*/2);
+ HJCFIT::t_real const tau(1e-4); // in seconds
// Create missed-events G
- DCProgs::MissedEventsG eG(qmatrix, tau);
+ HJCFIT::MissedEventsG eG(qmatrix, tau);
// Create ideal G
- DCProgs::IdealG idealG(qmatrix);
+ HJCFIT::IdealG idealG(qmatrix);
- DCProgs::t_real const tcritical(5e-3);
+ HJCFIT::t_real const tcritical(5e-3);
- std::cout << "Equilibrium Occupancies\n"
+ std::cout << "Equilibrium vectors\n"
<< "=======================\n\n"
<< "Ideal Likelihood\n"
<< "----------------\n\n"
- << " * initial: " << DCProgs::occupancies(idealG) << "\n"
- << " * final: " << DCProgs::occupancies(idealG, false) << "\n\n\n"
+ << " * initial: " << HJCFIT::vectors(idealG) << "\n"
+ << " * final: " << HJCFIT::vectors(idealG, false) << "\n\n\n"
<< "Missed-events Likelihood\n"
<< "------------------------\n\n"
- << " * initial: " << DCProgs::occupancies(eG) << "\n"
- << " * final: " << DCProgs::occupancies(eG, false) << "\n\n\n\n"
- << "CHS Occupancies\n"
+ << " * initial: " << HJCFIT::vectors(eG) << "\n"
+ << " * final: " << HJCFIT::vectors(eG, false) << "\n\n\n\n"
+ << "CHS vectors\n"
<< "===============\n\n"
<< "Missed-events Likelihood\n"
<< "------------------------\n\n"
<< " * tcritical: " << tcritical << "\n"
- << " * initial: " << DCProgs::CHS_occupancies(eG, tcritical) << "\n"
- << " * final: " << DCProgs::CHS_occupancies(eG, tcritical, false) << "\n";
+ << " * initial: " << HJCFIT::CHS_vectors(eG, tcritical) << "\n"
+ << " * final: " << HJCFIT::CHS_vectors(eG, tcritical, false) << "\n";
return 0;
}
diff --git a/documentation/code/occupancies.py b/documentation/code/vectors.py
similarity index 71%
rename from documentation/code/occupancies.py
rename to documentation/code/vectors.py
index 93ae149..034741d 100644
--- a/documentation/code/occupancies.py
+++ b/documentation/code/vectors.py
@@ -1,4 +1,4 @@
-from dcprogs.likelihood import QMatrix, IdealG, MissedEventsG
+from HJCFIT.likelihood import QMatrix, IdealG, MissedEventsG
# Define parameters.
qmatrix = QMatrix([ [-3050, 50, 3000, 0, 0],
@@ -13,7 +13,7 @@
tcritical = 5e-3
-print("Equilibrium Occupancies\n" \
+print("Equilibrium Vectors\n" \
"=======================\n\n" \
"Ideal Likelihood\n" \
"----------------\n\n" \
@@ -23,7 +23,7 @@
"------------------------\n\n" \
" * initial: {equi_initial!r}\n" \
" * final: {equi_final!r}\n\n\n\n" \
- "CHS Occupancies\n" \
+ "CHS Vectors\n" \
"===============\n\n" \
"Missed-events Likelihood\n" \
"------------------------\n\n" \
@@ -31,12 +31,12 @@
" * initial: {chs_initial!r}\n" \
" * final: {chs_final!r}" \
.format(
- ideal_initial = idealG.initial_occupancies,
- ideal_final = idealG.final_occupancies,
- equi_initial = eG.initial_occupancies,
- equi_final = eG.final_occupancies,
- chs_initial = eG.initial_CHS_occupancies(tcritical),
- chs_final = eG.final_CHS_occupancies(tcritical),
+ ideal_initial = idealG.initial_vectors,
+ ideal_final = idealG.final_vectors,
+ equi_initial = eG.initial_vectors,
+ equi_final = eG.final_vectors,
+ chs_initial = eG.initial_CHS_vectors(tcritical),
+ chs_final = eG.final_CHS_vectors(tcritical),
tcritical = tcritical
)
)
diff --git a/documentation/doxygen.in b/documentation/doxygen.in
index 5148acd..b566603 100644
--- a/documentation/doxygen.in
+++ b/documentation/doxygen.in
@@ -667,7 +667,7 @@ WARN_LOGFILE =
# directories like "/usr/src/myproject". Separate the files or directories
# with spaces.
-INPUT = @PROJECT_SOURCE_DIR@/likelihood @PROJECT_BINARY_DIR@/DCProgsConfig.h
+INPUT = @PROJECT_SOURCE_DIR@/likelihood @PROJECT_BINARY_DIR@/HJCFITConfig.h
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is
diff --git a/documentation/source/api/cpp/approx_survivor.rst b/documentation/source/api/cpp/approx_survivor.rst
index 8300eb1..7964898 100644
--- a/documentation/source/api/cpp/approx_survivor.rst
+++ b/documentation/source/api/cpp/approx_survivor.rst
@@ -3,5 +3,5 @@
ApproxSurvivor
--------------
-.. doxygenclass:: DCProgs::ApproxSurvivor
+.. doxygenclass:: HJCFIT::ApproxSurvivor
:members:
diff --git a/documentation/source/api/cpp/determinanteq.rst b/documentation/source/api/cpp/determinanteq.rst
index c7381d5..a7017b1 100644
--- a/documentation/source/api/cpp/determinanteq.rst
+++ b/documentation/source/api/cpp/determinanteq.rst
@@ -3,5 +3,5 @@
DeterminantEq
-------------
-.. doxygenclass:: DCProgs::DeterminantEq
+.. doxygenclass:: HJCFIT::DeterminantEq
:members:
diff --git a/documentation/source/api/cpp/exact_survivor.rst b/documentation/source/api/cpp/exact_survivor.rst
index 617ad8d..e4cbd6b 100644
--- a/documentation/source/api/cpp/exact_survivor.rst
+++ b/documentation/source/api/cpp/exact_survivor.rst
@@ -3,5 +3,5 @@
ExactSurvivor
-------------
-.. doxygenclass:: DCProgs::ExactSurvivor
+.. doxygenclass:: HJCFIT::ExactSurvivor
:members:
diff --git a/documentation/source/api/cpp/exceptions.rst b/documentation/source/api/cpp/exceptions.rst
index d3b47ac..67ff948 100644
--- a/documentation/source/api/cpp/exceptions.rst
+++ b/documentation/source/api/cpp/exceptions.rst
@@ -5,33 +5,33 @@ Exceptions
Exceptions are located in the file ``likelihood/errors.h``.
-.. doxygenclass:: DCProgs::errors::Root
+.. doxygenclass:: HJCFIT::errors::Root
General
+++++++
-.. doxygenclass:: DCProgs::errors::Index
-.. doxygenclass:: DCProgs::errors::Runtime
-.. doxygenclass:: DCProgs::errors::NotImplemented
+.. doxygenclass:: HJCFIT::errors::Index
+.. doxygenclass:: HJCFIT::errors::Runtime
+.. doxygenclass:: HJCFIT::errors::NotImplemented
Math
++++
-.. doxygenclass:: DCProgs::errors::Math
-.. doxygenclass:: DCProgs::errors::Mass
-.. doxygenclass:: DCProgs::errors::ComplexEigenvalues
-.. doxygenclass:: DCProgs::errors::NaN
-.. doxygenclass:: DCProgs::errors::Domain
-.. doxygenclass:: DCProgs::errors::MaxIterations
-.. doxygenclass:: DCProgs::errors::NotInvertible
+.. doxygenclass:: HJCFIT::errors::Math
+.. doxygenclass:: HJCFIT::errors::Mass
+.. doxygenclass:: HJCFIT::errors::ComplexEigenvalues
+.. doxygenclass:: HJCFIT::errors::NaN
+.. doxygenclass:: HJCFIT::errors::Domain
+.. doxygenclass:: HJCFIT::errors::MaxIterations
+.. doxygenclass:: HJCFIT::errors::NotInvertible
Python
++++++
-.. doxygenclass:: DCProgs::errors::Python
-.. doxygenclass:: DCProgs::errors::PythonErrorAlreadyThrown
-.. doxygenclass:: DCProgs::errors::PythonTypeError
-.. doxygenclass:: DCProgs::errors::PythonValueError
+.. doxygenclass:: HJCFIT::errors::Python
+.. doxygenclass:: HJCFIT::errors::PythonErrorAlreadyThrown
+.. doxygenclass:: HJCFIT::errors::PythonTypeError
+.. doxygenclass:: HJCFIT::errors::PythonValueError
diff --git a/documentation/source/api/cpp/idealG.rst b/documentation/source/api/cpp/idealG.rst
index 9b98546..cd9aa2a 100644
--- a/documentation/source/api/cpp/idealG.rst
+++ b/documentation/source/api/cpp/idealG.rst
@@ -3,4 +3,4 @@
IdealG
------
-.. doxygenclass:: DCProgs::IdealG
+.. doxygenclass:: HJCFIT::IdealG
diff --git a/documentation/source/api/cpp/laplace_survivor.rst b/documentation/source/api/cpp/laplace_survivor.rst
index 6356303..6f5d930 100644
--- a/documentation/source/api/cpp/laplace_survivor.rst
+++ b/documentation/source/api/cpp/laplace_survivor.rst
@@ -3,6 +3,6 @@
LaplaceSurvivor
---------------
-.. doxygenclass:: DCProgs::LaplaceSurvivor
+.. doxygenclass:: HJCFIT::LaplaceSurvivor
:members:
diff --git a/documentation/source/api/cpp/log10likelihood.rst b/documentation/source/api/cpp/log10likelihood.rst
index 8c3eda3..e968ba5 100644
--- a/documentation/source/api/cpp/log10likelihood.rst
+++ b/documentation/source/api/cpp/log10likelihood.rst
@@ -11,5 +11,5 @@ where :math:`L(Q)` is declared in :ref:`the likelihood equation `__ for more information.
@@ -42,7 +42,7 @@ result, this package exposes some of Eigen_'s capabilities, as needed. Their int
reminiscent of the numpy utility they mirror.
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autofunction:: eig
.. autofunction:: inv
.. autofunction:: svd
diff --git a/documentation/source/api/python/approx_survivor.rst b/documentation/source/api/python/approx_survivor.rst
index b4a9aaa..a83d452 100644
--- a/documentation/source/api/python/approx_survivor.rst
+++ b/documentation/source/api/python/approx_survivor.rst
@@ -3,7 +3,7 @@
ApproxSurvivor
--------------
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autoclass:: ApproxSurvivor
:members:
:special-members: __call__
diff --git a/documentation/source/api/python/determinanteq.rst b/documentation/source/api/python/determinanteq.rst
index a277336..3ad6da5 100644
--- a/documentation/source/api/python/determinanteq.rst
+++ b/documentation/source/api/python/determinanteq.rst
@@ -3,7 +3,7 @@
DeterminantEq
-------------
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autoclass:: DeterminantEq
:members:
:special-members: __call__
diff --git a/documentation/source/api/python/exact_survivor.rst b/documentation/source/api/python/exact_survivor.rst
index ac784c9..b12d3d8 100644
--- a/documentation/source/api/python/exact_survivor.rst
+++ b/documentation/source/api/python/exact_survivor.rst
@@ -3,7 +3,7 @@
ExactSurvivor
-------------
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autoclass:: ExactSurvivor
:members:
:special-members: __call__
diff --git a/documentation/source/api/python/idealG.rst b/documentation/source/api/python/idealG.rst
index 8d7e909..8d3cd2b 100644
--- a/documentation/source/api/python/idealG.rst
+++ b/documentation/source/api/python/idealG.rst
@@ -3,7 +3,7 @@
IdealG
------
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autoclass:: IdealG
:members:
diff --git a/documentation/source/api/python/log10likelihood.rst b/documentation/source/api/python/log10likelihood.rst
index 5f354f1..1955cdd 100644
--- a/documentation/source/api/python/log10likelihood.rst
+++ b/documentation/source/api/python/log10likelihood.rst
@@ -7,7 +7,7 @@ Log10Likelihood
:start-after: General Description Start
:end-before: General Description End
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autoclass:: Log10Likelihood
:members:
diff --git a/documentation/source/api/python/missed_eventsG.rst b/documentation/source/api/python/missed_eventsG.rst
index 042ce2e..e84d981 100644
--- a/documentation/source/api/python/missed_eventsG.rst
+++ b/documentation/source/api/python/missed_eventsG.rst
@@ -3,7 +3,7 @@
MissedEventsG
-------------
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autoclass:: MissedEventsG
:members:
:special-members: __call__
diff --git a/documentation/source/api/python/qmatrix.rst b/documentation/source/api/python/qmatrix.rst
index da632a2..d647ba8 100644
--- a/documentation/source/api/python/qmatrix.rst
+++ b/documentation/source/api/python/qmatrix.rst
@@ -3,7 +3,7 @@
QMatrix
-------
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autoclass:: QMatrix
:members:
diff --git a/documentation/source/api/python/roots.rst b/documentation/source/api/python/roots.rst
index ba38c0d..913874d 100644
--- a/documentation/source/api/python/roots.rst
+++ b/documentation/source/api/python/roots.rst
@@ -3,7 +3,7 @@
Searching for Roots
-------------------
-.. currentmodule:: dcprogs.likelihood
+.. currentmodule:: HJCFIT.likelihood
.. autofunction:: find_roots
Bracketing all Roots
diff --git a/documentation/source/conf.py b/documentation/source/conf.py
index d04813b..735d342 100644
--- a/documentation/source/conf.py
+++ b/documentation/source/conf.py
@@ -1,6 +1,6 @@
# -*- coding: utf-8 -*-
#
-# DCProgs documentation build configuration file, created by
+# HJCFIT documentation build configuration file, created by
# sphinx-quickstart on Wed Jul 31 17:46:57 2013.
#
# This file is execfile()d with the current directory set to its containing dir.
@@ -218,7 +218,7 @@
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
- ('index', 'dcprogs', u'@PROJECT_NAME@ Documentation',
+ ('index', 'HJCFIT', u'@PROJECT_NAME@ Documentation',
[u'Mayeul d\'Avezac'], 1)
]
@@ -305,8 +305,8 @@
def setup(app):
app.add_config_value('python_bindings', "@pythonBindings@", True)
- app.add_config_value('DCPROGS_USE_MPFR',
- @SPHINX_DCPROGS_USE_MPFR@, 'env')
+ app.add_config_value('HJCFIT_USE_MPFR',
+ @SPHINX_HJCFIT_USE_MPFR@, 'env')
python_bindings = "@pythonBindings@"
diff --git a/documentation/source/index.rst b/documentation/source/index.rst
index c184e27..087cc82 100644
--- a/documentation/source/index.rst
+++ b/documentation/source/index.rst
@@ -1,4 +1,4 @@
-.. DCProgs documentation master file, created by
+.. HJCFIT documentation master file, created by
sphinx-quickstart on Wed Jul 31 17:46:57 2013.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
@@ -7,11 +7,11 @@
Welcome to HJCFIT's documentation!
###################################
-The goal of HJCFIT is to provide a collection of tools for scientific research on ion channels. The
-package is derived from the DCPROGS_ suite and consists of a C++ implementation of the Likelihood
-calculations along with Python wrappers. The code is a port of Fortran code with ~30 years usage at
-University College London. The rationale is to preserve and cultivate these tools for future research
-applications.
+HJCFIT provides full maximum likelihood fitting of a kinetic mechanism directly to the entire sequence of open and shut times, with exact missed events correction.
+The package is derived from the DCPROGS_ suite and consists of a C++ implementation of the Likelihood
+calculations along with Python wrappers.
+
+The name of the program is an acronym for Hawkes, Jalali & Colquhoun, whose papers in 1990 and 1992 (HJC92) described the exact solution of the missed event problem, which is the basis of the program. The HJCFIT method was first described by Colquhoun, Hawkes & Srodzinski in 1996 (CHS96).
For a description of the methods involved, see :cite:`colquhoun:1982`, :cite:`hawkes:1992`,
:cite:`colquhoun:1995a`, :cite:`colquhoun:1995b`, :cite:`colquhoun:1996`.
diff --git a/documentation/source/install/customisinginstall.rst b/documentation/source/install/customisinginstall.rst
index 4956532..825c381 100644
--- a/documentation/source/install/customisinginstall.rst
+++ b/documentation/source/install/customisinginstall.rst
@@ -1,6 +1,6 @@
-******************************
-Customising build and install:
-******************************
+*****************************
+Customising build and install
+*****************************
Customising Installation location
=================================
@@ -14,13 +14,13 @@ fairly easy:
.. code-block:: bash
- cd /path/to/dcprogs_source/build
+ cd /path/to/HJCFIT_source/build
cmake .. -DCMAKE_INSTALL_PREFIX=/path/to/install/to
make
make install
The above will put executable in ``/path/to/install/to/bin``, headers in
-``/path/to/install/to/include``, and libraries in ```/path/to/install/to/lib``.
+``/path/to/install/to/include``, and libraries in ``/path/to/install/to/lib``.
Specific Eigen Installation
===========================
@@ -31,7 +31,7 @@ done with:
.. code-block:: bash
- cd /path/to/dcprogs_source/build
+ cd /path/to/HJCFIT_source/build
cmake .. -DEIGEN3_INCLUDE_DIR=/path/to/include/eigen3
@@ -48,7 +48,7 @@ deleted (delete the build, not the source directory!) before attempting to set t
.. code-block:: bash
- cd /path/to/dcprogs_source
+ cd /path/to/HJCFIT_source
mkdir build && build
export CC=/path/to/ccompiler
export CXX=/path/to/cppcompiler
@@ -66,8 +66,8 @@ a step in the right direction.
.. code-block:: bash
- cd /path/to/dcprogs/build
- cmake .. -DDCPROGS_LONG_DOUBLE=TRUE
+ cd /path/to/HJCFIT/build
+ cmake .. -DHJCFIT_LONG_DOUBLE=TRUE
At this juncture, functions that return python scalars are still returning real
numbers of 64bit. Functions that return numpy arrays have the correct size, however.
@@ -81,7 +81,7 @@ You can explicitly disable it by doing:
.. code-block:: bash
- cd /path/to/dcprogs/build
+ cd /path/to/HJCFIT/build
cmake .. -Dopenmp=off
@@ -92,7 +92,7 @@ The Python bindings are automatically enabled but can be disabled by doing:
.. code-block:: bash
- cd /path/to/dcprogs/build
+ cd /path/to/HJCFIT/build
cmake .. -DpythonBindings=off
Enabling fallback to Multi precision arithmetic
diff --git a/documentation/source/install/documentation.rst b/documentation/source/install/documentation.rst
index c62757a..f42edc8 100644
--- a/documentation/source/install/documentation.rst
+++ b/documentation/source/install/documentation.rst
@@ -1,5 +1,5 @@
***********************
-Building documentation:
+Building documentation
***********************
The documentation is written using `doxygen `_ for c++,
@@ -28,10 +28,7 @@ package.
* Linux:
apt-get, yum, pip or conda depending on your setup.
-* Mac: ``pip install sphinx`` or ``conda install sphinx``
-* Windows: Depending on your setup
- - ``conda.bat install sphinx``
- - or, ``pip install sphinx``
+* Mac and Windows: ``pip install sphinx`` or ``conda install sphinx``
.. warning::
If using a virtual environment, it is recommended to run
@@ -68,7 +65,7 @@ This means:
#. The library is in the ``PATH`` (windows), ``DYLD_LIBRARY_PATH`` (Mac),
or the ``LD_LIBRARY_PATH`` (Linux)
#. The python bindings are in the ``sys.path``
- (e.g. ``python -c "import dcprogs.likelihood"`` does not fail)
+ (e.g. ``python -c "import HJCFIT.likelihood"`` does not fail)
The reason for this is that python documentation software will interrogate
the package to find out what it contains. Hence the package needs to be
@@ -127,57 +124,39 @@ Updating the web-page
The data for the web page resides on the same git repository that the code does
in a special branch called ``gh-pages``. And conversely, github knows to
-render `here `__. anything that is in
+render `here `__ anything that is in
the branch ``gh-pages``.
It is possible to update the data and the web-page with the following commands:
#. Commit any changes to the code that should be kept safe.
-#. Go to the build directory
-#. Update the docs
-.. code-block:: bash
-
- make documentation
+#. Go to the build directory ``cd /path/to/build/``.
+#. Update the docs with ``make documentation`` (or ``nmake documentation`` on Windows).
#. Checkout the gh_pages using one the two lines below:
-.. code-block:: bash
-
- git checkout -t origin/gh-pages # If first time, if the branch does not exist
- git checkout gh-pages
+ .. code-block:: bash
+ git checkout -t origin/gh-pages # If first time, if the branch does not exist
+ git checkout gh-pages
-At this point, the source directory does not contain code anymore. It contains data for the documentation webpage.
+ At this point, the source directory does not contain code anymore. It contains data for the documentation webpage.
-1. Copy the new documentation from the build directory to the source directory:
+5. Copy the new documentation from the build directory to the source directory:
-.. code-block:: bash
-
- rsync -r documentation/sphinx/* ..
+ .. code-block:: bash
-1. Commit the changes to the documentation. If nothing happens,
- there were likely no changes:
-
-.. code-block:: bash
-
- git commit -a
+ rsync -r documentation/sphinx/* ..
+6. Commit the changes to the documentation ``git commit -a``. If nothing happens, there were likely no changes.
At this juncture, the data has been updated on the local computer. All that
needs to be done is to push it to github, so github knows to render it.
-1. Push the changes back to github so the web-site can be updated:
-
-.. code-block:: bash
-
- git push
+7. Push the changes back to github so the web-site can be updated ``git push``.
-1. Checkout the master branch again
-
-.. code-block:: bash
-
- git checkout master
+8. Checkout the master branch again ``git checkout master``.
Compiling the documentation without Python bindings
===================================================
diff --git a/documentation/source/install/install.rst b/documentation/source/install/install.rst
index de065c1..74b8ebf 100644
--- a/documentation/source/install/install.rst
+++ b/documentation/source/install/install.rst
@@ -1,29 +1,28 @@
-*******************************
-Building and installing HJCFIT:
-*******************************
+******************************
+Building and installing HJCFIT
+******************************
-Compiling DCProgs
+Compiling HJCFIT
=================
-A couple of design decisions affect the compilation of DCProgs.
+A couple of design decisions affect the compilation of HJCFIT.
-* `c++11 `_ is the new standard for
- the C++ programming languages. It is almost fully implemented by modern
+* `c++11 `_ is the new standard for the C++ programming languages. It is almost fully implemented by modern
(2013) compilers. However, access to c++11 is now always default, and not
always straight-forward. However, c++11 introduces a number of features that
simplifies programming (e.g. `move semantics `_)
greatly. This is a forward looking solution implying some temporary hassle.
-* [GTest](https://code.google.com/p/googletest/) is the c++ unit-test
- framework from google. It is required when running DCProgs' unit tests only.
+* `GTest `_ is the c++ unit-test
+ framework from google. It is required when running HJCFIT' unit tests only.
However, `GTest `_ must be compiled
- by the code it is testing. This means it should be shipped with DCProgs,
+ by the code it is testing. This means it should be shipped with HJCFIT,
or it should be downloaded automatically by the compilation tools. This is
the option we have chosen. When compiling tests,
`CMake `_ will automatically download and compile
`GTest`_
* The math is done using `Eigen `_,
- an efficient and widely used C++ numerical library.
+ an efficient and widely used C++ numerical library.
Dependencies
------------
@@ -41,15 +40,15 @@ Dependencies
or `mercurial `_ and let the build process
download eigen.
-To compile the python bindings for HJCFIT a few additional dependencies are
+
+To compile the Python bindings for HJCFIT a few additional dependencies are
needed.
#. A working Python installation.
-
-Multiple different ways of installing python exist. In general we recommend
-`Anaconda `_ but alternatives should work
-as well. In any case Python along with ``numpy`` and ``scipy`` should be
-installed. HJCFIT supports both Python 2.7 and Python 3
+ Multiple different ways of installing python exist. In general we recommend
+ `Anaconda `_ but alternatives should work
+ as well. In any case Python along with ``numpy`` and ``scipy`` should be
+ installed. HJCFIT supports both Python 2.7 and Python 3
#. `SWIG `_ used to generate the wrappings between C++ and
Python.
@@ -75,7 +74,7 @@ Then configure and build the code:
.. code-block:: bash
- cd /path/to/DCProgs
+ cd /path/to/HJCFIT
mkdir build && cd build
cmake ..
make
@@ -94,7 +93,7 @@ For any compiler, do:
.. code-block:: bash
- cd /path/to/DCProgs
+ cd /path/to/HJCFIT
mkdir build && cd build
diff --git a/documentation/source/install/runningarcher.rst b/documentation/source/install/runningarcher.rst
index 77d298c..87d3a70 100644
--- a/documentation/source/install/runningarcher.rst
+++ b/documentation/source/install/runningarcher.rst
@@ -1,8 +1,8 @@
.. _runningonarcher:
-*************************
-Running HJCFIT on Archer:
-*************************
+************************
+Running HJCFIT on Archer
+************************
There's good documentation about ARCHER on `their website
`__, but here's an extract of what is useful for
@@ -22,9 +22,6 @@ Once logged in ARCHER, there are two different filesystems we need to be aware o
nodes and other files that the compute nodes need to have access to when running
those executables.
-Note we have a shared folder for RSDG and DCProgs team under
-``/work/ecse0506/ecse0506/shared`` where we can place test data sets, etc.
-
.bashrc
=======
@@ -35,8 +32,8 @@ to create variables to move around the filesystem:
.. code-block:: bash
- export WORK=/work/ecse0506/ecse0506/$USER
- export SHARED=/work/ecse0506/ecse0506/shared
+ export WORK=/work/your/path/$USER
+ export SHARED=/work/your/path/shared
You can also configure aliases, like:
@@ -55,7 +52,7 @@ Python Virtual Environment
To work with Python on ARCHER, we are using a virtual environment, which is the strategy recommended by ARCHER.
To create it, you can run `this script `__
-that will install all the necessary packages to run HJCFIT in a virtual environment called ``dcprogs``.
+that will install all the necessary packages to run HJCFIT in a virtual environment called ``HJCFIT``.
You will also need to install any extra packages or projects you need, for example
to work with DCPYPS, you'll need to clone it and then install it:
@@ -69,8 +66,8 @@ Once the virtual environment is ready, you can activate or deactivate it with:
.. code-block:: bash
- source activate dcprogs
- source deactivate dcprogs
+ source activate HJCFIT
+ source deactivate HJCFIT
Loging in to ARCHER and getting HJCFIT
diff --git a/documentation/source/manual.rst b/documentation/source/manual.rst
index 55d4ffa..b1ba2f7 100644
--- a/documentation/source/manual.rst
+++ b/documentation/source/manual.rst
@@ -3,9 +3,9 @@ User Guide
**********
The likelihood :math:`L` of a sequence of observed open and shut events :math:`\{t_{oi}, t_{si}\}`
-can be computed as a series over the missed-events likelihoods for open events,
-:math:`{}^e\mathcal{G}_{AF}(t_{oi})` and the missed-events likelihoods for shut events,
-:math:`{}^e\mathcal{G}_{FA}(t_{oi})` :cite:`colquhoun:1996`:
+can be computed as a product of open-shut,
+:math:`{}^e\mathcal{G}_{AF}(t_{oi})` and shut-open transition densities,
+:math:`{}^e\mathcal{G}_{FA}(t_{oi})`, both accounting for missed events :cite:`colquhoun:1996`:
.. _log10likelihood_equation:
.. math::
@@ -16,8 +16,8 @@ can be computed as a series over the missed-events likelihoods for open events,
{}^e\mathcal{G}_{AF}(t_{on}) \phi_e
where :math:`Q` is the transition rate matrix, and :math:`\phi_A` and :math:`\phi_e` are the initial
-and final occupancies. All these objects -- as well as their components -- can be accessed both from
-python and from c++. In the following, we try and show how they can be created and manipulated from
+and final equilibrium vectors. All these objects -- as well as their components -- can be accessed both from
+Python and from C++. In the following, we try and show how they can be created and manipulated from
either language.
@@ -29,7 +29,7 @@ either language.
manual/likelihood_of_Q.rst
manual/missedeventsG.rst
manual/idealG.rst
- manual/occupancies.rst
+ manual/vectors.rst
manual/exact_survivor.rst
manual/approx_survivor.rst
manual/determinant_equation.rst
@@ -38,10 +38,10 @@ either language.
How to read this manual
-----------------------
-Each topic below is illustrated by an example in c++, and another in python. These examples can be
+Each topic below is illustrated by an example in C++, and another in Python. These examples can be
found in the source code of the package within the directory ``documentation/code``. In any case,
-one can copy paste.
+one can copy and paste.
The user guide should read using the left eye only, and keeping the right eye on the api, or
-vice-versa. Most of the c++ functions and python bindings offer more functionality or parameters
+vice-versa. Most of the C++ functions and Python bindings offer more functionality or parameters
than mentioned in the manual.
diff --git a/documentation/source/manual/approx_survivor.rst b/documentation/source/manual/approx_survivor.rst
index f5a6f24..2254ca9 100644
--- a/documentation/source/manual/approx_survivor.rst
+++ b/documentation/source/manual/approx_survivor.rst
@@ -36,13 +36,13 @@ where :math:`c_i` and :math:`r_i` are the column and row eigenvectors of a
The approximate survivor function can be initialized from a :math:`\mathcal{Q}`-matrix and the resolution
:math:`\tau`:
-:python:
+:Python:
.. literalinclude:: ../../code/approx_survivor.py
:language: python
:lines: 1-13
-:c++11:
+:C++11:
.. literalinclude:: ../../code/approx_survivor.cc
:language: c++
@@ -56,16 +56,16 @@ The approximate survivor function can be initialized from a :math:`\mathcal{Q}`-
The open and shut time survivor likelihood can be computed using a single call:
-:python:
+:Python:
- The python bindings accept both scalars and array inputs.
+ The Python bindings accept both scalars and array inputs.
.. literalinclude:: ../../code/approx_survivor.py
:language: python
:lines: 15-19
-:c++11:
+:C++11:
.. literalinclude:: ../../code/approx_survivor.cc
:language: c++
@@ -75,13 +75,13 @@ The open and shut time survivor likelihood can be computed using a single call:
The coefficient and the exponents of the exponentials that make up the asymptotic expression are
exposed as shown below.
-:python:
+:Python:
.. literalinclude:: ../../code/approx_survivor.py
:language: python
:lines: 23-
-:c++11:
+:C++11:
.. literalinclude:: ../../code/approx_survivor.cc
:language: c++
diff --git a/documentation/source/manual/determinant_equation.rst b/documentation/source/manual/determinant_equation.rst
index e21de6f..fc1ce8a 100644
--- a/documentation/source/manual/determinant_equation.rst
+++ b/documentation/source/manual/determinant_equation.rst
@@ -10,18 +10,18 @@ The function :math:`H(s)` is an integral defined as:
\int_0^\tau e^{-st}e^{\mathcal{Q}_{FF}t}\partial\,t\ \mathcal{Q}_{FA}
It is possible the function :math:`H` as well as its determinant using the
-:py:class:`~dcprogs.likelihood.DeterminantEq` objects. This is the object used when solving for the
+:py:class:`~HJCFIT.likelihood.DeterminantEq` objects. This is the object used when solving for the
approximate missed-events likelihood. The determinant equation is initialized in one of two ways,
-either from a matrix or :py:class:`~dcprogs.likelihood.QMatrix`.
+either from a matrix or :py:class:`~HJCFIT.likelihood.QMatrix`.
-:python:
+:Python:
.. literalinclude:: ../../code/determinanteq.py
:language: python
:lines: 3-17
-:c++11:
+:C++11:
.. literalinclude:: ../../code/determinanteq.cc
:language: c++
@@ -32,16 +32,16 @@ With an object in hand, it is possible to compute :math:`\mathop{det}W(s)` for a
following we demonstrate that the two initialization methods are equivalent and that the determinant
is zero at the roots of :math:`W(s)`, per definition.
-:python:
+:Python:
- The python bindings accept both scalars and arrays as input.
+ The Python bindings accept both scalars and arrays as input.
.. literalinclude:: ../../code/determinanteq.py
:language: python
:lines: 19-23
-:c++11:
+:C++11:
.. literalinclude:: ../../code/determinanteq.cc
:language: c++
@@ -51,7 +51,7 @@ is zero at the roots of :math:`W(s)`, per definition.
There exists a convenience function to transform a determinant equation into its "transpose", e.g.
one where A states become F states and F states become A states:
-:python:
+:Python:
.. literalinclude:: ../../code/determinanteq.py
:language: python
@@ -59,10 +59,10 @@ one where A states become F states and F states become A states:
.. note::
- Here we choose to create an input which has same internal type as the dcprogs package. This may
+ Here we choose to create an input which has same internal type as the HJCFIT package. This may
result in faster code since no conversion are required.
-:c++11:
+:C++11:
.. literalinclude:: ../../code/determinanteq.cc
:language: c++
@@ -72,13 +72,13 @@ one where A states become F states and F states become A states:
Finally, it is possible to compute :math:`H(s)` directly, as well as :math:`\frac{\partial
W(s)}{\partial s}`, as demonstrated below.
-:python:
+:Python:
.. literalinclude:: ../../code/determinanteq.py
:language: python
:lines: 30-
-:c++11:
+:C++11:
.. literalinclude:: ../../code/determinanteq.cc
:language: c++
diff --git a/documentation/source/manual/exact_survivor.rst b/documentation/source/manual/exact_survivor.rst
index 4f2d11c..9db98d2 100644
--- a/documentation/source/manual/exact_survivor.rst
+++ b/documentation/source/manual/exact_survivor.rst
@@ -47,14 +47,14 @@ Finally, the matrices :math:`D_i` are defined as:
The survivor function can be initialized from a :math:`\mathcal{Q}`-matrix and the resolution
:math:`\tau`:
-:python:
+:Python:
.. literalinclude:: ../../code/exact_survivor.py
:language: python
:lines: 1-13
-:c++11:
+:C++11:
.. literalinclude:: ../../code/exact_survivor.cc
:language: c++
@@ -62,16 +62,16 @@ The survivor function can be initialized from a :math:`\mathcal{Q}`-matrix and t
The open and shut time survivor likelihood can be computed using a single call:
-:python:
+:Python:
- The python bindings accept both scalars and array inputs.
+ The Python bindings accept both scalars and array inputs.
.. literalinclude:: ../../code/exact_survivor.py
:language: python
:lines: 15-19
-:c++11:
+:C++11:
.. literalinclude:: ../../code/exact_survivor.cc
:language: c++
@@ -81,13 +81,13 @@ The open and shut time survivor likelihood can be computed using a single call:
The details of the recursions, i.e. the :math:`C_{iml}` matrices, can be accessed directly as shown
below.
-:python:
+:Python:
.. literalinclude:: ../../code/exact_survivor.py
:language: python
:lines: 23-
-:c++11:
+:C++11:
.. literalinclude:: ../../code/exact_survivor.cc
:language: c++
diff --git a/documentation/source/manual/idealG.rst b/documentation/source/manual/idealG.rst
index 5de8232..8713530 100644
--- a/documentation/source/manual/idealG.rst
+++ b/documentation/source/manual/idealG.rst
@@ -1,8 +1,8 @@
-Ideal Likelihood :math:`\mathcal{G}(t)`
+Ideal transition densities :math:`\mathcal{G}(t)`
=======================================
-A wrapper around :py:class:`~dcprogs.likelihood.QMatrix` is provided which allows the calculation of
-the ideal likelihood:
+A wrapper around :py:class:`~HJCFIT.likelihood.QMatrix` is provided which allows the calculation of
+the ideal transition densities:
.. math::
@@ -16,22 +16,22 @@ the ideal likelihood:
This object can be initialized directly from a :py:class:`QMatrix`.
-:python:
+:Python:
.. literalinclude:: ../../code/idealG.py
:language: python
:lines: 2-11
-:c++11:
+:C++11:
.. literalinclude:: ../../code/idealG.cc
:language: c++
:lines: 1-20, 30-
-It provides the ideal likelihood as a function of time, as well as the laplace transforms:
+It provides the ideal likelihood as a function of time, as well as the Laplace transforms:
-:python:
+:Python:
.. literalinclude:: ../../code/idealG.py
:language: python
@@ -44,7 +44,7 @@ It provides the ideal likelihood as a function of time, as well as the laplace t
few useful functions, such as ``expm`` in this example, are provided to remediate to this
situation.
-:c++11:
+:C++11:
.. literalinclude:: ../../code/idealG.cc
:language: c++
diff --git a/documentation/source/manual/likelihood_of_Q.rst b/documentation/source/manual/likelihood_of_Q.rst
index 079f6a2..0e05c66 100644
--- a/documentation/source/manual/likelihood_of_Q.rst
+++ b/documentation/source/manual/likelihood_of_Q.rst
@@ -19,23 +19,23 @@ The purpose of this class is to provide an interface for maximizing the likeliho
for a given set of observed open and shut intervals, the likelihood :math:`\frac{\ln(L(Q))}{ln 10}`,
where :math:`L(Q)` is declared in :ref:`the likelihood equation `.
-A callable object :math:`L(Q)` exists in both :ref:`c++ ` and :ref:`python
+A callable object :math:`L(Q)` exists in both :ref:`C++ ` and :ref:`Python
`. It can be initialized as follows
-:python:
+:Python:
.. literalinclude:: ../../code/log10.py
:language: python
:lines: 2-15
-:c++11:
+:C++11:
.. literalinclude:: ../../code/log10.cc
:language: c++
:lines: 1-15, 28-
- The initialization of `bursts` above is done in using two newer c++11 coding techniques:
+ The initialization of `bursts` above is done in using two newer C++11 coding techniques:
`initializer lists `_, and `uniform initialization `_.
It may not be available from all compilers just yet...
@@ -45,13 +45,13 @@ Once the objects are initialized, the input attributes can be accessed (and modi
.. note::
- :py:func:`~dcprogs.likelihood.Log10Likelihood` uses equilibrium occupancies depending on the
- value of its attribute :py:attr:`~dcprogs.likelihood.Log10Likelihood.tcritical`:
+ :py:func:`~HJCFIT.likelihood.Log10Likelihood` uses equilibrium vectors depending on the
+ value of its attribute :py:attr:`~HJCFIT.likelihood.Log10Likelihood.tcritical`:
- - if it is ``None``, ``numpy.NaN``, or negative, then the equilibrium occupancies are used
- - if it a strictly positive real number, then the CHS vectors are computed
+ - if it is ``None``, ``numpy.NaN``, or negative, then the equilibrium vectors are used;
+ - if it is a strictly positive real number, then the CHS vectors are computed.
- Similarly, in c++, ``tcritical`` can be set to :c:data:`DCProgs::quiet_nan` to trigger
+ Similarly, in C++, ``tcritical`` can be set to :c:data:`HJCFIT::quiet_nan` to trigger
calculations with equilibrium occupancies.
It is required that the bursts have been pre-filtered so that there are no intervals smaller than
@@ -63,7 +63,7 @@ the resolution :math:`\tau`. This can be done using :cpp:func:`time_filter`
The likelihood for any Q-matrix can then be computed by calling the `likelihood` objects as though
they were function. The following snippets are inserted at the tail end of the previous code.
-:python:
+:Python:
.. literalinclude:: ../../code/log10.py
:language: python
@@ -72,36 +72,36 @@ they were function. The following snippets are inserted at the tail end of the p
The function can take any sort square matrix, whether using standard python lists or a numpy
array. It can only take one matrix at a time.
-:c++11:
+:C++11:
.. literalinclude:: ../../code/log10.cc
:language: c++
:lines: 17-25
-The return is the log-likelihood associated with the bursts and the input Q-matrix. In both python
-and c++, the functions accepts either a matrix or an actual :cpp:class:`DCProgs::QMatrix`
-(:py:class:`python `) object. In the former case, the number of open
+The return is the log-likelihood associated with the bursts and the input Q-matrix. In both Python
+and C++, the functions accepts either a matrix or an actual :cpp:class:`HJCFIT::QMatrix`
+(:py:class:`python `) object. In the former case, the number of open
states is set to `nopen`.
-It should be noted that the python the bursts are accessed in python directly from the likelihood
+It should be noted that the bursts are accessed in Python directly from the likelihood
using normal sequence operations. Only a small subset of sequence operations where implemented.
-:python:
+:Python:
.. literalinclude:: ../../code/log10.py
:language: python
:lines: 1, 27-37
-:c++11:
+:C++11:
- :cpp:member:`DCProgs::Log10Likelihood::bursts` is a public member and can be accessed directly.
+ :cpp:member:`HJCFIT::Log10Likelihood::bursts` is a public member and can be accessed directly.
Finally, some of the attributes, namely, :py:attr:`Log10Likelihood.tcritical`,
:py:attr:`Log10Likelihood.upper_bound`, :py:attr:`Log10Likelihood.lower_bound`, act both as
parameters and as switch when given special values. These special values are `None` and `numpy.NaN`
-in python and :c:data:`DCProgs::quiet_nan` in c++. In python, the special values will always be transformed
+in Python and :c:data:`HJCFIT::quiet_nan` in C++. In Python, the special values will always be transformed
to `None`.
:python:
diff --git a/documentation/source/manual/missedeventsG.rst b/documentation/source/manual/missedeventsG.rst
index 0957cc0..f6f786f 100644
--- a/documentation/source/manual/missedeventsG.rst
+++ b/documentation/source/manual/missedeventsG.rst
@@ -1,59 +1,59 @@
.. _manual_eG:
-Missed-Events Likelihood :math:`{}^eG(t)`
+Missed-Events transition densities :math:`{}^eG(t)`
=========================================
-The callable object :cpp:class:`DCProgs::MissedEventsG` provides an interface to compute the
+The callable object :cpp:class:`HJCFIT::MissedEventsG` provides an interface to compute the
likelihood :math:`{}^eG(t)` of open and shut events as a function of their lengths, for a fixed
:math:`Q`-matrix. It has the ability to compute both exact and approximate missed-events likelihood,
-returning one or the other depending on a given time cutoff.
+returning one or the other depending on a given time resolution.
-The asymptotic expression of the likelihood can be computed from the knowledge of the roots of a
+The asymptotic expression of the transition densities can be computed from the knowledge of the roots of a
specific equations. On the one hand, root-finding can be a fairly difficult numerical operation. On
-the other, it would be more convenient if we can initialize :cpp:class:`DCProgs::MissedEventsG`
+the other, it would be more convenient if we can initialize :cpp:class:`HJCFIT::MissedEventsG`
directly from a :math:`Q`-matrix object. As such, there are several means to initialize the functor:
-- from the knowledge of the roots and the determinant equations
-- directly from a :math:`Q`-matrix, using the default root-finding mechanism
-- from a :math:`Q`-matrix, using a custom root-finding mechanism (c++ only)
+- from the knowledge of the roots and the determinant equations;
+- directly from a :math:`Q`-matrix, using the default root-finding mechanism;
+- from a :math:`Q`-matrix, using a custom root-finding mechanism (C++ only).
Initialization from a :math:`Q`-matrix
""""""""""""""""""""""""""""""""""""""
-:python:
+:Python:
.. literalinclude:: ../../code/missedeventsG.py
:language: python
:lines: 1-11, 19
-:c++11:
+:C++11:
.. literalinclude:: ../../code/missedeventsG.cc
:language: c++
:lines: 1-18, 41, 55-
A fair amount of work goes on behind the scene. First reasonable upper and lower bounds for the
-roots obtained (:cpp:func:`DCProgs::find_lower_bound_for_roots`, and
-:cpp:func:`DCProgs::find_upper_bound_for_roots`). Then intervals for each roots are computed
-(:cpp:func:`DCProgs::find_root_intervals`). And finally, the roots themselves are obtained
-(:cpp:func:`DCProgs::brentq`). All this work is done automatically in the case of this particular
-instantiation. A few extra parameters to control the root-finding process can be passed to the c++
-and python constructors.
+roots obtained (:cpp:func:`HJCFIT::find_lower_bound_for_roots`, and
+:cpp:func:`HJCFIT::find_upper_bound_for_roots`). Then intervals for each roots are computed
+(:cpp:func:`HJCFIT::find_root_intervals`). And finally, the roots themselves are obtained
+(:cpp:func:`HJCFIT::brentq`). All this work is done automatically in the case of this particular
+instantiation. A few extra parameters to control the root-finding process can be passed to the C++
+and Python constructors.
Initialization from the roots and determinant equations
"""""""""""""""""""""""""""""""""""""""""""""""""""""""
-:python:
+:Python:
.. literalinclude:: ../../code/missedeventsG.py
:language: python
:lines: 13-16
-:c++11:
+:C++11:
.. literalinclude:: ../../code/missedeventsG.cc
:language: c++
@@ -68,7 +68,7 @@ Initialization from the :math:`Q`-matrix and a root finding function
Given a root-finding function, it is possible to instantiate :math:`{}^eG`. The root finding
function should take a determinant equation as input, and return a vector of
-:cpp:class:`DCProgs::Root` as output. In the code below, we show how the prior initialization could
+:cpp:class:`HJCFIT::Root` as output. In the code below, we show how the prior initialization could
be recreated.
.. literalinclude:: ../../code/missedeventsG.cc
@@ -76,7 +76,7 @@ be recreated.
:lines: 35-38
This is mostly a convenience function, to make it slightly easier to interface with other
-root-finding methods in c++. This interface is not explicitly available in python, although it can
+root-finding methods in C++. This interface is not explicitly available in Python, although it can
be created with ease.
@@ -105,9 +105,9 @@ The python bindings accept any input that can be transformed to a numpy array of
is a scalar, then the AF and FA blocks are returned. If the input is an array, then an array of
similar shape is returned, where each component is a matrix.
-The :cpp:class:`DCProgs::MissedEventsG` provides further functionality. For instance, the cutoff
+The :cpp:class:`HJCFIT::MissedEventsG` provides further functionality. For instance, the cutoff
point between exact and asymptotic calculations can be set explicitly (it defaults to :math:`t <
3\tau`). And the likelihood can be computed in Laplace space (see
-:cpp:member:`DCProgs::MissedEventsG::laplace_af` and
-:cpp:member:`DCProgs::MissedEventsG::laplace_fa`). We invite users to turn to the :ref:`python
+:cpp:member:`HJCFIT::MissedEventsG::laplace_af` and
+:cpp:member:`HJCFIT::MissedEventsG::laplace_fa`). We invite users to turn to the :ref:`python
` and the :ref:`c++ ` API for more details.
diff --git a/documentation/source/manual/occupancies.rst b/documentation/source/manual/occupancies.rst
deleted file mode 100644
index 0b1b6b9..0000000
--- a/documentation/source/manual/occupancies.rst
+++ /dev/null
@@ -1,58 +0,0 @@
-.. _manual_occupancies:
-
-Occupancies
-===========
-
-The start and end occupancies can be computed one of two way. They can be the equilibrium
-occupancies determined from the equation:
-
-.. math::
-
- \phi_A = \phi_A {}^e\mathcal{G}_{AF} {}^e\mathcal{G}_{FA},\\
- \phi_F = {}^e\mathcal{G}_{FA} {}^e\mathcal{G}_{AF} \phi_F,\\
-
-subject to the constraints,
-
-.. math::
-
- \sum_i [\phi_A]_i = 1,\\
- \sum_i [\phi_F]_i = 1.
-
-Where :math:`{}^e\mathcal{G}_{AF}` and :math:`{}^e\mathcal{G}_{FA}` are the laplacians of the
-missed-events likelihoods (or equivalently, the ideal likelihoods) for :math:`s=0`, and
-:math:`[a]_i` indicates the :math:`i^{th}` component of vector :math:`a`.
-
-Or they can be computed as CHS vectors, e.g. equation 5.11 and 5.8 from :cite:`colquhoun:1996`.
-
-The occupancies are accessed differently in :ref:`c++ ` and in python.
-
-:python:
-
- The equilibrium occupancies are accessed as properties of :py:class:`~dcprogs.likelihood.IdealG`
- and :py:class:`~dcprogs.likelihood.MissedEventsG` instances. The CHS vectors are functions of
- these same classes that take as arguments the critical time.
-
-
- .. literalinclude:: ../../code/occupancies.py
- :language: python
-
-
-:c++11:
-
- Both equilibrium and CHS occupancies are accessed via function calls acting on the
- :cpp:class:`IdealG` and :cpp:class:`MissedEventsG`.
-
- .. literalinclude:: ../../code/occupancies.cc
- :language: c++
-
-In c++, the occupancies are kept outside of the classes because computing these values is outside
-the pure remit of the classes (which is to compute the likelihood). However, in python, practicality
-beats purity, and it makes practical sense to keep likelihood and occupancies together.
-
-.. note::
-
- :py:func:`~dcprogs.likelihood.Log10Likelihood` uses equilibrium occupancies depending on the
- value of its attribute :py:attr:`~dcprogs.likelihood.Log10Likelihood.tcritical`:
-
- - if it is ``None``, ``numpy.NaN``, or negative, then the equilibrium occupancies are used
- - if it a strictly positive real number, then the CHS vectors are computed
diff --git a/documentation/source/manual/roots.rst b/documentation/source/manual/roots.rst
index 96c349b..d2e97a9 100644
--- a/documentation/source/manual/roots.rst
+++ b/documentation/source/manual/roots.rst
@@ -3,9 +3,9 @@ Searching for Roots
The default procedure for finding roots is a three step process:
-1. Searching for sensible upper and lower bounds bracketing all roots
-2. Bisecting the bracket above to obtain bracket with a single root each
-3. Using a standard root-finding method to search for the root within that bracket
+1. Searching for sensible upper and lower bounds bracketing all roots.
+2. Bisecting the bracket above to obtain bracket with a single root each.
+3. Using a standard root-finding method to search for the root within that bracket.
The first step is carried out by iteratively computing the eigenvalues of :math:`H(s)` and setting
the candidate lower(upper) boundary below(above) the smallest(largest) eigenvalue. Additionally, the
@@ -13,7 +13,7 @@ upper boundary is set to a value such that :math:`\mathop{det}H(s)` is strictly
two convenience functions to encapsulate this functionality, :py:func:`find_upper_bound_for_roots`
and :py:func:`find_lower_bound_for_roots`.
-:python:
+:Python:
.. literalinclude:: ../../code/roots.py
:language: python
@@ -25,7 +25,7 @@ and :py:func:`find_lower_bound_for_roots`.
linear algebra utilities for such type. As consequence, this package exposes some of the
functionality that it needs for its reals.
-:c++11:
+:C++11:
.. literalinclude:: ../../code/roots.cc
:language: c++
@@ -40,13 +40,13 @@ It is possible in most function and classes to pass actual values for the upper
The second step of the process is to bisect the input bracket until intervals are found which
contain a single root (e.g. a single eigenvalue of H(s)).
-:python:
+:Python:
.. literalinclude:: ../../code/roots.py
:language: python
:lines: 31
-:c++11:
+:C++11:
.. literalinclude:: ../../code/roots.cc
:language: c++
@@ -56,13 +56,13 @@ The third step is performed by calling (by default) the :py:func:`brentq` subrou
copied straight from Scipy, with some modifications to allow it to cope with long doubles, if need
be.
-:python:
+:Python:
.. literalinclude:: ../../code/roots.py
:language: python
:lines: 32-35
-:c++11:
+:C++11:
.. literalinclude:: ../../code/roots.cc
:language: c++
@@ -73,13 +73,13 @@ parameters in the snippets below, :py:func:`find_roots` can take variety of para
the root-finding procedure. Most notably, it accepts ``lower_bound`` and ``upper_bound`` keywords,
allowing users to by-pass the first step if need be.
-:python:
+:Python:
.. literalinclude:: ../../code/roots.py
:language: python
:lines: 38-39
-:c++11:
+:C++11:
.. literalinclude:: ../../code/roots.cc
:language: c++
diff --git a/documentation/source/manual/vectors.rst b/documentation/source/manual/vectors.rst
new file mode 100644
index 0000000..7c18ed3
--- /dev/null
+++ b/documentation/source/manual/vectors.rst
@@ -0,0 +1,58 @@
+.. _manual_vectors:
+
+Equilibrium vectors
+===========
+
+The start and end equilibrium vectors can be computed in two ways depending on the burst/cluster nature. They can be the equilibrium
+vectors determined from the equation:
+
+.. math::
+
+ \phi_A = \phi_A {}^e\mathcal{G}_{AF} {}^e\mathcal{G}_{FA},\\
+ \phi_F = {}^e\mathcal{G}_{FA} {}^e\mathcal{G}_{AF} \phi_F,\\
+
+subject to the constraints,
+
+.. math::
+
+ \sum_i [\phi_A]_i = 1,\\
+ \sum_i [\phi_F]_i = 1.
+
+Where :math:`{}^e\mathcal{G}_{AF}` and :math:`{}^e\mathcal{G}_{FA}` are the laplacians of the
+missed-events transition densities :math:`{}^e\mathcal{G}(t)` (or equivalently, the ideal transition densities) for :math:`s=0`, and
+:math:`[a]_i` indicates the :math:`i^{th}` component of vector :math:`a`.
+
+On the other hand equilibrium vectors can be computed as CHS vectors, e.g. equation 5.11 and 5.8 from :cite:`colquhoun:1996`.
+
+The vectors are accessed differently in :ref:`C++ ` and in Python.
+
+:Python:
+
+ The equilibrium vectors are accessed as properties of :py:class:`~HJCFIT.likelihood.IdealG`
+ and :py:class:`~HJCFIT.likelihood.MissedEventsG` instances. The CHS vectors are functions of
+ these same classes that take as arguments the critical time.
+
+
+ .. literalinclude:: ../../code/vectors.py
+ :language: python
+
+
+:C++11:
+
+ All vectors are accessed via function calls acting on the
+ :cpp:class:`IdealG` and :cpp:class:`MissedEventsG`.
+
+ .. literalinclude:: ../../code/vectors.cc
+ :language: c++
+
+In C++, the vectors are kept outside of the classes because computing these values is outside
+the pure remit of the classes (which is to compute the likelihood). However, in Python, practicality
+beats purity, and it makes practical sense to keep likelihood and equilibrium vectors together.
+
+.. note::
+
+ :py:func:`~HJCFIT.likelihood.Log10Likelihood` uses equilibrium vectors depending on the
+ value of its attribute :py:attr:`~HJCFIT.likelihood.Log10Likelihood.tcritical`:
+
+ - if it is ``None``, ``numpy.NaN``, or negative, then the equilibrium vectors are used;
+ - if it is a strictly positive real number, then the CHS vectors are computed.
diff --git a/documentation/source/mpfr.rst b/documentation/source/mpfr.rst
index 595a429..bfa74fa 100644
--- a/documentation/source/mpfr.rst
+++ b/documentation/source/mpfr.rst
@@ -8,7 +8,7 @@ precision of the floating point numbers use to represent values within the
code. To work around these issues the code is able to use GMP and MPFR to
perform specific calculations at higher precision. As multi precision math is
not implemented in hardware it comes with very significant run time overhead,
-typically orders of magnitude slower we have added support for multi-precision
+typically orders of magnitude slower. We have added support for multi-precision
as a fall back mechanism. Currently there is only support for fallback in
``find_eigs_bound`` which is known to be problematic. The pattern that we
follow is to do the calculations with regular precision floating point. If that
@@ -24,4 +24,4 @@ linux if not found. However, this feature is not enabled on Windows by default.
``MPIR`` as a drop-in replacement for ``GMP`` on windows which ``MPFR`` can be
linked against. However, there is currently no support for building this
automatically on windows. To control if this option should be enabled the flag
-``DCPROGS_USE_MPFR`` can be set to ``on`` or ``off``.
+``HJCFIT_USE_MPFR`` can be set to ``on`` or ``off``.
diff --git a/documentation/source/parallel.rst b/documentation/source/parallel.rst
index d145889..0e755cb 100644
--- a/documentation/source/parallel.rst
+++ b/documentation/source/parallel.rst
@@ -8,20 +8,19 @@ Running likelihood calculations in parallel
OpenMP
======
-HJCFIT will by default be compiled with openmp support. The parallelisation
-is by default over either the number of bursts or over the individual open
+HJCFIT will be compiled with openmp support by default. The parallelisation
+is over either the number of bursts or over the individual open/
close transitions within the burst. Typically experiments either have many
-short bursts or a few long bursts so it really only makes sense to parallelise
+short bursts or a few long bursts so it makes sense to parallelise
over one of these axes. The code takes care of detecting which axis to
parallelise over automatically. The number of threads can be controlled by
the usual environmental variable ``OMP_NUM_THREADS``. Running on a PC this
-will probably be set to the number of cores in the computer which is probably
-the optimal solution in most cases.
+will probably be set to the number of cores in the computer which is the optimal solution in most cases.
CMake takes care of identifying the correct compiler flags and enables OpenMP
automatically on all supported platforms. Currently (2016) Clang on OSX does not
support OpenMP (but the code can be compiled on OSX using gcc from homebrew
-or similar)
+or similar).
OpenMP can be disabled explicitly by setting the CMake variable ``openmp`` to
off.
@@ -31,4 +30,4 @@ off.
MPI
===
-Write something about MPI
+TODO
diff --git a/exploration/.ipynb_checkpoints/CB-checkpoint.ipynb b/exploration/.ipynb_checkpoints/CB-checkpoint.ipynb
new file mode 100644
index 0000000..ebdaaa4
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/CB-checkpoint.ipynb
@@ -0,0 +1,245 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CB Model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following tries to reproduce Fig 10 from [Hawkes, Jalali, Colquhoun (1992)](http://dx.doi.org/10.1098/rstb.1992.0116). First we create the $Q$-matrix for this particular model from [Hawkes, Jalali, Colquhoun (1992)](http://dx.doi.org/10.1098/rstb.1992.0116). First we create the $Q$-matrix for this particular model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import QMatrix\n",
+ "\n",
+ "tau = 0.2\n",
+ "qmatrix = QMatrix([ [-2, 1, 1, 0], \n",
+ " [ 1, -101, 0, 100], \n",
+ " [50, 0, -50, 0],\n",
+ " [ 0, 5.6, 0, -5.6]], 1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We then create a function to plot each exponential component in the asymptotic expression. An explanation on how to get to these plots can be found in the **CH82** notebook."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood._methods import exponential_pdfs\n",
+ "\n",
+ "def plot_exponentials(qmatrix, tau, x0=None, x=None, ax=None, nmax=2, shut=False):\n",
+ " from HJCFIT.likelihood import missed_events_pdf\n",
+ " from HJCFIT.likelihood._methods import exponential_pdfs\n",
+ " if ax is None: \n",
+ " fig, ax = plt.subplots(1,1)\n",
+ " if x is None: \n",
+ " x = np.arange(0, 5*tau, tau/10)\n",
+ " if x0 is None: \n",
+ " x0 = x\n",
+ " pdf = missed_events_pdf(qmatrix, tau, nmax=nmax, shut=shut)\n",
+ " graphb = [x0, pdf(x0+tau), '-k']\n",
+ " functions = exponential_pdfs(qmatrix, tau, shut=shut)\n",
+ " plots = ['.r', '.b', '.g']\n",
+ " together = None\n",
+ " for f, p in zip(functions[::-1], plots):\n",
+ " if together is None: \n",
+ " together = f(x+tau)\n",
+ " else: \n",
+ " together = together + f(x+tau)\n",
+ " graphb.extend([x, together, p])\n",
+ "\n",
+ " ax.plot(*graphb)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For practical reasons, we plot the excess shut-time probability densities in the graph below. In all other particulars, it should reproduce Fig. 10 from [Hawkes, Jalali, Colquhoun (1992)](http://dx.doi.org/10.1098/rstb.1992.0116)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAKDCAYAAADsJhDzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VOXZ//HPlbCEJUAAQVatoAhhVfZFAoiGYGvt4kpR\n6oJb9amt1qdqQYttXWq1pS1StS7VR60/ixaRnUBAlsi+y1JRoCBCQoIQtly/P2YyDjFAZkgyWb7v\n12teyZlzn/tck9ocvrnvcx9zd0RERERERKRkxcW6ABERERERkcpIYUtERERERKQUKGyJiIiIiIiU\nAoUtERERERGRUqCwJSIiIiIiUgoUtkREREREREpBTMKWmaWa2QYz+8TMfnGSNn80s01mtsLMuhba\nF2dmy8zs/bD3xpjZ9uD7y8wstbQ/h4iIiIiInLnKmg+qlfUJzSwOGA8MAXYCmWb2nrtvCGszDGjj\n7uebWS9gAtA7rJt7gXVAvULdP+Puz5TqBxARERERkRJTmfNBLEa2egKb3H2bux8F3gSuLNTmSuBV\nAHdfDNQ3s6YAZtYSSANeKKJvK7WqRURERESkNFTafBCLsNUC+Dxse3vwvVO12RHW5g/A/YAX0ffd\nwWHFF8ysfgnVKyIiIiIipafS5oMKtUCGmQ0Hdrv7CgIpNTyp/gU4z927ArsATScUEREREanEyns+\nKPN7tgik0NZh2y2D7xVu06qINj8AvmNmaUAtINHMXnX3ke6+J6z934B/F3VyMysq8YqISBlz9zKf\n2qFrgIhI7BXx+z+m+aA0xWJkKxNoa2bnmFkN4Frg/UJt3gdGAphZbyDb3Xe7+y/dvbW7nxc8bra7\nF7Q7O+z47wFrTlaAu+tVxGvMmDExr6G8vvSz0c9GP5uSfcVSrD97eX3pv1f9bPSz0c+lLF4nEfN8\nUFrKfGTL3Y+b2d3AdAJh70V3X29mowO7faK7TzGzNDPbDHwFjCpG108Gl4DMBz4FRpfSRxARERER\nkRJSmfNBLKYR4u5TgXaF3nu+0Pbdp+ljLjA3bHtkSdYoIiIiIiJlo7Lmgwq1QIaUrpSUlFiXUG7p\nZ3Ny+tmcnH42UpHov9eT08/m5PSzKZp+LlLATjF3slIyM69qn1lEpLwxMzxGC2ToGiAiEjux+v0f\nKxrZEhERERERKQUKWyIiIiIiIqVAYUtERERERKQUKGyJiIiIiIiUAoUtERERERGRUqCwJSIiIiIi\nUgoUtkREREREREqBwpaIiIiIiEgpUNgSEREREREpBQpbIiIiIiIipUBhS0REREREpBQobImIiIiI\niJQChS0REREREZFSoLAlIiIiIiJSCqrFuoCKauvWraxYsYKDBw9St25d2rZtS9u2bUlISIh1aSIi\nIiIiUg4obEVow4YN3HHHHaxfv56ePXtSr1499u/fz+bNm/nss8/o0qUL/fv3Z+DAgaSkpFCnTp1Y\nlywiIiIiIjFg7h7rGsqUmXm0n3n58uWkpqbyyCOPcPvtt1Ot2olZ9eDBgyxevJj58+cza9Ysli5d\nSp8+fUhNTWXYsGFceOGFmFlJfAwRkQrNzHD3Mv+FeCbXABEROXOx+v0fKwpbxXTgwAG6du3KuHHj\nuPbaa4t1TE5ODrNnz+bDDz/kww8/JC4ujmHDhpGWlsbgwYM16iUiVZbClohI1aSwVclFe6F9/PHH\nWb16NW+++WZU53V31q9fz5QpU5gyZQqZmZn07duX4cOHk5aWRtu2baPqV0SkIlLYEhGpmhS2Krlo\nLrRHjhyhRYsWzJ8/n3bt2pVIHTk5OcycOTMUvurWrUtaWhppaWkMHDiQmjVrlsh5RETKI4UtEZGq\nSWGrLE5qlgo8S2Dp+Rfd/Yki2vwRGAZ8Bdzk7ivC9sUBHwPb3f07wfeSgLeAc4BPgavdfX8R/UZ8\noV2+fDk/+tGPWLNmTUTHFZe7s2LFilDwWrNmDSkpKaSlpTFs2DBat25dKucVEYkVhS0RkapJYau0\nTxgISp8AQ4CdQCZwrbtvCGszDLjb3YebWS/gOXfvHbb/p8DFQL2wsPUEsNfdnzSzXwBJ7v5gEeeP\n+EL7t7/9jQULFvDyyy9H+Gmjs3fvXqZNm8aUKVOYOnUqzZo1C0037NOnD9WrVy+TOkRESovClohI\n1VTew5aZVQN+CPQJvlUHOA4cBFYBb7h7XrH7i0HY6g2Mcfdhwe0HAQ8f3TKzCcAcd38ruL0eSHH3\n3WbWEvg78DhwX1jY2gAMDLY5G0h39wuLOH/EF9rRo0fTqVMn7r777mg+8hk5fvw4mZmZTJkyhQ8+\n+ICtW7cydOhQhg8fTmpqKk2bNi3zmkREzpTClohI1VSew5aZ9QAGADPcfXUR+9sAw4GV7j63OH3G\nlWyJxdIC+Dxse3vwvVO12RHW5g/A/UDhq2UTd98N4O67gCYlVfDHH39M9+7dS6q7iMTHx9O7d28e\ne+wxli5dyrp16xg2bBiTJ0/mwgsvpEePHowZM4bFixeTn58fkxpFRERERCqBPHd/pqigBeDuW9z9\nj8DnZlajOB1WqIcam9lwYLe7rzCzFOBUqfikf7ocO3Zs6PuUlBRSUlJO2kleXh7r16+nS5cukZZb\nKpo1a8aoUaMYNWoUR48eZcGCBUyZMoWbb76ZL774gtTUVNLS0rjsssto2LBhrMsVEQEgPT2d9PT0\nWJchIiJyUuEhy8yaFgzkmFktdz8U1m5rcfuM1TTCse6eGtwuzjTCDcBA4F5gBHAMqAUkAu+6+8hC\nUw3PDh7fvojzRzSFJDMzk1tvvZUVK1acvnGMbdu2LbTIxty5c+nSpUtohcPOnTvrgcoiUm5oGqGI\nSNVUnqcRApjZ/wLLgVbu/rfge92BRHefE3F/MQhb8cBGAgtk/BdYAlzn7uvD2qQBdwUXyOgNPBu+\nQEawzUDgZ4UWyNjn7k+U5AIZf/3rX1m6dCkvvPBCxJ81lvLy8pg7d27oXq+8vDyGDRvG8OHDGTJk\nCImJibEuUUSqMIUtEZGqqQKErQuBQcAtBG5l2kUgr7Rw90cj7i+GS78/x9dLv//OzEYTGOGaGGwz\nHkglsPT7KHdfVqiPwmGrIfA20ArYRmDp9+wizh3Rhfbmm2+mR48e3H777VF80vLB3dm0aVNo1Gvh\nwoX06tWLtLQ0hg8fzgUXXKBRLxEpUwpbIiJVU3kPWwXMLNXdp5pZU6AnsNPdl0bcT1W76ER6oe3a\ntSsvvPBCzBbIKA0HDhxg1qxZofBVo0aN0DO9UlJSqF27dqxLFJFKTmFLRKRqKq9hy8xqAnXdfW8x\n2rZy989P1w4Utk7p0KFDNG7cmH379lGzZs1Sriw23J01a9bwwQcfMHXqVJYuXUrv3r25/PLLSU1N\nJTk5WaNeIlLiYhq2cnJAU6lFRGKivIYtADO7gsCaEJPCF8QI298AuBpY5+7zi9WnwtbJLVq0iLvu\nuoulSyMeMaywcnJymDNnDlOnTmXatGkcOXKEyy+/nMsvv5xLL71UKxyKSImIadjq0gUyMk4MXLm5\nsGYNdOz4zSB2qn0iIhKR8hy2AIIL7f2YwGOkEgis3l7wUOPtwAvuvr/Y/Slsndz48eNZvXo1zz//\nfClXVT65O5s3bw4Fr3nz5pGcnExqaiqXX345PXr0ID4+PtZlikgFFNOwVb06zJsHvYPrLuXmwoAB\nsHYtJCefGMROta9gv0KaiEixlfewVdJi8VDjCiOWDzMuD8yM888/n5/85CdMnjyZPXv2MG7cOA4c\nOMBtt91GkyZNuOaaa3jppZfYsWNHrMsVESmeDh0CwanAmjWBMHXsGKxbF/i+OPsKgtgllwS+5uYW\nb1/B/oULv/n+6faJiEiZMrM6wa/VzCzi7KSwdQpVPWwVVrNmTYYMGcJTTz3FqlWrWLVqFampqUyb\nNo3OnTvTqVMn7r//fmbOnMnhw4djXa6ISNEKj0517BgIX9WrfzOInWpfeQtpxdkvIiLFZmYPAGPM\n7GmgPjAh4j40jbBoBw4coGnTpmRlZVGjRo0yqKxiO378OJmZmUybNo2pU6eydu1aBgwYEJpyeP75\n52uhDREJKXerEebmfj1VsKjpgEXtKwhG69YFglhR0w+L2rdwYSBMHTsWCHHhUxpPta84Uxo15VFE\nyrmKNI0w+KipRcBR4AfAZe5+S0R9KGwVbf78+fzsZz9j8eLFZVBV5bNv3z5mzpwZCl81a9YMLbQx\nePBg6tWrF+sSRSSGyl3YilZ5CWmn26/70kSknKhgYas7cLG7Px/cvt7d34ioD4Wtoj333HN88skn\n/PnPfy6Dqio3d2ft2rWhhTYWLVpE165dGTp0KEOHDqVHjx5Uq1Yt1mWKSBmqNGErWiUd0k63vzRG\n0xTSRCQKFSlslQSFrZP40Y9+xODBgxk1alQZVFW1HDx4kIyMDGbMmMH06dP5/PPPGTRoUCh8tWnT\nRlMORSq5Kh+2onWqkHaq/eVpymNphTQFOJEKoSKHLTPr6O5rIjqmQl90olDcC2379u15++236dSp\nUxlUVbXt2rWLmTNnMmPGDGbMmEHNmjW57LLLGDp0KIMHD9azvUQqIYWtGCgvUx5LI6SdSYArzn4R\nKTEVLWyZWSugKbAbaObuSyI6vjgXHTOrBvwQ6BN8qw5fP9xrFfCGu+dFcuJYKc6FNicnh+bNm5Od\nna3pbWWsYMphQfDKyMigffv2DB06lMsuu4w+ffpowRKRSkBhqwKpCCFNC4uIVBgVKWyZ2WigJnAA\naAAcd/fnIurjdBcdM+sBDABmuPvqIva3AYYDK919biQnj4XiXGjT09N56KGHWLBgQRlVJSdz+PBh\nPvroo1D42rhxIwMGDAiFr/bt22vKoUgFpLBVBZRCSNt5yaVM3pfHFQ0TaD5vZvH2LVzIziHDmNyo\nJVfs20HzWR9+Y2GRk+6P9pwFn0UhTeQbKljYutTdZ4ZtD3L3ORH1UYyw1amokFVEu/OA7e5+JJIC\nylpxLrRPPfUUO3bs4Nlnny2jqqS49u7dy6xZs0Lh6+jRo6F7vS699FKaNm0a6xJFpBgUtuRkdn66\nk8kfzOaK4YNpfm7zr9/fm0ubcf3JS1xHzZz2pI98gzrVnQMHDrDtv3sZmf4gRxtspHp2O353wT3U\nrQHHjh0je89+Htv1CofP2kLNPW14oME11K5fi7i4OMyMvNw8Ht/zemj/2GY3Uf+s+tSsWZOan3zK\nLfvfIu+srSTsOY9/tbmLen27U7NmTQ5/vIohK34X2rcm9Vm+9e3LiYuLO6OQtvPTnUyePJsrrjjx\n8xccq5AmFV0FC1s9gauBWsB+YIq7z4+oj0guOmbW1N13B7+v5e6HIjlZeVCcC+3VV1/Nd77zHUaM\nGFFGVUk03J3Nmzczffp0ZsyYQXp6Oueee24ofA0YMIBatWrFukwRKYLCVtW2c28uk5es4YqeHWne\nKJH9+/fz2WefsXztJm5e8CuOJW0kft/5XL6zM1/t28WXX37JZ/n1yP1BJsQfg2PVafh+H5rn76Nu\n3bpk123Jhj6TQvv6bLyJ5PpO9erV2XCgGnPO/WtoX+que+ncMA53Jz8/n5V7jzOz1fjQ/pRPR9Ou\nzlEOHz7Mpqx8FnR+I7QvOSONxMO7OXz4MPviG7FtWHpoX+LryRz4dCUJCQn0rFWfxVfXCwWxHy5J\n4sumDalTpw7nHjjM+HM3hvY9TSo1LupIvXr1yD/sjFo0lsONt5DwZRs+vu1dLkg+n+rVq59RSDtl\ngBMpYxUpbJWE4t6z9b/AcqCVu/8t+F53IDHSobRYO9mFds2aNXTq1Al357zzzuPDDz+kXbt2MahQ\nonXs2DGWLFkSWuVw1apV9OrViyFDhjBkyBAuvvhi4uPjY12miKCwVRUUDlQ5OTls3LiRhUtXc9/a\n33M86RPsyzbUfjMbO/oVrVu3hlYdWdfz3VCAua3G01zbvxONGzfmWHwt+v7t++TVXU/CgQ5seTiD\n5o0SQ+dqM24AeXXXRbSveMf2D56zPVsenn/KfWcn1eHQoUNM+H+z+Pnm74c+x/2Jf+KSDi04ePAg\nUz/ezN8Txnwd/j4dTYuah8jJyWHvrkPMTpka2tf+/zqx8T8rqFmzJn3qNuSj79cJhbSbVrfgwLda\nUK9ePWrE1eSvx6aERucmdn+Ic88/hwYNGnD4wBEu+ccI8oIBbssDs08cMVRIkzKmsFVUI7MLgUHA\nLcAOYBewBGjh7o+WaoUl7GQX2ilTpjB8+HD27NlDmzZtyMrKCkwFkApr//79zJ07l1mzZjFr1ix2\n7NjBwIEDQ+FL93uJxI7CVuW2Yet2ujw3jCP1NxC393xaz4zni+1badeuHdW+1ZXM5NdCgeK5bh/y\nk6sGY2bFCkZTMteS1iP5hPfPZF9p9BtpSAvt+3QnbZ4cTF6jrSTsPY8tD8ym2TnNOHjwIH99Zyb3\nb/lB6Od2d7Wn6PGtJHJycli2cD1/bzMxtG9oRhqHju8lOzub+OOJrAwbEez6bneocYgGDRqQmFCP\n6edu4PBZW6m5pw2PnD2SFuc0p0GDBuTn5XPDvF+GQtonP59Bq/Nanfj5FdQkChUxbJnZJUB8NINM\nkU4jTHX3qWbWFOgJ7HT3pZGeNJZOdqFdtmwZF198Ma+//jqvvfYaH374YQyqk9K0a9cuZs+eHQpf\nR44cYfDgwaHw1bp161iXKFJlKGxVDgWjVwPatWTz2hWkp6eTnp7Ommw4csOq0D/wx577fzx803eJ\nj48/o0BVkUQd4D7dyZQpc0hLG1T0PWvFDGkFxxbeN+e6V6hRpzrZ2dl8MCmdZxr8NvS/0w9XX0+t\n+k52djbZe44y79IZoX3nvXwBX+Z8ToMGDahfvz5JdRuyuMt/g0HtPO6peSVntz6bBg0aYMfiuGPF\n70LTIZff8R7tOl4Q+gOnQlrVVkHD1kACYWt2xMee6qJjZjWBuu6+txhFtHL3zyMtoKyd7EK7cuVK\nunbtymWXXcaQIUN44IEHYlCdlBV3Z+vWraHgNXv2bBo0aMCQIUO49NJLGTRoEI0aNYp1mSKVlsJW\nxebuzFu8jEtfH8mxpE9gz3n039SG1EH9SElJocV5F9L+ySGVPlCVtWhC2qn2RRLSPvn5DBIbJgaC\nWHY277wxhcfDpkP+aPOPaXR2LbKzs9m5LZvp/SeH9rV7PZnNn62mfv36NElqyn+GHg+FtOsP9KdJ\ni7NISkqiOjX45afPc/isQEibfe3LtOt4AfXr1w8EdYW0SkFh65udXwEkApOKWhDDzBoQWKVjXaSr\nc8TC6cIWBO7fSk5OLuvSJIby8/NZvXo1s2bNYubMmcyfP5+2bduGRr0GDBhAnTp1Yl2mSKWhsFVx\nhN97lbXrM/7xj3/wzjvv8GXC2WRftSj0D+q/9ZvHLam9TzhOgar8iyakFewrblDb8sBszmpxFtnZ\n2bz41//jf4/9LPTfzR3//Qktz2tEVlYWm9bt4L2L/3nClMf/7FhHbm4uZzVoQvbV9UIhbdjnyTQ6\nuyFJSUkkxNfiqf1vh+5Zezf1D7Rt34akpCQaNGjAnh17FNLKEYWtok9wNvBjoAmQAFTj64cabwde\ncPf9kZ48Fk4Xth599FF+9atfxaAyKU+OHDnCkiVLQiNfy5Yt46KLLgqFr169egVWhxKRqChsVQw7\n9+Zy3q/7c7jeOuzLNjT54Dgjr7mKa6+9lqat29L28UtOOnollV9pj6YV7Dt+/Dh/fuYl7s29MxTE\nfpr9ABd2ak1WVhYrMzfxfx1e+Xo1yqmX8EXWp2RlZXH0q6McGdUsFNJ6r2pOg7Pqk5SURJ0adXkh\nbkYopL3Uewznnn8OSUlJJCUlkZebx/Rp8yMOaQpwp1ZBw1YbIM7dN0V8bFW76JwqbI0cOZKVK1fG\noCop77766isyMjJC4Wvz5s30798/FL46d+6sBVVEIqCwVf6tWLGCu383gQUXvBj6R+yEPnMYndYv\n1EajVxKNsgppABPHv8boL34c+m/44cNj6db7QrKyslg4dwUvnjshtG/I3FQOHPmCrKwsDu0/xBdX\n1QqFtAvn1qJuw7okJSVRr1Z9/l+jzNDCIr9v9xNandeKpKQkjh86zrBJt0e1+mNx9lcGFTRs9XT3\nJVEdG81Fx8zquPtXZlYNyHf3/AiPTwWeBeKAF939iSLa/BEYBnwF3OTuK4L3kM0DahAYXXunYDVE\nMxsD3Ap8Eezil+4+tYh+FbbkjO3du5c5c+aEwldWVhaDBg0Kvdq1a6eVDkVOQWGrfHJ35syZw69/\n/Ws2b97MDT8ezbP7/8nhxG8uty5S1so2pP2D0V+MCgWxcfFPMGDwxWRnZzNjygLGN3kmtO/bmVeR\nX+0rsrOzOXIgnszvfPT1s9ne7soxywmMltVtyOy2m0MB7qEmP6LFOc1DI2nH845zxft3Vfpl+itS\n2CoIWWZ2t7uPj6qPSC86ZvYA0JhAUPot8Ft3vy2C4+OAT4AhwE4gE7jW3TeEtRkG3O3uw82sF/Cc\nu/cO7qvt7gfNLB5YANwT/CGMAXLd/ZnTnF9hS0rcZ599xpw5c0KvI0eOMGjQIFJSUhg0aBBt27ZV\n+BIJo7BVvuzcm8uTf3+LBf96nZwvd/LQQw9x/fXXU61aNY1eSYVXliGt8L6Fo96kZt2aZGVl8d7b\n03my3uOhIHb1mhuo3QCysrLIysoiLyeOJd+eH9rf4c0uHLX9oaCWfsHWUFD7ZeMRND+nGUlJSXAE\nRmQ8FAppm++fRYtvtTjhs5SnkFZBw9bvgUXAWe7+l4j6iCJsDQye7CjwA+Ayd78lguN7A2PcfVhw\n+0HAw0e3zGwCMMfd3wpurwdS3H13WJvaBEa57nD3zGDYOuDuvz/N+RW2pFS5O//5z3+YM2cO6enp\nzJkTeCRD+MjXt771rRhXKRJbClvlx869uZwztjfHkj6henY7tjw8n1ZNGsS6LJGYO5PFQyINcEXt\nX3LzP6lRtwZZWVn86+1pPFl3XCiIXbP2BuokxZGVlcW+3XnMHfL1Mv1tXm5H1sGdJCUl0bh+Y1b0\nzAqFtDuqDadZq7NJSkoi7lgcd61+KrRE/9LR/+LCTu1Ct0WUVkgrz2HLzK4EVrj7tuB2C3ffYWZD\n3H1WVH1GEba6Axe7+/PB7evd/Y0Ijv8+cHnBaJiZjQB6uvs9YW3+TWDE7KPg9kzgAXdfFhwZWwq0\nAf7s7v8bbDMGuAnYD3wM/KyoRTsUtqSsuTubN28+YeQrISEhFLxSUlL0jC+pchS2yo+RDz3Fa/G/\nPOmqgiJSck4V0k61P5LRtI0/m07t+rXJysrijZcnMTbs/983bb2Vxs1rk52dzfat+5ja7/3Qvgvf\n6MimbatITEykScOmbLvMQyHtutx+JyzR/9C2iaEl+mdd83fadbyABg0anHaJfij3YesPwOvu/rGZ\nfcfd3z/jPsv6onOmYSusTT1gEoHphuvM7CzgS3d3MxsHNHP3m4s4v48ZMya0nZKSQkpKisKWlBl3\nZ8OGDaHglZ6eTr169U4Y+WrevHzPtxaJVMHDbgs8+uijClvlwD//+U/uuu9Bcr5fh8OJG3Rflkg5\nVhbTIZu2asr+/fv5219e58Ej94Ut0X8Prds2Jisri0/WbmfSRW+H9nX7V08+3bmOnJwcGtVrzP5r\n6he5RH/B68477yzPYWsQcA+B1dcTgA+A1cAad98RVZ9netExs47uviaC9r2Bse6eGtwuzjTCDcDA\n8GmEwfcfAb4qfJ+WmZ0D/NvdOxdx/iIvtCtWrODGG29U2JIyl5+fz7p160Lha+7cuTRu3PiEka+m\nTZvGukyREqWRrbIX/rys5o0SmTp1KjfeeCPTpk2jSas2ui9LpJIqq3vW8vPzGf/MS9ybc0coiN2X\n/Qsu7Nw6dF9aVlYWzz//fLkNW+HM7D4Cs+mSgY5AcwKPvPqTu28sdj8lELZ6ufviCNrHAxsJLJDx\nX2AJcJ27rw9rkwbcFVwgozfwrLv3NrPGwFF3329mtYBpwO/cfYqZne3uu4LH/xTo4e7XF3H+k4at\nm266iRUrVkTy8UVKXH5+PqtWrQqFr4yMDJo3bx4KXikpKTRu3DjWZYqcEYWtsrVzby5txg0gL3Et\nCbnJ/N9lT3PryOt477336Nu3b6zLE5FyqDTuS4PyPY3wdMzsGqCVuz9d7GOiXPq9FdAU2O3un0dx\nfCrwHF8v/f47MxtNYIRrYrDNeCCVwNLvo4L3a3UCXgkeFwe85e6PB9u/CnQF8oFPgdGFR8KC7RS2\npEI5fvw4K1asCIWv+fPnc8455zBw4EAGDhzIJZdcQpMmTWJdpkhEFLbK1sQPFzJ64SWhvzbXfedi\n3v3jYwwdOjTWpYlIJXO6+9IqeNj6HoGBn38X+5goFsgYDdQEDgANgOPu/lxEncSQwpZUdMeOHWPp\n0qXMmzePuXPnMn/+fJo3b35C+NI9X1LeKWyVrdDIVt118OV5/K3vWG750bWxLktEqqCT/f6P9jm8\nYfviCCySt93dvxN8Lwl4CziHwGDM1UUtoFeaoglbl7r7zLDtQe4+p8QrKyUKW1LZHD9+nJUrVzJ3\n7lzmzp1LRkYGDRs2DIWvgQMHarVDKXcUtsrekhXrSB05mkdGj+Snd90a63JEpIoq6vf/mT6HN7j/\np8DFQL2wsPUEsNfdnzSzXwBJ7v5gKX/EE8RFcUyOmT1tZn82s98QeN6WiMRIfHw8F110ET/96U+Z\nNGkSe/bs4d1336Vr1668//779OjRg3PPPZcbb7yRl156iS1btlBV/7EpUlXt3r2bEVd/lzE3/0BB\nS0TKo57AJnff5u5HgTeBKwu1uRJ4FSC4XkR9M2sKYGYtgTTghSKOeSX4/SvAd0un/JOrFukB7r6E\nwKIWIlIOxcXF0alTJzp16sTdd98dWmp+3rx5zJw5k0ceeQQz45JLLgmNfLVr1w6zCjl9WkTCFF5x\nECArK4vLLruMESNGcO+998a4QhGRIrUAwteB2E4ggJ2qzY7ge7uBPwD3A/ULHdOkYA0Hd99lZsW6\nyd3MfgL8w92ziv0JTiLisBVWxACgWkWaQihSFZkZ7du3p3379owePRp3Z8uWLcydO5d58+bx29/+\nlkOHDp0IpKSvAAAgAElEQVQQvpKTk0NPkBeRiuGEFQenJ7Pl4Qwa1Irn29/+NoMHD+aRRx6JdYki\nUgUVfs5iSTOz4QQW7VthZinAqf56XNypPU2BTDNbBrwETIt2DnrUS7+b2UAg3t1nR9VBjOieLZFv\n2rZtW+ier7lz55Kdnc2AAQNCC2506dKF+Pj4WJcplYju2Sp5hVccnNB7Nh88/yT16tXj1Vdf1R9Q\nRKRcOMk9W1E/hxe4FxgBHANqAYnAu+4+0szWAynuvtvMzg4e376YdRpwGTAK6A68TWDhji2RfF79\n5hURzjnnHEaOHMmLL77I5s2bWblyJVdffTUbNmzghhtuoFGjRqSlpfHb3/6W+fPnc/jw4ViXLCKF\nXNGzIwm5yXCsOgkH2pP+9iscOXKEl156SUFLRMq7TKCtmZ1jZjWAa4H3C7V5HxgJoXCW7e673f2X\n7t7a3c8LHjfb3UeGHXNT8PsbgfeKW1DwL3O7gq9jQBLwjpk9GckH08hWkEa2RE7uiy++YP78+WRk\nZJCRkcGGDRvo1q0bAwYMYMCAAfTt25f69QtPkxY5OY1slY6de3OZkrmWFdMnkblgDrNmzaJu3bqx\nLktEJOQ0S79H/BzeQn0MBH4WthphQwIjUq2AbQSWfs8uRo33Egh2XxJYdGOSux8Nrpq4yd3bFPvz\nnkHYagPEufumqDqIEYUtkTOXm5vLokWLyMjIYP78+WRmZtKmTRsGDBhA//79GTBggJ71JaeksFV6\nnn32WSZMmMD8+fNp3LhxrMsRETlBRXiosZk9Crzk7tuK2Nfe3dcXt6+oF8iIdL6iiFQeiYmJDB06\nlKFDhwJw5MgRli1bRkZGBm+88QZ33nknDRo0OCF8XXDBBVrxUKSUvfHGG/z+979X0BIROTMJhYOW\nmT3h7r+IJGhBdA817unuSwq+RnRwOXCyv2ouX76cUaNGaWRLpATk5+ezfv36E6Ye5uXl0b9//1D4\n6tq1K9WqRf33HqngNLJV8qZNm8bIkSOZNWsWHTt2jHU5IiJFqiAjW8vc/aJC761y986R9nUm/9Lp\nSSV73pb+6i5SMuLi4khOTiY5OZnRo0cD8Nlnn4XC14svvshnn31G7969Q+GrV69e1K5dO8aVi5Rv\nRT1HC2DJkiWMGDGCf/3rXwpaIiJRMrM7gDuB88xsVdiuRGBBVH1GMbLVwt13mNnvgUXAWe7+l2hO\nHgunGtn68Y9/zPLly2NQlUjVs2/fPhYsWBC672vVqlV06tQpFL769etHo0aNYl2mlBKNbEXuhOdo\n5Qaeo9W8USIbN24kJSWFiRMn8u1vfzvWZYqInFJ5Htkys/oEVh38LfBg2K5cd98XVZ+nu+iY2ZXA\niiLmLQ5x91nRnDSWFLZEyqeDBw+yZMmS0LTDxYsX06xZM/r16xd66b6vykNhK3KFn6P1t37zGNap\nFf369WPMmDGMGjUq1iWKiJxWeQ5bpaE40whTgB3ANjP7jru/D1ARg5aIlF+1a9cmJSWFlJQUAI4f\nP86aNWtYsGABs2bN4rHHHuPAgQP07duXfv360bdvX3r06EFCQkJsCxcpI1f07EjC9GTy6q4j4UAH\n+p7fnNTUVG6//XYFLRGREmBm8929v5nlAgV/mSsIhu7u9SLusxgjW4OAe4CE4OsDYDWwxt13RHrC\nWNPIlkjFtWPHDj766CMWLFjARx99xNq1a+ncuXMofPXr14+mTZvGukwpBo1sRafgOVqDO57Hjdd9\nn+7du/PMM89oxFdEKoyqNrIV0T1bZnYfsBRIBjoCzYHtwJ/cfWOpVFjCFLZEKo+CqYcFAWzhwoU0\nbNgwFLz69etHhw4diIuLi3WpUojCVvSOHz/O1VdfTY0aNXj99df137eIVCgVIWyZ2Q+Bqe6ea2YP\nAxcBv3b3iINC1A81DivmGqCVuz99Rh2VEYUtkcorPz+fDRs2sGDBgtDo1549e+jdu3cofPXs2ZM6\nderEutQqT2ErOu7O//zP/7By5UqmTZtGzZo1Y12SiEhEKkjYWuXunc2sPzAOeAr4lbv3irSvknjI\nzVGgQoxqiUjlFhcXR4cOHejQoQO33norAF988UVo5Ovhhx9m5cqVXHjhhaHw1bdvX1q2bBnjykWK\n5w9/+AOzZs1i/vz5CloiIqXnePDrcGCiu39gZuOi6eiMR7YqGo1siVRteXl5LF26NBTAFixYQO3a\ntenXrx99+vShT58+dOnSherVq8e61EpNI1uRe+utt/j5z3/ORx99RKtWrWJdjohIVCrIyNZkAgsE\nDiUwhfAQsMTdu0TcV0W96ERLYUtEwrk7mzdvDt3ztXDhQrZu3Uq3bt1C4at37940a9Ys1qVWKgpb\nkZk3bx4/+MEPmDlzJp07d451OSIiUasgYas2kAqsdvdNZtYM6OTu0yPuqyJedM6EwpaInE5OTg6Z\nmZmh8LVo0SISExNDwatPnz507dqVGjVqxLrUCkth6+R27s1l8pI1XNGzI80bJbJ27VoGDx7MG2+8\nwZAhQ2JdnojIGakIYaskFfueLTP7CfAPd88605OaWSrwLBAHvOjuTxTR5o/AMOAr4CZ3X2FmNYF5\nQI1g7e+4+6PB9knAW8A5wKfA1e6+v7g1lfeLr4iUnXr16jFkyJDQP2zdnU2bNoXC19///nc2b95M\n165dQ+GrT58+NG/ePMaVS0W3c28ubcYNIC9xLQnTk1lwyz+5Ki2Np59+WkFLRKSMBDPH94FzCctL\n7v5YpH1FskBGUyDTzJYBLwHTovnzoJnFAeOBIcDOYJ/vufuGsDbDgDbufr6Z9QImAL3d/bCZDXL3\ng2YWDywwsw/dfQnwIDDT3Z80s18A/xt8L5LaIv04IlIFmBkXXHABF1xwATfeeCMAubm5odGvl19+\nmdGjR1O7du0Tph5269ZNixhIRCYvWUNe4lqIP0Ze3XVcectPuPP22/nRj34U69JERKqS94D9BB55\ndfhMOip22HL3h83sEeAyYBQw3szeJjAytSWCc/YENrn7NgAzexO4EtgQ1uZK4NXgeRebWX0za+ru\nu939YLBNzWD9HnbMwOD3rwDpRBi2RESKKzExkcGDBzN48GDg63u/CqYdvvLKK3zyySd06dLlhOmH\nWvlQTuWKnh1JmJ5MXt11xO1rw6Dk83jwQV3KRETKWEt3Ty2JjiJa+t3d3cx2AbuAY0AS8I6ZzXD3\nB4rZTQvg87Dt7QQC2Kna7Ai+tzs4MrYUaAP82d0zg22auPvuYJ27zKxJBB9NROSMmBnnn38+559/\nPiNHjgTgwIEDZGZmsmjRIl577TXuvPNOEhISTph62K1bNxISEmJcvZQXzRslsvmhefzgzp+ReHAv\nL036o2ZdiIiUvY/MrJO7rz7TjiK5Z+teYCTwJfACcL+7Hw2Gn01AccPWGXH3fKCbmdUDJplZB3df\nV1TTsqhHRORk6taty6BBgxg0aBAQGP3aunVr6N6vf/zjH2zcuJEOHTrQq1ev0Ktt27bExcXFuHqJ\nlQnPPUX+tlX8a/ZsqlUricdhiohIhPoDo8xsK4FphEZg3Cni5WAj+S3eEPhewfS/Au6eb2ZXRNDP\nDqB12HbL4HuF27Q6VRt3zzGzOQSWZVxHYNSrqbvvNrOzgS9OVsDYsWND36ekpJCSkhJB+SIi0TEz\n2rRpQ5s2bRgxYgQABw8eZNmyZSxevJjJkyfzyCOPkJOTQ48ePULhq2fPnpx11lkxrv7MpKenk56e\nHusyyr2JEyfy5ptv8tFHH1GnTp1YlyMiUlUNK6mOir30u5k94e6/ON17xegnHthIYIGM/wJLgOvc\nfX1YmzTgLncfbma9gWfdvbeZNQaOuvt+M6sFTAN+5+5TzOwJYJ+7PxFcICPJ3b8x0f1ky/4uW7aM\nW265hWXLlkXycUREStyuXbtYsmQJS5YsYfHixWRmZtKwYcMTwle3bt2oVatWrEuNmpZ+/6bJkydz\n6623kpGRQdu2bWNdjohIqagIS79bYP72DcB57v6YmbUGzg4uyhdZXxGErWXuflGh91ZFM5wWXPr9\nOb5e+v13ZjaawPDcxGCb8QRGrb4CRrn7MjPrRGDxi7jg6y13fzzYviHwNoERsW0Eln7PLuLcClsi\nUqHk5+ezcePGUPhavHgxGzZsoH379qHw1atXLy644IIKM/1QYetEmZmZDB8+nH//+9/06tUr1uWI\niJSaChK2/grkA4PdvX3wEVPT3b1HxH2d7qJjZncAdxJYkGIzgTmLAInAAne/IdKTxpLClohUBocO\nHWL58uWh8LVkyRKysrLo0aNHKHz16tWLJk3K51pBCltf27p1K/3792fChAl85zvfiXU5IiKlqoKE\nrWXufpGZLXf3bsH3Vrp7l0j7Ks49W68DHwK/IbCUuhFYfCK3JB5wLCIikatVqxZ9+/alb9++ofe+\n+OKL0OjX+PHjGTlyJA0aNDghfF100UUVevphZbN3716GDRvGww8/rKAlIlJ+HA3e+uQAZnYWgZGu\niBVnZGu+u/c3swOFTlKwKke9aE4cKxrZEpGqIj8/n02bNoVGvhYvXsy6deto164dPXv2pEePHnTv\n3p3k5OQyX/VOI1uQl5fHpZdeSr9+/XjiiSdiXY6ISJmoICNbNwDXABcDLwM/AB52939G3Fd5ueiU\nFYUtEanK8vLyWL58OZmZmXz88cdkZmby+eef06VLF3r06BF6lfby81U9bOXn53PttdcSHx/P66+/\nXmHutRMROVMVIWwBmNmFBBb0A5gdvphfRP2Uh4tOWVLYEhE5UU5ODkuXLiUzMzP0ys7O5uKLLz4h\ngLVq1arEHrBb1cPWz3/+czIzM5k+fTo1a9aMdTkiImWmPIctM7vvVPvd/ZlI+4zkocY/BKa6e66Z\nPQJ0A8a5e6VIJ+Xh4isiEgv16tU74eHLAHv27AmNfL388svcdddduDvdu3c/IYCV1wU4yrM//elP\nTJoyk7see5q9B47QXGFLRKS8SAx+bQf0AN4Pbn+bwOOqIhbJ0u+r3L2zmfUHxgFPAb9y9wq1Ru3J\n/qq5dOlSbrvtNpYuXRqDqkREyjd3Z8eOHSeMfn388cckJiaeEL4uvvhiGjRocNr+qurI1qRJkxh9\nz8/Z/73aHK63noTcZLY8nEHzRomnP1hEpBIozyNbBcxsHjDc3XOD24nAB+5+SaR9RXJH9PHg1+HA\nRHf/wMzGRXpCERGpeMyMli1b0rJlS6666iogEMC2bNkSCl9jx45l+fLlNG/e/IQA1q1bN2rXrh3j\nTxB7ixYt4tZbb+W2X/+R3+wcCfHHyKu7jimZa7kltXesyxMRka81BY6EbR8JvhexSMLWDjN7HrgM\neMLMahJ4sLCIiFRBZkbbtm1p27Yt1113HQDHjh1j/fr1oSmIr7/+OmvXrqVt27ah8NW9e/cYV172\nNm/ezFVXXcXLL79Mt96X8My4ZPLqriPhQAfSeiTHujwRETnRq8ASM/tXcPu7BFYljFgk0whrA6nA\nanffZGZnA53dfXo0J44VTSMUESlbhw8fZtWqVaEAtnTpUlatWlVlphF++eWX9OnTh/vvv5/bbrsN\ngJ17c5mSuZa0HsmaQigiVUpFmEYIYGYXAQOCm/PcfXlU/UQQtmoC3wfOJWxEzN0fi+bEsaKwJSIS\ne1Xlnq1Dhw4xZMgQUlJS+M1vflNm5xURKa8qStgqKZFMI3wPyAaWAYdLpxwREZHK4fjx44wYMYJv\nfetbjBunW5xFRKqiSMJWS3dPLbVKREREKgl353/+53/Yt28fU6dO1UOLRUSqqEh++39kZp1KrRIR\nEZFK4vHHHycjI4NJkybpocUiIhWMmf3EzJJKoq9IRrb6A6PMbCuBaYQGuLt3LolCREREKoOJEyfy\n97//nfnz51O/fv1YlyMiIpFrCmSa2TLgJWBatDf8RhK2hkVzAhERkari3XffZezYscybN49mzZrF\nuhwREYmCuz9sZo8QeOTVKGC8mb0NvOjuWyLpK5JphJ8RWP7wRnffBjhRPtxLRESksklPT+f2229n\n8uTJtG3bNtbliIjIGQiOZO0Kvo4BScA7ZvZkJP1EErb+AvQBrgtu5wJ/juRk5VlZP3dFREQqj2XL\nlnH11Vfz5ptvctFFF8W6HBEROQNmdq+ZLQWeBBYAndz9DuBiAo/CKrZIphH2cveLzGw5gLtnmVmN\nSE5W3plVmSX/RUSkhKxatYq0tDQmTJjA4MGDY12OiIicuYbA94Kz+ULcPd/Mroiko0hGto6aWTyB\n6YOY2VlAfiQnExERibWSnMmwbt06Lr/8cp577jm+973vlVi/IiISUwmFg5aZPQHg7usj6SiSsPVH\n4F9AUzN7HJgP/CaSk4mIiMRaRkZGifTzySefMHToUJ566imuueaaEulTRETKhaFFvBfVYoHFnkbo\n7q8H5y4OCb713UiTnYiISKz9+c9/5pJLLjmjPtasWUNqaiq//vWvGTFiRAlVJiIisWRmdwB3AueZ\n2aqwXYkE7t2K2GnDlpndd5Jdw8xsmLs/E82JRUREYiE9PZ01a9bQsWPHqI5fuHAh3/3ud/nDH/7A\n9ddfX8LViYhIDL0BfAj8Fngw7P1cd98XTYfFmUaYGHx1B+4AWgRftwNRLblkZqlmtsHMPjGzX5yk\nzR/NbJOZrTCzrsH3WprZbDNba2arzeyesPZjzGy7mS0LvlKjqU1ERCq3+++/n1/96ldRHTt16lSu\nvPJKXn755dMGrZ17c5n44UJ27s2N6lwiIlK23H2/u3/q7te5+7awV1RBC4oRttz9UXd/FGgJXOTu\nP3P3nxFY+rB1pCc0szhgPHA5kAxcZ2YXFmozDGjj7ucDo4EJwV3HgPvcPZnAMvR3FTr2GXe/KPia\nGmltIiJS+d11111kZmYyY8aMYh/j7jz99NOMGjWKSZMmMWzYqafu79ybS5txAxi98BLajBugwCUi\nUgGY2fzg11wzywl75ZpZTjR9RrJARlPgSNj2EaJ7qHFPYFMwJR4F3gSuLNTmSuBVAHdfDNQ3s6bu\nvsvdVwTfPwCsJzDKVkBrt4uIyCnVqlWLV155hRtvvJH//ve/p23/5Zdfcs011/Dmm2+yePFi+vbt\ne9pjJi9ZQ17iWog/Rl7ddUzJXFsSpYuISCly9/7Br4nuXi/sleju9aLpM5Kw9SqwxMzGmtlYYDHw\nchTnbAF8Hra9nRMDU1FtdhRuY2bnAl2DdRS4Ozjt8AUzqx9FbSIiUgUMHjyYO++8k8svv5zPPvus\nyDbuzptvvkmnTp1o0aIFGRkZtG5dvAkdV/TsSEJuMhyrTsKBDqT1SC7J8kVEpIKIZDXCx83sQ2BA\n8K1R7r68dMo6NTOrC7wD3Bsc4QL4C/CYu7uZjQOeAW4u6vixY8eGvk9JSSElJaVU6xURqerS09NJ\nT0+PdRkneOihh6hVqxY9e/bk/vvv5/vf/z5NmzZl+/btTJ8+nYkTJxIfH8+7775Lnz59Iuq7eaNE\ntjycwZTMtaT1SKZ5o8RS+hQiIlJSzCyXwDOFi5ot59GMbllJPtyxWCc06w2MdffU4PaDBIp/IqzN\nBGCOu78V3N4ADHT33WZWDZgMfOjuz53kHOcA/3b3zkXs86I+88cff8ztt9/Oxx9/fOYfUkRETsnM\ncPcyn/pd1DVg+fLlPPXUU2RkZLB7926aNWvGJZdcwvXXX09qaipmmqEuIlJSYvX7P1aKPbJVgjKB\ntsFA9F/gWuC6Qm3eB+4C3gqGs2x33x3c9xKwrnDQMrOz3X1XcPN7wJpIiirr0CkiIuVDt27deOON\nN2JdhoiIxJiZzXf3/mEjXCeIZmSrzMOWux83s7uB6QTuGXvR3deb2ejAbp/o7lPMLM3MNgNfATcB\nmFk/4AZgtZktJ/BD+GVw5cEng0vE5wOfEljFUERERERE5LTCF8goqT5jMbJFMBy1K/Te84W27y7i\nuAVA/En6HHmmdWmqiIiIiIiIlJRir0ZoZj8xs6TSLEZERERERCSWzCzBzO4zs3fN7P+Z2U/NLCGa\nviJ9zlammb1tZqmmYSAREREREal8XgWSgT8B44EOwGvRdBTJ0u8Pm9kjwGXAKGC8mb1N4J6rLdGc\nXEREREREpJzp6O4dwrbnmNm6aDqKZGSL4Hq5u4KvY0AS8I6ZPRnNyUVERERERMqZZcEV0QEws15A\nVM+HKvbIlpndC4wEvgReAO5396NmFgdsAh6IpgAREREREZFYM7PVBFY7rw58ZGafBXe1BjZE02ck\nqxE2B77n7tvCCnrC3X9hZldEc3IREREREZFyosQzTSTTCIeGB62gYQDuvr7kShIRERERkaokuADf\nBjP7xMx+cZI2fzSzTWa2Ivh8XcysppktNrPlZrbazMaEtR9jZtvNbFnwlXqqGtx9W8ELyCGwQOA5\nYa+InXZky8zuAO4EzjOzVWG7EoEF0ZxUREREREQEIHhb0nhgCLCTwAro77n7hrA2w4A27n5+8B6q\nCUBvdz9sZoPc/aCZxQMLzOxDd18SPPQZd38mwnpuAe4FWgIrgN7AQmBwpJ+tOCNbbwDfBt4Pfi14\nXezuIyI9oYiIiIiISJiewKbgqNJR4E3gykJtriSwJDvuvhiob2ZNg9sHg21qEhhM8rDjonlc1b1A\nD2Cbuw8CugHZUfRz+rDl7vvd/VN3vy58aM3d90VzQhERERERkTAtgM/DtrcH3ztVmx0FbcwszsyW\nE1gxfYa7Z4a1uzs47fAFM6tfzHry3D0v2HfN4Ahbu+J/nK8VZxrhfHfvb2a5fDMlurvXi+bE5U1g\nVXsRERERESkp6enppKenl+o53D0f6GZm9YBJZtbB3dcBfwEec3c3s3HAM8DNxehyu5k1ACYBM8ws\nCyi8dkWxnDZsuXv/4NfEaE5QkZhFM8ooIiIiIiJFSUlJISUlJbT96KOPFtVsB4Hl1Qu0DL5XuE2r\nU7Vx9xwzmwOkAuvcfU/Y7r8B/y5Oze5+VfDbscH+6gNTi3NsYRE91FhERERERKSEZQJtzewcM6sB\nXEtgvYhw7xN45i/BBw5nu/tuM2tcMD3QzGoBQwk+E8vMzg47/nvAmuIUY2YJZnafmb0L3AO0Icrc\nVJxphAXTB8OHfQq2K800QhERERERKXvuftzM7gamEwg1L7r7ejMbHdjtE919ipmlmdlm4CtgVPDw\nZsArwRUN44C33H1KcN+TwSXi84FPgdHFLOlVIBf4U3D7euA14IeRfrbiTCOs9NMHRUREorFzby6T\nl6zhip4dad5Il0sRkWi5+1QKLULh7s8X2r67iONWAxedpM+RUZbT0d07hG3PMbN10XSkaYQiIiJR\n2Lk3lzbjBjB64SW0GTeAnXtzY12SiIiUjGXBqYoABJ/r9XE0HZ02bJnZ/ODXXDPLCX4teOVEc1IR\nEZGKbvKSNeQlroX4Y+TVXceUzLWxLklERM6Ama02s1XAxcBHZvapmX1K4IHG3aPpU6sRioiIROGK\nnh1JmJ5MXt11JBzoQFqP5FiXJCIiZ+aKku7wtGGrgJklAHcC/QkskJEBTCh44JeIiEhV0rxRIlse\nzmBK5lrSeiTrni0RkQrO3UPP0jKzLsCA4GaGu6+Mps9I7tl6FUgmsCrH+OD3r0VzUhERkcqgeaNE\nbkntraAlIlKJmNm9wOtAk+DrH2b2k2j6KvbIFiW4KoeIiIiIiEg5dTPQy92/AjCzJwjct/WnUx5V\nhEhGtkpsVQ4zSzWzDWb2iZn94iRt/mhmm8xsRXB9fMyspZnNNrO1wRvY7glrn2Rm081so5lNK3i4\nmYiIiIiISAQMOB62fZwTnzlcbMV5qPFqAvdoVSewKsdnwV2tCT6dORLBB46NB4YAO4FMM3vP3TeE\ntRkGtHH384OhbgLQGzgG3OfuK8ysLrDUzKYHj30QmOnuTwYD3P8G3ysWd4/0o4iIiIiISOXzd2Cx\nmf0ruP1d4MVoOirONMKSXpWjJ7Cp4AY0M3sTuJITg9uVBO4Rw90Xm1l9M2vq7ruAXcH3D5jZeqBF\n8NgrgYHB418B0okgbAVrifYziYiIiIhIBWeBQPBPAlmif/DtUe6+PJr+irP0e/iqHEnA+UBCWJNt\n3zjo1FoAn4dtbycQwE7VZkfwvd1htZwLdAUWBd9q4u67gzXvMrMmEdYlIiIiIiJVmLu7mU1x907A\nsjPtL5Kl328B7gVaAisITOtbCAw+0yIiFZxC+A5wb8GNa0XQvEAREREREYnUMjPr4e6ZZ9pRJKsR\n3gv0ABa5+yAzuxD4TRTn3EHgfq8CLYPvFW7Tqqg2ZlaNQNB6zd3fC2uzOzjVcLeZnQ18cbICxo4d\nG/o+JSWFlJSUyD+FiIgUW3p6Ounp6bEuQ0REpDh6ATeY2TbgKwKLY7i7d460IyvuwhBmlunuPcxs\nBYGlEA+b2Vp3T47ohGbxwEYCC2T8F1gCXOfu68PapAF3ufvw4AqIz7p77+C+V4Ev3f2+Qv0+Aexz\n9yeCC2Qkufs37tkyMy/qMy9evJh77rmHxYsXR/JxREQkCmaGu5f5jbInuwaIiEjZiNXv/0iY2TlF\nvR9+e1VxRTKytd3MGgCTgBlmlkXk92vh7sfN7G5gOoGl51909/VmNjqw2ye6+xQzSzOzzQTS5E0A\nZtYPuAFYbWbLCUwV/KW7TwWeAN42sx8H67o60tpERERERKRqiyZUnUyxw5a7XxX8dqyZzQHqA1Oj\nOWkwHLUr9N7zhbbvLuK4BUD8SfrcB1waTT0iIiIiIiIAZpYA3ElgNUIH5gN/dfe8SPuKZGQrxN3n\nRnOciIiI/H/27jzOyrL+//jrPTNs6oiyiGyiggsMmZoLmhpuicsvLbPU1CItf27569u31LTU1Mr6\nZmZphZppX8tyXyKlVARcAAWTVQFZBITYxBEEGebz++PcA8dhtnNmzpwzc97Px+M85tz3fd3X/TlH\nPGc+c1335zIzswJ3H1AJ/DrZPhv4E3BGph1lUo2wxTI8MzMzMzOzAjU0IoakbT8vaWY2HZVk0PY+\noLZ8rAcAACAASURBVIJUhvcbYAipDM/MzMzMzKy9mJIU6QNA0qHAq9l0lMk0whbL8MzMzMzMzArU\np4CXJC1KtncD3pQ0jQxLwGeSbE2RNCwiXoHmZXhmZmZmZmYFakRLddRoslWTwQEd2DbDm91SgeSb\n110xMzMzM7PWLv1+SktdrNBJBb2+mpmZmZmZtSGNJlvpmZ2kTwJHJpvjI+LfuQrMzMzMzMysLWty\nNUJJlwP3A7skj/+VdFmuAjMzMzMzM2ttSjlH0g+T7d0kHZJNX5kUyDgfODQi1iUXvRl4ma2LfZmZ\nmZmZmbV1dwDVwDHAj0gtcPwwcHCmHWWSbAnYnLa9OdlnZmZmZmbWXhwaEQdKmgoQEWskdcymo0yS\nrXuAiZIeTbZPA+7O5qJmZmZmZmYFapOkUlIV2ZHUk9RIV8aalGwpVabvQWAscESye2RETM3momZm\nZmZmZgXqNuBRYBdJNwFfBK7JpqMmJVsREZJGR8QngCnZXMjMzMzMzKzQRcT9kl4DjiV129RpETEr\nm74ymUY4RdLBETE5mwuZmZm1RUtXVfLUpOmccshQ+nQvz3c4ZmbWCiJiNjC7uf1kkmwdCpwjaQGw\njlSWFxGxX3ODMDMzK0RLV1Uy8MYj2VA+g85jKph3zXgnXGZm7Zykg4CrgQGk8qWs855Mkq0TMu3c\nzMysLXtq0nQ2lM+A0io27DCT0ZNncMGIYfkOy8zMcut+4LvANLIsjFEjk2RrOXAxqQIZAUwAftuc\nixeSiMh3CGZmVmBOOWQoncdUsGGHmXT+YAgnHVyR75DMzCz3VkTEEy3RUSbJ1n2kFvSqWcT4bOBP\nwBktEUghSBVdNDMzS+nTvZx514xn9OQZnHRwhacQmpkVh2sl3QU8C2ys2RkRj2TaUSbJ1tCIGJK2\n/bykmZle0MzMrC3p073cUwfNzIrLSGBfoANbpxEGkNNka4qkYRHxCoCkQ4FXM72gmZmZmZlZATs4\nIvZpiY4ySbY+BbwkaVGyvRvwpqRpuCqhmZmZmZm1Dy9JGhIRzZ7Fl0myNaK5F6shaQRwK1AC3B0R\nN9fR5jbgRFJl5kdGxNRk/93AKcDy9ARP0rXAN4D/JLu+HxFPt1TMZmZmZmZWFIYBr0uaT+qerdyX\nfo+IhZl2XhdJJcBvSK3IvBSYLOnxZOGwmjYnAgMjYq9kuuJvSb1ogHtIFem4r47ub4mIW1oiTjMz\nMzMzK0otNsiUychWSzkEmFOTvEl6ADiVj6/QfCpJMhUREyV1ldQrIpZHxARJA+rp2+UEzczMzMws\nay01yASpaXytrS/wTtr24mRfQ22W1NGmLpdKel3SXZK6Ni9MMzMzMzMrFpImJD8rJb2f9qiU9H42\nfeZjZCtX7gB+FBEh6UbgFuD8uhped911W54PHz6c4cOHt0Z8ZmZFa+zYsYwdOzbfYZiZmdUrIo5I\nfrbYoopNTraUWvH3K8CeEfEjSbsBu0bEpAyvuYRUJcMa/ZJ9tdv0b6TNx0TEirTNO4En62ubnmyZ\nmVnu1f7D1vXXX5+/YMzMzBog6eaIuKKxfU2RyTTCO4DDgLOS7Urg9kwvCEwGBkkaIKkjcCbwRK02\nTwDnAUgaBrwXEcvTjota92dJ2jVt8wvA9CxiMzMzMzOz4nZ8HftOzKajTKYRHhoRB0qaChARa5Jk\nKSMRsVnSpcAYtpZ+nyXpwtThGBURoyWdJGkuSen3mvMl/RkYDnRP1vy6NiLuAX4maX9SqzwvAC7M\nMK5MX4qZmZmZmbUTki4CLgb2lPRG2qFy4MVs+swk2dokqRSIJJiepBKbjCXrX+1Ta9/va21fWs+5\nZ9ez/7xsYjEzMzMzMwP+DPwD+AlwZbKvD/BmRKzOpsNMkq3bgEeBXpJuAs4ArsnmooUqdVuamZmZ\nmZkVm4hYC6xl621TSHo0Ig7Mts9MFjW+X9JrpBYjBvhc+kLEZmZmZmaWvd13352FC1tsiae8GjBg\nAAsWLMh3GC2hWaMxmVQjPAi4Gtg9Oe9CSUTEfs0JwMzMzMzMYOHChe2mjkA7mjF2Z3NOzmQa4f3A\nd4FpZHmvlpmZmZmZWSFLL/MeEXfU3peJTEq/r4iIJyJifkQsrHlkekEzMzMzM7MClpfS79dKugt4\nFthYszMiHsnmwmZmZmZmZoUirfT7wLTS7wJ2AF7Kps9Mkq2RwL5AB7ZOIwzAyZaZmZmZmbV16aXf\nr2BrcYzK1ij9fnBE7NN4MzMzMzMzs7alpvS7pNnA19KPJYUBf5Rpn5ncs/WSpCGZXsDMzMzMzKwN\n+QBYlzw2k7pfa/dsOsok2RoGvC7pTUlvSJqWNpfRzMzMzMzauZtvvplBgwax4447MnToUB577LF8\nh9TiIuIXaY+bgOHAntn0lck0whHZXMDMzMzMzNqHQYMG8eKLL9KrVy8efPBBzjnnHObNm0evXr3y\nHVoubQf0y+bEJo9spZd7b4+l39vLAnJmZmZm1n5JapFHtk4//fQtidUZZ5zBXnvtxaRJk1rq5RWE\nmhl8yWMG8CZwazZ9NTqyJWlCRBwhqZJU9cEth4CIiB2zuXAhakcrXZuZmZlZO5TvAYL77ruPX/7y\nlyxYsACAdevWsXLlyrzGlAOnpD2vApZHRFU2HTU6shURRyQ/yyNix7RHeXtKtMzMzMzMrH6LFi3i\nm9/8JnfccQdr1qxhzZo1VFRUtEgCKGmEpNmS3pJ0RT1tbpM0R9LrkvZP9nWSNFHS1GRE6tq09jtL\nGpPUnHhGUtemxFJrJt+SbBMtyGAaoaSbm7LPzMzMzMzan3Xr1lFSUkKPHj2orq7mnnvuYfr06c3u\nV1IJ8BvgBKACOEvSvrXanAgMjIi9gAuB3wFExEbg6Ig4ANgfOFHSIclpVwL/Spaveg64qonxdJJ0\ntqTvS/phzSOb15ZJNcLj69h3YjYXNTMzMzOztmXw4MF85zvfYdiwYey6667MmDGDI444oiW6PgSY\nk4wkbQIeAE6t1eZU4D6AiJgIdJXUK9len7TpROo2qUg7597k+b3AaU2M5/Hk3Cq2loBfl+FrApp2\nz9ZFwMXAnrVKvZcDL2ZzUTMzMzMza3tuuOEGbrjhhpbuti/wTtr2YlIJWENtliT7licjY68BA4Hb\nI2Jy0maXiFgOEBHLJO3SxHj6RUSLVGJvSun3PwP/AH5CaiiuRmVErG6JIMzMzMzMzLIREdXAAZJ2\nBB6TNCQiZtbVtIldviTpExExrbmxNZpsRcRaYC1wVs0+Sbs60TIzMzMzs4aMHTuWsWPHNtZsCbBb\n2na/ZF/tNv0bahMR70t6ntT6wDNJjXr1iojlknYF/tNQEJKmkUrIyoCRkt4GNrK1Cvt+jb2Q2jJZ\n1DjdaODALM81MzMzM7MiMHz4cIYPH75l+/rrr6+r2WRgkKQBwLvAmaQN9CSeAC4B/ippGPBekkT1\nADZFxFpJXUjVmfhp2jlfA24GvkrqXqyGnNLI8YxlUiAjnRekMjMzMzOzZouIzcClwBhgBvBARMyS\ndKGkbyZtRgPzJc0Ffk+qpgRAb+B5Sa8DE4FnkraQSrKOl/QmcCxbk7D64lgYEQtJ3S+2Onl+LvBL\noFs2r63JI1uSbo6Impr3d9axr8kkjSC1CnMJcHdE1FVW/jZS1Q7XASMjYmqy/25SWefy9KE8STsD\nfwUGAAuALyVTIM3MzMzMrIBFxNPAPrX2/b7W9qV1nDeNembcJbc9HZdFOD+IiAclHZGc/3NSpeYP\nzbSjrEq/R8QdydOMS79nWUf/t2mH70nOrS2rOvpmZmZmZmZpNic/TwZGRcTfgY7ZdNRosiXpouRm\nsX0kvZH2mA+80dj5dWhuHf0JwJo6+s22jj5Jv5k0NzOzdmTpqkpG/eNllq6qzHcoZmaWf0sk/R74\nMjBaUieyvP0qH6Xfm1VHv4F+s62jv4XkW9HMzIrN0lWVDLzxSDaUz6DzmArmXTOePt3L8x2WmZnl\nz5dIVTT8n4h4T1Jv4LvZdJRV6fc2ot6hquuuu27L89oVUszMrOU1sfRvXjw1aTobymdAaRUbdpjJ\n6MkzuGDEsHyHZWZWcPbYYw/uvvtujjnmmHyHklMRsR54JG37XVJVEjOWSYGMH9YTzI8yvGaL1NGv\nQ5Pr6KcnW2ZmlntNLP2bF6ccMpTOYyrYsMNMOn8whJMOrsh3SGZm1k5kMvdwXdpjM6niGLtncc0t\ndfQldSRVR/+JWm2eAM4DSK+jn3ZcbFt+vqaOPjStjr6ZmRl9upcz75rx3PnpcZ5CaGZmLarJyVZE\n/CLtcRMwHNgz0ws2s44+kv4MvATsLWmRpJHJoYzq6JuZmdXo072cC0YMc6JlZoWtshJefjn1M099\nTJo0iYqKCrp3787555/PRx99lH0sBUrSGZLKk+fXSHpEUp3l5RvtK9sqfMm6VpMjYlBWHeSJpKjr\nNU+YMIErr7ySCRMm5CEqM7PiIomIaPWqRPV9B5iZFYLks7Hug5WVcOSRMGMGVFTA+PFQnuEfiJrZ\nxx577EF5eTlPP/002223HaeccgrHHHMMP/rRtncV1fda8vX5nwlJb0TEfsk6WzeSWmfrhxGRu3W2\nJE1LK/s+A3gT+FWmFzQzMzMzswxNn55KkqqqYObM1PM89HHZZZfRp08fdtppJ66++mr+8pe/ZB5H\n4WuxdbaaXCADOCXteRWwPCKqsrmomZmZmZllYOjQ1GjUzJkwZEjqeR766Nev35bnAwYMYOnSpZnH\nUfhq1tk6Hrg51+ts1VgGnE6qKEYZbBkGzLQaoZmZmZmZZaK8PDXtr2YKYKZTCFuoj3fe2boU7sKF\nC+nTp0/mcRS+1ltnK83jpNbbeg3YmM3FzMzMzMwsS+XlMKyZ6wA2s4/bb7+dk08+mS5duvDjH/+Y\nM888s3nxFKC8rLMF9IuIEdlcxMzMzMzM2jZJnH322Xz2s5/l3Xff5bTTTuPqq6/Od1gtTtIZwNMR\nUSnpGuBA4MaImJJpX5kkWy9J+kRETMv0ImZmZmZm1ra9/fbbAFxxxRV5jiTnfhARDybVCI8jVY3w\nt0DG1QgbTbYkTQMiaTtS0tukphEKiIjYL9OLFiKXAjYzMzMzM+qoRijpxmw6asrI1imNN2kfpIIu\n+W9mZmZmZrlXU43wszSzGmFTTtoF2BgRCyNiIfAZ4DbgO0Azlq82MzMzMzMrOF8CngE+GxHvAd3I\nshphU5Kt3wMfAUg6CvgpcB+pyoSjsrmomZmZmZlZgfoQ2B44K9nuALyXTUdNSbZKI2J18vzLpOYt\nPhwRPwAGZXNRMzMzMzOzAnUHMIytyVYlcHs2HTUp2ZJUc2/XscBzaccyqWZoZmZmZmZW6A6NiEuA\nDQARsQbomE1HTUmW/gK8IGklqSG18QCSBpGaSmhmZmZmZtZebJJUSqoiO5J6AtXZdNRoshURN0l6\nFugNjImtNdJLgMuyuaiZmZmZmVmBug14FNhF0k3AF4EfZNNRk6YBRsQrdex7K5sLmpmZmZmZFaqI\nuF/Sa6RuoRJwWkTMyqavrOrFm5mZmZmZtUeS7gWWRcTtEfEbYJmkP2TTl5MtMzMzMzOzrfZL1tcC\nthTIOCCbjpxsmZmZmZm1AZWV8PLLqZ/56mPx4sWcfvrp7LLLLvTs2ZNvfetb2QdTuEok7VyzIakb\nWVZhd7KV2Fr3w8zMzMyssFRWwpFHwlFHpX5mkyw1t4/q6mpOOeUU9thjDxYtWsSSJUs488wzMw+k\n8P0CeFnSDZJuAF4CfpZNR0620kjKdwhmZmZmZtuYPh1mzICqKpg5M/W8tfuYNGkS7777Lj/72c/o\n3LkzHTt25PDDD888kAIXEfcBXwCWJ48vRMSfsunLixKbmZmZmRW4oUOhoiKVJA0Zknre2n288847\nDBgwgJKS9j1eI2lIRMwEZqbtGx4RYzPtKy/vlKQRkmZLekvSFfW0uU3SHEmvS9q/sXMlXStpsaQp\nyWNEa7wWMzMzM7NcKy+H8eNh3LjUz/Ly1u+jf//+LFq0iOrqrNb3bUv+JukKpXSR9GvgJ9l01OrJ\nlqQS4DfACUAFcJakfWu1OREYGBF7ARcCv2viubdExIHJ4+ncvxozMzMzs9ZRXg7DhmWXaLVEH4cc\ncgi9e/fmyiuvZP369WzcuJGXXnop+2AK16FAf1L3ak0GlgKfzqajfIxsHQLMiYiFEbEJeAA4tVab\nU4H7ACJiItBVUq8mnOubrszMzMzMcqCkpIQnn3ySOXPmsNtuu9G/f3/+9re/5TusXNgEfAh0AToD\n8yMiq+G8fNyz1Rd4J217MakkqrE2fZtw7qWSzgVeBb4TEWtbKmgzMzMzs2LXr18/Hn300XyHkWuT\ngceBg4EewO8knR4RZ2TaUVu5u60pI1Z3AHtGxP7AMuCW3IZkZmZmZmbt0PkR8cOI2BQR70bEqcAT\n2XSUj5GtJcBuadv9kn212/Svo03H+s6NiBVp++8EnqwvgOuuu27L8+HDhzN8+PCmxm5mZlkYO3Ys\nY8eOzXcYZmZm9ZL0vYj4WUS8KumMiHgw7fDgrPps7cV8JZUCbwLHAu8Ck4CzImJWWpuTgEsi4mRJ\nw4BbI2JYQ+dK2jUiliXnfxs4OCLOruP6UddrHjduHNdccw3jxo1r6ZdsZma1SCIiWv0+2/q+A8zM\nCkHy2ZjvMFpEfa8lX5//TSFpSkQcWPt5XdtN1eojWxGxWdKlwBhS0xjvTpKlC1OHY1REjJZ0kqS5\nwDpgZEPnJl3/LCkRXw0sIFXF0MzMzMzMrClUz/O6tpskL4saJ2XZ96m17/e1ti9t6rnJ/vNaMkYz\nMzMzMysqUc/zurabJC/JViFqL0O2ZmZmZmaWlU9Kep/UKFaX5DnJdudsOnSyZWZmZmZmRS8iSlu6\nz7ZS+r1VSAV5r56ZmZmZmbVBTrbMzMzMzCwrI0eO5Ic//GG+wyhYTrbMzMzMzMxywMmWmZmZmZlZ\nDjjZMjMzMzNrAyo3VvLyOy9TubEyb31MnTqVT33qU3Tt2pUzzzyTDRs2ZB1LMXCyZWZmZmZW4Co3\nVnLkPUdy1B+P4sh7jswqWWpuH5s2beLzn/88X/3qV1m9ejVnnHEGDz/8cMZxFBMnW2ZmZmZmBW76\nf6YzY8UMqqqrmLliJjNWzGj1Pl555RWqqqr41re+RWlpKaeffjoHH3xwxnEUEydbZmZmZmYFbugu\nQ6noWUGHkg4M6TmEip4Vrd7H0qVL6du378f2DRgwIOM4iokXNTYzMzMzK3DlncoZP3I8M1bMoKJn\nBeWdylu9j969e7NkyZKP7Vu0aBGDBg3KOJZi4ZEtMzMzM7M2oLxTOcP6Dcsq0WqJPg477DDKysr4\n9a9/TVVVFY888giTJk3KOpZi4GTLzMzMzMwa1aFDBx555BHuueceunfvzoMPPsjpp5+e77AKmqcR\nJiIi3yGYmZmZmRW0Aw88kClTpuQ7jDbDI1tpJOU7BDMzy7Glq7Jfn8bMzCwTTrbMzKyoDLzxSCdc\nZmbWKpxsmZlZUdmww0xGT858fRozM7NMOdkyM7Oi0vmDIZx0cObr05iZmWXKyZaZmRWVedeMp0/3\n7Msmm5mZNZWTLTMzKypOtMzMrLW49LuZmZmZWQEYMGBAu6mOPWDAgHyHUBCcbJmZmZmZFYAFCxbk\nOwRrYXmZRihphKTZkt6SdEU9bW6TNEfS65L2b+xcSTtLGiPpTUnPSOraGq+lPRk7dmy+QyhYfm/q\n5/emfn5vrC3xv9f6+b2pn9+buvl9yVy2+YGkfpKekzRD0jRJ30prf62kxZKmJI8RrfV6arR6siWp\nBPgNcAJQAZwlad9abU4EBkbEXsCFwO+acO6VwL8iYh/gOeCqVng57Yo/GOrn96Z+fm/q5/fG2hL/\ne62f35v6+b2pm9+XzDQnPwCqgP+KiArgMOCSWufeEhEHJo+nc/1aasvHyNYhwJyIWBgRm4AHgFNr\ntTkVuA8gIiYCXSX1auTcU4F7k+f3Aqfl9mWYmZmZmVkLyDo/iIhlEfF6sv8DYBbQN+28vN4El497\ntvoC76RtLyb1BjfWpm8j5/aKiOUAEbFM0i71BfDkk09us2/atGlNDN/MzMzMzFpQNvnBkmTf8pod\nknYH9gcmprW7VNK5wKvAdyJibYtF3RQR0aoP4HRgVNr2OcBttdo8CRyetv0v4MCGzgXW1OpjVT3X\nDz/88MMPP/L/aO3vH38H+OGHH34UxqMl84O07R1IJVSnpu3rCSh5fiNwd2t/7+RjZGsJsFvadr9k\nX+02/eto07GBc5clQ4nLJe0K/Keui0dE+6inaWZmGfN3gJlZQWpOfoCkMuAh4E8R8XhNg4hYkdb+\nTlIJW6vKxz1bk4FBkgZI6gicCTxRq80TwHkAkoYB70VqimBD5z4BfC15/lXgcczMzMzMrNA1Jz8A\n+AMwMyJ+lX5CMgBT4wvA9FwE35BWH9mKiM2SLgXGkEr27o6IWZIuTB2OURExWtJJkuYC64CRDZ2b\ndH0z8DdJXwcWAl9q5ZdmZmZmZmYZyjI/+BqApE8DXwGmSZpKaqri9yNVefBnSYn4amABqSqGrapm\nDqOZmZmZmZm1oLwsapwvTVksrRg1tBicpdZ+SBbCqz2cXdQkdZX0oKRZyb+dQ/MdU6GQ9G1J0yW9\nIen+ZEpEUZJ0t6Tlkt5I25fTReizXRizGDT23kg6W9K/k8cESZ/IR5z50NTfESQdLGmTpC+0Znz5\n1MT/p4ZLmpp89j3f2jHmSxP+n9pR0hPJZ800SV/LQ5itrq7P/jraFMXncNEkW01ZLK2INbYYXLG7\nHJiZ7yAK0K+A0RExGPgkqXUtip6kPsBlpCok7UdquvaZ+Y0qr+4h9bmbLmeL0DdzYcx2rYnfg28D\nR0XEJ0lV7rqzdaPMj6b+jpC0+ynwTOtGmD9N/H+qK3A7cEpEDAXOaPVA86CJ/24uAWZExP7A0cAv\nkmIO7V1dn/1bFNPncNEkWzRtsbSiFI0vBle0JPUDTgLuyncshUTSjsCREXEPQERURcT7eQ6rkJQC\n2ydfqNsBS/McT95ExARgTa3duVyEPuuFMVswhkLV6HsTEa/E1jVoXqF4vgua+jvCZaQqntVZ8bid\nasp7czbwcEQsAYiIla0cY7405b0JoDx5Xk5qaaKqVowxL+r57E9XNJ/DxZRs1bdQsqVR3YvBFbNf\nAt8l9WFpW+0BrJR0TzLFcpSkLvkOqhBExFLgF8AiUiVp34uIf+U3qoKzS6QtQg/Uuwh9FpryWV/f\nwpjtXabfgxcA/8hpRIWj0fcmGbU+LSJ+CxTTEgJN+XezN9BN0vOSJiu1gGwxaMp78xtgiKSlwL9J\nzZaxIvocLqZkyxohaQdSf7G7PBnhKmqSTgaWJ6N+ori+XBtTRmqh8dsj4kBgPampYUVP0k6k/mI3\nAOgD7CDp7PxGVfD8x4wCI+loUpWAfX/zVrfy8ffD3wlb1XwnnAiMAH4gaVB+QyoYJwBTI6IPcABw\ne/L7lhWJYkq2mrJYWtFSPYvBFblPA5+T9DbwF+BoSfflOaZCsRh4JyJeTbYfIvVFa3Ac8HZErI6I\nzcAjwOF5jqnQLK+ZLqIGFqHPUrMWxmznmvQ9KGk/YBTwuYhoaBpQe9KU9+Yg4AFJ84Evkvql+XOt\nFF8+NeW9WQw8ExEbImIVMI7UvbztXVPem5GkvgeIiHnAfMD3xRfR53AxJVtNWSytmNW5GFwxi4jv\nR8RuEbEnqX8vz0XEefmOqxAkU8DekbR3sutYXESkxiJgmKTOkkTqvSn24iG1R4ZzuQh9cxfGbM8a\nfW8k7QY8DJyb/GJYLBp9byJiz+SxB6k/MF0cEcXwe0RT/p96HDhCUqmk7YBDKY7Pvaa8NwtJ/RGO\n5I9Me5MqRFMMGpoVVDSfw8VQDQVodEHkoqaGF4Mzq8+3gPsldSD1xTEyz/EUhIiYJOkhYCqwKfk5\nKr9R5Y+kPwPDge6SFgHXkqrm9qBysAh9lgtjFsW/3aa8N8APgG7AHckfCzZFxCH5i7p1NPG9+dgp\nrR5knjTx/6nZkp4B3gA2A6Miot3/Aa6J/25uBP6YVgL9exGxOk8ht5p6Pvs7UoSfw17U2MzMzMzM\nLAeKaRqhmZmZmZlZq3GyZWZmZmZmlgNOtszMzMzMzHLAyZaZmZmZmVkOONkyMzMzMzPLASdbZmZm\nZmZmOeBky8zMzMzMLAecbJmZmZmZmeWAky2zFiCpq6SL0rYn5CGGzpLGSlIz++kg6QVJ/nwwM2sC\nfweYWX38P5JZy9gZuLhmIyKOyMVFJO0r6ap6Dn8deDgiojnXiIhNwL+AM5vTj5lZEfF3gJnVycmW\nWcv4CTBQ0hRJP5NUCSBpgKRZku6R9Kak/5V0rKQJyfZBNR1I+oqkiUkfv63nr5NHA1PrieErwOOZ\nXFfSdpKekjRV0huSzkj6ejzpz8zMGufvADOrk5Mts5ZxJTA3Ig6MiO8B6X9ZHAj8PCL2AfYFzkr+\n6vld4GpI/bUS+DJweEQcCFRT64tO0gjgAqC/pF61jnUA9oiIRZlcFxgBLImIAyJiP+DpZP904ODs\n3w4zs6Li7wAzq5OTLbPcmx8RM5PnM4Bnk+fTgAHJ82OBA4HJkqYCxwB7pncSEU+T+lK8MyKW17pG\nD+C9LK47DThe0k8kHRERlcm1qoGNkrbP/OWamVkafweYFbGyfAdgVgQ2pj2vTtuuZuv/gwLujYir\nqUfyl8xl9Rz+EOic6XUjYo6kA4GTgBslPRsRNyTtOgEb6ovHzMyaxN8BZkXMI1tmLaMSKE/bVj3P\na6s59izwRUk9ASTtLGm3Wm0PASZJOkhSl/QDEfEeUCqpYybXldQb+DAi/gz8HDgg2d8NWBkRmxvo\nw8zMUvwdYGZ18siWWQuIiNWSXpL0Bqk57+nz9et7vmU7ImZJugYYk5Tb/Qi4BEiff7+U1DSTeRHx\nYR1hjAGOAJ5r6nWBTwA/l1SdXLOmdPHRwN/req1mZvZx/g4ws/qomRVCzaxASDoA+H8R8dUWxNQN\nUQAAIABJREFU6Oth4IqImNv8yMzMLNf8HWBWmDyN0KydiIipwPMtsaAl8Ki/ZM3M2g5/B5gVJo9s\nmZmZmZmZ5YBHtszMzMzMzHLAyZaZmZmZmVkOONkyMzMzMzPLASdbZmZmZmZmOeBky8zMzMzMLAec\nbJmZmZmZmeWAky0zMzMzM7MccLJlZmZmZmaWA20q2ZJUImmKpCfqOX6bpDmSXpe0f2vHZ2ZmZmZm\nmZM0QtJsSW9JuqKeNtv8ri+pk6SJkqZKmibp2rT2O0saI+lNSc9I6tpar6dGm0q2gMuBmXUdkHQi\nMDAi9gIuBH7XmoGZmZmZmVnmJJUAvwFOACqAsyTtW6tNnb/rR8RG4OiIOADYHzhR0iHJaVcC/4qI\nfYDngKta4/WkazPJlqR+wEnAXfU0ORW4DyAiJgJdJfVqpfDMzMzMzCw7hwBzImJhRGwCHiD1u326\nen/Xj4j1SZtOQBkQaefcmzy/FzgtZ6+gHm0m2QJ+CXyXrW9ebX2Bd9K2lyT7zMzMzMyscNX+PX4x\n2/4eX+/v+smtRlOBZcA/I2Jy0maXiFgOEBHLgF1yEHuDylr7gtmQdDKwPCJelzQcUDP6qi9ZMzOz\nVhQRWX+WZ8vfAWZm+dfSn/8RUQ0cIGlH4DFJQyKirluPWv07oK2MbH0a+Jykt4G/AEdLuq9WmyVA\n/7Ttfsm+bUSEH3U8rr322rzHUKgPvzd+b/zetOwjn/L92gv14X+vfm/83vh9aY1HPZYAu6Vt1/V7\nfKO/60fE+8DzwIhk1/KaqYaSdgX+k9UXRzO0iWQrIr4fEbtFxJ7AmcBzEXFerWZPAOcBSBoGvBfJ\nsKGZmZmZmRWsycAgSQMkdST1+37t6uN1/q4vqUdNlUFJXYDjgdlp53wtef5V4PGcvoo6tIlphPWR\ndCEQETEqIkZLOknSXGAdMDLP4ZmZmZmZWSMiYrOkS4ExpAaD7o6IWU38Xb83cG9S0bAE+GtEjE6O\n3Qz8TdLXgYXAl1rzdUEbTLYi4gXgheT572sduzQvQbUTw4cPz3cIBcvvTf383tTP7421Jf73Wj+/\nN/Xze1M3vy+Zi4ingX1q7Wv0d/2ImAYcWE+fq4HjWjDMjKmBuZPtkqQottdsZlZoJBF5KpDh7wAz\ns/zJ1+d/vrSJe7bMzMzMzMzaGidbZmZmZmZmOeBky8zMzMzMLAecbJmZmZmZmeWAky0zMzMzM7Mc\ncLJlZmZmZmaWA062zMzMzMzMcsDJlpmZmZmZWQ442TIzMzMzM8sBJ1tmZmZmZmY54GTLzMzMzMws\nB5xsmZmZmZmZ5YCTLTMzMzMzsxxwsmVmZmZmZpYDTrbMzMzMzMxywMmWmZmZmZlZDjjZMjMzMzMz\nywEnW2ZmZmZmZjngZMvMzMzMzCwHnGyZmVlxqayse9/LL9d9zMzMLEs5S7YklUk6S9JtyeNuSaMk\n3Srp65I65+raZmZm9TryyI8nVZWVqX1HHbXtsZrjTsTMzHJK0ghJsyW9JemKetrcJmmOpNcl7Z/s\n6yfpOUkzJE2T9K209p+U9LKkqZImSTqotV7PlhgiouU7lQ4GjgL+GRFv1HF8IHAy8O+IeKHFA2g4\ntsjFazYzs6aTREQoD9eN6NABxo2DYcNSO19+OZVoVVVB7WM1idiMGVBRAePHQ3n51g4rK2H6dBg6\n9OP7GztmZlak6vr8l1QCvAUcCywFJgNnRsTstDYnApdGxMmSDgV+FRHDJO0K7BoRr0vaAXgNODUi\nZkt6BvhFRIxJzv9eRBzdOq80JVcjWxsi4hcR8YakXjU7JXUBiIh5EXEb8I6kjjmKwczMbFtDhqQS\npxpDh6a2O3TY9tj06alEq6oKZs5MPa/R0IhYc0bLPJJmZsXnEGBORCyMiE3AA8CptdqcCtwHEBET\nga6SekXEsoh4Pdn/ATAL6JucUw10TZ7vBCxpLJCWnp1XlknjpoqIaZKuBF4H+gN3JocqJJVHxPNJ\nu7dzcX0zM7N61R6dKi9P7asZvUo/VpOIzZzZtESsZkSsoWMNjZY1ZyTNzKzt6gu8k7a9mFQC1lCb\nJcm+5TU7JO0O7A9MTHZ9G3hG0i8AAYc3FEQyO+9IUrPz/lLH8YHANyU1eXZeLgtkPAbsAfxfSU9I\nGkXqxR+VaUeSOkmamMy3nCbp2jrafEbSe5KmJI9rmv8SzMys3akrSSkvTyVDtY/VJGLjxm2b+DQ0\nIpbtaFm2I2npbTxiZmZFKJlC+BBweTLCBXBRsr0bqcTrD410syEibomIaXUdzGZ2Xk5GtpJgZgOz\nJc2PiKeT6YSHAFOz6GujpKMjYr2kUuBFSf+IiEm1mo6LiM+1QPhmZmYpNYlYXfvrGxHLdrQs25E0\nyN2ImUfTzKwZxo4dy9ixYxtrtgTYLW27H9tO+VtCasbcNm0klZFKtP4UEY+ntflqRFwOEBEPSbq7\noSDSk6xkiuLy5HmXiPgwrV2TZ+e1eIEMSZ2AHSJiVRPa9o+IdxprV+uc7YBxwEURMTlt/2eA/46I\n/9PI+S6QYWaWZ3ktkFEI3wGVlXUnYg0dq0mYahKx2glTQ4U+si0C4mmNZtbC6imQUQq8SapAxrvA\nJOCsiJiV1uYk4JKkQMYw4NaIGJYcuw9YGRH/VavfGcDFEfGCpGOBn0bEwY3EdxWpwaH+EXFnsu8g\nYMutUJlo8WmEEbEROCy5saxLXW0k7STpm8CApvYrqUTSVGAZqXmUk+todlhSCvLvkoZk9QLMzMxy\nrb5piw0da2hKIxTetEZPaTSzJoqIzcClwBhgBvBARMySdGGSMxARo4H5kuYCvyc1RRBJnwa+AhyT\n3HI0RdKIpOtvAr9Icogbk+3GPEoL3QoFOSr9DpCUYfw6sAvQmdSUxc3AelI3vd0VEWuz6HdHUveD\nXRoRM9P27wBUJ1MNTyRVDnLvOs6Pa6/desvX8OHDGT58eKZhmJlZBmpPI7n++uuLe2QrV1p6xKyh\nY/kYLfNImlmbl6+ZDZmSNKLWrVBLI+K1jPtpi186kn4ArIuIWxpoMx/4VESsrrU/Nm7cSMeOrjhv\nZpYvRT+NsNC0dJJWaFManaSZFYxCTbZydStULqsR1im55yrTc3pI6po87wIcD8yu1SZ9Pa9DSCWS\nH0u0arzzTka3iZmZmbVvLT2tsZCmNDa3iqOZFYVc3QqVs2qE6SR9PiIelXQBsIekBTU3nDVRb+De\nZHXpEuCvETFa0oVARMQo4IuSLgI2AR8CX66vswULFjBw4MDsX5CZmZm1jUqNzaniWHPcI2ZmRSEi\nnkpuhfq2pBa5FapVphFK+m1EXCSpAngLOKCOsu2tQlLcddddnH/++fm4vJmZ4WmE1oDWvO8MPK3R\nrJUV6jTCXGmtaYR/kXQUsJHUiNMHjbTPqfnz5+fz8mZmZlaflp7S2JwqjvmY1ugpjWYFKZtboaCV\nkq2IGAcsAHYCXkivIpgPCxYsyOflzczMrKU1kKRVUs7LMYxK6k7gKkeP5+Xbp1A5ett7zyr3PZiX\nS4+gcp+DtpnWWO+x6dOpnL6Ql6sOonLGom2StHqPVVZSefgJvHzk96g8/ASX0zfLM0mfT35eAFwt\n6RuZ9tFa92xdCHQiNaK1k6TNEfGr1rh2XZxsmZmZtS/1zcyrrIRPf7qaWbPEwIEbuO2214l4n/Xr\n17N+/XpWr97ET396MsuWDaZHj//w5S//lJKSdWzevJn160t5fMkDrKnuzU6Ll3LcBd9G+gBJbN68\nHc8u/gvvVfdh58VLOfnSq+jSpYqSkhLKPizjWcbzFnuzd7zFmY8+RpcJE+jcuTOlH5ZxuybwJnux\nr+by4/lvs+PGF+jSpQtdpi3gnOm/ZSaDGTJ9FuMnzmTH4w7d8kIqDz+B6bNKGTp4M+UvPfOxKY31\nHgMql1Yy/akFDD1ld8r7eEqjWQY+S2rdrZeBe4EDMu2gVZItYF5E/KtmQ9LRrXTdOjnZMjMza3vS\n84KOHTeyePFilixZwrx5/+Hqq49i+fJu7LjjEioq/i9r1y5mzZo1rFgxiI8+GgN05M03S/nv/76H\n3r0Xst1227HddttRWTmUZct2prq6lJUrexIxhN13X0FpaSkLF/Zhzdq+VEcpayv7MXjwF9lnnzUA\nzJ69M4880o/qKOW9yn707n0cu+++jM2bNzN3bk9mx2CqKWV27Mu85T3oXjWHjRs3snBhH2Zt3ptq\nOjCzai9u+OXv6NLl36xfv57K5Xsyjz9RRUdmsi99TziGsh1nsv3223OodmTu4j8zkyEMmT6Tz/6f\ns1k9cBd22GEHBq3exF3T70iOzeLW3/4v2w//FF27dqXswzK+cNgmZm7Yh4rO8xk/r8/WhKs5SZpZ\ncai5FWopqVuhpmTaQWsVyDgE+BLQBVgLjI6ICTm/cN2xRMeOHXn//ffp1KlTPkIwMyt6LpBh9UlP\nqLbfvpq3336b6dOnM336Qm699QusXr0rZWVzgCPp06ecvn370rnzcMaOvZ7q6jJKSzdz661TOeqo\njnTr1o2ysp054YTtmDVLddbHyLa2Rs6OHb6ZmbPFkH2DZ8dupqRkHR988AEv/Wsd53x9IFV0oAMf\ncd3VY+i1x3Lef/993prambv+dD5VdKSMjRx6wLfZWDqZtWvX0v3d3Xn1g6eooiMd2MgRPc+gcsC7\ndO3alf02dODZF3+SStKYyXcu/Rtlhw2lW7dudK7qwre+uAuzNg5kSOf5TEhP0mreuwaSMSdqVp9i\nK5DRJhc1bg5JscceezBmzBgGDRqU73DMzIqSky2rbcOGDYwf/zojRw7i3Xd3olOnt5GOomfPzgwd\nOpTttz+Ohx66jOrqUsrKqnn++WqOOCI1QaexgoMNFThs7HihHKudiI1/qbTeJO1jx5ZWcuTApczc\nsDuDO83nj//cwKZOH7F27VpeG1/FD244dksidvrnbkHbT2P16tV0mL0zTy+8d8uxT3YewareC+nW\nrRvdunWjZ+eeTB19FXM2783eZXO4/OaX6DVwF3beeWe6VHXhgpPKmblxz21H03CSVuzacrIlaWhE\nTM/onHx86WQTaAteO44++mi+//3vc9xxx+UjBDOzoudkq7hVVsILL6zivfcmMHXqOF566SXeeOMN\n+vf/EnPm3El1dRllZZsZPXo9xx9fvuWc5iRU7UHWCdzSSmaMXkjFSQM+nvQ0NUnrvIAnX9uOTZ0+\nYvXq1axZs4ZZDy7mv+86Z0sy9rXDrmJ5z3msXr2aLnN78vyyB7YcO6Trqby/21K6d+9Or+168cYz\n12xJ0r7zi0nsOqgXPXr0oHNVF849pkNWSZrvPWs72lqyJak/0AtYDvTOdPmqVku2mhtoC8YRI0eO\n5PDDD+eCCy7IRwhmZkXPyVbxSY1cjeepp15g1Khz2bBhD3bccTHf/vajHH30QRx00EFUV29f9AlV\na8smSas5VpOMDem84GOJ0ccTtfn8bUIJG8o+ZNWqVcx4YCH/dedXtiRi5x56BUt3fpOVK1ey/fxd\neXHVw1uOfWbXM/lo79V0796dnl12YcJfL+WtzXuzT9kcrr/rTfrs3ZsePXrQvWNHyk4+kxmzy3zv\nWRvQlpKt2kX+gIyL/LXWPVvNDrQFY4nrr7+ejRs3ctNNN+UjBDOzoudkq/2rrISXXnqfefMe5+9/\nf4Bx48ax3377MXjw17n33pFUVZVss4ZwzXlOqNqGxpKxOkfTmpqkdZrPXaMrWVeyjlWrVjHn0WX8\n4P5vbJ3yOPRS5m8/jZUrV7LbsnWsXPcPZjGEwczkUxUXsWZQL7p37073Tj34+53n8VbVXuzbYS63\nPriMvvv0oUePHuy8886sX77eUxpbWRtLto6rXeQvIp7PqI9WSraaHWgLxhL33nsvzzzzDPfff38+\nQjAzK3pOttqvtWvX8qc/PcZVVx3BBx/0p2vXJdxyy6t84QvHs9NOOzU6HdDav5ZO0l7+1zqOOr7j\nluIhv/nlFHoOeJdVq1ax6O+r+clj/29Lknbinl9ndtmrrFy5kqo1Vewa43ibwQzSbCo+ewM799+J\nHj160K1jd+798Ym8WbUXgzvO488vVDOgYjd22GEHJPm+s2ZoY8lWs4v8FWU1wnHjxnHllVfy4osv\n5iMEM7Oi52Srfai5TWbIkGqmTHmBP/zhDzz55JMccMDFjB9/A5s3l3r0ylpMc+89q52kTfjdvzn6\nosFbErFfXvRXOuy/gZUrV/KfZ9dz+3M/3HLssG5f4LWNL1BVVUX/nfpT+p+HmRf7slfJmxx33p10\n3707PXv2pGtJV356+QHM/mgQQzq9zXOze9J99+4few0NJWLFkKi1pWSrJRRlNcJFixYxbNgwlixZ\nku9wzMyKkpOttq+yEg4/fDMzZ0JZ2ZsMGvR1vvnNs/jKV75Cp049PHplrSqrAiFNnNKYfuzDDz/k\nuV9N4rSrDtuSiP3wzN/x0V6rWLFiBesnlfLnKbdsOTa45BgWls+gR48e9NmxLyv+/WvmVu/L3qVv\ncc4VT9Fr4C706NGDHj16sF319nz1uE7ZFQhpQ5xstXOSoqqqiu22285rbZmZ5YmTrbZtwYIFXHnl\n4/z1rxcBHSkrq2bcOHHYYVv/k3r0ytqCXN53NqTzAl6YsyvV21ezcuVKJt41g5E/O2lLInbZCT9m\nde9FrFy5kpUrV9Jlbk/Gr3xoy/Hhvc/io71X07NnT3p22YUX/nxRqkBIh7n85N636btPH3r27EmP\nHj2oWlPVZqY1tsVkK1nYuDSb26BaNdlqTqAtGENEBAMHDuTpp59mr732ylcoZmZFy8lW2zRnzhx+\n9KMfMXr0aM455yL++c8fMnduR49eWdFp6SSt9vHBneZz59/fZ13JOlasWMHcx5Zz7V8u3JKInTb4\nIuZ0mpoaTVu+np5Vz/E2Qxio2Qw66uqP3Xv211s+z5tVe7Fvx3n88Zn17FaxG926daO0tDQv9561\n0WTrM6RymOcyPreVk62sA23BGCIiOPbYY7nyyis5/vjj8xWKmVnRcrLVdlRWwpgxS3nssRv5xz/+\nxuWXX87ll1/Ojjvu6NErsww1lKQ1dLyhRO2lUW/wmQv33ZKI3f6tR+j0qU2sXLmSd//5Abc+feWW\nY0f1+jKvV03gvffeo3d5H7Zf+yTzYjCDSmZz5Jdvp/uAbvTo0YOupTvxq+8dxuxNgxjcaR5Pv7ET\nvffaFUlb4sk2SXOylUOFlGydf/75DBs2jG984xv5CsXMrGg52WobFi9ey4EHfsCKFT3p1WsVkyd3\noX//nfIdlllRasl7zzZv3syzv5rEyd/51JZE7IZz7mLz4LWsXLmS918K7p1485ZjQzt+lhm8Qo8e\nPejXtR/vv3knc6v3Za/St/jS5Q/Rc8/UdMYdtSNXnLc7szYOZEjnt5kwr+82CVexJVtlOYinTdh9\n992ZP39+vsMwMzMrOJs3b+aPf/wj3/veo7z33mNAGatX92bJEujfP9/RmRWn8j7lDLtgaJ37x8/r\nw4zRc7ZJxOo7VlpaymFnDqXi6vlbErGLbz7vY0naqwO3Hnth3lOU7VzGypUrefH3b3DuTamRtLmb\n92LDm2XM+HAGK1asoPqN7Zm1cRRVdGTWhj04es8TWNP3nS33lvXo0aN13qyWtxgoyebE1h7ZGgiU\nRMScVrvotjFERHD//ffz5JNP8sADD+QrFDOzouWRrcI1Y8YMzj//fEpKSvjJT37D5Zcf6KqCZu1U\nThem7ryAp6Zsz4ayD7cUAVmxYgXnn39+WxzZOiQiJmV1bisnW1kH2oIxREQwceJELrnkEl599dV8\nhmNmVpScbBWWMWNeJqKCcePuYNSoX3DjjTfyjW98g5KSEt+XZWbbyCZJq1Hf57+kEcCtpEaQ7o6I\nm+tocxtwIrAO+FpEvC6pH3Af0AuoBu6MiNvSzrkMuBioAv4eEVc29XXW5C6SLo2I3zT1vI/10VqL\nGjc30BaMJSKClStXMmjQINasWbPlZj8zM2sdTrYKx8MPj+GMM3oRMZjy8sVMnNiRwYP75TssM2un\n6vr8l1QCvAUcCywFJgNnRsTstDYnApdGxMmSDgV+FRHDJO0K7JokXjsArwGnRsRsScOB7wMnRUSV\npB4RsTKDWGtymF8ArwA9I+KOTF5vVnMPm2EPSWdIuriVr7uN7t1Tq3mvXr06z5GYmZnlx+zZs7ng\nglspLf0E0JENG/Zg7VonWmbW6g4B5kTEwojYBDwAnFqrzamkRrCIiIlAV0m9ImJZRLye7P8AmAX0\nTc65CPhpRFQlxxtMtCSdKmlA2q4lyc/REfFgpokW5CjZykWgLU0SgwYNYu7cufkOxczMrNWtWbOG\nz33uc9x001lUVJTQoQMMGSIqKvIdmZkVob7AO2nbi9maMNXXZkntNpJ2B/YHJia79gaOkvSKpOcl\nHdRIHMOBnklfn4uIJQAR8WxTX0htuapGOJzUG7AwCfQJaF6guTBw4EDmzZvHoYcemu9QzMzMWk1V\nVRVnnXUWJ598MhdffC7nnuv7sswsN8aOHcvYsWNzfp1kCuFDwOXJCBekcp2dk+mGBwN/A/ZsoJsn\ngKsldQY6S9obmAZMr0m8MpWrZKvFA80Fj2yZmVkxuuKKK6iurubnP/85kEqwhg3Lc1Bm1i4NHz6c\n4cOHb9m+/vrr62q2BNgtbbsfW2fGpbfpX1cbSWWkEq0/RcTjaW3eAR4BiIjJkqoldY+IVXUFERHP\nA88nff4Xqfu/KoBTJfUhNeL264h4s4GX/DE5SbZyEWguDBw4kBdeeCGfIZiZmbWKykqYPh3+/e/7\neeKJJ5g4cSJlZUW73KaZFZbJwKDkNqR3gTOBs2q1eQK4BPirpGHAexGxPDn2B2BmRPyq1jmPAccA\nLySDPx3qS7Rqi4hbkqdbkgVJXwb+D5DfZCtdSwQqqRMwDuhIKuaHImKbtLiucpAN9Tto0CDuvvvu\npoRgZmbWZlVWwpFHwowZ1UR8kldeeYpu3brlOywzMwAiYrOkS4ExbC39PkvShanDMSoiRks6SdJc\nkt/1ASR9GvgKME3SVCCA70fE08A9wB8kTQM2Auc1M9RNZJBoQSskW/XIKNCI2Cjp6IhYL6kUeFHS\nP9LX7ErKQQ6MiL2ScpC/AxqcFDFo0CDmzZuX5UswMzNrG6ZPhxkzgqqqEsrKBlNVVZrvkMzMPiZJ\njvapte/3tbYvreO8F4E6P9SSyobntmCMj2R6TmuXfgdSgUbEkxmesz552olUklh7oZQ6y0E21Gfv\n3r15//33qayszCQUMzOzNmXQoA106DCHkpIqKipKXXHQzKyV5CXZyoakkmRocBnwz4iYXKtJo+Ug\n6+hzS0VCMzOz9urqq7/FCSfcyIQJpYwf74qDZmatpc0kWxFRHREHkKo8cqikIS3Rr5MtMzNrz+6+\n+24mTJjAfffdzmGHyYmWmVkjJF0maeeW6Cun92xJugz434hY01J9RsT7kp4HRgAz0w7VWw6ytuuu\nu27L806dOrn8u5lZjrXWOiv2ca+99hpXXXUV48aNo9xZlplZU/UCJkuaQqrS4TMRUfsWpiZRluc1\nrXPpRlKlG5sVqKQewKaIWCupC/AM8NOIGJ3W5iTgkog4OSkHeWtEbFMgQ9LHQvjd737HlClTGDVq\nVKZhmZlZliQREcrDdbP9vmwTasq7Dx0KH320ioMOOoj/+Z//4fTTT893aGZmQP4+/zMlScBngZHA\nQaQWRL47IjKaEpfTaYQRcQ2wF3A3qfKMcyT9WNLADLvqDTwv6XVgIqmkbbSkCyV9M7nWaGB+Ug7y\n98DFTel44MCBHtkyM7M2r6a8+1FHwRFHBF/+8gWcccYZTrTMzLKQ/GVuWfKoAnYGHpL0s0z6yenI\n1paLSJ8klRX+f/buPDyq8uzj+PdOCEQxrCIqFBFElgQUFYgKGkUrINaXtta1fcG2WpVX1Fa7oaKi\nFa11V6pFW637rgi4VFNAQRBkC4sIKLKIyiKDyhJyv3/MJIYYSDKZkzOT+X2uKxdzlnnOb/C6Mt6c\n59zPAKKLHecTbXJxVeAX/36WXf5Vc8WKFRx//PGsXLmyrqOIiKQt3dlKvGnTooVWcTFkZBRz2GGX\nMmPGXVq4WESSSirc2TKzEUTX5PoS+AfworvvMLMMYKm7V/vGUdDTCBMWNIGZdvmiLS4uZp999mHT\npk1kZ2fXdRwRkbSkYivxvlu4eCewmMWLW9Gx435hxxIR2UWKFFvXAQ+5+yeVHOvq7ouqO1bQ3Qhb\nAD9291Pc/ZnYwmK4ewkwOOBrV0uDBg1o164dK1asCDuKiIhI3HJy4F//Ws4++wxm0qSvVWiJiMQv\nu2KhZWZjAGpSaEHwxVbCggbpkEMOUft3ERFJadu2beP888/g+usH0b9/77DjiIikspMr2TcwnoGC\nLrYSFjRIhxxyCEuXLg07hoiISNyuvPJK2rdvz/Dhw8OOIiKSkszsIjObD3Q2s3nlflYA8+IZM5Cn\nZs3sIqLdADuYWflgOcA7QVyzNjp37sz8+fPDjiEiIhKX559/nvHjxzN79myi3YpFRCQOjwMTgb8A\nfyi3P+LuG+IZMKgWRQkPGqQuXbrwzDPPhB1DRESkxpYvX85vfvMbXn31VZo1axZ2HBGRlOXuXwFf\nAWcnasw6af2eTCrrRLVq1Sp69erF2rVrQ0olIpJe1I0wPuUXLc7Jge3bt9O3b1/OOeccLrvssrDj\niYhUKZm7EZrZVHfva2YRoPTLojSru3uTGo8ZxJdOEEETpbIvWncnJyeH1atX07Rp05CSiYikDxVb\nNfdda3fIzYUpU+Caay5nxYoVvPDCC5o+KCIpIZmLrSAE0iDD3fvG/sxx9yaxn5zS7SCuWRORyK7b\nZkbnzp1ZsmRJOIFERESqsGBBtNAqLoaFC+H++yfzwgsv8NBDD6nQEhFJIDM7w8xyYq9HmtnzZtYz\nnrEC7UaYyKCJdMwJke8VXJ07d2bx4sXhBBIREalCXl70jlZWFhxyyHZuvXUoTz75JC1gYPEqAAAg\nAElEQVRatAg7mohIfXO1u0fMrC9wEjAOGBvPQEG3fk9Y0ERa0KsfM+buWm3pzpaIiCSznJzo1MG3\n3iomJ2cQV111Efn5+WHHEhGpj3bG/jwVeMDdXwUaxjNQ0MVWwoImVKuF0Kpol11dunRRsSUiIkkt\nJwfefHM0TZtm8Nvf/jbsOCIi9dVqM/s7cCYwwcwaEWfdFFTr91KlQU8GxtQmaCLl7d+N3u1zd9mn\naYQiIpLs3n33XcaOHcvs2bPJyAj961REpL76GTAA+Ku7bzKzA4Ar4xko0NbvZrY30aDz3X1pLGh3\nd389sItWnck3b91MTqOcXfZ/8803tGzZki1btpCZmRlSOhGR9KBuhDX31Vdf0bNnT26//XZOP/30\nsOOIiMQl3boRap2tcg466CDeeustOnbsWMepRETSi4qtmvv5z39O48aNGTs29EefRUTitrvf/2Y2\nALiD6Cy4ce4+ppJz7gIGAl8DQ919jpm1BR4BWgMlwIPufleF9/0WuBXY1903VCNjI+AnQHvKzQR0\n9+ur+zlLBTqNMJFB60JpkwwVWyIikkwef/xxZs6cyaxZs8KOIiKScGaWAdwD9AfWADPN7CV3X1zu\nnIFAR3fvZGZ9iDbdyweKgStihdc+wCwze730vbFi7GTgkxpEegn4CpgFbKvNZwv6ma2EBa0LpU0y\nBg0aFHYUERERAD7++GNGjBjBa6+9RuPGjcOOIyIShN7AUnf/BMDMngROB8o3VDid6B0s3P09M2tq\nZq3d/TPgs9j+LWa2CGhT7r23E33e6uUa5Gnr7gNq84FKBV1sJSxoXejcuTPz5s0LO4aIiKSxSCS6\ngHFeHuy1VzHnnXceV111FUcccUTY0UREgtIG+LTc9iqiBdiezlkd27eudIeZtQcOB96Lbf8I+NTd\n59dw8fd3zay7u8+vyZsqE3SxlbCgdaFLly4888wzYccQEZE0FYlAv35QVBRdwHjw4Nto1KiR2ryL\nSMoqLCyksLAw8OvEphA+C4yI3eHaC/gT0SmEZadVc7i+wDAzW050dp4B7u49apwr4G6EC4FOQK2D\nJjDTbh+OXrVqFUcddRSfffZZHacSEUkvapBRuWnT4LjjoLgYGjQoISdnMPPnP0ibNm3CjiYikhCV\n/f43s3xgVOmMODP7A9GaYUy5c8YCb7v7U7HtxcDx7r7OzBoA44GJ7n5n7Hge8CbwDdEapC3Ru2G9\n3f3zKjIeVNn+0mmONRH0na2BAY+fUG3atGHLli1s2rSJZs2ahR1HRETSTF5e9I7WwoVORsYSbrvt\nfBVaIpIOZgKHxIqctcBZwNkVznkZuAR4KlacbXL30imEDwELSwstAHdfAOxfum1mK4Aj3H1jNfKs\nBM4FOrj79WbWLjZWjYutoFdEXAn0A/43Vgk60baMScnMtLixiIiEJicHpkyBn/zkLgYNuplhw34a\ndiQRkcC5+05gOPA6UAQ86e6LzOxCM7sgds4EYIWZfQT8HbgIwMyOJVoYnWhmH5jZ7Fgb+e9dhupP\nI7wPOJrvCr4IcG88ny3oO1v3Ee13fyJwPdGgzwG9Ar5u3Lp168bChQvJz88PO4qIiKShDz6YzH//\nO0YNm0Qkrbj7JKBzhX1/r7A9vJL3vQNkVmP8DjWI08fdjzCzD2Lv3WhmDWvw/jJBF1sJC1pX8vLy\nKCoqCjuGiIikoS1btjB06FDGjh3LvvvuG3YcEZF0tcPMMoneDcPMWhG9gVRjQU8jTFjQupKbm8uC\nBQvCjiEiImnod7/7Hccffzw/+tGPwo4iIpLO7gJeAFqb2Y3AVOCmeAYK+s5WxaA/BUbWdJDYys+P\nEH3eqwR40N3vqnDO8UQXUV4e2/W8u4+u6bV0Z0tERMLw2muvMXHiRE0fFBEJmbs/ZmazgP6xXf/j\n7oviGSvQ1u8AZtaF74K+FU9QM9sf2N/d58R66M8CTnf3xeXOOR74rbvv8Z8Dq2r7W1JSQtOmTVm5\nciXNmzevaVQREakGtX7f1caNG+nRowcPP/wwJ510UthxREQCE9bv/+owsyv2dNzd/1bTMQO5s7WH\noAPNbGBNg7r7Z8BnsddbzGwR0RWjK7YNrPV/uIyMDLp160ZRURF9+/at7XAiIiJVGjFiBKeffroK\nLRGRcOXE/uxMtKHfy7Ht04AZ8QwY1DTChActZWbtgcOB9yo5fLSZzSG6YNmV7r4wnmuUTiVUsSUi\nIkF78cUXmTZtGnPmzAk7iohIWnP36wDMbDLRNbkise1RwKvxjBlIsRVE0Nj79wGeBUa4+5YKh2cB\n7dz9GzMbCLwIHBrPdfLy8tQkQ0REArdx40YuueQSnnzySRo3bhx2HBERiWoNbC+3vZ041woOukFG\nwoKaWQOihdaj7v5SxePliy93n2hm95lZC3ffUPHcUaNGlb0uKCigoKBgl+O5ubm88sor8cQUEZFK\nFBYWUlhYGHaMpPO73/2OIUOG0K9fv7CjiIjIdx4BZpjZC7Ht/wH+Gc9AgTbIMLM/Az8j2pEQokGf\ncve/xDHWI8CX7l7p82Bm1trd18Ve9waedvf2lZxX5cPRa9as4fDDD+fzzz+vaUwREamGdG+QEYnA\nQw/N4LbbhlFUNJ2cnJyq3yQiUg8kc4OM8szsCKD0X8Imu/sHcY1TB90Iax3UzI4FJgPzia7Z5cCf\ngIMAd/cHzOwS4CJgB/AtcLm7f++5rup80bo7LVq0YMmSJey33341jSsiIlVI52IrEoFjjtnJggUl\nHHzwt8yd2wTVWiKSLlKl2EqUoKcR4u6zgdm1HOMdILOKc+4F7q3NdUqZWVmTDBVbIiKSSAsWwMKF\nDmSxalUWRUWQnx92KhERCUJG2AGSlZpkiIhIELZsmU5GxhKyspxu3SA3N+xEIiISFBVbu5Gbm0tR\nUVHYMUREpB7ZunUrl146jIceWsrkycaUKWgKoYhIkjGz/zOz5okYK9BiK5FB65rubImISKKNHj2a\nrl27ct55p5Ofr0JLRCRJtQZmmtnTZjbAzOJ+xizoboSjgbOIPrP1EPBa2E8mV/fh6C+++IJOnTqx\nceNGavH3KyIilUjHBhlz5szhhz/8IXPnzuWAAw4IJYOISNhSpUFGrMD6ITAMOAp4Ghjn7stqMk6g\nd7bcfSTQCRgHDAWWmtlNZtYxyOsmQqtWrcjOzmbVqlVhRxERkRS3c+dOfvWrX3HzzTer0BIRSQGx\nf5n7LPZTDDQHnjWzW2oyTuDPbCUqaBgOP/xw5syZE3YMERFJcffeey85OTkMGzYs7CgiIlIFMxth\nZrOAW4B3gO7ufhFwJPCTmowVaOt3MxsB/AL4EvgHcKW77zCzDGApcFWQ16+t0mLrtNNOCzuKiIik\nqNWrV3P99dczdepUTUsXEUkNLYAfu/sn5Xe6e4mZDa7JQEHf2SoNeoq7P+PuOyAaFKhR0DD07NmT\nDz6Ia7FoERERAEaMGMHFF19Mly5dwo4iIiLVk12x0DKzMQDuvqgmAwVdbCUsaBg0jVBERGrj1Vdf\nZe7cufzpT38KO4qIiFTfyZXsGxjPQEEXWwkLGrRIBKZNi/5Z6pBDDuHzzz9n06ZN4QUTEZGU9PXX\nXzN8+HDuv/9+srOzw44jIiJVMLOLzGw+0NnM5pX7WQHMi2fMQIqtIIIGKRKBY06I0O/saRxzQqSs\n4MrMzKRHjx7MnTs33IAiIpJyrr/+eo455hhOOumksKOIiCS92HpWi83sQzP7/W7OucvMlprZHDM7\nPLavrZm9ZWZFZjbfzC4td/4tZrYodv5zZtakihiPA6cBL8f+LP050t3Pi+tzBbHeiJk1Jdp18C/A\nH8odirj7hoRfsAYqW2PlzSkRTn68H7Qqgi9yefPcKfTvG11p8uKLL6Zz586MGDEijLgiIvVSfV9n\na/78+fTv35/58+fTunXrwK8nIpIqKvv9H2ue9yHQH1gDzATOcvfF5c4ZCAx391PNrA9wp7vnm9n+\nwP7uPsfM9gFmAae7+2IzOwl4K9bY4maijdL/WDefNCqQO1vu/pW7f+zuZ7v7J+V+Qi20dmu/BdFC\nK7MYWi2Mvo7p2bOnntsSEZFqKykp4cILL+SGG25QoSUiUj29gaWxemEH8CRweoVzTgceAXD394Cm\nZtba3T9z9zmx/VuARUCb2PabscZ8ANOBtnsKYWZTY39GzGxzuZ+ImW2O54MFNY0w4UGD1Kd9Hnn7\n59LAssjbvxu92+eWHTv88MPVkVBERKrtH//4BwC//vWvQ04iIpIy2gCfltteFdu3p3NWVzzHzNoD\nhwPvVXKN84GJewrh7n1jf+a4e5NyPznuXtUUxEoFss5W+aBBjJ9oOY1yePeXUyj6oojcVrnkNPou\ndl5eHh9++CHbt2+nYcOGIaYUEZFk9/nnnzNy5EjefPNNMjKC7kElIiKlYlMInwVGxO5wlT/2Z2CH\nuz9e17kCXdQ4leQ0yiG/bf739u+111506NCBoqIievbsGUIyERFJFX/84x/5+c9/To8ePYhEYMEC\nyMuDnJT4p0cRkcQrLCyksLCwqtNWA+3KbbeN7at4zg8qO8fMGhAttB5195fKv8nMhgKDgBOrCmFm\nEcCByp4p9njubgXVICPhQRMlnoejzzvvPPr378+wYcMCSiUikl7qY4OM9957jyFDhrB48WLMmtCv\nHxQVQW4uTJmigktEBHbbICMTWEK0QcZaYAZwdvl1ec1sEHBJrEFGPnCHu+fHjj0CfOnuV1QYdwBw\nG3Ccu68P8nPtTlDTCOvVV4oWNxYRkT0pKSlh+PDhjBkzhiZNmjBtWrTQKi6GhQujr/O/P3lCREQA\nd99pZsOB14n2lBjn7ovM7MLoYX/A3SeY2SAz+wj4GhgKYGbHAucC883sA6I3fP7k7pOAu4GGwBtm\nBjDd3S/eXQ4zm+rufcvdOKqYs8Y3jAIptoIIGqaePXvy8ssvhx1DRESS1EMPPUSjRo0477zoMix5\nedE7WgsXQrdu0dciIrJ7seKoc4V9f6+wPbyS970DZO5mzE41zJDwvhOBTCNMZvFMIVm/fj0HH3ww\nmzZt0gPPIiIJUJ+mEW7YsIGuXbsyadKkXZ7tjUS+m0aoKYQiIlFh/f4Pi4qtaurYsSPjx4+na9eu\nAaQSEUkv9anYGj58OCUlJdx3330JHVdEpD5KhWLLzLKBi4G+RGfpTQXud/etNR0r0G6EiQwatl69\nejFz5kwVWyIiUmbu3Lk888wzLFq0qOqTRUQkVTwCRIg+8wVwDvAocEZNBwp6TtwjQC7RoPcA3YgG\nTTm9e/dmxowZYccQEZEk4e4MHz6cG264gRYtWoQdR0REEifP3X/p7m/Hfn5NtKapsaDX2cpz927l\ntt82s4UBXzMQvXr14qmnngo7hoiIJInHH3+cb775hl/+8pdhRxERkcSabWb57j4dwMz6AO/HM1DQ\nxVbCgobtiCOOYMGCBWzfvp2GDRuGHUdEREK0efNmrrrqKp599lkyMyttgiUiIinGzOYTffQpC3jX\nzFbGDrUDFsczZlCt3xMeNGyNGzemY8eOzJs3j6OOOirsOCIiEqLRo0dz8sknc/TRR4cdRUREEmdw\nogcM6s5WQoOaWVuiz3+1BkqAB939rkrOuwsYSGyhM3dP6ErEpc9tqdgSEUlfy5Yt46GHHmL+/Plh\nRxERkQRy909KX5tZc6ATkF3ulE++96YqBFJsBRC0GLjC3eeY2T7ALDN73d3L7pKZ2UCgo7t3ik1X\nHAvkx/0hKtGrVy+mT5+eyCFFRCTFXHXVVVxxxRUccMABYUcREZEAmNmvgBFAW2AO0ZpiGnBiTccK\ntBthLOhk4DXgutifo2o6jrt/VnqXyt23AIuANhVOO53o3S/c/T2gqZm1jjt8JdSRUEQkvf33v/9l\n1qxZXH755WFHERGR4IwAegGfuPsJQE9gUzwDBd36PWFBS5lZe+Bw4L0Kh9oAn5bbXs33C7JaycvL\n4+OPPyYSiSRyWBERSQE7d+7k8ssvZ8yYMey1115hxxERkeBsLV0X2MwaxWbTdY5noKC7EW51961m\nVhbUzOIKChCbQvgsMCJ2hysuo0aNKntdUFBAQUFBtd6XlZXFYYcdxqxZs6r9HhERgcLCQgoLC8OO\nUSuPPPIIe+21Fz/72c/CjiIiIsFaZWbNgBeBN8xsI3E8rwVg7p7QZLsMbvYCMAy4jOgcx41AlrsP\nimOsBsB4YKK731nJ8bHA2+7+VGx7MXC8u6+rcJ7X5jNfdtlltGnThiuvvDLuMURE0p2Z4e4WwnXj\n+g7YsmULnTt35oUXXqB3794BJBMRSQ9h/f6Pl5kdDzQFJrn79pq+P9A7W+4+JPZylJm9TSxonMM9\nBCysrNCKeRm4BHjKzPKBTRULrUTo1asXL7zwQqKHFRGRJHbzzTdz4oknqtASEUkDZpYNXAz0Jbqc\n1VTifPwq6DtblQW9v3QOZA3GOZZoo43S9bsc+BNwEODu/kDsvHuAAURbvw9z99mVjFWrO1vLli3j\nuOOOY9WqVZilTFEuIpJUUunO1sqVK+nZsydz586lbdu2ASUTEUkPqXBny8yeBiLAv2O7zgGaufsZ\nNR4r4GIrYUETmKlWxZa7c+CBBzJt2jTat2+fuGAiImkklYqtc845h06dOnHdddcFlEpEJH2kSLG1\n0N27VbWvOoJukJFXIdTbZrYw4GsGysw49thjeeedd1RsiYjUc9OmTWPy5Mk8+OCDYUcREZG6M9vM\n8t19OkBsDd/34xko6Nbvs2PPTwG1C5pMSostERGpv0pKSrj88su56aabaNy4caXnRCIwbVr0TxER\nSW1mNt/M5gFHAu+a2cdm9jHRBY2PimfMQO5smVnps1VZRIOujB1qBywO4pp1qW/fvjz88MNhxxAR\nkQA98cQT7Ny5k/POO6/S45EI9OsHRUWQmwtTpkBOTh2HFBGRRBqc6AEDeWbLzA7a03F3j6tPfSLE\nM18/EoEFCyAvL/pFumPHDlq0aMGnn35Ks2bNAkoqIlJ/JfszW9988w1dunThscceo1+/fpWeM20a\nHHccFBdDVhZMngz5+ZWeKiIiManwzBaAmR0GlH4BTHH3ufGME8g0Qnf/pPQHaAacFvtpFmahFY9I\nBI45IUK/s6dxzAkRIpHo4sZHHXUU06dPDzueiIgE4Pbbb6dPnz67LbQg+g9wubnRQqtbt+hrERFJ\nfWY2AngM2C/2828z+7+4xgq4G+EI4NfA87FdQ4AH3P3uwC5adaYa3dl6c0qEkx/vB62K4Itc3jx3\nCv375nD11Vfj7owePTrAtCIi9VMy39lau3Yt3bt3Z8aMGXTo0GGP50Yi300j1BRCEZGqpcKdrdhz\nW0e7+9ex7cbANHfvUdOxgm6Q8Uugj7tf4+7XAPlEi6/Usd+CaKGVWQytFkZfoyYZIiL11dVXX835\n559fZaEF0QIrP1+FlohIbZnZADNbbGYfmtnvd3POXWa21MzmmNnhsX1tzewtMyuKNbi4tNz5zc3s\ndTNbYmavmVnT6sYBdpbb3hnbV2NBt35PWNCw9GmfR97+uSz+ciFd9u9G7/bReSJHH30077//Pjt2\n7CArKyvklCIikghz587llVdeYcmSJWFHERFJG2aWAdwD9AfWADPN7CV3X1zunIFAR3fvFOtwPpbo\njZxi4Ap3n2Nm+wCzzOz12Hv/ALzp7rfECrg/xvZV5WHgPTN7Ibb9P8C4eD5b0MVWwoKGJadRDu/+\ncgpFXxSR2yqXnEbRf75s2rQpBx98MHPmzKFXr14hpxQRkdpyd6644gquvfZaNT8SEalbvYGlpb0d\nzOxJ4HR27WJ+OvAIgLu/Z2ZNzay1u38GfBbbv8XMFgFtYu89HTg+9v5/AYVUUWyZmQHPxM7tG9s9\nzN0/iOeDBVZsJTpomHIa5ZDf9vstpvr27cvUqVNVbImI1APjx49n7dq1XHDBBWFHERFJN22AT8tt\nryJagO3pnNWxfetKd5hZe+BwoLSL3X7uvg7A3T8zs/2qCuLubmYT3L07MLtmH+P7Aiu2Eh00GfXr\n14+nn36ayy+/POwoIiJSCzt27OB3v/sdt99+Ow0aBD3pQ0QkfRQWFlJYWBj4dWJTCJ8FRpQ2tqhE\ndbvkzTazXu4+s7a5gv5GSVjQZFRQUMAll1zCzp07yczMDDuOiIjE6f7776d9+/YMHDgw7CgiIvVK\nQUEBBQUFZdvXXXddZaetBtqV224b21fxnB9Udo6ZNSBaaD3q7i+VO2ddbKrhOjPbH/i8mrH7AOea\n2SfA10R7Tng83QiDLrYSFjQZHXDAAey///7MnTuXI444Iuw4IiISh3Xr1nHDDTdQWFhIdAa8iIjU\nsZnAIWZ2ELAWOAs4u8I5LwOXAE+ZWT6wqXSKIPAQsNDd76zkPUOBMcD/Ai9RPafU+BPsRtDFVsKC\nJqsTTzyRt956S8WWiEiKuuqqqxg6dCi5WpVYRCQU7r7TzIYDrxNdmmqcuy8yswujh/0Bd59gZoPM\n7COiN3GGApjZscC5wHwz+4DoVME/ufskokXW02Z2PvAJ8LNq5vkkUZ8t0EWNk1FNFzWuynPPPce4\nceOYMGFCwsYUEanvkmVR4ylTpnDOOeewcOFCcrRYlohI4FJkUeNs4GKiTf4cmArc7+5bazxWkMVW\nIoMmMFNCi63169fToUMHvvzyS623JSJSTclQbG3dupUjjzySUaNGccYZZ9R1FBGRtJQixdbTQAT4\nd2zXOUAzd6/xl0XQ0wgfIRr07tj2OcCjQL35VmvZsiUdOnTg/fff5+ijjw47joiIVNPVV19Nt27d\n+OlPfxp2FBERSS557t6t3PbbZrYwnoGCLrYSFjSZlT63pWJLRCQ1TJo0iccee4y5c+eqKYaIiFQ0\n28zy3X06gJn1Ad6PZ6CMhMb6vtmxbiFA7YImsxNOOIG33nor7BgiIlINCxYs4Be/+AXPPPMMrVq1\nCjuOiIgknyOBd83sYzP7GJgG9DKz+WY2ryYDBf3M1iKgM7AytqsdsAQoJqQW8Il+Zgtg8+bNtGnT\nhi+++ILs7OyEji0iUh+F+cxW69atuf322zn77IpdhUVEJGgp8szWQXs6XpNuhUFPIxwQ8PhJoUmT\nJuTm5jJ9+vRdFm0TEZHk89xzz3HssceGHUNERJKUWr/XQhB3tgD+/Oc/A3DjjTcmfGwRkfomGboR\niohI3UuFO1uJFPQzW2ljwIABTJw4MewYIiIiIiKSJFRsJcjRRx/NihUr+Oyzz8KOIiIiIiIicbKo\n88zsmth2OzPrHc9YgRZbiQya7Bo0aED//v157bXXwo4iIiIiIiLxuw84GijtpBQB7o1noKDvbCUk\nqJmNM7N1u2u1aGbHm9kmM5sd+xkZf+T4DRw4UFMJRURERERSWx93vwTYCuDuG4GG8QwUdLGVqKAP\nA6dUcc5kdz8i9jM6jmvU2oABA3jjjTcoLi4O4/IiIiIiIlJ7O8wsE3AAM2sFlMQzUNDFVkKCuvtU\nYGMVp4XW1WTN+ggPTJyGZTehTZs2zJgxI6woIiIiIiJSO3cBLwD7mdmNwFTgpngGCnqdrYpBfwoE\nNcXvaDObA6wGrnT3hQFdZxdr1kfoOLofW3OKyH49l2EnDmDSpEkcc8wxdXF5EREJWCQCCxZAXh7k\n5ISdRkREgubuj5nZLKA/0Rs6/+Pui+IZK9BiK5FBqzALaOfu35jZQOBF4NDdnTxq1Kiy1wUFBbVa\niHj8jAVszSmCzGK27rOQvVtexsTH7uX666+Pe0wRkfqmsLCQwsLCsGPUWCQC/fpBURHk5sKUKSq4\nRETSgbsvBhbXdpyUWdTYzA4CXnH3HtU4dwVwpLtvqORYQhe0LLuztc9Csrd0Y9FV/+GwLh1YunQp\n++23X8KuIyJSn6TKosbTpsFxx0FxMWRlweTJkJ8fYEARkXouFRY1NrOjgD8DBxG9OWWAV6cOqSjQ\nO1uJDBp7b6X/Ycystbuvi73uTbSI/F6hFYQDW+awbOQUJswsYlCvXA5smcNJJ53EhAkTGDp0aF1E\nEBGRgOTlRe9oLVwI3bpFX4uISL33GHAlMJ84G2OUCvTOlpktoZKg7v5JDcd5HCgAWgLrgGuJdjV0\nd3/AzC4BLgJ2AN8Cl7v7e7sZK6F3tirz6KOP8uyzz/LSSy8Feh0RkVSVKne2IDqVsHQaoaYQiojU\nTorc2Zrq7n0TMlbAxVbCgiZKXRRbGzZsoH379qxdu5bGjRsHei0RkVSUSsWWiIgkTooUW/2JrhP8\nH2Bb6X53f76mYwXdjfBaM/sHCQiaSlq0aEHv3r157bXX+PGPfxx2HBERERERqb5hQBcgi+9m5zmQ\ndMVWwoKmmiFDhvDiiy+q2BIRERERSS293L1zIgYK/JmtRAVNlLqaQrJq1SoOO+wwPvvsM7KysgK/\nnohIKtE0QhGR9LS73/9mNgC4A8gAxrn7mErOuQsYCHwNDHP3D2L7xwGDgXXlG/GZ2WHAWCCbaG+H\ni939/WpkfBi4NRHr9mbUdoAqvGtm3QK+RlJq27YtHTt2ZPLkyWFHERERERFJWmaWAdwDnALkAmeb\nWZcK5wwEOrp7J+BC4P5yhx+OvbeiW4Br3b0n0QZ7t1YzUj4wx8yWmNk8M5tvZvNq9KFigp5GWBp0\nBdFntmrT+j3lDBkyhBdeeIH+/fuHHUVEREREJFn1BpaWdiw3syeB09l1UeHTgUcA3P09M2tauvyT\nu0+NrclbUQnQNPa6GbC6mnkGxPMhKhN0sZWwoKloyJAhnHTSSdx9992YJXXTFRERERGRsLQBPi23\nvYpoAbanc1bH9q3bw7iXA6+Z2W1Eb/ocU50wNV2mak8CnUbo7p9U9hPkNZNJly5daNKkCdOnTw87\nioiIiIhIurkIGOHu7YgWXg/t6WQzmxr7M2Jmm8v9RMxsczwBArmzVbq+lplFiHYfLDtEdBphkyCu\nm4zOOussnnjiCY4++uiwo4iIiIiI1KnCwkIKCwurOm010K7cdlu+P+VvNfCDKrFmnFgAACAASURB\nVM6p6H/dfQSAuz8ba6SxW6XrA7t7wpawD7QbYTKq605US5cupV+/fqxatYoGDYKetSkikhrUjVBE\nJD1V9vvfzDKBJUB/YC0wAzjb3ReVO2cQcIm7n2pm+cAd7p5f7nh74BV3715uXxHRDoT/jS1UfLO7\n96pGxjHu/vuq9lVHoNMIzayylo3f21efderUiR/84AfVqehFRERERNKOu+8EhgOvA0XAk+6+yMwu\nNLMLYudMAFaY2UfA34GLS99vZo8D7wKHmtlKMxsWO3QBcJuZfQCMjm1Xx8mV7BsYx0cLfJ2t2e5+\nRIV988LsRhjGv2r+7W9/Y8GCBTz00B6niYqIpA3d2RIRSU9h/f6vDjO7iGgR1wFYVu5QDvCOu59X\n4zGD+NIJImiihPFFu3r1arp3787atWtp1KhRnV5bRCQZqdgSEUlPSV5sNQWaA38B/hDbfSCwxN03\nxDNmUNMIHwdOA16O/Xka0cXHjgyz0ArDmvURXp23kkO7H8nEiRPDjiMiIiIiIpVw96/c/WN3P7tc\nF/V74y20oA4bZFQ2pTAMdfmvmmvWR+g4uh9bc4posKkzA9b04JVnH6+Ta4uIJDPd2RIRSU/JfGer\nMmb2gbv3jPf9gTbIqCBl/lITZfyMBWzNKYLMYoqbfsibc5fy1VdfhR1LRERERESq58HavLkui61a\nBU1Fg3vnkR3JheIssrd048TuHXniiSfCjiUiIiIiIrtRvnu6u99XcV+Nxgq4G2HCetQnMFOdTiFZ\nsz7ChJlFDOqVy7yZ73D11Vczc+bMOru+iEgy0jRCEZH0lArTCBPZUV2t3+vQzp07Ofjggxk/fjw9\neoT2VyAiEjoVWyIi6SmZi61yHdU7Ah+V7gb2Ad5193NrPGbArd8TFjSB2UL9or3mmmv46quvuPPO\nO0PLICISNhVbIiLpKcmLrfKt33/Pdz0nIvF2JAyq2Ep40EQJ+4t2+fLl9OnTh1WrVmnNLRFJWyq2\nRETSUzIXW6XM7Frge18W7n59TcdqkJBE3w/yFfCVmS0GhpY/FvsLrnHQ+qJDhw706NGDF198kTPP\nPDPsOCIiIiIisqst5V5nA4OBRfEMFPQzW78tt1kW1N3PD+yiVUiGf9V8/PHHefjhh3njjTdCzSEi\nEhbd2RIRSU+pcGerIjNrBLzm7gU1fm9dfunUJmgCM4T+Rbtt2zbatWtHYWEhXbt2DTWLiEgYVGyJ\niKSnFC22mgMz3f2Qmr63LtfZAtgbaFvH10w6jRo14oILLuCee+4JO4qIiIiIiJRjZvPNbF7spwhY\nAtwR11gBTyOcz3cPl2UCrYDr3T20KiNZ/lVz9erV5OXl8fHHH9O0adOw44iI1Cnd2RIRSU+pcGfL\nzA4qt1kMrHP34rjGCrjYSkhQMxtH9Hmvdbtbo8vM7gIGAl8DQ919zm7OS5ov2jPPPJNjjjmGESNG\nhB1FRKROqdgSEUlPqVBsJVKdPrMVLzPrS7QryCOVFVtmNhAY7u6nmlkf4E53z9/NWEnzRfvOO+8w\ndOhQlixZQkZGXc/oFBEJj4otEZH0lArFVqzPxE+A9pTr3p40rd9LJSqou0+tcJesotOBR2Lnvmdm\nTc2stbuvq3nqutO+c3e27deJx555iZ+fOSTsOCIiaSsSgQULIC8PcnLCTiMiIiF7CfgKmAVsq81A\ngRZbJDBoFdoAn5bbXh3bl7TF1pr1EQ658Ti29i/ifyevoP9JJ3FgS33Di4jUtUgE+vWDoiLIzYUp\nU1RwiYikubbuPiARAwVdbCUsaCKNGjWq7HVBQQEFBQV1nmH8jAVszSmCzGK8xTLueeoVbrr4nDrP\nISJSFwoLCyksLAw7RqUWLIgWWsXFsHBh9HV+pRPRRUQkTbxrZt3dfX5tBwq6QcYDwN0JCRqdRvjK\nbp7ZGgu87e5PxbYXA8dXNo0wWebrr1kfoePofmzdZyENNnWi/yddmfTys2HHEhGpE8n0zFbpna2F\nC6FbN93ZEhEJUjI/s1Wuk3oDoBOwnOjsPAN8d4369jhmEIVHIEHN2hMttrpXcmwQcEmsQUY+cEcq\nNMhYsz7ChJlFnJB7MMcc1YO3336bbt26hR1LRCRwyVRsQbTgKp1GqEJLRCQ4SV5s7alHBO7+SY3H\nDKjYSmhQM3scKABaEn0O61qgYXQofyB2zj3AAKKt34e5++zdjJU0xVZ5o0ePZunSpfzrX/8KO4qI\nSOCSrdgSEZG6kczFVikzOwOY5O4RMxsJHAHc4O4f1HisgKcRJixoAjMl5Rftxo0b6dixI7Nnz6Z9\n+/ZhxxERCZSKLRGR9LS73/9mNgC4A8gAxrn7mErOKb+u7rDSmmJPa/Ka2f8BFxNd8/dVd/9DNTLO\nc/ceseWnRgO3Ate4e5+afdrohwnS1bFCqy9wEjAOGBvwNVNS8+bNueCCC7jpppvCjiIiIiIiUmfM\nLAO4BzgFyAXONrMuFc4ZCHR0907AhcD95Q4/HHtvxXELgNOA7rFHkf5azUg7Y3+eCjzg7q8SnVVX\nY0EXWwkLmg6uvPJKnn/+eT766KOwo4iIiIiI1JXewFJ3/8TddwBPEl1Ht7xd1tUFmppZ69j2VGBj\nJeNeBNzs7sWx876sZp7VZvZ34ExgQmzt4LjqpqCLrYQFTQctW7ZkxIgRXHvttWFHERERERGpKxXX\nzF0V27enc1ZXck5FhwLHmdl0M3vbzI6qZp6fAa8Bp7j7JqAFcGU137uLoNfZ+hnRphV/dfdNZnYA\ncQZNF5dddhmdOnVi3rx59OhR46aNIiIiIiJJI+R1FhsAzd0938x6AU8DHap6k7t/AzxfbnstsDae\nAIE2yEhGqfBw9B133MHbb7/NSy+9FHYUEZFAqEGGiEh6quz3f2zpplHuPiC2/QeiXcfHlDtnj+vq\nVrYmr5lNAMa4+39j2x8Bfdx9faAfshxN6UtCv/nNb5g5bxG/v+dR1qyPhB1HRERERCRIM4FDzOwg\nM2sInAW8XOGcl4FfQFlxtqm00Iqx2E95LwInxt5zKJBVl4UWqNhKShu+3sGXpzXkls/Pp+Poviq4\nRERERKTecvedwHDgdaAIeNLdF5nZhWZ2QeycCcCK2N2pvxNt5w6Urcn7LnComa00s2GxQw8DHcxs\nPvA4sWKtKmZ2hpnlxF6PNLPnzeyIeD5bGOtsjd7dgsN1IRWmkDwwcRoXTjsOMouhOIsHj53Mrwbk\nhx1LRCRhNI1QRCQ9pciixim9ztb9Vbwn7Q3unUd2JBeKs+DLDvTr/IOwI4mIiIiIpAuts1WfHdgy\nh2Ujp/DgsZM58+u+jLv/zrAjiYiIiIiki4QtXxX0NMLxRHvgn0x0CuG3wAx3Pyywi1adKaWmkHz2\n2Wd0796dyZMn07Vr17DjiIgkhKYRioikpxSZRrg30eWr5rv70tjyVd3d/fUajxVwsZWwoAnMlHJf\ntPfeey9PPPEEkydPJiNDPU1EJPWp2BIRSU+pUGwlUqD/5+7u37j78+6+NLa9NsxCK1VddNFFAIwd\nOzbkJCIiIiIi9VsiuxEGWmwlMmg6y8jI4MEHH+Taa6/l008/DTuOiIiIiEh9lrAmf+pGmCK6du3K\npZdeykUXXYSmwIiIiIiIBEbdCNPR73//e9asWcNf7x7LAxOnabFjEREREZHEK+1GeBYp0o3wh0BP\n1I2w1v47fRYF/zoHWi0nO5LLspFTOLBlTtixRERqRA0yRETSUyo0yEhkk7+g72z9DHgN+KG7bwJa\nAFcGfM16bcnG7dBqOWQWs3WfhUyYWRR2JBERERGR+uRboDFwdmw7C9gUz0BBF1sJCypRg3vnkR3p\nBsVZZG7qxKBeuWFHEhERERGpT+4D8vmuhokA98YzUNDFVsKCStSBLXNYNnIqf+vxKq1fLWbGlP+E\nHUlEREREpD7p4+6XAFsB3H0jcfadaJDIVJXo4+5HmNkHEA1qZmqQUUsHtszh8jNO5tiDHmXw4MF0\n7dqVzp07hx1LRERERKQ+2GFmmYADmFkroCSegYK+s5WwoPJ9vXv35sYbb2TIkCFEIupMKCIiIiKS\nAHcBLwD7mdmNwFTgL/EMFHQ3wnOBM4EjgH8BPyW69tbTgV206kz1rhPVr3/9a7744guee+45MjMz\nw44jIlIldSMUEUlPqdCNEMDMugD9AQP+4+6L4hon6C+dRAVNYJ5690W7fft2BgwYQPfu3bnzzjvD\njiMiUiUVWyIi6SkVii0z+xcwItZNHTNrDtzm7ufXeKyA72wlLGgCM9XLL9pNmzZx7LHH8rPzzueA\nw49hcO88rb8lIklLxZaISHpKkWLrA3fvWdW+6gj6ma0epYUWlHXyqHFIADMbYGaLzexDM/t9JceP\nN7NNZjY79jOyFrlTTrNmzXj4sWcYtfJBLpx2HB1H92PNej3HJSIiIiJSQxmxm0QAmFkL4mwsGHQ3\nwgwzax4rsuIOamYZwD1EpyOuAWaa2UvuvrjCqZPd/Ue1DZ2q5qz9Clot22XB418NyA87loiIiIhI\nKrkNmGZmz8S2zwBujGegoIutRAXtDSx1908AzOxJ4HSgYrGV1Lckgza4dx7Zr+eydZ+F8OXBNP76\ni7AjiYiIiIikFHd/xMzeB06M7fqxuy+MZ6xAi60EBm0DfFpuexXRAqyio81sDrAauDLev5RUFV3w\neAoTZhbRiq/51c/PYt8mj3PyySeHHU1EREREJCWYWbdYHbGw3L4Cdy+s6ViBPrNVGtTd74n9LDSz\ngoAuNwto5+6HE51y+GJA10lqB7bM4VcD8jl9QH+ef/55zj33XJ5//vmwY4mIiIiI7FZV/Rli59xl\nZkvNbI6Z9Sy3f5yZrTOzebt532/NrCT2SFN1PG1mv7eovczsbuJcZyvoaYRPm9mjwC1AduzPo4Cj\nazjOaqBdue22sX1l3H1LudcTzew+M2vh7hsqDjZq1Kiy1wUFBRQUFNQwTmro168fkyZN4tRTT2Xz\n5s388LSfMH7GAnUqFJE6V1hYSGFhYdgxREQkCVWnP4OZDQQ6unsnM+sD3A+UNid4GLgbeKSSsdsC\nJwOf1CBSH2AM8C6QAzwGHFvTzwXBt35vTDTokXwXdIy7l9RwnExgCdH/AGuBGcDZ5dfsMrPW7r4u\n9ro38LS7t69krLRr+7tkyRJOHPgjPj+1AcXNPyQ7ksuykVNUcIlIaNT6XUQkPVX2+9/M8oFr3X1g\nbPsPgLv7mHLnjAXedvenYtuLgIJy//9/EPCKu/eoMPYzwPXAy8CRld2IqSRjQ6J9Jk4G9gFGuvuT\n8XzeoFu/7wC+BfYiemdrRU0LLQB33wkMB14HioAn3X2RmV1oZhfETvupmS0wsw+AO4AzE/IJ6oHO\nnTtz2Y13UNz8w106FYqIiIiIJIHK+jO0qeKc1ZWcswsz+xHwqbvPr2GemURrmF5AP+Dscg3/aiTo\naYQzgZeIBt0XGGtmP3H3M2o6kLtPAjpX2Pf3cq/vBe6tXdz669wf9uWaGd3Yus8ibENHerat7pRV\nEREREZH4hDWN3Mz2Av5E9O5U2e5qvv2X7v5+7PVa4HQz+3k8OYIuthIWVGon2qlwKuPfm8+y6f9h\n8MnH889//pNTTjkl7GgiIiIiUk9V7I9w3XXXVXZalf0ZYts/qOKc8joC7YG5Zmax82eZWW93/7yy\nN5jZVe5+i7u/b2ZnuHv5u1ld93Ct3QpkGqGZXQVQGrTC4biCSu0d2DKHCwYdw5jrr+bJJ5/kl7/8\nJX/+858pLi4OO5qISJ2JRMJOICIiFcwEDjGzg2LPS51F9Bmr8l4GfgFlz3htKn1eK8Yod+fK3Re4\n+/7u3sHdDyY6NbHn7gqtmLPKvf5jhWMDavSJYoJ6ZivhQSWxjj/+eGbNmsWMGTM47rjjmDpzDg9M\nnMaa9fq/EBGp3/r1U8ElIpJMqtOfwd0nACvM7CPg78DFpe83s8eJdg481MxWmtmwyi5D1dMIbTev\nK9uulkC6EZrZB+7es+LryrbrmjpR7aqkpIQbb72Taz4eC62W02hzN5ZfPVWdCkUkUGF2I8zKciZP\nhvz8qs8XEZHECuv3f3WY2Wx3P6Li68q2qyuoO1u+m9eVbUuIMjIyaN0jH1oth8xituUs4spb7qGk\npMZNI0VEUkK3bpCbG3YKERFJQoeZ2WYziwA9Yq9Lt7vHM2BQd7Z2Al8Tvd22F/BN6SEg292zEn7R\n6mfTna0K1qyP0HF0P7bus5BGkS50n9mSLN/GAw88QF5eXtjxRKQeCvPO1ubNTo5u3ouIhCKZ72wF\nIdBFjZORiq3KrVkfYcLMIgb1ymX/5o158MEHGTlyJGeddRYXXvpb3v1oLYN752l6oYgkhBY1FhFJ\nTyq26jl90Vbfl19+ye/+fB3/yngdWi0nO9KNZSP1PJeI1J6KLRGR9JRuxVZQz2xJPbDvvvtyzP+c\nU/Y819Z9FnHN3f9Qq3gRERERkWpQsSV7NLh3HtmRXCjOouHmzsx78xW6devGo48+qqJLRERERGQP\nNI1QqlT+ea4DWuzD22+/zXXXXceaNWu44P+uYO+DujGk7xGaXigi1aZphCIi6SndphGq2JK4PfvK\na5w56TJKWn5E5sZDmfGbFzkit1PYsUQkBajYEhFJT+lWbGkaocRtQ4MmlLT8CDKL2dlsKX2HnMvZ\nZ5/Nm2++SUlJCWvWR3hg4jTWrI+EHVVEREREpM7pzpbErfz6XNlbujFr+Mv8Z8JLjBs3jvWRbXw2\nKIPi5h+SHcll2cgpmmYoImV0Z0tEJD2l250tFVtSK+Wf5yotptydkX9/kpvW/AIyi6E4i7O2XsPf\nrvglBxxwQMiJRSQZqNgSEUlPKrbqOX3R1o3yd72yNnfmR18eyX8mvMRhhx3GGWecQa9jT2DO2q+0\nULJImlKxJSKSnlRs1XP6oq07Fe96bd26lddff51Hnnqe55pMg1bLydx4KE+dcjs/OuUEsrKywo4s\nInVExZaISHpSsVXP6Ys2fA9MnMaF044rm2LY7q2T+aroHY499lgKCgooKCigdbtDmDR7se58idRT\nKrZERNKTiq16Tl+04avYWGPZyClklWxl8uTJFBYW8sbk6Sw5ZjO0Wk6DjYfy6Im3MOCEY2nWrFnZ\n+8fPWKBCTCSFqdgSEUlPKrbqOX3RJofKGmuUqnjnq9M7g1k78w3atGlD7hF9eLnl+xQ3/5BGm7ux\n/Oqpu7xfhZhIalCxJSKSnlRs1XP6ok1+ld352q/pXixatIhbn5zEo5l/KivEmr3Yh6N/kEP37t1p\n26ELv1t0O9ubLKq03bwKMZHkoWJLRCQ9qdiq5/RFmxp2d+dr10KsK2///DE+X7Wc+fPn8+L7H/F+\n93+XFWIdpwyi38HN6dSpEy0PbM+lc26OFWLdWDZSd8REwqRiS0QkPanYquf0RZv6qlOINYp04d/9\nb2XjZytZunQpbyxay5yeT5YVYvtN6EePFhm0a9eOpvu15e6vn6O42RIabe7Ku79+ju6Hti/rjrin\nQkxFmkh8VGyJiKQnFVv1nL5o67dqFWJbuvLamQ+x9asvWblyJS/NWsar+91WVojlPHck3y59n6ZN\nm9Ji/3Z8dPy3eMuPyNxwKL9tcRbtD9iX5s2bU9Jgb4ZNHcn2JototLkbS//0X36wX7NdrhlPkaYC\nTtKBii0RkfSkYque0xdt+qre1MToM2Ktm+3N+vXrueel/3LDp+eUFWKnrL2UgzIjbNy4kfkbncVH\nv1h2jH92psnmlTRv3px9Wu7Pwvyv8JYfkbG+E2d+3ZfWzRuTk5NDSYO9GfPFvyluvoSsTV14pOAv\ntD9wX/bee2++2rqTkx//X7Y1WUSjSDeW/P5tDtq/xS5Z91SIBVHgJdMxqT9UbImIpCcVW0nKzAYA\ndwAZwDh3H1PJOXcBA4GvgaHuPqeSc9w3b4acCv8TF4nAggWQl1ezY7V5r44lzd/pmo/XMOHVtxh0\n6okc2P7A7/avj9BxdF+27rOI7C1dd3nWq+KxpX+aTOMGJWzcuJFxr7/HTWt+UVaInVd8Az1bZRGJ\nRHhn5WbeaHNX2bEu00+nyeaVfPvtt6xtsC9fDp6ySwGXuXYR2dnZNNynBZuG7I23WoZ92ZEe7+9L\nk+yM6LGGDSnOyOaNHxRR0vIjMtd34mdf96V54yyysrLY5ln8o2QCxc0/pMHGQ7lq3/NomdOIrKws\nvi7O4Orl98eKv87c1fOP7JvTiMzMTDZ9W8yF069jR7MlNNzUhUdOHMN+TfciMzOTjd/s4GcTL2N7\n08U0+qoLr/z4AVo3b0xmZibrt2zjh08MjRaNm7sy9fynOaBlDpmZmXyxeSu97vtR2bHZ/zeeA1s2\nwcz4bMMWDrtzENuaLCR7czeKfvcGB+4bPWZmrF25lgkTChk8+ETatG9Ttr/0v+H48W8xePCu/w2r\nOlab96bzsdq+V8WWiEh62t3v/zj+X3+Yu38Q2z8OGAysc/ce5c6/BTgN2AYsi71nc+I/1e6lRLFl\nZhnAh0B/YA0wEzjL3ReXO2cgMNzdTzWzPsCd7p5fyVjuhx0GU6Z89z/ckQj06wdFRZCbW/1jtXlv\nEh4rnD+fgu7dw82ShH83a447idvXfMnlB+7LgZPf/N6xCRu2MqhF9i7H1ny8ho63nMjWlsvJXt+B\nZVe9VfY/nDU9tl/b/fj222958MW3+e3Sn5QVYn9u+QAn9zyYrVu3sn37dibN+oj7Sq4qOz506zUc\neVAzduzYwfSPvuDplreWHRv06UUc2jyDHTt2sPCL7bzd+eGyY/lzzuTAht+wc+dOVm1txKzez5cd\n6/7OYFqUbGDnzp18STMWnzAJVhbDD7Lo8PoJ7P3NGnbu3MmWvQ7g01Mnl72v9Qu9ydiwnJ07d1Lc\nrD0bzpz9XUfJJ3pQ8sVS3B1adSJy7ryyY3s/2pXitYtxd/bK3IttQ/dnW6vlNPqiA5kPreab7V8D\nsHfDxuw8v03Zsex/rePbnd9iZuyd1Zhvztu37FjOkxvZtnMrZkZGRgZ7NdibDT/dp+x4qxe+ZVvJ\nVgAaZWTzxZC9yo7t98K3bGd79Jg1Yt3/ZJcd2/+lbWzzbZgZjawRa3/UkG1ff0Sjxodw4Cs72Obb\nyt635rSssve1GV+8y5irTs0sO9Z2QgnbY2M2tEZ8OtDKjrWb5Gz36PsaZjRi5SmUHTvodWNH7FiW\nNeSTH3rZsfavZ1BsO6LHaMiKk3eWHevwZgN2sB0zI4uGLOu/o+zYIW81ZEcsJ0BDa8TSE7aVHe/0\ndqOycRt41i7HDi3MLjsGcNFFF3HppZeq2EoyhYWFFBQUhB0jKenvZvf0d1M5/b3sXmXFVm3/X9/M\n+gJbgEcqFFsnAW+5e4mZ3Qy4u/8x4I+4K3dP+h8gH5hYbvsPwO8rnDMWOLPc9iKgdSVjuWdluU+b\n5mXefde9QQP3mh6rzXuT8Ni1yZClHv3drN6rqT/Ytpuv3rtZQo6tnvgfz/7Noc7ILM/+zaG+etJb\nu/y17el4oMf6ZdTJ9f5+96PO1Q2cUTgjs/zBe//t7u4lJSU+9q5Hdjl2/53/9G+//da/+eYbv+dv\nD+1y7J6/jfNNmzb5xo0bfcOGDX7HLQ/scvz2W/7u69at83Xr1vnfbh6767ExY33t2rW+du1a/9vN\n9+9y7G83j/XVq1f76tWr/a833Rc9dnz02G1/ud9XrVrlq1at8ltvuneX9932l/t85cqVvnLlSr/1\nxl2P/fWme/3jjz/2jz/+2G8Zfc8ux2698V5fsWKFL1++3MfccPcux24ZfY8vW7bMly1b5jffcNcu\nx8bccJcvXbrUly5d+v/t3XusHGUZx/Hvr1JELhIQrAZoVYwlJEJbsSJUEYimkCAaMdy8RSAGMGJI\nEBRMQdRG+UOLUQlEiYJEEhukiJDKRZOGq1Bo6blIsYqu0EigFkLBSh//mDntdtk5Z/bMzs7uzu+T\nTM7MvnN595nnzDvvzu5M27Lx8fEYHx+PpVcs26ls6beWxdjYWIyNjcXo6Gh89/If7Fx+xbIYGRmJ\nkZGR+E5r2eU/jHXr1m0fNm7cGGmDV0V7EtbekiVLqq5C33Jssjk27Tku2dod/7txrg/MAda0rrup\n/BPADVnlZQ09b+imVUn4FHBt0/RngKtb5rkNOKpp+i5gQZt1RRx+eMTmzTv2+ubNyWszZ3ZWVmTZ\nPixbMmNG9XVxbCYta8xbGNfNPiwa8xa2jVtmeYllJ735rT3ZXmNDI3Y7d27SETt3bjQ2NAqXlbXe\n7WUfmtH9dfZBWdFlI9o3tr0Y3NnK5pPDbI5NNsemPcclW0Znq/C5fo7O1grgjKzysobKO1K5Ktnt\nzlbrSWpE8tr993deVmTZPitbctZZ/VGXKrY5KLHpw7j1MjaNDY247sc3tj15n25ZWettbGjESSd+\nsuvr7Jeyosu6s9V/fHKYzbHJ5ti057hkq6KzBVwKLG9XVvYwKL/ZOhK4PCIWp9OXkOyo7zXNcw1w\nb0TcnE6PAcdExMaWdfX/GzYzq4Go6Ddbvd6mmZntrPX4341zfUlzgNui6Tdb6etfAM4BjotIf0Dd\nQ7v0eoPT9DDw7jSIzwCnAae3zLMCOB+4Od1hm1o7WlBN425mZv3BbYCZWV/qxrm+0mHHC8kdDi8C\nPlxFRwsGpLMVEa9J+jKwkh23gxyV9KWkOK6NiN9LOlHSetLbQVZZZzMzMzMzm1rRc31JNwEfAd4i\n6WlgSURcD/wI2BX4Q/qomAci4rxevreB+BqhmZmZmZnZoJlRdQW6SdJiSWOS/iLp4ox5rpb0pKTH\nJM3rZNlBNo3YzG96/W+SHpe0WtJDvat1+aaKi6S5ku6T9IqkCztZdtAVjM3Q5gzkis0Z6ft/XNIq\nSYflXXbQFYxNV/KmSFsw7HLsn2MkbZL0aDpcVkU9qyDpZ5I2SlozyTx1zZtJY1PXvJF0oKR7JK2T\ntFbSVzLmq13e5IlNbfKmirtylDGQdBzXk9yJZCbwGHBIyzwnALen4x8gWoCU6gAABmtJREFUuZSY\na9lBHorEJp3+K7BP1e+jorjsB7wPuBK4sJNlB3koEpthzpkOYnMksHc6vtjHmqlj0628KXq8G+Yh\nZ2yOAVZUXdeK4rMImEf23cxqmTc5Y1PLvAHeBsxLx/cExn286Sg2tcibYbqytRB4MiL+HhFbgV8D\nJ7fMczLwS4CIeBDYW9KsnMsOsiKxgeTHhsOUKxOmjEtEPBcRjwD/63TZAVckNjC8OQP5YvNARPwn\nnXwAOCDvsgOuSGygO3lT9Hg3zPLmXy1vIhIRq4AXJpmlrnmTJzZQw7yJiGcj4rF0/CWSh+we0DJb\nLfMmZ2ygBnkzTCdDBwD/aJr+J6/fqVnz5Fl2kE0nNo2meYLkh4UPSzqntFr2XpH97pyZ3LDmDHQe\nm7OBO6a57KApEhvoTt4UPd4Ns7z754Pp151ul3Rob6o2EOqaN3nVOm8kvYPk6t+DLUW1z5tJYgM1\nyJuBuBthiYa+N90lR0fEM5L2JzkRGk0/5TLL4pwBJB1LcrekRVXXpd9kxMZ5U71HgNkR8bKkE4Df\nAu+puE7W/2qdN5L2BH4DXJBexbHUFLGpRd4M05WtBjC7afrA9LXWeQ5qM0+eZQdZkdgQEc+kf/8N\n3ELyVZRhUGS/O2cmMcQ5Azljk9744Vrg4xHxQifLDrAiselW3hQ63g25KWMTES9FxMvp+B3ATEn7\n9q6Kfa2ueTOlOueNpF1IOhM3RMStbWapbd5MFZu65M0wdba2PwxN0q4kD0Nb0TLPCuBzsP1J1RMP\nQ8uz7CCbdmwk7Z5+KoGkPYCPAU/0ruql6nS/N18Jdc7sbHtshjxnIEdsJM0GlgOfjYinOll2wE07\nNl3MmyJtwbDLs39mNY0vJHlEzPO9rWalXvdQ1CZ1zZsJmbGped78HBiJiGUZ5XXOm0ljU5e8GZqv\nEUaBh6FlLVvRW+m6IrEBZgG3SAqSfPlVRKys4n10W564pAeCPwN7AdskXQAcGhEv1T1nsmID7M+Q\n5gzkiw3wTWBf4CeSBGyNiIU+1mTHhi4dawoe74Zazv1ziqRzga3AFuDU6mrcW2rzUFSSh6HWOm9g\n6thQ07yRdDRwJrBW0mqS351+g+SOn7XOmzyxoSZ544cam5mZmZmZlWCYvkZoZmZmZmbWN9zZMjMz\nMzMzK4E7W2ZmZmZmZiVwZ8vMzMzMzKwE7myZmZmZmZmVwJ0tMzMzMzOzErizZWZmZmZmVgJ3tszM\nzMzMzErgzpZZF0jaO30K+sT0qgrqsJukP0pSwfXMlPQnST4+mJnl4DbAzLL4H8msO/YBzpuYiIhF\nZWxE0iGSvp5R/EVgeUREkW1ExFbgLuC0IusxM6sRtwFm1pY7W2bdsRQ4WNKjkr4v6UUASXMkjUq6\nXtK4pBslHS9pVTp9xMQKJJ0p6cF0HT/N+HTyWGB1Rh3OBG7tZLuSdpf0O0mrJa2R9Ol0Xbem6zMz\ns6m5DTCzttzZMuuOS4D1EbEgIr4GNH+yeDBwVUTMBQ4BTk8/9bwIuBSSTyuBU4GjImIBsI2Whk7S\nYuBs4CBJs1rKZgLvjIinO9kusBhoRMT8iDgMuDN9/Qng/dMPh5lZrbgNMLO23NkyK9+GiBhJx9cB\nd6fja4E56fjxwALgYUmrgeOAdzWvJCLuJGkUr4uIjS3b2A/YNI3trgU+KmmppEUR8WK6rW3Aq5L2\n6PztmplZE7cBZjW2S9UVMKuBV5vGtzVNb2PH/6CAX0TEpWRIP8l8NqN4C7Bbp9uNiCclLQBOBL4t\n6e6IuDKd743AK1n1MTOzXNwGmNWYr2yZdceLwF5N08oYbzVRdjdwiqT9ASTtI2l2y7wLgYckHSHp\nTc0FEbEJeIOkXTvZrqS3A1si4ibgKmB++vq+wHMR8dok6zAzs4TbADNry1e2zLogIp6XdJ+kNSTf\neW/+vn7W+PbpiBiVdBmwMr3d7n+B84Hm79//i+RrJk9FxJY21VgJLALuybtd4L3AVZK2pducuHXx\nscDt7d6rmZntzG2AmWVRwTuEmlmfkDQf+GpEfL4L61oOXBwR64vXzMzMyuY2wKw/+WuEZkMiIlYD\n93bjgZbALW5kzcwGh9sAs/7kK1tmZmZmZmYl8JUtMzMzMzOzErizZWZmZmZmVgJ3tszMzMzMzErg\nzpaZmZmZmVkJ3NkyMzMzMzMrgTtbZmZmZmZmJXBny8zMzMzMrAT/BxPuZDs9ValKAAAAAElFTkSu\nQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import missed_events_pdf\n",
+ "\n",
+ "fig, ax = plt.subplots(2,2, figsize=(12,9))\n",
+ "x = np.arange(0, 10, tau/100)\n",
+ "pdf = missed_events_pdf(qmatrix, 0.2, nmax=2, shut=True)\n",
+ "ax[0,0].plot(x, pdf(x), '-k')\n",
+ "ax[0,0].set_xlabel('time $t$ (ms)')\n",
+ "ax[0,0].set_ylabel('Shut-time probability density $f_{\\\\bar{\\\\tau}=0.2}(t)$')\n",
+ "\n",
+ "ax[0,1].set_xlabel('time $t$ (ms)')\n",
+ "tau = 0.2\n",
+ "x, x0 = np.arange(0, 5*tau, tau/10.0), np.arange(0, 5*tau, tau/100) \n",
+ "plot_exponentials(qmatrix, tau, shut=True, ax=ax[0,1], x=x, x0=x0)\n",
+ "ax[0,1].set_ylabel('Excess shut-time probability density $f_{{\\\\bar{{\\\\tau}}={tau}}}(t)$'.format(tau=tau))\n",
+ "ax[0,1].set_xlabel('time $t$ (ms)')\n",
+ "ax[0,1].yaxis.tick_right()\n",
+ "ax[0,1].yaxis.set_label_position(\"right\")\n",
+ "\n",
+ "tau = 0.05\n",
+ "x, x0 = np.arange(0, 5*tau, tau/10.0), np.arange(0, 5*tau, tau/100) \n",
+ "plot_exponentials(qmatrix, tau, shut=True, ax=ax[1,0], x=x, x0=x0)\n",
+ "ax[1,0].set_ylabel('Excess shut-time probability density $f_{{\\\\bar{{\\\\tau}}={tau}}}(t)$'.format(tau=tau))\n",
+ "ax[1,0].set_xlabel('time $t$ (ms)')\n",
+ "\n",
+ "tau = 0.5\n",
+ "x, x0 = np.arange(0, 5*tau, tau/10.0), np.arange(0, 5*tau, tau/100) \n",
+ "plot_exponentials(qmatrix, tau, shut=True, ax=ax[1,1], x=x, x0=x0)\n",
+ "ax[1,1].set_ylabel('Excess shut-time probability density $f_{{\\\\bar{{\\\\tau}}={tau}}}(t)$'.format(tau=tau))\n",
+ "ax[1,1].set_xlabel('time $t$ (ms)')\n",
+ "ax[1,1].yaxis.tick_right()\n",
+ "ax[1,1].yaxis.set_label_position(\"right\")\n",
+ "ax[0,1].legend(['a','b','c','d'], loc='best')\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lower bound for all roots is -126.51309385718378\n",
+ "[ 0.00000000e+00 6.57926167e+33 -5.60000000e+00]\n",
+ "0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import DeterminantEq, find_root_intervals, find_lower_bound_for_roots\n",
+ "from numpy.linalg import eig\n",
+ "tau = 0.5\n",
+ "determinant = DeterminantEq(qmatrix, tau).transpose()\n",
+ "x = np.arange(-100, -3, 0.1)\n",
+ "\n",
+ "matrix = qmatrix.transpose()\n",
+ "#qaffa = np.array(np.dot(matrix.af, matrix.fa), dtype=np.float128)\n",
+ "qaffa = np.array(np.dot(matrix.af, matrix.fa), dtype=np.longdouble)\n",
+ "#aa = np.array(matrix.aa, dtype=np.float128)\n",
+ "aa = np.array(matrix.aa, dtype=np.longdouble)\n",
+ "\n",
+ "def anaH(s):\n",
+ " from numpy.linalg import det \n",
+ " from numpy import identity, exp\n",
+ " #arg0 = 1e0/np.array(-2-s, dtype=np.float128)\n",
+ " #arg1 = np.array(-(2+s) * tau, dtype=np.float128)\n",
+ " #return qaffa * (exp(arg1) - np.array(1e0, dtype=np.float128)) * arg0 + aa\n",
+ " arg0 = 1e0/np.array(-2-s, dtype=np.longdouble)\n",
+ " arg1 = np.array(-(2+s) * tau, dtype=np.longdouble)\n",
+ " return qaffa * (exp(arg1) - np.array(1e0, dtype=np.longdouble)) * arg0 + aa\n",
+ "\n",
+ "def anadet(s):\n",
+ " from numpy.linalg import det \n",
+ " from numpy import identity, exp\n",
+ " #s = np.array(s, dtype=np.float128)\n",
+ " #matrix = s*identity(qaffa.shape[0], dtype=np.float128) - anaH(s)\n",
+ " s = np.array(s, dtype=np.longdouble)\n",
+ " matrix = s*identity(qaffa.shape[0], dtype=np.longdouble) - anaH(s)\n",
+ " return matrix[0,0] * matrix[1, 1] * matrix[2, 2] \\\n",
+ " + matrix[1,0] * matrix[2, 1] * matrix[0, 2] \\\n",
+ " + matrix[0,1] * matrix[1, 2] * matrix[2, 0] \\\n",
+ " - matrix[2,0] * matrix[1, 1] * matrix[0, 2] \\\n",
+ " - matrix[1,0] * matrix[0, 1] * matrix[2, 2] \\\n",
+ " - matrix[2,1] * matrix[1, 2] * matrix[0, 0] \n",
+ "\n",
+ "x = np.arange(-100, -3, 1e-2)\n",
+ "# For some reason gcc builds with regular doubles have trouble finding the\n",
+ "# roots with alpha=2.0 the default so override it here\n",
+ "\n",
+ "print(\"Lower bound for all roots is {}\".format(find_lower_bound_for_roots(determinant, alpha=1.9)))\n",
+ "print(eig(np.array(anaH(-160 ), dtype='float64'))[0])\n",
+ "print(anadet(-104))"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/CH82 -- optimization-checkpoint.ipynb b/exploration/.ipynb_checkpoints/CH82 -- optimization-checkpoint.ipynb
new file mode 100644
index 0000000..fba3a74
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/CH82 -- optimization-checkpoint.ipynb
@@ -0,0 +1,245 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CH82 -- optimization"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Input: Defines the model and constraints"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT import read_idealized_bursts\n",
+ "from HJCFIT.likelihood import QMatrix\n",
+ "\n",
+ "name = \"CH82.scn\"\n",
+ "tau = 1e-4\n",
+ "tcrit = 4e-3 \n",
+ "graph = [[\"V\", \"V\", \"V\", 0, 0],\n",
+ " [\"V\", \"V\", 0, \"V\", 0],\n",
+ " [\"V\", 0, \"V\", \"V\", \"V\"],\n",
+ " [ 0, \"V\", \"V\", \"V\", 0],\n",
+ " [ 0, 0, \"V\", 0, \"V\"]] \n",
+ "nopen = 2\n",
+ "qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ], 2)\n",
+ "\n",
+ "bursts = read_idealized_bursts(name, tau=tau, tcrit=tcrit)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Creates the constraints, the likelihood function, as well as a function to create random Q-matrix."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from scipy.optimize import minimize\n",
+ "from numpy import NaN, zeros, arange\n",
+ "import numpy as np\n",
+ "from HJCFIT.likelihood.random import qmatrix as random_qmatrix\n",
+ "from HJCFIT.likelihood import QMatrix, Log10Likelihood\n",
+ "from HJCFIT.likelihood.optimization import reduce_likelihood\n",
+ "\n",
+ "likelihood = Log10Likelihood(bursts, nopen, tau, tcrit)\n",
+ "reduced = reduce_likelihood(likelihood, graph)\n",
+ "x = reduced.to_reduced_coords( random_qmatrix(5).matrix )\n",
+ "\n",
+ "constraints = []\n",
+ "def create_inequality_constraints(i, value=0e0, sign=1e0):\n",
+ " f = lambda x: sign * (x[i] - value)\n",
+ " def df(x):\n",
+ " a = zeros(x.shape)\n",
+ " a[i] = sign\n",
+ " return a\n",
+ " return f, df\n",
+ "\n",
+ "for i in range(len(x)):\n",
+ " f, df = create_inequality_constraints(i)\n",
+ " constraints.append({'type': 'ineq', 'fun': f, 'jac': df})\n",
+ " f, df = create_inequality_constraints(i, 1e4, -1)\n",
+ " constraints.append({'type': 'ineq', 'fun': f, 'jac': df})\n",
+ "\n",
+ " \n",
+ "def random_starting_point():\n",
+ " from numpy import infty, NaN\n",
+ " from HJCFIT.likelihood.random import rate_matrix as random_rate_matrix\n",
+ " \n",
+ " \n",
+ " for i in range(100):\n",
+ " matrix = random_rate_matrix(N=len(qmatrix.matrix), zeroprob=0)\n",
+ " x = reduced.to_reduced_coords( matrix )\n",
+ " try: \n",
+ " result = reduced(x)\n",
+ " print(result, reduced.to_full_coords(x))\n",
+ " except:\n",
+ " pass\n",
+ " else: \n",
+ " if result != NaN and result != infty and result != -infty: break\n",
+ " else: raise RuntimeError(\"Could not create random matrix\") \n",
+ " return x\n",
+ "\n",
+ "def does_not_throw(x):\n",
+ " try: return -reduced(x)\n",
+ " except: return NaN"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Performs the minimization"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "-640.830069172272 [[ -6.21619693e-01 3.80010323e-01 2.41609369e-01 0.00000000e+00\n",
+ " 0.00000000e+00]\n",
+ " [ 3.10903942e+03 -3.10919359e+03 0.00000000e+00 1.54171557e-01\n",
+ " 0.00000000e+00]\n",
+ " [ 1.59277846e-01 0.00000000e+00 -9.08913654e+03 9.08867581e+03\n",
+ " 3.01453712e-01]\n",
+ " [ 0.00000000e+00 4.39644066e-01 2.78736992e-01 -7.18381058e-01\n",
+ " 0.00000000e+00]\n",
+ " [ 0.00000000e+00 0.00000000e+00 1.54808746e-01 0.00000000e+00\n",
+ " -1.54808746e-01]]\n",
+ "x= [ 3.80010323e-01 2.41609369e-01 3.10903942e+03 1.54171557e-01\n",
+ " 1.59277846e-01 9.08867581e+03 3.01453712e-01 4.39644066e-01\n",
+ " 2.78736992e-01 1.54808746e-01]\n",
+ " fun: -2062.8258070089187\n",
+ " maxcv: 8.7670065147940707e-16\n",
+ " message: 'Maximum number of function evaluations has been exceeded.'\n",
+ " nfev: 1000\n",
+ " status: 2\n",
+ " success: False\n",
+ " x: array([ -8.76700651e-16, 1.75097884e+02, 3.11563723e+03,\n",
+ " 2.68478978e+02, 6.06596893e+02, 9.06857871e+03,\n",
+ " 1.73472348e-18, 1.77190965e+01, -3.03804457e-16,\n",
+ " 7.92641819e-01])\n",
+ "-697.0699667052597 [[ -2.18554574e-01 8.96065006e-02 1.28948074e-01 0.00000000e+00\n",
+ " 0.00000000e+00]\n",
+ " [ 6.92249289e+02 -6.92781143e+02 0.00000000e+00 5.31853771e-01\n",
+ " 0.00000000e+00]\n",
+ " [ 8.75734586e-01 0.00000000e+00 -1.91477903e+00 6.89175466e-01\n",
+ " 3.49868979e-01]\n",
+ " [ 0.00000000e+00 5.54235637e-01 4.39234514e-02 -5.98159089e-01\n",
+ " 0.00000000e+00]\n",
+ " [ 0.00000000e+00 0.00000000e+00 9.79442657e+02 0.00000000e+00\n",
+ " -9.79442657e+02]]\n",
+ "Inequality constraints incompatible (Exit mode 4)\n",
+ " Current function value: -2284.629372492554\n",
+ " Iterations: 177\n",
+ " Function evaluations: 2189\n",
+ " Gradient evaluations: 177\n",
+ " fun: -2284.629372492554\n",
+ " jac: array([ -2.08709717e-01, -5.42224910e+08, -2.52990723e-02,\n",
+ " 2.75032878e+05, 1.75594303e+09, -1.57243136e+09,\n",
+ " -5.42756597e+08, -2.75028975e+05, 5.62684071e+08,\n",
+ " -6.88560304e+07, 0.00000000e+00])\n",
+ " message: 'Inequality constraints incompatible'\n",
+ " nfev: 2189\n",
+ " nit: 177\n",
+ " njev: 177\n",
+ " status: 4\n",
+ " success: False\n",
+ " x: array([ 4.64593912e-07, 3.41051917e+02, 2.65544934e+03,\n",
+ " 1.38876283e+03, 9.99999918e+03, 4.32621889e+03,\n",
+ " 2.19612726e+02, 2.99939102e+00, 2.05470191e+00,\n",
+ " -1.68337691e-14])\n",
+ "-447.89702673666727 [[ -2.96248722e+03 2.73428480e-01 2.96221379e+03 0.00000000e+00\n",
+ " 0.00000000e+00]\n",
+ " [ 9.99336618e-01 -1.00764635e+00 0.00000000e+00 8.30973004e-03\n",
+ " 0.00000000e+00]\n",
+ " [ 5.19874297e-03 0.00000000e+00 -5.01074858e+03 3.97100105e-01\n",
+ " 5.01034628e+03]\n",
+ " [ 0.00000000e+00 8.74501090e-01 2.32778358e+03 -2.32865808e+03\n",
+ " 0.00000000e+00]\n",
+ " [ 0.00000000e+00 0.00000000e+00 6.91322340e-03 0.00000000e+00\n",
+ " -6.91322340e-03]]\n",
+ "[ 3.80906388e-01 2.42898850e-01 3.11596192e+03 1.59490095e-01\n",
+ " 1.68035192e-01 9.08868270e+03 3.04952401e-01 4.45186422e-01\n",
+ " 2.79176226e-01 9.94923531e+00]\n",
+ "-2284.629372492554\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "methods = ['COBYLA', 'SLSQP']\n",
+ "x = random_starting_point()\n",
+ "print ('x=', x)\n",
+ "maxx = (x.copy(), reduced(x))\n",
+ "for i in range(len(methods)):\n",
+ " result = minimize(does_not_throw,\n",
+ " x,\n",
+ " method=methods[i],\n",
+ " constraints=constraints,\n",
+ " options={'maxiter': 1000, 'disp':True}) \n",
+ "\n",
+ " print(result)\n",
+ " if not math.isnan(result.fun):\n",
+ " if result.fun < maxx[1]: maxx = (x.copy(), result.fun)\n",
+ " if result.success and i > 4: break\n",
+ " x += random_starting_point() * 1e-2\n",
+ " if np.all(np.isnan(x)): x = random_starting_point()\n",
+ "print(maxx[0])\n",
+ "print(maxx[1])"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/CH82-checkpoint.ipynb b/exploration/.ipynb_checkpoints/CH82-checkpoint.ipynb
new file mode 100644
index 0000000..fa6c791
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/CH82-checkpoint.ipynb
@@ -0,0 +1,322 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CH82 Model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following tries to reproduce Fig 8 from [Hawkes, Jalali, Colquhoun (1992)](http://dx.doi.org/10.1098/rstb.1992.0116).\n",
+ "First we create the $Q$-matrix for this particular model. Please note that the units are different from other publications.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import QMatrix\n",
+ "\n",
+ "tau = 1e-4\n",
+ "qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ], 2)\n",
+ "qmatrix.matrix /= 1000.0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We first reproduce the top tow panels showing $\\mathrm{det} W(s)$ for open and shut times.\n",
+ "These quantities can be accessed using `dcprogs.likelihood.DeterminantEq`. The plots are done using a standard plotting function from the `dcprogs.likelihood` package as well."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAFjCAYAAAAtnDI1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm83OP5//HXlQ0hiC1Jxb4EsUQQsZ9aQ62l1oitlqJU\nW9uXH9HqFy36bWtrS1VridBaSyTKUZQkSCKbJJYsEoktCBGyXL8/7jmM4yxzzpmZ+7O8nx7ncebM\n+czc1+fIzDX3/bnv6zZ3R0RERNKnXewAREREpHWUxEVERFJKSVxERCSllMRFRERSSklcREQkpZTE\nRUREUqpD7AAqzcy0hk4yy92tLY/X60OyqqHXhpm1A14C3nb3g82sK3AvsB4wHTjS3T8uHHsxcDKw\nBDjX3YdXK/aWyEVP3N1L+rr88stLPrYcX1lvLw/nGPNvWu3XR+zzr1ZbaifZ7ZTSVhPOBSYV/XwR\n8KS79wKeAi4GMLMtgCOBzYH9gZvMrE0fmCslF0lcRETyzcx6AgcAtxbdfQhwR+H2HcChhdsHA0Pc\nfYm7TwemAf2qFGqLKImLiEge/BY4Hyjuqndz93kA7j4XWKtw/9rArKLjZhfuSxwl8SI1NTVqL+Vt\nZr29WG02ppqxVKsttZPsdlrTlpl9D5jn7mOBpobFUzdHxJq5fpB6ZuZZP0fJJzPDyzCxTa8PSbva\n2lpqa2u/+vmKK674xmvDzP4XGEiYpLYC0AV4ANgeqHH3eWbWHXja3Tc3s4sAd/drCo8fBlzu7iOr\ndU6lSmwSN7MBwP8RRgtuq/tjFv1+D+Ah4M3CXf909ysbeB69SUkmKYmLNKyp10Yhd/zMw+z0XwMf\nuPs1ZnYh0NXdLypMbLsL2JEwjD4C2CSJL5ZELjErLAO4AdgLmAOMNrOH3P21eof+x90PrnqAIiKS\nBVcDQ83sZGAGYUY67j7JzIYSZrIvBs5MYgKHhCZxwizAae4+A8DMhhBmEdZP4omc8i8iIsnk7s8A\nzxRufwjs3chxVwFXVTG0VknqxLb6MwPfpuGZgTuZ2Vgz+1dh+ENERCQ3ktoTL8XLwLruvtDM9gce\nBDaNHJOIiEjVJDWJzwbWLfq5Z+G+r7j7p0W3Hzezm8xstcLwyDcMHjz4q9s1NTWJWqIjUqr6M3BF\nRBI5O93M2gNTCBPb3gFGAce4++SiY75apG9m/YCh7r5+A8+V1PkIIm2i2ekiDSvHayMtEtkTd/el\nZnY2MJyvl5hNNrPTw6/9T8ARZvYjwszBz4Gj4kUsIiJSfYnsiZeTehqSRTfeCGefrZ54sQ8/hH/9\nC155BT74AFZcETbeGPbaC7bZBpK5fYVUQp564kmdnS4ijXCHSy+NHUVyzJkDp5wCG24IDzwA3/lO\nSNxbbglvvQWHHx6S+J13wrJlsaMVKa9EDqeX2/z50LVr7ChEymPuXOiQi1du8+66C849F049Fd58\nE1Zb7dvHuMOTT4YPPjfdBLfeCltoQapkRC564pMmNX+MSFpMnAi9e8eOIi53uOACGDwYnnoKrrqq\n4QQOYRh9n33ghRdg0CDYYw+4556qhitSMblI4hMnxo5ApHwmTsx3T9I99L6ffhpGjoStty7tce3a\nwRlnwIgR8D//A1dfXdk4RaohF4NySuKSJZMmlZ64sujXv4bnnw898FVWafnj+/SB556DffeFTz6B\nX/1Kk94kvdQTF0mZPPfEH34Y/vAHeOih1iXwOmuvDc88A488AtdeW774RKpNPXGRFHEPPfE8XhOf\nMydMYHvoIejZs+3Pt8Ya8PjjsMsu0L07HH98259TpNpy0RP/7LOwhlQk7ebOhfbtYa21YkdSXe5w\n8snwox9B//7le96ePUMi/+lP4aWXyve8ItWSiyS+xRbqjUs25HUo/Y474P334ZJLyv/cW2wBt9wC\nRxwR2hBJk1wk8d69lcQlG/I4lP7xx3DxxXDzzdCxY2XaOPxwOOqoMKSekQJ2khO5SeJaKy5ZkMee\n+C9/CQccADvsUNl2rrwylGu9+ebKtiNSTrmY2Na7d6ipLJJ2kybB0UfHjqJ6ZsyA22+vzofwjh3h\n73+HXXcNxWE22aTybYq0VW564hpOl7Rzz19P/Fe/gtNPh27dqtNer15w+eWhstvSpdVpU6QtcpHE\n114bPv88DJWJpNXcuaHqWF5mpr/1FvzjH/Czn1W33TPPDLXp//Sn6rYr0hq5SOJmmqEu6Vc3qS0v\n1cWuuiosKVt99eq2265duC5+2WXhg5NIkuUiiYOG1CX98jSU/u67cN99cN55cdrfcsuwvWm1RwFE\nWkpJXCQl8rS87JZb4Mgjq98LL/b//l+o0f700/FiEGlOrpK4lplJmuWlJ/7FF2E4+5xz4sax4oph\ns5Wf/QyWLYsbi0hjcpXE1ROXtHKHCRPCMG/WDR0KW22VjFGHH/wAllsO7rwzdiQiDctNEv/Od8In\nfJVVlDSaPRs6dcrHzPRbboGzzoodRWAG110Xyr0uXBg7GpFvy00S1wx1SbO89MKnTIE33ggV2pJi\n551hp53g+utjRyLybblJ4qAhdUmvCRPCEHPW3X57qF9eqRrprXXVVfB//6fdECV5lMRFUmD8+Oz3\nxJcsgb/9DU46KXYk37bRRvD974ehdZEkURIXSYE89MSfeALWWSe5M/AvuSRcr3/vvdiRiHxNSVwk\n4ZYuhcmTk5vcyuXvf4cTT4wdRePWWy9sPvOb38SORORr5hnfPNfMvO4c3aFrV5g2DdZcM3JgIiWa\nOhX22y/UEi9mZrh7m4qwFr8+Ylq4EHr0gNdfT/Zr8+23Yeutw4eqam3KIi1XjtdGWuSqJ26m3rik\nTx6G0h9/POwXnuQEDtCzZ5h49+tfx45EJMhVEocwOWjChNhRiJQuD5Pahg4NZVbT4Pzzwyx6zVSX\nJMhdEt9qq/CmKJIWWe+JL1wIw4bBYYfFjqQ0PXuGWG+8MXYkIjlN4q++GjsKkdJlvdDLY49Bv37J\nH0ovdv75cMMN8NlnsSORvMtlEp8wQRsaSDosWgTTp0OvXrEjqZx//hOOOCJ2FC2z2Waw665w222x\nI5G8y10SX201WHllmDEjdiQizXvttVBopFOn2JFUxpIlYSj9wANjR9JyF14I114LixfHjkTyLHdJ\nHMISEV0XlzTI+qS2//4XNtgA1l47diQt168fbLIJ3HNP7Egkz3KZxDW5TdIi65PaHn00nb3wOhdc\nEHrjCVhqLzmlJC6SYFmf1Jb2JL7vvuGSwNNPx45E8kpJXCTBsjyc/uabYa31dtvFjqT1zODcc+F3\nv4sdiTTHzJYzs5FmNsbMxpvZ5YX7u5rZcDObYmZPmNkqRY+52MymmdlkM9s3XvSNy1XZ1TpffAGr\nrgoffQTLLRcpMJFmfPxxuFb8ySfQroGP22kvu/qHP8DYsemf4b1wYair/uKLYRKixNfYa8PMOrv7\nQjNrDzwPnAMcDnzg7r82swuBru5+kZltAdwF7AD0BJ4ENklEneIiueyJL7dcmEzz2muxIxFp3MSJ\nYdOThhJ4FgwbBvvvHzuKtuvcGU45JXwokWRz94WFm8sBHQAHDgHuKNx/B3Bo4fbBwBB3X+Lu04Fp\nQL/qRVuajL49NE9FXyTpxo/P7qS2L7+EZ5+FPfeMHUl5nHVW2Av9k09iRyJNMbN2ZjYGmAuMcPfR\nQDd3nwfg7nOBtQqHrw3MKnr47MJ9iZLrJK7r4pJkWZ7UNnIkbLppqNuQBeusA/vsE2qqS3K5+zJ3\n35YwPN7PzHoTeuPfOKz6kbVeh9gBxLL11nDzzbGjEGnc+PFw8MGxo6iMf/8b9tordhTlde65MGgQ\nnH02tG8fO5p8qa2tpba2tuTj3f0TM6sFBgDzzKybu88zs+7Au4XDZgPrFD2sZ+G+RMnlxDYIezPv\ntlvYH1gkadxDLfEJE6B794aPSfPEtl13hcsvD73XrHAP26n+4hdwwAGxo8m3hl4bZrYGsNjdPzaz\nFYAngKuBPYAP3f2aRia27UgYRh+BJrYlx3rrhetX8+fHjkTk2+bODd+7dYsbRyUsWBBmpe+yS+xI\nyssMfvQjuOWW2JFII3oAT5vZWGAk8IS7PwZcA+xjZlOAvQiJHXefBAwFJgGPAWcmLYFDjofT27WD\n3r3DkOXuu8eORuSbXn01XPKxNvWzk+k//wklSzt3jh1J+R19dKjiNnMmrLtu7GikmLuPB/o2cP+H\nwN6NPOYq4KoKh9Ymie2Jm9kAM3vNzKYWhjgaOub3hYX4Y82sT0vb0OQ2Sapx42CbbWJHURlPPgl7\nN/iWmX4rrgjHHQd//nPsSCQvEpnEzawdcAOwH9AbOMbMNqt3zP7ARu6+CXA60OJBLCVxSaq6nngW\nPfVUdpaWNeT000MBG+1uJtWQyCROWFA/zd1nuPtiYAhhQX6xQ4C/Abj7SGAVM2vRFUQlcUmqrPbE\n58+HN95Id6nV5vTuHXY3e+ih2JFIHiQ1iddfZP82315k3+aF+HVJPHlTFSTPvvgCXn89VGvLmhde\nCNfDO3aMHUllnXGGJrhJdeRiYpudeOLXP/TpE77qPAztnql6SCJNexxWeLHefWPHhq8Ue/bZsLQz\n677/ffjJT2Dq1FDURqRSkprEZwPFczsbWmRf8kJ8/+tfG21owAB4YifDL1d3XJLhjjvghBPt20NE\nNTXf+NHuuIO0ee45uOyy2FFU3nLLwUknwR//CNddFzsaybKkDqePBjY2s/XMrBNwNPBwvWMeBgYB\nmFl/4KO6+rctkdXa1JJe48bFjqAyFi2CV16B/v1jR1Idp58ePpAtWhQ7EsmyRCZxd18KnA0MByYS\ndpKZbGanm9lphWMeA94ys9eBPwJntqYtJXFJmqwm8Zdegs03hy5dYkdSHRtsANtuCw8+GDsSybKk\nDqfj7sOAXvXu+2O9n89uazvbbAO81dZnESkP9+wm8bxcDy92yilhudnRR8eORLIqkT3xatp88/D9\n88/jxiEC8M472azSBuF6+K67xo6iug49FMaMgenTY0ciWZX7JN6pU/g+YULcOEQgu+vDly2D//43\nf0l8+eXh2GO1RalUTu6TeJ2sDmFKuowbl81KbVOnQteu2dzQpTmnnBKS+NKlsSORLFISL0j58lvJ\niFdfzWZPfOTIUOQlj7bZBtZaK9SMFyk3JfEC9cQlCbI6nD5qFOy4Y+wo4qmb4CZSbkriBePGhet2\nIrEsWgRvvvn1ZMssGTUqvz1xgGOOgeHD4f33Y0ciWaMkXrDqqvCWlppJRJMmwcYbh2pfWbJoEUyc\nGNZM59Wqq8JBB8Gdd8aORLJGSbxgm200pC5xZXUofexY2Gwz6Nw5diRx1Q2pa8MlKScl8YI+fTS5\nTeLKahLP+1B6nT32CPUoRo+OHYlkiZJ4QZ8+6olLXFldXpbnmenFzODEE6GJ/ZhEWkxJvGCbbdQT\nl3jcs7u8LO8z04sNHAhDh4Y940XKQUm8YMMNYf788CVSbbNnQ4cO0L177EjK68MPYd68cE1cYP31\nw6ZLjz4aOxLJCiXxgnbtwotLQ+oSQ1aH0l9+OcxKb98+diTJccIJ8Le/xY5CskJJvIgmt0ksY8Zk\ncwlWVs+rLQ4/HJ55Bt57L3YkkgVK4kU0uU1iyWqyy+p5tUWXLmHN+N13x45EskBJvIgmt0ksWU12\nWT2vttKQupSLkniRLbeEKVPgyy9jRyJ58tFHYWh1k01iR1Jen34Ks2Zls4xsW333u2HCn7ZAlrZS\nEi/SuTOstx689lrsSCRPxo4Nk9qyNvnr1Vdhiy2gY8fYkSRP+/Zw/PFwxx2xI5G0UxKvR5PbpNpe\neSWbQ85ZPa9yGTQI7roLliyJHYmkmZJ4PZrcJtWW1evGWT2vctl8c+jZU/uMS9soidejyW1SbVlN\ndlk9r3LSBDdpK/OMb6ljZt7cOdoVhl8ejpk7N0xwe++9UOtYpJI+/xxWXz1UCvzGFqRmzW53ZWa4\ne5v+lZby+miNL78M22++/752L2vKBx/ARhvBjBmwyiqxo8mOcrw20kI98Xq6dw/lL99+O3Ykkgfj\nx0OvXtnbQ3zSpFBiVAm8aauvDnvuCffdFzsSSSsl8Qb07RuGAkUqLauTv8aMCa8jad4JJ2iWurSe\nkngD+vYNNZ9FKi2r143Hjg2TRKV5++8flrW++WbsSCSNlMQb0Ldv6CGJVFpWe6wTJoQNhaR5nTrB\n0UfDnXfGjkTSSEm8AdttpyQulbdkCUycmM09xMePVxJvieOPh7//vdm5jCLfoiTegHXXhUWLwkx1\nkUp57bWwTnillWJHUl7vvhs+oPToETuS9Nhhh1DF7cUXY0ciaaMk3gAzDalL5WV1Utv48WGZppZo\nls7s6964SEsoiTdCSVwqTdfDpdjAgTB0KHzxRexIJE2UxBux3XaaoS6VldWZ6RMmhJ64tMx664W/\n22OPxY5E0kRJvBHqiUsluYdlWFlM4prU1nqDBqkMq7SMkngjNtwQPv44lI0UKbe33oIuXWCNNWJH\nUl7LloUZ9717x44knY44Ap5+OpRjlfIys55m9pSZTTSz8WZ2TuH+rmY23MymmNkTZrZK0WMuNrNp\nZjbZzPaNF33jlMQb0a5d6CWpNy6VkNVJbTNnhprpXbvGjiSdVl45FH+5997YkWTSEuCn7t4b2Ak4\ny8w2Ay4CnnT3XsBTwMUAZrYFcCSwObA/cJNZ8qZrKok3QUPqUilZvR5eNzNdWk+z1CvD3ee6+9jC\n7U+ByUBP4BCgrvDtHcChhdsHA0PcfYm7TwemAf2qGnQJlMSboCQulfLSS2FtcNZoUlvb7btvuNwy\ndWrsSLLLzNYH+gAvAt3cfR6ERA+sVThsbWBW0cNmF+5LlA6xA0iyvn3hsstiRyFZ4x5WPmy3XexI\nym/CBNhvv9hRpFuHDnDMMaEM6y9+ETuadKitraW2trakY81sJeB+4Fx3/9TM6tfJS1XdPO0nzjf3\nEy+2dGm4vjdzpq7xSflMnw677trMdrcp3U98663hr3/N5vr3ahozBr7/fXjjjTA/R1qmsdeGmXUA\nHgUed/ffFe6bDNS4+zwz6w487e6bm9lFgLv7NYXjhgGXu/vI6p1J8/TPownt24e61mPHxo5EsuSl\nl2D77WNHUX5LlsC0abDZZrEjSb8+fWDFFeH552NHkjl/ASbVJfCCh4ETC7dPAB4quv9oM+tkZhsA\nGwOjqhVoqZTEm6FtSaXcsprEp0+H7t2hc+fYkaSfmdaMl5uZ7QIcB+xpZmPM7BUzGwBcA+xjZlOA\nvYCrAdx9EjAUmAQ8BpxZ1mGrMtE18WZstx088UTsKCRLXnoJfv7z2FGU3+TJsPnmsaPIjmOPDZcn\nfv97WGGF2NGkn7s/D7Rv5Nd7N/KYq4CrKhZUGagn3gzNUJdyyvKkttde01B6OfXsGf6dPPJI7Egk\nyZTEm7H55jBrFixYEDsSyYI33oBVVoE114wdSfkpiZef1oxLcxKXxJsqgVfvuOlmNq5wbaNikw06\ndAh1oMeMqVQLkidZvR4OGk6vhO9/H559NuzRLtKQxCVxGimB14BlhGUB27p7RavobLddePMVaaus\nJnF39cQrYaWV4KCDYMiQ2JFIUiUxiTdWAq8+o0rx77ADjB5djZYk67KaxN97L8yoztqGLkmgWerS\nlCQm8bUaKYFXnwMjzGy0mZ1ayYD69VMSl7ZbtixMkszipLbJk0MvPHnbQ6TfnnvCO+/ApEmxI5Ek\nipLEzWyEmb1a9DW+8P3gBg5vbF3eLu7eFziAsBvNrpWKt1evcE3qww8r1YLkwdSpsNZa2az+99pr\nuh5eKe3bw3HHaYKbNCzKOnF336ex35nZPDPrVlQCr8EpHe7+TuH7e2b2AGF3mecaOnbw4MFf3a6p\nqaGmpqZF8bZvH5aavfRS2JxApDXaOpTekvrQ1abr4ZU1aFDYovRXv1IZVvmmJBZ7qSuBdw3fLIH3\nFTPrDLQrFK9fEdgXuKKxJyxO4q21ww4wapSSuLReW5N4/Q+gV1zR6D/5qps8GfbaK3YU2bXllmG+\nQW1tGF4XqZPEz3QNlsAzsx5m9mjhmG7Ac2Y2hrCV3CPuPrySQWlym7RVVie1gYbTq2HQIA2py7dp\nFzMa38Ws2FtvwS67wJw55YxO8mLJkrAj3pw5sPLKJTwgRbuYLVwIq68On34aLj1JZcydGz4ozZ6t\n+vTNKcdrIy2S2BNPpPXXh8WLwwtIpKVeey2U0SwpgafM1Kmw8cZK4JXWvTvstBM8+GDsSCRJlMRL\nZKYhdWm9LA+lT5kSVnBI5R1/vNaMyzcpibdA3eQ2kZYaPTqb68Mh7CG+ySaxo8iHQw6BkSPDunER\nUBJvEfXEpbVGjoQdd4wdRWUoiVdP585w2GFw992xI5GkUBJvgR12CMOiGZ8LKGX2+edhCda228aO\npDJefz1cE5fq0Cx1KaYk3gLdukGXLuFNS6RUY8aEWcUrrBA7kspQT7y6dt8d5s+HV1+NHYkkgZJ4\nC6mOurRUlofSP/44jDR07x47kvxo1w4GDlRvXAIl8RbSdXFpqSwn8WnTwlC6Nj6pruOPh7vugqVL\nY0cisSmJt5BmqEtLZTmJ63p4HJttFuoO/PvfsSOR2JTEW2i77WDcuFCBS6Q5774LH32U3WvGuh4e\nj9aMCyiJt9gqq4RPwBMnxo5E0mDkyDCPIqs7TymJx3P00fDoo7BgQexIJKaMvrVU1o47hjdnkeZk\neSgdlMRjWnPNMFP9n/+MHYnEpCTeCv37w4svxo5C0iDrSVzXxOMaNEhD6nmnJN4KSuJSimXLwkqG\nfv1iR1IZH30EixaF+gkSx4EHwtixMGtW7EgkFiXxVthqq/CimT8/diSSZFOmhC0611wzdiSVUTeU\nruVl8Sy/PBxxRFhuJvnUodQDzawD8ANgp8JdKwJLgYXAq8Dd7r6o7BEmUIcOYZb6qFGw336xo5Gk\nysNQuq6Hx3f88XD66XDhhfpAlQblzqUlJXEz2wHYDRjh7vc08PuNgNPMbJy7P1Nq42lWN6SuJC6N\nqZuZnlV1hV4krl12CVXzXnkluzvlZUUlcmmpw+mL3P16dx/f0C/d/Q13/z0wy8w6lficqbbTTvDC\nC7GjkCTLek9cM9OTwSz0xlWGNRXKnktLSuLFDZpZZzNbq5Hj3nT3L0t5zrTr3z+8SS9bFjsSSaKF\nC8M18azuXAZK4kly/PFwzz2weHHsSKQplcilrZnYNhA4wMweMrPbzGxAK54j9bp1g65dYerU2JFI\nEr3yCmyxRZh4lFVvvgkbbRQ7CoFwWWOjjWD48NiRSAuUJZe2JokvAiYBq7v7KcDKrWk4C/r315C6\nNCzrQ+mffhq+tLwsObRmPHXKkktbk8RfBo4GzjGzE1r5HJmg9eLSmBdeCP8+suqtt2CDDTQbOkmO\nPBKGDQvr9yUVypJLW/wgd5/o7j9191eAOcDk1jScBTvtpCQu3+YOzz8fZg1nVV0Sl+RYbTXYe2+4\n//7YkUgpypVLm03iZracma3eSBAj3H1c0bHrtCaItNpmm7BWVhsQSLEZM8L39dePGkZFvfkmbLhh\n7CikPs1ST65K5dJmk7i7fwHsZGbHmNkKjQS3qpmdBqxXasNZ0KkT9OkTSmuK1Pnvf0MvPMtDzeqJ\nJ9MBB8CkSTB9euxIpL5K5dJSK7a9AcwHzitMiV++8Ni6KjNvA7e6+8elNpwVdevF99wzdiSSFP/9\nL+y8c+woKuvNN+G7340dhdTXqVO4Nn7nnXDppbGjkQaUPZeWmsT/DBzi7v/bsnizr39/uOOO2FFI\nkjz/PAwcGDuKynrrLQ2nJ9WgQWFY/ZJLsj0alFJlz6WlTmz7HbCpmX3PzFYtV+NZUDe5zT12JJIE\nCxaEIihZLvLiruH0JKsr9TtqVNw4pEFlz6Ul9cTd/b6622a2s5l1BZ7L4/B5fWuvHQp6vPGG6khL\neOPcdltYbrnYkVTOu+9C587QpUvsSKQhZl+vGc9yrYI0qkQuLaknbmZHFf04pvB1lJmdZ2a5LfZS\nZ6edwnVQkbxcD1cvPNkGDoShQ8N+7xIUqqLNM7NXi+7rambDzWyKmT1hZqsU/e5iM5tmZpPNbN8y\nxVD2XFrqcPqthZOfSVigfj9wKLAD8NPWNJwlu+wSroOKPP989pO4rocn3/rrh5UzDzwQO5JEuR2o\nv+/kRcCT7t4LeAq4GMDMtgCOBDYH9gduMivLDIOy59JSJ7adDIwADgA+cPcnWtNYVu26K/z5z7Gj\nkNiWLQvzI7Je+lI98XQ47TS4+WY45pjYkSSDuz9nZvWXbh0C7FG4fQdQS0jsBwND3H0JMN3MpgH9\ngJFtDKPsubTUnvhj7v6Ru98NvGpmp5vZAW1tPCu22QZmzoQPP4wdicQ0aRKstVb4yjL1xNPhkENg\n4kRt0tSMtdx9HoC7zwXqXr1rA7OKjptduK+typ5LS03ifzWzQWY2CNiHULh9ZzOrNbMD2xJAFnTo\nECaQ6Lp4vuXhejioJ54WnTrBCSfArbfGjiRVKr3OqOy5tNTh9D7AMsIi9Y8K32cBNwGft6bhrNl1\nV3juOTgw9x9p8ivr9dLraHlZevzwh7DbbvDLX2Z7xURtbS21tbWteeg8M+vm7vPMrDvwbuH+2UBx\n6dOehfvaquy51LyEBc5mtlXxZuZpYmbe3DnaFYZf3rYPYE8+CYMHh0Qu+bTJJmEi0ZZbluHJzJot\nPmBmuHubJtuU8vootngxrLRS2Ia0Y8e2tCzVsueecMYZoZJbXjT22jCz9YFH3H2rws/XAB+6+zVm\ndiHQ1d0vKkxsuwvYkTCMPgLYpEUvlm+3vS2wkrs/29rnaEhJw+lpTeDVtOOOMGaMlnTk1bvvwvvv\nwxZbxI6ksmbOhB49lMDT5LTTNPEWwMzuBv5LKLYy08xOAq4G9jGzKcBehZ9x90nAUMJ+348BZ7Yl\ngRfUAK82d1BLNTucbmYrAt2LvnZx99wvK6uvSxfYfHN4+eV8DKnKN73wQvgg165VOwKnhya1pc9h\nh8E554SCVBttFDuaeNz92EZ+tXcjx18FXFXGEF4GVjCzHwJ31k2oa6tS3nIuB64AtgA2BNQrb0Td\ndXHJn2faghkYAAAgAElEQVSfDdces+6tt7K9xWoWLbdcqKWuCW7RXQgcBMwpXIP/TjmetJStSC8A\nfgF8Akxy99vL0XAWKYnn13/+A7vvHjuKypsxQ0k8jU49FW6/Hb78MnYkufZzYBzQw8z+DPylHE9a\n6jXxqe5+L/ClmV1QjoazqK5y27JlsSORalqwIKwR32GH2JFU3owZsO66saOQltpsM+jVCx55JHYk\n+eXuk919lLtf7+6nAueX43lbdAXP3UcA/ylHw1nUowd07QqTJ8eORKrphRegb9+wEU7WzZwJ69Wv\neSWpcPrpcNNNsaOQOuWaMN7iaTju/mI5Gs6qXXdVHfW8efbZfAylQ+iJK4mn0xFHhBGjSZNiRyIA\nZta57ruZ7W5mK7XmeVqcxMvVcFbpunj+5OV6+JIlMGcO9OwZOxJpjU6dwnKzG2+MHYkUHA3g7gsJ\nS98Obc2TtGZBTFkaboyZHWFmE8xsqZn1beK4AWb2mplNLSzSTwQl8XxZtCgsK9xpp9iRVN4778Ca\na4ZkIOl0+ulwzz3wcat3r5a2KuS4u4ALzOwpM3saGA5s15rnK7XsKmZ2BHAYsJ2ZDQSMUGd2HHBn\naxpvxPhCO39sIpZ2wA2ExflzgNFm9pC7v1bGOFpls83gk09g9mxYuxzl8iXRRo8O9QG6dIkdSeVp\nKD39vvMd2GefsNPej38cO5p8cvf7zWwksD3wMLAi8Lm7L27N85XcE3f3+wlbtF1MKNx+CLCfu5/X\nmoabaGeKu08jfEhoTD9gmrvPKJz4kEI80ZmF9cL/0fS/XMjLUDqESW2amZ5+Z58NN9ygVTQxufss\noBuhA3wusHKho9xiLZ2dXraG26j+NnFvU55t4sqipgZaV4tf0kaT2iRtdt01rKR48snYkeTeB+5+\nDDDK3T+gdZe3W/WgNjdsZiPM7NWir/GF7we1Ip7E2WMPeOaZ2FFIpS1ZErYf3XXX2JFUh9aIZ4NZ\nGEq/4YbYkeReHzPbm1D8ZTdg09Y8ScnXxOs1PL8tDbv7Pq1ot9hsoPjtpMlt4gYPHvzV7ZqaGmpq\natrYfNO23jpsiPHOO2HtuGTT2LEhqa2+enXaa8N2i2Uxc6a22s2KY4+Fiy4Ke8OrFn40VxLKmm9D\nqKt+b2uepKStSL/xALMV6jdciV3OCjP2fu7uLzfwu/ZA3a4z7wCjgGPc/VtlVqq1FWl9hx4KRx8d\nviSbrr8eXn+9QgU0ErgVae/eMGQIbLVVW1qUpDj//DCa9Nvfxo6k/Mrx2qiEQrnV9sV3Fd3e1t37\ntPQ5S+qJN9LwXMJ16L8TNjovCzM7FPgDsAbwqJmNdff9zawH8Gd3P9Ddl5rZ2YRp+e2A2xpK4DHV\nDakriWfXf/4DRx0VO4rqcNdwetaccw5ssw1cfjmsumrsaHLjHeC2wu0DgKcJq7w60chuas0pdTi9\n7A03xt0fBB5s4P53gAOLfh4G9Cpn2+VUUwN/+lPsKKRSli0L9QDycl1x/nzo0AFWWSV2JFIu66wD\n3/teeJ+6QDtiVIW7X1Z328ymFy+LNrMNWvOcJSXxSjScdVtvDXPnhq/u3WNHI+U2YULoveSleplm\npmfTz34W5jn85Ccq4hPBlma2DvAGsBawMWHdeIu0Znb6lmZ2mpntZWbHEK6NSz3t22u9eJY9/TTs\nuWfsKKpHa8SzqU+fUKDq3lZNqZK2cPffAMuAHwArEya6tVhrNkApS8N5oPXi2fXUU/lK4uqJZ9fP\nfw7XXtvsPEqpAHe/1d3PcPc/ljzDtJ5WLS4vR8N5oCSeTUuXhhGWCq9UTBQl8ezab78wx0PFX9Kp\nVUlcSrPNNmGt+Lvvxo5EymnMmFCDOk9zHTScnl1m4dr4b34TOxJpDSXxCmrfPlTzUvW2bMnbUDqo\nJ551xx4Lr70Go0bFjkRaSkm8wjSknj1PPw3f/W7sKKpLPfFs69QpLDO7UjOcUkdJvMJURz1bvvwS\nnn8+/H/Niy++COvE83T5II9OOQVeeimUE5b0UBKvsG23DXuLz50bOxIph9GjYaONqlcvPQnmzAl7\nALTTu0WmrbBCmKn+q1/FjkRaQi/LCmvfPgypP/VU7EikHPK2Phzg7bfzU9Qm704/PWyvO2lS7Eik\nVEriVbD33lq+kRV5nNSmJJ4fK64YqrepN54eSuJVUJfEtaI+3RYtCrN3d9stdiTVpSSeL2edBSNG\nwOREbSkljVESr4JNNw0J/PXXY0cibfHCC7DllrDyyrEjqS4l8Xzp0iVcG/9//y92JFIKJfEqMNOQ\nehY89VT+lpaBkngenX02vPhimMgpyaYkXiV77aUknnb//nf+roeDkngede4Ml10GF18cO5KW+/zz\n2BFUl5J4ley1V5jZvHRp7EikNT76CMaPz9/1cFASz6uTTgpFftLW+cjbZQAl8Srp0SPU237lldiR\nSGs89RTssgssv3zsSKpr8WJ47z0Vesmjjh1DBbeLLgobpKTBJ5/A7bfHjqK6lMSrSNfF02v4cNh3\n39hRVN/cubDWWtChQ+xIJIYjjgi1Lu68M3YkpfnLX2CffWJHUV1K4lWkJJ5eI0bkM4lrKD3f2rWD\n3/8+XBtfsCB2NE1buhR+9zs477zYkVSXkngV7bEHjBwJCxfGjkRa4o03wmSZ3r1jR1J9SuKy446h\nA5L0AjAPPBAuWe64Y+xIqktJvIq6dIE+fcIGGpIew4eHITqz2JFUn5K4AFx9Ndx6a3JrXbiHDxkX\nXBA7kupTEq8yDamnT16vh4OSuAQ9esD554eSrEmsPPnww+H7wQfHjSMGJfEq23dfeOKJ2FFIqRYv\nDksD9947diRxKIlLnfPOg+nT4d57Y0fyTe4weHD4yuNomZJ4lfXrF9ZezpkTOxIpxahRsMEG0K1b\n7EjiUBKXOp06hSH1886DDz6IHc3XHnoofM9jLxyUxKuuQ4dwfVW98XTI81A6KInLN/XvD0cdlZwZ\n4IsXh3XsV16Zz144KIlHMWAADBsWOwopRZ6T+NKl8M47YcavSJ0rrwx7jj/6aOxI4JZbYN114YAD\nYkcSj5J4BAMGhHXHS5bEjkSaMn8+TJgQKrXl0bvvwmqrhWFUkTorrQR33AGnnho+5MUyf374QHH9\n9aX3ws1sgJm9ZmZTzezCykZYHUriEfToET49jhoVOxJpyvDhoVZ63kqt1tFQujRm991DEj/hhHgl\nWS+6CA4/PGwPXAozawfcAOwH9AaOMbPNKhdhdSiJR7L//vD447GjkKY89hh873uxo4hHSVyactll\n8NlncN111W/7mWfC6/Oqq1r0sH7ANHef4e6LgSHAIZWIr5qUxCPRdfFkW7YsfMjK87U2JXFpSocO\ncPfdYTh7+PDqtbtwYRgFuPFGWGWVFj10bWBW0c9vF+5LNSXxSHbeGaZNC9cdJXleegnWWCMsL8sr\nJXFpznrrhXXjxx8f3s+q4dxzw1LdvC4pq097E0XSsSPsuWf4BDtwYOxopL5//Ss/Q+m1Vtvg/fvX\n/f7iqoUiKXUvMHtTmF2Fto4rfK+96+v7xhb+a8ZsYN2in3tSnZAryjyJNfTKyMy8uXO0Kwy/vPp/\nhz//GWpr4a67mj1UqmyHHeA3v4GamkgBmDVb39LMcPc2rY5t6vXx3e9CbU2c14akkBl9t3WeegpW\nXbX8Tz9mTFjuOWIEbPtRLd7Ei7Oh14aZtQemAHsB7wCjgGPcfXL5o60eDadHNGBA6IkvXRo7Eik2\nd27Y6CGvS8vqqKqgtNRuu4URrI8/Lu/zzpgBBx4Y1oX36dO653D3pcDZwHBgIjAk7QkclMSjWmcd\n6N4dRo+OHYkUGzYs1Erv2DF2JHEpiUtL/fa3sO22YQlauf79zJwZXo/nnx+WlLWFuw9z917uvom7\nX12eCONSEo/s4IO/3oFHkiFP18Mbs2BBvPW/kl7t2sEf/hBKs+68c9s7KJMnhw8EZ50VdlCTb1MS\nj+ygg5TEk2Tx4rBV7IABsSOJS+VWpbXM4H/+B669NnwYvu661lWnvO++kMCvuEIJvClK4pH16wfv\nvw9vvhk7EgF4/nnYeONwmSPP5sxREpe2OeIIGDkyjGz17Rvm/5Qyj/rNN+Gww8IHgWHDQlU4aZyS\neGTt2oUJG488EjsSgfCGk+cCL3XmzAnlgUXaYoMN4N//DtXdzjsPtt4arr4aXnklFG2BkNjffhuG\nDAnXvPv1g+22g/Hjw3dpmpJ4AmhIPRnc4cEHVUQCNJwu5WMWeuUTJsDvfhcS9sCBYXOdLl3C3gTb\nbx+W2u63H0yfDpdemt89C1pKxV4SYO+9Q8Wjjz6qzPpKKc3kybBoURj6y7uvhtM/ix2JZIVZKHC1\n557h56VLQ+31jh1hhRXixpZm6oknwIorwh57qJZ6bA89BIceWvq2hlmm4XSptPbtYeWVlcDbSkk8\nITSkHt+DD4YkLhpOF0kLJfGEOPDA0BNfvDh2JPk0e3ao0rb77rEjSQbNThdJh8QlcTM7wswmmNlS\nM2v06qSZTTezcWY2xsxGVTPGSvjOd8LSpueeix1JPj38cJiVnvcqbXU0nC6SDolL4sB44DDgmWaO\nWwbUuPu27t6v8mFV3sEHhyFdqb4HH4RDDokdRTIsWBC+d+kSNw4RaV7ikri7T3H3aUBz04uMBMbf\nFocdBg88UFpBBCmfjz6CF14Iy1vk66F0TfATSb40J0EHRpjZaDM7NXYw5bDFFmGmujZEqa7HHw/X\nwtXzDDSULpIeUdaJm9kIoFvxXYSkfIm7l1q7bBd3f8fM1iQk88nu3uAV5cGDB391u6amhppom0Q3\nzSxULLr//lC1SKojLbPSa2trqa2trXg7mtQmkh7mCR27NbOngZ+5+yslHHs5sMDdr2/gd97cOdoV\nhl+ejL/DmDGhutHrr2s4sxo+/zz0OqdMgW7dmj++asyava5iZrh7m/6VNPT6uPbasMTsuuuS9dqQ\nhCvh32zZmqqtxZvojJXjtZEWSR9Ob/B/gpl1NrOVCrdXBPYFJlQzsEqp2/B+3Li4ceTFE0+ECm2J\nSuCRqScukh6JS+JmdqiZzQL6A4+a2eOF+3uY2aOFw7oBz5nZGOBF4BF3Hx4n4vIqHlKXyhs6FH7w\ng9hRJIuuiYukR+KSuLs/6O7ruPsK7t7D3fcv3P+Oux9YuP2Wu/cpLC/byt2vjht1eR1+OPzjH7Gj\nyL7PP4fHHoPvfz92JMmiam0i6ZG4JC5hUttnn8GkSbEjybZhwzSU3hANp4ukh5J4ApmF3qF645V1\n331w5JGxo0gWdw2ni6SJknhCHXFESDJSGRpKb9iCBdCundbMi6SFknhC7bwzzJ8PEyfGjiSbhg2D\n7baDtdaKHUmyaChdJF2UxBOqXTs4+mi4557YkWSThtIbpqF0kXRREk+wY4+Fu+9WLfVyW7gwlFo9\n7LDYkSSPeuIi6aIknmB9+sByy8HIkbEjyZaHH4b+/TWU3pC5c6F799hRiEiplMQTzOzr3riUz513\nwsCBsaNIJiVxkXRREk+4Y46Be++FJUtiR5IN770Hzz2Xjg1PYpg3T0lcJE2UxBNu441hvfXgqadi\nR5IN994LBx0UtnyVb5s7V8VvRNJESTwFNKRePnfeCccdFzuK5NJwuki6KImnwFFHwUMPhQIl0nrT\npsH06bD33rEjSS4Np4uki5J4CvToATvsAA8+GDuSdLvrrrD2vkOH2JEk05IlocDQGmvEjkRESqUk\nnhInnQS33x47ivRy16z05rz3Hqy+OrRvHzsSESmVknhKHHoovPwyzJwZO5J0+u9/oWPHUGpVGqZJ\nbSLpoySeEiusEMqE/u1vsSNJp1tvhZNPDmvvpWGa1CaSPkriKXLSSfDXv6oMa0t98kmYTzBoUOxI\nkk2T2kTSR0k8RXbYIZRhffbZ2JGky733wne/q6Hi5mg4XSR9lMRTxCwMCWuCW8vcdhucckrsKJJP\nPXGR9FEST5mBA8PQ8IIFsSNJh4kTYdYs2G+/2JEkn3riIumjJJ4y3bpBTY32GS/VbbfBiSdqbXgp\nNLFNJH2UxFPojDPg5ps1wa05X3wR1oaffHLsSNJBw+ki6aMknkL77BOG07XPeNPuuy/syb7RRrEj\nSQcNp4ukj5J4CrVr93VvXBp3441w1lmxo0iHL76ATz+F1VaLHYlI9ZnZEWY2wcyWmlnfer+72Mym\nmdlkM9u36P6+ZvaqmU01s/+rftSBknhKnXRS2BTlgw9iR5JML78Mc+bAgQfGjiQd3n0X1lwzfEAU\nyaHxwGHAM8V3mtnmwJHA5sD+wE1mX5WMuhk4xd03BTY1syjTZ/WSTanVV4dDDtFys8bceCP86Eeq\nA14qTWqTPHP3Ke4+Dahf0/EQYIi7L3H36cA0oJ+ZdQe6uPvownF/Aw6tWsBFlMRT7Ec/gltugWXL\nYkeSLB98AA88oLXhLaFJbSINWhuYVfTz7MJ9awNvF93/duG+qlMST7Edd4RVVoHHH48dSbL85S9w\n0EFheFhKo0ltknVmNqJwDbvua3zh+0GxY2sLrZ5NMTM47zy4/nr43vdiR5MMS5eGCX9aR98y6olL\nmtXW1lJbW9vkMe6+TyueejawTtHPPQv3NXZ/1SmJp9yRR8JFF8HYsWE5Vd498EBIRjvuGDuSdJk7\nFzbeOHYUIq1TU1NDTU3NVz9fccUVbXm64uviDwN3mdlvCcPlGwOj3N3N7GMz6weMBgYBv29Lo62l\n4fSU69QJfvzj0BvPO3f4zW/g5z+PHUn6aGKb5JmZHWpms4D+wKNm9jiAu08ChgKTgMeAM92/KrN1\nFnAbMBWY5u7Dqh+5euKZcNppoaDJ7NmwdpSpFcnw/PPw4Ydh1r60jIbTJc/c/UHgwUZ+dxVwVQP3\nvwxsVeHQmqWeeAZ07Ro2RrnxxtiRxPWb38BPf6plZa2hiW0i6aQknhHnngt//nOoupVHU6bAiy/C\nCSfEjiSd1BMXSScl8YzYaCPYa6/8lmK99tqwbr5z59iRpM/ChaHs6iqrxI5ERFpK18Qz5JJLwuYo\nZ52Vr2Q2Ywb8858wdWrsSNJp3jxYa62wZFFE0kU98QzZaivYeWf4059iR1JdV10VJvetvnrsSNLp\nvfd0PVwkrdQTz5hLLw3Vys44A5ZfPnY0lTdzJgwdql54W7z7buiJi0j6qCeeMX37wrbbhtKjeXD1\n1XDqqbDGGrEjSS8lcZH0Uk88gy67DA4/PGxXusIKsaOpnFmzYMiQMDNdWk9JXCS91BPPoH79YPvt\n4YYbYkdSWb/8Jfzwh9ropK3q9hIXkfRRTzyj/vd/YY89wlDzqqvGjqb8Jk0KddJ1Lbzt3ntPdfdF\n0ko98YzafHM4+GC45prYkVTGxRfDhReGanXSNhpOF0mvxCVxM/u1mU02s7Fm9g8zW7mR4waY2Wtm\nNtXMLqx2nGkweHBYbjZnTuxIyuvZZ8OubWefHTuSbFASF0mvxCVxYDjQ2937ANOAi+sfYGbtgBuA\n/YDewDFmtllVo0yBnj3DNeNLL40dSfm4wwUXhOvheVhCVw26Ji6SXolL4u7+pLsvK/z4ImGz9fr6\nEbZ+m+Hui4EhgPauasAll8CwYTByZOxIyuPvf4fFi+G442JHkh3vvackLpJWiUvi9ZwMPN7A/WsD\ns4p+frtwn9Sz8srhuvhZZ8HSpbGjaZuPPgrXwW+6STuVldMKK2hUQyStoiRxMxthZq8WfY0vfD+o\n6JhLgMXufneMGLNk4MDwJp32AjCXXx6q0fXrFzuSbNH1cJH0irLEzN33aer3ZnYicACwZyOHzAbW\nLfq5Z+G+Bg0ePPir2zU1NdTU1JQWaEaYhTXj++0Hhx2Wzupmr74K99wTlpblVW1tLbW1tWV/Xg2l\ni6SXuXvsGL7BzAYA1wG7u/sHjRzTHpgC7AW8A4wCjnH3yQ0c682do11h+OXJ+jtUwk9/CnPnwt0p\nG9tYsiRs7HLqqeErF8zCLL4mDzHcvU17j5mZH3KI8+CDjfw+J68NKYMS/s2WranaWryJzlg5Xhtp\nkcRr4n8AVgJGmNkrZnYTgJn1MLNHAdx9KXA2YSb7RGBIQwlcvunKK2H0aHjoodiRtMy114a9rn/4\nw9iRZJOG00XSK3EV29x9k0bufwc4sOjnYUCvasWVBZ07w223wTHHwG67wWqrxY6oeRMnwnXXwUsv\nab/rSlESF0mvJPbEpYJ23z1sjnL22VUb+Wq1L7+EE08MIwjrrRc7muxSEhdJLyXxHLr66jBR7Pbb\nY0fStIsvhh494LTTYkeSbZrYJpJeiRtOl8rr3BmGDg0bpOy4I/TuHTuib3vkEbj/fhgzRsPolaae\nuEh6qSeeU1tsEYrAHHkkLFgQO5pvmjEjTGK75550XLdPOyVxkfRSEs+xk04KS7eOOy451dwWLAgF\nXS66KMQmlackLpJeSuI5ZgY33hgS58Xf2mam+pYuhWOPhf794Sc/iR1Nfqy+euwIRKS1lMRzrlMn\n+Mc/4IEH4Oab48XhDuecA599Fj5Y6Dp49XTQzBiR1NLLV1htNXjiCaipCZthnHhidduv21501Ch4\n8kno2LG67YuIpJWSuACw4YYwYgTsuWfomQ0cWJ123cN+5088AU8/HSqziYhIaZTE5Su9eoVEPmAA\nzJsXaq1Xclh76VI488xQje3JJ3VtVkSkpZTE5Ru22AKefx723x/eeguuvz5cNy+3+fPh+OPhiy+g\ntha6dCl/GyIiWaeJbfIt66wDzz0HM2eGGuvTp5f3+UePhu22g002gX/9SwlcRKS1lMSlQauuGnY7\nO+oo2H57+N3vwpagbfHZZ3D++fC974VCM7/9bWV6+SIieaEkLo0yC9fFn38eHn4Ytt0WhgxpeWGY\nRYvCsrFevWDOHJgwAX7wg8rELCKSJ0ri0qxevcLEs2uugT/8ATbeGC65JExIa6x3vmhRmG1+zjlh\neH7YMHjwQbjrLlUIExEpF01sk5KYwQEHhAlvY8bA3XeH9eQzZ4Zr29/5TljfvWhRqH0+YwZstVWY\n6T56NKy/fuwzEBHJHiVxaREz6Ns3fF17bZhl/sYbMHt2GGbv1AnWXRc22ghWXDF2tCIi2aYkLm3S\ntWuY+Lb99rEjERHJH10TFxERSSklcRERkZRSEhcREUkpJXEREck1M/u1mU02s7Fm9g8zW7nodxeb\n2bTC7/ctur+vmb1qZlPN7P/iRK4kLiIiMhzo7e59gGnAxQBmtgVwJLA5sD9wk9lX20LdDJzi7psC\nm5rZftUPW0lcRERyzt2fdPdlhR9fBHoWbh8MDHH3Je4+nZDg+5lZd6CLu48uHPc34NBqxlxHSVxE\nRORrJwOPFW6vDcwq+t3swn1rA28X3f924b6q0zpxERFJtdraWmpra5s8xsxGAN2K7wIcuMTdHykc\ncwmw2N3vqVCoZaeeeJHm/hGoveS3mfX2YrXZmGrGUq221E4r26lKKwVjx37jx5qaGgYPHvzVV0Pc\nfR9337roa6vC97oEfiJwAHBs0cNmA+sU/dyzcF9j91edkniRrCeAPCScrLcXq83GKImrna/aqUor\nBfWSeFuZ2QDgfOBgd/+i6FcPA0ebWScz2wDYGBjl7nOBj82sX2Gi2yDgobIGVSINp4uISN79AegE\njChMPn/R3c9090lmNhSYBCwGznR3LzzmLOCvwPLAY+4+rPphK4mLiEjOufsmTfzuKuCqBu5/Gdiq\nknGVwr7+UJFNZpbtE5Rcc3dr/qjG6fUhWdXW10ZaZD6Ji4iIZJUmtomIiKSUkriIiEhK5TqJm9kv\nzGycmY0xs2GFUnoNHTfAzF4rFLq/sA3tNVpkv95x04viGlWF9spyfoXnOsLMJpjZUjPr28Rx5TrH\nUtsr1//DrmY23MymmNkTZrZKI8e16fxKidfMfl/YmGGsmfVpaRtt0djf3cz2NrOXCuc+2sy+W4l2\nCr9rcGOKtjKzbczshbr/d2a2fbmeu5H2flw4h/FmdnWF2/qZmS0zs9Uq9Pwlvee04fnL9l6VGe6e\n2y9gpaLbPwZubuCYdsDrwHpAR2AssFkr29sbaFe4fTVwVSPHvQl0LcP5NdteOc+v8Hy9gE2Ap4C+\nTRxXrnNstr0y/z+8BrigcPtC4Opyn18p8RI2Y/hX4faOhCUxFX29lPJ3B7YBuhdu9wberlA7mwNj\nCCts1i/8vaxM5/YEsG/R3/npCv4dawibb3Qo/LxGBdvqCQwD3gJWq1AbJb3HtfK5y/pelZWvXPfE\n3f3Toh9XBJY1cFg/YJq7z3D3xcAQ4JBWttdYkf36jDKMkpTYXtnOr9DmFHefRjiHppTrHEtpr5zn\neAhwR+H2HTS+6UFbzq+UeA8hbLqAu48EVjGzblRJY393dx/noRAG7j4RWN7MOpa7HcL5f2tjita2\nU88yoG6EZVUqW4nrR4QPgksA3P39Crb1W0JBk4ppwXtca5T1vSorcp3EAczsSjObSSi1d1kDh9Qv\ngF+uQvcnA4838jsnFB0YbWanlqGtptqr1Pk1pxLn2JhynuNa7j4PoJCs1mrkuLacXynxNrYxQ2KY\n2RHAK4U33HKr5PmfB1xbeF/4NYVtKStkU2B3M3vRzJ6u1NC9mR0MzHL38ZV4/kY09R7XGrHeqxIt\n88Vemit67+6XApcWrq/8GBhcyfYKx9QV2b+7kafZxd3fMbM1CYlgsrs/V8H2WqSUNktQ1nMspyba\nu7SBwxtbo1ny+SVVW/7uZtabUCBjn0q201pNtUkYEj7X3R8sfBD5CyWcRyvaupTwHtzV3fub2Q7A\nUGDDCrTzP3zzHFq9hjrGe440LvNJ3N1LffHdTdh+bnC9+2cD6xb93GSh++bas6+L7O/ZxHO8U/j+\nnpk9QBhGajABlKG9Fp1fKW2WopznWIKy/T80s3lm1s3d51mYCPluI89R8vm1Mt6Kb8DQ2r+7mfUE\n/gkcXxjqrkQ7bTr/Zv4f/93dzy0cd7+Z3daK+Ept6wzC3wp3H12YdLa6u39QrnbMbEvCvIFxZmaE\nvyaRva8AAAQBSURBVNXLZtbP3Rv899uadoraO5Fm3uNaqcXvVXmQ6+F0M9u46MdDgckNHDYa2NjM\n1jOzTsDRhKL4rWmvsSL7xcd0NrOVCrdXBPYFJlSqPcp4fg2F0EhcZTvHUtqjvOf4MHBi4fYJNLDp\nQRnOr5R4HyZsuoCZ9Qc+qhvmj+Crv7uF2fqPAhe6+4uVaodGNqYoUzuzzWwPADPbC5hapudtyIMU\nkp2ZbQp0bE0Cb4q7T3D37u6+obtvQBiG3rY1Cbw5Jb7ntFYl36vSK/bMuphfwP3Aq4RZjg8BPQr3\n9wAeLTpuADCFMHnmoja0Nw2YAbxS+LqpfnvABoV4xgDjK91eOc+v8FyHEq5bfQ68Azxe4XNstr0y\n/z9cDXiy8FzDgVUrcX4NxQucDpxWdMwNhNm642hiJUCFXjuN/d0vARYU/r2NKXxv9Yzrxtop/O7i\nwvlPpjCbvEzntjPwUiH+FwgJr1J/x47A3wv/Tl4C9qjC/7s3qdzs9Abfc8r4/GV7r8rKl8quioiI\npFSuh9NFRETSTElcREQkpZTERUREUkpJXEREJKWUxEVERFJKSVxERCSllMRFRERSSklcREQkpZTE\nc8jMFiTpeUSSRK8PSRMl8XwqV5k+lfuTLNLrQ1JDSVwAMLMHCntfjzezHxbuW8/MJpvZnWY2ycyG\nmtnypTy2cP8gMxtnZmPM7I6i+48zs5Fm9oqZ3VzYWUkksfT6kKRS7fQcMrNP3H3levet6u4fFd6E\nRgO7AysDbwE7u/uLhS0ZJ7r79cXP08hjexC2WNzJ3ecXHbMZ8GvgMHdfamY3Ai+4+5314ukNbAcs\nD9zp7gsr+CcR+YpeH5Im6olLnZ+Y2VjgRcI+vZsU7p/pX28peSewa4mP3RO4z93nA7j7R4Vj9wL6\nAqPNbEzhuA0beM5TgNeAL4GV2nhuIm2l14ckUofYAUh8hb2T9wR2dPcvzOxpwif8hnxj6Kbw2L0a\neWxDw4AG3OHulzQT1p3A74EP3P2vpZ2JSPnp9SFJpp54PtV/81gFmF94k9kM6F/0u3XNbMfC7WOB\n5+o9z8rAhw089ingCDNbDcDMuhbu/3fh/jXr7jezdb8RnNk+wFbuvivwfltOVKQV9PqQ1FASz6cV\nzGymmc0ys5lAL6CDmU0E/hd4oejYKcBZZjYJWBW4ueh3DgwDOtZ/rLtPAn4FPFMYFryucP9k4FJg\nuJmNA4YD3evF9y7whZkdCdxXxvMWKYVeH5IamtgmjTKz9YBH3X2r2LGIJI1eH5IE6olLc/QpT6Rx\nen1IVOqJi4iIpJR64iIiIimlJC4iIpJSSuIiIiIppSQuIiKSUkriIiIiKaUkLiIiklJK4iIiIiml\nJC4iIpJS/x8A+luC+6wRZwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import plot_roots, DeterminantEq\n",
+ "\n",
+ "fig, ax = plt.subplots(1, 2, figsize=(7,5))\n",
+ "\n",
+ "plot_roots(DeterminantEq(qmatrix, 0.2), ax=ax[0])\n",
+ "ax[0].set_xlabel('Laplace $s$')\n",
+ "ax[0].set_ylabel('$\\\\mathrm{det} ^{A}W(s)$')\n",
+ "\n",
+ "plot_roots(DeterminantEq(qmatrix, 0.2).transpose(), ax=ax[1])\n",
+ "ax[1].set_xlabel('Laplace $s$')\n",
+ "ax[1].set_ylabel('$\\\\mathrm{det} ^{F}W(s)$')\n",
+ "ax[1].yaxis.tick_right()\n",
+ "ax[1].yaxis.set_label_position(\"right\")\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Then we want to plot the panels c and d showing the excess shut and open-time probability densities$(\\tau = 0.2)$. To do this we need to access each exponential that makes up the approximate survivor function. We could use:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[(array([[ 9.99994874e-01, -1.96070450e-02],\n",
+ " [ -2.61427266e-04, 5.12584244e-06]]), -3.050008571211625)]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import ApproxSurvivor\n",
+ "approx = ApproxSurvivor(qmatrix, tau)\n",
+ "components = approx.af_components\n",
+ "print(components[:1])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The list `components` above contain 2-tuples with the weight (as a matrix) and the exponant (or root) for each exponential component in $^{A}R_{\\mathrm{approx}}(t)$. We could then create python functions `pdf(t)` for each exponential component, as is done below for the first root:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import MissedEventsG\n",
+ "\n",
+ "weight, root = components[1]\n",
+ "eG = MissedEventsG(qmatrix, tau)\n",
+ "# Note: the sum below is equivalent to a scalar product with u_F\n",
+ "coefficient = sum(np.dot(eG.initial_vectors, np.dot(weight, eG.af_factor)))\n",
+ "pdf = lambda t: coefficient * exp((t)*root) "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The initial occupancies, as well as the $Q_{AF}e^{-Q_{FF}\\tau}$ factor are obtained directly from the object implementing the weight, root = components[1]\n",
+ "missed event likelihood $^{e}G(t)$.\n",
+ "\n",
+ "However, there is a convenience function that does all the above in the package. Since it is generally of little use, it is not currently exported to the `dcprogs.likelihood` namespace. So we create below a plotting function that uses it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFjCAYAAAApaeIIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYVPXZ//H3vYU+VCkGBWmCuwvYQQWydjT2qBGNsSXm\nsf2MKZpcKRKfJMYUk1iSaGKMJvrYommWRBQEdBU77C6IgiJKR8oIAlvu3x8zA8O6sHNmz87Z2f28\nrmsu5kw531t0vM/9Pd9i7o6IiIjkr4KoAxAREZHmUTIXERHJc0rmIiIieU7JXEREJM8pmYuIiOQ5\nJXMREZE8F0kyN7PJZrbAzBaa2XW7+Ey5mb1uZpVmNj3XMYqIiJjZXWa20szm7uL9c83szeRjtpmN\nznWMAJbreeZmVgAsBI4GlgEvA+e4+4K0z/QAXgCOc/cPzWwPd1+T00BFRKTdM7MJwMfAve4+ppH3\nxwPz3X2DmU0Gprr7+FzHGUVlfijwtrsvcfca4AHg1AafORf4m7t/CKBELiIiUXD32cC63bz/ortv\nSB6+CAzMSWANRJHMBwJL044/4NP/8PsCvc1supm9bGbn5yw6ERGR7HwZeDKKhouiaDQDRcCBwFFA\nV6DCzCrc/Z1owxIREfk0MzsSuAiYEEX7USTzD4FBacd7JV9L9wGwxt23AFvMbCYwFtgpmZuZFpaX\ndsfdLRft6Pcl7VE2vy8zGwPcCUx29112ybekKLrZXwaGm9lgM+sAnAP8s8Fn/gFMMLNCM+sCjAPm\nN3Yyd291j+uvvz7yGBRX24wr16L+582Xfy+KK/9jct/t78uSj0+/YTYI+BtwvrsvaoGfYUZyXpm7\ne52ZXQn8l8TFxF3uPt/Mvpp42+909wVm9h9gLlAH3Onu1bmOVURE2jczux8oB/qY2fvA9UAHkvkK\n+D7QG/itmRlQ4+6H5jrOSO6Zu/tTwMgGr93R4PgXwC9yGZeIiEg6dz+3ife/AnwlR+HsklaAawHl\n5eVRh9AoxRVMa42rvWut/14UV+ZaY0z5LueLxoTJzDyf4xcJyszwHA6A0+9L2pNc/r7CpspcREQk\nzymZi4iI5DklcxERkTyX98k8Ho86AhERkWjlfTIfN26bErqIiLRreZ/MFy4spKoq6ihERESik/fJ\nvHv3DyktjToKERGR6OR9Mu/W7QRisaijEBERiU7eJ/Oamo949913ow5DREQkMnmfzMvLy5k+fXrU\nYYiIiEQm75P5kUceqWQuIiLtWptJ5lpDWkRE2qu8T+bDhw8HYNGiyPaEF2mz6uvrow5BRDKQ98nc\nzNTVLtJCtmzZEnUIIpKBvE/moEFwIi1l06ZNUYcgIhloE8lc981FWoaSuUh+aBPJfMiQIXTo0IG3\n3nor6lBE2hQlc5H80CaSeeq++YwZM6IORaRNUTIXyQ9tIpkDjB9/LA8//IF2UBMJkZK5SH4oijqA\nMMTjcMstZzF/PkyY4MyebVqvXSQEmzdvjjoEEclAm6jMKyvh7bc7AB2ornZtiSoSElXmIvmhTSTz\nsjIoLYWCghr22GO1tkQVCYmSuUh+aBPJPBaDWbPgpz99kX33vURd7CIhUTIXyQ9tIplDIqH/z//s\nz2uvPaf7fCIhUTIXyQ9tJpkDxGIxDjjgAGbOnBl1KCJtgpK5SH5oU8kc4Nhjj+Xpp5+OOgyRNkHJ\nXCQ/KJmLyC7plpVIfmhzyfzggw/mgw8+YPny5VGHIpL3VJmL5Ic2l8yLioo48sgjmTZtWtShiOQ9\nJXOR/NDmkjmoq10kLErmIvmhTSdzbYkq0jxK5iL5oU0m82HDhtGpU1/uu2+xNl4RaQYlc5H80CaT\neTwO8fjjXHDBPkyciBK6SJaUzEXyQ5tM5pWVsH79Z6ivL6S6Gm28IpIlTU0TyQ9tMpmXlcF++wFs\nZeTIOm28IpIlVeYi+SGj/czNrAg4Czgs+VJXoA7YDMwF7nf3LS0SYRZiMXjhhUKOOuprfOMbk4nF\nPhd1SCJ5SclcJD80mczN7BBgIvC0u/9fI+8PAy41szfd/bkWiDErsRhMmTKE6dP/yTnnKJmLZKO2\ntpba2lqKijK67heRDIVdJFtT07fMbLS7z8sgsKHAB+6+LdPGm8vMfHfxz58/n+OPP54lS5ZgZrkK\nS6TFmBnunpP/mM3MY7EYS5cupUePHrloUiRSufp9NSiSP5Vfk0Xy54CMi+Qm75mnN2Rm/dOed27w\nucW5TOSZGDVqFIWFhVRpBJxIVrp27aqudpHwbXH3m3dVKLv7Ine/BVhqZh0yOWFGA+DM7DtmNhk4\nJe3lUjM7MpPvR8XMOPHEE3niiSeiDkUkL3Xp0kUj2kVC1hJFcqaj2R8DhgD/Y2b/NLM7gf2BSRl+\nfydmNtnMFpjZQjO7rpH3P2tm683steTje9m0AyiZizSDKnNp78zsLjNbaWZzd/OZW8zsbTN7w8z2\nz/C8oRbJux3VYmYdgW7uvgBYYGbvuvtTySuJQ4HX0z67t7svzeAfoAC4DTgaWAa8bGb/SLaRbqa7\nn/KpEwR05JFHcs4557Bhwwbd9xMJSMlchLuBW4F7G3vTzE4Ahrn7CDMbB/weGJ/BeR8DjgS+bGYn\nAyuAOcBAYHrQIHdbmbv7VuAwM5tiZp3d/ank6yvd/V/u/qqZ9TSzS4HBGbZ5KPC2uy9x9xrgAeDU\nRj4XyiCELl26MGHCBG28IpIFJXNp79x9NrBuNx85lWSid/eXgB7pXee7Oe8Cd/8d8N1k4fp9YCXw\n72zibHK+ibv/28wGANeYWV+gc/J7qSH0HwB/dPcNGbY5EEiv4D8gkeAbOszM3gA+BL7l7tUZnv9T\nUl3tZ555ZranEGmXlMxFmtQwp32YfG1lYx9O6/FeC5BeJAP/avDZjHq8IcNFY9x9BfCTTD4bkleB\nQe6+OdmF8Xdg38Y+OHXq1O3Py8vLKS8v/9RnTjjhBH70o9/w/PP1jBlTQCzWIjGLhG7GjBnMmDEj\nsvaVzKUti+L35e5bzexYM4sBf3f3Txp+xsx6AmcD1ex8obBLTc4zD5uZjQemuvvk5PG3AXf3m3bz\nnXeBg9z9owav73aeeUo8Dn37zqeubiSlpQXMmoUSuuSlXM8z//KXv8whhxzCpZdemosmRSK1q9+X\nmQ0G/uXuYxp57/fAdHd/MHm8APhsstLeXVsDgIuBfkAnmtfjnVll3kgQXd19k5kVA3XuXh/g6y8D\nw5N/OcuBc4ApDc7fP/UXYWaHkrjo+OhTZ8pQZSXU1Iygvr5g+8Yr4zMZniDSzmlqmgiQGMO1q4vo\nfwJXAA8mi9X1TSVyCL/HO3AyN7NrgT2So9JvTD4yvmx39zozuxL4L4kBeHe5+3wz+2ribb8TONPM\nLgNqgE+ALwSNM11ZGQwZsoVFizpQUtJBG6+IZEjd7NLemdn9QDnQx8zeB64HOpDMV+7+hJmdaGbv\nAJuAi7JsJ1UkFwH1AYvkrCrzl4AXSSTaM8li57XkDf+RDV67I+357cDtWcTWqFgMXn65E/vs8znu\nu+8PxGKDwjq1SJumZC7tnbufm8FnrmxOG80tkiG7LVA3ARe6e727PwQ8m8U5cq5XryJOO20A06f/\nM+pQRPKGkrlITrxEYmratSTWYAmcm7Opql9pUEXfH/QcUTn11FP5xz/+EXUYInlDyVwkJ5pdJGdT\nme/EzMqae45cOe6443jppZdYv3591KGI5AUlc5GWF0aRnFUyN7O9zexgM9sb6JLNOaLQrVs3Jk2a\nxJNPPhl1KCJ5QaPZRXIvmyI5cDJPjjo/HRjDzhur5wV1tYtkTpW5SG40t0jOZjT7IneflhZAq94G\ntaGTTz6Zb33rW2zbto0OHTLaJlak3VIyF2l5ySK5I/Ax0JPE4jFzgpwjm2S+0cx+QWKN9g1AXu0v\nOmDAAEaNGsVzzz3HscceG3U4Iq2akrlITjS7SA6czN19DgGvGFqbU089lYcffopu3Y6lrExLu4rs\nipK5SE40u0jO+drsYcp0bfaGXn55AYcfXgeUUFpqWqtd8kau12ZftmwZBxxwACtWrMhFkyKRyuXv\nK2xZT00zs0n5dr88paZmJLW1+1Jba9vXaheRT+vSpYsqc5E80Jx55rtbeL5VGz3a6NdvNQUFtZSU\noLXaRXaha9eubN68mXzuwRPJF80pkpu9aEw+isXgkUdWseee5zBzpquLXWQXioqKKCoqYuvWrVGH\nItIeZF0kt8tkDjBhwlg6dHiNxYvfjDoUkVZNg+BEWr/mJPMPgKVhBZJrZsaZZ57JI488EnUoIq2a\nkrlI69ecZN7H3d8OLZIInHnmmTz88MO6HyiyG0rmIjmTdZGczXKuhyafHrrbD+aBQw45hE8++YQq\nDWcX2SUlc5GcybpIbk5lPsTMzjKzy5txjkipq12kaZqeJtKywiiSm0zmZnaqmQ1Oe+nD5J9PuPvD\n7v7bbBtvDZTMRXYvNT1NRFpc1kVyJpV5OdAXwMxOcfcPAdz9maCNtUbjx49n3bp1zJ8/P+pQRFol\ndbOLhKsliuRMkvk/ge+a2ZPANWb2TTM73swGBm2sNSooKODkk8/lV796kXg86mhEWh8lc5HQlRNy\nkdzkRivuPh2Ynmz068CrQClwqpl9hsTou1vd/a1sg4hSPA7Tpl3PokUdmTMHrdMu0oCSuUjoUkVy\nJ6CTme0LzAMqU4k9qEC7prn7zcmnz6VeM7MvACcDeZnMKythyZKugFFVVU9VVQHjx0cdlUjroWQu\nEq6WKJKz2c+8oRryNJEDlJVBaakxb14tffqsprR0z6hDEmlVNJpdpOWEVSQ3ezlXd3/U3f/V3PNE\nJRZLdK3/8Y9v06XLZLp10wIyIuk0ml0k5wIXye12bfZ0sRhceOEoCgs388orr0Qdjkirom52kdzK\npkhWMk8yM6ZMmcL9998fdSgirYqSuUjrl3EyN7OrzKxXSwYTtSlTpvDggw9SV1cXdSgirYaSuUjr\nF6Qy7w+8bGYPmdlkM8tqz9XWbL/99qN///7MnDkz6lBEWg0lc5GWEWaRnHEyd/fvASOAu4ALgbfN\n7CdmNiyMQFqLc889V13tImk0ml2kxYRWJAe6Z+6JvUJXJB+1QC/gETP7WbYBtDZf+MIXePTRR9m2\nbVvUoYi0CqrMRVpGmEVykHvmV5vZq8DPgOeB0e5+GXAQ8PmgDbdWgwYNYt99D+I3v5mj5V1F0NQ0\nkZYUVpEcZNGY3sAZ7r6kQSD1ZnZSkEZbs3gcli69n+uu68F992l5VxFV5iItw8yuBr4ErAH+CHzL\n3WvMrAB4G7g203MF6Wbv1DCRm9lNAO7eZrYcq6yElSv74F5MdbVTVRV1RCLRUjIXaTGpIvn45G5p\nNZAokoFARXKQZH5sI6+dEKSxfJBa3tWshv7911JaGnVEItFSMhdpMaEVyU0mczO7zMzmASPNbG7a\n411gbpDG8kFqedebbnqRgQOnqItd2r3OnTuzdetWrb8gEr7QimRL3HvfzQfMepC4IX8j8O20t+Lu\n/lE2jYbFzLyp+LNVU1PDXnvtxezZsxkxYkSLtCESlJnh7jlZ4yH999W1a1dWrFhBTFe30obl6vdl\nZpcBlwNDgUVpb8WA5939i4HP2VLJMBdaMpkDXHPNNXTr1o3//d//bbE2RIKIKpn369ePuXPnMmDA\ngFw0LRKJHCbz0IvkTLrZZyf/jJvZxuQjnjrOptF8ccEFF3DvvfdSX18fdSgikdL0NJHwuPsGd3/P\n3ae4+5K0R9a93U0mc3efkPwz5u7dk49Y6jjbhvPB/vvvT8+ePXnuueea/rBIG6ZBcCLhaYkiOcii\nMWeZWSz5/Htm9qiZHZBNo/nkggsu4J577ok6DJFIKZmLhKcliuQgU9O+7+5xM5sAHENi+bnfZ9No\nPjnvvPP4+9+f4ZlnNmtFOGm3lMxFwhdmkRwkmafmpXwOuNPdHwc6ZNNoPunSpT/uz3HccR2ZOBEl\ndGmXtNmKSIsIrUgOksw/NLM7gHOAJ8ysY8Dvb5fcHWaBmS00s+t287lDzKzGzM7Ipp0wVFbCpk2D\nqa8vpLoarQgn7ZIqc2nPmspZZtbdzP5pZm+Y2TwzuzDDU4dWJAdJxmcD/wGOc/f1JIbVfytog8k1\nZ28DjgdKgSlmNmoXn/tpss3IpFaEg60MHbpFK8JJu6TR7NJeZZizrgCq3H1/4Ejgl2aWyd4nqSL5\nCzSzSA6y0Uod0Ak4q0GQ/w3Y5qHA26kl7MzsAeBUYEGDz10FPAIcEvD8oYrFYPbsAq688k/EYu8T\ni90YZTgikVBlLu1YJjnLSSz4QvLPte5em8G5zwYmA79w9/VmtidZFMkQ7ArgH8ApJLZo25T2CGog\nsDTt+IPka9uZ2WeA09z9d0BOFsjYnVgMfvCD43jwwT+ydevWqMMRyTklc2nHmsxZJCr3EjNbBrwJ\nXJ3Jid19s7s/6u5vJ4+Xu3vQAhkIVpnv5e6Ts2kkC78G0u9L7DKhT506dfvz8vJyysvLWySgYcOG\nMXbsWB577DHOOeecFmlDpKEZM2YwY8aMqMNQMpc2KcTf1/HA6+5+lJkNA542szHu/vHuvpTsVv88\nsA9p+djdbwgaQMbLuZrZncCt7j4vaCMNzjMemJq6MDCzb5PYn/2mtM8sTj0F9iDRA3Cpu/+zwbla\ndDnXhh566CHuuOMOnnnmmZy1KZIuquVcb775Zt5//31+/etf56JpkUg09vvKMGf9G7jR3Z9PHj8D\nXOfurzTR3lPABuBVdgyGw91/GTT2IJX5BODC5G5pW0kkWnf3MQHbfBkYbmaDgeUkRsdPSf+Auw9N\nPTezu4F/NUzkUTj11FO56qqreOeddxg+fHjU4YjkTI8ePdi4sU2v3iyyK03mLGAJiallz5tZf2Bf\nYDFNC63HO0gyD2XvcnevM7MrSQycKwDucvf5ZvbVxNt+Z8OvhNFuGDp27Mj555/P7bffy9ln30BZ\nGdoiVdqFnj17sn79+qjDEMm5DHPWj4A/m1lqW/BrM1xn/QUzG93cHm/QrmmBvfrqQsaPrwFKKC01\nZs1SQpfciaqb/ZlnnuHHP/4xzz77bC6aFolELn9fyfaqgREkqvjm9HhnXpmbmQHnAUPd/QYzGwQM\ncPc5QRvNZ9u27UttbQ1g2xeRGT8+6qhEWpYqc5EWEUqPNwSbmvZb4DB23CuIA7eHFUi+KCuDQYM+\nxqyGkhK0iIy0C0rmIi3ifWAicEFyHrsD/bM5UZBkPs7drwC2ALj7OtrB2uwNxWLw+uvd6NPnDH7/\n+yp1sUu7oGQu0iJCK5KDJPMaMyskOSDNzPoC9dk0mu969y7myisP5p57bos6FJGc6NGjBxs2bKC+\nvl3+5EVaSmhFcpBkfgvwGNDfzH4MzAZ+kk2jbcGll17KAw88wIYNG6IORaTFFRUV0aVLFz7+eLdr\nYIhIMKEVyRknc3e/D7iWRAJfRmK51YezabQt2HPPPTn++OO55557og5FJCfU1S4SutCK5CanppnZ\n13f3vrvfnE3DYYhialq62bNnc8kllzB//nwKCrLa6EYkkKimpgGMHj2a++67jzFjAs+aEckLuZ6a\nlmxzFHB08vBZd5+fzXkymZqWGuI1ksQOZqmV2E4G2tW0tIaOOOIIiot7c+utr3DxxYdqMJy0aarM\nRcKxmyL5BDM7IZsiuclk7u4/TDY+EzjQ3ePJ46nA40EbbEs+/tjYsOFfXHNND+6+Gy0gI22akrlI\naEIvkoMs59of2JZ2vI0s58O1FZWVsGJFH9yNqqp6qqoKtICMtFlK5iLhaIkiOUgyvxeYY2aPJY9P\nA/6cTaNtRVkZlJYa8+bV0rPnSkpLG25xK9J29OzZU7M3RMIVWpGccTJ39x+b2ZMkVqsBuMjdX8+m\n0bYiFkt0rU+f/hEXXHAYtbVvAr2iDkukRagyFwldaEVyoCHY7v6au/8m+WjXiTwlFoNTTunHSSd9\nlj/84Q9RhyPSYpTMRcLl7j8GLgLWJR8XufuN2ZxL86lC8vWvf51bb72VmpqaqEMRaRFK5iLhC6tI\nVjIPyQEHHMCIESN46KGHog5FpEUomYu0XhknczO7ysx0Q3g3vv71r3PzzTeTz3vEi+yKkrlI6xWk\nMu8PvGxmD5nZ5OT+5pLmxBNPZONG53e/e4N4POpoRMKlZC4SrjCL5CBrs38PGAHcBVwIvG1mPzGz\nYWEE0hZs2lTAJ5/8lyuvLGPiRJTQpU1RMhcJXWhFctDR7A6sSD5qSczDesTMfpZtAG1JZSWsXNkH\n9+LkIjJRRyQSHiVzkXCFWSQHuWd+tZm9CvwMeB4Y7e6XAQcBnw/acFuUWkSmoKCWbt2WUloadUQi\n4Untaa4xISLhCatIDlKZ9wbOcPfj3f1hd69JBlIPnBSk0bYqtYjMf/6zBbNJrF69OOqQREJTVFRE\n586dtae5SEjCLJKDJPNO7r6kQSA3AWS7ZVtbFIvBMcd047LLvsjPf/7zqMMRCZW62kVCFVqRHCSZ\nH9vIaycEaaw9ufrqq3nwwQdZvnx51KGIhKZHjx5K5iLhCa1IbjKZm9llZjYPGGlmc9Me7wJzgzTW\nnvTr148vfvGL/OpXv4o6FJHQqDIXCVVoRXImG63cDzwJ3Ah8O+31uLt/lE2j7cU3v/lNxo6dwNFH\nf4/DD++uvc4l7ymZizSfmV0GXA4MNbP0ojhG4t55YE0mc3ffAGwApmTTQHvWq9cgzGZz4oldGT06\nMThOCV3ymZK5SChCL5KbTOZmNtvdJ5hZHHAgfVK7u3v3bBpuDyorIR7fi/r6AqqrnaoqY/z4qKMS\nyZ6SuUjztUSR3OQ9c3efkPwz5u7dk3+mHkrku5GYd15AQUENvXuv1LxzyXtK5iLNZ2azk3/GzWxj\n2iNuZhuzOWcmA+AaNrbTI5tG24vUvPMHH1xJTc146ur0P0HJb0rmIs3XSJHcPa1YzqpIzqQyb9jY\nTo9sGm1PYjE488y9OPXUozSyXfKekrlI66T9zHPke9/7Hrfffjvr1q2LOhSRrCmZizRfWo93vJFH\ni3WzN+zbjze3b789Gjp0KKeddho33ngbFRXaUU3yk5K5SPPtYgxas8aiZTI1bXvffjYNyA5f+9r3\n2X//jfzqV05pqWmqmuQdJXOR5mtklthOsknomSwaIyGJxwfjXktdnVFdDVVVaKqa5BUlc5Hma4ki\nOcgWqJ3M7Otm9qiZ/c3MrjGzTmEF0h6UlcGoUfXAVoYP36apapJ3lMxFWifLdG9iM3sIiAN/Tb50\nLtDT3c9qodgyicnzbW/leBwuv/x2Cgrmc889t0UdjuQZM8PdrelPhtLWp35fNTU1dO7cmZqaGsxy\nEoZIzuTy95VsrxOJZV0nkOhunw38zt23BD5XgGRe7e4lTb2WS/mYzAHWrVvHvvvuy6xZsxg1alTU\n4UgeiTqZA3Tr1o3ly5cT04APaWMiSOahFclBpqa9Zmbb7/Ca2TjglaANCvTq1YtvfvObfPe73406\nFJHA1NUuEpoyd7/E3acnH18BsroBm8nUtHnJXV0OAl4ws/fM7D2gAjg4m0YFrrrqKl566SWeffZl\nTVWTViu+9dP/YSqZi4QmtCI5k9HsJ2VzYtm9Ll26cN11P+KUU3qxdaumqknrNPHuicy6aBaxjjv+\nw1QyF2keM5tH4h55MYki+f3kW4OABdmcM5N55kvSAugFjADSR7Ev+dSXJCP77/9FNm1KbESnqWrS\nGlWvrqZqdRXj99rxH6aSuUizhV4kB5ma9mVgJvAf4IfJP6dm06iZTTazBWa20Myua+T9U8zsTTN7\n3czmmNkR2bTT2u2/fxFDhmwGtrHffvWaqiatTknfEkr77vwfZs+ePdmwYUNEEYnkXlM5K/mZ8mTO\nqjSz6bs7n7svST2AjUB/YHDaI7AgA+CuBg4Blrj7kcABQODLczMrAG4Djidxo3+KmTUc0j3N3ce6\n+wHAJcAfg7aTD2IxeOON7hxyyDc577w71MUurU7DLnZQZS7tSyY5y8x6ALcDJ7l7GZDRaPQwi+Qg\nyXxLau6bmXV09wXAyCzaPBR4O3lVUgM8AJya/gF335x22A2oz6KdvNC9u/GnP13Kz3/+Az766KOo\nwxHZScNEDkrm0u40mbNITCn7m7t/CODuazI8dyhFMgRL5h+YWU/g78DTZvYPsrtfPhBYmn7e5Gs7\nMbPTzGw+8C/g4izayRtlZWWceeaZ/PCHP4w6FJEmKZlLO5NJztoX6G1m083sZTM7P8Nzh1UkZ742\nu7ufnnw6NXk/oAfwVDaNZtje34G/m9kE4EfAsS3VVmtwww03MGrUIYwffw0nnbSPutyl1erZsycL\nFmQ14FakrSoCDgSOAroCFWZW4e7vNPG9hkXyOrIcVJ5xMt/FsnPZ7If+IYnh9yl7JV9rlLvPNrOh\nZtbb3T/VDz116tTtz8vLyykvL88ipOh16tSXjh3ncN55vRgzBk1TEwBmzJjBjBkzog5jJ6rMpa3I\n8PeVSc76AFiTrLK3mNlMYCyw22QeZpGc87XZzawQeAs4GlgOzAGmuPv8tM8Mc/dFyecHAv9w970b\nOVdeLufamIoKmDTJqa01iorqmDWrUNPU5FNaw3Ku06ZN46c//SnTpk3LRRgiOdPY7yvDnDUKuBWY\nDHQEXgK+4O7VTbQX2trsQbZALWuwDvt0M9ttoI1x9zozuxL4L4nK/i53n29mX0287XcCnzezLwHb\ngE+As4O2k2/KyqC01KiqqsPsLYYOHQJ0jjoskU9RZS7tSSY5y90XmNl/gLlAHXBnU4k86V4SRfKt\nyeNzgb+Q4Wj4dEEq878Ct7n7i8njccAV7v6loI2GpS1V5pBY0rWqCn760/MZO3aoBsTJp7SGyvyd\nd95h8uTJvPNOU7cDRfJLBButhLaBWZPJvMGycyOBnZad065p4Vu6dCkHHHAAL774IsOHD486HGlF\nWkMyX7NmDaNGjWLNmkxn34jkhwiSeWhFcibJfLer0aQv95prbTWZA/zsZz9j2rSXmDr1EUaPNg2G\nE6B1JPOamhq6dOnCtm3btKe5tCm5+n21RJGccTd7MoCxwMTk4Sx3fzNog2Fqy8l87dptDBy4mNra\nEZSVFWq2PikWAAAgAElEQVR0uwCtI5lDYk/zFStW0K1bt1yEIpITOUzmoRfJQdZmvxq4D+iXfPzV\nzK4K2qBkZuHCDtTWjqCurpDqaqeqKuqIRHbQIDiR7DVYm70ncHLy0TPb3u4g88QvAca5+w/c/QfA\neOAr2TQqTSsrg7KyQgoKauje/UNtwiKtipK5SPOFWSQHSeZGYsh9Sl3yNWkBsVhi4ZgnnthMUdGR\nzJv3QtQhiWynZC4SitCK5CDzzO8GXjKzx5LHpwF3ZdOoZCYWg+OP78Ett/yYL3/5y7z++ut07Ngx\n6rBElMxFwhFakZxRZW6JIasPAxcBHyUfF7n7r7NpVII566yzGD58OD/84c1UVCTmo4tEqVevXqxd\nuzbqMETyXapInmpmU4EXybJIzqgyd3c3syfcfTTwWjYNSfbMjJ/97HeUla3j5z+vp7S0QKPbJVID\nBgxg5cqVUYchkrfSiuQZJJZzhUSR/Ho25wvSzf6amR3i7i9n05A0z7p1A3EfQF1dQXJ0u2ntdolM\n//79WbZsWdRhiOStsIvkIAPgxpHY1m2Rmc01s3lmNre5AUhmEqPbCzCroU+flRrdLpFSZS4SitfM\n7JAwThSkMj8+jAYlO7EYzJ5tPPvsR1xyyWEsWvQY+++/f9RhSTvVv39/VqxYEXUYIvluHHCemS0B\nNpEY/ObuPiboiTJO5lEu2yoJsRicemp/Nmz4IRdccAFz5szR6HaJhCpzkVCEViQH2TUttH1Xw9KW\nl3PdHXfn9NNPZ/jwA/j856+nrEyD4dqL1rKc66pVqygpKdFmK9Km5HqjlTAFSeYPkdh39a/Jl84l\nsfRc4H1Xw9JekznAokWrGDVqNbCfRre3I60lmdfV1dGpUyc2b95McXFxLsIRaXER7JoWWpEc5J55\nWYOdXKabWSabr0sLWLWqH+59NLpdIlFYWMgee+zBqlWrGDhwYNThiOSre0kUybcmj88F/gIELpKD\njGZ/zcy2p4vkvquvBG1QwpG+dnvXru9TUtI+eygkOrpvLtJsZe5+ibtPTz6+AmQ1VylIMj8IeMHM\n3jOz94AK4BBNUYtGau32Z5+to3//M/n73/8SdUjSzmhEu0izhVYkB+lmn5xNA9JyYjH47Gc78fDD\nf6K8/GQ6dz6KyZP30r1zyQlV5iLNliqS308eDwLeMrN5BJyipqlpbcA++4ymU6eXOfvsnoweXc/z\nzxcooUuLU2Uu0myhFclBKnNppSorYdWqPQCjqqqGqqoCDYaTFjdgwACWLNE1vki2wiySg9wzl1aq\nrAxKS43iYqeo6B0WLPhb1CFJO6DKXKT1yDiZW8IXzewHyeNBZnZoy4UmmUoNhps503jmmW1861v/\nw4IFC6IOS9qQ+NY4FUsriG/dsf+u7pmLtB5BKvPfAocBU5LHceD20COSrMRiMH48TJgwlhtvvJHT\nT/8Szz77ifY+l2aLb40z8e6JTPrzJCbePXF7QldlLtI8YRbJgXZNc/crgC0A7r4O6JBNo9Kyzj77\nElaufIRjjiliwgRXQpdmqVxVSdXqKmrra6leXU3V6ipAlblICEIrkoMk8xozKySx5Bxm1heoz6ZR\naVlVVUY8vjfuxVRW1lNVFXVEks/K+pVR2reU4oJiSvqWUNo3saZFr169+Pjjj9m6dWvEEYrkrdCK\n5CCj2W8BHgP6mdmPgTOB72XTqLSs1IC4qqp6YEGyejoq6rAkT8U6xph10SyqVldR2reUWMfEvMeC\nggL69evHqlWr2HvvvSOOUiQvhVYkB5lnfp+ZvQocTWLP1dPcfX42jUrLSg2Iq6oqYP369VxwwRQG\nD36BTz4Zph3WJCuxjjHG7/Xp+Y6p++ZK5iJZCa1IDjTP3N0XABomnQdSA+LgCL7znZ8wfnwNdXVO\naalphzUJTf/+/XXfXCRLYRbJGSdzMzsY+C4wOPk9I+BycxKNceMuoaamlvp60w5rEqoBAwZoRLtI\nM4RVJAepzO8DvgXMQwPf8kpih7UC5s2roXv3lZSUDCRxLSbSPKrMRbIXZpEcZDT7anf/p7u/6+5L\nUo+gDUruxWIwe3YB//3vVvr2PYM//ek3UYckbYQqc5FmuQ+4G/g8cDJwUvLPwIJU5teb2R+BZ4Dt\nc1Hc/dFsGpbcisXgmGO68dRTD3P44YfTv/9w9tnnJA2Ik2bp378/zz//fNRhiOSr1e7+zzBOFCSZ\nXwSMAorZ0c3ugJJ5Hhk8eDD33/8vjj66A2b1lJYWaECcZE2VuUizhFYkB0nmh7j7yKANSOvTocOB\nQB21tQVUVdVrlzXJmu6ZizRLaEVykGT+gpmVuHt10EakdUkMiCuksrIOs7fo2bMHMDDqsCQPqTIX\naZbQiuQgA+DGA2+Y2VtmNtfM5pnZ3DCCkNxKLSoze3Yh118/jTPOOJb33ltLRQVax10C6dmzJ1u2\nbOGTTz6JOhSRfPSCmZWEcaIglfnkMBqU1iG1qMz48f+P1atXU1Kylpqa3lpURgIxs+1d7fvss0/U\n4Yjkm1SR/C6Je+ZZT00LspyrpqG1UWeffQO33lqnRWUkK0rmIlkLrUhuMpmb2Wx3n2BmcZKLwafe\nInEF0T2sYCQao0db8h56DR07vs+wYQOBTlGHJXlC981FshNmkdzkPXN3n5B8+jt37572iAG/DysQ\niU5iURnjueeM4477X84//3xmzqzR/XPJiEa0iwRjZrOTf8bNbGPaI25mG7M5Z5B75sc08tpk4Nps\nGpbWJRaDCROKKCn5A0OGfEB5OZSV1fP88wW6fy67pcpcJJhUkZwsikPRZGVuZpeZ2TxgVHIUe+rx\nLol12gMzs8lmtsDMFprZdY28f66ZvZl8zDaz0dm0I8G99VYxmzfvg3sxlZV1vPba1qa/JO2aKnNp\n65rKWWmfO8TMaszsjAzPe1Mmr2Uik6lp95NYK/YfyT9Tj4Pc/bygDZpZAXAbcDxQCkwxs1ENPrYY\nmOTuY4EfAX8I2o5kp6wMSkuN4mKne/cPueGGL7B58+aow5JWTJW5tGUZ5qzU534K/CfA6Y9t5LUT\nsokzk3vmG9z9PXefkra5ylZ3/yibBoFDgbeT56oBHgBObdDmi+6+IXn4IlrRJGdSc9BnzjTefXcv\n9tyzG5Mnn8Uzz2zWPXRplCpzaeOazFlJVwGPAKuaOmFaj/fIRnq8s1q/Jcg983RPAAdm+d2BwNK0\n4w9I/GXtypeBJ7NsS7KQmoMORdx22z0MHfohxxxTTGlpLRUVRbqHLjtRZS5tXJM5y8w+A5zm7kea\n2e7yWcr9JPLajcC3k699Bngr20I522Sek82wzexIEmvXTtjVZ6ZOnbr9eXl5OeXl5S0eV3syf34h\n8fjegFFVtY3p01dxyin9og6r3ZgxYwYzZsyIOozdUmUu+SrE39evgfR76bvNkcme5w3AlO1fMHvM\n3bMtkjF3b/pTDb9kdrm7/zarBs3GA1PdfXLy+Nsk5qvf1OBzY4C/AZPdfdEuzuXZxC+Zi8dh4kSo\nrnb69FlFhw5H89hjj7F16whtnxoBM8Pdc3UxndHvy93p0qULa9asoWvXrjmITKRlNPb7yiRnmdni\n1FNgD2ATcGmQ7U3N7HV3PyDb2DOuzM2sI4kN1PcBiszsBwDufkPANl8GhpvZYGA5cA5pVyfJtgaR\nSOTn7yqRS26k7qFXVRmlpf25995rGTduG6DtU9uz+NY4lasqKetXRqxjjD333JNly5YxYsSIqEMT\nCVuTOcvdh6aem9ndwL+y2Ke8WQO9g2y08g8SN/1rSVx1pB6BuHsdcCXwX6AKeMDd55vZV83s0uTH\nvg/0Bn5rZq+b2Zyg7Uh4UvfQYzE48MAv4T4quX1qHVVVUUcnuRbfGmfi3ROZ9OdJTLx7IvGtcYYM\nGcLixYub/rJInskwZ+30lUzPnT4NLdXbne3UtCD3zPdKdTM0l7s/BYxs8Nodac+/AnwljLYkXKnt\nU6uq6oEFPPfcc5SUXEZVlanbvZ2oXFVJ1eoqautrqV5dTdXqKoYNG6ZkLm1WUzmrwesXBzj1sex8\nrx0SU9N2OZd9V4JU5i9o8RZJdbvPmlXA66934+6772bo0A+ZNMmZOFFbqLYHZf3KKO1bSnFBMSV9\nSyjtW8qwYcNYtEh3xEQysYvF2OY1azG2TAeQmVk1MBxo9lZtYdEAuOj9979xJk/uhHsxxcXOzJna\nca0ltZYBcPGtcapWV1Hat5RYxxgPP/ww//d//8ejjz6ai9BEWkSufl9m1gPoRWJq2nXsGP0ez8XU\ntKxWpZG27bDDYowe7VRW1mD2Dlu2FFJRsa+63Nu4WMcY4/facdWmylwkc6mpaWa2ALgw/b3kBUXQ\ngeXaz1yaJ7XjWlVVMRUVb3LMMWVAHWVlhRrp3o4MHTqUxYsX4+6Y5aTjQKQt+DjteSfgJGB+NicK\n0s1uwHnAUHe/ITl9bIC7RzbSXN3srUtFBUyaVE9tbQEFBbXMnGkccURh1GG1Ka2lm70xffr0Yf78\n+fTrp0WFJD/l8ve1i/Y7Av9x9/Kg3w0yAO63wGHsmF8XB24P2qC0XYlNWgooLnY6d36P7373NBYv\nXk1FhQbGtQdDhw5VV7tI83QB9srmi0GS+Th3vwLYAuDu64AO2TQqbVP6Ji0ffDCEQw89lJEjVzFp\nUr1GurcDmp4mEkxyBHtqNHsV8BaJpWEDCzIArsbMCklOiDezvkB9No1K27Vjk5ZCTj/9+9x8cx11\ndQXMm1fL3Lnqdm/LVJmLBHZS2vNaYKW712ZzoiCV+S3AY0B/M/sxMBv4STaNSvuQWmCmqCjR7X7t\ntZ9j/vwP1O3eRqkyFwkmta148vFhtokcgo1mv8/MXgWOTr50mrtnNepO2of0dd1HjRrCr399LKNH\nrwf21Gj3Nmjo0KH8+c9/jjoMkbzRcM+T1OvZTE3LuDI3s07AicAxwFHA5ORrIruU6nbv2bOQ44//\nBmYl1NUVMm9eDRUVG6MOT0KkylwksFD2PIFgU9MeIjGC/a/Jl84Ferr7Wdk0HAZNTcsv6dup9uix\njA4djubWW29lzz2P1SIzGWrNU9Pq6uro2rUr69ato3Pnzi0YmUjLyPXUNDOrdPeyMM4VZABcmbuX\npB1PTy7xKpKRnbdTHchzz93BGWf0pa6ulv32g4qKIiX0PFZYWMjgwYN59913KSkpafoLIvKCmY12\n96zWY08XZADca8lN2gEws3HAK80NQNqX9O1U+/T5LO77UV9fRFVVHbfdNp2NG10D5PKYlnUVaVpq\nShowgURufStts5W52ZwzSGV+EImriPeTx4OAt5I7v0S64Yrkp8QiM0Z1NQwaVMNdd/2An/70XjZv\n3ofSUtMAuTyUWtZVRHbrpKY/EkyQZB7KXuYiKTu63aG0tBuvvfYMRx1VSH29MW9eLRUVEIsV6X56\nHlFlLtK01F4nZnYW8JS7x83se8CBwP8CgfdCybibPdl4T+Dk5KNn+hy5oA2LwM7d7gce2IHRowsp\nKqqnS5f3OeWUxUycqNXj8okqc5FAvp9M5BNIzBS7C/h9NicKMjXtauA+oF/y8VczuyqbRkUak6rU\nZ80q4LHHhlBbO4y6ugLmzq3h6aeXEY+j++mtVHxrnIqlFQwYNECVuUjm6pJ/fg64090fJ8tl0oNM\nTZsLHObum5LHXYGKKO+Va2pa25U+ja1375Vs3XoUHTpM46OP9mzX99Nb49S0+NY4E++eSNXqKvbr\nsx8Lv7OQzes2U1AQZHytSPQimJr2b+BD4FgSXeyfAHPcfWzQcwX5tRk7riJIPtfGxdIi0jdtefvt\nAdxzz3OsXt2X2lqjsrKON9+sVaXeSlSuqqRqdRW19bUsWLuArvt0ZdmyZVGHJZIPzgb+Axzv7uuB\n3sC3sjlRkAFwdwMvmdljyePTSPTvi7SIHZu2wJFH9mXMGKiqqqdTp/c4//zzcX+cDz/s2a4r9dag\nrF8ZpX1LqV5dTUnfEjr16MSiRYvYa6+sdnIUaTfcfTPwaNrxcmB5NufKuJsdwMwOJDEvDmCWu7+e\nTaNhUTd7+xKPp0a+w913v8zVV+8PFFNUVMfMmQWUlRmVlbTp0e+tsZsdEl3tVaurKO1byhVfuYIj\njzySiy66qIUjFAlXrrvZwxQombc2SubtVzwOEyY41dX1FBa+zX77fZ0NGx5g6dJYm67UW2syTzd1\n6lRqa2v50Y9+1AJRibScfE7mGqEieSkWg9mzjVmzClm5cl/OOOPrvPtuZ2prjaqqOiorXffUI6IN\nV0QyY2ZnmVks+fx7ZvZosgc8MCVzyVupe+o9ehTwta8dw5gxRRQW1lFU9A6XXHIsZWXrmDTJNU89\nx4YOHarpaSKZaWye+e+yOVGQeeahXUGIhC1Vqc+enajUL754Ku+/32376PeZMz9RlZ4jI0aMYOHC\nhegWmEiTopln7u5jklcQPwJ+DvzA3cdl03AYdM9cdiU1T72qqo7OnZeyefNm3Pdl1Kh6XnyxQ97e\nT8+He+YAAwcOZNasWQwdOjTkqERaTnuZZx7aFYRIS9uxmlwhjz66D2ajqK8vorraOf307/H00y/y\nwguuSr2FHHTQQbz22mtRhyHS2oU2zzxIMv/QzO4AvgA8YWYdA35fJKdS99THjYPS0gKKi6GsrIhJ\nkwZz0kk9OOKIWkpK1rB8+ccaLBeygw46iFdffTXqMERaNXff7O6PuvvbyePl7v7fbM4VJBmHdgUh\nkks7VpODF14o5Nhjv0J9/SigmA8/7MG++57HkCFLmTRJm7qERclcpGlhjkXTPHNpd3as+w4lJfDt\nb6/mvPN6U19fCGzjmmv+zv/7f0ezfHmfVrcATb7cM1++fDllZWWsWbMGs7yctivtUAT3zEMbi6bR\n7NLupFfqs2bB5z7Xl9GjCykudoYO3cq77z7HsGHLOOKIGkaPXs97721VF3xAe+65Jx06dOD999+P\nOhSR1kyj2ZMxqTKXUKQvFVtZCZMmObW1BtRQUPA+MJghQ7bwyiudKSwsjGzZ2HypzAFOOukkLr74\nYs4444wQoxJpORGOZj8OOACNZhdpntRguVgskaRLS43iYhg+vJiCgqHU1xexaFEHhg07h6FDP2TS\npHomTEiMhtfguZ2l9jYvO6hM981Fdi81Fu24KEazn4NGs0sblt4N/9xzOxL72LEd+MUvfslHHw2g\ntraAuXO3cd55v2b//eNaaS4ptbf5pD9P4sEuD/LS6y9FHZJIa/YJ0BWYkjwuBtZnc6JsRrM3+wpC\npLVLVeqf+czO99fPPHNQ8v46jBrl9O3bj8WLO1Fba8ybV8MttzzDsmXxdlupp+9t/sG2D3h16ata\nCU5k134LjGdHMo8Dt2dzoiDJPLQrCJF8kt4Fn161z5nTiV//+lzGji2mqMjZc88NTJt2F3vv/S5H\nHFHDqFGrePXVhWzc6O0muaf2Ni8uKKakbwlF64r44IMPog5LpLUa5+5XAFsA3H0dORgA9zugHjjK\n3fczs17Af939kGwaDoMGwElrsKvBcwUFNfTq9UXi8euprd2Xvff+mCefhPXre2Y9eC4fBsCl723+\nhdO/wKWXXsppp53WAhGKhCuCAXAvAYcDL7v7gWbWl0RePSDouYJU5qFdQYi0JbsaPDd6dDEPPPAA\n9fWJpWSXLOlKaekaDj+8huHDl/P44zNZvXpLm6vaYx1jjN9rPLGOMS0eI7J7twCPAf3M7MfAbODG\nbE4UJJnXmFkh4ADJK4j6bBoVaasazmEfN862LyU7fHgxhYXDgGLWrOnLN77xIP37L+SII2oYMWIF\nTzwxi1Wrdt7dLd9HyiuZi+yau98HXEsigS8HTnP3h7I5V5Bu9vNIrMt+IHAPcCaJvVizajgM6maX\nfJDqhh80CE48ccfKc7/4BZxwQqpLvpYRI65m4cKv4r4fffuu5qab5vLLXx7DW28VUVqauDjo3r31\nd7One//99znkkENYsWKFVoKTVi+CbvZ7gKuTg8pJ3r7+pbtfHPhcQX6sZjYKOBow4Bl3nx+0wTAp\nmUu+Sb+/DjsvK9swuY8ceSvz518BdKC4OFHtH3ZYfiVzd6dfv3688cYbDBw4MKTIRFpGBMn89Yb3\nxxt7LRNBlnO9B1jh7re7+23ACjP7U9AGk+eabGYLzGyhmV3XyPsjzewFM9tiZl/Ppg2R1mhXI+MT\nXfLp99uLmDbtGsaMKaa42Ckp2XEBkE/MTF3tkvcyyFnnmtmbycdsMxud4akLktV46jy9gaJsYgzy\npTGprgBIDIAzs8BXD2ZWANxGosJfBrxsZv9w9wVpH1sLXAVoCKy0aanknjJr1o7KPRaD2bNtp+N8\nlErmp5xyStShiASWYc5aDExy9w1mNhn4A4n54035JVBhZg8nj88CfpxNnEEGwIV1BXEo8La7L3H3\nGuAB4NT0D7j7Gnd/FajN4vwieSu9cm/sOB8dcsghVFRURB2GSLYyyVkvuvuG5OGLQEb3lNz9XuAM\nYGXycYa7/yWbIIMk47CuIAYCS9OOPyDxlyUibdDBRxzM7Gtns2LdCgb0GhB1OCJBBc1ZXwaezOTE\nZlbi7tVAddpr5e4+I2iQGSdzd7/XzF4Bjkq+dEYyiEhNnTp1+/Py8nLKy8sji0UkbDNmzGDGjBlR\nh5G1+NY4J/3tJD6Z8gmH/+Fw3rz6TWId87ibQdqUsH9fZnYkcBEwIcOvPGRmfwF+BnRK/nkwcFjg\ntgNMTStpmLyzuYIws/HAVHefnDz+NuDuflMjn70eiLv7zbs4l/vGjYk+yHicnfalDHIMRLanpUgA\n+bACXLqKpRVM+vMkautrKfACnv/y84zfK5NbiSK519jvK9OcZWZjgL8Bk919UYbtdQVuAg4CYsB9\nwE3uHngNlyD3zB8ys+ssobOZ3Up2K9W8DAw3s8Fm1oHELmz/3M3nd/8/rokTYdmyxJ+TJgU/Pvzw\nxCP1XmN7Wu7uOMhng55LJM+l1movsiIKPyqkZI+SqEMSCarJnGVmg0gk8vMzTeRJNST2PelMojJ/\nN5tEDiTmgWbyILHJym1ABVAJfAcoyPT7Dc41GXgLeBv4dvK1rwKXJp/3J3GPYj3wEfA+0K2R87gX\nF7vfead7UZF7NseFhTu/N22a+9ixidfGjnX/8MNdH5eVJR6ZfDbouTZuTDxeeCHxp/vuj4N8trnn\nksgkfrLBf3PZPJJtNdvGLRv9hfdf8L2H7e2VlZWhnFOkJezq95VBzvoDiVlYrwGvA3MaO08j530T\nuIHExmV7Av8AHs7ku586V8YfTKzD/nPgDeAd4JxsGgzzAeycFIuLgx+nkmjqvaefzv5CoC1eVDT8\nbFPJPpcXFe3wIiMfk3nK5Zdf7jfddFOo5xQJUy5/X4nmOLiR187P6lwBGg3tCiLEv4id/8deUZHd\nccPn2V4ItMWLioaf3d1FRi4vKnJ5kdHcC5QQ5XMy//e//+2f/exnQz2nSJhy9fsCrk17flaD936S\n1TkDNB7aFUSIfyEZ/0sKJNsLgaDf3d25WstFRcPP7u4iI5cXFbm6yGjuBUrDi4FmXhjkczLftGmT\nx2IxX79+fajnFQlLDpP5a409b+w443Nm0GjoVxAh/oVk/m8pH7WGi4rG3msNFxW5usho7gVK+kVG\nCBcG+ZzM3d1POOEEf+ihh0I/r0gYcpjMX2/seWPHGZ8zg0ZDv4II8S8k839LEp7WcFHR2Gdb4iKj\nuRco6RcZzb0wqKjI+2R+6623+oUXXhj6eUXCkM+VeZPzzNN3cGm4m0u2u7uERbumyU7StyRLrSWQ\nvkXZrt5r6ri5301tjTZyZOL4rbcS26Q98cTOe6I2dTxrFta9O55H88wbWrx4MeM/O57Hnn+MMf3H\naAEZaVVytY6DmdUBm0hMve4MbE69BXRy9+LA58wgmb/m7gc2fN7Yca4pmUteCOvCIBbLu0VjGopv\njdP3ur7U9a6jtF8psy6apYQurUaut0ANUybJPPQriLAomUt7k+/JvGJpBRPumkC91VNcUMzMi2Zq\nRThpNfI5mTe5Apy7F7p7d3ePuXtR8nnqOLJELiL5p6xfGfv22hfqYFSfUZT2zcNN2kVaoSDLuYqI\nNEusY4w5/zOH8fPHc1mny9TFLhISJXMRyalYxxjfv+j7/PH2P6LbZCLhUDIXkZybPHkyGzdupKKi\nIupQRNoEJXMRybmCggKuuOIKbr311qhDEWkTMt7PvDXSaHZpb/J9NHu69evXM2TIEOa8MYc1BWso\n61eme+gSqXweza5kLpJH2lIyB7jk8kt4vN/jrC1cS2lfzTuXaOVzMlc3u4hE5qhzjmJl/Upq62up\nXl1N1eqqqEMSyUtK5iISmVPGnUJsS4xCCinpW6J55yJZUjIXkcjEOsaY/qXpdH2oKw8c94C62EWy\npHvmInmkrd0zT7n++uupqqrikUceyUl7Io3RPXMRkWb4zne+w5tvvsnjjz9OfGuciqUVxLfGow5L\nJG+oMhfJI221MgeYNm0al1x2CT2u6cH8tfM1ul1yTpW5iEgzHXPMMYycNJKqVVUa3S4SkJK5iLQa\nv5v6OwrWFlBEkUa3iwSgZC4ircawvYfx5NlP0vXhrvxqzK8AdP9cJAO6Zy6SR9ryPfN0//73v7nk\n8kvo/Y3evLPxHd0/l5zQPXMRkRCddNJJXPLtS1iwdoHun4tkQMlcRFql71zyHQYUDoA6GNp9qO6f\ni+yGkrmItEqxjjHeuu4trut3HatvWs1//vUfzUEX2QXdMxfJI+3lnnlDr776Kp+f8nk2fWET6zus\n1z10aRG6Zy4i0oIOOugg7njsDtYWrKW2vpaqVVW6hy6SRslcRPLC4cMPZ/SeoymkENbAL6/7JQsW\nL1C3uwjqZhfJK+21mz0lvjVO1eoq9um6DzfffDM3r7sZ7+uU9ivl+YufV7e7NIu62UVEciDWMcb4\nvcYzoNcATr/0dKyfUU8985bP489P/FkD5KTdUmUukkfae2WeLr41zsS7J1K9upqBHQZSc3cNH5/+\nMVxhOusAAA/YSURBVJs6b6K0nwbISXD5XJkrmYvkESXznaW63Uv7lvLK+69wzP3HUE89BfUF3DHp\nDkr3LaWsX5mSumREyTwi+fA/G5EwKZnvWnql3qu+F2vXrqW+Vz37dN2H1658jcLCQipXVSq5yy4p\nmUck3/5nI9JcuU7mGzc6sRjE41BZCWVlNHrcWqQq9Y+3fcwJ951AbX0t1EGfp/pQeEIhHxV+tL0L\nHlByl50omUdEyVzam1wn87FjnSeegBNPhKoqKC3lU8ezEnlxe3JPfx5V4k+v0kv6lnDliCv56qyv\nUm/1UAfn1J7DK31e4b3N721fgAaU3Ns7JfOIKJlLe5PrZF5c7Nx+O1x+OdTWQnExnzp+8kn4xjcS\nyX3UqMR3FyzILPE3VfU3/GwQ6ffTge3JfXDXwRy89mAeKHwACsHqjcu7X87TBU+z+OPFSu7tWD4n\n86KoAxCR1qukBD73uUQirq5u/Ng9kaxra2H+fDBLPK+uhscf3/FedTXMmbMj8TeW7NOPG14YBL8Q\niOFLx0OPxHuzLpq1U3Kff/d8qlZX8ZkOn2Hxu4tZ2HshFMLcZXO56PsX8XLvl1m2bRn79d2Pp857\niiUblmxP7PGtcSV6aVWUzEVkl2bNSibCWTsSbsNj2JHcR45MHL/1VtOJv7Fkn37c8MKg+RcCOyf3\nJ86axeNzqvjcoaXEusHhd01kwepq9uo6iJ4de7L0k6V4gTNv2TwG/3AotV1r2MP34NrPfJM7Nt3B\nks1LKOlbwuyLZwM7V/Hpyb7heyItQd3sInmktY5mj8d3Tu7pib/hexMn7kjuqQTc2HHDC4Nf/AJO\nOGHX3f3px4WFOy4EGt4K2NWFwPGnxJm/por99ijlb4/A2N9MZEu3aoo3D6Km6xIorIW6YsatPZyX\n+syEQoda6POfPmyesIVPYp/Qu64PX+l0MX/l/1het4zBXQZTVFTE4o2L2K9vKS9cMov4x/DvOZWc\ndGgZn+kTY9na+G6P1QuQO/nczR5JMjezycCvSaxAd5e739TIZ24BTgA2ARe6+xuNfEbJXNqV1prM\ng0hP7g2TfWPJP9cXAqnjy74Wp653FRYfhE85EfaohjUlPHDyE1z49Ils6VZNp4/34xfHfZsrK760\nPdlP2nQCM7s+kTiuLQQDCuugtoheTwxh/bgCfI9FFKwdzkkbJvJ4r+ep67WQonX78t19ruAnS35H\nTc8FdNiwH49+/la+8dplvLPhbUb12Y9HP/8UM95YkvGFQPoxBLuIaHjcHuzq9xVWzmpJOU/mZlYA\nLASOBpYBLwPnuPuCtM+cAFzp7p8zs3HAb9x9fCPnapXJfMaMGZSXl0cdxqcormBaY1xtIZk3RzwO\nf/nLDM4/v7zFLgQauzCoK4qzcF2iav/VT2NMPjWR6IvWlXLzL+H/vTERPq6EbmX8bMwTXDs3mfzX\njkwk895v/f/27j3MirqO4/j7w7KwhWd3YTEKLxg3YckbGW6EhvqkiFlq+hjQzTAr00fMHshLaUny\nJBVe8YJXKtPMVORuyKbEimgkxLLsnoVMpLQFxfV5ZNmz++2Pmd09Z2OXs3D2XOj7ep55dr47vzPz\n5TDf/f3mzMwZqBvJ1MNv4IGGi8KOPp+Tdk5jTcmc1nhw1SS2jHy0Ne5bcSLvjF3bNjDYdRgUb4f/\nDOGIP0fYNr6+dWAw7h/HsOqov9NcUkPezmFMaj6Lx/KWEttVRV7xMISIFUfJf/doZo2awTWVt9BY\nFAwaHjz9l0x9/moaCjfR+72RLJz0KJ9/bAoNkUoK6kupvT44lZCKgQHAL++fz9WXfG2/BhXdOUDZ\nW32lss/qTpk4Zz4GqDGz1wEkPQZ8EaiKa/NFYD6Ama2RVCRpgJm9lfZs90M2dgLgeXVVtub1/ywS\ngbffLicSGd8al5UlLo+P4+c7O++/7+sCImzcWNY6MPjEsAiVlWWUlsKXzoH75r3IxuhVjBo6hyk/\nijD/gRfZVLeR4X2DF7QMBKbPgN/eNio8qi9l7rRpfGbu8tb4iZtn8Zm5r7Utv+oPTFoYDgx2HQnF\n4cf9/bdwwkU380bTNZAXo7lfLRRcQHOfpyAvRlPfKBv/HSPWvxo2NNM0KBqcd8iL0VhUza1LltB4\nbBXkxdhTWMUVt99Bw9hNkBejIVLF2dOmsedzlZAXY/chmzhszHg44304dAs8+/FggFKyFT07hKFr\nDiV6Uh3WP4oWDmVMzXDWDqumuSRKj4VDObPuJJYd+jLN/WrosXgIQjSt38xt2+YytdeXeHDPk8T6\nVtNz8XC+/5Gp/Oo/DxIr3kzPJUdz49Cr+El0Do3Fm8lfOoI5n/wx33/1p+wpqqLn0mFIorGwmt7L\nRvLrCXfy1aWXBwOSZSN5+sJHOPeJb9BQWEnv5aU89/UnOOORC9kdqaRgeSl/uWwJr0RfT+aTh5zo\nszLxoJXDgDfi4m3h7zpr8+Ze2jjnult9fdvPiork4q603Z91vfHGfr02Qj1lVkGErscJ8xF4cXE9\nL9y1gRcX1zNwIKxeAN88OZ/VC2iNV13XhzWLYM2iYH71Ahh+VITaKxcz76MPUnvlYkYPG9hpfPYp\nA/nES+Xk/bqc4atW0vu9UojlU/D+SG6YPJmC+rZ4zne+mxDfP31GEDf3oFf9CHrXj2hd9szsXyS0\n/dPd9yTEFfPnJ8SzZt0cdOR5MSjZAiVbIS+GlWxh2MSzsf7RIO5XS5/jjqe5JNo6yNj1kQE096sJ\n4uIoTX2jIKOpuIaKHXXE+lZDXoxYcQ1PV1YSK94cxEXVzCsvpzGMGws3M/P3T7CnKBiExAqraSys\nbh2ATP35LTQUtg1Izps+g4bCYEDScMgmTr30UnZHWgYolXzyjk/z7YpTGDJzHNt3dPpgnpzos/yp\nac65jp18MmzfHvw85ZR9x2PHBlMybfd3XQ89lPE8IhNPpuyy0UQmtsWHL7o3IS67bDSRM8cSOXNs\nQtuB507kkmkXM/DcifuMI/XbWR2byKpt03ll9wVseT6fefNHUltewOg+UFtesM/4nNf6s/X5Aras\n6N3l17bEXxs1mIK6IRDLp9fOwfTe8fGgo98xmJvOmtC6rGDHYGafd15CfMekSf/72uYeFOwYzMOX\nXprQ9ndXXJ4Q//EHVyfEi669tsM8yn82M6HtX2bfkhC/fOutrXHPltMV4ScPi194JdOVdsAycc68\nDLjRzCaE8Q8Bi7+gQNI9wEozezyMq4DPtv/IQlJ2ndBzLg3Sec48HdtxLpvs5Zx5yvqs7pSJc+Zr\ngaGSBgH/Ar4MTGrXZgHwPeDx8I18d29vSq7eQuBcLvD6cg5IYZ/VndLemZtZk6TLgeW0Xea/SdK3\ng8V2n5ktljRRUpTgMv+L052nc845lyt9Vk5/aYxzzjnncuQCOEkTJFVJqpY0o4M2t0uqkfQ3Scdn\nQ16SJkt6LZxWSTomG/KKa/cpSY2Szs+GnCSNl7RO0t8lrezunJLJS1KhpAXhfrVB0jfSlNcDkt6S\ntL6TNinZ572+UpdTXLu01VayeXl9tW4zbbWVVmaW1RPBgCMKDALygb8BI9q1OQtYFM6fBLyUJXmV\nAUXh/IRsySuu3QpgIXB+pnMCioCNwGFh3D8b3ivgGmBWS07ADqBnGnIbBxwPrO9geUr2ea+v1OYU\n1y4ttdWF98rrq22baamtdE+5cGTeesO+mTUCLTfsx0u4YR8okjQg03mZ2UtmtisMXyI99x0m834B\nXAH8AXg7S3KaDDxpZm8CmFldluRlQMs3SkSAHWYW6+7EzGwV8E4nTVK1z3t9pTCnUDprK9m8vL5a\nNpi+2kqrXOjMs/WG/WTyincJsKRbMwrsMy9JA4Fzzexugu9yynhOwHCgn6SVktZK+mqW5HUnUCpp\nO/AacGUa8kpGqvZ5r6/kZWNtJZUXXl9dkfEvgNkf/gjUNJB0KsHVjeMynUvoViD+/FU23ILUExgN\nnAb0ASokVZhZNLNpcSawzsxOkzQEeE7SsWb2fobzcqEsq69srC3w+jro5UJn/iZwZFx8ePi79m2O\n2EebTOSFpGOB+4AJZtbZRzvpzOtE4DFJIjhPdZakRjNbkMGctgF1ZrYb2C3pBeA4gnNu3SWZvC4G\nZgGYWa2krcAIINNfGZWqfd7rK7U5pbu2ks3L6yt5mdjfD1ymT9rvawLyaLuIohfBRRQj27WZSNsF\nC2Wk5wKdZPI6EqgByrLp/WrX/iG6/wK4ZN6rEcBzYdsPAxuA0izI6y7ghnB+AMHHb/3S9H95FLCh\ng2Up2ee9vlKbU7v23V5bXXivvL4St9vttZXuKeuPzC1Lb9hPJi/gR0A/YG44Um80szFZkFfCS7oz\nn2RzMrMqScuA9UATcJ+ZVWY6L2Am8HDcbSzTzWxnd+YFIOlRYDxQIumfwA0EfxBTus97faU8p4SX\ndFcuXc3L66tNumor3fxLY5xzzrkclwtXszvnnHOuE96ZO+eccznOO3PnnHMux3ln7pxzzuU478yd\nc865HOeduXPOOZfjvDN3zjnncpx35s4551yO8878ICKpSNJ34+JVGcihQFJ5+I1cB7KefEl/luT7\nqMs4ry2X7fw/8+DSF7isJTCzbnmKlKQRkq7pYPE3CZ6bfEBfLWjB84//BHz5QNbjXIp4bbms5p35\nwWUWMETSXyXdIqkeQNIgSZskPSRps6TfSDpd0qowPrFlBZKmSFoTruPuDo4CTgXWdZDDFOCZrmxX\n0oclLZS0TtJ6SReG63omXJ9zmea15bJbpp/04lPqJoKnE62Pi9+L+/0ewqckETxe8P5w/gvAU+H8\nCGABkBfGdwFfabeNCcCrwLeAAe2W5QPb2+WTzHbPB+6Ne10k/NkDeDvT76tPPnlt+ZTtkx+Z///Y\nam1PSdoIrAjnNxD8YQA4HRgNrJW0DjgNGBy/EjNbCrxpZvPM7K122+gPvLsf290AfE7SLEnjzKw+\n3FYz0CCpT9f/uc6ljdeWy7isfwSqS5mGuPnmuLiZtv1AwCNmdl1HK5E0APh3B4s/AAq6ul0zq5E0\nmuA5wjMlrTCzm8J2vYHdHeXjXBbw2nIZ50fmB5d6IBIXq4P59lqWrQAukHQogKS+ko5s13YM8LKk\nEyV9KH6Bmb0L5Enq1ZXtSvoY8IGZPQrMBk4If98PqDOzpk7W4Vw6eG25rOZH5gcRM9spabWk9cBS\nIP6q147mW2Mz2yTpemB5eNvKHuB7wD/j2m4n+Liw1sw+2Esay4FxwPPJbhc4BpgtqTncZsstQKcC\ni/b2b3Uunby2XLaT2QHd5eBcAkknANPM7OspWNeTwAwzix54Zs7lNq8t1xn/mN2llJmtA1am4ost\nCK7I9T82zuG15TrnR+bOOedcjvMjc+eccy7HeWfunHPO5TjvzJ1zzrkc5525c845l+O8M3fOOedy\nnHfmzjnnXI7zztw555zLcf8FHh1/CxxzJ84AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood._methods import exponential_pdfs\n",
+ "\n",
+ "def plot_exponentials(qmatrix, tau, x=None, ax=None, nmax=2, shut=False):\n",
+ " from HJCFIT.likelihood import missed_events_pdf\n",
+ " if ax is None:\n",
+ " fig, ax = plt.subplots(1,1)\n",
+ " if x is None: x = np.arange(0, 5*tau, tau/10)\n",
+ " pdf = missed_events_pdf(qmatrix, tau, nmax=nmax, shut=shut)\n",
+ " graphb = [x, pdf(x+tau), '-k']\n",
+ " functions = exponential_pdfs(qmatrix, tau, shut=shut)\n",
+ " plots = ['.r', '.b', '.g'] \n",
+ " together = None\n",
+ " for f, p in zip(functions[::-1], plots):\n",
+ " if together is None: together = f(x+tau)\n",
+ " else: together = together + f(x+tau)\n",
+ " graphb.extend([x, together, p])\n",
+ "\n",
+ " ax.plot(*graphb)\n",
+ "\n",
+ "fig, ax = plt.subplots(1,2, figsize=(7,5))\n",
+ "ax[0].set_xlabel('time $t$ (ms)')\n",
+ "ax[0].set_ylabel('Excess open-time probability density $f_{\\\\bar{\\\\tau}=0.2}(t)$')\n",
+ "plot_exponentials(qmatrix, 0.2, shut=False, ax=ax[0])\n",
+ "\n",
+ "plot_exponentials(qmatrix, 0.2, shut=True, ax=ax[1])\n",
+ "ax[1].set_xlabel('time $t$ (ms)')\n",
+ "ax[1].set_ylabel('Excess shut-time probability density $f_{\\\\bar{\\\\tau}=0.2}(t)$')\n",
+ "ax[1].yaxis.tick_right()\n",
+ "ax[1].yaxis.set_label_position(\"right\")\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Finally, we create the last plot (e), and throw in an (f) for good measure."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFjCAYAAAApaeIIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcFOW1wP3fmYVFaFbZkR2BmQFFFAZlcNSoIG5xRxMj\nJtFrNPomeRNN4hU0LlfjzZu4oJK4L5dgohEj7jIyIAgKCrMJGnbZ11bZZua8f1Q1NE3PTFdP73O+\nn09/pqu6qp6nle7T56lnEVXFGGOMMekrK9kVMMYYY0zjWDA3xhhj0pwFc2OMMSbNWTA3xhhj0pwF\nc2OMMSbNWTA3xhhj0lxSgrmIjBORKhFZLiK3hnn9fBH5XESWiMhCETkl6LVVwa8ltubGGGPSWUPx\nxz3mIRFZISKficjx7r6eIvKBiJSLyDIRuTno+Mkisk5EFruPcYl6PwfrkOhx5iKSBSwHzgC+BhYB\nV6hqVdAxR6nqd+7zocAMVR3ibv8HGKGqOxJacWOMMWktwvgzHrhJVSeIyCjgL6paKCJdga6q+pmI\ntAY+BS5Q1SoRmQz4VfVPCX9TrmRk5iOBFaq6WlUPANOBC4IPCARyV2ugNmhbsNsDxhhjvGsw/rjb\nzwGo6sdAWxHpoqobVfUzd/83QCXQI+g8iXvt65GMoNgDWBu0vY7D/4MAICIXikgl8DpwbdBLCrwr\nIotE5KdxrakxxphMEkn8CT1mfegxItIHOB74OGj3TW6z/N9EpG2sKhyplM1wVfVfbtP6hcDdQS+d\noqonAOcAN4rImKRU0BhjTJPjNrH/A7jFzdABpgL9VPV4YCOQ8Ob2nEQXiPMrp1fQdk93X1iqOldE\n+olIB1Xdrqob3P1bRORVnGaTuaHniYhNOm8yhqompAnPPjcmk4T53EQSf9YDx4Q7RkRycAL586r6\nWlA5W4KO/ytOi3JCJSMzXwQMEJHeItIMuAKYGXyAiPQPen4C0ExVt4vIUe6vIkSkFXAWUFZXQaqa\nMo/JkycnvQ6pWp9Uqksq1ifRkv1+U/n/hdUnPeqiWufnpsH4425fDSAihcBOVd3kvvYUUKGqfwk+\nwe0cF3AR9cSleEl4Zq6qNSJyE/AOzo+JJ1W1UkSud17WacDFInI1sB/YA1zmnt4FeNXNHnKAF1X1\nnUS/B2OMMeknkvijqrNE5BwR+RL4FrgGwB0ifRWwTESW4PTf+p2qvgU84A5hqwVWAdcn+r0lo5kd\n980PCtn3RNDzB4AHwpy3EqfTgTHGGONZQ/HH3b4pzHnzgOw6rnl1LOsYjZTtAJdpiouLk12Fw6RS\nfVKpLpB69WnKUu3/hdWnbqlUl6Yo4ZPGJIqIaKa+N9O0iAiawA5w9rkxmSCRn5tUYJm5McYYk+Ys\nmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYY\nk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpLqODud+f7BoYY4wx8ZfRwbyo\nyAK6McaYzJfRwbyiAsrLk10LY4wxJr4yOpgPGaLk5ye7FsYYY0x8iaomuw5xISK6atU2evfukOyq\nGNMoIoKqSoLK0kz9TjBNSyI/N6kgozPzb77ZkOwqGGOMMXGX0cH866+/TnYVjDHGmLizYG6MMcak\nOQvmxhhjTJqzYG6MMcakuYwO5hs2WAc4Y4wxmS+jg7ll5sYYY5oCC+bGGGNMmsvoYL5hwwZsAgxj\nvLH1DIxJPxkdzFu1asX27duTXQ1j0ootUGRM+snoYN69e3drajfGI1ugyJj0k9HBvFu3bhbMjfEo\nLw9boMiYNJPRwdwyc2O8Ky0Fny/ZtTDGeJHxwdzGmhvjjQVyY9JPxgdzy8yNMcZkOgvmxhhjTJrL\nieQgEckBLgVGu7taATXAd8BS4CVV3RuXGjaCdYAzxhjTFDQYzEXkJKAIeFdV/y/M6/2B60Tkc1X9\nMA51jJrdMzfGGJOKYp0kS0MzpInIUFVdFkHF+gHrVHV/pIXHk4jo3r17adOmDXv27CErK6PvKJgM\nJiKoqiSoLLVZE00mSOTnxquQJPmI+OomyROAiJPkBoN5SAFdVHWT+7ylqu6J+OQEC3wpHX300VRW\nVtKpU6dkV8mYqFgwN8a7FA/mMU+SI0pXReS3IjIOOD9od76InBbJ+clkneCMMcakkuBALiJdgp63\nDDnuP5G2dkfa9vwq0Bf4LxGZKSLTgOOBsRGefxgRGSciVSKyXERuDfP6+SLyuYgsEZGFInJKpOeG\nsk5wxhhjUk2sk+R6O8CJSHOgtapWAVUislJV33J/SYwElgQde4yqro3gDWQBjwBnAF8Di0TkNbeM\ngPdUdaZ7/FBgBjAkwnMPY53gjDHGpKBXgdOAn4jIecBGYCHQA5jt9WL1BnNV3SciZ4qID/iXqr7l\n7t8EvA4gIu2Ay4AKoMFgjvMjYIWqrnbPnw5cABwMyKr6XdDxrYHaSM8NZc3sxhhjUk0kSbIXDQ5N\nU9V/i0hX4Bci0glo6Z4X6EK/Dvibqu6KsMweHB701+G8gcOIyIXAfUAnnF59EZ8brHv37pTbElDG\nGGNSQFCL9zaAcEly0LERtXhDhJPGqOpG4F5PNW4kVf0X8C8RGQPcDZzp9RpTpkyhsrKSzz//nJKS\nEoqLi2NdTWNirqSkhJKSkmRXwxgTB2FavI8YFRZFi7e3oWmxICKFwBRVHedu3waoqt5fzzlfAScB\nx0Z6bmCIzYIFC7jlllv4+OOP4/F2jIk7G5pmjHepPDQNwG3xvhboDLSgcS3ekWXm9VTmqJD725FY\nBAwQkd7ABuAKYGLIdfur6lfu8xOAZqq6XUQaPDdU9+7dWb9+vccqGmOMMfET6xZvz8FcRL6vqq+K\nyE+AviKySlX/Gun5qlojIjcB7+AMjXtSVStF5HrnZZ0GXCwiVwP7gT04zQ11nltfed26dWPz5s1U\nV1eTk9Oo3y7GGGNMXEWZJHtvZheRx1T1BhHJB5YDw1V1odeC4y3QXOj3Q79+5/Phh4+Sl3dMsqtl\njGfWzG6Md6nezB4sNEkGPCXJEN0SqP8nImOBfcDlwDdRXCMh/H4oKoKtW//J+ee3x+9Pdo2MMcaY\nI5zl/p0PTAE+93oBz8FcVee4jy9V9QVVrfB6jUQpKwNnVFouq1a1xEaoGWNM0xbJLKIi8pCIrBCR\nz0TkeHdfTxH5QETKRWSZiNwcdHx7EXlHRL4QkbdFpK3HajU6SW50b3YRKVDVskZdJA5ERHfvVoqK\nYNmyajp33sby5V3w+ZJdM2O8sWZ2Y7wL97lxZxFdTtAsosAVwbOIish44CZVnSAio4C/qGqh2/u8\nq6p+JiKtgU+BC1S1SkTuB7ap6gPuD4T2qnpbYt6pI6p1QUXkGBE5UUSOAY6KcZ1ixueD0lL45S9f\nY9y4eyyQG2NM03ZwFlFVPQAEZhENdgHwHICqfgy0dVcM3aiqn7n7vwEqcSYyC5zzrPv8WeDCxlRS\nRAq8nuM5mLu9zr8PDOPwhdVTks8HxcUt2LhxRbKrYkxa8fth/nysr4nJJOFmEe3RwDHrQ48RkT44\ni40tcHd1DiwP7g456+y1Yo1NkqMZq/WVqr4XVIGUXwa1d+/erF69OtnVMCZtBDqPlpdDfr7TwmUt\nWyaVJWrmRLeJ/R/ALar6bR2HebpX5SbJzXHulbfDmTzG0yixaIL5bhF5EGeO9l3ArCiukVC9evVi\nzZo1qCoiaTFSwZikCnQera6GigrneWFhsmtlTN2Ki4sPm7L7zjvvDHfYeqBX0HZPd1/oMceEO0ZE\ncnAC+fOq+lrQMZvcpvhN7r31zR6r3+gk2XMwd8eUp9y48vq0adOG3Nxctm/fTseOHZNdHWNSXkGB\nk5FXVEBenvPcmAwQySyiM4Ebgb+704/vDDShA08BFar6lzDnXAPcD/wIeA1vGp0kN5kp0QLZuQVz\nYxoW6DwaaGa3JnaTCSKZgVRVZ4nIOSLyJfAtTpBGRE4BrgKWicgSnKb037mrnt0PzBCRa4HVuLOW\neqhXo5PkqIemuWPislXV8yLqiRA6xOb888/n2muv5cILG9XJ0JiEs6FpxniXTjPAxUJUQ9Nc4j7S\nQq9evawTnDHGmJQlImOj7VTemGCeVnr37s2aNWuSXQ1jjDGmLlEnyU0qmFtmbowxJhM1pgPcOtLo\nx0CgA5wxxhiTaRoTzDum4tKndbHM3BhjTIqLOkmOZjrXke7TkfUemGK6dOnCrl272LNnT7KrYowx\nxoTTUVWjmnu8Mc3kfUXkUhH5WSOukTBZWVn07NmTtWvXNnywMcYYkyCxSJIbDOYicoE7W05AYOq7\nWar6sqpOjbbwRLOmdmOMMSks6iQ5ksy8GOgEICLnq+p6AFV932thyWad4IwxxiRbPJLkSDrAzQR+\nLyItgBYiciywDCgLBPZ0YZm5McaYFFCME8BXu0nyTGhcktxgMHena50NICK/BD4F8oELRKQ7Tu+7\nh1X1i2grkSi9evXiww8/THY1jDHGNG0xT5I9DU1T1T+5Tw9GRBG5HDgPSPlgbrPAGdOw2tpasrLS\nZgoJY9JOPJLkWKyadoA0CORg87MbE4ldu3bRvn37ZFfDmCYhVklyo4O5qr7S2GskyjHHHMP69eup\nqakhOzs72dUxJiVt3brVgrkxyeU5SW5SbWktWrSgQ4cObNy4MdlVMSZlbdmyJdlVMKZJU9VXVPV1\nL+c0qWAO1tRuTEO2bt2a7CoYYzyKOJiLyM9FJO3b3qwTnDH1s2BuTPrxkpl3ARaJyAwRGSciUa25\nmmyWmRtTv3DN7H4/zJ/v/DXGxEYsk+SIg7mq3g4MBJ4ErgFWiMi9ItI/FhVJlG7djrUvJWPqEZqZ\n+/1QVARjxzp/7bNjTMzELEn2dM9cVRXY6D6qgfbAP0TkgWgrkEh+Pzz66BXMnPlL+1Iypg6hwbys\nDMrLoboaKiqc58aYxotlkuzlnvktIvIp8AAwDxiqqjcAI4CLvRacDGVlsHZta1Rz7UvJmDqEBvOC\nAsjPh9xcyMtznhtjYiNWSbKXceYdgItU9bAbzqpaKyLneik0WQoKIC9PWLp0H4MH55Kf3+Q68xvT\noNB75j4flJY6P37z851tY0zjicgtwNXAVuBvwK9V9YCIZAErgN9Eei0v0axFaCAXkfsBVLXSw3WS\nxueDuXOFnj1/wNNPf2lfSsaEEa43u88HhYUWyI2JsUCSfLa7WtoBcJJkwFOS7CWYnxlm33gvhaUC\nnw8KCr5h48YVya6KMSnJhqYZkzAxS5IbDOYicoOILAMGicjSoMdKYKmXwlJF//79+fLLL5NdDWNS\n0rfffsv+/fuTXQ1jmoKYJcmR3DN/CXgTuA+4LWi/X1W3R1Nosg0YMMCCuTF16NixI9u2baNbt27J\nrooxGUlEbgB+BvQTkeCk2IfTwdyzSNYz3wXsAiZGU0AqGjBgAG+//Xayq2FMSjr66KPZunWrBXNj\n4ifmSXKDwVxE5qrqGBHxAxrY7f5VVW0TTcHJZJm5MXU7+uijbbEVY+IoHklyJJn5GPdvxvRj7du3\nL2vWrOHAgQPk5uYmuzrGpJROnTpZJzhj4igeSbKXSWMuFRGf+/x2EXlFRIZ7LTAVNG/enG7dutmC\nK8aEEWhmN8bER3CSrKpt3IcvsB3NNb0MTftvVfWLyBjgezjTzz0eTaGpYMCAAXz11VfJroYxKcea\n2Y1JjFgmyV6CeY37dwIwTVXfAJpFU2gqsPvmxoRnmbkxCROzJNlLMF8vIk8AVwCzRKS5x/MPcleH\nqRKR5SJya5jXrxSRz93HXBEZFvTaKnf/EhFZGE35YMHcmLrYPXNjEiZmSbKXYHwZ8DZwlqruxJkM\n/tdeC3TnnH0EOBvIByaKyOCQw/4DjFXV44C7gWlBr9UCxao6XFVHei0/wIK5MeFZZm5MwgSS5Mtp\nZJLsZaGVGqAFcKmIBJ/3jscyRwIrAlPYich04AKgKnCAqi4IOn4B0CNoW4jyzQazWeCMCc/umRuT\nMJcB44AHVXWniHQjiiQZvAXz14CdwGJgXzSFuXoAa4O21+EE+Lr8BGdwfYAC74pIDU6zxF+jqUS/\nfv1YuXIlNTU1ZGdnR3MJYzKSNbMbkxiq+h3wStD2BmBDNNfyEsx7quq4aAqJloicBkwCxgTtPkVV\nN4hIJ5ygXqmqc8OdP2XKlIPPi4uLKS4uPrjdqlUrOnTowPr16+nVq1c8qm9MVEpKSigpKUla+R07\ndmTr1q2oKiLS8AnGmKi4zeoXA30IiseqepfnaznrokdU6DTgYVVd5rWQkOsUAlMCPwxE5DacQfL3\nhxw3DPgnME5Vw44hE5HJONPf/SnMa9rQezv11FOZPHkyp59+enRvxpgEEBFUNSFRNfC5adWqFRs3\nbsRna56aNJXIz020ROQtnJngPuVQZzhU9X+9XstLZj4GuMZdLW0fzr1rVdVh9Z92hEXAABHpjdOc\ncAUhU9qJSC+cQP7D4EAuIkcBWar6jYi0As4C7vRY/kGBTnAWzI05XKCpva5g7vdDWRkUFNga58Y0\nQsxavL0E85isXa6qNSJyE07HuSzgSVWtFJHrnZd1GvDfOIu2TxWnne+A23O9C/CqiKhb9xdV1WsH\nvINs4hhjwgv0aO/bt+8Rr/n9UFQE5eWQnw+lpRbQjYnSRyIytLEt3uAhmIcuoN4YqvoWMChk3xNB\nz38K/DTMeSuB42NVjwEDBjB9+vRYXc6YjFFfj/ayMieQV1dDRYXzvLAwwRU0JjOMASaJyH9oXIt3\n5MHczZCvAvqp6l1uU3hXVY164pZks7HmxoRX31jzggInI6+ogLw857kxJioxafEGb+O1pwKjOXR/\n2w88GquKJEP//v356quviLQToDFNRX3D03w+p2l9zhxrYjemkdYARcCP3NZvxbmd7JmXYD5KVW8E\n9gKo6g7SeG52gDZt2tCyZWdef30rfn+ya2NM6mho4hifz2lat0BuTKPELEn2EswPiEg27tqr7jjv\n2mgKTRV+P+zZ8w4XXdSBoiIsoBvjsildjUmImCXJXoL5Q8CrQBcRuQeYC9wbTaGpoqwM9uzpQ01N\n9sGOPMYYmwXOmASJWZLspTf7iyLyKXCGu+tCVa2MptBUUVAAXbvuYOPGduTl5VpHHmNclpkbkxCh\nSfIlwO3RXKjBYC4iv6zjpfEiMj7c7GvpwueDxx8vZ/LkGXz44VS7/2eMyxZbMSb+YpkkR5KZB0Lc\nIOAkYKa7fR6QtsPSAkaMOJZ16/6Bzzc12VUxJmVYM7sx8ROPJLnBYK6qd7qFzwFOUFW/uz0FeMNr\ngammW7du7N+/ny1bttCpU6dkV8eYlNC+fXt27txpqwoaEx8xT5K9TOfaBdgftL2fKMfDpRIRIS8v\nj8rKSgvmxrhycnJo27Yt27dvt8+FMTEWjyTZS2/254CFIjLFLfBj4JloCk01gWBujDmke/furFu3\nLtnVMCaTxSxJjjiYq+o9OGuL73Afk1T1vmgKTTV5eXlUVFQkuxrGpJSBAweyYsWKZFfDmJgSkXEi\nUiUiy0Xk1jqOeUhEVojIZyIyPGj/kyKySUSWhhw/WUTWichi9xHpSmgxS5K9NLOjqouBxdEUlMry\n8vJ48803k10NY1KKBXOTaUQkC3gEp/f418AiEXlNVauCjhkP9FfVgSIyCngMCCwl9DTwME4QDvUn\nrx3XVPUeEXkTZ0pXcJLkJZ7elMtTMM9UQ4YMsczcmBADBw5k7ty5ya6GMbE0ElgRWAVURKYDFwBV\nQcdcgBusVfVjEWkrIl1UdZOqzhWR3nVcW6KpUKySZC/3zDPWMcccw65du9i5c2eyq2JMyrDM3GSg\nHsDaoO117r76jlkf5phwbnKb5f8mIm0bV03vvCyB+nPgBXfu2IySlZXFkCFDqKysZPTo0cmujjEp\nwYK5SSclJSWUlJQkq/ipwF2qqiJyN/An4MeJrIDXoWmLRGQx8BTwtmbQ2qGBHu0WzI1xdOvWje++\n+45du3bRtm3diYbf76xzUFBgq6iZ5CkuLqa4uPjg9p133hnusPVAr6Dtnu6+0GOOaeCYw6hq8HSJ\nfwVeb7DCxDZJ9tKb/XZgIPAkcA2wQkTuFZH+ja1EKrAe7cYcTkQYMGBAvdm53w9FRTB2LLbyoEkH\ni4ABItJbRJoBV3BowpaAmcDVACJSCOxU1U1Brwsh98dFpGvQ5kVAWYT1CSTJM9xe9lHddweP98zd\nTHyj+6gG2gP/EJEHoq1AqrBgbsyRGmpqLytzVhusrsZWHjQpT1VrgJuAd4ByYLqqVorI9SJynXvM\nLGCliHwJPAH8LHC+iLwEfAQcKyJrRGSS+9IDIrJURD4DTgV+EWF9YpYke7lnfgvOr5WtwN+AX6vq\nAber/wrgN14LTyXWo92YIx177LH1BvOCAsjPdwJ5Xh628qBJear6Fs40qsH7ngjZvqmOc6+sY//V\njaiPiki4JPldVY04rnq5Z94BuCjQpT+oIrUicq6H66Skvn37snnzZr755htat26d7OoYkxIGDhzI\n+++/X+frPh+UljoZeX6+3TM3xotYJslemtlbhAZyEbkfIN3XNQfIzs7m2GOPpaqqquGDjWkiIunR\n7vNBYaEFcmOiEEiSz1bVl1X1ADhJMuApSfYSzM8Ms2+8l8JSnc3RbszhBg4cyPLly5NdDWMyVcyS\n5AaDuYjcICLLgEHuDf7AYyWwtKHz00n//sfz7rvfWI9cY1ydOnWipqaGbdu2JbsqxmSimCXJkdwz\nfwl4E7gPuC1ov19Vt0dTaCry++H5569jzZpWLF3q3Ae0ZkPT1InIwab2jh07Jrs6xmQEEbkBp5d8\nv5BFW3zAvGiu2WAwV9VdwC5gYjQFpIuyMli/vg2qWQeH2BQWNnyeMZkuEMwL7QNhTKzEPEluMJiL\nyFxVHSMifkA5fLC8qmqbaApONQUFkJcnLF26j2OPzSY/39agMQZsWldjYi0eSXKD98xVdYz716eq\nbdy/gUdGBHJwmtTnzhWOO+4W7r231JrYjXFZMDcmtkRkrvvXLyK7gx5+EdkdzTUjycwDGXlYmRbQ\nTz21OcuXfwqcluzqGJMSLJgbE1vBSXKsrhnJPfMmlaMOHz6cd999N9nVMCZlBIK5qtKIqaONMXFk\n65mHGD58OEuWLEl2NYxJGR07diQ7O5stW7Y0fLAxpkFBzev+MI+4NbOH6wB38G8mNbODM0f7qlWr\n+O677zjqqKOSXR1jUkIgO+/cuXOyq2JM2otHi3e0HeDaZFoHuIBmzZoxePBgli1bluyqGJMy7L65\nMbFTTwe43dFm5tbMHoY1tRtzOAvmxsROmCT5sEc014w4mItICxH5pYi8IiL/FJFfiEiLaApNdccf\nf7wFc2OCeJmj3e+H+fOxaZGNSSAvmflzQD7wMPAIkAc8H49KJZtl5sYc7vjjj2fx4sUNHuf3Q1ER\njB3r/LWAbkzdYpkki2qdQ8hDC61Q1byG9qUKEdFI31sov99P165d2bVrFzk5NhOcSS4RQVUTMias\nrs9NbW0tHTp0YPny5fV2gps/3wnk1dWQmwtz5ti0yCY5Evm5iZaIzAD8wAvuriuBdqp6qddrecnM\nF4vIwY+liIwCPvFaYDrw+Xz06NGDL774ItlVMSYlZGVlMWrUKBYsWFDvcQUFkJ/vBPK8POe5MaZO\nBar6Y1Wd7T5+itMC7lkkS6Auc1d1GQF8JCKrRGQVMB84MZpC04HdNzfmcKNHj2b+/Pn1HuPzOSsO\nzpljKw8aE4GYJcmRtCGfG82F013gvvkPfvCDZFfFmJRQWFjI/fff3+BxPp81rRtTHxFZhjNfSy5O\nkrzGfakXUBXNNSOZznV1UAXaAwOB4Bv0q484KQMMHz6cP/7xj8muhjEpY9SoUXzyySdUV1dbXxJj\nGifmSbKXoWk/AeYAbwN3un+nRFOoiIwTkSoRWS4it4Z5/UoR+dx9zBWRYZGeGyuBzDzaTnTGZJr2\n7dvTs2dPysrKkl0VY9Kaqq4OPIDdQBegd9DDMy8d4G4BTgJWq+ppwHBgp9cCRSQLZ2jb2Tg3+ieK\nyOCQw/4DjFXV44C7gWkezo2JLl26kJvbgVdf3WjDa4xxRXLf3BgTmVgmyV6C+V5V3etWoLmqVgGD\noihzJLDC/VVyAJgOXBB8gKoucBdvB1gA9Ij03Fjx+2HPnne47LLONl7WGFdhYWGDPdqNMRGLSZIM\n3oL5OhFpB/wLeFdEXiO6++U9gLXB1+VQsA7nJ8CbUZ4btbIy+Pbb3tTUZFNRAeXl8SjFmPRSWFho\nmbkxsROrJDmi3uwAqOr33adTRGQ20BZ4K5pCIyUipwGTgDHxLCecggLo0+c7Vq5sQV5ero2XNQbI\nz89n48aNbNu2jY4dOya7Osaku9AkeQdRdiqPOJi7U8z9DCewKjCX6BZqWY/T/T6gp7svtLxhOPfK\nx6nqDi/nBkyZMuXg8+LiYoqLiyOupM8HH35Yy8CBZ/HBB+/g8+VGfK4xjVFSUkJJSUmyqxFWdnY2\nJ510EgsWLGDChAnJro4xaS2WSbKX6VxjMu2ciGQDXwBnABuAhcBEVa0MOqYX8D7wQ1Vd4OXcoGOj\nns41WEFBAc8++ywjRoxo9LWMiUYqTOca7Pbbb0dE+MMf/pCIKhkTlTSZzjVckvxYoOndCy+DRQtC\n5mGfLSIVXgtU1RoRuQl4Byezf1JVK0XkeudlnQb8N9ABmCoiAhxQ1ZF1neu1Dl4Eeu9aMDfGUVhY\nyJ///OdkV8OYTPAcTpL8sLt9Jc4CZp7nZveSmb8APBLIlN1p525U1au9FpoIscrMn3rqKT744ANe\neOGFhg82Jg5SLTPfunUr/fr1Y8eOHWRnZzd4Tb/f6VBaUGDTu5rESZPMPGYLmNnc7A2w3rvGHO7o\no4+mS5cuVFQ03DBnS6IaUy+bmz1RBg8ezLZt29i8eXO9Sz8a05SMHTuW2bNnM3To0HqPKytzhnVW\nV3NwiKfN226aunjMzd5gZh4y7Vw74Dz30S543vZMFenSj8Y0JePHj2fWrFkNHmdLohoT1rk4cXQc\n0Bc41X2cKCKrAAAgAElEQVT0BcZHc0Evc7PfArwIdHYfL4jIz6MpNN3YFJbGHO7MM89k3rx5fPvt\nt/UeZ0uiGnOkeCTJXsaJ/xgYpap3qOodQCHw02gKTTejR4+2zNyYIG3btuXEE09k9uzZDR4bWBLV\nArkxh4tlkuwlmAtQE7Rd4+7LeCNHjjy49KMxTYV/n5/5a+fj3xe+19o555wTUVO7MaZOMUuSvYwz\nfxr4WERedbcvBJ6MptB00759e4455hiWLVvG8OHDk10dY+LOv89P0dNFlG8pJ79TPrOunMXqXasp\n6FyAr7mTYp9zzjlMmDABVcWZDsIY41HMkuSIMnN34paXceZJ3+4+Jqlqk5k5wlaLMk1J2eYyyreU\nU11bTfnmck599lTGPjOWoqeLDmbqeXl5qCqVlXGdt8mYTBZIkqeIyBScVUKjSpIjCubuLBKzVHWx\nqj7kPpZEU2C6Gj58LDNnbrFxsibj+ff5KehcQH6nfHKzcunTrg+rdq6iuraaii0VlG9xlhAUESZM\nmMAbb7yR5Bobk35inSR7uWe+WEROiqaQdOf3wyOPXM5bb/3WJr4wGa/o6SIASieVMmfSHD685sOD\ngT2vUx75nQ6NL7P75sZEJ9ZJspfpXKuAATjLs32L066vqjos2sLjKVbTuQLMnw9jxyrV1UJOjlJa\nKjbxhUmYRE/nmntXLnMmzaGw56F/5P59/oP3z33Nffj3+SnbXEbf1n0Z2Gsg69ato23btomoojER\nSZPpXJ/FmSZ9UWOv5aUD3NmNLSxdORNfCEuXHqBbNz/5+R2SXSVj4iY0+wbwNfcdDO6hneNGFY3i\nvffe4+KLL05GdY1JZ6OAq0Sk0UlyxJl5uollZg5O0/pdd/2TDRve44UXHovZdY1pSKIz8917dx/s\nsR7O/LXzGfvMWKprq8nNyuWmVjexq3wXTz7ZJAa3mDSRJpl573D7o5k4xksze8zWXU2EWAdzgKqq\nKs4++2xWrVplQ3FMwqTaqmmBzLxiSwV5nfJ4tvhZzi4+m/Xr1ze4ipqtoGYSJR2CeSx5CeYzcNZd\nDawFeiXO1HOe111NhHgEc1WlR48ezJ07l379+sX02sbUJdWCORx5D33EiBE88MADnHHGGXWf466g\nVl7uzNFu07uaeEqHYB7LJNlLb/YCVf2xqs52Hz8FmtSyCSLCaaedxgcffJDsqhiTVIF76IHOcKMv\nG82z05+t95xwK6gZ08Q9hxNHHwYeAfKA56O5kNehaTFZdzWdnX766RbMjXEFmtyf2P8ELzV/ia27\nt9Z5rK2gZswRYpYkewnmI3DWXV0lIquA+cBJIrJMRJZGU3g6Ov3005k9ezaZ2nHQGC+CZ4qr7VDL\nU/9+qs5jbQU1Y44QsyTZy9C0cdEUkGn69u1L8+bNqaqqYsiQIcmujjFJFZgprmJLBZ1zOvPxvz92\netPUIbCCmjEGOJQkr3G3ewFfiMgyPA5RiziYR7vGaiYKNLVbMDdNna+5j9JJpZRvKadrVleOG3Ic\n33zzDa1bt0521YxJBzFLkr00sxuX3Tc35pBAZ7g+3ftwyimnMHPmzGRXyZi0oKqr63t4uZYF8yic\ndtpplJSUUFtbm+yqGJNSrrzySp6b/ly966AbY2Iv4mAujh+IyB3udi8RGRm/qqWuHj160KFDb55/\n/ktbdMWYIKePP513j3n3iOVSjUkVIjJORKpEZLmI3FrHMQ+JyAoR+UxEhgftf1JENoV2+haR9iLy\njoh8ISJvi0jCFyrwkplPBUYDE91tP/BozGuUBvx+2LHjNa69tr+tomZMkNXfrUaP1iOWSzUmFYhI\nFs547rNxhoBNFJHBIceMB/qr6kDgeiB4/u6nCb9OyW3Ae6o6CPgA+G2E9YlZkuwlmI9S1RuBvQCq\nugNoFk2h6a6sDHbu7E5tbbZNfmFMkILOBfRp1Qdqwi/YYkySjQRWuPekDwDTgQtCjrkAZzIXVPVj\noK2IdHG35wI7wlz3AiAwa9KzwIUR1idmSbKXYH5ARLJxppxDRDoBTfKmcUGBM+kF7GPQoGqb/MIY\nl6+5j8U3LabLrC48fMLD9S7YYkwS9ADWBm2vc/fVd8z6MMeE6qyqmwBUdSPQOcL6xCxJ9jLO/CHg\nVaCziNwDXALcHk2h6c7ng3nzsjnrrP+X//qvIny+i5JdJWNSRruj2nHThTfx4lMvUjSyqN5jbeEV\nEyslJSWUlJQkuxoBkc4qFrMk2dMSqO69hTNw1lx9X1Uroyk0EeKx0Eqoxx57jPnz5/Pcc8/FtRzT\ntKXiQisN+frrr8nPz2fNmjX46ojStvCKiadwnxt3trUpqjrO3b4NZ3KW+4OOeRyYrap/d7ergFMD\nmbe7bOnrwRO6iEglUKyqm0Skq3t+gxORiMhVwOXACTjN85cAt6vqy17fr6ehaapapaqPquojqRzI\nE2XChAm8+eab1NTUJLsqxqSU7t27U1xczPTp0/Hv84cdqmYLr5gkWAQMEJHeItIMuAIInRhhJnA1\nHAz+OwOB3CXuI/Sca9znPwJei6Qyqvoi8BvgPmADcGE0gRy8LYF6IvB7oDdO87zgcbq5REpEZg5w\n3HHH8dhjj3HyySfHvSzTNKVjZg7w1ltv8dvJv0Un6cHlUksnlR68jx7IzCsqnD4olpmbWKrrcyMi\n44C/4CSzT6rq/4jI9TjxbJp7zCM4s7N9C0xS1cXu/peAYqAjsAmYrKpPi0gHYAZwDLAauExVd8b7\nPR72vjwE8y+AXwPLCGrTT9VpXhMVzH//+99TW1vLfffdF/eyTNOUrsG8pqaGnoU92XreVqq1mtys\nXOZMmkNhz0OTs/v9h5rZLZCbWEqT9cxjliR7aWbfoqozVXVltNPNZaJzzz2Xf//738muhjEpJzs7\nm59e8FPa7G9DblZu2KFqgYVXLJCbJupFnLHrFwPnAee6fz3zkpmfgTMW7n1gX2C/qr4STcHxlqjM\nvKamhq5du7Jo0SL69OkT9/JM05OumTk4HeHyjs/jn6X/ZGSfkTZUzSRMmmTmc1V1TCyu5SUznwQc\nj3Mf4TwO/Ypo0rKzsznnnHN44403kl0VY1JO9+7dGX/GeD5/43ML5MYcabKI/E1EJorIRYFHNBfy\ndM/cnaouLSQqMwd4+eWXmTbt/7jrrldsvKyJuXTOzAE++eQTLrroIr766ityc3Njem1j6pImmfkL\nwGCgnEN90VRVr/V8LQ/B/Gngj6pa4bWQZEhkMF+3bhe9e68mK2so+flivXJNTKV7MAcoLi7m+uuv\nZ+LEiQ0fbEwMpEkwj1mS7KWZvRD4zF0VZqmILAtdOaapWru2LapDqK4WGy9rTBi/+tWvePDBB9m9\nd7ctj2rMIR+JSF4sLuQlM+8dbn+q9mhPZGbu90NBwXbWrvUxbFiuZeYmpjIhM6+trWXwsMHUXlPL\n6j2rjxhzDja1q4mtNMnMK4H+wEqcjuVRD03zNJ1rOklkMAdYv343xx77fSoqXqZ37w4JK9dkvkwI\n5gC3PnIrf9zyRzRLjxhzblO7mlhLk2AesyS5wWZ2EZnr/vWLyO6gh19EdnstMFP16NGG8ePb8+67\nKTlSz5ik+9UPfkXW9ixysnKOGHNuU7uapih4zpbGzt/SYDAPGgP3mKq2CXr4gMejKTRTTZw4kenT\npye7GsakpM7tOvObo3/D+A3jj2hiLyhwMvLcXGdqV1tW2GSyeCTJXu6ZL1bVE0L2LW3qc7MH27Nn\nD926daOqqoquXbsmtGyTuTKlmR1g27ZtHHvssXzyySf07dv3sNdsalcTS+nQzB5LkTSz3yAiy4DB\nbi/2wGMlzjztnonIOBGpEpHlInJrmNcHichHIrJXRH4Z8toqEflcRJaIyMJoyo+Xli1bct555/GP\nf/wj2VUxJiV17NiRG264gXvvvfeI12xqV9PUiMj9keyL6FoN/QoXkbZAe5wl2m4Lesmvqts9FyiS\nBSzHWRf9a5wl6a5Q1aqgY47GmXj+QmCHqv4p6LX/ACNUdUcD5SQ8Mwd44403uO+++5g7d27CyzaZ\nKZMyc4Dt27czcODAsNm5MbGSDpl5LFu8I7lnvktVV6nqxKCb8/uiCeSukcAK91oHgOnABSFlblXV\nT4HqMOdLJPVOljPPPJPKynW8+upG/DaU1pgjdOjQgZ/97Gfcfffdda51bkwmC2rxHhSmxTuq+Vty\noqzLLOCEBo8KrwewNmh7HU6Aj5QC74pIDTBNVf8aZT3iYt++ZkApl1zSiaFDbYiNMeH84he/YEDe\nAD56/CO+3P1l2HHnxmSwl4A3ObzFuzvwRbSJcrTBPJlNF6eo6gYR6YQT1CtVNWyb9pQpUw4+Ly4u\npri4OO6VKyuD3bt7UFubRUWFUl4uFBY2fJ4xASUlJZSUlCS7GnHVoUMHLrzuQp7d8Sy1UkvFlgrK\nt5Qftta5MZlKVXcBu3BWIgVARF4NbXL3IqpJY0TkZ6o6NaoCRQqBKao6zt2+DWfGm3AdASbj3Jv/\nU+hrDb2erHvmfj+MGaMsXXqA/v33s2RJa8vMTaNk2j3zgDWb1tDvD/2QLmIzwpmYS4d75sFEZImq\nDo/2/IjvPYtIcxG5UkR+BxwtIneIyB1RlLkIGCAivUWkGXAFMLO+ooPqcJSItHaftwLOAsqiqEPc\n+Hwwd65w883/ZOTIX9mXkDF16NWlF7/v9nvGLB8TNpAXFcHYsc5f639imoBG3TL2Ms78LZxmgU+B\nmsB+Vf1fz4WKjAP+gvNj4klV/R8Rud65nE4TkS7AJ4APZ1m4b4A8oBPwKs598xzgRVX9nzrKSEpm\nHrB161YGDBjAypUrad++fdLqYdJfpmbmAN999x2DBw/mpZdeYsyYMQf3z5/vBPLqamcimTlzsNtV\nxpN0yMxF5H5VvbWhfRFdy0MwL1PVAq8FJEuygznAlVdeSWFhITfffHNS62HSWyYHc4Dnn3+eRx55\nhAULFiDivM1AZl5R4cwIZx1JjVdpEswTNzQtyEciMtRrAU3Zddddx7Rp00j2jwpjUtlVV11FTU0N\nz/zfMweHqfl8TgCfM8cCuck8dUzGtqxRk7F5yMwrgAHEYKm2REiFzFxVGTRoEM888wwnn3xyUuti\n0lemZ+YAs96bxYUzL0Q7qQ1TMzGRypl5yGRst3Kob1hUk7GBt6Fp46MpoCkTEa677joeffQ5RE62\nXrnG1KH9oPZUt69Ga9WGqZmMFxiaJiJVwDXBr7k/Qu7yek1bzzzOVq7cyoABG8jKKiA/X6zJ0HjW\nFDJz/z4/Ix8fSdW2KvI65bHgugWWmZtGSeXMPEBEfhW02QI4F6hU1Ws9X8tDM7sAVwH9VPUuEekF\ndFXVlFrsJCBVgvn8+XDKKQdQzbVeuSYqTSGYgxPQb777ZnZ9uYtX/u+VpNTBZI50COahRKQ58Laq\nFns910sHuKnAaA7NWOMHHvVaYFNTUAADBx4A9jF4cK2t02xMHXzNfUz93VQ+X/g5b731VrKrY0wy\nHAX0jOZEL8F8lKreCOwFcFctaxZNoU2JzweffHIUo0bdyvXXv2BN7MbUo2XLljz66KPceOON7Nmz\n5+B+v99p5bLJY0wmcXuwB3qzlwNfAH+O6loemtk/Bk4GFqnqCe7c6O80Zvq5eEqVZvaA999/n5//\n/OeUlZWRlZWyi76ZFNRUmtmDXX755fQa2IuLrr+I3kcVcM4ZPsrLIT/fhqqZyKRDM7uI9A7arAY2\nqWq41UIbvpaHYH4VcDkwAngGuAS4XVVfjqbgeEuVL6UAVeXEE09kypQpnHfeecmujkkjTTGYL1+1\nnLwH85DOQp9W+ay8o5Sa73zW78RELB2CeSxFPDRNVV8UkU+BM9xdF6pqZXyqlXlEhN/85jc88MAD\nFsyNacC27G1oJ6VGa1j9XQV9R5azel4heXlYvxOTMdwObxcDfQiKx9EMTfOy0EoL4Bzge8DpwDh3\nn4nQxRdfzNq1O5k2band+zOmHgWdC8jvlA810Ld1Xz78R77NBmcy0WvABThN7N8GPTzz0sw+A6cH\n+wvuriuBdqp6aTQFx1uqNBcG8/th8OAtbNjQjmHDcu2LyUSkKTazgzNU7Y5H7mD53OW88eobya6O\nSTPp0MweyzVPPE3nqqp5De1LFan0pRTgrASlVFcLOTm1lJZm2b0/06CmGswB9uzZw8CBA3nttdcY\nMWJEsqtj0kiaBPNpwMOqGtV87MG8dKteLCIHQ4+IjMJZptREqKAA8vOF7OwaWrT4j937M6YBLVu2\n5LbbbmPy5MnJrooxMRMYkgaMwYmtXwQttrI0qmt6yMwrgUHAGndXL5wxcdWk4IIrqZZhBPj98Pnn\n1fzoRyfyxBMP8r3vfS/ZVTIpriln5gB79+6lf15/7px6J5efdjm+5j78figrw9Y7MHVK5cw8ZEja\nEVR1tedregjmMS88nlLxSynY3//+dx588EEWLlx4cA1nY8Jp6sHcv8/PkD8O4esDXzOs2zBmXVpq\n485Ng1I5mAeIyKXAW6rqF5HbgROAP6jqEq/XiriZ3Q3W7YDz3Ec7VV0deHgtuKm79NJLqamp4ZVX\nbA5qY+pTtrmMTboJzVLKN5fzxsJyysuhuhoqKqC8PNk1NCZq/+0G8jE4I8WeBB6P5kJehqbdArwI\ndHYfL4jIz6Mp1EBWVhb33Xcfv/3tvZSWVttQNWPqEBimlk02uTtzGX/iEPLzITcXG3du0l2N+3cC\nME1V3yDKadK9NLMvBUar6rfuditgfqrdKw9IxebCULt3K927f8WePX0ZOjTbmgtNWE29mR2cpvZl\nm5Zx46U3cusvbmXChCsONrPbZ8aEkybN7P8G1gNn4jSx7wEWqupxnq/lIZgvA05S1b3udgucedqH\nei00EVL1SymYM1StlurqLHJzlTlzxIaqmSNYMD9k9uzZ/PjHP6ayspLmzZsnuzomhaVJMD8KGAcs\nU9UVItINGKqq73i9lpehaU8DH4vIFBGZAizAad83UXKGqmWRlVVN69ZrrbnQmAacdtpp5OXlMXXq\n1GRXxZhGU9XvVPUVVV3hbm+IJpCDh8wcQEROwBkXB1AaTY+7REn1DCPA74eFC7/lhz88gRkznmTM\nmDENn2SaFMvMD1dWVkbx2cW8+O6LnNz/ZHzNrZ3dHCkdMvNY8hTM00k6fCkFmzFjBlOm/C9PPDGP\n44/PsfuA5iAL5ofz7/PT564+7MzdydCuQymdVAr7fTbu3BymqQVzW1g7RYwbdylr175EcbFQVIT1\nbjemDmWby9jdYje1Ukv5lnIWriqnqAjGjsU+OyatiMilIuJzn98uIq+4LeCeWTBPEeXlwt69famt\nzaa8vNbGzhpTh8BQtSyyaOlviW7Ot3HnJl2FG2f+WDQX8jLOPGa/IMyRAp3hsrNraNbsKwYNqk52\nlYxJSb7mPkonlVJydQld3ujCjo3zbNy5SVfJGWeuqsPcXxB3A38E7lDVUdEUHG/pcO8vlN8Py5bV\n8rvfXcD3vjeK22+/PdlVMinA7pnX7c033+SWW27ho4+W8eWXzW3cuTkoHe6ZJ2uc+RJVHS4i9+GM\niXspsM9roYmQbl9KwdatW8eIESN4/fXXGTlyZLKrY5LMgnn9zj33XEYVjeJ7V36Pgs4F1rvdAGkT\nzGM2ztxLMI/ZL4hESMcvpWAzZszgd7+7j2nTPuKkk1pattGEWTCv35KKJZw09SSki5DfKZ/SSaUW\n0E1aBPNY8tIB7jLgbeBsVd0JdAB+HZdaGcaPv4xt2/7FmWfmMmaMWg9dY+qw17cXPVqprq2mYksF\nC1eVM3++9Wo3qS8pvdljOVONaVhZGXzzTS9qa3Osd7sx9SjoXEB+53yogW65Pfl/rsq3YWomXVhv\n9kzn9G4XcnJqgUp27pyX7CoZk5J8zX3M+/E8/jL8L+ydmk/V561tmJpJFzHrze6lmT1mvyBMw3w+\nKC2F0tIsXn55I9deeymVleus+dCYMHzNfdz8/Zs57eSutG//tQ1TM3USkXEiUiUiy0Xk1jqOeUhE\nVojIZyJyfEPnishkEVknIovdx7gIq7NeRJ4ArgBmiUhzopz/xctJMfsFYSLj80FhIXz/+9/jhht+\nw4gR3zJ2rFrzoTF1ePjhe6nJOYVbH57OrPf91nHUHEZEsoBHgLOBfGCiiAwOOWY80F9VBwLXA49H\neO6fVPUE9/FWhFUK9EU7q7F90bwE85j9gjDenXHGLezd24/qaqGiQq350JgwWrRpwVE31nD3+omM\nnzEG/z771WsOMxJYoaqrVfUAMB24IOSYC4DnAFT1Y6CtiHSJ4Nxoes7vAVoBE93tXGBnFNeJqjd7\no39BGO+GDhWGDs1G5ACtWq1hyJDaZFfJmJRTtrmMjbUbIdt5Xr6lHL8fuz1lAnoAa4O217n7Ijmm\noXNvcpvl/yYibSOsz1SgkEPB3A88GuG5h8nxcGzwL4i7aMQvCOOdzwdz52bx6af7ue22n/Db357A\nD37wPwwdKtaUaIwrMG97+ZZydLPi/0opusXpCJef7/RDsc9LZiopKaGkpCQel44k454K3KWqKiJ3\nA38CfhzBeaNU9QQRWQKgqjtEJO7TuT4G1AKnq+oQEWkPvKOqJ0VTcLyl4+QXkVqzZgeDBm1i//6B\nDB2abV9QGc4mjfHGv89P+ZZyPnv3Mx68Zx6rVz9HdbWQmwtz5jj9UEzmC/e5EZFCYIqqjnO3bwNU\nVe8POuZxYLaq/t3drgJOBfo2dK67vzfwuqoOi6COHwMnA4vcoN4JJ656nlnVSzP7KFW9EdgLzi8I\nrANcUqxf357q6kHU1mazbFk1ZWXp/eVrTCz5mvso7FnI9ddcz7HH7qddly/J7jOfQcP81rvdLAIG\niEhvNwO+ApgZcsxM4Go4GPx3quqm+s4Vka5B518ElEVYn4eAV4HOInIPMBe4L5o35qWZ/YCIZAMK\n4P6CsBu3SRAYg15RoWRnf8Xzzz9Ffv7/UF4uFBRYlm4MOJnZQ4/fw+AH8tBOCp3yoVkpYB+QpkpV\na0TkJuAdnGT2SVWtFJHrnZd1mqrOEpFzRORL4FtgUn3nupd+wB3CVguswukFH0l9XhSRT4EzcJrz\nLwy6pidemtmvAi7HmZf9WeASnLHnM6IpON4yobmwPn6/cx+wR4+dXHLJJXz55dPs3t2T/HyxZvcM\nY83s0Zu/dj5FTxVRQw25Wbm8edkcjtpeaD96m4B0mJtdRJ4FbnE7lePevv5fVb3W87W8fHDdMXWB\nXxDvR/sLIhEy7UupPu+//x1nnpmLai65ucqcOWL3BTOIBfPo+ff5KXq6iGUbl+Hb25ae767ii6Vt\nrDNcE5AmwfyIlUejXY3Uy3SuzwIbVfVRVX0E2CgiT3kt0L1WvTPwiMggEflIRPaKyC+9nNsUjRx5\nFAUF2WRlHSA7+wuystbaUBxjcO6fl04q5YMffkD7V8+k8rNWNtWrSSVZbjYOgIh0wNvt74O8nDQs\n0BQAB7vQe/71EDSLzhnA18AiEXlNVauCDtsG/By4MIpzmxyfD+bNy6KsTHjnnTmccsopQC35+VmW\nfZgmz9fcx6n9T+Xvz3dmdPEnZHeuZtDRw8jPtw+GSbr/BeaLyMvu9qXAPdFcyEtv9lj9gmhwBh5V\n3aqqnwLVXs9tqnw+GD1aOOus61AdTHV1FsuW1VhPd2NcQ47rSdffXkLN1UXUXnMKNLOmK5Ncqvoc\nTu/3Te7jIlV9PppreQnmgV8QfxCRPwAfAQ9EUWYkM/DE49wmoaAACgqyycmppXnzr7jzzstYtWqb\nNbubJq9scxmb2QjZStWWcso2l9nscCapRCRPVStU9RH3USEixdFcK+LMWlWfE5FPgNPdXRepakU0\nhSbKlClTDj4vLi6muLg4aXVJlMBqa+XlWQwc2Ic//GEwAwduRLUdBQU2wUw6iONMVk1aYHa4ii0V\nZO/K5t0X53PD9NE2O5xJphki8jxOYtzC/XsiMNrrhbwMTcsLDd4iUqyqJZ4KjGAGnqBjJwN+Vf1T\nFOdmVK/caM2fD0VFNdTUOB3k3nprL4WFPsrKsOE5acJ6s8dOYHa41ntaM3bUreza+xK1HSvI2VFA\n6Xs+GwWSQdKkN3sr4H5gBM4ECC8C96uq5zlcvDSzzxCRW8XRUkQeJrqZaiKZgSdY8P8Mr+c2eYFm\n99xcpX37jfzwh6cybNguxo7FllI1TU5gdriCgQVM/dsN1P5oFEwaS85Pi+g10D4MJuEO4Kx70hIn\nM18ZTSAHj9O5Asfg3CtfhNOb/BSvBapqDRCYRaccmB6YgUdErgMQkS4ishb4BfB7EVkjIq3rOtdr\nHZqSQLP7nDnCypXHcMcdT7Jq1VFUV0N5eS0LF9o9Q9M09T6pI1ldV0B2NTUdKlizx8aqmYRbhBPM\nTwKKcNZIf7n+U8Lz0szeDKfL/JlAa+B2VZ0eTaGJICKqu3c7G8Ftyn4/TbmN2e+HU06ppbxcgS9o\n374du3Z1s5njUpg1s8eHf5+fMU+PoWxjGa2+a8XqyavJqW3flL8eMkqaNLOfqKqfhOz7YTQ92r1k\n5jH7BZEwJ5/sPAJtyl9/7fwNbmMO7s7aBLq2Bsakz5uXzYwZ3dmxozPV1cKyZdUsXPhtU/hPYAzg\nNLnPnTSXD6/5kJFlI/l/b76T0cW7KZo4n5NP89tnwMSNiPwGQFU/EZFLQ14eEtU1PWTmMfsFkQgi\nopqdDSJQXQ25ufDoo/Cznx3afvNN+NWvnKmgBg92TqyqOtS1FQ5l8cHPM+Qnu9/v/KYpL6+ldeu1\nZGVNoFmz99m6tbNl6inEMvP42717N8ed9FNWnV4FnSpgSz7vXVXKGWPsA5CuUjkzF5HFqnpC6PNw\n25FqMDOPxy+IhBkyxAnSubmQlwcTJjiBOrCt6gTy6mqorHQCeWCux4ULD2XxoRl+uCw+DVPawP30\n0tIs1qzpzcMPv86mTR0OZupvvmnj003T0KZNG+598ionkGdXO3872T10EzdSx/Nw2xGJpJn9iqDn\nv98TzjcAABW4SURBVA15bVw0hSbMRx85jzlznKjVvXugN5jzd9SoQ8E9NPBHGujDNd9//XXaBHqf\nDwoLnb/nndeXYcNyycmppV27TUycuJExY6oZMeK7pnIXwjRh5550GgPb9YcaoVfLHgw5Ot/+vZt4\n0Tqeh9uOSIPN7MEruISu5hLt6i6JEHFzYWAt0fx8Zzv4eVGRE7wHDXK2v/jCCfQPPgjjx4dvvs/J\ngT59YNUq5zqzZsE55xy67qxZsHp1ynbIC/zn+OYbGD9eqa4WYD8DB97Mnj33sHFjB2uCTzBrZk8c\n/z4/r8x9hV/+4A58vo9Yt38NQ44u4KPZPvv3nmZSvJm9BmetdMEZlvZd4CWgharmer6oqtb7ABaH\nex5uO5UezltrpN27VefPd/6GPj/uONXcXOfv+vWHtgcMUM3JUQVne9q0Q9s5OYdeDz4vePujj5zr\nB8oP3k6g4Lc4bFit3nPPAhXZr6CalbVfH354ke7cWZOs6jUp7r/l9PncZIA/T/1I+a+hyn/nKP91\nnL5Xav/I000iPzep8IgkM4/9L4gEiHuGEZzRBzLs8nLo1cvJxCsqnCw+kJlXVEDv3k7GHk1Gn4QO\neaGNFk5DhdKp0xbatbuK5cv/TG3tIPr128fs2S1ZuzYrVRoYMopl5on33hfzOfPFsc7985pc3rtq\nDmcMsunh0kkqZ+bxEHFv9nST1C+lWAf6xva8j1FTfvDbKiuDsWNrqa7OAvaTnb0O1V706bOHhQub\n06xZs1S6e5DWLJgnnn+fn5OfLKJySzlsEf4xYQZnjLnQ/k2nEQvmGSJlv5SiCfSh9+lDh9zVF+jj\nlOEHhrUd+h1yKLC3anUJOTkP4fcfw+DBtbz7bu5h3QSMNxbMkyMwj7v/Kz8TL76O1h1KWbd/rd1D\nTxMWzDNEWn4p1RXovXTIS+DY+rp+h/z+99u54oq21NZmA/to1mwj1dU96N37W+bMgbZt21qG44EF\n8+R79K+LuGnxj6FTpY1BTxMWzDNERn4pRdPzPlYZfmigD2m+9/uh/I1V5E/oAz7fwer06qWsWqXU\n1GQhcoDmzS9E5P9j375+9Or1LTNnVvPNNx1TtXN/SrBgnnyh99Bf+/6HdNo72v6dpjAL5hmiyX0p\n1RXoY5XhBwf60Ob7MIE/ENx7ndqHcy4+iooqIW+wct8DNZx/fo7bJH8AkdWo9qZ9+w38+tezeeaZ\nS/nPf1oeHP4GFtwtmCdf4B561ZYKsnc046hXPmR31j6GHD3UmtxTlAXzDGFfSvWI9dj6BjJ8f81R\nlC/PJX9ILbz9NkVnO8G9dy9l1ZosqquF7OwaCgufZ968q4Bc4ADnnz+VJUt+wIYN7cnLgzffzErl\nIfpxY8E8NQTuoa/6vCMT/32JO+1rHu9dNdea3FNQUwvmXhZaMZkieNq30OeBGfJCZ88Lni0vdGrc\nBmbP861YTGHNPHxffML/3965R0dV3Xv885vMhKCEhACCARIwPPJAUaQIAlrqtQpavb2+au2t1kep\n6K3gstJWvPisj+q61dWrvaD4utcqLVqpBkSEqiAIVZRHHoQAARLBxTMTgbzY94+ZDJMhMxmYmTMz\nZ36ftc6avWfvOfs3O/Pb3/z22WefzPLVfMIEPjYX8JHzXyhJq8RFI8Ndm5k39ypGDHfgcrZSMOgw\nubn9qN3ZnZYWB+vWNVMwqIbx45opGrqbefOWM3ZsS9BN9xQl2rQ9C73X4D3Htn3tVcbOxkW6O6IS\ndzQyV8KnswV6JzGV7yaTja3DKHFuInPRX3BPu5+N5Q5PFD9/PhNG1FN2ZCB5rq+pae5HCy6cNDJk\n0NOUb70HSAeaye6+H3dDDoPyD/HB0mZ69uxpmyffamSeWPim3PeUcZr04chzDjIzV+hK9wQj1SJz\nFXMlNkRpKt99+71sbB1GnuxksnmPMgoppoLSN+qZdNNplB8ZyIC0Ora39vcJfVbXq6hvepzW1mH0\n6PE1d/xHKa+9ch07dnanuNCwcLEzqabrVcwTj7Yp95LeJbz00gbu+mqKd6W7TrsnCirmNkEHpQQm\nHKEPXIk/bFi7a++Z//UQ7kuv6VDon3qihUkzzqIFFy6auHjc6yxe8WNaSCeNRlzOOppa+tOz527u\nmv4Bc+f8kO07Mz1C/9Zhav6xjeGXDyQzNzMhhF7FPLFpt9K9xcmfL5nPBUUTeXf1Bi4fPZzcnirs\n8UDF3CbooJSknORUfrtFdo8+yoQrc45F8U+uZ/K9Z1JGIXlsp4aBXqFvZOJ5r7H0s5/6hL4f26kj\nnyFpm7hu+ge8PO9Gdu7MonBYK+//rTEuQq9intj4T7v3PNqLppecNFyZRXN2BRnuEqpnfqKCHgdU\nzG2CDkopQAihd59/ie/ae+b7f8V9ydVsLHeQN+Aok7c9H0Lo82khHReNXHPOXOatveU4oR/sqOTi\nG9/k7UW/ZNfunhSccYSlHx0lE9jwrkfs8UtHKvwq5omP/7T7I3Pe4clvfuaN1F08O/JjRvUdk7CX\nceyKirlN0EEpxQmxbW6bsB8n9AUuJtc8T1njIIoztlH60m4mX5/VodDfOP5NXl7+I1pIx0kjOc4r\nyG55ki0UMUg2keZwsLl1MIWuzTz9Rj1333cOlZtdlBQaSucfah/h17nbCX8gKubJRd1eN2c8Mp7G\nbuWw5wxyl77D7sZ9ujjOYlTMbYIOSkpQQkzlu92wsbSGksn5niJvhB9K6Iup4KlpO5j0h+97o/gm\nBPFN5Z/X60FW7XnAF+H3lx3UmjyGOquY+puP+dMTF1LRNJjijC0sr+4HtI/qVcyTj7q9bkrXbGT7\nejcPb7lH70mPAyrmNkEHJSUqhCH0gbfRDUuvAYHKxvxOI/zrBz3N61vv8eVHdb2KfUd+R7UppCRj\nK59U59K9X3cV8yQlcHHc1FOmMePm37LoiwpdHBdjVMxtgg5KSswJiPDddW6f2EOYEf6KLCaPO0jZ\nkYEUZWzjgV/t4tqHx/rE/eM5VYy97UwV8yTFf3HcoMwCchb2Z/XgHZhe1bo4LsaomNsEHZSUhCJY\nhJ97/D8BEwrqKDsykOKMbRqZ2wD/xXF//nA9U1Zd6FscN/20FykcPFij9BigYm4TdFBSkhV/cddr\n5vaibq+bgkcmcKRbGWkHC2htaYVeW+lSX8SW+1eQmZ4Z930N7IKKuU3QQUmxCyrm9qJtcdw+dwMz\n1k/yRenf2XgLBzY9xJaGzbryPQqomNsEHZQUu6Bibk/8o/QuDUVccfAW/tLlBd+2sG/8YCEHpUan\n4E8SFXOboIOSYhdUzO1LW5Q++TsllO3Z4LfyPQ2p74/JqiXDXUz1zOUq6CeIirlN0EFJsQsq5qmB\n/8r33ul5fH2oxjcFf8W+e/jP22/i8x17NVIPExVzm6CDkmIXVMxTh7aV7zlpeYx4crJnCt5dyOUH\nJjC/6xLovQXXgUI2/XoZ6V266MNcQqBibhN0UFLsgop5auI/Bf/u6g1MWXmBL1Lv+tYomiYeoDWn\nigx3MSumLuSfm/X6uj8q5jZBByXFLqiYK/6L5TIaiplWfB+P7/ixb2c5cQ/AdN/hu74OpHzUrmJu\nE3RQUuyCirkC7SN14Nj96t8OoLXbdl/UPmLDDZQNWENzdiUZ7hJWTC1Nyahdxdwm6KCk2AUVc6Uj\n2sR9ZEEe455ru75exGXOa3jrlAd9UbvDPYCjKRi1q5jbBB2UFLugYq50RtCovWEArZnHovZBn/6A\nHcUVtPTYRBd3MVtsLO4q5jZBByXFLqiYKydKh1F7QxE39LyNuU3TfeJ+2pKL2HtuDa05VXSpL+Lj\nKX/ny211PmGv2+tOWqFXMbcJOigpdkHFXImEYFF7RkMRtw6Yxh8P/Nw3Jc/BfpBdi2PfEO7ufTPP\n7nuFpqyKDq+9J7rQq5jbBB2UFLugYq5Ek2Di7jyUT8up23xR+5Cqf6dq6KvHhL6+P2TtxLl/KE+P\nvJ97v/odjd3LE1boVcxtgg5Kil1QMVdiSUdT8hkNxayYWurLp32bR2u3YzvS9V37r+wa+faxW+Pq\n+2O8Qv/AkOk8VP2MN6I/ftGdfzqWwq9ibhN0UFLsgoq5YhX+UXub0HYu9O1vjcvfeC01w9/05TMX\njKVh3DeYXptx7D8DwUFrj824DhTywsSn+PlHvwo7wvfPQ+iFeyrmNkEHJcUuqJgricDJCH1GQxHT\nS+7nse3X+x4gg4hP6HusmsT+saXHX7PfO5iLvxnNkj5raM2pwrl/KDMH3cmj256jObsC18GhiAhN\n3SuD3nKXamLuiEejInKpiFSIyCYRmRGkzrMiUiUiX4rIOX7vbxORr0RkrYists5qRUkR3O5jrytX\nel790ydSFq3zWNFGop0nwWzNTYdbswy56Z6itvzIvplU31XKnL5zqb6rlJFDcv3yC7nzh5eQ4S6G\nFhfp7kK6uAuhxUVGQxFLnnveV+b8Nh+yayGthaM51TScnktrThWktdCSXcXLn66kObsC0lpo7l5J\nU/dKSGvhSLdy8sZ8j34zRzFl5QUUPDKeur3uoD/vk9Cfszv7rIj0EJHFIlIpIu+LSFZQA2KFMcbS\nA88/EJuBfMAFfAkUBtSZBLznTZ8HrPIr2wL0CKMdk0gsW7Ys3ia0I5HsSSRbjEk8e7y/Zav805gR\nI4yprfW8Op3GDB/uOZzOEyuLwnmWORwxbyMh7QmzjU7tsdDWZQ5H0DZqzx5t5uSdZWrPPNfUnnmu\nJ3326HZln581xmTcPsww02Uybh9mPl+xNmg+feoQ02XqEF/Zw8+/brjfaXgAw0yXmfPW0g79JhL9\nCfVZ4AngXm96BvC4VT7rs9vyBmEMsNAv/2tgRkCdPwHX+eXLgT7e9FagZ1iDUgIxa9aseJvQjkSy\nJ5FsMSbx7LFczF0uY2bP9gzGYExa2rH0iZRF4TyzLGgjIe0Js41O7bHQ1llRaKO2a5aZ07/Y1J6S\nbczs2cHzGd3bldU+85zJ+MVQj7j/YqipXRRUzE9af0J9Fqjw06i+QIVVPtt2xGOavR+wwy+/0/te\nqDq1fnUM8IGIrBGR22JmpaKkKsXFcNllUFICLhcUFUFhoSd9ImXROI/DEfs2EtGecNvozB4rbXU4\nIm4jt2AAt+6uIndIPlx2GblDB3acH5zXrm7u1VdSvSqbOa8WUb0qm9zzRwX7dZ+M/rTVCfXZPsaY\n3QDGmF3AaSfle5Fg9X8PwFXAbL/8T4BnA+r8HTjfL78EGOlNn+597Y1nmmN80AgjgUi0aC+R7Ekk\nW4xJPHuwOjKvr/c0XF9vzMqVnlf/9ImURXieWbfcEvM2EtaeMNoIyx6LbPXZEse/j3++I7+JRH9C\nfRbYH3COvYFtx/qIh5iPARb55cOZ5vBNYQTUmwXcHaQdo4cedjks9M+4f1c99IjWEU39CfVZ2l8K\n7guUW62tTqxnDTBYRPKBr4EfAdcH1FkA3AG8KSJjgAPGmN0icgrgMMY0iMipwPeBBztqxKTQLQmK\nEi3UbxSbE4n+7Anx2QXATXgWwt0IvBPrLxKI5WJujGkVkTuBxXhWB75ojCkXkSmeYjPbGFMqIpNF\nZDPwLfAz78f7AG+LiPHa/n/GmMVWfwdFURQl+YhEf4J91nvqJ4B5InIzUANca/FXs++mMYqiKIqS\nKsRl05hoEcnN//GwR0QuFJEDIvKF95gZY3teFJHdIrIuRB0r+yekPVb2j4j0F5GlIrJRRNaLyC+D\n1LOkf8KxJ5r9o74T0hb1m+C2pLTfJDRWX6SP4kKdiDafiZM9FwILLOyj8cDZwLog5Zb1T5j2WNY/\neBapnO1NdwMq4/z7CceeqPSP+k7Ev1P1G5N6fpPoRzJH5qOBKmNMjTGmGXgDuDKgzpXAqwDGmM+A\nLBHpE0d7ACxbYGSMWQ7sD1HFyv4Jxx6wqH+MMbuMMV960w14VqMG3m9qWf+EaQ9Ep3/Ud0KgfhPS\nllT2m4QmmcU80s1n4mEPwFjv1NN7IlIcI1vCxcr+CRfL+0dEBuKJfD4LKIpL/4SwB6LTP+o7kaF+\nQ0r6TUITj1vTUpnPgTxjzCERmQT8DRgaZ5sSCcv7R0S6AX8F7vL+Zx9XOrEnlX8/qfzdO0P9Rv0m\nqSPzWiDPL9/f+15gnQGd1LHMHmNMgzHmkDe9EHCJSE6M7AkHK/unU6zuHxFx4hkAXjPGdHRfqKX9\n05k9Uewf9Z3IUL9JTb9JaJJZzH03/4tIOp4b+BcE1FkA/BRA/G7+j5c9/teNRGQ0nlsD98XIHl9T\nBL9eZGX/dGpPHPpnLlBmjHkmSLnV/RPSnij2j/pO56jfBCdV/SahSdppdhPZ5jNxsQe4WkRuB5qB\nw8B1sbIHQEReB74L9BSR7Xi2v00nDv0Tjj1Y2D8iMg64AVgvImvxbP/4Wzwrqi3vn3DsIUr9o74T\nGvWbkLakrN8kOrppjKIoiqIkOck8za4oiqIoCirmiqIoipL0qJgriqIoSpKjYq4oiqIoSY6KuaIo\niqIkOSrmiqIoipLkqJgriqIoSpKjYq4oiqIoSY6Kuc0QkSzvbkdt+eVxsCFDRP4hIhE9dlBEXCLy\nkYjo71SJKeo3SrKjf2z70QOY2pYxxoyPRSMiUigivwlSfDMw30S4vaD32dZL8OzVrSixRP1GSWpU\nzO3HY0CBiHwhIk+KiBvA+xCLchF5SUQqReR/ReQiEVnuzY9qO4GI3CAin3nP8XyQSGEisDaIDTcA\n75xIuyJyioi8KyJrRWSdiFzjPdc73vMpSixRv1GSG2OMHjY68DxgYJ1fvt7v/Sag2Jv/J/CCN30F\n8LY3XYjnqUdp3vx/Az8JaONSPM8Ivg3oE1DmAuoC7Amn3X8D/sfvc5neVwfwTbz7VQ97H+o3eiT7\noZF5arHVGFPmTW8EPvSm1+MZPAAuAkYCa7xPIfoecIb/SYwxi4BaY8wcc/yjDXsBB06i3fXAxSLy\nmIiMN8a4vW0dBRpF5NQT/7qKEhXUb5SEJ2kfgaqcFI1+6aN++aMc+y0I8Iox5r5gJxHP84F3BSk+\nDGScaLvGmCoRGQlMBh4RkQ+NMQ9763UBjgSzR1FijPqNkvBoZG4/3ECmX16CpANpK/sQz/N/ewOI\nSA8RyQuoOxpYLSKjRKSrf4Ex5gCQJiLpJ9KuiJwOHDbGvA78HjjH+34OsMcY0xriHIoSKeo3SlKj\nkbnNMMbsE5FPRWQdsAjwXxkbLO3LG2PKRWQmsNh7a0sTcAew3a9uHZ4pxWpjzOEOzFgMjAeWhtsu\ncCbwexE56m2z7TahicB7HX1XRYkW6jdKsiPGRHQXhKIch4icA0wzxtwYhXPNB2YYYzZHbpmiJC7q\nN0ok6DS7EnWMMWuBZdHY/ALPql0dkBTbo36jRIJG5oqiKIqS5GhkriiKoihJjoq5oiiKoiQ5KuaK\noiiKkuSomCuKoihKkqNiriiKoihJjoq5oiiKoiQ5KuaKoiiKkuT8PykCxv3t1j0iAAAAAElFTkSu\nQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1,2, figsize=(7,5))\n",
+ "ax[0].set_xlabel('time $t$ (ms)')\n",
+ "ax[0].set_ylabel('Excess open-time probability density $f_{\\\\bar{\\\\tau}=0.5}(t)$')\n",
+ "plot_exponentials(qmatrix, 0.5, shut=False, ax=ax[0])\n",
+ "\n",
+ "plot_exponentials(qmatrix, 0.5, shut=True, ax=ax[1])\n",
+ "ax[1].set_xlabel('time $t$ (ms)')\n",
+ "ax[1].set_ylabel('Excess shut-time probability density $f_{\\\\bar{\\\\tau}=0.5}(t)$')\n",
+ "ax[1].yaxis.tick_right()\n",
+ "ax[1].yaxis.set_label_position(\"right\")\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 4.33875158e-12 -4.33864056e-12]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import QMatrix, MissedEventsG\n",
+ "\n",
+ "tau = 1e-4\n",
+ "qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ], 2)\n",
+ "eG = MissedEventsG(qmatrix, tau, 2, 1e-8, 1e-8)\n",
+ "meG = MissedEventsG(qmatrix, tau)\n",
+ "t = 3.5* tau\n",
+ "\n",
+ "print(eG.initial_CHS_vectors(t) - meG.initial_CHS_vectors(t))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/CHSvectors-checkpoint.ipynb b/exploration/.ipynb_checkpoints/CHSvectors-checkpoint.ipynb
new file mode 100644
index 0000000..fc1dcfc
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/CHSvectors-checkpoint.ipynb
@@ -0,0 +1,227 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHS vector"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "First, create the $Q$-matrix from the CH82 model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import QMatrix\n",
+ "\n",
+ "tau = 1e-4\n",
+ "qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ], 2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Then create the missed-events likelihood function $^{e}G$ from which the CHS vectors can be found. \n",
+ "We compare the vectors to prior results."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import MissedEventsG\n",
+ "\n",
+ "eG = MissedEventsG(qmatrix, tau)\n",
+ "assert np.all(abs(eG.initial_CHS_vectors(4e-3) - [0.220418, 0.779582]) < 1e-5)\n",
+ "assert np.all(abs(eG.final_CHS_vectors(4e-3) - [0.974852, 0.21346, 0.999179]) < 1e-5)\n",
+ "np.set_printoptions(precision=15)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEbCAYAAABk26sYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecFdX5x/HPlyoIUiyoIKKoKERFBERBxRbRxF5REywh\nBrsxivrTWBIVLAmWRINB7FFjjxorQWwICtJEwIYdCwoIAsvu8/vjzMJ1Xdg7u7N35u4+79drXtyZ\nO3POuTr3PnvOnCIzwznnnMuyBmkXwDnnnKuKByvnnHOZ58HKOedc5nmwcs45l3kerJxzzmWeByvn\nnHOZV9BgJWmUpHmSpq7hnBskzZH0lqTuhSyfc87VBTX5rZU0QNI7kmZLGppz/GpJM6PzH5K0Tm1/\njlyFrlmNBvZd3ZuS9gM6m9mWwMnALYUqmHPO1SHV+q2V1AC4Kbq2GzBQ0tbRZc8C3cysOzAHuKD2\niv9TBQ1WZvYy8O0aTjkIuDM693WglaR2hSibc87VFTX4re0NzDGzuWZWAtwXnYuZPW9mZdH144EO\ntVX+ymTtmVV74OOc/U+jY84555JT8bf2k+jY6o5XdCLw31orXSWyFqycc84VnvI+Ufo/oMTM7q3F\n8vxEo0JmlodPgU1y9jtEx35Ckk9q6BJlZnl/YWvC712XpGret6v7rW0CdKzkOACSjgf2B/asRp41\nkkbNSqw+ij8O/BpAUh/gOzObt7qEzKzg2yWXXFIv8qxvn7XQ6st/1/p0D6WRbxWq81s7EdhC0qaS\nmgBHR+ciaQBwLnCgmS2r+bcgnoLWrCTdC/QH1pX0EXAJIZKbmY00s6ck7S/pXWAxcEIhy+ecc3VB\ndX9rzaxU0mmEnn8NgFFmNjNK9sYojeckAYw3s1MK9ZkKGqzM7Jg8zjmtEGVxzrm6qia/tWb2NNCl\nkuNbJlC0avMOFjH179+/XuSZVr5pfda6zu+huptvfaE82j0zSZIVa9ld9kjCCtjBwu9dl4RC3rdp\n85qVc865zPNg5ZxzLvM8WDnnnMs8D1bOOecyz4OVc865zPNg5ZxzLvM8WDnnnMs8D1bOOecyz4OV\nc865zCvqYPXGZ2+kXQTnnHMFUNTB6hf3/oLznjuPJSVL0i6Kc865WlTUwWrakGl8tOAjut/Sndc+\nfi3t4jjnnKslsSeylbQ2sGHO1tfMfl8LZauqHCsnA33w7Qc57anTOKH7CVza/1KaNmpa6OK4IucT\n2bpiVJ8msq1OsLoa2Bh4EWgNfG1mo2uhbFWV40df+Hnfz+PkJ07mg+8+4N5D76XbBt0KXSRXxDxY\nuWLkwaqqi6StgB2A783sycRLlV8ZfvKFNzNGvzWaoc8P5eLdLub03qcTrWjp3Bp5sHLFqJiClaQd\ngA/M7LtqXV+TL42kfYAdzOzqaidS/bxX+4V/d/67HPfwcbRp1obbD7qddi3aFbh0rth4sHLFqMiC\n1dnAbWa2oDrX16iDhZk9B4yrSRq1YYu2W/DSCS/RY8Me9BjZg+feey7tIjnnXH33JtBM0jmSYtcg\nYtWsJHUGLgUaA9eaWWoDnfL963TMB2P49SO/5phtj+GKPa+gccPGBSidKzZes3LFqMhqVk8CjxIe\nH/1L0sZm9lm+11dZs5K0l6SNo93DgFOBC4GDJe1WnUIX0p6b7clbv3uLt796m11H78oH336QdpGc\nc65WSRolaZ6kqWs45wZJcyS9Jal7zvEBkt6RNFvS0JzjbSQ9K2mWpGcktYpZrD8AU4CNJN0K3Bbn\n4nyaAf8HtJK0N9AS6AdsAgwHtoxX1nSs13w9/jPwPxzV7Sh2+udOPDDjgbSL5JxztWk0sO/q3pS0\nH9DZzLYETgZuiY43AG6Kru0GDJS0dXTZ+cDzZtYFGANcEKdAZjbTzCaY2V/MbDBwbpzr4zYDnmxm\n/5DUDNgR2A8YC5SZ2QtxMq6p6jalvPHZGwx8aCB7dNqDEQNG0Lxx81oonSs2xdwMuHgxPPUUPPgg\nvPYabLABbLIJdOsGQ4ZA+/aJZeUyZk33raRNgf+Y2XaVvHcL8D8zuz/anwn0BzYDLjGz/aLj5wNm\nZsMlvQPsbmbzJG0IjDWzrSumvZqytANamNl7Ubk+ivsliNvB4hlJo4FDgHWBZWb2XKEDVU303Lgn\nb/72TZaULKHXrb2YNm9a2kVyrtoefBA6dIBbb4W994YXXoC//Q2OPRa+/x623RZ++1t4//20S+oy\npj3wcc7+J9Gx1R0HaGdm8wDM7Atggxj5HQZsKqk/MB8YGLfAsYKVmX0InEUYDNyO0BRYdNZpug53\nHXIX5+1yHnveuSc3TbgJf+DtiokZXHMNnH02jBkDzz4LgwfDllvCTjvB4YfDiBEwezZsuGE4ds89\naZfaZVh1WhXi/Gg2NbMxwNpmtgiI3X29UdwLoj7yf497XdZIYlD3QfTt2JeBDw3k6Xef5raDbmOD\nteP8seBc4ZnBKaeEJr/XXgs1q9VZbz24/HI44gg49NBw/l/+Ak2aFK68Ljljx45l7NixSST1KaHv\nQbkO0bEmQMdKjgN8IaldTjPglzHymynpJWCOpEbAdkCsCSVqNCg4TUm2+y8vXc4l/7uEO6bcwT9+\n+Q8O6HJAIum64lFMz6xuuQVGjQo1qpYt879uwQIYNAjmzw/PuFq0qHYRXEZU8cyqE+GZ1baVvLc/\ncKqZ/UJSH2CEmfWR1BCYBewFfA5MAAaa2UxJw4H50fOroUAbMzs/Rlk7AgcDPwAPxB0cnFewUpiz\nqIOZfVzlyQVSG2NVXpr7EoMeHcTem+/NdT+/jpZNY/wSuKJWLMHqww+hVy8YNw622Sb+9WVl4RnW\nnDkhYK29drWK4TJidfetpHsJHSbWBeYBlxBqTWZmI6NzbgIGAIuBE8xsUnR8AHA94THRKDMbFh1v\nCzxAqJHNBY6s7tRJ1ZF3zUrStMoidFpqa2DlwmULOfvpsxnz4RhGHTiKPTfbM/E8XPYUQ7Ayg332\nCdvQoVWfvzplZXDCCfDJJ/DEE9CsWfXTcukqpkHBNRWng8UkSb1qrSQZsU7TdRh10Cj+vv/fGfTo\nIIY8MYSFyxamXSznuPVWWLgQzjmnZuk0aAC33RY6XhxxBJSWJlM+5ypSsEnVZ1YtTrDaCXhN0nuS\npkqatqbR0cVuvy33Y/qQ6ZSUldDt7914ZOYjaRfJ1WPffgsXXgijR0Oj2N2ifqphQ7j9dliyJKTr\nXG2ImhCeSiKtOM2Am66mMHOTKEhchZxf7cUPX+R3T/6OrdbdiusHXE+n1p0Kkq8rnKw3A159NUyf\nDnfemWxZvvkGeveGyy6D445LNm1X+4qhGVDSHcBNZjaxRunEnMFie2DXaPclM5tSk8xrotCTgS5b\nsYxrXr2GEeNHcGqvUxnab6jPflGHZDlYlZRA587w6KPQo0fy5Zk+HfbcMzy/6t07+fRd7SmSYPUO\nsAWhU8Ziwpguq2xmjTXJuxlQ0pnAPYRRyxsAd0s6PU5mxaxpo6ZctNtFTDp5ErO+mcU2f9uGu6bc\nRWmZN/i72vXww7DZZrUTqAB+9jMYORKOPDI0NzqXsH2BzsCewAHAL6N/Y4nTDDgV2NnMFkf7awOv\nxY2OSUl7mYWXP3qZoc8PZdGyRQzbexj7bbGfr0pcxLJcs9p5ZzjvPDjkkFosFHD66TBvHtx/P/it\nXByKoWYFybTKxelgISC3GlFK9aboqBP6dezHyye8zJ/2+BN/ePYP7DxqZ56c/aRP2+QSNX58CCAH\nHlj7eV1zDbzzThhw7FxSkmqVi1Oz+j0wCCjvFncwcIeZ/TVupklIu2aVq7SslIdmPsSfx/2Zxg0b\n84ed/8DhXQ/3hR6LSFZrVkcfDX36wFln1XKhIm+/DbvvXv1Bx66wiqFmlVSrXNwOFj0I61lBqMpN\njpNZlMYAYASrRkcPr/D+OsDdhPmpGgLXmdntlaSTmWBVrszKeGL2E/zltb/w3rfvcWqvUzlxhxN9\nvsEikMVg9e230KkTfPQRtIq7zF0N3HIL/POfoVaXRDd5V3uKJFhNA3qZ2dJofy1gYtxJJuLUrIab\n2dCqjlWRRgNgNmHeqc+AicDRZvZOzjkXAOuY2QWS1iPMU9XOzFZUSCtzwSrX5M8nc8OEG3hk5iP8\nvPPP+U2P37DXZnvRsEHDtIvmKpHFYHXPPfDAA/DYYwUoVA4z+PnPQw/BC2Itr+cKrUiCVSKtcnGC\n1SQz61Hh2NQ4VblowsRKF/bKOed8wjyEp0naDHjGzLaqJK1MB6tyC5Yu4N5p9zJq8ig+W/QZR3Y7\nkoE/G0iv9r1ooLjLibnaksVgdcQRsP/+YWqkQps7F3r2hBdfhK5dC5+/y08xBCtIqFWuqi+NpCHA\nKcDmwHs5b7UEXjGzvIcSSjoM2NfMfhvtHwf0NrMzcs5pATwObA20AI4ys/9WklZRBKtcs76exb+m\n/4v7Z9zPwmULOXCrAzmwy4Hs3ml3H7OVsqwFq6VLw3RIc+bA+usXolQ/9Y9/hGmZXnnFmwOzqhiC\nVRKtcpBfsGoFtAGuAnKng19kZvNjZZZfsDoM2MXMzpHUGXgO2M7Mvq+QVtEFq1yzvp7FY7Me44nZ\nTzD5i8n02rgXe2++N7ttuhs9N+7JWo3WSruI9UrWgtVTT8GwYaGjQ1rMwurDAwbAueemVw63ekUS\nrGrcKgd5LL5oYc2RBVRjGeJKfMrqF/YqdwIhMGJm70n6gFDLeqNiYpdeeunK1/3796d///4JFLEw\nuqzXhfPWO4/z+p7HomWLeHHui7zw/guc/czZvP3V23TfsDu9Nu5Fz417suNGO7LlulvSqIH/eZuU\nBBexqxWPPgoHH5xuGaQweW7v3qFJslOndMvjiktuq1yFeWRbAq/ETi/GM6s7gDPL1y+R1IbQU+/E\nvDNbw8JeOef8DfjSzC6T1I4QpLavWIsr9prVmny//HsmfDqBNz57g4mfTWTS55P4fNHnbL3e1vxs\ng5/RZd0udFmvC1u23ZLN2mzGOk3XSbvIRS9LNavSUmjfPjS/de5ciBKt2ZVXwquvwn/+44OFsybL\nNaskW+UgXrCabGY7VHUsj3R+srCXpJOJFgWTtBFwO7BRdMlVZvavStKps8GqMt8v/54ZX85gxlcz\nmPX1LGZ9M4s58+fw4Xcf0qxRMzq17sQmrTahQ8sOtF+nPRu12IgNW2xIuxbtWL/5+qzXfD2aNmqa\n9sfIrCwFq1dfhd/9DqZmZE2D5cthhx3g8svhsMPSLo3LleVglbQ4wWoK0N/Mvo322wIvxu0rn5T6\nFqxWx8z4cvGXfPjdh3yy8BM+Xvgxny78lC8Wf8Hniz7ny8Vf8tWSr/h6ydes1Wgt2jZrS9tmbWm9\nVmtaNW1Fq7VasU6TdWjRpAUtm7akRZMWrN14bdZusjbNGjWjeePmNGvcjLUarUWzRs1o2qgpTRs2\npWmjpjRp2GTl1lANi3q6qSwFq/POg7XWCsEhK156CY45BmbMgHW8Ip8ZxRCskmiVg3jB6tfA/xGW\nNQY4ArjCzO6Kk2FSPFjFY2YsWr6I+T/MZ/4P8/lu6XcsWLqA75Z+x6Lli1i0bBGLli9i8fLFLC4J\n25KSJfxQ8gM/rPiBpSuWsmzFMn5Y8QPLS5ezbMUylpUuY3npckpKSyizMho1aETjho1p3KAxjRo0\n+tHWsEFDGqrhT/5toAY0bBD+rbgJhX+llfuSqvUv8KPXAL/p8Rv23nzvle9lJVhtvXUYY7XjjoUo\nTf5OOglatoQRI9IuiStXJMEqmVa5mDNYdCXMnAswxszejpNZkjxYZUtpWSkrylZQUlZCSWkJpRbt\n57wuLSul1EpX/ltmZStfm1nYz3ldZmUYOa/NMCz2v8CPXpfruXFPtmi7BZCdYPXFF2Fc09dfhxV9\ns+Srr6BbNxgzJszU7tJXJMEqkVa5vLuXKbTx9ADamtnlkjpK6m1mE+Jk6Oqmhg1Cbakp/lysJl55\nBXbZJXuBCsJ4r0suCbOzjxnjnS1c3q4Dxkv6Uatc3ETifCX+DuzMqi7si4C/xc3QObd6r7wCffum\nXYrVO/nkMGfhv/+ddkncmkgaIOkdSbMl/WTwraTWkh6WNEXS+KjVrPy9MyVNi7bcMbDbS3pN0mRJ\nEyT1zKcsZnYncAgwL9oOrc7jozjBaiczOxVYGhXgW6BJ3Aydc6uX9WDVqBHcdBOccw58/33V57vC\ni+ZgvYmw6GE3YKCkrSucdiEw2cy2J8zbd0N0bTfgJKAn0B04QNLm0TVXE6bL2wG4BLgmz/Lktsrd\nBHwvKfaa1HGCVUk0TsqiAqwPlMXN0DlXuSVLwhLzvXqlXZI169cvLCNy1VVpl8StRm9gjpnNNbMS\n4D7goArndAXGAJjZLKBT9Ju+DfC6mS0zs1LgReDQ6JoyoHz+/9b8dEKH1UmkVS5OsLqBMGvuBpKu\nAF4GroyboXOuchMmwHbbQbNmaZekasOHh7kDP/ww7ZK4SrQHPs7Z/yQ6lmsKURCKajkdCTMKTQd2\nldRGUnNgf2CT6JqzgWslfUSoZeU7J38irXJ5Byszuwc4jzAa+XPgYDPzlmvnEvLyy9luAszVvj2c\neWYYE+aK0jCgjaRJwKnAZKDUwnJNwwlzsj5Vfjy6ZghhvFRHQuC6Lc+8EmmVi9Mb8PfA/WbmnSqc\nqwWvvBI6MBSLc84JqwmPGwe77ZZ2aeqHPOe0rHIOVjNbBKwclBvNwfp+9N5oYHR0/ApW1dIGmdmZ\n0TkPShqVZ7ErtsodDlyU57UrxRkUfAlwJDAfuB/4t5nNi5thUnyclUtS2uOsSkth3XVh9mzYoIgW\nlr7vPrj6apg4ERr6uqIFV9l9m+ccrK2AJWZWImkw0NfMjo/eW9/MvpLUEXia0Iy3SNIM4BQze1HS\nXsAwM8vrCWvUwWMvQMALuWXJ+7PG/cGXtB1wFHAY8ImZ7R030yR4sHJJSjtYTZ0Khx8eglUxMQsd\nLk46CU6MNXmOS8Lq7ts85mDtA9xBaI6bAZwUrbCBpHFAW6AEONvMxkbHdyHUkhoSnj+dYnksopjT\nKpdvh4zK06lGsNqQMKjraKClxVyTJCkerFyS0g5WN98caie35fsUIENefx0OPTQE2rXXTrs09UuR\nzGCRSKtc3h0sJJ0iaSzwArAuMDitQOVcXZP18VVrstNO4ZnVtdemXRKXRWZ2mZl1I3Tk2Ah4UdLz\ncdOJ88zqKkJV7q24mdQGr1m5JKVds+rcOawX1bXrai7KuA8/DBPvTpsGG2+cdmnqj2KoWZWraatc\n7GbArPBg5ZKUZrBatAg23BAWLizuTgpDh4YJeEfl20fM1VgxBCtJpxCaAdcH/g08UJ1J0H2ddOdS\nNn166AJezIEK4MILoUsXmDIFtt8+7dK4DNkEOKumrXIZnNvZufpl2jTYNpUlTJPVqhVcdJEPFHY/\nZmYXJPH4qMpgJalX1NZYvv9rSY9JuiFal8Q5VwPTpoVpluqCk0+GDz6AZ59NuySursmnZvUPYDmA\npN0I03TcCSwARtZe0ZyrH6ZOrRs1K4DGjWHYMDj33DDQ2bmk5BOsGprZ/Oj1UcBIM3vIzC4Gtqi9\nojlX95nVrZoVwCGHQIsWcFfsFYtcXZJ0q1xewUpSeUeMvYimlY94Bw3nauDTT0NtpJimWKqKBNdc\nAxdfDD/8kHZpXIoSbZXLJ1j9izCI6zHgB+ClKPMtokydc9VUVzpXVLTLLmGw8IgRaZfEpSjRVrkq\ng5WZXQGcA9wO9MsZINIAOD1uhs65VepaE2CuK6+E664LY69cvZRoq1xeXdfNbLyZPWJmi3OOzTaz\nSXEzdM6tUpc6V1S01VZw5JFwxRVpl8SlJNFWuSpnsJB0I9GiWZUxszPiZpoEn8HCJSmtGSy23z7M\n+NCzZyFyLrx588IUUm+8AZttlnZp6p6sz2ARze6+EfBseWVH0lZAi7iVnXyC1aCc3cuAS3LfN7M7\n4mSYFA9WLklpBKuSElhnHfjmG2jevBA5p+Oyy8KM7Pfck3ZJ6p6sB6skxZobUNJkM9uhFsuTNw9W\nLklpBKvp0+Gww2DWrELkmp7vvw9Ngk88AT16pF2auiXLwSrpVrm40y15dHAuIXW5c0WuFi1CN/bz\nz0+7JK7A3gDejLYDc16Xb7H4OCnnUlKXO1dU9JvfwF//Cs89B/vsk3ZpXCHkPiKSdFZNHxnlMzfg\nIkkLJS0Etit/XX68Jpk7V5/V1TFWlWncOHRlHzoUysrSLo1LQY1b5fIZZ9XSzNaJtkY5r1ua2To1\nLYBz9dXMmcW72GJ1HHZYCFr33Zd2SVwxyqc34BZAOzN7pcLxvsAXZvZeLZZvTeXyDhYuMYXuYLF8\nudGiRVh4sUmTQuSaDS++CCecEAJ106Zpl6b4ZbyDxSJW1aiaA0vK3wIsbmUnnw4WI4DKmvsWRu85\n52KaOzcs/16fAhXA7ruHhSb/8Y+0S1K3SRog6R1JsyUNreT91pIeljRF0nhJXXPeO1PStGg7o8J1\np0uaGb03bE1lSLpVLp9g1c7MplVSkGlAp7gZOufgvfegc+e0S5GOYcPCrBYL/Yl3rZDUALgJ2Bfo\nBgyUtHWF0y4EJpvZ9sAg4Ibo2m7ASUBPoDtwgKTNo/f6AwcA25rZtsC1VZRji6gFruLxvpJi3/35\nBKvWa3ivWdwMnXPw7ruwRT1dYGfbbWG//cLM7K5W9AbmmNlcMysB7gMOqnBOV6K5+sxsFtBJ0vrA\nNsDrZrbMzEqBF4FDo2uGAMPMbEV0XVWzPibaKpdPsHpD0uCKByX9hmr0lXfO1e+aFcDll8Pf/w6f\nf552Seqk9sDHOfufRMdyTSEKQpJ6Ax2BDsB0YFdJbSQ1B/YHNomu2QrYLWo2/J+kqiYJS7RVLp9x\nVmcBj0g6llXBqSfQBDgkbobOuRCs+vVLuxTp6dgxdLS4/HK4+ea0S1MvDQOulzQJmAZMBkrN7B1J\nw4HngO/Lj0fXNALamFkfSb2AB4DN15BHoq1yVQYrM5sH7CJpD+Bn0eEnzWzMGi5zzq1BfW4GLHfh\nhdClC5x1VvjXVW3s2LGMHTu2qtM+JdSUynWIjq1kZouAE8v3JX0AvB+9NxoYHR2/glW1tE+Ah6Nz\nJkoqk7SumX2zmnK8IWmwmd2ae7C6rXKx5gZMgqQBhPbKBsAoMxteyTn9gb8CjYGvzGyPSs7xrusu\nMYXuut6smfHll2Eqovps+HCYOBEefDDtkhSnyu5bSQ2BWYQ1pD4HJgADzWxmzjmtgCVmVhI95ulr\nZsdH761vZl9J6gg8DfQxs4WSfgu0N7NLopnTnzOzTddQtnbAI4TVgn/SKmdmX8T6rIX8wY96qcwm\n/Ef8DJgIHG1m7+Sc0wp4Ffi5mX0qab3KHuR5sHJJKnSw2nBD8+c1hGXvt9oK/v1v6NMn7dIUn9Xd\nt1Gl4HpWVQqGSTqZML5pZLR0xx1AGTADOMnMFkTXjgPaAiXA2WY2NjreGLiN0EtwGXCOmb2YRxlz\nW+VmVLdVrtDBqg9wiZntF+2fT/iPNzznnCHARmb2xyrS8mDlElPoYNW3r/Hyy4XILftuuw1uvz0M\nGFYmh7dmV5YHBSct7qzrNZVPL5WtgLZRb5OJkn5VsNI5VyD1uSdgRYMGwfz58OSTaZfEZVmVHSwq\nTJnxo7eoxpQZeZapB7AnsDbwmqTXzOzdiideeumlK1/379+f/v37J1wUV1fl+aC61tT3zhW5GjaE\nq64KS4jst1/Yd66iNJoBLzWzAdF+Zc2AQ4G1zOyyaP+fwH/N7KEKaXkzoEtMoZsB77nHOOaYQuRW\nHMzCVEzHHw8nnljl6S5Sn5oB464U3AbYElir/JiZjYtxfT69VLYGbgQGAE2B14GjzOztCml5sHKJ\nKXSwev11o3fvQuRWPMaPh8MPh9mzoXnztEtTHLIcrJJulct78cWob/yZhD77bwF9gNcIzXV5MbNS\nSacBz7Kql8rM3F4q0aC0Z4CphMFoIysGKueKnT+z+qk+fcJ2/fVwwQVpl8bVlJm1TDK9vGtWkqYB\nvYDxZtY9qgFdaWaHVnFprfCalUtSoWtWZWXmPd8qMXs27LILvPMOrLde2qXJvizXrHLVtFUO4vUG\nXGpmS6OMm0Zjo3zcuXPV4IGqclttBUceGWZld3VD1Co3DngGuCz699K46cQJVp9Iag08Cjwn6TFg\nbtwMnXNuTS65BO68E95/P+2SuIScSWiVmxvNRrQD8F3cRKrVG1DS7kAr4GkzWx47gQR4M6BLUqGb\nAf3eXbPLLw+rCf/rX2mXJNuKoRlQ0kQz6yXpLWAnM1smaYaZdYuTTt4dLHLlM8WGc85V1+9/H5oE\nJ06EXr3SLo2roYqtct9SjVa5KmtWkl42s36VdEOsrUHBefG/Tl2SvGaVPSNHwr33wv/+58/4VqcY\nala5clrl/hstDJn/tcX6pfEvvEuSB6vsWbECttsOrr4afvnLtEuTTcUQrCQ1BQ4jLLi4sjXPzC6P\nk07eHSyiBbmqPOacc0lo1CgsITJ0aAhcrmg9BhwErAAW52yxxBlnNcnMelQ4NtXMtoubaRL8r1OX\nJK9ZZZMZ9O8Pxx0HgwenXZrsKZKa1XQz+1nVZ65ZlTUrSUOiAcFdJE3N2T4gzDLhnHO1QoJrrw3d\n2b//Pu3SuGp6VdK2NU0knw4WrYA2wFXA+TlvLTKz+TUtQHX5X6cuSV6zyrZjj4Utt4SchRYcRVOz\nehvYAviAsGhjeee8WK1y3sHCOTxYZd2HH8KOO8K0abDxxmmXJjuKJFhtWtlxM4vVfb06Xddz/8N4\n13VXJ3iwyr6hQ8MijbfemnZJsqMYglVSvGblHB6sisF330GXLvD887BtjZ+A1A1ZDlZJj9GN0xsw\nkb7ySfEvvEuSB6vicOON8MQT8MwzaZckG7IcrJIWZyLbRPrKO+dcdf3ud+H51dNPp12SbJM0QNI7\nkmZHq69XfL+1pIclTZE0XlLXnPfOlDQt2s6o5NpzJJVJaltFGe4qTy+RzxSjZpVIX/mk+F+nLkle\nsyoejz0G//d/8NZbYeBwfVbZfSupATCbsCL7Z8BE4OhoWafyc64m9Oj+k6QuwN/MbG9J3YB/EWZJ\nXwH8F/jrDlNKAAAgAElEQVSdmb0fXdcB+Cdheagd19QjPOoFuHeURn9+3N+BuL3J49SsEukr75xz\nNXHggbD++nDbbWmXJLN6A3PMbG40/959hFaxXF2BMQBmNgvoJGl9YBvgdTNbZmalhHWochfY/Stw\nbp7luAV4AdgaeLPC9kbcDxUnWPUD3pQ0KxoUPE2SDwp2zhWUBNddFwYKL1yYdmkyqT3wcc7+J9Gx\nXFOIgpCk3kBHoAMwHdhVUhtJzYH9gU2i8w4EPjazafkUwsxuMLNtgNvMbHMz2yxn2zzuh4pTid4v\nbuLOOVcbevSAffeFq64Km4ttGHC9pEnANGAyUGpm70Rzvj4HfF9+XFIz4EJgn5w08mo2N7MhSRQ4\n72AVdwCXc87VpiuvDF3YTz4ZOnVKuzSFMXbsWMaOHVvVaZ8SakrlOkTHVjKzRcCJ5fvR9HnvR++N\nBkZHx68g1NI6E3qCT5GkKM03JfU2sy+r/4ny5+tZOYd3sChWl18OM2bA/fenXZJ0rKaDRUNgFqGD\nxefABGCgmc3MOacVsMTMSiQNBvqa2fHRe+ub2VeSOgJPA33MbGGFPD4AepjZt7X48X6kypqVmfWL\n/m1Z+8Vxzrn8/eEPYaDwK69A375plyYbzKxU0mnAs4R+CaPMbKakk8PbNpLQkeIOSWXADOCknCQe\nirqllwCnVAxU5dmQZzNgVBM7FtjczC6PguCGZjYhzufyGSycw2tWxeyuu8Jg4fHjoUGcLmN1QDEM\nCpZ0M1AG7Glm20hqAzxrZr3ipFPP/tc65+qaY48NPQTvuSftkrjV2MnMTgWWAkRNh03iJuLByjlX\n1Bo0gBEj4IILfM2rjCqJnqMZhGdihJpWLHGWtZek4yT9MdrvGPXPd865VO28M+y+OwwfnnZJXCVu\nAB4B2kW9C18GroybSJzplhJpd0yKt/u7JPkzq+L38cfQvTtMmgSbVrqCUt1TDM+sACRtTeidCDAm\nt2divuI0AybS7uicc7Vhk03gjDPgvPPSLonLFa3Y0QNoBawLHFHeQhdHnGCVSLujc87VlnPPDb0C\nX3wx7ZK4HIms2BFnuqWK7Y6HAxfFzdA552pL8+ZwzTVw5pnw5pvQsGHaJXJABzMbUNNEYo2zSqLd\nMSne7u+S5M+s6g4z2GMPOProsP5VXVYMz6wkjQRuzHcC3NWm4ysFO+fBqq6ZMgV+/nN45x1o0ybt\n0tSeLAcrSdMIj40aAVsS5h5cxqqp+raLlV6MYPU0sICwFklp+XEzuy5OhknxL7xLkgerumfIEGjc\nGG64Ie2S1J6MB6s19smMOzm6rxTsHB6s6qKvv4auXeGFF8Ls7HVRloNVOUnDzWxoVceq4isFO+fq\npPXWg0svhdNPD8+xXGr2qeRY7PUR81kiJNF2x6T4X6cuSV6zqptKS2HHHcNUTEcdlXZpkpflmpWk\nIcApwObAezlvtQReMbPjYqWXR7BKtN0xKf6Fd0nyYFV3vfRSmOx25kxYe+20S5OsjAerVkAb4Crg\n/Jy3FpnZ/LjpVdkMaGZzo4B0Svnr3GNxM5Q0QNI7kmZLWm2bpaRekkokHRo3D+ecK7frrmG74oq0\nS1K/mNkCM/vQzAZWiB2xAxXE62Axycx6VDg2NU4zoKQGwGzCWK3PgInA0Wb2TiXnPQf8ANxmZg9X\nkpb/deoS4zWruu2zz2C77eDVV2GrrdIuTXKyXLNKWpU1K0lDoudWXSRNzdk+AKbGzK83MCeKriXA\nfYRpOCo6HXgQ+DJm+s459xMbbxyeW3lni+KVT2/Ae4EDgMejf8u3HeM+IAPaAx/n7H8SHVtJ0sbA\nwWZ2M3kum+ycc1U54wz45BN45JG0S1I/SLor+vfMJNKrcm5AM1tAGAw8MIkM8zACyH2W5QHLOVdj\njRvD3/4GgwbBvvvWvc4WGbRjVPk4UdKdVPgtj/vsKs5Etkn4FOiYs98hOparJ3CfJAHrAftJKjGz\nxysmdumll6583b9/f/r37590eV0dNXbsWMaOHZt2MVyB9e8P/frBn/8MV12VdmnqvFuAFwhd19/k\nx8HKouN5izWRbU1FS4zMInSw+ByYAAxc3YS4kkYD//EOFq62eQeL+uPzz0Nni3HjYJtt0i5Nzazu\nvpU0gNBK1QAYZWbDK7zfGrgN6EzoyHaimb0dvXcm8Jvo1H+a2fXR8asJj4CWEcZNnWBmC/Mo481m\nNqSaH3GlfDpYJNbuaGalwGnAs8AM4D4zmynpZEm/reySmubpnHO5NtoILr4YTj21bna2iHpT3wTs\nC3QDBkYrZuS6EJhsZtsDgwhLQCGpG3ASoYWrO/BLSeU1oGeBbmbWHZgDXJBPecxsiKTtJZ0WbdWa\nSCKfDha57Y5tJLXN3eJmaGZPm1kXM9vSzIZFx/5hZiMrOffEympVzjlXE6ecAt9+C/fem3ZJakU+\nva67AmMAzGwW0ClaUHcb4HUzWxZVLl4EDo3Oe97MyhfcHU94jFMlSWcA9wAbRNs9kk6P+6HyeWaV\naLujc86lrVEjuOUWOOQQ+MUvoHXrtEuUqMp6XfeucM4UQhB6RVJvQl+CDsB04M+S2hCa+/YnjIet\n6ERCEMzHb4CdzGwxhElsgdeAG/O8HshvBosbzGwbwuDczc1ss5zNA5VzrijttBMccABcVD/XOx8G\ntJE0CTgVmAyURhM0DCdMyvBU+fHcCyX9H1BiZvnWS1UhjVKq0cs7796A5e2OwK7RoXFmFndQsHPO\nZcZVV0G3bvDrX0PvinWPDMqzF2uVva7NbBGhdgRANMnD+9F7o4HR0fEryKmlSTqeUNvaM0axRwOv\nSyof4XYwMCrG9SHvGNMtnQH8Fih/hnQIMNLMYlXlkuI9qlySvDdg/XX33XDddTBxYmgeLCaV3bf5\n9LqOJpldYmYlkgYDfc3s+Oi99c3sK0kdgaeBPma2MOpheB2wm5l9E7OcPYB+0e5LZjY59meNEaym\nAjvntDuuDbzmS4S4usCDVf1lBvvsE55dnX122qWJp4qu69ezquv6MEknE5Z1GimpD3AHUEbomX1S\nNAEEksYBbYES4GwzGxsdnwM0AcoD1Xgziz2ZeXXFCVbTgF5mtjTaXwuYaGapLMjoX3iXJA9W9dvs\n2bDLLjBpEnTsWPX5WeET2VauvN3xUkmXErouxm53dM65rNlqqzB3oE90m12xZrBIot0xKf7XqUuS\n16zcsmXQvXtY9+rQIllFrxhqVpKOAJ42s0WSLgJ6AH82s0mx0inWL41/4V2SPFg5gJdfhqOPhhkz\noFWrtEtTtSIJVlPNbDtJ/YA/A9cAfzSzneKkE6cZ0Dnn6rR+/eCXvwxrX7nElI+x+gWhB/mThI4a\nsXjNyjm8ZuVW+e67MPbqgQegb9+0S7NmRVKzeoIwzmsfQhPgD8CEaF7CvOVds5J0hKSW0euLJD0c\nPcNyzrk6o3VruP56GDw4PMdyNXYk8Aywr5l9R+gWf27cROI0A14cPSDrB+xN6Al4c9wMnXMu6w47\nDLp0gSuvTLskdcIlZvawmc0BMLPPCQOWY4kTrBJpd3TOuayT4Kab4O9/h+nT0y5N0dunkmP7xU0k\nTrD6VNI/gKOApyQ1jXm9c84VjfbtQzf2k06C0tKqz3c/JmlINJlEF0lTc7YPgNjzysaZwaI5MACY\nZmZzJG0EbGtmz8bNNAn+kNolyTtYuMqUlcGee8JBB2VzKqYsd7CI5h9sA1wFnJ/z1iIzmx87vRjB\nariZDa3qWKH4F94lyYOVW505c2DnneH116Fz57RL82NZDlZJixOsJplZjwrHpvpEtq4u8GDl1uS6\n6+CJJ+CFF6BBhh5+FEOwih4ZHQZ0ImdZKjO7PE46Vf5nT7rd0Tnnis1ZZ8GSJTByZNolKUqPAQcB\nK4DFOVssVdaskm53TIr/deqS5DUrV5W334bdd4c338zOzOxFUrOabmY/q3E6xfql8S+8S5IHK5eP\nK6+EsWPhmWdC9/a0FUmwGgncaGbTapROjGdWibQ7JsW/8C5JHqxcPlasgD594OSTwwwXaSuSYPU2\nsCXwPrAMEGERyFj9HeIEq6eBBcCbrBogjJldFyfDpPgX3iXJg5XL1/TpsMce2WgOLJJgtWllx81s\nbqx0YgSrRNodk+JfeJckD1Yujqw0BxZJsBJwLLC5mV0uqSOwoZlNiJNOnE6Yr0pKZQl755zLkvPO\ng2+/9d6Befo7sDMwMNpfBPwtbiJxalaJtDsmxf86dUnympWLq7x34Ouvw+abp1OGIqlZTTKzHpIm\nm9kO0bEptbZECGHiwS2AnwMHAL+M/nXOuXqna1c4/3w4/vjszR0oaYCkdyTNlvSTWYYktY6WeZoi\nabykrjnvnSlpWrSdkXO8jaRnJc2S9Ew0rCkfJZIaAhalsz5QFvczxQlWHwG7AoOiB2MGtIuboXPO\n1RVnnRX+vf76dMuRS1ID4CZgX6AbMFDS1hVOuxCYHNVuBgE3RNd2A04CegLdgQMkldcbzweeN7Mu\nwBgg3/WUbwAeAdpJugJ4GYi9+EqcYJVIu6NzztUVDRvC6NGhw8Xbb6ddmpV6A3PMbK6ZlQD3EWaQ\nyNWVEHAws1lAp6jGsw3wupktM7NS4EXg0Oiag4A7otd3AAfnUxgzuwc4jxCgPgMONrN/x/1QcYLV\nTmZ2KrA0KsC3+HpWzrl6rnPnsJTIr34Fy5enXRoA2gMf5+x/Eh3LNYUoCEnqDXQEOgDTgV2jJr/m\nwP7AJtE17cxsHoCZfQFskE9hojG6PYBWwLrAEZL+GPdDxQlWibQ7OudcXfPb38KGG8Kf/pR2SfI2\nDGgjaRJwKjAZKDWzd4DhwHPAU+XHV5NGvr2EEpkbsFHVp6xUsd3xcOCiuBk651xdI8GoUdC9O+y/\nf1hSpDaMHTuWsWPHVnXap4SaUrkO0bGVzGwRcGL5fjQx+fvRe6OB0dHxK1hVS/tCUjszmydpQ+DL\nPIvdwcwG5HnuasWaGzB6SLdXtDvGzGbWtADV5d1/XZK867pLwsMPhzFYb70FLVrUfn6V3bdRC9gs\nwm/158AEYGDu73XUk2+JmZVIGgz0NbPjo/fWN7OvosG7TwN9zGyhpOHAfDMbHvUwbGNmuZObr66M\nPjegf+FdUjxYuaSccAI0blyYAcOru28lDQCuJzzqGWVmwySdTBgbO1JSH0IniTJgBnCSmS2Irh0H\ntAVKgLPNbGx0vC3wAOEZ1lzgSDP7Lo8yvk0Y9vQBPjegczXjwcolZdGi0Bx47bVwyCG1m1eRDAr2\nuQH9C++S4sHKJem11+Dgg2HyZNh449rLpxiCFYCk7QnjdAFeMrMpcdPwuQFdUTKDsrIwc8CKFVBS\nEroNL1sWtqVL4YcfwuquS5bA4sXw/fdhW7QobBnpZuzqoJ13hiFDwuwWZfW8z7SkM4F7CF3dNwDu\nlnR67HRizg1Y83bH0JY6glVtqcMrvH8MUD49yCJgSGUP5vyv05pbvhwWLgxb+Q/44sWrtiVLVv3g\nL126KgiUB4Rly1YFiZKSVduKFavfSktXBZnyrazsp1t5MKrsdS6p8i33vYrnle9ffz2ceGL5vtes\nXLJWrIDddoPDD4ff/7528iiGmpWkqcDOZrY42l8beC1u7IjTdX2/OAlXJmcakL0II5knSnos6ttf\n7n1gNzNbEAW2W4E+Nc27Pli6FD75BD77DD7/HL74AubNg6++Ctv8+au2b78NX6ZWrWCddULPpfJt\n7bXD1rx52NZaC5o1g7ZtoWnTH29NmoSHyY0br3rdqNGqfxs2DK8bNvzx1qDBT183aBCCSIMGq39d\nMeg4l1WNGsE990Dv3tC/P/TokXaJUiN+PFarNDoWS97ByszmJtDuuHIaEABJ5dOArAxWZjY+5/zx\n/HTkdb1lFoLOrFlhe/ddeP99+OADmDsXFiwI7ePt28NGG4VBiu3aQc+esP76sO66IeC0aRO25s39\nR9+52rTZZqEGP3BgWKyxEN3ZM2g08LqkR6L9g4FRcROJ0wx4JjAYeDg6dAgw0sxuzDsz6TBgXzP7\nbbR/HNDbzM5Yzfl/ALYqP7/Ce3W6KaW0NASkiRNh0iSYNi1spaXQpUvYttwyLE2w2WbQqRNssEGo\nfbj4vBnQ1aZBg0ILwz//mWy6xdAMCCCpB9Av2n3JzCbHTSNOM+BJhPkBy9sdhwOvAXkHqzgk7QGc\nwKoPWKf98AO88gq8/HLYJkwItaJevULzwf77w7bbhhqT14acKy433RS+x/ffD0cdlXZpCs/MJgGT\napJGnGCVRLtjldOAAEjaDhgJDIgmzK3UpZdeuvJ1//796d+/f8zipMcMZs6EJ56AZ58NC7htt114\nIHv22aE3Udu2aZey7spz2hrnEtGyJdx3H+y3X/gDNK3FGtMgaS3gFELFwwhLhNxsZktjpROjGfD3\nhHVPctsdbzezETEKnc80IB2BF4BfVXh+VTGtomtKMYM33oAHHoBHHw0dIg44AAYMCA9g11kn7RLW\nX94M6AphxAi4997QetIkgTUriqEZUNIDhJ7dd0eHjgFam9kRsdKJOTdgjdsd85gG5FbC1PVzCTW3\nEjPrXUk6RfOF//BDuP32cJOWlcHRR8Ohh8IOO3iTXlZ4sHKFYAYHHghbbw3XXFPz9IokWL1tZl2r\nOlZlOsX6pcn6F37FCnjssTA/2JtvwjHHhPVuevb0AJVFHqxcoXzzTfhD9ZZbwrPomiiSYHU3cFN5\nS5mknYBTzezXsdKJ0QyYSLtjUrL6hf/uu9Dj58YbYZNNwij2Qw8N45RcdnmwcoX08sthsPDEieF3\norqKJFjNBLoAH0WHOhIeB60gxsQScYJVIu2OScnaF/6rr+Avfwk1qQEDQieJnj3TLpXLlwcrV2jD\nh8Pjj8PYsaFbe3UUSbCqbCJbI+qgl++EtrGmW0qi3TEpWfnCf/MNDBsWFl476ig4/3zYtNI5hl2W\nebByhVZWBr/8ZRiSMnx41edXpkiCVU/g/4BN+fHyUrU23dIkSX0qtDu+ESezumTx4tCz569/hSOO\ngKlToUOHtEvlnCsWDRrAnXeG8Ve77hoCVx11D3AuMI2wfla1xAlWOxJmXv9Ru6OkaVRjQttiVVYW\n5vu64ALo1w/Gj4cttki7VM65YrTeemH81SGHhN+SzTZLu0S14isze7ymicRpBkyk3TEpaTSlvPkm\nnH56mFn8xhuhj0+vW2d4M6BL04gRcNddYRabtdbK/7oiaQbcCxhIGD+7rPy4mT282osqSydGsEqk\n3TEphfzCL1wIF10UBvNedVWY58vn4KtbPFi5NJnBkUeGmtbNN+d/XZEEq7uBrYEZrGoGNDM7MU46\ncZoBE2l3LDaPPQannQY//znMmBFmLnfOuSRJoZNWr17hOdavY41AyrxeZtalponECVaJtDsWi6+/\nhjPOCNMj3X037L572iVyztVl66wDDz0Ee+wR5gnt3j3tEiXmVUldzeztmiQSpzHrEkn/lDRQ0qHl\nW00yz6pHHlk1w/lbb3mgcs4Vxs9+BjfcAIcdFhZIrS5JAyS9I2m2pKGVvN9a0sOSpkgaL6lrzntn\nS5ouaaqkeyQ1iY5vL+k1SZMlTYgeDeWjD/CWpFlRmtOi1YPjfaYYz6wSaXdMSm20+y9YEGpTr74a\n5vLr2zfR5F2G+TMrlyVnnRUWV3388TU/H6/svo1WZJ9NzorswNG5K7JLuhpYZGZ/ktQF+JuZ7S1p\nY8LsRFub2XJJ9wNPmtmdkp4BrjOzZyXtB5xnZntU9VlW0zkvdqe8OM2AibQ7ZtW4caGdeMAAmDy5\n3q7o6ZzLgGuugb32gssvh5yVkPJV5YrsQFfgKgAzmyWpk6T1o/caAmtLKgOaEwIehEpKq+h1aypZ\n3qkySfUUjxOsEml3zJqSErjssvBw89Zb6/TAPOdckWjcGP797zBlW48eYab2GNoDH+fsf0IIYLmm\nEFa3eEVSb8K42Q5mNlnSdYR5/JYAz5rZ89E1ZwPPRO8L2CXfAknaHtg12n3JzKbE+kTEC1bl7Y4f\nEPrKiyIfDPz++2E29DZtwrOpdu3SLpFzzgXt2sGDD4Y178aNC8uKJLho6DDgekmTCD28JwOlkloT\namGbAguAByUdY2b3AkOAM83sUUmHA7cB+1SVkaQzgcFA+biquyWNNLNYq8zXdFBwwQcDl6tpu/99\n94UBvhdeCGee6eOm6jt/ZuWyatQouPbasJp4xQVaV/PMqg9wqZkNiPbPJ1QsVjsDoaT3ge2AAcC+\nZjY4Ov4rYCczO03Sd2bWOueaBWbWqvIUf5T2VGBnM1sc7a8NvFZrcwOmFZSStnhxCE7jxsEzz4Qq\ntnPOZdVJJ8GkSXDssWHcZx5/WE8EtogqGJ8DRxNmkFhJUitgiZmVSBoMjDOz76Pp9PpES0ItI3TS\nmBBd9qmk3c3sxWhWitl5fgQBpTn7pdGxWOI0AybS7pimadPCzOi9eoWpk1q2TLtEzjlXtREjYO+9\n4Y9/hD//ec3nmlmppNOAZ1m1IvtM5azIDmwD3BF1opgBnBRdO0HSg4RmwZLo31ujpAcDN0hqCCwF\nfptn8UcDr0t6JNo/GBiV57UrxWkGrNjueAgQu90xKXGaUszCqpx//GNYc+pXv6rlwrmi482ALuu+\n+gp69w7LiRx5ZDiW5emWJG0BtDOzVyT1ICzcC/AW8KmZvRcrvRjBKpF2x6Tk+4WfPx8GD4YPPgjP\nqbbaqgCFc0XHg5UrBm+9BccdF5oFmzTJfLB6ArjAzKZVOL4tcKWZHRAnvTjdChJpdyykcePClCUd\nO8Jrr3mgcs4Vt+7dwzjQJk3SLkle2lUMVADRsU5xE4vzzCqRdsdCKCkJ7bojR8I//wm/+EXaJXLO\nuWQ0bpx2CfLWeg3vNYubWJXBKqfd8S+SxrKq3fEM8hzBXEjvvhuqya1bh6ryRhulXSLnnKuX3pA0\n2MxuzT0o6TfAm3ETq/KZVdLtjkmp2O5vFsYjXHABXHxxWNbDx065fPkzK1eMMv7Mqh3wCLCcVcGp\nJ9AEOMTMvoiTXj7NgKttd5TUKU5mteWzz0Inis8/h//9L8xc7JxzLj1mNg/YRdIeQPmv8pNmNqY6\n6eVT90i03TFJZmGtqR12CHNojR/vgco557LEzP5nZjdGW7UCFeRXs0q03TFJv/gFfPopPPlkCFbO\nOefqpnyC1VnAI5KOpZJ2x9oqWD769oXzziuq3jHOOeeqIc6g4Nx2xxk1qc4lwR9SuyR5BwtXjLLc\nwSJpeQerrPEvvEuSBytXjOpTsPLO3c455zLPg5VzzrnM82DlnHMu8zxYOeecyzwPVs455zLPg5Vz\nzrnM82DlnHMu8zxYOeecyzwPVs455zKv4MFK0gBJ70iaLWnoas65QdIcSW9J6l7oMq7J2LFj60We\naeWb1met6/weqrv5Vqaq31lJrSU9LGmKpPGSuua8d7ak6ZKmSrpHUpOc906XNFPSNEnDCvV5oMDB\nSlID4CZgX6AbMFDS1hXO2Q/obGZbAicDtxSyjFXxL1/dy7M+8Huo7uZbUT6/s8CFwGQz2x4YBNwQ\nXbsxcDrQw8y2I0x2fnT03h7AAcC2ZrYtcG0BPs5Kha5Z9QbmmNlcMysB7gMOqnDOQcCdAGb2OtAq\nWnHSOedc1fL5ne0KjAEws1lAJ0nrR+81BNaW1AhoDnwWHf8dMMzMVkTXfV27H+PHCh2s2gMf5+x/\nEh1b0zmfVnKOc865yuXzOzsFOBRAUm+gI9DBzD4DrgM+Ivz2fmdmz0fXbAXsFjUb/k9SYVcRNLOC\nbcBhwMic/eOAGyqc8x9gl5z95wlV0oppmW++JbkV8HuQ+mf1re5s1fydbQncBkwC7gBeB7YjrAz/\nAtCWUMN6BDgmumYacH30uhfwfiHjRz6LLybpU0IEL9chOlbxnE2qOKfeTIvv6h6/d10tq/J31swW\nASeW70t6H3gfGEAIQvOj4w8DuwD3EmpoD0fXT5RUJmldM/umFj/LSoVuBpwIbCFp06iHydHA4xXO\neRz4NYCkPoRq6LzCFtM554pWlb+zklpJahy9HgyMM7PvCc1/fSStJUnAXsDM6LJHgT2ja7YCGhcq\nUEF+y9onxsxKJZ0GPEsIlKPMbKakk8PbNtLMnpK0v6R3gcXACYUso3POFbN8fmeBbYA7JJUBM4CT\nomsnSHoQmAyURP+OjJK+DbhN0jRgGVGlolCKdqVg55xz9UfmZ7BIYxBxHgPqukh6VdJSSb+vaX4x\n8j0mGsQ3RdLLkrYtQJ4HRvlNljRBUt+a5plPvjnn9ZJUIunQ2s5T0u6SvpM0Kdouqq28onMSH/ye\nxr2bxn2bZ76J37tp3Lf55JvkvZtZhezNUY1eUw2Ad4FNgcbAW8DWFc7ZD3gyer0TML4Aea4H7Aj8\nCfh9AT9rH6BV9HpAgT5r85zX2wIzC/FZc857AXgCOLQAn3V34PFivG/TunfTuG/TunfTuG8Lfe9m\nect6zSqNQcRV5mlmX5vZm8CKGuRTnXzHm9mCaHc8NR9/lk+eS3J2WwBlNcwzr3wjpwMPAl8WMM8k\neuqlNfg9jXs3jfs233yTvnfTuG/j5Fune5lmPVilMYg4nzxrQ9x8fwP8txB5SjpY0kzCGLgTK75f\nG/kqTPtysJndTDJfwnz/++4cNcs9qZz50mohr9oY/J7GvZvGfZt3vgnfu2nct3nlG0ni3s2sQo+z\ncglQmKPrBKBfIfIzs0eBRyX1A/4M7FOAbEcAuW3zhfir8U2go5ktUZij8lHCqH2XgELft5DKvZvG\nfQv14N7Nes0qsUHECedZG/LKV9J2hK6kB5rZt4XIs5yZvQxsLqltAfLtCdwn6QPgcOBvkg6szTzN\n7PvypiMz+y/QuJqfNY37Nt98k5bGfZt3vuUSunfTuG/zyjfBeze70n5otqaNMN1H+YPFJoQHi9tU\nOGd/Vj2o7kPNOx1UmWfOuZcA5xTws3YE5gB9Cphn55zXPYCPC5FvhfNHU/MOFvl81nY5r3sDHxbL\nfUzXkYYAAAMnSURBVJvWvZvGfZvWvZvGfVvoezfLW6abAS2FQcT55Bk9CH+DML9WmaQzga4WRoDX\nWr7AxYQ5u/4uSUCJmfWu5TwPk/RrYDnwA3BkdfOLme+PLilQnodLGkIYDPkDcFRt5ZX0fZtvvknf\nu2nctzHyTfTeTeO+jZFvIvdulvmgYOecc5mX9WdWzjnnnAcr55xz2efByjnnXOZ5sHLOOZd5Hqyc\nc85lngcr55xzmefByjnnXOZ5sKqjFJalHhsNwqxJOo0lvSjJ7xVXEH7vusr4/8QMkrS1pAtqmMyJ\nwENWw1HfFpYkeB44uoblcfWA37uutniwyqY9gMk1TONY4DEASZtKmilptKRZku6WtFe0aussST2j\n85pLeiJaWXWqpCOitB6L0nOuKn7vulrhwSpjJA0grPmzSXUX45PUGNjMzD7KOdwZuMbMugBbAwPN\nrB9wLvB/0TkDgE/NbAcz2w54Ojo+HehVnbK4+sPvXVebPFhljJk9TfjS3Wpm8yo7R9LekjZdQzLr\nAd9VOPaBmb0dvZ5BWHYbYBphNufy1/tIukpSPzNbFJWpDFgmae1qfCRXT/i962qTB6uMif4i/aKK\n0xYDiyVtI2m3St7/AVirwrFlOa/LcvbLiBbhNLM5hKUUpgF/lnRxzjVNgaV5fQhXL/m962pTppcI\nqad6AxMk9QLWJyxv0JXwBW0CvAesALoBWwLNJU0u/0sSwMy+k9RQUhMzWx4dXlPPKgFI2giYb2b3\nSloAnBQdbwt8bWalSX5QV+f4vetqjQer7PmM8Bfie8AAMzsDeF7S7kADM/tf9Bpg9hrSeZawfPiY\naD+3Z1XFXlbl+9sC10gqI/zQDImO7wE8WZ0P4+oVv3ddrfH1rDJM0v5AKfAt0B1obmYjJP2O8Nfq\ns8ABwAtRM0jutTsAZ5nZoATK8RAw1MzerWlarn7we9clzYNVHSbpeOCOmoxXiXpnHWVmdydWMOeq\n4Peuq8iDlXPOuczz3oDOOecyz4OVc865zPNg5ZxzLvM8WDnnnMs8D1bOOecyz4OVc//fXh0LAAAA\nAAzyt57GjpII2JMVAHuyAmAv9IUb1M3P1EkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1, 2)\n",
+ "\n",
+ "x = np.arange(0, 5*tau, tau/10)\n",
+ "\n",
+ "ax[0].plot(x*1e3, [eG.initial_CHS_vectors(u)[0] for u in x])\n",
+ "ax[0].set_xlabel('$t_{\\mathrm{crit}}$ (ms)')\n",
+ "ax[0].set_ylabel('Components of the initial CHS vector $\\phi_A$')\n",
+ "\n",
+ "ax[1].plot(x*1e3, [eG.final_CHS_vectors(u)[0] for u in x])\n",
+ "ax[1].set_xlabel('$t_{\\mathrm{crit}}$ (ms)')\n",
+ "ax[1].set_ylabel('Components of the final CHS vector $e_F$')\n",
+ "ax[1].yaxis.tick_right()\n",
+ "ax[1].yaxis.set_label_position(\"right\")\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 0.17394315362718 0.82605684637282]]\n",
+ "[ 0.976491211386195 0.222305380522348 0.999257244552635]\n"
+ ]
+ }
+ ],
+ "source": [
+ "qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ], 2)\n",
+ "qmatrix.matrix /= 1e3\n",
+ "eG = MissedEventsG(qmatrix, 0.2)\n",
+ "print(eG.initial_CHS_vectors(4))\n",
+ "print(eG.final_CHS_vectors(4))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[ 1.]\n",
+ "[ 0.369080824446409 0.942440306684312]\n"
+ ]
+ }
+ ],
+ "source": [
+ "qmatrix = QMatrix([[-1, 1, 0], [19, -29, 10], [0, 0.026, -0.026]], 1)\n",
+ "eG = MissedEventsG(qmatrix, 0.2)\n",
+ "print(eG.initial_CHS_vectors(0.2))\n",
+ "print(eG.final_CHS_vectors(4))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[ 1.]\n",
+ "[ 0.846530054887703 0.168045183806245 0.852959014045745]\n"
+ ]
+ }
+ ],
+ "source": [
+ "qmatrix = QMatrix([ [-2, 1, 1, 0], \n",
+ " [ 1, -101, 0, 100], \n",
+ " [50, 0, -50, 0],\n",
+ " [ 0, 5.6, 0, -5.6]], 1)\n",
+ "eG = MissedEventsG(qmatrix, 0.2)\n",
+ "print(eG.initial_CHS_vectors(4))\n",
+ "print(eG.final_CHS_vectors(4))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/CKS-checkpoint.ipynb b/exploration/.ipynb_checkpoints/CKS-checkpoint.ipynb
new file mode 100644
index 0000000..4d6bdd6
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/CKS-checkpoint.ipynb
@@ -0,0 +1,176 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CKF Model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following tries to reproduce Fig 9 from [Hawkes, Jalali, Colquhoun (1992)](http://dx.doi.org/10.1098/rstb.1992.0116). First we create the $Q$-matrix for this particular model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import QMatrix\n",
+ "\n",
+ "tau = 0.2\n",
+ "qmatrix = QMatrix([[-1, 1, 0], [19, -29, 10], [0, 0.026, -0.026]], 1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We then create a function to plot each exponential component in the asymptotic expression. An explanation on how to get to these plots can be found in the **CH82** notebook."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood._methods import exponential_pdfs\n",
+ "\n",
+ "def plot_exponentials(qmatrix, tau, x0=None, x=None, ax=None, nmax=2, shut=False):\n",
+ " from HJCFIT.likelihood import missed_events_pdf\n",
+ " from HJCFIT.likelihood._methods import exponential_pdfs\n",
+ " if ax is None: \n",
+ " fig,ax = plt.subplots(1, 1)\n",
+ " if x is None: x = np.arange(0, 5*tau, tau/10)\n",
+ " if x0 is None: x0 = x\n",
+ " pdf = missed_events_pdf(qmatrix, tau, nmax=nmax, shut=shut)\n",
+ " graphb = [x0, pdf(x0+tau), '-k']\n",
+ " functions = exponential_pdfs(qmatrix, tau, shut=shut)\n",
+ " plots = ['.r', '.b', '.g'] \n",
+ " together = None\n",
+ " for f, p in zip(functions[::-1], plots):\n",
+ " if together is None: together = f(x+tau)\n",
+ " else: together = together + f(x+tau)\n",
+ " graphb.extend([x, together, p])\n",
+ "\n",
+ " \n",
+ " ax.plot(*graphb)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For practical reasons, we plot the excess shut-time probability densities in the graph below. In all other particulars, it should reproduce Fig. 9 from [Hawkes, Jalali, Colquhoun (1992)](http://dx.doi.org/10.1098/rstb.1992.0116)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAALLCAYAAAAPLZjyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYVOWZ7v/v3d2cxEYRFQUBAyhIg2cFozgdjQSJpzFj\nFJOfiRMjO0bjxOxEkx0jjomzNTPJaNBERifRjIetRhOTEDUHiWeU4IGDKHjgJKBEwRYEG/r5/VFV\nWLYNXdW9qlZ31/25rnVVrVWr6n2qkyuVm+dd71JEYGZmZmZmZsmqSrsAMzMzMzOzrshhy8zMzMzM\nrAQctszMzMzMzErAYcvMzMzMzKwEHLbMzMzMzMxKwGHLzMzMzMysBFIJW5ImSloo6SVJF7fw+ghJ\nj0vaKOmiZq/tJOkuSS9Imi9pbPkqNzMzMzOzpHXVfFBT7gElVQHTgGOB14GnJf0mIhbmnfZ34ALg\nlBY+4hpgRkScJqkG2KHUNZuZmZmZWWl05XyQRmfrcGBRRCyJiEbgDuDk/BMiYk1E/A3YnH9cUh9g\nfET8PHve5oh4p0x1m5mZmZlZ8rpsPkgjbA0EluXtL88eK8THgDWSfi5pjqTpknolXqGZmZmZmZVL\nl80HnW2BjBrgYOC6iDgY2ABckm5JZmZmZmaWkg6dD8p+zRawAhict79X9lghlgPLImJ2dv9u4CMX\n0AFIijZXaGZmJRERKveY/j0wM+tYWvgtKEs+SEMana2ngeGShkjqDpwB3Led87f+hxERq4FlkvbN\nHjoWWLCtN0aEtxa2yy67LPUaOvLmv4//Nv77lGZLU9rfvVxbpf13sJK+byV9V3/frr1tQ9nyQbmV\nvbMVEVsknQ88SCbs3RQRL0iaknk5pkvqD8wGaoEmSRcCoyLiXeBrwK2SugGvAGeX+zuYmZmZmVky\nunI+SGMaIRFxPzCi2bEb8p6vBgZt473PAYeVtEAzMzMzMyubrpoPOtsCGZaA+vr6tEvo0Pz32Tb/\nbbbPfx9LW6X9d7CSvm8lfVfw97WuQ9uZO9mpSYqu+t3MzDojSURKC2T498DMrGNI67cgLe5smZmZ\nmZmZlYDDlpmZmZmZWQk4bJmZmZmZmZWAw5aZmZmZmVkJOGyZmZmZmZmVgMOWmZmZmZlZCThsmZmZ\nmZmZlYDDlpmZmZmZWQk4bJmZmZmZmZWAw5aZmZmZmVkJOGyZmZmZmZmVgMOWmZmZmZlZCThsmZmZ\nmZmZlUDFha3zzz+fL3/5y2mXYWZmZmZmXZwiIu0aSkJStPTdunXrxubNm+mq39vMrKOSREQohXFb\n/D0wM7PyS+u3IC0V19mSKuY/WzMzMzMzS1HFha2qqor7ymZmZmZmloKKSx7ubJmZmZmZWTk4bJmZ\nmZmZmZWAw5aZmZmZmVkJVFzY8jVbZmZmZmZWDhWXPNzZMjMzMzOzcnDYMjMzMzMzKwGHLTMzMzMz\nsxJw2DIzsy5v06ZNaZdgZmYVqOLClhfIMDOrPGvWrEm7BDMzq0AVlzzc2TIzqzxvvvlm2iWYmVkF\nctgyM7Muz2HLzMzSkErYkjRR0kJJL0m6uIXXR0h6XNJGSRe18HqVpDmS7mvD2G0t28zMOimHLTOz\nji3NfFBKZQ9bkqqAacCngDpgsqSRzU77O3AB8MNtfMyFwII2jt+Wt5mZWSfmsGVm1nGlnQ9KKY3O\n1uHAoohYEhGNwB3AyfknRMSaiPgbsLn5myXtBUwCbmzL4F4gw8ys8rzxxhtpl2BmZtuWaj4opTSS\nx0BgWd7+8uyxQv0Y+CYQbRncnS0zs8rjsGVm1qGlmg9KqSbtAooh6dPA6oh4VlI9sN3kNHXq1K3P\n6+vrqa+vd2fLzKxMZs6cycyZM9MuA3DYMjNLS6l/C4rNB+WmiPIGQEnjgKkRMTG7fwkQEXFVC+de\nBjRExI+y+1cCnyfTPuwF1AL3RMRZLbw3WvpugwYNYvny5ZT7e5uZVTpJRETZfwQlxbhx43jiiSfK\nPbSZmTXT0m9BufJBGtJo8zwNDJc0RFJ34Axge6uGbP0PIyK+ExGDI2Jo9n1/KfYP6c6WmVnl8QIZ\nZmYdWqr5oJTKPo0wIrZIOh94kEzYuykiXpA0JfNyTJfUH5hNJpk2SboQGBUR77Z3fIctM7PK42mE\nZmYdV9r5oJTKPo2wXLY1jXDo0KG8+uqrnkZoZlZmaU4j7N69O2vXrqVXr17lHt7MzPKk9VuQlopr\n87izZWZWeXbffXdPJTQzs7KruOThpd/NzCrP7rvv7qmEZmZWdp1q6fckuLNlZlZ5HLbMzCyfpBrg\nNOCI7KHewBZgA/A8cFtEbGzvOA5bZmbW5e22224OW2ZmBoCkw4DxwB8j4vYWXh8GnCvpuYj4a3vG\nqriw5WmEZmaVx9dsmZlZno25+3S1JCJeBq6VNFRS94h4v60DVVybx50tM7PK079/f1atWpV2GWZm\n1gFExNzc8+yS8rnnvZqd90p7ghZUYNhyZ8vMrPL079+f1atXp12GmZl1EJK+LWkicFLe4TpJn0hy\nHE8jNDOzLm+PPfZwZ8vMzPLdC3wCOEfSicAq4ClgIPBQUoNUXNjyNEIzs8qzxx57uLNlZmZbRcRC\nYKGkVyPi/ux0wsOBZ5Icp+LCljtbZmaVx50tMzMDkNQD2DEi/g4QEfdnH1cDv2127qCIWNae8Squ\nzePOlplZ5enXrx9r166lsbEx7VLMzCxFEbEJOELS5OYLYuRI2lnSucCQ9o7nzpaZmXV51dXVW++1\nNXDgwLTLMTOzFEXE7yTtAXxd0u5ATzK5KHdT4+XAjRGxrr1jVVzYcmfLzKwy5aYSOmyZmVlErAKu\nLPU4FZc8HLbMzCqTr9syM7NtkdQ7+1gjKbHAUHHJw9MIzcwqk8OWmZm1RNK3gMsk/TuwE/CzpD7b\n0wjNzKwi9O/f32HLzMxaMgt4EmgE/okEG1IVlzzc2TIzq0zubJmZ2TasB74YEU0RcSfwl6Q+uOLC\nljtbZmaVyWHLzMxaEhGzI+KGvP3bkvrsikseDltmZpVpjz32YPXq1WmXYWZmHZyk0Ul9VsVds+Vp\nhGZmlcmdLTMz2xZJg4D+wGpgh6Q+t6CwJakGOA04InuoNx/c9Ot54LaI2JhUUaXkzpaZWWVy2DIz\ns5ZImgL0AN4FdiaTc55K4rNbDVuSDgPGA3+MiNtbeH0YcK6k5yLir0kUVUrubJmZVaY+ffrQ2NjI\n+vXr6d27d9rlmJlZx/FyRPwptyPpE0l9cCGdrY0R8aNtvRgRLwPXShoqqXtEvJ9UcaXgsGVmVpkk\nbb1ua+jQoWmXY2ZmHcc72Xts9QLWATOS+uBWw1ZEzM09l9Q/IlZnn/eKiPfyznslqaJKydMIzcwq\nV24qocOWmZnlRMRTJDRtsLmCkoekb0uaCJyUd7guyRZbubizZWZWuXxjYzMzK6dCVyO8F/gEcI6k\nE4FVZNLfQOChEtVWEu5smZlVLi+SYWZm2yLpaKA6IhLLNwWFrYhYCCyU9GpE3C+pP3A48ExShZSL\nO1tmZpXLYcvMzLZD2S0x223zSOohqV9uPyLuzz6ujojfRsTf8s4dlGRhpeLOlplZ5XLYMjOzctpu\n8oiITcARkiZL6tXSOZJ2lnQuMKQUBSbNYcvMrHLlViM0MzMrh0JWI/ydpD2Ar0vaHeiZfV/upsbL\ngRsjYl1JK02IpxGamVUud7bMzGw7llPgAoKFKujDImJVRFwZEf8SEf8rIs6JiCkR8fWI+I9ig5ak\niZIWSnpJ0sUtvD5C0uOSNkq6KO/4XpL+Imm+pLmSvlbMuODOlplZJdtjjz1YuXJl2mWYmVkzaeaD\nPP0iYlE73v8RbUoeknpnH2skFfUZ2fOnAZ8C6oDJkkY2O+3vwAXAD5sd3wxcFBF1wBHAV1t4b2vj\nF3O6mZl1IbnOVlNTU9qlmJlZVgfIB4dnnx6+3RPboOiwJelbwGXZuyzvBPysyI84HFgUEUsiohG4\nAzg5/4SIWJNdfGNzs+OrIuLZ7PN3gRfILD9fMHe2zMwqV8+ePenTpw9vvvlm2qWYmdkHUs0HeT4m\n6TRJ57Xx/R9R6H228s0CngQagX+i+MA2EFiWt7+cNqRISXsDB2brKZjDlplZZRs4cCArVqygf//+\naZdiZmYZZc0Hkk4Gno2IJdlDK7KPMyLiz8WOuz1tCVvrgS9GxA3AnZLa8hntImlH4G7gwmyCbdHU\nqVO3Pq+vr6e+vt7TCM3MymTmzJnMnDkz7TI+YuDAgbz++uscfPDBaZdiZtblleu3oNB8kFVPJmAt\nkXRSRNwHkHTQgjaErYiYDczO27+tyI9YAQzO29+LD9Jkq7Lh7m7glxHxm+2dmx+2ctzZMjMrj9w/\ncuVcfvnl6RWTJ9fZMjOz0ivwt6Bs+SDrPuD/SOoJ9JS0LzAXmBcRif5AtLsrJWl0RMwr4i1PA8Ml\nDQFWAmcAk7c3RLP9/wYWRMQ1xVWa/TB3tszMKprDlplZh1PWfBARDwEPAWRXNvwbmYU5TpY0gMw0\nxp9ExItFfYsWJDEFsHcxJ0fEFknnAw+Sud7rpoh4QdKUzMsxXVJ/Mt2zWqBJ0oXAKOAA4HPAXEnP\nAAF8JyLuL3R8hy0zs8o2cOBAnnzyybTLMDOzrDTzQUT8KPv0r7ljkk4HTgTSCVuSBgH9gdURUdQC\nFQDZLz+i2bEb8p6vBga18NbHgOpix8vnaYRmZpXNnS0zs44nzXzQgkYSCFrQhrCVTZg9gHeBnSVt\naeuUvjS4s2VmVtkctszMbHsi4p6kPqstna2XI+JPuR1Jn0iqmHJwZ8vMrLI5bJmZWbm0JWy9k72h\ncS9gHTAj2ZJKy50tM7PK1q9fPzZs2MB7771Hr1690i7HzMy6sLYs/f4U8FQJaikLd7bMzCqbJAYM\nGMCKFSsYPnx42uWYmVlKJF0A/E9EvF2qMdqcPCSN72xTCMGdLTMz81RCMzMDMgv+PS3pTkkTVYKg\n0J42TxUfXeO+w3Nny8zMcp0tMzOrXBHxXWAf4Cbgi8AiSVdKGpbUGBWXPBy2zMzMnS0zM4PMTbyA\nVdltM9AXuFvS1Ul8fhI3Ne5UPI3QzMwGDhzI8uXL0y7DzMxSlL0x8lnAGuBG4JsR0SipClgEfKu9\nY7QnbC2nE3bG3NkyM7OBAwcya9astMswM7N07QKcGhFL8g9GRJOkE5IYoM3JIyJejohFSRRRTu5s\nmZmZpxGamRnQs3nQknQVQES8kMQARYctSYfnP3Y27myZmZnDlpmZAce1cOz4JAdoT/Jw2DIzs05p\nwIABrFy5kqamprRLMTOzMpP0FUlzgRGSns/bXgWeT3KstlyzlfunwI9JOg3YLSKuT7CmkvI0QjMz\n69mzJ7W1taxZs4bdd9897XLMzKy8bgP+APwbcEne8YaIeCvJgVoNW5JOBp7NzWeMiFzYmhERf06y\nmHJw2DIzM/hgKqHDlplZZYmIdcA6YHKpxypkTl09sBuApJNyBztj0AKHLTMzy/Dy72ZmlUnSo9nH\nBknvZLeG3H6SYxUyjfA+4P9I6gn0lLQvMBeYl9fl6jR8zZaZmQEMHjyYZcuWpV2GmZmVWUQclX2s\nLfVYrSaPiHgoIv4xIo4Hfgs8DQwjE8B+LWmapBGlLjQpDltmZgYwZMgQlixZ0vqJZmbWJUk6TVJt\n9vl3Jd0j6aAkxyhqgYyI+FH26V9zxySdDpwIvJhgXSXjaYRmZgaZztbzzye66JSZmXUul0bEXZKO\nAj4J/BD4GTA2qQGSaPM00kmCFrizZWZmGYMHD2bp0qVpl2FmZunZkn38NDA9In4PdE9ygLYs/f4h\nEXFPEoWUiztbZmYGnkZoZmaskHQDmZsbXyWpB8k0o7aquDZPLmxFRMqVmJlZmgYMGMAbb7xBY2Nj\n2qWYmVk6Pgs8AHwqItYCuwDfTHKAigtbOU1NTWmXYGZmKaqpqWHPPfdkxYpOt7CumZklICI2RMQ9\nEbEou78yIh5McoyCpxFKugD4n4h4O8kC0tLU1ER1dXXaZZiZWYoGDx7MkiVL2HvvvdMuxczMyiw7\nbfAzwN7k5aKI+Nekxiims9UfeFrSnZImqpNf/ORphGZm5kUyzMwq2m+Ak4HNwPq8LTEFd7Yi4ruS\nLgUmAGcD0yTdCdwUES8nWVQ5eBqhmZl5kQwzs4q2V0RMLOUARV2zFZl20KrsthnoC9wt6eoS1FZS\n7myZmZk7W2ZmFe1xSWNKOUDBYUvShZL+BlwNPAaMiYivAIeQmevYqbizZWZmDltmZhXtKGCOpBcl\nPS9prqRE73ZfzH22dgFOjYgPzbeIiCZJJyRZVDk4bJmZmacRmplVtONLPUAx0wh7Ng9akq4CiIgX\nEq2qhHLTBz2N0MzMBg0axNKlS/2bYGZWmZYC44EvZHNOkFkUMDHFhK3jWjjWpjSYXc1woaSXJF3c\nwusjJD0uaaOki4p5b6Hc2TIzsz59+tC9e3feeuuttEsxM6toKeWD64EjgMnZ/QbgujZ/iRa0GrYk\nfUXSXGBk3lzGuZJeA+YWO6CkKmAa8CmgDpgsaWSz0/4OXAD8sA3vLYj/FdPMzMBTCc3M0pZiPhgb\nEV8FNgJk7yfcva3foyWFdLZuBU4Efg2ckN0+DRwUEZ9rw5iHA4siYklENAJ3kFnffquIWBMRfyOz\n4mFR7y2UO1tmZgZeJMPMrANIKx80SqomM30QSbsBiYaEQsLWjIh4DTgJmEemmzUPWCrpnTaMORBY\nlre/PHus1O/9EIctMzODTNhyZ8vMLFVp5YNrgXuB/pJ+ADwKXFngewvS6mqEEXFU9nHHJAdOm6cR\nmpkZZKYRurNlZlZ5IuLW7K2tjs0eOiXphf+KWfo9KSuAwXn7e2WPJf7eqVOnbn1eX19PfX391n13\ntszMSmvmzJnMnDkz7TJaNXjwYGbNmpV2GWZmXVKBvwVlywcAzRfYyHO8pOMj4kcFjt2qgsOWpNOA\n+yOiQdKlwEHA9yNiTpFjPg0MlzQEWAmcwQcrgLQ4dFvfmx+2mnNny8ystJr/I9fll1+eXjHbMXTo\nUF599dW0yzAz65IK/C0oWz7Iqs0+jgAOA+7L7p8IPNXKe4tSTGfr0oi4S9JRZFptPwR+CowtZsCI\n2CLpfOBBMteM3RQRL0iaknk5pkvqD8wm84doknQhMCoi3m3pvcWMn+POlpmZQSZsvfLKK2mXYWZW\nscqdDyLicgBJDwMHR0RDdn8q8Pskv1sxYWtL9vHTwPSI+L2k77dl0Ii4n0ySzD92Q97z1cCgQt/b\nFg5bZmYGsMsuu9DU1MTbb79N37590y7HzKwipZQP+gPv5+2/T4o3NV4h6QYyrbkZknoU+f4OxdMI\nzcwMQBJDhw7l5ZdfTrsUMzMrr1uApyRNzXa1ZgG/SHKAYsLSZ4EHgAkRsRboC3wzyWLKyZ0tMzPL\n8VRCM7PKExE/AM4G3s5uZ0fEvyU5RrHTCHsCp0nKf9+DSRZULu5smZlZjsOWmVllyi72V+yCfwUr\nprP1GzI3Nt4MrM/bOiV3tszMLMdhy8zMSqGYztZeETGxZJWUmcOWmZnlDBs2jF/96ldpl2FmZl1M\nMZ2txyWNKVklZeawZWZmOe5smZlVHkkXSCrpMrTFhK2jgDmSXpT0vKS5kp4vVWGlkrtWy2HLzMxy\nBg8ezIoVK2hsbEy7FDMzK5/+wNOS7pQ0UZJafUeRiplGeHzSg6fJYcvMzHK6d+/OnnvuydKlSxk2\nbFja5ZiZWRlExHclXQpMILMq4TRJd5K5MXIi9wMpprO1FBgPfCEilgBBwjf9KqctW7a0fpKZmVUM\nTyU0M6s8kZn2tiq7bSZze6u7JV2dxOcXE7auB44AJmf3G4DrkigiDe5smZlZPoctM7PKIulCSX8D\nrgYeA8ZExFeAQ4DPJDFGMdMIx0bEwZKeAYiItyV1T6KINLizZWZm+Ry2zMwqzi7AqdlZe1tFRJOk\nE5IYoJjOVqOkajLTB5G0G9Bp20PubJmZWb5hw4Y5bJmZVZaezYOWpKsAIuKFJAYoJmxdC9wL9Jf0\nA+BR4MokikiDO1tmZpZv6NChvPxyItdDm5lZ53BcC8cSXRSw4GmEEXFrdk7jsdlDpySV+NLgsGVm\nZvlyYSsiKMHqv2Zm1kFI+gpwHjC02a2saslcu5WYVsOWpIu28dLxko6PiB8lWVC5eBqhmZnl22WX\nXQB466236NevX8rVmJlZCd0G/AH4N+CSvOMNEfFWkgMV0tmqzT6OAA4D7svunwg8lWQx5eTOlpmZ\n5ZPEvvvuy0svvcQRRxyRdjlmZlYiEbEOWMcHq6yXTKthKyIuB5D0MHBwRDRk96cCvy9pdSXkzpaZ\nmTXnsGVm1vVJejQijpLUQHbxv9xLZG691SepsYpZ+r0/8H7e/vv4psZmZtaFjBgxghdffDHtMszM\nrIQi4qjsY21r57ZXMWHrFuApSfdm908BfpF4RWXisGVmZs3tu+++3H333WmXYWZmXUQxqxH+QNIf\ngPHZQ2dHxDOlKav0PI3QzMyac2fLzKzry5s+2NLSs6lNIyQi5gBzkho8Te5smZlZc/vssw+LFy+m\nqamJqqpibkVpZmadRTmmD+ZU3C9JROYaOHe2zMysuR133JF+/fqxdOnStEsxM7MSkfRo9rFB0jvN\ntyTHqriwlePOlpmZtSS3IqGZmXVN+QtkRESf5luSYzlsmZmZ5fF1W2ZmlpSCw5akCyT1LWUx5eRp\nhGZm1hJ3tszMKoOknpIuknSPpF9J+rqknkmOUUxnqz/wtKQ7JU2U1NLqHZ2GO1tmZtYSd7bMzCrG\nLUAd8BNgGjAK+GWSAxSz9Pt3JV0KTADOBqZJuhO4KSJeTrKocnBny8zMWuLOlplZxRgdEaPy9h+S\ntCDJAYq6ZisyS/mtym6bgb7A3ZKuTrKocnBny8zMWrL33nuzatUq3nvvvbRLMTOz0pojaVxuR9JY\nYHaSAxTc2ZJ0IXAWsAa4EfhmRDRKqgIWAd9KsrBSc2fLzMxaUlNTw8c+9jEWL17MmDFj0i7HzMwS\nJmkumZsadwMel5S738dgYGGSYxVzU+MBwKkRsSR3QNJVEXGxpBOSLKoc3NkyM7NtyV235bBlZtYl\nlS27FDON8Lj8oJV1PEBEvFDMoNkFNhZKeknSxds451pJiyQ9K+nAvONflzRP0vOSbpXUvZixcxy2\nzMxsW0aMGMHChYn+46aZmW1HOfNBRCzJbcA7ZBYCHJK3JabVsCXpK9lW24jsF8htrwLPFztgdtrh\nNOBTZFb/mCxpZLNzjgeGRcQ+wBTgZ9njA4ALgIMjYn8ynbkziq0BPI3QzMy2ra6ujvnz56ddhplZ\nRUgrH0g6B3gYeAC4PPs4NYGvtFUhna3bgBOB+7KPue2QiPh8G8Y8HFiUTZONwB3Ayc3OOZnMUoxE\nxCxgJ0n9s69VA70l1QA7AK+3oQZ3tszMbJsctszMyiqtfHAhcBiwJCI+ARwErG3XN2mm1bAVEesi\n4rWImJzfcouIt9o45kBgWd7+8uyx7Z2zAhgYEa8D/wEszR5bGxF/aksR7myZmdm27LfffixatIjG\nxsa0SzEzqwRp5YONEbERQFKPiFgIjGhD/dvU6gIZkh6NiKMkNZBZtWPrS2RWg++TZEGt1LIzmVQ7\nBFhHZtn5MyPitpbOnzp16tbn9fX11NfXb913Z8vMrLRmzpzJzJkz0y6jTXbYYQcGDhzI4sWL2W+/\n/dIux8ys0yr1b0Gx+aCZ5dn3/xr4o6S3geZrVLRLq2ErIo7KPtYmNOYKMssq5uyVPdb8nEEtnPNJ\n4JVcV03SPcDHyUx1/Ij8sNWcw5aZWWk1/0euyy+/PL1i2mD06NHMnz/fYcvMrB0K/C0oWz7IFxH/\nmH06VdJDwE7A/a29rxhF3dQ4IU8DwyUNya4UcgaZ68Hy3Ufmnl5kbzS2NiJWk2kPjpPUU5KAY4Gi\nVkLM3JfZ0wjNzGz7fN2WmVnZpJIPsu+5KBvQvgYMI+F8VMg0wtz0QeUdzu0XPY0wIrZIOh94kMyX\nuSkiXpA0Jft50yNihqRJkhYD64Gzs+99StLdwDNAY/ZxejHj57izZWZm21NXV8e9996bdhlmZl1e\nivngFqAB+El2/0zgl8BpSX23QqYRJjV9MP8z76fZxWcRcUOz/fO38d7LySzN2GaS3NkyM7PtGj16\nNN///vfTLsPMrCKklA9GR8SovP2HJC1ow+dsUxrTCFNXVVXlzpaZmW3XiBEjeOWVV9i0aVPapZiZ\nWWnMyU5JBEDSWGB2kgO0ZTXCD00nLOdqhEmprq522DIzs+3q0aMHe++9Ny+99BJjxoxJuxwzM0uI\npLlkck034HFJS7MvDQYWJjlWGqsRpq6qqsrTCM3MrFW5FQkdtszMupQTyjVQq2ErR1JP4DzgKDJJ\n8BHgZ7kbgXUm7myZmVkh6urqmDdvXtplmJlZgiJi6720JB0AjM/uPhIRzyU5VjHXbN0C1JFZrWNa\n9vkvkyymXKqrq93ZMjOzVuU6W2Zm1vVIuhC4Fdg9u/2PpAuSHKPgzhZlWK2jXLxAhpmZFWL06NHM\nnTs37TLMzKw0vgSMjYj1AJKuAp7gg6Xg262YzlbJV+soF3e2zMysEPvuuy8rV67knXfeSbsUMzNL\nnoD8DswWPrwYYLsVshph2VbrKBd3tszMrBDV1dWMHj2a5557jvHjx7f+BjMz60x+DsySlLuD/SnA\nTUkOUMg0wrKt1lEuXiDDzMwKddBBB/HMM884bJmZdSGSBNwFzCSzACDA2RHxTJLjFLL0e/5qHX2B\nfYCeeacs+cibOjhPIzQzs0IddNBBPPnkk2mXYWZmCYqIkDQjIsYAc0o1TsHXbEk6B3gYeAC4PPs4\ntTRllZanEZqZWaFynS0zM+ty5kg6rJQDFLNAxoXAYcCSiPgEcBCwtiRVlZg7W2ZmVqgxY8bw4osv\nsmnTprRLMTOzZI0FnpD0sqTnJc2V9HySAxSz9PvGiNgoCUk9ImKhpBFJFlMOEeFrtszMrGC9evVi\n2LBhLFiwgIMOOijtcszMLDmfKvUAxYSt5ZJ2Bn4N/FHS23TC67XAC2SYmVlxclMJHbbMzLqO/LUp\nSqXgsBVkeSHFAAAgAElEQVQR/5h9OlXSQ8BOwP0lqarEPI3QzMyK4eu2zMy6Hkk9gfPIrEYYwKPA\nTyNiY1JjFHPN1lYR8deIuC8i3k+qkHLyAhlmZlaMAw880GHLzKzruQWoA34CTANGAb9McoCCO1vl\nSH7l4s6WmZkV48ADD+S5556jqamJqqo2/TulmZl1PKMjYlTe/kOSFiQ5QDG/GCVPfuXizpaZmRVj\nl112oV+/fixevDjtUszMLDlzJI3L7UgaC8xOcoBiFsgoefIrFy+QYWZmxTr00EN5+umn2XfffdMu\nxczMknEI8Likpdn9wcCLkuaSue/x/u0doJiwNUfSuIh4EkqT/MqlqqrK0wjNzKwoY8eOZdasWXzu\nc59LuxQzM0vGxFIP0GrYyiU7oBsfTX4LS1hbybizZWZmxRo7dix333132mWYmVlCOsrS7yeUuohy\n8wIZZmZWrEMOOYR58+axadMmevTokXY5ZmbWCbS6QEZELMltwM7Aidlt53KkwVLwAhlmZlas3r17\ns88++/Dss8+mXYqZmXUSBa9GKOlC4FZg9+z2P5IuKFVhpeRphGZm1ha567bMzKzzU8bnJX0vuz9Y\n0uFJjlHM0u9fAsZGxPci4nvAOODLSRZTLjU1NQ5bZmZWNIctM7Mu5XrgCGBydr8BuC7JAYoJWwLy\nE8qW7LFOp6amhs2bN6ddhpmZdTIOW2ZmXcrYiPgqsBEgIt4Guic5QDFLv/8cmCXp3uz+KcBNSRZT\nLg5bZmbWFiNHjuTNN99kzZo17LrrrmmXY2Zm7dMoqZrMyutI2g1IdBW9gjpbkgTcBZwNvJXdzo6I\n/0yymHKICGpqamhsbEy7FDMz62Sqq6s59NBDeeqpp9IuxczM2u9a4F5gd0k/AB4FrkxygII6WxER\nkmZExBhgTpIFpKFbt27ubJmZWZuMHTuWJ598kkmTJqVdipmZtUNE3Crpb8CxZC6POiUiXkhyjGKm\nEc6RdFhEPJ1kAWlw2DIzs7b6+Mc/zn/+Z6eb2GFmZi2IiIXAwlJ9fjELZIwFnpT0sqTnJc2V9Hxb\nBpU0UdJCSS9Jungb51wraZGkZyUdmHd8J0l3SXpB0nxJY4sd39dsmZlZWx155JHMmjWL999/P+1S\nzMy6jDTygaRDJd0raU578822FNPZ+lQSA0qqAqaRade9Djwt6TfZVJk753hgWETsk/1j/YzMUvMA\n1wAzIuI0STXADsXW4LBlZmZt1bdvX4YNG8acOXMYN25c628wM7PtSjEf3Ap8E5hLwgtj5BQTtlYD\n5wFHkVmx41Hgp20Y83BgUUQsAZB0B3AyH27fnQzcAhARs7JptT/wHjA+Ir6YfW0z8E6xBThsmZlZ\nexx99NE8/PDDDltmZslIKx+8GRH3JfMVWlbMNMJbgDrgJ2SS5yjgl20YcyCwLG9/efbY9s5ZkT32\nMWCNpJ9n233TJfUqtgCHLTMza49c2DIzs0SklQ8uk3SjpMmSTs1tbf0SLSmmszU6Ikbl7T8kaUGS\nxRSgBjgY+GpEzJb0n8AlwGUtnTx16tStz+vr66mvr898iJd+NzMruZkzZzJz5sy0yyiJ8ePHc845\n57Blyxaqq6vTLsfMrMMqw29BUfmgmbOBkUA3PphGGMA9SRZXqDmSxkXEkwDZuZKz2zDmCmBw3v5e\n2WPNzxm0jXOWRURu3LuBFi+ggw+HrXxejdDMrPTy/5EL4PLLL0+vmIT179+fPfbYg7lz53LggQe2\n/gYzswpV4G9B2fJBM4dFxIgCz22TYqYRHgI8Luk1Sa8BTwCHtWHVjqeB4ZKGSOoOnAE0nyt5H3AW\ngKRxwNqIWB0Rq4FlkvbNnncsUHR3zdMIzcysvTyV0MwsMWnlg8cljWr9tLYrprM1MYkBI2KLpPOB\nB8mEvZsi4gVJUzIvx/SImCFpkqTFwHoyLb6crwG3SuoGvNLstYI4bJmZWXsdffTR/PrXv+ZrX/ta\n2qWYmXVqKeaDccCzkl4FNpG5sXFExP4JfTUUEUl9VociKVr6bhdffDG9evXiqquu4r333kuhMjOz\nyiSJiFAK47b4e9BeS5cu5dBDD2X16tVIZf9aZmadUlq/BS2RNKSl47lVEZNQTGery3Bny8zM2mvw\n4MH06dOHuXPnsv/+if0jqJmZlUmSoWpbirlmq8uorq5m8+bNdNWunpmZlceECRN48MEH0y7DzMyK\nIOnR7GODpHfytgZJRd/Dd3sqMmxVVVVRVVXFli1b0i7FzMw6MYctM7POJyKOyj7WRkSfvK02Ivok\nOVbBYUsZn5f0vez+YEmHJ1lMOXn5dzMza69PfOITPPHEE74G2MysE5J0VSHH2qOYztb1wBHA5Ox+\nA3BdksWUQ27qoK/bMjOz9tppp5044IADeOSRR9IuxczMindcC8eOT3KAYsLW2Ij4KrARICLeBron\nWUy5SHLYMjOzRHgqoZlZ5yLpK5LmAiMkPZ+3vQoUc//gVhWzGmGjpGogskXuBjQlWUw5OWyZmVkS\nJkyYwLnnnpt2GWZmVrjbgD8A/wZckj02AHgxIt5KcqBiOlvXAvcC/SX9AHgsW2Cn5LBlZlY5GhpK\n99mHHnooy5cvZ+XKlaUbxMzMEhMR6yLitYiYHBFLskvAX5d00IIiwlZE3Ap8C7gSeB04KSLuTLqg\ncnHYMjOrHOPHly5w1dTUcMwxx/DAAw+UZgAzMyuHktxouZjVCA8l08k6B/hfwJ2SEp3TWE41NTU0\nNjamXYaZmZXBggUwf37pPv+EE07gt7/9bekGMDOzUvuvUnxoMdMIbwV+DpwKnACcmN06JS/9bmZW\nOUaNgrq60n3+CSecwJ/+9Cc2btxYukHMzCxR+cu8R8T1zY8loZiw9WZE3BcRr+bmNmbnN3ZKnkZo\nZlY5HnkEamtL9/m77rorBxxwAH/5y19KN4iZmSWt5Eu/F7Ma4WWSbgT+DGzKHYyIe5IsqFwctszM\nKkcpg1bOySefzG9+8xsmTZpU+sHMzKzNJH0FOA8YlndZlIAdgceTHKuYsHU2MBLoxgdLvgfgsGVm\nZhXvpJNO4uijj+anP/0pVVXFTBwxM7Myy1/6/WI+WByjIekVCYsJW4dFxIgkB0+Tw5aZmSVpn332\noW/fvjz99NOMHTs27XLMzGwbImIdsE7SQuCL+a9JIiL+Namxivmnt8cljUpq4LQ5bJmZWdJOPvlk\n7rvvvrTLMDOzwrwLrM9uW8hcr7V3kgMUE7bGAc9KelHS85Lmeul3MzOzD5xyyin86le/IiLSLsXM\nzFoREf+Rt/0AqAeGJjlGMdMIJyY5cNrc2TIzs6QdfvjhbNq0ieeee44DDzww7XLMzKw4OwB7JfmB\nBYetzrzMe0t8ny0zM0uaJM444wxuv/12hy0zsw5O0lwyC/4BVAO7AYldrwUFTCOU9Gj2sUHSO3lb\ng6R3kiymHHJTOzyN0MzMSmHy5MnccccdNDU1tX6ymZml6QTgxOw2ARgQEdOSHKDVzlZEHJV9LMNd\nSspDEt26dXPYMjOzxI0ZM4Ydd9yRJ598ko9//ONpl2NmZttQjpl7BS+QIemqQo51Fj169GDTpk2t\nn2hmZlYESUyePJnbb7897VLMzGw7JPWQdKak70j6Xm5LcoxiViM8roVjxydVSLk5bJmZWamcccYZ\n3HXXXb422MysY/sNcDKwmQ+WgF+f5ACtTiOU9BXgPGBos6Xea4HHkiymnLp3787777+fdhlmZtaB\nNDTAvHkwejTUtmPy/PDhwxkyZAgPPvggkyZNSq5AMzNL0l4RUdIV1wvpbN1G5qKx+/jgArITgUMi\n4vMlrK2k3NkyM7N8DQ0wfjwcfXTmsaGhfZ93zjnncOONNyZTnJmZlcLjksaUcoBWw1ZErIuI1yJi\nckQsyV5Itiki3iplYaXmsGVmZvnmzYP582HzZliwIPO8Pc444wweeughVq1alUyBZmaWCElzszP2\njgLmSHpR0vN5xxNTzE2N880ADk6ykHLr0aOHpxGamdlWo0dDXV0maI0alXneHrW1tZx66qnccsst\nfOtb30qmSDMzS8IJ5RqomAUy8inRKlLQvXt3d7bMzGyr2lp45BF4+OHMY3uu2crJTSXM3ePRzMzS\nlzdb73Dgrezz/w/4MbBLkmO1den3/2rhWKfiaYRmZtZcbS2MG5dM0AIYN24c3bp145FHHknmA83M\nLEmXRkSDpKOATwI3AT9LcoA2Lf0eEddnn7Zp6XdJEyUtlPSSpIu3cc61khZJelbSgc1eq5I0R9J9\nbRkfHLbMzKz0JPHlL3+Z66+/vvWTzcwqWEr5YEv28dPA9Ij4PdC9bd+gZa2GLUlfkTQXGJG9cCy3\nvQoUfQGZpCpgGvApoA6YLGlks3OOB4ZFxD7AFD6aMC8EFhQ7dj4v/W5mZuVw9tln8+CDD7Js2bK0\nSzEz65BSzAcrJN0AnA7MkNSDtl9m1aI0ln4/HFiUnSvZCNxB5mZi+U4GbgGIiFnATpL6A0jaC5gE\ntGs9XXe2zMysHHbaaSfOOusspk2blnYpZmYdVVr54LPAA8CnImItmeu1vtnmb9GCNi39nt3auvT7\nQCD/n/eWZ49t75wVeef8mMwfoV1XGztsmZlZuXzta1/jpptu4t133027FDOzjiiVfBARGyLinohY\nlN1fGREPFvMZrSl46XdJ32vpeET8a3LltFrDp4HVEfGspHrasSqiw5aZmZXL0KFDOfroo7nllls4\n77zz0i7HzKzLSDIflEIx99lan/e8J5n16V9ow5grgMF5+3tljzU/Z1AL5/wTcJKkSUAvoFbSLRFx\nVksDTZ06devz+vp66uvrty6/62u2zMxKa+bMmcycOTPtMjqMr3/963zpS19iypQpVFdXp12OmVlZ\nFPhbULZ8UG5q670/sheQPRAR9UW+rxp4ETgWWAk8BUyOiBfyzpkEfDUiPi1pHPCfETGu2ef8A/CN\niDhpG+NES9/tf//v/80ee+zByJEj+elPf8rvf//7Yso3M7M2kkRElP1fHLf1e1BuEcH48eM577zz\nOPPMM9Mux8wsFS39FpQrH7RQy2nA/dnl378LHAx8PyLmtOMrfkh7VtvYgUyiLEpEbAHOBx4E5gN3\nRMQLkqZIOjd7zgzgVUmLgRuAxOdceBqhmZm1R0MDPPFE5rEQkrjsssu44oor2LJlS+tvMDOrECnm\ng5bus/XTBD53q2Ku2ZrLBxedVQO7AVe0ZdCIuB8Y0ezYDc32z2/lM/4K/LUt44PDlpmZtV1DA4wf\nD/PnQ10dPPJIYTdC/uQnP0nfvn256667OOOMM0pfqJlZJ5FSPvjIfbYkfb+I97eqmM7WCXyw7PsE\nYEBE/CTJYsrJ12yZmVlbzZuXCVqbN8OCBZnnhcjvbjU1NZW2SDMza02HuM9WzirgSOBzwJeA72xr\nhcLOwJ0tMzNrq9GjMx2tbt1g1KjM80JNmDCBPn36cPvtt5euQDMzK0TJ77NVzGqEvwHWAX8DOn1K\ncdgyM7O2qq3NTB3MTSMsZAphjiSuvvpqPv/5z3PqqafSq1ev0hVqZmbbFBEbgHvy9leSWaAjMcV0\ntvaKiNMj4uqI+I/clmQx5eSwZWZm7VFbC+PGFRe0csaPH8+hhx7KNddck3xhZmZWEEmnSarNPv+u\npHskHZzkGMWErccljUly8DT16tWL9957L+0yzMysQl111VX8+7//O6tXr067FDOzSlXy1QhbDVuS\n5kp6HjgKmCPpRUnP5x3vlHr37s369etbP9HMzKwEhg8fzllnncWll16adilmZpXqI6sRAt2THKCQ\na7ZOSHLAjiIXtiICqez32DQzM+N73/sedXV1PPbYYxx55JFpl2NmVmlyqxFOAK5KazXC3YFNEbEk\nIpYA/wBcC3wDKPBWjh1PTU0NNTU1vm7LzMxSs/POO3PNNddw7rnn+nYkZmbll1uNcEKpViMsJGzd\nALwPIOlo4P8Ct5BZmXB6ksWUm6cSmplZuTQ0wBNPZB7zfeYzn2HYsGFcffXV6RRmZla53gN6A5Oz\n+92AtUkOUEjYqo6It7LPTyczn/FXEXEpMDzJYsrNYcvMzMqhoQHGj4ejj8485gcuSVx33XVcc801\nzJs3L70izcwqz/XAOD4IWw3AdUkOUFDYkpS7tutY4C95rxVzn64Op3fv3mzYsCHtMszMrIubNy9z\nT67Nm2HBgszzfIMGDeLqq6/mzDPPZOPGjekUaWZWecZGxFeBjQAR8TYJL5BRSNi6HfirpN+QabU9\nAiBpOJmphJ1KRGx9vsMOO7izZWZmJTd6dObmx926wahRmefNffGLX2TEiBFccskl5S/QzKwyNUqq\nBgJA0m5AU5IDtNqZiogfSPozsCfwYHyQVqqAC5Isptw8jdDMzMqhthYeeSTT0aqra/lGyJKYPn06\nBxxwABMmTGDSpEnlL9TMrLJcC9wL7C7pB8A/AYnej6OgaYAR8WQLx15KspByyi317rBlZmblUlsL\n48Zt/5y+ffty++23c+qpp/LYY48xfHinvjTazKxDi4hbJf2NzKVSAk6JiBeSHCPRdeQ7G4ctMzPr\naI488kguv/xyTjnlFBqaL11oZmaJkXQzsCoirouIacAqSf+d5BgOWw5bZmbWwUyZMoVDDqnnhBN+\nwNq1W9Iux8ysq9o/e38tYOsCGQclOUCnXk2wvbwaoZmZdUTvviueeeZa5s3bwvDhK3nllYH06aO0\nyzIz62qqJPXNhiwk7ULC+aiiO1u1tbW88847aZdhZmb2IfPmwQsvVBHRjb//fXe+8Y1EZ7WYmVnG\nfwBPSLpC0hXA40Cid5iv6LDVt29f3n777bTLMDMz+5APLxUv/vzna/nRj36UdllmZl1KRNwCnAqs\nzm6nRsQvkxyjoqcR7rLLLrz22mtpl2FmZvYhH14qvhtr1/6OY445hk2bNvHtb3877fLMzLoESaMi\nYgGwIO9YfUTMTGqMig5bffv25a233kq7DDMzs4/IXyq+tnYQf/3rXznmmGNYv349V1xxxdbbmJiZ\nWZvdKemXZKYO9sw+HgockdQAFT2NcJdddnHYMjOzTmHAgAE8/PDD/PGPf+Sss85i06ZNH3q9oQGe\neCLzaGZmBRkLDCJzrdbTwOvAkUkOUNFhy9dsmZlZZ7L77rvz0EMPsWHDBiZMmMAbb7wBZALW+PFw\n9NGZRwcuM7OCNALvAb3IdLZejYimJAeo6LDlzpaZmXU2O+ywA3fddRdHH300Bx98MI8++ijz5mWu\n79q8GRYsyDw3M7NWPU0mbB0GjAcmS7oryQEqOmy5s2VmZp1RVVUVV1xxBdOnT+czn/kMM2ZczahR\nkV29MLOSoZmZtepLEfG9iGiMiJURcTJwX5IDVHTY6tOnDxs2bOD9999PuxQzM7OiTZo0idmzZzNr\n1p+orq7n5ptf5ZFHMotrmJlZyyR9CyAiZks6rdnL+yU5VkWHraqqKvbcc09ef/31tEsxMzNrk0GD\nBvHAAw8wZcqZXHDBYUyd+g3WrVvX6vu8oIaZVbAz8p43v5/GxCQHqriwFREf2h80aBDLli1LqRoz\nM7P2k8SUKVOYP38+69atY+TIkdx4441s2bKlxfO9oIaZVTht43lL++1ScWEL+NC9SRy2zMysq+jf\nvz833ngjv/vd77j55pupq6vj5ptvprGx8UPneUENM6twsY3nLe23S0WGrXwOW2Zm1tUccsghPPzw\nw1x33XXcfPPN7Lvvvlx//fU0ZFtYo0dnFtEoZkENTzs0sy7kAEnvSGoA9s8+z+2PSXKgVMKWpImS\nFkp6SdLF2zjnWkmLJD0r6cDssb0k/UXSfElzJX2tvbUMHjyYJUuWtPdjzMzMOhRJHHvssfzlL3/h\ntttu489//jODBw/m3HPP5cUXZ/PII/DwwxS0oIanHZpZqZUzH0REdUT0iYjaiKjJPs/td0vye5U9\nbEmqAqYBnwLqyKxnP7LZOccDwyJiH2AK8LPsS5uBiyKiDjgC+Grz9xarrq6OefPmtecjzMzMOrQj\njjiCX/3qVyxYsIC9996b0047jSOOGM39909l6dLW5xB62qGZlVJHywdJSqOzdTiwKCKWREQjcAdw\ncrNzTgZuAYiIWcBOkvpHxKqIeDZ7/F3gBWBge4o54IADeO6552hqSvRm0WZmZh3OnnvuyXe+8x1e\nfvllpk+fzrp165g4cSL77bcf3/jGN7j//vvZsGHDR97naYdmVmIdKh8kKY2wNRDIv0hqOR/9gzQ/\nZ0XzcyTtDRwIzGpPMf369WOnnXbi5Zdfbs/HmJmZdRpVVVV8/OMf58c//jFLlizhlltuoW/fvlx5\n5ZX079+f+vp6LrnkEu69915WrlxJbS2edmhmpdSh8kGSatIuoC0k7QjcDVyYTbAtmjp16tbn9fX1\n1NfXt3jecccdx+9//3v+5V/+JdlCzcwq2MyZM5k5c2baZVgrqqqqOOywwzjssMP47ne/S0NDA48/\n/jizZs3iv/7rvzjnnHPo3bs3Bx10EHV1dSxePIq6ujpGjhxJr169WvzMlqYdjhu3/ToaGjLvGz3a\nN2U260rK9VtQaD4oNzW/71TJB5TGAVMjYmJ2/xIgIuKqvHN+BjwUEf8vu78Q+IeIWC2pBvgd8IeI\nuGY740RL3+2iiy5ir7324qKLLtp6bMaMGVx66aXMnj37Q8vCm5lZciQREWX/H9lt/R5YYSKCxYsX\n89xzz7FgwQLmz5/P/PnzWbx4MbvuuitDhgzZuu29994MGTKE2toBnHvuSBYt6saoUWq1G5brhM2f\nn5miWEj3zMw6p5Z+C8qVD9KQRmfraWC4pCHASjJ3cJ7c7Jz7gK8C/y/7x18bEauzr/03sCDJP+TE\niRO57LLLuOKKK/j2t79Nt26JLkJiZmbWaUlin332YZ999vnQ8c2bN7NixQqWLFmydZs9ezb33HMP\nq1ev5u9/X09TU39effU1DjlkB3bbbTd23nln+vTp85Ft9eqhzJs3iS1bqpk/fwu/+MUcDjpoEz17\n9qRHjx4f2mpqaqiurua992p47bUdGTNGDmZmnV+HywdJKXvYiogtks4HHiRzzdhNEfGCpCmZl2N6\nRMyQNEnSYmA98EUASUcCnwPmSnqGzE3HvhMR97enpqqqKu655x5OP/10HnvsMR544IH2fJyZmVmX\nV1NTs7WjtS1NTU2sXbuWN998kzfeeIN33nnnI9srr7zCmjUvsOOOY3jnnYH06rWUu+6ayh13rGXj\nxo1s2rTpQ9uWLVtobOxJQ8MMIkbSs+erHHvsVPbeux977rknAwYM2Lrtueee9OvXD0mepmjWgXXE\nfJCUsk8jLJdiphHmbN68mf3335/LLruM008/vRxlmplVDE8jtO1paPhgGmFrYeiJJzKLb2zeDDU1\nTVx++Uxqa+fz+uuv8/rrr7Ny5cqtz9evX0///sP5+9/v5b33Pkbfvqv4whduZK+9dmLXXXdlt912\n2/q42267scMOO7QpnDnMmRUmrd+CtHTKBTJKpaamhl/84heccMIJ7Lfffuy///5pl2RmZlYRamtb\nX0QjJ7cU/YIFMGpUFRdccAy1tce0eO57773HjBlvc8YZexBRxbp1A9iw4WMsW/YczzzzDG+++SZv\nvvkma9as4c033yQi2GWXIbz11q/ZuHEYffosY9Kk/8tuu/Vk5513bnGrqenLmWcO4sUXq6mra/0a\nNSgunDnImXVeDlvNHH744UybNo3jjjuO6dOnc9JJJ3nRDDMzsw4ktxR9IZ2wXr16MWFCr7xwVs0P\nf/jFbb5nw4YN3H//Ok4/vT9QxYYNQxg+/GR23XUxa9euZdmyZcydO5e1a9du3Vat+hirVt0B1PDc\nc5sYOPBEdt55ITvuuOOHtt69e7PjjjvSvXs/7r77Qtas2Z0993yb73znD/TtW0OvXr3o2bPn1see\nPXuyZcsOfP7zQ1i0qBsjRzbx8MNB377b/79vpe7KuetnVjiHrRZ89rOfZeDAgfzzP/8zP/zhD/nC\nF77AMcccw9ChQx28zMw6o4aG5P9fYUf7f6gVdn4tDYyLecBoYPvn19bCIzMa+P/Zu+84qcqz/+Of\naxt1QSI2kC6KLCKgEizIWkAQH8FYIthL0NgSnxg1if40JhKJ8Ykao9FIsMeCCtLUKCIWQKMgZekg\nXRBFWMqy7fr9MbO4rFtmlpk5M7vf9+t1XjPnzDX3fZ1lmbPXnPvcZ8GkL8kZ3J7satpv3Lgx/fs3\nJqdLCXmLSunaBW69dXDNsymeUELeohK6HJHOGxP/jdl2tm/fzo4dO9i+fftey/z52WzefAClpels\n2NCcSZO+JDt7AQUFBezatWuvx2+/PYJ1654HjPnzi9l//1NIS/tkr4Ks7HmDBg1IT9+PvHmPsmNn\ne7KbruakfnfQuHEJWVlZZGVlkZmZudeje1Oeeeoqvt58AAcd+A03/2oczZrZXnHp6el7JibZvTuL\nW2/5MatXN6Vdux089nge2dnsFVP+eUFBJhecdxBLl2VyeOdiJk3Zzn77/TA2Le37W7/mr89n/sQv\n6XZWe7Jb1fy7oPjYxScil/qm3hVbkY7bP/HEE1mwYAHjxo3jlVde4Z577mHbtm20adOGgw8+eM+4\n7saNG9OoUSMaNWpEVlYWGRkZVS5lHyiVba/4IVXTek2x6enpKgxFRMr07VvzfOLRzD8e7Vzlig88\nPvvMvvSJMD6bfD7gDBZ4GjmUks1bVFfQ7RVvpWTv/xZkVz1xSP76fKb/czl5Be3pmvUlL/7zl1X+\noZq/Pp++nVaGYht+yQfL36LhAQ1/UJjt2rWLoqIi5nzsXDerPaVksnN7G/oddzltu3xHYWEhRUVF\nez0WFhayelELNm/anxIy2PTVfnz2wbdkH7Ryr7iSkhJKSkooLi5m+6aOrP4yl2LSWbWyAb/75T+x\npvP3iin/vHT7Uazd9DLFpLNkUTE/PupCCtI+2Su2uLgYCBVszawZBxRPZQVd6UgeW5sMoiBjF2ZG\nWh8ZR2cAACAASURBVFraXouZ0aS0Cekbx7KcI+nEQtLbXkRh1u69Ysq/p2FxI77Le5zl3oXDbBEH\n9ryJogaFlbadlpZGVmEDVnw4kmWlXTgsbRGH5/4/ShoV7/kby8z2LAAZBZks+M+de+K7DxxJaeOS\nSmPNjIxdGXw24VaWlh5B57TFHDf0AbxJaZXx6bsy+OiVG1lacgSd0xfT96d/h6ZeZXzajjTefe6a\ncPwSBlz25J5f5YqxtiONKU9expKSIzg8fQmDRzxLWrPvXy//CMB2Y/yjw/bED73+xR/E7/U8H8b+\n7YIq/1/UVfWu2AIiLkIyMjI477zzOO+88wD45ptvWLduHRs2bGDz5s17Ptx27ty5ZykuLq5xKftg\nKS4upqioaM+HUsUPqco+tCKNLS0tJS0trVaF3L4WevFcT0Rf5b9dE5E6IpI760ZzJ95o79qr+JSL\nz170KX1KimFxZszjs1fN54OiM1nAEeQULyF79WRoVXl8VbGZmZmVnqHrsnUWfyePPLrQlUVce1IL\nsk87o8pc8t+ZxYxnFu6Jf+Km08g+rXe18X37fx//7sPXRBX/wbh7K40vLS2lpKSEGf+cz2nXd6WY\nLFZyJG/96Q16XtKZ0tJS3J3S0tK9ljnPLWfo7UdSTBYr6MIrIx6i6wVt94op/75FY9dxyYIuFJPF\ncj+C3w24mQ5ntay0bXfny4nfcN30cHzpEfyy6/m0GtAMCH2BX7aUra9/O5/xpd/HX9fmDA4+rWml\nse7Oxnd38mLpERSTxbLSw7m6+Qm0zG1YZfw37xfyVEk4vuRwLk07iha9MqqM3/phCUtLDg/Hd2bY\n9nZkH2WVxm+faSwJxy4t6UzDr/ancdvSvWLKuDu78jL2iufLJmQdW/yDuLLH3UuzWFK89y0k6oN6\nNxvhzTffTNu2bbn55psDyCpx3H2vQizaYm1fCr1U6quyvuGHwyHqYlEZj751NlWqE+hshEcfHfnZ\nktCFPZGd2YokVvGK35f4WrSdf8IZLFiYRs6RpWR//FZKxYfO5K0vdyavVbXD0xQfu/hE5fJFQZd6\nNRuhii2RCsq+XatvRea+tlVaWhoaEhHBENealtq8Z1+XZOuzbBhLXRJosbVtW+TXDUU6/3g0sYpX\n/L7EJ1MuCYjPX5/PgsmryDmzXcTXASk+NvGJyKVZ62YqtuoCFVsiiVU2BCOS4qymJdr4WCzJ1qe7\n7zUUONWLyszMTK644grdZ0tEpJ7TfbZERGrBzPb8cZ2VlRV0OimvsqHAyVpUFhUVUVBQUG2fde0s\nnYiISCRUbImIJKGyIZkZGXXnY/rJJ58MOgUREZGE0rRrIiIiIiIicaBiS0REREREJA5UbImIiIiI\niMSBii0REREREZE4ULElIiIiIiISByq2RERERERE4kDFloiIiIiISByo2BIREREREYmDeldsuXvQ\nKYiIiIiISD1Q74otADMLOgUREREREanj6mWxJSIiIiIiEm8qtkREREREROJAxZaIiIiIiEgcqNgS\nERERERGJAxVbIiIiIiIicaBiS0REREREJA5UbImIiIiIiMSBii0REREREZE4ULElIiIiIiISByq2\nRERERERE4iCQYsvMBprZIjNbYma3VRHzsJktNbM5ZtYjmvdK9aZNmxZ0CklNP5+q6WdTPf18JGj1\n7XewPu1vfdpX0P7WR3W1Pkh4sWVmacAjwBlADjDMzLpUiBkEdHL3zsA1wD8ifa/UTP+hq6efT9X0\ns6mefj4StPr2O1if9rc+7Stof+ubulwfBHFmqzew1N1XuXsR8CIwpELMEOAZAHefBTQ3s4MifK+I\niIiIiKSOOlsfZATQZ2tgTbn1tYR+SDXFtI7wvXtMmDDhB9tWrFhB+/bto0pYRERERETiJmH1QaKZ\nuye2Q7NzgTPcfUR4/WKgt7vfVC5mAvAnd/84vP4OcCvQoab3lmsjsTsmIiI1cndLdJ86HoiIJJeK\nx4JE1QdBCOLM1jqgbbn1Q8PbKsa0qSQmK4L3AsEc0EVEJPnoeCAikvQSUh8EIYhrtj4FDjOzdmaW\nBVwIvFEh5g3gUgAz6wN85+4bI3yviIiIiIikjjpbHyT8zJa7l5jZDcDbhIq90e6+0MyuCb3sT7j7\nZDM708yWATuAK6p7b6L3QUREREREYqMu1wcJv2ZLRERERESkPgjkpsbxlMw3NQuamR1qZlPNbIGZ\nzTOzpLhwMJmYWZqZfW5mSXP6OVmYWXMze8XMFoZ/h34cdE7JwsxuNrP5ZjbXzJ4PD2Oot8xstJlt\nNLO55ba1MLO3zWyxmb1lZs1j3Getb4aZimraXzM7wsw+NrMCM/vfIHKMpQj2d7iZfRFePjSzo4LI\nMxYi2Nezw/s528w+MbMTg8gzViL9u83MjjOzIjP7SSLzi6UI/m37mdl34b9DPjezO4LIM1Yi/FzO\nDf8uzzez9xKdY0K4e51ZCBWPy4B2QCYwB+gSdF7JsgAHAz3Cz5sCi/Xz+cHP6GbgOeCNoHNJtgV4\nCrgi/DwDaBZ0TsmwAK2AFUBWeP0l4NKg8wr4Z3IS0AOYW27bKODW8PPbgPti2F+Nn/3AIGBS+PmP\ngZlB/5zivL8tgWOAPwD/G3TOCdjfPkDz8POBqfrvG+G+Ni73/ChgYdB5x3N/y8W9C0wEfhJ03nH8\nt+1XV/7+iHB/mwMLgNbh9ZZB5x2Ppa6d2Urqm5oFzd2/cvc54efbgYWE7k0ghM78AWcCTwadS7Ix\ns2ZAX3cfA+Duxe6+LeC0kkk60MTMMoDGwPqA8wmUu38IbKmweQjwdPj508DQGHa5LzfDTEU17q+7\nb3b3z4DiIBKMsUj2d6a7bw2vziR1j22R7OvOcqtNgdIE5hdrkf7ddiMwFtiUyORiLNJ9rSuzp0ay\nv8OBV919HYQ+txKcY0LUtWKrqpudSQVm1p7QN8+zgs0kqfwV+DWgCxl/qAOw2czGhIc2PGFmjYJO\nKhm4+3rgAWA1oalmv3P3d4LNKikd6KFZo3D3r4ADY9h2JJ/9FWPWVRKTKurbsS7a/b0amBLXjOIn\non01s6FmthCYAFyZoNziocb9NbNWwFB3f4zULkQi/T0+PjzUeZKZdU1ManERyf4eDvzIzN4zs0/N\n7JKEZZdAda3YkgiYWVNC3xD9InyGq94zs8HAxvCZPyO1P9DjIQPoBfzd3XsBO4Hbg00pOZjZfoS+\nrWtHaEhhUzMbHmxWKUFfakjMmdkphGYoq9PXbLv7OHc/ktAZ4j8GnU+cPcje/551+fj8GdDW3XsA\njwDjAs4n3sr+thhEaPjvnWZ2WLApxV5dK7YiuSFavRYe5jQWeNbdxwedTxI5ETjbzFYA/wZOMbNn\nAs4pmawF1rj7f8PrYwl9QAqcDqxw92/dvQR4DTgh4JyS0cayYXtmdjCxHQ60LzfDTEX17VgX0f6a\nWXfgCeBsd684jDVVRPVvGx6y29HMfhTvxOIkkv09FnjRzFYC5wF/N7OzE5RfLNW4r+6+vWyYqLtP\nATLr+L/tWuAtdy9w92+A6cDRCcovYepasZXUNzVLEv8C8tz9oaATSSbu/lt3b+vuHQn93kx190uD\nzitZhId/rTGzw8ObTgPyAkwpmawG+phZQzMzQj+bpLm/R4AqniF+A7g8/PwyIJZf9uzLzTBTUbTH\nulQ/E1Dj/ppZW+BV4BJ3Xx5AjrESyb52Kve8F6HJeb5NbJoxU+P+unvH8NKB0Bd917l7Kv5tF8m/\n7UHlnvcmdIumOvtvS+g4cJKZpZtZY0KTF9W542fCb2ocT57kNzULWnh62IuAeWY2m9Awnt+6+5vB\nZiYp4ibgeTPLJDT73hUB55MU3P0TMxsLzAaKwo9PBJtVsMzsBSAX2N/MVgN3AfcBr5jZlcAq4IJY\n9VfVZ79FcDPMVBTJ/ob/aPsvkA2UmtkvgK6pOHQ8kv0F7gR+BDwa/tKjyN17B5d17US4r+ea2aVA\nIbCLGP5fSrQI93evtyQ8yRiJcF/PM7OfEzqW7AJ+GlzG+ybCz+VFZvYWMBcoAZ5w9zr3Ra5uaiwi\nIiIiIhIHdW0YoYiIiIiISFJQsSUiIiIiIhIHKrZERERERETiQMWWiIiIiIhIHKjYEhERERERiQMV\nWyIiIiIiInGgYktERERERCQOVGyJiIiIiIjEgYotkSiZWfPwHd7L1j8MIIeGZjbNzGwf28k0s/fN\nTJ8FIiJR0vFARGqi/1Ai0WsBXFe24u4nxaMTM+tiZr+p4uUrgVfd3felD3cvAt4BLtyXdkRE6ikd\nD0SkWiq2RKL3J6CTmX1uZn82s3wAM2tnZgvNbIyZLTaz58zsNDP7MLx+bFkDZnaRmc0Kt/FYFd9I\nngLMriKHi4Dx0fRrZo3NbKKZzTazuWZ2frit8eH2REQkOjoeiEi1VGyJRO92YJm793L3W4Hy3yZ2\nAu539yOALsCw8DedvwZ+B6FvKIGfAie4ey+glAoHNzMbCFwNtDGzgyq8lgl0cPfV0fQLDATWuXtP\nd+8OvBnePh84rvY/DhGRekvHAxGplootkdha6e554ecLgHfDz+cB7cLPTwN6AZ+a2WzgVKBj+Ubc\n/U1CB8J/uvvGCn20BL6rRb/zgP5m9iczO8nd88N9lQK7zaxJ9LsrIiJV0PFARMgIOgGROmZ3ueel\n5dZL+f7/mwFPu/vvqEL428uvqnh5F9Aw2n7dfamZ9QLOBP5oZu+6+x/CcQ2AgqryERGRqOl4ICI6\nsyVSC/lAdrl1q+J5RWWvvQucZ2YHAJhZCzNrWyG2N/CJmR1rZo3Kv+Du3wHpZpYVTb9mdgiwy91f\nAO4Heoa3/wjY7O4l1bQhIiI/pOOBiFRLZ7ZEouTu35rZx2Y2l9A49/Jj9Kt6vmfd3Rea2R3A2+Ep\ndguB64HyY+7XExpastzdd1WSxtvAScDUSPsFjgLuN7PScJ9l0xWfAkyqbF9FRKRqOh6ISE1sH2cK\nFZEAmFlP4JfuflkM2noVuM3dl+17ZiIikkg6HogkNw0jFElB7j4beC8WN7EEXteBVUQkNel4IJLc\ndGZLREREREQkDnRmS0REREREJA5UbImIiIiIiMSBii0REREREZE4ULElIiIiIiISByq2RERERERE\n4kDFloiIiIiISByo2BIREREREYkDFVsiIiIiIiJxkJLFlpn9wszmhZebgs5HRERERERqz8wGmtki\nM1tiZrdVEfOwmS01szlm1rPc9tFmttHM5lbxvl+ZWamZ/She+Vcl5YotM8sBrgKOBXoAZ5lZx2Cz\nEhERERGR2jCzNOAR4AwgBxhmZl0qxAwCOrl7Z+Aa4LFyL48Jv7eytg8F+gOr4pB6jVKu2AKOBGa5\n+253LwGmAz8JOCcREREREamd3sBSd1/l7kXAi8CQCjFDgGcA3H0W0NzMDgqvfwhsqaLtvwK/jkvW\nEUjFYms+0NfMWphZY+BMoE3AOYmIiIiISO20BtaUW18b3lZdzLpKYvZiZmcDa9x9XiySrI2MoDqu\nLXdfZGajgP8A24HZQEnFODPzROcmIiLVc3dLdJ86HoiIJJdEHAvMrBHwW0JDCPdsjne/FaXimS3c\nfYy7H+vuucB3wJIq4lJqueuuuwLPoS7nq5yVr3IOdglS0Pte1/9tlbPyVc7KOdKlCuuAtuXWDw1v\nqxjTpoaY8joB7YEvzGxlOP4zMzswisPHPkvJYsvMDgg/tgXOAV4INiMREUlq+fmRxcyYEVmsiIjE\n0qfAYWbWzsyygAuBNyrEvAFcCmBmfYDv3H1judeNcmeu3H2+ux/s7h3dvQOhoYk93X1TPHekopQs\ntoBXzWw+MB64zt23BZ2QiIgksb59qy+i8vNDMSefXHNsWXykhZmKOBGRanlo0rsbgLeBBcCL7r7Q\nzK4xsxHhmMnASjNbBjwOXFf2fjN7AfgYONzMVpvZFZV1QwDDCFPumi0Adz856BziITc3N+gUopJq\n+YJyToRUyxeUc72QlwcLFkCfPpW/Pn9+6PXi4ppjywqzBQsgJwc++ACys/c9Nhyfe8ABofdVF1e+\n/fnzoVu3muOjiY1SKv4+plrOqZYvKOdEScWcK+PubwJHVNj2eIX1G6p47/AI2g/kVlFWzdjJlGZm\nXlf3TUQkFZkZHtAEGX700ZEVRXl50LVr9bEzZoTOgBUXQ2YmTJ9edWEWTWwtCrN4Fn3JUMSJSN0T\n1LEgKKk6jFBERCRyNRUX2dmhmOnTa47t1i1UsGRmhgqznJzYxFZ2dq060cRHExvNkEoNvxQRqZaK\nLRERqfsiOeOSnR0661RTbDSFWbyKuGjj41X0JUsRV/aeeBRyKvpEZB9oGKGIiCREoMMIU+V4kJ//\n/VC/SK/ZijQ+0thohlQmw/DL8nnEekilhl+KxJyGEYqIiEgwIj27Vpv4VDpzF+1ZvnidjUuWM3fR\nnl3T2TiRpKFiS0RERPaWSkUcxK+QS7Xhl7WN1/BLkbjRMEIREUkIDSOUuIrHkMpoYpNh+GW08ak4\n/LI28ZJUNIxQREREJNXE42xcNLHJMPwy2vhUG35Z23iduZMAqdgSERERiYWgi7ho41Nt+GW08fG6\nji5ZCj5JCRpGKCIiCaFhhCJJKE7DL/PX5zN/0iq6DW5HdqvqhxDmn3AG8xem0+3IErI/fqvGIYcR\nx8+YQX7fM5lf0oVuGYvJ/mBytTNgxiU2mnyj/VkQ/jlP/JJuZ7Wv/uccbj8Zhl/Wt2GEGUEnICIi\nIiLByCeb+d6HbkBNf36Xj21YVMTOnTvZsWMHO3fu3GvZvHk3v/51H9auPZJDDtnCNdeMprR0K4WF\nhXuWoqIiCgsL2bEjjbdWP8/WkkPJXrWaY4ZeQmnp1j2vFxcXU1paumcpLm7E6pXPUFDSiQZLlnFw\n9xOB/L1iypYGRQ1pVDKNFRxJp+KFFP7PORRkFmBmpKWlYWZ7lkYljfGSaSwPx2YNv5TCrN17Xs/I\nyNizNC5twsbS91lGFw4rXUTn394JTX2vmLKl7Vc7eH3+o+TRla7z87j4ql/ybacD97yemZlJVlYW\nDRo0oOXyTdy3J3Yhox4cjR97BFlZWXtiyp5nZWVRtKWYC/tC3u4j6NpgBe8tPpAWbVtgVkkdU4tC\nTmJDxZaIiIhIHRLJCQx3Z926bfTv34Bly7I49NB8br11AoWF37B161a2bt3Kd999t+f5t98WsWDB\nY+ze3QmzhZj1o2lTp3HjxnstTZo0YffuXqxZczru6WzY0JxFi9Lp1KmExo0b07x5870KhlWrWvHK\njraUks6OXe0566zbOProXWRlZZGZmUlmZuaewigtLY25c5tw+eXtcdIoLu3C/fdP5phjikhLS/vB\n8t//ZjJ06H4UF6exIuMoXv3XLHr1KsTdcXdKS0v3PP/ssyyGDTuE4uI0lmccxXN/eoOjj95VodAr\npri4mDlzGnL9dTkUl6SzLC2Hn511G4cdtnnP6+WX5fOakjelK8VksZAjWbffiRzUbCPFxcUUFRVR\nUFCwpwCdvuIg8gjF5tGFv0x5moyP3tyrSC2/tPr2CPJ2vx5qe3cHTul4KnNLP97r51u29CxqyMoN\nL+0p+o47aRBrD2lKgwYN9loaNmxIgwYNGD58OMccc0xif3HrKA0jFBGRhNAwQpH4W78+n1NPzWTZ\nskxatdrKlVeOYcuW1Xz99dd7LZs3byYt7UQKCt4CMjEr4owzRnLYYZtp3rw5++23H82bN9+zrFlz\nKD//+ZEUF6eRmem8/z4cf3zl/53jNTFjPNuOa+wJJeQtMrp2cT74OD0msRAaQti303ryCtrTteGX\nfLC8FU0ObrLnrGDZsnv3bj6ZtpuLruhIMZlkUshDf/mU9l23sXv37r2WgoICdu/ezaBBg8ipaTKW\nWqpvwwhVbImISEKo2BKpnbIzVV27lpKfv54VK1awcuVKVqxYwapVq1i3bt2epaCgJ4WF/wEySUsr\nYvjwJ+jVq5ADDjhgr6Vly5YUFzeKa1EUj5n449l2qsVCqOBaMHkVOWdWf21ctIVcPKnYqiPMzLdu\n3UqzZs2CTkVERFCxJVJeVUP93J21a9eycOFCFi5cyPz5q3jppevJz2+LWR4HHHAuhx12EB06dKBj\nx460a9eO1q1b07p1aw499FDS0/fj5JMtKYoiSS7J8u+nYquOMDMfN24cQ4YMCToVERFBxZZImfx8\nOOkkJy/Pad16G5dd9iQrVnzBwoULWbx4MU2bNqVLly4ceeSRZGX145FHzqOkJJ3MTGf6dKv2nsZl\n7SfDH9UilalvxVadniDjP//5j4otERERCVRhYSELFy5k9uzZzJkzh/ffL2Tu3AeBLFavbsKyZQ04\n7bRTuO666+jSpQstWrTY8978fJg2rWz4ntV4T2P4/hZeIhK8On1mq3PnzixZsiToVEREBJ3Zkrqv\nbGjgj360nnnzPmbGjBnMnDmTOXPm0K5dO3r06EHPnj05/PBj+O1v+7J0aWbMh/qJJLv6dmarThdb\nBx54ILNmzaJ9+/ZBpyMiUu+p2JK6yN3Jy8tj8uQPuPfegWzd2or09CX0738Pffv2oE+fPhx33HFk\nV6iSVEBJfaViq44wMx8+fDi5ubn87Gc/CzodEZF6T8WW1AXuzvLly5k6dSpTp07lvffeo2nTpuTk\nXM3kybdGdW2VSH2kYquOMDN/6qmnmDRpEi+//HLQ6YiI1HsqtiQV5efDp5/uYtOmqUydOp4333yT\nkpISTj31VE499VROOeUU2rdvH/XU6CL1lYqtOsLMfO3atXTv3p1NmzaRnp4edEoiIvWaii1JJV9+\n+SVjx77F739/Otu3t6FJk9X89rdT+MlP+nPEEUdg9sNfZQ0NFKlZfSu20oJOIJ5at27NIYccwuef\nfx50KiIiIpLkvvzyS+6//3569+7Ncccdx9Spm9i1qz2QRWHhYZx66o106dKl0kILvp8FUIWWiJSp\n08UWQP/+/Xn77beDTkNERESSRH4+zJgRelyzZs1eBdbSpUu599572bBhAy+9dCfduqWTmRkaGhjJ\ntOsiIuXV6WGE7s6UKVMYNWoU06ZNCzolEZF6TcMIJRnk58OJJ5aQlweNGn1JZuapnHvuAC644AJO\nOeUUMjIyfhCvoYEisVPfhhGmZLFlZjcDVwGlwDzgCncvrBDj7s6OHTs4+OCD2bBhA02bNg0iXRER\nQcWWBMvdmTVrFvfd9z7jx98MZJGeXsK77xbRr1/DoNMTqTfqW7GVcsMIzawVcCPQy927AxnAhZXF\n5udDkyZNOO6443j//fcTmaaIiIgkgV27djFmzBiOOeYYLrnkEnr0yODIIyEzE7p1S6dXLxVaIhI/\nKVdshaUDTcwsA2gMrK8sqG/fUME1YMAAXbclIiJSj6xatYrbb7+ddu3aMXbsWEaOHMnixYu5++5f\nMWtWFtOna3p2EYm/jJpDkou7rzezB4DVwE7gbXd/p7LYvLzQOOsBAwZw0UUXJTRPERERSZz8fJg/\nH3bv/oxHHvkT7733Hpdddhkff/wxhx122F6xZbMGiojEW8oVW2a2HzAEaAdsBcaa2XB3f6FibNnM\nQU2a9GDLli2sXLmSDh06JDplERERiaNt25yePbezcmVD0tMb8sc/nspTTz2la7VFJHApV2wBpwMr\n3P1bADN7DTgB+EGxNWjQ3TzwQOh5jx49mDJlCtddd10CUxURqb+mTZummWAlrtydN998k1/9aiwr\nVvwDyMSsK/365aA6S0SSQcrNRmhmvYHRwHHAbmAM8Km7/71C3F6zT7388ss888wzTJw4MZHpiohI\nmGYjlFiaNm0ad9xxB99++y23334vDzwwlIULja5ddS2WSDKrb7MRplyxBWBmdxGagbAImA1c7e5F\nFWL2Orhu2bKFdu3asWnTJho21MxDIiKJpmJLYuG///0vv/nNb1i5ciV33303w4YNIz09XffDEkkR\n9a3YSsnZCN399+5+pLt3d/fLKhZalWnRogVHH320poAXERFJQevWrePSSy/l7LPP5vzzz2fhwoVc\nfPHFpKenA99PeqFCS0SSSUoWW7V15plnMnny5KDTEBERkRrk58PHHzsbN+7knnvuoXv37rRp04bF\nixczYsQIMjMzg05RRKRGKrZEREQkqeTnw9FHb+XEE4to1WoZc+Ys57PPPuPee+8lW6euROokMxto\nZovMbImZ3VZFzMNmttTM5phZz3LbR5vZRjObWyH+HjP7wsxmm9mbZnZwvPejonpVbHXv3p2dO3ey\ndOnSoFMRERGRKrzwwlxWrmwEZJGefhS33vo07du3DzotEYkTM0sDHgHOAHKAYWbWpULMIKCTu3cG\nrgEeK/fymPB7K/qzux/t7j2BScBd8ci/OvWq2DIzBg0axJQpU4JORURERCoxb9487rhjKB06FJCZ\nCV27Gjk5QWclInHWG1jq7qvCczG8SOi+uuUNAZ4BcPdZQHMzOyi8/iGwpWKj7r693GoToDQOuVer\nXhVboKGEIiIiyWrlypUMGjSIhx++ly++aMb06ZrGXaSeaA2sKbe+Nrytuph1lcT8gJn90cxWA8OB\n/7ePeUYtITc1NrMM4Hzg+PCmJkAJsBOYC7zg7gWJyOX000/n8ssvZ+fOnTRu3DgRXYqIiEgNNm3a\nxIABA7j99tsZNmwYEJpdUERSW9A3uHf3O4A7wteB3Qjcncj+415smdlxwMnAf9z935W83gkYYWZf\nuHvc52Vv1qwZxxxzDO+99x6DBw+Od3ciIiJSg23btjFw4ECGDx/ODTfcEHQ6IhJDubm55Obm7ln/\n/e9/X1nYOqBtufVDw9sqxrSpIaY6LwCTqWvFFlDg7g8AmNlB7r4x/LyRu+9y9+XAw2bW0cyy3L0w\n3gmVDSVUsSUiIhKsgoIChgwZwvHHH8/dd98ddDoiEoxPgcPMrB2wAbgQGFYh5g3geuAlM+sDfFdW\nV4RZePl+g9lh7r4svDoUWFhTIrEekWfuHmlsrZnZ7cAcoI27/zO87Vgg293fi1OfXtW+LViwTFUC\nbwAAIABJREFUgLPOOosVK1ZgVm9uYC0iEigzw90T/qFb3fFAEis/H+bPh27dQtdhFRcXc8EFF5CV\nlcXzzz+/5wbFIlJ3VXUsMLOBwEOE5pQY7e73mdk1gLv7E+GYR4CBwA7gCnf/PLz9BSAX2B/YCNzl\n7mPMbCxwOKGJMVYB17r7hmpyOw7oS2hE3rxKXu8EDAYiHpGXqGKrC3AKcDWh031fAZ8Ard290nOJ\nMeizyoOru9O+fXvefPNNjjzyyHh0LyIiFajYqt/y86FvX1iwAHJyYPp051e/GsGqVauYOHEiWVlZ\nQacoIgkQ1LEgEmZ2VGVFViVxHYG1kYzIS8gEGe6+CFhkZivd/c3wNI29gdmJ6L8iM2Pw4MFMnDhR\nxZaIiEgCzJ8fKrSKiyEvD2688R8sXPgFU6dOVaElIkmhfKFV2eVP5eJWRNpmXKd+N7MGZrZ/2bq7\nvxl+3OjuE9z9s3KxbSprI17OPvts3njjjUR2KSIiUm916xY6o5WZCQccsIkZM55k8uTJNG3aNOjU\nRET2MLPfhIc0nl1uc46ZnVKb9uJabLn7buB4MxtmZo0qizGz/cxsBNAunrlUdMoppzBv3jy+/vrr\nRHYrIiJSL2Vnh+6Zdfvtk0lLy+Wdd16nZcuWQaclIlLR60AH4Foze8PMngB6EJpdPWpxH0bo7hPN\n7GDgZjM7EGgY7rdsVo+1wJPuvjXeuZTXoEED+vfvz6RJk7j88ssT2bWIiEi9NH36JJ544iree+89\n2rZtW/MbREQSLNaXPyVkgowgRHJB9LPPPsvrr7/Oa6+9lqCsRETqL02QUb999NFHnHPOOUycOJHe\nvXsHnY6IBCRZJ8gwswZAU3f/JoLYNu6+JqJ2gzwAmVljd98Zp7ZrPLh+8803dOzYkY0bN9KwYcN4\npCEiImEqtuqvvLw8Tj31VJ5++mnOOOOMoNMRkQAla7EFYGZnAdnAuPITYpR7fT/gAiDP3T+MpM2E\nzEZYnpmd4+6vm9nVQAcz+7Ls3luJtv/++9OjRw/effdd3eBYREQkDtauXcugQYP4y1/+okJLRJJa\nPC5/SnixBQwgdOHZDOBpoGcAOexRNiuhii0REZHY2rJlC4MGDeLGG2/k4osvDjodEZEauftXwMhY\ntZfwYYRmVjaTx3qgD/C5u+fFoZ+Iho0sXbqUfv36sXbtWtLS4jo5o4hIvaZhhHVTfn7oHlrduoVm\nHCxTUFDAgAEDOPbYY3nggQcwS8pRQyKSYMk8jLA6tb38KeHVhbtPB74E9gPej0ehFY3OnTuz3377\n8dlnn9UcLCIiInvk50PfvnDyyaHH/PzQ9pKSEi666CJat27NX/7yFxVaIpKSzOyc8OPVwO/M7GfR\ntpHwYsvMrgGGAt2B883sF4nOoaKzzz6b8ePHB52GiIhISpk/HxYsgOJiyMsLPXd3brzxRrZu3cpT\nTz2lUSMiksoGhB9nAHcDX0TbQBCfgMvd/WF3/5e7/x8wN4Ac9lJ23ZaIiIhErls3yMmBzEzo2jX0\n/N5772XGjBm89tprNGjQIOgURUT2xb/Dl0DtBn4KbI+2gSCu2epNaMrERsBWYHKkUydG2U/EY/RL\nSkpo1aoVM2fOpEOHDrFORURE0DVbdVV+fuiMVk4OvPTSk4wcOZKPP/6Ygw8+OOjURCQJpeo1W7VV\nr29qXN5VV11F9+7d+cUvAh/VKCJSJ6nYqtsmTJjAiBEjeP/99zn88MODTkdEklQqF1tm1s3d50fz\nnsAHUptZt6BzAF23JSIiUlszZszgyiuvZPz48Sq0RKROMbM2ZnasmbUBGkf9/iC+7QsnexCwETjE\n3T+JQx9RfZO5c+dODjnkEJYvX07Lli1jnY6ISL2nM1t106JFi8jNzWXMmDEMGjQo6HREJMml0pmt\n8MR+DQhdq7UfUOLuD0XTRsJvalxZ0kDExZaZHQ68BDhgQEfgTnd/eF/yaty4MQMGDGD8+PFcddVV\n+9KUiIhIvbB+/XoGDhzIqFGjVGiJSF203N3fKVsxs1OibSDhxRb7mLS7LwF6ht+bBqwFXq9tMuVv\nxnjuuefyzDPPqNgSERGpwXfffcfAgQO59tprueyyy4JOR0QkHraZ2V8oN7FftA2k9GyEZjaA0Fmt\nvpW8VuOwkbKbMZbNojR5cj5durRm9erV7LfffrVJSUREqqBhhHVHQUEBAwcOpHv37jz00EO6abGI\nRCyVhhHGQsLPbIWvz4rVNVo/Bf5d2zdXvBnj6tXZ5ObmMnHiRC6++OIYpSgiIlJ3lJaWcumll3Lg\ngQfy17/+VYWWiEg1ghhGGBNmlgmcDdxeVczdd9+953lubi65ubl7vV52M8a8vO9vxnjuuefy6quv\nqtgSEdlH06ZNY9q0aUGnIbVQfoh9dvber91yyy1s3LiRt956i/T09GASFBFJoPCNjdPd/b2o3xvU\n0Ip9STr8/rOB69x9YBWvRzRspPzNGLOzYcuWLbRv355169bRtGnT2qQmIiKV0DDC1FBxiP0HH3xf\ncD300EM8/vjjfPTRR7Ro0SLYREUkJaXiMEIz60eobpka7XuDvM+WhZfaGsY+DCEsk50Nffp8fyBp\n0aIFffr0YcqUKfvatIiISMqpOMR+wYLQ9ldffZX777+fKVOmqNASEYlQ4Dc1rg0zawycDrwWj/bP\nPfdcxo4dG4+mRUREklrZEPvMzO+H2H/00Udce+21TJgwgXbt2gWdoohIyghyGGGtT8dF2H6th41s\n2rSJzp0789VXX9GoUaMYZyYiUj9pGGHqKD/Efv36xfTr14+nn36aM844I+jURCTFpegwwk5Amrsv\njfa9QZ7ZWgusCbD/Kh144IH06tWLt99+O+hUREREEq5siP3OnRs588wzGTlypAotEanP9q9NoQXB\nFlu1TjoRymYlFBERqY927NjBWWedxSWXXMKVV14ZdDoiIgkXvj8wQO9qA6uR8GIrFkknwjnnnMPE\niRMpLCwMOhUREZGEKi4u5sILL+Soo47irrvuCjodEZGgdTCz883sumjfGOSZrVonnQitW7emS5cu\nvPvuu0GnIiIikjDuzg033EBhYSGPP/64blosIvWGmQ0xs/KzAK0LP05291fc/dFo24x7sRWPpBPl\nwgsv5MUXXww6DRERkYS57777mDlzJq+88gqZmZlBpyMikki5wAEQuqevu68DcPdan32J+2yEZvZX\n4Hl3/2846Tfi2uH3/e7z7FMbNmyga9eubNiwgYYNG8YoMxGR+kmzESa/559/nt/97nd8/PHHtGrV\nKuh0RKQOSubZCM3sFOAmoGF4mQTMA+aXFV5Rt5mAYivmSUfYb0wOrqeeeio33ngj55xzTgyyEhGp\nv1RsJbepU6cybNgwpk6dSk5OTtDpiEgdlczFVnlm9r/AZ0AO0A1oRWg29b+5++KI20nkAShWSUfY\nV0wOrk888QTvvvsuL730UgyyEhGpv1RsJa958+Zx2mmn8fLLL5Obmxt0OiJSh6VKsVUZM/sp0Mbd\n/xLxe4I+ANUm6QjbjcnBdfPmzXTq1Il169bRtGnTGGQmIlI/qdhKTmvXruWEE05g1KhRDBs2LOh0\nRKSOS/Fi6ydAkbtPiPQ9Qc5GWKYIiOlZrVhq2bIlJ554IhMmRPwzFRERSQnbtm1j8ODB3HDDDSq0\nRERq4O6vRVNoQRIUW7VJOtGGDRumWQlFRCSl5efDjBmhR4CioiLOP/98TjzxRH79618Hm5yI1Htm\nNtDMFpnZEjO7rYqYh81sqZnNMbOe5baPNrONZja3QvyfzWxhOP5VM2sW7/2oKPBiKxUMGTKEadOm\nsWXLlqBTERERiVp+PvTtCyefHHrcts25/vrrycjI4OGHH9a9tEQkUGaWBjwCnEFobodhZtalQswg\noJO7dwauAR4r9/KY8HsrehvIcfcewFLgN3FIv1oqtiLQrFkzTj/9dF5//fWgUxEREYna/PmwYAEU\nF0NeHvzmN8/xySef8OKLL5KRkRF0eiIivYGl7r7K3YuAF4EhFWKGAM8AuPssoLmZHRRe/xD4wVkR\nd3/H3UvDqzOBQyNJxsxuNLMWtdqTChJWbMUy6SDoBsciIpKqunWDnBzIzIRWrb5j3Lh7mThxItnZ\n2UGnJiIC0BpYU259bXhbdTHrKompzpXAlAhjDwI+NbOXw8Mba336P5FntmKWdBAGDx7MJ598wqZN\nm4JORUREJCrZ2fDBB/Doo/PZvr0nkya9yKGHRvQFr4hIyjOz3xGaRfCFSOLd/Q6gMzAauBxYamYj\nzaxTtH0nbOyAu99hZncCA4ArgEfM7GVgtLsvT1QetdW4cWMGDx7M2LFjue6664JOR0REJCpff72C\nO+/szzPPjKZHjx5BpyMi9cS0adOYNm1aTWHrgLbl1g8Nb6sY06aGmB8ws8uBM4FTa4otz93dzL4C\nvgKKgRbAWDP7j7vfGmk7Cb/PlpkdTajYGgi8B/QBoko6wn5ifl+ViRMnct999/Hhhx/GtF0RkfpA\n99kKzpYtWzjhhBO48cYb9YWhiASqsmOBmaUTuhXUacAG4BNgmLsvLBdzJnC9uw82sz7Ag+7ep9zr\n7YEJ7n5UuW0DgQeAk939myhy/AVwKbAZeBIY5+5F4Yk8lrp7xGe4ElZsxTLpCPuL+cG1qKiI1q1b\nM2PGDDp1imm6IiJ1noqtYBQWFnLGGWfQs2dP/u///i/odESknqvqWBAujB4idJnTaHe/z8yuIXSS\n6YlwzCOETtjsAK5w98/D218AcoH9gY3AXe4+xsyWAllAWaE1091r/MbJzH4P/MvdV1Xy2pHli8Aa\n20pgsRWzpCPsLy4H15tuuon999+fu+66K+Zti4jUZSq2Es/dufzyy9m2bRtjx44lPT096JREpJ4L\n6lgQDTMb5e631bQtEomcIKNhxULLzEYBxLrQiqdLLrmEZ599lvp64BYRkdTxxz/+kby8PJ577jkV\nWiIiketfybZBtWkokcVWzJIO0rHHHktmZiYzZswIOhUREZEqPf/884wePZoJEybQpEmToNMREUl6\nZvZzM5sHHGFmc8stK4G5tWoz3mdozOznwHVAR6D8rIPZwEfufnGc+o3bsJGRI0eyZs0aHnvssZqD\nRUQE0DDCRJo+fTrnnXce7733Hjk5OUGnIyKyRzIPIzSz5oRmHfwTcHu5l/Ld/dtatZmAYivmSUfY\nb9wOrqtWraJXr16sX7+eBg0axKUPEZG6RsVWYixZsoSTTz6Z5557jtNPPz3odERE9pLMxVY8xH0Y\nobtvdfcv3X2Yu68qt8St0IqX/HyYMQN+9KN2dO/enUmTJgWdkoiIyB6bN2/mzDPP5N5771WhJSIS\nJTP7MPyYb2bbwkt+2Xqt2kzAma0P3f0kM8sHyjorq2bd3ZvFqd+YfpOZnw99+8KCBZCTAz/72TP8\n5z+vMW7cuJj1ISJSl+nMVnwVFBRw2mmn0a9fP0aOHBl0OiIilapvZ7YSflPjWAgPTXwS6AaUAle6\n+6wKMTE9uM6YASefDMXFkJkJU6bs4NxzW7Ns2TJatmwZs35EROoqFVvx4+5cdNFFlJaW8sILL5CW\nlsj5r0REIpcKxZaZnQ+86e75ZnYH0Av4g7vPjrathH0am9n5ZpYdfn6Hmb1mZj1r2dxDwGR3PxI4\nGoj71PHduoXOaGVmQteu0Lt3EwYNGsRLL70U765FRESqdc8997By5UqeeuopFVoiIvvuznChdRJw\nOjAa+EdtGkrkJ3JMkjazZkBfdx8D4O7F7l6rMZTRyM6GDz6A6dNDj9nZcOmll/Lss8/Gu2sREZEq\n/fvf/2bMmDGMGzeOhg0bBp2OiEhdUBJ+HAw84e6TgKzaNJTIYitWSXcANpvZGDP73MyeMLNGMcuy\nGtnZ0KdP6BGgf//+rFq1isWLFyeiexERkb3MnDmTX/ziF0yYMIGDDjoo6HREROqKdWb2OPBTYLKZ\nNaCWdVNGTNOqXlnS/YFR+5B0BqFxk9e7+3/N7EFCU8rfVTHw7rvv3vM8NzeX3NzcWnRXTSIZGVx8\n8cX861//YtSoUTFtW0Qk1U2bNo1p06YFnUadtWrVKoYOvYRbb32d9u2PCjodEZG65AJgIPAXd//O\nzA4Bfl2bhhI2QYaZNSaU9Dx3XxpO+ih3fzvKdg4CZrh7x/D6ScBt7v4/FeISckH0okWLOOWUU1i9\nejWZmZlx709EJFVpgozY2bZtG3369Gfr1ols2nQAOTnfD3EXEUlmqTBBRiwlbBihu+9099fcfWl4\nfUO0hVb4fRuBNWZ2eHjTaUBeDFONSpcuXejUqROTJ08OKgUREalHSkpKGDZsGEcccS6bNrWkuBjy\n8kK3JhERkX1nZg3MbLiZ/dbM/l/ZUpu2EjaMMDxs8Fygffl+3f2eWjR3E/C8mWUCK4ArYpFjbV11\n1VWMHj2aIUOGBJmGiIjUA7fccgu7d+/m2Wdv5tRTjby80Cy5OTlBZyYiUmeMB7YCnwG796WhRA4j\nfJPvky6bLAN3fyBO/SVs2Mj27dtp06YNCxYsoFWrVgnpU0Qk1WgY4b77xz/+wYMPPsiMGTNo0aIF\n+fmhM1o5ORpCKCKpIRWGEZrZfHfvFpO2ElhsxSzpCPtL6MF1xIgRdOjQgd/85jcJ61NEJJWo2No3\n77zzDhdffDEffvghhx12WNDpiIjUSooUW08Af3P3efvaViKnfv/YzOrsdElXXXUV//rXv6gLB3QR\nEUkuixYtYvjw4bz00ksqtERE4u8k4HMzW2xmc81snpnNrU1DiZz6/STgCjNbQWjsowHu7t0TmEPc\n9O7dmwYNGjB9+nT69esXdDoiIlJHfPPNN5x11lmMGjVKxxcRkcQYFKuGEjmMsF1l2919VZz6S/iw\nkb/+9a/Mnj2bZ555JqH9ioikAg0jjF5hYSH9+/fn+OOP57777gs6HRGRfZYiwwgNuAjo6O73mFlb\n4GB3/yTqthJYbMUs6Qj7S/jBdfPmzXTu3Jkvv/yS5s2bJ7RvEZFkp2IrOu7OVVddxZYtW3j11VdJ\nS0vkyH8RkfhIkWLrMaAUONXdjzSzFsDb7n5ctG0l8pP7UeB4YFh4PR/4ewL7j7uWLVvSv39//v3v\nfwedioiIpLj777+fOXPm8Nxzz6nQEhFJrB+7+/VAAYC7bwGyatNQIj+9Y5Z0Mrv66qt5/PHHNVGG\niIjU2uuvv87f/vY3JkyYQJMmTYJOR0Skvikys3TAAczsAEJnuqKWyGIrZkkns9NPP538/HxmzZoV\ndCoiIpKCPv/8c0aMGMG4ceNo3bp10OmIiNRHDwOvAweZ2b3Ah8DI2jSUyGIrZkkns7S0NK699loe\ne+yxoFMREZEUs379eoYMGcLjjz/OMcccE3Q6IiL1krs/D9xKqFZZDwx191dq01bCJsgAMLMuwGnh\n1anuvjCOfQV2QfQ333zDYYcdxrJly9h///0DyUFEJNlogozq7dy5k379+nHOOefw29/+Nuh0RETi\nIpknyDCz/63udXf/v6jbjPcBKB5JR9hvoAfXyy67jKOOOopbbrklsBxERJKJiq2quTvDhg0jIyOD\nZ599ltAEviIidU+SF1t3hZ8eARwHvBFe/x/gE3e/OOo2E1BsxTzpCPsN9OA6c+ZMLr74YpYsWaJZ\npEREULFVnXvuuYfJkyczbdo0GjZsGHQ6IiJxk8zFVhkzmw4Mdvf88Ho2MMndT462rYxYJ1eRu/8e\n9iTdq1zSdwOT4t1/UH784x+TnZ3NO++8w4ABA4JOR0REktQrr7zCk08+ySeffKJCS0QkORwEFJZb\nLwxvi1oiT7nELOlUYGb8/Oc/59FHHw06FRERSVKfffYZ1113HePHj+fggw8OOh0REQl5BvjEzO4O\nnyCaBTxVm4YSNkGGmf0OuIDQjIQAQ4GX3P1Pceov8GEj27dvp127dsyZM4c2bdoEmouISNA0jHBv\nGzZsoHfv3jz00EP85Cc/CTodEZGESIVhhABm1gvoG16d7u6za9VOgmcjjEnSEfYV6ME1Px/mz4en\nnrqFAw9sxB/+8IfAchERSQYqtr63a9cu+vXrx9lnn80dd9wRdDoiIgmTKsVWrCS02EqkIA+u+fnQ\nty8sWACdOu1iy5ajWLMmj6ysrEDyERFJBiq2Qtyd4cOHY2Y8//zzmnlQROqV+lZsaZq8OJg/P1Ro\nFRfDihWNaN16AK+++mrQaYmISBIYOXIky5cvZ/To0Sq0RETqOBVbcdCtG+TkQGYmdO0Kt946mAcf\nfDDotEREJGCvvfYajz/+OOPHj6dRo0Y/eD0/H2bMCD2KiEgwzOxGM2sRi7YSVmzFMulkl50NH3wA\n06eHHs8/fyBff/01M2fODDo1EREJyOzZs7n22msZN24chxxyyA9eLxuCfvLJoUcVXCIigTkI+NTM\nXjazgbYPwxASPfV7TJJOBdnZ0KdP6DE9PZ2bbrpJZ7dEROqpr776iqFDh/Loo4/Sq1evSmPKD0HP\nyws9FxGpL8L1wSIzW2Jmt1UR87CZLTWzOWbWs9z20Wa20czmVog/z8zmm1lJeKK+iLj7HUBnYDRw\nObDUzEaaWado9ythxVYsk05FV155JW+//TZr1qwJOhUREUmggoIChg4dylVXXcV5551XZVzFIeg5\nOQlMUkQkQGaWBjwCnAHkAMPMrEuFmEFAJ3fvDFwDPFbu5THh91Y0DzgHeD/anMIzK30VXoqBFsBY\nM/tzNO0k9JqtWCWdipo1a8all17K3//+96BTERGRBHF3rr76atq3b8+dd95ZbWzFIejZ2QlKUkQk\neL2Bpe6+yt2LgBeBIRVihhC62TDuPgtobmYHhdc/BLZUbNTdF7v7UiCqEXVm9gsz+wz4M/ARcJS7\n/xw4Bjg3mrYSec1WzJJOVTfeeCOjR49m586dQaciIiIJcN9997F48WLGjBkT0cyD5Yegi4jUI62B\n8sO/1oa3VRezrpKYWPkR8BN3P8PdXwkXgLh7KXBWNA0l8sxWzJJOVZ06deKEE07g2WefDToVERGJ\ns3HjxvHoo49WOfOgiIgkrYbuvqr8BjMbBeDuC6NpKCOWWdWg0qTd/bZokzazL4GtQClQ5O69Y5dm\nfP3yl7/k+uuvZ8SIEbq/iohIHfXFF18wYsQIJk+eTKtWrYJOR0QkMNOmTWPatGk1ha0D2pZbPzS8\nrWJMmxpiYqU/UHGSjkGVbKuRhS6jij8z+9zde1XYNtfdu9eirRXAMe7+g7GZ5WI8UfsWDXenR48e\n3H///QwYMCDodEREEsbMcPeEf8uU6OPBxo0b+fGPf8yf//xnLrjggoT1KyKSCio7FphZOrAYOA3Y\nAHwCDCt/QsbMzgSud/fBZtYHeNDd+5R7vT0wwd2PqqTP94Bb3P2zGnL7OXAd0BFYXu6lbOAjd784\nmn2FBAwjNLOfm9k84Agzm1tuWQnMren9VTVLit6Q2cz45S9/yQMPPBB0KiIiEmMFBQWcc845XH75\n5Sq0REQi5O4lwA3A28AC4EV3X2hm15jZiHDMZGClmS0DHidUFAFgZi8AHwOHm9lqM7sivH2oma0B\n+gATzWxKDam8APwP8Eb4sWw5pjaFFiTgzJaZNSc06+CfgNvLvZTv7t/Wss0VwHdACfCEu/+zkpik\nPLMFsHv3bjp27MikSZPo0aNH0OmIiCREXT+z5e5cdtllFBQU8OKLL5KWlpLfCYqIxFVQx4KgJGwY\nYSyZ2SHuvsHMDgD+A9wQnvKxfEzSFlsA999/P7Nnz+aFF14IOhURkYSo68XWqFGjeOWVV5g+fTqN\nGzeOe38iIqkomYstM/vQ3U8ys3yg/IHDCN3Fqlm0bcZ9gox4JO3uG8KPX5vZ64Tm5v+wYtzdd9+9\n53lubi65ubnRdhU3I0aMoGPHjqxcuZIOHToEnY6ISMxFeFF0nfDGG2/wt7/9jVmzZqnQEhFJUf7/\n27vz+KjKu///rw8kAkIEFFBBQUUFCaCAQoQE0wIVlRbxpm71dqmorbZ42/5cb614W2pd2p/7LhYU\nS7WoaF1Qq5FVZBUIq7sVREXRAIKEfL5/zARjzDKZzJwzy/v5eMwjs5xznffkMScnn7nOuS73wujP\nhE3AkXY9W2a2O9DE3TebWUsi53Ze5+4vVVsupXu2AK644gq2bNnCHXfcEXYUEZGky9Serbfeeoth\nw4bx3HPPcdRRRyVtOyIimSCVe7aSIR2LrQOBp4j0kuUAk939zzUsl/LF1vr168nPz2fNmjW0a9cu\n7DgiIkmVicXWunXrKCgo4JZbbtGAGCIiMUjlYqvKmXg15YvrjLwgBshIeOgYt5vyxRbAeeedR6dO\nnb53yqOISCbKtGJry5YtDB48mNGjR3PllVcmvH0RkUyUysVWMqRdz1as0qXYWr16NUVFRbz33nu0\nbNky7DgiIkmTScXWzp07Oemkk2jXrh0PPvigJqkXEYlRKhdbdYw1AUA8nURBzLM1K/qzzMy+rn5L\n9vZTXbdu3SgsLGTChAlhRxERkRhdeumllJWVcc8996jQEhHJEFUHyHD3Parf4mlTPVspYN68eZxy\nyimsXbuW3NzcsOOIiCRFpvRs3X333dxxxx3MmTOHtm3bJqxdEZFskMo9W8mgGRdTwIABAzjooIM0\n55aISIp74YUXuP7663nuuedUaImIZCgza25mvzOzJ81sqpldYmbN42orqN6faMALgUIi50DOAu5x\n921J2l7a9GxBZD6a888/n5UrV9K0adOw44iIJFy692wtXbqUoUOH8vTTTzNw4MAEJBMRyT7p0LNl\nZo8DZcCj0adOB9q4+88b2laQPVuTgHzgDuBOoAfwSIDbT2l9+x5DixY/5m9/mxp2FBERqeajjz5i\nxIgR3H777Sq0REQyX093P9fdX4veziNSxzRYkD1bK9y9R33PJXB7adOzVVYGRUWwfPlOcnLW8skn\nh9CmjXq3RCSzpGvP1saNGykqKuLcc8/l97//fQKTiYhknzTp2XoUuNPd34g+HgBc5O5GnbcPAAAg\nAElEQVRnNrStIHu2FplZQeWDaOgFAW4/ZS1fDqWlsHNnU7Zv78qdd74WdiQRESEyl9aIESM44YQT\nVGiJiGQ4M1tmZkuBfsAcM3vfzN4H5gJHxtVmAJMaLyNyjVYu0A34MPpSZ2CVera+69lasQL22+9r\nmjcfxvLlc2nSROOXiEjmSLeerR07dnDiiSfSrl07Hn74Yf1NFhFJgFTu2TKzLnW97u4fNLTNnPjj\nxGxEANtIa3l5MHNmpHerR488hgypYNq0aYwaNSrsaCIiWamiooIxY8YA8OCDD6rQEhHJAlWLKTNr\nCxwCVB2FsMHFVqDzbNUU2t1nJGlbadOzVd0zzzzDtddey6JFizRZpohkjHTp2XJ3xo4dy4IFC3jl\nlVdo2bJlEtOJiGSXVO7ZqmRmY4CLgf2AJUABMNfdf9zQtgL7qi4aegYwHbgu+nNcUNtPJz/96U9x\nd5599tmwo4iIZJXKQuvNN9/khRdeUKElIpKdLgaOAj5w9x8BfYBN8TQU5HkRCQud6cyMcePGce21\n11JRURF2HBGRrODuXHzxxcybN4/p06fTpk2bsCOJiEg4tlXOBWxmzdx9FZGxJxosyGIrYaGzwciR\nI8nJyWHqVM27JSKSbBUVFfz2t7/ljTfe4KWXXlKhJSKS3f5jZm2Ap4GXzWwacVyvBcHOs/UUcA7w\nP8CPgS+BXHc/PknbS9trtiq99NJLjB07luXLl5OTE8RYJiIiyZOq12xt27aNM888kw0bNjBt2rSE\nF1plZZEpPnr2jAyIJCKSzdLhmq2qzOwYoDXwort/29D1A+vZcvdR7r7J3ccB1wAPAScGtf10NGzY\nMPbZZx8effTRsKOIiGSkTz/9lGOPPRYgKacOVk7tMXhw5GdZWUKbFxGRJDCz5mb2OzN7EhgLdCXO\nuinIATISFjpbmBnjx49n3LhxbN++Pew4IiIZZfbs2fTr14+ioiKmTJlC8+bN61+pgSonrS8vj8yl\nWFqa8E2IiEjiTQLygTuAO4EewCPxNBTkaYSPA2VAZTfN6UAbd/95kraX9qcRVjrhhBM4/vjjueii\ni8KOIiISt1Q5jbCsrIzrr7+eiRMnMmHCBE444YSkbbvqpPU9ekTmVNSphCKSzdLhNEIzW+HuPep7\nLhZB9iz1dPdz3f216O08IhWj1OOPf/wj48ePZ+vWrWFHERFJW5s3b+bee++lR48efPrppyxdujSp\nhRZ8N2n9jBkqtERE0sgiMyuofGBmA4AF8TQUZLGVsNDZpk+fPhQWFnLnnXeGHUVEJC0NHjyYjh07\n8uKLL/L444/zt7/9jb333juQbeflQUGBCi0RkVRnZsvMbCnQD5hjZu+b2fvAXODIuNpM9ql2ZrYM\ncCCXyFDvH0Zf6gysiqc7LsbtZsxphACrVq1i8ODBrFmzRkMSi0haCvM0wldeeYUjjzyS1q1bB715\nERGpIpVPIzSzLnW97u4NHv49iGIr4aFj3G5GFVsA5513Hm3btuWmm24KO4qISIOlyjVbIiISnlQu\ntqoys8OBoujDme7+VlztBHkASlToGLeVcQfX9evX07NnTxYuXMgBBxwQdhwRkQZRsSUiIulQbJnZ\nxcB5wJPRp0YB97v7HQ1uK8DRCBMWOsbtZeTB9brrrmPNmjVMnjw57CgiIg2iYktERNKk2FoKHO3u\nW6KPWwJz3b13g9sKsNhKWOgYt5eRB9fNmzfTrVs3pk2bxpFHxnWdnohIKFRsiYhImhRby4Cj3H1b\n9HFzYL6792poW0GORmjAziqPd0afkwZo1aoVV175J847bwJff61/HkREREREEuxhYJ6ZjTOzccAb\nwEPxNBRkz9bvgLOAp6JPnQj8zd1vjbO9JkSGjv+Pu/+shtcz8pvMsjIoLHSWLi3ngAO2snRpaw0n\nLCJpQT1bIiKS6j1bZmbAfkB7oDD69Ex3XxxXe0EcgBIdOtrmJUTGwN8jm4qtuXNh8GAoLwf4lpkz\nm1BYmBN2LBGReqnYEhGRVC+2IHIaYTynDNYkkNMIo0e55919kbvfHr01ptDaDzgeeDBhIdNEz56Q\nnw+5uU6rVh8xb96EsCOJiIiIiGSSRWZ2VCIaCvI0wonAne4+PwFtPQGMB1oDv8+mni2InEpYWgpQ\nysiRP2bFihXstddeYccSEamTerZERCRNerZWAQcDHwBbiIwz4fEM7Bfk+WcDgF+YWaNCm9kJwAZ3\nX2JmxdQxyMa4ceN23S8uLqa4uLjhqVNQXh4UFADkc/LJJ3PNNddw9913hx1LROR7SkpKKCkpCTuG\niIhIQx2bqIaC7NnqUtPz7v5BA9v5E3AGUA60APKAJ939zGrLZcU3mV988QWHHXYY06dP54gjjgg7\njohIrdSzJSIitR0LzGw4cCuRy5wecvcba1jmduA4Ih0351RelmRmDwEjiHTI9K6yfFvgH0AX4H3g\nZHf/KuFvqg6BFVvJYGbHkIWnEVZ33333MXnyZF5//XUiY5GIiKQeFVsiIlLTsSA6yvgaYAiwDpgP\nnOruq6oscxzwG3c/wcwGALe5e0H0tUJgMzCpWrF1I7DR3W8ys8uBtu5+RQwZmwMXEhnYz4FZwD2V\n8241RGDzbJlZczP7nZk9aWZTzeyS6BuRRhozZgybN2/mH//4R9hRREREREQaqj+w1t0/cPcdwBRg\nZLVlRgKTANx9HtDazPaOPp4FfFlDuyOBidH7E4lMPRWLSUA+cAdwJ9ADeCTmd1NFkNdsTQLKiIQG\nOJ1I6J/H26C7vw683vho6a1p06bccccdnHrqqYwYMYJWrVqFHUlEREREJFadgI+qPP4PkQKsrmU+\njj63oY52O7j7BgB3/8TMOsSYp6e796jy+DUzWxHjut8TZLGVsNDyQ4MGDeKYY47hhhtuYPz48WHH\nERERERFJtcGSYj2nfJGZFbj7GwDR0xYXxLPBIIuthIWWmt14440cfvjhnHnmmXTr1i3sOCIiIiKS\n5aqPCH7dddfVtNjHQOcqj/eLPld9mf3rWaa6DWa2t7tvMLN9gE9jjN0PmGNmH0YfdwZWm9kyGjia\nepDFVsJCS806derE1Vdfza9+9SteffVVDZYhIiIiIulgPnBwdPTy9cCpwGnVlnkGuAj4h5kVAJsq\nTxGMMn44JdQzwNnAjcBZwLQY8wxvUPo6hD70e6WGDgEfw/aycvSp8vJyBgwYwMUXX8yZZ55Z/woi\nIgHRaIQiIlLP0O+38d3Q7382swuIdMrcH13mTiKFUOXQ74uizz8GFAN7EbmG61p3f9jM9gQeJ9Ij\n9gGRod83Jfs9fu99ZeoBKJsPrgsWLGDEiBGUlpay1157hR1HRARQsSUiIuEdC8KiYitDXXzxxWze\nvJmHHnoo7CgiIoCKLRERUbGVMbL94Pr111+Tn5/P5MmTGTx4cNhxRERUbImISFoUWxYZ+OAXwEHu\n/n9m1hnYx93fbGhbQU5qbGZ2hpn9Ifq4s5lVHz9fEmSPPfbgtttu41e/+hXffvtt2HFERERERNLF\n3cDRfDdIRxlwVzwNBVZskcDQEptRo0ZxwAG9uOiiRykrCzuNiIiIiEhaGODuFwHbANz9S2C3eBoK\ncuj3Ae7e18wWQyS0mcUVWmKzebPx/vuP8MILMGPGNyxY0IK8vLBTiYiIiIiktB1m1pToJMhm1h6o\niKehIHu2EhZaYrN8OaxduxuwG2vWNOWtt8rDjiQiIiIikupuB54COpjZeGAW8Kd4Ggqy2EpYaIlN\nz56Qnw+5uU6rVh/x8su3hh1JRERERCSluftk4DLgBiKTLJ/o7k/E01agoxGaWXdgCJHZnf/t7iuT\nuC2NPgWUlUFpKeyxx0ccc0xfSkpKyM/PDzuWiGQhjUYoIiLpMBphImno9yxy3333MWHCBGbPnk1O\nTpCX64mIqNgSEZH0KLbM7Ejgf4EuRMa4MMDdvXeD2wrqAJTI0DFuTwfXatydoUOHcuyxx3LZZZeF\nHUdEsoyKLRERSZNiazVwKbCMKmNMuPsHDW4rwGIrYaFj3J4OrjV477336N+/P6+99ho9e/YMO46I\nZBEVWyIikibF1ix3L0xIWwEWWwkLHeP2dHCtxYQJE7jtttt48803adasWdhxRCRLZFKxVVYWGfG1\nZ080pYaISAOkSbE1hMjcwP8Gtlc+7+5PNritAIuthIWOcXsqtmrh7px00kkcfPDB3HzzzWHHEZEs\nkSnFVlkZFBVFBh/Kz4eZM1VwiYjEKk2KrUeB7kAp352R5+7+ywa3FWCxlbDQMW5PxVYdPv/8cw4/\n/HAmT55McXFx2HFEJAtkSrE1dy4MHgzl5ZCbCzNmQEFBwpoXEcloaVJsrXb3boloK8gh6Y5KVGhp\nvHbt2vHQQw9x1lln8dZbb9GmTZuwI4mIpIXKOQxXrIAePSL3RUQko8wxsx7uvqKxDQXZs/UwcHMi\nQse4PfVsxeA3v/kNX375JZMnTw47iohkuEzp2YLv5jDMz9cphCIiDZEmPVsrga7Ae0Quf0qLod8T\nFjrG7anYisHWrVvp168fV199Nb/4xS/CjiMiGSyTii0REYlPmhRbXWp6PtWHfk9Y6Bi3p4NrjN56\n6y2GDh3K7NmzOfTQQ8OOIyIZSsWWiIikQ7GVSIEVW0HTwbVh7r33Xu66axJ33PEa/fo102kxIpJw\nKrZERCSVi63KqarMrAyoeuCoPCNvjwa3mewDUDJCx7hdHVwb4Ouvnc6dP6CsbD969crRUMYiknAq\ntkREJJWLrWRokuwNVE5k7O557r5HlVteXNWhWTMzm2dmi81smZldm/jU2ae01NiypQsVFTksX76T\n0tKwE4mIiIiIBM/MbozluVgkvdiqlKjQ7r4d+JG79wGOAI4zs/4JiJjVIkMZGzk5FcBKWrR4N+xI\nIiIiIiJhGFbDc8fF01BgxRYJDO3uW6N3mxGZK0znhzRSXh7MnAkzZzbhT3+aybnnnsy2bdvCjiUi\nIiIiEggz+7WZLQO6mdnSKrf3gKVxtRnANVu/Bi4EDgLeqfJSHjDb3c+Io80mwEIiQ8nf5e5X1rCM\nztGPk7tz6qmn0qpVKx588EHMsua0WhFJIl2zJSIiqXzNlpm1BtoCNwBXRJ/uCKx29y/iajOAYivh\noau0vQfwNPCb6pMl6+DaOJs3b6agoICxY8dy/vnnhx1HRDKAii0REUnlYqsmZrbI3fvGu35OIsPU\nxN2/Ar4CTqt8zsyeakzoKm1/bWavAcOBFdVfHzdu3K77xcXFFBcXN3aTWaNVq1Y89dRTDBo0iN69\ne1NQUBB2JBFJMyUlJZSUlIQdQ0REpDEaVRiGMs+WmS2ODnARz7rtgB3u/pWZtQCmA3929+erLadv\nMhPg2Wef5cILL2TBggXsvffeYccRkTSmni0REUnDnq0L3f3ueNcPcoCMqh5oxLr7Aq+Z2RJgHjC9\neqElifPTn/6UX/7yl5x88sns2LEj7DgiIiIiIklVdcT0ykIr3qHfA+vZMrMb3f3y+p5L4Pb0TWaC\nVFRU8LOf/YwuXbpw1113hR1HRNKUerZERCQderZquk7LzJa6e++GtpWWQ79LsJo0acJjjz1GSUmJ\nii0RERERyUhVhn7vXmXY92XRod+XxdVmgEO/dwXernwaaAXMcfdfJGm7+iYzwd577z0GDhzIxIkT\n+clPfhJ2HBFJM+rZEhGRVO7ZqjaK+uV8NzhGWboM/Z6Q0DFuVwfXJJg1axYnnXQSr7/+OocddljY\ncUQkjajYEhGRVC62KpnZtcAPDhzu/n8NbSuwod/NbBVwdtXXor/sBoeW8BQWFnLzzTdzwgmnctdd\nr1NY2Ia8vLBTiYiIiIgkzOYq95sDI4CV8TQU5AAZv6/ycFdod/9lkranbzKTpKwMunZdx2eftadX\nr6bMnt1EBZeI1Es9WyIikg49W9WZWTMiI6AXN3jdsA5AjQkdY/s6uCbJ3LkweLBTXm6Y7WDWrKYM\nHBjWLAIiki5UbImISJoWW22B+e5+cEPXDfM/5N2B/ULcvsSpZ0/Izzdyc53dd/+ARx+9Ev0jIyIi\nIiLxMrPhZrbKzNaYWY1TQ5nZ7Wa21syWmNkR9a1rZr3NbI6ZvWVm08ysVYxZllUZjbAUWA3cGtf7\nCvA0wmV8d6FZU6A98H/ufmeStqdvMpOorAxKS6Fjxy85/vgizjnnHH7/+9/Xv6KIZC31bImISE3H\nAjNrAqwBhgDrgPnAqe6+qsoyxwG/cfcTzGwAcJu7F9S1rpm9CfzO3WeZ2dnAQe7+hxgydqnysBzY\n4O7l8bzfpA+QUcWIKvcbFVrCl5cHBQUAbXnhhRcYOHAgHTt25LTTTgs7moiIiIikl/7AWnf/AMDM\npgAjgVVVlhkJTAJw93lm1trM9gYOrGPdQ919VnT9V4DpQL3FVmVbiRBYsZXI0JJa9t9/f55//nmG\nDBlC+/btGTp0aNiRRERERCR9dAI+qvL4P0QKsPqW6VTPusvN7Gfu/gxwMjFewhQdW+K/gAOoUi+l\n5NDvlRIZWlJPr169mDp1Kv/1X//F008/zcCBA8OOJCIiIiIhKykpoaSkJBlNx3Ja+rnA7WZ2DfAM\n8G2MbU8DvgIWAtvjixcR5GmECQstqamoqIhJkyYxatQopk+fzhFHHFH/SiIiIiKSsYqLiykuLt71\n+LrrrqtpsY+BzlUe7xd9rvoy+9ewzG61revuq4FjAczsEOCEGGPv5+7DY1y2TkEWWwkLLalr+PDh\n3HXXXRx//PG89tprdOvWLexIIiIiIpLa5gMHRwemWA+cClQfCOAZ4CLgH2ZWAGxy9w1m9nlt65pZ\ne3f/LDqIxtXAvTHmmWNmvdx9WWPfWJDFVsJCS2obPXo0mzdvZtiwYcycOZMuXbrUv5KIiIiIZCV3\n32lmvwFeIjI11UPuvtLMLoi87Pe7+/NmdryZvQ1sAc6pa91o06eZ2UVERkR/0t3/VleOKqOn5wDn\nmNm7RM7Is2iO3g19b0kf+r1a6EOARoeOcbsa6jdkt99+O7fddhslJSXsv//+9a8gIhlNQ7+LiEgq\nT2pcbcj3H4hnwL8gerZG1L+IZKKxY8dSXl7OMceM4K9/fYkhQ/YmLy/sVCIiIiIiP1Rl+PifAy+6\ne5mZXQ30Ba4HGlxsBTmpcY2h3X1xkranbzJTQFkZdO/+KevWteWww5x583ZTwSWSpdSzJSIiqdyz\nVcnMlrp7bzMrBP4I3Az8wd0HNLStJglPV7trooVWITAUeIjYL1KTNLV8OXz6aQcgl5Ur4d///iTs\nSCIiIiIiddkZ/XkCcL+7P0dk1MMGC7LYSlhoSR89e0J+PuTmQseOm7jkkp/wwQea31pEREREUtbH\nZnYfcArwfHS+4LjqpiCLrYSFlvSRlwczZ8KMGbBqVQcuuWQMRUVFrF69OuxoIiIiIiI1ORmYDhzr\n7puAPYFL42koyGu2dgeGA8vcfa2Z7Qv0cveXkrQ9naOfoh5++GGuuuoqXnjhBU18LJJFdM2WiIik\nwzVbiRRYsRU0HVxT2z//+U8uvPBCnn76aQYOHBh2HBEJgIotERHJtmJLp/FJKEaPHs2kSZMYOXIk\nL7/8cthxREREREQSTsWWhGb48OE89dRTnHHGGUyePDnsOCIiIiIimNnPzSwvev9qM3vSzPrG01Zg\nxVYiQ0vmKCws5NVXX+Wqq67ixhtvRKf6iIiIiEjIapqy6p54Ggp7nq24Qktmyc/PZ86cOTz22GOM\nHTuWTZt2MnduZEJkEREREZGAZe88W2a2n5m9amalZrbMzMYmNKWEolOnTsyYMYOlS9+jS5cPGTzY\nKSpSwSUiIiIigUvYlFVBDv3+L+BjYBjQF/gGeNPdD29gO/sA+7j7EjNrBSwERrr7qmrLafSpNDRj\nxg6Ki8E9l5ycCmbObEJBQdipRCQRUn00wrIyWL48Mhl7Xl4AwUREslA6jEaYyCmrguzZSsjkYO7+\nibsvid7fDKwEOiUyqISnT59cevXKoWnTncBKPv/89bAjiUgWKCuDoiIYPBj1qouIZDl33+ruT7r7\n2ujj9fHODRxYsZXI0JXM7ADgCGBe4xNKKsjLg1mzjFmzmvL00xs577xTufXWWzVwhogk1fLlUFoK\n5eWwYkXkvoiIZKdEDuyXk9hotTOznwMvRgfJuJrIqYR/dPdFcbbXCvgncHG0h+sHxo0bt+t+cXEx\nxcXF8WxKApaXR/TUwcHMnTuXUaNGsWjRIu677z5atGgRdjwRiVFJSQklJSVhx4hJz56Qnx8ptHr0\niNwXEZGsdY27P1FlYL+biQzsN6ChDQV5zdZSd+8dDf1HIqH/4O4ND22WA/wLeMHdb6tlGV2zlSG2\nbt3KmDFjWLNmDU8++SSdO3cOO5KIxCEdrtkqLY0UWrpmS0QkOdLkmq3F7t7HzG4gct3WY5XPNbSt\ntBuNMGoCsKK2Qksyy+67787kyZM57bTTGDBgAK+/ruu4RCTxKnvVVWiJiGS9ytEITyUNRyP8CdCH\n+EcjHATMAJYBHr1d5e4vVltOPVsZ6OWXX+aMM87gmmuu4aKLLsIspb8YEZEqUr1nS0REki9NerYS\nNhphkMVWwkLHuD0dXDPUu+++y4knnki/fv246aZ7ePvt5hqqWSQNqNgSEZE0KbYMOAM40N3/z8w6\nE5l66s2GthXkaYTfAC2B06KPc4FNAW5fMsRBBx3E3Llz2bRppyZAFhEREZFEuxso4Lu6pQy4K56G\ngiy2EhZapGXLllx66US2b+9KeblRWrpTQzWLiIiISCIMcPeLgG0A7v4lcY41EWSxlbDQIgC9ehm9\nejUlJ6cCs9U8+OAlfPPNN2HHEhEREZH0tsPMmhIZGwIzaw9UxNNQkMVWwkKLQOQarZkzYebMJrzz\nTkfKytbRv39/StXFJSIiIiLxux14CuhgZuOBWcAN8TQU5AAZvwBOITKZ8URgNJEJwx5P0vZ0QXSW\ncXcmTJjA5Zdfzvjx4zn//PM1WqFICtEAGSIikg4DZACYWXdgCGDAv919ZVztBHkASlToGLelg2uW\nWrlyJaeffjodO3bkgQceoGPHjmFHEhFUbImISHoUW2Y2EbjY3TdFH7cF/uLuv2xoW4GdRhgN/Ym7\n3+XudwKfmNmEoLYv2eOwww5j3rx59OvXjz59+jBlypSwI4mIiIhI+uhdWWjBrrEm+sTTUJCnES52\n9z71PZfA7embTGH+/PmceeaZ9O7dmxtvvJv16/fSnFwiIVHPloiIpEnP1ltAcbTIwsz2BF53914N\nbSvIATKaRLvggF2hcwLcvmSho446ikWLFtGhQ1cOOeQTiop2ak4uEREREanLX4C5Zna9mV0PzAFu\niqehIHu2zgSuAp6IPvVzYLy7P5Kk7embTNll7lwYPLiC8vImmO3gmWe+YsSIdmHHEskq6tkSEZF0\n6NkCMLMewI+jD1919xVxtRPwABkJCR3jtnRwlV3KyqCoCFascNq2/YTy8qO54YarGDNmDE2aBNnB\nK5K9VGyJiEg6FFtm1qN6nWJmxe5e0uC2AuzZSljoGLeng6t8T1kZlJZCfj68//4yxowZQ7NmzXjg\ngQfo1q1b2PFEMp6KLRERSZNiaznwCJFTB5tHfx7p7kc3tK0gv9J/3Mwut4gWZnYHcU4OJhKPvDwo\nKIj87NWrF3PmzGH06NEMGjSIq6++mq1bt4YdUURERETCNwDYn8i1WvOBdcCgeBoKsthKWGiRRGja\ntCljx45lyZIlvPPOOxx22GFMnToVfQMuIiIiktV2AN8ALYj0bL3n7hXxNBRksZWw0CKJtN9++/H3\nv/+diRMncu2113LssceycOEa5s7VqIUiIiIiWWg+kbrlKKAIOM3Mnqh7lZoFWWwlLLRIMhQXF7N4\n8WJ+/OORDBjwLYWF5Rx9dLkKLhEREZEkM7PhZrbKzNaY2eW1LHO7ma01syVmdkR965rZ4WY218wW\nm9mbZnZkjHHOdfc/uPsOd1/v7iOBZ+J5X0EWWwkLLZIsubm5HHPMRZjlU1GRQ2npTq65Zgrffvtt\n2NFEREREMpKZNQHuBI4F8ol0ynSvtsxxQFd3PwS4ALg3hnVvAq519z7AtcDN9eS4DMDdF5jZz6u9\nfFg87y3pxVYyQoskU8+ekJ9v5ObCoYdWsGLFE/To0YMnnnhC13OJiIiIJF5/YK27f+DuO4ApwMhq\ny4wEJgG4+zygtZntXc+6FUDr6P02wMf15Di1yv0rq702vAHvZ5cgerYSHlokmfLyYOZMmDEDFixo\nwUsvTeXee+9l/PjxDBo0iDlz5oQdUURERCSTdAI+qvL4P9HnYlmmrnUvAW4xsw+J9HJVr0Wqs1ru\n1/Q4JkEUWwkPLZJsVYeJBxg6dCgLFy7kggsu4JRTTmHkyJEsWbIk3JAiIiIi2SuWOuLXwMXu3plI\n4TWhnuW9lvs1PY5JTjwrNVDCQ4uEoWnTppx11lmcfPLJ3HfffRx33HEMGjSIyy67np07D6Nnz++K\nMxERERGBkpISSkpK6lvsY6Bzlcf78cNT/j4mMo1U9WV2q2Pds9z9YgB3/6eZPVRPjsPN7GsihVyL\n6H2ij5vX9yZqYsm+BsXMdgJbiIYGKmeONaC5u+cmabuu62skmbZs2cJf//oA1103lIqKbhx66E7m\nz2+ugkukFmaGuwd+RoOOByIiqaOmY4GZNQVWA0OA9cCbwGnuvrLKMscDF7n7CWZWANzq7gW1rHuq\nu68ys1LgQnd/3cyGAH9296OCeJ+7cmfqAUgHVwnC3LkweLBTXm7Ado477kb++teT6d69e73rimQb\nFVsiIlLbscDMhgO3EbnM6SF3/7OZXQC4u98fXeZOImM+bAHOcfdFta0bfX4gcDvQFNhGpPBanOz3\n+L33lakHIB1cJQhlZVBUBCtWQLduOznxxL9w//1/obCwkCuuuIKjjgr0yxORlKZiS0REwjoWhEXF\nlkgjlZVBaSnk50eu2dqyZQsTJkzglltu4eCDD+bKK69kyJAhmGXN3xWRGqnYEifay4kAABTWSURB\nVBERFVtpIHpx2whgg7v3rmUZHVwlVDt27ODvf/87N954Iy1atODyyy9n1KhRfPNNDsuXowE1JOuo\n2BIRERVbacDMCoHNwCQVW5LqKioqePbZZ7nlllt4//2N7NxZwmeftSc/35g5UwWXZA8VWyIiomIr\nTZhZF+BZFVuSTh5+eBXnntsV91yaNNnBI498xOmnHxR2LJFAqNgSEZFsK7aCmNRYRKJGj+5O7965\n5OY67dtv5JJLfsKwYcOYNm0a5eXlYccTERERkQQKYlLj0IwbN27X/eLiYoqLi0PLIgKRUwZnzoTS\nUiM/fx92262Uxx9/nJtuuokLL7yQc889lzFjxtC5c+f6GxNJcTFOZCkiIpKxdBqhSIpYvnw5999/\nP5MnT6agoIDzzz+fwYNPYNWqHA2mIRlBpxGKiEi2nUaYzsXWAUSKrV61vK6Dq6SlrVu38sQTT3DP\nPY+ycOGtVFR045BDypk/v7kKLklrKrZERETFVhows8eAYmAvYANwrbs/XG0ZHVwlrc2dC4MHV1Be\n3gTYTrduF/DrX/fhtNNOo0OHDmHHE2kwFVsiIpJtxVZaDpDh7qe7e0d3b+bunasXWiKZoGdPyM9v\nQm4u9O69GzfddBYLFy7k0EMPZcSIETz++ONs27Yt7JgiIiIiUou07NmKhb7JlExQVgalpZCf/901\nW5s3b+app55i0qRJLFy4kBEjRnDyySdTUDCMtWub6fouSVnq2RIRkWzr2VKxJZLG1q1bx9SpU/n7\n3//FvHm34N6dLl22Mn9+c9q1axZ2PJHvUbElIiIqtjKEDq6STSLXdznl5YbZDlq2PJ5Ro/Zl9OjR\nDB06lN133z3siCIqtkREJOuKrbS8ZktEvi9yfZdFr+/KZeHCSfTv35+//vWv7LPPPvzsZz/jgQce\nYP369UDk9MS5cyM/RURERCQ51LMlkiFqur4L4IsvvuDFF1/kmWeeYfr06Rx00OF8/PEUNm7sQI8e\nxqxZpmu8JBDq2RIRkWzr2VKxJZJFduzYwb33vsX//M8RVFTkAN/y05/ewhlnHMzQoUPZc889w44o\nGUzFloiIZFuxpdMIRbJIbm4uZ599JL165ZCb63TrVkFhYVsmTpzIAQccwIABA/jDH/7A7NmzKS8v\nB3TKoYiIiEi81LMlkoVqOuVw+/btzJ49m5deeonp06fz3nvvMWjQcJYsuZ1PP22nUw6l0dSzJSIi\n2dazpWJLRGq0YcMG7r9/GePGFUdPOdxOYeHVjBq1L8cccwxHHHEETZs2DTumpBEVWyIiomIrQ+jg\nKtJ4ZWVQVAQrVsAhh+zgssueZd68VygpKWHdunUUFRVRWFjIwIEDOfLIIykvb8Hy5WhiZamRii0R\nEVGxlSF0cBVJjNpGOdywYQMzZsxg9uzZzJkzh+XLPwBmsn37Qey3XxnPP19Gjx77Y5Y1f0+lHiq2\nRERExVaG0MFVJFglJdsZNiyX8vImmO2gTZuRNG++hKOPPpr+/fvTr18/+vbt+70RD8vKUE9YFlGx\nJSIiKrYyhA6uIsGqesphjx4wY4azceP7zJ07l/nz57No0SIWL15Mu3bt6NevHz17Hs2kSefx4Yet\nyM83Zs5UwZXpVGyJiIiKrQyhg6tI8Go75bBSRUUFa9euZeHChTz77OdMmfJrIBf4luLiaxkypCW9\nevWiV69eHHDAATRp0uR7basXLL2p2BIRERVbGUIHV5HU9l1PmNO163YuvfRZ1qxZyLJly1i2bBlf\nfvkl+fn59OrVi0MO6cv995/BBx+oFyydqdgSEREVWxlCB1eR1FdXT9iXX37J8uXLWbZsGS+/vJmn\nn76ESC/Ydo466lL696+ge/fuu26dOnXaNRiHesFSk4otERFRsZUhdHAVyRxVe8EOPngHf/zj63z4\nYSmrVq1i1apVrF69mrKyMrp160bXrkcwY8Z4Pv+8PV27fsvMmdChQ4uw34IQbrH19deuwltEJAWo\n2MoQKrZEMkt914Nt2rSJ1atX89xzGxk//ifRiZi/JTd3KO3bv0PXrl3p2rUrBx100PfuN2vWjtJS\nUy9YAMIstg4/3HX6qYhIClCxlSFUbIlkp+qjIpaU7OTrrz/mnXfe4d133+Wdd97Zdf/ttzfw9df/\noqLiMPbY4z+cffZDHHLIPnTu3HnXrW3btjo9MUHCLLZyc50ZM6CgIOiti4hIVSq2MoSKLZHsVV8v\nWKW5c2HwYKe83GjadCfnnz8ZeIMPP/xw1628vJzOnTvTqVN3Fi26jU2bOtKp01fcd98KunfvRMeO\nHWnWrFmNGVSYfZ96tkRERMVWhlCxJSL1qd4LVtM/41999RUfffQR06d/zWWXDaCioilNmuygV6/f\n8uWXL/DJJ5/QqlUrOnbsuOu2555dmDLlIjZs2JMDD9zG009v5OCD966xKKuaJdOLM12zJSIiKrYy\nhIotEYlFrL1gtRVmFRUVbNy4kfXr17Nu3TrWrVvHG28YDz3037uuG2vffjSbNr1I69at2Xfffdl3\n331p3749HTp0oEOHDuTldeQvfxnJRx/lcfDBO3jttXL22adlnVnSsTDTaIQiIqJiK0Po4CoiidaY\nwqxlywo+//xz1q1bx/r16/nss8/47LPP+PTTT1m+PI8XXrgc98gEz7vtNoycnAXfK8g6dOhA+/bt\nadVqX+6//79Zv74NBxzwDY888j7779+GvfbaixYtfjjqYioVZiq2RERExVaG0MFVRMIUa2FWuWzV\n4mzGDKdJky27irHK22effcayZa2YMuVXVFTkYLaDAw88m23bSti4cSNmxp577rnrlpfXkTlzbuSr\nrzrSocNGrrjiOfbee3fatGlDmzZtaN269a77zZs3Z/NmS2phpmJLRERUbGUIHVxFJJ009nRGgK1b\nt/LFF1/sus2dC1dfXRS9zqycESNuplmzxXz11Vds2rRp189NmzZRUdGSiorXce9Or145SRlMQsWW\niIio2EoDZjYcuBVoAjzk7jfWsIwOriKSkRJRmFVXUrKdYcN2o7zcyM0lKcOkq9gSEZHajgUx/n9/\nO3AcsAU4292X1LWumU0BDo2u3hb40t37Jv5d1a5JkBtLBDNrAtwJHAvkA6eZWfdwUyVGSUlJ2BEa\nJN3ygjIHId3yQvplzsuDbdtK6u15ysuLFFgzZtRdaAH069eM/PxIodWjR6SQk3Ck2+cRlDkI6ZYX\nlDko6Zi5ulj+vzez44Cu7n4IcAFwb33ruvup7t43WmBNBZ4M6C3tknbFFtAfWOvuH7j7DmAKMLLG\nJcvK6m+trCwy2U6Yy0aXL3nkkfTJnKy8ceQIPXOS31/omZOVN8k50up3HEfbsWbOo4wCn0sedS+b\nlwczny9jxl3LmPl8WeiDaWSzdPzHSZmTL93ygjIHJR0z1yCW/+9HApMA3H0e0NrM9o5xXYCTgb8n\n6w3UJh2LrU7AR1Ue/yf63A8VFdX9z0jlOTaDB4e3bNXlH344PTInK286Zg7i/WXi5yIdM2fB5yLv\n+CIKLuxL3vExZBYREUmcWP6/r22Zetc1syLgE3d/J1GBY5WOxVbsVqyIXNhQm+XLI6+Xl4e3bNXl\n3dMjc7LypmPmIN5fJn4u0jGzPhciIiKppCHXAJ9GCL1akIYDZJhZATDO3YdHH18BePWL6Mwsvd6Y\niEgWCGuAjKC3KSIitat+LIjl/3szuxd4zd3/EX28CjgGOLCudc2sKfAx0Nfd1yX9zVWTE/QGE2A+\ncLCZdQHWA6cSqVa/J5uGlBQRkdrpeCAikvJi+f/+GeAi4B/R4myTu28ws8/rWXcYsDKMQgvSsNhy\n951m9hvgJb4b3nFlyLFERERERCQOtf1/b2YXRF72+939eTM73szeJjL0+zl1rVul+VMI6RRCSMPT\nCEVERERERNJB2g2QYWbDzWyVma0xs8trWeZ2M1trZkvM7IiGrJtKmc1sPzN71cxKzWyZmY1N9cxV\nXmtiZovM7JlUz2tmrc3sCTNbGf1dD0iDzJeY2XIzW2pmk81st1TIbGbdzGyOmW0zs981ZN1UyxzW\n/teY33H09UD3veg2G/O5SMj+19i/WWGI4fd2upm9Fb3NMrNeYeSslimm/djMjjKzHWZ2UpD5asgR\ny+ei2MwWR/+mvhZ0xhry1Pe52MPMnol+jpeZ2dkhxKya5yEz22BmS+tYJtX2vTozp+i+V+/vObpc\nqux7sXwuUmrfSxp3T5sbkeLwbaALkAssAbpXW+Y44Lno/QHAG7Gum4KZ9wGOiN5vBaxO9cxVXr8E\neBR4JtXzAn8DzonezwH2SOXMQEfgXWC36ON/AGemSOZ2QD/geuB3DVk3BTMHvv81Jm+V1wPb9xKR\nORH7X2P/BoRxizFzAdA6en94OmSusty/gX8BJ6VyXqA1UAp0qvyspvrvGLgSuKEyL7ARyAkxcyFw\nBLC0ltdTat+LMXNK7XuxZK7y+Ql934vxd5xS+14yb+nWsxXEhGcpk9ndP3H3JdHnNwMrqW1OsRTJ\nDJEeAeB44MEAsjYqr5ntARS5+8PR18rd/etUzhx9rSnQ0sxygN2BIC76rDezu3/u7guB8oaum2qZ\nQ9r/GvM7DmPfg0ZkTuD+19j9KQyx/N7ecPevog/fIJi//3WJdT/+LfBP4NMgw9UglrynA1Pd/WOI\nfFYDzlhdLJkdqJx2PA/Y6O4/+HsQFHefBXxZxyKptu/VmzkF971Yfs+QOvteLHlTbd9LmnQrtpI6\n4VmSxJP54+rLmNkBRL4hmJfwhD/U2Mz/P3ApkQNCEBqT90DgczN7OHrq1f1m1iKpaWvOE3Nmj4ym\n8xfgw+hzm9z9lSRmrS1PQ/ahVN7/6hXg/tfYvEHve9C4zIna/xLydzZgDf29jQFeSGqi+sUycWhH\n4ER3v4eGzYGTDLH8jg8F9jSz18xsvpn9d2DpahZL5juBHma2DngLuDigbPFKtX2voVJh36tXiu17\nsUi1fS9p0q3Yikc6fODqZGatiHxTcXH0G/aUZWYnABuiPQJG6v/+c4C+wF3u3hfYClwRbqS6mVkb\nIt8UdiFySmErMzs93FSZK132vzTc9yAN978wmNmPiIy6Fdi1jo1wK9/Pmeqfw8rP4HFEThe7xswO\nDjdSvY4FFrt7R6APcFf075QkmPa9pErHfS8u6Tb0+8dA5yqP94s+V32Z/WtYZrcY1k2GxmQmeprY\nP4FH3H1aEnNWzxNv5tHAz8zseKAFkGdmk9z9zBTNC/CRuy+I3v8nwfxRbUzmocC77v4FgJk9CQwE\nHkta2u/yxLsPNWbdxmjUdkPY/xqTdxDB73vQuMz/ITH7X2P/BoQhpt+bmfUG7geGu3t9pxAlWyyZ\njwSmmJkRuZ7oODPb4e6BDdhSRSx5/wN87u7bgG1mNgM4nMh1U2GIJfM5wA0A7v6Omb0HdAcWkJpS\nbd+LSYrte7FIpX0vFqm27yVNuvVs7ZrwzCKjr51KZIKzqp4BzoRds1FvcvcNMa6bapkBJgAr3P22\nALJWijuzu1/l7p3d/aDoeq8G8M9eY/JuAD4ys0Ojyw0BViQ5b6MyEzl9sMDMmkf/qA4hcj1RKmSu\nquq3aqm8/1VV/ZvAoPe/uPOGtO9B4zInav9r7N/ZMNSb2cw6A1OB/3b3d0LIWF29md39oOjtQCLF\n84Uh/rMXy+diGlBoZk3NbHciAziEOXdnLJk/IPKlG9Frnw4lMmhSmOrqTU+1fa9SrZlTcN+rVGvm\nFNv3KtX1uUi1fS95POQROhp6I9LVuBpYC1wRfe4C4Pwqy9xJpDJ+C+hb17opmrlP9LlBwE4ioxEt\nBhYR+YYlFTP3raGNYwhuRLTGfC4OJ3KAWwI8SXQEohTPfC2RP0pLgYlAbipkBvYmcm7+JuALIoVh\nq9rWTeXMYe1/jfkdV2kjsH0vAZ+LhOx/jdmfwrrF8Ht7gMhIc4uin8E3Uz1ztWUnEP6IaLF8Lv4/\nIqOiLQV+m+q/Y2BfYHo071LgtJDzPkZkkKbt0X37nDTY9+rMnKL7Xr2/5yrLpsK+F8vnIqX2vWTd\nNKmxiIiIiIhIEqTbaYQiIiIiIiJpQcWWiIiIiIhIEqjYEhERERERSQIVWyIiIiIiIkmgYktERERE\nRCQJVGyJiIiIiIgkgYotERERERGRJFCxJSIiIiIikgQqtkQayMxam9mvqzyeFUKG5mZWYmbWyHZy\nzex1M9PfAhGRBtLxQETqox1KpOHaAhdWPnD3wmRsxMy6m9mVtbz8S2Cqu3tjtuHuO4BXgFMb046I\nSJbS8UBE6qRiS6ThbgC6mtkiM7vJzMoAzKyLma00s4fNbLWZPWpmQ8xsVvTxkZUNmNkvzGxetI17\navlG8kfA4loy/AKY1pDtmtnuZvYvM1tsZkvN7OfRtqZF2xMRkYbR8UBE6qRiS6ThrgDedve+7n4Z\nUPXbxK7Aze7eDegOnBb9pvNS4H8h8g0lcAow0N37AhVUO7iZ2XBgDLC/me1d7bVc4EB3/7Ah2wWG\nAx+7ex937w28GH1+OXBU/L8OEZGspeOBiNRJxZZIYr3n7iui90uBf0fvLwO6RO8PAfoC881sMfBj\n4KCqjbj7i0QOhA+4+4Zq22gHbIpju8uAYWZ2g5kVuntZdFsVwHYza9nwtysiIrXQ8UBEyAk7gEiG\n2V7lfkWVxxV8t78ZMNHd/5daRL+9/KSWl78Bmjd0u+6+1sz6AscDfzSzf7v79dHlmgHbassjIiIN\npuOBiKhnSyQOZUBelcdWy/3qKl/7NzDazNoDmFlbM+tcbdn+wJtmdqSZtaj6grtvApqa2W4N2a6Z\n7Qt84+6PATcDfaLP7wl87u4762hDRER+SMcDEamTerZEGsjdvzCzOWa2lMh57lXP0a/t/q7H7r7S\nzK4GXooOsfstcBFQ9Zz7dUROLXnH3b+pIcZLQCHwaqzbBXoBN5tZRXSblcMV/wh4rqb3KiIitdPx\nQETqY40cKVREQmBmfYD/cfezEtDWVOByd3+78clERCRIOh6IpDadRiiShtx9MfBaIiaxBJ7SgVVE\nJD3peCCS2tSzJSIiIiIikgTq2RIREREREUkCFVsiIiIiIiJJoGJLREREREQkCVRsiYiIiIiIJIGK\nLRERERERkSRQsSUiIiIiIpIEKrZERERERESS4P8BEMNrOxHFi+IAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import missed_events_pdf\n",
+ "\n",
+ "fig,ax = plt.subplots(2, 2, figsize=(12, 10 ))\n",
+ "#ax = fig.add_subplot(2, 2, 1)\n",
+ "x = np.arange(0, 10, tau/100)\n",
+ "pdf = missed_events_pdf(qmatrix, 0.2, nmax=2, shut=True)\n",
+ "ax[0, 0].plot(x, pdf(x), '-k')\n",
+ "ax[0, 0].set_xlabel('time $t$ (ms)')\n",
+ "ax[0, 0].set_ylabel('Shut-time probability density $f_{\\\\bar{\\\\tau}=0.2}(t)$')\n",
+ "\n",
+ "tau = 0.2\n",
+ "x, x0 = np.arange(0, 3*tau, tau/10.0), np.arange(0, 3*tau, tau/100) \n",
+ "plot_exponentials(qmatrix, tau, shut=True, ax=ax[0, 1], x=x, x0=x0)\n",
+ "ax[0, 1].set_ylabel('Excess shut-time probability density $f_{{\\\\bar{{\\\\tau}}={tau}}}(t)$'.format(tau=tau))\n",
+ "ax[0, 1].set_xlabel('time $t$ (ms)')\n",
+ "ax[0, 1].yaxis.tick_right()\n",
+ "ax[0, 1].yaxis.set_label_position(\"right\")\n",
+ "\n",
+ "tau = 0.05\n",
+ "x, x0 = np.arange(0, 3*tau, tau/10.0), np.arange(0, 3*tau, tau/100) \n",
+ "plot_exponentials(qmatrix, tau, shut=True, ax=ax[1, 0], x=x, x0=x0)\n",
+ "ax[1, 0].set_ylabel('Excess shut-time probability density $f_{{\\\\bar{{\\\\tau}}={tau}}}(t)$'.format(tau=tau))\n",
+ "ax[1, 0].set_xlabel('time $t$ (ms)')\n",
+ "\n",
+ "tau = 0.5\n",
+ "x, x0 = np.arange(0, 3*tau, tau/10.0), np.arange(0, 3*tau, tau/100) \n",
+ "plot_exponentials(qmatrix, tau, shut=True, ax=ax[1, 1], x=x, x0=x0)\n",
+ "ax[1, 1].set_ylabel('Excess shut-time probability density $f_{{\\\\bar{{\\\\tau}}={tau}}}(t)$'.format(tau=tau))\n",
+ "ax[1, 1].set_xlabel('time $t$ (ms)')\n",
+ "ax[1, 1].yaxis.tick_right()\n",
+ "ax[1, 1].yaxis.set_label_position(\"right\")\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/Distribution_histograms_and_individual_benchmark-checkpoint.ipynb b/exploration/.ipynb_checkpoints/Distribution_histograms_and_individual_benchmark-checkpoint.ipynb
new file mode 100644
index 0000000..bd75385
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/Distribution_histograms_and_individual_benchmark-checkpoint.ipynb
@@ -0,0 +1,415 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Distribution histograms and individual benchmarks"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This notebook mainly serves to extract data used for the Archer eCSE report."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Set the number of OpenMP threads to use. Note that the number of threads is fixed at import time of DCPROGS so you will need to change restart the notebook and reexecute from the begining for any changes to take effect."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "os.environ['OMP_NUM_THREADS'] = '1'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.text as mtext"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "import time\n",
+ "import math\n",
+ "import sys\n",
+ "import numpy as np\n",
+ "from scipy.optimize import minimize\n",
+ "\n",
+ "from dcpyps import dcio\n",
+ "from dcpyps import dataset\n",
+ "from dcpyps import mechanism\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
+ "\n",
+ "# LOAD DATA: Burzomato 2004 example set.\n",
+ "scnfiles = [[\"./samples/glydemo/A-10.scn\"], \n",
+ " [\"./samples/glydemo/B-30.scn\"],\n",
+ " [\"./samples/glydemo/C-100.scn\"], \n",
+ " [\"./samples/glydemo/D-1000.scn\"]]\n",
+ "tres = [0.000030, 0.000030, 0.000030, 0.000030]\n",
+ "tcrit = [0.004, -1, -0.06, -0.02]\n",
+ "conc = [10e-6, 30e-6, 100e-6, 1000e-6]\n",
+ "\n",
+ "recs = []\n",
+ "bursts = []\n",
+ "for i in range(len(scnfiles)):\n",
+ " rec = dataset.SCRecord(scnfiles[i], conc[i], tres[i], tcrit[i])\n",
+ " rec.record_type = 'recorded'\n",
+ " recs.append(rec)\n",
+ " bursts.append(rec.bursts.intervals())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "n_experiments = len(recs)\n",
+ "openings = []\n",
+ "opening_dists = []\n",
+ "n_bursts = np.empty(4)\n",
+ "for i,rec in enumerate(recs):\n",
+ " n_bursts[i] = rec.bursts.count()\n",
+ " openings = np.zeros(rec.bursts.count())\n",
+ " for i,burst in enumerate(rec.bursts.all()):\n",
+ " openings[i] = burst.get_openings_number()\n",
+ " opening_dists.append(openings)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plot the distribution of bursts within the 4 different experiments showing how number of bursts corelate with the lenght of the bursts."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEbCAYAAABgLnslAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXv8FVX1//98ISKigJc+ommCN9LMQkzEtHxnWl4Ky49m\npuatsvJC6te8lIG/6uOlvJaXLMNLKeYlxUJFP4mmJaCAIoJi3i+804+piIoC6/fH3geGw7nMOWfO\nec/7vNfz8TiPM7Nnz9prZvbMntl77bVkZjiO4zhOHunV1Qo4juM4Tjm8kXIcx3FyizdSjuM4Tm7x\nRspxHMfJLd5IOY7jOLnFGynHcRwnt3gj1SCSlkiaLmlG/P9hE8o4VdI8SXMkfaFMnsmSpiXWt5N0\nT4l8gyW9E3WdKel+SVtkpOc+krZsYP8rJHVKerTM9hMlLZW0TlzvLelKSY9Kmi3plETe4TH9SUkX\n1KuT0xjNvj8krSPpb5IWSLqoQr52uD8GSrohPgdmS9ohC73yjjdSjbPQzIab2bbx/5wshUvaCvga\nsBWwJ3CJJJXIasB/SfpiUVopnoq6DgOuBn5Uo07l6s1XgK1rkVXEOOCLpTZI2gjYHXgukbw/0MfM\nPgF8CjhK0sZx26XAkWY2FBhadF6c1tHU+wN4D/gxcGKVfO1wf1wITDSzrYBPAnMakNVt8EaqcVZq\nMCQNkDS38AYm6VpJR8blBZLOk/SYpLskrVtF/j7AeDNbbGbPAvOAEWXy/oJww9ai8wDg9ajboZJ+\nlTiO2yR9NqH3LyXNAEZKOjO+zc2UdI6kHYFRwDnxLXQTSccl8lxbTSkzux/4T5nN5wMnFe8CrCFp\nFaAfsAh4S9L6QH8zK7w5X014QDitp6n3h5m9Y2b/IFz7anTb+0PSAOAzZjYuHvdiM3srxbF0e7yR\napzVi7oz9o+V52jgKkkHAGuZ2RUx/xrAVDP7OHAfMAZA0lGSvlNC/obAC4n1l2JaMQb8E1gkaZcq\nOm8WdX0KOB44r0hOKdYA/mlm2wJzga+a2dbxbfNnZvZPYAJwUnwLfQY4GRgW83w3Hud2ki6vot8K\nSBoFvGBms4o23Qi8A7wCPAv80szeIJyfFxP5XqT0OXOaT7Pvj7R09/tjE+A1SeOibpdLWj3doXdv\nvJFqnHeKujNuADCz/wVmARcDRybyLwH+FJf/AOwc8//GzGp6eBdRePv7OXB6lbyF7ozNgR8Av00h\nfzFwc1x+E3hX0u8kfRV4t8w+jwDXSjqIcNyY2cNmlvphE2/E04gPqyJGRL3WBzYF/p+kIWllOy3B\n749s7o/ewHDgYjMbTng5O6VEvrbDG6kmEceNtgIWApW6LKo5T3wJ+EhifaOYVlqY2T1AX2BkOk25\nDfhMXF7MinWib2L5PYuOHs1sCaGBuBH4EnBHGdl7A78m3FzTKvTVV2IzYAjwiKRnCMc/XdJ6wDeA\nO8xsqZm9CjxAGJuq6Zw5rSfD+6MmuvH98SKhN+GhuH5j3K/t8UaqcUoZMQCcADxOeJCOi+MmAKsA\n+8Xlg4D7q8ifAHxdUh9JmwCbA1Or7PNzoJIVVVLnzwD/isvPAsMU+Agrjn0t20fSGoQumjsIx/mJ\nuGkBoQ+/8BDa2MzuJbzxDQDWrKJ3oZxlZZnZY2a2vpltamabEG7Wbc3s38DzwK4JnUYCc8xsPvCm\npBFRj28Ct6Yo28meZt8facoqptvdH2bWCbwgaWhM+jzh/LU9vbtagTagr6TphEpqhLemK4EjgO3N\n7B1J9xIGbM8gvDmOkHQ60AkcAKHPHbDiLg0ze1zSnwgV8gPg+4U3tiIssc/tkv5N+bfQTaPOvQgD\nzt+K+z0g6VlgNsFy6OFS8oH+wK2SCm+Sx8f/8cBvJR0LfB34vaSBcduFZvaWpO2Ao0p1acTB4w5g\nXUnPA2MKA8VFehQeCBcTHnCPxfUrzGx2XD6acB36Eiyiyr3NOs2lqfdH3PYMoU72kbQP8AUzm1uU\nrdvfH8BxwB8lrQo8DRxeRv+2Qs0M1SHpCsLnbmc0E0bSOcCXCRf/X8DhBSsVSacSKu9iYLSZTYrp\nw1nxgfODpindZCQtMLP+Xa2H0/UomNVfDQwClgK/NbOV5voozP/Zk/AAP8zMZrZU0Rbi94dTTLO7\n+0rNe5kEFKxe5gGnAkj6GOXnA7XTnBcP4OUUWAycYGZbAzsCR6tosqekPYHNzGwL4Cjgstar2VL8\n/nBWoKmNVKl5L2Z2t5ktjasPEga1IcwhWGk+kNpszouZDehqHZx8YGbzC19FZvY2oQup2FR+H0Kd\nx8ymAAMlDWqpoi3E7w+nmK42nDgCmBiXy80H8jkvTtsTTeeHAVOKNqWdJ+c4bUmXNVKSfgR8YGbX\ndZUOjpMHJK1JMCkeHb+oHMeJdIl1n6TDgL2I5sORcnNbaprzIsn7tJ3cYGYVzaIl9SY0UNeYWSkz\n+VT13+u9kzeq1f20tOJLaoV5L5L2IPhgG2VmSX9bJecD1TPn5bzzLuLoo48v+Tv22BPp7OzEzCr+\nxowZUzVPmp/L6X46ZSUnJb8HHjezC8tsnxDrPJJGAm9YmDOzElldj2aft6hthV/9x5JlveyO5edF\nhyxp6pdUqXkvBBc3fYC7ovHeg2b2fas8H6imOS8nnvgDzM6mVBvcp88fGTFiGAcffHAGR+g49SNp\nJ8KE1VkKjkmNcH8MJs4JMrOJkvaKfuQW0kPmxjhOgaY2Umb2jRLJxZMzk/nPBM4skf4wsE1tpR9P\nmLy+In36TK9NjOM0CTN7gFKVdOV8x7RAHcfJJV1t3ZdbOjo6XE4L5GQpK29yehp5OG9drUNXl58X\nHbKkqR4nugJJJvXC7H1KvaSuuebBXHrpHt7d5zQdSVhGg8cpyrLuci+Hbv5KuirzcQ2ntWRZ9/1L\nynEcx8kt3kg5juM4uaVqIyVpM0mrxeUOhZDHazVfNcdxHKenk+ZL6iZgiaTNgcsJEwuvbapWjuM4\njkO6RmqpmS0Gvgr8ysxOAjZorlqO4ziOk66R+kDSgcChwF9i2qrNU8lxHMdxAmkaqcMJsW5+bmbP\nRJdF16QRLukKSZ2SHk2krS1pkqQnJN2ZiEyJpFMlzZM0R9IXEunDJT0q6UlJF6Q/PMdxHKc7k6aR\n2t3MjrPordzMngHeSym/VNDDU4C7zeyjwN/oeUEPHcdxnJSkaaQOLZF2WBrhViLoISGI21Vx+SqW\nBzDsEUEPHcdxnPSU9d0Xx6G+AWwiaUJi0wDg9QbKXM+iF2czmy9pvZi+IfDPRL5CcLfFeNBDx3Gc\nHkklB7P/AF4BPgScm0hfADxaco/6yNz/SYhOfwbhQ7Ej/hynuUyePJnJkyd3tRqO01aUbaTM7Dng\nOUm7Ae+a2VJJQ4EtgVkNlNkpaZCZdcauvH/H9EyCHgIE331jSOFg2nEyo6OjYwXnnmeccUbXKeM4\nbUKaMan7gL6SNgQmAYcQYjulZYWgh4QgbofF5UNZHsAws6CHjuM4TnuQppGSmb0D7AtcYmb7A1un\nER6DHv6DYJH3vKTDgbOA3SU9AXw+rmNmjwOFoIcTWTno4RXAk8C8akEPHcdxnPYgTdBDSdqREEH0\nyJiWqh+tTNBDgN3K5M8w6KHj5B9JVwBfAjrN7BMltu9C6Dl4OibdbGY/a6GKjtOlpGmkRhPmMv3Z\nzGZL2hS4p7lqOU6PYRzwK8LUinLcZ2ajWqSP4+SKio2UpFWAUckbxMyeBo5rtmKO0xMws/slDa6S\nrSWBEx0nj1QckzKzJcDOLdLFcZzS7ChppqS/Rs8sjtNjSNPdNyNO5r0BWFhINLObm6aV4zgFHgY2\nNrN3JO0J3AIM7WKdHKdlpGmk+gL/B+yaSDPAGynHaTJm9nZi+XZJl0hax8xW8voyduzYZcvFc7Yc\np5k0cyK7llt5tweSLEzmfZ9SRohrrnkwl166BwcffHDrlXN6FJIws6rjSZKGALeZ2UoWrIWJ73F5\nBPAnMxtSIp91l3s5THespKvoLsfilCZt3U9D1S8pSeMoUaPM7IgsFHCcnkycS9gBrCvpeWAM0Acw\nM7sc2E/S94APgHeBA7pKV8fpCtJ09/0lsdyXEKH35eao4zg9iwpzCQvbLwYubpE6jpM7qjZSZnZT\ncl3SdcD9jRYs6XjC5OClBF+AhwNrANcDg4Fnga+Z2Zsx/6nAEQSv6KPNbFKjOjiO4zj5Jo1bpGK2\nANarmqsCkj4MHAsMj7PsewMHUl9ARMdxHKdNqdpISVog6a3CP3AbcHIGZa8CrCGpN7A6wbN5TQER\nM9DBcRzHyTFpuvv6Z12omb0s6VzgeeAdYJKZ3Z20ZEoZENFxHMdpY9IYTiBpX4LnCQP+bma3NFKo\npLUIX02DgTeBGyQdxMpWhHXZoXrQQ6cr8KCHjpM9aUzQLyHEdrouJn1X0u5mdnQD5e4GPF2YkCjp\nz8CnqT0gYhmdPeih03o86KHjZE+aL6ldga0KMwUlXQXMbrDc54GRkvoCiwhxpaYBbxMCIp7NygER\n/yjpfEI33+bA1AZ1cBzHcXJOmkbqKWBj4Lm4/pGYVjdmNlXSjcAMwiTFGcDlQH/gT5KOiOV9LeZ/\nXFIhIOIHrBgQ0XEcx2lTyjZSkm4jjAn1B+ZImhrXdyCDrxgzO4MwcJTkdWoMiOg4juO0L5W+pH7Z\nMi0cx3EcpwRlGykzu7eVijiO4zhOMfV4nHAcx3GcluCNlOM4jpNbyjZSkv43/p/dOnUcx3EcZzmV\nDCc2kPRpYJSk8cAKDl3NbHpTNXMcx3F6PJUaqZ8ApxO8O5xXtM1YMZy84ziO42RO2e4+M7vRzPYE\nzjGzzxX9Gm6gJA2UdIOkOZJmS9pB0tqSJkl6QtKdkgYm8p8qaV7M/4VGy3ecPCDpCkmdkh6tkOei\nWPdnShrWSv0cp6upajhhZj+VNErSL+PvSxmVfSEw0cy2Aj4JzMXjSTk9j3HAF8ttlLQnsJmZbQEc\nBVzWKsUcJw+kiSd1JjCa4JLocWC0pP9ppFBJA4DPmNk4gBgn6k08npTTwzCz+4H/VMiyD3B1zDsF\nGChpUCt0c5w8kMZ3397AMAvxLwoOZmcApzVQ7ibAa5LGEb6iHgJ+AHg8KcdZkQ2BFxLrhbrf2TXq\nOE5rSRVPCliL4FcPYGCljDWUOxw42sweit7NTyGjeFKO48ALL7zAccedxuLFS0pu33DD9bn44l+w\nyioe0sbJL2kaqTOBGZLuIZihf5bQoDTCi8ALZvZQXL8pyswknpQHPXS6giYFPUxd98eOHbtsuaOj\ng/nz53PHHU/x3nvHlhTcu/e3OOusn7DWWmtlp20mrEa5IedBgwYzf/6zrVWnCuuvP4TOzudKbsuj\nvtWo53iaGfBTaSJeSNoA2D6uTjWz+Q0XLN0LfNvMnpQ0BugXN71uZmdLOhlY28xOiYYTfyR4YN8Q\nuAvYolS4DkkWgh6+T6mgh2uueTCXXroHBx98cKOH4DgVkYSZVTXwkTQEuM3MtimxbS9Cj8PekkYC\nF5jZyBL5Vrodxo8fz3e+cwsLFowvWW6fPmvR2flsyxup0ABVeu5U2i7yFqWn8vHkT99qZHE8aet+\nGlJ195nZK4TAg1lyHCGQ4arA08DhhFbF40k5PQZJ1xI+9deV9DwwBugDmJldbmYTJe0l6SlgIeE+\ncZweQ9oxqcwxs0dY/nWWxONJOT0GM/tGijzHtEIXx8kj7mDWcRzHyS0VGylJq0ia2yplHMdxHCdJ\nxUbKzJYAT0jauEX6OI7jOM4y0oxJrQ3MljSVMHALgJmNappWjuM4jkO6Rur0pmvhOI7jOCWo2kiZ\n2b2SBhPmJd0tqR+lJiA5juM4TsakcTD7beBG4DcxaUPglmYq5TiO4ziQzgT9aGAn4C0AM5sHrFdx\nD8dxHMfJgDSN1CILPoYAkNSbjBy/SuolabqkCXHdgx46juM4y0jTSN0r6TRgdUm7AzcAt2VUfiFO\nVQEPeug4juMsI00jdQrwKjCLEBl0IvDjRguWtBGwF/C7RLIHPXQcx3GWkca6b2kMdDiF0M33REbO\nXc8HTmLF+FQe9NBxHMdZRhrrvr2BfwEXAb8GnpK0ZyOFRpmdZjaT4Je/HO7p3HEcpweTZjLvucDn\nzOwpAEmbAX8Fbm+g3J2AUTFWzupAf0nXAPM96KHTXWlm4DfH6amkaaQWFBqoyNPAgkYKNbPTgNMA\nJO0CnGhmh0g6BzgMOBs4FLg17jKBEHvqfEI33+bA1HLyQ9DDMficY6eVdHR00NHRsWz9jDPO6Dpl\nHKdNKNtISdo3Lj4kaSLwJ0L32/7AtCbpcxYe9NBxHMeJVPqS+nJiuRPYJS6/SuiiywQzuxe4Ny6/\njgc9dBzHcSJlGykz8zDVjtNkJO0BXEAYQL3CzM4u2r4Lodv76Zh0s5n9rLVaOk7XUXVMStImwLHA\nkGR+D9XhOI0hqRfBYvbzwMvANEm3mllxoNH7/H5zeippDCduAa4geJlY2lx1HKdHMQKYZ2bPAUga\nT5jQXtxIuXcVp8eSppF6z8wuaromjtPz2BB4IbH+IqU9qewoaSZh2sVJZvZ4iTyO05akaaQulDQG\nmAQsKiSa2fSmaeU4ToGHgY3N7J04if4WYGipjGPHjl22nDSFd5xm08w5gmkaqW2AQ4BdWd7dZ3Hd\ncZz6eQnYOLG+0iR1M3s7sXy7pEskrRMtYVcg2UgBjB8/PlNlHacczZwjmKaR2h/YNBmuw3GcTJgG\nbB4jX78CfB04MJmh4IElLo8AVKqBcpx2JU0j9RiwFstdFDmOkwFmtkTSMYSu9IIJ+hxJR4XNdjmw\nn6TvESaxvwsc0HUaO07rSdNIrQXMlTSNFcek6jaJjWE6rgYGEboQf2tmF0laG7geGAw8C3zNzN6M\n+5wKHAEsBkab2aR6y3ecvGBmdwAfLUr7TWL5YuDiVuvlOHkhTSM1pgnlLgZOMLOZktYEHpY0CTic\nEPTwHEknE4IenlIU9HAj4G5JW7hrJMdxnPYmTType7Mu1MzmA/Pj8tuS5hAan31Y7n7pKmAyIeji\nsqCHwLOSCkEPp2Stm+M4jpMf0sSTWiDprfh7T9ISSW9lpYCkIcAw4EGKgh4CyaCHyfkkHvTQcRyn\nB5DmS6p/YVmSCF87I7MoPHb13UgYY3pbUnH3XV3deR5PyukKPJ6U42RPmjGpZcQxoFvi5N5TGilY\nUm9CA3WNmRXiRnVmEfTQ40k5XYHHk3Kc7EnjYHbfxGov4FPAexmU/XvgcTO7MJE2gQyCHjqO4zjt\nQZovqWRcqcUE0/B9GilU0k7AQcAsSTMI3XqnERonD3roOI7jAOnGpDKPK2VmD1C+L86DHjqO4zhA\n5fDxP6mwn5nZT5ugT0s45pj/xyGHHFJy26BBg5k//9nWKuQ4juOUpNKX1MISaWsARwLrAt22kXrz\nzU7KGQ52dnroHsdxnLxQKXz8uYVlSf2B0QSPEOOBc8vt5ziO4zhZUXFMStI6wAkEI4ergOFm9p9W\nKOY4juM4lcakfgHsC1wObJOMa+M4juM4raCSW6QTgQ8DPwZeTrhGWpClWyTHcRzHKUelMamqfv3a\nk9UI3p9K49Z/juM4raMmt0g9g0VUchno1n+O4zito1t9LUnaQ9JcSU/GeFNNZHI2UjJyONqucrKU\nlTc5aUhTpyVdJGmepJmShrVMuRrJg3Pdrtehq8vPwznIlm7TSEnqBfwa+CKwNXCgpC2bV+LkMumh\nO7DUb/31h6wsJWcPzrzJyVJW3uRUI02dlrQnsJmZbQEcBVzWEuXqIA8Px67XoavLz8M5yJZu00gR\nghzOM7PnzOwDwnythnwI1kehO3DlX2fn/JUarjPOOKNsA+b0eNLU6X2AqwHMbAowUNKg1qrpOF1H\ndxqTKg58+CLhJi/DbynVBn/wwbyM1UpSajxrLDCWzs6+bpDhFJOmTpcL+NmZpoD333+KMItkZZYs\nWZRWT8fpMtRdnIlL+m/gi2b2nbh+MDDCzI4rytc9DsjpEZhZ2TeTNHVa0m3AmWb2j7h+N/BDM5te\nJMvrvZMrKtX9WuhOX1IvARsn1ksGPszqxDhOC0hTp1MF/PR677Qr3WlMahqwuaTBkvoAXycEQ3Sc\n7kqaOj0B+CaApJHAG2aWqqvPcdqBbvMlZWZLJB0DTCI0rleY2ZwuVstx6qZcnZZ0VNhsl5vZREl7\nSXqKEJkg8/hujpNnus2YlOM4jtPz6E7dfRVpZKKvpCskdUp6NJG2tqRJkp6QdKekgVVkbCTpb5Jm\nS5ol6bg65awmaYqkGVHOmHrkJOT1kjRd0oQG5Twr6ZGo19R6ZUkaKOkGSXPiudqhjnM0NOoxPf6/\nKem4OvU5XtJjkh6V9EdJfeqUMzper7qvfb00UvdrLKemOiDpVIVJyHMkfaHOMmu6N8uVKWl4vMZP\nSrogAx3GSHox1sHpkvZolg71PFtaoMOxLTsPZtbtf4TG9ilgMLAqMBPYsob9dwaGAY8m0s4mWFEB\nnAycVUXG+sCwuLwm8ASwZa1yYr5+8X8V4EGCWXLNcmLe44E/ABPqOa6EnKeBtYvS6jm2K4HD43Jv\nYGC9OiWu/csE44Jar9mH43H1ievXA4fWIWdr4FFgtXjNJgGbNXJcrar7NZaVug4AHwNmxGs8JOqo\nOspMfW9WKhOYAmwflycSrCob0WEMcEKJvFtlrQM1PluacR4q6ND085B5Re6KHzASuD2xfgpwco0y\nBhdVwrnAoMQFmlujvFuA3RqRA/QDHgK2r0cOwRLsLqCD5Y1UXfoAzwDrFqXVJAsYAPyrRHoj5+gL\nwN/r1OfDwHPA2vFmmlDPNQP2A36bWP8xcBIwp5E61Kq6X0NZqetAsR7A7cAOdZab6t4sV2bM83gi\n/evApQ3qMAY4sUS+pumQ2Lfis6WFOny+FeehXbr7Sk2K3LBBmetZtKIys/nAeml3lDSE8Ob1IKES\n1SRHoYtuBjAfuMvMptUjBzif8LBMDjzWI4co4y5J0yR9q05ZmwCvSRoXuwYul9SvAZ0ADgCurUcf\nM3uZEGX6eYJZ95tmdncd+jwGfCZ2v/QD9iJ82TVyXGlpRt0vRy11oNwk5Cwod2+WK3NDwnkpkNU5\nOkbBn+LvEl1tTdUh5bOlVTpMiUlNPQ/t0ki1glQWJpLWBG4ERlsIFFm8X1U5ZrbUzLYlfAmNkLR1\nrXIk7Q10mtlMoNIcmlTHBexkZsMJD+CjJX2mVp0IXyvDgYujrIWEN66azxGApFWBUcANZfardo7W\nIrgdGkz4qlpD0kG1yjGzuYSul7sI3RczgCWlslaS0w3Iog40g64o8xJgUzMbRniZPLfZBWbxbGmC\nDk0/D+3SSKWa6FsjnYo+0iStD/y72g6SehMu4DVmdmu9cgqY2VsEj5V71CFnJ2CUpKeB64BdJV0D\nzK9HHzN7Jf6/SvjUH1GHTi8CL5jZQ3H9JkKjVe852hN42Mxei+u1ytkNeNrMXjezJcCfgU/Xo4+Z\njTOzT5lZB/AGoc++7mtfA82o+yWpsQ6kmoRcJ7WWmbkuZvaqxf4qgg+2gjurpuhQ47OlZTq04jy0\nSyOVxURfseIXxwTgsLh8KHBr8Q4l+D2hv/XCeuVI+lDhk1nS6sDuhLGNmuSY2WlmtrGZbUo4H38z\ns0OA22o9Lkn94hsUktYgjAPNqkOnTuAFSUNj0ueB2bXKSXAgoQEuUKuc54GRkvpKUtTn8Xr0kfRf\n8X9j4KuELsh6j6sWWjLJvY46MAH4uoK15CbA5sDUeosn3b1ZsszYFfampBHxOn+T2q/FCjrERqHA\nvoQu32bqUMuzpWU6tOQ81DNolscf4WvjCWAecEqN+15LsBBbRHhwHU4YTL87ypwErFVFxk6ELp6Z\nhO6e6VGndWqUs03cdybBYuxHMb0mOUUyd2G54UTNcghjSYXjmlU4v3XK+iThwToTuJlg3VePnH7A\nq0D/RFo9csYQXgIeBa4iWMjVI+c+wg06A+ho9Jq1qu7XUEbNdQA4lWDVNQf4Qp3l1nRvlisT2C7q\nPQ+4MAMdro51Zibhq3JQs3SgjmdLC3Vo+nnwybyO4zhObmmX7r7cIWmJlk82nS7phxnL303SQwqT\nK6dJ+lyZfJMlTUusbyfpnhL5Bkt6J+o6U9L9krbISNd91ECASpWYTBnTz1GYKDhT0k2SBjSurdMo\nLaj720fZhd9XyuRr57r/CUn/iPf/rYWu2HbEG6nmsdDMhpvZtvH/nIzlvwp8ycw+SeiXvqZMPgP+\nS9IXi9JK8VTUdRjhM/5HtSikEGm2FF8hTHitl3GE6LXFTAK2jvrOI3QvOF1Ps+v+LGA7CxawewK/\nKVP32rnu/44wkfeTBIOfTF8E8oQ3Us1jJbNvSQMU3NdsEdevlXRkXF4g6TwFFz13SVq3knAze8TC\nICRmNhvoq2CSXYpfECaY1qLzAOD1qNuhkn6VOI7bJH02ofcvFeZ1jZR0poLrlJnxS2dHgpn4OfFN\ndRMFF0aFPNdSBTO7H/hPifS7zWxpXH2QYCnkdD3NrvvvJa776sDSCtnbsu4DW8RtEMal/jvFMXZL\nvJFqHqsXdXnsb8Gk/GjgKkkHEAY6r4j51yBYv3ycMAg/BkDSUZK+U6kgSfsB0y2EIC/GgH8CiyTt\nUkXnzaKuTxHcKZ1XJKcUawD/jG+1c4Gvmlnh6+ZnZvZPgqXPSfFN9RmCC5dhMc934zFsJ6l0CNl0\nHEGY1e50PU2v+wrWYY8BjwDfTTRaSdq57s+WNCouf412fkGrx+LGf6msYd6qsO03wGvABom0D4Be\ncXkTQqOTppytCV1dQ8psv4cwF+lzhDeu7Qjm6MX5it2+7E90t0Mwb70ose024LNx+X2W++RahWD5\n8zuCGfaqMX0csG9i/4mECbgHAWukPM4V9Cva9iPgpq6+5v5bdj1aUvdj/o8SPB/0KbGtbes+MBS4\nk2Apezrwaldf92b9/EuqxUgSwfniQqBSt0ZVs0tJGxHMuA8xs2cr5TWze4C+BF9vabgN+ExcXsyK\nX919E8vvWbxrLEyIHUGY8Pcl4I4ysvcGfk14gEyr0J9fFUmHETwgfKNeGU5ryLLuL8to9gTwNvDx\nCnnaru5WIu+GAAAdBklEQVSb2ZNm9kUz2x4YD/yrHjndAW+kmkc5V0QnECaMfgMYJ2mVmL4KwVEp\nhLes+0vsu1x4mPD7F4ITxwdT6vRzKg+wJnX+DMsr/rPAMAU+wvJZ5SvsozDJcy0zu4NwnJ+ImxYQ\n+vkLD6qNzexegkukAQSvytUontCJQliAk4BRZrYohQynNTS77g8p7CtpMOFr6tkqOrVb3S9MHu9F\nGHO7LIWcbkm3iczbDekraTqhchnhzepKwtjJ9mb2jqR7CRXsDMLb5QhJpwOdBMepKBGltUj+MYRw\nED9RiDllhAlzrxXlW/ZWama3S/o35d9UN4069yJMXPxW3O8BSc8SvEPMAR4uJR/oD9wqqfC2eXz8\nHw/8ViEGzdeB32u5I8oLzewtSdsBR5nZSmMQcYC5A1hX0vPAGDMbB/wK6ENwegrwoJl9v8yxOa2j\n2XV/Z+AUSe8TjCa+Z2avl9Cjnev+gZKOjjrcbGZXljmubk9uJvPGN4KHgBfNbFSJ7RcRzE0XAodZ\ncJzaNkhaYGb9u1oPJ5/EB+WbhIfyB2Y2ovIe3Qev+04l8vQlNZrQFbDShExJewKbmdkWknYgfNqm\n7V/uLuTjbcHJK0sJ7pZKmSN3d7zuO2XJxZhUNADYi2AZU4p9CBPsMLMpwEBF77/tgpm5twSnEiIn\n92vWeN13KpGXSl8qOF+SZgZQc5zugLE84OC3u1oZx2kVXd7dp0RwPkkdVA7Ql0aedx04ucHMGqrP\nCXYys1eiVdddkubYco8DXu+d3JFV3c/Dl1RxcL7PSbq6KE+NgbKsxO81+vVbJ/UEsjFjxmQyEc3l\ndD+dspKTJbZiwME/s6IpdCFPpr9azkP5+67wI9M604x62B3kdRcds6TLGykrHZzvm0XZJhCCYyFp\nJPCGhQB6jtP2qHTAwccq7+U47UGXd/eVIzlHwswmStor+tVaSAg65jg9hUHAn2OXXm/gj2Y2qYt1\ncpyWkKtGysJM7Hvj8m+Kth3TSl06OjpcTgvkZCkrb3KywoJj0mGtLjfr89CM85p3HXviMWdNbibz\nZkV42yx1TP9Hv35DWbjw/1quk9MzkYRlZzhRrSzryns5ePyoVL4yH6tw8kuWdb/Lx6Qcx3Ecpxze\nSDmO4zi5pcsbKUmrSZoSA6TNis5Si/PsIumNGJRsuqQ0kTYdx3Gcbk5mhhOSNiM4h10UJ+V+Arja\nzN6otF/M/zkLnpFXAR6QdLuZTS3Kep+VcDzrOI7jtC9ZfkndBCyRtDlwOWHy7bVpdjSzd+LiaoSG\ns9QIa0sGoB3HcZz8kGUjtdTMFhNCJ//KzE4CNkizo6RekmYA84G7zGxaiWw7Spop6a+SPpad2o7j\nOE5eybKR+kDSgcChhIixAKum2dHMlprZtgR3RzuUaIQeJkS0HEYIvXxLRjo7juM4OSbLybyHA98F\nfm5mz0jaBLimFgEWolTeA+xBiC1VSH87sXy7pEskrWOlo3ECYxPLHfHnOM1l8uTJTJ48uavVcJy2\nIrPJvJJGm9mF1dJK7PchQqTRNyWtDtwJnGVmExN5BhV89UkaAfzJzIaUkeeTeZ1c4JN5V8jhk3l7\nEHmdzHtoibTDUuy3AXCPpJnAFODO6KvvKEnfiXn2k/RYHLe6ADggE40dx3GcXNPwl1Qch/oGsDPw\n98SmAcASM/t8QwXUro9/STm5IMu3SUm9gIcI0zxWmorhX1JOnsiy7mcxJvUP4BXgQ8C5ifQFwKMZ\nyHccB0YTxmk91LrTo2i4u8/MnjOzycBuwN+jJ/NXCJZ6PrfJcRpE0kbAXsDvuloXx2k1WY5J3Qf0\nlbQhMAk4BLgyQ/mO01M5HziJyv1pjtOWZGmCruja6EjgEjM7JxpDOI5TJ5L2BjrNbGZ0N1a2d2Ls\n2LHLljs6OnIfJ8hpH5o5/SJLE/QZwPcJb31HmtlsSbPMbJsq+61G+ArrQ2g0bzSzM0rkuwjYkxCZ\n9zAzK9kAuuGEkxeyGDyW9D/AwcBiYHWgP3CzmX2zKJ8bTji5Ia8m6KOBU4E/xwZqU+CeajuZ2SLg\nc9HjxDBgzzgXahmS9gQ2M7MtgKOAyzLU23Fyi5mdZmYbm9mmwNeBvxU3UI7TzmTS3Re9l49Kmsaa\n2dPAcWn2T+Fgdh/g6ph3iqSByQm+juM4TnuSyZeUmS0hzJOqixQOZjcEXkisvxTTHKfHYGb3erga\np6eRpeHEDEkTgBsI40YAmNnN1XY0s6XAtpIGALdI+piZPV5tv/KMTSx34L77nFbgvvscJ3uyNJwY\nVyLZzOyIGuWcDiw0s/MSaZcB95jZ9XF9LrBLqe4+N5xw8oL77lshhxtO9CDy5nECADM7vJ79SjiY\n3R04qyjbBOBo4HpJI4E3fDzKcRyn/ckyfPw4SrxKpfiS2gC4Kvom6wVcX3AwG3a3y+P6XpKeInQl\n1tUgOo7jON2LLLv7/jux2pcQofdlM0tl4ZcV3t3n5AXv7lshh3f39SDy2t13U3Jd0nXA/VnJdxzH\ncXoeWU7mLWYLYL0mynccx3HanCzHpBYQvvcL3/3zgZOzku84juP0PLLs7uuflSzHcRzHgYy7+yTt\nK+k8SedK+krKfTaS9DdJsyXNkrSSoYWkXSS9IWl6/P04S70dx3GcfJJld98lwObAdTHpu5J2N7Oj\nq+y6GDghhiJYE3hY0iQzm1uU7z53CeM4jtOzyNIt0q7AVgU7WElXAbOr7WRm8wnjV5jZ25LmEPzy\nFTdSHuXX6ZGkDWfjOO1Ilt19TwEbJ9Y/EtNSI2kIIVzHlBKbd5Q0U9JfJX2sXiUdp7uRJpyN47Qr\nDX9JSbqNYM3XH5gjaWpc3wGYWoOcNYEbgdFm9nbR5oeBjWPk3z2BW4Ch5aWNTSx34A5mnVbQTAez\nKcLZOE5b0rDHCUm7VNpuZvemkNEb+Atwu5ldmCL/M8B2ZvZ6iW3uccLJBVnOuo9uwx4GNgMuNrNT\ni7a7xwknN+TK40SaRigFvwceL9dAJQMcxm4OlWqgHKddSRPOJjQUpVlnnfV5+eVnWW211ZqsqeNk\nS5aGE3UhaSfgIGBWDHxowGnAYKKDWWA/Sd8DPgDeBQ7oKn0dpysxs7ck3QPsARTFXPsBMDAud5Ds\n5l6woD8bbzyUf//7+ZJyBw0azPz5z2atrtNDaGZXd2YOZvOCd/c5eSGrLo8S4WzuBM4ys4mJPAbP\nsaLt0nJWXbU/H3zwNuW75BrrjvPuPidJlt19DVv3Sfrf+H924+o4jlOCDYB7JM0kWL7emWygHKed\nyaK7bwNJnwZGSRpP0XwmM5ueQRmO02Mxs1nA8K7Ww3G6giwaqZ8ApwMbAecVbTPCJF/HcRzHqZks\nrPtuBG6UdLqZ/bTW/SVtBFwNDAKWAr81s4tK5LsI2JMQmfcwM5vZmOaO4zhO3snSC/pPJY0CPhuT\nJpvZX1LsWtV3X5zAu5mZbSFpB+AyYGRWujuO4zj5JDO3SJLOBEYTzGIfB0ZL+p9q+5nZ/MJXUfQ0\nUfDdl2QfwtcWZjYFGChpUFa6O47jOPkky3lSewPD4qTDgoPZGYQ5T6mo4LtvQ+CFxPpLMa2zfnUd\nx3GcvJN1+Pi1EssDy+YqQRXffY7jOE4PJMsvqTOBGXE2vAhjU6ek2TH67rsRuMbMbi2R5SWCV/UC\nG8W0MoxNLHdQmHn/zjvvVnQd47PunUZo5qx7x+mpZOpxQtIGwPZxdWqMFZVmv6uB18zshDLb9wKO\nNrO9JY0ELjCzkoYTlTxOwIfwWfFOq8hy1n2KstzjhJMbcuVgNomZvQJMqGWfNL77zGyipL0kPUUw\nQT88S70dx3GcfNLlDmbN7AFglRT5jmmBOo7jOE6OyNpwwnEcx3EyI5NGStIqkuZWz+k4Tq1I2kjS\n3yTNljRL0nFdrZPjtIpMGikzWwI8Ian0qK3jOI1Q8MqyNbAjcLSkLbtYJ8dpCVmOSa0NzJY0lWDc\nAICZjcqwDMfpcUQr2flx+W1JBa8s3nvhtD1ZNlKn17ujpCuALwGdZvaJEtt3AW4Fno5JN5vZz+ot\nz3G6KxW8sjhOW5Klg9l7JQ0GtjCzuyX1I4XVXmQc8Cuif74y3OdfZU5Pxr2yOD2RzBopSd8GvgOs\nA2xG6I64DPh8tX3N7P7YwFUsomElHaebksIrC3A+y72RdVDwtJKO1draG8v66w+hs/O5stu7+/F1\nNc30tpKZx4kY2noEMMXMto1ps8xsm5T7DwZuq9DddxPwIsEd0klm9ngZOe5xwskFWc66T+GVpWGP\nE43cG3n3OJF3/dqNvHqcWGRm7xfexuKbX1ZX/WFgYzN7J8aWugUYWj772MRyB7W9UTpOfTTrbbKc\nVxYzuyPzwhwnZ2T5JXUO8AbwTeBY4PvA42b2o5T7l/2SKpH3GWA7M3u9xDb/knJyQXfz3edfUn7v\nZ0WWdT9LjxOnAK8Cs4CjgInAj2vYX5QZd0oGOJQ0gtC4rtRAOY7jOO1FltZ9S2OgwymEV5YnLOWr\niaRrCX1y60p6HhgD9CE6mAX2k/Q94APgXeCArPR2HMdx8kuW3X17E6z5/kX4ItoEOMrMbs+kgPR6\neHefkwu8uy/9/s0m7/q1G3k1nDgX+JyZPQUgaTPgr0BLGynHcRynfchyTGpBoYGKPA0syFC+4ziO\n08No+EtK0r5x8SFJE4E/Eb6r9wemNSrfcRzH6blk8SX15fjrC3QCuxCMIF4FVk8jQNIVkjolPVoh\nz0WS5kmaKWlY42o7juM4eafhLykzyyKUe0XffXEC72ZmtoWkHQgGGiMzKNdxHMfJMVn67tuEMIl3\nSFJuGqewKXz37UNswMxsiqSBkgaZWWdjWjuO4zh5JkvrvluAK4DbgKUZyoXgrPaFxPpLMc0bKcdx\nnDYmy0bqPTO7KEN5juM4Tg8ny0bqQkljgEnAokKimU3PQPZLwEcS6xvFtDKMTSx3kJWD2Uru/nv1\n6sfSpe+U3bfa9q4KFVAthEElvds1vEGlc1LpmJvoYLZiUFDHaWey9DhxJnAIweNEobvPzGzXlPsP\nITiYXSm0h6S9gKPNbG9JI4ELzKyk4UQzPU5UnrVefUZ7Hme8p5mJX+mY23GWfrXrnPaYs5p1L2ln\n4G3g6nKNlHucqEze9Ws38upxYn9gUzN7v9Ydq/nuM7OJkvaS9BSwEMjCotBxugUpg4I6TluSZSP1\nGLAW8O9adzSzb6TIc0w9SjmO4zjdlywbqbWAuZKmseKYVFUTdMdxHMcpRZaN1JgMZTmOUzPnAwPj\ncgf5iki9GoWo3aWoZoRTzcCnXY14sqJeY6Bq+xb2Hz/+yqYYDUGGhhN5wQ0nasMNJ1Ymb4YTUdYQ\nyhgWxe25N5zoSsOMnm440Uidrufc5TIyr6QFkt6Kv/ckLZH0VlbyHaenEg2L/gEMlfS8JDcccnoM\nWUbm7V9YVmh69yGlfz1JewAXEBrNK8zs7KLtuwC3EsJ/ANxsZj/LQm/HyTtpDIscp13JMp7UMixw\nC/DFankl9QJ+HfNuDRwoacsSWe8zs+Hx5w2U4zhODyBLB7P7JlZ7AZ8C3kux6whgnpk9F+WMJ3yF\nzS0uIgs9HcdxnO5DltZ9X04sLwaeJTQ21Sh2HvsioeEqZkdJMwnukE4ys8fr1NNxHMfpJmQ5JtXM\nwdyHgY3N7J0YW+oWYGj57GMTyx3kyxTXaVea5bvPcXoyDZugS/pJhc1mZj+tsv9IYKyZ7RHXT4n7\nnV1hn2eA7czs9RLb3AS9BtwEfWXyaIKeoiw3QXcT9LL0dBP0hSV+AEcCJ6fYfxqwuaTBkvoAXwcm\nJDNIGpRYHkFoXFdqoBzHcZz2Iovw8ecWliX1B0YTHMCOB84tt19i/yWSjiGE+CiYoM+RdBTRwSyw\nn6TvAR8A7wIHNKq34ziOk38y8TghaR3gBOAg4CrgQjP7T8OC69PFu/tqwLv7Vsa7+0pv9+6+7kt3\n7u5r+EtK0i+AfYHLgW3M7O2GtXIcx3EcsjGcWErwer6YFZtbEbrrBjRUQO36+JdUDfiX1Mr4l1Tp\n7f4l1X3p0V9SZtYUrxWO4ziOk4sGRtIekuZKelJSSYtASRdJmidppqRhrdbRcbqSNPeI47QjXd5I\npfHdFyfwbmZmWwBHAZc1W6/sJmVmIycrffJ2XJDHY8sXNfi3zJjJOZeXvcys61Az6mS71vNydHkj\nRcJ3n5l9QDBdL3antA9wNYCZTQEGJudONYO8Pczz9yDPSk4ejy13pLlHmsDknMvLXqY3UvkjD41U\nKd99G1bJ81KJPI7TrqS5RxynLcnSwWxuGDDgyyulmb3PggVdoIzjtIj+/Q9H6ldy28KFi1qsjeNk\nQ5eHj0/ju0/SZcA9ZnZ9XJ8L7GJmnSXkta8dqdPtyMIMN+U94vXeyRW5MUHPgGW++4BXCL77DizK\nMwE4Grg+3rBvlGqgILsT4zg5ouo94vXeaVe6vJFK47vPzCZK2kvSUwQHts0MC+I4uaLcPdLFajlO\nS+jy7j7HcRzHKYuZtcUP2IMQcv5J4OQqeTcC/gbMBmYBx8X0tQlvq08AdwIDE/ucCswD5gBfKJLX\nC5gOTKhXDjAQuCGmzwZ2qFPO8cBjwKPAH4E+Nci5A+gEHk1sr0eHWwge6xcBF8S0c2K+mcBNwIB6\n5CS2nQgsBdapVw5wbMw7CzirzuP6JPBPYAYwFfhUCjnD4/V5svi4ml33E/tckcW1btY9FbevBkyJ\n53YWMKZRmVndr0XyngUeKdSBDI47k2dB3DY06jU9/r8JHJfBMTfynCkps2xdbfQGycMvVrqngMHA\nqoQH4ZYV8q8PDIvLa8aTuiVwNvDDmH4y8cEFfCxe4N7AkFiWii7YHxKVvmY5wJXA4XG5d6yoNckB\nPgw8DfSJ+a4HDq1BzovAMFZ8cNVzLLMJHvEfBSYSJqHuBvSK288CzqxHTkzfiNCgPkNspICtatSn\ng3BD9Y55PlSnnDuJNx2wJ8HAp9pxTQG2j8vLjqsVdT+x385ZXOtm3VMJuf3i/yrAg4Q5Y43KbPh+\nLZL3NLB2UVoj5/JKGnwWVKgrLwMfaVC/Rp8zZXUsqXe9N0eefsBI4PbE+imkfKOM+W8hPETnAoMS\nN93cUvKA24Ed4vJGwF2Eh16h0tckBxgA/KuEXrXK+TDBy+jasUJMqOO49mHFB1etOqwPPE54aD5K\nGOS/tOi4vgJcU68cwlvmNqzYSNUkh3Bj7VrinNcq53Zg/5j3QOAPaeQk0lc6P62q+4VjqfdaN+ue\nKiOvH/AQsH0jMsngfi2h2zPAuo3cu4n1TJ4FZc7hF4C/NyqPbJ4zFetP8peHybxZUPdkR0lDCG+U\nDxJOcCeAmc0H1isjPzmZ+HzgJFZ0E1yrnE2A1ySNkzRd0uUKE15qkmNmLxMCTT4f0940s7trlLN+\n0Slar8Zj2ZBw/guUuhZHEL4gapYjaRTwgpnNKpJZqz5Dgc9KelDSPZK2q1PO8cAvJT1P6NI8tU45\n9ZLlRN9ar3VJMrinkrJ6SZoBzAfuMrNpDcrM4n4txoC7JE2T9K0GZWbyLCihI4Rgsdc2eswZPWdS\n19F2aaTqQtKawI3AaAtxsKwoS/F68f57A51mNpPQ3VaOinIIbyPDgYvNbDjBgvGUOvRZi/AlNJjw\ntrOGpINqlVOFRvZF0o+AD8zsujp27wWcBoxpRIdIb0IXzUjgh4Svs3r4HqH+bExosH6fgW55oeZr\n3eg9tZICZkvNbFvCF9AISVvXKzPD+7WYneJ9uxdwtKTP1KsjGT0LipG0KjCK5fW8bnktes4so10a\nqZdYMZDORjGtLJJ6E26ma8zs1pjcWfAJKGl94N8J+R8pIX8nYJSkp4HrgF0lXQPMr1HOi4Svg4di\n+k2EilqrPrsBT5vZ62a2BPgz8Oka5cwvOlW16lAuHUmHEW7kbyS21yJnIaFP+xFJz8S06ZLWo3wd\nKCf/BeBmgPh2vkTSunXIOdTMbolybiR0R9V1fuqk5rpfgVqv9QpkdE+VxMzeIjjq26MBmVndr8W6\nvRL/XyV0c45oQMesngXF7Ak8bGavxfVG5GXxnElfR9P2C+b5RxhULQwe9yEMHm9VZZ+rgfOK0s4m\n9p1SeuCvD+FzvNRg4i4s7+M+p1Y5wL3A0Lg8JupSkz6Em2MW0DeuX0mYBF2LnCHArEbOCaGbZ5+o\ny0TCg2UPguFBcd99TXKK9n2GOGBdhz7fAc6I24cCz9UpZzbB+wnA54FpKeWMiNdopeNqdt1P7Nvw\ntW7yPfUhooUYsDpwH+ElpyE9s7hfE3L6AWvG5TWABwhjP40cd8PPghLHex3hhSqL65LFc6ZnGU7E\nE7EHwaJoHnBKlbw7AUsIN3TBPHMPYB3g7ihnErBWYp9T48ktZzaarPQ1yyGYMk+LOt1MsOipR86Y\nmPYocBXB4iutnL8RrH8WEfqbDycMjtaqw+0EU+2lwFtRzjzCYOv0+LukHjlF5/xpVjZBT6tPb+Aa\nws32ELGhqUPOp+P+Mwim6NumkLNdLHcecGEr635in2uzuNZNvqe2iXJmEurzj+q9v7K+XxPbN0kc\n86zC+W9QZibPgsT2fsCrQP9EWkPnkMaeMzWZoPtkXsdxHCe3tMuYlOM4jtOGeCPlOI7j5BZvpBzH\ncZzc4o2U4ziOk1u8kXIcx3FyizdSjuM4Tm7xRqpFSNpQ0i2SnpQ0T9L5cYZ+1uUcJengrOXWK1/S\nLpJua4IegyUVR3B2cojX/cz16FF13xup1nEzcLOZDSV4OOgP/E/WhZjZb8zsD1nLbVB+3ZPxJK1S\nZtMmrOheyckvXvfrwOt+wBupFiBpV+BdM7sawMIM6uOBIyT1lXRofNO8R9ITkn6S2PcgSVOiR+RL\nJSmmL5D0M0kzJf1D0n/F9DGSTojL90g6K+4/V9JOMX11SddLekzSzdET+PDocXqcpEclPSJpdIlj\nqSq/BAMl/SXmuSQha0Fi+b8ljYvL4+KxPgicLemzkmbEc/CwpDWAM4GdY9pKejr5wOu+1/1GyfyT\n2ynJ1sDDyQQzWyDpOWDzmLR9zPceME3SX4B3CO71P21mSyRdTAi69weCn7B/mNmPJZ0NfJvSb6er\nmNkOkvYExgK7A98HXjezjyt4lZ4R8w4jhPz4BICkASmOrZT8YrYnBBN8HrhT0r5mdjOVvSZvaMFD\nOZImAN83s38qhC14j+AZ+kQzG5VCR6fr8Lrvdb8h/Euqa0mGC7jLzN4ws/cIno93Jjgs3Y5w484A\ndiV86gO8b2aFmEwPE5yFluLmRJ7BcXlnYDyAmc0m+N+C4AtvE0kXSvoisIDqlJJfzFQzey6+RV8X\ny4fK4RKSoTMeAM6XdCzBoezSFHo5+cbrfnm87ifwRqo1PA58KpkQ39Q+QnC6CCu+SSmxfqWZDTez\nbc1sKzP7aUx/P5F/CeW/ihelyCMAM3uD4NxyMnAU8LsKx1SL/HJvjcn0vkV5Fi7LbHY2cCTBE/YD\nkoam0MvJB173S6973U+JN1ItwMz+F1hd0TJIYUD0l8C4+PYIsLuktSStTgiv/gDBK/l+iT73tSUV\n4rJUehOrxgOErhQkfQz4eFxel9CF8WfgdGDbGuWW02kHBYukXrHcv8f0+ZI+GtO/WlaotKmZzTaz\ncwjeobckvOmm6ZJxuhCv+173G8UbqdbxVeBrkp4E5gLvAj9KbJ9K6D6YCdxgZtPNbA7wY2CSpEcI\n7u83iPnTWA2Vy3MJ8CFJjwH/HyEm0puEkM6TY/fKNYS+71rklytvKvDrWM6/LAYJJLjv/ytwPyFs\nRDk5P5A0S9JMwlv07YRumiVxULntB4+7OV73ve7XjYfqyAGSDgW2M7PjWlReL2BVM1skaVPgLuCj\nZra4FeU7TgGv+0413LqvZ9IPuEfSqnH9e36TOj0Er/vdDP+SchzHcXKLj0k5juM4ucUbKcdxHCe3\neCPlOI7j5BZvpBzHcZzc4o2U4ziOk1u8kXIcx3Fyy/8PHrJlFQBnhksAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(2,2)\n",
+ "ax = ax.flatten()\n",
+ "for i in range(n_experiments):\n",
+ " ax[i].hist(opening_dists[i], bins=20)\n",
+ " ax[i].set_title(\"Exp: {} N Bursts: {}\".format(i, int(n_bursts[i])), fontsize=10)\n",
+ "ylabel = ax[0].set_ylabel('Number of bursts')\n",
+ "ylabel = ax[2].set_ylabel('Number of bursts')\n",
+ "xlabel = ax[2].set_xlabel('Openings in burst')\n",
+ "xlabel = ax[3].set_xlabel('Openings in burst')\n",
+ "fig.tight_layout(w_pad=0.1, h_pad=0.1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "class dcpyps.Mechanism\n",
+ "Values of unit rates [1/sec]:\n",
+ "0\tFrom AF* \tto AF \talpha1 \t4500.0\n",
+ "1\tFrom AF \tto AF* \tbeta1 \t700.0\n",
+ "2\tFrom A2F* \tto A2F \talpha2 \t2500.0\n",
+ "3\tFrom A2F \tto A2F* \tbeta2 \t1800.0\n",
+ "4\tFrom A3F* \tto A3F \talpha3 \t900.0\n",
+ "5\tFrom A3F \tto A3F* \tbeta3 \t18000.0\n",
+ "6\tFrom A3F \tto A3R \tgama3 \t200.0\n",
+ "7\tFrom A3R \tto A3F \tdelta3 \t67459.4594595\n",
+ "8\tFrom A3F \tto A2F \t3kf(-3) \t7500.0\n",
+ "9\tFrom A2F \tto A3F \tkf(+3) \t400000000.0\n",
+ "10\tFrom A2F \tto A2R \tgama2 \t1850.0\n",
+ "11\tFrom A2R \tto A2F \tdelta2 \t10000.0\n",
+ "12\tFrom A2F \tto AF \t2kf(-2) \t5000.0\n",
+ "13\tFrom AF \tto A2F \t2kf(+2) \t800000000.0\n",
+ "14\tFrom AF \tto AR \tgama1 \t8500.0\n",
+ "15\tFrom AR \tto AF \tdelta1 \t736.313236313\n",
+ "16\tFrom A3R \tto A2R \t3k(-3) \t5850\n",
+ "17\tFrom A2R \tto A3R \tk(+3) \t5000000.0\n",
+ "18\tFrom A2R \tto AR \t2k(-2) \t3900\n",
+ "19\tFrom AR \tto A2R \t2k(+2) \t10000000.0\n",
+ "20\tFrom AR \tto R \tk(-1) \t1950\n",
+ "21\tFrom R \tto AR \t3k(+1) \t15000000.0\n",
+ "\n",
+ "Conductance of state AF* (pS) = 40\n",
+ "\n",
+ "Conductance of state A2F* (pS) = 40\n",
+ "\n",
+ "Conductance of state A3F* (pS) = 40\n",
+ "\n",
+ "Number of open states = 3\n",
+ "Number of short-lived shut states (within burst) = 6\n",
+ "Number of long-lived shut states (between bursts) = 1\n",
+ "Number of desensitised states = 0\n",
+ "\n",
+ "Number of cycles = 2\n",
+ "Cycle 0 is formed of states: A3R A3F A2F A2R \n",
+ "\tforward product = 4.680000000e+18\n",
+ "\tbackward product = 4.680000000e+18\n",
+ "Cycle 1 is formed of states: AF A2F A2R AR \n",
+ "\tforward product = 4.250000000e+18\n",
+ "\tbackward product = 4.250000000e+18"
+ ]
+ }
+ ],
+ "source": [
+ "# LOAD FLIP MECHANISM USED Burzomato et al 2004\n",
+ "mecfn = \"./samples/mec/demomec.mec\"\n",
+ "version, meclist, max_mecnum = dcio.mec_get_list(mecfn)\n",
+ "mec = dcio.mec_load(mecfn, meclist[2][0])\n",
+ "\n",
+ "# PREPARE RATE CONSTANTS.\n",
+ "rates = [4500.0, 700.0, 2500.0, 1800.0, 900.0, 18000.0, 200.0, 0.1100E+06, 4900.0, 0.4000E+09, 1850.0, 10000.0, 5000.0, 0.7500E+09, 8500.0, 1050.0, 3500.0, 0.5000E+07, 2300.0, 0.9500E+07, 1950, 0.130000E+08]\n",
+ "\n",
+ "mec.set_rateconstants(rates)\n",
+ "\n",
+ "# Fixed rates.\n",
+ "#fixed = np.array([False, False, False, False, False, False, False, True,\n",
+ "# False, False, False, False, False, False])\n",
+ "#if fixed.size == len(mec.Rates):\n",
+ "for i in range(len(mec.Rates)):\n",
+ " mec.Rates[i].fixed = False\n",
+ "\n",
+ "# Constrained rates.\n",
+ "mec.Rates[21].is_constrained = True\n",
+ "mec.Rates[21].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[21].constrain_args = [17, 3]\n",
+ "mec.Rates[19].is_constrained = True\n",
+ "mec.Rates[19].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[19].constrain_args = [17, 2]\n",
+ "mec.Rates[16].is_constrained = True\n",
+ "mec.Rates[16].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[16].constrain_args = [20, 3]\n",
+ "mec.Rates[18].is_constrained = True\n",
+ "mec.Rates[18].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[18].constrain_args = [20, 2]\n",
+ "mec.Rates[8].is_constrained = True\n",
+ "mec.Rates[8].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[8].constrain_args = [12, 1.5]\n",
+ "mec.Rates[13].is_constrained = True\n",
+ "mec.Rates[13].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[13].constrain_args = [9, 2]\n",
+ "mec.update_constrains()\n",
+ "\n",
+ "mec.set_mr(True, 7, 0)\n",
+ "mec.set_mr(True, 15, 1)\n",
+ "\n",
+ "mec.printout(sys.stdout)\n",
+ "theta = np.log(mec.theta())\n",
+ "\n",
+ "kwargs = {'nmax': 2, 'xtol': 1e-12, 'rtol': 1e-12, 'itermax': 100,\n",
+ " 'lower_bound': -1e6, 'upper_bound': 0}\n",
+ "likelihood = []\n",
+ "\n",
+ "for i in range(len(recs)):\n",
+ " likelihood.append(Log10Likelihood(bursts[i], mec.kA,\n",
+ " recs[i].tres, recs[i].tcrit, **kwargs))\n",
+ "\n",
+ "def dcprogslik(x, args=None):\n",
+ " mec.theta_unsqueeze(np.exp(x))\n",
+ " lik = 0\n",
+ " for i in range(len(conc)):\n",
+ " mec.set_eff('c', conc[i])\n",
+ " lik += -likelihood[i](mec.Q) * math.log(10)\n",
+ " return lik"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "10 loops, best of 3: 55.1 ms per loop\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%timeit\n",
+ "dcprogslik(theta)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "100 loops, best of 3: 13.9 ms per loop\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%timeit\n",
+ "i = 0\n",
+ "mec.set_eff('c', conc[i])\n",
+ "lik = -likelihood[i](mec.Q) * math.log(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "100 loops, best of 3: 16.3 ms per loop\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%timeit\n",
+ "i = 1\n",
+ "mec.set_eff('c', conc[i])\n",
+ "lik = -likelihood[i](mec.Q) * math.log(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "100 loops, best of 3: 13.6 ms per loop\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%timeit\n",
+ "i = 2\n",
+ "mec.set_eff('c', conc[i])\n",
+ "lik = -likelihood[i](mec.Q) * math.log(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "100 loops, best of 3: 10.9 ms per loop\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%timeit\n",
+ "i = 3\n",
+ "mec.set_eff('c', conc[i])\n",
+ "lik = -likelihood[i](mec.Q) * math.log(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/exploration/.ipynb_checkpoints/Example_MLL_Fit_AChR_1patch-checkpoint.ipynb b/exploration/.ipynb_checkpoints/Example_MLL_Fit_AChR_1patch-checkpoint.ipynb
new file mode 100644
index 0000000..f75d334
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/Example_MLL_Fit_AChR_1patch-checkpoint.ipynb
@@ -0,0 +1,620 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# HJCFIT- maximum likelihood fit of single-channel data: a simple example"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some general settings:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "import sys, time, math\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Load data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "HJCFIT depends on DCPROGS/DCPYPS module for data input and setting kinetic mechanism:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from dcpyps.samples import samples\n",
+ "from dcpyps import dataset, mechanism, dcplots"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "fname = \"CH82.scn\" # binary SCN file containing simulated idealised single-channel open/shut intervals\n",
+ "tr = 1e-4 # temporal resolution to be imposed to the record\n",
+ "tc = 4e-3 # critical time interval to cut the record into bursts\n",
+ "conc = 100e-9 # agonist concentration \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Initialise Single-Channel Record from dcpyps. Note that SCRecord takes a list of file names; several SCN files from the same patch can be loaded."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "\n",
+ " Data loaded from file: CH82.scn\n",
+ "Concentration of agonist = 0.100 microMolar\n",
+ "Resolution for HJC calculations = 100.0 microseconds\n",
+ "Critical gap length to define end of group (tcrit) = 4.000 milliseconds\n",
+ "\t(defined so that all openings in a group prob come from same channel)\n",
+ "Initial and final vectors for bursts calculated asin Colquhoun, Hawkes & Srodzinski, (1996, eqs 5.8, 5.11).\n",
+ "\n",
+ "Number of resolved intervals = 1672\n",
+ "Number of resolved periods = 1672\n",
+ "\n",
+ "Number of open periods = 836\n",
+ "Mean and SD of open periods = 5.703315580 +/- 6.217026586 ms\n",
+ "Range of open periods from 0.101663936 ms to 36.745440215 ms\n",
+ "\n",
+ "Number of shut intervals = 836\n",
+ "Mean and SD of shut periods = 2843.529462814 +/- 3982.407808304 ms\n",
+ "Range of shut periods from 0.100163714 ms to 30754.167556763 ms\n",
+ "Last shut period = 3821.345090866 ms\n",
+ "\n",
+ "Number of bursts = 572\n",
+ "Average length = 8.425049759 ms\n",
+ "Range: 0.102 to 62.906 millisec\n",
+ "Average number of openings= 1.461538462\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Initaialise SCRecord instance.\n",
+ "rec = dataset.SCRecord([fname], conc, tres=tr, tcrit=tc)\n",
+ "rec.printout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plot dwell-time histograms for inspection. In single-channel analysis field it is common to plot these histograms with x-axis in log scale and y-axis in square-root scale. After such transformation exponential pdf has a bell-shaped form."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAFgCAYAAABJ67N/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8bWVZ6PHfs9kqioBrmYJKbEEPWt5ol7cwXWmFlwQz\nU1DKW1lHUxI/HjU1djcrPWpqHY8oB69oIoKoeUTR6aU0RDYCcolCofRA2d4KaimX5/wxx4LJcs37\nGHOMMcfv+/nMz55zzDHH+7xrjDGf/c73He+IzESSJEmSVI4tdQcgSZIkScvERpYkSZIklchGliRJ\nkiSVyEaWJEmSJJXIRpYkSZIklchGliRJkiSVqNJGVkScGBFXR8T5A8tWIuLMiLg0Ij4eEftWGYMk\nSeMMyVevjoiLI+K8iDg1IvapM0ZJUntU3ZN1EnD4hmUvBT6ZmfcCPgW8rOIYJEkaZ7N8dSZwn8w8\nFLgM85UkaUKVNrIy8/PA7g2LjwTeUTx/B/CEKmOQJGmczfJVZn4yM28sXn4ROGDhgUmSWqmOa7Lu\nnJlXA2TmVcCda4hBkqRpPAv4WN1BSJLaYWvdAQA57I2IGPqeJKm9MjPqjmFSEfFy4LrMPHnI++Yq\nSVpC8+SqOnqyro6I/QAiYn/g30atnJmNexx//PGN2+60n510/UnWG7XOsPemXV73w33uPm/Cdpdl\nn7dJRDwDeCzw1FHr1XF8jFt3mv2ycdmo18OeL6reZR6Pddfbfd69ene57m2r97wW0ciK4rHuDOAZ\nxfOnAx9aQAylWltba9x2p/3spOtPst6odYa9V9XfsCru88nXcZ9Xt133eeVuka8i4tHAi4EjMvMH\niwhgmr/ZuHWn2S8bl416XcV+LfPYblO9p91uV/f5MtV72u0uU927Vu8oo6U2dOMRJwNrwB2Bq4Hj\ngdOBU4AfB64AnpyZ3x7y+awyPjXPjh072LFjR91haIHc590TEWTDhgsOyVe/D9wa+I9itS9m5nM3\n+Wxnc1VXz9+u1hu6W/eu1hu6W/d5c1Wl12Rl5rDhFb9QZblqrxb+8q05uc/VBEPy1UkLD6Rlunr+\ndrXe0N26d7Xe0O26z6PSnqx5dfnXQUlaVk3syZqHuUqSls+8uaqOiS8kSZIkaWnZyJIkSZKkEtnI\nkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciS\nJEmSpBLZyJIkSZKkEtnIksTqKkTM9lhdrTt6SZKkZtladwCS6rd7N2TO9tmIcmORJElqO3uypAaY\npyfJ3iRJkqRmsSdLaoB5epLA3iRJkqQmsSdLkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpk\nI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQj\nS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkq0te4AJM1vZQUi5vu8JEmSymEj\nS1oCu3bVHYEkSZLWOVxQkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQjS5Kk\nOUUMf6yu1h2dJGnRnMJdkqQ5ZQ5/b5572EmS2smeLElS50XEiRFxdUScP7BsJSLOjIhLI+LjEbFv\nnTFKktrDRpYkSXAScPiGZS8FPpmZ9wI+Bbxs4VFJklrJRpYkqfMy8/PA7g2LjwTeUTx/B/CEhQYl\nSWotG1mSJG3uzpl5NUBmXgXcueZ4JEkt4cQXkiRNZuj0Fjt27Ljp+draGmtrawsIR5JUll6vR6/X\nK217kaOmRKpZRGST45PKEjF6drIma3PsqkdEkJmNm3MvIrYBH87M+xevLwbWMvPqiNgf+HRm/sQm\nnxuZqzxHJKl95s1VDheUJKkvise6M4BnFM+fDnxo0QFJktrJniypAdr8S3ebY1c9mtiTFREnA2vA\nHYGrgeOB04FTgB8HrgCenJnf3uSz9mRJ0pKZN1fZyJIaoM3/CWtz7KpHExtZ87CRJUnLx+GCkiRJ\nktQgtTWyIuKFEXFhRJwfEe+JiFvXFYskSZIklaWWRlZE3BV4PrC9mMVpK3BUHbFIkiRJUpnqvE/W\nHsBeEXEjcDvgmzXGIkmSJEmlqKUnKzO/CbwWuBL4BvDtzPxkHbFIkiRJUplq6cmKiDsARwLbgO8A\nH4iIp2bmyRvX3bFjx03P19bWWFtbW1CU0nRWV2H37tk+u7JSbixSk/R6PXq9Xt1hSJK0MLVM4R4R\nTwIOz8zfKl7/OvDgzPzdDes5hbtao6vTNHe13pqdU7hLkpqurVO4Xwk8JCL2jIgAHgVcXFMskiRJ\nklSauq7JOhv4ALAT+AoQwAl1xCJJkiRJZapluOCkHC6oNunqkKB5rkWD/vVou3aVF4+az+GCkqSm\nmzdX1TmFu6QlMG8DKZbmv9qSJEl9dV2TJUmSJElLyUaWJEmSJJXIRpYkSZIklchGliRJkiSVaGwj\nKyIeHxE2xiRVYmWlP/nFrI/V1bproCYwV0mSmmSShPQU4LKIeHVE3LvqgCR1y65d/emtZ33MM328\nloq5SpLUGBPdJysi9gGOBp4JJHAS8N7MvLbS4LxPllrEe+HUw797+1R1n6ym5iqPUUlqn3lz1URD\nKzLzGuADwPuAuwC/ApwbEc+ftWBJkspkrpIkNcUk12QdGRGnAT3gVsCDMvMxwAOAF1UbniRJ45mr\nJElNsnWCdZ4IvD4zPzu4MDO/HxHPriYsSZKmYq6SJDXGJMMFr9qYtCLiLwAy86xKopIkaTrmKklS\nY0zSyPrFTZY9puxAJEmag7lKktQYQ4cLRsR/B54L3CMizh94a2/g76oOTFq01dX5pgNfWSkvFkmT\nMVdJkppo6BTuEbEvsAL8GfDSgbeuzcxdC4jNKdy1UE6z3E7ut/Ypcwr3NuQqj1FJap95c9WoRtY+\nmXlNRKxu9v4ikpeNLC2S/xFqJ/db+5TcyGp8rvIYlaT2mTdXjZpd8GTgl4Ev07+p42AhCRw8a6GS\nJJXEXCVJapyhPVlNYE+WFslfm9vJ/dY+ZfZkNYE9WZK0fObNVZPcjPiwiNireH5MRLwuIg6ctUBJ\nksrW5Fy1stJvaA17rG460FGS1GaTTOH+ZuD7EfEA4EXAPwPvqjQqSZKm09hctWtXvydr2GOeWU0l\nSc00SSPr+mIcxJHAX2XmX9OfGleSpKYwV0nqpNVVe8ubaNTEF+uujYiXAccAD4+ILcCtqg1LkqSp\nmKskddLu3aOv+4yluQK2XSbpyXoK8APg2Zl5FXAA8JpKo5IkaTrmKklSYzi7oFRwBrB2cr+1T9dm\nFxz/eY9hSbMb9x3id8xsFjG74BMj4rKI+E5EXBMR10bENbMWKElS2cxVkqQmGduTFRH/BDw+My9e\nTEi3KNueLC2Mv/S0k/utfaroyWpzrvIYljQPe7KqUXlPFnB1HUlLkqQpmKskSY0xyeyC50TE3wCn\n07+oGIDM/GBlUUmSNB1zlSSpMSZpZO0DfB/4pYFlCZi4JElNYa6SJDWGswtKBccst5P7rX2cXXDj\n5z2GJc3Oa7KqsYjZBQ+JiLMi4sLi9f0j4hWzFihJUtnMVZKkJplk4ou3Ai8DrgPIzPOBo6oMSpKk\nKVWSqyLihRFxYUScHxHviYhbz7tNSdLym6SRdbvMPHvDsuurCEaSpBmVnqsi4q7A84HtmXl/+tcx\n+yOjJGmsSSa++FZE3IP+BcRExJOA/1dpVJIkTaeqXLUHsFdE3AjcDvhmCduUJC25SRpZzwNOAO4d\nEd8AvgYcU2lUkiRNp/RclZnfjIjXAlfSn7nwzMz85NyRSpKW3thGVmZeDvxCROwFbMnMa6sPS5Kk\nyVWRqyLiDsCRwDbgO8AHIuKpmXnyxnV37Nhx0/O1tTXW1tbmLV6StEC9Xo9er1fa9oZO4R4Rx436\nYGa+rrQohnAKdy2SU5y2k/utfcqcwr3KXFUMOTw8M3+reP3rwIMz83c3rOcU7pJq4xTu1Zg3V43q\nydq7+PdewAOBM4rXjwc2XlwsSVIdqsxVVwIPiYg9gR8AjwK+NOc2JUkdMPZmxBHxWeBx60MvImJv\n4KOZ+fDKg7MnSwvkLz3t5H5rnypuRlxVroqI4+nPKHgdsBP4zcy8bsM69mRJqo09WdWosidr3X7A\nDwde/7BYJklSU1SSqzLzD4E/nHc7kqRumaSR9U7g7Ig4rXj9BODtlUUkSdL0zFWSpMYYO1wQICK2\nAz9XvPxsZu6sNKqby3W4oBbG7vR2cr+1TxXDBYvttjJXeQxLmofDBasxb66aqJFVFxtZWiS/hNrJ\n/dY+VTWy6mIjS1KdbGRVY95ctaXMYCRJkiSVZ3W131Aa9lhZqTtCbWaSa7IkSZIk1WD3bnui2mhs\nT1ZEPD8ibCNLkhrLXCVJapJJhgvuB3wpIt4fEY+OiKUZRy9JWhrmKklSY0w6u2AAvwQ8E/gZ4P3A\niZn5z5UG58QXWiAvDG0n91v7VDi7YCtzlcewpFHm/Y7wO2Y2C5n4osgeVxWP64EV4AMR8epZC5ak\nMqysjL4geNRjdbXu6FUmc5UkqSnG9mRFxLHAbwDfAt4GnJ6Z10XEFuCyzLxHZcHZk6UF8pee7nGf\n16OKnqw25yqPQ0mj2JNVj3lz1SSzC64CT8zMKwYXZuaNEfHLsxYsSVKJzFWSpMaYZLjgx4Bd6y8i\nYp+IeDBAZl48a8ERsW9EnBIRF0fEV9e3Kc1j3L0kvM+EtLQqyVWSJM1ikuGCO4Ht62MhiqEX52Tm\n9rkKjng78JnMPCkitgK3y8xrNqzjcEFNxS5xTcPjpR4VDResJFdNWLbDBSVVZt7viNXV/r22hllZ\ngV27hr/fVYsYLniL7FEMvZjrJsYRsQ/wc5n5jGKb1wPXjPyQJEnDlZ6rJGkZjGtAecOLakwyXPDy\niHhBRNyqeBwLXD5nuQcB34qIkyLi3Ig4ISJuO+c2JUndVUWukiRpJpP8yvc7wBuBVwAJnAU8p4Ry\ntwPPy8xzIuIvgZcCx29ccceOHTc9X1tbY21tbc6iJUmL1Ov16PV6VRdTRa6SJGkmE92MuPRCI/YD\nvpCZBxevHwa8JDMfv2E9r8nSVLy2QdPweKlHVTcjrovXZEmqUtXfEX4Hba7ya7Ii4k7AbwF3H1w/\nM581a6GZeXVE/EtEHJKZ/wg8Crho1u1JkrqtilwlSYsyanIKZz9up0mGC34I+BzwSeCGEst+AfCe\niLgV/XHzzyxx25rDuFloRnGGGkk1qSpXSVLldu+2N2nZTDKF+3mZeeiC4tlYtsMFazBPt3HdXc51\nl6928XipR0VTuLc2V3kcSsuvydOo+x20uXlz1SSzC34kIh47awGSJC2AuUpSY633VA17OApo+UzS\nk3UtsBfww+IRQGbmPpUHZ09WLezJUld4vNSjop6s1uYqj0Np+TX5PG9ybHWqfOKLzNx71o1LkrQI\n5ipJUpOMHS4YfcdExCuL1z8eEQ+qPjS10cpK/xeRWR+rq3XXQFIbmaskSU0yyXDBNwM3Ao/MzJ+I\niBXgzMx8YOXBOVywFnV2G89btl3emobHSz0qGi7Y2lzlcSgtvyaf502OrU6VDxcEHpyZ2yNiJ0Bm\n7o6IW89aoCRJFTBXSZIaY5LZBa+LiD2AhJtu+HhjpVFJkjQdc5UkqTEmaWS9ETgNuHNE/CnweeBV\nlUYlSdJ0zFWSpMYYe00WQETcG3gU/Slxz8rMi6sOrCjXa7Jq4DVZ6gqPl3pUcU1Wsd1W5iqPQ2n5\nNfk8b3JsdZo3V00y8cWBmy3PzCtnLXRSNrLqYSNLXeHxUo+KJr5oba7yOJSWX5PP8ybHVqdFTHzx\nUfpj3APYEzgIuBS4z6yFSpJUMnOVJKkxJrkZ8f0GX0fEduC5lUWkTlu/z9Y8n5cmVcbxtmtXefFo\nduYqSVKTTHRN1o98KOKCjQmtCg4XrIfdxtJkPFdmU9U1WZuU04pctboKu3cPf9/GvNR+Tc4XTY6t\nTpUPF4yI4wZebgG2A9+ctUBJksrW5lw1rgE1T2+rJKkek1yTtffA8+vpj3s/tZpwJEmaiblKktQY\nMw0XXBSHC9bDbmNpMp4rs1nUcMFFqTpXeZxJ7dfk89ghy5tbxHDBD9OfsWlTmXnErIVLklQGc5Uk\nzcYhy9WYZLjg5cD+wLuL10cDVwOnVxWUJElTMldJkhpjkpsRn5OZPzNuWRUcLliPJndpS03iuTKb\nim5GvLS5yuNMar82n8dtjn0e8+aqLROss1dEHDxQ4EHAXrMWKElSBcxVkqTGmGS44AuBXkRcDgSw\nDfjtSqOSJGk65ipJUmNMNLtgRNwGuHfx8pLM/EGlUd1crsMFa9DVbmFpWp4rs6lqdsGqclVE7Au8\nDbgvcCPwrMz8h4H3HS4oaaQ2n8dtjn0elQ8XjIjbAS8GfjczvwIcGBG/PGuBkiSVreJc9QbgbzPz\nJ4AHABeXtF1J0pKa5Jqsk4AfAg8tXn8D+JPKIpIkaXqV5KqI2Af4ucw8CSAzr8/Ma+bdrqR2WV3t\n9+jM+lhZqbsGWrRJGln3yMxXA9cBZOb36Y93lySpKarKVQcB34qIkyLi3Ig4ISJuW8J2JbXI7t39\nIXOzPrp4M9+um2Tiix8WCSUBIuIewEKuyarTuLtfjzPP3bHrLFuSWqqqXLUV2A48LzPPiYi/BF4K\nHD+40o4dO256vra2xtraWglFS5IWpdfr0ev1StveJPfJ+kXgFcBPAmcChwHPyMzyohhedm0TX8x7\nkd88n6+z7DI+L3WF58psKrpPViW5KiL2A76QmQcXrx8GvCQzHz+wjhNfSEuuy+dhV+s+b64a2ZMV\nEQFcAjwReAj9oRfHZua3Zi1QkqQyVZmrMvPqiPiXiDgkM/8ReBRw0bzblSQtt0l6si7IzPstKJ6N\nZduT1cLPS13huTKbinqyKstVEfEA+lO43wq4HHhmZn5n4H17sqQl1+XzsKt1r7Qnq3BuRDwwM780\nayGSJFWsslxVTAn/wLK3K0laXpP0ZF0C3BO4Avge/WEYmZn3rzw4e7Ja+XmpKzxXZlNRT9bS5iqP\nM6l+XT4Pu1r3ynqyIuKgzPwacPisG5ckqUrmKklSEw3tyYqIL2fmT0fEWZn5qAXHtR6DPVkt/LzU\nFZ4rsymzJ6sLucrjTKpfl8/Drta9ymuytkTE7wOHRMRxG9/MzNfNWqgkSSUxV0mSGmfLiPeOAm6g\n3xDbe5OHJEl1M1dJkhpnkokvHpOZH1tQPBvLdrhgCz8vdYXnymwqmvhiaXOVx5lUvy6fh12t+7y5\namwjq042str5eakrPFdmU0Ujq042sqTl1+XzsKt1nzdXjRouKEmSJEma0tBGVkT8WvHvQYsLR2VY\nWen/6jDrY2Wl7hpI0mTMVZKkJho1hfu5mbl9/d8Fx7Ueg8MFJTWW5+psSp7CfelzlceZVL8un4dd\nrXuVU7j/R0ScCRwUEWdsfDMzj5i1UEmSSmKukiQ1zqhG1uOA7cC7gNcuJhxJkqZirpIkNc4kU7jf\nKTP/PSJuD5CZ311IZDhcUFKzea7OpqIp3Jc2V3mcSfXr8nnY1bovYnbB/SJiJ/BV4KKI+HJE3HfW\nAiVJqoC5SpLUGJM0sk4AjsvMbZl5IPCiYpkkSU1hrpIkNcYkjay9MvPT6y8yswfsVVlEkiRNz1wl\nSWqMSRpZl0fEKyPi7sXjFcDlVQcmSdIUzFVSx62ujr4P6Opq3RGqSyZpZD0LuBPwQeBU4MeKZZIk\nNYW5Suq43bv7EzQMe+zeXXeE6pKxswvWydkFJTXZ6ursSXtlBXbtKjeetqhidsE6Obug1AzjzhX/\nbzabrta9ypsRS5JGmKeRFEvTxJAkSRtNMlxQkiRJWlrjrudaWak7QrXN2EZWRBw2ybJZRMSWiDg3\nIs4oY3uSpG6qMldJWn7jrufq6vBuzW6Snqw3TbhsFscCF5W0LUlSd1WZqyRJmsrQa7Ii4qHAzwJ3\niojjBt7aB9hj3oIj4gDgscCfAseNWV2SpB9Rda6SJGkWoya+uDVw+2KdvQeWXwM8qYSyXw+8GNi3\nhG1Jkrqp6lwlSdLUhjayMvMzwGci4u2ZeUVE3L5Y/t15C42IxwFXZ+Z5EbEGDJ1na8eOHTc9X1tb\nY21tbeJy5p1eWZI0v16vR6/Xq2TbVeYqSZJmNfY+WRFxX+BdwPp9sr8FPD0zL5y50IhXAccA1wO3\npf/r4wcz8zc2rDfXvUfqnNffezFIGqXL53kV98mqIldNUbb3yZIaYJ77ZHmeDdfVv828uWqSRtbf\nAy/PzE8Xr9eAV2Xmz85a6IbtPwJ4UWYescl7NrIkLaUun+cVNbIqzVVjyraRJTWAjaxqdPVvM2+u\nmmR2wb3WkxZAZvaAvWYtUJKkCixtrlpZGX7vntXV8Z+X1DfqXPIykeH8DprNJD1ZpwHn0h+GAf1h\nfj+dmb9ScWxERMLsTeeVlfrua2BPlqRRunyeV9STVWuuqrIna3TZ3T2OpI08HxZvmf/mi+jJehZw\nJ+CDxeNOxbKFGHVjuHEPbxwnSZ1Ra66SJGnQ2J6sm1aM2BvIRc7YVOevg/OyJ0vSKF0+z6voyRrY\ndqdyVZePI2kjz4fFW+a/eeU9WRFxv4jYCVwIfDUivlzM4iRJUiOYqyRJTTLJcMG3AMdl5rbM3Aa8\nCDih2rAkSZqKuUqS1BjOLihJWgbmKklSY2ydYJ3LI+KV3HLGpsurC0mSpKmZqyRJjTHt7IKnAj+G\nMzZJkprFXCVJaoyRPVkRsQfw8sx8wYLiWRrrN26b9bOSpMmYqyRJTTOykZWZN0TEwxYVzDLxHl2S\ntBjmKklS00xyTdbOiDgDOAX43vrCzPxgZVFJkjQdc5UkqTEmaWTtCfwH8MiBZUl/3LskSU1grpIk\nNUbUdZf6SURENjk+SZpVBHT16y0iyMwZr1pdvIjYApwD/GtmHrHJ+7Xlqi4fR9JGng+Lt8x/83lz\n1SSzC0qS1GXHAhfVHYQkqT1sZEmSNEREHAA8Fnhb3bFIktrDRpYkScO9Hngx/eu7JEmayNiJLyJi\nP+BVwF0z8zER8ZPAQzPzxMqjkyRpAlXkqoh4HHB1Zp4XEWvA0LH5O3bsuOn52toaa2trsxYrSa0x\n7r6wKyvtua1Rr9ej1+uVtr2xE19ExMeAk+jf6PEBEbEV2JmZ9ystiuFlO/GFpKW0zBcLj1PFxBdV\n5KqIeBVwDHA9cFtgb+CDmfkbG9Zz4gupATwfmqfN+2QRE1/8WGa+H7gRIDOvB26YtUBJkipQeq7K\nzN/PzAMz82DgKOBTGxtYkiRtZpJG1vci4o4U49Ej4iHAdyqNSpKk6ZirJEmNMclwwe3Am4D7AhcC\ndwKelJnnVx6cwwUlLak2D6GYV0XDBTuZq7p8HEkbeT40T5v3yby5auTEF8UNGPcEHgHci/5Fv5dm\n5nWzFihJUpnMVZKkppmkJ2tnZv7UguLZWLY9WZKWUpt/3ZtXRT1ZncxVXT6OpI08H5qnzftkERNf\nnBURvxoxaoJGSZJqZa6SJDXGJD1Z1wJ70Z/C9r/oD8PIzNyn8uDsyZK0pNr86968KurJ6mSu6vJx\nJG3k+dA8bd4nlV6TBZCZe8+6cUmSFsFcJUlqkrGNLICIWAH+G/0LiwHIzM9WFZQkSdMyV0mSmmJs\nIysifhM4FjgAOA94CPAF4JHVhiZJ0mTMVZKkJplk4otjgQcCV2TmzwM/BXy70qgkSZqOuUqS1BiT\nNLL+KzP/CyAibpOZl9C/D4kkSU1hrpIkNcYk12T9a0TcATgd+ERE7AauqDYsSZKmYq6SJDXG2Cnc\nb7FyxCOAfYH/m5k/rCyqm8tzCndJS6nN09rOq4op3DdsvzO5qsvHkbSR50PztHmfzJurJrlP1oGb\nLc/MK2ctdFI2siQtqzYnnnlVdJ+sTuaqLh9H0kaeD83T5n2yiEbWBUDSv7HjnsBBwKWZeZ9ZC504\nOBtZkpZUmxPPvCpqZHUyV3X5OJI28nxonjbvk0XcjPh+GwrcDjx31gIlSSqbuUpqvtVV2L17+Psr\nK7Br1+Likao01TVZN30o4oKNCa0K9mRJWlZt/nVvXlVfkzVQztLnqi4fR2qfccfrvMez50PztHmf\nVN6TFRHHDbzcAmwHvjlrgZIklc1cJUlqkkmmcN974Pn1wEeBU6sJR5KkmZirpCU3yXBDqSlmGi64\nKA4XlLSs2jyEYl6LGi64KA4XlCYz73BBj/f2afM+W8RwwQ/Tn7FpU5l5xKyFS5JUBnOVJKlJJhku\neDmwP/Du4vXRwNXA6VUFJUnSlMxVkqTGmOQ+Wedk5s+MW1YFhwtKWlZtHkIxr4ruk9XJXNXl40jt\n43DB7mnzPps3V22ZYJ29IuLggQIPAvaatUBJkipgrpIkNcYkwwVfCPQi4nIggG3AcyqNSpKk6Zir\nJEmNMdHsghFxG+DexctLMvMHlUZ1c7kOF5S0lNo8hGJeVc0u2MVc1eXjSO3jcMHuafM+q2y4YEQ8\nMCL2BygS1QOAPwJeExGrsxYoSVJZzFWSpCYadU3WW4AfAkTEw4E/B94JfAc4ofrQJEkay1wlTWF1\ntd+7MOyx6k8TUilGXZO1R2buKp4/BTghM08FTo2I86oPTZKkscxV0hR27x4/JE/S/Eb1ZO0REeuN\nsEcBnxp4b5IJMyRJqpq5SpLUOKMS0HuBz0TEt4D/BD4HEBH3pD8MQ5KkupmrJEmNM3J2wYh4CHAX\n4MzM/F6x7BDg9pl5buXBObugpCXV5hmX5lX27IJdzlVdPo40mzpn8HN2we5p8z6bN1dNNIV7XWxk\nSVpWbU4886pqCve62MhSm9jI0iK1eZ9VNoV7lSLigIj4VER8NSIuiIgX1BGHJEmSJJWtrouCrweO\ny8zzIuL2wJcj4szMvKSmeCRJkiSpFLX0ZGXmVZl5XvH8u8DFwN3qiEWSJEmSylRLI2tQRNwdOBT4\nh3ojkSRJklSWlZXu3vy61nuIFEMFPwAcW/Ro/YgdO3bc9HxtbY21tbWFxCZJVVpPPPN8fteu8es1\nQa/Xo9fUTudoAAAQxklEQVTr1R2GJGnBxuWpZb75dW2zCxY3j/wI8LHMfMOQdZxdUJI20eUZm5rG\n2QXVJs4uqCZp8j5t5eyChf8DXDSsgSVJkiRJbVTXFO6HAU8DHhkROyPi3Ih4dB2xSJIkSVKZvBmx\nJLVQk4dYjONwwTLLbu9xoHo4XFBN0uR92ubhgpIkaQ7jZu4a91jmmb20eKuro4+3lZXRnx93PI/7\nvNQk9mRJUgs1+de/cdrUkxURBwDvBPYDbgTemplv3LBOa3NVm48jzabK3iKPJ02rycfMvLnKRpYk\ntVCTE9M4LWtk7Q/sn5nnFbcd+TJwZGZeMrBOa3NVm48jzcZGlpqkyceMwwUlSapIZl6VmecVz78L\nXAzcrd6oJElNZyNLkqQJRMTdgUOBf6g3EklS022tOwBJkpquGCr4AeDYokfrFnbs2HHT87W1NdbW\n1hYWmyRpfr1ej16vV9r2vCZLklqoyePYx2nTNVkAEbEV+Ajwscx8wybvtzZXtfk40my8JktN0uRj\nxmuyJEmq1v8BLtqsgSVJ0mZsZEmSNEREHAY8DXhkROyMiHMj4tF1xyVJajaHC0pSCzV5iMU4bRsu\nOE6bc1WbjyPNxuGCapImHzMOF5QkSZKkBrGRJUmSJEklspElSVJHraz0h+sMe6yuzr7t1dXqtq3q\njDsmRj1WVuqOXm1T5XdQ3bwmS5JaqMnj2Mfxmqz2qPL6nDYfw23m311tUufx6jVZkiRJktQgNrIk\nSZIkqUQ2siRJkiSpRDayJEmSJKlENrIkSZIkqUQ2siRJkiSpRDayJEnSTEbdC8t7JtVj3P3J3C/S\nYnifLElqoTbf68b7ZLVHlfe6avMx3GT+XbVMvE+WJEmSJAmwkSVJkiRJpbKRJUmSJEklspElSZIk\nSSWykSVJkiRJJbKRJUmSJEklspElSZIkSSWykSVJkiRJJbKRJUmS1CCrq/2bsG72WF2tOzpJk9ha\ndwCSJEm62e7dkLn5exGLjUXSbOzJkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmS\npBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKk\nEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS\n1dbIiohHR8QlEfGPEfGSuuJQs/R6vbpD0IK5z9Vk5qpxenUHUIsuf291te5drTd0u+7zqKWRFRFb\ngL8CDgfuAxwdEfeuIxY1iydy97jP1VTmqkn06g6gFl3+3upq3btab+h23edRV0/Wg4DLMvOKzLwO\neB9wZE2xTK2qg22e7U772UnXn2S9UesMe69tJ6z7fPJ13OfVbdd9vnALz1XT/M3GrTvNftm4bNTr\nKvZrmcd2m+o97Xa7us+Xqd7TbneZ6t61etfVyLob8C8Dr/+1WNYKTTjp5v2s//majvt88nXc59Vt\n132+cAvPVV37T8is2yzreKy73tNut6v7fJnqPe12l6nuXat3ZGZpG5u40IhfBQ7PzOcUr48BHpSZ\nL9iw3uKDkyRVLjOj7hjGMVdJUrfNk6u2lhnIFL4BHDjw+oBi2S20IQlLkpaWuUqSNJO6hgt+Cbhn\nRGyLiFsDRwFn1BSLJEmbMVdJkmZSS09WZt4QEb8LnEm/oXdiZl5cRyySJG3GXCVJmlUt12RJkiRJ\n0rKq7WbEkiRJkrSMbGRJkiRJUola2ciKiNtFxJci4rF1x6LqRcS9I+LNEfH+iPiduuNR9SLiyIg4\nISLeGxG/WHc8ql5EHBQRb4uI99cdS1m6mqu6+p3d5e+tZTx/J1Gc42+PiLdExFPrjmdRurq/Ybrz\nvJXXZEXEHwLXAhdl5t/WHY8WIyICeEdm/kbdsWgxIuIOwGsy87fqjkWLERHvz8wn1x1HGbqeq7r6\nnd3l761lOn8nUdw7b3dmfjQi3peZR9Ud0yJ1bX8PmuQ8r60nKyJOjIirI+L8DcsfHRGXRMQ/RsRL\nNvncLwAXAf8OeG+SFpl1nxfrPB74CNC5/6i02Tz7vPAK4K+rjVJlKmGfN0qXc1VXv7O7/L21bOfv\ntGao/wHAvxTPb1hYoCXr8n6fo+7jz/PMrOUBPAw4FDh/YNkW4J+AbcCtgPOAexfv/TrweuBE4HXA\nx4HT6orfx8L2+euAuwys/5G66+FjIfv8rsCfA4+suw4+FrbP71K8PqXuOpRQn6XIVV39zu7y99ay\nnb8LqP/TgMcWz0+uO/5F1XtgnVbv71nrPul5XltPVmZ+Hti9YfGDgMsy84rMvA54H3Bksf67MvOF\nmfnszDwOeA/w1oUGrbnMuM+PAw6JiDdExP8GPrrQoDWXOfb5rwKPAp4UEc9ZZMyazxz7/AcR8Wbg\n0Cb9YtrlXNXV7+wuf28t2/k7rWnrD5xGf3//NfDhxUVarmnrHRGry7C/Yaa6P58Jz/NabkY8wt24\nudsV4F/pV/RHZOY7FxKRqjZ2n2fmZ4DPLDIoVWqSff4m4E2LDEqVmmSf7wL++yKDmkOXc1VXv7O7\n/L21bOfvtIbWPzO/DzyrjqAWYFS9l3l/w+i6T3yet3J2QUmSJElqqqY1sr4BHDjw+oBimZaX+7x7\n3Ofds2z7fNnqM42u1r2r9YZu1x26W/+u1htKqnvdjazglrMufQm4Z0Rsi4hbA0cBZ9QSmariPu8e\n93n3LNs+X7b6TKOrde9qvaHbdYfu1r+r9YaK6l7nFO4nA39P/wLZKyPimZl5A/B84Ezgq8D7MvPi\numJUudzn3eM+755l2+fLVp9pdLXuXa03dLvu0N36d7XeUG3dW3kzYkmSJElqqrqHC0qSJEnSUrGR\nJUmSJEklspElSZIkSSWykSVJkiRJJbKRJUmSJEklspElSZIkSSWykSVJkiRJJbKRpcaIiCdExI0R\ncUjdsQwTES+rO4ayRMRvR8QxU6y/LSIumLKMsyLi9iPef29E3GOabUpSEyxjzoqIT0fE9irLmHLb\nj4+I/zHlZ66dcv1TIuLuI95/TUT8/DTblMBGlprlKOBzwNFVFxQRe8z40d8vNZCaRMQemfmWzHz3\nlB+d+O7lEfFY4LzM/O6I1d4MvGTKGCSpCcxZFZZR5KkPZ+arp/zoNHnqJ4Etmfn1Eau9CXjplDFI\nNrLUDBGxF3AY8GwGElZEPCIiPhMRH4mISyLifw28d21EvC4iLoyIT0TEHYvlvxkRZ0fEzuIXqj2L\n5SdFxJsj4ovAX0TE7SLixIj4YkR8OSIeX6z39Ig4NSI+FhGXRsSfF8v/DLhtRJwbEe/apA5HR8T5\nxePPJ4jz4KKMLxV1PGQgzjdExN9FxD9FxBM3KWtbRFwcEe+OiIsi4v0D9dweEb1iux+LiP2K5Z+O\niNdHxNnACyLi+Ig4rnjv0Ij4QkScV9R932L5TxfLdgLPGyj/JyPiH4q/xXlDeqOeBnyoWP92xT7c\nWfx9fq1Y53PAL0SE30WSWqPtOSsithTbPz8ivhIRxw68/eTi+/2SiDhsoIw3DXz+wxHx8Any4iz5\n780R8YWizjeVW+S9s4qc84mIOKBYfveI+PuiHn88UPb+xbbPLep52Ca7cjBPbfo3ycwrgdWIuPPQ\nA0LaTGb68FH7A3gq8Nbi+eeBnyqePwL4PrANCOBM4InFezcCRxXPXwm8qXi+MrDdPwaeVzw/CThj\n4L0/BZ5aPN8XuBS4LfB04J+A2wO3Ab4O3K1Y75oh8d8FuAJYpf/jxVnAEUPifGPx/JPAPYrnDwLO\nGojzb4rnPwFctkl524rtPqR4fSJwHLAV+DvgjsXyJwMnFs8/DfzVwDaOB44rnn8FeFjx/A+B1w0s\nP6x4/mrg/OL5G4Gji+dbgdtsEuPXgb2K508E3jLw3t4Dzz++vr99+PDhow2PJchZ24EzB17vU/z7\naeA1xfPHAJ8onj99PXcVrz8MPHxUGUPqPEn+G6zz0wc+cwZwTPH8mcBpxfMPAU8rnj93PR76OfFl\nxfNYz0cb4usB9xn1NymenwD8St3HnY92Pfz1WE1xNPC+4vnf0E9g687OzCsyM4H3Ag8rlt8IvL94\n/m76vyoC3D8iPhsR5xfbuc/Atk4ZeP5LwEuLXpoecGvgwOK9szLzu5n5A+Ai+glzlAcCn87MXZl5\nI/Ae4OFD4nxY8SvozwKnFOW/BdhvYHunA2TmxcCwX8+uzMwvDm4XuBdwX+ATxXZfDtx14DN/s3Ej\nEbEPsG9mfr5Y9A7g4UVv1r6Z+XfF8sFfKb8AvDwiXgzcvfg7bbSSmd8rnl8A/GJE/FlEPCwzB8fM\n//uGGCWp6dqesy4HDor+qInDgcHv5A8W/355gu2McwPT579T2NxD6f89oZ+P1v9+h3HzvhjMU18C\nnhkRfwDcfyAfDboL/RwEo/8m/4Z5SlPaWncAUkSsAI8E7hsRCexBf0z1i4tVNo6vHjbeen35SfR7\nkS6MiKfT/2Vx3cYv2V/NzMs2xPMQYLDRcAM3nysxqioj3tsY5xZgd2YOu8B4sPxpthvAhZm52bAI\n+NH6jytj0+WZ+d5iCMsvA38bEc/JzN6G1a4fWP+y6F9M/VjgTyLirMxcH9axJ/CfQ8qXpEZZhpyV\nmd+OiAcAhwO/A/wa8JvF2+vbGtzO9dzyEpM9B0PYrIwhJsl/w/LUqGut1t+7KZbM/FxEPBx4HPD2\niHht/uh1yN+nqMuGv8lv0x8J8uxiPfOUpmZPlprg14B3ZuZBmXlwZm4DvhYR67/+PagYi70FeAr9\n63igf/w+qXj+tIHltweuiohbFcuH+TjwgvUXEXHoBLH+MDa/APls+r0/q8X7R9P/pXGzOD9f9OR8\nLSLWlxMR9x9S5rAEdmBEPLh4/lT69b8UuFORdImIrdG/sHeozLwG2DUwXv3Xgc9k5neA3RHxs8Xy\nm2YijIiDMvNrmfkm+kM1Nov90og4uFj/LsB/ZubJwGuAnxpY7xDgwlExSlKDtD5nFddG7ZGZpwGv\noD9UbjPr+efrwKHR9+P0h/iNLKOwB/Plv0F/z83Xvx3DzX+/zw8sv+nvFxEHAv+WmScCb2PzOl4M\n3LNYf/Bv8krMU5qTjSw1wVOA0zYsO5WbvzTPAf4K+Crwz5l5erH8e/ST2QXAGv2x7ND/cjyb/hfw\nxQPb3Pgr2J8Atyoucr0Q+KMh8Q1+7gTggo0X+GbmVfRnH+oBO4FzMvMjQ+JcL+dpwLOLi3gvBI4Y\nEuewX+8uBZ4XERcBdwD+d2ZeRz+h/UVEnFfE8tAx2wF4BvA/i888YCDGZwH/KyLO3fD5JxcXMu+k\nP7TlnZts86PA+rS39wPOLtb/A/p/e4oLib+fmf82IjZJapLW5yzgbkCv+E5+FzfPnrdp/imGjX+9\nqNNf0h9KOK4MmD//DXoB/eF/5xWfX5+s4/fo58Kv0B/+t24N+EqRv54MvGGTbf4tN+epTf8mEbEV\nuAf9/SpNLPpDhqVmiohHAC/KzCM2ee/azNy7hrCmUkWcEbEN+Ehm3q/M7ZYpIvYH3pGZh49Y5/eA\n72TmSYuLTJKqsQw5q0xNr3P0Z3L8FP0Jnjb9D3FEPIH+xCbHLzQ4tZ49WWqztvxCUFWcja5/0bv3\n1hhxM2JgN/2JNiRp2TX6O7sija5zZv4X/Zl27zZitT2A1y4mIi0Te7IkSZIkqUT2ZEmSJElSiWxk\nSZIkSVKJbGRJkiRJUolsZEmSJElSiWxkSZIkSVKJ/j+uj6S9q4+kCAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1, 2, figsize=(12,5))\n",
+ "\n",
+ "dcplots.xlog_hist_data(ax[0], rec.opint, rec.tres, shut=False)\n",
+ "\n",
+ "dcplots.xlog_hist_data(ax[1], rec.shint, rec.tres)\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Load demo mechanism (C&H82 numerical example)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "class dcpyps.Mechanism\n",
+ "Values of unit rates [1/sec]:\n",
+ "0\tFrom AR \tto AR* \tbeta1 \t15.0\n",
+ "1\tFrom A2R \tto A2R* \tbeta2 \t15000.0\n",
+ "2\tFrom AR* \tto AR \talpha1 \t3000.0\n",
+ "3\tFrom A2R* \tto A2R \talpha2 \t500.0\n",
+ "4\tFrom AR \tto R \tk(-1) \t2000.0\n",
+ "5\tFrom A2R \tto AR \t2k(-2) \t4000.0\n",
+ "6\tFrom R \tto AR \t2k(+1) \t100000000.0\n",
+ "7\tFrom AR* \tto A2R* \tk*(+2) \t500000000.0\n",
+ "8\tFrom AR \tto A2R \tk(+2) \t500000000.0\n",
+ "9\tFrom A2R* \tto AR* \t2k*(-2) \t0.66667\n",
+ "\n",
+ "Conductance of state AR* (pS) = 60\n",
+ "\n",
+ "Conductance of state A2R* (pS) = 60\n",
+ "\n",
+ "Number of open states = 2\n",
+ "Number of short-lived shut states (within burst) = 2\n",
+ "Number of long-lived shut states (between bursts) = 1\n",
+ "Number of desensitised states = 0\n",
+ "\n",
+ "Number of cycles = 1\n",
+ "Cycle 0 is formed of states: A2R* AR* AR A2R \n",
+ "\tforward product = 1.500007500e+16\n",
+ "\tbackward product = 1.500000000e+16"
+ ]
+ }
+ ],
+ "source": [
+ "mec = samples.CH82()\n",
+ "mec.printout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# PREPARE RATE CONSTANTS.\n",
+ "# Fixed rates\n",
+ "mec.Rates[7].fixed = True\n",
+ "# Constrained rates\n",
+ "mec.Rates[5].is_constrained = True\n",
+ "mec.Rates[5].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[5].constrain_args = [4, 2]\n",
+ "mec.Rates[6].is_constrained = True\n",
+ "mec.Rates[6].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[6].constrain_args = [8, 2]\n",
+ "# Rates constrained by microscopic reversibility\n",
+ "mec.set_mr(True, 9, 0)\n",
+ "# Update rates\n",
+ "mec.update_constrains()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "class dcpyps.Mechanism\n",
+ "Values of unit rates [1/sec]:\n",
+ "0\tFrom AR \tto AR* \tbeta1 \t15.0\n",
+ "1\tFrom A2R \tto A2R* \tbeta2 \t15000.0\n",
+ "2\tFrom AR* \tto AR \talpha1 \t3000.0\n",
+ "3\tFrom A2R* \tto A2R \talpha2 \t500.0\n",
+ "4\tFrom AR \tto R \tk(-1) \t2000.0\n",
+ "5\tFrom A2R \tto AR \t2k(-2) \t4000.0\n",
+ "6\tFrom R \tto AR \t2k(+1) \t1000000000.0\n",
+ "7\tFrom AR* \tto A2R* \tk*(+2) \t500000000.0\n",
+ "8\tFrom AR \tto A2R \tk(+2) \t500000000.0\n",
+ "9\tFrom A2R* \tto AR* \t2k*(-2) \t0.666666666667\n",
+ "\n",
+ "Conductance of state AR* (pS) = 60\n",
+ "\n",
+ "Conductance of state A2R* (pS) = 60\n",
+ "\n",
+ "Number of open states = 2\n",
+ "Number of short-lived shut states (within burst) = 2\n",
+ "Number of long-lived shut states (between bursts) = 1\n",
+ "Number of desensitised states = 0\n",
+ "\n",
+ "Number of cycles = 1\n",
+ "Cycle 0 is formed of states: A2R* AR* AR A2R \n",
+ "\tforward product = 1.500000000e+16\n",
+ "\tbackward product = 1.500000000e+16"
+ ]
+ }
+ ],
+ "source": [
+ "#Propose initial guesses different from recorded ones \n",
+ "#initial_guesses = [100, 3000, 10000, 100, 1000, 1000, 1e+7, 5e+7, 6e+7, 10]\n",
+ "initial_guesses = mec.unit_rates()\n",
+ "mec.set_rateconstants(initial_guesses)\n",
+ "mec.update_constrains()\n",
+ "mec.printout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "theta= [ 1.50000000e+01 1.50000000e+04 3.00000000e+03 5.00000000e+02\n",
+ " 2.00000000e+03 5.00000000e+08]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Extract free parameters\n",
+ "theta = mec.theta()\n",
+ "print ('\\ntheta=', theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Prepare likelihood function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "def dcprogslik(x, lik, m, c):\n",
+ " m.theta_unsqueeze(np.exp(x))\n",
+ " l = 0\n",
+ " for i in range(len(c)):\n",
+ " m.set_eff('c', c[i])\n",
+ " l += lik[i](m.Q)\n",
+ " return -l * math.log(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# Import HJCFIT likelihood function\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
+ "\n",
+ "# Get bursts from the record\n",
+ "bursts = rec.bursts.intervals()\n",
+ "# Initiate likelihood function with bursts, number of open states,\n",
+ "# temporal resolution and critical time interval\n",
+ "likelihood = Log10Likelihood(bursts, mec.kA, tr, tc)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Initial likelihood = 5264.414344\n"
+ ]
+ }
+ ],
+ "source": [
+ "lik = dcprogslik(np.log(theta), [likelihood], mec, [conc])\n",
+ "print (\"\\nInitial likelihood = {0:.6f}\".format(-lik))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Run optimisation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting started: 2017/01/20 15:39:52\n",
+ "\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting finished: 2017/01/20 15:39:53\n",
+ "\n",
+ "CPU time in ScyPy.minimize (Nelder-Mead)= 0.683340251399483\n",
+ "Wall clock time in ScyPy.minimize (Nelder-Mead)= 0.6840391159057617\n",
+ "\n",
+ "Result ==========================================\n",
+ " final_simplex: (array([[ 2.33189798, 9.48999371, 8.20461943, 6.05142787,\n",
+ " 7.68244318, 19.98586637],\n",
+ " [ 2.33189349, 9.4899828 , 8.20463764, 6.05141417,\n",
+ " 7.68244086, 19.98586557],\n",
+ " [ 2.33189951, 9.48998465, 8.20463814, 6.05141301,\n",
+ " 7.68245471, 19.98587732],\n",
+ " [ 2.33197072, 9.48998516, 8.20466661, 6.05141671,\n",
+ " 7.68245672, 19.98595769],\n",
+ " [ 2.33192346, 9.48994174, 8.20463429, 6.05137283,\n",
+ " 7.68245989, 19.98590225],\n",
+ " [ 2.33185111, 9.48999371, 8.20457848, 6.05142289,\n",
+ " 7.68244199, 19.98585741],\n",
+ " [ 2.33199047, 9.48997486, 8.20460338, 6.05139678,\n",
+ " 7.68245295, 19.98593748]]), array([-5268.59140924, -5268.59140923, -5268.59140923, -5268.59140921,\n",
+ " -5268.5914092 , -5268.59140918, -5268.59140918]))\n",
+ " fun: -5268.5914092352823\n",
+ " message: 'Optimization terminated successfully.'\n",
+ " nfev: 415\n",
+ " nit: 256\n",
+ " status: 0\n",
+ " success: True\n",
+ " x: array([ 2.33189798, 9.48999371, 8.20461943, 6.05142787,\n",
+ " 7.68244318, 19.98586637])\n"
+ ]
+ }
+ ],
+ "source": [
+ "from scipy.optimize import minimize\n",
+ "print (\"\\nScyPy.minimize (Nelder-Mead) Fitting started: \" +\n",
+ " \"%4d/%02d/%02d %02d:%02d:%02d\"%time.localtime()[0:6])\n",
+ "start = time.clock()\n",
+ "start_wall = time.time()\n",
+ "result = minimize(dcprogslik, np.log(theta), args=([likelihood], mec, [conc]),\n",
+ " method='Nelder-Mead')\n",
+ "t3 = time.clock() - start\n",
+ "t3_wall = time.time() - start_wall\n",
+ "print (\"\\nScyPy.minimize (Nelder-Mead) Fitting finished: \" +\n",
+ " \"%4d/%02d/%02d %02d:%02d:%02d\"%time.localtime()[0:6])\n",
+ "print ('\\nCPU time in ScyPy.minimize (Nelder-Mead)=', t3)\n",
+ "print ('Wall clock time in ScyPy.minimize (Nelder-Mead)=', t3_wall)\n",
+ "print ('\\nResult ==========================================\\n', result)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Final likelihood = 5268.5914092352822991\n",
+ "\n",
+ "Final rate constants:\n",
+ "\n",
+ "class dcpyps.Mechanism\n",
+ "Values of unit rates [1/sec]:\n",
+ "0\tFrom AR \tto AR* \tbeta1 \t10.2974673884\n",
+ "1\tFrom A2R \tto A2R* \tbeta2 \t13226.7121605\n",
+ "2\tFrom AR* \tto AR \talpha1 \t3657.80834791\n",
+ "3\tFrom A2R* \tto A2R \talpha2 \t424.719039018\n",
+ "4\tFrom AR \tto R \tk(-1) \t2169.9147908\n",
+ "5\tFrom A2R \tto AR \t2k(-2) \t4339.82958159\n",
+ "6\tFrom R \tto AR \t2k(+1) \t956712565.145\n",
+ "7\tFrom AR* \tto A2R* \tk*(+2) \t500000000.0\n",
+ "8\tFrom AR \tto A2R \tk(+2) \t478356282.573\n",
+ "9\tFrom A2R* \tto AR* \t2k*(-2) \t0.410062923425\n",
+ "\n",
+ "Conductance of state AR* (pS) = 60\n",
+ "\n",
+ "Conductance of state A2R* (pS) = 60\n",
+ "\n",
+ "Number of open states = 2\n",
+ "Number of short-lived shut states (within burst) = 2\n",
+ "Number of long-lived shut states (between bursts) = 1\n",
+ "Number of desensitised states = 0\n",
+ "\n",
+ "Number of cycles = 1\n",
+ "Cycle 0 is formed of states: A2R* AR* AR A2R \n",
+ "\tforward product = 9.490188419e+15\n",
+ "\tbackward product = 9.490188419e+15"
+ ]
+ }
+ ],
+ "source": [
+ "print (\"\\nFinal likelihood = {0:.16f}\".format(-result.fun))\n",
+ "mec.theta_unsqueeze(np.exp(result.x))\n",
+ "print (\"\\nFinal rate constants:\")\n",
+ "mec.printout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot experimental histograms and predicted pdfs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import missed_events_pdf, ideal_pdf, IdealG\n",
+ "from HJCFIT.likelihood import eig, inv\n",
+ "qmatrix = QMatrix(mec.Q, 2)\n",
+ "idealG = IdealG(qmatrix)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that to properly overlay ideal and missed-event corrected pdfs ideal pdf has to be scaled (need to renormailse to 1 the area under pdf from $\\tau_{res}$). "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# Scale for ideal pdf\n",
+ "def scalefac(tres, matrix, phiA):\n",
+ " eigs, M = eig(-matrix)\n",
+ " N = inv(M)\n",
+ " k = N.shape[0]\n",
+ " A = np.zeros((k, k, k))\n",
+ " for i in range(k):\n",
+ " A[i] = np.dot(M[:, i].reshape(k, 1), N[i].reshape(1, k))\n",
+ " w = np.zeros(k)\n",
+ " for i in range(k):\n",
+ " w[i] = np.dot(np.dot(np.dot(phiA, A[i]), (-matrix)), np.ones((k, 1)))\n",
+ " return 1 / np.sum((w / eigs) * np.exp(-tres * eigs))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAFgCAYAAABJ67N/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmczeX7+PHXPfbRDDO2GYx1DFJIlESNVMhWiaQkWX7t\naEObsbSpVOpLkbWiUj7ZScugEEqJZC3bIMwww1jGzP374x7TYJYzc5b7LNfz8TiPmXPO+7zf1zln\n5tznet/3fd1Ka40QQgghhBBCCNcIsh2AEEIIIYQQQvgTSbKEEEIIIYQQwoUkyRJCCCGEEEIIF5Ik\nSwghhBBCCCFcSJIsIYQQQgghhHAhSbKEEEIIIYQQwoXcmmQppSYrpQ4ppTZmuy1MKfWNUmqrUmqp\nUqqMO2MQQggh8pNLezVGKbVFKfWbUuorpVSozRiFEEL4Dnf3ZE0F2l5021DgW611XeB7YJibYxBC\nCCHyk1N79Q3QQGvdGNiOtFdCCCEc5NYkS2v9I5B00c1dgOmZv08HbndnDEIIIUR+cmqvtNbfaq0z\nMq+uAap6PDAhhBA+ycacrIpa60MAWuuDQEULMQghhBAF8SCw2HYQQgghfENR2wEAOrc7lFK53ieE\nEMJ3aa2V7RgcpZR6HkjTWs/M5X5pq4QQwg8501bZ6Mk6pJSqBKCUigD+zWtjrbXXXYYPH+51+y3o\nYx3d3pHt8tomt/sKervti7zn8p57w3795T33JUqpB4DbgJ55bWfj7yO/bQvyvlx8W17Xc/vdU887\nv+25Mef3wxuft7zngfe8A/m5+9rzdpYnkiyVeTlvHvBA5u+9gbkeiMGlYmNjvW6/BX2so9s7sl1e\n2+R2n7teQ3eR99zxbeQ9d99+5T13uwvaK6VUO+AZoLPW+ownAijIa5bftgV5Xy6+La/r7nhfXfq3\nXcPxx9h+3gXdb6C+5/70vAu6X3967oH2vJUrMrVcd67UTCAWKAccAoYDXwOzgShgN9Bda30sl8dr\nd8YnvE9cXBxxcXG2wxAeJO954FFKob1suGAu7dVzQHHgaOZma7TWj+Tw2IBtq7zx/1eNUOjh7n0/\nvPF5e0qgPvdAfd4QuM/d2bbKrXOytNa5Da+42Z3HFb7LB898CyfJey68QS7t1VSPB+JjAvX/N1Cf\nNwTucw/U5w2B/dyd4daeLGcF8tlBIYTwV97Yk+UMaau8iyd6soQQ/s+re7KEEEIIIYT/q1GjBrt3\n77YdhhAFVr16df755x+X71eSLCGEEEII4ZTdu3e7pCKbEJ6mlHsGVtgo4S6EEEIIIYQQfkuSLCGE\nEEIIIYRwIUmyhBBCCCGEEMKFJMkSQgghhBBCCBeSJEsIIYQQQgSk3bt3ExQUREZGhtP7qlmzJt9/\n/71D206fPp1WrVplXQ8JCXFZhbtXX32VAQMGAK59fgB79+4lNDRUipw4QJIsIYQQQgjht/JLftxV\nXS4/2Y+bkpJCjRo18tx++fLlREVF5bvfYcOGMXHixByPU1AXv3ZRUVEkJydbe818iSRZQgghhBBC\neDmtdb7JTXp6uoeiEfmRJEsIIYQQQgSEjIwMnn76aSpUqEB0dDQLFy684P7k5GT69etH5cqViYqK\n4sUXX8waGrdr1y7atGlD+fLlqVixIvfddx/JyckOHTcxMZHOnTtTpkwZmjdvzs6dOy+4PygoiF27\ndgGwaNEiGjRoQGhoKFFRUYwdO5bU1FRuu+02EhISCAkJITQ0lIMHDzJixAi6detGr169KFu2LNOn\nT2fEiBH06tUra99aayZPnkyVKlWoUqUKb731VtZ9ffr04aWXXsq6nr237P7772fPnj106tSJ0NBQ\n3nzzzUuGHx44cIAuXbpQrlw5YmJi+Oijj7L2NWLECO6++2569+5NaGgoV155Jb/++qtDr5c/kCRL\nCCGEEEIEhIkTJ7Jo0SJ+//131q9fz5dffnnB/b1796Z48eLs2rWLDRs2sGzZsqzEQWvNc889x8GD\nB9myZQv79u0jLi7OoeM+8sgjBAcHc+jQISZPnsyUKVMuuD97D1W/fv2YNGkSycnJbNq0iZtuuong\n4GAWL15M5cqVSUlJITk5mYiICADmzZtH9+7dOXbsGD179rxkfwDx8fHs3LmTpUuX8vrrrzs0fHLG\njBlUq1aNBQsWkJyczNNPP33Jvu+++26qVavGwYMHmT17Ns899xzx8fFZ98+fP5+ePXty/PhxOnXq\nxKOPPurQ6+UPJMkSQhAeDkoV7hIebjt6IYQQXi8uLudGJLckJaftHUxo8jJ79mwGDRpE5cqVKVu2\nLMOGDcu679ChQyxevJi3336bkiVLUr58eQYNGsSsWbMAqF27Nm3atKFo0aKUK1eOwYMHs3z58nyP\nmZGRwZw5cxg1ahQlS5akQYMG9O7d+4JtsheSKF68OJs3byYlJYUyZcrQuHHjPPd/3XXX0alTJwBK\nliyZ4zZxcXGULFmSK664gj59+mQ9J0fkVuRi7969rF69mtdff51ixYrRqFEj+vXrx4wZM7K2admy\nJW3btkUpRa9evdi4caPDx/V1RW0HIIRPSk+H776Dgwfh2DFzW/HiEBkJHTpAUd/610pKgsIWCpK5\nr0IIIfIVF1ewJKmg2zsoISHhguIR1atXz/p9z549pKWlERkZCZjkQmtNtWrVAPj3338ZOHAgK1eu\n5MSJE6SnpxPuwJnGw4cPk56eTtWqVS847sqVK3Pc/quvvmLUqFEMGTKERo0a8eqrr9K8efNc959f\nMQyl1CXH3rRpU75x5+fAgQOEh4cTHBx8wb5/+eWXrOvne9sAgoODOX36NBkZGQQF+X8/j/8/QyHc\nISgI3n8fvvkGtm83l19/hSlTzH0F5ExPkvQmCSGEEI6JjIxk7969Wdd3796d9XtUVBQlS5bk6NGj\nJCYmkpSUxLFjx7J6X5577jmCgoLYvHkzx44d45NPPnGolHmFChUoWrToBcfds2dPrttfffXVfP31\n1xw+fJguXbrQvXt3IPcqgY5U+rv42JUrVwagdOnSpKamZt134MABh/dduXJlEhMTOXny5AX7rlKl\nSr7xBAJJsoTITUoKTJwI2T6AsygF8+bBJ5/Ae++Zy8SJMHduzknWgQMwaxacO5fjoc73JBX2kpTk\n4ucuhBBC+KHu3bszbtw49u/fT1JSEq+//nrWfREREdx6660MHjyYlJQUtNbs2rWLFStWAKbM+mWX\nXUZISAj79+/njTfecOiYQUFB3HnnncTFxXHq1Cn+/PNPpk+fnuO2aWlpzJw5k+TkZIoUKUJISAhF\nihQBoFKlShw9etThYhvnaa0ZNWoUp06dYvPmzUydOpUePXoA0LhxYxYtWkRSUhIHDx7k3XffveCx\nERERWQU5su8PoGrVqrRo0YJhw4Zx5swZNm7cyOTJky8oupFTLIFCkiwhLnb0KAwfDrVqwZIlcOqU\n8/tMSoIJE+CKK0wiFkAfMkIIIYRN2Xtj+vfvT9u2bWnUqBFNmzala9euF2w7Y8YMzp49y+WXX054\neDjdunXj4MGDAAwfPpxffvmFsmXL0qlTp0sem1evz3vvvUdKSgqRkZE8+OCDPPjgg7k+9uOPP6Zm\nzZqULVuWiRMn8umnnwJQt25d7rnnHmrVqkV4eHhWXI48/xtvvJHo6GhuueUWnn32Wdq0aQNAr169\naNiwITVq1KBdu3ZZydd5Q4cOZdSoUYSHhzN27NhLYp01axZ///03lStXpmvXrowaNYrWrVvnGUug\nUN6cUSqltDfHJ/xMaiq88Qa8+y7cdRc8+yxER7tu/1qbpO2ZZyAqCiZNgswx0ko5l3fZfLyzxxaB\nRymF1tpvWlppq7yLGqHQw+X98LTM/2vbYQhRYLn97TrbVklPlhDnJSTAtm1mbtXEia5NsMBkI+3b\nw4YN0KIFNGv2X9EMIYRPO3HCdgRCCCG8ifRkCWHLv/9CxYqA9GSJwOKPPVlLpx/g1vsj8t9YuJ30\nZNkhPVnCV0lPlhD+JjPBEkL4vuWz/7UdghBCCC8iSZYIPMnJZt6VnHETQrjIinU5LwAqhBAiMEmS\nJQLLL79AkyawZUuu5dStWrECDh+2HYUQooA2/FvFJYVIhRBC+AdJskTgmDIF2rWDl1+GDz6AYsVs\nR3SpH36AW26Rha+E8DFXhu9nzYqztsMQQgjhJYraDkAIt0tPN+XY582DlSuhXj3bEeXupZfg+HG4\n7Tb4/nsoVcp2REIIB9zQN4YVa6B1W9uRCCGE8AbSkyX839mzJtH6+WfvTrDAlOp76y2zEHLv3pCR\nYTsiIYQDWrSANWtsRyGEEMJbSJIl/F+pUvDOOxAebjsSxygFkyfD/v2mZ0sI4fWuvdacx5HzIkII\nTwsKCmLXrl0ObTtixAh69eoFwN69ewkNDXVZ6f2HH36Yl19+GYDly5cTFRXlkv0C/Pjjj9SvX99l\n+/MESbKE8EYlS8LXX5v5WW52NnMaybhx8PDDZqRi8+Zw5ZVw9dVwww1w330m31uwAI4edXtIQvic\niAgoUwa2b7cdiRAiJzNnzqRZs2aEhIRQpUoVOnTowE8//WQ7LKZPn06rVq2c2odSBVvK6fz2UVFR\nJCcn5/t4R2OcMGECzz//fKHjyu7ixLFly5Zs2bKl0PuzQeZkCeGtKlSAG290y66Tk2HuXPjsM1PQ\nEOCvv+Dyy6FDByhXDkqXhrQ0SEmBPXtg2zZT+f7ee6FRI+jWzSRfQgijeXMzZLBuXduRCCGyGzt2\nLGPGjOHDDz/k1ltvpXjx4ixdupT58+dz/fXXF2hf6enpFClSJN/bHKW1dioZOb8Pd3IkxoyMDIKC\nXNd34+xr4g2kJ0v4lx9+gAcftB2F1/r9dzPVKyoKZs82CdPevea+8ePh8cehY0e47jpo2ND0ZMXG\nwv33w+jRsGwZ/PuvqSOyZg3Urm0eu2ePtackhNe4LvIfVn+x13YYQohskpOTGT58OOPHj6dLly6U\nKlWKIkWKcNttt/Haa68BcPbsWQYNGkSVKlWoWrUqgwcPJi0tDfhv2NuYMWOIjIzkwQcfzPE2gAUL\nFnDVVVcRFhZGy5Yt+eOPP7Li2LdvH127dqVixYpUqFCBJ554gr/++ouHH36Y1atXExISQnjmtIaz\nZ8/y9NNPU716dSIjI3nkkUc4c+ZM1r7eeOMNKleuTNWqVZk6dWqeCck///xDbGwsZcqUoW3bthw5\nciTrvt27dxMUFERG5jjnadOmUbt2bUJDQ6lduzazZs3KNcY+ffrwyCOP0KFDB0JCQoiPj6dPnz68\nlG2ag9aaV199lQoVKlCrVi1mzpyZdV/r1q2ZMmVK1vXsvWU33ngjWmsaNmxIaGgos2fPvmT44V9/\n/UXr1q0JCwvjyiuvZP78+Vn39enTh8cee4yOHTsSGhrKddddx99//533H4obSJIl/MfixXD33SYj\nEBdYtcqMPLztNqhfH3btMsUWe/aEsmULtq8SJUwi9umnsHmzue2qq2DIENNDJkSgah6+jTU/eeH6\ne0IEsNWrV3PmzBluv/32XLcZPXo0a9euZePGjfz++++sXbuW0aNHZ91/8OBBjh07xp49e5g4cWKO\nt23YsIG+ffsyadIkEhMT+X//7//RuXNn0tLSyMjIoGPHjtSsWZM9e/awf/9+evToQb169fjggw+4\n7rrrSElJITExEYAhQ4awY8cONm7cyI4dO9i/fz8jR44EYMmSJYwdO5bvvvuO7du38+233+b5/Hv2\n7EmzZs04cuQIL7zwAtOnT7/g/vMJWmpqKgMHDmTp0qUkJyezatUqGjdunGuMALNmzeLFF18kJSUl\nxx7BgwcPkpiYSEJCAtOmTWPAgAFsz2NM9flYli9fDsAff/xBcnIy3bp1u+D+c+fO0alTJ9q1a8fh\nw4cZN24c99577wX7/vzzzxkxYgTHjh2jdu3aFwxj9BRJsoR/WLjQdNHMm2e6XvxVamqBNt+2Dbp2\nhR49zOXvv2HoUDMc0BUiI83PP/4wPVxXXgnffOOafQvhaxp3j2F7ciVOpLh36I4Qvkgp11wK6ujR\no5QvXz7PoWwzZ85k+PDhlCtXjnLlyjF8+HA+/vjjrPuLFCnCiBEjKFasGCVKlMjxtkmTJvHQQw/R\ntGlTlFL06tWLEiVKsGbNGtauXcuBAwcYM2YMJUuWpHjx4rRo0SLXeCZNmsTbb79NmTJlKF26NEOH\nDmXWrFkAzJ49mz59+lC/fn1KlSpFXFxcrvvZu3cv69evZ+TIkRQrVoxWrVrRqVOnXLcvUqQIf/zx\nB6dPn6ZSpUr5Fpro0qULzZs3B8h6XbJTSjFq1CiKFSvGDTfcQIcOHfjiiy/y3Gd2uQ2DXL16NSdP\nnmTIkCEULVqU1q1b07Fjx6zXCOCOO+7g6quvJigoiHvvvZfffvvN4eO6iiRZwvfNnw99+pifmf/s\nfmnzZmjcGE6cuOSusLCcG6O6dWHOHDMksF8/0wuV03ZhYc6FVrkyTJ0KH30E/fubYYdnZV1WEWCK\n16lOo6KbWb/4sO1QhPA6WrvmUlDlypXjyJEjWUPicpKQkEC1atWyrlevXp2EhISs6xUqVKBYsWIX\nPObi23bv3s1bb71FeHg44eHhhIWFsW/fPhISEti7dy/Vq1d3aM7S4cOHSU1N5eqrr87aV/v27Tma\nWXUqISHhgmFz1atXzzUZSUhIICwsjFLZ1tysXr16jtsGBwfz+eefM2HCBCIjI+nUqRNbt27NM9b8\nqgeGhYVRsmTJC46d/XUtrAMHDlxy7OrVq7N///6s6xEREVm/BwcHcyKH707uJkmW8G1aw+efm7J3\n115rOxr3atDALMbz7LOX3JWY+F8DtHw5xMTAnXeaKvCONFrZev+dcsstZt7X7t3QujW44LNUCN+h\nFM2rJfDz3IO2IxFCZLruuusoUaIEX3/9da7bVKlShd27d2dd3717N5UrV866ntOcp4tvi4qK4vnn\nnycxMZHExESSkpI4ceIEd999N1FRUezZsyfHRO/i/ZQvX57g4GA2b96cta9jx45x/PhxACIjI9m7\n97+5n7t37851TlZkZCRJSUmcOnUq67Y9eUyivuWWW/jmm284ePAgdevWZcCAAbk+/7xuPy+nY59/\nXUuXLk1qttE5Bw86/rlZuXLlC16D8/uuUqWKw/vwBEmyhG9TCj75BK65xnYknvHuu6YsYA6rnp47\nBy+8YIYFvv46fPWV6WHytLJlTfX5du1MAY0///R8DELYcvVVml9+keGCQniL0NBQRowYwaOPPsrc\nuXM5deoU586dY/HixQwdOhSAHj16MHr0aI4cOcKRI0cYNWpU1lpSjurfvz8ffPABa9euBeDkyZMs\nWrSIkydPcs011xAZGcnQoUNJTU3lzJkzrFq1CoBKlSqxb9++rEIbSin69+/PoEGDOHzY9Irv37+f\nbzLH4nfv3p1p06axZcsWUlNTs+Zq5aRatWo0bdqU4cOHk5aWxo8//nhBgQj4b0jev//+y7x580hN\nTaVYsWJcdtllWT1vF8foKK111rFXrlzJwoUL6d69OwCNGzdmzpw5nDp1ih07djB58uQLHhsREZHr\n2l/XXnstwcHBjBkzhnPnzhEfH8+CBQu45557ChSfu0mSJYQvKVMG3nzTLGh17r8J9rt3m2rv69bB\nhg2Qx/xejwgKghdfNBUJW7eG1avtxiOEpzTp04hfT8TYDkMIkc2TTz7J2LFjGT16NBUrVqRatWqM\nHz8+qxjGCy+8QNOmTWnYsCGNGjWiadOmBS6UcPXVVzNp0iQee+wxwsPDiYmJySoyERQUxPz589m+\nfTvVqlUjKioqa27STTfdRIMGDYiIiKBixYoAvPbaa0RHR9O8eXPKli3LrbfeyrZt2wBo164dgwYN\n4qabbiImJoY2bdrkGdfMmTNZs2YN5cqVY9SoUfTu3fuC+8/3RmVkZDB27FiqVKlC+fLlWbFiBRMm\nTMg1RkdERkYSFhZG5cqV6dWrFx9++CF16tQBYPDgwRQrVoyIiAj69OnDfRetCRMXF8f9999PeHg4\nX3755QX3FStWjPnz57No0SLKly/PY489xscff5y1b28p/67cXVvfGUop7c3xCeEqShVgrLnWcPPN\ncMcd8NhjLFoEDzwAzzwDTz1lEhxPyi/2xYtNTZK5c03PlhBKKbTW3tEKukD2tio93fTm7t1b8Mqd\nwjXUCIUeLt8dPC3z/9p2GEIUWG5/u862VdKTJXzL9u2QbXxvQFIKpk5F392DN980hSa+/tokWZ5O\nsBzRvj1Mnw5dusD69bajEcK9ihQx9Wl+/dV2JEIIIWzywq9kQuRi+3YzJu7HH21HYt3pitV44Ony\nzJxppmflUQnWK7RvbyoPduxo3kYh/FmTJpJkCSFEoCtqOwAhHLJnjyldN2qU+RnAEhOhUydT1GLl\nSihd2nZEjuncGQ4dMgsir14N5cvbjkgI18lpCsAzz5ifYWGuq+AphBDCN0hPlvB+R46YxGrgQOjb\n13Y0Vu3bB61amZ6rzz/3nQTrvP79oVs3U5hD1tES/iT7kgibNkGdOv9dT0qyHZ0QQghPkyRLeLfU\nVNNtc+edMHiw7Wis2rIFrr/eFLl44w3vnH/liNGjoUKFgH87hZdRSk1WSh1SSm3MdluYUuobpdRW\npdRSpVQZR/ZVt3IKCbtOkXxcigAIIUSg8tGvaSJgBAVBr17wyiu2I7Fq/XpTCn3kyP+GIGVJSoL7\n7rugpLs3CwqCadNg2TKYMcN2NEJkmQq0vei2ocC3Wuu6wPfAMEd2VLTsZTRUm9iw7IiLQxRCCOEr\nZE6W8G4lS8Ijj9iOwqp160zBiIkTTYW+S5yvFz19us8MpyxTBubMMYljs2ZQv77tiESg01r/qJSq\nftHNXYAbM3+fDsRjEq+8KUWTyAP8uiSYG++q4NI4hfBW1atX95r1iYQoiOrVL/7odw1JsoTwYmvX\nmgRr8mQzajJHSsHLL5sev169oHhxj8ZYWFdcYYYO3nuvqZDoI2GLwFJRa30IQGt9UCnl8CqcTa5M\n44d1vtG7LIQr/PPPP7ZDEMKrSJIlhJf6+WdTkW/KFJNo5allS4iONuPv+vXzSHyuMGAALFgAcXEB\nPyJU+IZcJ1nFxcVl/R4bG0ujVqGMey3UEzEJIYRwgfj4eOLj4122P+XNq3MrpbQ3xyfc4KefoGFD\nCAmxHYlHKWWqkJ13vgdr6lTo0MHBnfz4o+nJ2rrVo91CF8deUIcOmcVbv/jCVE4U/k8phdba68YV\nZQ4XnK+1bph5fQsQq7U+pJSKAH7QWl8yuDWnturUhr8od3V1jp8pRfHizv2PiIJRIxR6uLzgQgjn\nONtWSeEL4T1+/tnU9g7w1Wr/+MMMDZwypQAJFpjerFatfO71q1TJzDfr3dsUkxTCIpV5OW8e8EDm\n772BuY7uqNSV0VSrEcTWra4LTgghhO+QJEt4h127TII1dSo0aWI7Gmt27oT27eHddx0YIpiTGTOg\nQQOXx+VunTrBtdeataaFsEEpNRNYBcQopfYopfoArwG3KKW2Am0yrzumaFEaNi3Bxo35byqEEML/\nyJwsYd+xY6bL5oUXCplZ+IeEBLPm8gsvQI8etqPxvLffNiNFe/aEK6+0HY0INFrrnrncdXNh99mw\nIfz+e2EfLYQQwpdJT5awKy0N7roL2raFRx+1HY1Vt94K/fvDQw/ZjsSOiAhTbXDAAMjIsB2NEM5r\n2BDpyRJCiABlLclSSg1WSm1SSm1USn2qlJICzoHq9tvhrbdsR2HN+XlI7dvD0PxX4PFr/fqZxYon\nTrQdiRDOkyRLCCECl5XqgkqpysCPQD2t9Vml1OfAQq31jIu2k+qCwq+lp0O3bvC//5neG5eu45iR\nYTIWN3O2uuDFNm40wyb/+gvCwly3X+E9vLW6YGHl1lZpDWXLapKTwY+erteT6oJCCFfw5eqCRYDS\nSqmiQDCQYDEWIax46ilISjK/uzTBAmjXzqzy62MaNjSdm1IEQ/g6peDKtF8JI8l2KEIIITzMSpKl\ntU4A3gL2APuBY1rrb23EIoQt77wDy5bBnDluOkCnTvDGG27auXuNHGkKJfpYNXohLtEwbC8V+Nd2\nGEIIITzMSnVBpVRZoAtQHTgOfKmU6qm1nnnxtnFxcVm/x8bGEhsb66EohVvs2wfBwRAebjsSlwsP\n/69XqqCPc8uwuAcfNNnKzp1Qu7YbDuA+lSrBM8+Yy9df245GOCs+Pp74+HjbYVjRMOYMKxLSbIch\nhBDCw2zNyboLaKu17p95vRdwrdb6sYu2kzlZ/iQ52SyY+/jjpoyen3F0btKaNaaTaelSDywJNmSI\nqeA4dqzbDuHqOVnnnT4Nl19uFmWWcyv+JVDmZAGsGjqXe1+/kr91LQ9HFbhkTpYQwhV8dU7WHqC5\nUqqkUkphFnncYikW4QnnzpnFn1q0MCXkAtSePXDnnTBtmofWXH7kEZg+HU6c8MDBXKtkSVPSfdgw\n9yRxQnjCFbdU5gCVSU+3HYkQQghPsjUnay3wJbAB+B1QgBRt9ldaw6BBJtF67z03VHjwDSdPQufO\npthFhw4eOmj16qbXcN8+Dx3QtXr0MPnhokW2IxGicEKvqUd5DrP7b1n8TQghAomV4YKOkuGCfmLc\nOPjwQ1i1CsqUsR2N2+Q1bC4jA7p3h5AQM/zNn/LMws5FOy8sDBITc7//f/8zlQbXr/dIRXrhAYE0\nXNDcn8G8eUF06uTBoAKYDBcUQriCrw4XFIEkMREWLPDrBCs/I0dCQgJ88IF/JVhg3l6tC3/JL0G7\n/XbzmrmtCqMQbhfEn3/ajkEIIYQnSZIl3C8uDmrWtB2FNbNnw9SppkemRAnb0fgepczcrJdeQua1\nCJ8lSZYQQgQWSbKEcKNffzW1J77+2pQlF4XTrp0ZVvjFF7YjEaJwJMkSQojAIkmWEG5y8KAZ6jZh\nAlx1le1oMvnoHEel4Pnn4dVXffYpiAC3ZYuZmymEECIwSJIlXCs9HY4csR2FdWfOmFLtffvCXXfZ\njibTwYNwzTU++02vfXtT+GLhQtuRCFFwZULS2bNbzhAIIUSgyDfJUkp1UkpJMiYcM3QoDB5sOwrr\nBg0ywwOqdt6QAAAgAElEQVRffNF2JNlERJgEa9ky25FcICzM9FTldwkKgt9/Nws5Z789PNz2MxDe\nwNvbqgZHV/LnT06U4RRCCOFTHGmQ7ga2K6XGKKXquTsg4cMmToR58+Ddd21HYtXUqfDDD2YNYK8r\nOd6/P0yaZDuKCxSkOuG5c1CnDsTHO16dUAQMr26rLq94mD9XHrUdhhBCCA/J9yug1vo+4CpgJzBN\nKbVaKTVAKRXi9uiE71i2zJR/W7gwoLsWfvkFnn3WVBIMDbUdTQ569oTvvoNDh2xHUihFisCQIfDK\nK7YjEd7G29uqy2ud4c+NabbDEEII4SEOnWfXWicDXwKfAZHAHcCvSqnH3Rib8BV//gn33mtqlUdH\n247Gqq5dzVpY9evbjiQXoaFmsti0abYjKbRevWDzZvjtN9uRCG/jzW3V5VeVYPOuYNthCCGE8BBH\n5mR1UUr9D4gHigHXaK3bA42Ap9wbnvAJy5bBW29Bq1a2I7Hm3Dnzs0cPk2h5tQED4O+/bUdRaMWL\nw6OPwjvv2I5EeBNvb6suv6E8fx6tKNUxhRAiQCidzye+Umo6MFlrvSKH+9porb9zW3BK6fziE8Ib\nDB0Kr78OaWlQtKjtaPxfYqLpNP3zT4iMlLLuvkYphdZauXifXttWKQV6334ia5Vk7Y5yREW5KxIB\noEYo9HD5UBBCOMfZtsqR4YIHL260lFKvA7iz0RLCV3z1FXz2mfldEizPCA83vYbjx9uORHgR726r\nqlTh8pblZFFiIYQIEI4kWbfkcFt7VwcihC/asgUeegi+/NJ2JIFn4ED48EPbUQgv4vVt1eWXm/mE\nQggh/F+u592VUg8DjwC1lVIbs90VAvzk7sCEFztzBkqUsB2Fy4WHF74ceLNmZr0n4Tl165rXXRYn\nDmy+1FY1aADr1tmOQgghhCfk1ZM1E+gEzM38ef5ydWapXBGIVqyAa66B9HTbkbhcUpLj6zVlZMAd\nd5herPO3JSbafgaB5/y61zInK6D5TFtVrx5s3Wo7CiGEEJ6QV5Kltdb/AI8CKdkuKKUCdyGkQLZ9\nO3TvDm++aRYsCmCvvw4JCX5Q4W7gQNi3z3YUhXbTTebnypV24xBW+UxbVa8e/PWX7SiEEEJ4Qn49\nWQC/AOszf/6S7boIJImJ0KEDjBoFt+Q09SFwfPstjBtn5mH5/KjJ1FSYOTP/7byUyqz5M2GC3TiE\nVT7TVlUKTyPt9DmOHrUdiRBCCHfLt4S7TVLC3UucPQu33momwLzxhu1o3Eap/Ied7dljRkt+9hnE\nxnokLPdaudKMedy06b+MxccoBWXLmh6CSpVsRyMc4Y4S7jY5VMJdA6dPc03wH7wTfxUtbpBSpO4i\nJdyFEK7g9hLuSqnrlVKlM3+/Tyk1VilVrbAHFD7o+++hXDl47TXbkVh15gzcdRc89ZSfJFgA118P\np07Bhg22I3HKnXfClCm2oxA2eXNbFRZmEi1VqiRV9V663Jhormdewr1qUKMQQghXcKSE+wQgVSnV\nCHgK2Al87NaohHdp186MjQvweVgDB0JUFDz9tO1IXCgoCHr1ghkzbEfilIcfNuXc/bAei3Cc17ZV\niYn/Fci5OjqZB7umXFBIp7BVTYUQQngvR5Ksc5njILoA72ut/w9TGlcEEh8dSuYq06ZBfDxMneqH\nL0WvXjBnjk+X6GvaFCpUgCVLbEciLPKJtqpe9Dn+kgqDQggXCg/ngt7xiy/SW26HI0lWilJqGHAf\nsFApFQQUc29YQniP336DZ56Br76C0FDb0bhBdLRZIdXHs8eHH5YCGAHOJ9qquo1LsXVfadthCCH8\nSH5L0EhvuR2OJFl3A2eAvlrrg0BVwH+rHwif7tFwtaQk6NoV3n/fLCTqt0K87oR/gfXoAatXwz//\n2I5EWOITbVV029r8c6I8aWm2IxFCCOFOUl1QXOj4cejSBT75BKpWtR2NR11cXTAjAzp1gpgYePtt\ne3GJvGV/3wYONJUGR4ywG5PIW6BVF7xY7dqwaBHUrXv+8XJuy5WkuqAINPl9hshnTOF4orrgnUqp\n7Uqp40qpZKVUilIqubAHFF7s3Dm4+27TZVOliu1orHv5ZUhOhjFjbEciHPXgg2benBTACDy+1FbV\nrQtbZV6WEEL4NUeGC44BOmuty2itQ7XWIVprf5yZEti0hieeMKc73n3X5+fnOGvJEvjgA/jiCyjm\ndbM6RG4aNYLy5c2qAyLg+ExbVbeuWddNCCGE/3IkyTqktd7i9kiEXWPHmoVpP/8cigb2Ipn//AO9\ne5sFhyMjbUfjYfPnQ2qq7Siccr43SwQcn2mr6tWTniwhhPB3jnybXq+U+hz4GjOpGACt9Ry3RSU8\na/duU9lhxQo/LZ/nuNOnzYLDQ4dCq1a2o7HgvffMi9Ctm+1ICq1nT3jhBVO0JCzMdjTCg3ymrapb\nFz72ihW8hBBCuIsjPVmhQCpwK9Ap89LRnUEJD6te3ZTwjoqyHYl1jz9uJqUPGmQ7Ekt69DBdeD4s\nPBzatvX5pyEKzmfaqrohCfz1x1nbYQghhHAjqS4oRCalzDCetWv9oqJ54SQlQY0asHevz/Rq5lQ1\naelS05u1bp2dmETeAr26oF75I2VbN2bXocsoV04qf7maVBcUgUaqC7qHJ6oLxiilvlNKbcq83lAp\n9UJhDyiEN1qzxvz83/8COMECM77uxhth7lzbkTjl5pvh4EH44w/bkQhP8aW2StWNoS7bZF6WEEL4\nMUeGC04ChgFpAFrrjUAPdwYlhCclJJh5WGB6sgLeXXfBV1/ZjsIpRYqY4iVSACOguKWtUkoNVkpt\nUkptVEp9qpQq7uw+qVCBukHb+Wv9Cad3JYQQwjs5kmQFa63XXnTbOXcEIzwgIwP69oVffrEdiVc4\ncwa6doWHHrIdiRfp3Bnuu892FE574AH49FNIS7MdifAQl7dVSqnKwONAE611Q0yxKOdPMipFvYqJ\nbF173OldCSGE8E6OJFlHlFK1AQ2glLoLOODWqIT7DB0K27aZBYcDnNbw6KNm3eXnn7cdjRcpW/a/\nrj0fFh0NtWrBt9/ajkR4iLvaqiJAaaVUUSAYSHDBPqlb6yx/bZZVs4UQwl85UsL9UWAiUE8ptR/4\nG/D909yBaMIEM9dm1SooWdJ2NNZNmAA//wyrVwf82st+67774JNPoH1725EID3B5W6W1TlBKvQXs\nwVQu/EZr7ZK0vd6dDdg6tpwrdiWEEMILOVxdUClVGgjSWqe4N6QLjinVBV1l4ULo1w9+/NHUKA9w\nK1aYpaBWrfrv5ZDqO74pr/ft8GGoUwf27YPLLvNsXCJ37qwu6Mq2SilVFvgK6AYcB74EZmutZ160\nnR4+fHjW9djYWGJjY/Pc9+nTptM4JQWKF5fPHleS6oIi0Eh1QdeIj48nPj4+6/qIESOcaqtyTbKU\nUk/m9UCt9djCHtRRkmS5SEoKXH45zJ4NzZvbjsa6PXvg2mth+nS49db/bpcPId+U3/vWsaNZ/ssP\nppn5DVcmWe5sqzKHHLbVWvfPvN4LuFZr/dhF2xWqrapZE775BmJi5LPHlSTJEoFGkiz3cLatymu4\n4PlC1nWBZsC8zOudgIsnFwtvFhJialmXLWs7EutOnoQ77oCnnrowwRK5SE83pfp82H33wbRpkmT5\nMXe2VXuA5kqpksAZoA3gstXXYmLMFFkhhBD+J9/hgkqpFUCH80MvlFIhwEKt9Q1uD056soQLZWSY\nSoJlypjS3hfPw5IzPRc5fhyuuAJ27jTjmbxUfu9baqopbrJlC0REeC4ukTt3DBd0V1ullBqOqSiY\nBmwA+mmt0y7aplBt1eOPm+HKgwfLZ48rSU+WQGv4+2/YuBFOnIDQULjmGr9tBKQnyz3cvhgxUAk4\nm+362czbhPApw4ZBYiJMnCiFLhxSpgxUqwbffWc7EqcEB5uq9J99ZjsS4WZuaau01iO01vW11g21\n1r0vTrCcUaeO9GQJ4TYPPACTJsHixTB+PNSvDy1bmjNvQniAI0nWDGCtUipOKRUH/AxMc2dQQrja\nRx/BnDnm4sWdMt6na1efX5gYzFDBTz+1HYVwM59rq2KOrWXbelkrSwiXU4rUJSuY0HEhHY59SqUN\nSyh18gi3bxpN74eDbUcnAoRD1QWVUk2AVplXV2itN7g1qv+OK8MFC2P0aNMtLpOOAPj+e7jnHlNR\nsG7d3LeT7vQc/PMPNGsGBw5AUUdWfPA8R9639HSIijJ/C/XqeSYukTt3VRf0tbZq1yNvEjuzP3uP\nl5HPHheS4YICICkJHn7YnCu87jooVw6OHTMj4f2tHZDhgu7hieGCaK1/1Vq/m3nxSKMlCmniRDPL\nv3Fj25F4ha1bTYL12Wd5J1giFzVqQPXqJkP1YUWKwN13y5BBf+drbVX1q8vzb0op22EI4btSU2HA\nAEi4dI3wsDDzmd+tG1StCqVKQWSk/yVYwns5lGQJHzF/PsTFwZIlULGi7WisO3QIOnSAV16B1q1t\nR+PDevUyxS98XPfu8PnncjZPeI8iMbWpVWK/7TCE8E0pKXDzzXDmDJQvX/j9bNjAuWMnOHs2/01t\nCQ83vVG5XcLCbEcociJJlr9Yswb69oW5cyE62nY01qWkwG23mbk4ffvajsbHDRwI/fvbjsJpzZub\nk56bNtmORIhM0dHUSd9qOwohfM/p09Cli6mAO20a364ozpkzhdzXpEnsaN2Pe3tq0tNdGqXLJCWZ\nE4S5XRITbUcocpJvkqWUelwpJTmyNzt79r/FgJo1sx2NdWfPwp13QtOmMHy47WiEt1Dqv94s4X98\nsq2KiCBG/0VxTtuORAjfkZ5uVpivWBEmTODTmYrevWHv3kLu7623iDm9kSs2fcYrr7g0UhHgHC3h\nvk4p9YVSqp1SUvza6xQvDuvWma6bAJeRAX36QOnS8H//J6XaxYVkyKBf8722Sili7m6CxvtDFcJr\nLFtmqlfMmMHSb4vw5JPwzTdODOIpVYqgTz7mhSMD+fK9A8THuzJYEcgcrS6ogFuBPkBT4Atgstba\nrRM1pLqgKAit4emn4eefzWdwqQLOJ5fqO76pIO+b1qYh/vJLuOoq98YlcufG6oI+11YtXw6xsfLZ\n40pSXTAAnD3Lr5uK07atmSXRooUL9jl0KPt+OUirHdPYtMmcrPUWzn4/ke83heOp6oIaOJh5OQeE\nAV8qpcYU9sBCuNrIkeZs1rx5BU+whO8KC8t7QnD2S1AQ7NoFTZqY6+HhtqMXruSLbVWdOrYjEML3\nHE0pTteuZo1hlyRYAM8/T9WDv3Dr1UeZNMlF+xQBLd+eLKXUQOB+4AjwEfC11jpNKRUEbNda13Zb\ncNKTJRw0ZgxMmWLOCleqVLh9yJmefKxaBcnJ0K6d7UicsmGDmbO3a5dJuuQ99zx39GT5alultfk7\nTEyUCmGuIj1Z/i81FRYsMEPAXSojg5STQQQHm6U/vIX0ZNnhiZ6scOBOrXVbrfVsrXUagNY6A+hY\n2AMLJwwfbsq1CwDGjTPLg333XeETLOGAQ4fgzTdtR+G0xo2hWDFYv952JMLFfLKtOj9zbPt2u3EI\n4UuCg92QYAEEBRES4l0JlvBdjiRZi4Gs4pBKqVCl1LUAWusthT2wUqqMUmq2UmqLUmrz+X2KfEyY\nALNmmXrUgokTYexYk2BVqZL/WhKyzoQTbr0V1q6FY8dsR+IUqTLot9zSVnmKJFlC5OKHH8xkayF8\njCNJ1gTgRLbrJzJvc9a7wCKtdX2gEeD1jaB1X38No0aZxYYrVLAdjXUffWRejm+/herVzW35rSUh\n60w4oXRpuOEGWLzYdiROu/tu+OIL21EIF3NXW+V27VjMts1ptsMQwvskJ0Pv3nDiRP7bilzlN3dZ\n5ie7hyNJ1gWDzTOHXhR15qBKqVCgldZ6auY+z2mtk53Zp99btQoGDDDDBGvVsh2Nde++C6NHmxNc\nsvayB3XpYko5+bgrroDLLrMdhXAxl7dVnhJLPNt+S7UdhhDeZ8gQaNsW2rTh7FkPH9uPJjElJuZ9\nkjkpyXaE/smRJGuXUuoJpVSxzMtAYJeTx60JHFFKTVVK/aqUmqiUknpwuTl3Dvr2hRkz4OqrbUdj\n3SuvwPvvmyIXkmB5WKdOsHQpnm/tXOv8kEHhV9zRVnlEUdLYttV/vtAJ4RLLl5sTy2+8wdy5cMcd\nHj5+u3Zs/nILfft6+LjCbzhylu8hYBzwAqCB74ABLjhuE+BRrfV6pdQ7wFBg+MUbxsXFZf0eGxtL\nbGysk4f2QUWLmsWGA/zUu9bw3HOmRPuKFRAZaTuiABQRYYat+sA6r/np2hVGjDB/V37wdLxafHw8\n8e5f4dMdbZVHnKYk2/eXkr9FIc47fRr69YPx40kOKsujj8LMmR6O4brrqLv4HRYu/JAtW6B+fQ8f\nX/g8hxYjdvlBlaoErNZa18q83hIYorXudNF2UsJdAKbjpG9fMzl8/vzcp6RJmVLhqPOls9evlw5i\nT3PXYsS2ONtWPabe5/OSvfnj7xAiIlwYWICSEu5+YONG+OADGD+exx+HU6fMPGyPOngQ6tfn5f+3\nh0OpIYwb5+HjZ+Pu7zby3SlnzrZV+fZkKaUqAP2BGtm311o/WNiDaq0PKaX2KqVitNbbgDbAn4Xd\nn/Bvx4+bXofLLoPvvzelW4Vw1vkegzlzJMnyB+5oqzxlB9HUKbGHbdsaSJIlBEDDhjB+PGvXwpdf\nwubNFmKIiIAbb+Thcl9QZ1JfXn3V1H9yl/Dw3OdGSfVj3+TInKy5QBngW2BhtouzngA+VUr9hqku\n+IoL9ukfLJ9OcKYMuqsr1OzZA61aQd268NVXkmAJ1/vqK+v/csI13NVWud06mhFzTRjbttmORAjv\nkZ5u6n299ZbF6nd9+xL+v8m0bAmffebeQ+VVHVmqH/smR+ZkBWuth7j6wFrr34Fmrt6vz9PafKp0\n6gSdO1sJ4fw/emG4cj5BfDzccw888wwMHixzFYR7nDwJW7bA5ZfbjkQ4yS1tlSckUo6YWFkrS4js\ngoJMJeEbbrAYRPv28PbbPHZ/MvOXhzq1q7x6qkB6q/yRIz1ZC5RSt7k9EmEMG2bGIt90k+1IrNHa\nfLD26AEffwxPPikJllc6edJ2BC5xxx1myKDweT7dVsXEID1ZQmSjFNx4o+X2v2hR+P57buka6vSc\nrPzW8ZTeKv/jSJI1ENN4nVZKJSulUpRSsqaVO7z9tlmDaOHCgK0kmJICvXrB1KmwejXcfLPtiESO\n0tOhZk0zMdjHde0qSZaf8Om2qk4dSbJEgPvlF0iTRbmF/8g3ydJah2itg7TWJbXWoZnXneszFZf6\n5BOTZC1dCuXL247GirVr4aqrzMTSVavMd3jhpYoUMacYFy+2HYnTWraEffvg779tRyKc4ettVXQ0\n7Nplzl8IEXAOHzaLDu/ebTsSIVwm3yRLGfcppV7MvB6llLrG/aEFkNRUGDMGliyBatVsR+OUsLDC\nF8249lrTMfLhh1Lgwid06GB6XX1ckSLQpQv873+2IxHO8PW2qnRpc35t717bkQhhwejRZhJ2dLTt\nSIRwGUeGC44HrgN6Zl4/Afyf2yIKRMHBsGGDX8y8T0zMe8zxxZeNG+GaayA21lQS9JNpPoGhfXv4\n9luziJmPu/NOGTLoB3y7rfr1V2KCdsiQQRF4duyATz+Fl17iq69gyhTbAQnhGo4kWddqrR8FTgNo\nrZOA4m6NKhAVKWI7Ao86fRpefNHU9+jXD777DqKibEclCqRSJVNb/8cfbUfitJtuMuuwHDhgOxLh\nBN9uq4oXJyZ5vSRZIvAMGwZPPsmpyyrw5JNe3Jn10UfoFSt5/HE5ISwc40iSlaaUKgJoyFrwMcOt\nUQm/pbWp7dGwoflS+/vv0L+/KdUqfNC99/pFZlKihBn9OHeu7UiEE3y7rapVizonNrBtqyzaJgLI\nb7/BmjUwaBDjx5uF4a2WbM9LSgpq6hS2b4f5820HI3yBI19txwH/AyoqpV4GfkQWDnZOgFbP+e03\naNMGnnsO3nvPDM+qXNl2VMIpTzxhEi0/cOedZmFi4bN8u60KDiYm9CDbN522HYkQntOoEfz0Eynp\nwYwZA6NG2Q4oD3fdBfPm0e2OczK8XDjEkeqCnwLPAq8CB4Dbtdaz3R2Y3zpxwlRl++EH25F4zJ9/\nmvmsbdtCt26m96ptW9tRCXGhtm1NhUtZq8Q3+UNbFVMzTYYLisCiFFSrxjvvwC23QIMGtgPKQ1QU\n1KjBnZV+4ptvzLQHIfLiSHXBakAqMB+YB5zMvE0U1Jkz5nR5/fqm0oOf27TJLCgcG2uGB+7YAQ8/\nbNb2E8LblC5telplGIhv8oe2qmaDYPb/W4wzZ2xHIoRn7dwJcXG2o3BAly6ErZxHw4ZmLrkQeXFk\nuOBCYEHmz++AXYDvL47jaefOQc+eEBoKEydaXsLcfTIyzJfUm282Z6Wuusqs/TJsGISE2I5OiLzd\nfrvMy/JhPt9WFXtxKFFR5jNTiEAybZoXF7zIrnNnmDuXO27XsuyHyFe+fQpa6yuzX1dKNQEecVtE\n/igjw1R3OHEC5s3zy0qC+/fDxx/DRx+ZtbIGDoTu3aF4AWt7nV9nq7DCwgr/WBF4cvt7c/RvMCxM\nhhd6C79oq6KjiakP27ebAQ9CCC/TqBEsWUKf8opz52wHI7xdgQduaa1/VUpd645g/NahQybBmjPH\nlDHzE6mp5qz/tGmwbp2Zb/XJJ2ZR4cImSvKF1UctWgRly0KLFrYjKZCc/t5iY+Hpp6Fjx/wf76cd\n0n7Bl9qqi5P9RYsuvV8+G4Xf+PRT8wffs2f+23obpSA6mrK24xA+Id8kSyn1ZLarQUATIMFtEfmj\nyEiY7VPzr3N17BgsXGjyxW+/heuugwcegK+/hlKlbEcnrNm+3aws7WNJVk4yR4M4lGQJ7+HLbVX2\nBGrCBLM2/cSJ/90mybzwG2fOmBLDs2bZjkQIt3NkTlZItksJzHj3Lu4MSngPrU11wHHjoH17qFYN\nvvgCOnUy8waWLDGVAyXBCnAdO5rT7xm+syxRbrp0MfMK/eCpBBq/aKtiYpAKg8J/TZ5sSgi2aEFS\nku1ghHAvR+ZkjfBEIMK7TJtmeqq+/96McGzTBh580CRYUsBCXKJ2bShTBn79FZo2tR2NU2rXhvLl\nTTn35s1tRyMc5S9tVZ06pmNYCL9z6hS88gp8/TXbt5uh2bt2+dUsCp+V33x4GbJcOI4MF5wP5LoE\nvda6s0sj8gc7d5pvaj4iMdEs2/XddyaxAli82CRWI0dCrVp24xM+omNHM5bUx5MsML1Zc+dKkuVL\n/KWtqvrBCyQdiePEiaJcdpntaIRwoQ8/NO1D06YM72mWdPHZBCsjAxISOFOhKomJZlaIL8svgZIh\ny4XjyHDBXcApYFLm5QSwE3gr8yKy++47M1EpwXunAqSmwrJlMGSI+byrUcNUBaxd2/RUAXz+OQwY\nIAmWKIAOHUyS5QfOz8sSPsUv2qqgIIgOOyq9WcL//PYbjBzJH3+Yr0oDB9oOyAnbtkGLFsz+QvOI\nb9UwFR7kSHXB67XW2U9Nz1dKrddaD3ZXUD7r55/NBKUvv4TKlW1HkyU93YziWrbM9FStXWuqkN58\nM4wda87WF7TUuhCXaNkSXnvNdhQu0ayZKfKyfbsZviV8gn+0VbVrE1NiN9u2VeKqq2wHI4QLTZsG\nwIu3m5O8Pj31oG5dAG6r9ReP/VCfs2fle5S4lCM9WaWVUln9GUqpmkBp94XkozZtMmOMpk6FG26w\nHQ27dpme+bvugooVTQXAf/+FJ5+EAwfgp59gxAgTqnwwCJcoVgxuusl2FC4RFGSKu8ybZzsSUQD+\n0VbVrk2d9K3SkyX80tq1sH69GSro05SCtm0JX7eUmBjznUqIizmSZA0G4pVS8Uqp5cAPwCD3huVj\nduyAdu3g7bfNkCkLzp41vVQDB5phf9dfDz/+aIY9bdwImzfDO++YaTM+ffZICA+RIYM+xz/aquho\nYpLXS4VB4ZciIuDjj/2kInHbtrB0Ke3amUrLQlxMaZ3rPOH/NlKqBFAv8+pfWuszbo3qv+NqR+Kz\n7u+/YdUquPdejx42MdFUzZ4/H5YuhXr1zNn3jh2hYcPCT1RUypRuFyKQnT4NlSqZOjbly+e8jfyv\nFI5SCq21y6dSu6utUkqVAT4CrgAygAe11j9nu991bZXW/FSyDU81XMaadUUy9y9/ZwWhRij0cHnB\nhJslJUG1aqyYc4SnnivBunV5b+7L/8e+HLsznG2rHKkuGAw8CVTXWvdXStVRStXVWi8o7EH9Ts2a\n5uIBycnm7Ppnn5meqthYc8b93XfNGSIhhGuULGnmLS5cCL17245G5MfNbdW7wCKtdTelVFEg2AX7\nzJlSxKz9hG2tHRloIoSXS02FYPf9u1gVFgb33MO1tQ5Tq1ZV0tOhSBHbQQlv4sin+FTgLHBd5vX9\nwGi3RSQucfq0qaXRtStUrWoqAPbsCfv2mYSrb19JsISXOeORzm63O1/KXfgEt7RVSqlQoJXWeiqA\n1vqc1jrZ2f3mpXzDymitOHrUnUcRws2OHDGVg44ftx2JS4SHmx6dCy6TJlIyuipffAFFi+Zwf7ZL\nWJjtZyA8zZEkq7bWegyQBqC1TgWkYr4H/PYbPP64SawmTIDbboN//jHDA++9V+ZWCS+1aZNfrJUF\n5n/uu+/MGprC67mrraoJHFFKTVVK/aqUmqiUcuuMEqXMd1OZlyV82pgxZqhNmTK2I3GJpCQzZK6w\nF1nMN/A4UsL9bGaDogGUUrUB/zhNnYfwcPMPdbEQkunBZ0yiP3m134VdHTslxfRKpaZeePv335tL\nv37570NW5hZWXX45HDpkzgjUqGE7GqeULw+NG5tEq2NH29GIfLirrSoKNAEe1VqvV0q9AwwFhmff\nKC4uLuv32NhYYmNjnTpoTAxs3WqWXRTC5xw8aBbg3LiRn36CsmWhQQPbQQmRt/j4eOLj4122v3wL\nXz4tSigAACAASURBVCilbgFeAC4HvgGuBx7QWrsuityPba3wRY6T/E6eNFUEr7gCxo/Ps7JEQScJ\n7twJ770HM2aY5G7JEjMfpDDje52doBioExyFC91/v1mAzQ9WaRw7Fv76CyZOvPQ++V8pHHcUvnBX\nW6WUqgSs1lrXyrzeEhiite6UbRuXt1UjR5pRty+/LH9nBSWFL7zAoEGgNelj36VhQ3jjDTMywJcF\n8v9hoD53Z9uqPIcLKqUU8BdwJ/AAMAto6okEy+ucPg23327qo//f/xW+dF82Wpsz5J07m++jJUua\nIYJgKoPKBErhszp0MKUv/UDnzmaIbkaG7UhEbtzZVmmtDwF7lVIxmTe1Af50dr/5iamjZbig8E37\n9pk67cOGMXOm6cVq3952UEJ4Xp5JVuapuUVa66Na64Va6wVa6yMeis17nD1rVvUtVw4mTzYrlToh\nIwPmzIFmzeCJJ0zZ9d274bXXoFo1F8UshE233gorVvjFZKboaDN8eO1a25GI3HigrXoC+FQp9RvQ\nCHjFhfu+VHo6MQ+3Yfs2yeyFjxo/nrRyEcTFwSuvuOS8tPf6918YN44tW8xXRCHOcyRb+FUp1czt\nkXizZ581ZWM+/tip7qW0NLOLK66AV1+FF16AP/6A/v39t8KpCFBhYaY3a9cu25G4hFQZ9Alua6u0\n1r9rrZtprRtrre/UWru3XFqRItQJP8r27dKDKnxQ1apw991MmWIG/9x4o+2A3KxUKXjuOfSp07z8\nsu1ghDdxpPDFtcC9SqndwElMtQettW7o1si8yZAh5lR2sWKFenhaGkydahKr6tXNmlY33+znZ3aE\nmDXLdgQu06UL9Olj/oeF1/KrtiqkTgShx86SkFDSdihCFJjW5rvOtGm2I/GAkBC44grqH1vNyZOt\n2b3bfNcTItckSylVU2v9N9DWg/F4p8jIQj0sIwM+/xxeeskUWfvkE7j+eteGJoRwv2bNTMXOHTvM\n8EHhPfy2rapdm5idR9m2rYrtSIQoMKVgzRoIDbUdiYe0bo1aHk/Llq358UdJsoSR13DBLzN/TtFa\n77744ongfNX5CixNmsA778AHH8CyZZJgCeGrgoLM3Mn5821HInLgn21VdDQxJXdL8QvhswImwQLz\nBe+nn2jVClautB2M8BZ5DRcMUko9B8QopZ68+E6t9Vj3hWVRRkbmOL7CjeVbswaeftr8Pny4KUgo\nwwKF8H2dO5ty7oMH245EXMQ/26ratYnR29i2rYXtSITI365dptBRoC6G1aIF9OxJq5fPMWmSIzNx\nRCDIqyerB5COScRCcrj4n4wMeOghmDChwA/duxfuvdcUITy/YPAdd0iCJYS/aNMGfvlFFvr2Qv7Z\nVnXsSMzo+6UnS/iGoUNhwQLbUdgTHg7TptHoinRee812MMJbOLIYcXut9WIPxXPxsT23GHFGhlk4\nddMmWLwYFRri0MJrJ0/CmDHw/vvw6KOmEOFllzm3cJvtxYQDddE54Sbvv28WJ/aDsSNdukD37uaE\nCsj/SmG5aTFiv2urtmwxf3Pbt8vfWUHIYsQe9vvvZnHPnTuhdGnb0bhNIH/eB+pzd+tixAC2Gi2P\n0hoeeww2bjQLqIbkf/JTa/j0U6hXD7Ztgw0bYORIk2AJIbKZPx++/dZ2FC7RuTPMm2c7CpETf2yr\natWCPXtsRyFEPoYPhyFDOHSiNJ06ybIDQpzn3Kq6/kBrsyLwhg2wZIlDZ9u3bIGbbjLzMz7/3FSq\nlkWEhchFhw6wcKHtKFyiY0dYutSsTy6Eu5UoAZUr245CiDysWwfr18NDD/Hqq1CzpikUJITII8lS\nSnXL/FnTc+FYcPw4JCU5lGClpsJzz8ENN0DXrrB2rZnr6G3CwkzXbmEvYWG2n4HwK7fdZnqI/WCs\nQaVKUL8+LF9uOxJxnr+3VTExtiMQIg+jR8MLL7D3SClmzDDfkYQQRl7nG4Zl/vzKE4FYU7asWcCq\nTJk8N1uwwBTN+ecfM6rwscegSBHPhFhQiYnm+2xhLzKxX7hUdLQZgrthg+1IXEKGDHod/22rMjKI\nqXHGdhRC5O7DD+HBBxk1CgYMgIgI2wEJ4T3yqjN5VCn1DVBTKXXJVwqtdWf3heU99u2Dxx+HzZth\n0iS4+WbbEQnhgzp0ML1ZTZrYjsRpnTubzrlx42xHIjL5b1v1xRfErDkB9LMdiRA5i4hgxw6YMwep\nhAnmhVi3jvFRr3L8OAwblv9DhP/KK8nqADQBPgbe8kw43mXSJNP1/eijZt5VyZK2IxLCRz3yiFlD\nxQ9cfjkULWp6tIVX8N+2KjqamJTJSJIlvNmuXab2RXi47Ui8QJUqMHIkUaNeZe5cSbICnSMl3Cto\nrQ8rpS4D0Fqf8EhkuKEsbnq6qVRxzz15LmC1axfUrg3NmsGUKXDFFQU/lM0S7kII9xo82HyheOkl\n+V8tDDeVcPeftuq8pCT+qdqSmqmbcPHL5dekhLtwB4e+m509C+HhHNmYQHSTUBIT/aMQSKB+L3V7\nCXegklJqA7AZ+FMp9YtSqhBph2XnzkGfPqZ76kzOY9zT0+Gdd+Caa8z1VasKl2AJIfybzMvySv7R\nVmUXFkZU8UOAKbwkhPByxf8/e/cdHkW5PXD8e1IogQQSagIhNAHFgnQQNIAUpalcEBDkoqBe5VpQ\nr4LyA8RrF9u1wVVQFFSw0RQVDVjggtKrIJgQihACJHRI3t8fs4kBUzbJ7s7u7Pk8zz7ZnZ2dOZPZ\n3XfPzDvnLQMtWlB1+3KqVrWqUavg5U6SNQUYbYxJMMbUAe53TQscZ87A0KGwd69VSjqffn+bN0OH\nDlZ32mXLrGlhhXWmVEoFrQ4drHE3lV8J/LYqH6EX1Kc8J9i+3e5IlMIaBOv227VCVmGuuAJ+/JF2\n7f78PamCkztJVgVjzHc5D4wxSUDgDOl9+jQMHGiVap83DyIiznn67Fl44gno2NHKw5KS4IIL7AlV\nKRUYwsPhmmvsjkKdJ7DbqoI0a0YUGVpUQPmHjz+GVat0rJfCtGsHK1fSrp1jiuqqEnLnXM0OERmH\ndVExwBBgh/dC8rAxY6xM6tNPrZEd89i6FW6+2Roe65dfICHBphiVCiZZWf47/kEx9OkDM2faHYXK\nI7DbqoJMmcIfU7Vym/IDWVnWhagvvsievUKNGv73VR4TYw19WpDoaB+chOveHbp1Y4RYB+RU8HLn\nTNYtQDXgE6xxSKq6pgWGsWNh9uxzEqzsbPjPf6wzujffDIsWaYKllE9Mnmw10g7Qo4f196jPyiuo\nIgR2W1UETbKU7WbOhKpVMV270bevNX6ovzl0qPBxQAtLwDymTBkoW5YyZQqtsaaCQJFnsowxh4C7\nfRCLd1Spcs7DXbvgllsgM9MqbNGokU1xKRWM2rSxxkT497/tjqTUKlWyrtuMjCzZ631yRDWIBHxb\nVQRNspStzpyBCRPg7bf59DPh7Fno3dvuoJTybw4oLOkeY+D996FFC0hMhB9+0ARLKZ9r08Y60rF7\nt92ReMTkyfD3vxd+5NTWI6rKMTTJUrbavBlatyarw1U8+qh1LbsTSpMr5U3O+oikp1t9Ac+TlgYD\nBlhfCl9+CY88opUDlbJFWBh06wYLF9odiUf07m11mcnKsjsS5XRnzuiZT2WjSy+FWbOYMcPqIJTT\nXdpJYmKs7n0F3bTWhyquIpMsEbnCnWklISIhIrJKREo/4kxysnWUfNGicyYvWGB9NyQkWMUtmjcv\n9ZqUUqXRs6djkqy6dSE2FpYvtzsS5c22ym7xpNCoQRbbttkdiQpmp05ZPQaffNKZ1xoVdT1XsQ9y\n/PEHnD7Ntm35Hv9XQcCdM1mvuDmtJO4BNpV6KVu3WjXYR43Krat8/Djcead1+cesWfDcc/kOj6WU\n8rUePWDPHscMH68DE/sNb7ZVtnqJe7ggYrd2GVS2CguD//7XGidQuaFXL1i5kmuu0UGJg1WBneZE\npB3QHqgmIqPzPBUFlLpop4jUBq4F/g2MLmL2gq1ZYyVWTzwBw4cDsG4dDBpkncFaswYqVy5ttEop\nj6laFf73P7uj8Jg+fWDYMHj6absjCU7ebqv8wXYa0qhcCr/+WsfuUFQQCw2Fq6+2O4oA0qYN/O9/\ntGt3BcuXQ9OmdgekfK2wM1llgIpYiVhknlsG8DcPrPsF4EGg5Iezf/nFur7jlVdg+HCMgZdfhi5d\n4KGHrGqjmmAppbypZUs4fFgLE9jI222V7X6jAY2yNut7TPlWZqb2cysNV5LVti0sW2Z3MMoOBZ7J\nMsYsAZaIyHRjTLKIVHRNL/WoMCLSE/jDGLNGRBKBAnv3TpgwIfd+YmIiiYmJfz5Zrx589BEkJrJ/\nv1XlKy3NejM3bFj0oHSF0QsclVLuCAmxCmDMmwf33293NP4pKSmJpKQkryzbm22Vv/iNBozI/Jhf\nD4+0OxQVTO66yyrJfM89dkcSmNq0gXHjaPsvePNNu4NRdhBTxHURInIxMAOIcU1KA4YZYzaUeKUi\nTwBDgLNAeayjjp8YY24+bz5TVHxgVQy85Rart+CECX+OsC1i32UfpVm3nXErpYpv/nx49llYssT9\n1wTz51xEMMZ49NJ5b7RVxVi3W21VSdWTnayp3ZtahzaQmenMogOeJBMFMz5IP1yesm4ddO0K27ZB\nVJTd0bitqO/Vwp73+HeyMVClCqfXbia6SQ3++AMqVvTg8n0oWNur0rZV7hS+mAKMNsYkGGMSgPtd\n00rMGDPWGFPHGFMfGAh8e36C5Y5Tp+C++2DkSKtr4L///WeCpZRSvtKlC6xeDQcP2h1JUPN4W+Uv\ndhFPpXoxVKxo2LPH7mhUUBgzBh55hM27o5g61e5gApQI3HgjZdL2cNNNsH+/3QEpX3MnyapgjPku\n54ExJgmo4LWICmIMnD2b+3DTJutMbEoKrF1rDTCslAoghw7BjBl2R+ER5ctD586OqUwfqPyjrfKC\nqOgw5Pul/PGHULv2uWP3xMQU/XqlimXJEutH1u2389BD1qVZThEd7eNxsF5/HS6/nClToH59Lyzf\nRwr7v+l3UMHc6S74KbAKqxsGWN38WhhjrvdybIiIAUMoZ3mT29lBfZ7gEbdfHx1t3+CN2l1QqSJk\nZECtWrBvH1QI/N/Cb78NX3wBs2e7N38wf8691F3Q1rbKm90Fc9x6q3Vw8bbb8q47eN9HBdHugqVg\nDLRrB6NGsSR+CH//O2zZAmXL2h2Ye/Tz4HtO/p/7orvgLUA14BPXrZprmk+YY8c52+t6bu2xh/t+\nv5e+feHyy60xBwobNK5EA8cppXwnKgpat4Zvv7U7Eo/o2RO++srqxqxsYWtb5QuNGmkVS+VlxsCD\nD5I9cDAPPGCNjhMoCZZS/qbIJMsYc8gYczdwFXClMeYeY0wJa/aVwNVXQ+XKLL53Hpd3qEDDhlb1\nwCZNfBaBUspbrr0WFiywOwqPqFHDGgfFS0X0VBFsb6t8QJMs5XUhIdCvHx/NsX4e3nijzfEoFcCK\nTLJE5BIRWQ1sADaKyC+uKk4+cbrtlTwc9y433xLG22/Dc8/pURWlHKNnT+tCJof0NejTB+bOtTuK\n4GR3W+ULmmQpX1mwwKqYGuJOfyelVL7c+fi8iY0Vm9ovfYqNm4Q1a6xqokopB2ncGMLCYIPXq2z7\nRE6S5ZCcMdDY2lZ53alTNEj+lt9/P6cGlFJe8e67WlDMY3btgm++YdMmx/SOV27y++qCw4dbP1qq\nVfPVGpVSPiNijdJYtardkXjEhRdaZ9rXrLE7kqDk2OqCABhDuRuuJTbW8PvvdgejnE7HYvOgXbtg\nzBi2bbN6Y6ng4U6StUNExolIXdftUWCHtwPLcddd+mFXytG6doXYWLuj8AgR7TJoI1vbKq8rVw5i\nY2lU+7h2GVSetW4dTJtmdxTO1awZbNxIq0tOsmKF9nQIJsWtLvgxUBWHVWxSSilP0STLNs5vqxo3\npnHl/WzZYncgyjGMgdGj4fhxuyNxrogIaNyYuANrKVcOdu60OyDlK2GFPSkiocAjropNqhhyBm4r\n6WuVUoHpiiusRjQ1FWrXtjua4BA0bVXjxlyY+hurNtezOxLlFAsWwJ49mNtuJ+2AXprhNa1bw4oV\ntG7dhhUrAntgYuW+Qs9kGWOygA4+isVR0tOLHsdLx/dSynnCw63K9PPn2x1J8AiatqpxYy48tYbN\nm+0ORDnC6dPwwAPw/PPM/jSMG26wOyAHcyVZrVrBypV2B6N8pdAzWS6rRWQuMBs4ljPRGPOJ16JS\nSgWfnI7qDrgIs08fmD4d7rjD7kiCivPbqjZtuHDvMja9an1cHPBRUXZ66SWoX58TV/XgwQutioLK\nSzp3BqBPW/jtN5tjUT4jpogr8EQkv6shjTHG633dRcQUFZ9SyiGuvRbGj4c2beyOpNSOHLG6Cu7d\nCxUr5j+PSPBeAC0iGGM8miIES1tlDFSpAps3WwNgB/P7qCAyUTDj9Z9SKGOgb194/nkmfXAB69bB\n7Nl2B1V6+nnwPSf/z0vbVhV5JssYM7ykC1dKKbddfLE1MLEDkqxKlaBdO/jqK7QLjo94s60SkRDg\nZyDVGNPHW+txLxZrqICcJEupEhGBuXNJTrZOaGkXNqU8T8fyVkr5h549rYuwHUKrDDrKPcAmu4PI\nkZNkKVVa998P99wD9bSWilIep0mWUso/tG9vdVbft8/uSDyid28rZ8zKsjsSVRoiUhu4Fviv3bHk\n0CRLecrEifDgg3ZHoZQzaZKllPIP4eHWwMRffGF3JB6RkAC1asGyZXZHokrpBeBBwG+uOtAkS3lK\n06bWONdKKc8r8posEakBPAHEGWOuEZGLgHbGmLe8Hp1SKrj07AkbNtgdhcfkdBns4Pzi4rbzRlsl\nIj2BP4wxa0QkESjwAugJEybk3k9MTCQxMbGkqy1caioXJm9g8+Ye3lm+cq60NOvUul7MZ58HH8Tc\nex9D/hXH1KnWOMWBrqhxYaOjA2dooqSkJJKSkjy2PHeqC34BTMMa6PEyEQkDVhtjLvFYFAWvW6sL\nKhVMHFaX+uefYcgQ2LLlr885uSJTUbxUXdDjbZWIPAEMAc4C5YFI4BNjzM3nzee7tmr1arKHDiNy\n5zr27rWKrATr+6ggWl2wADffbJU9feIJuyPxGr//Xu3ZE269lVZP3sALLwTHATi/3yeFKG1b5U53\nwarGmI+AbABjzFlArzJQSnmegxIsgObNITMTtm61O5Kg4PG2yhgz1hhTxxhTHxgIfHt+guVzjRoR\n8ts2GjUy+SbvSuXrm29g6VIYO9buSIKba1Di1q21omMwcCfJOiYiVXD1RxeRtsARr0allFIOEBJi\nFcD4/HO7IwkKwdFWVagAVatyYfwxvS5LuefECWtk9FdfZc6XFXnkEbsDCmKu7MqVaymHcyfJGg3M\nBRqIyI/Au8A/vRqVUko5xPXXwyef2B1FUPBqW2WMWWL3GFm5Gjfmwsp7NclS7pk0CVq04FD7ntxz\nD1xzjd0BBbFWreDnn2ndMluTrCBQaOEL1wCM5YCrgMZYF/1uNcac8UFsSikV8Dp1gkGDIDXVuhxC\neV7QtVVNmnDhsV+ZsfkCuyNR/m7/fpg2DVav5l//gr59g+M6IL9VtSpUrUpjtpKWdiEHD0KVKnYH\npbyl0DNZxphs4FVjzFljzEZjzAbHNlpKKf+xbRssXmx3FB5RpozVZVDPZnlP0LVV/fpx4RUxeiZL\nFa16ddiyhe821+TLL+Gpp+wOSPHhh4TUqc2SJRAZaXcwypvc6S64WET6iTjsinSllP9KSYExY+yO\nwmP69YOPP7Y7CscLnraqUycuuLkdKSl2B6ICwfHwSowcCa+9BlFRdkejaNkSIiNp1sw6CKecy50S\n7plABawStiexumEYY4zXP6pawl2pIHXmDNSsCWvXOqKP3cmT1uZs3frnEDWBXNa2tLxUwj3o2qrG\njeHXX4P3fVQQLeF+ruPHYc4cq4K70wXz96q/CuR94vUS7saYSGNMiDGmjDEmyvVYj4UopbwnPNwa\nT2TuXLsj8Yhy5aBHD/jsM7sjca5gbKuaNrU7AhUIIiKCI8FSyt+4010QEYkWkdYicmXOzduBKaWC\n3HXXOSor6ddPr8vytmBrqy4p8TDLytH277c7AqUUbiRZIjICWAosAia6/k7wblhKqaDXvTssXw6H\nD9sdiUdcc421OYcO2R2JMwVjW6VJlvqLXbvg4oth9267I1FuCtSudKpo7pzJugdoBSQbYzoBlwPO\n+NWjlPJfFSrAe+9ZI/o6QMWK0LmzY3pA+qPgaqt+/plLftVqKioPY2DkSPjnP6FWLbujUYX5/HO4\n/XZefx0eftjuYJS3uPPr5aQx5iSAiJQ1xmzBGodEKaW8q08fR5XD0iqDXhVcbVVGBg2/eAWAzEyb\nY1H+4e234cABTt77MH37Qlqa3QGpAtWrB0uX0qCB1cNBOZM7SVaqiFQGPgO+FpHPgWTvhqWUUs7T\nqxckJemPYi8JrraqaVNCN60HDBs22B2Msl1KinVKZPp0Hp0YTpkyOsitX7voIkhNpVWjI6xaBVlZ\ndgekvCGsqBmMMde77k4Qke+ASsCXXo1KKaUcqHJl6NABFiywOxLnCbq2qnp1EKEcJ1i/PoJ27ewO\nSNlq3Di4916WHrqEmTNh3TqrdLbyU2FhcPnlRP/2M7GxXdi82bqUTjlLkUmWiNTJ83Cn629NQIdB\nVEqpYtIug94RdG2VCDRtSvzSVNavb2R3NMpuL71EpqnI31vAm29C1ap2B6SK1Lo1rFhB69ZdWLlS\nkywnKjLJAhYABmtgx3JAPWAroCN0KKV8IyvL+lHpgCIYffvC6NF2R+FIwddWNW1K06UbNclSULky\no0dCYiL07m13MMotrVvDp5/Suh1s2WJ3MMobpLij1ItIc+BOY8wI74R0zrpMceNTSjnQNdfAv/4F\nnTrZHYlHdOkC334bvKV7RQRjjFc7MwVFW7V2LY2blSUtpglpado9LIdMFMz44PtwzZ1rJVn+XCso\nJqbwYSyioyE9veTLFwmg79WzZyEkhGxCnHD8sEABtU/OU9q2qti71RizCmhT0hUqpVSxJSbCRx/Z\nHYXHDBhgdwTOFxRt1WWX8StNCA2FvXvtDkbZLRCKsR46ZP3gLugWVOMIhoVBiLMTrGDnzjVZeTu2\nhADNgT1ei0gppc7Xvz+0awf/+Q+EhtodTan16wd33AHHjlnDganSC+a26pJLYP16iIuzOxLlMxs3\nwgUXQJkydkeilCqAO/lzZJ5bWax+7329GZRSSp2jfn2oXRuWLrU7Eo/IuSh93jx743CYoG2rcpIs\nFST27IGrr4ZVq+yOxOdiYqzuZwXdoqPtjlCpP7lTwn2iLwJRSqlC9e8Ps2c75rosgFmzYOBAu6Nw\nhmBuqy69FL77zu4olE+cPWt9adx1F6cub0tZu+PxsZzuhkoFAne6C87DqtiUL2NMH49GpJRS+fnb\n32DsWLuj8KikJOtHgx59Lb1gbquaN4fJk+2OQvnEuHFQvjx/3DqW9hdZ3yHx8XYHpUrlt9/ITqjH\nhk0hXHqp3cEoT3Knu+AO4AQw1XU7CvwGPO+6KaWU9zVs6KjiF2BVGfzsM7ujcIygbKta8z8umvYg\nO3bA8eN2R6O8auFCeO89zk5/j0E3hTB4sCZYjtC1K2brr1xxRZAV/ggC7iRZVxhjbjTGzHPdBgMd\njTFLjDFLvB2gUko51cCB8MEHdkfhGEHZVh0imjKfz+aii2DdOrujUV712WcwaxbjXq5GaChMmGB3\nQMojWrcmdNVKmjeHn3+2OxjlSe4kWRVEpH7OAxGpB2g9LKWUKqVeveB//4P9++2OxBGCsq3aTkM4\neJDmTU/xyy92R6O8asoUPj/Ygfffh5kzHVFoVYE1KPGKFTl/lIO4k2TdBySJSJKILAG+A+7xblhK\nKeV8ERHQsyd8/LHdkThCULZVhhC49FJaVPk9GIvNBZUzZ+DBB636P9Wq2R2N8hhNshzLneqCX4rI\nBUAT16QtxphT3g1LKaWCw8CB8Oyz8I9/2B1JYAvqturyy2lufuGNVY3tjkR5UXg4rF6tY+s5zuWX\nw4YNtL7sFP/8Z1mMscrRq8BX4JksEWklIjUBXA3VZcBjwLMiEuOj+JRS6lxnzsD990NWlt2ReES3\nbta4oqmpdkcSmLStApo145L9i9m6FU4FR1oZtDTBcqAKFeCGG6hTbj8dO1qD1CtnKKy74JvAaQAR\nuRJ4CngXOAJM8X5oSimVj/Bwq25xUpLdkXhE2bJw3XXw4Yd2RxKwtK3q359yz/+bCy7QQYkdY/du\n6NvXOqjkYUUN6BsTHIcm/MuMGUideGbPhooV7Q5GeUphSVaoMSbddf9GYIox5mNjzDigofdDU0qp\nAtx0E7z/vt1ReIzDNsfXtK2qVAlq1qR5c/S6LCc4cQJuuAHatbMOKnlYzoC+Bd20jLhSnlFokiUi\nOddsdQG+zfNckddyKaWU1wwcCJ9+av0YcYDEREhL07MQJaRtlUuLFloCOuBlZ8Pf/w7167O620O8\n8YbdASmlSqqwJGsWsEREPsca4PF7ABFpiNUNQyml7BEXZ/2inD/f7kg8IiQEhgyBd9+1O5KApG2V\nS9u2sHy53VGoUnn0UUhNZc+/p3Hd9aJVBJUKYGKMKfhJkbZALPCVMeaYa1ojoKIxxuudEkTEFBaf\nUiqITZsGn39uDdAZgESsrjk5tmyBzp0hJQXCHH7+RUQwxnisflYwt1V530enT1vX0+zZA1FRtoTj\nF2SiYMYH4G+HpCQYMYKjXy+j4w3V6N8fxo71/GrO/+4p7vN2rtubsSnvCOR9Vtq2qtAky26aZCml\nCnTsmHWrXt3uSEokv4anTRuYOBF69LAnJl/xdJJlN39Jsjhzho6dw5kwAbp0sSUcvxCwSZYxnNmb\nRq/h1ahXD15/3TulvDXJ8lMbN0J6OivKduToUeugmxME8j4rbVvlzmDEHicitUXkWxHZKCLrlIYA\nmQAAIABJREFUReRuO+JQSgWwChUCNsEqyM03a5dBVULGQEICbS89xrJldgejSkSEh56rRpky8J//\n6FhJQWf9enjxRX791UqwVeCzJckCzgKjjTFNgXbAXSLSpIjXKKWUow0cCAsXQkaG3ZGogCMCl1xC\nu6hNel1WALv7bvjgA+d3GVb5aN0aVqygfXv46afAPfuj/mRLkmWM2WeMWeO6fxTYDNSyIxallPIX\nVapYXURmz7Y7EhWQ2rSh7bHFLF+uP9ACVd26OuBw0KpXD06coF7ZPZw9C7t22R2QKi27zmTlEpG6\nQDPgf/ZGopRS9tMug6rE2rQhbuPXVKgA27bZHYwqVEYGDBoEhw/bHYnyFyLQqhWy8s+zWU4QHR28\ng1/bekJaRCoCc4B7XGe0/mLChAm59xMTE0lMTPRJbEqpAGEMLF5sXekfQBcx5DQ8BSlqU6KjIT29\n8Hn8RVJSEklJSXaH4Xzt28PAgbS/NpsffwyhUSO7A1L5OnkS+vSBpk2tgaSVytG2LSxbRvv21/HT\nT1YX8kBXVDsVQM12sdlWXdA1eOR84AtjzEsFzKPVBZVShTPG+rHy5pvQsaPd0XjE/fdD2bLwxBMF\nzxPMFZv8jd9UFwTo1Ik3rprFsp01eecdW0KynV9XFzx1Cq67DipVYvEt77NmfSj33+/bELS6oB/b\nsAF++43tTfuyYwd062Z3QN7nz/s0YEu4i8i7QJoxZnQh82iSpZQq2vPPW5WZpk+3OxKP2LIFOnWy\nxswKD89/Hn9umIqiSZYn1/3X98HWrdC1KyQnO/socUH8Nsk6fRr69YOyZVl29yz6/i2cOXPgyit9\nG4YmWcqf+PM+DdQS7lcANwGdRWS1iKwSEYePDKOU8pqhQ61BiR1Slq9JE7jgApg3z+5IVCBq1AjO\nnoUdO+yORJ3jww8hJIQf75pJ37+F8957vk+wlFK+Y1d1wR+NMaHGmGbGmMuNMc2NMV/aEYtSygGq\nV7euyfrwQ7sj8ZjbboOpU+2OQgUiEetM6Hff2R2JOseQIXx/78dcf2MZ3n8/OLqCKRXMbK8uqJRS\nHnHrrfDWW3ZH4TH9+sHKlfD773ZHovxZQZW7Zs6EkSMLr+rl9Mpe/iYrW7j/oTBmzrS6czpRTEzh\n77fo6MJfX1QluqJer5Q/0eHulFLO0K2bVcbIGEdciFK+PAwZYuWNkybZHU3wEpHawLtADSAbmGqM\nedneqP5UUOWu336z6sDs3l26KpbKc0JDrbLcTh5o+NCh0l1fEygVU5Vyh57JUko5Q1iYlZU46Ffj\nyJHw9tvW9TXKNmeB0caYpkA74C4RaWJzTIU7cYL6G+ZSpgxs3Gh3MEEqIyPf0WSdnGApD7r/fti4\nkX/8A1atsjsYVVKaZCmllJ9q2hTq1oWFC+2OJHgZY/YZY9a47h8FNgO17I2qCCEhyNAh9Ox8ggUL\n7A4mCKWnw9VXw7RpdkeiAtWRI/Ddd4SEwLff2h2MKilNspRSyo/dfju89prdUSgAEakLNAP+Z28k\nRShbFjp1one15cyfb3cwQSY1Fa66ChIT+a7DOL8tTa38XMeO8MMPXHUVLFlidzCqpPTEtVJK+bEB\nA+DBB62xjxo3tjua4CUiFYE5wD2uM1rnmDBhQu79xMREEhMTfRZbvnr2JPG7d7lxXScOHoQqVewN\nJyisWwe9epE96p+MSXuAeaOE5cshKsruwFTA6dABxo7lyhcMt98uZGVZ1/Qp70pKSiIpKcljy7Nt\nMGJ36GDESqkSOXECjh6FatXsjsQjxo2Dw4fhlVf+nObPAzgWJdAGIxaRMGA+8IUx5qV8nve/tio1\nFZo147r2+/nbgBCGDMl/tkB+HxXElsGId+2CFi04/fwr3LzgRlJSYO5cqFrVt2G4w5sD/jrx/WQL\nYyA+Hr77jia9L2DWLLj8cruD8g5/fs8E5GDESinlVS+/DGPG2B2Fx9xxB7z/vtVNX9nibWBTfgmW\n36pdGxo3pne9DXz+ud3BBIH4eA7OX0bi6zciYl1H448JlgoQItbYj4sXc9VVsHSp3QGpkgjIM1l1\n69YlOTnZhoiUKp2EhAR+14GPvG//fqtv3Y4djhlYZdAgaNsW7rnHeuzPR/+KEkhnskTkCmApsB4w\nrttYY8yXeebxvzNZAN9+y8GwGtTv3ZTUVIiM/Ossgfw+KogtZ7KAXr2geXOYMAFC/PgQtp7JChB7\n90JUFIdOVyAy0rmVKf35PVPatiogkyzXRtsQkVKlo+9dHxoyxPrFM3q03ZF4xLJlMHQo/Pqr9QPO\nnxumogRSkuUOv02yXHr3tq7tGzr0r88F8vuoIHYlWcePQ0SEz1dbbJpkKX/iz+8Z7S6olFL5GTUK\nXn0VsrLsjsQj2raFypW1nLsqvptugpkz7Y7CQbZty3cAskBIsJRSvqNJllLKmdq2hRo1cMoFKSLW\nSblnn7U7EhVoeveG5cth9267I3GARYusym9r19odiVLKz2mSpZRyrqeegpo17Y7CYwYMgJQUq+ug\nUu6qUAEGD4YpU/76XHS0lcAXdIuJKfl6Y2K8t2yfy8qCSZPg738n+fk5PLppsN92cSqtot4Thd0c\ncgms8iFvfgfZTZMsH0pOTiYkJITs7OxSL6tevXp86+Yw4O+88w4dO3bMfRwZGemx4gtPPvkkt912\nG+DZ7QPYtWsXUVFReg2TKrkrr4T27e2OwmPCwuD+++Hpp+2ORAWauwYfYsoUOH363Onp6db1EAXd\nDh0q+ToPHfLesn1q3z7o3h2++YbPx/1Mq9EdqVvX+gHoREW9Jwq7pafbHb0DHT4MZ8+SmgqnTtkd\njOd58zvIbppkeVhRyY/Y9K2cd72ZmZnUrVu30PmXLFlCfHx8kcsdM2YMU/IcHi3N9p3/v4uPjycj\nI8O2/5lS/uiWW/RMliqmEye46IYmXFTvBB9+aHcwAWjJEk63aMeIeot58MVafPkljBhhd1AqaHTu\nDD//zMCBWso90GiSpfJljCkyuclySEEBpQJJRATcdZfdUaiAUr483HEHYyq+wqRJcPas3QEFlh2t\nbuTSzyeRJWGsWmUVLVXKZxITYfFiunWDr76yOxhVHJpkeVF2djYPPPAA1apVo2HDhixYsOCc5zMy\nMhgxYgRxcXHEx8czbty43K5xO3bsoEuXLlStWpXq1aszZMgQMjIy3Fpveno6ffr0oVKlSrRt25bf\nfvvtnOdDQkLYsWMHAAsXLqRp06ZERUURHx/P5MmTOX78ONdeey179uwhMjKSqKgo9u3bx8SJE+nf\nvz9Dhw6lcuXKvPPOO0ycOJGheeoCG2N46623qFWrFrVq1eL555/PfW748OH83//9X+7jvGfLbr75\nZlJSUujduzdRUVE899xzf+l+uHfvXvr27UuVKlVo1KgR//3vf3OXNXHiRG688UaGDRtGVFQUl1xy\nCatWrXLr/6VUoMlJslJT7Y1DBZDRo+my/kXiKh5hxgy7gwkssbHW5Z3TpkHFinZHo4JOt27w5Zd0\n7apJVqDRJMuLpkyZwsKFC1m7di0///wzc+bMOef5YcOGUaZMGXbs2MHq1av5+uuvcxMHYwxjx45l\n3759bN68mdTUVCZMmODWeu+8804iIiL4448/eOutt3j77bfPeT7vGaoRI0YwdepUMjIy2LBhA507\ndyYiIoIvvviCuLg4MjMzycjIoKareMDcuXMZMGAAhw8fZvDgwX9ZHkBSUhK//fYbixYt4umnn3ar\n++S7775LnTp1mD9/PhkZGTzwwAN/WfaNN95InTp12LdvH7Nnz2bs2LEkJSXlPj9v3jwGDx7MkSNH\n6N27N3fp4X6V14ED1iDFDlClivX3ySftjUMFkEqVkBdf4Ikjd/F/4wxuHrMLLtnZ+VYNLF8errvO\nhniUArjqKli7llYND5GSYl0iqAKDM5OsCRPyL1FSUJKS3/xuJjSFmT17Nvfeey9xcXFUrlyZMWPG\n5D73xx9/8MUXX/DCCy9Qrlw5qlatyr333susWbMAaNCgAV26dCEsLIwqVapw3333sWTJkiLXmZ2d\nzSeffMKkSZMoV64cTZs2ZdiwYefMk7eQRJkyZdi4cSOZmZlUqlSJZs2aFbr8du3a0bt3bwDKlSuX\n7zwTJkygXLlyXHzxxQwfPjx3m9xRUJGLXbt2sWzZMp5++mnCw8O57LLLGDFiBO+++27uPB06dKB7\n9+6ICEOHDmXdunVur1cFgRdfhPHj7Y7Co2bNsqoNKuWWAQNo3+I03aNXkKc5UgDJydYZg9Gj/Xdk\nVBWcypeHK68k7Nuv6NwZvvnG7oCUu5ybZOVXoqSwJMvdeYthz5495xSPSEhIyL2fkpLCmTNniI2N\nJSYmhujoaO644w7S0tIA2L9/P4MGDaJ27dpUrlyZIUOG5D5XmAMHDpCVlUXt2rXzXe/5Pv74YxYs\nWEBCQgKdOnVi+fLlhS6/qGIYIvKXde/Zs6fIuIuyd+9eYmJiiMgz2mNCQgK78wz8UjNPqe6IiAhO\nnjzpsUqHygHuuw8+/NBRWcntt8O//213FCpgiMBbb/HsB/HMmweffGJ3QH4gK8s6ANOiBemXd2F4\n3CKOHtNiS8rPDBwIGRkMHGh3IKo4nJlk+YnY2Fh27dqV+zg5OTn3fnx8POXKlePgwYOkp6dz6NAh\nDh8+nHv2ZezYsYSEhLBx40YOHz7Me++951Yp82rVqhEWFnbOelMK+VHZokULPvvsMw4cOEDfvn0Z\nMGAAUHCVQHcq/Z2/7ri4OAAqVKjA8ePHc5/bu3ev28uOi4sjPT2dY8eOnbPsWrVqFRmPUgBUrQq3\n3WZdXOEQDzwAc+bAzp12R6ICRmQk0U3j+OQTK0lfs6Z0iytsLCy/HzNp82Zo25bsTz/ntSE/0Wja\nGJpeFkb58nYHVjpFjU/m9/tF/dWQITByJP37W3dVYNAky4sGDBjAyy+/zO7duzl06BBP5xncpmbN\nmnTr1o377ruPzMxMjDHs2LGDpa76nJmZmVSsWJHIyEh2797Ns88+69Y6Q0JCuOGGG5gwYQInTpxg\n06ZNvPPOO/nOe+bMGWbOnElGRgahoaFERkYSGhoKQI0aNTh48KDbxTZyGGOYNGkSJ06cYOPGjUyb\nNo2BrkMvzZo1Y+HChRw6dIh9+/bx0ksvnfPamjVr5hbkyLs8gNq1a9O+fXvGjBnDqVOnWLduHW+9\n9dY5RTfyi0Wpc9x/v3U2K8+BgEBWpQrceSc8/rjdkahA07IlvP469OgBP/9c8uUUNhaW34+ZFBbG\nlsQ7uGjftyza2YhffrEOXLiawYBV1Phkfr9flHIITbI8LO/ZmJEjR9K9e3cuu+wyWrZsSb9+/c6Z\n99133+X06dNcdNFFxMTE0L9/f/a5rmgcP348v/zyC5UrV6Z3795/eW1hZ31eeeUVMjMziY2N5ZZb\nbuGWW24p8LUzZsygXr16VK5cmSlTpvD+++8D0LhxYwYNGkT9+vWJiYnJjcud7b/qqqto2LAhXbt2\n5V//+hddunQBYOjQoVx66aXUrVuXHj165CZfOR5++GEmTZpETEwMkydP/kuss2bNYufOncTFxdGv\nXz8mTZpEp06dCo1FqXNUqwYjR8Jjj9kdiceMHg1z51oH5ZUqjr/9Dd58E665xjDl2s8wy5YH1fVI\na45dQPePbuXpZ4TPP4dCetYrpVSxiT8f7RcRk198IqJnKVRA0veuHzh0yLrIvYgiL/5O5M/fw5Mn\nw7ffwvz59sbkLtfnwDFHQQpqqwLFlo1Z3NQjjYi0FJ6p8gzthjWC/v3hssuQECk078r7Piyu0ry2\n0OVOFMz48xaclZXvKaqTJ6GAGk4By1v/V6XsYOf7ubRtlSZZSvmQvneVp+RteE6dgosuss5KXH21\nvXG5Q5Ms/5OVBdOnGR4ff5pY9nHnmRe57rLfifzm08BOslJS/ixkdd5wJk6lSZZykkBOsrS7oFJK\nBbiyZeGZZ6xLzrKy7I5GBaLQULh1hLA9pSwPvJLAB60nU3vFx4DVHfX0aZsDLK60NOsDcfnlJJ+J\nZdolk+2OSKnSW7oU5szh66/RQcUDgCZZSinlADfcAFFRMH263ZGoQBYaar2X5s8Xtv9m/UR47jmI\njYURI2DxYsh67gWrUufy5YCfnTLJzLT+NmnC3p0n6X/hBros+zcValW2Ny6lPOHUKXjuOcLC4IUX\n7A5GFUW7CyrlQ/reVZ6SXxeKlSuhTx/YtMm/yzRrd8HAkfM+27XLKsw5axbs2ZXFgIarGLTrGaJS\nN3DR08Nh6FArEyvBsj3iwAF4+WV44w1kVBrDvtnOktQGjBtnhRYe7qH1BADtLuhgZ85AbCxZP68m\nvn08330HjRvbHZR3aXdBpZQKRMbAqFFW1yIHaNUKrr8eHn7Y7kiU08THW+XNf/kFlvwQSkz3Vvy9\nwkc0ZzXjZl7Ir417Q2qq7wPbuRPuvhvTqDHfrIqhayNrPMp2QxqwdSvccktwJVjK4cLDoXdvQj//\nhAEDrIMeyn9pkqWUCl4iEBYGDz1kdyQe8+STVpXBH3+0OxLlVI0awfjxsHmzcIpyHOvcm6siVtKm\nX21eeQX27/dRIMePc+zKa5i69Uqaxf3B3Tvv46aREYA10HKZMj6KQylfcmVXgwZZSZaetfRfmmQp\npYLbY4/BokXwww92R+IRlSrBiy9aPzIDrliBCig5QxFOngy7UoXHHoMVK6wkrFcv+OADOP7zJisj\nW7kSsrM9sl5jYO1aGP1oBAknNjO/3N947sVwNmyAv//dI6uwXUyM9f/N7xYTY3d0ylZdu0JyMq0r\nbeXsWVi3zu6AVEH0miylfEjfu35qzhyrzPOqVQFz+LuwfurGWD9y27WDRx/1bVzu0GuyAkdR10Pk\n9/zRo/DZZ1b1sxXLs7gufhWDM97gylNfU7Z7IrRpA127Io0bFbzsw4etEbZXrYKkJMxNQ9h0QV/m\nzoX337fqW9x0k1V/o27d82LKb5ysAFPY/70k+0Q5zPbtUK8ef6SFUr36nwc8nCiQr8nSJEsVS0hI\nCNu3b6d+/fpFzjtx4kS2b9/OjBkz2LVrF02bNuXIkSOIB74N/vGPf1C7dm0eeeQRlixZwpAhQ9i1\na1eplwvwww8/MHLkSDZv3uyR5eWl710/ZQxcd5012NSTT9odjVuKanhSUqBlS/jyS2je3HdxuUOT\nrMBR2h/0e/daXZo++gg2bsimXZ09JFZYyWUdIun14tVkZUFI3j41zz2HeeJJjpwqx5Y63Vgd3ZmV\nYe34+rd6hJUJ5ZprYNAguOKK816XNyZNsjTJUo4RyEmWdhf0gpkzZ9KqVSsiIyOpVasWPXv25Ec/\nuEDinXfeoWPHjqVaRnETpJz54+PjycjIKPL17sb4+uuv88gjj5Q4rrxCQkLYsWNH7uMOHTp4JcFS\nfkwEpk616lc75NdJnTrw0ksweDAcP253NCpYxcbC6NFWtfddqSGMeqo26Vddz8ubrFGzy5aFGjWs\nLoYNG0Ldl++jwsk06oSmclfENH65aCgtBzbkm29D2bEDXnsNOnYsOMFSSil/EWZ3AE4zefJknnnm\nGd588026detGmTJlWLRoEfPmzeOKK64o1rKysrIIDQ0tcpq7jDGlPovk7aO17sSYnZ1NiAdbWE+c\nWVMOUL06PP643VF41KBBVhGMBx+EV1+1OxoV7CpXtoYY6NPHeixiHQBIS4MjR6xjHKGhoVSrBpGR\n9saqlFKlpceCPCgjI4Px48fz2muv0bdvX8qXL09oaCjXXnstTz31FACnT5/m3nvvpVatWtSuXZv7\n7ruPM2fOALBkyRLi4+N55plniI2N5ZZbbsl3GsD8+fO5/PLLiY6OpkOHDqxfvz43jtTUVPr160f1\n6tWpVq0ad999N1u2bOEf//gHy5YtIzIykhjXlbOnT5/mgQceICEhgdjYWO68805OnTqVu6xnn32W\nuLg4ateuzbRp0wpNSH7//XcSExOpVKkS3bt3Jy1PWezk5GRCQkLIdl34PH36dBo0aEBUVBQNGjRg\n1qxZBcY4fPhw7rzzTnr27ElkZCRJSUkMHz6c//u//8tdvjGGJ598kmrVqlG/fn1mzpyZ+1ynTp14\n++23cx/nPVt21VVXYYzh0ksvJSoqitmzZ+f+z3Ns2bKFTp06ER0dzSWXXMK8efNynxs+fDijRo2i\nV69eREVF0a5dO3bu3Fn4G0UpH3r1VViwAObOtTsSpf4qPNw629WkCVxwAdSvrwmWUsoZNMnyoGXL\nlnHq1Cmuu+66Aud5/PHHWbFiBevWrWPt2rWsWLGCx/McPd+3bx+HDx8mJSWFKVOm5Dtt9erV3Hrr\nrUydOpX09HRuv/12+vTpw5kzZ8jOzqZXr17Uq1ePlJQUdu/ezcCBA2nSpAlvvPEG7dq1IzMzk/T0\ndAAeeughtm/fzrp169i+fTu7d+/mscceA+DLL79k8uTJLF68mG3btvHNN98Uuv2DBw+mVatWpKWl\n8eijj/LOO++c83xOgnb8+HHuueceFi1aREZGBj/99BPNmjUrMEaAWbNmMW7cODIzM/M9I7hv3z7S\n09PZs2cP06dP57bbbmPbtm0FxpoTy5IlSwBYv349GRkZ9O/f/5znz549S+/evenRowcHDhzg5Zdf\n5qabbjpn2R9++CETJ07k8OHDNGjQ4JxujErZrXJl65qYESNg61a7o1FKKeUx6enw44/s22cVyVX+\nxZFJVkFlT4t7K66DBw9StWrVQruyzZw5k/Hjx1OlShWqVKnC+PHjmTFjRu7zoaGhTJw4kfDwcMqW\nLZvvtKlTp3LHHXfQsmVLRIShQ4dStmxZli9fzooVK9i7dy/PPPMM5cqVo0yZMrRv377AeKZOncoL\nL7xApUqVqFChAg8//DCzXKPbzZ49m+HDh3PhhRdSvnx5JkyYUOBydu3axc8//8xjjz1GeHg4HTt2\npHfv3gXOHxoayvr16zl58iQ1atTgwgsvLHBegL59+9K2bVuA3P9LXiLCpEmTCA8P58orr6Rnz558\n9NFHhS4zr4K6QS5btoxjx47x0EMPERYWRqdOnejVq1fu/wjg+uuvp0WLFoSEhHDTTTexZs0at9er\nlC+0awdPPAF9+1rdspRSSjnA7t0wYABHD51hyBCrsqfyH45MsozxzK24qlSpQlpaWm6XuPzs2bOH\nOnXq5D5OSEhgz549uY+rVatG+HnD058/LTk5meeff56YmBhiYmKIjo4mNTWVPXv2sGvXLhISEty6\nZunAgQMcP36cFi1a5C7rmmuu4eDBg7mx5u02l5CQUGAysmfPHqKjoylfvvw58+cnIiKCDz/8kNdf\nf53Y2Fh69+7N1iIOseeNIz/R0dGUK1funHXn/b+W1N69e/+y7oSEBHbv3p37uGbNmrn3IyIiOKrf\ncs6QmQmdOsG+fXZH4hEjRkDnzjB0qMeGK1JKKWWnSy6BJk1ouGImiYnw3//aHZDKy5FJll3atWtH\n2bJl+eyzzwqcp1atWiQnJ+c+Tk5OJi4uLvdxftc8nT8tPj6eRx55hPT0dNLT0zl06BBHjx7lxhtv\nJD4+npSUlHwTvfOXU7VqVSIiIti4cWPusg4fPswR16Hu2NjYc8qiJycnF3hNVmxsLIcOHeLEiRO5\n01JSUgr8P3Tt2pWvvvqKffv20bhxY2677bYCt7+w6TnyW3fO/7VChQocz1NebV8xfjTHxcX9pTR8\nSkoKtWrVcnsZKkBFRlpZSc+ejjk8+OKL1pms++93TBFFpZQKbmPHwhNP8NADWUyeDK7L/JUf0CTL\ng6Kiopg4cSJ33XUXn3/+OSdOnODs2bN88cUXPPzwwwAMHDiQxx9/nLS0NNLS0pg0aRJDhw4t1npG\njhzJG2+8wYoVKwA4duwYCxcu5NixY7Ru3ZrY2Fgefvhhjh8/zqlTp/jpp58AqFGjBqmpqbmFNkSE\nkSNHcu+993LgwAEAdu/ezVdffQXAgAEDmD59Ops3b+b48eO512rlp06dOrRs2ZLx48dz5swZfvjh\nh3MKRMCfXfL279/P3LlzOX78OOHh4VSsWDH3zNv5MbrLGJO77u+//54FCxYwYMAAAJo1a8Ynn3zC\niRMn2L59O2+99dY5r61Zs+Y5JdzzatOmDRERETzzzDOcPXuWpKQk5s+fz6BBg4oVnwpQjz4KzZrB\nwIGOaLnKlLEGif3mG3j6abujUUopVWqdO0OVKrT8fQ6NG8N5l8MrG2mS5WGjR49m8uTJPP7441Sv\nXp06derw2muv5RbDePTRR2nZsiWXXnopl112GS1btix2oYQWLVowdepURo0aRUxMDI0aNcotMhES\nEsK8efPYtm0bderUIT4+PvfapM6dO9O0aVNq1qxJ9erVAXjqqado2LAhbdu2pXLlynTr1o1ff/0V\ngB49enDvvffSuXNnGjVqRJcuXQqNa+bMmSxfvpwqVaowadIkhg0bds7zOWejsrOzmTx5MrVq1aJq\n1aosXbqU119/vcAY3REbG0t0dDRxcXEMHTqUN998kwsuuACA++67j/DwcGrWrMnw4cMZMmTIOa+d\nMGECN998MzExMcyZM+ec58LDw5k3bx4LFy6katWqjBo1ihkzZuQuW8u/O5wIvPGGdX/oUDh71t54\nPCA62rpA+s03wfWxU0opFahEYNw4eOwxHn8sm8cfd0RT5Qjiz6PUi4jJLz7XCMw2RKRU6eh7N0Cd\nPGlVjRg1Cgop6OJLIqXr8rdjh3UAdPRouPtuz8XlDtfnwDFHKApqq5ygqPdZad6HpX0PF7jciYIZ\nH9j7o7D/jTf3iQpQxsCmTdC0KampULu23QF5jp3v59K2VToYsVJKFaVcOWuwqTDnfGXWrw9LlliJ\n1tGjMGZMyaqqKqWUspkING0KOCvBCnTaXVAppdzhoAQrR0ICfP89zJ4Nt93miMvOlFJKKb+gSZZS\nSgWxuDhYuhT27IGuXa2/SimllCodTbKUUqqkNmyA6dMD/gKIyEiYO9caFqxFC3AVGFWt71ckAAAQ\nM0lEQVRKKRWoXF0T8oxuo3xMkyyllCqNF1+EPn1g7167IymV0FAYPx5mzoThw+GeeyAjw+6olFJK\nFduCBdCrFwvmZtG1K5w6ZXdAwUmTLKWUKqmLL4YVK6yxtJo1g9deC/gLmzp1gnXrrGIYF10Ec+YE\n/Ik6pZQKLt27w9mzXPvl3dSsYRg2DLKz7Q4q+ARkCfe6deuSnJxsQ0RKlU5CQgK///673WEob1i7\nFu6/38pOli3zeqk+X5S1/f57uPNOqFgRHnsMrr7aM5ulJdwDh5Zwt4eWcFelduQIdOnC2Ss703nl\n0zRuIrzxhtVrIZAEcgn3gEyylFLKLxkDKSlW2T4v81XDk5UFH30EEyZAtWrWmJfdu5dumZpkBQ5N\nsuyhSZbyiIMHoUcPzjS8kD5/TCUiuizvvGMdOAsUgZxk2dZdUER6iMgWEflVRB6yKw7lX5KSkuwO\nQfmYo/a5SMEJ1oEDAfnLJzQUBg2CjRvhrrsgNdXuiHxL26qiJNkdgC0c9b1VTMG67QG53VWqwJIl\nhFcsy2fvHKFePTh5sviLCcht9wO2JFkiEgL8B+gONAUGiUgTO2JR/kU/yMEnaPb5qFFWAnbbbfDJ\nJ5CWZndExRIWZiVbt95qdyS+o22VO5LsDsAWQfO9lY9g3faA3e6ICJg6lbLx1XnuOahatfiLCNht\nt5ldZ7JaA9uMMcnGmDPAB0Bfm2IpNm+92Uqz3OK+1t353ZmvsHkKei7QPrC6z92fR/d5AT74AL76\niqQyZWDKFGjQAOrVK9bAVLrPfc7nbVVx/mdFzVuc/XL+tMIee2O/evS9vdP919i93cVdbrDucydt\nd3GX69Vtf/ddOHiQDRtg/37d5+6stzjsSrJqAbvyPE51TQsI/vChK+1r9cdX8eg+d38e3ecFEIEm\nTUiqWhW+/BIOHYIvvoCaNfOfv0MH6NULRo6EMWPgySdJeuYZ6yKp/GzcCFu3ws6dVp++P/4gacGC\ngrsoHjli3TIySFq0yCrYcexYgfMnffONVQc4nxJVTtnn+fB5WxVsP0JKusxC5//d/dfYvd3FXW6w\n7nMnbXdxl+vVbf/vf6F+fap3bsqPtQbwdI/xvNF8Ck/fs4dnn0366zHAo0fh8GEydh0h/fcMDu/K\n5EhqJpmHszh6NJ/m6cwZOH2a00dPcyrzNN8sWsypzNOcOpGdf3OSZ/6cecPJf/6kpKTc+c8cs15z\n+uhpFn+1mNMnszl9+s/57drnthS+EJF+QHdjzG2ux0OA1saYu8+bL/AuYFBKKVWkQCh8oW2VUkoF\nt9K0VWGeDKQYdgN18jyu7Zp2jkBohJVSSjmWtlVKKaVKxK7ugiuBhiKSICJlgIHAXJtiUUoppfKj\nbZVSSqkSseVMljEmS0RGAV9hJXpvGWM22xGLUkoplR9tq5RSSpWUXw9GrJRSSimllFKBxrbBiJVS\nSimllFLKiTTJUkoppZRSSikPCsgkS0QiRGSliFxrdyzK+0SkiYi8LiIficgddsejvE9E+orIFBGZ\nJSJd7Y5HeZ+I1BOR/4rIR3bH4inB2lYF63d2MH9vOfHz6w7XZ3y6iLwpIoPtjsdXgnV/Q/E+5wF5\nTZaITAQygU3GmIV2x6N8Q0QEeMcYc7PdsSjfEJHKwLPGmJF2x6J8Q0Q+MsYMsDsOTwj2tipYv7OD\n+XvLSZ9fd7jGzjtkjFkgIh8YYwbaHZMvBdv+zsudz7ltZ7JE5C0R+UNE1p03vYeIbBGRX0XkoXxe\ndzWwCTgA6NgkAaSk+9w1T29gPhB0P1QCWWn2ucujwKvejVJ5kgf2uV8J5rYqWL+zg/l7y2mf3+Iq\nwfbXBna57mf5LFAPC+b9XoptL/pzboyx5QZ0AJoB6/JMCwG2AwlAOLAGaOJ6bijwAvAWMBlYBHxq\nV/x689k+nwzE5pl/vt3boTef7PM44Cmgs93boDef7fNY1+PZdm+DB7bHEW1VsH5nB/P3ltM+vz7Y\n/puAa133Z9odv6+2O888Ab2/S7rt7n7ObTuTZYz5ATh03uTWwDZjTLIx5gzwAdDXNf8MY8x9xphb\njTGjgfeBqT4NWpVKCff5aKCRiLwkIm8AC3watCqVUuzzfkAX4G8icpsvY1alU4p9fkpEXgea+dMR\n02Buq4L1OzuYv7ec9vktruJuP/Ap1v5+FZjnu0g9q7jbLSIxTtjfUKJt/ydufs5tGYy4ELX487Qr\nQCrWhv6FMeZdn0SkvK3IfW6MWQIs8WVQyqvc2eevAK/4MijlVe7s83TgH74MqhSCua0K1u/sYP7e\nctrnt7gK3H5jzHHgFjuC8oHCttvJ+xsK33a3P+cBWV1QKaWUUkoppfyVvyVZu4E6eR7Xdk1TzqX7\nPPjoPg8+TtvnTtue4gjWbQ/W7Ybg3nYI3u0P1u0GD2273UmWcG7VpZVAQxFJEJEywEBgri2RKW/R\nfR58dJ8HH6ftc6dtT3EE67YH63ZDcG87BO/2B+t2g5e23c4S7jOBn7AukE0RkeHGmCzgn8BXwEbg\nA2PMZrtiVJ6l+zz46D4PPk7b507bnuII1m0P1u2G4N52CN7tD9btBu9ue0AORqyUUkoppZRS/sru\n7oJKKaWUUkop5SiaZCmllFJKKaWUB2mSpZRSSimllFIepEmWUkoppZRSSnmQJllKKaWUUkop5UGa\nZCmllFJKKaWUB2mSpZRSSimllFIepEmW8hsicp2IZItII7tjKYiIjLE7Bk8RkdtFZEgx5k8QkfXF\nXMdiEalYyPOzRKRBcZaplFL+wIltloh8JyLNvbmOYi67t4j8q5ivySzm/LNFpG4hzz8rIp2Ks0yl\nQJMs5V8GAt8Dg7y9IhEJLeFLx3o0EJuISKgx5k1jzHvFfKnbo5eLyLXAGmPM0UJmex14qJgxKKWU\nP9A2y4vrcLVT84wxzxTzpcVppy4CQowxvxcy2yvAw8WMQSlNspR/EJEKwBXAreRpsETkKhFZIiLz\nRWSLiLyW57lMEZksIhtE5GsRqeKaPkJEVojIatcRqnKu6dNE5HURWQ48LSIRIvKWiCwXkV9EpLdr\nvmEi8rGIfCEiW0XkKdf0J4HyIrJKRGbksw2DRGSd6/aUG3HWd61jpWsbG+WJ8yUR+VFEtovIDfms\nK0FENovIeyKySUQ+yrOdzUUkybXcL0Skhmv6dyLygoisAO4WkfEiMtr1XDMRWSYia1zbXsk1vYVr\n2mrgrjzrv0hE/uf6X6wp4GzUTcDnrvkjXPtwtev/0981z/fA1SKi30VKqYAR6G2WiIS4lr9ORNaK\nyD15nh7g+n7fIiJX5FnHK3leP09ErnSjXSxJ+/e6iCxzbXPuel3t3mJXm/O1iNR2Ta8rIj+5tmNS\nnnXXdC17lWs7r8hnV+Ztp/L9nxhjUoAYEale4BtCqfwYY/SmN9tvwGBgquv+D8DlrvtXAceBBECA\nr4AbXM9lAwNd98cBr7juR+dZ7iTgLtf9acDcPM/9Gxjsul8J2AqUB4YB24GKQFngd6CWa76MAuKP\nBZKBGKyDF4uBPgXE+bLr/jdAA9f91sDiPHF+6Lp/IbAtn/UluJbb1vX4LWA0EAb8CFRxTR8AvOW6\n/x3wnzzLGA+Mdt1fC3Rw3Z8ITM4z/QrX/WeAda77LwODXPfDgLL5xPg7UMF1/wbgzTzPRea5vyhn\nf+tNb3rTWyDcHNBmNQe+yvM4yvX3O+BZ1/1rgK9d94fltF2ux/OAKwtbRwHb7E77l3ebh+V5zVxg\niOv+cOBT1/3PgZtc9+/MiQerTRzjui857dF58SUBTQv7n7juTwGut/t9p7fAuunRY+UvBgEfuO5/\niNWA5VhhjEk2xhhgFtDBNT0b+Mh1/z2so4oAl4rIUhFZ51pO0zzLmp3nfjfgYddZmiSgDFDH9dxi\nY8xRY8wpYBNWg1mYVsB3xph0Y0w28D5wZQFxdnAdBW0PzHat/02gRp7lfQZgjNkMFHT0LMUYszzv\ncoHGwMXA167lPgLE5XnNh+cvRESigErGmB9ck94BrnSdzapkjPnRNT3vUcplwCMi8iBQ1/V/Ol+0\nMeaY6/56oKuIPCkiHYwxefvMHzgvRqWU8neB3mbtAOqJ1WuiO5D3O/kT199f3FhOUbIofvs3m/y1\nw/p/gtUe5fz/ruDPfZG3nVoJDBeR/wMuzdMe5RWL1QZB4f+T/Wg7pYopzO4AlBKRaKAzcLGIGCAU\nq0/1g65Zzu9fXVB/65zp07DOIm0QkWFYRxZznP8l288Ys+28eNoCeZOGLP78rEhhm1LIc+fHGQIc\nMsYUdIFx3vUXZ7kCbDDG5NctAv66/UWtI9/pxphZri4svYCFInKbMSbpvNnO5pl/m1gXU18LPC4i\ni40xOd06ygEnCli/Ukr5FSe0WcaYwyJyGdAduAPoD4xwPZ2zrLzLOcu5l5iUyxtCfusogDvtX0Ht\nVGHXWuU8lxuLMeZ7EbkS6AlMF5HnzV+vQz6Oa1vO+5/cjtUT5FbXfNpOqWLTM1nKH/QH3jXG1DPG\n1DfGJAA7RSTn6F9rV1/sEOBGrOt4wHr//s11/6Y80ysC+0Qk3DW9IIuAu3MeiEgzN2I9LflfgLwC\n6+xPjOv5QVhHGvOL8wfXmZydIpIzHRG5tIB1FtSA1RGRNq77g7G2///bu3fQKoIojOP/Q2Ip2AhK\nUPGBXVBLbUxnF6y0UEG0FCRg6wPERlRQFBEfiAp2EotoKRHEIgSTkGhIIaaUFIYoPsDis5i5uUvY\ne6NkE+8N36/czM6e2cCc7O6ZyRSwPiddIqIz0sLehiR9Bb4U6tWPAa8lzQGzEbEvH5/fiTAitkr6\nJOkmqVSjLPapiNiW228Efkp6ClwB9hTa7QQmmsVoZtZC2j5n5bVRHZL6gbOkUrkytfwzDeyOZBOp\nxK/pNbIOlpb/it5SX/92lPr9e1M4Pn//ImIzMCPpAXCf8jFOAjty++I9OYfzlC2RH7KsFRwG+hcc\ne0Z90hwGbgHvgY+Snufj30nJbBzoIdWyQ5och0gT8GShz4VvwS4Ba/Ii1wngYoP4iufdBcYXLvCV\n9Jm0+9AgMAIMSxpoEGftOkeAk3kR7wTQ2yDORm/vpoBTEfEBWAfckfSblNAuR8RojmXvIv0AHAeu\n5nN2FWI8AdyOiHcLzj+UFzKPkEpbHpf0+QKobXvbDQzl9udJ9568kPiHpJkmsZmZtZK2z1lAFzCY\n5+Qn1HfPK80/uWx8Oo/pOqmUcLFrwNLzX9FpUvnfaD6/tllHHykXjpHK/2p6gLGcvw4BN0r6fEk9\nT5Xek4joBLaTfq9mfy1SybBZa4qI/cAZSb0lP/smae1/COufLEecEbEFGJDUXWW/VYqIDcAjSQea\ntOkD5iQ9XLnIzMyWx2rIWVVq9TFH2snxFWmDp9I/iCPiIGljkwsrGpy1PX/JsnbWLm8IlivOlh5/\n/rp3L5r8M2JglrTRhpnZatfSc/YyaekxS/pF2mm3q0mzDuDaykRkq4m/ZJmZmZmZmVXIX7LMzMzM\nzMwq5IcsMzMzMzOzCvkhy8zMzMzMrEJ+yDIzMzMzM6uQH7LMzMzMzMwq9Acnrs1eeJhvwgAAAABJ\nRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1, 2, figsize=(12,5))\n",
+ "\n",
+ "# Plot apparent open period histogram\n",
+ "ipdf = ideal_pdf(qmatrix, shut=False) \n",
+ "iscale = scalefac(tr, qmatrix.aa, idealG.initial_vectors)\n",
+ "epdf = missed_events_pdf(qmatrix, tr, nmax=2, shut=False)\n",
+ "dcplots.xlog_hist_HJC_fit(ax[0], rec.tres, rec.opint, epdf, ipdf, iscale, shut=False)\n",
+ "\n",
+ "# Plot apparent shut period histogram\n",
+ "ipdf = ideal_pdf(qmatrix, shut=True)\n",
+ "iscale = scalefac(tr, qmatrix.ff, idealG.final_vectors)\n",
+ "epdf = missed_events_pdf(qmatrix, tr, nmax=2, shut=True)\n",
+ "dcplots.xlog_hist_HJC_fit(ax[1], rec.tres, rec.shint, epdf, ipdf, iscale, tcrit=rec.tcrit)\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that in this record only shut time intervals shorter than critical time ($t_{crit}$) were used to minimise likelihood. Thus, only a part of shut time histrogram (to the left from green line, indicating $t_{crit}$ value, in the above plot) is predicted well by rate constant estimates."
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/Example_MLL_Fit_GlyR_4patches-checkpoint.ipynb b/exploration/.ipynb_checkpoints/Example_MLL_Fit_GlyR_4patches-checkpoint.ipynb
new file mode 100644
index 0000000..c86fb71
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/Example_MLL_Fit_GlyR_4patches-checkpoint.ipynb
@@ -0,0 +1,851 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# HJCFIT- maximum likelihood fit of single-channel data: \n",
+ "### Records at four concentrations fitted simultaneously "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some general settings:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import sys, time, math\n",
+ "import numpy as np\n",
+ "from numpy import linalg as nplin"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Load data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "HJCFIT depends on DCPROGS/DCPYPS module for data input and setting kinetic mechanism:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from dcpyps.samples import samples\n",
+ "from dcpyps import dataset, mechanism, dcplots, dcio"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# LOAD DATA: Burzomato 2004 example set.\n",
+ "scnfiles = [[\"./samples/glydemo/A-10.scn\"], \n",
+ " [\"./samples/glydemo/B-30.scn\"],\n",
+ " [\"./samples/glydemo/C-100.scn\"], \n",
+ " [\"./samples/glydemo/D-1000.scn\"]]\n",
+ "tr = [0.000030, 0.000030, 0.000030, 0.000030]\n",
+ "tc = [0.004, -1, -0.06, -0.02]\n",
+ "conc = [10e-6, 30e-6, 100e-6, 1000e-6]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Initialise Single-Channel Record from dcpyps. Note that SCRecord takes a list of file names; several SCN files from the same patch can be loaded."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "\n",
+ " Data loaded from file: ./samples/glydemo/A-10.scn\n",
+ "Concentration of agonist = 10.000 microMolar\n",
+ "Resolution for HJC calculations = 30.0 microseconds\n",
+ "Critical gap length to define end of group (tcrit) = 4.000 milliseconds\n",
+ "\t(defined so that all openings in a group prob come from same channel)\n",
+ "Initial and final vectors for bursts calculated asin Colquhoun, Hawkes & Srodzinski, (1996, eqs 5.8, 5.11).\n",
+ "\n",
+ "Number of resolved intervals = 14553\n",
+ "Number of resolved periods = 12322\n",
+ "\n",
+ "Number of open periods = 6161\n",
+ "Mean and SD of open periods = 1.288416455 +/- 1.982357659 ms\n",
+ "Range of open periods from 0.030309819 ms to 29.300385504 ms\n",
+ "\n",
+ "Number of shut intervals = 6161\n",
+ "Mean and SD of shut periods = 69.358758628 +/- 259.539574385 ms\n",
+ "Range of shut periods from 0.030003177 ms to 6902.281761169 ms\n",
+ "Last shut period = 115.868724883 ms\n",
+ "\n",
+ "Number of bursts = 1480\n",
+ "Average length = 6.106142638 ms\n",
+ "Range: 0.039 to 261.102 millisec\n",
+ "Average number of openings= 4.162837838\n",
+ "\n",
+ "\n",
+ " Data loaded from file: ./samples/glydemo/B-30.scn\n",
+ "Concentration of agonist = 30.000 microMolar\n",
+ "Resolution for HJC calculations = 30.0 microseconds\n",
+ "Critical gap length to define end of group (tcrit) = -1000.000 milliseconds\n",
+ "\t(defined so that all openings in a group prob come from same channel)\n",
+ "Initial and final vectors for are calculated as for steady state openings and shuttings (this involves a slight approximation at start and end of bursts that are defined by shut times that have been set as bad).\n",
+ "\n",
+ "Number of resolved intervals = 15939\n",
+ "Number of resolved periods = 12580\n",
+ "\n",
+ "Number of open periods = 6290\n",
+ "Mean and SD of open periods = 1.702516108 +/- 2.243856294 ms\n",
+ "Range of open periods from 0.030157962 ms to 24.172481848 ms\n",
+ "\n",
+ "Number of shut intervals = 6290\n",
+ "Mean and SD of shut periods = 70.374920964 +/- 2950.499773026 ms\n",
+ "Range of shut periods from 0.030011479 ms to 194377.349853516 ms\n",
+ "Last shut period = 0.045992190 ms\n",
+ "\n",
+ "Number of bursts = 6\n",
+ "Average length = 18819.672168031 ms\n",
+ "Range: 1522.551 to 43719.292 millisec\n",
+ "Average number of openings= 1048.333333333\n",
+ "\n",
+ "\n",
+ " Data loaded from file: ./samples/glydemo/C-100.scn\n",
+ "Concentration of agonist = 100.000 microMolar\n",
+ "Resolution for HJC calculations = 30.0 microseconds\n",
+ "Critical gap length to define end of group (tcrit) = -60.000 milliseconds\n",
+ "\t(defined so that all openings in a group prob come from same channel)\n",
+ "Initial and final vectors for are calculated as for steady state openings and shuttings (this involves a slight approximation at start and end of bursts that are defined by shut times that have been set as bad).\n",
+ "\n",
+ "Number of resolved intervals = 15085\n",
+ "Number of resolved periods = 10306\n",
+ "\n",
+ "Number of open periods = 5153\n",
+ "Mean and SD of open periods = 3.107396297 +/- 3.542747918 ms\n",
+ "Range of open periods from 0.030413088 ms to 46.681848165 ms\n",
+ "\n",
+ "Number of shut intervals = 5153\n",
+ "Mean and SD of shut periods = 165.682286024 +/- 6593.143939972 ms\n",
+ "Range of shut periods from 0.030006107 ms to 386315.155029297 ms\n",
+ "Last shut period = 0.060205570 ms\n",
+ "\n",
+ "Number of bursts = 12\n",
+ "Average length = 1513.309260650 ms\n",
+ "Range: 0.853 to 5742.387 millisec\n",
+ "Average number of openings= 429.416666667\n",
+ "\n",
+ "\n",
+ " Data loaded from file: ./samples/glydemo/D-1000.scn\n",
+ "Concentration of agonist = 1000.000 microMolar\n",
+ "Resolution for HJC calculations = 30.0 microseconds\n",
+ "Critical gap length to define end of group (tcrit) = -20.000 milliseconds\n",
+ "\t(defined so that all openings in a group prob come from same channel)\n",
+ "Initial and final vectors for are calculated as for steady state openings and shuttings (this involves a slight approximation at start and end of bursts that are defined by shut times that have been set as bad).\n",
+ "\n",
+ "Number of resolved intervals = 11116\n",
+ "Number of resolved periods = 7948\n",
+ "\n",
+ "Number of open periods = 3974\n",
+ "Mean and SD of open periods = 5.501930670 +/- 5.808946772 ms\n",
+ "Range of open periods from 0.031116215 ms to 54.734716301 ms\n",
+ "\n",
+ "Number of shut intervals = 3974\n",
+ "Mean and SD of shut periods = 127.277284861 +/- 4903.965950012 ms\n",
+ "Range of shut periods from 0.030000978 ms to 293057.556152344 ms\n",
+ "Last shut period = 2.376423450 ms\n",
+ "\n",
+ "Number of bursts = 19\n",
+ "Average length = 1176.491361390 ms\n",
+ "Range: 21.215 to 4484.782 millisec\n",
+ "Average number of openings= 209.157894737\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Initaialise SCRecord instance.\n",
+ "recs = []\n",
+ "bursts = []\n",
+ "for i in range(len(scnfiles)):\n",
+ " rec = dataset.SCRecord(scnfiles[i], conc[i], tr[i], tc[i])\n",
+ " recs.append(rec)\n",
+ " bursts.append(rec.bursts.intervals())\n",
+ " rec.printout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Load demo mechanism (C&H82 numerical example)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# LOAD FLIP MECHANISM USED in Burzomato et al 2004\n",
+ "mecfn = \"./samples/mec/demomec.mec\"\n",
+ "version, meclist, max_mecnum = dcio.mec_get_list(mecfn)\n",
+ "mec = dcio.mec_load(mecfn, meclist[2][0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "# PREPARE RATE CONSTANTS.\n",
+ "# Fixed rates.\n",
+ "#fixed = np.array([False, False, False, False, False, False, False, True,\n",
+ "# False, False, False, False, False, False])\n",
+ "for i in range(len(mec.Rates)):\n",
+ " mec.Rates[i].fixed = False\n",
+ "\n",
+ "# Constrained rates.\n",
+ "mec.Rates[21].is_constrained = True\n",
+ "mec.Rates[21].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[21].constrain_args = [17, 3]\n",
+ "mec.Rates[19].is_constrained = True\n",
+ "mec.Rates[19].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[19].constrain_args = [17, 2]\n",
+ "mec.Rates[16].is_constrained = True\n",
+ "mec.Rates[16].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[16].constrain_args = [20, 3]\n",
+ "mec.Rates[18].is_constrained = True\n",
+ "mec.Rates[18].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[18].constrain_args = [20, 2]\n",
+ "mec.Rates[8].is_constrained = True\n",
+ "mec.Rates[8].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[8].constrain_args = [12, 1.5]\n",
+ "mec.Rates[13].is_constrained = True\n",
+ "mec.Rates[13].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[13].constrain_args = [9, 2]\n",
+ "mec.update_constrains()\n",
+ "# Rates constrained by microscopic reversibility\n",
+ "mec.set_mr(True, 7, 0)\n",
+ "mec.set_mr(True, 14, 1)\n",
+ "\n",
+ "# Update constrains\n",
+ "mec.update_constrains()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "class dcpyps.Mechanism\n",
+ "Values of unit rates [1/sec]:\n",
+ "0\tFrom AF* \tto AF \talpha1 \t5000.0\n",
+ "1\tFrom AF \tto AF* \tbeta1 \t500.0\n",
+ "2\tFrom A2F* \tto A2F \talpha2 \t2700.0\n",
+ "3\tFrom A2F \tto A2F* \tbeta2 \t2000.0\n",
+ "4\tFrom A3F* \tto A3F \talpha3 \t800.0\n",
+ "5\tFrom A3F \tto A3F* \tbeta3 \t15000.0\n",
+ "6\tFrom A3F \tto A3R \tgama3 \t300.0\n",
+ "7\tFrom A3R \tto A3F \tdelta3 \t120000.0\n",
+ "8\tFrom A3F \tto A2F \t3kf(-3) \t6000.0\n",
+ "9\tFrom A2F \tto A3F \tkf(+3) \t450000000.0\n",
+ "10\tFrom A2F \tto A2R \tgama2 \t1500.0\n",
+ "11\tFrom A2R \tto A2F \tdelta2 \t12000.0\n",
+ "12\tFrom A2F \tto AF \t2kf(-2) \t4000.0\n",
+ "13\tFrom AF \tto A2F \t2kf(+2) \t900000000.0\n",
+ "14\tFrom AF \tto AR \tgama1 \t7500.0\n",
+ "15\tFrom AR \tto AF \tdelta1 \t1200.0\n",
+ "16\tFrom A3R \tto A2R \t3k(-3) \t3000\n",
+ "17\tFrom A2R \tto A3R \tk(+3) \t4500000.0\n",
+ "18\tFrom A2R \tto AR \t2k(-2) \t2000\n",
+ "19\tFrom AR \tto A2R \t2k(+2) \t9000000.0\n",
+ "20\tFrom AR \tto R \tk(-1) \t1000\n",
+ "21\tFrom R \tto AR \t3k(+1) \t13500000.0\n",
+ "\n",
+ "Conductance of state AF* (pS) = 40\n",
+ "\n",
+ "Conductance of state A2F* (pS) = 40\n",
+ "\n",
+ "Conductance of state A3F* (pS) = 40\n",
+ "\n",
+ "Number of open states = 3\n",
+ "Number of short-lived shut states (within burst) = 6\n",
+ "Number of long-lived shut states (between bursts) = 1\n",
+ "Number of desensitised states = 0\n",
+ "\n",
+ "Number of cycles = 2\n",
+ "Cycle 0 is formed of states: A3R A3F A2F A2R \n",
+ "\tforward product = 4.860000000e+18\n",
+ "\tbackward product = 4.860000000e+18\n",
+ "Cycle 1 is formed of states: AF A2F A2R AR \n",
+ "\tforward product = 3.240000000e+18\n",
+ "\tbackward product = 3.240000000e+18"
+ ]
+ }
+ ],
+ "source": [
+ "#Propose initial guesses different from recorded ones \n",
+ "initial_guesses = [5000.0, 500.0, 2700.0, 2000.0, 800.0, 15000.0, 300.0, 120000, 6000.0,\n",
+ " 0.45E+09, 1500.0, 12000.0, 4000.0, 0.9E+09, 7500.0, 1200.0, 3000.0, \n",
+ " 0.45E+07, 2000.0, 0.9E+07, 1000, 0.135E+08]\n",
+ "\n",
+ "#initial_guesses = [3687.69, 6091.43, 2467.35, 32621.5, 7061.15, 129984., 1050.69, 20984., 3387.64,\n",
+ "# 0.166224E+09, 20783.8, 6308.02, 2258.42, 0.332447E+09, 31335.4, 144.530, 831.686, \n",
+ "# 0.620171E+06, 554.457, 0.124034E+07, 277.229, 0.186051E+07]\n",
+ "\n",
+ "#initial_guesses = mec.unit_rates()\n",
+ "mec.set_rateconstants(initial_guesses)\n",
+ "mec.update_constrains()\n",
+ "mec.printout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Check data histograms and probability densities calculated from initial guesses"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plot dwell-time histograms for inspection. In single-channel analysis field it is common to plot these histograms with x-axis in log scale and y-axis in square-root scale. After such transformation exponential pdf has a bell-shaped form."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that to properly overlay ideal and missed-event corrected pdfs ideal pdf has to be scaled (need to renormailse to 1 the area under pdf from $\\tau_{res}$). "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "# Scale for ideal pdf\n",
+ "def scalefac(tres, matrix, phiA):\n",
+ " eigs, M = eig(-matrix)\n",
+ " N = inv(M)\n",
+ " k = N.shape[0]\n",
+ " A, w = np.zeros((k, k, k)), np.zeros(k)\n",
+ " for i in range(k):\n",
+ " A[i] = np.dot(M[:, i].reshape(k, 1), N[i].reshape(1, k))\n",
+ " for i in range(k):\n",
+ " w[i] = np.dot(np.dot(np.dot(phiA, A[i]), (-matrix)), np.ones((k, 1)))\n",
+ " return 1 / np.sum((w / eigs) * np.exp(-tres * eigs))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import missed_events_pdf, ideal_pdf, IdealG, eig, inv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAQxCAYAAADcAUeKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VNXWwOHfCoQSSCChB0IodqWoWEC8gnyKBcSrUkRA\nKWIBFdSriCUgqCBXrBdUihSF68WCIiBWsCBiBQRUlF5CSyBAEALZ3x97EidhJpmZTJ/1Ps88SU7Z\nZ80wzJp9zj5rizEGpZRSSimllFL+ERfqAJRSSimllFIqmmgnSymllFJKKaX8SDtZSimllFJKKeVH\n2slSSimllFJKKT/STpZSSimllFJK+ZF2spRSSimllFLKj7STpVQJROSAiDQKdRxKKaVUSTRfKRVe\ntJOlooKI5ItIkzK28bmI9HNeZoxJNMZsLFNwfiQi6SLymYgcEpE1ItKhlO3HisgeEdktImOKrXtc\nRFaKSJ6IPOZi354istGRuN8RkepO6yqIyFQR2S8i20VkaLF9W4rI9444vxORFsXWDxWRHSKyT0Qm\ni0i8b6/ICTFf4ngvvF1seXPH8s/8cRyllPKV5iu322u+QvNVNNFOlooWJc6qLSLlghVIgM0GfgBS\ngEeAt0SkhqsNReQ24BqgGdAc6CwiA502WQf8C/jAxb5nAi8DNwF1gMPARKdNRgJNgTTgUuABEbnc\nsW88MBeYAVR3/HxPRMo71ncEHgDaA+mOdkZ6+TqUZDfQWkSSnZbdDPzmx2MopZSvNF8Vo/lK81VU\nMsboQx8uH0AD4G1gF/aD4AXHcsF+YG4EMoFpQJJjXTqQD/QBNjn2He7UZhwwHPgD2A98B9R3rDsN\n+AjYC6wFujrt9xrwEvYDNgf4BmjsWLfEccyDjnVdgUuALdgPxx3AdOwH6DxHTHsdv6c62hgNHANy\nHW0UPNd8oInj9yTsB/AuYAPwsFN8NwNfAuOALOBP4Ao//3ucjE0eVZyWLQEGutn+a2CA0999gaUu\ntpsJPFZs2RPA605/NwGOFBwb2AZ0cFo/Epjl+P1yYEux9jYBlzt+fwMY7bSuPbCjhOedD9wB/O54\nzzzuiOdrYB/wX6C8Y9uCf/cJwJ1O77mt2PfsZ6H+f6UPfejD/w80XxV8Vmq+0nyljzB56JUs5ZKI\nxGETxAagIVAf++EA9sOvD/YDogmQiE0ozi7Cfsj+H/CYiJzqWH4f0B37gV4N6AfkikgCNmG9DtQE\negATROQ0pza7AxnY5PMn9oMVY8wljvXNjDFJxpg5jr/rOrZtCAzEfnhNxZ7NaohNUP9xtPEINukM\ndrRxt6MN5zOOLzmeayOgHdBHRPo6rT8fm2xrYJPXFNwQkXkiki0iWS5+vu9mtzOB9caYQ07LVjiW\nu9t+hYfblrivMWY9Nmmd4hiGUQ9Y6abtM4qtK77eVVy1i53JK+5y4GzgQuwXkVeAnth/y2bAjU7b\nGuyXiz6OvzsCq7BfXpRSUUbzleYrNF+pMKSdLOXO+dgPpgeMMX8ZY44aY5Y61vUExhtjNhljcoGH\ngB6ORAf2Q2OEY5+V2A+lgjHO/bFn1P4AMMasMsZkA52ADcaYGcZagT0r2dUppneNMT8YY/KxZ5da\nFotZiv19HMgwxuQZY44YY7KMMe86fj8EPAX8o5TXQaAwiXcHhhljco0xm4BngN5O224yxkw1xhjs\nmci6IlLbVaPGmM7GmGRjTIqLn9e4iaUq9syYsxxsIvVk+xzHMk+UdKyq2H/j4m0XxFFanK7iEtw/\nD4CxxphDxpi1wC/AR4733wFgITahFTLGLAOSReQUbPKaUULbSqnIpvnKqU3NV0WOpflKhYx2spQ7\nadgP4XwX61Kxl9MLbALKY8dCF9jp9Hsuf39YpgHrXbSZDlzoODOWJSLZ2OTo3Gammzbd2W2MySv4\nQ0Qqi8grjptj92GHLlQXkeLJzpWa2Oe42WnZJuwZ0xPiM8Ycxn4Qe5okPHEQOwTEWTXggIfbV3Ms\nK+uxCtoo3nZBHKXF6Soug/vnAXbIS4HDFH1/Hcb16zwTGIw9i/tuCW0rpSKb5quiNF9pvlJhQDtZ\nyp0tQEOns33OtmOTTIF0II+iHyQltdvUzfLFjjNjBWfJkowxg70N3Enxm4vvww4JOc8YU52/zwqK\nm+2d7cE+x+LPe5svgYnIAkcVpBwXj/ludlsNNBGRKk7LWjiWu9veuUpSyxK2LXFfEWkKxAO/G2P2\nYYcyOLftHMdq7I3Lzppjz+i5i2un4wyxP70O3AnMN8b85ee2lVLhQ/NVUZqvNF+pMKCdLOXOcuwH\n0xgRSRCRiiLSxrFuNjBURBqJSFXsWPP/Op1FLOlM22RglIicBCAizRxjmz/Ajp/uJSLlRSReRFo5\njY0vTSZ2vH1JErFnkXJEJAUYUWz9TndtOJ7b/4AnRKSqiKQDQ7Fnn7xmjLnK2HK7SS4eV7vZZx3w\nM5Dh+Pe4DjgLO0zFlRnAvSKSKiL1gXuxN2QD4HidK2E/B+IdbRZ8JryBre50kSNJPg687TS+fibw\niIhUF5HTgVud2l4MHBeRu8SWzr0bezPw505x9ReR0x3/9o84x+UvxpYy/oejfaVU9NJ85UTzleYr\nFR60k6VccnxId8aeSduMPXPXzbF6KvZD6wvsDb25wN3Ouxdvzun38dgP/49EZD82iVU2xhzE3iza\nA3vmcTswBqjoYcgjgBmOoRs3uNnmOSABe5ZvKbCg2Prnga4isldEnnMR+93Y57oe+9xfN8aU9GFb\nYpleH/UAzgOysV8WrjfG7AUQkbYiklN4cGNewVakWoW9z+B9Y8wkp7YmYZ9PD2wFrVygl2PfNcDt\nwCzsF4LKwCCnfTOwr8Mm4DNgjDHmY8e+ecC12ApW2dgx5l2MMccc6xcBT2OT2Abse2hECc+5pPdT\niYwxS40xmaVvqZSKVJqvNF+h+UqFIbH3PAaocZEG2LMAdbBnBl41xrwoIhnYMwkF41aHG2M+DFgg\nSimllBuaq5RSSvlboDtZdYG6xpifHZfpfwC6YKveHDDGjA/YwZVSSikPaK5SSinlb+UD2bjjsmem\n4/eDIrKWv6vbeFIhRymllAoozVVKKaX8LWj3ZIlII2xVlm8diwaLyM8iMllEqgUrDqWUUsodzVVK\nKaX8ISidLMfwi7eAexw3jE4AmhhjWmLPHupQDKWUUiGluUoppZS/BPSeLLBlN7HlThcaY553sT4d\nmGeMKT5PASIS2OCUUkqFhDEmrIbhaa5SSilVXFlyVTCuZE0F1jgnLcdNxgWu4+9J305gjAnaIyMj\nI6hteLJtadu4W+/pclfb+eN1CObr7u3+wX7dPVkW7Nc8El93b9eF4+se7M+YQL7uZfk/EKZClquC\n9X/RH/+Hwu15RdpzMsbAJaW/XyLteZX1PRio7yL6HgzOv1WkPC9v/63KKqCFL0TkIuAmYJWI/ISd\nL2A40FNEWmJL5W4EbgtkHJ5q165dUNvwZNvStnG33tPl/njOZVXWGLzdP9ivu6fLgi3SXndv14Xj\n6x7szxhPt/fldS/r/4FwEupcFaz/i77+//JVMJ5XpD0nABqV7Tjh+LzK+h4M1GeEvgd931//rfyg\nLL3GQD9seCrYMjIyQh1CzNHXPDT0dQ8Nx2d7yHOMvx7Rmqui8f9HODwnRvj//RIOz8vfovE5GaPP\nK5KUNVcFrbqgihzhftY5GulrHhr6uivlXjT+/4jG5wTR+byi8TmBPq9YEvDCF2UhIiac41NKKeU9\nEcGEWeGLstBcpbwhIwWToe8XpcJdWXNVQO/JUkoppZRS0a9Ro0Zs2rQp1GEo5bX09HQ2btzo93a1\nk6WUUkoppcpk06ZNfqnIplSwiQRmYIXek6WUUkoppZRSfqSdLKWUUkoppZTyI+1kKaWUUkoppZQf\naSdLKaWUUkrFpE2bNhEXF0d+fn6Z22rcuDGfffaZR9tOnz6diy++uPDvxMREvxVfeOqppxg4cCDg\n3+cHsGXLFpKSkvT+Ow9oJ0sppZRSSkWt0jo/gSp8UBrn4x44cIBGjRqVuP2SJUtIS0srtd2HHnqI\nV1991eVxvFX8tUtLSyMnJydkr1kk0U6WUkoppZRSYc4YU2rn5vjx40GKRpVGO1lKKaWUUiom5Ofn\nc//991OrVi1OOukk5s+fX2R9Tk4OAwYMIDU1lbS0NB599NHCoXHr16+nQ4cO1KxZk9q1a9OrVy9y\ncnI8Om5WVhbXXHMN1apV48ILL+TPP/8ssj4uLo7169cDsGDBAs4880ySkpJIS0tj/Pjx5ObmctVV\nV7F9+3YSExNJSkoiMzOTkSNH0rVrV3r37k316tWZPn06I0eOpHfv3oVtG2OYMmUK9evXp379+jzz\nzDOF6/r27ctjjz1W+Lfz1bI+ffqwefNmOnfuTFJSEv/+979PGH64Y8cOunTpQo0aNTjllFOYPHly\nYVsjR46ke/fu3HzzzSQlJdGsWTN+/PFHj16vaKCdLKWUUkopFRNeffVVFixYwIoVK/j+++956623\niqy/+eabqVChAuvXr+enn37i448/Luw4GGMYPnw4mZmZrF27lq1btzJixAiPjnvnnXeSkJDAzp07\nmTJlClOnTi2y3vkK1YABA5g0aRI5OTn88ssvXHrppSQkJLBw4UJSU1M5cOAAOTk51K1bF4D333+f\nbt26sW/fPnr27HlCewCLFy/mzz//ZNGiRYwdO9aj4ZMzZsygYcOGfPDBB+Tk5HD//fef0Hb37t1p\n2LAhmZmZzJkzh+HDh7N48eLC9fPmzaNnz57s37+fzp07M2jQII9er2ignSyllFJKKRUT5syZw5Ah\nQ0hNTaV69eo89NBDhet27tzJwoULefbZZ6lUqRI1a9ZkyJAhzJ49G4CmTZvSoUMHypcvT40aNRg6\ndChLliwp9Zj5+fm88847jBo1ikqVKnHmmWdy8803F9nGuZBEhQoVWL16NQcOHKBatWq0bNmyxPZb\nt25N586dAahUqZLLbUaMGEGlSpU466yz6Nu3b+Fz8oS7Ihdbtmzhm2++YezYscTHx9OiRQsGDBjA\njBkzCrdp27YtHTt2RETo3bs3K1eu9Pi4kU47WUoppZRSKrBGjACREx/urgS52t7Dq0Yl2b59e5Hi\nEenp6YW/b968mby8POrVq0dKSgrJycncfvvt7NmzB4Bdu3Zx44030qBBA6pXr06vXr0K15Vk9+7d\nHD9+nAYNGrg8bnFvv/028+fPJz09nfbt27Ns2bIS2y+tGIaInHDs7du3lxp3aXbs2EFKSgoJCQlF\n2t62bVvh3wVX2wASEhL466+//FbpMNxpJ0sppZRSSgXWiBFgzImPkjpZnm7rhXr16rFly5bCvzdt\n2lT4e1paGpUqVWLv3r1kZWWRnZ3Nvn37Cq++DB8+nLi4OFavXs2+fft4/fXXPSplXqtWLcqXL1/k\nuJs3b3a7/bnnnsvcuXPZvXs3Xbp0oVu3boD7KoGeVPorfuzU1FQAqlSpQm5ubuG6HTt2eNx2amoq\nWVlZHDp0qEjb9evXLzWeWKCdLKWUUkopFRO6devGCy+8wLZt28jOzmbs2LGF6+rWrcvll1/O0KFD\nOXDgAMYY1q9fzxdffAHYMutVq1YlMTGRbdu2MW7cOI+OGRcXx3XXXceIESM4fPgwa9asYfr06S63\nzcvLY9asWeTk5FCuXDkSExMpV64cAHXq1GHv3r0eF9soYIxh1KhRHD58mNWrV/Paa6/Ro0cPAFq2\nbMmCBQvIzs4mMzOT559/vsi+devWLSzI4dweQIMGDWjTpg0PPfQQR44cYeXKlUyZMqVI0Q1XscQK\n7WQppZRSSqmo5Xw15tZbb6Vjx460aNGCVq1acf311xfZdsaMGRw9epQzzjiDlJQUunbtSmZmJgAZ\nGRn88MMPVK9enc6dO5+wb0lXfV588UUOHDhAvXr16NevH/369XO778yZM2ncuDHVq1fn1Vdf5Y03\n3gDg1FNP5cYbb6RJkyakpKQUxuXJ87/kkks46aSTuOyyy3jggQfo0KEDAL1796Z58+Y0atSIK664\norDzVWDYsGGMGjWKlJQUxo8ff0Kss2fPZsOGDaSmpnL99dczatQo2rdvX2IssULCuUcpIiac41NK\nKeU9EcEYEzWZVnOV8oaMFExG9L1fHP+vQx2GUl5z994ta67SK1lKKaVUBEhJKVoDICUl1BEppZRy\np9ROloh0FhHtjCmllApbsZCrsrOL1gDIzg51REoppdzxJCF1B9aJyNMiclqgA1JKKaV8oLlKKaVU\n2Ci1k2WM6QWcDfwJTBORb0RkoIgkBjw6pZRSygOaq5RSSoUTj4ZWGGNygLeA/wL1gH8CP4rIXQGM\nTSmllPKY5iqllFLhwpN7srqIyLvAYiAeON8YcyXQArgvsOEppZRSpdNcpZRSKpyU92Cb64BnjTFf\nOC80xuSKSP/AhKWUUkp5RXOVUkqpsOHJcMHM4klLRMYCGGM+DUhUSimllHc0VymllAobnnSyLnOx\n7Ep/B6KUUkqVgeYqpVRMiouLY/369R5tO3LkSHr37g3Ali1bSEpK8tsk0nfccQdPPPEEAEuWLCEt\nLc0v7QJ89dVXnH766X5rLxjcdrJE5A4RWQWcJiIrnR4bgJXBC1EppZRyTXOVF/bvh59+gl277ERb\nSsWQWbNmcd5555GYmEj9+vW5+uqr+frrr0MdFtOnT+fiiy8uUxsi4tP2aWlp5OTklLq/pzFOnDiR\nhx9+2Oe4nBXvOLZt25a1a9f63F4olHRP1ixgIfAUMMxp+QFjTFZAo1JKKaU8E7O5KjkZin+HSU6G\nLHfPetUqGDQItmyBxETo2hXuvhsaNgx4rEqF0vjx43n66ad55ZVXuPzyy6lQoQKLFi1i3rx5XHTR\nRV61dfz4ccqVK1fqMk8ZY8rUGSloI5A8iTE/P5+4OP/NB1/W1yQclPRqGGPMRmAQcMDpgYikBD40\npZRSqlQxm6uysuwFKedHdnbRbbKzYdIk6NwZGvZsS+L6FdQuv5d/1FzDE992YHPzTjB7dmiegFJB\nkJOTQ0ZGBhMmTKBLly5UrlyZcuXKcdVVVzFmzBgAjh49ypAhQ6hfvz4NGjRg6NCh5OXlAX8Pe3v6\n6aepV68e/fr1c7kM4IMPPuDss88mOTmZtm3bsmrVqsI4tm7dyvXXX0/t2rWpVasWd999N7/++it3\n3HEH33zzDYmJiaSkpBTGc//995Oenk69evW48847OXLkSGFb48aNIzU1lQYNGvDaa6+V2CHZuHEj\n7dq1o1q1anTs2JE9e/YUrtu0aRNxcXHk5+cDMG3aNJo2bUpSUhJNmzZl9uzZbmPs27cvd955J1df\nfTWJiYksXryYvn378thjjxW2b4zhqaeeolatWjRp0oRZs2YVrmvfvj1Tp04t/Nv5atkll1yCMYbm\nzZuTlJTEnDlzThh++Ouvv9K+fXuSk5Np1qwZ8+bNK1zXt29fBg8eTKdOnUhKSqJ169Zs2LCh5DdK\nAJTUySp4JX4Avnf8/MHpb6WUUirUNFc5SSYLrrqKg59/xyOPwEknwUcfwU03weLFsH07rFghPDqm\nCjtaXElL+Zk7FnVh375QR65UYHzzzTccOXKEa6+91u02o0ePZvny5axcuZIVK1awfPlyRo8eXbg+\nMzOTffv2sXnzZl599VWXy3766Sf69+/PpEmTyMrK4rbbbuOaa64hLy+P/Px8OnXqROPGjdm8eTPb\ntm2jR48enHbaabz88su0bt2aAwcOkOW4DP3ggw/yxx9/sHLlSv744w+2bdvG448/DsCHH37I+PHj\n+fTTT1m3bh2ffPJJic+/Z8+enHfeeezZs4dHHnmE6dOnF1lf0EHLzc3lnnvuYdGiReTk5LB06VJa\ntmzpNkaA2bNn8+ijj3LgwAGXVwQzMzPJyspi+/btTJs2jYEDB7Ju3Tq3sRbEsmTJEgBWrVpFTk4O\nXbt2LbL+2LFjdO7cmSuuuILdu3fzwgsvcNNNNxVp+80332TkyJHs27ePpk2bFhnGGCxuO1nGmE6O\nn42NMU0cPwseTYIXolJKKeWa5ionv/3GMi5kcWJnmvVrxcaN8MMPMGcO9OgBTZrYUYL16sFll8FL\nL8Eff8YhCQmcdRY4vtcoFVX27t1LzZo1SxzKNmvWLDIyMqhRowY1atQgIyODmTNnFq4vV64cI0eO\nJD4+nooVK7pcNmnSJG6//XZatWqFiNC7d28qVqzIsmXLWL58OTt27ODpp5+mUqVKVKhQgTZt2riN\nZ9KkSTz77LNUq1aNKlWqMGzYMGY7rjjPmTOHvn37cvrpp1O5cmVGjBjhtp0tW7bw/fff8/jjjxMf\nH8/FF19M586d3W5frlw5Vq1axV9//UWdOnVKLTTRpUsXLrzwQoDC18WZiDBq1Cji4+P5xz/+wdVX\nX83//ve/Ett05m4Y5DfffMOhQ4d48MEHKV++PO3bt6dTp06FrxHAP//5T84991zi4uK46aab+Pnn\nnz0+rr94MhnxRSJSxfF7LxEZLyI6gFsppVTYiPlctWYNpl17+jCdG7+4gwkThNdfh0aNSt4tJQUm\nTIApU6BbN3AavaOUX4n45+GtGjVqsGfPnsIhca5s376dhk73Jqanp7N9+/bCv2vVqkV8fHyRfYov\n27RpE8888wwpKSmkpKSQnJzM1q1b2b59O1u2bCE9Pd2je5Z2795Nbm4u5557bmFbV155JXv37i2M\n1XnYXHp6utvOyPbt20lOTqZy5cpFtnclISGBN998k4kTJ1KvXj06d+7Mb7/9VmKspVUPTE5OplKl\nSkWO7fy6+mrHjh0nHDs9PZ1t27YV/l23bt3C3xMSEjh48GCZj+stT+5QmwjkikgL4D7gT2BmybtY\nItJARD4TkdUiskpE7nYsTxaRj0TkNxFZJCLVfH4GSimlVCznqt9+w/zfZdzT7DO+pTXffANXelm8\nvmNH+OILePxxePk/xyEzMzCxqphV/P5BXx/eat26NRUrVmTu3Llut6lfvz6bNm0q/HvTpk2kpqYW\n/u3qnqfiy9LS0nj44YfJysoiKyuL7OxsDh48SPfu3UlLS2Pz5s0uO3rF26lZsyYJCQmsXr26sK19\n+/axf/9+AOrVq8eWLVuKxOrunqx69eqRnZ3N4cOHC5dt3rzZ7etw2WWX8dFHH5GZmcmpp57KwIED\n3T7/kpYXcHXsgte1SpUq5ObmFq7L9OIzJzU1tchrUNB2/fr1PW4jGDzpZB0ztovcBXjJGPMfINHD\n9o8B9xpjzgRaA4NE5DRsBahPjDGnAp8BD3kfulJKKVUoZnNVfuYuBp3+GctzTgNKv3rlzqmnwmef\nwVMj/mJGqxcgJ8d/QSoVIklJSYwcOZJBgwbx3nvvcfjwYY4dO8bChQsZNswWJO3RowejR49mz549\n7Nmzh1GjRhXOJeWpW2+9lZdffpnly5cDcOjQIRYsWMChQ4c4//zzqVevHsOGDSM3N5cjR46wdOlS\nAOrUqcPWrVsLC22ICLfeeitDhgxh9+7dAGzbto2PPvoIgG7dujFt2jTWrl1Lbm5u4b1arjRs2JBW\nrVqRkZFBXl4eX331VZECEfD3kLxdu3bx/vvvk5ubS3x8PFWrVi288lY8Rk8ZYwqP/eWXXzJ//ny6\ndesGQMuWLXnnnXc4fPgwf/zxB1OmTCmyb926dd3O/XXBBReQkJDA008/zbFjx1i8eDEffPABN954\no1fxBZonnawDIvIQ0AuYLyJxQHwp+wBgjMk0xvzs+P0gsBZogE2CBXfeTQfc342olFJKlS5mc9UD\n8y7mp9xTcXwHK5MmTeDDJQncv3cYX149RufTUlHh3nvvZfz48YwePZratWvTsGFDJkyYUFgM45FH\nHqFVq1Y0b96cFi1a0KpVK68LJZx77rlMmjSJwYMHk5KSwimnnFJYZCIuLo558+axbt06GjZsSFpa\nWuG9SZdeeilnnnkmdevWpXbt2gCMGTOGk046iQsvvJDq1atz+eWX8/vvvwNwxRVXMGTIEC699FJO\nOeUUOnToUGJcs2bNYtmyZdSoUYNRo0Zx8803F1lfcDUqPz+f8ePHU79+fWrWrMkXX3zBxIkT3cbo\niXr16pGcnExqaiq9e/fmlVde4eSTTwZg6NChxMfHU7duXfr27UuvXr2K7DtixAj69OlDSkoKb731\nVpF18fHxzJs3jwULFlCzZk0GDx7MzJkzC9sOl/LvUlptfRGpC/QEvjPGfOkY497OGDPDqwOJNAIW\nA2cBW4wxyU7rsowxJ5TaFRET6Nr/SoUFY+DIEXAau6xUtBIRjDF+zYKxkKtETuzzTJwIzz8PS5fa\n+6tcbeOLj+bn0efa/Xz72ALSH+1T9gZVIRkpmIzo+27j+H8d6jCU8pq7925Zc1WpnSx/EJGq2KQ1\nyhjzXvFEJSJ7jTE1XOynnSwVfbZutfPSrF4Na9bYv/fssRODvvHGiduvWGFrL7dvD82a+Xbnr1Jh\nJBCdLH8I91xVvAO1aBHcfDN8/TU0bep6m7IY9+Bu5o7fwJLllSl/djP/NKq0k6VUmAlUJ6u8Bwe+\nDhgL1AbE8TDGmCRPDiAi5YG3gJnGmPcci3eKSB1jzE7H2cdd7vZ3Lk3Zrl072rVr58lhlQpf+/bZ\njlXbtnDrrfYGilq1oEIF19sbA2vX2nrLBw/CtdfCLbfA+edrh0tFhMWLF7N48eKAHiOmclVeHpt3\nxNOnD7z11t8dLH+776lafDL/KCNu+4XRy7WTpZSKbv7OVZ4MF/wD6GyMWevTAURmAHuMMfc6LRsL\nZBljxorIg0CyMWaYi331SpaKTIcPw4cf2g6RPztCf/4Jb74Jr70GDz9sO1tKRZgADReM+lwlAubI\nUfIuake7I4u45qZEHnzQxTZ+DGVnpuHsc+DNN4WLL/Zfu7FMr2QpFV5CNlxQRL42xpw4jbMnjYtc\nBHwBrAKM4zEcWA78D0gDNgHdjDEnzDevnSwVcbZsgeeegxkz4LzzbIco0dMCZ14wBo4dg3iP7utX\nKqwEqJMV9blKBMzIx3lo+mmsOLUrH3wgFJ92x9+dLIB334UHH7Qjl52m21E+0k6WUuEllJ2s54G6\nwFzgSMFrSZPLAAAgAElEQVRyY8w7vh7UU9rJUhFj/Xp46il4+23o1w/uvBOaNCElBbKz3e+WnAxZ\nWcELU6lwEKBOVtTnqjNlNROqDeemym/z08ry1KrlKpbAFATs2hVOOsl+zKmy0U6WUuElZPdkAUlA\nLnC50zIDBDxxKRUxPvkE6tWDdeugxt/3xWdnl/yFx++3VL35JuzdC3fcofdrqVgT3bnq+HFeYhD9\n4t/jlcmuO1iB9NJL0Ly57Wydc05wj62UUpEoKNUFfaVXslSkK+2sst/POv/2G/TsCWlpMG0aVK/u\nx8aV8o9wrS7oq6Dkqhdf5Pq761Gl1/XMmOn+pQvUlSyAqVPh1RePsHTxUeKqBWAYdIzQK1lKhZdQ\nDhc8BZgI1DHGnCUizYFrjDGjfT2ox8FpJ0uFgbIM+QtGJysnx94Klp0N+/fDgaw8ys2aQfyqn6j4\n+MPUaVmP1FSoXZsT7t9QKhQCNFwwqnPVl+9n075LIrv2liflhJm6nGMJXCcrPx9a1/mTO87/kVvm\ndw3MQWJAtHayGjVqxKZNm0IdhlJeS09PZ+PGjScsD0YnawnwL+AVY8zZjmW/GGPO8vWgHgennSwV\nBB53onbtgnvvhSuvhJtu8mj/0u658uYL0eHDsHIl/PijfaxYYW8FO3wYGja0x6peHapWtV+G8n7f\nwF+/bWRnw/PZtq8KR47YabbOOQc6dLDTblWr5tmxlfKnAHWyojpXXX45fPxx6Z8XxT+P/H3f53cL\ndtOl03HW/niYai0b+6/hGBKtnSylok0w7slKMMYsl6L3dxzz9YBKhZvS7psC7OTBQ4ZAnz62LLuT\nQBWuyMuDb7+Fzz6DTz+FH36AU06xnaRzzrHV2086yV6hcn37VWNY9DukrodmzcjKglWrbJsTJ9qn\n0rat/dmli1YNUxEvqnPV++979n+0+OeRv2/NPO+qWlx17gpG3rCR8X9oJ0sppdzx5ErWQmAwMMcY\nc46I3AD0N8ZcGfDg9EqWCoISrybt2weDBtlLR6+/DueeG9Bj5+bCokW2ZPL8+Xae4g4d4NJLbYeo\nalX/HfvQIZg7F6ZPt1fF7rrLPtXkZP8dQylXAnQlK+pzlS9DAQMxfHDXliOc2eggS17bwBl9Wvm3\n8RigV7KUigzBGC7YBHgVaANkAxuAXsaYjb4e1OPgtJOlgqDELyFdutgiEk8/DQkJATl2Xp7tWE2f\nbn+2agXXXWcP3aCB3w/p0tq19inOmwfDhsHdd0OFCsE5too9AepkRX2uCpdOFsCzvX7g0wVH+CCr\njf8bj3LayVIqMgS8k+V0oCpAnDHmgK8H85Z2slQwlPglJDc3IJ0rgF9+sfdI1akDjRvb4X833FCk\nAnzQrVtnR0X++Se8/DK0axe6WFT0CmR1wWjOVeHUyTpyOJ/TTz3OlOnxtG/v//ajmXaylIoMAbsn\nS0TudXdAAGPMeF8PqlTE8HMH69gxe2/Fiy/C77/bZUuWwKmn+vUwJZs0CTp2tNUyijn5ZDtMcd48\nW9ujVy8YNUqvaqnwpbkqNCpWjuOpcXHcfz98951WLlVKqeJK+lhMdDxaAXcA9R2P2wGdilBFnwCe\nic7KssPxmjaFZ56B22+HgmqhQe1gga3zfu219iqdG507w88/22GEbdrA1q1BjE8p72iuCpFu3aB8\neVsXSCmlVFGe3JP1BXB1wdALEUkE5htj/hHw4HS4oAoCEYN5aQKsWQP/+Y9f287MhPHjYcoU6NTJ\n3uvkXDujtKE8ZZmjyy1joHdv+/vMmSWWHzPGdg5ffNEW4zjvPC+PpZQLAbonK+pzVTgNFyzw5Zf2\nivdvv0GlSoE7TjTR4YJKRYay5ipPLvDXAY46/X3UsUypyJeXx0TusDXN73U56sgnW7fCPffAGWfA\nX3/Zq0LTp3tfnLCgvLy7R0kdMLdE4NVXbafy2WdL3fTBB+Gll+Cqq+xQQqXClOaqELj4Yjj7bHjh\nhVBHopRS4cWTebJmAMtF5F3H39cC0wIWkVJ+5u5qUHWymUNXmpSvCEuXQlJSmY+1c6e9h2n2bOjX\nz/Zj6tYtc7P+l5BgL02df76tDX/++SVufu21kJpqhxG+/DL8859BilMpz2muCpGxYwwXtTxI/065\n1DhD+7VKKQUeVhcUkXOAix1/fmGM+SmgUf19XB0uqMrM5XCZzZvhssvs5Zl//xvKlSvTMQ4csPda\nvfSSndx3+HCoWdPH2Py4vlSffGJLGzZt6tHmP/5oX7IXX4SuXctwXBXTAlVdMNpzVTgOFyxwZ4uv\nqWCO8NzKSwN/sAinwwWVigxBK+EeCtrJUv7g8kvG4cN27NsNN5Sp7bw8O/Ju9GjbZ3v8cTuBcJli\n8+P6QFixAi6/HN54A/7v/4J7bBUdAlnCPRTCuZPl6kq+T/dylmLXr1mccYbh20X7aXpZE/82HmW0\nk6VUZAjGPVlKRZ/Klcvcwfr0U2jRwpZk//BDmDHDuw4W2C87Iu4fycllCjEgWrSAOXOgZ0/4KSjX\nCZRSvsrK8tO9nKWofVoKQy/7hYf6Zvq/caWUikDayVIRISXFfUckJSW4sWzebIfK3XorjBljO1gt\nWvjWlqsvQM4Pf59t9pd//MPWCunUCbZsCXU0SqlwMHTW+SzNbMw3k34JdShKKRVypXayROQuEQnD\n8+kqlpRUZa+0s7JCvh0eWEZHjsATT8A558BZZ8Hq1XDNNSVWQI9q119vKyhed52toKhUKGmuCr2E\nGpUZ1W8j9z9dO+jDmJVSKtx4WsL9OxH5n4hcIRKrXylVRDp6lOncDCNGlKmZZcts5+rbb+G77yAj\nw444jDp33+1VnfZ//cvWzRg0KPj3hilVjOaqMNBnYmsOVK7Nu++Wvq1SSkWzUjtZxphHgJOBKcAt\nwDoReVJEPCtHplSAubuvqYocYlHFztSM3297RT44eBCGDLElyzMy4L33bKcial1zDQweDLm5Hm0u\nAlOn2s7n5MkBjk2pEmiuCg/lysG4cTBsmC0MpJRSscqje7IcZZMyHY9jQDLwlog8HcDYlPKIy/ua\n9u3nUJvL6XhLKlfmvmPnhfLSxx9Ds2Z2OOIvv0C3bjEwNPD//s/OmTVmjMe7VK0Kb71ly9avXRvA\n2JQqheaq8NCxoz0Z9coroY5EKaVCp9QS7iJyD9AH2ANMBuYaY/JEJA5YZ4wJ2FlCLeGuCnhVujg7\n23YWLroInnsO4ryr75Kba4fBzZtny7NfcYX38QaLu4mWC/hUqnnrVmjZ0o6RPOkkj3d75RU7UfGy\nZVCxopfHVDElECXcYyFX+WvKhmBM/bBypZ3q4bffoFq1wB4r0mgJd6UiQzBKuKcA1xljOhpj5hhj\n8gCMMflAJ18PrFTAVKli7y16/nmvO1jff2/vvdq3z35JCOcOFpRendCnUs0NGsADD9iqFl4YOBDS\n0+GRR3w4plJlp7kqgIpXeC2tqmvz5nDllYaxD+0LToBKKRVmPLmSdSGw2hhzwPF3EnC6MebbgAen\nV7KUQ6DPvB47BmPH2n7ZCy9Ajx6BO1Yw+fy6HT0K//mP7ayWK+fxbnv22CGW77wDrVv7cFwVEwJ0\nJSvqc1Uor2QV38eTNrYu20qLNgn8/LOQ1lwLPxbQK1lKRYay5ipPOlk/AecUZBDH0IvvjTHn+HpQ\nj4PTTpZyCGQna8MG6NULKlWCadMgLS0wxwmFYAwLKu7NN+Hxx+HHH3XYoHItQJ2sqM9VkdbJAnj4\n3A/ZergG09ec590Bo5h2spSKDMEYLlgkeziGXpT39YBKuVLSZMMi9t6iQHj3XbjgAjvX08cfR1cH\nK1S6dYOmTb2qnaGUP2iuCkMP/vdsFv3akJ8XbA91KEopFVSedLLWi8jdIhLveNwDrA90YCq2lDTZ\nsDElFG9YvRq6d4f8fK+Od/SoLc0+dKgtcHHffV7fvqXcEIEJE+Cll2DNmlBHo2KI5qowlHRyHR67\n4jv+1T9L59JTSsUUT75W3g60AbYBW4ELgIGBDEopj6xdC5ddBl26eNVD2rgR2ra1wwR//NFeyVL+\n1aABPPYY3HWXTlKsgkZzVZi69fVL2LK7Eh9O0D6vUip2eDIZ8S5jTA9jTG1jTB1jTE9jzK5gBKeU\nW7/9Zsu0jx0LPXt6vNv779tpoHr0gLlzS6+QpRw++MDrWvB33AG7d8PbbwcoJqWcaK7yXPEJ3H35\nHHQ1Cby7duJTEhk7Lo5/TWjEsWNli10ppSKFJ4UvagG3Ao1wGt9ujOkX0MjQwhexxKsbsdetg0sv\nhVGj4JZbPNolPx8yMmD6dFuYIVYq35U0j5ZXc2gNGACpqbaihReWLIE+fexFRx/mg1ZRKkCFL6I+\nVwWqkI0n7ZZ1G2OgfXt7TmxgjF9f1MIXSkWGYFQXXAp8CfwAHC9YbowJ+Plp7WTFDq++PNx9t52E\nZcAAjzbft89WD8zJgTlzoE4d3+OMJl695uvX20uAv//u9WnvHj3glFO87p+pKBagTlbU56pgdrKK\nn6Dx5KRMaft8/z107mw/RhITyx53pNJOllKRIRidrJ+NMS19PUBZaCcrdnj15cEYu4MH1qyBa6+F\njh1h/HiIj/c9xmjj9Rc2H69mbdkCLVvCqlV2d6UC1MmK+lwVzE6WP47lqo3evaFRIzsQIVZpJ0up\nyBCMEu4fiMhVvh5AKb/zsIM1dy5ccgkMHw4vvqgdrDIbPtyWDfTy3qy0NOjfH0aODFBcSlmaqyLA\nE0/Yj5GtW0MdiVJKBZYnnax7sMnrLxHJEZEDIpLjSeMiMkVEdorISqdlGSKyVUR+dDyu8DV4pVwp\nuP/q7rthwQKPb9tSpWnSxF4WfPVVr3d96CF45x349dcAxKWU5XOugtjOV66KWARqbsKGDeG2Kzbx\nSI8/AnMApZQKE6UOFyxT4yJtgYPADGNMc8eyDOCAMWa8B/vrcMEY4XZoyvbtUKUKVKvmUTuHD8PN\nN9uzpO++q/dflcSn4UDZ2fbfo0IFr483bhwsW6bVBlVghguWVVnyVaQPFwwUd/HmLP+VU1sns+Cz\nypx9SVLwAwsxHS6oVGQI+HBBsXqJyKOOv9NE5HxPGjfGfAW4qm0WVslVhakdO2w5qrlzPdo8MxPa\ntbPf/z/7TDtYAZGc7FMHC2DwYPjuO9vRUsrfypKrQPNVILgr8550/mlktP6Y+/rsiqhOo1JKecOT\n4YITgNZAwWREB4H/lPG4g0XkZxGZLCKeXaJQsWXnTlumvU8fe2mqFCtX2kmFO3WCmTOhUqUgxKi8\nUrmyvS9r2LBQR6KiVCByFWi+8llWlr2S5fwoqD44YNalZG49zvxpOpWZUio6lS99Ey4wxpwjIj8B\nGGOyRcS3U9nWBOBxY4wRkdHAeKC/u41HjBhR+Hu7du1o165dGQ6tIsLu3dChg639/fDDpW4+fz70\n7QsvvGB3UZ4pOMtc0nova1yUqndvePJJO3/WJZf4t20VvhYvXszixYsDfRh/5yrwIl9prvJO+Yap\njOs6k/uHdqBjLy1MpJQKPX/nKk9KuH8LtAG+cySwWsBHxpizPTqASDowr2CMu6frHOv1nqwYUTh2\nf98++Mc/oEsXWyq8hF6AMfD88/D007aowoUXBi/eWFDSRMbgeyds2jR7tfHTT30OTUW4AJVwL1Ou\ncrThU77Se7I85/wczP4cLmu8jusea8adQ8raH44cek+WUpEhGCXcXwDeBWqLyBPAV8CTXhxDcBrT\nLiJ1ndZdB/ziRVsq2lWtCo88UmoH69gxuPNOmDIFli7VDlYguBrq4/y4OPs9WLTI63Zvugk2bICv\nvgpA0CqWlTVXgearoJJqSfz7s3N5fEwF9u8PdTRKKeVfHlUXFJHTgA7Y5POpMWatR42LzALaATWA\nnUAG0B5oCeQDG4HbjDE73eyvV7JihDdnaHNzoXt3OHoU5syBpNgrThUWrpW5zD3vSfj2W4/nLisw\nZQr897/w8ccBCk6FtUBVF/Q1Vzn29Tlf6ZUszxV/Dq6umAdiqHI40StZSkWGsuYqT4YLNnS13Biz\n2deDeko7WbHD0y8Pe/dC585w0kn2i7qO4w+dOMkn/5TTYfJkuPhir/Y9ehROOQVmzYI2bQIUoApb\nARouGPW5Kho7WSJ2yo3mzeHHHyE9PTqeZ0m0k6VUZAjGcMH5wAeOn58C64GFvh5QKV9t2gRt29rH\ntGnawQo1Q5yd8fn5573et0IFGD4cRo0KQGAqVmmuigDFy7onJ0P9+jBoEDz6aKijU0op/ym1k2WM\naWaMae74eTJwPvBN4ENTUe/gQbjjDjhwoNRNV62ynauBA22hizhPTg+owLv5Zvj8c9sD9mHXlSvt\nQ6my0lwVGYrf61kwLPC++2DhAsOva/UKj1IqOnj9VdUY8yNwQQBiUbHk0CG4+mo4fhyqVClx0y++\nsBXdx42DoUODFJ/yTNWqtrf03/96vWvFinDPPfbfVSl/01wVWapVg3urT2XkbdtCHYpSSvlFqfNk\nici9Tn/GAecA2wMWkYp+ubn2xqqmTeHll0u8LPXOO3D77fbenf/7vyDGqDz3xBM+z/58223QpIm9\nEJae7ue4VEzRXBX57hpVm6Z9KpOUaBCnYjrRXghDKRWdPLmSlej0qIgd794lkEGp6JOSYsffV5bD\nfFylCzM+b0C51yYh5eIKx+UXN3EiDB4MH36oHaywVrmy19UFC1SrBv37w3PP+TkmFYs0V0W4qj06\n8a/a07nsrO1FhhSWNF+fUkqFK49KuIeKVheMHoXVop5/HpYvhxkzoFw5l9saAxkZMHu27WA1bRrc\nWJVn/FUBbNs2aNYM/vzTdWdbRZ9AlXAPFa0u6D+5//uAk246nwXLa9HybPsWibbnrdUFlYoMwSjh\nPg9wu5Ex5hpfD14a7WRFj8IkmZ9vH+Vdj1Q9dszWwvjpJ1iwAGrXDm6cynP+/OLTty+cfLKtOKii\nX4BKuEd9roq2zoZLxvBCg6f5pMEtvP9tHSD6nrd2spSKDGXNVaXek4Utg1sXeN3x943YiRrn+npQ\nFcPi4tzeg5WbCzfeCH/9BYsX25oKKjbcf78dEnr//ba8u1I+0FwVDUQYOPVCxvRKZsUKaNEi1AEp\npZRvPLmS9b0xplVpywJBr2RFjpSUksfNl3bjclaWrYXRuDFMnapftCOBy7PL//43dO8OaWlet3fZ\nZbZQYa9e/olPha8AXcmK+lwVbVd0SjJunJ2cePbs6HveeiVLqcgQjMmIq4hIE6cDNgZKrrmtYk52\ndtG5T4wBczQPk5VdZC4UV7ZssXNgtWljb9XSDlYE27ABJk/2add77rG37EXTlykVVJqrosjtt8PH\nH8Mff4Q6EqWU8o0nnayhwGIRWSwiS4DPgSGBDUtFvLw86NkTRo0qcbNffoGLLoIBA+yZS51kOMLd\ndhtMmWJvrvPSVVfZzvqyZQGIS8UCzVVRJDHR3p+r8+gppSKVR9UFRaQicJrjz1+NMUcCGtXfx9Xh\nghGiyHCOY8fgppvg4EE70VXFii73+fJLuOEGePZZ2x9TkcXtEJ6LLoIHHoAu3lfPfu45+PZbO0RI\nRa9AVReM9lwVbcPmSrN7N5x6qq2VtH9/0XWRPHeWDhdUKjIEfLigiCQA/wIGG2NWAA1FpJOvB1RR\n7tgx6N0bcnLg7bfddrDmzoXrr4fXX9cOVtS57TY7ybQP+vaFRYtsWXelvKG5KvrUqgW9r8/l1l65\nJwxH17mzlFLhzpPBWa8BR4HWjr+3AaMDFpEKmYIJg109UlI8aOD4cVu5ICsL3n0XKlVyudkrr8Cd\nd8LChbbYgYoyXbvC99/Djh1e71qtmu10T5wYgLhUtNNcFYXuN+OYMkU7VUqpyONJJ6upMeZpIA/A\nGJMLRM0kkupvLotXmL+Hp7jrgIk4JpEVsdUr5s512cEyBkaMsGPsv/wSzj03qE9P+Vlyspv3Q0Jl\nau5ZS8qZ9Xxq9667YNIkW8pfKS9oropCaQ/14qr8+UyecDTUoSillFc86WQdFZHKOCZ5FJGmQFDG\nuavwkZXlvgNWWD0wLg4GDYLKlU/Y/9gxWy1q3jz4+mto2jT4z0H5V0nviT2mps9nnk89Fc45B/77\nX//Gq6Ke5qpo1LQpQ1sv48VnjpCXF+pglFLKc550sjKAD4E0EXkD+BR4IKBRqahy+LAtcLFhg51k\nuE6dUEekwt2dd+qQQeU1zVVR6tyMTjT+61fenpMf6lCUUspjJVYXFBEBGgC5wIXYoRfLjDF7ghKc\nVhcMqkBUrsrKgmuugfR0eO01nQMrlpTl/XT8uJ2Yeu5ce1VLRRd/VxeMlVwVa9UFCxnD3MZDearS\nCJatrV44NDlSXwutLqhUZAhodUFH1lhgjNlrjJlvjPkgWElLhbnjxyEjA3btcrvJli1w8cVwwQUw\nc6Z2sJTnypWDgQNtkRSlSqO5KsqJ0Hna9ezJTeCbb0IdjFJKecaT4YI/ish5AY9ERY5jx+CWW+CL\nLyAhweUma9ZA27bQrx8884xOMhyzNm6E+fN92rV/f/jf/+xsAEp5QHNVFCvX7mLuub8Czz4b6kiU\nUsoznnz1vQD4RkT+FJGVIrJKRFYGOjDlfyWVaC+sEFiavDzo1Qt27rRfnqtWPWGTr7+G9u3hySfh\nvvv8/zxUBDlwwFY8OX7c613r1YMOHeCNNwIQl4pGmquiXN++8Pnn9tyNUkqFu/LuVohIY2PMBqBj\nEONRAVRQot1nR4/CjTfa2trvv++yTPvcuXaY1+uvw+WXl+FYKjo0awZ168LHH8MVV3i9++23w733\n2p+ixbiVC5qrYkdiou1ovfhiqCNRSqnSlXQl6y3Hz6nGmE3FH8EIToWZ11+3VyTeecdlB2vixL8n\nGdYOlirUvz9MnerTrpdeaqtTLlvm55hUNNFcFUPuugumTQt1FEopVTq31QVF5CdgDnAHcMIoaGPM\n+MCGptUF/a3M1ZiMsZ2s8uVPWPzoo/b+mQ8/hCZNyhanig6F77d9+6BRI/jjD6hZ0+t2/v1vWLUK\npk/3e4gqRPxZXTCWclUkV9Tzp+5X5TBnYVXyTWTe7KvVBZWKDIGsLtgDOI4dUpjo4qFijcgJHay8\nPHuh4qOP7L1Y2sFSJ6heHTp18vnmqltugffeg717/RuWihqaq2LMkK33k0CuL7d6KqVU0JQ4TxaA\niFxpjFkYpHiKH1uvZPmRv8+CHjoEXbvadv/3P6hSxX9tq8hX5P22fr0dYpqa6lNbvXtDy5ZaSCVa\n+HueLEebUZ+r9EqWZWb/lzN6tmDse6dzzTWhjsZ7eiVLqcgQ0HmyAEKVtFSIZWXBtm1uV+/ebSsI\n1qtni11oB0sVl5zsVL2yaROkfmqRapYpKZ63ddttMHmyfsFU7mmuih1yw/UM4iWeG30w1KEopZRb\nkTmgWQXWjh1wySUwe7bL1X/+CW3aQMeO9otvfHyQ41MRISvLdorcPbKzPW/roovsPkuXBi5epVSE\niI9nKw34ffVRVqwIdTBKKeWa206WiHR1/GwcvHBUWfhlHqyNG+Hii6FHD5djs374wa6+7z4YNUrL\naqvgELH3/k2eHOpIVLjRXBWbpjCAQfkv8fzYv0IdilJKuVTSlayHHD/fDkYgquwK5sFy98jKKqWB\nNWtsD2roUHj44RN6UIsWwZVXwoQJdt4ipYKpTx94913IyQl1JCrMaK6KQXuoxcAJLXl3QQV27Qp1\nNEopdaKSSrh/DBjgPODL4uuNMQG/3VQLX3inTDdFb98O55wD48bZKgPFTJpky7S//bYduqWUT/Lz\nYcUKOPtsn96v119vh6kOHBiY8FRw+LmEe8zkKi188beUlKJDjpOTPTiRGCa08IVSkaGsuaqkTlYF\n4BxgJjCg+HpjzBJfD+op7WR5p0wJ2Bj45Rdo1qzI4vx8GD7cdq4WLICTTy57nCqG/fUXNGgA33+P\nNG7k9ft14ULIyIDlywMRnAoWP3eyYiZXaSfrRGvWQIcOkJkZOa+NdrKUigwB62Q5HaCWMWa3iFQF\nMMZ4XM5HRKYAnYCdxpjmjmXJwJtAOrAR6GaM2e9mf+1kecHfCfjwYbj5ZnuRa+5cn+aRVepEgwdD\nrVrIiAyv36/Hj9t5jefPh+bNAxKdCoIAlXD3OVc59vc5X2knK7Q6drRzNUbKa6OdLKUiQ8BLuAN1\nROQnYDWwRkR+EJGzPGz/NaBjsWXDgE+MMacCn/H3eHoVRnbvtmcHy5WDTz7RDpbyo759Ydo0hHyv\ndy1Xzu4+ZUoA4lKRriy5CjRfRawhQ+zPSOlkKaVigyedrFeBe40x6caYhsB9jmWlMsZ8BRQv1NwF\nmO74fTpwrYexKn8xBvbudbv611/hwgvtPFhvvGHnkFXKb845B5KSuATfRnH162ffl39pUTFVlM+5\nCjRfRbKOlxviOcqXJ9yRp5RSoeNJJ6uKMebzgj+MMYuBskw9W9sYs9PRViZQuwxtKW8dPw6DBsGt\nt7pcvWSJnSLr4YfhiScgTmdSU/4mAn370o+pPu3eqJHtp737rn/DUhHP37kKNF9FhLicfYxhGJdd\n8pfPE54rpZS/efIVer2IPCoijRyPR4D1foxBL/AHy+HD0K0b/P47TJt2wuqZM6FrV3uVoF+/4Ien\nYshNN/EZl/q8+4ABOmRQnSDQuQo0X4Wn5GRuu+UoSQnH+fNP3yY8V0opfyvvwTb9gJHAO9gE86Vj\nma92ikgdY8xOEakLlDjDxYgRIwp/b9euHe3atSvDoWNYdjZccw2kpdkygRUqFK7Kz4fHHoPXX4fP\nP4czzwxhnCo21KrFe8l9S5zMuqSSzF262PoZ69dDkyaBCVH5z+LFi1m8eHGgD+PvXAVe5CvNVaFV\n5b7b6T/nNV587g6efaFcqMNRSkUgf+eqUqsLlvkAIo2AecaYZo6/xwJZxpixIvIgkGyMGeZmX60u\n6AW3ladyc+G88+CKK+w8WE5jAA8etNNi7dljy7TX1sEwKkyUVklt6FCoUgVGjw5eTMo/AlFd0B98\nzcGrvbEAACAASURBVFdaXTA8bLmoBy1XTmfDtookJYXv66XVBZWKDMGoLugzEZkFLAVOEZHNItIX\nGANcJiK/AR0cf6tASkiAV16BZ54p0sHatMlOLJySYisIagdLRZL+/eG11+DYsVBHoqKB5qvIl/Zg\nTy6r8AVTfbvdU4WRlBSK3F+n99ipSBTwK1lloVeyvOPNWbuvvrL3Xz34INxzDyUO21IqFDx5P7du\nDY88AldfHZyYlH+E65UsX+mVrDBx/DjfPfo+179+LevWCZUqhefrpVeySufqva7vfxVsAb+SJSIX\nebJMRY6pU+G662ztiyFDtIOlQuzoUVv10gcDBsCkSX6OR0UkzVWKcuU478l/cuaZwvTppW+ulFKB\n5MlwwRc9XKbCwdGjthqAC8eOwb33wpgx8OWX0LH4tJtKhcI//wkffujTrt2722kHMjP9HJOKRJqr\nFACPPgpPPRXqKJRSsc5tdUERaQ20AWqJyL1Oq5IALd0ThqqTDVfeACedZO/BcrJnD/TsaS+1f/ut\nrdymVFjo0sXeXOXDmL+qVeGGG2D6dDv0VcUezVWquDZtbNXRjRtDHYlSKpaVdCWrAlAV2xFLdHrk\nADcEPjTlld9+4xtaQ/PmMGFCkVU//miLC559NixcqB0sFWa6d7eVV/bs8Wn3AQNg8mQdqx/DNFep\nEzz2mP2phXFiS/GCGVosQ4VSqYUvRCTdGLNJRKoCGGMOBiUytPBFcSkpridXvJIFTOMWnkx4gucO\n3Vpk3bRp8K9/wcSJ9oy/UmGpd29o1cpWYXHw9CZnY+y5hZdegksuCWCMym8CUfgiFnKV3vjvhePH\nqVb+IM+/Vo1bbgl1MEVp4YvSuXqvu/sO5Kz4/IrF9ylp/kWligtGCfdEEfkJWA2sFpEfROQsXw+o\nfJed/fdM9oWP39exoP5Aan89t0gH6+hRuPNOe//VkiXawVJhrm9fO2TQByJ/X81SMU1zlfrb4cPM\noDePPXSUw4dDHYzyh6wsF9+Bij2Kd6CK7wMnlobXUvEqUDzpZL0K3GuMSTfGpAP3OZapcHDyyfDr\nr3YQusO2bfaM/vbtsHw5nHFGCONTyhPt2tnLUQcOFC5KTvY8CfbqBfPmlX6WU0U1zVXqb1Wr8iFX\ncl7+t7yo5U+UgycdNc0jyl886WRVMcZ8XvCHMWYxUCVgESnvVa1a+OsXX9j7rzp3hnfegaSkEMal\nlKfi4mDGDEhMLFxUUjIsngRr1IArr4RZs4IctwonmqtUEZMZwJOVRjHuyaPs3RvqaFQBnWhYxQpP\nOlnrReRREWnkeDwCuK4RrkImPx+efBK6dbOjroYPt99blYoV/fvbObP0npWYpblKFXGMeE799610\njZ/LE6P1gyFcuLr1Qa8eqWjkydfwfkAt4B3Ho5ZjmQqm/HweZjQsXXrCql277Fn8hQvh++91/isV\nmy69FPbvt9U0VUzSXKVOdMMNjEifxutTj/DLL6EORikVS9zOk1XAGJMN3C0iifbP4FVsUg579kDv\n3lzOIWhU9DvDkiVw003Qpw88/jiUL/VfVKnoFBdnr2ZNngznnhvqaFSwaa5SxSUng8QJtXmNPVTg\n7LPhyBEd5aGUCo5SP2pEpJmjYtMvaMWm4Fu2zH5jbN6cS/kMUlMBOH4cRo+GHj1gyhQ7VFA7WCrW\n3XILvPkmHDoU6khUsGmuUsUV3Ne509Qh71gcx47ZictVcBW/B0vn6lSxwpPzOa+gFZtC49VXoUsX\nePFFGDuW444Ljzt32uGBH3+swwNVFJoxA55/3qddGzSwhTbfesvPMalIoLlKuVWunP05bJjNoSp4\nit+DpfNUqVih1QXD2ckn2ytZ11xTuGjePGjZEi64AD79FOrXD2F8SgXCKafAf/5TYgWLksq7z59v\n581SMUdzlSrVgAFw661aICfcFP9M16tdKhpodcFw1r49NG4M/D386e67Yc4cGDVKhweqKHXBBfa0\n89dfu92kpPLuR4/CsWN2+jgVUzRXqVJlZMDmjcd9nftclcJVeXZPOkzFP9NDebXL1Uk8LTGvfOFt\ndcG3gZpoxSafuPrw8eQ/8Q8//H0j/88/Q9u2wYtZqaATgb598fVbUHy8/Tllih9jUpFAc5UqUXIy\nVKxoGLaqJ7f3P6pfngPAVXn2SBse6OokHminS3lPTAnXzEWkHDDWGHN/8EIqcnxTUnyRRsTNEIXN\nm2HpUuTGHkXWHz8O48bB+PHwwgtw4406xEHFiB074IwzYOtWqOL9iC8RqF0btmyBChUCEJ8qExHB\nmP9n777jo6jWx49/noRACCSEUJMQQhMLCijgBUURuAoWROHS2w8ELKAXuH4VsJAYC+gVFRUURJqC\niqKCgMrVCza42BAFGy0gECkJJBBqcn5/zCRuwm6ySXazJc/79ZpXdqeceWayO8+emTNnjHiwvAqR\nq1zmEFUy//0vz/f8D682nMKmLZXLfZ9KsmCmBOc/sqJ8RivKdlZ0Zc1VRV7JMsbkAHrdxJuWLoW2\nbWHv3nMuUVeqBJMmwcGDVgVL2yirCiM2Fv7+d/j661IXceGF1j2MKvhprlIl0rkzYydW54K0dQg5\nvo5GBSBtUqjcUeSVLAARmQXEA0uB/I6RjTHLvBtakF/JysiwbrD63//g9dehXTsAcnNh5kxISrJ6\nQRo//q9ekZSqUIyxvjSlIAKLFllfrdWrPRyXKjNPX8myywz6XKVnzz0oN5djN/Wn6eoZPP5KfW67\nrfxWrVeyglNF3vZgVdZc5U7XCeHAYaCLwziD1e5dlcb69dC3L9x6K3z/fX5zqO3brYepnj5t3fN/\n/vk+jlMpXyplBStP797wz39arXEbNvRQTMqfaa5S7gsJofrrL/NqzCCG37ec886rxNVX+zoopVQw\nKfZKli8F7ZWs1FTYtg26dgWsq1cvvgjJyVbzwHHj9OqVUmWR910bOxbq1LF6FFP+wxtXsnxJr2QF\nrnA5yfKPwhk6FL74Apo18/46fX0l6/RpWLcOvvj0NGkfb6bVxTncteBv58y3dN4xlr2dS/vroujd\n23oOYXEq8me0Im97sCprrtJKVjly9gXMu3p15gy8+qpevVLKE/K+a5s2Wc/z3rFDT1z4E61klXY9\n+iPO0/L26UsvwbPPWg1NvH3/s68qWbt2wQv/2km11W/TM2wlLU58w+n4Jkif3lR/8twzURmLPqD6\nqP7srHEp8479g9/bD+XOyTXp0sV1Q4OK/BmtyNserLSSFUAcv4CnT8PTT1vD5MlWsyb9EaiUZzh+\n19q1s+5xvPFGn4akHGglq7Tr0R9xnua4TydMsFrwr14N4eFeXKePKllHftxD5SvaYHreSrVBt8CV\nV0JUVNELnToFn3xCzqLFnF2+ijeqDKXF4gdp272209kr8me0Im97sNJKlj977z1Yvty6RMVfX8Av\nv4Tbb7fuE5k5Exo18m2YSvm1HTvg/fetXmDc5Jjs5s2Dd96BDz7wUnyqxLSSVdr16I84T3Pcpzk5\n0L+/9f7NN7134tOnzQVzckq/YXv3kvvEVEKGDc3vrKuwivwZrcjbHqy8XskSkXrA40CcMeZ6EbkI\n6GCM8fqjPgO2krVvH9x9N/z0E8yeDZ06AdYXcPRo68fes8/CP/5R5nv7lQp+6enQpIlV2XKzj1zH\nZJedbZ3Q+PpraNzYi3Eqt3mpd8Ggz1X6I87zCu/TU1u2cUOnYzS/tQUzZ4d5JUd7s5J19iwsnHGE\nZnHZXN0/zivrKEpF/oxW5G0PVl59TpZtPvARkPdt/Q0YV9oVBrXcXKtS1bq19SDVH36ATp0wBt54\nw5olNBS2bIE+fbSCpZRbYmKgRw+YP79Ui0dEwLBh1j0XKqjNR3OVKqMqFzbh3b/PZONbu0h+OLCe\nofX5p2eY3vBZek08jyZbyvchgdnZ5bq6gBATo8/SqujcqWTVNsa8BeQCGGPOgj69z6kFC6y2SZ9+\nCikpEB7OTz9ZnQg+/rg1y8yZEB3t2zCVCjh33mnVknJzS734vHlw8qSH41L+RHOVKruQEKIWvciq\nvz3C688eZNaLpTvmlKc//oDHO6+hfrdWDK2zmhqbPqNByu3ltv60NOjWdBs//VRuq/RLhR9QDNaV\nLcchI8O3Mary5U4l67iI1MJ63ggi0h446tWoAtXgwVYfsBdfnP+s4S5drOf1fPedr4NTKoB16ABV\nq8Inn5Rq8WbN4LLLYOlSD8el/InmKuUZYWHUe382H13wTx69P5Olb/lvGzCTa9jasj93bLqDhNen\nUn/Th8hFF3plXa6uzNQPOcDH2Vcy/ep3vbLeQJGeXrBClZ7u64iUr7lTyZoALAeaisiXwELgbq9G\nFajCwsghlDlz4MILrW7Zt26FMWOgkjuPfVZKOSdiXY5ys8lg4TOKIvDRRzB0qDbZCGKaq5TnVK1K\nkzUvs6rxWMbeeZYPP/R1QM5JiND57THE7N9CeN+bPXofQuFKFbi4MlO3LlXXfsiLuXdyK8vYscNj\nISgV0Irs+EJEQoD2wEbgfECAX40xZ8oluADr+OLLL62rVxERMGMGXHppwel6U6RSZXDihPUFiogo\n1eI5OVb/GcuWQdu2+l30JU93fFFRcpXmEM8rdp/m5LB+Yyg9e1r3Vnfp4oF1+vhhxO5y5/NWYJ5N\nmzhw6XX8q+HbzNh0tdefNxaI9DscWLza8YUxJhd40Rhz1hizxRjzU3klrUBjjFWx+vVXq8XgZZed\neyZdDzhKlUHVqqWuYIHV6cztt8OsWR6MSfkFzVXKa0JD6dAB3nrL6t79yy99F8ovW3K8dl+ps6aA\n7vxmKdBq4NLW3F59MbMO92HPxz97J1ClAog7zQU/EZHeItoXXlFErOdqHD9+7uV0bZ+rlH+47Tbr\nmVkqKGmuUl5zzTWwaBHceit88035rvvMGZg79nvOtGrLjnnrvLKOjIzS/WYpfB/Su1l/p/qCmbRs\nE+aVOJUKJO48JysLqAacBU5iNcMwxphiHhPugeBcNMFo1KgRqamp3l69Uh6XmJjIrl27fB1GhTZo\nECxerE02fMlLz8nyu1zl+fXo59bTYmIK9vhWs2bRlYvly2H0yBxWfxR6zi0B7ipJc8EfvznF/3qk\n8I/Ds8l54klqTRjmlee/6GerfOh+Dixefxixt4jILqyen3KBM8aYy53M4zRx2Rvt9RiV8jT97Pre\nN99Au3bW2WHtkMY3vFHJ8qbi8pVWsoJHsfv47FmWNf4Xd2Q8zrIPq9GxYynW4UYlKzcX5t25kSvn\nDqfqJefRcOUsJC625CtzNyb9bJUL3c+BpVwqWSJSEzgPCM8bZ4z5rLQrtcvcAbQxxrh8aoBWslSw\n0c+uh7z/Ppx3nvXQ71IQsW5i79fPw3Ept3irkuWNXGWXW2S+0kpW8HBrH//xB2uumMKgw88x/61q\n3HBjyT7K7lSyzNkc/mh2DVX/bwy17+rnlatXBWLSz1a50P0cWLza8YW9gpHAZ8BHQLL9N6m0K3Qs\n2p31K6XUObZuhaeeKlMRTz+tyS6YeDFXgeYr5ahBA679bhrLE+9hxD+O8vz0Mx4/lkilUBJ2fkbt\nMf29XsHytjeWGB6bctrXYfiFwo8X0ceJBDd3ksY/gXZAqjGmM3ApcMQD6zbAGhH5WkRGeaA8pVRF\nMXo0vPcepKWVuoiMDPjqKw/GpHzNW7kKNF+pwmrXpv3GGXzV5SFeeTiVYcMMWVkeXocXK1eFexP0\nZu/H3ffOpfm029i40XvrCBSFOwrJcNmWSwUDdypZJ40xJwFEpIox5hes55CU1ZXGmMuAG4AxIlKK\nls2BJTU1lZCQEHJzc8tcVuPGjfn000/dmnfBggVcddVV+e8jIyM91vnCE088wejRowHPbh/Anj17\niIqK0uZ16ly1allt/V56qdRFjBsH06d7MCbla97KVVAB85VyQ/XqNPlgBl+tPUPlysLFF8PKle5f\nITcGPn4zg9kNU9j9S7Z3Yy2kcG+C3uz9OPqugXSr9TWLb3mTEye8tx6l/I07t33/ISLRwHtYZ/Iy\ngDJ37WeM2W//PSgi7wKXA18Uni8pKSn/9TXXXMM111xT1lV7VePGjZk7dy5dXDyx0Fe9CzuuN8uN\n023r1q1j8ODB7Nmzp8j5Jk2a5HI9JVV43yUkJJCZmVnq8lSQGzfO6ld54kQIDy92dkc1a8LYsdZr\nZx/Z4noYUyWzdu1a1q5d6+3VeCVXgXv5KtBylfIQEaq1vZBXXoE1a+Duu2HqVOvwdOONrg9N8x/a\nTs7Ml+l19FXOu+YWGtQ6AZT+OYB+LSKCqPcWkXR1D6ZP6sIDz9bxdURKOeXpXFVsJcsYc6v9MklE\n/gvUAD4sy0pFJAIIMcYcE5FqwHVYbejP4Zi4VPkxxhRbYcrJySE0NLScIlKqkAsusJ76/c47Vr/s\nJZBXgZo0yXq23YwZBacH+C0QfqdwpSM52enhvky8kavA/XyluUpdey1s2WI9M3PmTMPwgadp1SST\nxg1zCa9iOJiWQ81fvoJ/Qe+n/saRW4YT/ej/qNmsqa9D97527Qj7f4M5/6Xx/Hjba1xyia8DUupc\nns5V7nR80TBvAHYCm4D6ZVor1AO+EJHvgQ3ACmPMx2Us0+/k5uZy7733UqdOHZo1a8bKlSsLTM/M\nzGTkyJHExcWRkJDAQw89lN80bseOHXTt2pXatWtTt25dBg8e7PZVnfT0dG6++WZq1KhB+/bt2b59\ne4HpISEh7NixA4BVq1bRokULoqKiSEhIYPr06WRnZ3PDDTewb98+IiMjiYqKIi0tjeTkZPr06cOQ\nIUOIjo5mwYIFJCcnM2TIkPyyjTHMnTuX+Ph44uPjefrpp/OnDR8+nIcffjj//bp160hISABg6NCh\n7N69mx49ehAVFcW///3vc5of7t+/n549e1KrVi2aN2/OK6+8kl9WcnIy/fr1Y9iwYURFRXHJJZfw\n3XffubW/VABbsAD69y/14mPHwmuvweHDHoxJ+YSXchVUkHylLIU7JnA2FNVZQWgoDBwIn7x/nNTx\nz5JU63m67nyFNlsWMERe456h1m2CkVn7SXjjKcQDFazC91f5a2cK1f6dzA01vyJ2y398HYpS5cKd\n5oIrsW76FaxucRsDvwItSrtSY8xOoHVplw8Us2fPZtWqVfzwww9ERETQq1evAtOHDRtGbGwsO3bs\n4NixY9x00000bNiQUaNGYYxh8uTJdOrUiaNHj9K7d2+SkpKY7sZNJHfddRcRERH8+eefbN++nW7d\nutGkSZP86Y5XqEaOHMnbb7/NFVdcwdGjR9m5cycRERGsXr2aIUOGsHv37gJlL1++nLfffptFixZx\n8uRJpk2bds4Vr7Vr17J9+3a2bdtGly5duPTSS4ttPrlw4UI+//xzXn31VTp37gxY93g5lt2vXz9a\ntWpFWloaW7du5dprr6VZs2b5Zx1WrFjBu+++y/z583nggQcYM2YM69evL3Z/qQBWp2zNTuLjoXdv\neO45eOQRD8WkfMXjuQoqTr5SFneaCbt1pbt6dWpOvZ+uzqYlj4awsBJG5lre/VV5/PZKfLVqRKxd\nTURioq8jUapcFHslyxhziTGmpf33PKy26PrL1Q1Lly5l3LhxxMXFER0dXeD+pT///JPVq1fzzDPP\nEB4eTu3atRk3bhxLliwBoGnTpnTt2pVKlSpRq1Ytxo8fz7p164pdZ25uLsuWLSMlJYXw8HBatGjB\nsGHDCszj2JFE5cqV2bJlC1lZWdSoUYPWrYv+LdGhQwd69OgBQLiLxuZJSUmEh4dz8cUXM3z48Pxt\ncoerTi727NnD+vXrmTZtGmFhYbRq1YqRI0eycOHC/Hk6duxIt27dEBGGDBnC5s2b3V6vqrgmToSZ\nM+HoUV9HospCc5VSAeD880t8D61SgarEz/0wxnwH/M0LsXhOUpLza/yu2sw7m98D7ev37duX3xwO\nINHh7M3u3bs5c+YMsbGxxMTEULNmTe644w4OHToEwIEDBxgwYAANGjQgOjqawYMH508rysGDB8nJ\nyaFBgwZO11vYO++8w8qVK0lMTKRz585s2LChyPIdt8cZETln3fv27Ss27uLs37+fmJgYIiL+ujE4\nMTGRvXv35r+vX/+vlkERERGcPHnSYz0dquDVtClcf71V0VLBIyBylVLlpDy7bFdKWYptLigiExze\nhgCXAWX/1exNSUklqySVdH43xcbGFuidLzX1r46uEhISCA8P5/Dhw047mJg8eTIhISFs2bKFGjVq\n8P7773P33XcXu846depQqVIl9uzZQ/PmzQHOafLnqE2bNrz33nvk5OTw/PPP07dvX3bv3u2y0wt3\neg8svO64uDgAqlWrRnb2X93U7t+/3+2y4+LiSE9P5/jx41SrVi2/7Pj4+GLjUao4kyZB585wzz1g\nf7xUgAnIXKVUOSncpFAp5X3uXMmKdBiqYLV77+nNoIJF3759mTFjBnv37iUjI4Np06blT6tfvz7X\nXXcd48ePJysrC2MMO3bs4LPPPgOsbtarV69OZGQke/fu5amnnnJrnSEhIfTq1YukpCROnDjB1q1b\nWbBggdN5z5w5w+LFi8nMzCQ0NJTIyMj83gLr1avH4cOHS9yFujGGlJQUTpw4wZYtW5g3bx797Y4J\nWrduzapVq8jIyCAtLY3nnnuuwLL169fP75DDsTyABg0acMUVVzBp0iROnTrF5s2bmTt3boFON5zF\noiqQ+fPhm29KtehFF8FVV8Hs2Z4NSZUrzVVKBZCjR2HMXYacHF9HopR3uHNPVrLD8Jgx5vW8Bz6q\nczlejRk1ahTdunWjVatWtG3blt69exeYd+HChZw+fZqLLrqImJgY+vTpQ1paGgBTpkzh22+/JTo6\nmh49epyzbFFXfZ5//nmysrKIjY1lxIgRjBgxwuWyixYtonHjxkRHRzN79mxef/11AM4//3wGDBhA\nkyZNiImJyY/Lne3v1KkTzZo149prr+W+++6ja1fr1t8hQ4bQsmVLGjVqRPfu3fMrX3kmTpxISkoK\nMTEx+R18OMa6ZMkSdu7cSVxcHL179yYlJSW/kwxXsagK5NgxKEN3qw88AE89hT4sM0BprlIqsESF\nHOPO169k3rN6Q6wKTlLc2X4RWYHVY5NTxpibPR2Uw7qNs/hERK9SqICkn10vOnkSmjeHt96C9u1L\nVUSvXtChA9x3nzat8Sb7e+DRsyD+mKs8vx79XPqDwv+HmBirOZ6joh5oLsmCmeK5f2TheJx9Tvz1\ns5PeayRvfRjJP3Y/Q+3avo6m/JX0s6PKV1lzlTtduO/AetbIa/b7AcCfwHulXalSSnlceDg8/LB1\nSeqTT0pVxKOPQqdOHo5LlRfNVconnN3vVJqGFM5+cBfmzg/wvGd9FR7nj2JefoJBiS2YfucIpiyt\neE8odva/1EY4wcOdK1nfGGPaFjfOG/RKlgo2+tn1sjNnrBusXnoJujp9Qk2xRoyAJUusC2OloWch\ni+elK1l+l6s8vx7/vBpR0ZT1ypGrK1nu/H8D6SqVu7KfnsXmSUuo9OU62rbTGkbhyrbmFN8pa65y\np+OLaiKS/yRbEWkMaP9bSin/ExZmPVV42bJSF5GUBBERsH+/9cOlpENxZ6KV12iuUioARYwbzXnx\nxzk9f7GvQ/EL6emaU4KFO1eyugOzsZpiCJAIjDbGfOz14PRKlgoy+tktB3n7twxtLiZMgNOn4YUX\nSr5soJ9VLg9eupLld7nK8+vRz5Y/8OWVrKC9h+ebb+DIEfj7330did/R773vlDVXFVvJsldSBbjA\nfvuLMeZUaVdYElrJUsFGP7uB4eBBuPBC+OILuOCC4ud3pAmxeN6oZNnl+lWu8vx69LPlD9xpzlXU\nPGWpZKmKRz8XvuO15oIi0k5E6gPYiaoV8AjwlIjElHaFSinl7+rUsR5QPH68Jjd/p7lKlbfCzbmc\nXUVyp8lXTIz1Azpv8NfOKZRSpVPUPVkvA6cBRORqYCqwEDiK1SRDKaWC1t13w86dsHKlryNRxdBc\npQJSXq+ERVXWlFKBq6hKVqgxJu8r3w+YbYx5xxjzENDM+6EppZQHHDtWqsUqV4Znn4Vx4+BUuTQ6\nU6WkuUr5vbxu1fNuFdUrV64ZAx9+qK0I8jh+dvKGGL1GHxCKrGSJSN5ztLoCnzpMc+f5WioIhYSE\nsGPHDrfmTU5OZsiQIQDs2bOHqKgoj92PdOedd/LYY48BsG7dOhISEjxSLsAXX3zBhRde6LHylA+d\nPQutW8P335dq8e7doUULePJJ95dxlhA1OXqV5irl9xybD4JeuSpKbo5hx22P8daco74OxS8Ubnqq\nPQ4GjqIqWUuAdSLyPnAC+BxARJphNcNQLixevJh27doRGRlJfHw8N954I19++aWvw2LBggVcddVV\nZSpDSthjW978CQkJZGZmFru8uzHOmjWLBx54oNRxOSpccezYsSM///xzqctTfqRSJXjwQRg50qpw\nlcLzz8Nzz8HWre7N7ywhanL0Ks1VSgWR0EpC73apZE2YQmamr6NRqvRcVrKMMY8B/wLmAx0duk4K\nAe72fmiBafr06UyYMIEHH3yQAwcOsHv3bsaMGcOKFStKXFZOTo5b49xljClTZSSvDG9yJ8bc3FyP\nrrOs+0T5uWHDrMtHzz5bqsUbNrQevTVyJJTh66e8RHOVUsGn3iuP0zdnMS+P2ezrUJQqtSIfRmyM\n2WCMedcYc9xh3G/GmO+8H1rgyczMZMqUKcycOZOePXtStWpVQkNDueGGG5g6dSoAp0+fZty4ccTH\nx9OgQQPGjx/PmTNngL+avT355JPExsYyYsQIp+MAPvjgAy699FJq1qxJx44d+fHHH/Pj+OOPP+jd\nuzd169alTp063HPPPfzyyy/ceeedrF+/nsjISGLsNkunT5/m3nvvJTExkdjYWO666y5OOdyA8tRT\nTxEXF0eDBg2YN29ekRWSXbt2cc0111CjRg26devGoUOH8qelpqYSEhKSX0GaP38+TZs2JSoqo0XT\n5AAAIABJREFUiqZNm7JkyRKXMQ4fPpy77rqLG2+8kcjISNauXcvw4cN5+OGH88s3xvDEE09Qp04d\nmjRpwuLFfz3UsHPnzrz66qv57x2vlnXq1AljDC1btiQqKoqlS5ee0/zwl19+oXPnztSsWZNLLrmk\nQIV5+PDhjB07lptuuomoqCg6dOjAzp07i/6gqPIlAi+/DFOnwvbtpSrijjsgNBRefNHDsSmP0Fyl\nVJCpXRtSUrjmjTvY9K2e3VKBqchKliqZ9evXc+rUKW655RaX8zz66KNs3LiRzZs388MPP7Bx40Ye\nffTR/OlpaWkcOXKE3bt3M3v2bKfjvv/+e2677TbmzJlDeno6t99+OzfffDNnzpwhNzeXm266icaN\nG7N792727t1L//79ueCCC3jppZfo0KEDWVlZpNuNwe+//362bdvG5s2b2bZtG3v37uWRRx4B4MMP\nP2T69Ol88skn/P777/znP/8pcvsHDhxIu3btOHToEA8++CALFiwoMD2vgpadnc0///lPPvroIzIz\nM/nqq69o3bq1yxgBlixZwkMPPURWVhZXXnnlOetOS0sjPT2dffv2MX/+fEaPHs3vv//uMta8WNat\nWwfAjz/+SGZmJn369Ckw/ezZs/To0YPu3btz8OBBZsyYwaBBgwqU/eabb5KcnMyRI0do2rRpgWaM\nyk80aQKTJ1u1pVIICYG5cyElBbQlqVJKeV/UhFEkNAlj8+hSPBVeKT+glSwPOnz4MLVr1yYkxPVu\nXbx4MVOmTKFWrVrUqlWLKVOmsGjRovzpoaGhJCcnExYWRpUqVZyOmzNnDnfccQdt27ZFRBgyZAhV\nqlRhw4YNbNy4kf379/Pkk08SHh5O5cqVueKKK1zGM2fOHJ555hlq1KhBtWrVmDhxIkuWLAFg6dKl\nDB8+nAsvvJCqVauSlJTkspw9e/bwzTff8MgjjxAWFsZVV11Fjx49XM4fGhrKjz/+yMmTJ6lXr16x\nHU307NmT9u3bA+TvF0ciQkpKCmFhYVx99dXceOONvPXWW0WW6chVM8j169dz/Phx7r//fipVqkTn\nzp256aab8vcRwK233kqbNm0ICQlh0KBBbNq0ye31qnI0blyZLkU1bw6PPw79+8PJkx6MSyml1LlC\nQqi34hUGtfqx+HkrmMIdLGmHSv4pKCtZRfXsVZKhpGrVqsWhQ4eKvGdo3759NGzYMP99YmIi+/bt\ny39fp04dwsLCCixTeFxqaipPP/00MTExxMTEULNmTf744w/27dvHnj17SExMLLKil+fgwYNkZ2fT\npk2b/LKuv/56Dh8+nB+rY7O5xMREl5WRffv2UbNmTapWrVpgfmciIiJ48803mTVrFrGxsfTo0YNf\nf/21yFiL6z2wZs2ahIeHF1i3434trf3795+z7sTERPbu3Zv/vn79+vmvIyIiOFbKLsOVl4WEWDWl\nMhg50irivvs8FJNSSimXpPl5hL76iq/D8DvuPOxa+V5QVrKK6tmrJENJdejQgSpVqvDee++5nCc+\nPp7U1NT896mpqcTFxeW/d3bPU+FxCQkJPPDAA6Snp5Oenk5GRgbHjh2jX79+JCQksHv3bqcVvcLl\n1K5dm4iICLZs2ZJf1pEjRzh61OqQKzY2lj179hSI1dU9WbGxsWRkZHDixIn8cbt373a5H6699lo+\n/vhj0tLSOP/88xk9erTL7S9qfB5n687br9WqVSM7Ozt/WlpaWpFlOYqLiyuwD/LKjo+Pd7sMFTxE\nYPZsWL4c3nnH19EopZRSyl8FZSXLV6KiokhOTmbMmDG8//77nDhxgrNnz7J69WomTpwIQP/+/Xn0\n0Uc5dOgQhw4dIiUlJf9ZUu4aNWoUL730Ehs3bgTg+PHjrFq1iuPHj3P55ZcTGxvLxIkTyc7O5tSp\nU3z11VcA1KtXjz/++CO/ow0RYdSoUYwbN46DBw8CsHfvXj7++GMA+vbty/z58/n555/Jzs7Ov1fL\nmYYNG9K2bVumTJnCmTNn+OKLL87pUTHvKtiBAwdYvnw52dnZhIWFUb169fwrb4VjdJcxJn/dn3/+\nOStXrqRv374AtG7dmmXLlnHixAm2bdvG3LlzCyxbv359l8/++tvf/kZERARPPvkkZ8+eZe3atXzw\nwQcMGDCgRPGp4FGzplXBuuMO0JahSimllHJGK1keNmHCBKZPn86jjz5K3bp1adiwITNnzszvDOPB\nBx+kbdu2tGzZklatWtG2bdsSd5TQpk0b5syZw9ixY4mJiaF58+b5nUyEhISwYsUKfv/9dxo2bEhC\nQkL+vUldunShRYsW1K9fn7p16wIwdepUmjVrRvv27YmOjua6667jt99+A6B79+6MGzeOLl260Lx5\nc7p27VpkXIsXL2bDhg3UqlWLlJQUhg0bVmB63tWo3Nxcpk+fTnx8PLVr1+azzz5j1qxZLmN0R2xs\nLDVr1iQuLo4hQ4bw8ssvc9555wEwfvx4wsLCqF+/PsOHD2fw4MEFlk1KSmLo0KHExMTw9ttvF5gW\nFhbGihUrWLVqFbVr12bs2LEsWrQov2zt/j3ArV9fqsXatIEXXoBbboEDB0q2rD6sWCmlSufoUdiy\nxddR+J/i8ormFt8Qbz/3qCxExDiLT0S8/rwmpbxBP7t+5NQpuPRSGDUKxo8vVREPPwwffwxr1kBk\npGfCEildc+VAYn8PguYMhatc5fn1BP9noyKQZMFM0X9kafx34R6+GLeUu3dMIDra19EEFj1+lFxZ\nc5VeyVJKVUxVqsDq1fDMM1b/7KWQnAwtW8LNN4PDLYFKKaW8oHPPKO7MeZFXui6hiD7GlPILWslS\nSlVciYnwn//AQw/Bm2+WeHERmDUL4uLgH//wTNfu2pxQKaVcqFGDGp++y8jN9/DS8P/5OhqliqSV\nLKVUxda8OXz4odVk8PXXS7x4aCjMnw/Vq0P37tY9A2VRuGvewoN21auUqsjC2rREXp1Lr9d7sey5\nPcUvoJSPaCVLKaVatoTPPoPLLivV4mFhsHgxXHIJXH01eOARbUoppVyoMeRmzPgJdEy5DvTZlMpP\naSVLKaUAmjWDCy8s9eKhoTBjBgwcCO3awaefejA2pZRSBcQ+9S/qvvOS1YxAFcudHgi1ebpnaSVL\nKaU8RATuvx8WLIBBg6yOMUr4yDellFLu6tTJ1xEEjOKaomvzdM/TSpZSShVlwYISN0f5+9/h22+t\nx3C1aQMbNngpNqWUUkr5pYCsZCUmJiIiOugQcENiYqKvvz6qJM6csdr9XXQRvPJKiS5LxcVZPcRP\nngy9esGQIbBtmxdjVUqpCu7wYZg0dC9HMvSBUMr3fFbJEpHuIvKLiPwmIveXZNldu3ZhjPHLAXwf\ngw7+O+zatcs7XyjlHWFh1pWsN96wung//3x48UW3uxAUgf794ZdfrE4M27eHoUPhf//Th0IGirLk\nKqVU+apWDfqsH8/P9TuzatqPepxVPuWTSpaIhAAvAN2AFsAAEbnAF7Goc61du9bXIVQ4us99w+39\nfsUVsGYNLFxo9UL48sslWk9UlPUorm3b4OKLrfu1Lr0Upk2D334redyqfFT0XBWMx6Vg3CYIzu0q\nzTaFh8Nlvyyh7t39aP9gV1bXHconz/3kVw8uDsb/FQTvdpWFr65kXQ78boxJNcacAd4AevooFlWI\nflHKn+5z3yjxfu/Y0bqidd99zqf//DMcOODyMlV0tLXob7/B009Daipcc43VseHw4TB3Lvz0E5w6\nVbKwlNdU6FwVjMelYNwmCM7tKvU2hYbS9N93UiPtNxKuu5BW/3ct6b1HejS2sgjG/xUE73aVha8q\nWfGA4xPk/rDH+ZRnPiDul+HO+oqbx9V0d8f7w5eirDGUdPny3u/ujitvgbbfSzrNJ/t96lSrSWHt\n2laFbNAg+L//g7S0AusPCYGuXWFmymH++OEw7712jL9deppP/5NLnz6GGjWsYm68EUaPhqQkmD0b\n3n4bYC0bNsDWrbBnj1Wny8iw+uY4dYpzzth6a7+X9TsQIMolV5XXd7G036/SKo/tCrRtAmBn2dbj\nj9tV1s+gN7YptFY0h0d1oHb2Hmo9+/A5042B1x76lfUPrmTT7I1sX7ODA1sPcfSPLDh71u249H/l\nGcF4vAjIji+8RStZvhFoP/aLmu43P/bdEGj7PSAqWQsWWP3kbt0Kjz0G118PdepY93Y5W3+PHoSc\nfx4XXxvLHfdF8frSyvz8SwiZX//KsmVw++1W74S5ubBxI7wx6j80Yh7/vPJrel/yK+0T99Gi/iEa\nJ+ZQrx5ERlrP6woNtZrNRISe5NrOa6gmx6kmx6kux6gux4isnktkpNWMMSoKunVbS3Q0RFfKombI\nEWqGHCEmJIN778qu6JWscuHrH02eiMEbZfrjjyaPlLmrbOvxx+3y6x/ulSohiQ3PmXbqFJzcuJnK\nc16kyoQxVLmhC5UuPp9KDWOt43ehuLKzYUqVqWRKFJkSxVGpwVGpwYedu8Pjj59TfnY2TLn2MdJD\nahUYTiRPgyeecD5/xFPnzJ8RUqvA/HkxuTt/4fJXd77erfnXrFnLvZxb/urO1zud/8yZIuLJyTln\n/sKC8Xghxgd3BYpIeyDJGNPdfj8RMMaYaYXm01sWlVIqCBljxNcxFEdzlVJKVWxlyVW+qmSFAr8C\nXYH9wEZggDHm53IPRimllHJCc5VSSqnSquSLlRpjckRkLPAxVpPFuZq0lFJK+RPNVUoppUrLJ1ey\nlFJKKaWUUipYaccXSimllFJKKeVBAVfJEpFOIvKZiMwSkat9HU9FIiIRIvK1iNzg61gqChG5wP6s\nvyUid/g6nopARHqKyGwRWSIi1/o6nopCRBqLyCsi8pavY/GEYM5VwZYLgvU4G6zHsiA8VkSIyHwR\neVlEBvo6Hk8Jtv9TnpJ8rwKukgUYIAuogvXMElV+7gfe9HUQFYkx5hdjzJ1AP+AKX8dTERhj3jfG\njAbuBPr6Op6Kwhiz0xjjP08MLbtgzlVBlQuC9TgbrMeyIDxW9AKWGmNuB272dTCeEoT/J6Bk3yuf\nVbJEZK6I/CkimwuN7y4iv4jIbyJyf+HljDGfGWNuBCYCj5RXvMGitPtdRP4ObAUOAn7f9bK/Ke1+\nt+fpAXwArCqPWINFWfa57UHgRe9GGXw8sN/9SrDmqmDMBcF6nA3WY1mwHSvylGK7GvDXQ8+Lf6CU\nj+j/6xzFf6+MMT4ZgI5Aa2Czw7gQYBuQCIQBm4AL7GlDgOlArP2+MvCWr+IP1KGU+/0ZYK69/z8C\n3vX1dgTaUNbPuz3uA19vRyANZdjnccBUoIuvtyEQBw8c25f6ehs8vD1+mauCMRcE63E2WI9lwXas\nKMN2DQJusF8v9nX8ntouh3n88v9Ulu1y93vlky7cAYwxX4hIYqHRlwO/G2NSAUTkDaAn8IsxZhGw\nSERuFZFuQA3ghXINOgiUdr/nzSgiQ4FD5RVvsCjD572TWA9ArQKsLNegA1wZ9vndWM9FihKRZsaY\n2eUaeIArw36PEZFZQGsRud8UeuCvrwRrrgrGXBCsx9lgPZYF27EiT0m3C3gXeEFEbgRWlGuwJVDS\n7RKRGOAx/PT/lKcU2+X298pnlSwX4vnrkilY7dgvd5zBGPMu1gdSeU6x+z2PMWZhuURUMbjzeV8H\nrCvPoIKcO/v8eeD58gyqAnBnv6djtXEPBMGaq4IxFwTrcTZYj2XBdqzI43K7jDHZwAhfBOUBRW1X\nIP6f8hS1XW5/rwKx4wullFJKKaWU8lv+VsnaCzR0eN/AHqe8S/e7b+h+L3+6z30j2PZ7sG1PnmDc\nrmDcJtDtCjS6XYHFI9vl60qWULB3oq+BZiKSKCKVgf7Acp9EFtx0v/uG7vfyp/vcN4Jtvwfb9uQJ\nxu0Kxm0C3a5Ao9sVWLyyXb7swn0x8BXQXER2i8hwY0wOcDfwMbAFeMMY87OvYgxGut99Q/d7+dN9\n7hvBtt+DbXvyBON2BeM2gW6Xbpd/0O0q+XaJ3RWhUkoppZRSSikP8HVzQaWUUkoppZQKKlrJUkop\npZRSSikP0kqWUkoppZRSSnmQVrKUUkoppZRSyoO0kqWUUkoppZRSHqSVLKWUUkoppZTyIK1kKaWU\nUkoppZQHaSVL+Q0RuUVEckWkua9jcUVEJvk6Bk8RkdtFZHAJ5k8UkR9LuI5PRKR6EdOXiEjTkpSp\nlFL+IBhzloj8V0Qu8+Y6Slh2DxG5r4TLZJVw/qUi0qiI6U+JSOeSlKkUaCVL+Zf+wOfAAG+vSERC\nS7noZI8G4iMiEmqMedkY81oJF3X76eUicgOwyRhzrIjZZgH3lzAGpZTyB5qzvLgOO0+tMMY8WcJF\nS5KnLgJCjDG7ipjteWBiCWNQSitZyj+ISDXgSuA2HBKWiHQSkXUi8oGI/CIiMx2mZYnIdBH5SUTW\niEgte/xIEdkoIt/bZ6jC7fHzRGSWiGwApolIhIjMFZENIvKtiPSw5xsmIu+IyGoR+VVEptrjnwCq\nish3IrLIyTYMEJHN9jDVjTib2Ov42t7G5g5xPiciX4rINhHp5WRdiSLys4i8JiJbReQth+28TETW\n2uWuFpF69vj/isgzIrIRuEdEpojIBHtaaxFZLyKb7G2vYY9vY4/7HhjjsP6LROR/9r7Y5OJq1CDg\nfXv+CPt/+L29f/rY83wO/F1E9FiklAoYgZ6zRCTELn+ziPwgIv90mNzXPr7/IiJXOqzjeYflV4jI\n1W7kxdLkv1kist7e5vz12nnvEzvnrBGRBvb4RiLylb0dKQ7rrm+X/Z29nVc6+Vc65imn+8QYsxuI\nEZG6Lj8QSjljjNFBB58PwEBgjv36C+BS+3UnIBtIBAT4GOhlT8sF+tuvHwKet1/XdCg3BRhjv54H\nLHeY9hgw0H5dA/gVqAoMA7YB1YEqwC4g3p4v00X8sUAqEIN18uIT4GYXcc6wX/8HaGq/vhz4xCHO\nN+3XFwK/O1lfol1ue/v9XGACUAn4Eqhlj+8LzLVf/xd4waGMKcAE+/UPQEf7dTIw3WH8lfbrJ4HN\n9usZwAD7dSWgipMYdwHV7Ne9gJcdpkU6vP4o7/+tgw466BAIQxDkrMuAjx3eR9l//ws8Zb++Hlhj\nvx6Wl7vs9yuAq4tah4ttdif/OW7zMIdllgOD7dfDgXft1+8Dg+zXd+XFg5UTJ9mvJS8fFYpvLdCi\nqH1iv54N3Orrz50OgTXo2WPlLwYAb9iv38RKYHk2GmNSjTEGWAJ0tMfnAm/Zr1/DOqsI0FJEPhOR\nzXY5LRzKWurw+jpgon2VZi1QGWhoT/vEGHPMGHMK2IqVMIvSDvivMSbdGJMLvA5c7SLOjvZZ0CuA\npfb6XwbqOZT3HoAx5mfA1dmz3caYDY7lAucDFwNr7HIfAOIclnmzcCEiEgXUMMZ8YY9aAFxtX82q\nYYz50h7veJZyPfCAiPwf0MjeT4XVNMYct1//CFwrIk+ISEdjjGOb+YOFYlRKKX8X6DlrB9BYrFYT\n3QDHY/Iy+++3bpRTnBxKnv+W4lwHrP0JVj7K239X8tf/wjFPfQ0MF5GHgZYO+chRLFYOgqL3yQE0\nT6kSquTrAJQSkZpAF+BiETFAKFab6v+zZyncvtpVe+u88fOwriL9JCLDsM4s5il8kO1tjPm9UDzt\nAcdKQw5/fVekqE0pYlrhOEOADGOMqxuMHddfknIF+MkY46xZBJy7/cWtw+l4Y8wSuwnLTcAqERlt\njFlbaLazDvP/LtbN1DcAj4rIJ8aYvGYd4cAJF+tXSim/Egw5yxhzRERaAd2AO4A+wEh7cl5ZjuWc\npeAtJuGOIThbhwvu5D9Xeaqoe63ypuXHYoz5XESuBm4E5ovI0+bc+5Czsbel0D65HaslyG32fJqn\nVInplSzlD/oAC40xjY0xTYwxicBOEck7+3e53RY7BOiHdR8PWJ/ff9ivBzmMrw6kiUiYPd6Vj4B7\n8t6ISGs3Yj0tzm9A3oh19SfGnj4A60yjszi/sK/k7BSRvPGISEsX63SVwBqKyN/s1wOxtv9XoI6d\ndBGRSmLd2OuSMSYTSHdorz4EWGeMOQpkiMgV9vj8nghFpLExZqcx5nmsphrOYv9VRJrY88cCJ4wx\ni4GngEsd5msO/FRUjEop5UcCPmfZ90aFGmPeBR7EairnTF7+2QW0FksCVhO/ItdhC6Vs+c/RV/x1\n/9tg/tp/XziMz99/ItIQOGCMmQu8gvNt/BloZs/vuE8eQvOUKiOtZCl/0A94t9C4d/jroPkN8AKw\nBdhujHnPHn8cK5n9CFyD1ZYdrIPjRqwD8M8OZRY+C/YoEGbf5PoT8IiL+ByXmw38WPgGX2NMGlbv\nQ2uB74FvjDEfuIgzbz2DgNvsm3h/Am52Eaers3e/AmNEZCsQDbxkjDmDldCmicgmO5YOxZQD8P+A\nf9vLtHKIcQQwU0S+K7R8X/tG5u+xmrYsdFLmSiCv29tLgI32/A9j7XvsG4mzjTEHiohNKaX8ScDn\nLCAeWGsfkxfxV+95TvOP3Wx8l71Nz2I1JSxuHVD2/OfoHqzmf5vs5fM66xiHlQt/wGr+l+ca4Ac7\nf/UFnnNS5ir+ylNO94mIVAKaYv1flXKbWE2GlfJPItIJ+Jcx5mYn07KMMZE+CKtEvBGniCQCHxhj\nLvFkuZ4kIvWBBcaYbkXMMw44aoyZV36RKaWUdwRDzvIkf99msXpy/BSrgyenP4hF5Basjk2mlGtw\nKuDplSwVyALlDIG34vTr7bev7s2RIh5GDGRgdbShlFLBzq+P2V7i19tsjDmJ1dNufBGzhQJPl09E\nKpjolSyllFJKKaWU8iC9kqWUUkoppZRSHqSVLKWUUkoppZTyIK1kKaWUUkoppZQHaSVLKaWUUkop\npTxIK1lKKaWUUkop5UFayVJKKaWUUkopD9JKllJKKaWUUkp5kFaylFJKKaWUUsqDtJKllFJKKaWU\nUh6klSyliiAiWSLSyNdxKKWUUkXRfKWUf9FKlgoKIpIrIk3KWMZ/RWSE4zhjTKQxZleZgvMgEUkU\nkU9F5LiIbBWRrsXMP01EDonIQRGZWmjapyJyQESOiMj3InJzoekDRWSXnbiXiUi0w7TKIvKqiBwV\nkX0iMr7Qsq1F5Bs7zq9FpFWh6eNFZL+97ldEJKz0e6VAuZ3sz8I7hca3tMd/6on1KKVUaWm+cjm/\n5is0XwUTrWSpYGGKmigioeUViJctAb4FYoAHgbdFpJazGUXkduBm4BKgJdBDREY7zPJPIN4YEw3c\nDrwmIvXsZVsALwGDgHrACWCWw7LJQFMgAegC3Cci19nLhgHvAQuBaPvv+yJSyZ7eDbgP6Awk2uUk\nl36XnOMg0EFEajqMGwb86sF1KKVUaWm+KkTzlearoGSM0UEHpwPQAHgHOIB1IJhhjxesA+YuIA2Y\nD0TZ0xKBXGAokGovO9mhzBBgMrANOAp8jXXgBLgA+Bg4DPwM9HFYbh7wAvABkAmsBxrb09bZ6zxm\nT+sDdAL2YB0c9wMLsA6gK+yYDtuv4+wyHgXOAtl2GXnbmgs0sV9HYR2ADwA7gQcc4hsGfA48BaQD\n24HuHv5/nIeVPKo5jFsHjHYx/5fASIf3w4GvXMx7ub3tbe33jwGvOUxvApzKWzewF+jqMD0ZWGy/\nvg7YU6j8VOA6+/XrwKMO0zoD+4vY7lzgTuA3+zPziB3Pl8AR4A2gkj1v3v99JnCXw2fuD6zP7Ke+\n/l7poIMOnh/QfJV3rNR8pflKBz8Z9EqWckpEQrASxE6gIRCPdXAA6+A3FOsA0QSIxEoojq7EOsj+\nHXhYRM63x/8L6Id1QK8BjACyRSQCK2G9BtQG+gMzReQChzL7AVOwks92rAMrxphO9vRLjDFRxpil\n9vv69rwNgdFYB69Xsc5mNcQ6SL9ol/EgVtIZa5dxj12G4xnHF+xtbQRcAwwVkeEO0y/HSra1sJLX\nXFwQkRUikiEi6U7+LnexWAtghzHmuMO4H+zxrub/oah57ThOABuAtcaYb5wta4zZgZW0mtvNMGKB\nzS7KvqjQtMLTncVVt9CZvMKuAy4F2mP9EHkZGIj1v7wEGOAwr8H6cTHUft8N+BHrx4tSKshovtJ8\nheYr5Ye0kqVcuRzrwHSfMeakMea0MeYre9pAYLoxJtUYkw1MAvrbiQ6sg0aSvcxmrINSXhvn27DO\nqG0DMMb8aIzJAG4CdhpjFhrLD1hnJfs4xPSuMeZbY0wu1tml1oVilkLvc4ApxpgzxphTxph0Y8y7\n9uvjwBPA1cXsB4H8JN4PmGiMyTbGpAJPA0Mc5k01xrxqjDFYZyLri0hdZ4UaY3oYY2oaY2Kc/L3Z\n2TJAdawzY44ysRKpO/Nn2uMKxGGPux7rR4M766qO9T8uXHZeHMXF6SwuKWI7AKYZY44bY34GfgI+\ntj9/WcBqrITmuF0bgJoi0hwreS0somylVGDTfOVQpuarAuvSfKV8RitZypUErINwrpNpcViX0/Ok\nApWw2kLn+dPhdTZ/HSwTgB1OykwE2ttnxtJFJAMrOTqWmeaiTFcOGmPO5L0Rkaoi8rJ9c+wRrKYL\n0SJSONk5UxtrG3c7jEvFOmN6TnzGmBNYB+LiYiyJY1hNQBzVALLcnL+GPa4AY0yOMeYjoJuI3OTG\nuvLKKFx2XhzFxeksLlPEdoDV5CXPCQp+vk7gfD8vAsZincV9t4iylVKBTfNVQZqvNF8pP6CVLOXK\nHqChw9k+R/uwkkyeROAMBQ8kRZXb1MX4tfaZsbyzZFHGmLElDdxB4ZuL/4XVJKSdsW6ezTsrKC7m\nd3QIaxsLb/fe0gQmIqvsXpAynQwrXSy2BWgiItUcxrWyx7ua37GXpNZFzAtWUs773xRYVkSaAmHA\nb8aYI1hNGRzLdoxjC9aNy45aYp3RcxXXn/YZYk96DbgLWGmMOenhspVS/kPzVUGarzRfKT+glSzl\nykasA9NUEYkQkSoicoU9bQkwXkQaiUh1rLbmbzicRSzqTNsrQIqINAMQkUvsts0fYLWF+0IVAAAg\nAElEQVSfHiwilUQkTETaOrSNL04aVnv7okRinUXKFJEYIKnQ9D9dlWFv21vAYyJSXUQSgfFYZ59K\nzBhzg7G6241yMtzoYpnfgU3AFPv/0Qu4GKuZijMLgQkiEici8cAErBuyEZHzRaS7iITb+3swcBXW\n2VKwmrf0EJEr7ST5CPCO+at9/SLgQRGJFpELgVF5ZQNrgRwRuVusrnPvwboZ+L8Ocd0mIhfa//sH\nHZb1GGN1ZXy1Xb5SKnhpvnKg+UrzlfIPWslSTtkH6R5YZ9J2Y52562tPfhXroPUZ1g292cA9josX\nLs7h9XSsg//HInIUK4lVNcYcw7pZtD/Wmcd9wFSgipshJwEL7aYb/3Axz7NABNZZvq+AVYWmPwf0\nEZHDIvKsk9jvwdrWHVjb/poxpqiDbZHd9JZSf6AdkIH1Y6G3MeYwgIh0FJHM/JUb8zJWj1Q/Yt1n\nsNwYM8eeLFj77E+spg13A32NMZvsZbcCdwCLsX4QVAXGOMQxBWs/pAKfAlONMWvsZc8At2D1YJWB\n1ca8pzHmrD39I+BJrCS2E+szlFTENhf1eSqSMeYrY0xa8XMqpQKV5ivNV2i+Un5IrHsevVS4SAOs\nswD1sM4MzDbGPC8iU7DOJOS1W51sjPnQa4EopZRSLohIFawfopWxmiG9bYxJts9cv4nV1GoX1g+7\nwjfJK6WUUufwdiWrPlDfGLPJvkz/LdATq9ebLGPMdK+tXCmllHKTiEQYY7LFehDsl1hXAnoDh40x\nT4rI/UBNY8xEnwaqlFIqIHi1uaAxJs3hcu4xrGcy5PVu404POUoppZTXGat7b7CafFXCaubTE6t7\na+y/t/ggNKWUUgGo3O7JEpFGWL2y/M8eNVZENonIKyJSo7ziUEoppQoTkRAR+R7rno41xpivgXrG\nmD/BOmkIOH2OkFJKKVVYuVSy7KaCbwP/tK9ozQSaGGNaYyU0bTaolFLKZ4wxucaYS4EGwOUi0oIy\n3MSulFKqYqvk7RWISCWsCtYiY8z7AMaYgw6zzMHqUcbZsprQlFIqCBlj/LLJuDEmU0TWAt2BP0Wk\nnjHmT/se4wPOltFcpZRSwaksuao8rmS9Cmw1xjyXN8JOVnl68ddD385hjCm3YcqUKeVahjvzFjeP\nq+nujnc2nyf2Q3nu95IuX9773Z1x5b3PA3G/l3SaP+738j7GeHO/l+U74G9EpHZes3URqQpci3UP\n8XLg/9mzDQPed1VGeX4eSvs/9eTxXmP37HdCY/d+7HQq/W9KX8de3vs8kGMvS87zdK7y6pUsEbkS\nGAT8aLd1N8BkYKCItMbq1n0XcLs343DXNddcU65luDNvcfO4mu7ueE9sc1mVNYaSLl/e+93dceUt\n0PZ7Saf5434v72OMu/OXZr+X9TvgZ2KBBSISgnXy8U1jzCoR2QC8JSIjsJ6x07eoQkqqtPultP9T\nT/4fNHb3p2vsZStLYy+9spQTqLGXJed5PFeVtoZbHoMVnipvU6ZM8XUIFY7uc9/Q/e4b9rHd5znG\nU0Mg56pA/g5o7L4RqLHTSb+nvhDIsZc1V5Vb74IqcATAWeego/vcN3S/q4oukL8DGrtvBGzsjXwd\nQOkF7D4nsGMvK68+jLisRMT4c3xKKaVKTkQwftrxRWlorlLK/0myYKbo91S5r6y5SitZSimlypVW\nspQKPo0aNSI1NdXXYShVYomJiezateuc8VrJUkopFVC0kqVU8LG/174OQ6kSc/XZLWuu0nuylFJK\nKaWUUsqDtJKllFJK+amYGBCxhpgYX0ejlFLKXV59TpZSSimlSi8jA/JasUjQNLBUSqngp1eylFJK\nKaVUhZSamkpISAi5ubllLqtx48Z8+umnbs27YMECrrrqqvz3kZGRTjtfKI0nnniC0aNHA57dPoA9\ne/YQFRWl99+5QStZSimllFIqaBVX+REfXSZ2XG9WVhaNGjUqcv5169aRkJBQbLmTJk1i9uzZTtdT\nUoX3XUJCApmZmT7bZ4FEK1lKKaWUUkr5OWNMsZWbnJyccopGFUcrWUoppZRSqkLIzc3l3nvvpU6d\nOjRr1oyVK1cWmJ6ZmcnIkSOJi4sjISGBhx56KL9p3I4dO+jatSu1a9embt26DB48mMzMTLfWm56e\nzs0330yNGjVo374927dvLzA9JCSEHTt2ALBq1SpatGhBVFQUCQkJTJ8+nezsbG644Qb27dtHZGQk\nUVFRpKWlkZycTJ8+fRgyZAjR0dEsWLCA5ORkhgwZkl+2MYa5c+cSHx9PfHw8Tz/9dP604cOH8/DD\nD+e/d7xaNnToUHbv3k2PHj2Iiori3//+9znND/fv30/Pnj2pVasWzZs355VXXskvKzk5mX79+jFs\n2DCioqK45JJL+O6779zaX8FAK1lKKaWUUqpCmD17NqtWreKHH37gm2++4e233y4wfdiwYVSuXJkd\nO3bw/fffs2bNmvyKgzGGyZMnk5aWxs8//8wff/xBUlKSW+u96667iIiI4M8//2Tu3Lm8+uqrBaY7\nXqEaOXIkc+bMITMzk59++okuXboQERHB6tWriYuLIysri8zMTOrXrw/A8uXL6du3L0eOHGHgwIHn\nlAewdu1atm/fzkcffcS0adPcaj65cOFCGjZsyAcffEBmZib33nvvOWX369ePhg0bkpaWxtKlS5k8\neTJr167Nn75ixQoGDhzI0aNH6dGjB2PGjHFrfwUDrWQppZRSSqkKYenSpYwbN464uDiio6OZNGlS\n/rQ///yT1atX88wzzxAeHk7t2rUZN24cS5YsAaBp06Z07dqVSpUqUatWLcaPH8+6deuKXWdubi7L\nli0jJSWF8PBwWrRowbBhwwrM49iRROXKldmyZQtZWVnUqFGD1q1bF1l+hw4d6NGjBwDh4eFO50lK\nSiI8PJyLL76Y4cOH52+TO1x1crFnzx7Wr1/PtGnTCAsLo1WrVowcOZKFCxfmz9OxY0e6deuGiDBk\nyBA2b97s9noDnVaylFJKKaWUdyUl/fXQN8fB1ZUgZ/O7edWoKPv27SvQeURiYmL+6927d3PmzBli\nY2OJiYmhZs2a3HHHHRw6dAiAAwcOMGDAABo0aEB0dDSDBw/On1aUgwcPkpOTQ4MGDZyut7B33nmH\nlStXkpiYSOfOndmwYUOR5RfXGYaInLPuffv2FRt3cfbv309MTAwREREFyt67d2/++7yrbQARERGc\nPHnSYz0d+jutZCmllFJKKe9KSrIe+lZ4KKqS5e68JRAbG8uePXvy36empua/TkhIIDw8nMOHD5Oe\nnk5GRgZHjhzJv/oyefJkQkJC2LJlC0eOHOG1115zqyvzOnXqUKlSpQLr3b17t8v527Rpw3vvvcfB\ngwfp2bMnffv2BVz3EuhOT3+F1x0XFwdAtWrVyM7Ozp+2f/9+t8uOi4sjPT2d48ePFyg7Pj6+2Hgq\nAq1kKaWUUkqpCqFv377MmDGDvXv3kpGRwbRp0/Kn1a9fn+uuu47x48eTlZWFMYYdO3bw2WefAVY3\n69WrVycyMpK9e/fy1FNPubXOkJAQevXqRVJSEidOnGDr1q0sWLDA6bxnzpxh8eLFZGZmEhoaSmRk\nJKGhoQDUq1ePw4cPu93ZRh5jDCkpKZw4cYItW7Ywb948+vfvD0Dr1q1ZtWoVGRkZpKWl8dxzzxVY\ntn79+vkdcjiWB9CgQQOuuOIKJk2axKlTp9i8eTNz584t0OmGs1gqCq1kKaWUUkqpoOV4NWbUqFF0\n69aNVq1a0bZtW3r37l1g3oULF3L69GkuuugiYmJi6NOnD2lpaQBMmTKFb7/9lujoaHr06HHOskVd\n9Xn++efJysoiNjaWESNGMGLECJfLLlq0iMaNGxMdHc3s2bN5/fXXATj//PMZMGAATZo0ISYmJj8u\nd7a/U6dONGvWjGuvvZb77ruPrl27AjBkyBBatmxJo0aN6N69e37lK8/EiRNJSUkhJiaG6dOnnxPr\nkiVL2LlzJ3FxcfTu3ZuUlBQ6d+5cZCwVhfhzjVJEjD/Hp5RSquRE5P+zd+dxNlf/A8df77GGGWbs\n64SixZYoigwKhWiTNVEUqWij7Wt8VaJSUlokS6WFFvvOaPXzTUKiFNlHNBiMfc7vj3NnGmOWu33m\n3rn3/Xw87mPmLp/zebtm5tz355zzPhhjQqandbKvErGzpDJ/r1Swcf1eBzoMpTyW3c+ur32VjmQp\npZRSSimllB/lmmSJSEcR0WRMKaVU0NK+SimlVDBxp0O6E9giImNE5BKnA1JKKaW8oH2VUkqpoOHW\nmiwRiQK6AX0AA0wGPjbGHHE0OF2TpZRSIcepNVmh2FfpmiyVX+iaLJVfBXRNljEmGZgJfAJUBG4B\nfhKRB709sVJKKeVP2lcppZQKFu6syeokIl8CCUAh4CpjzI1AfeBRZ8NTSimlcqd9lVJKqWBS0I3X\n3Aq8aoz5OuODxpgUEbnHmbCUUkopj2hfpZRSKmi4M10wMXOnJSKjAYwxyxyJSimllPKM9lVKKaWC\nhjtJ1g1ZPHajvwNRSimlfOB1XyUiVURkuYhsFJENaWu4RGS4iOwSkZ9ct3Z+jVgppfwgIiKCrVu3\nuvXaESNG0KtXLwB27txJVFSU3wqWDBgwgOeffx6AlStXUrVqVb+0C/Dtt99y6aWX+q29vJBtkiUi\nA0RkA3CJiKzPcNsGrM+7EJVSSqms+amvOgM8Yoy5HGgKDMpQBn6sMaah67bQgX+CUioPTJ8+ncaN\nGxMZGUnlypVp37493333XaDDYurUqTRv3tynNkQ8K4CX9vqqVauSnJyc6/HuxvjWW2/x9NNPex1X\nRpkTx2bNmrFp0yav2wuEnNZkTQcWAKOAYRkeP2KMSXI0KqWUUso9PvdVxphEINH1/VER2QRUdj3t\n91LzSqm8NXbsWMaMGcM777xDmzZtKFy4MIsWLWLOnDlce+21HrV19uxZChQokOtj7jLG+JSMpLXh\nJHdiTE1NJSLCf/vB+/qeBIOc3g1jjPkLeAA4kuGGiMQ4H5pSYSo1FXbvhu++g++/D3Q0SgU7v/ZV\nInIh0AD4P9dDg0TkZxF5T0RK+iNgb0VH272y0m4x2hMrlavk5GSGDx/OhAkT6NSpExdccAEFChTg\npptu4sUXXwTg1KlTDB48mMqVK1OlShWGDBnC6dOngX+nvY0ZM4aKFSvSt2/fLB8DmDt3LldccQXR\n0dE0a9aMDRs2pMexa9cubrvtNsqVK0fZsmV56KGH2Lx5MwMGDOCHH34gMjKSGNcv9alTp3jssceI\njY2lYsWKDBw4kJMnT6a39dJLL1GpUiWqVKnC5MmTc0xI/vrrL+Li4ihZsiRt27blwIED6c9t376d\niIgIUlNTAZgyZQo1a9YkKiqKmjVr8vHHH2cbY58+fRg4cCDt27cnMjKShIQE+vTpw3/+85/09o0x\njBo1irJly1KjRg2mT5+e/lzLli15//330+9nHC1r0aIFxhjq1atHVFQUM2bMOG/64ebNm2nZsiXR\n0dHUrVuXOXPmpD/Xp08fBg0aRIcOHYiKiqJp06Zs27Yt5x8UB+SUZKW9E2uAH11f12S4r5Tyl7//\nhiefhBYtIDISrrwSHn0UZszI+vWbN8OYMfDXX3kaplJByG99lYiUwO6z9bAx5igwAahhjGmAHeka\n66+gvZGUZDcjTrsdPBjIaJTKH3744QdOnjxJ586ds33Nc889x+rVq1m/fj3r1q1j9erVPPfcc+nP\nJyYmcujQIXbs2MG7776b5WNr167lnnvuYeLEiSQlJXHfffdx8803c/r0aVJTU+nQoQPVq1dnx44d\n7N69m65du3LJJZfw9ttv07RpU44cOUJSkh18Hzp0KH/88Qfr16/njz/+YPfu3fz3v/8FYOHChYwd\nO5Zly5axZcsWli5dmuO/v3v37jRu3JgDBw7wzDPPMHXq1HOeT0vQUlJSePjhh1m0aBHJycl8//33\nNGjQINsYAT7++GOeffZZjhw5kuWIYGJiIklJSezZs4cpU6bQv39/tmzZkm2sabGsXLkSgA0bNpCc\nnMwdd9xxzvNnzpyhY8eOtGvXjv379/P666/To0ePc9r+9NNPGTFiBIcOHaJmzZrnTGPMK9lOFzTG\ndHB9rZ534SgVpi64AAoVgqefhquvhpK5XDAvXBj+/BMaN4ZatWxC1rkz+HGoXqn8wF99lYgUxCZY\nHxhjZrna3J/hJROBOVkdCxAfH5/+fVxcHHFxcb6Eo5Tyk3/++YcyZcrkOJVt+vTpvPnmm5QuXRqA\n4cOHc//99zNixAgAChQowIgRIyhUqFD6MZkfmzhxIvfffz+NGjUCoFevXjz//POsWrWKQoUKsXfv\nXsaMGZMexzXXXJNtPBMnTmTDhg2UdH0WGDZsGD169OD5559nxowZ9OnTJ70IRHx8PJ988kmW7ezc\nuZMff/yRZcuWUahQIZo3b07Hjh2zPW+BAgXYsGEDVapUoXz58pQvXz7b1wJ06tSJJk2aAFCkSJHz\nnhcRRo4cSaFChbjuuuto3749n332mdsJT3bTIH/44QeOHTvG0KFDATsq1qFDBz7++OP0kbRbbrmF\nK6+8EoAePXrw6KO5b5eYkJBAQkKCW7G5I9d9skTkWuBnY8wxEekJNAReM8bs8FsUSoWLtEvQmf/Y\nR0aC6yqVW2rUgHfegTffhFmzYNQom6B9+CGm4ZVs2QKbNsEff9hBsmPH4MwZm7vFxEDt2lC/Plx4\noZ12pFR+54e+6n3gV2PMuAxtVnCt1wK7D9cv2R2cMclSSp3PX32Np8uPSpcuzYEDB3JcM7Rnzx6q\nVauWfj82NpY9e/ak3y9btuw5CVZWj23fvp1p06Yxfvx4V5yG06dPs2fPHiIiIoiNjXVrzdL+/ftJ\nSUlJTxDArndKSzj27NmTnsilxZpdMrJnzx6io6O54IILznn9rl27znttsWLF+PTTT3nppZfo27cv\nzZo14+WXX6Z27drZxppb9cDo6GiKFi16zrkzvq/e2rt373nnjo2NZffu3en3K1SokP59sWLFOHr0\naK7tZr5AlpZke8udy95vASkiUh94FPgT+MCdxrMoi/uQ6/FoEVksIr+JyKJAz3NXynHGwKJFcNVV\n8Pnn/mu3YEG47Tb2z1vNe20+45ZnL6dcObjhBpuD7dgBpUr9m1RFR8P+/fDee3DddVC5Mtx3nw3N\nNSVbqfzKl77qWqAH0EpE1mYo1z7GVanwZ6AFMMSh2JUKeRmnuvpy81TTpk0pUqQIX331VbavqVy5\nMtu3b0+/v337dipVqpR+P6s1T5kfq1q1Kk8//TRJSUkkJSVx8OBBjh49yp133knVqlXZsWNH+tqn\nnNopU6YMxYoVY+PGjeltHTp0iMOHDwNQsWJFdu7ceU6s2a3JqlixIgcPHuT48ePpj+3Ykf11pxtu\nuIHFixeTmJhI7dq16d+/f7b//pweT5PVudPe1+LFi5OSkpL+XGJi4nnHZ6dSpUrnvAdpbVeuXDmb\nIwLDnSTrjLEpcifgDWPMm0Ckm+1nLov7gKss7jBgqTGmNrAceNLz0JXKJzZvtlnP4MHwxBNw221+\nafbMGfjqK2jXDi66WFi8ty639yjK2rWwfTvMnw/jxtmlXg8+CAMGwLBh8PLLMHcu7NwJK1fa2YZP\nPQWXXAJvvAEZ/h4qlZ943VcZY74zxhQwxjQwxlyRVq7dGHOXMaae6/HOxph9jv4LlFJ+FxUVxYgR\nI3jggQeYNWsWx48f58yZMyxYsIBhw2xB0q5du/Lcc89x4MABDhw4wMiRI9P3knJXv379ePvtt1m9\nejUAx44dY/78+Rw7doyrrrqKihUrMmzYMFJSUjh58iTfuwpblS9fnl27dqUX2hAR+vXrx+DBg9m/\n385Y3r17N4sXLwagS5cuTJkyhU2bNpGSkpK+Visr1apVo1GjRgwfPpzTp0/z7bffnlMgAv6dkvf3\n338ze/ZsUlJSKFSoECVKlEgfecsco7uMMenn/uabb5g3bx5dunQBoEGDBnzxxRccP36cP/74g0mT\nJp1zbIUKFbLd++vqq6+mWLFijBkzhjNnzpCQkMDcuXPp1q2bR/E5zZ0k64iIPAn0BOaJSARQKJdj\nAFsW1xjzs+v7o8AmoAq2E0xbeTcVyH41olL51cmTNntp3hw6doQNG+COO3xeN3X0qK15Ub26/dqz\nJyQmwmefQY8eUKWK+21dfLFdzvXjjzB5MixdCpdeauttOFwRVil/87qvUkqFtkceeYSxY8fy3HPP\nUa5cOapVq8aECRPSi2E888wzNGrUiHr16lG/fn0aNWrkcaGEK6+8kokTJzJo0CBiYmKoVatWepGJ\niIgI5syZw5YtW6hWrRpVq1bls88+A6BVq1ZcfvnlVKhQgXLlygHw4osvctFFF9GkSRNKlSpFmzZt\n+P333wFo164dgwcPplWrVtSqVYvWrVvnGNf06dNZtWoVpUuXZuTIkfTu3fuc59NGo1JTUxk7diyV\nK1emTJkyfP3117z11lvZxuiOihUrEh0dTaVKlejVqxfvvPMOF198MQBDhgyhUKFCVKhQgT59+tCz\nZ89zjo2Pj+euu+4iJiaGmTNnnvNcoUKFmDNnDvPnz6dMmTIMGjSIDz74IL3tYCn/LrnV1heRCkB3\n4H/GmG9EpBoQZ4yZ5tGJbFncBKAOsNMYE53huSRjzHnFaEXEOF37XynHnD0Lw4fDAw9AxYo+N3fs\nGEyYAK+8AnFxMHQoXHFFLgedOGGHrh5/HLJYlJqVhAQ76FauHEyd6pfQlTqHiGCM8Wsv6K++ystz\nO9ZXiWR/wSOn55TKa67f60CHoZTHsvvZ9bWvyjXJ8gdXWdwEYKQxZlbmpEpE/jHGlM7iOE2yVNgz\nBqZPt1P9mjSxeVudOm4efOIE9OoFBw7YAhlRUW4dduYMPP88vPWWXb/VoYP38SuVmRNJViBpkqWU\nJlkq/3IqyXKnuuCtwGigHCCumzHGuPVpLauyuMA+ESlvjNnnuvr4d3bHa1lcFc7WrYOBA+3Mw08+\nAQ83poeiRe2BAwfaKYsLFkCxYrkeVrCgTeZat4bu3WHjRrucLEhG4FU+4++yuFnxta9SSiml/Mmd\n6YJ/AB2NMZu8OoHINOCAMeaRDI+NBpKMMaNFZCgQbYwZlsWxOpKl8oclS2z5Pg/mKufk5Ek7kvT2\n2/brPff4uJQrNRXuvtvWc581y+2pgwC7d0P79nYU7Y03bAKmlC8cmi7oU1/l47l1JEuFPR3JUvmV\nUyNZ7nxs2+dDgpVdWdzRwA0i8hvQGnjRm/aVCrjUVBg50iYwmcqJemv1arjySjuK9fPP0K+fH/YY\njoiA99+H4sXh1Vc9OrRyZfj6a9i61c48PHvWx1iUcobXfVXIWrcOPvrIjmb/+KP+8iqlVB5yZyRr\nHFAB+Ao4mfa4MeYLZ0PTkSwV5I4ds6X99u+35fh8rBBx9iy8+CK8/jq89hp07erA9LyTJ6FAAa+G\no06cgJtvhgoVbCXCAgX8HJsKGw6NZIVkX+XTSNa4caR8+xMHTxQl6o+1RCZth3vvtSVFY86rNaWU\nT3QkS+VXASt8ISKTs3jYGGP6entSd2mSpYLW3r12jVPdunbX38KFfW6uVy84dcoWufCkDHteSkmx\nUwdr17ZFMXSNlvKGQ0lWSPZV3iRZe/bYP0uffw5//mk3JD98GMrFnObmmG95cNzFXNwySP/IqHxL\nkyyVX+Xr6oLe0iRLBa0xY2xG9PTTPmcaCxdCnz5w333wzDPBv+bpyBG79VevXvaCuFKe0uqCnrTt\nRpL1zz8QHc3J0xGMGgXjx0O3bvZ3tGFDKFTIvm7TJvj4Y5uA9ewJzz3nVh0cpdyiSZbKrwI5klUL\neAsob4ypIyL1gJuNMc95e1K3g9MkS4Ww1FT7Iefdd+HDD+3eV/nFzp22EMaECdCpU6CjUfmNQyNZ\nIdlX5ZpkbfkD2rTh9+Ef0XVcU6pVg3HjIDY2+zYPHICHHrJVQ7/6ym5srpSvLrzwQrZv3x7oMJTy\nWGxsLH/99dd5j+dFkrUSeBx4xxhzheuxX4wx7u7U4zVNslSoOnoUeve203q++CKAG/7+/bcN4P77\nPT70f/+Dm26yRTEuvdSB2FTIcijJCsm+KqckK1a2s71KM77p+ia3Tb2Z+HgYMMC9wXVjbDI2diws\nXw4XXeTXsJUKOjJCMMP1M6VyX15UFyxmjFmd6bEz3p5QqXC3dSs0bQrR0ZCQEMAEC+xastGjYd48\njw9t3BheeAG6dLFrtZQKsPDqq5KSWEg7Ftw0ntum3sxHH9nt8NydvSwCgwfbKcqtGh1mx7QER8NV\nSqlw406SdUBEagIGQERuB/Y6GpVSweTtt2HHDr80tWyZTbDuuw8mTvRouypnlCplS7vff79dGe+h\ne++FevXshzWlAix8+qpTp6BTJ95gEHd90ZlZs+CGG7xrqn9/eKj7P3S+J4aUzf75O6eUUsq9JOsB\n4B3gEhHZDQwGBjgalVLBwBh7mfe11/xSRm/SJOjRAz79FAYNCqLKfC1bQocO8NhjHh8qYnPQlSvh\ns88ciE0p94VPX5WczC+X3sEEBvLhh/bCjS8efbMGdepGcG+LLZhUnU6llFL+4HZ1QREpDkQYY444\nG9I559Q1WSowjLGl8xISYNEiKFvWp6aGD7d7gs6fb8ufB53kZKhTx2aCXlwSX73a7qG1fj2UK+dA\nfCqkOFldMNT6qqzWZB08CI0a2anH/jrt8SNnaFx+O8O6bqfn+63806hSQUTXZClPOVb4QkQeyelA\nY8xYb0/qLk2yVEAYY0d1Vq6EJUvs4ikvnTplp9Rt3gxz5wZ5ArJggd1UZ9Agrw4fNgz++MPuyxw0\no3QqKPkzyQr1vipzkpWaai9oXHSRLVzhz9OunfknbbtEseb/zlK1cQX/NaxUENAkS3nKycIXka5b\nI+yUi8qu2/1AQ29PqFTQW7LELwnW4cO2+t7hw7BihXcJVkyM/ZCV3S0mxuvwzlBetyMAACAASURB\nVHfjjV4nWADx8fDrrzptUOW5sOqrXnzR/k156SX/t33F7TV5qOt+HnjW+797SimlLHdKuH8NtE+b\neiEikcA8Y8x1jgenI1kqUI4fhwsu8PrwffugbVu49lp4/XUoUCDr18XE2Kk/2YmOhqSk7J/39Xh/\n+7//g1tusclWqVJ5d16VvzhUwj0k+6qMI1lr1thrIT/9BFWqnP/774/f95MnoW5dePVVaN/et7aU\nCiY6kqU8lRcl3MsDpzLcP+V6TKnQ5UOCtX07NG9uk4033sg+wQL7AcmY7G+5fWBKSsr5+JwSMCdc\nfTV07GjXoCmVx0K3r9qzhxPd+3LXXYZXX7UJFpz/+++P3/ciRWD8eLtZ8YkTvrenlFLhyp0kaxqw\nWkTiRSQe+D9gipNBKZVfbd5sE6wHHrCJRunSOU/382E2oluio/NoqmEGL7wAn3wC69Y5075S2Qjd\nvmrwYJ7d1pdLLxW6d3f+dG3bwmWXwTvvOH8upZQKVW5VFxSRhkBz192vjTFrHY3q3/PqdEHlvORk\niIry+vCcpuzl9XQ9T2RVtSydMfDtt9CsmVdVLN57DyZPhm++gQh3LuWosOJUdcFQ7KtayzJGVRxP\np9QvWb9Bcix0muPvtIfWr4c2bWwxmxIl/NOmUoGk0wWVp/JiuiDGmJ+MMeNctzzptJTKE+PH21Jd\nPjh40FZ6L1sWvvzSs+l+QSs1FQYOhDlzvDq8b19bWXHGDD/HpVQOQq6vOn2a13iYARdMYcxLOSdY\n/lavHrSs/w+vP7Er706qlFIhRK8xq/A1daot0TVlSo4vy63CX4kScMcddopc5855E7rjChSwZcye\nfBLOnPH48IgI+9Y++aRdSK+U8sL48bzD/ZSoUpKePfP+9CPa/sDYiSXyfG2nUkqFAk2yVHj64gu7\nsdPixXDhhTm+NKfiFLNn2xoZs2dDqxDbvzOm502s/LUMfQtN82pNV1wcXH45TJiQJ+EqFXL2JV/A\n29zPm29KQPaeq/VQOzoUWcqEJ3fm/cmVUiqfyzXJEpEHRUQ3zVChY9EiGDAA5s+HSy7JdaQqu+IU\nX35pNxqePx+aNMnbf4I/5FQUQwQQocUPo3m/ajzmxEmvKheOHg2jRuV9lUMVfkKxr3pi2wDOUpA6\ndQIUQMGCPDYwhTemltBKg0op5SF3S7j/T0Q+E5F2IoG4nqaUH23ebEeyrrgC8K6M+owZNk9bsAAa\nNcrj+P0kt/LvSUnY7LFuXfjgA6/OcdlldgrlmDH+jV2pLIRUX3XypF3XGGh1nunMFWd/5INx/wQ6\nFKWUylfcrS4oQBugD9AI+AyYZIz509HgtLqg8gN/b9j7yScwZAgsXAj16/seX9Dbs8e+iUWLnvOw\nu5XMduyw+exvv0GZMg7FqPIVB6sLetVXiUgVbAn48kAqMNEY87prZOxTIBb4C+hijDmcxfF5shmx\nP1/riRV3TGDA8tv5dX85rRaq8i2tLqg8lVfVBQ2Q6LqdAaKBmSKi16dV0PN1w9+MPvwQHnnELuUK\niwQLoFKl8xIsT1SrBl26wMsv+zEmpbLgQ191BnjEGHM50BR4QEQuAYYBS40xtYHlwJOOBR/E4t7u\nSmRsaebNC3QkSimVf+Q6kiUiDwN3AQeA94CvjDGnRSQC2GKMqelYcDqSpfzAX1d3p06Fp56CJUvs\nNLhw58n7unMnNGhgZ2rmZRlqFZycGMnyZ18lIl8Bb7huLYwx+0SkApBgjLkki9eH9EgW2L9/n35q\n16AqlR/pSJbyVF6MZMUAtxpj2hpjZhhjTgMYY1KBDt6eWKk8cewYNfB9VuukSfD007BsmSZY3qha\nFbp2tWXdlXKIX/oqEbkQaACsAsobY/a52kkEyvk76PyiSxdYvRq2bQt0JEoplT+4k2QtANInVIlI\nlIhcDWCM2eRUYEr57PRp6NKFh3jdp2YmT4b4eFixAi457xq2cteTT8J778Hffwc6EhWifO6rRKQE\nMBN42BhzFMh82TtsL4NfcAHcdRe8+26gI1FKqfzBnemCa4GGaXMhXFMvfjTGNHQ8OJ0uqLxlDNxz\nDyQmUmjBLE6bQl41M306PP44LF8OtWv7Ocb8aO5cu/tyXJxXU5MGDoRSpeCFF5wJT+UPDk0X9Kmv\nEpGCwFxggTFmnOuxTUBchumCK4wxl2ZxrBk+fHj6/bi4OOLi4nz9J7nadv/3LHORH0+L+uTmt9/g\nuuvs9N/Chf3XrlJ5QacLqtwkJCSQkJCQfn/EiBE+9VXuJFk/G2MaZHpsvTGmnrcndZcmWcprzzxj\nq1OsWIGUKO7VOoWZM+HBB2HpUruprgI+/hjeeQcSErxKsrZuhauuslOOIiOdCVEFP4eSLJ/6KhGZ\nBhwwxjyS4bHRQJIxZrSIDAWijTHDsjg2KNZk+fPY7LSu+zf9h0ZzZ0/vLlwpFSiaZClP5cWarK0i\n8pCIFHLdHga2entCpRz35pvw2Wcwbx4UL+5VE7NnwwMP2DLtmmBlcPvtNlNas8arw2vUgOuvh4kT\n/RyXUj70VSJyLdADaCUia0XkJxFpB4wGbhCR34DWwIuORZ9P9Dn9LlNf1T2zlFIqN+4kWfcD1wC7\ngV3A1UB/J4NSyhMxMfaKbdqt76ALqLFlIVKuLCJ2yownFi6Ee++1OVrYlGl3V6FC8PDD8MorXjfx\n+OPw6qvBsdGqCile91XGmO+MMQWMMQ2MMVcYYxoaYxYaY5KMMdcbY2obY9oYYw45GH++cMugyvyw\noQSJiYGORCmlgptbmxEHik4XVO7w55SYZcugWzeYNQuaNvVPmyHn8GGoUYNqSWvZYap51cT119tF\n9Hfd5efYVL7g1GbEgRJO0wU5dIg+5eZS5z+38egzF/i5caWco9MFlaccny4oImVF5CkReVdE3k+7\neXtCpYLVN9/YBGvmTE2wclSyJNx9N734wOsmnngCxoxxbk8fFX60r8ojpUrRu+kWpr2TEuhIlFIq\nqLkzXXAWUBJYCszLcFMqZKxaBbfdZqsJXnddoKPJB0aOZBRPen34DTdAwYJ2aqZSfqJ9VR657uEr\nOLz/ND//HOhIlFIqeBV04zXFjDFDHY9EKW8kJVGH3UBdr5tYswY6dYIpU+w0NuWGYsV82jBIBAYP\nhtdfhxtv9FtUKrxpX5VHItrfSM+Of/HRRxVo0CD31yulVDhyZyRrrojc5HgkSnkqJQU6dKALn3nd\nxPr10L69rUp+k/6U56muXW2C+/vvgY5EhQjtq/JKkSJ0ebY2M2bolF+llMqOO0nWw9jO64SIJIvI\nERFJdqdxEZkkIvtEZH2Gx4aLyC5Xidy0MrlKeebMGbuAqmZNhjPCqyY2bYJ27exoSufOfo4vDERH\nn1vVMfMtJibn44sWhX794I038iZeFfK87quU5+rWtb/D//tfoCNRSqnglGuSZYyJNMZEGGOKGmOi\nXPej3Gx/MtA2i8fHukrkNjTG6KoM5RljYOBAOHECJk3CuHWt4Fxbtth1QWPGQJcuDsQYBpKS7H9F\ndreDB3NvY8AA+PBDSNaPwspHPvZVykMicMcdMGNGoCNRSqng5E51QRGRniLyrOt+VRG5yp3GjTHf\nAll91AqZ0r0qb2TcCys+YgQ/TvyJyMUzkSKFPd4Ha9s2aN0aRoyAnj2diTesvPYa3m6aU6WKXQc3\ndaqfY1Jhx5e+KlRlHm3ObXTZU1262H3fdcqgUkqdz50hgAlAU6C76/5R4E0fzztIRH4WkfdEpKSP\nbakwcPDgvyMk8TPq0ChxHkdMJMbYERV37dhhE6xhw+Cee5yLN6xs3AiTJnl9+IMPwvjxkJrqx5hU\nOHKir8rXMo82uzO67Ik6deCCoqmsXu3fdpVSKhS4k2RdbYx5ADgBYIw5CBT24ZwTgBrGmAZAIjDW\nh7ZUOLr9dihf3uPD9uyxCdaDD9rZhspPBg6Et9+26+S80KwZFCsGS5b4OS4VbvzdV6lcyNkzdNn1\nKjOm6p5ZSimVmTsl3E+LSAGwFZtFpCzg9TVnY8z+DHcnAnNyen18fHz693FxccTFxXl7ahXG/v7b\nJlj33ANDhgQ6mhBzxRVQtSrMnXtOBZG0qUrZiY62V9pF4P774d13oW1WKzhVvpeQkEBCQoLTp/Fr\nX6XcULAgdzTbS4dPz/LSmzn/viulVLgRk8tkahHpAdwJNASmArcDzxhj3FruKiIXAnOMMXVd9ysY\nYxJd3w8BGhtjumdzrMktPhUeRLyf9//PP9CyJdx6K2TI2ZU/TZkCM2faRMtNGf9Pk5MhNhZ+/RUq\nVnQmRBU8RARjjF8/kvvaV/l4bsf6Kl/+9jnZVhoz/WMu7teCmd9V0j2zVFCTEYIZrp8plft87aty\nTbJcJ7kEaI0tWLHMGLPJzeCmA3FAaWAfMBxoCTTAXmH8C7jPGLMvm+M1yQp3u3bB7t1Ik6u9+nBw\n6BC0amVHSF54Qa+0OubYMTuatWmT21M5M3/g69cPqleHp55yKEYVNJxIslztetVX+eG8YZtkcfAg\nj5T/iFJD+/OfkTo7UwUvTbKUpxxPskSkWlaPG2N2eHtSd2mSFeYOHoTrroPevZHHH/P4w0FyMrRp\nA02bwtixmmA5bs8eqFTJ7Zdn/sD344+2JPSff0KE51X5VT7i0EhWSPZV/kyMYmLOLX6RNmXXVwkN\nBvPYsXh+3FLK98aUcogmWcpTvvZV7qzJmoed4y5AUaA68BtwubcnVSqzzJ1/EU6wiM6spTVDHn/U\n4zLtx45B+/bQsKEmWHnGgwQrK40a2Z+DJUt0bZbyivZVucicUPnr7+K199Vh2+NF2bXLbsuglFLK\nvc2I6xpj6rm+XgxcBfzgfGgqnGQs0W7OnOXEbT1p0aUCg8+OxRjx6GprSgp07Ai1asEbb2iClZ/0\n7w/vvBPoKFR+pH1V4BQacC83di7qyZJMpZQKeR5PyjHG/ARc7UAsSllDhthLrtOmeTxv7MQJuOUW\nezX13Xd12ll+0707rFhhZx4q5Qvtq/LWzTfD7NmBjkIppYKHO2uyHslwNwJbuam0McbxCT26Jit8\nnLPuYPFiuPpqKOnZPtWnTtkKgsWLw0cfQUF3JsOqgMlurUn//rbS4NNP531MKm84tCYrJPsqR4pV\nOND24cP24tbevVCihH/aVMqfdE2W8pSvfZU71/kjM9yKYOe9d/L2hErlqk0bjxOs06eha1coXBg+\n/FATrID66y/49luvD+/fH957D1J1hyPlGe2rPJS2l13aLSbG+7ZKlrRFhhYv9l98SimVn+X6UdQY\nMyIvAlHKW2fOQK9ediTriy+gUKFARxTm/vwTHn0Ufv7Zq8OvvNJeCf/mG2jRws+xqZClfZXn/F0I\no317WLDAzihQSqlwl2uSJSJzsBWbsmSMudmvESnlgbNnoW9f+2Fh9mw7kqUCrGVLW8lk3TqoX9/j\nw0WgTx+YPFmTLOU+7asCr22J73h51pWYd4tqwSGlVNhzZ7rgVuA4MNF1Owr8CbziuinlvV9+geXL\nvTo0NRXuuw927oSvvoKiRf0cm/JORIQdWpw2zesmevSw/6dHj/oxLhXqtK8KsNpnNlIg5Qib8mQL\naKWUCm7uJFnXGmPuNMbMcd26A82NMSuNMSudDlCFsG3boF072LfP40ONgUGDYPNmmDMHihVzID7l\nvV69YPp0O5fTC+XL232oZ8zwc1wqlGlfFWDSri3tzs5n4QJdUKmUUu4kWcVFpEbaHRGpDhR3LiQV\nFhIT4YYb4KmnoFs3jw41xlZ5X7MG5s/XSlZBqXZtWyJwyRKvm+jTB6ZM8V9IKuRpXxVosbG0jfkf\nC2foELRSSrlTg20IkCAiWwEBYoH7HI1KhbZDh+wI1l13wcCBHh1qDAwbBl9/DcuWQVSUQzEq373x\nBlSo4PXh7dvb6aB//gk1a/oxLhWqtK8KAq06FOOuKUVISdEZBkqp8JbrPlkAIlIEuMR1d7Mx5qSj\nUf17Xt0nK9QYY0ewLrsMxo1LL2fl7n4t//mPXauzYgWULu1wrMpR7vyfDx5sE+n//jdvYlJ5w4l9\nslzthlxf5eQ+WZ6eKybG1rTJSnS0q1rhvHm06FGZYR834MYbHQlTKa/oPlnKU47vkyUixYDHgUHG\nmHVANRHp4O0JVZgTgVdegdde87hecHw8zJwJS5dqghUu7r4bpk7VPbNU7nztq0RkkojsE5H1GR4b\nLiK7ROQn162dA6EHjdz2zTp40CZhWd3Sk6+WLWl3eyQLF+Z5+EopFVTcWZM1GTgFNHXd3w0851hE\nKvTVr28r0HkgPh4++8yOYJUr50xYKm9l/kCX+RYTAw0a2K8JCYGOVuUDvvZVk4G2WTw+1hjT0HUL\n6dQhKSmbxMkTxYrRdmBNFi3ye3hKKZWvuPNJt6YxZgxwGsAYk4Kd765UnoiPt1XmVqywVedUaMj8\ngS67K+N33233zFIqFz71VcaYb4Gs0grt7zzUoIH9/d22LdCRKKVU4LiTZJ0SkQtwbfIoIjWBPJnn\nrkJHTEzOoxbR0Vkfl5ZgLV+uCVa+ZQzs3ev14d272zL9R474MSYVipzqqwaJyM8i8p6IlPRDeyEv\nIgLatPGpuKhSSuV77iRZw4GFQFUR+QhYBjzhaFQqdIwZA0uW5DiX3xjXgukMjIHhwzXBCgnr1kGz\nZl6v3i9bFpo3twVPlMqBE33VBKCGMaYBkAiM9bG9sNG6ta0Aq5RS4SrHEu4iIsBm4FagCXbaxMPG\nmAN5EJvK7157DSZOtPXWPWCMHcH6/HNdgxUS6teHwoVh1Spo2jT312ehZ094/327x7FSmTnVVxlj\n9me4OxGYk91r4+Pj07+Pi4sjLi7Ol1MHhbR1kxnvu6tVK3jiCUNqqni6BFcppQIiISGBBD8uAs+1\nhLuIbDDG1PXbGT2gJdzzj8ylffvxLk/xAtfxNTup9m9531ykjWB98YUdwdIEK0SMHAl//w3jx7t9\nSMZy0ikpULky/PorVKzoUIwqzzhRwt0ffZWIXAjMSWtHRCoYYxJd3w8BGhtjumdxXEiUcPfFeXHO\nmMHF91zH59+Wp169gIWlVDot4a485XgJd+AnEWns7QlUeDhnOuC0D3i38n+5cMtSdphqWU4HzEpa\ngvXll5pghZzu3W15yDNnvDq8WDHo3Bk++cTPcalQ4lNfJSLTge+BWiKyQ0T6AGNEZL2I/Ay0wG54\nrNzRoAGtzi5h2VL9UKuUCk/ujGRtBi4CtgPHsNMwjDHG8WtTOpKVf6RfxTxwAJo0sZUKLr3U7eON\n+Xej4WXLNMEKSU2awIgR0DarKtnny3xlfPlyePxxWLPGofhUnnFoJCsk+6p8O5JlDJ+VGcgH9V9i\nzvISAYtLqTQ6kqU85Wtfle2aLBGpbozZRtb7hqgwk3k6YGbpc/XLlLFzugoXdrttY+CJJ2DxYk2w\nQtqjj/r0abFFC9i3z/54XXaZH+NS+Zr2VcHh/PVbwm83FKDf7EKcOQMFc1wBrpRSoSenP3szgSuB\n940xrfMoHhWk0qYDusWDBCs1FR58EFavtkUuYmK8i0/lA3fc4dHLM39oS3P55bi9xk+FBe2rgkDm\n30cRKHtTYy5ctJf//e9Cb2veKKVUvpVTkhUhIk9h56c/kvlJY4yWslU+OXsW+vWD33+HpUuhpO5A\nozLIKolavx46doQdO/I+HhW0tK8KVi1b0rrQSpYv1yRLKRV+cip80RU4i03EIrO4KWXXYHnh9Glb\nlnv7dli0SBMs5Z569fRnRZ1H+6ogFB0NEluNVw/05JlndJaCUir8ZDuSZYz5DRgtIuuNMQvyMCaV\nXyxcCPfcA5s2QVSU24edPAldu8KpUzB3LlxwgYMxqpDTsycMHRroKFSw0L4qOKWNRCcnC5Uq5bym\nVymlQlGuJdy101JZWrAA7roLZs70KMFKSbGluAsUsKXaNcFSnurWzX49cSKwcajgon1VcIqKQvfJ\nUkqFJd2HXXlu/nzo3RtmzcKTifZHj0L79lC6tN3vyIP6GCqUbNz4b6bkhapV7df58/0Uj1LKUa21\nHIlSKgxlm2SJyB2ur9XzLhwV9ObPh7vvhtmzPUqw/vkHrr8eLroIpk7Vcr5h7aKLbL3+nTt9aubD\nD/0Uj8rXtK8Kfq1aBToCpZTKezmNZD3p+vp5XgSiAi8mxpbdzeqWvg9WZKRNsJo0cbvdXbugeXO7\nz9G779qpgiqMFSkCt95qhzN9sGyZlnFXgPZVQa9plZ1EcJbDhwMdiVJK5Z2cxhP+EZHFQHURmZ35\nSWPMzc6FpQLBrb2wmjf3qM3ff4c2beCBB+Dxx72PTYWY7t1hyBCvfyiio+3Pa+nS2T+vCVjY0L4q\nyBXd/DP12c/XXzekY8dAR6OUUnkjpySrPdAQ+AB4JW/CUaFkzRro0AGefx769g10NCqoXHedLf+/\ncaPdXdhDSUl2SeDYsbBy5fnPZ7WJsQpZ2lcFu+uuoyOvsWJpPTp21LniSqnwkFMJ91PAKhG5xhiz\nX0RKuB4/mmfRqXxrxQq48047PbBz50BHo4JOgQK2+MW333qVZAHceKPdQWD7doiN9XN8Kt/Qviof\nKFmSauxg/LwTMK5EoKNRSqk84U51wfIishbYCPwqImtEpI47jYvIJBHZJyLrMzwWLSKLReQ3EVkk\nIrq1aDAyxg5BzZrl8aFffmkTrE8/1QRL5WD0aLjvPq8PL1wYbr8dpk/3Y0wqP/O6r1LO20c5tu0q\n6O3+9Uople+4k2S9CzxijIk1xlQDHnU95o7JQNtMjw0DlhpjagPL+XfRsgoWxsCwYbYwwVVXeXTo\ne+/BwIF2n+KWLR2KT4WGCN93kOjZ01YZzHUtoQoHvvRVymEriePaYj9nOb1XKaVCkTufcoobY1ak\n3THGJADF3WncGPMtkHmf907AVNf3UwEd6wgmZ8/aKhXLl0NCAlSs6NZhxsB//gOjRtk1Mg0bOhum\nUgDXXAPHjsG6dYGORAUBr/sq5byNpZpx6uBRbr/drpmMiQl0REop5Sx3kqytIvKsiFzouj0DbPXh\nnOWMMfsAjDGJQDkf2lJ+VIQT0LUrbNoES5dmX7otk1On7NZZCxfCDz9ArVrOxqlUmogI6NEDPvoo\n0JGoIODvvkr50a6DxRmz5nouvdRelDuY+fKrUkqFGHfK/PQFRgBfAAb4xvWYv+Q40Sc+Pj79+7i4\nOOLi4vx4apVRTf6EEiXs/KsiRdw65vBhuy7mggtssYviet1Y5bEePeCGG+DFF3UPtmCVkJBAQkKC\n06dxuq9SPqpfHxITYe/eQEeilFLOE+PwYgYRiQXmGGPque5vAuKMMftEpAKwwhhzaTbHGqfjU/8S\n8Wxty65dcNNNduus11/XD7jKS7t2wZIl0KeP1000bAgvvwytWtn7nv4sq7wlIhhjQqbQvpN9Vaj9\nLN9yC9xxh704Ekr/LhX8ZIRghusPnXKfr32V7yvPcyeuW5rZwN2u73sDnpevUwG3fr1dD9OrF7zx\nhiZYygeFCtmNiY8d87qJtAIYSqng1qqVnfWglFKhztEkS0SmA98DtURkh4j0AV4EbhCR34DWrvsq\nH1m6FK6/HsaMgccf141flY/Kl4cmTWD2bK+b6NoVvvoKjh/3Y1xKKb9r2dLWVVJKqVCXa5IlIte6\n81hWjDHdjTGVjDFFjDHVjDGTjTEHjTHXG2NqG2PaGGMOeRO48tG8eTB1au6vy+Stt+yowYwZ9oOt\nUn7hY/WKSpXgyith7lw/xqTyFV/6KpV3Lt+zhKN/pwQ6DKWUcpw7I1nj3XxMBbmYGDvq9KCMZ0+H\nfjS5uzYipN+io7M/9swZePBBu/bq22+hRYu8i1uFgc6d4Ztv8GWnUq0yGPa0r8oHpHgxWhb8JtBh\nKKWU47KtLigiTYFrgLIi8kiGp6IAXYETADExOZe9jY6GpKTsn08+eAYzaIidqzH3O1ZVr+7WeQ8d\ngjvvtInYqlVQsqSHgSuVm8hIuPFGO0Q6YIBXTdx6Kzz8cM6/Ayr0aF+VzzRuTMvjj/MlcYB7VWyV\nUio/ymkkqzBQApuIRWa4JQO3Ox+ayuzgQVuNKbsbcM7IVMZblCSzoODN8Ntv8N134GaC9ccfdrnM\npZfaqViaYCnHvPAC3Hab14dHRUG7djZPU2FF+6r8pHBhWl11lIKSek4fpZsTK6VCTbYjWcaYlcBK\nEZlijNkuIiVcjx/Ns+iUR3K8gv97Irx9CYwebau5uWHFCujWDf77X+jf3z8xKpWtGjV8bqJnT1uQ\nRYUP7avyn4va1yZm7Ql+/ukCLr7YPqYFlJRSocadNVmRIrIW2AhsFJE1IlLH4biUv9WqBWPHupVg\nGQPjx9sE6+OPNcFS+UfbtrB5c6CjUAGifVU+Ia1b0bLAN1plUCkV0txJst4FHjHGxBpjYoFHXY+p\nEJSSAr17w6RJ8MMPttyuUvlF4cJ2o1MVlnzqq0RkkojsE5H1GR6LFpHFIvKbiCwSEZ0w7Q9XXEGr\np5tqkqWUCmnuJFnFjTHpWwcaYxKA4o5FpHx39uy/i7Q8sG0bXHstpKbC99+7vWxLqaDSsydERGS/\nPlHXf4QsX/uqyUDbTI8NA5YaY2oDy4EnfQ1SAQUK0LJLWVas8KqrUkqpfMGdJGuriDwrIhe6bs8A\nW50OTHkpKclWafv8c48OW7zYFri4+2744AMoVsyZ8JTK1ZkztuKKl5o2hdhY+Omn7IvE5FSlU+Vb\nPvVVxphvgcw/GZ2AtA0FpwKd/ROqio21RUU3brT3o6P1QohSKrS4k2T1BcoCX7huZV2PqWCzYQM0\nbgz16tl9h9xgDLz4ok2uPvvMlsDWBcgqoDZvhlat7JCqF0TsnlkffujnuFSwc6KvKmeM2QdgjEkE\nyvnYnsqgVSvSpwwmJemFEKVUaMm2umAaY8xB4CERibR3tWJTUJo50+4v9Npr9hOmGw4ehL59Yc8e\nWL0aqlRxOEal3FGnDpQqZXe9vu46r5ro0cN+gBszBgroTklhIY/6qmwnXgq7SgAAIABJREFUt8XH\nx6d/HxcXR1xcnAOnDy2tWtmLew89FOhIlFIKEhISSEhI8Ft7YnKZEC0idYFpQNrg/QGgtzHmF79F\nkf25TW7xhRORbOavjxtnk6uZM+HKK91qa/Vqu8HwzTfbD6JFdE9IFUxefNEuEnznHa+baNTINnP9\n9ec/l+3vksoTIoIxxq9j5v7oq0QkFphjjKnnur8JiDPG7BORCsAKY8ylWRznWF8Vyj+re3encnkd\n2H8g4ryLIaH871aBISMEM1x/qJT7fO2r3Jku+A5aXTC4de5sF6C4kWAZA6++Ch06wCuv2PxMEywV\ndLp1s+sKT53yuokePeCjj/wYkwp2/uirxHVLMxu42/V9b2CWr0Gqf1WcO5EKZi/r1gU6EqWU8j+t\nLhgKYmPtquFcJCXZfOzjj+H//g9uvTUPYlPKG7GxcNllsHCh10107QpffQXHj/sxLhXMfOqrRGQ6\n8D1QS0R2iEgf4EXgBhH5DWjtuq/8pUULWp1dyvJlOrqglAo9Wl0wTKxaBQ0bQo0adqmLlmdXQW/o\nUFt+zEsVK9o6MHPm+DEmFcx8rS7Y3RhTyRhTxBhTzRgz2Rhz0BhzvTGmtjGmjTHmkIPxh5/atWlZ\n8BuWz9MrIUqp0ONpdcHPgTJodcGAqMwuGDnSo4nqZ8/CCy/YtVevvWanChYu7GCQSvlL+/Y+74bd\ns6dWGQwj2lflNyLEtS7Ad6sLcvp0oINRSin/yrG6oIgUAJ42xmjtnzwQE5N92dpb+IKfZABEPGST\nLDfqrG/bBr162aRqzRqoWtXPASsV5G65xVYuO3AAypQJdDTKKdpX5V+lb7yKi5bvZtWq6jRvHuho\nlFLKf3IcyTLGnAWa5VEsYe/gwSw2Tj16DNP/Pr6o/hjlvp8FTz8NETkPQBpjNxS+6iq7BmvpUk2w\nVHiKjLR7c8+YEehIlJO0r8rHbriBduV+YsGCQAeilFL+5c50wbUiMltEeonIrWk3xyNT8Ndftg51\nSgr8/DM0aZLrIUlJdsH/iy/a5Oqxx3LNyZQKaT172osOKuRpX5UfVavGje/dxvz55z4cHW0nbKTd\nYmKyPlwppYKVOx+/iwL/AK2Ajq5bByeDUi4VK8KoUfYTYlRUri9fuhQaNIAKFeDHH6F+/TyIUam8\n4MOGOW3b2qmzmzf7MR4VjLSvyqeaNIEdO2DPnn8fS0o6d1ZHdlPplVIqWOW6GXEghdtmxN5uvpic\nDI8/DgsWwMSJ9kOlUiFjzx5bBGPNGq+HZYcOtV9Hj7ZfdaPTwHJiM+JA0s2IfXfnnbbv6ptNqZJw\neR+Uc3QzYuWpvNiMWAWxxYuhbl1ITYUNGzTBUiGoUiX76WrlSq+b6NMHpk1DK5gpFaRuvBFdlxUA\nMTE6LVMpp2iSlYcy/zFLu1WXbXwkPahWKtnttg4fhnvvhf794b337AhWyZIOBq9UIN19N0yZ4vXh\nl1xi94jzYW9jpZSD2rWzU97PnAl0JOElc8EtnZaplP9okuVn2SVSaRXXz6kceDYV8/Y7bCtzFT3G\nNGD7geJunWP+fKhTBwoVsqNXN9zg4D9IqWDQvTvMmgVHjnjdRN++8P77foxJKeU3FU5up3rUAX74\nIdCRqIxy+kyjo15K5SzXJEtEyovIJBFZ4Lp/mYjc43xo+VOWZdhdt6SkDC/ctAni4uynvoQEu6iq\nQIEc296711YOHDQIpk6Ft96yJaqVCnnlytnfl5kzvW6iSxf7q7Zvn9+iUkFE+6p8rkABbtw/jflz\nUwMdicogp880OuqlVM7cGcmaAiwCKrnu/w4MdiqgsLB9O1x3nf3U9/33cPnlOb787Fl44w2oVw9q\n1oRffoFWrfIoVqWCxT33wJ9/en14ZKTdN+7DD88vD61XaEPCFLSvyr+qVOHmSmv46tMTgY5EKaX8\noqAbryljjPlMRJ4EMMacEZGzDscV2mJj4fff7Se9XPz0E9x3HxQrZtf9X3ZZHsSnVDDq2NHefNC3\nL9x/P/zzz79TeLOS03MqaGlflc817n4xR189xaZNxbj00nOfS7swkvH+ObNDlF9k9T4rpbzjzkjW\nMREpDRgAEWkCHHY0qnCQy1+u5GR4+GG46SY7PTAhQRMspXzVrBmcOgWrVwc6EuUA7avyuYjbb+UW\n+ZIvPj+/zLbum5U3Mr/PniSyWqlQqXO5k2Q9AswGaorId8A04EFHowoVZ8/i6Sre1FS7TOuSS+Do\nUdi4EXr31ivrSvmDiBbACGHaV+V3detya+RSPv/weKAjUW7IPO0aNBFWKqMcpwuKSARQFGgB1AYE\n+M0Yo7vN5Oa77+DBB+2lnEWLci1qkXbIww9D4cK2kFrjxnkQp1Jh5q677N5yL7+shWNChfZVIUKE\n5l8MYVeHomzbBtWrBzoglZPcRrl0iqcKdzmOZBljUoE3jTFnjDEbjTG/aKeVs0rshp49bRnAJ56A\nJUtyTbB27IBu3ewhjzxiky1NsJRyRuXKtlDh9OmBjkT5i/ZVoaPA1Y3o1DmCL78MdCShIZBT+HSK\npwp37kwXXCYit4nohLVczZ3LOupDtWq2RHvXrjnO8zt6FOLj4Yor4OKLYfNmux2QvtNK5WLQINi6\n1evDBwyACRNsx69ChvZVIeL22+GTTwIdRWjQzYaVChwxuXzKEJEjQHHgDHACOw3DGGOiHA9OxGQV\n34UXXsj27dudPr1SfhcbG8tff/0V6DDyv0cftfNqR43y6vDUVKhd2+43d8015z8vogmYk0QEY4xf\nk6Fg7Kv803b4/SyeOQNVq8KKFXZ9clbC8X3JSkzMuYlT5il5md+n3F7vpEDHIiMEM1x/aJT7fO2r\nck2ynCIif2ErP6UCp40xV2Xxmiw7Ltc/2vEYlfI3/dn1k99+gxYt7FzbwoW9amLsWFi7Fj744Pzn\n9AOcs5xIsgJJkyz/e+wxKFIEnn8+6+fD9X3JLNCJiycyx5rbfb+fX5Ms5aE8SbJEJBq4GLuwGABj\nzNfentTV5lbgSmNMtoPXmmSpUKM/u34UF2enDd5+u1eHJyVBjRqwZQuULXvuc/oBzllOJVlO9FVu\nnleTLD9b9+NpOnaO4K8dBYjIYmFDuL4vmeWn90GTLJXf+NpX5bomS0TuBb4GFgEjXF/jvT1hxqbd\nOb9SSmXpvvvg7be9PjwmBjp3hsmT/RiTChgH+yoVAPVXvUP0sd2sWBHoSJRSyjvuJDkPA42B7caY\nlsAVwCE/nNsAS0TkfyLSzw/tKaXCya23wl9/wd9/e93EwIE2T0tN9V9YKmCc6qtUINx5J/1OvsFb\n405l+XTmPZp041ulVLBxJ8k6YYw5ASAiRYwxm7H7kPjqWmNMQ+Am4AERaeaHNoPa9u3biYiIINUP\nn+iqV6/O8uXL3Xrt1KlTad68efr9yMhIvxVfGDVqFP379wf8++8D2LlzJ1FRUTq9TmWtSBFbkrNc\nOa+baNzYflhbuNCPcalAcaqvUoFQtiy9Ox1i+dKz7Nx5/tNaHlwpFexy3IzYZZeIlAK+wo48HQR8\nLu1njNnr+rpfRL4ErgK+zfy6+Pj49O/j4uKIi4vz9dSOql69OpMmTaJVq1ZZPh+o6sIZz3vkyJFc\nX79y5Up69uzJzqx6twyefPLJbM/jqczvXdWqVUlOTva6PRUGCrrzJyx7InbP8HHj4Kab/BSTOk9C\nQgIJCQlOn8aRvkoFTuQj/eg57xPentCb50fp6gLIurCFUio45foJxRhzi+vbeBFZAZQEfLruKyLF\ngAhjzFERKQ60wc6hP0/GJEvlHWNMrgnT2bNnKZDLRstKBbtu3eCpp2DDBqhbN9DRhKbMF8hGjMjy\nz71PnOirVIA1bsygmi/T/K1uPP1sUYoVC3RAeS+rpCpUJ3ekTQHNeD9YKiMq5Q13Cl9US7sB24Cf\ngQo+nrc88K2IrAVWAXOMMYt9bDPopKam8thjj1G2bFkuuugi5s2bd87zycnJ3HvvvVSqVImqVavy\n7LPPpk+N27p1K61bt6ZMmTKUK1eOnj17uj2qk5SUxM0330zJkiVp0qQJf/755znPR0REsNW1kev8\n+fO5/PLLiYqKomrVqowdO5aUlBRuuukm9uzZQ2RkJFFRUSQmJjJixAjuuOMOevXqRalSpZg6dSoj\nRoygV69e6W0bY5g0aRKVK1emcuXKvPLKK+nP9enTh//85z/p91euXEnVqlUBuOuuu9ixYwcdO3Yk\nKiqKl19++bzph3v37qVTp06ULl2aWrVq8d5776W3NWLECO6880569+5NVFQUdevW5aeffnLr/VLh\nrUgReOABePXVfx/LvN4j803XfwQfh/qqtLb/EpF1IrJWRFb7o03lnlov96d5g6O89VagIwmMzJsJ\nh3LSoVNAVahxZ/x9HjDX9XUZsBVY4MtJjTHbjDENjDFXGGPqGmNe9KW9YPXuu+8yf/581q1bx48/\n/sjMmTPPeb53794ULlyYrVu3snbtWpYsWZKeOBhjeOqpp0hMTGTTpk3s2rXL7VG9gQMHUqxYMfbt\n28ekSZN4//33z3k+4wjVvffey8SJE0lOTuaXX36hVatWFCtWjAULFlCpUiWOHDlCcnIyFSrYzyqz\nZ8+mS5cuHDp0iO7du5/XHtipQX/++SeLFi1i9OjROa4dSzt22rRpVKtWjblz55KcnMxjjz12Xtt3\n3nkn1apVIzExkRkzZvDUU0+dMwVpzpw5dO/encOHD9OxY0ceeOABt94vpe67D778EhIT7f3MnX3m\nm3b+QcnvfVUGqUCcq886b09H5aDWrRk+vgwvvQTHjgU6GOfFxJx7QSeUpgNmvngVSv82pbKSa5Ll\nSoLqub5ejF079YPzoeV/M2bMYPDgwVSqVIlSpUqds35p3759LFiwgFdffZWiRYtSpkwZBg8ezMcf\nfwxAzZo1ad26NQULFqR06dIMGTKElStX5nrO1NRUvvjiC0aOHEnRokW5/PLL6d279zmvyVhIonDh\nwmzcuJEjR45QsmRJGjRokGP7TZs2pWPHjgAULVo0y9fEx8dTtGhR6tSpQ58+fdL/Te7IrsjFzp07\n+eGHHxg9ejSFChWifv363HvvvUybNi39Nc2aNaNt27aICL169WL9+vVun1flc3v3wkMPeT2PpkwZ\n6NoVJkzwc1wqzzjcV+mWIwFUt67de3z8+EBH4rxQHrnKfPEqlP5tSmXF407DGPMTcLUDsfhPfHzW\nc3yyGwnK6vV+WAu2Z8+e9OlwALGxsenf79ixg9OnT1OxYkViYmKIjo7m/vvv58CBAwD8/fffdOvW\njSpVqlCqVCl69uyZ/lxO9u/fz9mzZ6lSpUqW583s888/Z968ecTGxtKyZUtWrVqVY/sZ/z1ZEZHz\nzr1nz55c487N3r17iYmJoViGSfmxsbHs3r07/X7aaBtAsWLFOHHihN8qHaogV66cLRH4zTdeNzFk\niC3nnpLix7hUwPi5r9ItRwJs5Eh4+WXI8CdfKaWCmjtrsh7JcHtMRKYDvn9qdlJ8fNZzfHJKstx9\nrQcqVqx4TnW+7dv/LXRVtWpVihYtyj///ENSUhIHDx7k0KFD6aMvTz31FBEREWzcuJFDhw7x4Ycf\nulXKvGzZshQsWPCc8+7YsSPb11955ZV89dVX7N+/n06dOtGlSxcg+yqB7lQPzHzuSpUqAVC8eHFS\nMnyC3bt3r9ttV6pUiaSkJI5lmC+yY8cOKleunGs8KgwUKABPPAGjRnndRK1a0KSJbk6cXzncV4Xd\nliPBplYtGDDAXgxRSqn8wJ2RrMgMtyLY+e6dnAwqVHTp0oXXX3+d3bt3c/DgQUaPHp3+XIUKFWjT\npg1DhgzhyJEjGGPYunUrX3/9NWDLrJcoUYLIyEh2797NSy+95NY5IyIiuPXWW4mPj+f48eP8+uuv\nTJ06NcvXnj59munTp5OcnEyBAgWIjIxMrxZYvnx5/vnnH49LqBtjGDlyJMePH2fjxo1MnjyZrl27\nAtCgQQPmz5/PwYMHSUxMZNy4ceccW6FChfSCHBnbA6hSpQrXXHMNTz75JCdPnmT9+vVMmjTpnKIb\nWcWiwkivXrB+Paxd63UTTz8NY8bAqaz3P1XBzbG+KuOWI0DaliPniI+PT7/lQbn6sPTUw8dYs/II\ns2YFOhKlVChKSEg452+5r9wp4e7/WrshLONoTL9+/diyZQv169enZMmSPPbYY6xYsSL9+WnTpjF0\n6FAuu+wyjh49So0aNRg6dCjA/7N33/FRlPkDxz/fFEowgYSaQAgCp3IcggcqqDQ5RQXECoKgYuEU\ny4HnKSIaED0Vf2I9OUWUonCIHcWzgw0OG4o0QSSUEFqAAKEm398fM4lL2N3sbjbZbPi+X6+B2SnP\nfOfJ7Dz7zDzzDJmZmVx11VXUqVOHli1bMnjwYB736P7M312fp59+miFDhpCamspJJ53Etddee8R2\nPdedPn06t956KwUFBZx44om88sorAJx44okMGDCA5s2bU1hYyLJlywLe/65du9KyZUtUlTvvvJMe\nPXoAMHjwYD7++GOaNWvG8ccfz5AhQ47ofXDkyJHceuut3HnnnYwePZpLL730iFhnzpzJX//6V9LS\n0khJSWHcuHF0797dbyzmGFK9Otx+Ozz8MMyaFVISp58OJ54I06bB9deHOT5TrsqrrAr0lSP2upHy\nV7NaAdPjruPiq6bT9scaNGsW6YiMMVVJuF83IqVd7ReROTjt0b1S1QvLFIH/bau3+ETE7lKYqGTH\nbjnbvRvOOAMWLIDjjgspiS++gGuugZUrfb/rWKTqvqumIrjfg7BeBSmvskpEjse5e6U4FyZfKdkj\nrq+yKhzsWCth8WIeO/MNZjUfybz/JRS/O6sy55O3d115dvrgOd/eDfW7cP9NZaygmZX0IDGVUlnL\nqlLvZOF0g9sIeNn9PADYDLwV6kaNMaZcJCY6TQbLcBezc2dIT4cZM+Cqq7wvU/KlmSXn2Y+kiCiX\nskpVfwP8d7tqKk67dtw+cQk/DZvLpRf04u0Pa1KtWqSD8q+ox8AiRd20F6nKLxg25lgWyJ2sb1W1\nQ2nTyoPdyTJVjR270eHTT52H7Jctc/rUCEZlvqJeWZTTnaxKV1aFJ207nrw5/PjTXH7viehZXZj5\nZg0SEipvPtnfMDR2J8tEWlnLqkA6vqglIs09Nng8UCvUDRpjTGXXvTvUrw9BvOLNRJ6VVceQuBG3\nMuv5PI5Ljufss6F27SPfwpKScuTyni/5LTnPGGPKQyCVrBHAPBGZJyLzgc+Av5VvWMYYEzki8OCD\ncO+9cOBApKMxAbKy6hhTbeBlTHsllnPOgYQE+PDD39/C4vkMFBz5kl/wXyErybOCFsryycmh76Mx\nJnqV2lwQQESqAye5H1eoaoX87LDmgqaqsWO3ghUWQkzQ71wv1rs3nHMO/C2In+rWNKh05dFc0E23\nUpVV4UnbjqdAfPKJ8wzlRRfBAw84FR3PfPOXj6Xlccn5wS5vQmPNBU2klVtzQRE5VUQaAbgFVVvg\nfuBREbGb7caYyu/88+Hrr0Ne/aGH4J//hF27whiTCSsrqwxAjx6wZAnovv20St9DNfZz+HD5bKuo\n4xtrfmiM8cffJd7ngIMAItIFeBiYBuwCni//0IwxpowGD4bhw507WiFo08appwX4LnATGVZWGcCp\n7Dz7cB7vdX6YDnzLCQ128MLT+WFv8pub+3vTQ2/ND615YHhYZdZEO5/NBUXkR1Vt647/C9iqqmPc\nz4tVtdy7tLXmgqaqsWO3ghUWQseOcOutToUrBBs2QLt2sGgRNG9e+vLWVKh04WwuWJnLqvCkbcdT\nKFrJcp4/93Ue/LQT38aezuEDh/hoUTLt2x/dgjjQ5n/5+bBxI2xcV8CODXvZv7eA/XsLiI+H45om\nk1g7lsaN4fjjnXejm/Aq63fBmguaYJXne7JiRSROVQ8DPYChAa5nqrCYmBhWr15N8wB+bY4dO5bV\nq1czffp01q9fT+vWrdm1axdShncYFbnpppto0qQJ99xzD/Pnz2fQoEGsX7++zOkCfPnll9xwww0s\nX748LOmZCIqJgSeegP794ZJLoFbwnc01aQJ33OHcEHvnnXKI0ZSVlVXmKCtoRecPRvPf7Gx+e2I6\nnR69iMGDYft26NYNTj4ZTjgB6tVVQPjf/+DgAWXnxr1kr9zNpoIGZG+OZcMGJ726dWHvXkjTDTQ5\n9BvJcbupGXuQ6jGHOUwsu8+6gLwDzvLr1zvv2jv9dDjjD1vpObAuLU8I/dlQY0x08ncn6x7gAmAb\n0BT4s6qqiLQEpqrqmeUeXJTeyZoxYwaPP/44K1asICkpiXbt2jFq1CjOPLPcs8yvqVOn8sILL/DF\nF1+EnEZsbCyrVq0KuJL166+/Mm3atHKNcf78+QwePJh169YFvI6nYCqOZVXZj90qa+BAyMhwHrIK\nwYEDTtPBxx+HXr38L2t3HkoX5jtZlbasCk/adjyFwldnFevWweefO+/A++UX2P7+InbkVyOOw9Rg\nPwnspQ67OOnWc0n7Yx2aNIE+fWDLFqhXD2RTtlPj8nOr6vBhWLUKFnx5mK/ueIu5ezpTr85hLr/w\nINfdn0HjdKtwhcLuZJmKVm53slT1QRH5BEgFPvQoQWKAW0PdYFU3YcIExo8fz3PPPce5555LtWrV\n+OCDD5gzZ07QlayCggJiS7wJ1du0QKlqme8ilXcFIZAYCwsLiSlDj3ElhePOmqnkJkyAMlxcqF4d\nnnoKbrkFzj4batYMY2ymTKysMt4UPc/j+RmgaVMYNMhjwYPtYN8+iI8vHlJSYPbTR65bv777IS2t\n1G3HxUGrVtCqVRzX3nAZhStXsfDxBbz8WnXaTEume9sd3DnxeE4/vcy7aYypxPz+UlXVhar6pqru\n9Zj2i6p+X/6hRZ+8vDwyMzN59tln6du3LzVr1iQ2NpYLLriAhx9+GICDBw8yfPhwGjduTJMmTRgx\nYgSHDh0CnDsy6enpjB8/ntTUVK699lqv0wDeffddTjnlFJKTkznrrLNYsmRJcRwbNmzg0ksvpUGD\nBtSvX5/bbruNFStWcNNNN7FgwQISExNJcZ8gPXjwIHfccQcZGRmkpqYybNgwDng8Jfzoo4+SlpZG\nkyZNeOmll/xWSNauXUu3bt2oXbs2PXv2ZNu2bcXzsrKyiImJodDtgGDKlCm0aNGCpKQkWrRowcyZ\nM33GOGTIEIYNG0avXr1ITExk3rx5DBkyhPvuu684fVXloYceon79+jRv3pwZM2YUz+vevTsvvvhi\n8eepU6fSuXNnALp27YqqcvLJJ5OUlMTs2bOL87zIihUr6N69O8nJybRp04Y5c+YUzxsyZAi33HIL\nvXv3JikpiU6dOvHbb7/5P1BMxWvUCC6/vExJnHcedOgAHoedVyUf1i452MPb4WdllSmpZOcUubk+\nFqxWzXmTcUKCU8kKZt0AxZz4B87491U8u7UfWf9dwdlttnD55c5d8e/tCDWmyrJ71mG0YMECDhw4\nwEUXXeRzmQceeIBFixbx008/8eOPP7Jo0SIeeOCB4vk5OTns3LmTdevW8fzzz3ud9sMPP3Ddddcx\nadIkcnNz+etf/8qFF17IoUOHKCwspHfv3hx//PGsW7eOjRs3csUVV3DSSSfx73//m06dOrF7925y\n3VLjrrvuYvXq1fz000+sXr2ajRs3cv/99wPw3//+lwkTJvDJJ5+watUqPv74Y7/7P3DgQE499VS2\nbdvG6NGjmTp16hHziypo+fn5/O1vf+ODDz4gLy+Pr7/+mnbt2vmMEWDmzJnce++97N692+sdwZyc\nHHJzc8nOzmbKlCkMHTqUVatW+Yy1KJb58+cDsGTJEvLy8rjc/SFeNP/w4cP06dOH8847j61bt/LU\nU09x5ZVXHpH2rFmzGDt2LDt37qRFixbcc889fvPJRK+nn4aXX4YFC3wvU/IHWsmh5EtSjTHHCBES\nz+nIzVNPZ9UquOACp6I1dCh4XJM0PlhvgybaWCUrjLZv3069evX8NmWbMWMGmZmZ1K1bl7p165KZ\nmcn06dOL58fGxjJ27Fji4+Op7rb5Ljlt0qRJ3HjjjXTo0AERYfDgwVSvXp2FCxeyaNEiNm3axPjx\n46lRowbVqlXjjDPO8BnPpEmTePzxx6lduza1atVi5MiRzJw5E4DZs2czZMgQWrVqRc2aNRkzZozP\ndNavX8+3337L/fffT3x8PJ07d6ZPnz4+l4+NjWXJkiXs37+fhg0b0qpVK5/LAvTt25eOHTsCFOeL\nJxFh3LhxxMfH06VLF3r16sWrr77qN01PvppBLliwgL1793LXXXcRFxdH9+7d6d27d3EeAVx88cW0\nb9+emJgYrrzyShYvXhzwdk10qV/fqWgNGeK0MDLGmFBUrw433wzLlzvNj1u3Vib/c7M9f+dHyQtY\ndsHKVHZVspLlr6lOMEOw6taty7Zt24qbxHmTnZ1N06ZNiz9nZGSQnZ1d/Ll+/frEu00WfE3Lysri\nscceIyUlhZSUFJKTk9mwYQPZ2dmsX7+ejIyMgJ5Z2rp1K/n5+bRv3744rfPPP5/t27cXx+rZbC4j\nI8NnZSQ7O5vk5GRqejyskpGR4XXZhIQEZs2axcSJE0lNTaVPnz6sXLnSb6yecXiTnJxMjRo1jti2\nZ76GatOmTUdtOyMjg40bNxZ/btSoUfF4QkICe/bsKfN2TeV12WXQti3ceWekIzHGRLs6deDJJ+HD\naZv5V+ZmLjxxJZs3HIp0WMaYMKiSlSx/TXWCGYLVqVMnqlevzltvveVzmcaNG5OVlVX8OSsrizSP\nB2m9PfNUclp6ejr33HMPubm55ObmsmPHDvbs2UP//v1JT09n3bp1Xit6JdOpV68eCQkJLF26tDit\nnTt3smvXLgBSU1OP6BY9KyvL5zNZqamp7Nixg30el/f99fZ3zjnn8OGHH5KTk8OJJ57I0KFDfe6/\nv+lFvG27KF9r1apFfn5+8bycnBy/aXlKS0s7qmv4devW0bhx44BF4xieAAAgAElEQVTTMJXQu+/C\n6NEhr/7cczB3LsyeHfy69syWMaaktj0bsfDXBpxcuJi2x+/izac3RDokY0wZVclKVqQkJSUxduxY\nbr75Zt5++2327dvH4cOHef/99xk5ciQAV1xxBQ888ADbtm1j27ZtjBs3jsFBviT1hhtu4N///jeL\nFi0CYO/evcydO5e9e/dy2mmnkZqaysiRI8nPz+fAgQN8/fXXADRs2JANGzYUd7QhItxwww0MHz6c\nrVu3ArBx40Y+/PBDAPr168eUKVNYvnw5+fn5xc9qedO0aVM6dOhAZmYmhw4d4ssvvzyigwj4vUne\nli1beOedd8jPzyc+Pp7jjjuu+M5byRgDparF2/7iiy9477336NevHwDt2rXjjTfeYN++faxevZrJ\nkycfsW6jRo1Ys2aN13RPP/10EhISGD9+PIcPH2bevHm8++67DBgwIKj4TCXTsSNMmwZvvx3S6nXq\nwKxZMGwYrF4d3Lr2zJYxxptqTRvx4Kp+vDHiS/4+/DC3nb2Egwes/aAx0coqWWF2++23M2HCBB54\n4AEaNGhA06ZNefbZZ4s7wxg9ejQdOnTg5JNPpm3btnTo0CHojhLat2/PpEmTuOWWW0hJSeGEE04o\n7mQiJiaGOXPmsGrVKpo2bUp6enrxs0lnn302rVu3plGjRjRo0ACAhx9+mJYtW9KxY0fq1KnDueee\nyy+//ALAeeedx/Dhwzn77LM54YQT6NGjh9+4ZsyYwcKFC6lbty7jxo3j6quvPmJ+0d2owsJCJkyY\nQOPGjalXrx6ff/45EydO9BljIFJTU0lOTiYtLY3Bgwfz3HPP8Yc//AGAESNGEB8fT6NGjRgyZAiD\njui/F8aMGcNVV11FSkoKr7322hHz4uPjmTNnDnPnzqVevXrccsstTJ8+vTht6/49StWrB6+/Djfc\nAD//HFISHTpAZqbzjuO8vDDHZ4w5NolwxviL+G7BIbJWHqBLZyXEV0AaYyLM58uIK4NofRmxMb7Y\nsVvJvPyyU1NatMh5wWiQVOHGG50XnM6Z47wfp6yOhZfPhvNlxJWBvYzYlAdV+L//g8cegylTnNdI\nmN8F+92wlxGbYJW1rLI7WcaYY9egQc77s665JqTVReBf/3IK+ltusR/DxpjwEYF//ANefRWuvx7u\nvRcKCiIdlTEmUHYny5gKZMduJaQKGzdCkyYhJ5GXB926wV/+Ao88ElrvpEWOhTsXdicrmLSr/vFg\nSrd5MwwYADFawCtTDtEwo0bpK1VxKSlHPsOanOz/xdF2J8sEy+5kGWNMWYiUqYIFkJQEH3/sDHfe\naT+KjTHh1bAhfPQRdKzxA+3/sIsvZlrvg/beLFPZWSXLGGPCICXFqWR9+incdBME2UGmMcb4FRsL\nD8xtz/PXf8NlV1bn0UE/2gWdEKWk2KszTPmzSpYxxnizZUvQq6SkwGefOR1h9OoFO3eWQ1zGmGOX\nCBc825tv5uTw2mvKxS1+ZGfO/khHFXV27LC7YKb8WSXLGGNKWrMG/vQn52VYQUpKgnfegT/+EU49\n1em40BhjwqlprzZ8sf54MmI30q7Vfj75JNIRGWNKskqWMcaU1Lw5fPAB3HOP0/Pgtm1BrR4XB088\nAf/8J/TpA+PGwcGD5ROqMebYVK1+bZ785XwmTq3FNdfAzTfDnj2RjipykpOPbAJ4rDQHjKamj6XF\nGk37EoiorGRlZGQgIjbYEHVDRkZGpL8+JlCnnAI//OCU3K1bwwsvwOHDQSVx+eXw/fewcCG0aQNz\n55ZTrMaYY5MI518Yz5IlsHevcwf9P/85NjvfKdkRxrHSHDCamj6WFms07UsgItaFu4icBzyBU9Gb\nrKqPeFmm3LrFLS9i3e0aU/V8/z2MHw/TpkG1aiElMXcu3H6700vYXXfB+ed77+r9WDiHiERPF+6R\nLquOhePBhM/nn8Pf/gbHyR4eHJZNl+tPiHRIlYIIMOb3LtxLfq+i+XsWTftSWqyVbV/KWlZF5E6W\niMQAzwA9gdbAABE5KRKxmKPNmzcv0iEccyzPIyPgfP/zn53LwyFWsAAuuACWLIGhQ+Huu51Hvh59\nFLKzQ07SlLNjoayK5nOPxX60Ll3g22/h2o7Lue7GeDon/8w79y/m0IHCsG0javP9t0gHELqozXOi\nO/ayilRzwdOAVaqapaqHgP8AfSMUiynhWP5CRIrleWSEJd+nTIE77nB6uyjl2a34eLjySli8GJ59\nFlaudFoinnYajB4N8+eXPRwTVlW+rIrmc4/F7l1sLAx59lSW70pj2GVbeGQ8pCds4++nf8nn7+8t\n8+slojbf10Y6gNBFbZ4T3bGXVaQqWY2B9R6fN7jTIio8B0LgaQSyvdKW8TU/0OmV4eAvawzBrl/R\n+R7otIoWbfke7LwKy/dTT4XERHjmGWjRAlq2dHq7+Pprn9sXga5dnce8cnKcloiFhfCPfzjLtWoF\nAwbAvffC5MnwySewYoXTq/wnnwS3D+WV72X9DkSJci2rQs2XUP+m4fw7WOyBz49U7HG1qjNg0tl8\ntacd4+//LwmxB7h9dE3q13furI8eDa+/Dot/UN55ZQ5aeHS7LMv3sqUV6djLkk60xl6WMi/cZVVc\nWFOLcvPmzaNbt25lTQUILI1AtlfaMr7mBzo9PPtcNmWNIdj1KzrfA51W0aIt34OdV2H53rq1MwAU\nFDi3p1auhNRU73FOmuS8sTghAWrVonqtWnSrWZNu48bxz3+eiYjTMvHHH52e5L+Y+DPT18WQvT+Z\n3IPHkXvgUxLjT6N2Shw1a1ejRg2Kh5o1IX79GmLydiIoMaIs3/UKf6qTQMyJf0BSkomJgZgYp6LX\nqhWMGhVavpf1O2BCz5dQv0vh/DtY7IHPrwyxrzm0hnFfX8U4YPNmWLDAedR02jT4bXUhvyz7ithB\nZ1Mndje14/ZSOz6f42oWsLb2PFq16kZcHMXDzz8VsGbqF24XcOD+48w8/fSjN374EPxvET/mTqNt\nSjwAIuou3/Ho5Q8dgkX/K/64OHca7VLiipcv+Szr4u8+od2+o3/OLt75Mu16B59X3kTrMVOWdCpD\n7IH+ng52+xXxXYUIdXwhIh2BMap6nvt5JKAlHygWkUr66J4xxpiyiIaOL6ysMsaYY1tZyqpIVbJi\ngZVAD2ATsAgYoKrLKzwYY4wxxgsrq4wxxoQqIs0FVbVARG4BPuT3bnGt0DLGGFNpWFlljDEmVBF7\nT5YxxhhjjDHGVEWR6l3QGGOMMcYYY6qkqKtkiUhXEflcRCaKSJdIx3MsEZEEEflGRC6IdCzHChE5\nyT3WXxWRGyMdz7FARPqKyPMiMlNEzol0PMcKETleRF4QkVcjHUs4RHtZFa3n+2g+Z0bzuSdav7/u\ncT5FRJ4TkYGRjicY0ZrnEL3HerDnl6irZAEK7Aaq47yzxFScu4BZkQ7iWKKqK1T1JqA/cEak4zkW\nqOrbqjoUuAnoF+l4jhWq+puqXh/pOMIo2suqqDzfR/M5M5rPPVH8/b0EmK2qfwUujHQwwYjiPI/a\nYz3Y80vEKlkiMllENovITyWmnyciK0TkFxG5q+R6qvq5qvYCRgL3V1S8VUWo+S4ifwGWAVspfimG\nCVSo+e4u0wd4F5hbEbFWFWXJc9do4F/lG2XVE4Z8r1SiuayK5vN9NJ8zo/ncE+3f3xDib8LvLxwv\nqLBAvYjmvC9D7BEtZ0OJO6jzi6pGZADOAtoBP3lMiwFWAxlAPLAYOMmdNxiYAKS6n6sBr0Yq/mgd\nQsz3x4HJbv5/ALwZ6f2ItqGsx7s77d1I70c0DWXI8zTgYeDsSO9DNA5hOLfPjvQ+hHl/IlZWRfP5\nPprPmdF87on2728I8V8JXOCOz4im2D2Wifg5M5TYI32slyXP3eVKPb9EpAt3AFX9UkQySkw+DVil\nqlkAIvIfoC+wQlWnA9NF5GIR6QnUBp6p0KCrgFDzvWhBEbkK2FZR8VYVZTjeu4rzAtTqwHsVGnSU\nK0Oe34rzXqQkEWmpqs9XaOBRrgz5niIiE4F2InKXlnjhb6REc1kVzef7aD5nRvO5J9q/v8HGD7wJ\nPCMivYA5FRpsCcHGLiIpwINUgnNmCLFH/FiHkOLuitPENKDzS8QqWT405vfbtuC0Yz/NcwFVfRPn\nS2HCp9R8L6Kq0yokomNDIMf7fGB+RQZVxQWS508DT1dkUMeAQPI9F6d9fjSI5rIqms/30XzOjOZz\nT7R/f33Gr6r5wLWRCCpA/mKvzHkO/mOvrMc6+I87qPNLNHZ8YYwxxhhjjDGVVmWrZG0Emnp8buJO\nM+XL8j0yLN8rnuV5ZFS1fI/m/bHYI8Nij5xojt9ir3hhizvSlSzhyJ6LvgFaikiGiFQDrgDeiUhk\nVZvle2RYvlc8y/PIqGr5Hs37Y7FHhsUeOdEcv8Ve8cov7gj26DEDyAYOAOuAIe7084GVwCpgZKTi\nq6qD5bvl+7EyWJ5bvh/r+2OxW+zHUuzRHr/FXvXiFjcxY4wxxhhjjDFhEOnmgsYYY4wxxhhTpVgl\nyxhjjDHGGGPCyCpZxhhjjDHGGBNGVskyxhhjjDHGmDCySpYxxhhjjDHGhJFVsowxxhhjjDEmjKyS\nZYwxxhhjjDFhZJUsU2mIyEUiUigiJ0Q6Fl9E5O5IxxAuIvJXERkUxPIZIrIkyG18IiLH+Zk/U0Ra\nBJOmMcZUBlWxzBKRz0Tkz+W5jSDT7iMidwa5zu4gl58tIs38zH9URLoHk6YxYJUsU7lcAXwBDCjv\nDYlIbIirjgprIBEiIrGq+pyqvhzkqgG/vVxELgAWq+oeP4tNBO4KMgZjjKkMrMwqx2245dQcVR0f\n5KrBlFN/BGJUda2fxZ4GRgYZgzFWyTKVg4jUAs4ErsOjwBKRriIyX0TeFZEVIvKsx7zdIjJBRH4W\nkY9EpK47/XoRWSQiP7hXqGq4018SkYkishB4REQSRGSyiCwUke9EpI+73NUi8rqIvC8iK0XkYXf6\nQ0BNEfleRKZ72YcBIvKTOzwcQJzN3W184+7jCR5xPikiX4nIahG5xMu2MkRkuYi8LCLLRORVj/38\ns4jMc9N9X0QautM/E5HHRWQRcJuIZIrI7e68diKyQEQWu/te253e3p32A3Czx/b/KCL/c/NisY+7\nUVcCb7vLJ7h/wx/c/LncXeYL4C8iYuciY0zUiPYyS0Ri3PR/EpEfReRvHrP7uef3FSJypsc2nvZY\nf46IdAmgXAyl/JsoIgvcfS7erlvufeKWOR+JSBN3ejMR+drdj3Ee227kpv29u59nevlTepZTXvNE\nVdcBKSLSwOcBYYw3qmqDDREfgIHAJHf8S+AUd7wrkA9kAAJ8CFzizisErnDH7wWedseTPdIdB9zs\njr8EvOMx70FgoDteG1gJ1ASuBlYDxwHVgbVAY3e5PB/xpwJZQArOxYtPgAt9xPmUO/4x0MIdPw34\nxCPOWe54K2CVl+1luOl2dD9PBm4H4oCvgLru9H7AZHf8M+AZjzQygdvd8R+Bs9zxscAEj+lnuuPj\ngZ/c8aeAAe54HFDdS4xrgVru+CXAcx7zEj3GPyj6e9tggw02RMNQBcqsPwMfenxOcv//DHjUHT8f\n+Mgdv7qo7HI/zwG6+NuGj30OpPzz3OerPdZ5Bxjkjg8B3nTH3waudMeHFcWDUybe7Y5LUXlUIr55\nQGt/eeKOPw9cHOnjzoboGuzqsaksBgD/ccdn4RRgRRapapaqKjATOMudXgi86o6/jHNVEeBkEflc\nRH5y02ntkdZsj/FzgZHuXZp5QDWgqTvvE1Xdo6oHgGU4BaY/pwKfqWquqhYCrwBdfMR5lnsV9Axg\ntrv954CGHum9BaCqywFfV8/WqepCz3SBE4E/AR+56d4DpHmsM6tkIiKSBNRW1S/dSVOBLu7drNqq\n+pU73fMq5QLgHhH5B9DMzaeSklV1rzu+BDhHRB4SkbNU1bPN/NYSMRpjTGUX7WXWGuB4cVpN9AQ8\nz8lvuP9/F0A6pSkg+PJvNt51wslPcMqjovw7k9//Fp7l1DfAEBG5DzjZozzylIpTBoH/PNmClVMm\nSHGRDsAYEUkGzgb+JCIKxOK0qf6Hu0jJ9tW+2lsXTX8J5y7SzyJyNc6VxSIlT7KXquqqEvF0BDwr\nDQX8/l0Rf7viZ17JOGOAHarq6wFjz+0Hk64AP6uqt2YRcPT+l7YNr9NVdabbhKU3MFdEhqrqvBKL\nHfZYfpU4D1NfADwgIp+oalGzjhrAPh/bN8aYSqUqlFmqulNE2gI9gRuBy4Hr3dlFaXmmc5gjHzGp\n4RmCt234EEj556uc8vesVdG84lhU9QsR6QL0AqaIyGN69HPI+bj7UiJP/orTEuQ6dzkrp0zQ7E6W\nqQwuB6ap6vGq2lxVM4DfRKTo6t9pblvsGKA/znM84By/l7njV3pMPw7IEZF4d7ovHwC3FX0QkXYB\nxHpQvD+AvAjn7k+KO38AzpVGb3F+6d7J+U1EiqYjIif72KavAqypiJzujg/E2f+VQH230EVE4sR5\nsNcnVc0Dcj3aqw8G5qvqLmCHiJzhTi/uiVBEjlfV31T1aZymGt5iXykizd3lU4F9qjoDeBQ4xWO5\nE4Cf/cVojDGVSNSXWe6zUbGq+iYwGqepnDdF5c9aoJ040nGa+PndhiuWspV/nr7m9+ffBvF7/n3p\nMb04/0SkKbBFVScDL+B9H5cDLd3lPfPkXqycMmVklSxTGfQH3iwx7XV+P2l+CzwDLAV+VdW33Ol7\ncQqzJUA3nLbs4JwcF+GcgJd7pFnyKtgDQLz7kOvPwP0+4vNc73lgSckHfFU1B6f3oXnAD8C3qvqu\njziLtnMlcJ37EO/PwIU+4vR19W4lcLOILAPqAP9W1UM4BdojIrLYjaVTKekAXAP8n7tOW48YrwWe\nFZHvS6zfz32Q+Qecpi3TvKT5HlDU7W0bYJG7/H04eY/7IHG+qm7xE5sxxlQmUV9mAY2Bee45eTq/\n957ntfxxm42vdffpCZymhKVtA8pe/nm6Daf532J3/aLOOobjlIU/4jT/K9IN+NEtv/oBT3pJcy6/\nl1Ne80RE4oAWOH9XYwImTpNhYyonEekK/F1VL/Qyb7eqJkYgrKCUR5wikgG8q6ptwpluOIlII2Cq\nqvb0s8xwYJeqvlRxkRljTPmoCmVWOFX2fRanJ8dPcTp48vqDWEQuwunYJLNCgzNRz+5kmWgWLVcI\nyivOSr3/7t29SeLnZcTADpyONowxpqqr1OfsclKp91lV9+P0tNvYz2KxwGMVE5GpSuxOljHGGGOM\nMcaEkd3JMsYYY4wxxpgwskqWMcYYY4wxxoSRVbKMMcYYY4wxJoyskmWMMcYYY4wxYWSVLGOMMcYY\nY4wJI6tkGWOMMcYYY0wYWSXLGGOMMcYYY8LIKlnGGGOMMcYYE0ZWyTLGGGOMMcaYMLJKljHGGGOM\nMcaEkVWyjPFDRHaLSLNIx2GMMcb4Y+WVMZWLVbJMlSAihSLSvIxpfCYi13pOU9VEVV1bpuDCSEQy\nRORTEdkrIstEpIefZbu5y+4UkTXBpiUiA0VkrVtwvyEidTzmVRORF0Vkl4hki8iIEuu2E5Fv3bS/\nEZG2JeaPEJFNbmwviEh86LlyRLpd3WPh9RLTT3anfxqO7RhjTKisvPK6rJVXv0+38qqKsEqWqSrU\n30wRia2oQMrZTOA7IAUYDbwmInV9LLsXmAzcEWxaItIa+DdwJdAQ2AdM9Fh3LNACSAfOBu4UkXPd\ndeOBt4BpQB33/7dFJM6d3xO4E+gOZLjpjA0mE0qxFegkIske064GVoZxG8YYEyorr45m5dXvrLyq\nKlTVBhu8DkAT4HVgC86J4Cl3uuCc5NYCOcAUIMmdlwEUAlcBWe66ozzSjAFGAauBXcA3QGN33knA\nh8B2YDlwucd6LwHPAO8CecAC4Hh33nx3m3vceZcDXYH1OCfHTcBUnBPoHDem7e54mpvGA8BhIN9N\no2hfC4Hm7ngSzgl4C/AbcI9HfFcDXwCPArnAr8B5Yf57/AGn8KjlMW0+MLSU9XoAa4JJC3gQeNlj\nXnPgQNHywEagh8f8scAMd/xcYH2J7WUB57rjrwAPeMzrDmzyE38hcBPwi3vM3O/G8xWwE/gPEOcu\nW/R3fxYY5nHMbcA5Zj+N9PfKBhtsCP+AlVdF50orr6y8sqGSDHYny3glIjE4BcRvQFOgMc7JAWAI\nTqHUFefkkYhToHg6E+fE+BfgPhE50Z3+d6A/zgm9NnAtkC8iCTgF1stAPeAK4FkROckjzf5AJk7h\n8yvOiRVV7erOb6OqSao62/3cyF22KTAU5+T1Is7VrKY4BdS/3DRG4xQ6t7hp3Oam4XnF8Rl3X5sB\n3YCrRGSIx/zTcArbujiF12R8EJE5IrJDRHK9/P+Oj9Va4xQ+ez2m/ehOD1ZpabV2PwOgqmtwCq0T\n3GYYqcBPPtb9Y4l5ftN2xxuUuJJX0rnAKUBHnB8izwEDcf6WbYABHssqzo+Lq9zPPYElOD9ejDFV\njJVXVl5h5ZWphKySZXw5DefEdKeq7lfVg6r6tTtvIDBBVbNUNR+4G7jCLejAOWmMcdf5CeekVNTG\n+TqcK2qrAVR1iaruAHoDv6nqNHX8iHNV8nKPmN5U1e9UtRDn6lK7EjFLic8FQKaqHlLVA6qaq6pv\nuuN7gYeALqXkg0BxId4fGKmq+aqaBTwGDPZYNktVX1RVxbkS2UhEGnhLVFX7qGqyqqZ4+f9CH7Ec\nh3NlzFMeTkEarNLS8jf/OJy/8S4v80JJOw8nn/3txyOquldVlwM/Ax+6x99u4H2cAq2Yqi4EkkXk\nBJzCa5qftI0x0c3KK480rbw6Yr6VVyZirJJlfEnHOQkXepmXhnM7vUgWEIfTFrrIZo/xfJwTVVG6\nRz3UitNso6N7ZSxXRHbgFI6eaeb4SNOXrap6qOiDiNQUkefch2N34jQ3qCMiJQs7b+rh7OM6j2lZ\nOFdMj4pPVffhnIhLizEYe3CagHiqDewuh7T8zd/jfk7yMi+UtGvjFIL+9mOLx/g+jjy+9uE9n6cD\nt+BcxX3TT9rGmOhm5dWRrLyy8spUAlbJMr6sB5p6XO3zlI1TyBTJAA5x5InEX7otfEyf514ZK7pK\nlqSqtwQbuIeSDxf/HadJyKmqWoffrwqKj+U9bcPZx5L7vTGUwERkrtsLUp6X4T0fqy0FmotILY9p\nbd3pwSotraX8fjUXEWkBxAO/qOpOnKYMbf2se3KJ7Z2Mc0XvqLRxrvBudq8Qh9PLwDDgPVXdH+a0\njTGVh5VXR7LyysorUwlYJcv4sgjnxPSwiCSISHUROcOdNxMYISLNROQ4nLbm//G4iujvStsLwDgR\naQkgIm3cts3v4rSfHiQicSISLyIdPNrGlyYHp729P4k4V5HyRCQFGFNi/mZfabj79irwoIgcJyIZ\nwAicq09BU9UL1OluN8nL0MvHOquAxUCm+/e4BPgTTjOVo4ijOlANiHHXiQ8wrVeAPiJypluw3Q+8\n7tEmfjowWkTqiEgr4Aach70B5gEFInKrOF3n3obzMPBn7vxpwHUi0sr924/2WDds1OnKuIubvjGm\n6rLyyoOVV1ZemcrBKlnGK/ck3QfnSto6nCt3/dzZL+KctD7HeaA3H7jNc/WSyXmMT8A5+X8oIrtw\nCrGaqroH52HRK3CuPGYDDwPVAwx5DDDNbbpxmY9lngAScK7yfQ3MLTH/SeByEdkuIk94if02nH1d\ng7PvL6uqv5Ot3256Q3QFcCqwA+fHwqWquh1ARM4SkTyPZbvgFNLv4jR7yQc+CCQtVV0G3AjMwPlB\nUBO42WPdTJx8yAI+BR5W1Y/cdQ8BF+H0YLUDp415X1U97M7/ABiPU4j9hnMMjfGzz/6OJ79U9WtV\nzSl9SWNMtLLyysorrLwylZA4zzyWU+IiTXCuAjTEuTIwSVWfcq8GzMK5fb0W6KeqJR88NMYYY8qd\newX9c5yr6HHAa6o6VkQyca56Fz1jMUpV/xuhMI0xxkSR8q5kNQIaqepi9zb9d0BfnC5Vt6vqeBG5\nC0hW1ZHlFogxxhjjh4gkqGq+OC+C/QrnTsD5wG5VnRDZ6IwxxkSbcm0uqKo5qrrYHd+D806GJjgV\nranuYlNxbtUaY4wxEaFO997gNPmK4/dmPoH05maMMcYcocKeyRKRZji9siwEGqrqZnAqYoDXdzMY\nY4wxFUFEYkTkB5xnOj5S1W/cWbeIyGIReUFEakcwRGOMMVGkQipZblPB14C/uXe0Qn4w0BhjjAk3\nVS1U1VNwWlucJiJ/BJ4FmqtqO5zKlzUbNMYYE5C48t6AiMThVLCmq+rb7uTNItJQVTe7z21t8bGu\nVb6MMaYKUtVK2QxPVfNEZB5wXolnsSYBc7ytY2WVMcZUTWUpqyriTtaLwDJVfdJj2jvANe741cDb\nJVcqoqoVNmRmZlZoGoEsW9oyvuYHOt3bcuHIh4rM92DXr+h8D2RaRed5NOZ7sPMqY75X9DmmPPO9\nLN+BykZE6hU1BRSRmsA5wAr3ImCRS/j9BaVHqcjjIdS/aTjP9xZ7eL8TkY6drt6P4WiIvSy/d6p6\n7OW5z5U19rKUeeEuq8r1TpaInAlcCSxx27orMAp4BHhVRK7FeW9BP9+pVJxu3bpVaBqBLFvaMr7m\nBzo9HPtcVmWNIdj1KzrfA51W0aIt34OdVxnzvaLPMYEuH0q+l/U7UMmkAlNFJAbn4uMsVZ0rItNE\npB3OK0jWAn8N50ZDzZdQ/6bh/DtY7IHPj4bYaRbe7YUzraqc7+Ude1nSidbYy1Lmhb2sCrWGWxGD\nE56paJmZmZEO4ZhjeR4Zlu+R4Z7bI17GhGuI5rIqmr8DFnv4MCbwY7iyxR6oaI1b1WKPlLKWVRXW\nu6CJHlFw1bnKsTyPDMt3c6yL5u+AxR4Z0Rp7tMYNFnu0KteXEZeViGhljs8YY0zwRAStpB1fhMLK\nKhPtZKygmXYMG+OprGVVufcuaIwxxpjQpKTAjh3OeHIy5PofBTEAACAASURBVOZGNh5jfGnWrBlZ\nWVmRDsOYoGVkZLB27dqwp2uVLGOiyX/+A3Fx0KYNnHACSJW5GWCM8WLHDii6SWZfd1OZZWVlhaVH\nNmMqmpTTydUqWcZUFtu3O5Wod96B+++H008/epnffoNFi+D77+HgQejdG665Bs44w+svsEOHYPVq\nWLXKST4/HxISoF49aNUKmjeHGHsy0xhjjDEmrKySZUykff89PPkkvP029OoFQ4dC69bel737bud/\nVafCNXs2/OMf8MEHkJgIQE6OU1d77z1YuBAaNXJuejVoADVqOBWtrVth6VLYtQt69oRLL4W+faF6\n9QraZ2OMMcaYKsw6vjAmkt54A269FYYPhyFDnFtMIVCFTz6Bxx5zKlZ9+8Ill0Dnzs5zHL7k5MC7\n7zqVsmXLnFBuuw1q1Qpxf4wJgHV8EUzaRzYXtCLRlIdwdHzhfq/DFJExFcfXsVvWssoaChkTSeef\n77Tl+8c/Qq5g/fe/0LGjU0Hq3x82boQpU+DCC/1XsMC5y3X99fDxx87NsB9/dJoRvvqq/ZgzxhhT\n9WVlZRETE0NhYWGZ0zr++OP59NNPA1p26tSpdO7cufhzYmJi2DpfeOihhxg6dCgQ3v0DWL9+PUlJ\nSVahDoBVsoyJpJo1nYekQrB6NfTp49x5+sc/nOZ/11zjJnfgAIwf7zyUFaA2bZw7Wq+8AmPGwKBB\nTnNCY4wxJpqVVvkpr44PSuO53d27d9OsWTO/y8+fP5/09PRS07377rt5/vnnvW4nWCXzLj09nby8\nvIjlWTSxSpYxFWH/fqcWFAYFBfDII87dq86d4eef4bLLSnRgcfAgfP45XHyx8xBWEDp3hm+/hdq1\noX17WLkyLGEbY4wxpgxUtdTKTUFBQQVFY0pjlSxjytuqVU5Pgc8+W+akVq+GLl2cpn3ffQd33gnV\nqnlZMDER3nzTaS/Ysyfs3h3UdhISnHBHjXK29/nnZQ7dGGOMibjCwkLuuOMO6tevT8uWLXnvvfeO\nmJ+Xl8f1119PWloa6enp3HvvvcVN49asWUOPHj2oV68eDRo0YNCgQeTl5QW03dzcXC688EJq165N\nx44d+fXXX4+YHxMTw5o1awCYO3curVu3JikpifT0dCZMmEB+fj4XXHAB2dnZJCYmkpSURE5ODmPH\njuXyyy9n8ODB1KlTh6lTpzJ27FgGDx5cnLaqMnnyZBo3bkzjxo157LHHiucNGTKE++67r/iz592y\nq666inXr1tGnTx+SkpL4v//7v6OaH27atIm+fftSt25dTjjhBF544YXitMaOHUv//v25+uqrSUpK\nok2bNnz//fcB5VdVYJUsY8rTRx/BWWfBX/8KzzxTpqTefNPpqf3yy51nqDIySlkhPh6mTnUesrro\nIuduWpCuvdZpPnjZZU7HGsYYY0w0e/7555k7dy4//vgj3377La+99toR86+++mqqVavGmjVr+OGH\nH/joo4+KKw6qyqhRo8jJyWH58uVs2LCBMWPGBLTdYcOGkZCQwObNm5k8eTIvvvjiEfM971Bdf/31\nTJo0iby8PH7++WfOPvtsEhISeP/990lLS2P37t3k5eXRqFEjAN555x369evHzp07GThw4FHpAcyb\nN49ff/2VDz74gEceeSSg5pPTpk2jadOmvPvuu+Tl5XHHHXcclXb//v1p2rQpOTk5zJ49m1GjRjFv\n3rzi+XPmzGHgwIHs2rWLPn36cPPNNweUX1WBVbKMKQ+qTqVq8GCYNQuGDQv5TaIFBc4dpeHDnZ4A\nhw8P4t1WMTEwcaLTqcZTT4W0/b/8BV57Da64Aj77LKQkjDHGHOvGjHHKwZKDr0qKt+UDrND4M3v2\nbIYPH05aWhp16tTh7qJXowCbN2/m/fff5/HHH6dGjRrUq1eP4cOHM3PmTABatGhBjx49iIuLo27d\nuowYMYL58+eXus3CwkLeeOMNxo0bR40aNWjdujVXX331Ect4diRRrVo1li5dyu7du6lduzbt2rXz\nm36nTp3o06cPADVq1PC6zJgxY6hRowZ/+tOfGDJkSPE+BcJXJxfr169nwYIFPPLII8THx9O2bVuu\nv/56pk2bVrzMWWedRc+ePRERBg8ezE8//RTwdqOdVbKMKQ9Ll8ILL8DXX0O3biEns2uX8+qshQvh\nm2/gtNNCSCQ2FqZPhxEjQo6jSxenx8H+/WHJkpCTMcYYc6waM8a5AFly8FfJCnTZIGRnZx/ReUSG\nR7OQdevWcejQIVJTU0lJSSE5OZkbb7yRbdu2AbBlyxYGDBhAkyZNqFOnDoMGDSqe58/WrVspKCig\nSZMmXrdb0uuvv857771HRkYG3bt3Z+HChX7TL60zDBE5atvZ2dmlxl2aTZs2kZKSQoJHB14ZGRls\n3Lix+HPR3TaAhIQE9u/fH7aeDis7q2QZUx7+9CfnJcPNm4ecxMaNTuWmeXP48EPnZcIhq1bNaT5Y\nBt27O+9M7t0bwnBuNsYYYypcamoq69evL/6clZVVPJ6enk6NGjXYvn07ubm57Nixg507dxbffRk1\nahQxMTEsXbqUnTt38vLLLwfUlXn9+vWJi4s7Yrvr1q3zuXz79u1566232Lp1K3379qVfv36A714C\nA+npr+S209LSAKhVqxb5Hh1kbdq0KeC009LSyM3NZe/evUek3bhx41LjORZYJcuY8hJwm76jLV3q\nPH81cCD8618QFxfGuMpgwAC44QbnRccHD0Y6GmOMMSY4/fr146mnnmLjxo3s2LGDRx55pHheo0aN\nOPfccxkxYgS7d+9GVVmzZg2fu70/7d69m+OOO47ExEQ2btzIo48+GtA2Y2JiuOSSSxgzZgz79u1j\n2bJlTJ061euyhw4dYsaMGeTl5REbG0tiYiKxsbEANGzYkO3btwfc2UYRVWXcuHHs27ePpUuX8tJL\nL3HFFVcA0K5dO+bOncuOHTvIycnhySefPGLdRo0aFXfI4ZkeQJMmTTjjjDO4++67OXDgAD/99BOT\nJ08+otMNb7EcK6ySZUwls2ABnH02PPgg3HVXyI9ylZtRo5y7anfeGelIjDHGmNJ53o254YYb6Nmz\nJ23btqVDhw5ceumlRyw7bdo0Dh48yB//+EdSUlK4/PLLycnJASAzM5PvvvuOOnXq0KdPn6PW9XfX\n5+mnn2b37t2kpqZy7bXXcu211/pcd/r06Rx//PHUqVOH559/nldeeQWAE088kQEDBtC8eXNSUlKK\n4wpk/7t27UrLli0555xzuPPOO+nRowcAgwcP5uSTT6ZZs2acd955xZWvIiNHjmTcuHGkpKQwYcKE\no2KdOXMmv/32G2lpaVx66aWMGzeO7t27+43lWCGVuUYpIlqZ4zMGgL17nZdVnX56mZP68kvnLtGU\nKXDBBWUPzaecHJg9G269NaTVd+xw3qH16KNQoowxplQigqpWmZK2PMsqEedRlJLjxoSTjBU0s2wH\nl/u9DlNExlQcX8duWcuqUu9kiUgfEbE7XsZ4k58PffrASy+VOal585x3B7/8cjlXsABq1mTD3x6l\nh3zitbMnEUhJ8b16cjL85z9Op4klmm8bExFWVhljjKlMAimQ+gOrRGS8iJxU3gEZEzX27YO+faFx\nY+fBqTL4+GPn/VezZsG554YpPn9q1+ZGfZZPmg9F9+Z77fBpxw7/SZx3HmzZAmlpwVfSjCkHVlYZ\nY4ypNEqtZKnqIOAU4FdgiogsEJGhIpJY7tEZU1kdOuTUiurXd9r2uQ+lhmL+fKdDiddfd57Fqijv\n0dvpEz4zM6T1d+yAAwfglFPgxRePrqSB98qXVcJMebCyyhhjTGUSUNMKVc0DXgP+A6QCFwPfi0ho\nD3QYE+2GDXP+nzq1TBWsb775/Q5Wly5hii0YTz4J06bBd98dNSs52X8lKTnZ6Rl+8mQYORK2bz9y\n/dxc769ECfROmTHBCrWsEpHqIvI/EflBRJaISKY7PVlEPhSRlSLygYjULvedMMYYUyWU2vGFiPQF\nrgFaAtOAqaq6RUQSgGWq2qzcgrOOL0xl9eWX8Oc/g8cL+IK1dCn06AHPPw8XXhjG2AJU/BD9yy/D\n4cNwzTUhp3Xbbc5dreeeC2H75phTHh1flLWsEpEEVc0XkVjgK+A24FJgu6qOF5G7gGRVHellXev4\nwkQ16/jCHMvKq+OLQCpZU4HJqvq5l3k9VPWTUDdeanBWyTJV1Jo1zp2r8eOdd2FFQjh/sO3aBa1a\nwRtvQMeOFb99E13KqZIVlrLKrZR9DtwETAe6qupmEWkEzFPVo573skqWiXZWyTLHsoj1LgjklCy0\nROQRgPKsYBlTVW3ZAuecA6NHR66CFW61azvduQ8bBgUFkY7GHKPKVFaJSIyI/ADkAB+p6jdAQ1Xd\n7KaRAzQIf9jGGGOqorgAljkHuKvEtPO9TDPGlGLvXujdGwYNghtvjHQ04TVwIEyc6LQ+vPrqSEdj\njkFlKqtUtRA4RUSSgDdFpDVQ8tKmz8v0Y8aMKR7v1q0b3bp1C2SzxhhjKol58+Yxb968sKXns7mg\niNwEDANaAKs9ZiUCX7k9OZUray5oKoVff4WVK8v88qqCAudFw3XqOB0SRvql5+XR9Oirr5yeEn/5\nBWrUqPjtm+gQzuaC5VFWici9QD5wPdDNo7ngZ6raysvy1lzQRDVrLhjdYmJiWL16Nc2bNy912bFj\nx7J69WqmT5/O+vXrad26Nbt27ULC8KPkpptuokmTJtxzzz3Mnz+fQYMGsX79+jKnC/Dll19yww03\nsHz58rCk5ykSzQVnAH2At93/i4b2FVHBMqZS2LnTufW0dm2ZklGFv/3NuZM1aVLkK1g+qToVyhCd\neabTH8gzz5S+bGm9F1oX7yZAZS6rRKReUc+BIlIT567YcuAdnM40AK52t2GMiUIzZszg1FNPJTEx\nkcaNG9OrVy+++uqrSIfF1KlT6dy5c5nSCLaCVLR8eno6eXl5pa4faIwTJ07knnvuCTkuTzExMaxZ\ns6b481lnnVUuFazy5K+Spaq6FrgZ2O0xICL288dUfYcOwWWXOW8HLuqyPUQTJjjvw3r9dafb83BJ\nSQlzRWXLFujUCTZtCjmmhx6CRx4pvYt26+LdhEk4yqpU4DMRWQz8D/hAVecCjwDniMhKoAfwcJhj\nN8ZUgAkTJnD77bczevRotmzZwrp167j55puZM2dO0GkVeHnw2Nu0QKlqme8ilfcdxEBiLCwsDOs2\nw3FnLdJKu5MF8B3wrfv/dx6fjam6VOHmm502bxMmlCmp2bPhiSdg7lyng4hw2rEjzBWVhg2dB6oe\nDv23ZKtWcNFFTkWrLPzd6bK7XMZDmcsqVV2iqn9W1XaqerKqPuhOz1XVv6jqiap6rqruLI8dMMaU\nn7y8PDIzM3n22Wfp27cvNWvWJDY2lgsuuICH3bLu4MGDDB8+nMaNG9OkSRNGjBjBoUOHAJg/fz7p\n6emMHz+e1NRUrr32Wq/TAN59911OOeUUkpOTOeuss1iyZElxHBs2bODSSy+lQYMG1K9fn9tuu40V\nK1Zw0003sWDBAhITE0lxC7eDBw9yxx13kJGRQWpqKsOGDePAgQPFaT366KOkpaXRpEkTXnrpJb8V\nkrVr19KtWzdq165Nz5492bZtW/G8rKwsYmJiiitIU6ZMoUWLFiQlJdGiRQtmzpzpM8YhQ4YwbNgw\nevXqRWJiIvPmzWPIkCHcd999xemrKg899BD169enefPmzJgxo3he9+7defHFF4s/e94t69q1K6rK\nySefTFJSErNnzy7O8yIrVqyge/fuJCcn06ZNmyMqzEOGDOGWW26hd+/eJCUl0alTJ3777Tf/B0p5\nUNVKOzjhGRMBjz+uevLJqnl5ZUrmf/9TrVdP9YcfwhRXCaV9RfzN9zkvJ0c1JUV1/fqQ48rKcpLY\nti3kJPyyU0N0c8/tES9jwjWUZ1nlmbQd96a8MKbsB1dl/c323//+V+Pj47WgoMDnMvfee6926tRJ\nt23bptu2bdMzzjhD77vvPlVVnTdvnsbFxendd9+tBw8e1P3793ud9v3332uDBg30m2++0cLCQp02\nbZo2a9ZMDx48qAUFBdq2bVv9+9//rvv27dMDBw7oV199paqqU6ZM0c6dOx8Rz/Dhw7Vv3766c+dO\n3bNnj1544YU6atQoVVV9//33tVGjRrps2TLNz8/XgQMHakxMjP76669e961Tp056xx136MGDB/Xz\nzz/XxMREHTx4sKqqrl27VmNiYrSgoED37t2rSUlJumrVKlVVzcnJ0WXLlvmM8ZprrtE6deroggUL\nVFV1//79es011+i99957RL4VbXv+/Plaq1Yt/eWXX1RVtVu3bjp58uTi9EpuQ0R0zZo1xZ/nzZun\n6enpqqp66NAhbdmypT788MN66NAh/fTTTzUxMbE47WuuuUbr1aun3377rRYUFOiVV16pAwYM8Pn3\n93XslrWsKrULdxE5U0RqueODRGSCiDQtv2qfMZXA6afDO+9AYmLISWzc6HR0MXkytGsXxtiC4O9u\nUHKyj5UaNoTrr3fa/YWoaVNn3594IuQkjAmKlVXGVG7+mrYHMwRr+/bt1KtXj5gY3z95Z8yYQWZm\nJnXr1qVu3bpkZmYyffr04vmxsbGMHTuW+Ph4qlev7nXapEmTuPHGG+nQoQMiwuDBg6levToLFy5k\n0aJFbNq0ifHjx1OjRg2qVavGGWec4TOeSZMm8fjjj1O7dm1q1arFyJEjmTlzJgCzZ89myJAhtGrV\nipo1ax7Rs2lJ69ev59tvv+X+++8nPj6ezp0706dPH5/Lx8bGsmTJEvbv30/Dhg1p1eqofn6O0Ldv\nXzq6L8csyhdPIsK4ceOIj4+nS5cu9OrVi1dffdVvmp7URzPIBQsWsHfvXu666y7i4uLo3r07vXv3\nLs4jgIsvvpj27dsTExPDlVdeyeLFiwPebrgE8p6siUC+iLQF/g78ivOCRmOqrk6dICMj5NX37XOa\nzA0bBhdeGMa4guTvuafcXD8rjhgBM2fC1q0hb/vuu50u3XdaAytTMaysMqYS81UWBTsEq27dumzb\nts3vM0PZ2dk0bfr7NZmMjAyys7OLP9evX5/4+Pgj1ik5LSsri8cee4yUlBRSUlJITk5mw4YNZGdn\ns379ejIyMvxW9Ips3bqV/Px82rdvX5zW+eefz/bt24tj9Ww2l5GR4bMykp2dTXJyMjVr1jxieW8S\nEhKYNWsWEydOJDU1lT59+rCylI6wPOPwJjk5mRoeXQ2XzNdQbdq06ahtZ2RksHHjxuLPjRo1Kh5P\nSEhgz549Zd5usAKpZB12b5n1BZ5R1X/hdI1rjPFCFa67Dv7wB6eiEZUaNYI33oDjjgs5iebNoVev\nwHoaNCYMrKwyxhylU6dOVK9enbfeesvnMo0bNyYrK6v4c1ZWFmlpacWfvT3zVHJaeno699xzD7m5\nueTm5rJjxw727NlD//79SU9PZ926dV4reiXTqVevHgkJCSxdurQ4rZ07d7Jr1y4AUlNTj+gWPSsr\ny+czWampqezYsYN9+/YVT1u3bp3PfDjnnHP48MMPycnJ4cQTT2To0KE+99/f9CLetl2Ur7Vq1SI/\nP794Xk5Ojt+0PKWlpR3VNfy6deto3LhxwGlUhEAqWbtF5G5gEPDe/7N373E6VfsDxz/fYdxnMmMw\nM2LIpatLUVHUIFGIiCSXVPSrVKgTlUKcQufonDonRXKpOEVyv1RqREhKiS7I/TJug5E7s35/7Jlp\n7vPMs/dz/75fr/2aeZ5n77W/88wzs/baa63vEpEwILyQY5QKWaNHw5Yt1jDBgE6Ok5gIWe5+ueO5\n5+CNN8AHN5BU6NG6SimVS2RkJCNGjODxxx9n7ty5nD59mgsXLrB48WKGDBkCQLdu3Rg1ahSHDx/m\n8OHDjBw5kp49exbpPH379uXtt99m7dq1AJw8eZJFixZx8uRJbrjhBuLi4hgyZAinTp3i7NmzrFq1\nCoDKlSuzZ8+ezEQbIkLfvn0ZMGAAh9JHk+zdu5fPPvsMgK5duzJlyhR+/fVXTp06xcsvv5xvTNWq\nVaNRo0YMGzaM8+fPs3LlylwZFTN6wQ4ePMi8efM4deoU4eHhlCtXLrPnLWeMrjLGZJ57xYoVLFy4\nkK5duwLQoEEDZs+ezenTp9m6dSuTJk3KdmxsbGy2FO5Z3XjjjZQpU4axY8dy4cIFkpKSWLBgAffd\nd1+R4vM0VxpZ9wJngYeMMcnApcBrHo1KKW/74w9Hipk3D/77X5gzx3b7JChccQXceitMnuzrSFQI\n0LpKKZWnQYMGMW7cOEaNGkWlSpWoVq0ab731Fh07dgRg6NChNGrUiHr16lG/fn0aNWqUbb0nVzRs\n2JCJEyfSv39/oqOjqVOnDlOnTgWsNZ/mz5/Pli1bqFatGlWrVs2cm9SiRQuuvvpqYmNjqVSpEgCj\nR4+mVq1aNG7cmPLly3P77bezefNmANq0acOAAQNo0aIFderUoWXLlgXGNX36dNasWUOFChUYOXIk\nvXv3zvZ6Rm9UWloa48aNo0qVKsTExPD1118zfvz4fGN0RVxcHFFRUcTHx9OzZ0/eeecdateuDcDA\ngQMJDw8nNjaWPn360KNH9mUNhw8fTq9evYiOjmbWrFnZXgsPD2f+/PksWrSImJgY+vfvz/vvv59Z\ntr+kf5f8xnH6AxEx/hyfChLLlkGPHtYivJGRbhezcSM0bw4LFlh5M7xBxL0x6t60erX19m7eDMWK\nOVNmIPzcKn8igjHGP2pBB3iyrsr6WdfPvfIUGSGYYfY+XOl/1w5FpJT35PfZtVtXuZJdsJOIbBGR\n4yKSKiInRCTV3RMq5Vd27ID774fp0201sI4dsxJdjBvnvQZWoGjSBCpVgrlzfR2JCmZaVymllPIn\nrgwXHAvcZYy5xBgTaYyJMMa4fzWqlL84fdrKMz5kiNUF5aa0NOjVC+68E4o4hDswXLhgraRsw6BB\nttd0VqowQV9X5VySQRflVkop/+VKI+uAMeZXj0eilLc98QRcfjk89ZStYkaPhsOH4R//cCguf/TI\nI2BjjYm777bWDfv2WwdjUiq7oK+rci7JcPSoryNSSimVn+Iu7LNORD4C5mBNKgbAGDPbY1Ep5WlH\njsDu3TBrlq0UgF98YaUo/+47KFHCwfj8SfHi8Oij8OabVspEN4t46ilrceIsawUq5SStq5RSSvmN\nQhNfiEheecGMMeZBz4SU7dya+EL5rd274YYbrOlcNkYb2uK1ifCHDkGdOrB1K1So4FYRx49D9erw\n66/WMlx2aAKAwOaJxBfBWlcV9FnXvwPlFE18oUKZpxJfaHZBpdxw9izccgt07gzPPuu7OLx6kfXA\nA3DllTB4sNtF9O1rNbSKmBk3F724DGyaXbAoZWsjS3meNrJUKPNldsE6IrJMRDamP64nIkNdKVxE\nJonIARHZkOW5YSKyR0R+SN/auBu8Ur4ycCBUqQJ/+5uvI/Gixx+HCROsTB9uevRRq4iLFx2MSyns\n1VVKKfsSEhIQEd10C7gtISHBI38TrszJmgj8DXgHwBizQUSmA6NcOHYy8CYwLcfz44wxmmtMBaRp\n06y5WN99Z2s6l0uiowue3B4V5dnzZ9OoEbz9tq0irrvOGiq4aBG0b+9QXEpZ7NRVSimbduzY4esQ\nlPIrrmQXLGOMWZvjuQuuFG6MWQnkdYkYNMNEVID49lsYPtx2MT/9BE8/DbNnwyWX2A+rMEePZs8m\nlnNLSfF8DJlEoFUrCHPl30b+HnsM0heRV8pJbtdVSimllNNcuVo6LCI1AQMgIvcA+22et7+I/Cgi\n74qIFy5VVUg7cgS6doX69W0Vc+yYNQfr3/+Ga65xKLYQ1LWr1Qu4fbuvI1FBxhN1lVJKKeUWVxpZ\nj2MNv7hCRPYCA4BHbZzzLeAyY0wDIBnQYYPKc9LSrBWCu3SxFmuyUUyvXnDHHdC9u4PxhaDSpeH+\n+2FyXrnglHKf03WVUkop5bZC52QZY7YBt4lIWSDMGHPCzgmNMYeyPJwIzC9o/+FZhnglJiaSmJho\n5/Qq1Lz6KqSmWl9tyFhweNYsh+IKcX36WHOyhg2DYsWKfnxUVMHz4aKivDyUUhUoKSmJpKQkj57D\n6bpKKaWUsiPfFO4iMqigA11NXCEi1YH5xpi66Y9jjTHJ6d8PBK43xuTZNyCawl3ZsXw5dOsG69ZZ\nqQDd9MUXVi/W2rVw6aUOxucC8dcUzSkpcPq0rfe1YUOr8dqqlYNxpfPb900BzqZwd6qushmDpnBX\nAc2JFO5KBRu7dVVBwwUj0rdGWEMuqqRv/wdc52Jw04FVQB0R2SUifYCxIrJBRH4EbgUGuhu8UgWq\nWxfmz7fVENi92xpt+OGHnmlgRUdbF0r5bV7NHlgUEyda3VA29OkD773nUDwqlDlRV10qIl+KyCYR\n+VlEnkh/XpccUUop5ZZCFyMWka+BthlDL0QkAlhojLnF48FpT5byIW8sOBywd6KTk+GKK2DvXihb\n1q0iUlLgssusBBhONyYD9n0NEU72ZGUp0+26SkRigVhjzI8iUg74HugA3AucKKw3THuyVKDTniyl\ncvNkT1aGysC5LI/PpT+nVFALyQWHXRUbC02awNy5bhcRHQ2tW8P//udgXCqUuV1XGWOSjTE/pn//\nJ/ArVm8Y6JIjSiml3OBKI2sasFZEhovIcOBbYIong1LK195/35qLNXmy5xccDlg9e1pvlA06ZFA5\nyJG6Kn0ecYP040GXHFFKKeWGQocLAojIdUCz9IdfG2PWezSqv86rwwWV6w4csMadlShhq5gNG6Bl\nS/jqK8+vhxXQw31OnrS6+n77zerZcsPFi5CQAIsXW1PonBLQ72sI8MRwwfRybdVV6UMFk4CRxpi5\nIlIROGyMMSIyCogzxjyUx3E6XFAFNB0uqFRuduuqQlO4AxhjfgB+cPckSnnc2bPQrh08+aTVw+Km\nY8egUyddcNglZcvCuHHWe++mYsWszI1Tp8I//uFglMqohgAAIABJREFUbCok2amrRKQ4MAt43xgz\nN708l5cc0eVGlFIqsDm93IhLPVm+oj1ZymVPPGElYfjkE7fH96WlWesVV6sGb77pcHz50DvRsGmT\nNTdr50731szKi76v/s1TPVl2iMg0rF6rQVmec2nJEe3JUoFOe7KUys0rPVlK+bWPPoJFi+D7721N\noBozBg4dgpkzHYxNFerqqyEmBr7+Gpo393U0KhSJyM3A/cDPIrIeMMDzQHcRaQCkATuAR3wWpFJK\nqYBSaCMrfb2QD4wxR70Qj1JFs3kz9O8PS5dC+fJuF7NsmdV7tXat7Sld2URHw9EC/nL8dh0sL+ve\nHaZP10aWcp+dusoY8w2QVz/qEtuBKaWUCkmupnD/TkQ+FpE2IpprTfmRiRNh1Ci4zqU1R/O0ezf0\n6AEffOD8gsNHj1rDefLbUlKcPV+guu8+mD3b1vQupbSuUkop5TdczS4owO1AH6AR8DEwyRjzh0eD\n0zlZqjAZnw83r6fOnoVbb7XmYg0e7GBc6UJqzoQxtoZr3nqrtTZZx472Qwmp9z0AeTC7YNDVVTon\nS3mDzslSKjdvLEZMeu2RnL5dAKKAWSIy1t0TK+UIEVsX9oMGQVwcPPusgzGFomnTrBaSDfffDx9+\n6FA8KiRpXaWUUspfFNqTJSJPAb2Aw8C7wBxjzHkRCQO2GGNqeiw47clSHvTBB/Dyy/Ddd3CJh5YY\nDZk7zZs3W11Re/a4nSIwJQVq1LCGb0ZG2gvHlblwOlTTdzzRkxWsdZX2ZClv0J4spXLzRnbBaKCT\nMWZn1ieNMWki0s7dEyvlSz/9ZHW8fPml/QZWQRf0IZPYok4da0HiFSvAzfWBoqOtQ2fPhgcesBdO\nYQ0ona0TlLSuUkop5TdcGS64GMi8ZBGRSBG5EcAY86unAlMqF2Osrqf9+20Vc/QodO4Mb7wBdeva\nD6ug5BYh1Vty773w8ce2iujeHWbMcCgeFWq0rlJKKeU3XGlkjQf+zPL4z/TnlPKud96xujlspGpP\nS4NevaBtWyujnXJQ167WYtAXLrhdRLt2sGYNHDniYFwqVGhdpZRSym+40sjKNtjcGJOGLmKsvO37\n7+Gll6yVgkuXdruYV16xep7+8Q8HY1OWyy6D66+HbdvcLqJsWWjVCubMcTAuFSq0rsopLc2aL7l0\nKXz+OezapZO4lFLKS1ypgLaJyJP8dUfwMcD9qyiliurYMauX5K23oHZtt4tZsgTGj4d16yA83MH4\n1F8WLLBdRJcuMHkyPPSQA/GoUKJ1VU4vv8yed5ewtsIdHD5bjnL7PqFh/H4uf/dv0LSpr6NTSqmg\n5kp2wUrAG0ALwADLgAHGmIMeD06zCypjoFMnqFYN/v1vt4vZvh0aN4ZZs6BZMwfjQzN8Oe3PP6FK\nFet3Fh3tmXPo78y3PJRdMCjrKneyCxoDixfDmNFpbPoljJtugsqV4dhRw+rlZ4mND2PUmBK0aeOR\nkFUA0uyCSuXm8eyC6RVUN3dPoJRtd98N3dz/CJ4+DffcA88953wDSzmvXDm47TZryOCDD/o6GhUo\nQrGuiorKnikzKgo2brT+bnbuhJdfDqNDByhRImMP4eLFUsyfD/37W9k8//tfKFnSB8ErpVSQc6Un\nqyLQF6hOlkaZMcbjlz/ak6XsMsYadnbqlJW1zhOpu7VXxHn/+x9MnWrdjfcE/Z35lod6soKyrnLp\ns3rwIOzZgzS8jsqV4bHH4PnnoXgBt1FPnIDevSE1FebPtzXVVQUB7clSKjdvrJM1F1gBfAFcdPdE\nSvnCu+/C2rVWxjpdGylwtGsHjzxipcD31JBBFXRCs646fBhatGDKlWMAaxWFW24p/LCICCuPUI8e\n0O1ew6efpBEW7t5C4koppXJzpSfrR2NMAy/Fk/Pc2pOl3Pbdd1aq9pUrrbVyPUV7RfIwcyZUr25l\nG3RT585WY6tPH+fCyqC/M9/yUE9WUNZVBX5Wjx6FFi34d8xI/rW1LTt2SJE/1+fPQ8ua22lRZy/D\nv9BkGKFKe7KUys1uXeVKCvcFInKnuydQqsgcWCTp0CFrHtY779hvYEVHWxc6+W1RUbbDDT7btlkp\nAm3o0sVqqynlotCqq86dg7vv5t0Kg3l9S1uWL3fvOiA8HD7+pDjvfFmbVR/tdjhIpZQKXa70ZJ0A\nygLn0jcBjDEm0uPBaU9W6PnwQyuL4Lffuj2+7+JFaNMGGjWCV1+1H5L2erhh82ZrVv2ePRDmyr2c\n3DKyDO7Y4XxDVn+nvuWhnqygrKvy/aw++iizvkvgqf2DSUoSate297me+cBCXpp5DesPV6NUaR1b\nHWq0J0up3Dzek2WMiTDGhBljShljItMfe7zSUiHo559hwACYONHWBKrnnrO+jhzpUFyq6OrUsboA\nv/3W7SLKlYOWLWHuXAfjUkEr1Oqq76+4n0d3PMuiRWJn+cBM97zbhiuLbWHsw7/bL0wppVThjSyx\n9BCRF9MfVxWRGzwfmgopx49b62G9/jrUr+92MdOnwyefWNnpCsqslZUOB/SQu++G2bNtFdG5s+0i\nVIgIpbpq/364+59NeWdCmJ1/l9lI8WL885/wxkeVObAvdPKGKKWUp7gyXHA8kAa0MMZcKSJRwGfG\nGPdntLsanA4XDA1paVYD69JL4T//cbuYH36whgkuWwZ167p+nA4d85D1662JVVu2uN0zeeyYtQ71\nvn1Wz5ZT9HfuWx4aLhiUdVXOz+q5c3DrrXDHHfDSSwXvW2TGMLDtZs5Xr81/3nJvmK8KTDpcUKnc\nvJH44kZjzOPAGQBjzFGgRMGHKFUEP/xgZckaN87tIg4etDpOxo8vWgNLeVCDBvDBB7aKKF8emjSB\npUsdikkFs5Coq4YOhQoV4MUXPVC4CC9Mu5wZH4Wxa5cHyldKqRDiSiPrvIgUAwxkLviY5tGoVGhp\n1Ai++gpKuHc9dP681WHSs6c1vEz5CRFo3Nj2AmUdO8KnnzoUkwpmwV1XnTjBkiXWkOgpUzy37l9M\njLVswuuve6Z8pZQKFa4MF7wfuBe4DpgK3AMMNcZ4PLmyDhdUrihVCs6ezf/1qChrUdv86NAx/7Zv\nH1xzDSQnu90Oz0V/577loeGCbtdVInIpMA2ojNUwm2iMeSN9yOFHQAKwA+hqjDmex/GeHS64azf7\nG7XnOvmBGf8LIzGxgH0dCGPPHqhXD7Zu1cXAQ4UOF1QqN29kF/wQeBZ4FdgPdPRGA0spV7z7rtXA\nOnbMurjIazt61NdRKjvi4+HyyyEpydeRKH9ms666AAwyxlwNNAEeF5ErgCHAF8aYy4Evgeecj7ww\nBtPvER68ZBZ9++XfwHLSpZfCXXfB2297/lxKKRWsXOnJqpbX88YYj4/Y1p4sVZBVq6yhZIcOFXz3\ntrC7u9qr4f/GjIGdO+Gtt5wpT3/nvuWhnizH6ioRmQP8J3271RhzQERigSRjzBV57O+xuqqXTOPW\nqtt5K+Yl1nwrhIcXFLdzn+vvV52l8z2wbU9Jd5e6UwFEe7KUys0biS8WAgvSvy4DtgGL3T2hUowd\na7tbYu9eax7WlCmORKQ87cABW4fffTfMmWMlolQqH47UVSJSHWgArAEqG2MOABhjkoFKDsXqmv37\nGcDrDDnxApOnFNzAclrDynuocPA3Plt4znsnVUqpIOLKcMG6xph66V9rAzcAqz0fmgpKc+bAm2/C\nFbluBrvs9Gnrort/f7jzzsL3j4rSdbB86sIFuOoqa3EfN9WpY2UaXLvWwbhUUHGirhKRcsAs4Clj\nzJ+kJ9HIehpnonWNeeZv3MvHPDmoOPXqefPMQM2a9Kv1JRNG2rtBopRSocrF5Vr/Yoz5QURu9EQw\nKsht2gR9+8KiRRAb61YRxliZr2rVgiFDXDumoKQXyguKF7cWMJszBx591O1iMnqzGjd2MDYVtIpa\nV4lIcawG1vvGmLnpTx8QkcpZhgsezO/44cOHZ36fmJhIogOTpyZf+wZ/TC/v8v86p3UfUo0hfcuz\nfz/ExfkmBqWU8pakpCSSHJwA7sqcrEFZHoZhZW6qYIxp7VgU+Z9b52QFi5QUuOEGGDbMyrXupuHD\nrTWTvvrKyioIOr8mIMycCe+9B4vdH2m8bh3cfz/89pv99NX6mfEtD83JslVXicg04LAxZlCW58YA\nKcaYMSIyGIgyxuRq8niirjp71urB3bXL9c+q45/r06d5uPxMLh/ckb+9HOlgwcrf6JwspXLzxpys\niCxbSazx7h3cPaEKUQ88YKWrstHAmjHDmoM1Z85fDSwVIFq3hm++gRMn3C6iYUM4dQp+/dXBuFQw\ncbuuEpGbgfuBFiKyXkR+EJE2wBiglYj8DrQERnsk8jyULAk//+yts+WjdGm637KXGZPP+DgQpZQK\nPIX2ZPmS9mQFkZ9/hiuvtIaOuWHNGquNtmwZ1K2b/TXtlQgQrVvDI49Ap05uF/HEE9awpeeftxdK\ndHTBqf0LW1tN2eOJnixf8vg6Wb7qyQIurv2eqndew5crS9qZSqv8nPZkKZWb3brKleGC8ylgsq8x\n5i53T14YbWQpsFJ316iR/8WDXhAHiP/9z/ol3nef20V8+SUMHgzffedgXHnQhrtneWi4YFDWVb5u\nZAEMHAiRkTBihPNlK/+gjSylcrNbV7nSrbANiAU+SH98H3AAmOPuSZVy1YkT0L79XwsLqwDWrZvt\nIpo1g23bYPduqFrVgZhUMNG6ykPuuw969LDmxNqdD6mUUqHClUbWzcaYRlkezxeRdcaYgZ4KSimA\nixehe3crm5zP5yYovxAebqXtnzcPHn/c19EoP6N1lYdcf731/3j9erjuOl9Ho5RSgcGVxBdlReSy\njAciUgMo67mQVMA7fNjKTmHT4MFw8iT8978OxKSCRseOMHdu4fupkKN1lYeI6N+dUkoVlSuNrIFA\nkogkichy4CtggGfDUgHr7FkrscGaNbaK+e9/Yf58mDXL6r1QKkPr1tbH69gxX0ei/IzWVR7UoQPM\nm6djtpVSylWFDhc0xiwRkdpARl6h34wxZz0blgpIxljZ42Ji4JVX3C5m7lz4+9+tjN/R0Q7Gp4JC\nuXLW3KzFi23l0FBBRusqKwlQ1jlTTiYFuun8cvb8ci07d0aSkOBMmUopFcwK7ckSkTLA34D+xpif\ngGoi0s6VwkVkkogcEJENWZ6LEpHPROR3EVkqIpe4Hb3yL6NHW5On3n8fwlzpJM3t22/h4YetOTc1\najgcn/IPS5bA9Om2itChSyonO3VVsEhJ+StJkDEFL1NQVMUb1qdd2jzmzQypdqtSSrnNlSvhycA5\noEn6473AKBfLnwy0zvHcEOALY8zlwJfAcy6WpfzZjBnw9ttW66ise9Mgtm61Lp4nT4ZGjQrfXwWw\nt96ydXj79rB0qTU6Val0duoqVZjy5elw1Wbmvn/c15EopVRAcKWRVdMYMxY4D2CMOQW4lMTVGLMS\nyHkvrQMwNf37qUBH10JVfu3KK2HhQqhSxa3DDx2CO+6wUgS3C6l7zyGoeXOrx/PQIbeLiI21PnJJ\nSc6FpQKe23WVck2rHrGs/TVC50MqpZQLXGlknROR0qQv8igiNQE7948rGWMOABhjkoFKNspS/qJB\nA7jmGrcOPXUK7roLunSxpnSpIFeyJLRqZTXKbejQQYcMqmycrqtUDmXvvp1bw1ayZLEmwFBKqcK4\n0sgaBiwBqorIh8Ay4FkHY9D/1iHs4kW4/36oWdNKdqFCxF13WUNLbbCynUFamkMxqUDn6bpK1apF\nm4rfs/TTk76ORCml/F6B2QVFRIDfgE5AY6yhF08ZYw7bOOcBEalsjDkgIrHAwYJ2Hj58eOb3iYmJ\nJCYm2ji18ifGwBNPwPHj8NFH2bNiqSB3553WL//0aShd2q0irrjCyjT4/ffWYqnKfyUlJZHkwbGd\nHqqrVB5afzmYVxIFY/R/tlJKFUSMKbgjSUR+NsbUdfsEItWB+RlliMgYIMUYM0ZEBgNRxpgh+Rxr\nCotP+cDZs1aGuA4dbBXz0kvWiLGvvoLIyIL3FbEaZSqIbNkCtWrZulIbPNhaR22Uw+kN9PPmWSKC\nMcbRS3S7dZXNc3usrrLzWYyOzp5h0KmU7jVrWuvN1/XJu608QUYIZpj+01MqK7t1lSvDBX8QEbfu\nE4vIdGAVUEdEdolIH2A00EpEfgdapj9WgSItDfr0sdK027ioeOMNq/dq8eLCG1gqSNWubftWuKZy\nV1m4XVcFK0+ldG/d2rrPppRSKn+u9GT9BtQCdgInsYZhGGNMPY8Hpz1Z/sUYGDgQ1q2Dzz93e5jX\nhx/Cc8/BihVkLmqZ845rTk4uqqmCR1oaxMdbC1fXrOlcudqT5Vke6skKyrrKyc+iU2XNnQtvvglf\nfGG/LOUftCdLqdzs1lX5zskSkRrGmO3kXudKhapRo6yc2UlJbjewFi6Ep5+GL7/8q4EFVgNLL2pV\nUYWFWWtmzZ0Lgwb5OhrlC1pXeV/z5tCjB5w86fayiEopFfQKGi44K/3re8aYnTk3bwSn/MiECTBt\nmjVGpHx5t4pYudIaaTh3Llx1lcPxqZDVsaM1P0SFLK2rvCyy5FkaJhzSdeqUUqoABWUXDBOR57Hm\nU+W6R2yMGee5sJTfueUWa22j2Fi3Dt+wATp3toYK3nijw7GpwLZtG1x2mduHt2wJ3bvD4cMQE+Ng\nXCpQaF3lbcWKcdvWd1g2fxBt25bxdTRKKeWXCurJ6gZcxGqIReSxqVByxRVQo4Zbh/7+O9xxhzWG\nv1Urh+NSge3iRWjcGHbscLuIUqXgtttgwQLnwlIBResqbytenOYNU/lqqa71rJRS+cm3J8sY8zsw\nRkQ2GGMWezEmFUT++MO6AH7lFeja1dfRKL9TrBi0bWutKvzkk24X07EjfPIJPPCAc6GpwKB1lW9c\nf1ccW18sTUqKlbhIKaVUdoWmcNdKS7lr506rgfXii9C7t6+jUX6rQwerkWVD27ZWMpVTpxyKSQUc\nrau8q0SrW7m5xHcsX+7rSJRSyj+5sk6WCjXr11tj+2zYu9eaKzNwIPTr51BcKji1agVr18KxY24X\nER0NjRppSmnlPhGZJCIHRGRDlueGicgeEfkhfWvjyxj9Sv36NL+4jK8WnvR1JEop5ZfybWSJSJf0\nr+5NxFGBacMGawJVlSpuF3HggNXA6tfP1ggwFSrKloXERFi0yFYxHTpolsFQ5GBdNZm808CPM8Zc\nl74F9BK8UVHWWlkZm61hfsWK0XxgA75aWcKx+JRSKpgU1JP1XPrXT7wRiPIDv/wCrVvDv/4FnTq5\nVcSRI1bHRPfu8OyzDsengtdDD0HxgpKdFq5DByv5xcWLDsWkAoUjdZUxZiWQ15Loji6a7EspKdZ6\nhBlbQQvAu+K6lzuyOzmcgwediU8ppYJJQVc1R0TkM6CGiOSaMGGMuctzYSmv27zZah2NHQvdurlV\nxKFD1hysdu2seVhZRUcXXKFHRbl1ShUsOnSwXUT16hAfD6tXQ9Om9kNSAcPTdVV/EekJrAOeNsYc\nt1le0Che3PpbS0rSxEZKKZVTQY2stsB1wPvAP70TjvIJY6y0bC+/DD17ulXEwYPWEMEOHWDkSGso\nSlZHj1qnUcqTMoYMaiMrpHiyrnoLeNkYY0RkFDAOeMjhcwS05s3hq6+0kaWUUjkVlML9HLBGRG4y\nxhwSkXLpz//pteiUd4jA559bc2PckJwMLVpYleywYbkbWEp5S4cOcO+98Npr+jkMFZ6sq4wxh7I8\nnAjMz2/f4cOHZ36fmJhIYmKi3dMHhBYtYOJEX0ehlFL2JSUlkZSU5Fh5YgrpXhCRa7DuEEZjjU0/\nBPQ2xmx0LIr8z20Ki095R2HD/UqVgtOn839dRHuylOcZAwkJsGQJXHWV++Xo59WzRARjjKPNYCfq\nKhGpDsw3xtRNfxxrjElO/34gcL0xpnsex3msrvLkZ9GJstPSICYGNm2CuDhn4lLeJyMEM0z/6SmV\nld26ypUU7hOAQcaYBGNMNeDp9OdUCMkY7pd1270bateGV1+FM2d8HaFS1kWjZhkMWbbqKhGZDqwC\n6ojILhHpA4wVkQ0i8iNwKzDQE4EHsrBDB2hadj0rVvg6EqWU8i+uNLLKGmO+ynhgjEkC3BtXpvxD\ncrLtInbutLJu9+sHQ4bYD0kpwOqCevttW0V07Ahz5zoUjwoktuoqY0x3Y0y8MaakMaaaMWayMaaX\nMaaeMaaBMaajMeaAJwIPaBUq0PTQp6z4rIChDEopFYJcaWRtE5EXRaR6+jYU2ObpwJSHrFsHDRrA\nb7+5XcRvv0GzZtYaWM8842BsSkVEwPjxtoq45RbYsgX27XMoJhUotK5yWHS0C+tqFS9Os/qprPzy\nrNfjU0opf+ZKI+tBoCIwG2sdkpj051SgWb0a2raFCRPgiivcKuL7761sUqNGZV9oOOcilzk3TdGu\nXNK4MezfD9u3u11EeLi1nva8XMm8VZDTusphOYeJ5zcvt2GbimzZU5rjmtxeKaUyFdrIMsYcNcY8\nmb7afUNjzABjjM0lDJXXLV1qTVaZOhXucm/ZmOXLrYvX8eOhV6/sr+Vc5DLnlpLiwM+ggl+xYtZC\nazZbSDpkMPRoXeU7JZrfzPWlN7Jqla8jUUop/+FKT5YKdPPmWa2iOXOgTRu3i+nSBf73P+sCVimP\n6dDBdgupTRv45htITXUoJqVU/m64gWanPmPFl+d9HYlSSvkNbWSFgnr1rHWwbrrJrcOnT7e+Llhg\nrYmilEe1amXNHTx2zO0iIiLg5putPBpKKdfknIPl8jDvMmVoOqEXK7/Nd+lNpZQKOYU2skTkZlee\nU36senWroeWG11+HwYOt72+4wbmQlMpXmTKweTOUL2+rGB0yGFq0riq6nHNpwf1h3k3uqcIPPwhn\nNf+FUkoBrvVkvenicyrA5byLKQKDBsGePZq4QnlZbKztItq3h8WL4bwbI5gKS+SSZ5Y15WtaVxVR\nzrm0dubORkRY+ZS++865+JRSKpDl27cvIk2Am4CKIjIoy0uRQDFPB6bcdPYslCjx123JIsjIJHXm\nDPTsCYcOwaefagNLBab4eKhTx0rYctttRTu2sItNN/68lIdoXeU/mjWDFSugaVNfR6KUUr5XUE9W\nCaAcVkMsIsuWCtzj+dBUkR0+bE2amjXL7SJSUqwpMcWLWwkJtYGlApkDOTSU/9O6ykty9vDm7NFt\n2hRWrvRNbEop5W/EGFPwDiIJxpidIlIOwBjzp1cis85tCotPpdu6Fe68Ezp1gldegbCi5zQRsYZ7\ntGsHY8a4VYRSfuWXX6xMgzt3Otv7JGL1+ir3iAjGGEf7A4O1rvLnz1rO2A4kG664Eg4fFoppH2JA\nkRGCGeanHzSlfMRuXeXKZXSEiKwHNgGbROR7EbnG3RMqD1i92hqn8fTTMHq0W62jNWusr48+Cq+9\npg0s5QeMgfXrIS3N7SKuvBJKlbKKUUFP6yofq7z8Yypd2M/Gjb6ORCmlfM+VS+kJwCBjTIIxJgF4\nOv055Q+WLrUWF540CR55xK0ipk//a33iJ590MDal7BCB++6D77+3VYQOGQwZWld5Wdbhg9HRwI03\n0uziV6z4WntElFLKlUZWWWPMVxkPjDFJQFmPRaSKpm5dq6F1551FPjQtDYYOhRdegC+/9EBsStl1\n113WIto2dOxouwgVGLSu8rKs2QmPHgUSEmhach0rl3ptpKZSSvktVxpZ20TkRRGpnr4NBbZ5OjDl\novh4uO66Ih928iR06QJJSfDtt3CNDqpR/qhzZ/jkE1uTUho3huRk2L7dwbiUP9K6ytdEaHZzGiu+\nCfPbeWRKKeUtrjSyHgQqArPTt4rpz6kAtWePNYUrIgKWLYNKlXwdkVL5uP56647AL7+4XUSxYlYy\nFx0yGPS0rvIDl7Wpgzl3Xm9qKKVCXqGNLGPMUWPMk8CtwC3GmKeMMUc9H5rKZeNGuHjRVhFJSXDD\nDdCtG0yeDCVLOhOaUh4RFmZlzPzkE1vFdOzobCOroMWKdaFi39C6yj/ILc1oFrWJFSt8HYlSSvlW\noY0sEambnrFpI5qxyXcmT7bWwPr993x3iY7O/8IvY2veHPbvh8GDrevXrK/pmljKL/XuDdWr2yri\nttvghx/gyBFnQso6FyXndlQv631C6yo/Ua8ezYbcrI0spVTIc2W44DtoxibfOXPGyho4erTVDXXV\nVfnuevRo3hd9J07AvfdCw4awY0f+F4cpKV77qZRy3XXXQa9etoooXdq6R7FwoUMxKX+kdZWfaNYM\nbWQppUKeZhf0Zzt2QNOmVuvnu+8KbGDlZ/Nma+J/mTKwciUkJDgfplKBwOkhg8rvaF3lQ1mH0DZo\nAFu2wIEDvo5KKaV8R7ML+rPBg+H+++HjjyEyssiHz55ttdGeeMJaRqtUKQ/EqFSAaNsWvvgCTp/2\ndSTKQ7Su8qGcQ2iLFYPYWJ2rqJQKXcVd2OdBYARWtiYDrEAzNnnHjBnWxKkiOnMG/vY3a2jUggVW\nogulQl1MDFx7rdXQat/e19EoD9C6yo+MHGktnfCvf1mPRXwbj1JKeVuBjSwRKQa8kJ6xSXmbGw2s\nzZut+Ve1alkT/cuX90BcSgWozp1h5kxtZAUbJ+oqEZkEtAMOGGPqpT8XBXwEJAA7gK7GmOP2Iw5+\nzSr+xpMfVAd0CIVSKjQVeBVvjLkINPVSLKHt/HlHirn5ZujXzxphqA0sFVR+/926g2BDly4wf77V\n26uCh0N11WSgdY7nhgBfGGMuB74EnrN5jpDR6PcP+X2zkJrq60iUUso3XOkqWS8i80Skp4h0ytg8\nHlmoOHsWBgyAhx92u4g//4SHHrK+//xzePRRHZqhglCNGtYHfO9et4uIjbWGDC5e7GBcyl/YqquM\nMSuBnAn4OwBT07+fCnR0KNagVzKxCQ3L/Mbq1dbjnGvL6RwtpVSwc6WRVQo4ArQA2qdv7TwZVMj4\n/Xcr9d+uXfD664Xunt86WBER8N57Vs9VgwaL2bJsAAAgAElEQVReiFspXyhRwhrnZ3Nh4m7d4KOP\nHIpJ+RNP1FWVjDEHAIwxyUAlm+WFjptuotmppaxIugjkToyh68kppYJdoY0sY0yfPDadTGyHMTBh\ngpX67//+z7podOG2XtZ1sM6dgxdfhEqVYNYsrbRUiOjWzUoIY0OnTlZP1smTDsWk/IKX6irjcHnB\nq3x5ml26nRVL9A9NKRWaXMkuqJz24YdWI2v5crfWvvr9d+jRAypWhB9/hLg4D8SolD+67TZrYeLt\n263hg26IiYGbbrIyb9qc4pWnjGFRBb2uC38HjAMiUtkYc0BEYoGD+e04fPjwzO8TExNJTEz0fHR+\nrsltZfl+ainOnoWSJX0djVJKFSwpKYmkpCTHyhNj/PfGnIgYf47PbRcuWF1P4eFFOkwE3nwThg+3\n0uP+3//p3CsVgh57zFqX4IEH3C5iyhRrYeJPP3UsKpeJWH/+oUxEMMb43X8vEakOzDfG1E1/PAZI\nMcaMEZHBQJQxZkgex3msrgroz8uqVTTsdTVvTL2Em2/O/lJA/1xBSEYIZpj+QpTKym5d5bNGlojs\nAI4DacB5Y0yu1ZyCtpHlhi1boE4dawrXlClw+eW+jkgpH7l40Vrp1IZjxyAhwZoOecklDsXlIr24\n9M9GlohMBxKBCsABYBgwB5gJVAV2YqVwP5bHsdrIyseAAVbCmSE5mqaB/nMFG21kKZWb3bqq0DlZ\nIlJZRCaJyOL0x1eJyEPunjCLNCDRGHNtXg2soGAM7Ntnq4gLF+C116BJE+vxypXawFIhzmYDC6wk\nMYmJVm+WCg526ypjTHdjTLwxpqQxppoxZrIx5qgx5jZjzOXGmNvzamCpgjVrBitW+DoKpZTyPley\nC04BlgLx6Y83AwMcOLe4eP7AtGcPdOhgzR9x088/W42rJUtg7VrrOQeuL5VSaJbBIDQFz9RVyoam\nTWHVKqsDWimlQokrjZwYY8zHWD1PGGMuAE78uzTA5yLynYj0daA8/5CWBm+9ZS3G06gRLFxY5CJO\nn4aXXoIWLeCRR+CLL+CyyzwQq1IhrH17q2f4yBFfR6Ic4qm6StlQubKVBXfjRl9HopRS3uVKdsGT\nIlKB9NS1ItIYay6VXTcbY/aLSEWsxtav6YtBBq7ffvtrVWA3MgdGR+dOw963r7WBlZVMKeWMcuXg\njjvg44+tBbxVwPNUXaVsyhgyWL++ryNRSinvcaWRNQiYB9QUkW+AisA9dk9sjNmf/vWQiHwK3ADk\namQFVFrcgwet3OqPPAJhRRsJuWuX1cCqVQv+8x9o3dpDMSoVLLZvh/XrrYWv3NSrl5WpUxtZnuV0\nWtx8eKSuUvY12/kBiw50on//Mr4ORSmlvKbA7IIiEgY0BtYCl2PNo/rdGHPe1klFygBhxpg/RaQs\n8BkwwhjzWY79gj674Llz8K9/wdix1rCl06ehVClfR6VUANiyxbpFvnt3kZdDyHDhAlStCklJ3kso\no1nVnM8u6Km6qgjn1+yCBdjW+lFuXjuOfSmlM5cdyWvkRla6npx3aXZBpXLzaHZBY0wa8F9jzAVj\nzCZjzEaHKq3KwEoRWQ+swVqX5LNCjgk6S5daU7eSkuDbb63ntIGllItq17a6fpcscbuI4sWhe3eY\nNs3BuJTXebCuUg6o0boOYefO8scffz2XkmI1HvPbCmqAKaVUIHBlTNsyEeks4tyyt8aY7caYBunp\n2+saY0Y7VXYg+OUXuPNO6N8fXnnFyo1Rs6avo1IqAPXubS0cZ7OI99+3ctaogOZ4XaWcIS2ak1hs\nBV995etIlFLKewpdjFhETgBlgQvAGaxhGMYYE+nx4IJsuGD58nC8gGnYOjxCqSI6ftxaVXjrVoiJ\ncbuYBg1g3Dgro6enBcPwL7s8sRhxsNZVQfF5SUvjvcgBfNZiNP+b59q8rKD4uQOIDhdUKje7dVWh\niS+MMRHuFu4p1atXZ+fOnb4Ow3FHj4Legw1uCQkJ7Nixw9dhBI9LLoG2bWHGDHjiCbeL6d0bpk71\nTiNLeYY/1lUqXVgYLW85z5AkIS2tyHmhlFIqIBXakwUgIlFAbSBzxpAx5msPxpVx3jzvDqa3LD19\neqUcp59dD9i+HUqXhthYt4s4cMBKfLFnj5Xa3ZP0Dr1nerLSy/WrusqZsoPk87JrF7USL+XTuWHU\nrVv47kHzcwcI7clSKjePJr5IP8HDwNfAUmBE+tfh7p5QKaUcVaOGrQYWWAumNm0Kn3ziUEzK67Su\n8nPVqtHitjCWLfN1IEop5R2udNo/BVwP7DTGNAeuBY55NCqllPKyhx+GiRN9HYWyQesqP9eyJS43\nsqKirN6sjC062rOxKaWU01xpZJ0xxpwBEJGSxpjfsNYhUUqpoNG2LWzbBps2+ToS5Satq/xcixbw\n9dfW+nSFyZniXVO6K6UCjSuNrD0iUh6YA3wuInOB4Ms64QU7d+4kLCyMNAdyRdeoUYMvv/zSpX2n\nTp1Ks2bNMh9HREQ4lnzh1VdfpV+/foCzPx/A7t27iYyM1DlMyivCw+Ghh+Cdd3wdiXKT1lV+rmJF\nqF4d1q3zdSRKKeV5hTayjDF3G2OOGWOGAy8Ck4COng4sUBXW+PHVEi5Zz3vixAmqV69e4P7Lly+n\natWqhZb73HPPMWHChDzPU1Q537uqVauSmprqs/dMBZi0NFizxlYRDz8MH34Ip045FJPyGq2rAkPL\nZudY9oX9G3HR0TqcUCnl31xJfFEtYwO2Az8C9maZK79njCm0cXPx4kUvRaOUCy5ehE6drNW+3ZSQ\nAI0bw8yZDsalvELrqsDQauEAls4+abuco0d1OKFSyr+5MlxwIbAg/esyYBuw2JNBBYu0tDSeeeYZ\nKlasSK1atVi4cGG211NTU3n44YeJj4+natWqvPjii5lD47Zt20bLli2JiYmhUqVK9OjRg9TUVJfO\nm5KSwl133cUll1xC48aN+eOPP7K9HhYWxrZt2wBYtGgRV199NZGRkVStWpVx48Zx6tQp7rzzTvbt\n20dERASRkZEkJyczYsQIunTpQs+ePSlfvjxTp05lxIgR9OzZM7NsYwyTJk2iSpUqVKlShX/+85+Z\nr/Xp04eXXnop83HW3rJevXqxa9cu2rdvT2RkJP/4xz9yDT/cv38/HTp0oEKFCtSpU4d33303s6wR\nI0Zw77330rt3byIjI6lbty4//PCDS++XChIOjffr10+HDAYorasCQGL7CNZvKqGNIqVU0HNluGBd\nY0y99K+1gRuA1Z4PLfBNmDCBRYsW8dNPP7Fu3TpmzZqV7fXevXtTokQJtm3bxvr16/n8888zGw7G\nGJ5//nmSk5P59ddf2bNnD8OHD3fpvI899hhlypThwIEDTJo0iffeey/b61l7qB5++GEmTpxIamoq\nGzdupEWLFpQpU4bFixcTHx/PiRMnSE1NJTY9Rfa8efPo2rUrx44do3v37rnKA0hKSuKPP/5g6dKl\njBkzxqXhk9OmTaNatWosWLCA1NRUnnnmmVxl33vvvVSrVo3k5GRmzpzJ888/T1JSUubr8+fPp3v3\n7hw/fpz27dvz+OOPu/R+qSDSty988AGcdP9Oedu21npZ2kYPLFpXBYbSHW7nljLr+PxzX0eilFKe\nVeR1140xPwA3eiAW5wwfnn2wdsaWXyMlr/1dbNAUZObMmQwYMID4+HjKly/Pc889l/nagQMHWLx4\nMa+//jqlSpUiJiaGAQMGMGPGDABq1qxJy5YtKV68OBUqVGDgwIEsX7680HOmpaUxe/ZsRo4cSalS\npbj66qvp3bt3tn2yJpIoUaIEmzZt4sSJE1xyySU0aNCgwPKbNGlC+/btAShVqlSe+wwfPpxSpUpx\nzTXX0KdPn8yfyRX5JbnYvXs3q1evZsyYMYSHh1O/fn0efvhhpk2blrlP06ZNad26NSJCz5492bBh\ng8vnVUGiWjW4+WaYPt3tIooXh/794d//djAu5XUBUVeFoqZNaXtmNotmnynSYTlTukdFeSg+pZRy\nSPHCdhCRQVkehgHXAfs8FpEThg8vWiOpqPu7aN++fdmSRyQkJGR+v2vXLs6fP09cXBxgNS6MMVSr\nVg2AgwcP8tRTT7FixQr+/PNPLl68SLQLM3sPHTrExYsXufTSS7Odd8WKFXnu/8knnzBy5EgGDx5M\n/fr1efXVV2ncuHG+5ReWDENEcp1748aNhcZdmP379xMdHU2ZMmWylf39999nPo7NsiBtmTJlOHPm\nDGlpaYSFFfleggpkAwZYraSHHgI3f/cPPwy1akFysu11jpWXBGRdFYpKluSOZn8yYrEhLc31P9GU\nFM+GpZRSTnPl31tElq0k1nj3Dp4MKljExcWxe/fuzMc7d/6VTbhq1aqUKlWKI0eOkJKSwtGjRzl2\n7Fhm78vzzz9PWFgYmzZt4tixY3zwwQcupTKvWLEixYsXz3beXbt25bt/w4YNmTNnDocOHaJDhw50\n7doVyD9LoCuZ/nKeOz4+HoCyZctyKkvatv3797tcdnx8PCkpKZzMMgxs165dVKlSpdB4VIhp3hyG\nDbOyDbopOhq6dYPx4x2MS3ma1lUBokafRCqUOU2We2RKKRV0XJmTNSLL9ndjzIcZCz6qgnXt2pU3\n3niDvXv3cvToUcaMGZP5WmxsLLfffjsDBw7kxIkTGGPYtm0bX3/9NWClWS9XrhwRERHs3buX1157\nzaVzhoWF0alTJ4YPH87p06f55ZdfmDp1ap77nj9/nunTp5OamkqxYsWIiIigWLFiAFSuXJkjR464\nnGwjgzGGkSNHcvr0aTZt2sTkyZPp1q0bAA0aNGDRokUcPXqU5ORk/p1jPFZsbGxmQo6s5QFceuml\n3HTTTTz33HOcPXuWDRs2MGnSpGxJN/KKRYUgEbj3Xmvcnw1PPglvvw1n9L9dQPBkXSUiO0TkJxFZ\nLyJrnSgzpN13H217RLNokfdOmTXlu6Z7V0p5gysp3OeLyLz8Nm8EGUiy9sb07duX1q1bU79+fRo1\nakTnzp2z7Ttt2jTOnTvHVVddRXR0NF26dCE5ORmAYcOG8f3331O+fHnat2+f69iCen3efPNNTpw4\nQVxcHA8++CAPPvhgvse+//771KhRg/LlyzNhwgQ+/PBDAC6//HLuu+8+LrvsMqKjozPjcuXnv/XW\nW6lVqxatWrXi2WefpWXLlgD07NmTevXqUb16ddq0aZPZ+MowZMgQRo4cSXR0NOPGjcsV64wZM9i+\nfTvx8fF07tyZkSNH0rx58wJjUcpdV1wBDRvamt6lvMjDdVUakGiMudYYc4MT8Ya6tm1hnhevILKm\nfNfMhkopb5DC7vaLyL+x1hr5IP2p+4ADwBwAY0zh2RjcDU7E5BWfiGgvhQpI+tkNLMuWWdO7Nm6E\n9E5e20SsC71Qlv534OhdEE/WVSKyHWhkjDmSz+t51lVOCNbPy4ULEB8P334LNWrYLy86OnvjKSoq\n+zyurO9jsL6ndsgIwQzTN0WprOzWVa40stYZYxoV9pwnaCNLBRv97AYWY+Cmm2DQIOjSxZky9QLP\nY40sj9VVIrINOAZcBCYYYybmeF0bWW545BGoXRvSV+xwVM73TRtZBdNGllK52a2rXJm0UFZELjPG\nbEs/YQ2grLsnVEoprzl3Dr77zkrr7gYReOEFGDoU7rnHeqz8lifrqpuNMftFpCLwuYj8aoxZmXWH\nrOsYJiYmkpiY6NCpg9c991h/W55oZGWkfM/6WCmlCpKUlJRt/VW7XOnJagNMALYBAiQA/YwxnzkW\nRf7n1p4sFVT0s+tlBw9ak6s2bIAsSwsUhTFw7bUwahS0a2c/JL2L7rGeLK/UVSIyDDhhjBmX5Tnt\nyXLD+W9/IP62K1m3sTRZVjjxuJzvaWFDDUOB9mQplZvdusqV7IJLgNrAU8CTwOXeaGAppZRtlSrB\ngw/C2LFuF5HRmzVqVPBe7AYDT9VVIlJGRMqlf18WuB2wv/ifIrxMOB3MXGbNdH+5BSdkTYqhiTGU\nUk7Jt5ElIteLSCyAMeYsUB94GXhNRDQBqlIqMDzzDHzwAeRYl60oOnWC1FRYvNh+OBnDmPLbNL10\n0XihrqoMrBSR9cAaYL7eaHTINddwX6VlvP/2qcL3VUqpAFNQT9Y7wDkAEbkFGA1MA45jDclQSin/\nFxsLDzxgdUW5qVgxePVVGDIELl60F05KSva75jk3vYteZB6tq4wx240xDdLTt9c1xoy2W6ZKJ0Lz\nx67kWPJp1q/3dTD5y7rGlt4IUUq5qqBGVjFjTMao5HuxMip9Yox5Eajl+dCUUsohzz8PH38Mf/zh\ndhF33QUREZC+lJzyH1pXBbCwXj144MIkJr9zzteh5EuHEyql3FFgI0tEMrIPtgS+zPKaK1kJlVLK\nP8TEwDffwGWXuV2ECIwZAy++CGfOOBibskvrqkBWqRK9m/7B9A/TAubvqrAhvzoEWCkFBTeyZgDL\nRWQucBpYASAitbCGYagQFBYWxrZt21zad8SIEfTs2ROA3bt3ExkZ6VhmvUcffZS///3vACxfvpyq\nVas6Ui7AypUrufLKKx0rT/mJOnVs52Bv2hQaNID//MehmJQTtK4KcDU+GMn1N5dg+nRfR+Kawob8\n6hBgpRQU0MgyxvwdeBqYAjTNkp82DHjC86EFrunTp3P99dcTERFBlSpVaNu2Ld98842vw2Lq1Kk0\na9bMVhlSxIvUjP2rVq1Kampqoce7GuP48eN54YUX3I4rq5wNx6ZNm/Lrr7+6XZ4KbmPGWNu+fb6O\nRIHWVUEhNpZBT4fx+uuawVMpFTwKTOFujFljjPnUGHMyy3ObjTE/eD60wDRu3DgGDRrE0KFDOXjw\nILt27eLxxx9n/vz5RS7rYh4z7PN6zlXGGFuNkYwyPMmVGNPSnE33a/c9UaHliiugXz8YNMgz5Rd1\nKJIOTdK6Khjcdpv19YsvPH+unH9jORcqLux1pZRyRaHrZCnXpaamMmzYMN566y06dOhA6dKlKVas\nGHfeeSejR1sJqc6dO8eAAQOoUqUKl156KQMHDuT8+fPAX8Pexo4dS1xcHA8++GCezwEsWLCAa6+9\nlqioKJo2bcrPP/+cGceePXvo3LkzlSpVomLFijz55JP89ttvPProo6xevZqIiAii06/Ezp07xzPP\nPENCQgJxcXE89thjnD17NrOs1157jfj4eC699FImT55cYINkx44dJCYmcskll9C6dWsOHz6c+drO\nnTsJCwvLbCBNmTKFmjVrEhkZSc2aNZkxY0a+Mfbp04fHHnuMtm3bEhERQVJSEn369OGll17KLN8Y\nw6uvvkrFihW57LLLmJ5l3Enz5s157733Mh9n7S279dZbMcZQr149IiMjmTlzZq7hh7/99hvNmzcn\nKiqKunXrZmsw9+nTh/79+9OuXTsiIyNp0qQJ27dvL/iDogLeCy/A2rXwmQcSeRd1KJIOTVLBQASe\nfhr+/nfP92bl/BvLufBwYa/blTNbYajfJFEqWGkjy0GrV6/m7NmzdOzYMd99Ro0axdq1a9mwYQM/\n/fQTa9euZVSW1NLJyckcO3aMXbt2MWHChDyfW79+PQ899BATJ04kJSWFRx55hLvuuovz58+TlpZG\nu3btqFGjBrt27WLv3r1069aNK664grfffpsmTZpw4sQJUtJrjcGDB7N161Y2bNjA1q1b2bt3Ly+/\n/DIAS5YsYdy4cSxbtowtW7bwRSG3GLt3787111/P4cOHGTp0KFOnTs32ekYD7dSpUzz11FMsXbqU\n1NRUVq1aRYMGDfKNEWDGjBm8+OKLnDhxgptvvjnXuZOTk0lJSWHfvn1MmTKFfv36sWXLlnxjzYhl\n+fLlAPz888+kpqbSpUuXbK9fuHCB9u3b06ZNGw4dOsQbb7zB/fffn63sjz76iBEjRnDs2DFq1qyZ\nbRij8lOrVkGvXm4fXqaMNS/r8cc1CYZSTunRAw4cgCVLfB2Js3L2jIHeJFEqFARlI8vOUJuc/wiL\n4siRI8TExBAWlv/bOn36dIYNG0aFChWoUKECw4YN4/333898vVixYowYMYLw8HBKliyZ53MTJ07k\n//7v/2jUqBEiQs+ePSlZsiRr1qxh7dq17N+/n7Fjx1KqVClKlCjBTTfdlG88EydO5PXXX+eSSy6h\nbNmyDBkyhBkzZgAwc+ZM+vTpw5VXXknp0qUZPnx4vuXs3r2bdevW8fLLLxMeHk6zZs1o3759vvsX\nK1aMn3/+mTNnzlC5cuVCE0106NCBxo0bA2S+L1mJCCNHjiQ8PJxbbrmFtm3b8vHHHxdYZlb5DYNc\nvXo1J0+eZPDgwRQvXpzmzZvTrl27zPcI4O6776Zhw4aEhYVx//338+OPP7p8XuUj110H334Lc+a4\nXcSdd8K118LQoQ7GpVQIK14cXmm9nCFPnLS9Hp0/8XTPmFLKPwVlI8vOUJusW1FVqFCBw4cPFzhn\naN++fVSrVi3zcUJCAvuyzKCvWLEi4eHh2Y7J+dzOnTv55z//SXR0NNHR0URFRbFnzx727dvH7t27\nSUhIKLChl+HQoUOcOnWKhg0bZpZ1xx13cOTIkcxYsw6bS0hIyLcxsm/fPqKioihdunS2/fNSpkwZ\nPvroI8aPH09cXBzt27fn999/LzDWwrIHRkVFUapUqWzn3udAZoL9+/fnOndCQgJ79+7NfBwbG5v5\nfZkyZfjzzz9tn1d5WKlSMGkSPPoo7N/vdjFvvQUzZsBXXzkYm1IhrGOTA5Tf/wv/+dcFX4eilFK2\nBGUjy1eaNGlCyZIlmVPA3fEqVaqwc+fOzMc7d+4kPj4+83Fec55yPle1alVeeOEFUlJSSElJ4ejR\no/z555/ce++9VK1alV27duXZ0MtZTkxMDGXKlGHTpk2ZZR07dozjx62sx3FxcezevTtbrPnNyYqL\ni+Po0aOcPn0687ldu3bl+z60atWKzz77jOTkZC6//HL69euX789f0PMZ8jp3xvtatmxZTp06lfla\ncnJygWVlFR8fn+09yCi7SpUqLpeh/FTTptC3LzzwALiZTCUmxmqrPfCADvNRygnStQvvNp7EyBfP\nsnmzr6PxvpxDC3WOllKBSxtZDoqMjGTEiBE8/vjjzJ07l9OnT3PhwgUWL17MkCFDAOjWrRujRo3i\n8OHDHD58mJEjR2auJeWqvn378vbbb7N27VoATp48yaJFizh58iQ33HADcXFxDBkyhFOnTnH27FlW\nrVoFQOXKldmzZ09mog0RoW/fvgwYMIBDhw4BsHfvXj5Ln83ftWtXpkyZwq+//sqpU6cy52rlpVq1\najRq1Ihhw4Zx/vx5Vq5cmSujYkYv2MGDB5k3bx6nTp0iPDyccuXKZfa85YzRVcaYzHOvWLGChQsX\n0rVrVwAaNGjA7NmzOX36NFu3bmXSpEnZjo2Njc137a8bb7yRMmXKMHbsWC5cuEBSUhILFizgvvvu\nK1J8yk+99BKcOAGvv+52EW3aQKdO0LOn2201pVQGEWp/MIxRJUdyd6sTnDjh64C8K+fQQr15o1Tg\n0kaWwwYNGsS4ceMYNWoUlSpVolq1arz11luZyTCGDh1Ko0aNqFevHvXr16dRo0ZFTpTQsGFDJk6c\nSP/+/YmOjqZOnTqZSSbCwsKYP38+W7ZsoVq1alStWjVzblKLFi24+uqriY2NpVKlSgCMHj2aWrVq\n0bhxY8qXL8/tt9/O5vTbh23atGHAgAG0aNGCOnXq0LJlywLjmj59OmvWrKFChQqMHDmS3r17Z3s9\nozcqLS2NcePGUaVKFWJiYvj6668ZP358vjG6Ii4ujqioKOLj4+nZsyfvvPMOtWvXBmDgwIGEh4cT\nGxtLnz596NGjR7Zjhw8fTq9evYiOjmbWrFnZXgsPD2f+/PksWrSImJgY+vfvz/vvv59ZtqZ/D3DF\ni8NHH0HbtraKGTsWjh+HLDlslFLuiovjkYUdaHZwNh2bH+PkycIPCVbas6VU4BJPr3tkh4iYvOIT\nEY+v16SUJ+hnN3jt3w833GB1it1zj+/iEPl/9u47vIoqfeD4901oUgIJICSUgCgWBGJdxELQFbAA\nq66ACCqKqFhxbdgCoqviiqtrR0TQHyjYKS7YAqK4WFAQRUEg1NB7EIG8vz9mEm7CvTe35t6bvJ/n\nmSdzZ+aceWdyMydn5sw58T+gq/t3UGHuUPgqqyKTd/z/PqPlwMxPGfjyKSxek8KkSVDGq7mVQrS+\nDzJc0JxK+kUzxodwyyp7kmWMMRGQng5TpsDgwTB7dqyjMSbxJXc5hzGTUrjoIqdD0CeftCETjDGJ\nwypZxhgTIVlZMGECXHopfPttrKMxJvElJcFddzk3Lr74Apo2hcGXb2Pqa5sq3ftaxpjEYpUsY4wp\n7ZVXQu7a/a9/hdGjnde8/ve/CMdlTCV17LHOsHbffgvNti/iqWt/pnHdAo6tvYpexy5kxCXzmfjc\nFubOhfz8ytPEMi3N3tkyJl5ViXUAxhgTd9avhzPPhP/+F448MujkPXo4fWp07w5jx4bdr4YxxtWi\nBQydejpDCwvZu3g5v85YwcI52/lpcRXe39aM5eNgxQrYtQsyM53tMw/8Tou622hxTA0y29ejxSkN\nadSsGgEMJxn3tm4tWaG0vpiMiR/W8YUx5ci+uwnkpZecLt5ffx26dAkpi6+/drp3v+MOGDKkfP4B\nSoSOEqzji2Dyjv/fZzzatcupbOXlwYo35pC3YDsrNhzGih1p5P2Zzg7q0qwZtDimBi1awFFHQbt2\nztS4cfxWVtLSSnbrnprqdPvua31ppbcvEomOL8qKzZhEE25ZZZUsY8qRfXcTzOzZ0Ls3XH015ORA\ntWpBZ5GXB5dcAhkZ8OqrzgDG0ZQI/5RbJSuYvOP/95lw9u+nYOlaVu5pyIr1h7FiBfz6KyxYAD/+\nCLJzO+3r5vGXtrs5/by6dOh7BGkZNWIddUT4+j5FopJVOm/77ppEVyl7F8zMzEREbLIp4abMzMxY\n//mYYJx1FsyfD2vXwo4dIWWRmQlffaz6UrYAACAASURBVAXHHANt28L48faPhzExVaUKNY9pzjEn\nHEa3bnD99c7QC59+Chs3wo8zN3D7VVtI3rmdJx/aRWaTfRxXczkDr/yT8eOdGycVRdE7XRD8O12l\n3wdLTS25vvQYX6WnSL8/VlnfT4un4y4rlmBjjadjC0XMnmSJSDfg3zgVvTGq+riXbaJ2dzBaxO7c\nGGN8+OYbuOEGqFoVhg1zWiFKyPfIvEuEa5BI4jzJinVZlQi/z4pu//bdLHz7V+bsPoEv5gizZ0P1\n6s49mLPOKOSso9fTulN6xP+Wo6H096noc9GTrGC+b+F+NyP93fZ1bBVdPB13WbEEG2usjy3csiom\nT7JEJAl4FugKtAEuE5FjYhGLOVRubm6sQ6h07JzHRtjnPT8fCgsD3vyUU5weB2+9FW6/HTp0gDfe\ngIKC8MIw0VEZyqpEvvaUV+xV6tbihGtO5OZbhEmTnI5HP/7YqWTN/m8B555zgPQqG+nVYh7P9v2K\nBR+uoPCA//8E7byXv0SNGyz2RBWr5oKnAktUNU9V9wFvAj1jFIsppTL/QcSKnfPYCPu833OP0x7w\njjvg888DGik1ORn69IGFC53kEyZAkyZw1VUweTJs2xZeSCaiKnxZlcjXnljFLgKtW8O118Lr79Vm\n5f4m/G/GNrp33sWP8/Zy6SUHaHDYLnr0cAZQ/uYb2L8/PmKPhESNPVHjBos9UcWqktUEWOXxebW7\nLKYi80UIPI9A9lfWNr7WB7o8Hr784cYQbPryPu+BLitviXbeg11XLuf9tdecbt5r1oShQ6FhQ+jc\nGTZv9rq55/6TkuCii2D6dFi0CE480enuvXlzZ1Dja66B556DWbNg5Uo4cCC0Y4jWeQ/3byBBRLWs\nCvW8hPo7jeTvwWL3IELmX4+i2ZVJjF7amV/3tWLRz0n06wfLl0Pv3rmkpUHXrnDXFfmMGTCHvG/W\ns/6njWhhcG2fonbel0d2f5HMK9TyOJj/x8KNIdR0wV5fI73/cNLGa+zhlHmRLqtsnCwPubm5ZGdn\nh5sLEFgegeyvrG18rQ90eWSOOTzhxhBs+vI+74EuK2+Jdt6DXVdu571NG3joIWfats1pD1iv3qHb\nqZI7YADZbdpA3bqQkuL8rFGDjAcf5JZbkrjlFudh2IIF8P338N2bS5j4dF2Wb6rNpp3VSa+3h737\nPuL4UzqRliakpTn1uxo1nHdEqv+6gCwO8OK1hVSt4rxf8eG3E8gb3AlJkkNfPv/mfwjw9tdvsLFj\njYPvlPzlL8Uvi02alMumTe45+/rr4sOZ9NUbbOpYI6DtJ331BmnPnkG7E63I8RTq9zHUv6VIfv8t\ndv/r04+sRa8joVcvGDYsl5tvzubLL2HRlN188Zny6Spo81ESO/VPGiVvonGTKqRnNSI1FWrXPjjV\n2pxHtTUrSK4iJFeBqQvGkXdKFZJbNiO5ZSbJyaXe61y1ClavPiS2yYs+KP67fPvtg8ubsIq371gD\nK0I75mCUx3kvtYZA/x8LN4ZQ0wX7P1yk9x9O2vKIPZTfXzj/a0T6f4SYdHwhIh2AYarazf18D6Cl\nXygWkUrwyqIxxlQ+idDxhZVVxhhTuSXcOFkikgz8CpwDrAPmAZep6i/lHowxxhjjhZVVxhhjQhWT\nthuqekBEbgJmcrBbXCu0jDHGxA0rq4wxxoQqZuNkGWOMMcYYY0xFFKveBY0xxhhjjDGmQrJKljHG\nGGOMMcZEUMJVskSkk4jMFpEXROSsWMdTmYhITRH5RkTOj3UslYWIHON+1yeJyPWxjqcyEJGeIvKy\niEwUkXNjHU9lISItReQVEZkU61giIdHLqkS93ifyNTORrz2J+vfrfs9fE5GXRKRvrOMJRqKec0jc\n73qw15eEq2QBCuwEquMMDGnKz93AW7EOojJR1cWqegPQG+gY63gqA1X9QFUHATcAvWIdT2WhqstV\ndWCs44igRC+rEvJ6n8jXzES+9iTw3+/FwGRVvQ7oEetggpHA5zxhv+vBXl9iVskSkTEisl5EFpRa\n3k1EFovIbyJyd+l0qjpbVS8A7gEeKq94K4pQz7uI/BX4GdgIxP34NvEm1PPubtMdmApML49YK4pw\nzrnrfuC56EZZ8UTgvMeVRC6rEvl6n8jXzES+9iT6328I8TcFVrnzB8otUC8S+dyHEXtMy9lQ4g7q\n+qKqMZmAM4AsYIHHsiRgKZAJVAV+AI5x1/UHRgHp7udqwKRYxZ+oU4jn/SlgjHv+ZwDvxfo4Em0K\n9/vuLpsa6+NIpCmMc54BPAacHetjSMQpAtf2ybE+hggfT8zKqkS+3ifyNTORrz2J/vcbQvyXA+e7\n8xMSKXaPbWJ+zQwl9lh/18M55+52ZV5fYjJOFoCqzhGRzFKLTwWWqGoegIi8CfQEFqvq68DrInKR\niHQF6gLPlmvQFUCo571oQxG5AthUXvFWFGF83zuJyD04TY6mlWvQCS6Mc34zzuCzKSJypKq+XK6B\nJ7gwznuaiLwAZInI3ar6ePlG7l0il1WJfL1P5GtmIl97Ev3vN9j4gfeAZ0XkAmBKuQZbSrCxi0ga\n8AhxcM0MIfaYf9chpLg74TQxDej6ErNKlg9NOPjYFpx27Kd6bqCq7+H8UZjIKfO8F1HV8eUSUeUQ\nyPd9FjCrPIOq4AI55/8B/lOeQVUCgZz3LTjt8xNBIpdViXy9T+RrZiJfexL979dn/KpaAFwdi6AC\n5C/2eD7n4D/2eP2ug/+4g7q+JGLHF8YYY4wxxhgTt+KtkrUGaO7xuam7zESXnffYsPNe/uycx0ZF\nO++JfDwWe2xY7LGTyPFb7OUvYnHHupIllOy56BvgSBHJFJFqQB/gw5hEVrHZeY8NO+/lz855bFS0\n857Ix2Oxx4bFHjuJHL/FXv6iF3cMe/SYAKwF9gIrgQHu8vOAX4ElwD2xiq+iTnbe7bxXlsnOuZ33\nyn48FrvFXpliT/T4LfaKF7e4mRljjDHGGGOMiYBYNxc0xhhjjDHGmArFKlnGGGOMMcYYE0FWyTLG\nGGOMMcaYCLJKljHGGGOMMcZEkFWyjDHGGGOMMSaCrJJljDHGGGOMMRFklSxjjDHGGGOMiSCrZJm4\nISJ/E5FCEWkd61h8EZGhsY4hUkTkOhHpF8T2mSKyMMh9fCoitf2snygirYLJ0xhj4kFFLLNE5HMR\nOTGa+wgy7+4icleQaXYGuf1kEWnhZ/0TItI5mDyNAatkmfjSB/gCuCzaOxKR5BCT3hvRQGJERJJV\n9SVVfSPIpAGPXi4i5wM/qOouP5u9ANwdZAzGGBMPrMyK4j7ccmqKqo4MMmkw5dRxQJKqrvCz2X+A\ne4KMwRirZJn4ICK1gNOBa/AosESkk4jMEpGpIrJYRJ73WLdTREaJyE8i8rGI1HeXDxSReSIy371D\nVcNdPlZEXhCRr4HHRaSmiIwRka9F5DsR6e5ud6WIvCMiH4nIryLymLv8UeAwEfleRF73cgyXicgC\nd3osgDiPcPfxjXuMrT3ifFpEvhSRpSJysZd9ZYrILyLyhoj8LCKTPI7zRBHJdfP9SEQaucs/F5Gn\nRGQecIuI5IjI7e66LBGZKyI/uMde111+krtsPnCjx/6PE5H/uefiBx9Poy4HPnC3r+n+Due75+dS\nd5svgL+KiF2LjDEJI9HLLBFJcvNfICI/isitHqt7udf3xSJyusc+/uORfoqInBVAuRhK+feCiMx1\nj7l4v26596lb5nwsIk3d5S1E5Cv3OEZ47Luxm/f37nGe7uVX6VlOeT0nqroSSBORw31+IYzxRlVt\nsinmE9AXGO3OzwFOcOc7AQVAJiDATOBid10h0MedfwD4jzuf6pHvCOBGd34s8KHHukeAvu58XeBX\n4DDgSmApUBuoDqwAmrjb7fARfzqQB6Th3Lz4FOjhI85n3PlPgFbu/KnApx5xvuXOHwss8bK/TDff\nDu7nMcDtQBXgS6C+u7wXMMad/xx41iOPHOB2d/5H4Ax3fjgwymP56e78SGCBO/8McJk7XwWo7iXG\nFUAtd/5i4CWPdXU85mcU/b5tsskmmxJhqgBl1onATI/PKe7Pz4En3PnzgI/d+SuLyi738xTgLH/7\n8HHMgZR/nsd8pUeaD4F+7vwA4D13/gPgcnd+cFE8OGXiUHdeisqjUvHlAm38nRN3/mXgolh/72xK\nrMnuHpt4cRnwpjv/Fk4BVmSequapqgITgTPc5YXAJHf+DZy7igDtRGS2iCxw82njkddkj/kuwD3u\nU5pcoBrQ3F33qaruUtW9wM84BaY/pwCfq+oWVS0E/g84y0ecZ7h3QTsCk939vwQ08sjvfQBV/QXw\ndfdspap+7ZkvcDRwPPCxm+99QIZHmrdKZyIiKUBdVZ3jLhoHnOU+zaqrql+6yz3vUs4F7hORO4EW\n7nkqLVVVd7vzC4FzReRRETlDVT3bzG8sFaMxxsS7RC+zlgEtxWk10RXwvCa/6/78LoB8ynKA4Mu/\nyXh3Gs75BKc8Kjp/p3Pwd+FZTn0DDBCRB4F2HuWRp3ScMgj8n5MNWDllglQl1gEYIyKpwNnA8SKi\nQDJOm+o73U1Kt6/21d66aPlYnKdIP4nIlTh3FouUvsheoqpLSsXTAfCsNBzg4N+K+DsUP+tKx5kE\nbFVVXy8Ye+4/mHwF+ElVvTWLgEOPv6x9eF2uqhPdJiwXAtNFZJCq5pbabL/H9kvEeZn6fOBhEflU\nVYuaddQA9vjYvzHGxJWKUGap6jYRaQ90Ba4HLgUGuquL8vLMZz8lXzGp4RmCt334EEj556uc8veu\nVdG64lhU9QsROQu4AHhNRJ7UQ99DLsA9llLn5DqcliDXuNtZOWWCZk+yTDy4FBivqi1V9QhVzQSW\ni0jR3b9T3bbYSUBvnPd4wPn+/t2dv9xjeW0gX0Squst9mQHcUvRBRLICiPVP8f4C8jycpz9p7vrL\ncO40eotzjvskZ7mIFC1HRNr52KevAqy5iPzFne+Lc/y/Ag3dQhcRqSLOi70+qeoOYItHe/X+wCxV\n3Q5sFZGO7vLinghFpKWqLlfV/+A01fAW+68icoS7fTqwR1UnAE8AJ3hs1xr4yV+MxhgTRxK+zHLf\njUpW1feA+3GaynlTVP6sALLE0QyniZ/ffbiSCa/88/QVB99/68fB8zfHY3nx+ROR5sAGVR0DvIL3\nY/wFONLd3vOcPICVUyZMVsky8aA38F6pZe9w8KL5LfAssAj4XVXfd5fvxinMFgLZOG3Zwbk4zsO5\nAP/ikWfpu2APA1Xdl1x/Ah7yEZ9nupeBhaVf8FXVfJzeh3KB+cC3qjrVR5xF+7kcuMZ9ifcnoIeP\nOH3dvfsVuFFEfgbqAS+q6j6cAu1xEfnBjeW0MvIBuAr4l5umvUeMVwPPi8j3pdL3cl9kno/TtGW8\nlzynAUXd3rYF5rnbP4hz7nFfJC5Q1Q1+YjPGmHiS8GUW0ATIda/Jr3Ow9zyv5Y/bbHyFe0z/xmlK\nWNY+IPzyz9MtOM3/fnDTF3XWcRtOWfgjTvO/ItnAj2751Qt42kue0zlYTnk9JyJSBWiF83s1JmDi\nNBk2Jj6JSCfgH6raw8u6napaJwZhBSUacYpIJjBVVdtGMt9IEpHGwDhV7epnm9uA7ao6tvwiM8aY\n6KgIZVYkxfsxi9OT42c4HTx5/YdYRP6G07FJTrkGZxKePckyiSxR7hBEK864Pn736d5o8TMYMbAV\np6MNY4yp6OL6mh0lcX3MqvoHTk+7Tfxslgw8WT4RmYrEnmQZY4wxxhhjTATZkyxjjDHGGGOMiSCr\nZBljjDHGGGNMBFklyxhjjDHGGGMiyCpZxhhjjDHGGBNBVskyxhhjjDHGmAiySpYxxhhjjDHGRJBV\nsowxxhhjjDEmgqySZYwxxhhjjDERZJUsY4wxxhhjjIkgq2QZ44eI7BSRFrGOwxhjjPHHyitj4otV\nskyFICKFInJEmHl8LiJXey5T1TqquiKs4CJIRB4SkQUisk9EHgxg+8dFZJOIbBSRx0qtyxSRz0Rk\nt4j8LCLnlFrfV0RWuAX3uyJSz2NdNRF5VUS2i8haERlSKm2WiHzr5v2NiLQvtX6IiKwTkW0i8oqI\nVA3tjBxyvJ3c78I7pZa3c5d/Fon9GGNMqKy88rm9lVdYeVWRWCXLVBTqb6WIJJdXIFG2BLgTmFrW\nhiJyHdADaAu0A7qLyCCPTSYC3wFpwP3A2yJS303bBngRuBxoBOwBXvBIOxxoBTQDzgbuEpEubtqq\nwPvAeKCe+/MDEaniru8K3AV0BjLdfIYHeR782QicJiKpHsuuBH6N4D6MMSZUVl6VYuWVlVcVkqra\nZJPXCWgKvANswLkQPOMuF5yL3AogH3gNSHHXZQKFwBVAnpv2Xo88k4B7gaXAduAboIm77hhgJrAZ\n+AW41CPdWOBZnIv1DmAu0NJdN8vd5y533aVAJ2AVzsVxHTAO5wI6xY1pszuf4ebxMLAfKHDzKDrW\nQuAIdz4F5wK8AVgO3OcR35XAF8ATwBbgd6BbFH83rwMPlrHNl8BAj88DgK/c+dY4BVEtj/WzgEHu\n/CPAGx7rjgD2Fm0PrAHO8Vg/HJjgzncBVpWKJQ/o4s7/H/Cwx7rOwDo/x1EI3AD85n5nHnLj+RLY\nBrwJVHG3Lfq9Pw8M9vjOrcb5zn4W678rm2yyKfITVl4VXSutvLLyyqY4mexJlvFKRJJwCojlQHOg\nCc7FAZyL3xU4F4gjgDo4BYqn04GjgL8CD4rI0e7yfwC9cS7odYGrgQIRqYlTYL0BNAD6AM+LyDEe\nefYGcnAKn99xLqyoaid3fVtVTVHVye7nxu62zYFBOBevV3HuZjXHKaCec/O4H6fQucnN4xY3D887\njs+6x9oCyAauEJEBHutPxSls6+MUXmPwQUSmiMhWEdni5eeHvtIFqQ3wo8fnH91lAMcBy1R1t4/1\nJdKq6jKcQqu12wwjHVjgJ2/PdX7zducPL3Unr7QuwAlAB5x/RF4C+uL8LtsCl3lsqzj/XFzhfu4K\nLMT558UYU8FYeWXlFVZemThklSzjy6k4F6a7VPUPVf1TVb9y1/UFRqlqnqoWAEOBPm5BB85FY5ib\nZgHORamojfM1OHfUlgKo6kJV3QpcCCxX1fHq+BHnruSlHjG9p6rfqWohzt2lrFIxS6nPB4AcVd2n\nqntVdYuqvufO7wYeBc4q4zwIFBfivYF7VLVAVfOAJ4H+Htvmqeqrqqo4dyIbi8jh3jJV1e6qmqqq\naV5+9igjpkDVxrmTVmSHu8zbuqL1dQJYXxvnd1w670DS+opLPNZ787iq7lbVX4CfgJnu928n8BFO\ngVZMVb8GUkWkNU7hNd5P3saYxGbllUeeVl6VWG/llYkZq2QZX5rhXIQLvazLwHmcXiQPqILTFrrI\neo/5Ag5eLJsBy7zkmQl0cO+MbRGRrTiFo2ee+T7y9GWjqu4r+iAih4nIS+7LsdtwmhvUE5HShZ03\nDXCOcaXHsjycO6aHxKeqe3AuxGXFGE27cJqMFKnrLvO2rmj9zgDWF+VROu9A0vqKSz3We7PBY34P\nJb9fe/B+nl8HbsK5i/uen7yNMYnNyquSrLyy8srEAatkGV9WAc097vZ5WotTyBTJBPZR8kLiL99W\nPpbnunfGiu6SpajqTcEG7qH0y8X/wGkScoqq1uPgXUHxsb2nTTjHWPq414QSmIhMd3tB2uFlmhZK\nnl4s4uAdWXDupC7yWHeEiNTyWN++1PritCLSCqgK/Kaq23CaMrT3k7ZdqVja4dzR8xXXevcOcSS9\nAQwGpqnqHxHO2xgTP6y8KsnKKyuvTBywSpbxZR7OhekxEakpItVFpKO7biIwRERaiEhtnLbmb3rc\nRfR3p+0VYISIHAkgIm3dts1TcdpP9xORKiJSVURO9mgbX5Z8nPb2/tTBuYu0Q0TSgGGl1q/3lYd7\nbJOAR0SktohkAkNw7j4FTVXPV6e73RQv0wW+0rnnpgbO325V9/fi6+94PHC7iGSISBPgdpwXslHV\nJcAPQI6bx8XA8ThNXsBp3tJdRE53C7aHgHc82sS/DtwvIvVE5Fjg2qK8gVzggIjcLE7XubfgvAz8\nuUdc14jIse7v/n6PtBGjTlfGZ7n5G2MqLiuvPFh5ZeWViQ9WyTJeuRfp7jh30lbi3Lnr5a5+Feei\nNRvnhd4C4BbP5KWz85gfhXPxnyki23EKscNUdRfOy6J9cO48rgUeA6oHGPIwYLzbdOPvPrb5N1AT\n5y7fV8D0UuufBi4Vkc0i8m8vsd+Cc6zLcI79DVX1d7H1201viEa7MfTB6fWqAOgHICJniMiO4p2r\nvoTTI9VCnPcMPlTV0R559QFOAbbi/ONxiapudtP+DFwPTMD5h+Aw4EaPtDk45yEP+Ax4TFU/dtPu\nA/6G04PVVpw25j1Vdb+7fgYwEqcQW47zHRrm55j9fZ/8UtWvVDW/7C2NMYnKyisrr7DyysQhcd55\njFLmImNwXhBdr6rt3GXtccYzqIHzOHuwqn4btSCMMcYYP0SkOs4/otVw3mV5W1WHi0gOzl3voncs\n7lXV/8YoTGOMMQkk2pWsM3BeGhzvUcmaATypqjNF5Dyc3oA6Ry0IY4wxpgwiUlNVC8QZCPZLnCcB\n5wE7VXVUbKMzxhiTaKLaXFBV5+A8fvVUiNM7CzhjQoT0IqYxxhgTKW733uA0+arCwWY+gfTmZowx\nxpQQi3eyhgD/EpGVOO1ch8YgBmOMMaaYiCSJyHycdzo+VtVv3FU3icgPIvKKiNT1k4UxxhhTLBaV\nrBuAW1W1OU6F69UYxGCMMcYUU9VCVT0BaAqcKiLHAc8DR6hqFk7ly5oNGmOMCUhU38kCcLsOneLx\nTtY2d8yHovXbVdXr3UERiW5wxhhjYkJV47YZnog8AOz2fBerdFlWansrq4wxpgIKp6wqjydZQsk2\n7WtEpBOAiJwD/OYvsapGZcrJyYlKGn/b+FrnbXlZy0qvD+V4onWe7FzZubJzZefK37mKNyLSoKgp\noIgcBpwLLBaRxh6bXczBAUoPkQi/20CXWeyhpQv3byaQiU7R+a6VR+yxPu/hXKMTNfZoHnO8xh5O\n2RfpsqpK2Dn4ISITgGygvvsOVlF3uM+4PTj9AQyKZgy+ZGdnRyWNv218rfO2vKxlocQfilD3Y+cq\nsunsXAWezs5V4Okq2rkKQzowzh0oNQl4S1Wni8h4EcnC6bBpBXBdJHda3r/bSP4eLPbA10f0+98i\ntGTxEHsin/dEjT2cfBI19nDKvoiXVaHWcMtjcsIzgcjJyYl1CAnDzlXg7FwFzs5V4Nxre8zLmEhN\niVxWJfL3tjLGzrDYf9cS9bwnatyqFnushFtWxaLjCxMFCXCnOG4kyrlKSwORQ6e0tPKLIVHOVTyw\nc2USUSJ/by322EjU2BM1brDYE1XUO74Ih4hoPMdnTDSJgLevv6/lxiQKEUHjuOOLYFlZZcqLDBc0\nx75rxpSHcMuqqL6TZYwxxhhjKr4WLVqQl5cX6zCMCVpmZiYrVqyIeL5WyTLGGGOMMWHJy8uLSI9s\nxpQ3keg0rLB3sowxxhhjjDEmgqySZYwxxhhjjDERZJUsY4wxxhhjjIkgq2QZU2TyZHjzTfj4Y1i7\nNtbRGGOMMSbK8vLySEpKorCwMOy8WrZsyWeffRbQtuPGjePMM88s/lynTp2Idb7w6KOPMmjQICCy\nxwewatUqUlJS7P27AFjHF8YU+eQT2LYNNmyAhQuhcWPo2xfuvBOqVj1k8/XrYc4cWLoUtm51NmnR\nAk48EbKynK7WjTHGGBNbLVu2ZMyYMZx99tle10er44OyeO53586dZW4/a9Ys+vXrx6pVq/xuN3To\nUJ/7CVbpc9esWTN27NgRcn6ViT3JMpXL9u2wbp33dS+9BG+9BZ9/7lS0Ro+GP/+EKgfvRfzxB7zy\nCnToAEcfDWPHwsaNULeus9ns2dCrl1PZeuQRp85WXnwNXlzeAxgbY4wxJvJUtcwK04EDB8opGlMW\nq2SZyuPdd+GYY+DDD8veNikJTjsNhg0DEQ4ccCpURx8N770HDzwAmzbB1Knwr3/B0KGQkwPjxsFv\nv8GUKc7P1q3htdfKZ/DgrVud/Xibtm6N/v6NMcaYeFdYWMgdd9xBw4YNOfLII5k2bVqJ9Tt27GDg\nwIFkZGTQrFkzHnjggeKmccuWLeOcc86hQYMGHH744fTr1y/gpzpbtmyhR48e1K1blw4dOvD777+X\nWJ+UlMSyZcsAmD59Om3atCElJYVmzZoxatQoCgoKOP/881m7di116tQhJSWF/Px8hg8fzqWXXkr/\n/v2pV68e48aNY/jw4fTv3784b1VlzJgxNGnShCZNmvDkk08WrxswYAAPPvhg8edZs2bRrFkzAK64\n4gpWrlxJ9+7dSUlJ4V//+tchzQ/XrVtHz549qV+/Pq1bt+aVV14pzmv48OH07t2bK6+8kpSUFNq2\nbcv3338f0PmqCKySZSq+3bvhiivg7rvhnXfguuuCSr50KXTq5DzBmjgRpk2DCy4o8YCrBBFo186p\ncM2YAc88A3//O+zaFYFjMcYYY0zIXn75ZaZPn86PP/7It99+y9tvv11i/ZVXXkm1atVYtmwZ8+fP\n5+OPPy6uOKgq9957L/n5+fzyyy+sXr2aYcOGBbTfwYMHU7NmTdavX8+YMWN49dVXS6z3fEI1cOBA\nRo8ezY4dO/jpp584++yzqVmzJh999BEZGRns3LmTHTt20LhxYwA+/PBDevXqxbZt2+jbt+8h+QHk\n5uby+++/M2PGDB5//HG/744VpR0/fjzNmzdn6tSp7NixgzvuuOOQvHv37k3z5s3Jz89n8uTJ3Hvv\nveTm5havnzJlCn379mX79u10796dG2+8MaDzVRFYJctUbCtWwOmnOzWfH36Ajh2DSj5+vNM08O9/\nhy++cJOvWAHz5weU/oQTYO5cqFfPCWP9+qCPICJSU60ZoTHGmBhyW4YcMvmqpHjbPsAKjT+TJ0/m\ntttuIyMjg3r16pV4f2n9+vV8r+gGxQAAIABJREFU9NFHPPXUU9SoUYMGDRpw2223MXHiRABatWrF\nOeecQ5UqVahfvz5Dhgxh1qxZZe6zsLCQd999lxEjRlCjRg3atGnDlVdeWWIbz44kqlWrxqJFi9i5\ncyd169YlKyvLb/6nnXYa3bt3B6BGjRpetxk2bBg1atTg+OOPZ8CAAcXHFAhfnVysWrWKuXPn8vjj\nj1O1alXat2/PwIEDGT9+fPE2Z5xxBl27dkVE6N+/PwsWLAh4v4nOKlmmYnvnHbjqKqfNXq1aASfb\nvx9uvx0eeghyc+G225wWhAAsWgTnnee0BwxA9erOU7CLL4bOnWNT0dqyxZoRGmOMiaFhw7wXRP4q\nWYFuG4S1a9cWN4cDyMzMLJ5fuXIl+/btIz09nbS0NFJTU7n++uvZtGkTABs2bOCyyy6jadOm1KtX\nj379+hWv82fjxo0cOHCApk2bet1vae+88w7Tpk0jMzOTzp078/XXX/vN3/N4vBGRQ/a9NgK9KK9b\nt460tDRq1qxZIu81a9YUfy562gZQs2ZN/vjjj4j1dBjvolrJEpExIrJeRBaUWn6ziPwiIgtF5LFo\nxmAquX/8w6khBdGzzh9/OE+uFi6EefPg+ONLbXDBBfDww87PzZsDylPEeWerVy+nfmZNB40xxpjy\nl56eXqJ3vry8vOL5Zs2aUaNGDTZv3syWLVvYunUr27ZtK376cu+995KUlMSiRYvYtm0bb7zxRkBd\nmTds2JAqVaqU2O/KlSt9bn/SSSfx/vvvs3HjRnr27EmvXr0A370EBtJ7YOl9Z2RkAFCrVi0KCgqK\n160r1TmYv7wzMjLYsmULu3fvLpF3kyZNyoynMoj2k6yxQFfPBSKSDXQH2qpqW+BfUY7BmIDt3g3d\nuzvdsU+b5qc53cCB0KMH9OsHQdyRyclxuncPMpkxxhhjIqBXr14888wzrFmzhq1bt/L4448Xr2vc\nuDFdunRhyJAh7Ny5E1Vl2bJlzJ49G3C6Wa9duzZ16tRhzZo1PPHEEwHtMykpiYsvvphhw4axZ88e\nfv75Z8aNG+d123379jFhwgR27NhBcnIyderUITk5GYBGjRqxefPmoLtQV1VGjBjBnj17WLRoEWPH\njqVPnz4AZGVlMX36dLZu3Up+fj5PP/10ibSNGzcu7pDDMz+Apk2b0rFjR4YOHcrevXtZsGABY8aM\nKdHphrdYKouoVrJUdQ5QukHSDcBjqrrf3abs56zGlINdu6BrV2ja1Ongolq1MhI89pjTR/tTTwW8\nDxF48UWnZ8KRI8OL1xhT8XkOzWDvUBoTGs+nMddeey1du3alffv2nHzyyVxyySUlth0/fjx//vkn\nxx13HGlpaVx66aXk5+cDkJOTw3fffUe9evXo3r37IWn9PfX5z3/+w86dO0lPT+fqq6/m6quv9pn2\n9ddfp2XLltSrV4+XX36Z//u//wPg6KOP5rLLLuOII44gLS2tOK5Ajr9Tp04ceeSRnHvuudx1112c\nc845APTv35927drRokULunXrVlz5KnLPPfcwYsQI0tLSGDVq1CGxTpw4keXLl5ORkcEll1zCiBEj\n6Ny5s99YKguJdo1SRDKBKarazv08H/gA6AbsAe5U1W99pNXKVOM1Yfr5Z6hRA444Iuike/fChRdC\nZia8/LLH+1dlWb7c6ULw+uuD2t+qVXDyyfDBB07HGt6IeO/6Pdjl/oSSxphwiQiqWmFK2miWVZ5/\no/b3amS4oDnx+SVw/65jHYYxQfP13Q23rIpFxxdVgFRV7QDcBUyKQQymolm1ynkM9c03QSc9cMBp\nvpeS4jxlCriCBdCyZdAVLIBmzZx99evnu+e/1NSgszXGGGOMMXHAx0g/B4lId2CaqkbqDZJVwLsA\nqvqNiBSKSH1V9dqDgOf4A9nZ2WRnZ0coDFNh7N7tvB91663Qu3fQyW+5xellb9o032NfRcNFF8Fb\nbzmT3fwzFVlubm6JcVOiIQpllTHGGBOyMpsLisgbwGnAO8Crqro4qB2ItMBpLtjW/TwIaKKqOSLS\nGvhYVb32Y2nNBU2ZVJ0u+2rVgrFjg+pFEOD55+G555yxrFJSohSjH+vXQ+PGzhBe7dsHliYtzXvX\n66mpTlftwbDmRyYWotFcMNyyKsx9W3NBUy6suaAxkRez5oKq2g84AfgdeE1E5orIIBGpU1ZaEZkA\nfAW0FpGVIjIAeBU4QkQWAhOAK0IN3hhGjIDVq522d0FWsD791BkHa8qU2FSwABo1cn7efnvg/zz5\nGvMq2AqWMRVJmGVVdRH5n4jMd4cWyXGXp4rITBH5VURmiEjdKB+GMcaYCiKgt09UdQfwNvAmkA5c\nBHwvIjeXka6vqmaoanVVba6qY1V1v6r2V9W2qnqyqpY9VLYxvmRkwHvvOR1eBGHpUujb1+lFMIR+\nMnybOBF+/TXoZOvWwdSpEYzDmEoojLJqL9BZVU8AsoDzRORU4B7gE1U9GvgMGBrN+I0xxlQcZVay\nRKSniLwH5AJVgVNV9TygPfCP6IZnTBkGDnTa2wVh927o2ROGDwc/vYyGZu1auPvuoJM9+STccQfs\n2xfheIypJMItq1S1aDTO6jjvKyvQEygazGYc8LcIh22MMaaCCuRJ1sXAU+6TpydUdQMUF0jXRDU6\nYyJMFQYPdrpPv+66KOzgxhudHg5/+CGoZN26Od3HjxkThZiMqRzCKqtEJMkdYiQf513hb4BGqrre\nzScfODx64RtjjKlIAqlk5avqbM8FIvI4gKp+GpWojImSsWPh22+dDi+iMh5ejRrOI6mHHw4qmYjz\nftijj8Kff0YhLmMqvrDKKlUtdJsLNgVOFZE2OE+zSmwWqWCNMcZUbIFUss71suy8SAdiTEDCaE+3\ncKHTkm/yZKczwqi57jqYMwd++imoZB06wNFHw/jxUYrLmIotImWV+15XLtANWC8ijQBEpDGwwVe6\nYcOGFU/R7q7eGGM8JSUlsWzZsoC2HT58OP379wdg1apVpKSkRKxXyBtuuIFHHnkEgFmzZtGsWbOI\n5AswZ84cjj322Ijl501ubm6Ja3m4fHbhLiI3AIOBVsBSj1V1gC/dnpyiyrpwNyWsWwedOsG8eVCv\nXlBJCwrgpJNg6FC4ojz6s3z8cdi8GUaOLHNTz26Zv/gCrrrK6TujPMbssi6hTSxEsgv3SJRVItIA\n2Keq20XkMGAG8BjQCdiiqo+LyN1Aqqre4yW9deFuyoV14R66CRMm8NRTT7F48WJSUlLIysri3nvv\n5fTTT49pXOPGjeOVV17hiy++CDmP5ORklixZwhEB9OQ1fPhwfv/9d8YHcUc3lBhnzZpF//79Wbly\nZcBpPCUlJbF06dKAjilc0erC3d+/cROAj4BHcXpYKrJTVa2zaFO+VOHqq+Gyy4KuYAHceadTySqX\nChbAkCEh1ZLOPBOaN4cJE8oxVmMSWyTKqnRgnIgk4bTweEtVp4vI18AkEbkayAN6RTBuY0w5GTVq\nFCNHjuSll16iS5cuVKtWjRkzZjBlypSgK1kHDhwgOTm5zGWBUlUkzPcXol25DSTGwsJCkpIC6rQ8\nIOGek3jg72yoqq4AbgR2ekyISFr0QzPGw/PPO0+G7r8/6KTTpzvdoz/7bBTi8qVaNfC42KSlOXeh\nvU2pqSWT3nUXPPWU3bE2JkBhl1WqulBVT1TVLFVtp6qPuMu3qOpfVfVoVe2iqtuidAzGmCjZsWMH\nOTk5PP/88/Ts2ZPDDjuM5ORkzj//fB577DEA/vzzT2677TaaNGlC06ZNGTJkCPvc1xOKmr2NHDmS\n9PR0rr76aq/LAKZOncoJJ5xAamoqZ5xxBgsXLiyOY/Xq1VxyySUcfvjhNGzYkFtuuYXFixdzww03\nMHfuXOrUqUNaWlpxPHfccQeZmZmkp6czePBg9u7dW5zXE088QUZGBk2bNmXs2LF+KyQrVqwgOzub\nunXr0rVrVzZt2lS8Li8vj6SkJAoLCwF47bXXaNWqFSkpKbRq1YqJEyf6jHHAgAEMHjyYCy64gDp1\n6pCbm8uAAQN48MEHi/NXVR599FEaNmzIEUccwYQJE4rXde7cmVdffbX487hx4zjzzDMB6NSpE6pK\nu3btSElJYfLkyYc0P1y8eDGdO3cmNTWVtm3bMmXKlOJ1AwYM4KabbuLCCy8kJSWF0047jeXLl/v/\nokSBv0pW0Zn4DvjW/fmdx2djysfixZCTA6+/DlWrBpV040anl/dx40J6ABYxW7d6H0DY2yDCXbvC\nnj1O00FjTJmsrDLG+DR37lz27t3L3/7mewSGhx9+mHnz5rFgwQJ+/PFH5s2bx8MeHVjl5+ezbds2\nVq5cycsvv+x12fz587nmmmsYPXo0W7Zs4brrrqNHjx7s27ePwsJCLrzwQlq2bMnKlStZs2YNffr0\n4ZhjjuHFF1/ktNNOY+fOnWxx/yG4++67Wbp0KQsWLGDp0qWsWbOGhx56CID//ve/jBo1ik8//ZQl\nS5bwySef+D3+vn37csopp7Bp0ybuv/9+xo0bV2J9UQWtoKCAW2+9lRkzZrBjxw6++uorsrKyfMYI\nMHHiRB544AF27tzp9Ylgfn4+W7ZsYe3atbz22msMGjSIJUuW+Iy1KJZZs5whdBcuXMiOHTu49NJL\nS6zfv38/3bt3p1u3bmzcuJFnnnmGyy+/vETeb731FsOHD2fbtm20atWK++67z+95igaflSxVvdD9\n2VJVj3B/Fk3RbyBpDDi1kIEDYcQIp1eIIJMOGgT9+kF2dnTCi4akJLjlFvj3v2MdiTHxz8oqYxKD\nr9YcwU7B2rx5Mw0aNPDblG3ChAnk5ORQv3596tevT05ODq+//nrx+uTkZIYPH07VqlWpXr2612Wj\nR4/m+uuv5+STT0ZE6N+/P9WrV+frr79m3rx5rFu3jpEjR1KjRg2qVatGx44dfcYzevRonnrqKerW\nrUutWrW45557mDhxIgCTJ09mwIABHHvssRx22GF+O2hYtWoV3377LQ899BBVq1blzDPPpHv37j63\nT05OZuHChfzxxx80atSozI4mevbsSYcOHQCKz4snEWHEiBFUrVqVs846iwsuuIBJkyb5zdOTr2aQ\nc+fOZffu3dx9991UqVKFzp07c+GFFxafI4CLLrqIk046iaSkJC6//HJ+CHJonUgIZDDi00Wkljvf\nT0RGiUjz6IdmDM4VdexYuP76oJOOHQvLlzv1s0RzxRUwe7YTvzGmbFZWGRPffLXmCHYKVv369dm0\naVNxkzhv1q5dS/PmBy8XmZmZrF27tvhzw4YNqVqqJU3pZXl5eTz55JOkpaWRlpZGamoqq1evZu3a\ntaxatYrMzMyA3lnauHEjBQUFnHTSScV5nXfeeWzevLk4Vs9mc5mZmT4rI2vXriU1NZXDDjusxPbe\n1KxZk7feeosXXniB9PR0unfvzq+//uo31rJ6D0xNTaVGjRol9u15XkO1bt26Q/admZnJmjVrij83\nbty4eL5mzZrs2rUr7P0GK5A31F4ACkSkPfAP4Hfgdf9JjImgo44K+vbV6tVOd+3jx4OXmyvl68UX\nOYV5QSWpXRsGDHBeRTPGBMTKKmPMIU477TSqV6/O+++/73ObJk2akJeXV/w5Ly+PjIyM4s/e3nkq\nvaxZs2bcd999bNmyhS1btrB161Z27dpF7969adasGStXrvRa0SudT4MGDahZsyaLFi0qzmvbtm1s\n374dgPT0dFatWlUiVl/vZKWnp7N161b27NlTvMxfb3/nnnsuM2fOJD8/n6OPPppBgwb5PH5/y4t4\n23fRea1VqxYFBQXF6/Lz8/3m5SkjI6PEOSjKu0mTJgHnUR4CqWTtd/um7Qk8q6rP4XSNa0xcUnWG\nqrrpJmjXLtbRALt3cyPPBZ1s0CDnXTIbnNiYgFhZZYw5REpKCsOHD+fGG2/kgw8+YM+ePezfv5+P\nPvqIe+5xOiTt06cPDz/8MJs2bWLTpk2MGDGieCypQF177bW8+OKLzJvn3FTdvXs306dPZ/fu3Zx6\n6qmkp6dzzz33UFBQwN69e/nqq68AaNSoEatXry7uaENEuPbaa7ntttvYuHEjAGvWrGHmzJkA9OrV\ni9dee41ffvmFgoKC4ne1vGnevDknn3wyOTk57Nu3jzlz5pToIAIONsnbsGEDH374IQUFBVStWpXa\ntWsXP3krHWOgVLV431988QXTpk2jVy+nk9asrCzeffdd9uzZw9KlSxkzZkyJtI0bN/Y59tdf/vIX\natasyciRI9m/fz+5ublMnTqVyy67LKj4oi2QStZOERkK9AOmuV3cBtf7gDHl6I03nCdZQ4fGOhLX\nFVfQkw9gW3Adkx11FLRpAx98EKW4jKlYKnxZlZpa8t2UNOvn15iA3H777YwaNYqHH36Yww8/nObN\nm/P8888Xd4Zx//33c/LJJ9OuXTvat2/PySefHHRHCSeddBKjR4/mpptuIi0tjdatWxd3MpGUlMSU\nKVNYsmQJzZs3p1mzZsXvJp199tm0adOGxo0bc/jhhwPw2GOPceSRR9KhQwfq1atHly5d+O233wDo\n1q0bt912G2effTatW7fmnHPO8RvXhAkT+Prrr6lfvz4jRozgyiuvLLG+6GlUYWEho0aNokmTJjRo\n0IDZs2fzwgsv+IwxEOnp6aSmppKRkUH//v156aWXOOqoowAYMmQIVatWpXHjxgwYMIB+/UoOaThs\n2DCuuOIK0tLSePvtt0usq1q1KlOmTGH69Ok0aNCAm266iddff70473jp/t3nYMTFGzij3PcFvlHV\nL9w27tmqGvgoZqEGZ4MRV0579oBH++Fg5Oc7T68++sgZFyteTJJe9HouGwYPDirdhAnO06wZM6IT\nV1qa0/Nhaamph/Z6aEykRHIwYo88K2RZ5W8AYhucuPKxwYiNibxoDUZc5pMsVc1X1VGq+oX7eWWg\nhZaIjBGR9SKywMu6f4hIoY25ZUooLIRu3ZzBrYKk6tRhBg6MXQXL13hYb9a+FkaPDjq/iy+G776D\nFSsiHys4FSlfLxZ7Ow67c27iVThllTHGGBNpgfQueLGILBGR7SKyQ0R2isiOAPMfC3T1kmdT4Fwg\n75AUpnJ78UXYt88ZLCpIkyc7Q2p5jINX7nyNh/Xu9nOcwZT9jA/hTY0acPnl4DFeX7nwVfny9tTL\nmHgQZllljDHGRFQgzQWXAt1V9ZeQdiCSCUxR1XYeyyYDDwEfAiepqteGSdZcsJJZswbat3dG4S1j\nbIbSNm2C44+H998Hd8iGmPDbfGfbtpBGRJ4/33mitWxZaGOERJI1TzKREKXmgmGVVWHu25oLmnJh\nzQWNibyYNRcE1key0BKRHsAqVV0YqTxNBXHbbU57vyArWAB33gl9+sS2glWmECpYAFlZzitqc+dG\nOB5jKpaIllXGGGNMOKoEsM23IvIW8D6wt2ihqr4b7M5E5DDgXpymgsWLg83HVEAzZ8L33zsDWwVp\n1iz45BP4+ecoxBUHRKBvX6cTDD8DxBtT2UWsrDLGGGPCFUglKwUoALp4LFMglIKrFdAC+FGc/hWb\nAt+JyKmqusFbgmHDhhXPZ2dnk52dHcJuTdzr2BE+/DDoXgX//BNuuAGefhrqVOARcfr2dZ7SPfUU\nVK1QnVKbyiA3N5fc3Nxo7yaSZZUxxhgTljLfyQp7ByItcN7Jautl3XLgRFX1+jq9vZNlyvLoo/Dl\nlzBlSuzfV4LoviPRsSPcfz+cf3508g+EvQNiIiEa72TFkr2TZcpLPL+T1aJFC/LyrD8zk3gyMzNZ\n4aUb53DLqjKfZIlIa+AFoJGqHi8i7YAeqvpwAGknANlAfRFZCeSo6liPTRRrLmhCtGwZPPkkfPNN\nfFSwArZokdNVfdtD7jv4dfnlTpPBWFayjIlX4ZRVxpjwefsn1ZjKLJCOL0YDQ4F9AKq6AOgTSOaq\n2ldVM1S1uqo2L1XBQlWP8NWzoDH+qMJNN8Edd0DLlrGOJkizZsFjjwWd7NJLYepU2L07CjEZk/hC\nLquMMcaYSAukklVTVeeVWrY/GsEYE6h334W8PLj99lhHEoKLLnIGW967t+xtPRx+OJx2mlPRMsYc\nwsoqY4wxcSOQStYmEWmF07QPEfk7sC6qUZmKb9s2yM6GgoKgk+7Y4fT2/uKLUK1a5EOLuvR0aNMG\nPvss6KSXXOJUMI0xh7CyyhhjTNwIpJJ1I/AScIyIrAFuA26IalSm4rv3Xmc8rJo1g0764IPQpQuc\neWYU4iovF18cUm2pZ0+YMQP++CMKMRmT2KysMsYYEzcC7l1QRGoBSaq6M7ohldin9S5YEc2b59QW\nfv4ZUlODSvr993DeeU7fEQ0aRCm+MATc29eKFXDqqbBuHSQnB7WPzp1hyBDo0SOkEMNivZmZSIhm\n74IVrayy3gWNp3juXdCYiiZqvQuKiNe3XcTtxk1VR4W6U1OJ7d8P118PTzwRdAXrwAEn6WOPxWcF\nKygtWsDIkc5AX0GODVb0ECwWlSxj4o2VVcYYY+KRv+aCddzpZJwmF03c6XrgxOiHZiqk556DevWc\n/siD9NJLUKMGXHVV5MOKiauuCrqCBU6/GVOmwL59kQ/JmAQUdlklIk1F5DMRWSQiC0XkZnd5jois\nFpHv3alblI7BGGNMBePzSZaqDgcQkdk4AwbvdD8PA6aVS3Sm4mnZEp5/PuiBrfLzISfH6f08ocbE\nioKmTeGooyA3F849t3z3nZrq+/ynpsIWG5DBlLMIlVX7gdtV9QcRqQ18JyIfu+tG2dMwY4wxwSpz\nMGKgEfCnx+c/3WXGBC/ENm633w7XXgvHHRfheBJUUZPB8q5k+atEVfbKr4m5kMsqVc0H8t35XSLy\nC87TMAD7ZhtjjAlaIL0Ljgfmicgw987g/4DXohmUMZ5mzoS5c+H++8t/32lpTuWh9JSWVv6xeLr4\nYnj/fSgsjG0cxsSRiJRVItICyHLTA9wkIj+IyCsiUjcyoRpjjKnoynySpaqPiMhHQFGH2QNUdX50\nwzLGsWcPDB7svMoVQm/vYdu61XvvXRF9aqMadIZHHum82vb993DyyRGMxZgEFYmyym0q+DZwq/tE\n63ngIVVVEXkYGAVc4y3tsGHDiuezs7PJzs4O/iCMMcbETG5uLrm5uRHLL+Au3GPBunA3OTlOd+1v\nvx2b/fvqIjnY5T6pQlYWTJ8OTZqUvb2HO++EWrXA43+7mLLupE2gotmFe6hEpAowFfhIVZ/2sj4T\nmKKq7byssy7cTbmwLtyNKT/hllWBNBc0JnS//gr//nfISZ9/Hp4+5N+dCkQE2rRxKllBuvBCmDo1\nCjEZUzm9CvzsWcESkcYe6y8Gfir3qIwxxiQkq2SZ6FF12vqFcKu1KOn99wf9gCfxhFhb6tgRli2D\ntWujEJMxlYiInA5cDpwtIvM9umsfKSILROQHoBMwJKaBGmOMSRhlVrJE5GYRCW7UWGMAJk6EzZvh\n5puDTjphgvM+1I03RiGueNOtG3z+OfzxR1DJqlaFrl1DeghmTIUTTlmlql+qarKqZqnqCap6oqr+\nV1WvUNV27vK/qer6SMdtjDGmYgrkSVYj4BsRmSQi3USso2YTgG3b4I474MUXoUogIwUctHVryElD\n4qsHQRFn7KdyCSAryxn4KkgXXgjTbNQ6Y8DKKmOMMXGkzEqWqt4PHAWMAa4ClojIP0WkVVlpRWSM\niKwXkQUey0aKyC9ul7jviEhKGPGbeHXffc6YWB06BJ303nudLspPPTUKcXlR1IOgt8nXuFBFg/JG\nrFLWowcsXBh0sm7d4LPPgn4IZkyFE05ZZYwxxkRaQO9kud0mFQ3WuB9IBd4WkZFlJB0LdC21bCbQ\nRlWzgCXA0KAiNvHvwAHYvh0efTTopF9/DR9+CI88EoW4ImjLluAqZWX6xz+c7gKDVL8+tGsHs2aF\nuF9jKpAwyipjjDEmogJ5J+tWEfkOGAl8CbRV1RuAk4BL/KVV1TnA1lLLPlHVoiFUvwaahhK4iWPJ\nyfDGG0E/1tm/H667Dp580hkDqlIJo2XT+edbk0FjwimrjDHGmEgL5I2XNOBiVc3zXKiqhSJyYZj7\nvxp4M8w8TAXxzDPQqBH07h3rSBJL167Qt2+sozAm5qJZVhljjDFBCaSS9RFQ3AjKfYfqWFX9n6r+\nEuqOReQ+YJ+qTvC33TCPkVazs7PJzs4OdZcmjq1cCf/8p9Nc0F5XD05WlvNeWV4eZGbGOhpjDpWb\nm0tuCB27BCkqZZUxxhgTCilrlHoRmQ+cWDScvYgkAd+q6okB7UAkE5iiqu08ll0FXAucrap7/aTV\nsuIzFcPf/gYnnQQPPFD++xYJaSivuNKvH5x1FgwaFLsYKsJ5NOVDRFDViN5OCbesCnPfUSur/P1d\n2d9c5SPDBc2xX7ox5SHcsiqQji9KlB7u+1TBdKwt7uR8cAZ4vBPo4a+CZRLMvHnOo5QQfPABLF4M\nd90V4ZgS0f/+B7/9FnSyLl1gxowoxGNM4gi3rDLGGGMiJpBK1jIRuUVEqrrTrcCyQDIXkQnAV0Br\nEVkpIgOA/wC1gY9F5HsReT7k6E18KCiAPn2cmlKQdu1yxip+8UWoXj0KsSWaqVNh7Nigk3Xp4nTl\nvn9/FGIyJjGEXFYZY4wxkRZIJet6oCOwBlgN/AUIqFGSqvZV1QxVra6qzVV1rKoepaqZqnqiOw0O\nPXwTFx55xBnUqmvp3vrLlpMDnTuDvWrn6tIFZs4MOlnjxs77WPPmRSEmYxJDyGWVMcYYE2llNqVQ\n1Q1An3KIxSSin3+Gl1+GBQvK3raUH35wenr/6acoxJWoOnSA33+HDRvg8MODStq1q9NksGPHKMVm\nTByzssoYY0w8KbOSJSINcTqpaOG5vapeHb2wTEJQheuvh2HDID09qKQHDjhjYv3zn9CwYXTCS0hV\nqzqP9T75JOh+2bt0gfvug+HDoxOaMfGsMpZVqakle2NNTQ1jQHRjjDERFchLwR8AXwCfAAeiG45J\nKD/+eLCiFaSXXoJq1WAa5Z05AAAgAElEQVTAgCjEleiKHkkFWck64wznweKWLZCWFqXYjIlfla6s\nKl2hsuEvjDEmfgRSyaqpqndHPRKTeLKyIDcXkpODSrZunfMuVm4uJAXyVmBl07071KsXdLLq1eHM\nM52HYL16RSEuY+KblVXGGGPiRiD/4k4VkfOjHolJTEFWsACGDIFrr4U2baIQT0XQtClcdllISUPs\nN8OYisDKKmOMMXEjkMGIdwK1gD/dSQBV1ZSoB2eDEVc4M2bADTc4nV3UrBnraBwVaUDPRYvgwgth\n+fLy33dFOo8muqI0GHGFLKuC+buyv8GKzwYjNqb8hFtWBdK7YJ1QMzfG0549MHgwPPdc/FSwKprj\njnPO8/Ll8P/s3XucTPX/wPHXe1nWYtl1X5cl/ahvJSFFZJGUyLeUyvWr6KIb6hu6semmi27fbxcS\nUlRKSiglq5S+EiWKSKzburPui/38/jiz2+zay5zZOXNmZt/Px+M8zJw5n3Pec8yez3zm8znvT4MG\nbkejVPBoXaWUUiqUFDlcUCx9ROQRz/O6ItLS+dBUSPrzT7+LpqRAixZw5ZUBjEflIgIdOsCCBW5H\nolRwaV2llFIqlPhyT9arQCsgO9XZIeC/jkWkQtfatXDRRbBrl+2iy5fDW2/Byy87EJePEhKsRkje\nJT7evZic0LEjfP2121EoFXRaVymllAoZvjSyLjLG3AkcAzDG7APKOBqVCj1ZWTBwoJUW0ObEVidP\nWkWfeQZq1HAoPh/s22fdr5B3Cdl5ZSZPtnLd29Shg9XI0nszVAmjdVVB3nkH0tLcjkIppUoUXxpZ\nJ0SkFGAgZ8LHLEejUqFn/HirtTR4sO2i48ZBlSrQv78DcUWyypXh449tF2vQwLrnbfVqB2JSKnRp\nXeVx6BBMnw533w09expuTknixbPfYHPngcUa8q2UUsp3vjSyXgY+BqqLyBPAYuBJR6NSoWXLFnjk\nEXjzTdsp29evt3qw3nhDJ8q0rV07+P57yMy0XTS7N0upEsTvukpE6ojI1yKyWkR+FZF7POvjRWS+\niKwVkS9EpJJz4RfDiRPwwAPcwHRGjoSkJHj3XahfH3r0EFo90JZfr0/hgsUvc9u537F3ymy3I1ZK\nqYhXZAp3ABE5C+iIlRJ3gTHmd6cD8xxXU7iHgjvusMb5jR5tq5gx1v1BXbvCsGHOhGZHWKY3vvBC\nqyuwbVtbxaZPh/feg08+cSiufITl+VWucCKFu2e/ftVVIlITqGmM+VlEKgA/Ad2BAcAeY8wzIjIc\niDfGjMinvHsp3Ldvh+uvZ/7xdly57DH69CtFSorVwMpr3z545LadzJl5jI/f2EXTW5o7ErNyjqZw\nVyp4iltX+TJPVr381htjHB/grY2sEHHkiNWDVbasrWITJ8Lrr8OSJVC6yMkCnBeWjYDhw6FcOdsN\n3PR0OOss2L07eOc+IcH6EpdXfHwI3/emXOHQPFkBq6tEZBbwH8/Szhizw9MQSzXGnJXP9u40sjZu\nxHS8jCfqvcGrazuwfbv4dI1777W93Ds6nnnzhGbNAhqucpg2spQKHsfnyQLmYI1xFyAGaACsBc7x\nIbiJQFdghzGmiWddPPA+kARsBHoaYw74E7wKEj8mtdq+HUaOhK++Co0GVtjq0AGeesp2sZo1oU4d\nK6tjyyAlsS6oIaXDRFWQ+F1XeROR+kBT4AeghjFmB4AxJl1Eqgcw3uLZsIFT7Tpwa505rDpyDsuW\nQe3avhW98Y4EytaEq66CH36whhcqpZQKLF8mIz7P+7mINAN8zX4wCXgFeNtr3QjgK6/hFyM961QE\nuesuuPVWaNLE7UjCXPv2cMklfhXNvi8rWI0spdxUzLoqu0wF4EPgXmPMIRHJ22VQYBfCaK/e5uTk\nZJKTk+0c2raTh4/TO3Ehe8o3YMEsqFDBXvlrroENG6BHD1i8GGJinIlTKaXCRWpqKqmpqQHbn0/3\nZJ1WSOTXvBVaIdsmAbO9erLW4MPwC8+2OlwwDM2cCQ8+CD//HFoVd1gOFyyGTz6B//wHvvzS3ThK\n2nlXRXPqnqx8jmOnrioNfAbMM8a85Fn3O5DsVV8tNMacnU/ZoA4XNMb6EWvjRpg9++/rrN2/NWPg\n2mutocV+dJgrF+hwQaWCx/HhgiLinbIgCmgGbPP3gED1kB1+oSyHD1u1tR/DBHfvtnqxZswIrQZW\nSdSuHfTpA8eP276dTqmwE4C66i3gt+wGlsenwL+AsUB/IIipZAo2ahSsWAELFxbvOisCr70G5597\niuuS99G8c9XABamUUiWcLyncK3otZbHGvXcPYAz6k0youf9+eOwxv4redRf06uX3CDcVQJUrw9ln\nW4lHlCoB/K6rROQSoDfQQURWiMhyEbkCq3HVSUTWYmUtfNqRyG2YPBmmTYO5c6FixeLvr2ZNePqi\nj7m7337tcVZKqQDy5Z6slAAfc4eI1PAafrGzsI2DPc69xPvyS5gzB1autF10xgxriOCkSQ7EpfzS\nvj2kpoL+2Sg3BXqce36KU1cZY74DCpoE8DJ/9xtQ27fz07Za/PvfsGgRVM9nDEh8fO5EM75m9uz3\n9mW8XHMzH72QxnXD8k3SqJRSyiZfUrjPppDeJmPM1UWUr491T9Z5nudjgb3GmLGFzTvi2VbvyQqm\njAw47zwYPx46d7ZVdOdOK8nFrFlw8cUOxVdMYX1v0IED1qTE1arZKjZ3Ljz7rDWsyC1hfd6VIxxK\n4V6suqqYx3b2nqwdO9ndpAMtSi3nuZfKcN11Nsr6GNaC22dw6zttWbOvJtHR/sernKX3ZCkVPMWt\nq3wZLrgBOApM8CyHgD+B5z1LYcFNA74HGolImogMwBpuEVLDL5THffdZjSubDSxjYPBg6N8/dBtY\nYe+FF+C552wXa9MGfvwRjh1zICalQovfdVVoM2TdMohe5T7mhj6+N7Ds6vjcldTP/INp49KdOYBS\nSpUwvvRkLTPGtChqnRO0JyuIfv4Z/vlPa5hgXJytou+9Z93CtXx5aCe7COselYULrYnHfvjBdtGW\nLa3erHbtHIjLB2F93pUjHOrJisi6apBMoHHiIWbVv5fURVG25h20+7e3oO9k7vqsM6v31CLKl59g\nVdBpT5ZSwROMnqzyInKG1wEbAOX9PaAKUU2bwrJlthtY6elw770wZUpoN7DC3sUXw6pVcPCg7aLJ\nydZ9WUpFuMirq9atoxfvMvbo3Ux9x14Dyx8dXryaikkJzJrl7HGUUqok8KWRNRRIFZFUEVkELASG\nOBuWckVVe+l7jYHbb4eBA+HCCx2KyQ8JCdYvuHmX+Hi3IyuGcuWgWTP4/nvbRZOTrRvllYpwEVdX\nHX30KXowk3EvlaZBA+ePJ1USeODhsrz4ovPHUkqpSOfTZMQiUhbInjB4jTHmuKNR/X1cHS4Ywt5+\n2xqGtmyZO/MwJSTAvn2nr/c1o1bYefRROHHC9qyhGRmQmGjNYeZGb6MOF1R5OTUZcaTVVXffcZL/\nvF6KrCzJlTXQ97js/+2dOAH168MXX8C559o/pnKWDhdUKngcHy4oIrHAv4G7jDG/APVEpKu/B1SR\n4a+/rDwZ77zj3kS3+/ZZXyDyLhHZwAK44gqrR8umuDhrvqylSx2IyQfZaaXzLgkJ7sSjIlOk1VXH\njsH2XaUB/xpY/oqOtkYnvP568I6plFKRyJfhgpOATKCV5/lW4HHHIlLBYQxs2OBX0ZMnoW9fGDEC\nzj8/wHGpgrVubfVm+cHNIYN79+bfGM6vF1KpYoiouiomBj780J1jDxpkTXh86JA7x1dKqUjgSyOr\noTHmGeAEgDHmCBDE39WUI954A/r08Wsc19ixVu/V0KEOxKUcockvVAmgdVWA1KkD7c7by3sTD7sd\nilJKhS1fGlmZIlIOzySPItIQCMo4d+WQtWvh4YfhrbewOw7lxx/hpZesbIKa4jd8tGkD//sfHNe/\nXBW5tK4KoP6nJvLOfw+4HYZSSoUtX74mjwI+B+qKyLvAAuABR6NSzjlxAnr3tia2Ouusorf3cviw\nVfQ//7F+6VTho1Il67/brfuylAoCrasC6MqhZ7Pqr1jS0tyORCmlwlOhjSwREWANcC3wL2A60MIY\nk+p4ZMoZKSlQowbccYftosOGQatW0LOnA3Epx2kqdxWptK4KvLLdLue6UrOY9l+9eVIppfxRaCPL\nk5N2rjFmjzFmjjHmM2PM7iDFpgJt716YMcOvYYKffgrz58MrrzgUm/LdzJnwyy+2i+l9WSpSaV3l\ngDJl6NN5J1Mnn9QpGJRSyg++DBdcLiIhNNWs8ltCAqxaZfVk2bB5s5Vt6p13rHTgymXLlvmVdiz7\nvqzMTAdiUsp9WlcFWOt7W3JkfyYrV7odiVJKhR9fGlkXAUtE5E8RWSkiv4qIXnLDVXS0rc1PnoSb\nbrIyCV5yiUMxKXv8HPdXuTI0amQlL1EqAmldFWBRl7ahx6W7mPmRdmUppZRdpQt6QUQaGGP+AjoH\nMR4VYkaNgvLl4QG9fTx0tG4Ny5fDkSMQG2uraPaQQW0wq0ihdVXBsicC935ua7L20qW5NqUpt90G\nKY8FPDyllIpohfVkZY9HessYsynvEozglLvmz4fJk+HttzVde0ipUAHOOw9++MF2Ub0vS0UgrasK\nkHcicH8mAL/4Yti9G/74I/DxKaVUJCuwJwuIEpEHgUYiMizvi8aYccU5sIgMBW4BsoBfgQHGGL1b\nJJAyMmDWLOjXz3bR9HT417+s+7Bs3sKlgqFdO2vIYIcOtoq1bQu9eln3ZZUp41BsSgWXo3VVSRcV\nBddcAx9/DMOHux2NUkqFj8L6J24ETmE1xCrms/hNRBKBu4FmxpgmnmPcWJx9qjyMsbJV+NHbceqU\nNR/WoEG2v8OrYBkwALp1s12scmX4v/+zcmcoFSEcq6uU5dprraSmSimlfFdgT5YxZi0wVkRWGmPm\nOXDsUkB5EckCYoFtDhyj5JowAdassdLJ2fTkk1bCi0cecSAuFRiNG/tdNHvIYOvWAYtGKdcEoa4q\n8dq1g/XrDZs3C3Xruh2NUkqFhyLvtHGi0jLGbAOeB9KArcB+Y8xXgT5OifXTT/DQQ/DBBxATY6vo\n/Pnw2mswbRqULmwwaZAkJFg3bue3xMe7HV140vuyVCQqbl0lIhNFZId3RkIRGSUiW0RkuWe5oviR\nhp/oU8focuIT5sw64XYoSikVNlxJZyAilYHuQBKQCFQQkV5uxBJxdu+GHj2slpLN3o6NG63bt6ZP\nh9q1nQnPrn37ct+47b3YypKlcrRtC0uWwAn9vqSUt0nkn6FwnDGmmWf5PNhBhYSYGLrUXMG86X5k\nzlBKqRKqsBTu1xtjZnilxw2ky4ANxpi9nmPNBFoD0/JuOHr06JzHycnJJCcnBziUCHPwIAwbBtdd\nZ6vYsWNW2+yBB6yhISpyxcfDmWda92W1auV2NKokSE1NJdWh7tNA1VXGmMUikpTfIYoRXsS4vEdF\nbhsXx/HjULas29EopVToE2Pyn2RQRJYbY5pl/xvQg4q0BCYCFwLHsX5B/NEY898825mC4lOBYwwM\nHAiHDsF77+WeVyVYEhLyTy9se14X5ZOhQ6F6dRg50r0YRKzPnip5RARjTECuNIGsqzyNrNmehEyI\nyCjgX8ABYBlwnzHmQD7lHKurAvl3Uqx9LVtG60tLkfLJBXTqFJh4lH2SIphReuFUKhiKW1cVNlxw\nj4jMBxqIyKd5F38PCGCMWYo1t8kK4BesXwrHF2efyn8TJlhJCCdOdKeBBQUPC9QGVhH694dvv7Vd\nTO/LUhHEsboKeBU4wxjTFEgHSm46+GbN6CKfM/e909qYSiml8lFYaoOrgGbAVKwkFQFljEkBUgK9\nX2XP0qXw8MPW9/QKFdyORtlWowZ8/bV1o5UNbdtC377WfVnR0Q7FplRwOFZXGWN2eT2dAMwuaNuI\nH9oeFUWXjsfp9XkUL7gdi1JKOSDQQ9sLHC6Ys4FINWPMLhGpAGCMORSwoxdBhwv64Phxa1ZZP7qg\n0tPhoovgxRetySbdpEPH/DRvHjzzDCxcaLvoBRfAq6+6d1+W/p+XXIEcLui1z2LXVSJSH2u44Hme\n5zWNMemex0OBC40xpyVpCpfhgnmHZdsdjp11ypBYW/juO2jYMDAxKXt0uKBSwePkcMFsNURkBbAa\n+E1EfhKRc/09oAqgrCzo2RMmT7Zd9Ngxq2E1YID7DSxVDJdcAj/+aP2H2tS+vV9tM6VCVbHqKhGZ\nBnwPNBKRNBEZADwjIitF5GegHTDUkciDZO/e3MOx87sPtjBRpYQrr7R+21FKKVU4XxpZ44Fhxpgk\nY0w94D70/qnQ8OCDcOAA9O5tq5gxcNttUKcOPPqoQ7EVoKB5r3TOKz/FxcE551g31dnkdiMrPj7/\nz0JCgnsxqbBWrLrKGNPLGJNojClrjKlnjJlkjOlnjGlijGlqjPmnMWaHY9GHiSuugC++cDsKpZQK\nfb40ssobY3K+ihljUoHyjkWkfDN1KsyYAR9+aA0XtOHZZ2HVKpgyBaIcmimtoMYUaIKLgGvf3rq5\nzqZLL7XaZsePOxCTD/L+qu7vr+tKeWhdFQQdOsA33+g8e0opVZTCEl9k2yAij2DdVAzQB9jgXEiq\nSEuWwH33Wd0QVavaKjp7Nrz0EvzvfxAb61B8/J0tUAXBY4/5lb2iUiU46yzrs3DppQ7EpVRwaV0V\nBNWqQYMG1ijl1q3djkYppUKXL/0YNwPVgJnAR0BVzzrlliefhEmTrGFiNqxaBbfcAjNnWkMFVYTw\nM/EJuD9kUKkA0roqSC478y8WzMt0OwyllAppRWYXdJNmFyxAVpbtcX7bt1tZ5J54wvYtXH7RzHHh\nYd48GDs2tObM0s9O5HMiu6CbwiW7YKD2Pa/JcMbyAKkrqwQ+KFUozS6oVPAEI7ugCjU2G1gHD8JV\nV8HAgcFpYKnw0aYNLFsGR4+6HYlSKly0vTqeZWsqcPiw25EopVTo0kZWhDt50sry3rw5PPSQ29Go\nUFOxIpx3nnWbn1JK+aJCl0tpVmY1ixe7HYlSSoWuIhtZInKJL+uUg/wcK2IM3HGH9fjVV/2+bUeF\ni5Urdb4sVWJpXRVEF15Ix5Of89XsI25HopRSIcuXnqxXfFynnDBxIgz1b/7LJ5+En36CDz7wK/mc\nCjd33AHffWe7mDayVITQuipYoqO57IK9LJjr0vwPSikVBgpM4S4irYDWQDURGeb1UhxQyunAFFZW\ngocegkWLbBedPBkmTLCGgVWsGPjQVAhKTrYyWHTsaKtY69bw889w+DCU11mFVJjRusodLR+8jD9v\nqsju3bZnElFKqRKhsJ6sMkAFrIZYRa8lA7jO+dBKuO++g379rHzrjRvbKjprFowcCZ9/DrVqORSf\nCj3JyX51SZUvD02b+tUJplQo0LrKBdHdrqBtcmntBVdKqQIUmcJdRJKMMZtEpAKAMeZQUCKjBKdw\n/+UX6NQJpk6Fzp1tFV2wAG66yeoEa97cofh8oGm4XXD4MNSoATt22O6SeuQRK0nKU085FJsN+tmJ\nfE6kcI/UuioUU7hne/55+PNP655fFRyawl2p4AlGCveKIrICWA2sFpGfRORcfw+YTUQqicgMEfld\nRFaLyEXF3WfEeOop+O9/bTewli6FG2+EGTOC08BKSLAq6fyW+Hjnj6/yyO6S+v5720X1viwVARyp\nqyJZfHzu63ZCgr3yycl+jWZXSqkSocB7sryMB4YZYxYCiEiyZ13rYh77JWCuMeZ6ESkNxBZzf5Fj\n2jTbc2H99htcfTW89Ra0a+dQXHns26c9DiHnlltsf3bAmqh61SprTjW9h0+FKafqqoi1d2/u53Yz\n0DZtClu3ws6dUL164OJSSqlI4Mu3sfLZlRaAMSYVKNbt8SISB7Q1xkzy7POkMSajOPuMKDa/JP/5\np9Xp9dxz0K2bQzGp8DBggO3EFwDlykGLFvDttw7EpFRwBLyuUoUrVcqa0Pybb9yORCmlQo8v3+Y3\niMgjIlLfszwMbCjmcRsAu0VkkogsF5HxIlKumPsskTZsgA4d4OGHoU8ft6NR4UyHDKow50RdpYrQ\nbscHLJqn82UppVRevjSybgaqATM9SzXPuuIoDTQD/muMaQYcAUYUc5/had8+yMz0q+jGjVYDa/hw\nuO22wIalSh5tZKkw50RdVaL4c49Wu7I/kPrlCeeDU0qpMFPkPVnGmH3APSJS0XoakIxNW4DNxphl\nnucfAsPz23D06NE5j5OTk0lOTg7A4UPE3r3W0K4hQ6B/f1tFN22yvhTfdx8MHhyYcBISrDZfXvHx\np4/dV5Hnootg7VrYvx8qV3Y7GhVJUlNTSU1NdfQYDtVVJYo/92g165pI2qgyOl+WUkrl4UsK9/OA\nt4Hs37R2A/2NMauKdWCRRcAgY8wfIjIKiDXGDM+zTeSmcN+3z2pgdewIzzxj647jzZutrE533221\nzwKloHS+dter8NWpE9x1F3Tv7l4M+rmKfA6lcHekrvLx2GGZwj0gx166lCs7ZnLr22245pqghFWi\naQp3pYInGCnc38DK2JRkjEkC7sPK2FRc9wDvisjPwPnAkwHYZ3jYs8f6Ntu+ve0G1saNVgNr8ODA\nNrBUhHnkEUhPt13sssvgq68ciEcp5zlVV6nCNGtG8okvSf38qNuRKKVUSHElu6BnP78YYy40xjQ1\nxlxrjDlQ3H2GhZ07rRzrHTta6QBtNLDWroVLL7UaV/fd52CMKvytWmXNTG3T5ZfD/PkOxKOU8zS7\noBtKl6Zd0wMsmu/fvcVKKRWp3MouWHJVrGhlqnj6aVsNrJUrrY6vlBRrmKBSherUCb780nax88+3\nRrKmpTkQk4/y3nxfnMlSVYmidZVLmr87jA174vTeXaWU8mI3u+BHQFU0Y5P/ypWDvn1tNbCWLrW+\nM7/4ojUNklJF6tTJGvdn82aOqCirk9WP9lnA7N1rhZ3fkl9iFqU8ilVXichEEdkhIiu91sWLyHwR\nWSsiX4hIpYBHHQGiG9ajVSvRefaUUspLoY0sESkFPGSMuccY08wY09wYM8STxUkFQWoqdO0KEydC\nz55uR6PCxplnWjOFrllju6gOGVThJkB11SSgc551I4CvjDGNga+BkQEKOSzYSenerh0sWhS82JRS\nKtQV2sgyxpwC2gQplshUjLRQM2ZYDav33rMaWoGSkJD/UKz4+MAdQ7lM5O/eLJs6dbJu58rKciAu\npRwQiLrKGLMYyNso6w5M8TyeAvyzOMcIN3l7lQvrSW7XzvpRUCmllKXIebKAFSLyKTADOJy90hgz\n07GoIsUHH8Ds2TB1qu2iL79sJR788kvrPplA2rdPU2SXCA89BDExtovVqQPVqsGKFdC8uQNxKeUM\nJ+qq6saYHZ79pItI9WLGGLEuvBDWrdN59pRSKpsvjawYYA/QwWudwRr3rgry4ovw/PPw2We2imVl\nwYgRVtvsu+8gKcmh+FTka9DA76KXX2418LWRpcJIMOoq/XmqAGXKwEUtTrJ4cemAjrxQSqlwVWQj\nyxijqRbsyMqCBx6AuXNh8WJbraTjx+GWW+Cvv6yiVao4GKdShejUCcaNsxr8SoUDh+qqHSJSwxiz\nQ0RqAjsL2nD06NE5j5OTk0lOTnYgnBCWmUny92NJPW84XbuWcTsapZSyLTU1ldQAjnsWp2apDwQR\nMaEc32mOHrUyB+7YAZ98Yivf9K5d0KMHVK0K775rJSF0ioi94YIFbW93Pyp8HDwIiYnWRzk21u1o\n/qafucggIhhjfE+xGiQiUh+YbYw5z/N8LLDXGDNWRIYD8caY0356cLKuCqXPfFGxfNv0boYdeZwf\n/9AkjE6RFMGMCpEPhFIRrrh1lS8p3JWvoqOhVSsr2YCNBtbq1XDRRdC2LXz4obMNLH8UNG+RJsqI\nXBUrQrNmmi1MlRwiMg34HmgkImkiMgB4GugkImuBjp7nqgAtu1RlzaYYDhxwOxKllHKfNrICqXRp\nuO8+KFvW5yLz5v09yfATT1jzFIWaguYt0oknw8TJk5CZabtY587w+ecOxKNUCDLG9DLGJBpjyhpj\n6hljJhlj9hljLjPGNDbGXG6M2e92nKGsbIdLaBnzK4sXux2JUkq5r8iv9CJSwzNJ4zzP83+IyC3O\nhxbZjLFyY9xyC8yaZY0yVMoRffvCRx/ZLtalC8yZEzpDlZQqjNZVzity3qzWrUk+Oo+F80+4Ep9S\nSoUSX/pNJgNfAIme538AQ5wKKGycPGnlqvXD4cPQuzdMngzffw+tWwc2NKVySU62Wks2nX8+HDsG\nf/wR+JCUcsBktK5yVJHzZsXG0v7SU6R+ddKV+JRSKpT40siqaoz5AMgCMMacBE45GlWoS0+30q+N\nHWu76B9/WPdflSkDS5ZA/fqBD0+pXLp0scb9nbL3Zyvyd2+WUmFA66oQ0HLuaP7YXM7f3yCVUipi\n+NLIOiwiVfDMDyIiFwMl97bWxYuhRQsrS8Xjj9sq+vHH0KYN3H03TJoUegkuVISqW9dKFbh0qe2i\nV12ljSwVNrSuCgFlysDFF8M337gdiVJKucuXRtYw4FOgoYh8B7wN3B2Ig4tIlIgsF5FPA7E/RxkD\nL7xg5VkfPx4eewxKlfKp6MmT1nxDQ4ZYcxPfdpvVS6BU0PjZWurY0WqbZWQ4EJNSgeVYXaXy532P\nlvf9WcnJsHCha2EppVRIKHQyYhGJAmKAdkBjQIC1xphA3dV6L/AbEBeg/Tnn/fetCaz+9z9bY/z+\n+su6/6piRfjpJ2seLH8kJOQz/h2rktMsf6pI3brB9Om2i1WoYN0z+OWX1u8LSoWiINRVKh/edY/3\nD4ft28PgwcGPRymlQkmhPVnGmCzgv8aYk8aY1caYVYGqtESkDtAFeDMQ+3Pc9ddbQwVtNLCmT7fu\nv7ruOitVu78NLLAaWPmlUc+v4aXUaVq3hlde8atoKA0ZLGjONhvT0qkI5GRdpexr0QI2bNAfAJVS\nJZsvwwUXiEgPkcNIIBIAACAASURBVIAPcHsB+Dee8fMhr1QpiInxadODB+Ff/4LRo618A8OGheb8\nV0r54qqrrB8JsrLcjqTgOdv0xwaFc3WVsin6+CFa19+mk5krpUq0QocLetyGNdb9pIgcwxqGYYwx\nfg/xE5GrgB3GmJ9FJNmzT5/Vr1+fTZs2+Xv4oGrePHD7Kuirgz9fKfRriDuSkpLYuHGj22HY0rAh\nVKoEK1YE9vOsVIAFvK5SfipdmuTfX2PhFw9zzTVl3Y5GKaVcUWQjyxhT0YHjXgJcLSJdgHJARRF5\n2xjTL++Go0ePznmcnJxMcnIymzZtwugMqSoMheuP7FddZSVt0UaW8kdqaiqpqamOHsOhukr5IyaG\n9uftZuAXxwFtZCmlSibxpbEiIvHA/2HdWAyAMSYgCVpFpB1wnzHm6nxeM/nFJyLayFJhKVw/u998\nA/fea/VmhSIRa9igCg+ev4OA/+LgZF1VxHHzrasCs+/w+GznjfPkqDFUHXs/6zaXo1o19+KKNJIi\nmFFh8IFQKgIUt64q8k4hERkIfAN8AaR4/h3t7wGVUi7680946y3bxS65BLZts25mVyoUaV0VWkp3\nbEebmGV6X5ZSqsTyJR3DvcCFwCZjTHvgAiBgc7kbYxbl14ullHJAdDQMH25N3mZDqVLwz3/CRx85\nFJdSxedoXaVsuugi2h+dx8IvjrsdiVJKucKXRtYxY8wxABEpa4xZgzUPibJp06ZNREVFkRWANG0N\nGjTg66+/9mnbKVOm0LZt25znFStWDFjyhaeeeopbb70VCOz7A9i8eTNxcXFhObwuZNWrZ01D8O23\ntoteey3MnBn4kJQKEK2rQknZsiSPbEXqt6XcjkQppVzhSyNri4hUBmYBX4rIJ0B4pPZzQVGNH7cS\nH3gf9+DBg9QvYr6vRYsWUbdu3SL3O3LkSMaPH5/vcezKe+7q1q1LRkZG2CaLCFl+tpbat4e1a2HL\nFgdiUqr4tK4KMU0f6Ub6rtJs2+Z2JEopFXxFNrKMMdcYY/YbY0YDjwATgX86HZhylzGmyMbNqVOn\nghSNCqjsRpbNHscyZaBrV5g1y6G4lCoGratCT6lS0LEjzJ/vdiRKKRV8viS+qJe9AH8BPwM1HY8s\nAmRlZXH//fdTrVo1zjzzTObMmZPr9YyMDAYOHEhiYiJ169blkUceyRkat2HDBjp27EjVqlWpXr06\nffr0ISMjw6fj7t27l6uvvppKlSpx8cUX8+eff+Z6PSoqig2eDAZz587lnHPOIS4ujrp16zJu3DiO\nHDlCly5d2LZtGxUrViQuLo709HRSUlK4/vrr6du3L5UrV2bKlCmkpKTQt2/fnH0bY5g4cSK1a9em\ndu3aPP/88zmvDRgwgEcffTTnuXdvWb9+/UhLS6Nbt27ExcXx3HPPnTb8cPv27XTv3p0qVarQqFEj\n3nzzzZx9paSkcMMNN9C/f3/i4uI477zzWL58uU/nq8Rp3BgqV4alS20X7dFD78tSoUnrqtDUuTN8\n8YXbUSilVPD5MlxwDvCZ598FwAZgnpNBRYrx48czd+5cfvnlF5YtW8aHH36Y6/X+/ftTpkwZNmzY\nwIoVK/jyyy9zGg7GGB588EHS09P5/fff2bJlS645wwozePBgYmNj2bFjBxMnTuStPNnkvHuoBg4c\nyIQJE8jIyGDVqlV06NCB2NhY5s2bR2JiIgcPHiQjI4OaNa3vKp9++ik9e/Zk//799OrV67T9gTUn\nzp9//skXX3zB2LFjfRo++fbbb1OvXj0+++wzMjIyuP/++0/b9w033EC9evVIT09nxowZPPjgg7nm\n3pk9eza9evXiwIEDdOvWjTvvvNOn81UiTZsG//iH7WKXXw7Ll8POnQ7EpFTxaF0VQhISrLTuAwfC\ne+9BfLzbESmlVHD5MlzwPGNME8+//we0BJY4H1oxjB5tXd3zLgU1UvLb3scGTWFmzJjBkCFDSExM\npHLlyowcOTLntR07djBv3jxeeOEFYmJiqFq1KkOGDGH69OkANGzYkI4dO1K6dGmqVKnC0KFDWeRD\nLtysrCxmzpzJmDFjiImJ4ZxzzqF///65tvFOJFGmTBlWr17NwYMHqVSpEk2bNi10/61ataJbt24A\nxMTE5LvN6NGjiYmJ4dxzz2XAgAE578kXBSW52Lx5M0uWLGHs2LFER0dz/vnnM3DgQN5+++2cbdq0\naUPnzp0REfr27cvKlSt9Pm6Jc/75EBdnu1i5ctClC+T5vUAp14VlXRXB9u2z5s0yBs4+G/Zrnkel\nVAnjS09WLsaY5cBFDsQSOKNH/311914Ka2T5uq0N27Zty5U8IikpKedxWloaJ06coFatWiQkJBAf\nH8/tt9/O7t27Adi5cyc33XQTderUoXLlyvTp0yfntcLs2rWLU6dOUadOnXyPm9dHH33EnDlzSEpK\non379vzwww+F7r+oZBgictqxtwXgruft27eTkJBAbGxsrn1v3bo153l2bxtAbGwsx44dC1imQ/W3\n3r3h3XfdjkKpwoVFXRVB4uNz/06Z03N15Aid97+PoNdipVTJUrqoDURkmNfTKKAZoLmCfFCrVi02\nb96c83zTpr8TXdWtW5eYmBj27NmTb4KJBx98kKioKFavXk2lSpX45JNPuPvuu4s8ZrVq1ShdujSb\nN2+mUaNGgNWgK0jz5s2ZNWsWp06d4pVXXqFnz56kpaUVmPTCl0x/eY+dmJgIQPny5Tly5EjOdtu3\nb/d534mJiezdu5fDhw9Tvnz5nH3Xrl27yHhUYHXuDAMGwF9/QYMGbkejlEXrKnft3VvAC7GxdI7+\nmolcCdjvPVdKqXDlS09WRa+lLNZ49+5OBhUpevbsycsvv8zWrVvZt28fY8eOzXmtZs2aXH755Qwd\nOpSDBw9ijGHDhg188803gJVmvUKFClSsWJGtW7fy7LPP+nTMqKgorr32WkaPHs3Ro0f57bffmDJl\nSr7bnjhxgmnTppGRkUGpUqWoWLEipUpZc5rUqFGDPXv2+JxsI5sxhjFjxnD06FFWr17NpEmTuPHG\nGwFo2rQpc+fOZd++faSnp/PSSy/lKluzZs2chBze+wOoU6cOrVu3ZuTIkRw/fpyVK1cyceLEXEk3\n8otFBV50NFx/vXVbl1IhxLG6SkQ2isgvIrJCROxnjCnhLu0ez3HKYrM6UUqpsObLPVkpXssTxph3\nsyd8VKfz7o0ZNGgQnTt35vzzz6dFixb06NEj17Zvv/02mZmZ/OMf/yAhIYHrr7+e9PR0AEaNGsVP\nP/1E5cqV6dat22llC+v1eeWVVzh48CC1atXi5ptv5uabby6w7NSpU2nQoAGVK1dm/PjxvOsZB9a4\ncWNuuukmzjjjDBISEnLi8uX9t2vXjjPPPJNOnTrxwAMP0LFjRwD69u1LkyZNqF+/PldccUVO4yvb\niBEjGDNmDAkJCYwbN+60WKdPn85ff/1FYmIiPXr0YMyYMbRv377QWFQRjh2DPD2KvsgeMqjtWBUq\nHK6rsoBkY8wFxpiWAdpniRHbtQNNWEkhOZCUUiriSFG/9ovIbKDAjYwxVwc6KK9jm/ziExHtpVBh\nKeQ+u+PHw1dfwQcf2CpmDJxxhpXOvVkzh2KzQUQbfOHE83cQ0F9BnKyrROQvoIUxZk8Br+dbVwVC\nRHy2jx7lydgxbOo/ijcml3U7mrAmKYIZFe4fCKXCQ3HrKl+GC24AjgITPMsh4E/gec+ilApXPXta\nM4X6kFTFmwj07w95ZgdQyk1O1lUG+FJEfhSRQcXcV8lTrhwJ7GH2p8buHOhKKRW2fOnJWmaMaVHU\nOidoT5aKNCH52e3XDy64AIYOtVUsLc0qtnkzeCV9dEVE/NpfgjjUk+VYXSUitYwx20WkGvAlcJcx\nZrHX69qTVYRycpT6Z5VjyhRoqQMu/aY9WUoFT3HrqiKzCwLlReQMY8wGzwEbAOX9PaBSKsQMHAh3\n3AFDhljf6HxUr571Zemjj6CQ/CNKBYtjdZUxZrvn310i8jHWHFyLvbfxniw+OTmZ5OTkQBw6Yhyj\nHN27wyefaCNLKRWaUlNTSU1NDdj+fOnJugIYjzUUQ4Ak4FZjzPyARVHwsbUnS0WUkPzsGgONG8OU\nKdCqla2iM2fCiy+CJymmaxISrMlP84qPLyS1tHKNQz1ZjtRVIhILRBljDolIeWA+kOK9X+3JKpoI\nfP893Hor/Pqr29GEL+3JUip4iltXFdnI8hykLHCW5+kaY8xxfw/o2V8d4G2gBlbWpgnGmJfz2U4b\nWSqihOxnd+ZMq2uqhb2RVSdOQN26kJoKZ51V5OZBFylfUCONE40sz34DWld59tkA+BjrvqzSwLvG\nmKfzbKONrCIU9ENINv1BxDfayFIqeBxrZInIhcBmY0y653k/oAewCRhtjPH7cigiNYGaxpifRaQC\n8BPQ3RizJs922shSESUSP7sPPgiHDsHLp/1M4r5I+YIaaQLZyHKyrrIRgzayfDRoEPzjH6ffAhpp\n79Mp2shSKniczC74BpDpOcilwNNYvU8HsIZk+M0Yk26M+dnz+BDwO1C7OPtUSrnjzjvhnXdg/363\nI1EllGN1lQq8a5pt4sN3dapNpVTkK6yRVcrrF8AbgPHGmI+MMY8AZwYqABGpDzQF/heofSqlgqd2\nbbjySnjzTbcjUSVUUOoqFRiXbXubtatPsmmT25EopZSzCm1kiUh29sGOgPdc7b5kJSySZ6jgh8C9\nnh6t04wePTpnCWTGD+WfqKgoNmzY4NO2KSkp9PWkndu8eTNxcXEBGyp3xx138MQTTwCwaNEi6tat\nG5D9AixevJizzz47YPsrCYYOhVdegZMn3Y5EhaLU1NRc1/IAc7yuUoFTpk9ProuayXvTdMIspVRk\nK6wCmg4sEpHdWBM8fgsgImdiDcMoFk+l+CEw1RjzSUHbOVAhO27atGm88MILrFmzhri4OJo2bcqD\nDz7IJZdc4mpcU6ZM4c033+Tbb7/1ex9iI8W39/Z169YlIyOjyO19jfG1114rVlzeoqKiWL9+PWec\ncQYAbdq04ffff/d7f2Fvzx7rLnUb57RFCytvxkcfwQ03OBibCkt5U5qnpKQEcveO1lUqwBo35qbE\nZ7nnzWsYPrKi29EopZRjCuzJMsY8AdwHTAbaeN3VGwXcHYBjvwX8Zox5KQD7Chnjxo1j2LBhPPzw\nw+zcuZO0tDTuvPNOZs+ebXtfp06d8mmdr4wxxWqMZO/DSb7EmJUV2F9Ai3tOIk63bjBnju1iI0bA\n449DgP97lCpUEOoqFWBtBzZmT/pJVq92OxKllHJOYcMFMcb8YIz52Bhz2GvdH8aY5cU5qIhcAvQG\nOojIChFZ7pnjJKxlZGQwatQoXn31Vbp37065cuUoVaoUXbp04emnrYy/mZmZDBkyhNq1a1OnTh2G\nDh3KiRMngL+HvT3zzDPUqlWLm2++Od91AJ999hkXXHAB8fHxtGnThl+9Jh7ZsmULPXr0oHr16lSr\nVo177rmHNWvWcMcdd7BkyRIqVqxIQkJCTjz3338/SUlJ1KpVi8GDB3P8+N9Zj5999lkSExOpU6cO\nkyZNKrRBsnHjRpKTk6lUqRKdO3dm9+7dOa9t2rSJqKionAbS5MmTadiwIXFxcTRs2JDp06cXGOOA\nAQMYPHgwV111FRUrViQ1NZUBAwbw6KOP5uzfGMNTTz1FtWrVOOOMM5g2bVrOa+3bt+ett97KeT5l\nyhTatm0LQLt27TDG0KRJE+Li4pgxY8Zpww/XrFlD+/btiY+P57zzzsvVYB4wYAB33XUXXbt2JS4u\njlatWvHXX38V/kEJdffdB6NH20711aULlCtn9WaFivh4q0Mu7+L5aKkI4VRdpZwR1etGbsp6h6mT\nTuSsy/u3qn+jSqlwV2gjyynGmO+MMaWMMU2NMRcYY5oZYz53I5ZAWrJkCcePH+ef//xngds8/vjj\nLF26lJUrV/LLL7+wdOlSHn/88ZzX09PT2b9/P2lpaYwfPz7fdStWrOCWW25hwoQJ7N27l9tuu42r\nr76aEydOkJWVRdeuXWnQoAFpaWls3bqVG2+8kbPOOovXX3+dVq1acfDgQfZ6JiQZPnw469evZ+XK\nlaxfv56tW7fy2GOPAfD5558zbtw4FixYwLp16/jqq68Kff+9evXiwgsvZPfu3Tz88MNMmTIl1+vZ\nDbQjR45w77338sUXX5CRkcH3339P06ZNC4wRYPr06TzyyCMcPHgw32GX6enp7N27l23btjF58mRu\nvfVW1q1bV2Cs2bEsWrQIgF9//ZWMjAyuv/76XK+fPHmSbt26ccUVV7Br1y5efvllevfunWvf77//\nPikpKezfv5+GDRvy0EMPFXqeQt4110Bmpu3eLBGrbZaSEjq9WXv3Wm3FvEth8/UopRxWty63PFaf\nyVNLkZlprcr7t6p/o0qpcOdKI8tp+f1y7c9i1549e6hatSpRUQWf1mnTpjFq1CiqVKlClSpVGDVq\nFFOnTs15vVSpUqSkpBAdHU3ZsmXzXTdhwgRuv/12WrRogYjQt29fypYtyw8//MDSpUvZvn07zzzz\nDDExMZQpU4bWrVsXGM+ECRN44YUXqFSpEuXLl2fEiBFMnz4dgBkzZjBgwADOPvtsypUrV+j9cZs3\nb2bZsmU89thjREdH07ZtW7p161bg9qVKleLXX3/l2LFj1KhRo8hEE927d+fiiy8GyDkv3kSEMWPG\nEB0dzaWXXspVV13FBx98UOg+vRU0DHLJkiUcPnyY4cOHU7p0adq3b0/Xrl1zzhHANddcQ/PmzYmK\niqJ37978/PPPPh83JEVFwahR1mKztXTllVChAtg49UqpEuisf3ej8VlRfPqp25EopZQzIrKRld8v\n1/4sdlWpUoXdu3cXes/Qtm3bqFevXs7zpKQktm3blvO8WrVqREdH5yqTd92mTZt4/vnnSUhIICEh\ngfj4eLZs2cK2bdvYvHkzSUlJhTb0su3atYsjR47QvHnznH1deeWV7NmzJydW72FzSUlJBTZGtm3b\nRnx8POXKlcu1fX5iY2N5//33ee2116hVqxbdunVj7dq1hcZaVPbA+Ph4YmJich3b+7z6a/v27acd\nOykpia1bt+Y8r1mzZs7j2NhYDh3KN1FmeLnmGihd2poAywYRePJJa4Lio0cdik0pFRFuuw3eeMPt\nKJRSyhkR2chyS6tWrShbtiyzZs0qcJvatWuzyWuCkE2bNpGYmJjzPL97nvKuq1u3Lg899BB79+5l\n79697Nu3j0OHDnHDDTdQt25d0tLS8m3o5d1P1apViY2NZfXq1Tn72r9/PwcOWAm5atWqxebNm3PF\nWtA9WbVq1WLfvn0c9fpmnZaWVuB56NSpE/Pnzyc9PZ3GjRtz6623Fvj+C1ufLb9jZ5/X8uXLc+TI\nkZzX0tPTC92Xt8TExFznIHvftWtH+NzZUVEwYQI0b267aIcOcMEF8PzzDsSllIoY114LP/8M69cX\nvW12wtOCFr2HSykVarSRFUBxcXGkpKRw55138sknn3D06FFOnjzJvHnzGDFiBAA33ngjjz/+OLt3\n72b37t2MGTMmZy4pXw0aNIjXX3+dpUuXAnD48GHmzp3L4cOHadmyJbVq1WLEiBEcOXKE48eP8/33\n3wNQo0YNtmzZkpNoQ0QYNGgQQ4YMYdeuXQBs3bqV+fPnA9CzZ08mT57M77//zpEjR3Lu1cpPvXr1\naNGiBaNGjeLEiRMsXrz4tIyK2b1gO3fu5NNPP+XIkSNER0dToUKFnJ63vDH6yhiTc+xvv/2WOXPm\n0LNnTwCaNm3KzJkzOXr0KOvXr2fixIm5ytasWbPAub8uuugiYmNjeeaZZzh58iSpqal89tln3HTT\nTbbiC0tNmsA55/hV9Lnn4IUXYMuWAMeklIoYMTEwaJB1rSjKvn2FjzzRe7iUUqFGG1kBNmzYMMaN\nG8fjjz9O9erVqVevHq+++mpOMoyHH36YFi1a0KRJE84//3xatGhhO1FC8+bNmTBhAnfddRcJCQk0\natQoJ8lEVFQUs2fPZt26ddSrV4+6devm3JvUoUMHzjnnHGrWrEn16tUBePrppznzzDO5+OKLqVy5\nMpdffjl//PEHAFdccQVDhgyhQ4cONGrUiI4dOxYa17Rp0/jhhx+oUqUKY8aMoX///rlez+6NysrK\nYty4cdSuXZuqVavyzTff5Mx7lV+MvqhVqxbx8fEkJibSt29f3njjDf7v//4PgKFDhxIdHU3NmjUZ\nMGAAffr0yVV29OjR9OvXj4SEBD788MNcr0VHRzN79mzmzp1L1apVueuuu5g6dWrOvjX9e/4aNIA7\n74R77/Vv6K1SqmS49x7D9HdPsWNH7vV5sw3Gx9vbb1E9X9oLppRymjg971FxiIjJLz4RcXy+JqWc\nUJI+u8eOWaMNH3wQevd2O5rcRLTx5ybP30HE/EJRUF0VmH1H+Gd1/XoGN/mW+Dt788SzZfzeTd7z\nZOe8FbVtQkLunrL4eCsbohskRTCjIvkDoVToKG5dpT1ZSilHxMTA1KkwdCjkua1NKaUsZ57Jv5OX\n8carJ0/rzQoVeYcq6tBEpZQvtJGllPLN4MHw7be2ijRrBvfcA/36wcmTDsXlh4ImKdahQ0oFX4MX\n76Vf1hRSRhwpeuMQoBMnK6V8oY0spZRvrr4abrjBdjaLkSOhbFn4978dissPBU1SrL9SK+WCRo14\nuF8aM947xW+/Bf/whf3okt/9YHYnTs57f5g2ypQqGbSRpZTyzRVXWJksunUDT5p/X5QqBdOnw2ef\nweuvOxifUipsJTx5PyllnmDgjYc4dSq4xy7sRxdjin//lQ43VKpk0kaWUsp3DzwAbdpYDa0jvg/t\niY+Hzz+Hxx+3GlxKKZVLlSrc/l0/YqrEMm6c/eLFzUZYHHaHD+pwQ6VKBs0uqFQQRcRnNysLbr4Z\nqlWDZ5+1VXTVKujUCcaMgYEDHYqvmCI+m1sI0OyCdvZdsj6PGzdCy5bw0UfQtq3b0fjHbqZDW5kQ\nNbugUkFT3LqqdCCDCZakpCSdn0iFpaSkJLdDKL6oKHjrLTh+3HbRc8+FRYugc2f480+rsVU6LK9C\nSikn1K8P77wD118P330HDRu6HZFSSvknLIcLbty4EWNM0BcI/jF1iaxl48aNbv/5BEZUFJQr51fR\nRo3gf/+D5cuhfXtISwtwbEqpsHb55ZCSAh06wJo1bkdjn92hi3aznRb2elFJNoqapNnO9naPHU7s\nTGbty3stzrlx+v+0OLEEOztvuH3GXGtkicgVIrJGRP4QkeFuxREpUlNT3Q4hbOi58p3tc3XihE+b\nVa8O8+ZB165WmvfHHoOjR+3HF0r0cxWZIr2uCtXP7W23QcoDh0lufpB5Hx/Ld5tQjT1vIo38Emd4\nx24322lhrxeVZCPv60UdL7/tFy5M9evYbrPzeSnqPPny/1TY/uycm337/j7nTvyf2o3F7nkI5N9p\nqH/G8nKlkSUiUcB/gM7AOcBNInKWG7FEilCtbEKRnivf2T5X11xjJcX4+mvr3q1CREXB8OGwbJl1\nr1aDBtav1+np/sfrJv1cRZ6SUFeF8uf2X/2yeP+Sl7m95x5uuWwjm9Ny34sUyrEXRWMPvnCNGzT2\ncOVWT1ZLYJ0xZpMx5gTwHtA9mAH4959edJnC9lvQa/mtL2pdsD60/h7Hl3J6rnwvFzbnasYMq5E1\nZAjUrQt33w2zZpE3J7P3cerXhw8+sNpl27bBWWdBcjKMGwdLl0JmZuHx5xU258pH+rlylaN1VbD/\nbwP5/xCU2CtWpN38h/hl+u8c/em/nN/gADecv4ZPJ++xM4uEXzH4U87O34zf/vKvmL+x+/K9J1Ax\n+FsuGOc9XGMvzn7CNfbi1H2BrqvcamTVBjZ7Pd/iWRc0/p3IostE2pcW/YLnOz1XWPdp3XorrFwJ\nX30FiYlWzvao3Jea1NRUa3zgzJmQmgrLl/OPrFW8cf860pdt4b77YN06GDTIGnN9wQVwXQ/DQyO+\n4pVnj/HuxGPM+/gYPyw8yi//O8aaNbBhgzVP8pw5qezfDwf2Gw7syiRjdyYH91jL/HkLOLwvk8OH\nrQz0R49ay1dfpXL8mOH4wUxKk0nmoUwWzF9A5iHrcWam1dhbsCD178dfLfz79UOZnMo8ZT0+fKKo\nTjxb9HPlKkfrKm1k+bZN5esuo9E9saz75HeS437ixf9GU7s2vPoqXHed1SP+yivwzsNrmDNmOd+/\n9gsr3v2N1Z/+ybqFW0hbn0l6ujUsb/9++PzzVA4cgIz0IxxMP8zBnUc5tPsYh/ce58i+4xw5lMXR\no3DsmJXf5/hxz9/8/AVkHjx++nIs67TrQ2Ym1vXg4HEWfPHVadufOkXubb22916i+Xv/mZnARr9O\nuzayiilcY9dGlr1tAl1XuZLCXUR6AJ2NMbd6nvcBWhpj7smzneYpVUqpCGTCIIW71lVKKVWyFaeu\ncit58lagntfzOp51uYRDJayUUipiaV2llFLKL24NF/wROFNEkkSkDHAj8KlLsSillFL50bpKKaWU\nX1zpyTLGnBKRu4D5WA29icaY392IRSmllMqP1lVKKaX85co9WUoppZRSSikVqVybjFgppZRSSiml\nIlHYNbJEpJ2IfCMir4nIpW7HE+pEJFZEfhSRLm7HEspE5CzPZ+oDEbnd7XhCmYh0F5HxIjJdRDq5\nHU8oE5EGIvKmiHzgdiyhzHOdmiwib4hIL7fjCYRwr6vCte4I52t5OF9bw/VaF87XnnA95xC+n3W7\n15ewa2QBBjgIlMWas0QVbjjwvttBhDpjzBpjzB3ADUBrt+MJZcaYTzwpre8AerodTygzxvxljBno\ndhxh4FpghjHmNuBqt4MJkHCvq8Ky7gjna3k4X1vD+FoXtteeMD7nYftZt3t9ca2RJSITRWSHiKzM\ns/4KEVkjIn+IyPC85Ywx3xhjrgJGAI8FK143+XuuROQy4DdgF1AiUgz7e64823QDPgPmBiNWtxXn\nXHk8DPzX51Vb1gAAC0dJREFU2ShDQwDOVYnix/mqw9+T/p4KWqA+COe6KpzrjnC+lofztTXcr3Xh\nfO0J53NfjNhd/R7hT9y2ri/GGFcWoA3QFFjptS4KWA8kAdHAz8BZntf6AuOAWp7nZYAP3Io/DM7V\nC8BEzzn7AvjY7fcRwucq53PlWfeZ2+8jxM9VIvA00MHt9xAG5yr7ejXD7fcQ4uerN9DF83ia2/EH\n+P/etboqnOuOcL6Wh/O1NdyvdeF87bEbu9c2rtcv/sTu9me9OOfcs12R1xe3JiPGGLNYRJLyrG4J\nrDPGbAIQkfeA7sAaY8xUYKqIXCMinYFKwH+CGrRL/D1X2RuKSD9gd7DidVMxPlftRGQE1tCeOUEN\n2iXFOFd3Ax2BOBE50xgzPqiBu6AY5ypBRF4DmorIcGPM2OBG7g675wv4GPiPiFwFzA5qsEUI57oq\nnOuOcL6Wh/O1NdyvdeF87bEbu4gkAE8QAvWLH7G7/lkHv+JuhzXE1Kfri2uNrALU5u9uW7DGsbf0\n3sAY8zHWH0VJV+S5ymaMeTsoEYUuXz5Xi4BFwQwqRPlyrl4BXglmUCHKl3O1F2vMuSrkfBljjgA3\nuxGUn8K5rgrnuiOcr+XhfG0N92tdOF97Cos9lM85FB57qH7WofC4bV1fwjHxhVJKKaWUUkqFrFBr\nZG0F6nk9r+NZp06n58p3eq58p+fKd3qu7Imk8xXO70Vjd4fG7p5wjl9jD76Axe12I0vInbnoR+BM\nEUkSkTLAjcCnrkQWevRc+U7Ple/0XPlOz5U9kXS+wvm9aOzu0NjdE87xa+zB51zcLmb0mAZsA44D\nacAAz/orgbXAOmCEW/GF0qLnSs+Vnis9V+G0RNL5Cuf3orFr7CUp9nCPX2OPvLjFszOllFJKKaWU\nUgHg9nBBpZRSSimllIoo2shSSimllFJKqQDSRpZSSimllFJKBZA2spRSSimllFIqgLSRpZRSSiml\nlFIBpI0spZRSSimllAogbWQppZRSSimlVABpI0uFDBH5p4hkiUgjt2MpiIiMdDuGQBGR20Skj43t\nk0TkV5vHWCAiFQp5fbqINLSzT6WUCgWRWGeJyEIRaebkMWzuu5uIPGCzzEGb288QkfqFvP6siLS3\ns0+lQBtZKrTcCHwL3OT0gUSklJ9FHwxoIC4RkVLGmDeMMe/YLOrz7OUi0gX42RhzqJDNXgOG24xB\nKaVCgdZZDh7DU0/NNsY8Y7OonXrqH0CUMWZjIZu9AoywGYNS2shSoUFEygOXALfgVWGJSDsRWSQi\nn4nIGhF51eu1gyIyTkRWiciXIlLFs36giCwVkRWeX6hiPOsnichrIvIDMFZEYkVkooj8ICI/iUg3\nz3b9ReQjEZknImtF5GnP+qeAciKyXESm5vMebhKRlZ7laR/iPMNzjB8977GRV5wvich3IrJeRK7N\n51hJIvK7iLwjIr+JyAde77OZiKR69jtPRGp41i8UkRdEZClwj4iMEpFhnteaisgSEfnZ894redY3\n96xbAdzpdfx/iMj/POfi5wJ6o3oDn3i2j/X8H67wnJ/rPdt8C1wmInotUkqFjXCvs0QkyrP/lSLy\ni4jc6/VyT8/1fY2IXOJ1jFe8ys8WkUt9qBf9qf9eE5Elnvecc1xPvbfAU+d8KSJ1POvri8j3nvcx\nxuvYNT37Xu55n5fk81/pXU/le06MMWlAgohUL/ADoVR+jDG66OL6AvQCJngeLwYu8DxuBxwBkgAB\n5gPXel7LAm70PH4EeMXzON5rv2OAOz2PJwGfer32BNDL87gSsBYoB/QH1gMVgLLARqC2Z7uMAuKv\nBWwCErB+vFgAXF1AnC97Hn8FNPQ8bgks8Irzfc/js4F1+RwvybPfiz3PJwLDgNLAd0AVz/qewETP\n44XAf7z2MQoY5nn8C9DG8zgFGOe1/hLP42eAlZ7HLwM3eR6XBsrmE+NGoLzn8bXAG16vVfR6/EX2\n/7cuuuiiSzgsEVBnNQPmez2P8/y7EHjW8/hK4EvP4/7ZdZfn+Wzg0sKOUcB79qX+837P/b3KfAr0\n8TweAHzsefwJ0NvzeHB2PFh14kjPY8muj/LElwqcU9g58TweD1zj9udOl/Ba9NdjFSpuAt7zPH4f\nqwLLttQYs8kYY4DpQBvP+izgA8/jd7B+VQRoIiLfiMhKz37O8drXDK/HlwMjPL00qUAZoJ7ntQXG\nmEPGmOPAb1gVZmEuBBYaY/YaY7KAd4FLC4izjedX0NbADM/x3wBqeO1vFoAx5negoF/P0owxP3jv\nF2gMnAt86dnvQ0CiV5n38+5EROKASsaYxZ5VU4BLPb1ZlYwx33nWe/9KuQR4SET+DdT3nKe84o0x\nhz2PfwU6ichTItLGGOM9Zn5XnhiVUirUhXudtQFoINaoic6A9zV5puffn3zYT1FOYb/+m0H+WmGd\nT7Dqo+zzdwl//19411M/AgNE5FGgiVd95K0WVh0EhZ+TnWg9pWwq7XYASolIPNABOFdEDFAKa0z1\nvz2b5B1fXdB46+z1k7B6kVaJSH+sXxaz5b3I9jDGrMsTz8WAd6PhFH//rUhhb6WQ1/LGGQXsM8YU\ndIOx9/Ht7FeAVcaY/2/vfkK0quIwjn+fRsFFQQRBISlatDNtU9Si3AkV0iKVsiAyKghEaNsfCDdR\nQlFE9IfKoFZhCxNaFBNJi0FScUqGiHEpLjKLNEp4WpxzZ26v931nZN6xd4bns5o597z3/s6d4f7m\n3vs7Z7rKIuDS8c91jM5225/VEpYHgEOSnrI93tPtYqv/zyqTqe8D9kr62nZT1rEKuNDn+BERI2U5\n5Czbv0naCGwBngG2AU/Wzc2+2vu5yH+nmKxqh9B1jD7mk//65alBc62abTOx2P5O0j3A/cBHkvb5\n0nnI56lj6TknT1MqQXbVfslTcdnyJitGwTZgv+11ttfbXgtMS2qe/t1Ra7GvAnZQ5vFA+f19qH69\ns9V+NXBa0sra3s9XwO7mG0mb5hHr3+qegDxBeftzXd3+MOVJY1ech+ubnGlJTTuSbutzzH4JbI2k\nO+vXj1DGPwVcX5MuklaoTOzty/bvwK+tevXHgG9tnwPOSrq7ts+sRChpne1p229SSjW6Yp+StL72\nvxG4YPtT4FXg9la/W4HJQTFGRIyQJZ+z6tyoMdsHgOcppXJdmvxzCtik4iZKid/AY1RjLCz/tX3P\n7Py3R5k9f4db7TPnT9Ia4IztD4D36R7jSeCW2r99Tl4geSoWKDdZMQp2AAd62j5n9qJ5BHgL+BH4\nxfYXtf1PSjI7AWym1LJDuThOUC7AJ1v77H0KthdYWSe5TgIv94mv/bl3gRO9E3xtn6asPjQOHAWO\n2D7YJ87mODuBXXUS7ySwtU+c/Z7eTQHPSvoJuBZ4x/Y/lIT2iqRjNZa75tgPwOPAa/UzG1sxPgG8\nLemHns9vrxOZj1JKW/Z37PNLoFn2dgMwUfu/SDn31InE522fGRBbRMQoWfI5C1gNjNdr8ifMrp7X\nmX9q2fipOqbXKaWEcx0DFp7/2nZTyv+O1c83i3XsoeTC45Tyv8Zm4HjNX9uBNzr2eYjZPNV5TiSt\nAG6m/Fwj5k2lZDhiNEm6F3jO9taObX/YvuZ/COuyLEacktYCB21vGOZ+h0nSDcDHtrcM6LMHOGf7\nwysXWUTE4lgOOWuYRn3MKis5fkNZ4KnzD2JJD1IWNnnpigYXS17eZMVStlSeECxWnCM9/vp27z0N\n+GfEwFnKQhsREcvdSF+zF8lIj9n2X5SVdlcP6DYG7LsyEcVykjdZERERERERQ5Q3WREREREREUOU\nm6yIiIiIiIghyk1WRERERETEEOUmKyIiIiIiYohykxURERERETFEucmKiIiIiIgYon8BzXNwaHns\nKtsAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, axes = plt.subplots(len(recs), 2, figsize=(12,15))\n",
+ "for i in range(len(recs)):\n",
+ " mec.set_eff('c', recs[i].conc)\n",
+ " qmatrix = QMatrix(mec.Q, mec.kA)\n",
+ " idealG = IdealG(qmatrix)\n",
+ " \n",
+ " # Plot apparent open period histogram\n",
+ " ipdf = ideal_pdf(qmatrix, shut=False) \n",
+ " iscale = scalefac(recs[i].tres, qmatrix.aa, idealG.initial_vectors)\n",
+ " epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=False)\n",
+ " dcplots.xlog_hist_HJC_fit(axes[i,0], recs[i].tres, recs[i].opint,\n",
+ " epdf, ipdf, iscale, shut=False)\n",
+ " axes[i,0].set_title('concentration = {0:3f} mM'.format(recs[i].conc*1000))\n",
+ "\n",
+ " # Plot apparent shut period histogram\n",
+ " ipdf = ideal_pdf(qmatrix, shut=True)\n",
+ " iscale = scalefac(recs[i].tres, qmatrix.ff, idealG.final_vectors)\n",
+ " epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=True)\n",
+ " dcplots.xlog_hist_HJC_fit(axes[i,1], recs[i].tres, recs[i].shint,\n",
+ " epdf, ipdf, iscale, tcrit=math.fabs(recs[i].tcrit))\n",
+ " axes[i,1].set_title('concentration = {0:6f} mM'.format(recs[i].conc*1000))\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Prepare likelihood function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "def dcprogslik(x, lik, m, c):\n",
+ " m.theta_unsqueeze(np.exp(x))\n",
+ " l = 0\n",
+ " for i in range(len(c)):\n",
+ " m.set_eff('c', c[i])\n",
+ " l += lik[i](m.Q)\n",
+ " return -l * math.log(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "def printiter(theta):\n",
+ " global iternum, likelihood, mec, conc\n",
+ " iternum += 1\n",
+ " if iternum % 100 == 0:\n",
+ " lik = dcprogslik(theta, likelihood, mec, conc)\n",
+ " print(\"iteration # {0:d}; log-lik = {1:.6f}\".format(iternum, -lik))\n",
+ " print(np.exp(theta))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# Import HJCFIT likelihood function\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
+ "\n",
+ "kwargs = {'nmax': 2, 'xtol': 1e-12, 'rtol': 1e-12, 'itermax': 100,\n",
+ " 'lower_bound': -1e6, 'upper_bound': 0}\n",
+ "likelihood = []\n",
+ "\n",
+ "for i in range(len(recs)):\n",
+ " likelihood.append(Log10Likelihood(bursts[i], mec.kA,\n",
+ " recs[i].tres, recs[i].tcrit, **kwargs))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "theta= [ 5.00000000e+03 5.00000000e+02 2.70000000e+03 2.00000000e+03\n",
+ " 8.00000000e+02 1.50000000e+04 3.00000000e+02 4.50000000e+08\n",
+ " 1.50000000e+03 1.20000000e+04 4.00000000e+03 1.20000000e+03\n",
+ " 4.50000000e+06 1.00000000e+03]\n",
+ "Number of free parameters = 14\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Extract free parameters\n",
+ "theta = mec.theta()\n",
+ "print ('\\ntheta=', theta)\n",
+ "print('Number of free parameters = ', len(theta))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Initial likelihood = 237961.490136\n"
+ ]
+ }
+ ],
+ "source": [
+ "lik = dcprogslik(np.log(theta), likelihood, mec, conc)\n",
+ "print (\"\\nInitial likelihood = {0:.6f}\".format(-lik))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Run optimisation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To keep execution time of this notebook short we only run the optimization for 200 iterations. Change `maxiter` below for a more realistic optimisation."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting started: 2017/01/20 15:41:23\n",
+ "iteration # 100; log-lik = 263117.756238\n",
+ "[ 5.29171999e+03 3.67684624e+02 1.41434237e+03 8.42349605e+03\n",
+ " 8.62838471e+02 5.14562348e+04 3.05197111e+02 5.19871117e+07\n",
+ " 2.31972504e+03 2.00532661e+04 4.15472395e+03 5.07080801e+02\n",
+ " 5.01742534e+05 8.94263677e+02]\n",
+ "Warning: Maximum number of iterations has been exceeded.\n",
+ "\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting finished: 2017/01/20 15:41:29\n",
+ "\n",
+ "CPU time in ScyPy.minimize (Nelder-Mead)= 6.081180560386165\n",
+ "Wall clock time in ScyPy.minimize (Nelder-Mead)= 6.081347703933716\n",
+ "\n",
+ "Result ==========================================\n",
+ " final_simplex: (array([[ 8.17854356, 6.03708337, 7.10706279, 9.07985218,\n",
+ " 6.93061081, 10.98001309, 5.8136173 , 17.23832524,\n",
+ " 7.72769902, 9.70103791, 8.19758666, 6.45112468,\n",
+ " 13.39684638, 6.95508465],\n",
+ " [ 8.22403089, 6.05593405, 7.12875747, 9.02313412,\n",
+ " 6.90356027, 10.95712368, 5.77448477, 17.24438837,\n",
+ " 7.73601058, 9.73603764, 8.23203859, 6.49199196,\n",
+ " 13.35532125, 6.97085489],\n",
+ " [ 8.27202446, 6.03124292, 7.15576058, 9.10298967,\n",
+ " 6.91537324, 10.97906583, 5.87535892, 17.27877025,\n",
+ " 7.7104076 , 9.78828276, 8.22704485, 6.37777004,\n",
+ " 13.25294199, 6.93122741],\n",
+ " [ 8.32433001, 6.0289382 , 7.1404883 , 9.0383547 ,\n",
+ " 6.8205307 , 10.93158792, 5.8308612 , 17.34019634,\n",
+ " 7.75095584, 9.72800377, 8.25944946, 6.38964771,\n",
+ " 13.31653367, 6.93631765],\n",
+ " [ 8.33985033, 5.92301082, 7.09702954, 9.09805489,\n",
+ " 6.89673942, 10.97621154, 5.77517881, 17.32273873,\n",
+ " 7.74756632, 9.81249292, 8.25085744, 6.39354715,\n",
+ " 13.28852029, 6.94056203],\n",
+ " [ 8.41575544, 5.94125291, 7.19042536, 9.0435014 ,\n",
+ " 6.84337862, 10.89976979, 5.76975737, 17.40977212,\n",
+ " 7.775724 , 9.77032599, 8.30672733, 6.40129054,\n",
+ " 13.28746099, 6.87193334],\n",
+ " [ 8.23460356, 6.06544835, 7.15047868, 9.05344456,\n",
+ " 6.87980573, 10.9657658 , 5.76339175, 17.33221254,\n",
+ " 7.74893403, 9.78425826, 8.27631384, 6.45009588,\n",
+ " 13.17781919, 6.88956063],\n",
+ " [ 8.39823157, 5.92139609, 7.126189 , 9.0460798 ,\n",
+ " 6.85351439, 10.9340107 , 5.72892779, 17.42246383,\n",
+ " 7.78649285, 9.77082672, 8.31723055, 6.38863181,\n",
+ " 13.28356059, 6.92208135],\n",
+ " [ 8.41035142, 6.01081853, 7.19216558, 8.99209568,\n",
+ " 6.81683175, 10.90190722, 5.76531268, 17.4582171 ,\n",
+ " 7.77716363, 9.72993475, 8.33889227, 6.42272102,\n",
+ " 13.29925003, 6.88808181],\n",
+ " [ 8.40340552, 6.0273153 , 7.22178376, 9.03888376,\n",
+ " 6.84264901, 10.91086406, 5.79190033, 17.45077881,\n",
+ " 7.73933892, 9.80968022, 8.24822381, 6.33622711,\n",
+ " 13.28545754, 6.9169019 ],\n",
+ " [ 8.24388707, 6.05157538, 7.20532864, 8.941294 ,\n",
+ " 6.84121632, 10.89460159, 5.76758747, 17.41789114,\n",
+ " 7.74027848, 9.70505269, 8.28434299, 6.52015363,\n",
+ " 13.39744932, 6.94780185],\n",
+ " [ 8.27610963, 6.05970142, 7.18039864, 9.13973644,\n",
+ " 6.87300261, 10.92971067, 5.93330882, 17.26117058,\n",
+ " 7.73212301, 9.73937094, 8.24832269, 6.4324554 ,\n",
+ " 13.1763455 , 6.87493238],\n",
+ " [ 8.38279112, 5.8842607 , 7.13565288, 9.0174619 ,\n",
+ " 6.84330267, 10.88373368, 5.78974106, 17.45101242,\n",
+ " 7.79970867, 9.74499968, 8.29915767, 6.43571606,\n",
+ " 13.37719486, 6.93389061],\n",
+ " [ 8.42420488, 5.88127595, 7.11098537, 9.09632685,\n",
+ " 6.83661948, 10.95519365, 5.74824873, 17.27662587,\n",
+ " 7.8087689 , 9.797293 , 8.31344718, 6.37128333,\n",
+ " 13.36240644, 6.92608137],\n",
+ " [ 8.4266003 , 5.96016415, 7.18559361, 9.00606597,\n",
+ " 6.85428849, 10.93451427, 5.8372125 , 17.29392659,\n",
+ " 7.78143967, 9.70305234, 8.3055485 , 6.46089968,\n",
+ " 13.39443632, 6.98429024]]), array([-263352.60977117, -263336.3471002 , -263329.21681918,\n",
+ " -263318.1251304 , -263309.78955037, -263306.30534451,\n",
+ " -263302.2583715 , -263298.52765242, -263298.30026063,\n",
+ " -263297.42510587, -263292.18626348, -263291.93074637,\n",
+ " -263291.13476093, -263287.65737164, -263287.20390461]))\n",
+ " fun: -263352.60977116867\n",
+ " message: 'Maximum number of iterations has been exceeded.'\n",
+ " nfev: 281\n",
+ " nit: 200\n",
+ " status: 2\n",
+ " success: False\n",
+ " x: array([ 8.17854356, 6.03708337, 7.10706279, 9.07985218,\n",
+ " 6.93061081, 10.98001309, 5.8136173 , 17.23832524,\n",
+ " 7.72769902, 9.70103791, 8.19758666, 6.45112468,\n",
+ " 13.39684638, 6.95508465])\n"
+ ]
+ }
+ ],
+ "source": [
+ "from scipy.optimize import minimize\n",
+ "print (\"\\nScyPy.minimize (Nelder-Mead) Fitting started: \" +\n",
+ " \"%4d/%02d/%02d %02d:%02d:%02d\"%time.localtime()[0:6])\n",
+ "iternum = 0\n",
+ "start = time.clock()\n",
+ "start_wall = time.time()\n",
+ "maxiter = 200\n",
+ "# maxiter = 30000\n",
+ "result = minimize(dcprogslik, np.log(theta), args=(likelihood, mec, conc), method='Nelder-Mead', callback=printiter, \n",
+ " options={'xtol':1e-5, 'ftol':1e-5, 'maxiter': maxiter, 'maxfev': 150000, 'disp': True})\n",
+ "t3 = time.clock() - start\n",
+ "t3_wall = time.time() - start_wall\n",
+ "print (\"\\nScyPy.minimize (Nelder-Mead) Fitting finished: \" +\n",
+ " \"%4d/%02d/%02d %02d:%02d:%02d\"%time.localtime()[0:6])\n",
+ "print ('\\nCPU time in ScyPy.minimize (Nelder-Mead)=', t3)\n",
+ "print ('Wall clock time in ScyPy.minimize (Nelder-Mead)=', t3_wall)\n",
+ "print ('\\nResult ==========================================\\n', result)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Final likelihood = 263352.6097711686743423\n",
+ "\n",
+ "Final rate constants:\n",
+ "\n",
+ "class dcpyps.Mechanism\n",
+ "Values of unit rates [1/sec]:\n",
+ "0\tFrom AF* \tto AF \talpha1 \t3563.66062627\n",
+ "1\tFrom AF \tto AF* \tbeta1 \t418.670145871\n",
+ "2\tFrom A2F* \tto A2F \talpha2 \t1220.55723999\n",
+ "3\tFrom A2F \tto A2F* \tbeta2 \t8776.66858648\n",
+ "4\tFrom A3F* \tto A3F \talpha3 \t1023.11872432\n",
+ "5\tFrom A3F \tto A3F* \tbeta3 \t58689.3222512\n",
+ "6\tFrom A3F \tto A3R \tgama3 \t334.828110598\n",
+ "7\tFrom A3R \tto A3F \tdelta3 \t64801.2535522\n",
+ "8\tFrom A3F \tto A2F \t3kf(-3) \t5448.26105245\n",
+ "9\tFrom A2F \tto A3F \tkf(+3) \t30655579.3113\n",
+ "10\tFrom A2F \tto A2R \tgama2 \t2270.3721034\n",
+ "11\tFrom A2R \tto A2F \tdelta2 \t16334.5522045\n",
+ "12\tFrom A2F \tto AF \t2kf(-2) \t3632.17403497\n",
+ "13\tFrom AF \tto A2F \t2kf(+2) \t61311158.6227\n",
+ "14\tFrom AF \tto AR \tgama1 \t2368.25771823\n",
+ "15\tFrom AR \tto AF \tdelta1 \t633.414278499\n",
+ "16\tFrom A3R \tto A2R \t3k(-3) \t3145.40186848\n",
+ "17\tFrom A2R \tto A3R \tk(+3) \t657925.10102\n",
+ "18\tFrom A2R \tto AR \t2k(-2) \t2096.93457899\n",
+ "19\tFrom AR \tto A2R \t2k(+2) \t1315850.20204\n",
+ "20\tFrom AR \tto R \tk(-1) \t1048.46728949\n",
+ "21\tFrom R \tto AR \t3k(+1) \t1973775.30306\n",
+ "\n",
+ "Conductance of state AF* (pS) = 40\n",
+ "\n",
+ "Conductance of state A2F* (pS) = 40\n",
+ "\n",
+ "Conductance of state A3F* (pS) = 40\n",
+ "\n",
+ "Number of open states = 3\n",
+ "Number of short-lived shut states (within burst) = 6\n",
+ "Number of long-lived shut states (between bursts) = 1\n",
+ "Number of desensitised states = 0\n",
+ "\n",
+ "Number of cycles = 2\n",
+ "Cycle 0 is formed of states: A3R A3F A2F A2R \n",
+ "\tforward product = 5.273692624e+17\n",
+ "\tbackward product = 5.273692624e+17\n",
+ "Cycle 1 is formed of states: AF A2F A2R AR \n",
+ "\tforward product = 1.848882431e+17\n",
+ "\tbackward product = 1.848882431e+17"
+ ]
+ }
+ ],
+ "source": [
+ "print (\"\\nFinal likelihood = {0:.16f}\".format(-result.fun))\n",
+ "mec.theta_unsqueeze(np.exp(result.x))\n",
+ "print (\"\\nFinal rate constants:\")\n",
+ "mec.printout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot experimental histograms and predicted pdfs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAQxCAYAAADcAUeKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNXXwPHvSQg9IQm9hiIgIkXBgg0QBVSK4k9ABHmx\nYMOGDVCaWMCCXRREpasoFjq2gIqIHURQBAk1CCQxgVACue8fdxM3YTfZJNtzPs+zT7IzszNnN7t7\ncufee0aMMSillFJKKaWU8o6IQAeglFJKKaWUUuFEG1lKKaWUUkop5UXayFJKKaWUUkopL9JGllJK\nKaWUUkp5kTaylFJKKaWUUsqLtJGllFJKKaWUUl6kjSylCiAiGSLSMNBxKKWUUgXRfKVUcNFGlgoL\nIpItIo1LuI8vReQG52XGmGhjzLYSBedFIpIgIl+IyCER+V1EuhSy/SQR2S8i+0RkYr51j4rIOhHJ\nEpExLh47QES2ORL3AhGJdVpXVkTeFJF/RWS3iNyb77FtReQHR5zfi0ibfOvvFZE9IpImIm+ISFTx\nXpGTYu7oeC98kG95a8fyL7xxHKWUKi7NV26313yF5qtwoo0sFS4KvKq2iET6KxAfmwf8CMQDjwDv\ni0hVVxuKyC1AL6AV0BroKSJDnTbZDDwALHLx2JbAa8B1QE3gMDDFaZPxQBOgPnAx8KCIdHU8Ngr4\nCJgJxDp+fiwiZRzruwEPAp2BBMd+xhfxdSjIPqCDiMQ5LRsM/OHFYyilVHFpvspH85Xmq7BkjNGb\n3lzegHrAB8A/2C+CFx3LBfuFuQ1IBt4GYhzrEoBs4HogyfHYUU77jABGAX8B/wLfA3Ud604FVgAH\ngI3ANU6Pewt4GfsFmw58CzRyrFvpOOZBx7prgI7ADuyX4x5gBvYLdKEjpgOO3+s49vEYcBzIdOwj\n57lmA40dv8dgv4D/Af4GHnaKbzDwFfA0kAJsAbp7+e/RFJs8KjktWwkMdbP9N8BNTveHAKtdbDcL\nGJNv2ePAbKf7jYGjOccGdgFdnNaPB+Y6fu8K7Mi3vySgq+P3OcBjTus6A3sKeN7ZwG3An473zKOO\neL4B0oB3gDKObXP+7q8Ctzu953Zi37NfBPpzpTe96c37NzRf5XxXar7SfKW3ILlpT5ZySUQisAni\nb6ABUBf75QD2y+967BdEYyAam1CcnY/9kr0EGCMizR3L7wP6Yb/QqwA3AJkiUhGbsGYD1YD+wKsi\ncqrTPvsBY7HJZwv2ixVjTEfH+lbGmBhjzHzH/VqObRsAQ7FfXm9iz2Y1wCaoVxz7eASbdIY59nGX\nYx/OZxxfdjzXhkAn4HoRGeK0/mxssq2KTV7TcUNEFopIqoikuPj5iZuHtQS2GmMOOS371bHc3fa/\nerhtgY81xmzFJq1mjmEYtYF1bvZ9Wr51+de7iqtGvjN5+XUFzgDOxf4j8jowAPu3bAVc67Stwf5z\ncb3jfjdgPfafF6VUmNF8pfkKzVcqCGkjS7lzNvaL6UFjzBFjzDFjzGrHugHAZGNMkjEmExgJ9Hck\nOrBfGuMcj1mH/VLKGeN8I/aM2l8Axpj1xphUoAfwtzFmprF+xZ6VvMYppg+NMT8aY7KxZ5fa5otZ\n8t0/AYw1xmQZY44aY1KMMR86fj8EPAlcVMjrIJCbxPsBI4wxmcaYJOBZYJDTtknGmDeNMQZ7JrKW\niNRwtVNjTE9jTJwxJt7Fz15uYqmMPTPmLB2bSD3ZPt2xzBMFHasy9m+cf985cRQWp6u4BPfPA2CS\nMeaQMWYj8BuwwvH+ywCWYhNaLmPMGiBORJphk9fMAvatlAptmq+c9qn5Ks+xNF+pgNFGlnKnPvZL\nONvFujrY7vQcSUAZ7FjoHHudfs/kvy/L+sBWF/tMAM51nBlLEZFUbHJ03meym326s88Yk5VzR0Qq\niMjrjsmxadihC7Eikj/ZuVIN+xy3Oy1Lwp4xPSk+Y8xh7Bexp0nCEwexQ0CcVQEyPNy+imNZSY+V\ns4/8+86Jo7A4XcVlcP88wA55yXGYvO+vw7h+nWcBw7BncT8sYN9KqdCm+SovzVear1QQ0EaWcmcH\n0MDpbJ+z3dgkkyMByCLvF0lB+23iZnmi48xYzlmyGGPMsKIG7iT/5OL7sENCzjLGxPLfWUFxs72z\n/djnmP957ypOYCKyxFEFKd3FbbGbh20AGotIJadlbRzL3W3vXCWpbQHbFvhYEWkCRAF/GmPSsEMZ\nnPftHMcG7MRlZ62xZ/TcxbXXcYbYm2YDtwOLjTFHvLxvpVTw0HyVl+YrzVcqCGgjS7mzFvvFNFFE\nKopIORE5z7FuHnCviDQUkcrYsebvOJ1FLOhM2xvABBE5BUBEWjnGNi/Cjp8eKCJlRCRKRNo7jY0v\nTDJ2vH1BorFnkdJFJB4Yl2/9Xnf7cDy394DHRaSyiCQA92LPPhWZMeZyY8vtxri4XeHmMZuBX4Cx\njr9HH+B07DAVV2YCw0WkjojUBYZjJ2QD4Hidy2O/B6Ic+8z5TpiDre50viNJPgp84DS+fhbwiIjE\nikgL4GanfScCJ0TkTrGlc+/CTgb+0imuG0WkheNv/4hzXN5ibCnjixz7V0qFL81XTjRfab5SwUEb\nWcolx5d0T+yZtO3YM3d9HavfxH5prcJO6M0E7nJ+eP7dOf0+Gfvlv0JE/sUmsQrGmIPYyaL9sWce\ndwMTgXIehjwOmOkYuvE/N9s8D1TEnuVbDSzJt/4F4BoROSAiz7uI/S7sc92Kfe6zjTEFfdkWWKa3\nmPoDZwGp2H8WrjbGHAAQkQtEJD334Ma8jq1ItR47z+ATY8w0p31Nwz6f/tgKWpnAQMdjfwduBeZi\n/yGoANzh9Nix2NchCfgCmGiM+dTx2CzgSmwFq1TsGPPexpjjjvXLgaewSexv7HtoXAHPuaD3U4GM\nMauNMcmFb6mUClWarzRfoflKBSGxcx59tHORetizADWxZwamGmNeEpGx2DMJOeNWRxljlvksEKWU\nUsoNzVVKKaW8zdeNrFpALWPML45u+h+B3tiqNxnGmMk+O7hSSinlAc1VSimlvK2ML3fu6PZMdvx+\nUEQ28l91G08q5CillFI+pblKKaWUt/ltTpaINMRWZfnOsWiYiPwiIm+ISBV/xaGUUkq5o7lKKaWU\nN/ilkeUYfvE+cLdjwuirQGNjTFvs2UMdiqGUUiqgNFcppZTyFp/OyQJbdhNb7nSpMeYFF+sTgIXG\nmPzXKUBEfBucUkqpgDDGBNUwPM1VSiml8itJrvJHT9abwO/OScsxyThHH/676NtJjDF+u40dO9av\n+/Bk28K2cbfe0+WutvPG6+DP172oj/f36+7JMn+/5qH4uhd1XTC+7v7+jvHl616Sz0CQCliu8tdn\n0RufoWB7XqH2nIwx0LHw90uoPa+Svgd99b+Ivgf987cKledV1L9VSfm08IWInA9cB6wXkZ+x1wsY\nBQwQkbbYUrnbgFt8GYenOnXq5Nd9eLJtYdu4W+/pcm8855IqaQxFfby/X3dPl/lbqL3uRV0XjK+7\nv79jPN2+OK97ST8DwSTQucpfn8Xifr6Kyx/PK9SeEwANS3acYHxeJX0P+uo7Qt+DxX+8/q28oCSt\nRl/fbHjK38aOHRvoEEodfc0DQ1/3wHB8twc8x3jrFq65Khw/H8HwnBjn/fdLMDwvbwvH52SMPq9Q\nUtJc5bfqgip0BPtZ53Ckr3lg6OuulHvh+PkIx+cE4fm8wvE5gT6v0sTnhS9KQkRMMMenlFKq6EQE\nE2SFL0pCc5UqChkvmLH6flEq2JU0V/l0TpZSSimllAp/DRs2JCkpKdBhKFVkCQkJbNu2zev71UaW\nUkoppZQqkaSkJK9UZFPK30R8M7BC52QppZRSSimllBdpI0sppZRSSimlvEgbWUoppZRSSinlRdrI\nUkoppZRSpVJSUhIRERFkZ2eXeF+NGjXiiy++8GjbGTNmcOGFF+bej46O9lrxhSeffJKhQ4cC3n1+\nADt27CAmJkbn33lAG1lKKaWUUipsFdb48VXhg8I4HzcjI4OGDRsWuP3KlSupX79+ofsdOXIkU6dO\ndXmcosr/2tWvX5/09PSAvWahRBtZSimllFJKBTljTKGNmxMnTvgpGlUYbWQppZRSSqlSITs7m/vv\nv5/q1atzyimnsHjx4jzr09PTuemmm6hTpw7169dn9OjRuUPjtm7dSpcuXahWrRo1atRg4MCBpKen\ne3TclJQUevXqRZUqVTj33HPZsmVLnvURERFs3boVgCVLltCyZUtiYmKoX78+kydPJjMzk8svv5zd\nu3cTHR1NTEwMycnJjB8/nmuuuYZBgwYRGxvLjBkzGD9+PIMGDcrdtzGG6dOnU7duXerWrcuzzz6b\nu27IkCGMGTMm975zb9n111/P9u3b6dmzJzExMTzzzDMnDT/cs2cPvXv3pmrVqjRr1ow33ngjd1/j\nx4+nX79+DB48mJiYGFq1asVPP/3k0esVDrSRpZRSSimlSoWpU6eyZMkSfv31V3744Qfef//9POsH\nDx5M2bJl2bp1Kz///DOffvppbsPBGMOoUaNITk5m48aN7Ny5k3Hjxnl03Ntvv52KFSuyd+9epk+f\nzptvvplnvXMP1U033cS0adNIT0/nt99+4+KLL6ZixYosXbqUOnXqkJGRQXp6OrVq1QLgk08+oW/f\nvqSlpTFgwICT9geQmJjIli1bWL58OZMmTfJo+OTMmTNp0KABixYtIj09nfvvv/+kfffr148GDRqQ\nnJzM/PnzGTVqFImJibnrFy5cyIABA/j333/p2bMnd9xxh0evVzjQRpZSSimllCoV5s+fzz333EOd\nOnWIjY1l5MiRuev27t3L0qVLee655yhfvjzVqlXjnnvuYd68eQA0adKELl26UKZMGapWrcq9997L\nypUrCz1mdnY2CxYsYMKECZQvX56WLVsyePDgPNs4F5IoW7YsGzZsICMjgypVqtC2bdsC99+hQwd6\n9uwJQPny5V1uM27cOMqXL8/pp5/OkCFDcp+TJ9wVudixYwfffvstkyZNIioqijZt2nDTTTcxc+bM\n3G0uuOACunXrhogwaNAg1q1b5/FxQ502spRSSimllG+NGwciJ9/c9QS52t7DXqOC7N69O0/xiISE\nhNzft2/fTlZWFrVr1yY+Pp64uDhuvfVW9u/fD8A///zDtddeS7169YiNjWXgwIG56wqyb98+Tpw4\nQb169VweN78PPviAxYsXk5CQQOfOnVmzZk2B+y+sGIaInHTs3bt3Fxp3Yfbs2UN8fDwVK1bMs+9d\nu3bl3s/pbQOoWLEiR44c8Vqlw2CnjSyllFJKKeVb48aBMSffCmpkebptEdSuXZsdO3bk3k9KSsr9\nvX79+pQvX54DBw6QkpJCamoqaWlpub0vo0aNIiIigg0bNpCWlsbs2bM9KmVevXp1ypQpk+e427dv\nd7t9u3bt+Oijj9i3bx+9e/emb9++gPsqgZ5U+st/7Dp16gBQqVIlMjMzc9ft2bPH433XqVOHlJQU\nDh06lGffdevWLTSe0kAbWUoppZRSqlTo27cvL774Irt27SI1NZVJkyblrqtVqxZdu3bl3nvvJSMj\nA2MMW7duZdWqVYAts165cmWio6PZtWsXTz/9tEfHjIiIoE+fPowbN47Dhw/z+++/M2PGDJfbZmVl\nMXfuXNLT04mMjCQ6OprIyEgAatasyYEDBzwutpHDGMOECRM4fPgwGzZs4K233qJ///4AtG3bliVL\nlpCamkpycjIvvPBCnsfWqlUrtyCH8/4A6tWrx3nnncfIkSM5evQo69atY/r06XmKbriKpbTQRpZS\nSimllApbzr0xN998M926daNNmza0b9+eq6++Os+2M2fO5NixY5x22mnEx8dzzTXXkJycDMDYsWP5\n8ccfiY2NpWfPnic9tqBen5deeomMjAxq167NDTfcwA033OD2sbNmzaJRo0bExsYydepU5syZA0Dz\n5s259tprady4MfHx8blxefL8O3bsyCmnnMKll17Kgw8+SJcuXQAYNGgQrVu3pmHDhnTv3j238ZVj\nxIgRTJgwgfj4eCZPnnxSrPPmzePvv/+mTp06XH311UyYMIHOnTsXGEtpIcHcohQRE8zxKaWUKjoR\nwRgTNplWc5UqChkvmLHh935xfK4DHYZSRebuvVvSXKU9WUoppVQIiI/PWwMgPj7QESmllHKn0EaW\niPQUEW2MKaWUClqlIVelpuatAZCaGuiIlFJKueNJQuoHbBaRp0TkVF8HpJRSShWD5iqllFJBo9BG\nljFmIHAGsAV4W0S+FZGhIhLt8+iUUkopD2iuUkopFUw8GlphjEkH3gfeAWoDVwE/icidPoxNKaWU\n8pjmKqWUUsHCkzlZvUXkQyARiALONsZcBrQB7vNteEoppVThNFcppZQKJmU82KYP8JwxZpXzQmNM\npojc6JuwlFJKqSLRXKWUUipoeDJcMDl/0hKRSQDGmM99EpVSSilVNJqrlFJKBQ1PGlmXulh2mbcD\nUUoppUpAc5VSqlSKiIhg69atHm07fvx4Bg0aBMCOHTuIiYnx2kWkb7vtNh5//HEAVq5cSf369b2y\nX4Cvv/6aFi1aeG1//uC2kSUit4nIeuBUEVnndPsbWOe/EJVSSinXNFcppTwxd+5czjrrLKKjo6lb\nty5XXHEF33zzTaDDYsaMGVx44YUl2oeIFGv7+vXrk56eXujjPY1xypQpPPzww8WOy1n+huMFF1zA\nxo0bi72/QChoTtZcYCnwJDDCaXmGMSbFp1EppZRSnim1uSouDvL/DxMXBylh/ayVKrrJkyfz1FNP\n8frrr9O1a1fKli3L8uXLWbhwIeeff36R9nXixAkiIyMLXeYpY0yJGiM5+/AlT2LMzs4mIsJ714Mv\n6WsSDAp6NYwxZhtwB5DhdENE4n0fmlJKKVWoUpurUlLAmLy31NRAR6VUcElPT2fs2LG8+uqr9O7d\nmwoVKhAZGcnll1/OxIkTATh27Bj33HMPdevWpV69etx7771kZWUB/w17e+qpp6hduzY33HCDy2UA\nixYt4owzziAuLo4LLriA9evX58axc+dOrr76amrUqEH16tW566672LRpE7fddhvffvst0dHRxMfH\n58Zz//33k5CQQO3atbn99ts5evRo7r6efvpp6tSpQ7169XjrrbcKbJBs27aNTp06UaVKFbp168b+\n/ftz1yUlJREREUF2djYAb7/9Nk2aNCEmJoYmTZowb948tzEOGTKE22+/nSuuuILo6GgSExMZMmQI\nY8aMyd2/MYYnn3yS6tWr07hxY+bOnZu7rnPnzrz55pu59517yzp27IgxhtatWxMTE8P8+fNPGn64\nadMmOnfuTFxcHK1atWLhwoW564YMGcKwYcPo0aMHMTExdOjQgb///rvgN4oPFNTIynklfgR+cPz8\n0em+UkopFWiaq5RSbn377bccPXqUK6+80u02jz32GGvXrmXdunX8+uuvrF27lsceeyx3fXJyMmlp\naWzfvp2pU6e6XPbzzz9z4403Mm3aNFJSUrjlllvo1asXWVlZZGdn06NHDxo1asT27dvZtWsX/fv3\n59RTT+W1116jQ4cOZGRkkOLohn7ooYf466+/WLduHX/99Re7du3i0UcfBWDZsmVMnjyZzz//nM2b\nN/PZZ58V+PwHDBjAWWedxf79+3nkkUeYMWNGnvU5DbTMzEzuvvtuli9fTnp6OqtXr6Zt27ZuYwSY\nN28eo0ePJiMjw2WPYHJyMikpKezevZu3336boUOHsnnzZrex5sSycuVKANavX096ejrXXHNNnvXH\njx+nZ8+edO/enX379vHiiy9y3XXX5dn3u+++y/jx40lLS6NJkyZ5hjH6i9tGljGmh+NnI2NMY8fP\nnFtj/4WolFJKuaa5SilVkAMHDlCtWrUCh7LNnTuXsWPHUrVqVapWrcrYsWOZNWtW7vrIyEjGjx9P\nVFQU5cqVc7ls2rRp3HrrrbRv3x4RYdCgQZQrV441a9awdu1a9uzZw1NPPUX58uUpW7Ys5513ntt4\npk2bxnPPPUeVKlWoVKkSI0aMYN68eQDMnz+fIUOG0KJFCypUqMC4cePc7mfHjh388MMPPProo0RF\nRXHhhRfSs2dPt9tHRkayfv16jhw5Qs2aNQstNNG7d2/OPfdcgNzXxZmIMGHCBKKiorjooou44oor\neO+99wrcpzN3wyC//fZbDh06xEMPPUSZMmXo3LkzPXr0yH2NAK666iratWtHREQE1113Hb/88ovH\nx/UWTy5GfL6IVHL8PlBEJotIA9+HppRSSnlGc5VSwU3EO7eiqlq1Kvv3788dEufK7t27adDgv6+L\nhIQEdu/enXu/evXqREVF5XlM/mVJSUk8++yzxMfHEx8fT1xcHDt37mT37t3s2LGDhIQEj+Ys7du3\nj8zMTNq1a5e7r8suu4wDBw7kxuo8bC4hIcFtY2T37t3ExcVRoUKFPNu7UrFiRd59912mTJlC7dq1\n6dmzJ3/88UeBsRZWPTAuLo7y5cvnObbz61pce/bsOenYCQkJ7Nq1K/d+rVq1cn+vWLEiBw8eLPFx\ni8qTGWpTgEwRaQPcB2wBZhX8EEtE6onIFyKyQUTWi8hdjuVxIrJCRP4QkeUiUqXYz0AppZTSXKVU\nUMs/f7C4t6Lq0KED5cqV46OPPnK7Td26dUlKSsq9n5SURJ06dXLvu5rzlH9Z/fr1efjhh0lJSSEl\nJYXU1FQOHjxIv379qF+/Ptu3b3fZ0Mu/n2rVqlGxYkU2bNiQu6+0tDT+/fdfAGrXrs2OHTvyxOpu\nTlbt2rVJTU3l8OHDucu2b9/u9nW49NJLWbFiBcnJyTRv3pyhQ4e6ff4FLc/h6tg5r2ulSpXIzMzM\nXZecnFzgvpzVqVMnz2uQs++6det6vA9/8KSRddzYJnJv4GVjzCtAtIf7Pw4MN8a0BDoAd4jIqdgK\nUJ8ZY5oDXwAjix66UkHk2WfhgQfg7rth5Eh4+mmYORMcX4pKKZ/TXKWUOklMTAzjx4/njjvu4OOP\nP+bw4cMcP36cpUuXMmKELUjav39/HnvsMfbv38/+/fuZMGFC7rWkPHXzzTfz2muvsXbtWgAOHTrE\nkiVLOHToEGeffTa1a9dmxIgRZGZmcvToUVavXg1AzZo12blzZ26hDRHh5ptv5p577mHfvn0A7Nq1\nixUrVgDQt29f3n77bTZu3EhmZmbuXC1XGjRoQPv27Rk7dixZWVl8/fXXeQpEwH9D8v755x8++eQT\nMjMziYqKonLlyrk9b/lj9JQxJvfYX331FYsXL6Zv374AtG3blgULFnD48GH++usvpk+fnuextWrV\ncnvtr3POOYeKFSvy1FNPcfz4cRITE1m0aBHXXnttkeLzNU8aWRkiMhIYCCwWkQggqpDHAGCMSTbG\n/OL4/SCwEaiHTYI5M+9mAO5nIyoVDI4fh1WrwPGFd5IqVaBGDWjUCKKjYe9eWLYMnM7gKKV8SnOV\nUsql4cOHM3nyZB577DFq1KhBgwYNePXVV3OLYTzyyCO0b9+e1q1b06ZNG9q3b1/kQgnt2rVj2rRp\nDBs2jPj4eJo1a5ZbZCIiIoKFCxeyefNmGjRoQP369XPnJl188cW0bNmSWrVqUaNGDQAmTpzIKaec\nwrnnnktsbCxdu3blzz//BKB79+7cc889XHzxxTRr1owuXboUGNfcuXNZs2YNVatWZcKECQwePDjP\n+pzeqOzsbCZPnkzdunWpVq0aq1atYsqUKW5j9ETt2rWJi4ujTp06DBo0iNdff52mTZsCcO+99xIV\nFUWtWrUYMmQIAwcOzPPYcePGcf311xMfH8/777+fZ11UVBQLFy5kyZIlVKtWjWHDhjFr1qzcfQdL\n+XcprLa+iNQCBgDfG2O+coxx72SMmVmkA4k0BBKB04Edxpg4p3UpxpiTSu2KiPF17X+l3DIGvv8e\nZs+Gd9+FevXg9dehffuS7ffIEdvTNXQo1KzpnViVCiEigjHGq1mwNOQqkcKHS3myjQosGS+YseH3\nR3J8rgMdhlJF5u69W9JcVWhPluMM32RjzFeO+9uLkbQqA+8DdzvOEuZ/JvqpVMHlq6+gbVu47jqo\nVg2++QZ+/LHkDSyAzEzYswdatIBhw8BpoqZSqng0VymllAomZQrbQET6AJOAGoA4bsYYE+PJAUSk\nDDZpzTLGfOxYvFdEahpj9jrOPv7j7vHOpSk7depEp06dPDmsUiVTrRpMmgRdu4IXr2AOQHw8vPoq\njBlj53K1bg333w/Dh4OLEqhKhbrExEQSExN9egzNVUoppUrC27nKk+GCfwE9jTEbi3UAkZnAfmPM\ncKdlk4AUY8wkEXkIiDPGjHDxWB0uqMLfli22gXXnnXDJJYGORimf89FwwbDPVTpcMDzocEGlgouv\nhgt60sj6xhhz8mWcPdm5yPnAKmA9dpiFAUYBa4H3gPpAEtDXGJPm4vHayFK+9c03ULcuNGwY6EiU\nKjV81MgK+1yljazwoI0spYKLrxpZhQ4XBH4QkXeBj4CjOQuNMQsKe6Ax5hsg0s1qPWWvAmf/fnjo\nIVsBcO5cnzWy4uMhNdX9+rg4SEnxyaGVKm00VymllAoanjSyYoBMoKvTMgMUmriUCkrz59uhedde\nCxs3QoxHUzaKJTW14LPKhVYZPXgQKlf2akxKhSnNVUoppYJGoY0sY8wQfwSilM8ZAzfdBF9/DZ98\nAmefHeiICpacbGP8+GM444xAR6NUUNNcpZRSKph4Ul2wGTAFqGmMOV1EWgO9jDGP+Tw6pbxJBPr3\nh5degooVPX5YYUP+YmNtdfcDB+zQv3//zdt79emnULUqVK8OdepApLtBSfnVqgXPPQfdu8NHH0GH\nDh7HrFRpo7lKqcBKSEgImovAKlUUCQkJPtmvJ4UvVgIPAK8bY85wLPvNGHO6TyLKe2wtfKF8rijz\npnbuhLVr7TWKf/oJ/voLtm51/9ioKLjoItsA++cfu5/GjaF5c9tJNXIkHDpUSJtv2TK4/nrbo6UN\nLRUGfFT4IuxzlSdFLfJ/n+m8z+ATroUvlAo3/ih8UdEYszbf2YnjxT2gUsGmoHlTR47AZ5/ZKVzL\nl9ttzzkWvQEHAAAgAElEQVTHNpDuvNM2lhISoGxZz46VmWkbZr//Dt99Z5fVqAHnnQe9etlbgwb5\nHtS9O8yYAVdeabvFWrcu9nNVKoxpruLkBpV2LCilVGB40sjaLyJNcFzpXkT+B+zxaVRKldTPP9s5\nTZddVuSHHj8OX3wB8+bZzqPWre1u3nvP/l6SaxNXrGj30bq1Hbn4/PM2zBUr7DSxcePsuptugj59\noHx5xwMvuwxefhkyMop/cKXCm+YqpZRSQcOT4YKNganAeUAq8Dcw0BizzefB6XBBVRwLFsAtt8Dr\nr9uWSiFyhuDs3Wsf8vrr9tJZ114L/frZeVS+kn/4z9GjtrH1xht2OOLtt8Pdd9shQEqFCx8NFwz7\nXFWca2DpdbOCjw4XVCo0+PxixE4HqgREGGP8dipdG1mqSIyBJ5+EKVNsoYh27Tx6mAgMHAiLFkHf\nvjBsGLRq5eNYnY7t7i2+eTNMmgQffmh7tkaMsPMrlAp1vmhkOe07bHOVNrLCgzaylAoNPpuTJSLD\n3R0QwBgzubgHVcrrjhyxLZFNm+xkJw+6n9atg/Hj7e+tWsELLwRXj1HTprZHa8wYePxxOPVUePRR\n+zQ9rlCoVJjTXKWUUioYFTS7JNpxaw/cBtR13G4FzvR9aEoVwcaN9pTtqlWFNrA2b4b//Q+6dYPz\nz7fLHnwwuBpYzho0sEMYly+HOXOgfXs7lBCA/fsDGptSQUBzlVJKqaDjyZysVcAVOUMvRCQaWGyM\nucjnwelwQeVF//4Ljz0Gb70F998Pd91lC1EEcjhNYccuqLx8ZTLYSAvqbVll68IrFSJ8NCcr7HOV\nDhcMDzpcUKnQUNJc5UmdtJrAMaf7xxzLlAoJxsD06bbcemoq/Pabnd9UhOsRB0xOefn8t5074fxu\n0ZzF9+y46i5bMUOp0k1zlVJKqaDhSU/Ww0Bf4EPHoiuBd40xT/o4Nu3JUiW2eTOcdpoty+5OIC/W\nWdhZ5oLWZ2dDZKShZrk0ZvX+gEvfvck3QSrlZT7qyQr7XKU9WeFBe7KUCg0+78kyxjwODMGWxE0F\nhvgjaSnl1mefwTvvFLhJVhZMnAgdOtgG1vHjrnuEjAlcA6uk7PW6hHfmwfXv9+SV+7cGOiSlAkZz\nlVJKqWDiycWIMcb8BPxU6IZK+drixTBkCHzwgdtN/voLrrsOqlSBH36ARo3Cuxpfp6vi+OalZVx+\n/2lsyYannw7v56uUO5qrThYXZ3uz8i8L1ZNLSikVKjyZk6VUcPjwQ7jhBli4EC688KTVOXOvOnSw\n171avhwaNvR/mEWR8w+Qu5un18VqfHt3Vv9RlR9/hOuvL3h4pFKq9EhJObn33l0xHaWUUt6jjSwV\nEm6q/A7JfW7jzH+WIueek6chEh8PBw7A1VfDiy9CYiLceefJZ2+Dkat/gIo7lDG+fiWWLbOP6dcP\njh0r/DFKKaWUUsr7PCl8cScw2xjj93NfWvhCAZCWxu9x53Ha+vfg9NNPWi1iryX1v//BE09AuXIn\nrw/Xt5Gr53b0qG1kZWfbUZVRUYGJTSl3fFT4IuxzVZ7P++HDdmx0uXLQrNnJG2/YYK8bWKGCvcXG\nQrVq0KABUqN62H4nhgItfKFUaChprvJkTlZN4HsR+Ql4E1iuLR/lV7GxtGYdx0/P+3Y1Bl57zf7+\nwgtw5ZUBiC0IlSsH8+dDnz7wf/8Hs2blFMlQKqyFd646cIDBLISBn8H33/NvUhpbal/AP536ktat\nGWlpcPDgf4V+jm+N5vgvCRzPMpzIOkHE0TQiM3cS0TQD6MTTT9vrttepA02bQt0KKUililC+fKCf\nqVJKhYVCe7IARESArtjKTe2B94DpxpgtPg1Oe7KUQ/4em8xMuPVW+OUXSEqC9HT3jw3nSd5ue+my\nsjh8IJPL+lehRQt49dXQGD6pSgdf9GQ59hu2uWrV6xt56db1/NviPH5OrsXhY5E0aSLUqmU7qWJj\noXJl23NdpkzeW0SE7dnOzoYTJ2DMGBg+HHbvhl27YNMmMJmZtD/yNZc13ULPm2rS6NZuUKmST59T\naaU9WUqFBn/0ZGGMMSKSDCQDx4E44H0R+dQY82BxD65UcWzZAlddBW3bwpo1oXFRYb978UUq/PQT\nn3wyh06dbDn7kSMDHZRSvhXOuWrRlha8Tws+mQTt20OtWsU/cTJmDDz77H/3jYHduyuy5ssLWfzG\nKTw2Kp7TRvzCHVfupM+UrkRW87ACj1JKqVyezMm6G7ge2A+8AXxkjMkSkQhgszGmic+C056s0ikp\nCRIS8izK6bFZudLONxo9Gm6/XXtn4uNdVwqryCH+pBn/F72Atzeew7nn2iGVffr4P0al8vPRnKyw\nz1Xeml9a2H6ysuDDV3bz/MTDpMc24KnJUVx+ecmPqyztyVIqNPj8YsRAPNDHGNPNGDPfGJMFYIzJ\nBnoU98BKuTR/Ppx3nsvxf9OnQ9++MHs23HGHNrDAfXXCQ6YSdadPYGzGfdStY/joI7jlFvjxx0BH\nrJTPaK7ykqgo6HtPHb7Z04Qnn47innugbNm8l5eIjw90lEopFdw8aWQtBXJntIhIjIicA2CM2eir\nwFQp9NFHtvb6kiUQE5O7+MQJ+3PiRFss65JLAhRfqBk8mGgyYMEC2rWD11+3xUH27Al0YEr5hOYq\nLxOBnj3t3NesLFvF9aef9FpbSinlCU8aWVOAg073DzqWKeU9ixbZrpbFi6FNm9zFBw/+VzXwu++g\nefMAxReKIiO5j2fhoYfg2DH69IEbb4QBA/5ruCoVRjRX+UjOvNdnnoGuXQ0fPevTOiJKKRUWPGlk\n5Rls7hh64VHBDKU8smIF+3rdwNn/LETat8szJCU62ra/YmN1eEpxfM4lMG1a7sWyRo+GyEgYNy6w\ncSnlA5qrfOyaa2DplCRufSCalvwW6HCUUiqoedLI2ioid4lIlON2N7DV14GpUqR6da40H7LWnJ07\np2jzZmjSxFbBys7WoSkl0rlz7gS2yEiYMwfefBNWrAhwXEp5l+YqP2j/v4Ysn7adfVRnwZN/BDoc\npZQKWp5UF6wBvAhcDBjgc+AeY8w/Pg9OqwuWGs7Vrn74AXr1grFj7QhCVXzuqoglJsK119r5FbVr\n+z0sVcr5qLpg2Ocqf1UX9OQx58vX/Ckt+Pj9LM7rU6vkQZUiWl1QqdBQ0lzl0cWIA0UbWaVHTgJf\ntgwGDYI33oDevQMdVegr6J+pMWNstcFFi7RSo/IvX12MOFBCrZGV/9IPnlywPf+x4+OhU+oHrKIj\nh6jIESqG9YXfvUkbWUqFBp9fjFhEqgM3Aw2dtzfG3FDcgyrlyowZtkbDxx/bKu6q5OLi3DegYmOh\nUSPboL35Zv/GpZS3aa7yXP6GUHFOsqSkAKYPk69cyTs7L+Cr1VC+vFfCU0qpsODJcMHVwFfAj0Bu\nTTJjzAe+DU17ssLS3r3w+ee2xJ0TEVseeNkyaNEiQLGVBs8/b7sKq1ZFBH77DTp1grVrbYNLKX/w\n0XDBsM9V3urJ8mS/nvZ2GQNXXWW/v2fPLnoPWWmkPVlKhQaf92QBFY0xDxX3AErlSkuDbt1OGgf4\nzDP256pVkJAQgLhKk40b7Qv+5JMAtGxpew8HD4Yvv7SFMZQKUZqrvCg11bMGnQi8/TaccQbMmgVX\nXJF3nVJKlVaeVBdcJCKX+zwSFd4OHbLZt2PHPPXDn3gCpk61v2sDyw8eftheldjpdPO999oKjlP0\nikIqtGmuCpDYWFux9JZbtBKsUkrl8KSRdTc2eR0RkXQRyRCRdE92LiLTRWSviKxzWjZWRHaKyE+O\nW/fiBq9CxNGj0KcPNG0Kzz0HIhhj21qzZsHKlYEOsBRp0MD2JL78cu6iyEh7Ka1x42DXrsCFplQJ\nFTtXQenOVzlzN51vcXFF20fnzvarZfhw38SolFKhxqfVBUXkAuAgMNMY09qxbCyQYYyZ7MHjdU5W\nOBg6FPbvh/fegzJlMMZ2qCxcCJ99BjVr+m6ugXJh0ya46CIq7fubQ6ZS7uIxY+wcrQULAhibKhWC\nsbpgSfJVqM/J8paDacc5vU4K02eXo0ufKkEfb6DonCylQkNJc1WhPVliDRSR0Y779UXkbE92boz5\nGnA1eCCokqvysYcegnnzchtYDzwAS5faOUA1awY6uFLo1FPhoovoycI8i0eNgg0bbHVHpUJNSXIV\naL7yhsqxZXi+y0LuvOEgx4657iGLjw90lEop5R+eDBd8FegA5JSDOwi8UsLjDhORX0TkDRGpUsJ9\nqWDXpAmUK4cxcPfd9kK4n38O1aoFOrBSbNYs3qV/nkXly9vpWnfeCRkZAYpLqeLzRa4CzVdF0ntO\nXxKO/MFLD+4gJcX2ZDnfdM6WUqq08KS64DnGmDNF5GcAY0yqiJQtwTFfBR41xhgReQyYDNzobuNx\nTkUSOnXqRKdOnUpwaBUo2dlwxx3w8892iGBsbKAjKuUqVCjwGloxMVp+WXlPYmIiiYmJvj6Mt3MV\nFCFfaa6yJCaaF0Yf4LxxZ3LtA4Y6dbUjUCkVGrydqzy5TtZ3wHnA944EVh1YYYw5w6MDiCQAC3PG\nuHu6zrFe52SFgRMn7LSsP/+ExYvtP/D56dj94LFnD7RqBVlZkF5A2QBthKni8tF1skqUqxz7KFa+\n0jlZ+Zw4wYO1Z5HWpiNTP817Ab6QeQ4+pHOylAoNPp+TBbwIfAjUEJHHga+BJ4pwDMFpTLuI1HJa\n1wf4rQj7UsFu5kw75szhxAkYMgS2brXzsFw1sFRwqV3bzpvr2PHkoT467EcFsZLmKtB85R2RkYx8\nsykfflebTZsCHYxSSgWGR9UFReRUoAs2+XxujNno0c5F5gKdgKrAXmAs0BloC2QD24BbjDF73Txe\ne7JCyccfw6232ooWp55KVhZcf70tLPjxx1CxovuH6tnN4HL0KJx+uq303q2b6230b6aKy1fVBYub\nqxyPLXa+0p4s155+Gr79Nm/F0vzPIT7+5BM24d5Lrj1ZSoWGkuYqT4YLNnC13BizvbgH9ZQ2skLI\nF19A//62u6pdO44dgwEDIDPTJtjy5Qt+eKj98xBWHn8cevWyYwSdLFxoC0P++itERZ38MP2bqeLy\n0XDBsM9VofaZO3wYmjWzV+/o0MEuy/8cXD2nUHueRaWNLKVCgz+GCy4GFjl+fg5sBZYW94AqDK1d\naxtY8+dDu3YcPQrXXAPHjsGHHxbewFJB4LnnTlrUo4e9dvEr3qjPppTvaa4KMhUqwPjxMGLEf42m\n/GXdi3rRY6WUChVFvhixiJwJ3G6Muck3IeU5lvZkBbvsbGjfHh59FHr04MgR6NPHJtd586Csh7W9\nwv3MZVDbvx+aNrUXKc534bKNG+Gii+CPP06+vo3+zVRx+eNixOGYq0LxM3f8OLRoAdOmgacFF0Px\neRaF9mQpFRr80ZOVhzHmJ+Cc4h5QhZmICFi9Gnr0IDPTjjqLiYF33vG8gaUCrFo16NsXpkw5aVWL\nFnD11fDkkwGIS6kS0FwVHMqUgYdHZvPogwcDHYpSSvmVJ3OyhjvdjQDOBKoaY9xMh/ce7ckKHQcP\nQs+eUK8evPWWTaxFEe5nLoPexo3QuTNs23bS+M49e2wRjJ9/tsMHc+jfTBWXj+ZkhX2uCtXPXNYf\nW2l+WgQzFlblwsujC90+fzGMcCuEoT1ZSoUGf/RkRTvdymHHu/cu7gFV+MnIgMsug0aN4O23XTew\n4uPzjsPPf9Nx+QHWooUd9vnVVyetql0bbr8dRo8OQFxKeU5zVZCKat6Yh8/9gkfv3OfR9ikperkI\npVToK/KcLH/SnqwgdPx4nlZUWpptYLVpA6++akcPuhKqZ2BLlRMnIDLS5ar0dFslbPly+7cG/Zuq\n4vPHnCx/0p6swmX99gfN2pRnzvLqnHdJAdfzcCGUn7cr2pOlVGjwRwn3hYDbjYwxvYp78MJoIyvI\nHD1qxwQOGwa9epGSYq+h1KEDvPCCTYTuhFuSLI1eegmWLLFV+kH/pqr4fDRcMOxzVah/5qa2f50F\nB7uybFOjIj0u1J93ftrIUio0+GO44FbgMDDNcTsIbAGeddxUaXD8OFx3na1qccUV7N8PXbrYynOF\nNbBUeLjlFvjzT3tJNKWCkOaqIPd/U85lw+Zy/LzmaKBDUUopn/OkJ+sHY0z7wpb5gvZkBQlj4Kab\nYMcOWLiQf/4tR5cu9jpKTzxhG1j5JyrnF24Tl0uruXNtj9bq1XZoqH48VXH4qCcr7HNVOPToPHvb\nX3yf0ph33vW8uHE4PG9n2pOlVGjwR09WJRFp7HTARkCl4h5QhRhj4P774fffYcEC9qSUo1Mney2s\nnAYW2AaW80Tl/DdtYIWHfv3s/KyleolXFXw0V4WAoU+dwmefR7BlS6AjUUop3/KkkXUvkCgiiSKy\nEvgSuMe3YamgkZoKmzfDkiXsTKtMx44wYACMH69DBMNWZibcfbe90HQ+kZH2utNaaVAFIc1VISA6\n2g49flYHcCqlwpxH1QVFpBxwquPuJmOMXwZU63DB4JGUBBdfbJPjgw+evD7chnOUasbYcu6PPw7d\nu5+0Ojsb2rWDX37Rv7kqHl9VFwz3XBUu37N799qrRmzaBDVqFL69q+HooTwEXYcLKhUafD5cUEQq\nAg8Aw4wxvwINRKRHcQ+oQs/WrdCpE9x5p+sGlgozInDbbbYmvwsREbY3C1x2dikVEJqrQkfNmnbo\n8YsverZ9/utm6bWzlFKhwJPCF+8CPwLXG2NOdySy1caYtj4PTnuy/Kqg4hUVKthRZO6EyxlW5XDo\nEDRoAD//bH/mY4xtbL3zjv1nSami8FHhi7DPVeH0PbtlUxbnnn2CrTvLER1T9LdCKL8W2pOlVGjw\nR+GLJsaYp4AsAGNMJqCzccJQaiqYdesx2QZjYONGqFsXpk6F8uVtUnN3i4sLdPTKqypVgv794a23\nXK4WgcqV7Sbu3hPx8X6OWZV2mqtCSJNmkXSJ+JKp920KdChKKeUTnjSyjolIBRwXeRSRJoBe5CIM\nXcmHcOmlsHcvv/1m52A9/jjcfLPr4RpaPTDM3XwzzJvn9nRxejpccAHMmOH6PaHDeZSfaa4KJRER\nPPSQ8NzMqhw7FuhglFLK+zxpZI0FlgH1RWQO8DmgM3PCzdKlvMatsGQJvyTX4tJL4ZlnYPDgQAem\nAqZtW/j+e7dlJEXgscdspcmsLD/HptTJNFeFmDMevJTTIv9kzpg/Ah2KUkp5XYGNLBERYBPQB/g/\nYB7Q3hiT6PPIlP98+SUMHkxvPub7E2fSrZudkDxgQKADUwEXHV3g6o4doVEjePtt/4SjlCuaq0JU\nZCQP3ZbOUy9X0CI6Sqmw40nhi/XGmFZ+iif/sbXwha+tWQO9esH8+UinjlSvDtOnQ8+egQ5MhYrV\nq22D/M8/oWzZ/5aH8sR05Vs+KnwR9rkqHD9T5ugxzo7eyMhJsfS5N8Hjx4Xya6GFL4JXRoYd6u6i\n3pMqhfxR+OInETmruAdQQa5uXXjnHb7M7gjArFnawFJFc955cOqpbmtkKOUvmqtCkJQry6jX6vPE\nnAYh22hSoev4cVg+cy8vX7yAl2IeZkHcjfzWfjCsWxfo0FQY8KQnaxNwCpAEHMJWazLGmNY+D057\nsryqoBLtYKvFZWT4Lx4VPr77Dq65BjZvhnLl7LJQPtOsfMtHPVlhn6vC9TOVnQ2tWsFzz0HXrp49\nJpRfC+3JCg7Z2fBazbEMTH2RlObnEX3xWcS1qkdE2TLQpQvUr59n+61boUwZ7eUqTUqaq9w2skSk\nkTHmbxFx2X9vjEkq7kE9pY0s73KVlD7+2BaR++gj2yOhlEuffw5Vq9piGG5ccYW93X67vR/K/wQp\n3/JmI6s05apw/kzNng3TpsHKlZ5tH8qvhTaygkfy9zuo1bIqVKxY6LbzZp9g3F0pjHulOtde64fg\nVMD5crjg+46fbxpjkvLfintAFTzmz4ehQ2HJEm1gqUKsX2/LTRZg3Dh44gk4csQ/ISnloLkqDPTv\nDzt2wNdfBzoSVZrUOqu+Rw0sgGvrfcVvZdrwwQNrGDkydBv5yn8KamRFiMgooJmIDM9/81eAynvO\nYQ08+ihgzxredResWAHt2wc4MBX8Bg2CRYsKHG961llw5pn24tVK+ZHmqjBQpgw89BA8+WSgI1Hh\nKHn6YszuPSXbSadORL01jfeO9OTw/EXcdZc2tFTBCmpk9QdOAGWAaBc3FUrWrOETekH79rzxBowY\nYUeAtWkT6MBUSKhaFS67zLbOCzB+PEycCIcP+ykupTRXhY3/+z/45at0fl62N9ChqHBx4gQbez5A\n1tDb2fadF95XV1xBxJLFTP73BrKXf0piYsl3qcKXJ4UvLjPGLPVTPPmPrXOyvMFRpv3yfW/T7fnL\nmTwZPvsMmjYNdGAqpHzxBdxzD/z6q9sLFANcdRVcdBEMH65n+ZRrPip8Efa5KpTnIXlq8sWLWLOt\nFu9tLXiIRSi/Fjonyz9MxkE2t7+WfdsPU2XZu5zesar3dv7115irrkK++MJWbVFhyWeFL4KBNrK8\n4OuvoU8fzJtvEdHzCpo1g08/1eo4qhiys23L/J137NhAN379Fbp3t3Oz0tLc7y4uDlJSfBCnCnq+\naGQFkjayvOfg9hQaNzzBqsUHOfWyRm63C+XXQhtZvpe9cze7zuzB9yfO5Pxfp1CzXpT3D/LZZ3DG\nGXakhwpL/rhOlgpV2dkwciTZs+Zw1/IrAPjqK21gqWKKiIDFi6F1wRWx27SB88+Hhx+2/wS5uxV0\nOQGlVOlUuUE8wy9Zz9hbkgMdigphy254l2WVrqbLlmm+aWABXHKJNrBUgQoq4X6NMWZ+TnlcP8eV\nE4P2ZBWB6+tgZZPTlo6N1X9slX/89pvNP3/9Za+/5koon4lWJePlEu6lJleVls/Mob0HaVrnIIvn\n/MsZ/Zu73CaUXwvtyfK9vXshJgYqVAh0JCqU+bIna6Tj5wfF3bnyr9TUvD0FmZnQo0cEl18Ohw5p\nA0v5z+mnQ8eO8MorgY5ElQKaq8JMpZqVGdXnDx4ZFxnoUFSIqlnT/w2sb76xw+WVylFQT9angAHO\nAr7Kv94Y08u3oWlPVlE5n9n791/o1Qvq1YO334YoH/WWK+XO779D5862NyvaRY23UD4TrUrGyz1Z\npSZXlabPzNEjhuanCrNnwwUXnLw+/8iNUJrjqT1Z4WnGW9m8+JLw3VqhTJlAR6O8wWeFL0SkLHAm\nMAu4Kf96Y4yH12UvPm1kFc0F8jVfZ5/Pvv1C9+5w7rnw0kt2Ko1SgXDdddCyJYwadfK60vQPo8rL\ny42sUpOrSttn5u234c03YeXKAguaAqH12mgjy7vMrt1w7BjSqGFg47juOh5Z148Gw3pxyy0BDUV5\nic+GCxpjjhlj1gDnOZLUj8CPxpiVniYtEZkuIntFZJ3TsjgRWSEif4jIchGpUtzglZPnn2cO17Ht\nxwNceCFcfjm8/LI2sJSPHDwIP/xQ6GZjxsBzz9meVaV8wRu5CjRfBaOBA+13xwc6EFS5c+AAB9p1\nZfmdCwMdCTJ4MKPThvPE2KNkZAQ6GhUMPPkXvKaI/AxsAH4XkR9F5HQP9/8W0C3fshHAZ8aY5sAX\n/DeeXhWHMbaM22uvcS7fcn7vatx2G0yYUPiZP6WKLSkJeveG48cL3Kx5c3sN4xdf9FNcqjQrSa4C\nzVdBp0wZeOEFuP9+vcC5ciE9nZRzuvNuZg9aTrkz0NFA166UP7Mlk+q+wNNPBzoYFQw8aWRNBYYb\nYxKMMQ2A+xzLCmWM+RrIX26hNzDD8fsM4EoPY1X5HT8OQ4fCihV8OmENydThhRfg7rsDHZgKey1b\nQv36sGxZoZuOHm3/USromllKeUGxcxVovgpWnTrZy/I9PVq7w5WTrCz+7dKHT3a1o8OXT1K/fqAD\ncpg0iWu2Pc3y9/4lKyvQwahA86SRVckY82XOHWNMIlCpBMesYYzZ69hXMlCjBPsq3UaPhm3bmHXz\nKgYOiwXgf/8LcEyq9LjxRjthohBNm0LPnvD8836ISZVm3s5VoPkqKDw98QQvPJfN9lnuR3/GxdnR\nG863+Hg/Bqn8xxgyBt7G2vUVqPbOK5zZLoiG7Zx6KpE9r2BNv+e04JjyqJG1VURGi0hDx+0RYKsX\nY9DZn8Vkht/HxI5LeeTxCnzxRaCjUaVOv37w5Zf2giSFGD3azhHUywgoH/J1rgLNVwHRsEkkdw9M\n4fahxzH/prvcJiVFL3hemszedgFbH59Hj95BWOZ/zBjklCaBjkIFAU+KTN4AjAcWYBPMV45lxbVX\nRGoaY/aKSC3gn4I2HjduXO7vnTp1olOnTiU4dPg4cQLuHl+NVatg9WqoWzfQEalSJyYGrrwSZs2y\nkyYK0Lix3XTyZDtfEP478+xOKJVkVgVLTEwkMTHR14fxdq6CIuQrzVW+NWJaE9ovLMecK+cz8Msb\nAx2OCiQRblj1f5QrF+hA3Gjc2N5UyPF2rnJbwt1rBxBpCCw0xrRy3J8EpBhjJonIQ0CcMWaEm8dq\nCXcXDh+2pbHT0uDDD6GKo95VKJWwVWFiwwb7Rjz//EI33bYN2rWDP/+EqlUL37W+n8OXN0u4e1Nx\n85WWcPePH1dmcHmXo/w6ZTW1bi788mfB+nppCXelQoPPSrh7g4jMBVYDzURku4gMASYCl4rIH0AX\nx31VmN9/hxMnSE62E4ErVIClS/9rYCkVEC1betTAAmjY0M4ZfPZZ34akVHFovgp+7TpGc+OgLG66\nJxpz9Figw1E+FB+vc+xU6PN5T1ZJaE+WwwcfwG23se611fS89xRuvNHOcck/1CpYz9oplWP7djjj\nDNi0CapXL3hbfT+Hr2DtySou7cnyn2PH4MLzT9C3fyT33VfwtsH6emlPVuHy/O1SU2HfPqR5s6D8\nexYkLQ369oUlS+wlCVRo8XlPloicdJra1TLlA8bYSSx3383iR76lyy2nMGmSvcCrXgNLhaIGDWy9\nDHmxgk0AACAASURBVL2GiPI2zVWlQ9my8O78SJ56CtasCXQ0yueOHSOtSx+WXTuj8G2DUGyFo8Sm\nbuXDDwMdiQoET4YLvuThMuVNx4/DnXdi3nyL529cz80Tm7BwIfTvH+jAlCqZUaNg+nTYtSvQkagw\no7mqlGjYEKZOtT0Ee/YEOhrlM8aQfu0trPk9hojHHg10NMXz+ee8ltZfL2FSSrntvBSRDsB5QHUR\nGe60KgYIwpqZYWb8eLI2beHOs3/gmwXl+PZbSEgIdFBKFeDAAY8qWtSrBzffbHtkp0/3Q1wqrGmu\nKp1694b16+01+FauhEolvSKaCjqZjzzB9sXr2PPMKoZcFqIf5W7diDt+B/Fbvuf778/irLMCHZDy\np4J6ssoClbENsWinWzqgl7z1sZQbH+ByFrM9uRzffKMNLBXkjIEzz4SNGz3afORIWLwYfv3Vx3Gp\n0kBzVSn18MNw+ulw3QXbODFzTqDDUV7Un3mkPzuVj25YyJBhnreg8xfMCHixjMhI5LbbeKLeq7zy\nSoBjUX5XaOELEUkwxiSJSGUAY8xBv0RG6S18sW4dXHWVvU2c+N9kyfj4gi+uqNcVUgE1YoQd5vrM\nMx5t/sor8NFHsGKF6zmGwTppXZWcLwpflIZcpZ+Jkx07Bj06H6T2T0t4a0YEEX3/a1cH6+ulhS8K\nN0TeIv6Sdjy9vDURju6Awv4HgpP/D8r/mID8n7R/P9mnNKVH879Y9G3V3Oejgl9Jc5UnjazTgVlA\nzvmA/cBgY8xvxT2op0pjI+vdd2HYMHjhBRgwIO+6YE0YSgH2AlgXXgg7d0JUVKGbZ2VBq1bw3HNw\n2WUnr9f3e/jyUSMr7HOVfiZcy8yEyy86SNPfP+b1l7OIuOH/gOB9vbSRVTgR+3etUMG7+y1OQ80r\nBg+2Ce/++728Y+VL/rhO1lRguDEmwRiTANznWKa84cQJmDKFE0eyeOgh2xmwYsXJDSylgl6zZtC8\nOSxa5NHmUVHw1FM25xw/fvL6uLiTr5MSNENAVDDSXFVKVawIixIrs7HFVQy9qzzHn30h0CEpL/B2\nAwts48mYgm+FNcKK5cEH7fVLVKniSSOrkjHmy5w7xphEQKeYekNaGvToQco7K7j8CuGHH+D77/Vz\nqELYjTcWqZpFz55Qo4brhxSUDH2SBFWo01xVilWuDEsTK7L9zN5c8+SZHN6lY+eDVam80HDLltCl\nS6CjUH7mSSNrq4iMFpGGjtsjwFZfBxb2NmyAc85hXexFnLVzAae3LcPy5VCtWqADU6oE/vc/aNrU\n4zE6Ina44NixtjihUiWguaqUi46GRZ9VoPylF9B9QLj/1x66UlPznTjLNlRJ/TvQYSnldZ40sm4A\nqgMLHLfqjmWquObNw3TsxJsXvkWXz0by6KPCs8/q1cBVGKhUybaainC17LZt7fVuRo3yYVyqNNBc\npShbFubMEc48097fvDmw8ajCHXpwPNO42eWwcaVCWaGFL3I3FIkGTDhWbPIrYzh0093csW8ca/+K\n5/334bTTPHtosE7iVaqk0tLs5+Cjj+DsswvfXj8Loc0XhS+c9h22uUrf90VTqZItnpAjWCrwlvbC\nF87v42PTZrDvzvGcefRb9pqaLrcJZHy+MGeOHd7au7fvjqG8w+eFL0SklYj8DPwGbBCRHx1VnFQx\nbNwknPPdi2THxvP99543sJQKZ7GxMGkS3HabrQWjVFFprlL5HToEiYlQsya8cOWXdEr9INAhlUr5\n52DFxdnlJz77ksw7H+T5SxbzDzUL3kkYqXDioF4zq5TwZLjg62jFJq+YPRsuugjuvRdmzNAr1Cvl\nbOBAe3bvtdf+n737Do+iWh84/n0TAiFAIKEmIYTiDwuCKKCgKE0FpdmoglwUsStwsWEhEbx29KpX\nFESlCCpioYpeFWxwEQUpgqJIEkpoARJ6yfn9MZO4CbvJJtnN7G7ez/PMk90pZ96Z7M67Z+bMGacj\nUUFKc5U6TYcOsGwZvLmuLRGc4NjjT+rlwDJW8B6szEzg11853Ls/KWe9x/g5ZzsdYtkxhmtSWpL9\nv1/Zts3pYJS/ae+C/nTqFGRmcuQI3HYbjBsHX35pdcBWjFtWlApexfgxIwITJ0JyMqSmFj5vYd27\nl4ueqpQ7mquUW40awQ+rKvMp19Dhxd5s731H/naEqswtm/o742s8z+Nfd6JSpdOP6blXu0KOCGF9\nbuDxpKnMnOl0MMrftHdBf9m+HS6/nF9GvE3r1pCdDStXQosWTgemVBkZOxbeeKNYi5xzDowaBbfe\nWnj9rKhnnWgX7+WS5irlUdWqcIxIeo4+kwu//BfLL7jDenC68il33bO7qzC1GncNI38anDet4DHd\nyXvn3J3E8+mJu0GD6Jwxk+lTc/Siaogrbu+Cc4BaaI9NhVu4kJzzWzEhcgyXLxrFww9bNzomJenZ\nd1WOtGtXrGdm5br/fquS9OabfohJhTLNVapQMTHwaHIE2w7H0Pm3idRIrKp518dO657dQ4WpYkWo\nV6/s4/OGu5N44MPfa+eeS8W4WM7Z8w2//+6TkFWAKrR3QREJB54xxowuu5DyrT+4ehc8fhzGjGH7\nrKX8I/5zDkbE8O67VlMFKLrHmtJOVyqgnDplffjnzy/2Jdx166BTJ/jpJ2jQoPir1u9KYPN174Ll\nJVfp59p3Nm6Ea66B336zUndERNmtO5R7Fywvn9FSb+dzz3F83e9UnDrZZzEp3/Nr74LGmFNA+5IW\nXu5Mn84n38Rywcn/cUmPGL755u8KljeKus8kZNsoq9AUHg7/+EeJrmade67VQcw//qG9Daqiaa5S\nxXXWWfC//1mvr7gCdu92Np6Ql57udAQ+VeomhQMGUDE60m/xqcBQ5HOyRGQikADMBg7ljjfGfOTf\n0ILrSpYxcNedhs8Ww4wZwsUXnz5PeTnDo1SezZvhoousex8qVSrWoqdOQZcu1g+gRx4p3mr1uxbY\n/PGcrPKQq/Rz7Xsi1vFlxgz4aPYpLjj7iHUDlz/XWc6uZB154TX2PvUGsVtWEVXVm7tUgpN+P0OP\n35+TBUQCe4HOQE976FHSFYYqEehyubB6tfsKllLlUuPG0K0bJWl4Hh5u3cv4yivw3Xd+iE2FGs1V\nqkTGj4fnn4eul59k5llPWCeHlE8cn/khB8c8yRvdPqFyldCtYCnlTpFXspwUTFeyvKFnOZQqvgUL\nrIcU//QT1K7t3TL6XQts/riS5SS9khW8XPfpml8M116exXWH3+Xpec0I79zBP+ssJ1eyTn3xFdk9\n+vOvjl/w1MLzCA93NjZ/0+9n6CmLK1lKKeWY7t2tBxXfcAOcOOF0NEqpUNXiPGHFxuqsOrMfPbqd\n5NAHC5wOKWiZFT9yqFd//nXeB4yfF/oVrNJYtw7WrnU6CuUPWslSSgW8ceOgWjUYMcLpSJRSoaxm\nTfhsRU3iurXgikF1yHz/C6dDCkpfvb+bcUlTGPt1RypWdDqawPbNN/DUU05HofxBmwuWIb2UrFTJ\nHTgAbdvCvfdazQcLo9+1wKbNBUu6Hv1c+5qnfZqTA/ffvIfPV9Tg8y8rEBfnw3WWg+aCp07BoUMQ\nHe10RGWnpN/Po9ffSMvPn+WnjASqVPF9XKrk/N5cUETqisgUEVlkvz9HRG4p6QqVUqokqle3Hrk1\nbhx8/LHT0ahAo7lK+VJYGDz/di0GDKrApZfCtm1ORxRcwsPLVwWrNCJrRDIy/n0WaOvUkONNc8F3\ngMVAvP3+d0Ab7SilimfNmuL3xV5AkyZWReu226wmFkq5eAfNVcqHRGDMGOt406ULZGQ4HZEKJrGx\nXj5La8AArj82k/feK/MQlZ95U8mqZYz5AMgBMMacBPTxoEqp4klMhP/8B/buLVUxF1wAM2daHWEs\nW+aj2FQo0Fyl/OL++2HgQLj8ctizx+loAlB6Oic/+6/TUTiu4AOKwWo+6Drs2+dmwU6diD26jdTP\nf+PAgTINWfmZN5WsQyJSEzAAItIW0I+BUqp4YmKsrgLffbfURV1+OUydCr176zO0VB7NVcpvHnsM\nevWCrs3SObh8ndPhOMLdlZmW1f/iwPkdmP7QeqfDc1xmZv4KVWamlwuGhxPWvx8zus/Kq5yp0OBN\nJWsUMBdoIiLfA9OAe/walVIqNA0bBpMm+eTu/auughkz4NprYenS/NMKnlH0qsmGCnaaq5TfiMCT\nT8L5zU7Qr9MuTqbvcDokvytYqYICV2Y2/cGnWR153vyTjh/f52ywwW7gQM5O/UzvYwsxhfYuKCJh\nQFtgBXAmIMBvxpgyeVqN9i6oVIgxBs49F159FTp18kmRX30F/frBG2/Addd5t4x+F53l694Fy0uu\n0s+t7xV3n544AT3O/pPGWat57a+rkCpRxV9nkPQuWOi++e03si68nNFZj/Fo6nAaNPBiGeV5/xhj\nfbi0v/uA4tfeBY0xOcB/jDEnjTHrjTHryippBSt3l9Nzh5gYp6NTymEiVh/sPuwesHNnWLzYKnbC\nBE3w5ZHmKlVWIiJg9k+N+eFEG164eE7IHHDc/Xbx9JvFHDvO3rbdebbqE3xQfThJSfo7p9REtIIV\ngop8TpaIPA8sAz4q68tKwXglS8/iKFWEkyet/n193Pg8Lc265euyy+Cll6wfQ57o99RZ/nhOVnnI\nVfq59b2S7tP0TUe5qFk279zzM1e+0LV46wzAK1nF2Q85OfDiw7sYcn8datXyb1yhRr/DwaW0ucqb\nSlY2UAU4CRzFaoZhjDF+bznqKXE1bNiQ1NRUf69eKZ9LSkpiy5YtTocRsg4cgBtvhP374YMPID7e\n/Xya6Jzlp0pWwOUq369HP7e+Fhubv8e3mBjvOyxYOmcP/e6sybLlQqNG3q8z2CtZquS82c85OVbL\nwUqVyiYm5Vlpc1WFomYwxlQraeGFEZEtWD0/5QAnjDEXertsamoqwXaFSymwvrDKf6pXh7lz4amn\noHVrq6v3jh2djkqVBX/lKihdvlKBrWCFqjiH6A7X1+KhdOte0O+/h6ji356l1Gn++U/riSejRjkd\niSotb3oXRERiRORCEbksd/DBunOAjsaY8zVhKaV8JSzMeubx1KnQvz/8619wSp+WVC74KVeB5ivl\nwX33wTnnwO23h/CVoN9/dzqC8sMYbg2bwuwZx5yORPlAkZUsERkGfAMsBlLsv8k+WLd4s36llCqJ\nK66AH3+Ezz+3OsfQFsahzY+5CjRfKQ9ErKdSrFwJ06Y5HY2PnTzJvpvu5a82fTh26KTT0YSEgo8X\nOe1xIiKc/eM0zvzrMzZtciRE5UPeJI37gDZAqjGmE3A+sN8H6zbAFyLyo4jc6oPylFLBZvLk0x9y\n5UOJifDll3D11dCmDcya5bdVKef5K1eB5itViCpV4P33YfQ/Db8t2ux0OF4p2Jvgab0CZmWxt30v\n1ry/gW/HLaVSlSLvLlFeKPjAYtf7AXPJjQO5t/ZMzVchwJtK1lFjzFEAEalkjNmI9RyS0rrEGHMB\ncDVwl4i090GZAS01NZWwsDBycnJKXVajRo346quvvJp36tSpXHrppXnvq1Wr5rPOF5566imGDx8O\n+Hb7ANLT04mOjtb770JZRIT1hE8/Cg+HBx+ERYsgJQUGD/br6pRz/JWroBzmK1U8zZvD+P7r6HfN\nUY7uPOB0OEXaty//j/1896alppJ59iXM/6UBJz5ZyE331nAsznLphhtosf0zPp2RHbpNUMsJb05N\nbBWRGsAnWGfy9gGlbnhjjNlh/90tIh8DFwLfFZwvOTk573XHjh3pGOB3sTdq1IgpU6bQuXNnt9Od\n6vjAdb3Z2dlFzr906VIGDRpEenp6ofM9/PDDHtdTXAX3XWJiIllZWSUuTwWBgQPh0Ufh55/hggv8\nuqpWreCnn2D0aOu+rcI+qsXpYUwVbcmSJSxZssTfq/FLrgLv8lWw5Srle8Nfac5/F/3E6Ev/x6u/\nXeHzx1SUhZzjJ9l1fjfeqnAbN6y+j6ZnBt82BL2aNQnvdBlDd3/KgQODqKF13DLj61zlTe+C19ov\nk0Xka6A68FlpVioiUUCYMeagiFQBrsRqQ38a18Slyo4xpsgK06lTpwgPDy+jiFRIqlgRRo6EZ5+F\n997z++qqVIGJE63mg8OHw9ChkJx8+jMgg/C3UUArWOlISXF7uC8Vf+Qq8D5faa5SIjD527M5v2Em\nXe5bwrUvd3I6pGKTiAosePh77rw1Vn/cO0gGDODuGTOgxiCnQylXfJ2rvOn4okHuAPwFrAbqlWqt\nUBf4TkRWAcuBecaYz0tZZsDJyclh9OjR1K5dmzPOOIMFCxbkm56VlcWwYcOIj48nMTGRxx57LK9p\n3ObNm+nSpQu1atWiTp06DBo0yOurOpmZmfTq1Yvq1avTtm1b/vzzz3zTw8LC2LzZaje+cOFCmjVr\nRnR0NImJiUyYMIHDhw9z9dVXs337dqpVq0Z0dDQZGRmkpKTQp08fBg8eTI0aNZg6dSopKSkMdml/\nZYxhypQpJCQkkJCQwAsvvJA3bejQoTz++ON575cuXUpiYiIAN910E2lpafTs2ZPo6Gief/7505of\n7tixg969e1OzZk2aNm3Km2++mVdWSkoK/fr1Y8iQIURHR9O8eXN+/vlnr/aXctjw4fDf/0KBz6k/\n9ewJq1fD2rXQrh1s2FBmq1Z+4qdcBeUkXylLwY4J3A2ndVbgokZ8FO+9dYTbX21G6pK/yiTmgvdX\nFRZfUUTglvu1guW43r3h/vudjkKVkjf3ZC0A5tt/vwQ2A4tKs1JjzF/GmJZ2d7jNjTFPl6a8QDVp\n0iQWLlzIL7/8wsqVK/nwww/zTR8yZAgVK1Zk8+bNrFq1ii+++CKv4mCMYcyYMWRkZLBhwwa2bt3q\n9ZnSO++8k6ioKHbu3MmUKVN466238k13vUI1bNgwJk+eTFZWFuvWraNz585ERUWxaNEi4uPjyc7O\nJisri3r1rN8qc+fOpW/fvuzfv5+BAweeVh5Yl1v//PNPFi9ezDPPPFPovWO5y06bNo0GDRowf/58\nsrKyGD169Gll9+vXjwYNGpCRkcHs2bMZM2ZMvsu68+bNY+DAgRw4cICePXty1113ebW/lMOqVbMq\nWvPnl+lq69a1nql1221w2WXwn/+EcBfM5YPPcxWUn3ylLAU7JnA3uOuswNVFg/6P0b02MWBIBCdO\n+D/mgvdXFRWfCgJVqkCn4LsSqvIrspJlJ5UW9t//w2qLvsz/oQW/2bNnM2LECOLj46lRo0a++5d2\n7tzJokWLePHFF4mMjKRWrVqMGDGCWXZ3Mk2aNKFLly5UqFCBmjVrMnLkSJZ60QtbTk4OH330EePG\njSMyMpJmzZoxZMiQfPO4diRRsWJF1q9fT3Z2NtWrV6dly5aFlt+uXTt69uwJQGRkpNt5kpOTiYyM\n5Nxzz2Xo0KF52+QNT51cpKens2zZMp555hkiIiI477zzGDZsGNNc+sxt3749Xbt2RUQYPHgwa9as\n8Xq9ymHjxlkPnCljIlb97vvvredqde8OGRllHobyAc1VKpD8c87F1GhWn8ceczoSz46+9wm7/zXZ\n6TCUClnFfu6HMeZn4CI/xOI7ycnur/F7uhLkbn4ftK/fvn17XnM4gKSkpLzXaWlpnDhxgri4OGJj\nY4mJieH2229nz549AOzatYsBAwZQv359atSowaBBg/KmFWb37t2cOnWK+vXru11vQXPmzGHBggUk\nJSXRqVMnli9fXmj5rtvjjoictu7t27cXGXdRduzYQWxsLFFRUfnK3rZtW9773KttAFFRURw9etRn\nPR0qP3P43r6mTa2KVuvWUMR5BhUkgiJXqZAVFi5MnQrvvguflfrOwNJzbVJYWY4wOeIOdt80io9+\nP9fp0JQKWd7ckzXKZRgtIjOB0v9q9qfkZPfX+AurZHk7bzHExcXl650v1eVpqImJiURGRrJ3714y\nMzPZt28f+/fvz7v6MmbMGMLCwli/fj379+9nxowZXnVlXrt2bSpUqJBvvWlpaR7nb9WqFZ988gm7\nd++md+/e9O3bF/DcS6A3vQcWXHd8fDwAVapU4fDhw3nTduzY4XXZ8fHxZGZmcujQoXxlJyQkFBmP\nUt6IiIAnnoCPPrLe33oruHzcVIALylylQlrt2jBjhtXBjg/ONZZKbpPCU6vXkl63DTFhB/j+lVUM\nf7uds4GpIr30knXbsgo+3lzJquYyVMJq797bn0GFir59+/Lyyy+zbds29u3bxzPPPJM3rV69elx5\n5ZWMHDmS7OxsjDFs3ryZb775BrC6Wa9atSrVqlVj27ZtPPfcc16tMywsjOuuu47k5GSOHDnCr7/+\nytSpU93Oe+LECWbOnElWVhbh4eFUq1Ytr7fAunXrsnfv3mJ3oW6MYdy4cRw5coT169fz9ttv079/\nfwBatmzJwoUL2bdvHxkZGfz73//Ot2y9evXyOuRwLQ+gfv36XHzxxTz88MMcO3aMNWvWMGXKlHyd\nbriLRaniuvhi6++xY3DRRdopRhDRXKUCTocOcOed1tMqTp1yNpa9k+aQ1aYzb0TfT6sN79L/tura\nk2oQiDm5m9dfdzoKVRLe3JOV4jI8aYx5N/eBj+p0rldjbr31Vrp27cp5551H69atuf766/PNO23a\nNI4fP84555xDbGwsffr0IcO+IWTs2LH89NNP1KhRg549e562bGFXfV555RWys7OJi4vj5ptv5uab\nb/a47PTp02nUqBE1atRg0qRJvPvuuwCceeaZDBgwgMaNGxMbG5sXlzfb36FDB8444wyuuOIKHnjg\nAbp06QLA4MGDadGiBQ0bNqRbt255la9cDz30EOPGjSM2NpYJEyacFuusWbP466+/iI+P5/rrr2fc\nuHF0KuTGUKeeSaZCw9SpVu/yl11mnY1WgU1zlQpUY8ZA+LFDpPT40dE4fjhyPjPv+oGHNgyhYSPN\nj0HBGAa/ciFbF6/HiztGVICRos72i8g8wONMxphevg7KZd3GXXwiolcpVFDSz64X5syxnhr8r385\nFoLI3z0NrlkDffpYZ6T//W+oXNmxsEKG/T3w6a+8QMxVvl+P9oAZCAr+H2JjT+/Rr+ADzTPW7qbN\n+Sd49f40rolshxnru39kwXjcfU70sxOYvPnscP/9fLKoIum3Pck995RpeOVeaXOVN80FNwNHgMn2\ncBD4E3jBHpRSynfatYPXX4cC9+w5pUUL+PFHyMqyQtu0yemIlAeaq5QjCnah7q4b9XrNazPnzf18\n/txqj+UUfN5VcZ/Rlct61pfJt1xMTCk3UvmFu0cGnNYF/+DBdNs1jalvOdzeVBWbN1eyVhpjWhc1\nzh/0SpYKNfrZ9dKoUXD0KLz2miOrd3d20VunnYVUp/HTlayAy1W+X49ejQgEpbly9OWdc7i87g2k\ndfyTxA6NvVqmqHnyjTt4kJ13pnAofS+Nv37rtOVV4CuYf2JiYO//XcSwtMd59IfuNGrkXGzlTVlc\nyaoiInlHAhFpBFQp6QqVUqpIjzwCs2fDxo2OrL6wB5L+739Qvz489ph1I3txH1Sq/EZzlQp4XV6z\n7q8+dUVXdq/14UP5jCFrymwy653N0tm7+PmGp3xXtipTBfPPvn0gw4Yxqc2bWsEKMt5UskYCS0Rk\niYgsBb4Gyv6poUqp8qNmTXjwQWsIMBdeCCtXwpIl0KsX7N/vdETKprlKBY3Nlw3lcKv2bPvur2It\nZzUFzD90rfo925u0J/228czo9i5X7pjKDXfV9VPkyhH9+xN+5hl6KTvIFNlcEEBEKgFn2W83GmOO\n+TWqv9erzQVVSNHPbjEcPWpVsp57DipWdDqa05w4Af/8p/Wg0U8+gXPOscZrk66i+aO5oF1uQOUq\n369HP1uBwF1zroJNhAubR1IEM9bw1Q2vUe+ztzk7awUSJiX+/77b5iV2HI+l69Qbad7S2Qe7K9/T\n771zSpurPFayRKQNkG6MybDf3wRcD6QCycYYv991oJUsFWr0sxt6pk6F0aPhjTfguus0IXrDl5Ws\nQM5Vvl+PfraClev/LreSFRsLOfv2c4AaQMnv5zxyRHs9DWX6vXeOP+/JegM4bq/kMuBpYBpwAJhU\n0hUqpVQoGTIEFi2ynqn1yCNOR1Muaa5SQWnfPthvauTde5OvguX6q/rgQY7M+y9b733W7a9trWAp\nFZgKq2SFu5wB7AdMMsbMMcY8Bpzh/9CUUio4tG5tdfP+/ffWe+38okxprlIBz/VeKii8W/XjR3PY\nUzGevZXiyKpYk6PRtVl1TTJL5x4g59iJsgtaBQR39+FV0S59gkKhlSwRqWC/7gJ85TKtgpv5VTkQ\nFhbG5s2bvZo3JSWFwYMHA5Cenk50dLTPmsrdcccdPPnkkwAsXbqUxMREn5QL8N1333H22Wf7rDxV\nPtSpA198AZUqFf68G2+ec6OKRXOVCniuPcaBmytXLsIjwti2ZBNr31rJyukb2bjyEK2PfMeNW54k\nLDLw7k9V/lWwt8GtW+HY4ZNkZTkdmSpKYZWsWcBSEfkU6wGP3wKIyBlYzTCUBzNnzqRNmzZUq1aN\nhIQEunfvzve5p7gdNHXqVC699NJSlSFSvKapufMnJiaSlZVV5PLexjhx4kQecWmbVdy4XBWsOLZv\n354NGzaUuDzlJ7/+CsuWOR1FoSIirP463n0XatWy/moX736nuUqFlPBwOO+SqnS8MYHO/WrT8oKw\nQOz7RzkkYcEkXmIEU6c6HYkqisdKljHmSeCfwDtAe5e7esOAe/wfWnCaMGECo0aN4tFHH2XXrl2k\npaVx1113MW/evGKXderU6U/3djfOW8aYUlVGcsvwJ29izMnJ8ek6S7tPVBlJS4MBAwiG03cDB8KX\nX1rP0hoxwuqJUPmH5iqlVLnSowc38i5vPrePkyedDkYVptDnZBljlhtjPjbGHHIZ97sx5mf/hxZ8\nsrKyGDt2LK+99hq9e/emcuXKhIeHc/XVV/P0008DcPz4cUaMGEFCQgL169dn5MiRnLB/geU2qxO1\nPQAAIABJREFUe3v22WeJi4vj5ptvdjsOYP78+Zx//vnExMTQvn171q5dmxfH1q1buf7666lTpw61\na9fm3nvvZePGjdxxxx0sW7aMatWqEWu3WTp+/DijR48mKSmJuLg47rzzTo4d+7vX4+eee474+Hjq\n16/P22+/XWiFZMuWLXTs2JHq1avTtWtX9uzZkzctNTWVsLCwvArSO++8Q5MmTYiOjqZJkybMmjXL\nY4xDhw7lzjvvpHv37lSrVo0lS5YwdOhQHn/88bzyjTE89dRT1K5dm8aNGzNz5sy8aZ06deKtt97K\ne+96taxDhw4YY2jRogXR0dHMnj37tOaHGzdupFOnTsTExNC8efN8FeahQ4dy991306NHD6Kjo2nX\nrh1//VW8554oL3XrBldcYfWbHgRatLCep/X773D55ZDhw+eOqvw0Vymlyo34eBbQnTsqTOb9950O\nRhXGm4cRKy8tW7aMY8eOcc0113icZ/z48axYsYI1a9bwyy+/sGLFCsaPH583PSMjg/3795OWlsak\nSZPcjlu1ahW33HILkydPJjMzk9tuu41evXpx4sQJcnJy6NGjB40aNSItLY1t27bRv39/zjrrLF5/\n/XXatWtHdnY2mXZj8AcffJA//viDNWvW8Mcff7Bt2zaeeOIJAD777DMmTJjAl19+yaZNm/jvf/9b\n6PYPHDiQNm3asGfPHh599FGmFriWnVtBO3z4MPfddx+LFy8mKyuLH374gZYtW3qMEWDWrFk89thj\nZGdnc8kll5y27oyMDDIzM9m+fTvvvPMOw4cPZ9OmTR5jzY1l6dKlAKxdu5asrCz69OmTb/rJkyfp\n2bMn3bp1Y/fu3bz88svceOON+cp+//33SUlJYf/+/TRp0iRfM0blYy+8YN34tHCh05F4JSYG5s+H\njh2hTZuAb+2olFIqCDzLA/xj/4u8+fJhp0NRhdBKlg/t3buXWrVqERbmebfOnDmTsWPHUrNmTWrW\nrMnYsWOZPn163vTw8HBSUlKIiIigUqVKbsdNnjyZ22+/ndatWyMiDB48mEqVKrF8+XJWrFjBjh07\nePbZZ4mMjKRixYpcfPHFHuOZPHkyL774ItWrV6dKlSo89NBDzJo1C4DZs2czdOhQzj77bCpXrkxy\ncrLHctLT01m5ciVPPPEEERERXHrppfTs2dPj/OHh4axdu5ajR49St27dIjua6N27N23btgXI2y+u\nRIRx48YRERHBZZddRvfu3fnggw8KLdOVp2aQy5Yt49ChQzz44INUqFCBTp060aNHj7x9BHDttdfS\nqlUrwsLCuPHGG1m9erXX61XFFB0N77wDt9wC27c7HY1XwsIgJQVeew1697bG6TNPlFJKldTWmBYs\n3NeOFisma4dKASwkK1meevUq7lBcNWvWZM+ePYXeM7R9+3YaNGiQ9z4pKYntLj8Wa9euTURERL5l\nCo5LTU3lhRdeIDY2ltjYWGJiYti6dSvbt28nPT2dpKSkQit6uXbv3s3hw4dp1apVXllXXXUVe/fu\nzYvVtdlcUlKSx8rI9u3biYmJobLLAzuSkpLczhsVFcX777/PxIkTiYuLo2fPnvz222+FxlpU74Ex\nMTFERkbmW/d2H/wI37Fjx2nrTkpKYtu2bXnv69Wrl/c6KiqKgwcPlnq9qhAdO1oPpVq1yulIiqVn\nz7+7eB88GLKznY1HKaVUcMrMhOtWPc6/J1bSDpUCWEhWsgr25lXSobjatWtHpUqV+OSTTzzOk5CQ\nQGpqat771NRU4uPj8967u+ep4LjExEQeeeQRMjMzyczMZN++fRw8eJB+/fqRmJhIWlqa24pewXJq\n1apFVFQU69evzytr//79HDhgdcgVFxdHenp6vlg93ZMVFxfHvn37OHLkSN64tLQ0j/vhiiuu4PPP\nPycjI4MzzzyT4cOHe9z+wsbncrfu3P1apUoVDh/++5J6RjFujomPj8+3D3LLTkhI8LoM5QcPPADd\nuzsdRbH93/9Zf6Oi4IIL4KefnI1HKaVUkGrZEm6/3ekoVCFCspLllOjoaFJSUrjrrrv49NNPOXLk\nCCdPnmTRokU89NBDAPTv35/x48ezZ88e9uzZw7hx4/KeJeWtW2+9lddff50VK1YAcOjQIRYuXMih\nQ4e48MILiYuL46GHHuLw4cMcO3aMH374AYC6deuydevWvI42RIRbb72VESNGsHv3bgC2bdvG559/\nDkDfvn1555132LBhA4cPH867V8udBg0a0Lp1a8aOHcuJEyf47rvvTutRMfcq2K5du5g7dy6HDx8m\nIiKCqlWr5l15Kxijt4wxeev+9ttvWbBgAX379gWgZcuWfPTRRxw5coQ//viDKVOm5Fu2Xr16Hp/9\nddFFFxEVFcWzzz7LyZMnWbJkCfPnz2fAgAHFik8pV5MmwZNPwlVXwYQJ4OMOM5VSSinlMK1k+dio\nUaOYMGEC48ePp06dOjRo0IDXXnstrzOMRx99lNatW9OiRQvOO+88WrduXeyOElq1asXkyZO5++67\niY2NpWnTpnmdTISFhTFv3jw2bdpEgwYNSExMzLs3qXPnzjRr1ox69epRp04dAJ5++mnOOOMM2rZt\nS40aNbjyyiv5/fffAejWrRsjRoygc+fONG3alC5duhQa18yZM1m+fDk1a9Zk3LhxDBkyJN/03KtR\nOTk5TJgwgYSEBGrVqsU333zDxIkTPcbojbi4OGJiYoiPj2fw4MG88cYb/J992WDkyJFERERQr149\nhg4dyqBBg/Itm5yczE033URsbCwffvhhvmkRERHMmzePhQsXUqtWLe6++26mT5+eV7Z2/66KKybG\nao7crx/s3m11lhgerg8rVkopVTK5eaWwQXNL2RN/P/eoNETEuItPRPz+vCal/EE/u350/DjB+MTO\nEycgORnefBNeesl6xlaof0Ts70HInKHwlKt8v57Q/2yUB5IimLH6j1S+c/w4XHMNTJ8ONWu6n0eP\nH8VX2lylV7KUUsFvxw5o1sx6KFWQiYiwmg7Onw+5T3PQZ2oppZTyVsUIQ8+Iz3joQa1FBRKtZCml\ngl9cHDz8MHTuDEX0VBmo2rSBn3+GyEhrc7TJh1JKKa/k5HDr1sepMWcK337rdDAql1aylFKh4eab\nYdw46NQJfvzR6WhKpFIlOHIEVq6ECy+Edu2sHghdez3VrnqVUkrlEx5OhXemMD7nYR4esIX9+50O\nSIFWspRSoWToUOupv1dfDYU8SiHQtWoFy5ZZz1y++mqrl15tQqiUUsqj5s2plDyGmSdu4I6hR/X+\nqwCglSylVGi55hpYvBiqVnU6klIJC7MqWRs2QOXKcM45VotIpZRSyq0RI0i4pBHjs+87rZcLb3og\n1ObpvqWVLKVU6LngArj8cqej8ImYGHjxRVi9GvbsscYlJ1vdvyullFJ5RAh/ZwpNqu9BsrPyTcrM\nzN/03JtBm6eXjlaylFIqCDRoAJMnW6+3bYOmTWH4cOtKl1JKKQVAdDTMmQPVqzsdSblXwekASiIp\nKUkfAquCUlJSktMhlG+vvAJRUTB4cFA+UyvX5MlWt+8TJ0LHjnDWWTBkCNxwg5VflVJKKeUsx65k\niUg3EdkoIr+LyIPFWXbLli0YYwJyAOdj0CFwhy1btvjnC6W8c/758MEHcMYZ8PzzsGuX0xGVWJ06\nMHYspKXBiBEwd651tWvAAHjvPW3m4SulyVVKKRUINm6EW2/VvFDWHKlkiUgY8CrQFWgGDBCRs5yI\nRZ1uyZIlTodQ7ug+LyPt21udYsyZA+vXs6RxY7j+ejh1yunISqxSJbj2WqszxT/+sK5svfsuJCVB\nhw7WA46//hoOHXI60uBT3nNVKB6XQnGbIDS3KxS3CZzZrsRE6PfjP3kjcTxvv3KQ48d9v45Q/X+V\nhlNXsi4ENhljUo0xJ4D3gN4OxaIK0C9K2dN9XsbatIG332bJPffAP/4B4eGnz3PyJJw4UeahlUat\nWnDbbTBvHuzcCQ88APv3w5gx1pWv1q1h2DCrI40vvoD09KCuX5aFcp2rQvG4FIrbBKG5XaG4TeDM\ndlWpApd/fDfDL1nH9aOSeCd2JJNvXsbuDN8lgFD9f5WGU5WsBCDd5f1We5yjfPMB8b4Mb9ZX1Dye\npns7PhC+FKWNobjLl/V+93ZcWQu2/V7caV6Nq1QJevZ0X+iyZVCtmtW0sFs3q/by6KPWVTB3jh2z\n2mIcPGg9Ufj4casGY/7uRrcsjzGVK0P37tCjxxKWLYO9e+Hll62K1ubN8K9/WQ88joqCevWW0KGD\ndavaqFHWtEmTrGc6l/YYU9i8QaBMclVZfRdL+v0qqbLYrmDbJgD+Kt16AnG7SvsZ9NcxQj+DLho1\nInbxe/w8/T9cc2NVus8dTuz5SZCTc9qsv2/MYfZbc6nAidNOxOn/ynvau6ALrWQ5I9h+7Bc2XStZ\npZu/zCtZhbn0UsjKggUL4J57oGVLq7MMT43av/4aGjWCunWtftejoqBCBej994WPfOtfuNDq/ang\n0L+/+/IXLYKYGB6gm1V+7jBwoOf5Y2NZctVVEBtLZHwsF/eI5fZvBvLKK1a4O3ZYm9i37xLGdvsf\nl398FwmvP0b2uJf48d5prP0hu7xXssqE0z9wfRGDP8oMxB9NPilzS+nWE4jbpZUs/6zfH2Uu2biR\nOm+MI37PWsLXrLIeyljAvf138dMtfTlCZaRCGCelAsekEjkNG7tdf5v6OziS8gyZYTXzDafObuZ9\nXCH4vxJjyv6R0CLSFkg2xnSz3z8EGGPMMwXm0+dVK6VUCDLGBHwXsZqrlFKqfCtNrnKqkhUO/AZ0\nAXYAK4ABxhh94otSSqmAoLlKKaVUSTnynCxjzCkRuRv4HKvJ4hRNWkoppQKJ5iqllFIl5ciVLKWU\nUkoppZQKVdrxhVJKKaWUUkr5UNBVskSkg4h8IyITReQyp+MpT0QkSkR+FJGrnY6lvBCRs+zP+gci\ncrvT8ZQHItJbRCaJyCwRucLpeMoLEWkkIm+KyAdOx+ILoZyrQi0XhOpxNlSPZSF4rIgSkXdE5A0R\n8dBdbPAJtf9TruJ8r4KukgUYIBuohPXMElV2HgTedzqI8sQYs9EYcwfQD7jY6XjKA2PMp8aY4cAd\nQF+n4ykvjDF/GWOGOR2HD4VyrgqpXBCqx9lQPZaF4LHiOmC2MeY2oJfTwfhKCP6fgOJ9rxyrZInI\nFBHZKSJrCozvJiIbReR3EXmw4HLGmG+MMd2Bh4AnyireUFHS/S4ilwO/AruBgO96OdCUdL/b8/QE\n5gMLyyLWUFGafW57FPiPf6MMPT7Y7wElVHNVKOaCUD3OhuqxLNSOFblKsF31+fuh5wUe/Rs49P91\nmqK/V8YYRwagPdASWOMyLgz4A0gCIoDVwFn2tMHABCDOfl8R+MCp+IN1KOF+fxGYYu//xcDHTm9H\nsA2l/bzb4+Y7vR3BNJRin8cDTwOdnd6GYBx8cGyf7fQ2+Hh7AjJXhWIuCNXjbKgey0LtWFGK7boR\nuNp+PdPp+H21XS7zBOT/qTTb5e33ypEu3AGMMd+JSFKB0RcCm4wxqQAi8h7QG9hojJkOTBeRa0Wk\nK1AdeLVMgw4BJd3vuTOKyE3AnrKKN1SU4vPeQawHoFYCFpRp0EGuFPv8HqznIkWLyBnGmEllGniQ\nK8V+jxWRiUBLEXnQFHjgr1NCNVeFYi4I1eNsqB7LQu1Ykau42wV8DLwqIt2BeWUabDEUd7tEJBZ4\nkgD9P+UqwXZ5/b1yrJLlQQJ/XzIFqx37ha4zGGM+xvpAKt8pcr/nMsZMK5OIygdvPu9LgaVlGVSI\n82afvwK8UpZBlQPe7PdMrDbuwSBUc1Uo5oJQPc6G6rEs1I4VuTxulzHmMHCzE0H5QGHbFYz/p1yF\nbZfX36tg7PhCKaWUUkoppQJWoFWytgENXN7Xt8cp/9L97gzd72VP97kzQm2/h9r25ArF7QrFbQLd\nrmCj2xVcfLJdTleyhPy9E/0InCEiSSJSEegPzHUkstCm+90Zut/Lnu5zZ4Tafg+17ckVitsVitsE\nul3BRrcruPhlu5zswn0m8APQVETSRGSoMeYUcA/wObAeeM8Ys8GpGEOR7ndn6H4ve7rPnRFq+z3U\ntidXKG5XKG4T6HbpdgUG3a7ib5fYXREqpZRSSimllPIBp5sLKqWUUkoppVRI0UqWUkoppZRSSvmQ\nVrKUUkoppZRSyoe0kqWUUkoppZRSPqSVLKWUUkoppZTyIa1kKaWUUkoppZQPaSVLKaWUUkoppXxI\nK1kqYIjINSKSIyJNnY7FExF52OkYfEVEbhORQcWYP0lE1hZzHV+KSNVCps8SkSbFKVMppQJBKOYs\nEflaRC7w5zqKWXZPEXmgmMtkF3P+2SLSsJDpz4lIp+KUqRRoJUsFlv7At8AAf69IRMJLuOgYnwbi\nEBEJN8a8YYyZUcxFvX56uYhcDaw2xhwsZLaJwIPFjEEppQKB5iw/rsPOU/OMMc8Wc9Hi5KlzgDBj\nzJZCZnsFeKiYMSillSwVGESkCnAJcAsuCUtEOojIUhGZLyIbReQ1l2nZIjJBRNaJyBciUtMeP0xE\nVojIKvsMVaQ9/m0RmSgiy4FnRCRKRKaIyHIR+UlEetrzDRGROSKySER+E5Gn7fFPAZVF5GcRme5m\nGwaIyBp7eNqLOBvb6/jR3samLnH+W0S+F5E/ROQ6N+tKEpENIjJDRH4VkQ9ctvMCEVlil7tIROra\n478WkRdFZAVwr4iMFZFR9rSWIrJMRFbb217dHt/KHrcKuMtl/eeIyP/sfbHaw9WoG4FP7fmj7P/h\nKnv/9LHn+Ra4XET0WKSUChrBnrNEJMwuf42I/CIi97lM7msf3zeKyCUu63jFZfl5InKZF3mxJPlv\noogss7c5b7123vvSzjlfiEh9e3xDEfnB3o5xLuuuZ5f9s72dl7j5V7rmKbf7xBiTBsSKSB2PHwil\n3DHG6KCD4wMwEJhsv/4OON9+3QE4DCQBAnwOXGdPywH6268fA16xX8e4lDsOuMt+/TYw12Xak8BA\n+3V14DegMjAE+AOoClQCtgAJ9nxZHuKPA1KBWKyTF18CvTzE+bL9+r9AE/v1hcCXLnG+b78+G9jk\nZn1Jdrlt7fdTgFFABeB7oKY9vi8wxX79NfCqSxljgVH261+A9vbrFGCCy/hL7NfPAmvs1y8DA+zX\nFYBKbmLcAlSxX18HvOEyrZrL68W5/28ddNBBh2AYQiBnXQB87vI+2v77NfCc/foq4Av79ZDc3GW/\nnwdcVtg6PGyzN/nPdZuHuCwzFxhkvx4KfGy//hS40X59Z248WDnxYfu15OajAvEtAZoVtk/s15OA\na53+3OkQXIOePVaBYgDwnv36fawElmuFMSbVGGOAWUB7e3wO8IH9egbWWUWAFiLyjYissctp5lLW\nbJfXVwIP2VdplgAVgQb2tC+NMQeNMceAX7ESZmHaAF8bYzKNMTnAu8BlHuJsb58FvRiYba//DaCu\nS3mfABhjNgCezp6lGWOWu5YLnAmcC3xhl/sIEO+yzPsFCxGRaKC6MeY7e9RU4DL7alZ1Y8z39njX\ns5TLgEdE5H6gob2fCooxxhyyX68FrhCRp0SkvTHGtc387gIxKqVUoAv2nLUZaCRWq4mugOsx+SP7\n709elFOUUxQ//83GvXZY+xOsfJS7/y7h7/+Fa576ERgqIo8DLVzykas4rBwEhe+TXWieUsVUwekA\nlBKRGKAzcK6IGCAcq031/fYsBdtXe2pvnTv+bayrSOtEZAjWmcVcBQ+y1xtjNhWIpy3gWmk4xd/f\nFSlsUwqZVjDOMGCfMcbTDcau6y9OuQKsM8a4axYBp29/UetwO94YM8tuwtIDWCgiw40xSwrMdtJl\n/k1i3Ux9NTBeRL40xuQ264gEjnhYv1JKBZRQyFnGmP0ich7QFbgd6AMMsyfnluVazkny32IS6RqC\nu3V44E3+85SnCrvXKndaXizGmG9F5DKgO/COiLxgTr8P+TD2thTYJ7dhtQS5xZ5P85QqNr2SpQJB\nH2CaMaaRMaaxMSYJ+EtEcs/+XWi3xQ4D+mHdxwPW5/cG+/WNLuOrAhkiEmGP92QxcG/uGxFp6UWs\nx8X9DcgrsK7+xNrTB2CdaXQX53f2lZy/RCR3PCLSwsM6PSWwBiJykf16INb2/wbUtpMuIlJBrBt7\nPTLGZAGZLu3VBwNLjTEHgH0icrE9Pq8nQhFpZIz5yxjzClZTDXex/yYije3544AjxpiZwHPA+S7z\nNQXWFRajUkoFkKDPWfa9UeHGmI+BR7GayrmTm3+2AC3FkojVxK/QddjCKV3+c/UDf9//Noi/9993\nLuPz9p+INAB2GWOmAG/ifhs3AGfY87vuk8fQPKVKSStZKhD0Az4uMG4Ofx80VwKvAuuBP40xn9jj\nD2Els7VAR6y27GAdHFdgHYA3uJRZ8CzYeCDCvsl1HfCEh/hcl5sErC14g68xJgOr96ElwCpgpTFm\nvoc4c9dzI3CLfRPvOqCXhzg9nb37DbhLRH4FagCvG2NOYCW0Z0RktR1LuyLKAfgH8Ly9zHkuMd4M\nvCYiPxdYvq99I/MqrKYt09yUuQDI7fa2ObDCnv9xrH2PfSPxYWPMrkJiU0qpQBL0OQtIAJbYx+Tp\n/N17ntv8Yzcb32Jv00tYTQmLWgeUPv+5uher+d9qe/nczjpGYOXCX7Ca/+XqCPxi56++wL/dlLmQ\nv/OU230iIhWAJlj/V6W8JlaTYaUCk4h0AP5pjOnlZlq2MaaaA2EViz/iFJEkYL4xprkvy/UlEakH\nTDXGdC1knhHAAWPM22UXmVJK+Uco5CxfCvRtFqsnx6+wOnhy+4NYRK7B6thkbJkGp4KeXslSwSxY\nzhD4K86A3n776t5kKeRhxMA+rI42lFIq1AX0MdtPAnqbjTFHsXraTShktnDghbKJSIUSvZKllFJK\nKaWUUj6kV7KUUkoppZRSyoe0kqWUUkoppZRSPqSVLKWUUkoppZTyIa1kKaWUUkoppZQPaSVLKaWU\nUkoppXxIK1lKKaWUUkop5UNayVJKKaWUUkopH9JKllJKKaWUUkr5kFaylFJKKaWUUsqHtJKlVCFE\nJFtEGjodh1JKKVUYzVdKBRatZKmQICI5ItK4lGV8LSI3u44zxlQzxmwpVXA+JCJJIvKViBwSkV9F\npEsR8z8jIntEZLeIPF1g2lcisktE9ovIKhHpVWD6QBHZYifuj0Skhsu0iiLylogcEJHtIjKywLIt\nRWSlHeePInJegekjRWSHve43RSSi5HslX7kd7M/CnALjW9jjv/LFepRSqqQ0X3mcX/MVmq9CiVay\nVKgwhU0UkfCyCsTPZgE/AbHAo8CHIlLT3YwichvQC2gOtAB6ishwl1nuAxKMMTWA24AZIlLXXrYZ\n8DpwI1AXOAJMdFk2BWgCJAKdgQdE5Ep72QjgE2AaUMP++6mIVLCndwUeADoBSXY5KSXfJafZDbQT\nkRiXcUOA33y4DqWUKinNVwVovtJ8FZKMMTro4HYA6gNzgF1YB4KX7fGCdcDcAmQA7wDR9rQkIAe4\nCUi1lx3jUmYYMAb4AzgA/Ih14AQ4C/gc2AtsAPq4LPc28CowH8gClgGN7GlL7XUetKf1AToA6VgH\nxx3AVKwD6Dw7pr3263i7jPHASeCwXUbutuYAje3X0VgH4F3AX8AjLvENAb4FngMygT+Bbj7+f/wf\nVvKo4jJuKTDcw/zfA8Nc3g8FfvAw74X2tre23z8JzHCZ3hg4lrtuYBvQxWV6CjDTfn0lkF6g/FTg\nSvv1u8B4l2mdgB2FbHcOcAfwu/2ZecKO53tgP/AeUMGeN/f//hpwp8tnbivWZ/Yrp79XOuigg+8H\nNF/lHis1X2m+0iFABr2SpdwSkTCsBPEX0ABIwDo4gHXwuwnrANEYqIaVUFxdgnWQvRx4XETOtMf/\nE+iHdUCvDtwMHBaRKKyENQOoBfQHXhORs1zK7AeMxUo+f2IdWDHGdLCnNzfGRBtjZtvv69nzNgCG\nYx283sI6m9UA6yD9H7uMR7GSzt12GffaZbiecXzV3taGQEfgJhEZ6jL9QqxkWxMreU3BAxGZJyL7\nRCTTzd+5HhZrBmw2xhxyGfeLPd7T/L8UNq8dxxFgObDEGLPS3bLGmM1YSaup3QwjDljjoexzCkwr\nON1dXHUKnMkr6ErgfKAt1g+RN4CBWP/L5sAAl3kN1o+Lm+z3XYG1WD9elFIhRvOV5is0X6kApJUs\n5cmFWAemB4wxR40xx40xP9jTBgITjDGpxpjDwMNAfzvRgXXQSLaXWYN1UMpt43wL1hm1PwCMMWuN\nMfuAHsBfxphpxvIL1lnJPi4xfWyM+ckYk4N1dqllgZilwPtTwFhjzAljzDFjTKYx5mP79SHgKeCy\nIvaDQF4S7wc8ZIw5bIxJBV4ABrvMm2qMecsYY7DORNYTkTruCjXG9DTGxBhjYt387eVuGaAq1pkx\nV1lYidSb+bPscfnisMddhfWjwZt1VcX6HxcsOzeOouJ0F5cUsh0AzxhjDhljNgDrgM/tz182sAgr\noblu13IgRkSaYiWvaYWUrZQKbpqvXMrUfJVvXZqvlGO0kqU8ScQ6COe4mRaPdTk9VypQAastdK6d\nLq8P8/fBMhHY7KbMJKCtfWYsU0T2YSVH1zIzPJTpyW5jzIncNyJSWUTesG+O3Y/VdKGGiBRMdu7U\nwtrGNJdxqVhnTE+LzxhzBOtAXFSMxXEQqwmIq+pAtpfzV7fH5WOMOWWMWQx0FZEeXqwrt4yCZefG\nUVSc7uIyhWwHWE1ech0h/+frCO7383TgbqyzuB8XUrZSKrhpvspP85XmKxUAtJKlPEkHGric7XO1\nHSvJ5EoCTpD/QFJYuU08jF9inxnLPUsWbYy5u7iBuyh4c/E/sZqEtDHWzbO5ZwXFw/yu9mBtY8Ht\n3laSwERkod0LUpabYYGHxdYDjUWkisu48+zxnuZ37SWpZSHzgpWUc/83+ZYVkSZABPCCig3dAAAg\nAElEQVS7MWY/VlMG17Jd41iPdeOyqxZYZ/Q8xbXTPkPsSzOAO4EFxpijPi5bKRU4NF/lp/lK85UK\nAFrJUp6swDowPS0iUSJSSUQutqfNAkaKSEMRqYrV1vw9l7OIhZ1pexMYJyJnAIhIc7tt83ys9tOD\nRKSCiESISGuXtvFFycBqb1+YalhnkbJEJBZILjB9p6cy7G37AHhSRKqKSBIwEuvsU7EZY642Vne7\n0W6G7h6W2QSsBsba/4/rgHOxmqm4Mw0YJSLxIpIAjMK6IRsROVNEuolIpL2/BwGXYp0tBat5S08R\nucROkk8Ac8zf7eunA4+KSA0RORu4NbdsYAlwSkTuEavr3Huxbgb+2iWuW0TkbPt//6jLsj5jrK6M\nL7PLV0qFLs1XLjRfab5SgUErWcot+yDdE+tMWhrWmbu+9uS3sA5a32Dd0HsYuNd18YLFubyegHXw\n/1xEDmAlscrGmINYN4v2xzrzuB14GqjkZcjJwDS76cYNHuZ5CYjCOsv3A7CwwPR/A31EZK+IvOQm\n9nuxtnUz1rbPMMYUdrAttJveEuoPtAH2Yf1YuN4YsxdARNqLSFbeyo15A6tHqrVY9xnMNcZMticL\n1j7bidW04R6grzFmtb3sr8DtwEysHwSVgbtc4hiLtR9Sga+Ap40xX9jLngCuwerBah9WG/PexpiT\n9vTFwLNYSewvrM9QciHbXNjnqVDGmB+MMRlFz6mUClaarzRfoflKBSCx7nn0U+Ei9bHOAtTFOjMw\nyRjzioiMxTqTkNtudYwx5jO/BaKUUkp5ICKVsH6IVsRqhvShMSbFPnP9PlZTqy1YP+wK3iSvlFJK\nncbflax6QD1jzGr7Mv1PQG+sXm+yjTET/LZypZRSyksiEmWMOSzWg2C/x7oScD2w1xjzrIg8CMQY\nYx5yNFCllFJBwa/NBY0xGS6Xcw9iPZMht3cbb3rIUUoppfzOWN17g9XkqwJWM5/eWN1bY/+9xoHQ\nlFJKBaEyuydLRBpi9cryP3vU3SKyWkTeFJHqZRWHUkopVZCIhInIKqx7Or4wxvwI1DXG7ATrpCHg\n9jlCSimlVEFlUsmymwp+CNxnX9F6DWhsjGmJldC02aBSSinHGGNyjDHnA/WBC0WkGaW4iV0ppVT5\nVsHfKxCRClgVrOnGmE8BjDG7XWaZjNWjjLtlNaEppVQIMsYEZJNxY0yWiCwBugE7RaSuMWanfY/x\nLnfLaK5SSqnQVJpcVRZXst4CfjXG/Dt3hJ2scl3H3w99O40xpsyGsWPHlmkZ3sxb1Dyepns73t18\nvtgPZbnfi7t8We93b8aV9T4Pxv1e3GmBuN/L+hjjz/1emu9AoBGRWrnN1kWkMnAF1j3Ec4F/2LMN\nAT71VEZZfh5K+j/15fFeY/ftd0Jj93/sdCj5b0qnYy/rfR7MsZcm5/k6V/n1SpaIXALcCKy127ob\nYAwwUERaYnXrvgW4zZ9xeKtjx45lWoY38xY1j6fp3o73xTaXVmljKO7yZb3fvR1X1oJtvxd3WiDu\n97I+xng7f0n2e2m/AwEmDpgqImFYJx/fN8YsFJHlwAcicjPWM3b6FlZIcZV0v5T0f+rL/4PG7v10\njb10ZWnsJVeacoI19tLkPJ/nqpLWcMtisMJTZW3s2LFOh1Du6D53hu53Z9jHdsdzjK+GYM5Vwfwd\n0NidEayx00G/p04I5thLm6vKrHdBFTyC4KxzyNF97gzd76q8C+bvgMbujKCNvaHTAZRc0O5zgjv2\n0vLrw4hLS0RMIMenlFKq+EQEE6AdX5SE5iqlAp+kCGasfk+V90qbq7SSpZRSqkxpJUup0NOwYUNS\nU1OdDkOpYktKSmLLli2njddKllJKqaCilSylQo/9vXY6DKWKzdNnt7S5Su/JUkoppZRSSikf0kqW\nUkopFaBiY0HEGmJjnY5GKaWUt/z6nCyllFJKldy+fZDbikVCpoGlUkqFPr2SpZRSSimlyqXU1FTC\nwsLIyckpdVmNGjXiq6++8mreqVOncumll+a9r1atmtvOF0riqaeeYvjw4YBvtw8gPT2d6Ohovf/O\nC1rJUkoppZRSIauoyo84dJnYdb3Z2dk0bNiw0PmXLl1KYmJikeU+/PDDTJo0ye16iqvgvktMTCQr\nK8uxfRZMtJKllFJKKaVUgDPGFFm5OXXqVBlFo4qilSyllFJKKVUu5OTkMHr0aGrXrs0ZZ5zBggUL\n8k3Pyspi2LBhxMfHk5iYyGOPPZbXNG7z5s106dKFWrVqUadOHQYNGkRWVpZX683MzKRXr15Ur16d\ntm3b8ueff+abHhYWxubNmwFYuHAhzZo1Izo6msTERCZMmMDhw4e5+uqr2b59O9WqVSM6OpqMjAxS\nUlLo06cPgwcPpkaNGkydOpWUlBQGDx6cV7YxhilTppCQkEBCQgIvvPBC3rShQ4fy+OOP5713vVp2\n0003kZaWRs+ePYmOjub5558/rfnhjh076N27NzVr1qRp06a8+eabeWWlpKTQr18/hgwZQnR0NM2b\nN+fnn3/2an+FAq1kKaWUUkqpcmHSpEksXLiQX375hZUrV/Lhhx/mmz5kyBAqVqzI5s2bWbVqFV98\n8UVexcEYw5gxY8jIyGDDhg1s3bqV5ORkr9Z75513EhUVxc6dO5kyZQpvvfVWvumuV6iGDRvG5MmT\nycrKYt26dXTu3JmoqCgWLVpEfHw82dnZZGVlUa9ePQDmzp1L37592b9/PwMHDjytPIAlS5bw559/\nsnjxYp555hmvmk9OmzaNBg0aMH/+fLKyshg9evRpZffr148GDRqQkZHB7NmzGTNmDEuWLMmbPm/e\nPAYOHMiBAwfo2bMnd911l1f7KxRoJUsppZRSSpULs2fPZsSIEcTHx1OjRg0efvjhvGk7d+5k0aJF\nvPjii0RGRlKrVi1GjBjBrFmzAGjSpAldunShQoUK1KxZk5EjR7J06dIi15mTk8NHH33EuHHjiIyM\npFmzZgwZMiTfPK4dSVSsWJH169eTnZ1N9erVadmyZaHlt2vXjp49ewIQGRnpdp7k5GQiIyM599xz\nGTp0aN42ecNTJxfp6eksW7aMZ555hoiICM477zyGDRvGtGnT8uZp3749Xbt2RUQYPHgwa9as8Xq9\nwU4rWUoppZRSyr+Sk/9+6Jvr4OlKkLv5vbxqVJjt27fn6zwiKSkp73VaWhonTpwgLi6O2NhYYmJi\nuP3229mzZw8Au3btYsCAAdSvX58aNWowaNCgvGmF2b17N6dOnaJ+/fpu11vQnDlzWLBgAUlJSXTq\n1Inly5cXWn5RnWGIyGnr3r59e5FxF2XHjh3ExsYSFRWVr+xt27blvc+92gYQFRXF0aNHfdbTYaDT\nSpZSSimllPKv5GTroW8Fh8IqWd7OWwxxcXGkp6fnvU9NTc17nZiYSGRkJHv37iUzM5N9+/axf//+\nvKsvY8aMISwsjPXr17N//35mzJjhVVfmtWvXpkKFCvnWm5aW5nH+Vq1a8cknn7B792569+5N3759\nAc+9BHrT01/BdcfHxwNQpUoVDh8+nDdtx44dXpcdHx9PZmYmhw4dyld2QkJCkfGUB1rJUkoppZRS\n5ULfvn15+eWX2bZtG/v+n707j7O5+h84/jozdmaYsQ1jb6ESsoXEIPuWpWRLo2ihknyLSkxUqFTf\nfl+JJCoKaSFZoqFQWsheWSLL2GaYsQwz5vz+OHfG7HPv3Pu527yfj8fnMfd+7md5z5hx7vuec94n\nLo6pU6emvRYWFkaHDh146qmnSEhIQGvNgQMH2LBhA2DKrJcqVYqgoCCOHj3Ka6+9Ztc9AwIC6N27\nNxMnTuTSpUvs3r2befPmZXtsUlISCxYsID4+nsDAQIKCgggMDASgYsWKnDlzxu5iG6m01kyaNIlL\nly6xa9cu5s6dy3333QdAgwYNWLFiBXFxccTExPD2229nODcsLCytIEf66wFUqVKFFi1aMG7cOC5f\nvsz27duZM2dOhqIb2cVSUEiSJYQQQggh/Fb63phhw4bRsWNH6tevT+PGjenTp0+GY+fPn8+VK1e4\n+eabCQ0N5Z577iEmJgaACRMm8Ntvv1GmTBm6d++e5dzcen3eeecdEhISqFSpEkOHDmXo0KE5nvvR\nRx9Rs2ZNypQpw6xZs/jkk08AqF27Nv3796dWrVqEhoamxWXP99+6dWuuv/562rdvzzPPPEO7du0A\nGDx4MPXq1aNGjRp06tQpLflKNXbsWCZNmkRoaCjTp0/PEuvChQs5ePAglStXpk+fPkyaNIk2bdrk\nGktBobw5o1RKaW+OTwghhOOUUmit/aaltbKtUsqMksr8WAhvY/u79nQYQjgsp99dZ9sq6ckSQggh\nhBBCCBfKM8lSSnVXSkkyJoQQwmtJWyWEEMKb2NMg9QP+VkpNU0rVsTogIYQQIh+krRJCCOE17JqT\npZQKBvoDkYAG5gILtdYJlgYnc7KEEMLvWDUnyx/bKpmTJXyFzMkSvsqjc7K01vHAEuBToBLQC/hd\nKfV4fm8shBBCuJK0VUIIIbyFPXOyeiqlvgCigcJAU611Z6A+8LS14QkhhBB5k7ZKCCGENylkxzG9\ngTe11hvS79RaX1RKPWhNWEIIIYRDpK0SQgjhNewZLhiTudFSSk0F0FqvtSQqIYQQwjHSVgkhhPAa\n9iRZ7bPZ19nVgQghhBBOyHdbpZSqopRap5TapZTakTqHSyk1QSl1RCn1u23r5NKIhRDCBQICAjhw\n4IBdx0ZFRTF48GAA/v33X4KDg11WsOTRRx/l5ZdfBmD9+vVUrVrVJdcF+PHHH7nppptcdj13yDHJ\nUko9qpTaAdRRSm1Ptx0EtrsvRCGEECJ7LmqrkoHRWutbgObAyHRl4KdrrRvatpUWfAtCCDdYsGAB\nTZo0ISgoiPDwcLp27crGjRs9HRbz5s3jzjvvdOoaSjlWAC/1+KpVqxIfH5/n+fbG+O677/L888/n\nO670MieOLVu2ZM+ePfm+nifkNidrAfAt8CowNt3+BK11rKVRCeEPfvsNPvoIduyA48fhzBm4fBlG\njYKJEz0dnRD+wum2SmsdA8TYHp9XSu0Bwm0vu7zUvBDCvaZPn860adN477336NChA0WKFGHVqlUs\nW7aMO+64w6FrXb16lcDAwDz32Utr7VQyknoNK9kTY0pKCgEBrlsP3tmfiTfI7aehtdb/ACOAhHQb\nSqlQ60MTwsclJ0OVKvDMM7B4MfzxBxw8CKNHZ3/855/DsmWQkuLeOIXwbS5tq5RSNYAGwM+2XSOV\nUtuUUu8rpUq7IuD8Cgkxa2WlbqHSEguRp/j4eCZMmMCMGTPo2bMnxYsXJzAwkC5dujBlyhQArly5\nwqhRowgPD6dKlSo89dRTJCUlAdeGvU2bNo1KlSoxdOjQbPcBLF++nNtuu42QkBBatmzJjh070uI4\ncuQIffr0oUKFCpQvX54nnniCvXv38uijj7J582aCgoIItf1RX7lyhTFjxlC9enUqVarEY489xuXL\nl9Ou9dprr1G5cmWqVKnC3Llzc01I/vnnHyIiIihdujQdO3bk9OnTaa8dOnSIgIAAUmzvOz788EOu\nu+46goODue6661i4cGGOMUZGRvLYY4/RtWtXgoKCiI6OJjIykhdffDHt+lprXn31VcqXL0+tWrVY\nsGBB2mtt2rThgw8+SHuevresdevWaK2pV68ewcHBLF68OMvww71799KmTRtCQkK49dZbWbZsWdpr\nkZGRjBw5km7duhEcHEzz5s05ePBg7r8oFsgtyUr9SfwG/Gr7+lu650KIlBT45ZfsX7v9dhgzBjp2\nhFtugbAw8y4pODj745WCqCi49Vb47DNZdVQI+7isrVJKlcKss/Wk1vo8MAOopbVugOnpmu6qoPMj\nNtb8t5C6xcV5MhohfMPmzZu5fPkyd999d47HTJ48mS1btrB9+3b++OMPtmzZwuTJk9Nej4mJ4ezZ\nsxw+fJhZs2Zlu2/r1q08+OCDzJ49m9jYWB5++GF69OhBUlISKSkpdOvWjZo1a3L48GGOHj3Kfffd\nR506dZg5cybNmzcnISGB2FjT+f7ss8+yb98+tm/fzr59+zh69CgvvfQSACtXrmT69OmsXbuWv//+\nm++++y7X73/AgAE0adKE06dP88ILLzBv3rwMr6cmaBcvXuTJJ59k1apVxMfHs2nTJho0aJBjjAAL\nFy5k/PjxJCQkZNsjGBMTQ2xsLMeOHePDDz9k+PDh/P333znGmhrL+vXrAdixYwfx8fHcc889GV5P\nTk6me/fudOrUiVOnTvHf//6XgQMHZrj2Z599RlRUFGfPnuW6667LMIzRXXJMsrTW3Wxfa2qta9m+\npm613BeiEF5Ia5MI1a8Pjz5qhgE6q3dvk7C9+SZMmQJt2sCuXc5fVwg/5qq2SilVCJNgfaS1/sp2\nzVP62jic2UCTnM6fOHFi2hYdHZ3v70cI4VpnzpyhXLlyuQ5lW7BgARMmTKBs2bKULVuWCRMm8NFH\nH6W9HhgYSFRUFIULF6Zo0aLZ7ps9ezaPPPIIjRs3RinF4MGDKVq0KD/99BNbtmzh+PHjTJs2jWLF\nilGkSBFatGiRYzyzZ8/mzTffpHTp0pQsWZKxY8eycOFCABYvXkxkZCQ33XQTxYsXZ2Iu0w/+/fdf\nfv31V1566SUKFy7MnXfeSffu3XM8PjAwkB07dpCYmEjFihXzLDTRs2dPmjVrBpD2c0lPKcWkSZMo\nXLgwrVq1omvXrixatCjXa6aX0zDIzZs3c+HCBZ599lkKFSpEmzZt6NatW9rPCKBXr140atSIgIAA\nBg4cyLZt2/K8X3R0dIb/y52V5zpZSqk7gG1a6wtKqUFAQ+AtrfVhp+8uhC/6+WczryopCV5/HTp0\nML1QrqCUuV67djBzJkyYYIYa+sHYZCGs5IK26gNgt9b67XTXDLPN1wKzDtfOnE52RYMshD9zVTPm\n6CCPsmXLcvr06VznDB07doxq1aqlPa9evTrHjh1Le16+fHkKFy6c4ZzM+w4dOsT8+fN55513bHFq\nkpKSOHbsGAEBAVSvXt2uOUunTp3i4sWLNGrUKG1fSkpKWsJx7NgxGjdunCHWnJKRY8eOERISQvHi\nxTMcf+TIkSzHlihRgs8++4zXXnuNoUOH0rJlS15//XVq166dY6x5VQ8MCQmhWLFiGe6d/ueaX8eP\nH89y7+rVq3P06NG052FhYWmPS5Qowfnz5/O8bkREBBEREWnPo6KinIrTnhlq7wIXlVL1gaeB/cBH\nuZ9iZFMW9wnb/hCl1Gql1J9KqVWeHucuhN3mzTM9To88Alu2mKGAViRAgYEwYgQsWSIJlhD2caat\nugMYCLRVSm1NV659mq1S4TagNfCURbEL4ffSD3V1ZnNU8+bNKVq0KF9++WWOx4SHh3Po0KG054cO\nHaJy5cppz7Ob85R5X9WqVXn++eeJjY0lNjaWuLg4zp8/T79+/ahatSqHDx9Om/uU23XKlStHiRIl\n2LVrV9q1zp49y7lz5wCoVKkS//77b4ZYc5qTValSJeLi4rh06VLavsOHc/7cqX379qxevZqYmBhq\n167N8OHDc/z+c9ufKrt7p/5cS5YsycWLF9Nei4mJyXJ+TipXrpzhZ5B67fDw8BzO8Ax7kqxk23CJ\nnsD/aa3/BwTZef3MZXFH2MrijgW+01rXBtYB4xwPXQgP6N0b9u6FIUPAhVV0hBBOy3dbpbXeqLUO\n1Fo30FrfllquXWt9v9a6nm3/3VrrE5Z+B0IIlwsODiYqKooRI0bw1VdfcenSJZKTk/n2228ZO9YU\nJL3vvvuYPHkyp0+f5vTp00yaNCltLSl7DRs2jJkzZ7JlyxYALly4wIoVK7hw4QJNmzalUqVKjB07\nlosXL3L58mU2bdoEQMWKFTly5EhaoQ2lFMOGDWPUqFGcOnUKgKNHj7J69WoA7r33Xj788EP27NnD\nxYsX0+ZqZadatWo0btyYCRMmkJSUxI8//pihQARcG5J38uRJvv76ay5evEjhwoUpVapUWs9b5hjt\npbVOu/cPP/zAN998w7333gtAgwYNWLp0KZcuXWLfvn3MmTMnw7lhYWE5rv11++23U6JECaZNm0Zy\ncjLR0dEsX76c/v37OxSf1ex5l5iglBoHDAK+UUoFAIXzOAcwZXG11ttsj88De4AqmEYwdebdPCDn\n2YhCeJOgILMJIbxNvtsqIYR/Gz16NNOnT2fy5MlUqFCBatWqMWPGjLRiGC+88AKNGzemXr161K9f\nn8aNGztcKKFRo0bMnj2bkSNHEhoayo033phWZCIgIIBly5bx999/U61aNapWrZo2N6lt27bccsst\nhIWFUaFCBQCmTJnC9ddfT7NmzShTpgwdOnTgr7/+AqBTp06MGjWKtm3bcuONN9KuXbtc41qwYAE/\n/fQTZcuWZdKkSQwZMiTD66m9USkpKUyfPp3w8HDKlSvHhg0bePfdd3OM0R6VKlUiJCSEypUrM3jw\nYN577z1uuOEGAJ566ikKFy5MWFgYkZGRDBo0KMO5EydO5P777yc0NJQlS5ZkeK1w4cIsW7aMFStW\nUK5cOUaOHMlHH32Udm1vKf+u8qqtr5QKAwYAv2itf1BKVQMitNbzHbqRKYsbDdQF/tVah6R7LVZr\nnaUYrVJK5xWfEJZJSfG+3iqtYfBgGDsW6tb1dDRC5ItSCq21S1tBV7VV+by3ZW2VUjkPkcrtNSHc\nzfZ37ekwhHBYTr+7zrZVeSZZrmArixsNTNJaf5U5qVJKndFal83mPEmyhGfMnQvz58O6dd43J+rT\nT+HppyE6Gmyf2gjhS6xIsjxJkiwhJMkSvsuqJMue6oK9galABUDZNq21zmGxnyznZymLC5xQSlXU\nWp+wffp4Mqfz01dsylz1QwiXS0oylQPXrfPeohP33QcXL8Jdd8HmzZBucq4Q3ig6OtrysubOtlVC\nCCGEK9kzXHAf0F1rvSdfN1BqPnBaaz063b6pQKzWeqpS6lkgRGs9NptzpSdLuE9cHNx7LxQqZHqL\nSnt50ctXXoEvv4T16yFdeVYhvJ1FwwWdaqucvLf0ZIkCT3qyhK+yqifLngknJ5xIsHIqizsVaK+U\n+hNoB0zJz/WFcJmzZ6FZMzPPadky70+wAMaNM8MFbWtyCFHA5butEkIIIVzNnp6st4Ew4Evgcup+\nrfVSa0OTnizhRlrDjz/CnXd6OhLHJCaanrdCeY78FcJrWNST5ZdtlfRkCV8hPVnCV3ms8IVSam42\nu7XWemh+b2ovSbKEv7tyBf78E3bvhmPH4MQJuHDBvHEKDISyZaF8edNhdcstEBbmndPEhHCERUmW\n/7VVFy8SULIYKTr7QSeSZAlvIkmW8FU+XV0wvyTJEv7m/HnYsAG++87U1vjzT6hRwyRQVapAhQpQ\nqpSpHJ+cDGfOwMmT5ridO6FYMWjXDjp2hB49zLFC+BqpLmifq8MfZdrsMozTr+ZwX0myhPeQJEv4\nKk9WF7wReBeoqLWuq5SqB/TQWk/O702F8LiEBLctKpyYCN98AwsXwpo10LChKQw4cyY0aGASJ3to\nDfv2wdq1sGABPPYYdO0KI0dC8+bWfg9CeDt/a6sSE6Hpxnd4lR4waxYMH+7pkITIVfXq1b1mEVgh\nHFG9enVLrmvPcMH1wH+A97TWt9n27dRaW74SqvRkCUtMnw7Ll5uuJAsdOADvvmuW3KpfH/r3h969\nITTLstv5c+qUSbbefhvCw2H8eOhw8xE4eND35paJAsWi4YJ+11Z9/DFEDk7iSNkGVFw1Hxo1ynRf\n6ckSwl4qSqEnyB+MsJ87qguW0FpvybQvOb83FMKjpk2DGTNg3jzLbrFtm0mmmjY1b4C2bDG9Tw89\n5LoEC8xcrSefhL/+ghEjTI9W53tKsrv3C2acoRAFi9+1VYMGQTKF6V12PUn3DoT4eE+HJIQQwk72\nJFmnlVLXARpAKdUXOG5pVEJY4dVX4f33zbpSVau6/PLbtkGvXtClC7RqBYcOweuvQ61aLr9VBoUK\nmfWJd+6Ejv1CaH3hG6LaRJOUZO19hfAyfttWBdUsx8TSb5quLSGEED7BnuGCtYBZQAsgDjgIDNJa\n/2N5cDJcULjKpEnwySdmiGDlyi699NGjZsmqNWvgmWfg4YehRAmX3sKxeP6+yLD6WzheuSELlgVz\n002ei0WI7Fg0XNAv2yqlTNXR227TzPsQ7mqvMrwmTaQQ9pHhgsJRlg8X1Fof0FrfBZQH6mitW7qj\n0RLCpcqVg+holyZYiYnwyitQr56pDPjXX/DUU55NsADCbyjBN5+d57GEabRqpVm0yLPxCOEO/txW\nVagA8+YpHohUxMV5OhohhBD2yLEnSyk1OrcTtdbTLYkoYwzSkyW8UnS0mWNVr557hgTmS+/ebO38\nHH1ebUzv3mY6WoA9A4SFsJgre7L8va1K31s1YgRcugQffJD1NSFE7qQnSzjKyp6sINvWGHgUCLdt\njwAN83tDIXzZuXNmOODgwfDWW7B0qbUJVmioeSOV05ZrIY3PP+e2YY359Vf45Rfo18/0vgnhZwpM\nWzVlihnxvHKlpyMRQgiRlxyTLK11lNY6CqgCNNRaP621fhpoBFRzV4BCeIsVK6BuXfPJ8c6d0K2b\n89fMK4kCc7+cNsjl/ABFaKi5x+rVEBgI7dubRFEIf1GQ2qqgIJg92yyZFf/b34SVSbT/QxchhBBu\nZc/goYrAlXTPr9j2CeGdVqyAv/922eUuXTLl0R97zFR+nzULSpd2zbXj4nJPomJjcz8/Njb381Pn\nbxQtatbUqlcPOnaUREv4pQLRVrVvb7Zx9x3g+OOvZPv3LoQQwvMK2XHMfGCLUuoL2/O7gQ8ti0gI\nZ6xZAw88AN9+65LL7dxpFhG+5RZTor1MGcfODw3N/Y1PSIhz8eUlJORaj1h6ZcqYRPHsWWvvL4Qb\nFZi26vXXoe5NdzHg7be5o/8epISoEEJ4H3uqC74MRGJK4sYBkVrrV60OTAiH/WJpRkgAACAASURB\nVPorDBhgJko1auTUpbSGd9+FNm1g9GhYuDDnBCu3IX+p18pvT5WzMvR0xSegNaSkwBNPmN6s8+et\nvb8Q7lKQ2qqQEPjv/wJ5qPjHJA5/QqpfCCGEF8pznSxPkuqCwm4HD8Idd8CMGXD33U5d6uJFGDYM\ndu2CRYvgxhtzP94nKnytWwfPPgtbtoBSaG0qDXbsCMuWQeHCng5QFCRWrJPlSe6qLpie1tC7l+bW\nLXN46eVAiIz0jf+LhPAQqS4oHGX5OllCeL1Ll6BzZ3j+eacTrP37oXlzUyRi0yaTYOVVnMLqIX8u\nERFhurA+/xy41stWpIgpRS9vzITwLUrB/2Yo3r00hB0vLoKkJE+HJIQQIh1JsoTvK14cPvzQLCLj\nhBUroEULU7lr3rxriwo7W5zCKwQEwEsvmS0lJW33p5+aRZSfey7rKU6VjxdCWK5yZXh5amEeqric\nqwHSHS2EEN4kz+GCSqnHgY+11m6vWyTDBYU7hITkXgAiJMRHEqm8aA2NG8MLL0CvXnYV5cjt+5ah\nSSK/rBgu6K9tVV5/ZykpZu5o794wapT8TQqRExkuKBzljuGCFYFflFKLlFKdlMquVpkQvikx0SRY\nTZvCsWM+3FNlD6Vg/HiYNAm0zlAUY+dOKFcOfv7ZD79vUVAUyLYqIMCsnTVpkqcjEUIIkZ491QVf\nAG4A5gAPAH8rpV5RSl1ncWxCuERuw96KFzdFH6KjoVIlT0fqBj16mKoeyckZdt9yC7z/PvTpA8eP\neyg2IZzgTFullKqilFqnlNqllNqhlHrCtj9EKbVaKfWnUmqVUspFK+S51o03wtNPm8fSkyWEEN7B\nrjlZtnEQMbYtGQgBliilplkYmxDZ++or+OMPuw/Pbk7Vrl1Qs6aplZGYaJKtAiEgAB59NNtygj17\nmvloffrIHHrhm5xoq5KB0VrrW4DmwAilVB1gLPCd1ro2sA4YZ1nwThozxnz9+CMtq40LIYQXyDPJ\nUko9qZT6DZgGbARu1Vo/CjQC+lgcnxAZ/fCD6Ylx4uPaNWtMsb2JE2HyZJN3COP5503PX3aFMITw\nZs60VVrrGK31Ntvj88AeoArQE5hnO2weZoFjr5T6ucmYJy5zuIOUDBVCCE+z5+1lKNBba91Ra71Y\na50EoLVOAbpZGp0Q6e3ZA337wiefQIMG+brEvHkwaBAsWQL33+/i+PxAQID5GX32GSxf7ulohHCI\nS9oqpVQNoAHwE1BRa33Cdp0YoIKrg3a1p8cWod+u8Vx5f76nQxFCiALNniTrWyBtCrxSKlgpdTuA\n1nqPVYEJkUFMDHTpAtOmQfv2Dp+uNUydChMmmPlXrVq5PkR/UbYsLFwIDz4Ihw97Ohoh7OZ0W6WU\nKgUsAZ609Whl7g7y+u6hMc8EUPa26ox98hKcOuXpcIQQosAqZMcx7wIN0z0/n80+IayTnAzdu8PQ\noTBkSL4u8dRTsHYtbNwI4eEujs9XpaSYuW233ZblpTvuMBPp77sP1q/PdgqXEN7GqbZKKVUIk2B9\npLX+yrb7hFKqotb6hFIqDDiZ0/kTJ05MexwREUFERIRDwbtCSIhZSB1Ks4l7KVzpA6YmPX1t9XEh\nhBA5io6OJjo62mXXs2edrG1a6waZ9m3XWtdzWRQ531vWyRLG5s3QrJnDbxYuX4ZixeDOO029jJAQ\ni+LzRWfPQq1asGNHtplnSgp06wYNG5q5a5nJOlkivyxaJ8uptkopNR84rbUenW7fVCBWaz1VKfUs\nEKK1HpvNuR5bJysnf/yaREST83w3cSONJsjIfiFknSzhKHesk3VAKfWEUqqwbXsSOJDfGwqRL82b\nO5xgJSSYJAFg1SpJsLIoUwYGD4Z33sn25YAA+OADU9p90yY3xyaE4/LdViml7gAGAm2VUluVUr8r\npToBU4H2Sqk/gXbAFMuid7H6jQuTQgC9P+jKiROejkYIIQoee3qyKgD/BdpixqOvBUZprXMcNuGy\n4KQnS9ghNNSUac9JmTK5v16gHTwITZqYr0FB2R7yxRfwn//Atm1QqtS1/dKTJfLLop4sv2yrnPk7\nS11/fO1a+O67ArRUhRDZkJ4s4Shn26o8kyxPkiRL2CPzm5BTp0xtjA4dTLELmY6Qh3vugdatYeTI\nHA8ZOtTMy3rvvWv7JMkS+WVFkuVJ3pxkXb1qKqpeuACffw6F7JmJLYQfkiRLOMryJEspVR4YBtQg\nXaEMrfXQ/N7UXpJkFVDffWe6TJo1s+vw9G9CTp6Edu2gRw8zj0gSLDusXw+PPAK7d+f4A4uPh/r1\nzcjC1CGYkmSJ/LKoJ8sv2ypnkyyt4coV839i5cowZ478vygKJkmyhKPcMSfrK6A08B3wTbpNCNfb\ntg0GDDAfvzro+HGzyHDfvpJgOaRVK5g0yVS6yEFwMMyfD8OHS1Vo4bWkrcpBkSKmF2v3zquMarQB\nfeGip0MSQgi/l6/qgu4iPVkFzKFDpnb4W2+ZTMlOSsGRI9C2rVlg+PnnLYyxgHvmGTN9a/Fi6ckS\n+eeu6oLu4u09WanOxqbQsfZBGhfbxTt72xNQUiZpiYJDerKEo9zRk7VcKdUlvzcQwi5xcdC5M4wZ\n41CClap1a7N4riRY1nrpJVPxfckST0ciRBbSVuWhTGgAq/+swdbEOjxyw1pSEi54OiQhhPBb9vRk\nJQAlgSu2TQFaax2c58WVmgN0A06krlWilJqAGTefWvHpOa31yhzOl56sgkBruOsuqFcP3nzToVP/\n+Qdq1oTp082Cw8J6mzZBnz5w6RKcO5fzcSEhEBvrvriE77CoJyvfbZUL7u0TPVmpEs5epWudfdTS\nB3h/zx0UCrX8RySEx0lPlnCUV1cXVEq1BM4D8zMlWQla6+l2nC9JVkHx00/QtKlZnMlO+/ebIheH\nDsmwNXcbPRpOnIBPPsn5GBlOKHIi1QUdubbrkyyACwkp9Lp5L2WCNR9vvYUiRfIfoxC+QJIs4SjL\nhwsqY5BSarzteVWlVFN7Lq61/hHIboUiv2lchYs0a5ZrghUaat4wpN+uv94kWLLIsAtdugQH8l6/\ndfJk+Pln+PprN8QkhB2caav8VUhIxv8zQ0OvvVYyKICv/7qJxFo30acPJCZ6Lk4hhPBH9nQbzACa\nAwNsz88D/3PyviOVUtuUUu8rpUo7eS1RAMTFmU9ktYY9eyA8HN5/3zyXIWkutHKlqR6ShxIlTCno\nxx6ThZ6F17CirfJpsbHX/t/UOuvfarHiis+XBlCypFma4YJM0RJCCJexJ8m6XWs9AkgE0FrHAc4M\nLJgB1LJVgYoB8hw2KESqXbtMFcGXXzaFLoSLde9uerL27Mnz0NatoWdPM3RQCC/g6raqQChc2Az7\nrVoVOnbMfZ6lEEII+9mz9nuSUioQ0JC24GPOC+rkQWudfpWd2cCy3I6fOHFi2uOIiAgiIiLye2vh\nLTZvNsPS2rZ16LTt282bgDfeMEtpCQsUKgRDhphuqtdfz/PwKVPg1ltNB1inThlfSx2qlBMpjFFw\nREdHEx0dbfVtXNpWFSSBgeZP/okn4K42yaycf4qydSt5OiwhhPBp9lQXHAj0AxoC84C+wAta68V2\n3UCpGsAyrfWttudhWusY2+OngCZa62zfMkvhCz/0119m8du5c03JdjspBRUrwjvvwD33WBifgL//\nNuuVHTmCPbPh16wxvYo7d5pFi+0lhTEKLouqCzrVVjl5b68sfOHotbSGZ7rtZv3aJNZtK0upOlVc\nc2MhvIAUvhCOckt1QaVUHaAdpmDFWq113mOJzHkLgAigLHACmAC0ARpgPmH8B3hYa30ih/MlyfIn\nJ09C8+Ywbhw89JDdp/3yiyk8+Pnn0Lu3hfGJa9q0gREj7F6zbNgwU7fkvffsv4UkWQWXVdUF89tW\nueC+fpFkgXn9wabbifkznq8O30bhMiVdc3MhPEySLOEoy5MspVS17PZrrQ/n96b2kiTLj1y4YN64\nd+4MUVF2n/bTT9CjB5w6JW/I3Wr9etOL1by5XYefO2eGDc6da8rq20OSrILLop4sv2yrXPl3Ehqa\nsfhFTkN2k65oetbaQVjgKeYcaIMKtH9pDSG8lSRZwlHuSLJ2YMa4K6AYUBP4U2t9S35vandwkmT5\nj969oXRp+OCDbCfqZG78M5P5O97v229N59f27VCqVN7HS5JVcFmUZPllW2Xl30mu62jFXqZltUM8\n0OogT67oaE0AQriRJFnCUZavk6W1vlVrXc/29QagKbA5vzcUBdS4cTBrVo6VENKXaNcaoqOhfHlY\ntUrKtPuKzp3NdLtx4zwdiSiIpK1yrZKhRVn6XWleWX8HP2yQN6ZCCOEoh8cAaK1/B263IBbhz5o0\nMbWC7bB2rSlu8emn0KGDxXEJl5o+HZYuhQ0bPB2JKOikrXJezWYV+XBJKe7rrzh50tPRCCGEb8mz\nhLtSKv0qOAGYyk3HLItIFGirVsGgQabIRatWno5GOCo0FGbMMNUG//jDLFoshDtIW2WNzp1h8GBT\n3ObLL3NflkEIIcQ19vRkBaXbigLfAD2tDEoUTCtWmMb8yy8lwfIqly45dHjPnqbj8oUXLIpHiOxJ\nW+Wg1LXsUrfQ0OyPi4qCQ4fMlFohhBD2sauEu6dI4Qsf9csvEBMD3bvbfYpSZg7W119Ds2YWxiYc\nc/Ei1Kxp1jcrXdru006fNtUGly7NuUChFL4ouKwq4e4pvlr4wpF77doFERHmv/caNdwTjxCuJIUv\nhKOcbavsGS64DFOxKVta6x75vbnwQ/v2ma4MBxZMWrrUfF2xAho3tigukT8lSkDLlrBokRkvZKdy\n5czC0UOHwtatUKyYhTEKgbRVVrvlFhg18BQjO8axbO+NMmxQCCHyYM9wwQPAJWC2bTsP7AfesG1C\nGCdPQqdOMHGi3b1Yn30Gjz1mHkuC5aWGDIH58x0+rW9fqFvX/DoI4QbSVlnsPy8U5cABWDptn6dD\nEUIIr2fPOlm/aq0b57XPCjJc0IecP28WG+7Sxe7Fhj/5BMaMMcUu6teXoWNeKykJwsNh82a47jqH\nTj15EurVg2XLzDyt9GS4YMFl0TpZftlWectwwVQbnlvJgNcbsvtkOYLLyCLFwnfIcEHhKMvXyQJK\nKqVqpbthTaBkfm8o/FRkpHk3bWe3xbx58J//wHffmdOEFytcGPr3z1dvVoUK8Oab5tcjMdGC2IS4\nRtoqN2g1uQMdymxhwr17PB2KEEJ4NXuSrKeAaKVUtFJqPfA9MMrasITPGT8eZs60q77vnDnw/POw\nbp0Z5y98QGQkXL2ar1Pvuw/q1JFqg8Jy0la5Q0AAUz6uwkffVeKv3897OhohhPBadlUXVEoVBerY\nnu7VWl+2NKpr95Xhgn5m5kx45RWz4PANN1zbL0PH/NuZM2ZI6Lx50K6d2Sf/5gWXVdUF/bGt8qbh\ngqGhEBdnHnfiWzbRnHjKAKYcfGysG4IUIp9kuKBwlOXDBZVSJYD/ACO11n8A1ZRS3fJ7Q1FwvfMO\nTJkC0dEZEyzh/8qWNWvsREbKGzFhDWfbKqXUHKXUCaXU9nT7JiiljiilfrdtnSwI3WvktW5WXJxJ\nwrSGLy51JrRGGb7/3jxPTb6EEEIY9gwXnAtcAVJXuzkKTLYsIuGXpk83c3Oio6FWrTwPF36oQwfo\n3RseecS8Kcv8hi7zltPCqELkwNm2ai7QMZv907XWDW3bSidj9GqxsdeSqLwSp2LFzIdmo0dDSor7\nYhRCCF9hT5J1ndZ6GpAEoLW+CMgKGQXZZ5/BkiV2Hz5tGsyYAevXyyKWBd2rr8Lu3fDxx1nf0GXe\n5JNx4SCn2iqt9Y9Adr910t7l4N57TV2cRYs8HYkQQngfe5KsK0qp4tgWeVRKXQe4ZZy78EIrV8IT\nT0Dt2nkeqjW89JIZJnb6NFSrlnOvRUiIG2IXHle8uCndP3o0HDjg6WiEn7GqrRqplNqmlHpfKVXa\nBdfzG0rByy/DhAmejkQIIbyPPUnWBGAlUFUp9QmwFnjG0qiEd9q8Ge6/H774Am69NddDtTbV5BYt\nMkMEz53LvddC5un4CK3NKsMnT+b7EvXrm2KU99wjZd2FS1nRVs0AammtGwAxwHQnr+d32rWDShVT\nKEW8p0MRQgivUii3F5VSCtgL9AaaYYZNPKm1Pu2G2IQ32bkTevUyayW1aJHroVqbRYbXrTMJVrly\n7glRuIFSULSoyZ5Hjsz3ZR5/HDZsgKefhv/9z4XxiQLJqrZKa30q3dPZwLKcjp2Ybo3AiIgIIiIi\nnLm1V0idN5n+eWZKweSGS+n1QysuXw6maFH3xSeEEK4UHR1NdHS0y66XZwl3pdQOrXXu3RYWkRLu\nXuLqVdNz9eKLZtGjbKQv7ZsdKe/rR775xowR2rTJqcucOwcNG5qS/v36ZX1dSrz7LytKuLuirVJK\n1QCWpV5HKRWmtY6xPX4KaKK1HpDNeX5Rwj3fLlygbamf6ft8HR6bXNnT0QiRLSnhLhxleQl34Hel\nVJP83kD4gcBA2LgxxwQLTIKVnAwPPWQ6us6eleGAfqtDB9i3z+lJVaVLw+LFpkPsr79cFJsoyJxq\nq5RSC4BNwI1KqcNKqUhgmlJqu1JqG9Aas+CxyKxkScI5wsvTi3HxoqeDEUII72BPT9Ze4HrgEHAB\nMwxDa63rWR6c9GT5DKVg8GA4fBiWLYOgIE9HJCw1YgRUqmQm3jnp3XfNkMHNmzP+3vjEJ/giXyzq\nyfLLtspX/g5Kqgt0LBpNi5ENGfN6JU+HI0QW0pMlHOVsW5VjkqWUqqm1PqiUqp7d61rrQ/m9qb0k\nyfIeeQ0HLFwYIiLgyy+hRAm3hSU8ZdMmePZZ+OEHpy+lNTz8sKmlsXQpBNj6133lzaVwnCuTLH9v\nq3zl7yA0FHrEzeVLenGOMjJEXHgdSbKEo6xMsn7TWjdSSq3VWrfLd4ROkCTLQ5KToVDGmig5NfSX\nL5v5NElJ8PnnZoFKUQBobX5PChd2yeWuXDFVyiIiYNIksy+3xF7ewPk2FydZft1W+UqSBcCFC/Tr\ndI5G3Svz7LM+FLcoECTJEo5ytq3KrbpggFLqOcz49NGZX9RaSylbf3T2LLRvb1YPbpL79IbEROjT\nxxSb++ILKFLETTEKz1PKZQkWmN+dzz+Hpk2hbl2TuOeWRCmXDjQTPk7aKm9RsiQT3iuJHxRWFEII\np+VW+OI+4ComEQvKZhP+JiEBOneGO+6Axo3tOjQ4GD77TBIs4bwKFcxw05Ej4ZdfPB2N8CHSVnmR\nm2+Gu+4yoxrSLzgfGurpyIQQwr3sKXzRWWv9rZviyXxvGS7oLgkJ0KUL3HKLqUSQqasg/ZCV06dN\ngtWwoenwCgz0QLzCby1bBsOHm+le11+f/TE+NYRKZGFR4Qu/bKt88Xd97164807Yv998EAe++X0I\n/yLDBYWjLC/h7qlGS7hRfDx06gQ33WSyplzGYh09Cq1bm/kzM2dKgiVcr3t3eOkl8yt54oSnoxG+\nQtoq71Gnjvn7/e9/PR2JEEJ4jj3rZAl/d/iwWdxq5sxrpd2ysX+/+XRy8GCYMkXmxQib2bPNBD0X\nGjYMBg2Crl3h/HmXXloI4QYvPn2Bt1+7zNmzno5ECCE8I8d31Eqpe2xfa7ovHOERdevCa6/lmmCB\n6cF65hkYO9ZNcQnfsGABrFjh8stOmGCGpPbq5fIcTvgRaau80w3XpdD18he89fwpT4cihBAekdu7\n6nG2r5+7IxDheaGhGScqZ95eew0eecTTUQqvM3CgSbRcTCkzerVsWejb15R5FyIb0lZ5o6Agxj9+\nlv97v1iuaywKIYS/ym2drDWABpoAWVYc1Vr3sDY0KXzhbtlNTF67Fvr3h7lzzdAtIbKIi4MaNcyw\n09KlXX75pCRT0l1rWLTIVI7Pa3FsWUfLu7l4nSy/bqt8umBEQgIPVfiKSg90YvLMcr77fQi/IIUv\nhKOsXIy4CNAQ+Ah4KPPrWuv1+b2pvSTJssCZM7BuHdxzT5aXMjfmixaZctpLlkCrVm6MUfieXr1M\nxYqhQy25/JUrZk224sVNp1mh3Fb4w8ffmBYALk6y/Lqt8vXf5X+emUGjtwcTeyXIp78P4fskyRKO\nsqy6oNb6itb6J6CFrZH6DfhNa73eHY2WsMDx42Zi1W+/5Xnof/8Lo0fDd99JgiXsMHAgfPKJZZcv\nUgQWL4Zz52DIEEhOtuxWwsdIW+XdaowfTN+ALwjinKdDEUIIt7KnumBFpdRWYBewWyn1m1Kqrj0X\nV0rNUUqdUEptT7cvRCm1Win1p1JqlVLK9eOLRFb//GNKAw4caEoD5iAlBZ591syF2bgR6tVzX4jC\nh3XrBi++aOktihUzixWfOQP33SdztEQW+W6rhIWCgnh+YxcSKM3p054ORggh3MeeJGsWMFprXV1r\nXQ142rbPHnOBjpn2jQW+01rXBtZxbdKysMrevaY7atQoGJf7j3vIELMI7MaNUL26m+ITvq9YMdNL\narHixeGrr+DqVbj7brh0yfJbCt/hTFslLFStYTnAFE8SQoiCwp4kq6TW+vvUJ1rraKCkPRfXWv8I\nZJ6e3hOYZ3s8D7jbnmuJfEpJMR/7T5pkJljlICHBfD13zgwRLFvWTfEJ4aCiRc18wZAQ6NLl2u+u\nKPDy3VYJ65UuDdOmXatWGxrq6YiEEMJa9iRZB5RS45VSNWzbC8ABJ+5ZQWt9AkBrHQNUcOJaIi8B\nAfDjj6aLKgcnTkBEhHm8dCmUKOGe0ITIr8KFYf58uP566NAh90qDosBwdVslXOjsWfM539NPm0Ie\n8jcrhPB3edToAmAoEAUsxZTJ/cG2z1VyLfUyceLEtMcRERFEpGYDwn6lSuX40t69pjT74MHw++95\nV20TwlsEBsKsWfDUU9C2LaxeDeXLezoqkZ3o6Giio6Otvo3VbZVw0rhxULcujBnj6UiEEMJ6OZZw\nd9kNlKoOLNNa17M93wNEaK1PKKXCgO+11jflcK6UcLfQ99+bkYSvvAIPPuj7pYKFlzh6FCpXNr9Q\nbqA1jB9vemHXrIHwcPld9nauLOHuDaSEu/1GNfsJdV0t3lpQwa++L+H9pIS7cJRlJdxdSNm2VF8D\nD9geDwG+ckMMBYPW8NNPdh364YcmwVq40CRYQrhMhw6webPbbqcUTJ4M999v6rv884/bbi2EcNDY\nnnuYt6i4p8MQQgjLWZpkKaUWAJuAG5VSh5VSkcAUoL1S6k+gne25cFZKiqkeOHw4JCbmetjzz5s6\nGOvXm2FWQrhU//6WrpmVk7FjzdBBWddNCO8V9vRAhpb8jCr86+lQhBDCUnkmWUqpO+zZlx2t9QCt\ndWWtdVGtdTWt9VytdZzW+i6tdW2tdQet9dn8BC7SSUw03VJ//AEbNphy2tm4dMm8/42ONh1edeq4\nN0xRQAwYYFYOTkpy+61HjoSoKPN4+/bcjxX+xZm2SrhRkSI881p5Egji8D8pno5GCCEsY09P1jt2\n7hOecPYsdOpkHq9cCWXKZHvYyZMQFGRKX2/aBBUqXCulm7qFhLgxbuG/atUyZf9Wr/bI7SMjzdcO\nHeCXXzwSgvAMaat8RIUHu9OXJYwbdNjToQghhGVyrCWnlGoOtADKK6VGp3spGAi0OjCRVWho1rK3\nK+jPX9TnKd6kzHcBxMZmPW/HDujZ0yzgmpLitnoEoiAbONAMGeza1WMhzJ5tbr9kiQwh9GfSVvmg\ngAD+5EYObg9h82Zo3tzTAQkhhOvlVrC7CFDKdkxQuv3xQF8rgxLZi4vLpsrUmY/pXLYsT2KSsNwS\nqJAQSbCEm9x7Lxw75tEQuneHBQugTx+T73Xo4NFwhHWkrfJBu0JaERcHLVqY5yEhZPshoRBC+Ko8\nS7grpaprrQ8ppUoBaK3PuyUypIR7Zo6U8k1JMXNT5s6FL76ARo2sjU0Ib5L+b2XjRujVCz74ALp1\n82xcwrCihLu/tlX+VsI9vZQUaNYMnnjCrNXor9+n8A5Swl04ytm2yp6lZ4OUUluBUNsNTwNDtNY7\n83tTYa2EBNNgnT5t5qRUrOjpiITwnDvugOXLTYL18cfSo+XHpK3yMQEB8NZb0K+fpyMRQgjXs6fw\nxSxgtNa6uta6OvC0bZ9wp8RE+rMgz8P27zfj2ytWhHXrJMESAqBpU9OjO3Cgqa4p/JJTbZVSao5S\n6oRSanu6fSFKqdVKqT+VUquUUqUtiLtAa9EC7rzT01EIIYTr2ZNkldRaf5/6RGsdDZS0LCKR1ZEj\n0KoVPfjaVK/IwerVpsEaORLeew+KFHFjjEJ4kdT5h+m3li1N726bNhAc7OkIhQWcbavmAh0z7RsL\nfKe1rg2sA8Y5G6TI6rXXIJBk9uzMuX0TQghfY0+SdUApNV4pVcO2vQAcsDowYfPDD+Zj+D596M9C\nCMxaLCt1/lVkpFme6JFHPBCnEF4kNtbM78huW7nSDKmV8u5+x6m2Smv9I5Cpfis9gXm2x/OAu10T\nqkgvPBxGBszgrltj0j4UCQ31dFRCCOEce5KsoUB5YKltK2/bJ6ykNcyYAX37muoVzz4LZJ17d/o0\ndOlihgb++quUqhZeqEcP2LfP01Gk6Wjrq+jRA/7+27OxCJeyoq2qoLU+AaC1jgEqOHk9kYM3/mhP\n5cCTfPB6LFpnXa5ECCF8TZ6FL7TWccATSqkg89R9FZsKtIsXzfi/jRvNwq7Z+PlnUym7Xz945RUo\nZE8ZEyHcrUYNU0v9xRc9HUkGL71k1vHetEnmLvoDN7VVOZYmmzhxYtrjiIgIIiIiLLi9/wqsexOz\nhs2i03M16DZYk92HikIIYaXo6GiiXThx254S7rcC87FVbALcVrFJSrhnlFrKN7WTKyoKZs2Cu2UA\ni/BmP/8M998Pe/d6zUJtqX9LEyfCsmWmGEZQUF5nCVexqIS7022VUqo6sExrXc/2fA8QobU+oZQK\nA77XWt+UzXlSwt0Vrlzh6coLOHVzBB/9UKPgfN/CLaSEu3CUs22VPcMFPgmM2gAAIABJREFU30Oq\nC3qN+HhTIW32bNi8WRIs4QOaNjUFW377zdORZDFhgllDrm9fuHLF09EIJ7mirVJk7EL5GnjA9ngI\n8JWzQYpcFClC1Gc38eNPgUCKp6MRQginSHVBb3D1Kly+bNehDRuaT9w3b4brrrM4LiFcQSkYMAA+\n+cTTkWShlOkVLlYMHn64APUY+Cen2iql1AJgE3CjUuqwUioSmAK0V0r9CbSzPRcWKtXudj74qhwQ\nwJkzno5GCCHyT6oLelpMDNx1F8ycmeMhKSkwxda0T51qyrMXL+6m+IRwhYEDzbBBL1SokJkytm0b\nTJ/u6WiEE5ytLjhAa11Za11Ua11Naz1Xax2ntb5La11ba91Ba33WwviFTURn08A9/riHAxFCCCc4\nWl3wc6AcUl3QNb7/3oxVat3aLG6VjWPHoEMH+OYb87xPHzfGJ4Sr1K5tirh4qZIl4auv4I03YMUK\nT0cj8knaKj/z22+wZImnoxBCiPzJtR6dUioQeF5r/YSb4ikYkpJMabP334f586F9e8CsC5Jb2dqQ\nEDfFJ4QVvKToRU6qVYPPP4eePU0hjJtv9nREwl7SVvmnDz+EXr3MQuJhYZ6OpuDQGk6ehKNHzduV\n4sWhZk0pDiSEo3JNsrTWV5VSLd0VTIExaZJZCXXr1gwtR1yc+c/twgV45hlYvhw+/hjuvNODsQpR\ngDRvDq+/Dt27w5YtULaspyMS9pC2yj81bw4PDU3h/l4XWLkxiAB7xt6IfDl1ChYvNivH/PgjcOUy\nVThCEZXMBUrwz6WKhJe/QqeexYgcVojbbvN0xEJ4P3tKuL8LhAOLgQup+7XWS60NzY9LuF+6BEWL\nkrnFUMr85zZkCLRoAW+/Lb1XQlghr7LYzzxjhiqtWiXrz1nBohLuftlWFagS7umkjuyoxT7KcYZj\nRWvxb2J5T4fld7ZsMXO9166Frl3NIu0tW0L4pX3XVms/e5aU3Xv5Y8VRlpV9gNl7WnL99WYOqy8l\nW1LCXTjK2bbKniRrbja7tdba8rHufptkZSMx0XTJh4XB//4HvXt7OiIh/Fdeb1yvXoWOHU31+Vde\ncV9cBYVFSZZftlUFNclK7/Crn3Dbc51YEV2S21sX83Q4fuGXjVcY9+AJ/j5clP9MLc+QB5R9wwG1\nJvmqYu5cGD/e1DR69VUoUsTykJ0mSZZwlOVJlif5RZKVmGjqQ+fi99/NWq27dsGJE1ChgptiE8IT\nZs0yxV5q1/ZYCPa8cT11ytSl+b//M5/uCtexIsnyJEmyLKY1owOm82XQ/fx+uDxlyng6IN91/Jjm\nuYH/sOqHErx086cMeacJhVu3yNe1zpyByEjzvuXLL6FSJRcH62KSZAlHuWMxYpEf58/DY49Bv345\nHnLlCkRFQadOMHas2ScJlvB7Bw6Yoi9ernx5WLQIHnoI9u/3dDRCFGBK8T7D6BKwisi7/iVF1il2\nmNYwb2oM9Wucpfzu9ez9Yi8PbX+Sir1aoBRpW2io/dcsW9ZUZe1WYyctG11k3z7r4hfCF0mSZYXv\nv4d69cwCw/Pnp+0ODSXDf2ZFi8LEieYT88GDZf6VKCAeeMBUdElO9nQkeWrWDF580SydcOmSp6MR\nouBKIJg31tTjxMELvPKy9EY44tgxU8znzXeLsvrJFUw7Npjg7q2BawW3UrfcKhxnRykY//hZxia8\nQMTtlzh40IJvQAgfJUmWK124wKxij3Ok7WC6HPw/1AdzUGVKpyVVAPHxZoHFsDD49FOz0HDqf26x\nsZ4NXwi3qFMHatSAlSs9HYldRoww5dxHjPB0JEIUbEWb1GPJjjrMfE+lrR0pcvftt9CwoRn6vOWv\nEBq8NhACA+0+P/OHw9n2erVsybANg3n+ygTa33GRmBhrvhchfE2eSZZSqqJSao5S6lvb85uVUg9a\nH5oPWrqUopfjqRK7gxW6S4ZPh7SGjz6CunXNSMJdu8xIQi9fOkgIa0RGmkVwfIBSZhrZpk2mA054\nJ2mrCobKlc0w3sjIa8XvRFbJyTBuHAwfbn5eUVH5K06Ruacrx16v227j0ZU9GXTuf/TucJ4rV1z2\nrQjhs+ypLvgtMBez0GN9pVQhYKvW+lbLg/O1whdaowJUlknKJ07AqFGmVOp778Fdd3kmPCG8xrlz\nUL26mZ/lyCQAF7Fn4e/MPcvbtpl1wzdtghtusDY+f2dRdUG/bKuk8IWR+efw3nvw1lvm71GG2md0\ndH8i/XpdJii8NPPnm/mlOcn8c83reW7nAqQsWUrvoaWpPLAtM971rk+RpfCFcJQ7Cl+U01ovAlIA\ntNbJwNX83tCvZeqWSk42a13VrQvVqsGOHZJgCQFA6dKwfbtHEiwwCVROn87mNC+hQQMzP6t/f+RT\nWu8kbZUfCwnJOFRt3Djo3Bl69dJcvuzp6LzHlm9OcftN8XQOWM033+SeYGUn88/Z0QQ2oG9v5v/R\ngLXrVPop6UIUSPYkWReUUmUBDaCUagacszQqP7BhgxkHvWyZeTx1KpQo4emohPAi1ap5OgKHjRwJ\n4eHmDZ7wOtJW+bHMH4zExcHrr0O5g78S2fGYVBwEFkzaT7ceihn91vP81r4E5GPWfeafsyNzxVPn\nb5WuVZa//jI1jg4dcjwGIfyFPX+Co4GvgeuUUhuB+cDjlkbl4wYNMtv48bBmDdx0k6cjEkK4glLw\nwQeweLGZUC68irRVBUxAAHw0L4V/Nh7hhaFHPR2Ox6SkwLjuO3lhYiHWvbWDHh/d45YJ35l7vSDr\nqIDISCQBFgVWodxeVEoFAMWA1kBtQAF/aq2T3BCbT9HajA8HqFoVdu+GUqU8G5MQwvXKljUFMPr1\nMwuJe/sCnAWBtFUFV/GI2/n6w1XcMSSUCpVPMuqVgrXYZEICDLrnMud+TGTL+kKUa9nGbffOq5er\nTBmzok1qMcPs5roK4c9y7cnSWqcA/9NaJ2utd2mtd0qjlT2lri378+qrkmAJ4c9atYKHHzY91ldl\n1o/HSVtVsJUb2JE1U37nrWlXeH9awXkXf/AgtGgBYdWLsvpMI8q1rJPlmMwl2N05DTYuDvbs1pQL\nSebYMcfX4BLC19kzXHCtUqqPUlJsPC//+Y+nIxDCBx0+DNHRno7CYS+8AElJZl6I8ArSVhVg1cbc\ny5r/rGbCSwF8+qmno7He+vUmwXr4YZg5E4oUzf7X3tnFhp1Vp9xphiX+H08Pk+mRouCxp4R7AlAS\nSAYSMcMwtNY62PLgciiLW6NGDQ7JbErhg6pXr84///zj6TC8y+bNcP/98Oef5GumtgXsLZt9+DA0\nbgzLl0PTptbH5S8sKuHudW2Va64tJdyzk9PPZecfV7mrYyCzZ0P37u6Pyx1mzTJzvj/5BO69N2Pi\nlHlIXuafU+blK9wxhO/itP/j5gl9OZRYkfR/9u6ORUq4C0c521blmWRZRSn1D6byUwqQpLXO8hYl\np4bL9k1bHqMQria/u9nQGurXh+nTvWaNA0fe2C5ZAmPHwtatEBRkbVz+wooky5MkyXK/3H4uv/wC\nXbvCggVe81+KSyQnaUa33cqafbX4ekMZbrjBO5KoPCUn8+V1TzPk8EucSSpNIVs1AEfW5HIFSbKE\no9yxThZKqRClVFOlVKvULb83TCcFiNBa35ZdgiWEKCCUgkceMauL+qC+fSEiAh6XOnYeZ1FbJXxM\nkybmw4/+/WHjRk9H4xqxxxLpXG0Xf/9xiZ/WJOS4ILozJdgtU6gQPef3oTZ7mfe+TJUUBUeeSZZS\n6iFgA7AKiLJ9neiCeyt77i+EKAAGDYK1a+Hffz0dSb68/bYZ9bhwoacjKbgsbKuED2rVylQB7XW3\n5vcfL3o6HKfsWX+S22udol7wQZYfaUDpulU9HZLDVOtW9GUJL469woULno5GCPewJ8l5EmgCHNJa\ntwFuA8664N4aWKOU+kUpNcwF1xNC+KrgYDMva8YMT0eSLyVLmgTriSdMxS/hEVa1VcILZV6jKbuq\neR07wntdv6ZL20R2/Zbo/iBdYMXbf9O6bQAvdN3KG3u7ERhc0tMh5ds0nuXODsWZPt3TkQjhHvYk\nWYla60QApVRRrfVezDokzrpDa90Q6AKMUEq1dME1vdqhQ4cICAggxQUr89WsWZN169bZdey8efO4\n8847054HBQW5rPjCq6++yvDhwwHXfn8A//77L8HBwTKHqaB49llTKstHNWxo5mYNHHhtOQfhVla1\nVcILZR4Wl1PVvF5zuvF640/p2PI8+/dccW+QTtAaXnsNhr1ak6+m7GXI5z3cssCwlc5QjlemBPDW\nW3DypKejEcJ6uS5GbHNEKVUG+BLT8xQHOF3aT2t93Pb1lFLqC6Ap8GPm4yZOnJj2OCIigoiICGdv\nbamaNWsyZ84c2rZtm+3rnqounP6+CQkJeR6/fv16Bg0axL95DN8aN25cjvdxVOafXdWqVYmPj8/3\n9YSP8YNVfZ96ClavhpdeMpswoqOjiba+TL8lbZXwcYGBDFo/jIuNZ3FXk3vYsLMsVWsEejqqXCUm\nwrBhsHs3/PRLIapWvfYZdHaFLXxJrVpmrtxrr3k6EiGsl2eSpbXuZXs4USn1PVAaWOnMTZVSJYAA\nrfV5pVRJoANmDH0W6ZMs4T5a6zwTpqtXrxIY6N2NlRDuFBAA8+bBbbeZqmatpOwCkPUDsqiobP+7\nd4oVbZXwE4ULM/znBzl/61zuatCLDXsrUjHMO3uFjh2DXr2gZk344QeoUiVrUuXrgzvGjYN69bLu\nTx0Cmv65VxTuECKf7Cl8US11Aw4C24AwJ+9bEfhRKbUV+AlYprVe7eQ1vU5KSgpjxoyhfPnyXH/9\n9XzzzTcZXo+Pj+ehhx6icuXKVK1alfHjx6cNjTtw4ADt2rWjXLlyVKhQgUGDBtndqxMbG0uPHj0o\nXbo0zZo1Y//+/RleDwgI4MCBAwCsWLGCW265heDgYKpWrcr06dO5ePEiXbp04dixYwQFBREcHExM\nTAxRUVHcc889DB48mDJlyjBv3jyioqIYPHhw2rW11syZM4fw8HDCw8N544030l6LjIzkxRdfTHu+\nfv16qlY1E3jvv/9+Dh8+TPfu3QkODub111/PMvzw+PHj9OzZk7Jly3LjjTfy/vvvp10rKiqKfv36\nMWTIEIKDg7n11lv5/fff7fp5CZFZ5vkembfs5n+kCguDOXNg8GD3L/xZkFnUVqVe+x+l1B9Kqa1K\nqS2uuKZws2LFGL11MAMb7KZ9e+988/7jkhiaNtV0727meJYokXUxYW+M21Hh4abWUWb2DgEVwlfY\nMyfrG2C57eta4ADwrTM31Vof1Fo3sJVvv1VrPcWZ63mrWbNmsWLFCv744w9+/fVXlixZkuH1IUOG\nUKRIEQ4cOMDWrVtZs2ZNWuKgtea5554jJiaGPXv2cOTIEbt79R577DFKlCjBiRMnmDNnDh988EGG\n19P3UD300EPMnj2b+Ph4du7cSdu2bSlRogTffvstlStXJiEhgfj4eMLCzHuVr7/+mnvvvZezZ88y\nYMCALNcDMzRo//79rFq1iqlTp+Y6dyz13Pnz51OtWjWWL19OfHw8Y8aMyXLtfv36Ua1aNWJiYli8\neDHPPfdchiFIy5YtY8CAAZw7d47u3bszYsQIu35eQmSWubHPvOXV+HfpAnffDcOH+/6nzj7E5W1V\nOrLkiD8oVYrx37elYydF585gx8h5t9Aa3hz4K33uDaBU7L+MH296xZXyveGAuUn/4dWG//5OcS5y\n/LinoxLCOnkmWbYkqJ7t6w2YuVObrQ/N9y1evJhRo0ZRuXJlypQpk2H+0okTJ/j222958803KVas\nGOXKlft/9u48PIoqe/j494QEwpJAwpqQEDa3QQEHdUQBQUZB2VyGVRBxRx0EdUZUNCD6E3DEZeaV\nEUQFFFTcQdw1KAiDO4iiCBICIbIbJKzJef+oSuiETtJJutPdyfk8Tz2pruXWqZvqun2rbt1i7Nix\nLHD7gG7Tpg09e/YkMjKShg0bMm7cOJYuXVrqNvPy8njttdeYPHky0dHRtGvXjpEjRxZaxrMjiZo1\na7J27Vr27dtH/fr16dixY4npd+7cmX79+gEQHR3tdZmJEycSHR3NqaeeyqhRowr2yRfFdXKRkZHB\nihUrmDp1KlFRUXTo0IFrr72WuXPnFizTpUsXevXqhYgwYsQIVq9e7fN2TYj56iv4+edgR1EhU6c6\nu1DkGocJkACXVfbKkSpCBKZNg44doX9/OHAguPHs23GQIW2/5PlXo1n59m5+OtCiyt25yud58eqb\n3a24IXouU8ZbB6Cm6ipzoaGqXwN/CUAs/jNxovc2PsXdCfK2vB+eBcvMzCxoDgeQkpJSML5582aO\nHDlCQkIC8fHxxMXFceONN7Jz504Atm/fztChQ0lKSqJBgwYMHz68YF5JduzYQW5uLklJSV63W9Sr\nr77K22+/TUpKCj169GDlypUlpu+5P96IyHHbzszMLDXu0mzbto34+Hjq1KlTKO2tW7cWfM6/2wZQ\np04dDh486LeeDk0lS0sDj6al4Sg62mnyM348rFsX7GiqHz+XVfbKkSpExHlbRLNmMGgQHAnS+3F/\nfD+Dv7TIJFZ/Z/nmFrS66OTgBBIMcXHcefMfzHsxEo9i3JgqxZdnsm7zGO4QkflAxX81B9LEid7b\n+JRUyfJ12TJISEgo1Dtfevqxjq6Sk5OJjo5m165d7N69mz179rB3796Cuy933303ERERrF27lr17\n9/L888/71JV548aNiYyMLLTdzZs3F7t8p06deOONN9ixYwcDBgxg0KBBQPG9BPrSe2DRbScmJgJQ\nt25dcnKOvRRyW5F2AiWlnZiYyO7du9nv8RbDzZs307x581LjMWHo+uudlxOvXx/sSCrkT3+CyZNh\n2DA4dCjY0VRtAS6rqt0rR6q6GjVg7lzg6BGuvHAbubmVt21VmDcPuvWN5Y5LNzJrw/lEN4mtvABC\nRLN7r+PqGnOYMt4evjJVky93smI8hlo47d0HBDKoqmLQoEE88cQTbN26lT179jB16tSCec2aNePC\nCy9k3Lhx7Nu3D1Vl48aNfPrpp4DTzXq9evWIiYlh69atPOxjf6cRERFcdtllTJw4kQMHDvDDDz8w\nZ84cr8seOXKE+fPnk52dTY0aNYiJiSnoLbBp06bs2rWrzF2oqyqTJ0/mwIEDrF27lmeffZYhQ4YA\n0LFjR5YsWcKePXvIysri8ccfL7Rus2bNCjrk8EwPICkpiXPOOYe77rqLQ4cOsXr1ambPnl2o0w1v\nsZgwFRMDN9/stOsJczfcACkpcM89wY6kygtYWeX5yhEg/5UjhUycOLFgqITu6o0fREXBy/+3gd+W\nb2D0xemV8vzk7787nT489BB8uLIeV8//a9i//6rc6tfnH2MO88LLUfihwYsxFZaWllboXF5hqhqy\ngxPe8YqbHgpatWqlH330kaqqHj16VG+77TZt2LChtm7dWp988kmNiIjQ3NxcVVXNzs7W0aNHa1JS\nkjZo0ED//Oc/60svvaSqqmvXrtVOnTppTEyMnn766Tp9+nRNTk72up2iduzYoX379tX69evrX/7y\nF73vvvu0a9euBfMjIiJ0w4YNevjwYe3du7fGx8dr/fr19ayzztLly5cXLHfNNddow4YNNS4uTrdt\n26YTJ07UESNGFNqW57RNmzZpRESEzpo1SxMTEzUhIUH/9a9/FSx78OBBHTx4sMbGxmqHDh30scce\nK7RPb775prZo0ULj4uL0kUceKUgvP7+2bt2qffv21fj4eG3btq3OnDnTaxyeseSvGypC+dgNOTt3\nqsbFqWZkBDuS45T137hzp2pSkuq77wYmnnDjfg+CXsb4MgB1gHrueF1gOXBhkWUCkEsOO2X4piL5\nlP3Jl3pW5Jd6+8BNmpfnv5iKWrFCtVUr1RtvVN2/3/sy1e7/vXevjmv5mo655ehxs/ydF0ysbplr\nKqqiZZVoKZduRGQRTnv04ipp/Stc0yt+2+otPhGxuxQmLNmxW0a33QaRkSF3R0uk7L0GfvyxcwX7\n22+hSZPAxBUu3O+BXy/fB6qsEpFWOHevFOfdki9okR5xiyur/KE8x1p1VNF82r1oOeddGsfAq+px\n39Mt/BcYEN8gj32/H+UoNYHj3//k+YLh6vhuqKwsp2n12rWF30nv72NfJgmaal8m47uKllWlvowY\npxvcZsDz7uehwG/AG+XdqDHG+OSee5y+jENM0ZdmFp3n7UfS+efDyJEwahQsXlx9WwgFUEDKKlX9\nFSi521UT9uL7ncsHz6fRY3gk+3O3M+WZJn75jn79ykYa/n6Us08QZn58AklJTqWq6Et3q3NFulkz\nuPJK51rao48GOxpj/MeXO1lfquoZpU0LBLuTZaoaO3arvpKuvh45Auee69zRGjOmcuMKJQG6kxVy\nZZV/0q7eP8B95a982vnZj/S942ROPkV46imoVat86ezfc5gHB6zi6WUncZqu5sOjPZAaoXfBKFRk\nZsKpp8IPPziVLrA7WSb4KlpW+fKNrysirT022AqnXboxxpgyiIpyunWfPBnsNW5+Z2VVNeb5olsR\n526Rp/y7R97meWrU9RQ++ljIzoauXWHTprLFkZcHz9/2NSc32cWvG3JZ/cVhPqanVbBKkZjoXHzy\nsY8vY8KCL3eyegMzcZpiCJACXK+q7wc8OLuTZaoYO3arPl+uvs6bB1OmwBdfgMer36qNAN3JCrmy\nyj9p252s8iiab56fPZ+BAu9NfFVh+nSnF8CcnMIvLfa2/NGjsHCh873esSaLJE3nC/c1bdXxOavy\n2LoVTjtNWbdOaNLE7mSZ4KtoWVVqJcvdSC0g/y1561S1Ut74YpUsU9XYsVv1+fLDQBVGjHD69Hj2\n2er3fFYgKlluuiFVVvknbatklUdJlazSlvX0889w6kmHaVjrD665aBsXXducLn0b8McfsHtnHt+u\njuCjj+Dll6FNG7jrLujTx/5n5XL0KLc0XECdwf2YNrOBVbJM0AWsuaCInCkizQDcgqoDcD/wsIiU\ncLPdGGMCYNMmuP32YEfhFyLw1FPw9dfw5JPBjia8WVllAunEE52/H01azsHvfuLW/hupz14a18uh\nY8s99O/vfJc//hg++wwuvji48Ya1yEjGX72d2XMj2bEj2MEYU3HF3skSka+Bv6rqbhHpBrwI/B2n\nl6VTVPVvAQ/O7mSZKsaO3Qo4fBjat4dHHnEuFYeoslx93bABzjnHaWbUrVtg4wol/ryTFcpllX/S\ntrsi5eGvO1nHzVd12hqKQN26ULOmT80PjY/27OGmhNeJveoyZr7cwK/5aneyTFkFsuOLGqqafzgP\nBmaq6quqei/QtrwbNMaYcqlZEx57DMaNg0OV0gos4Nq0gblzYcgQ2LIl2NGELSurTOXJ7zkjLs45\nJ+H88HdenesMVsGqgLg4xt+wh1nPRfLzz4Xz1bPCZUw4KLGSJSL579HqCXzsMc+X92uZKigiIoKN\nGzf6tOykSZMYMWIEABkZGcTGxvrtLs7o0aN58MEHAVi6dCnJycl+SRdg2bJlnHLKKX5Lz/hR795w\n0knw+OPBjsRvevWCW2+Fyy6DgweDHU1YsrLKmCqkReooBrKQ6fftDXYoxlRISZWsBcBSEXkTOAB8\nBiAibYHfKyG2sDV//nzOPPNMYmJiaN68OX369GH58uXBDos5c+bQtWvXCqUhZXxCP3/55ORksrOz\nS13f1xhnzJjBPffcU+64PBWtOHbp0oUff/yx3OmZAHv0UeetlZs3BzsSv/nnP6FVK7juOmsaVg5W\nVpkKKa37d1PJ4uO5a2ocTy2IYdeuYAdjTPkVW8lS1QeB24HngC4eDc4jcNq7Gy+mT5/ObbfdxoQJ\nE9i+fTubN2/m5ptvZtGiRWVOKzc316dpvlLVClVG8tMIJF9izMvL8+s2K5onppK1bQv33Qe//BLs\nSPxGxOll8OefITU12NGEFyurjDdFK05xccUvW7S5H/i+rgmMlFsv4fKBNXj00WBHYkz5lfh2PFVd\nqaqvq+p+j2k/q+rXgQ8t/GRnZ5OamsqTTz7JgAEDqF27NjVq1ODiiy9mypQpABw+fJixY8fSvHlz\nkpKSGDduHEeOHAGONXubNm0aCQkJXH311V6nASxevJjTTz+duLg4unTpwpo1awri2LJlC5dffjlN\nmjShcePGjBkzhnXr1jF69GhWrFhBTEwM8e6lusOHD3PHHXeQkpJCQkICN910E4c8nnd5+OGHSUxM\nJCkpiWeffbbECsmmTZvo3r079evXp1evXuzcubNgXnp6OhEREQUVpOeee442bdoQGxtLmzZtWLBg\nQbExjho1iptuuok+ffoQExNDWloao0aN4r777itIX1V56KGHaNy4Ma1bt2b+/PkF83r06MEzzzxT\n8Nnzbtl5552HqtK+fXtiY2NZuHDhcc0P161bR48ePYiLi+O0004rVGEeNWoUt9xyC3379iU2NpbO\nnTvz66+/lnygmIobMwbOPz/YUXhV9Mdd0aG4q+R16sCiRfDCC+BxuBofWFlliqrIc1L2jFVouPtu\nmDHD8t+EL3sFuR+tWLGCQ4cOcckllxS7zAMPPMCqVatYvXo13333HatWreKBBx4omJ+VlcXevXvZ\nvHkzM2fO9Drtm2++4ZprrmHWrFns3r2bG264gf79+3PkyBHy8vLo27cvrVq1YvPmzWzdupUhQ4Zw\n8skn89///pfOnTuzb98+drtnrTvvvJNffvmF1atX88svv7B161buv/9+AN59912mT5/ORx99xPr1\n6/nwww9L3P9hw4Zx5plnsnPnTiZMmMCcOXMKzc+voOXk5HDrrbfy3nvvkZ2dzeeff07Hjh2LjRFg\nwYIF3Hvvvezbt49zzz33uG1nZWWxe/duMjMzee6557j++utZv359sbHmx7J06VIA1qxZQ3Z2NgMH\nDiw0/+jRo/Tr14/evXuzY8cOnnjiCa644opCab/00ktMmjSJvXv8bZYQAAAgAElEQVT30qZNm0LN\nGE31U/QHWtGhpIe3mzSBJUucd+28H/BX6BpjTOhq2RIuvZSCu1nWrNOEG6tk+dGuXbto1KgRERHF\nZ+v8+fNJTU2lYcOGNGzYkNTUVObNm1cwv0aNGkyaNImoqChq1arlddqsWbO48cYbOeOMMxARRowY\nQa1atVi5ciWrVq1i27ZtTJs2jejoaGrWrMk555xTbDyzZs3i0UcfpX79+tStW5fx48ezYMECABYu\nXMioUaM45ZRTqF27NhMnTiw2nYyMDL788kvuv/9+oqKi6Nq1K/369St2+Ro1arBmzRoOHjxI06ZN\nS+1oYsCAAZx99tkABfniSUSYPHkyUVFRdOvWjT59+vDyyy+XmKan4ppBrlixgv3793PnnXcSGRlJ\njx496Nu3b0EeAVx66aV06tSJiIgIrrjiCr799luft2tMUSedBK++CsOHwxdfBDsaY4wJngkTnLtZ\nmZnHX8Cy3gZNqKuSlaySmuqUZSirhg0bsnPnzhKfGcrMzKRFixYFn1NSUsjMzCz43LhxY6Kiogqt\nU3Raeno6jzzyCPHx8cTHxxMXF8eWLVvIzMwkIyODlJSUEit6+Xbs2EFOTg6dOnUqSOuiiy5il/uk\naWZmZqFmcykpKcVWRjIzM4mLi6N27dqFlvemTp06vPTSS8yYMYOEhAT69evHTz/9VGKspfUeGBcX\nR3R0dKFte+ZreW3btu24baekpLB169aCz82aNSsYr1OnDn/88UeFt2uqty5d4OmnoW9fWL062NEY\nY0xwtGwJ1w7K5p6brM2gCT9VspJVUlOdsgxl1blzZ2rVqsUbb7xR7DLNmzcnPT294HN6ejqJiYkF\nn70981R0WnJyMvfccw+7d+9m9+7d7Nmzhz/++IPBgweTnJzM5s2bvVb0iqbTqFEj6tSpw9q1awvS\n2rt3L7//7nTIlZCQQEZGRqFYi3smKyEhgT179nDgwIGCaZtL6P3tggsu4P333ycrK4uTTjqJ66+/\nvtj9L2l6Pm/bzs/XunXrkpOTUzAvKyurxLQ8JSYmFsqD/LSbN2/ucxqmEsyYAV99FewofOLrM1v9\n+8MTTzi91q9bF9yYjTEmWO4+433efTuPr77wb6dXxgRalaxkBUtsbCyTJk3i5ptv5s033+TAgQMc\nPXqUd955h/HjxwMwZMgQHnjgAXbu3MnOnTuZPHlywbukfHXdddfx3//+l1WrVgGwf/9+lixZwv79\n+znrrLNISEhg/Pjx5OTkcOjQIT7//HMAmjZtypYtWwo62hARrrvuOsaOHcuOHTsA2Lp1K++7D4MM\nGjSI5557jh9//JGcnJyCZ7W8adGiBWeccQapqakcOXKEZcuWHdejYv5dsO3bt/PWW2+Rk5NDVFQU\n9erVK7jzVjRGX6lqwbY/++wz3n77bQYNGgRAx44dee211zhw4AC//PILs2fPLrRus2bNin3311/+\n8hfq1KnDtGnTOHr0KGlpaSxevJihQ4eWKT4TYA0bwsCB4B7Hoawsz2wNHgwPPQQXXAD2VgFjTHUU\nO+pyJiXPYtzw7faKCxNWrJLlZ7fddhvTp0/ngQceoEmTJrRo0YInn3yyoDOMCRMmcMYZZ9C+fXs6\ndOjAGWecUeaOEjp16sSsWbO45ZZbiI+P58QTTyzoZCIiIoJFixaxfv16WrRoQXJycsGzSeeffz7t\n2rWjWbNmNGnSBIApU6bQtm1bzj77bBo0aMCFF17Izz//DEDv3r0ZO3Ys559/PieeeCI9e/YsMa75\n8+ezcuVKGjZsyOTJkxk5cmSh+fl3o/Ly8pg+fTrNmzenUaNGfPrpp8yYMaPYGH2RkJBAXFwciYmJ\njBgxgqeeeooTTjgBgHHjxhEVFUWzZs0YNWoUw4cPL7TuxIkTufLKK4mPj+eVV14pNC8qKopFixax\nZMkSGjVqxC233MK8efMK0rbu30PEoEEwZAhcfjkcPhzsaPxq5Eh48EGnM8Wvra88Y0x1I8I1L17I\n7xt3sWDmvmBHY4zPJNDvPaoIEVFv8YlIwN/XZEwg2LEbQHl5TiUrLg5mzy7fg5UhQMR7c+U33oDr\nr4dXXoFu3So/Ln9yvwfh+Q/yoriyyj9p2wuqjQH435BHGfDm1XyfUZ9Gjcr+3ZBJgqbal8n4rqJl\nld3JMsZUDRERMG+e01OE+166quSSS2DBAvjb38DjNXDGGFMt/OXp6xha6zVuu946lzLhITLYARhj\njN/UqwfvvQfZ2cGOJCB69oQPP4QBA2DtWpg82albGmNMlVevHg9sHMapnWqxePGxToTyxcXZi4tN\naLHi2RhTtTRsCK1aBTuKgGnfHlatgk8/dV7UaT8qjDHVRd34WsybB9de6zRasPdmmVBmlSxjjAkz\njRvDRx85dcmOHSEtLdgRGWNM5ejSBW69FYYOhaNHy5dGfLz3V2cY409WyTLGVH2qsHdvsKPwq5o1\n4bHH4KmnYNgwGD8ePF4VZ4wxVdadd0LdunDbbeXrGGbPHrsLZgLPKlnGmKrv88/htNPgs8+CHYnf\nXXQRfPMNbNwI7drBkiXBjsgYYwIrIgJefBE+fjObR+/MCnY4xnhllSxjTNV37rnOLZ+BA51Ln/uq\n1rtWmjaFl1+GGTOcZjT9+zvPKxhjTFXVoAEsue0jHpuey5P3ZRV0hOFtqMrNAcOp6WNpsYbTvvgi\nLCtZKSkpiIgNNoTdkJKSEuyvT/V18cWwZo3TU0S7dvDCC867taqQXr2cXeze3RkfONAqW8aYqqvF\nrZeydNoq/vV/h/jn4HTy8go3A6wOzQHDqeljabGG0774ImgvIxaR3sBjOBW92ao61csyAXvBY6CI\nvTjSmND36acwdy7MmhVyLy321zlk/37nztajj0Lr1jB6tPOu5lq1Kp52RYmEz8uIg11WWZliTOm2\nzP2YS66Jp02HGJ7+uDUxsYVPLyLAxGMvIy76vQrn71k47UtpsYbavlS0rArKnSwRiQD+A/QC2gFD\nReTkYMRijpdmXZVVOsvzStatGzz9NGlLlwY7koCpWxfuuAM2bYKxY+GZZyAhAa68Et580zrJ8EV1\nKKvC+dxjsQdHKMaedOX5LPsimgZbv6fdKbm8/rqXH+e/BiU0vwjFPPdVOMdeUcFqLngWsF5V01X1\nCPAiMCBIsZgiqvMXIlgsz4PDa74//DDcdBO89BKkp4fuJUEfRUU5d7A+/NBpOnjmmc7drSZNnLtb\npkRVvqwK53OPxR4coRp7dMeTeWrbAOa+EMm998JZZzmn8Zwcd4FNwYyuYkI1z30RzrFXVLAqWc2B\nDI/PW9xpQeWfA8H3NHzZXmnLFDff1+mhcPBXNIayrl/Z+e7rtMoWbvle1nnlzvdLLoFWrWDBAqeU\nTkyEnj3hq69KX7cU/vi/VyTfk5Lg73933quVkeHUJUtLs6LnmNLSD3EBLavKmy/l/S758/9gsfs+\n32KvWFpljb17d+eCUv/+acye7ZzC43De2r7q6e/YlZFzfCIVjKG86wU63yuSTrjGXpHfGv4uq8Ky\n44tAsUpWcITbj/2S5lslq2LLh0Ql64QT4B//gDfegKwsWLnSeSlLUpL35S+80OkCKTkZTj4ZOnWC\nrl3hu++8bz81FYYMgSuugOHDjw3r1nlP/4EHYMSIgiFtzBhnvLjlH3wQRo4sGNJuvdUZ/+mnQos1\naOD0al9avlTzSlZAWUXF92XCIfaqVFGp6Pb8mVZ5Yo+IgNzcNN5/H37+GRLZCkCjMVdQp0VDdhHP\nr1EnsKbu2Xw+7mWv6S4b/QLLWo1gWasRzL1kDMtaj2BZ6xF8Ofkdr8svv2UBy9qMdIa2zjD3slv5\n6sF3i11+7mVjWdb2qkLDVw++63Wflt+y4Lhll7W9il6UPf1i4/dYLn/d4paf+89/e41n/v1PF5v+\nsxRe9llKTr/o8qXFn9b5rpCqZAWl4wsRORuYqKq93c/jAS36QLGIhHc7HWOMMV6FQ8cXVlYZY0z1\nVpGyKliVrBrAT0BPYBuwChiqqj9WejDGGGOMF1ZWGWOMKa/IYGxUVXNF5BbgfY51i2uFljHGmJBh\nZZUxxpjyCtp7sowxxhhjjDGmKrKOL4wxxhhjjDHGj8KukiUi54nIpyIyQ0S6BTue6kRE6ojIFyJy\ncbBjqS5E5GT3WH9ZRG4MdjzVgYgMEJGZIrJARC4IdjzVhYi0EpGnRcR7V19hJtzLqnA934fzOTOc\nzz3h+v11j/PnROQpERkW7HjKIlzzHML3WC/r+SXsKlmAAvuAWjjvLDGV507gpWAHUZ2o6jpVHQ0M\nBs4JdjzVgaq+qarXA6OBQcGOp7pQ1V9V9dpgx+FH4V5WheX5PpzPmeF87gnj7+9lwEJVvQHoH+xg\nyiKM8zxsj/Wynl+CVskSkdki8puIrC4yvbeIrBORn0XkzqLrqeqnqtoHGA/cX1nxVhXlzXcR+Svw\nA7ADCPmul0NNefPdXaYfsBhYUhmxVhUVyXPXBOD/BTbKqscP+R5SwrmsCufzfTifM8P53BPu399y\nxJ/EsReO51ZaoF6Ec95XIPaglrPlibtM5xdVDcoAdAE6Aqs9pkUAvwApQBTwLXCyO28EMB1IcD/X\nBF4OVvzhOpQz3x8FZrv5/x7werD3I9yGih7v7rTFwd6PcBoqkOeJwBTg/GDvQzgOfji3Lwz2Pvh5\nf4JWVoXz+T6cz5nhfO4J9+9vOeK/ArjYHZ8fTrF7LBP0c2Z5Yg/2sV6RPHeXK/X8EpQu3AFUdZmI\npBSZfBawXlXTAUTkRWAAsE5V5wHzRORSEekF1Af+U6lBVwHlzff8BUXkSmBnZcVbVVTgeD9PnBeg\n1gLertSgw1wF8vzvOO9FihWRtqo6s1IDD3MVyPd4EZkBdBSRO7XIC3+DJZzLqnA+34fzOTOczz3h\n/v0ta/zA68B/RKQPsKhSgy2irLGLSDzwICFwzixH7EE/1qFccZ+H08TUp/NL0CpZxWjOsdu24LRj\nP8tzAVV9HedLYfyn1HzPp6pzKyWi6sGX430psLQyg6rifMnzfwP/rsygqgFf8n03Tvv8cBDOZVU4\nn+/D+ZwZzueecP/+Fhu/quYAVwcjKB+VFHso5zmUHHuoHutQctxlOr+EY8cXxhhjjDHGGBOyQq2S\ntRVo4fE5yZ1mAsvyPTgs3yuf5XlwVLV8D+f9sdiDw2IPnnCO32KvfH6LO9iVLKFwz0VfAG1FJEVE\nagJDgLeCElnVZvkeHJbvlc/yPDiqWr6H8/5Y7MFhsQdPOMdvsVe+wMUdxB495gOZwCFgMzDKnX4R\n8BOwHhgfrPiq6mD5bvleXQbLc8v36r4/FrvFXp1iD/f4LfaqF7e4iRljjDHGGGOM8YNgNxc0xhhj\njDHGmCrFKlnGGGOMMcYY40dWyTLGGGOMMcYYP7JKljHGGGOMMcb4kVWyjDHGGGOMMcaPrJJljDHG\nGGOMMX5klSxjjDHGGGOM8SOrZJmQISKXiEieiJwY7FiKIyJ3BTsGfxGRG0RkeBmWTxGRNWXcxkci\nUq+E+QtEpE1Z0jTGmFBQFcssEflERP4cyG2UMe1+IvLPMq6zr4zLLxSRliXMf1hEepQlTWPAKlkm\ntAwBPgOGBnpDIlKjnKve7ddAgkREaqjqU6r6fBlX9fnt5SJyMfCtqv5RwmIzgDvLGIMxxoQCK7MC\nuA23nFqkqtPKuGpZyqk/ARGquqmExf4NjC9jDMZYJcuEBhGpC5wLXINHgSUi54nIUhFZLCLrRORJ\nj3n7RGS6iHwvIh+ISEN3+rUiskpEvnGvUEW7058VkRkishKYKiJ1RGS2iKwUka9EpJ+73EgReVVE\n3hGRn0Rkijv9IaC2iHwtIvO87MNQEVntDlN8iLO1u40v3H080SPOx0VkuYj8IiKXedlWioj8KCLP\ni8gPIvKyx37+WUTS3HTfEZGm7vRPRORREVkFjBGRVBG5zZ3XUURWiMi37r7Xd6d3cqd9A9zssf0/\nicj/3Lz4tpi7UVcAb7rL13H/h9+4+TPQXeYz4K8iYuciY0zYCPcyS0Qi3PRXi8h3InKrx+xB7vl9\nnYic67GNf3usv0hEuvlQLpan/JshIivcfS7YrlvufeSWOR+ISJI7vaWIfO7ux2SPbTdz0/7a3c9z\nvfwrPcspr3miqpuBeBFpUuwBYYw3qmqDDUEfgGHALHd8GXC6O34ekAOkAAK8D1zmzssDhrjj9wL/\ndsfjPNKdDNzsjj8LvOUx70FgmDteH/gJqA2MBH4B6gG1gE1Ac3e57GLiTwDSgXicixcfAf2LifMJ\nd/xDoI07fhbwkUecL7njpwDrvWwvxU33bPfzbOA2IBJYDjR0pw8CZrvjnwD/8UgjFbjNHf8O6OKO\nTwKme0w/1x2fBqx2x58AhrrjkUAtLzFuAuq645cBT3nMi/EYfy///22DDTbYEA5DFSiz/gy87/E5\n1v37CfCwO34R8IE7PjK/7HI/LwK6lbSNYvbZl/LPc59HeqzzFjDcHR8FvO6Ovwlc4Y7flB8PTpl4\nlzsu+eVRkfjSgHYl5Yk7PhO4NNjHnQ3hNdjVYxMqhgIvuuMv4RRg+VaparqqKrAA6OJOzwNedsef\nx7mqCNBeRD4VkdVuOu080lroMX4hMN69S5MG1ARauPM+UtU/VPUQ8ANOgVmSM4FPVHW3quYBLwDd\niomzi3sV9Bxgobv9p4CmHum9AaCqPwLFXT3brKorPdMFTgJOBT5w070HSPRY56WiiYhILFBfVZe5\nk+YA3dy7WfVVdbk73fMq5QrgHhH5B9DSzaei4lR1vzu+BrhARB4SkS6q6tlmfkeRGI0xJtSFe5m1\nEWglTquJXoDnOfk19+9XPqRTmlzKXv4txLvOOPkJTnmUn3/ncux/4VlOfQGMEpH7gPYe5ZGnBJwy\nCErOk+1YOWXKKDLYARgjInHA+cCpIqJADZw21f9wFynavrq49tb505/FuYv0vYiMxLmymK/oSfZy\nVV1fJJ6zAc9KQy7HvitS0q6UMK9onBHAHlUt7gFjz+2XJV0BvldVb80i4Pj9L20bXqer6gK3CUtf\nYImIXK+qaUUWO+qx/HpxHqa+GHhARD5S1fxmHdHAgWK2b4wxIaUqlFmquldEOgC9gBuBgcC17uz8\ntDzTOUrhR0yiPUPwto1i+FL+FVdOlfSsVf68glhU9TMR6Qb0AZ4TkUf0+OeQc3D3pUie3IDTEuQa\ndzkrp0yZ2Z0sEwoGAnNVtZWqtlbVFOBXEcm/+neW2xY7AhiM8xwPOMfv39zxKzym1wOyRCTKnV6c\n94Ax+R9EpKMPsR4W7w8gr8K5+xPvzh+Kc6XRW5zL3Ds5v4pI/nREpH0x2yyuAGshIn9xx4fh7P9P\nQGO30EVEIsV5sLdYqpoN7PZorz4CWKqqvwN7ROQcd3pBT4Qi0kpVf1XVf+M01fAW+08i0tpdPgE4\noKrzgYeB0z2WOxH4vqQYjTEmhIR9meU+G1VDVV8HJuA0lfMmv/zZBHQURzJOE78St+GqQcXKP0+f\nc+z5t+Ecy79lHtML8k9EWgDbVXU28DTe9/FHoK27vGee3IuVU6aCrJJlQsFg4PUi017l2EnzS+A/\nwFpgg6q+4U7fj1OYrQG647RlB+fkuArnBPyjR5pFr4I9AES5D7l+D9xfTHye680E1hR9wFdVs3B6\nH0oDvgG+VNXFxcSZv50rgGvch3i/B/oXE2dxV+9+Am4WkR+ABsB/VfUIToE2VUS+dWPpXEo6AFcB\n/3LX6eAR49XAkyLydZH1B7kPMn+D07Rlrpc03wbyu709DVjlLn8fTt7jPkico6rbS4jNGGNCSdiX\nWUBzIM09J8/jWO95Xssft9n4JnefHsNpSljaNqDi5Z+nMTjN/75118/vrGMsTln4HU7zv3zdge/c\n8msQ8LiXNJdwrJzymiciEgm0wfm/GuMzcZoMGxOaROQ84HZV7e9l3j5VjQlCWGUSiDhFJAVYrKqn\n+TNdfxKRZsAcVe1VwjJjgd9V9dnKi8wYYwKjKpRZ/hTq+yxOT44f43Tw5PUHsYhcgtOxSWqlBmfC\nnt3JMuEsXK4QBCrOkN5/9+7eLCnhZcTAHpyONowxpqoL6XN2gIT0PqvqQZyedpuXsFgN4JHKichU\nJXYnyxhjjDHGGGP8yO5kGWOMMcYYY4wfWSXLGGOMMcYYY/zIKlnGGGOMMcYY40dWyTLGGGOMMcYY\nP7JKljHGGGOMMcb4kVWyjDHGGGOMMcaPrJJljDHGGGOMMX5klSxjjDHGGGOM8SOrZBljjDHGGGOM\nH1klyxhjjDHGGGP8yCpZxpRARPaJSMtgx2GMMcaUxMorY0KLVbJMlSAieSLSuoJpfCIiV3tOU9UY\nVd1UoeD8SERSRORjEdkvIj+ISM8Slu3uLrtXRDaWNS0RGSYim9yC+zURaeAxr6aIPCMiv4tIpoiM\nK7JuRxH50k37CxHpUGT+OBHZ5sb2tIhElT9XCqV7nnssvFpkent3+sf+2I4xxpSXlVdel7Xy6th0\nK6+qCKtkmapCS5opIjUqK5AAWwB8BcQDE4BXRKRhMcvuB2YDd5Q1LRFpB/wXuAJoChwAZnisOwlo\nAyQD5wP/FJEL3XWjgDeAuUAD9++bIhLpzu8F/BPoAaS46UwqSyaUYgfQWUTiPKaNBH7y4zaMMaa8\nrLw6npVXx1h5VVWoqg02eB2AJOBVYDvOieAJd7rgnOQ2AVnAc0CsOy8FyAOuBNLdde/2SDMCuBv4\nBfgd+AJo7s47GXgf2AX8CAz0WO9Z4D/AYiAbWAG0cuctdbf5hztvIHAekIFzctwGzME5gS5yY9rl\njie6aTwAHAVy3DTy9zUPaO2Ox+KcgLcDvwL3eMQ3EvgMeBjYDWwAevv5/3ECTuFR12PaUuD6Utbr\nCWwsS1rAg8DzHvNaA4fylwe2Aj095k8C5rvjFwIZRbaXDlzojr8APOAxrwewrYT484DRwM/uMXO/\nG89yYC/wIhDpLpv/f38SuMnjmNuCc8x+HOzvlQ022OD/ASuv8s+VVl5ZeWVDiAx2J8t4JSIROAXE\nr0ALoDnOyQFgFE6hdB7OySMGp0DxdC7OifGvwH0icpI7/XZgMM4JvT5wNZAjInVwCqzngUbAEOBJ\nETnZI83BQCpO4bMB58SKqp7nzj9NVWNVdaH7uZm7bAvgepyT1zM4V7Na4BRQ/89NYwJOoXOLm8YY\nNw3PK47/cfe1JdAduFJERnnMPwunsG2IU3jNphgiskhE9ojIbi9/3ypmtXY4hc9+j2nfudPLqrS0\n2rmfAVDVjTiF1oluM4wEYHUx6/6pyLwS03bHmxS5klfUhcDpwNk4P0SeAobh/C9PA4Z6LKs4Py6u\ndD/3Atbg/HgxxlQxVl5ZeYWVVyYEWSXLFOcsnBPTP1X1oKoeVtXP3XnDgOmqmq6qOcBdwBC3oAPn\npDHRXWc1zkkpv43zNThX1H4BUNU1qroH6Av8qqpz1fEdzlXJgR4xva6qX6lqHs7VpY5FYpYin3OB\nVFU9oqqHVHW3qr7uju8HHgK6lZIPAgWF+GBgvKrmqGo68AgwwmPZdFV9RlUV50pkMxFp4i1RVe2n\nqnGqGu/lb/9iYqmHc2XMUzZOQVpWpaVV0vx6OP/j373MK0/a2Tj5XNJ+TFXV/ar6I/A98L57/O0D\n3sEp0Aqo6kogTkROxCm85paQtjEmvFl55ZGmlVeF5lt5ZYLGKlmmOMk4J+E8L/MScW6n50sHInHa\nQuf7zWM8B+dElZ/ucQ+14jTbONu9MrZbRPbgFI6eaWYVk2ZxdqjqkfwPIlJbRJ5yH47di9PcoIGI\nFC3svGmEs4+bPaal41wxPS4+VT2AcyIuLcay+AOnCYin+sC+AKRV0vw/3M+xXuaVJ+36OIVgSfux\n3WP8AIWPrwN4z+d5wC04V3FfLyFtY0x4s/KqMCuvrLwyIcAqWaY4GUALj6t9njJxCpl8KcARCp9I\nSkq3TTHT09wrY/lXyWJV9ZayBu6h6MPFt+M0CTlTVRtw7KqgFLO8p504+1h0v7eWJzARWeL2gpTt\nZXi7mNXWAq1FpK7HtA7u9LIqLa21HLuai4i0AaKAn1V1L05Thg4lrNu+yPba41zROy5tnCu8v7lX\niP3peeAm4G1VPejntI0xocPKq8KsvLLyyoQAq2SZ4qzCOTFNEZE6IlJLRM5x5y0AxolISxGph9PW\n/EWPq4glXWl7GpgsIm0BROQ0t23zYpz208NFJFJEokTkDI+28aXJwmlvX5IYnKtI2SISD0wsMv+3\n4tJw9+1l4EERqSciKcA4nKtPZaaqF6vT3W6sl6FPMeusB74FUt3/x2XAqTjNVI4jjlpATSDCXSfK\nx7ReAPqJyLluwXY/8KpHm/h5wAQRaSAipwDX4TzsDZAG5IrI38XpOncMzsPAn7jz5wLXiMgp7v9+\ngse6fqNOV8bd3PSNMVWXlVcerLyy8sqEBqtkGa/ck3Q/nCtpm3Gu3A1yZz+Dc9L6FOeB3hxgjOfq\nRZPzGJ+Oc/J/X0R+xynEaqvqHzgPiw7BufKYCUwBavkY8kRgrtt042/FLPMYUAfnKt/nwJIi8x8H\nBorILhF5zEvsY3D2dSPOvj+vqiWdbEvsprechgBnAntwfixcrqq7AESki4hkeyzbDaeQXozT7CUH\neM+XtFT1B+BGYD7OD4LawM0e66bi5EM68DEwRVU/cNc9AlyC04PVHpw25gNU9ag7/z1gGk4h9ivO\nMTSxhH0u6Xgqkap+rqpZpS9pjAlXVl5ZeYWVVyYEifPMY4ASF0nCuQrQFOfKwCxVfcK9GvASzu3r\nTcAgVS364KExxhgTcO4V9E9xrqJHAq+o6iQRScW56p3/jMXdqvpukMI0xhgTRgJdyWoGNFPVb93b\n9F8BA3C6VN2lqtNE5E4gTlXHBywQY4wxpgQiUkdVc8R5EexynDsBFwH7VHV6cKMzxhgTbgLaXFBV\ns1T1W3f8D5x3MiThVLTmuIvNwblVa4wxxgSFOt17g9PkK15DrRoAACAASURBVJJjzXx86c3NGGOM\nKaTSnskSkZY4vbKsBJqq6m/gVMQAr+9mMMYYYyqDiESIyDc4z3R8oKpfuLNuEZFvReRpEakfxBCN\nMcaEkUqpZLlNBV8BbnXvaJX7wUBjjDHG31Q1T1VPx2ltcZaI/Al4Emitqh1xKl/WbNAYY4xPIgO9\nARGJxKlgzVPVN93Jv4lIU1X9zX1ua3sx61rlyxhjqiBVDclmeKqaLSJpQO8iz2LNAhZ5W8fKKmOM\nqZoqUlZVxp2sZ4AfVPVxj2lvAVe54yOBN4uulE9VK21ITU2t1DR8Wba0ZYqb7+t0b8v5Ix8qM9/L\nun5l57sv0yo7z8Mx38s6LxTzvbLPMYHM94p8B0KNiDTKbwooIrWBC4B17kXAfJdx7AWlx6nM46G8\n/1N/nu8tdv9+J4IdO+d5P4bDIfaK/N6p6rEHcp9DNfaKlHn+LqsCeidLRM4FrgDWuG3dFbgbmAq8\nLCJX47y3YFDxqVSe7t27V2oavixb2jLFzfd1uj/2uaIqGkNZ16/sfPd1WmULt3wv67xQzPfKPsf4\nunx58r2i34EQkwDMEZEInIuPL6nqEhGZKyIdcV5Bsgm4wZ8bLW++lPd/6s//g8Xu+/xwiJ2W/t2e\nP9Oqyvke6Ngrkk64xl6RMs/vZVV5a7iVMTjhmcqWmpoa7BCqHcvz4LB8Dw733B70MsZfQziXVeH8\nHbDY/YeJvh/DoRa7r8I1blWLPVgqWlZVWu+CJnyEwVXnKsfyPDgs3011F87fAYs9OMI19nCNGyz2\ncBXQlxFXlIhoKMdnjDGm7EQEDdGOL8rDyioT7mSSoKl2DBvjqaJlVcB7FzTGADt3QlQU1Pfymp37\n73fmd+wIF14ISUmVH58xJiTFx8OePc54XBzs3h3ceIwpTsuWLUlPTw92GMaUWUpKCps2bfJ7ulbJ\nMiZQ/vgDXnwRnn0Wvv8e5s+HPn2OX65HD/jyS3j/ffjHP6BNG7jxRhg2DKKjKz9uY0zI2LMH8m+S\nSZW592eqovT0dL/0yGZMZZMAnVytkmWMv+3cCVOmwDPPQNeucNddcMEFUKuW9+W7dnUGgNxceO89\nmDcP/vY3q2QZY4wxxoQhq2QZ42+bN8PBg/Ddd5CcXLZ1a9SAiy92BmOMMcYYE5askmWMv/35z85g\njDHGGGOqJevC3ZhwkZMDjzwCR48GOxJjjDGmSkhPTyciIoK8vLwKp9WqVSs+/vhjn5adM2cOXfMf\nFQBiYmL81vnCQw89xPXXXw/4d/8AMjIyiI2NtefvfGCVLGPK66uvYMKEytvekSPwzjtOhxhHjlTe\ndo0xxpgwVlrlJ1AdH5TGc7v79u2jZcuWJS6/dOlSkn14DOGuu+5i5syZXrdTVkXzLjk5mezs7KDl\nWTixSpYx5fH003DRRdC+feVts359WLwYDhyAgQPh8OHK27YxxhhjgkpVS63c5ObmVlI0pjRWyTKm\nLHJzYdw4mDYNli2DQYMqd/vR0fDqq874qFHgp9v/xhhjTHWQl5fHHXfcQePGjWnbti1vv/12ofnZ\n2dlce+21JCYmkpyczL333lvQNG7jxo307NmTRo0a0aRJE4YPH052drZP2929ezf9+/enfv36nH32\n2WzYsKHQ/IiICDZu3AjAkiVLaNeuHbGxsSQnJzN9+nRycnK4+OKLyczMJCYmhtjYWLKyspg0aRID\nBw5kxIgRNGjQgDlz5jBp0iRGjBhRkLaqMnv2bJo3b07z5s155JFHCuaNGjWK++67r+Cz592yK6+8\nks2bN9OvXz9iY2P517/+dVzzw23btjFgwAAaNmzIiSeeyNNPP12Q1qRJkxg8eDAjR44kNjaW0047\nja+//tqn/KoKrJJljK+ys6FfP1izBv73PzjxxODEUbMmLFgA6ekwd25wYjDGGGPC0MyZM1myZAnf\nffcdX375Ja+88kqh+SNHjqRmzZps3LiRb775hg8++KCg4qCq3H333WRlZfHjjz+yZcsWJk6c6NN2\nb7rpJurUqcNvv/3G7NmzeeaZZwrN97xDde211zJr1iyys7P5/vvvOf/886lTpw7vvPMOiYmJ7Nu3\nj+zsbJo1awbAW2+9xaBBg9i7dy/Dhg07Lj2AtLQ0NmzYwHvvvcfUqVN9aj45d+5cWrRoweLFi8nO\nzuaOO+44Lu3BgwfTokULsrKyWLhwIXfffTdpaWkF8xctWsSwYcP4/fff6devHzfffLNP+VUVWCXL\nmLLo1s15LiouLrhx1K4NS5bA8OHBjcMYY4zxxcSJzhu1iw7FVVK8Le9jhaYkCxcuZOzYsSQmJtKg\nQQPuuuuugnm//fYb77zzDo8++ijR0dE0atSIsWPHsmDBAgDatGlDz549iYyMpGHDhowbN46lS5eW\nus28vDxee+01Jk+eTHR0NO3atWPkyJGFlvHsSKJmzZqsXbuWffv2Ub9+fTp27Fhi+p07d6Zfv34A\nRBfzfs2JEycSHR3NqaeeyqhRowr2yRfFdXKRkZHBihUrmDp1KlFRUXTo0IFrr72WuR4XgLt06UKv\nXr0QEUaMGMHq1at93m64s0qWMb6KjYXx4yEqKtiROGJjIdLewmCMMSYMTJwIqscPJVWyfF22DDIz\nMwt1HpGSklIwvnnzZo4cOUJCQgLx8fHExcVx4403snPnTgC2b9/O0KFDSUpKokGDBgwfPrxgXkl2\n7NhBbm4uSUlJXrdb1Kuvvsrbb79NSkoKPXr0YOXKlSWmX1pnGCJy3LYzMzNLjbs027ZtIz4+njp1\n6hRKe+vWrQWf8++2AdSpU4eDBw/6rafDUGeVLGOMMcYYUy0kJCSQkZFR8Dk9Pb1gPDk5mejoaHbt\n2sXu3bvZs2cPe/fuLbj7cvfddxMREcHatWvZu3cvzz//vE9dmTdu3JjIyMhC2928eXOxy3fq1Ik3\n3niDHTt2MGDAAAa5z38X1+mFLz39Fd12YmIiAHXr1iUnJ6dg3rZt23xOOzExkd27d7N///5CaTdv\n3rzUeKoDq2QZY4wxxphqYdCgQTzxxBNs3bqVPXv2MHXq1IJ5zZo148ILL2TcuHHs27cPVWXjxo18\n+umngNPNer169YiJiWHr1q08/PDDPm0zIiKCyy67jIkTJ3LgwAF++OEH5syZ43XZI0eOMH/+fLKz\ns6lRowYxMTHUqFEDgKZNm7Jr1y6fO9vIp6pMnjyZAwcOsHbtWp599lmGDBkCQMeOHVmyZAl79uwh\nKyuLxx9/vNC6zZo1K+iQwzM9gKSkJM455xzuuusuDh06xOrVq5k9e3ahTje8xVJdWCXLGG/S02HM\nGKd5QrjYsgU++CDYURhjjDEhxfNuzHXXXUevXr3o0KEDZ5xxBpdffnmhZefOncvhw4f505/+RHx8\nPAMHDiQrKwuA1NRUvvrqKxo0aEC/fv2OW7ekuz7//ve/2bdvHwkJCVx99dVcffXVxa47b948WrVq\nRYMGDZg5cyYvvPACACeddBJDhw6ldevWxMfHF8Tly/6fd955tG3blgsuuIB//vOf9OzZE4ARI0bQ\nvn17WrZsSe/evQsqX/nGjx/P5MmTiY+PZ/r06cfFumDBAn799VcSExO5/PLLmTx5Mj169CgxlupC\nQrlGKSIayvGZKmrLFjjvPBg7Fv7+92BH47tvv4ULLoDvvgO3GYAxoUhEUNUqU9IGsqwSOXatx3Pc\nGH+SSYKmVuzgcr/XforImMpT3LFb0bKq1DtZItJPROyOl6kesrKgZ08YPTq8KlgAHTvCDTc4lUMf\nxMd77+gpf4iPD3C8xviRlVXGGGNCiS8F0mBgvYhME5GTAx2QMUHz++/QuzdccQW474IIO/fcA19/\n7XTvXoo9e7x39JQ/7NlT8vpWSTMhxsoqY4wxIaPUSpaqDgdOBzYAz4nIChG5XkRiAh6dMZVp8mQ4\n91y4995gR1J+tWvDk0/CzTeDR28/gVBaJQ2sEmYqj5VVxhhjQolPTStUNRt4BXgRSAAuBb4WkTBr\nT2VMCSZPhieecGoA4ezCC6FHD/jsswolExdXciWptPcx795dsTtlxpRVecsqEaklIv8TkW9EZI2I\npLrT40TkfRH5SUTeE5H6Ad8JY4wxVUKpHV+IyADgKqAtMBeYo6rbRaQO8IOqtgxYcNbxhTEBE+yH\n6IO9fRM8gej4oqJllYjUUdUcEakBLAfGAJcDu1R1mojcCcSp6ngv61rHFyasWccXpjoLVMcXkT4s\ncxnwqKp+6jnRLYyuKe+GjTHGGD+qUFmlqvlv46yFUzYqMAA4z50+B0gDjqtkGWOMMUX50lwwq2ih\nJSJTAVT1o4BEZYwxxpRNhcoqEYkQkW+ALOADVf0CaKqqv7lpZAFN/B+2McaYqsiXO1kXAHcWmXaR\nl2nGhI8ff4QpU+C558L/GSxjDFSwrFLVPOB0EYkFXheRdjh3swotVtz6EydOLBjv3r073bt392Wz\nxhhjQkRaWhppaWl+S6/YZ7JEZDRwE9AG+MVjVgyw3O3JKaDsmSwTELt2wV/+4vQiOHJksKOpHPv2\nQUzhTtaC/XxHsLdvgsefz2QFoqwSkXuBHOBaoLuq/iYizYBPVPUUL8vbM1kmrNkzWeEtIiKCX375\nhdatW5e67KRJk/jll1+YN28eGRkZtGvXjt9//x3xwwXn0aNHk5SUxD333MPSpUsZPnw4GRkZFU4X\nYNmyZVx33XX8+OOPfknPUzBeRjwf6Ae86f7NHzpVRgXLmIA4fBguvxz+9rfqU8F67z24+OKQ+3VW\nWu+F1sW78VGFyyoRaZTfc6CI1Ma5K/Yj8BZOZxoAI91tGGPC0Pz58znzzDOJiYmhefPm9OnTh+XL\nlwc7LObMmUPXrl0rlEZZK0j5yycnJ5OdnV3q+r7GOGPGDO65555yx+UpIiKCjRs3Fnzu0qVLQCpY\ngVRSJUtVdRNwM7DPY0BE7OePCT+qcMst0KAB/N//BTsavyitohIdDZM+v4Bn1nclbfrXZGUFO+Jj\nrIt34yf+KKsSgE9E5Fvgf8B7qroEmApcICI/AT2BKX6O3RhTCaZPn85tt93GhAkT2L59O5s3b+bm\nm29m0aJFZU4rNzfXp2m+UtUK30UK9B1EX2LMy8vz6zb9cWct2Eq7kwXwFfCl+/crj8/GhJeXX4b/\n/Q+efx4ifHpFXMjZtw/eegv+/ndo3x727nX+DhwI48bBww/D//t/8PTT8NRTcOgQHM2LYOkJ13Df\n/TVo105JSoLLLnPS27QpqLtTopIqkHaXy3iocFmlqmtU9c+q2lFV26vqg+703ar6V1U9SVUvVNW9\ngdgBY0zgZGdnk5qaypNPPsmAAQOoXbs2NWrU4OKLL2bKFOe6yeHDhxk7dizNmzcnKSmJcePGceTI\nEQCWLl1KcnIy06ZNIyEhgauvvtrrNIDFixdz+umnExcXR5cuXVizZk1BHFu2bOHyyy+nSZMmNG7c\nmDFjxrBu3TpGjx7NihUriImJId4t3A4fPswdd9xBSkoKCQkJ3HTTTRw6dKggrYcffpjExESSkpJ4\n9tlnS6yQbNq0ie7du1O/fn169erFzp07C+alp6cTERFRUEF67rnnaNOmDbGxsbRp04YFCxYUG+Oo\nUaO46aab6NOnDzExMaSlpTFq1Cjuu+++gvRVlYceeojGjRvTunVr5s+fXzCvR48ePPPMMwWfPe+W\nnXfeeagq7du3JzY2loULFxbkeb5169bRo0cP4uLiOO200wpVmEeNGsUtt9xC3759iY2NpXPnzvz6\n668lHyiBoKohOzjhGeMnhw+rZmUFO4oyO3hQ9ZVXVC+/XDU2VrVnT9UpU1RXrXLu+ZSkYP6RI6on\nnKB5H36kGzaozp/vzGvSRPWUU1QnTFBdvz7gu+I3dmoIb+65PehljL+GQJZVnknbcW8ChYkVP7hC\n9Tfbu+++q1FRUZqbm1vsMvfee6927txZd+7cqTt37tRzzjlH77vvPlVVTUtL08jISL3rrrv08OHD\nevDgQa/Tvv76a23SpIl+8cUXmpeXp3PnztWWLVvq4cOHNTc3Vzt06KC33367HjhwQA8dOqTLly9X\nVdXnnntOu3btWiiesWPH6oABA3Tv3r36xx9/aP/+/fXuu+9WVdV33nlHmzVrpj/88IPm5OTosGHD\nNCIiQjds2OB13zp37qx33HGHHj58WD/99FONiYnRESNGqKrqpk2bNCIiQnNzc3X//v0aGxur690f\nA1lZWfrDDz8UG+NVV12lDRo00BUrVqiq6sGDB/Wqq67Se++9t1C+5W976dKlWrduXf35559VVbV7\n9+46e/bsgvSKbkNEdOPGjQWf09LSNDk5WVVVjxw5om3bttUpU6bokSNH9OOPP9aYmJiCtK+66ipt\n1KiRfvnll5qbm6tXXHGFDh06tNj/f3HHbkXLqlIv54vIuSJS1x0fLiLTRaRF4Kp9xgRIVBQ0bRrs\nKHyWlQWTJkHLlvCf/0Dv3s6dpw8/hDvvhDPPLD2NgrtBUZFcuX4Cn/z1Adq0gWHDnHnbtjkdLP7x\nB5xzDnTtCnPmOHfAjAknVlYZE9pKatpelqGsdu3aRaNGjYgooQXL/PnzSU1NpWHDhjRs2JDU1FTm\nzZtXML9GjRpMmjSJqKgoatWq5XXarFmzuPHGGznjjDMQEUaMGEGtWrVYuXIlq1atYtu2bUybNo3o\n6Ghq1qzJOeecU2w8s2bN4tFHH6V+/frUrVuX8ePHs2DBAgAWLlzIqFGjOOWUU6hdu3ahnk2LysjI\n4Msvv+T+++8nKiqKrl270q9fv2KXr1GjBmvWrOHgwYM0bdqUU045rp+fQgYMGMDZZ58NUJAvnkSE\nyZMnExUVRbdu3ejTpw8vv/xyiWl60mKaQa5YsYL9+/dz5513EhkZSY8ePejbt29BHgFceumldOrU\niYiICK644gq+/fZbn7frL760mZoB5IhIB+B2YAMwr+RVjDHllZEB118Pp5ziVII+/BA++QSuvdap\nGJWF53NPcw8P5fzHBqC5eag68yIi4Kyz4NFHYcsWuP12mD8fWrWCBx90OmI0JkxYWWVMCNMSnsEt\ny1BWDRs2ZOfOnSU+M5SZmUmLFseuyaSkpJCZmVnwuXHjxkRFRRVap+i09PR0HnnkEeLj44mPjycu\nLo4tW7aQmZlJRkYGKSkpJVb08u3YsYOcnBw6depUkNZFF13ELrdAzszMLNRs7v+zd+dxNpftA8c/\n19jJMGPfFWmREipaRaqnEiVrIT3pKVqQPFS2VFK/tKdNaNPqKUui0lBSKkoJyU4RhuzbzPX7456Z\nZp8zc873fM+cud6v1/c18z3L975mnHGf69z3fd316tXLMRn5448/iIuLo0yZMhken52yZcvyzjvv\nMGHCBGrUqEH79u1ZtWpVrrGmjyM7cXFxlC5dOkPb6X+vBfXnn39mabtevXps2bIl7bx69epp35ct\nW5Z9+/YF3W5+BZJkHUsZMusAPKuqz+FK4xpjQuivv9y6qqZNoVIl+P13eOEFaNw4RA2UKAF33ZXj\nerSSJaFjR1eMcM4cWLMGGjWC++6zIhSmULC+yhiTRatWrShVqhQffvhhjo+pVasWGzZsSDvfsGED\nNWvWTDvPbs1T5tvq1KnDfffdR2JiIomJiezatYt9+/bRtWtX6tSpw8aNG7NN9DJfp3LlypQtW5bl\ny5enXWv37t38/fffANSoUSNDWfQNGzbkuCarRo0a7Nq1i4MHD6bdtnHjxhx/D+3atWPu3Lls3bqV\nk046iVtuuSXHnz+321Nl13bq77VcuXIcOHAg7b6t+ajMVbNmzSyl4Tdu3EitWrUCvkY4BJJk7RWR\nYcANwCwRiQFK5PEcY/w3dy6kW+AZqY4dg6efdslUUhIsXw5jx7pEyy9NmsCrr8KSJS75O/FEGDPG\nFd4wJkJZX2WMySI2NpbRo0fTv39/PvroIw4ePMixY8eYPXs2Q4cOBaBbt248+OCD7Nixgx07djBm\nzBh69uyZr3b69u3LCy+8wOLFiwHYv38/H3/8Mfv37+fss8+mRo0aDB06lAMHDnD48GG+/vprAKpV\nq8bmzZvTCm2ICH379mXAgAFs374dgC1btjB37lwAunTpwuTJk1mxYgUHDhzggQceyDGmunXr0qJF\nC0aOHMnRo0f56quvslRUTB0F++uvv5g+fToHDhygRIkSHHfccWkjb5ljDJSqprX95ZdfMmvWLLp0\n6QJA06ZNmTZtGgcPHuT3339n4sSJGZ5bvXr1DCXc0zvnnHMoW7Ysjz76KMeOHSMhIYGZM2fSvXv3\nfMXntUCSrK7AYeDfqroVqA085mlUxgRr6VK4/nrYts3vSHL19dfQogV8+CEsWOCSrXQj3L6rVw9e\nfhkWLYKVK93I1sSJLhk0JsJYX2WMydagQYMYP348Dz74IFWrVqVu3bo8//zzdOzYEYD777+fFi1a\ncPrpp3PGGWfQokWLDPs9BaJ58+a8/PLL3H777cTHx9OoUSOmTJkCuD2fZsyYwerVq6lbty516tRJ\nW5vUpk0bGjduTPXq1alatSoAjzzyCA0bNqRly5ZUrFiRSy+9lN9++w2Ayy+/nAEDBtCmTRsaNWpE\n27Ztc43rrbfe4ptvvqFSpUqMGTOG3pn2CE0djUpOTmb8+PHUqlWLypUrs2DBAiZMmJBjjIGoUaMG\ncXFx1KxZk549e/Liiy9y4oknAjBw4EBKlChB9erV6dOnDzfckHFbw1GjRtGrVy/i4+N5//33M9xX\nokQJZsyYwccff0zlypW5/fbbef3119OuHSnl3yWneZyRQEQ0kuMzEWrnTpe5jBsHKZ+YRJpDh+D+\n+936p/HjoWvXgi3oFQnvHsPff+9mHB46BE89BeefH7620wv3z21CS0RQ1cjoBUPAs75q926KxZUn\nSYultGOve+MNGS3oyOBeXCl/1yGKyJjwyem1G2xfFUh1wWtFZLWI/C0ie0Rkr4jsKWiDxngqOdmN\nYHXqFLEJ1pIl0Lw5bNgAy5ZBt24FS7CCkpTkAsinFi3gq69g8GDo3t1VKQzBGlZjghaVfVXHjlzB\nx35HYYwxpgACmS74KHC1qlZQ1VhVLa+qsV4HZkyBPPII7N/vvkaY5GR4+GFXiv2++9zeyJUr+xTM\n4sXQrp0LKp9EXIK1ciWccAKccQZMmFCgSxkTSlHVVx09CveUeZZbmZB2W+YNum1TbmOMiVyBJFnb\nVHWF55EYEwrJyTB1KhQv7nckGezcCVdeCbNnu5GsHj18GL1Kr2VLKFPG1YcvoHLl4MEHISEB3njD\nTR385ZfQhWhMPkVVX1WiBHy9+1S2UxVWrwYybsmgalU/jTEmkgWSZH0vIu+ISPeU6RjXisi1nkdm\nTEHcfz/Uru13FBksXuymB552GsybFyHhiUD//vD880FfqnFj+PJL6N0bLr7YjdKlq9hqTLhEXV/V\n/44YHuR+t5eDMcaYQiXPwhciMimbm1VVb/ImpAxtW+ELU6i9+CIMH+6+XnNN6K8f1EL4/fuhbl1X\niTHdJozB+PNPVxhj6VKYNMm7whhWAKBw86LwRTT2VYcPQ7nSx/i5wgWcsi0BSpXK1K79HZjQsMIX\npijzqvCFVRc0xgNJSXD33fDJJzBjhttnygtBv8m66y437+/hh0MWE7iS9P36ubVbDz7oZiaGkr25\nLNysumB+rg23t/yeZz6qC5lKJ9vfgQkVS7JMUeZndcFGIvK5iPyScn66iNwfyMVFZKKIbBORZelu\nGykim0VkScpxeUGDNyYS32Hs3QsdOrj1SYsWeZdghcSdd8KZZ4b8sh07usqJf/zhLv/NNyFvwpgM\ngumrIt2bq1pwsHzge9MY44d69eohInbYUeiOevXqefI3EciarJeBYcBRAFVdBnQL8PqTgMuyuX28\nqjZLOT4J8FrGZPTXX9CqFeyJnCrNGzbAeedBrVquyEVcXHDXi4/PWE0s8xHs9WnQADp3DvIi2atc\n2dUgGTPGJV1Dh7r9tYzxSDB9VURr0QI++sjvKIzJ3fr161FVO+wodMf69es9+ZsIJMkqq6qLM912\nLJCLq+pXQHb1j6JmmojxSXIy9OwJbdpAbGRUaV6yBM49F266ya1TL1Ei+Gvu2pWxmljmIzEx+Da8\n1rmzG9VavdoVAPn+e78jMlGqwH1VpOvdG6ZM8TsKY4wx+RFIkrVDRBoACiAi1wF/Btnu7SLyo4i8\nIiIVgryWKYoeeQQOHIAHHvA7EgC++MLtf/XsszBggM/l2SNQ1arw/vuuCMiVV8JDD7l1a8aEkBd9\nVUS45ho35dY2/jbGmMIjkCSrP/AicLKIbAEGALcF0ebzwAmq2hTYCowP4lqmKJo/H55+OmL2w5o2\nDbp2dZsLe1FBMFqIQLdu8MMPbnuuNm1g0ya/ozJRJNR9VcQoWxauvRbefNPvSIwxxgQqz3eoqroW\nuEREygExqro3mAZVdXu605eBGbk9ftSoUWnft27dmtatWwfTvCnsDh6EG26AyZMjYsOpl1+GkSNh\nzhxP6keE16FDrkS0x8NwtWu7JOuxx9xak+eeg+uuy9814uJyDzMurnBMpSwqEhISSEhI8LSNUPdV\nkaZXL+jfbQeDS01F7rzD73CMMcbkIccS7iIyKLcnqmpAI1AiUh+YoapNUs6rq+rWlO8HAmepao8c\nnqs5xWeKsNWrI6Jk37hxbv+ruXOhYUNv2pBwlmg+7zw3DfOCC8LUoNuouUcPt4nxk0+6avKhENbf\nm8k3kdCVcA9VXxVkDJ71Vamv5eRkOL7GQWZVv5nTfnozw33GBCsUJdyNiTbB9lW5TRcsn3K0wE25\nqJVy3Ao0CzC4t4CvgUYislFE+gCPisgyEfkRuAgYWNDgTREVAQnWAw+4zXa/+iq4BMvz6oH5cc01\n8OqrYWwQzj7bbVx89Kgb1VqxIqzNm+gQir6qtojME5HlIvKziNyRcnvEbDkSEwPX9SjJu781tXm2\nxhhTCOS5GbGILACuTJ16ISLlgVmqeqHnwdlIlokwKZNAbAAAIABJREFUqjBiBPzvf/D551CtWnDX\ni6hPordtg5NOgs2b4bjjwt78pEkwZAg8/3zwVeUj6vdqsgjlSFa6axa4rxKR6kB1Vf1RRI4DfgA6\nAF2BvXmNhoVjJAvg22+h92V/smLkO8jAAfY6NyFjI1nGZOXlSFaqasCRdOdHUm4zpkhRdXs9TZ/u\nqgkGm2BFnGrV4Pzz4cMPfWm+Tx+3tm3IELjnHjgWFcW3TRgVuK9S1a2q+mPK9/uAFbjRMIigLUfO\nPhsOlqzIL1N+8DsUY4wxeQgkyXoNWCwio0RkFPAtMNnLoIxJk5wMP/7odxSowt13w6efwrx5UKWK\n3xF55PrrfS1h1qyZ20dr2TJo1w62b8/7OcakCElflbKOuGnK8yGCthwRgS43lOTdTZG1Cbsxxpis\n8kyyVPUhoA9uU+FdQB9VHet1YMYAMHYsDBrk65wYVbjzTrf+6vPPoVIl30LxXocOULGiS259UqkS\nfPwxtGwJrVrBqlW+hWIKkVD0VSlTBd8H7koZ0Yq4LUe6dC/Gu5VvQ8tHxibsxhhjshfQJkOqugRY\n4nEsxmQ0fz4884wb2vBpd9/UBOv7790oVoVo3zq7bFm3/5jPihVz+XXDhnDhhW4j4zAWPTSFVDB9\nlYgUxyVYr6vqRynXC3jLkXBtN9KiBRw5Iixb5snljTGmyAr1diN5Fr7wkxW+KML++svNHXvlFbjc\nn4Jeqm59UEKC29fJiwTLFq7n7dNP3SzGJ5905d4DYb/XyOZF4YtgichrwA5VHZTutoC2HAlX4YtU\nQ4ZAiRLw8MP2OjehYYUvjMkq2L4qoJEsY8IqOdltONy7t28JFrhNhufOdUUuon4EK4K1a+emaV55\nJezcCXfYPqwmxETkPOB64GcRWQoocC/QQ0SaAsnAeuA/vgWZTufO7oMHY4wxkSvPJCtlv5A3VHVX\nGOIxBtascSXER4/2LYSxY90UtYQEt5dVQcXHw65c/nLCug9WIdakCSxYAG3bwsGD7pN8Y9ILpq9S\n1YVAsWzu+iTowDzQogUcPux3FMYYY3ITaAn370TkXRG5XMSnxTGm6DjxRJg2DYr7M9D6xBNuT97P\nPoOqVYO71q5dbjpPTkdiYmhiLgrq13eJ1quvwqhRNk3KZFFk+ioR6HSt0owfbK8DY4yJUIFUF7wf\nOBGYCNwIrBaRh0WkgcexGRN2EybA00+76Wk1a/odjc+GDnUVPyJIrVquHsoHH8ADD/gdjYkkRa2v\nuq6zsJsKsHCh36EYY4zJRiAjWaSs6N2achwD4oD3ReRRD2MzJqwmT3bTBD//HOrW9TuaCFCyJLz9\ntt9RZFGtmhtlfPNNeOopv6MxkaQo9VUtW8J2qrJq0td+h2KMMSYbeSZZInKXiPwAPAosBJqo6m1A\nc6CTx/EZExbTpsG997pKdiec4Hc0EaJLF3jvvYicl1etmvu3evxxmDIl6/1xcW5KVU5HMOvsTGQq\nan1VTAyU5DAfzCgZkX+jxhhT1AUykhUPXKuql6nqe6p6FEBVk4GrPI3OFA3z58Ozz/rW/Lx5cOut\nMHMmnHRS/p8fH5/zm/lCXdiicWMoVw4WL/Y7kmzVq+eqPw4dCtOnZ7wvMTH3tXC5FSMxhVaR66t2\nUpn3914Gv/7qdyjGGGMyCSTJmg2kLc8XkVgROQdAVVd4FZgpIrZtc7WIGzXypfnvvoNu3dyATbNm\nBbtGbsUtCnVhCxFXK/rdd/2OJEcnn+wSrH//G5Yu9Tsa47Mi2FcJW4rXZe2k+X4HYowxJpNAkqwJ\nwL505/tSbjMmOElJbj+sG2+ESy8Ne/MrVkD79m6/44suCnvzhUOXLjBrlt9R5Oqss1zBkg4d4I8/\n/I7G+KhI9lUdr0rigyPt/Q7DGGNMJoEkWRm2sk+ZemGbGJvgjR0LR464etxhtnEjXHYZPPooXH11\n2JsvPBo3hh9+8DuKPF13Hdx2m/u3PHjQ72iMT4pkX3Vd3zg+WFzH7zCMMcZkEkiStVZE7hSREinH\nXcBarwMzUW7+fHjuOZg6Nez7YW3f7gbOBg2CXr3C2nThVK6c3xEEZOhQN+v09tv9jsT4pEj2Va1b\nw++/w6ZNfkdijDEmvUCSrFuBc4EtwGbgHOAWL4MyRUCDBm6zozBvRrVnD/zrX27kY8CAsDZtPCYC\nL70EixbBxIl+R2N8UCT7qhIl3AjutGl+R2KMMSY90Qgu/SqSYfaHMUE5dAiuuMJVEHz+efemPBRE\nrIJyJFmxAi68EObMybmYif2b+UtEUNUQ/QX6z8u+KrfXanx8xkqZcXGFvNiO8Y2MFnSk/adoTHrB\n9lV5ztMSkSpAX6B++ser6k0FbdSYcDt2zFURrFrVVYsPVYJlIs8pp8Azz7h/7yVL4Ljj/I7IhENR\n7KtSE6rDh6F6ddi9Kwko5mtMxhhjnECmC34EVAA+A2alO4wpFFShb183kvXaa1DM3oPkn6qb3pmc\n7HckAenWDVq1cuvuTJFRZPuqUqXgysbr6cFUv0MxxhiTIpCKA2VV9b+eR2Ki286dbi5LTCB5feio\nwj33wKpV8OmnULJkWJuPHiIwfDjUqgUtW/odTUCeeQaaNoWPPnLl3U3UK9J9VaeeZXliYV23NYZ9\nkmSMMb4L5B3vTBG5wvNITPQ6dMjVS//f/8Le9Lhxbm3OzJkFL5IXH+9yjJyOuLjQxhyxrrnGl3/D\ngoqNhddfh//8x+15baJeke6rLu9VlaWcyfaPv/M7FGOMMQSWZN2F67wOicgeEdkrInu8DsxEkbvu\nguOPh2uvDWuzL7/sqs3NmeMSpYLatcuNiOV0FJmF5qlJViGqGHHeedCnD9xxh9+RmDAo0n1VmTJQ\njw189KzVcjfGmEiQZ5KlquVVNUZVS6tqbMp5bDiCM1Fg8mS3J9bEiWGtNjFtGowcCXPnhr1KfPRq\n3tyNSv76q9+R5MuIEfDTT4VqEM4UgPVVcICyvP9VtUL1QYgxxkSrPJMscW4QkeEp53VE5GzvQzOF\n3k8/uQVRH3zg5m6FyRdfwK23wqxZ0LBh3o+36YABEil0UwbBfcL/yituk+L05a5NdLG+CtZxPF8f\nbs6u33f6HYoxxhR5gUwXfB5oBfRIOd8HPOdZRCZ6PP44PPUUNG4ctiaXLIGuXeHdd+HMMwN7jk0H\nzIe+feHcc/2OIt8uuAA6doQhQ/yOxHjI+iqEtu3LMf3ryn4HYowxRV4g1QXPUdVmIrIUQFV3iYjV\naDN5mzw5rNUEV6+Gq66CF1+E1q3D1mzRctppfkdQYGPHwsknw7ff+h2J8Yj1VUCnTu5Dpt69/Y7E\nGGOKtkDeAR8VkWKAQtqGj4VjsxzjrzAmWH/84QoYPvCAm9FmTGaxsfDII9C/v9+RGI9YXwW0b++W\nwe60GYPGGOOrQN4FPw38D6gqIg8BXwEPexqVMflQsaLbvmndOjebLfOaqmAqC5rocsMNbuNWE5UK\n3FeJSG0RmSciy0XkZxG5M+X2OBGZKyKrRGSOiFTwLvzQqFDBjei/+abfkRhjTNEmGkAVIhE5GWgL\nCPC5qq7wOrCUdjWQ+EzRdeCA2/9qwAAYPz77AoYiuRfbyut+E12WLoVmzdwn/ZaA+0NEUNWQlxst\naF8lItWB6qr6o4gcB/wAdAD6ADtV9VER+S8Qp6pDs3m+Z31Vfv5/Sn3sF1/AnXfCsmVhLepqCjEZ\nLehI6wiNSS/YviqQ6oJ1gQPADGA6sD/lNmP+sW+fm4d16FDYmjx61BW5AFdjw95MhFkhzUxTC6IM\nH+5vHCa0gumrVHWrqv6Y8v0+YAVQG5doTUl52BSgY6jj9sJFF8HBbX+zeIbtwm2MMX4JZLrgLGBm\nytfPgbXAbC+DMoWMKtx4o0uwwjQXS9VNDUxKcudhXP5lwH1U3qWL31EE5d13C92WXyZ3IemrRKQ+\n0BT4BqimqtvAJWJA1RDF6qmYGLi53me88pAlWcYY45dANiNuoqqnp3w9ETgbWOR9aKbQGDsWNm+G\n554L23DSkCHw22/w3nt5PzYuzvbBCrkzz4Q5c2DvXr8jKbD//hfuvdfvKEyohKKvSpkq+D5wV8qI\nVubh2kIzfNt7cBXe/6F+Yf4TNcaYQi2QEu4ZqOoSETnHi2BMITRrlkuuFi+G0qXD0uRjj8HHH8OX\nX7r1WHmxfa48ULGi2y/rk0+gc2e/oymQ22+HZ56BhQvhvPP8jsaEWn77KhEpjkuwXlfVj1Ju3iYi\n1VR1W8q6rb9yev6oUaPSvm/dujWtfd5Hokanc7mo16e8+2xz/j2sUAzAGWOMrxISEkhISAjZ9fIs\nfCEig9KdxgDNgEqqelnIosi5bSt8EcnWrYNzzoEPPwzbBrWTJsHo0fDVV1C7trvNClf45IUXXKZb\nCMuYpb5mpkxx+6otXGhr+sLJi8IXwfZVIvIasENVB6W7bRyQqKrjClPhi1Qzr5zAQ8vas2hTbU9i\nM9HDCl8Yk5XnhS+A8umOUrj57h0K2qCJInXqwEcfhS3Bmj7dTe+aM+efBMv4qH17N5J19KjfkRTY\nDTe4mi0ffuh3JCYECtxXich5wPVAGxFZKiJLRORyYBzQTkRW4aoWPuJJ5B65fPhZbPqzGL8sK3Lb\nhRljjO8CKuHuFxvJMqm+/BI6dXKzE886K+N9NpLlo3bt4Kmn4NRT/Y4kX+LjYdeunO+Pi7Nppl7y\nqoS7XyJ1JAtVht+yjb1lq/HkU1Hz6zYesJEsY7IKtq8KZLrgDHJZ7KuqVxe08bxYkmUAliyBFi1y\nfqNhb4hNMFTh4otdgcwbb3S3WeLuLY+mC0ZlXxVUkoWb1X3WWa42UZiWzZpCyJIsY7IKtq8KpPDF\nWqA68EbKeXdgG2ATbIznVq6EK690bxzsTa/xgohb5/fvf7vpg8XzXQ7IRAjrq7Jx/PGuGOiHH0K3\nbn5HY4wxRUcga7LOU9Wuqjoj5egBXKCq81V1vtcBmgjy3XewLXz7rqxfD5deCo8UqlUQpjC66CKo\nWxdef93vSEwQrK/Kwc03wyuv+B2FMcYULYEkWeVE5ITUExE5HgigcLaJKmvWuEIHy5eHpbk//4RL\nLoF77oHevcPSpCniRo2CBx8s1HU8ijrrq3LQsSMsWwarVvkdiTHGFB2BTIwZCCSIyFpAgHrAfzyN\nykSW3bvhqqtgxAho08bz5hIT3QjWjTfCHXd43pwxAFx4IdSvD2+8kedDTWSyvioHpUpB/+t38+gw\nZeI0233dGGPCIaDqgiJSCjg55XSlqh72NKp/2rXCF347dswtimrUyO3c6rG9e90I1oUXwqOP/rN3\nkRUiiHBvvw1t20KVKn5HEpQvv3Qjp+vW2evNS15VF4zGvio///dlrpqZvihQ4oR3aHjnv1i2Lta2\nwDBZWOELY7LyfJ8sESkL3APcrqo/AXVF5KoAg5soIttEZFm62+JEZK6IrBKROSJSoaDBmzAYMMD1\n8k884XlThw5Bhw5wxhkZEyxTCEybBjNm+B1F0C64AE44Ie/HmcgTTF8VLRIT/ykSpJox4Yr/9zXc\nVOotHh+63b8AjTGmCAlkTdYk4AjQKuV8C/BggNefBFyW6bahwGeqehIwDxgW4LVMuKlCw4bwzjue\nl1w7ehS6dIGqVWHCBEuwCp2rr3a7RUeBe+91X5Nt/9bCJpi+KvqVLMmgQTDl3dLs2OF3MMYYE/0C\nSbIaqOqjwFEAVT2Am++eJ1X9Csi85WcHYErK91OAjoGFasJOxI1kVfB2sDEpyU3RSk521d2KFfO0\nOeOFK66AefPg4EG/IwnaxRe7r1GSMxYlBe6rioqaw3rTvcQHPHxX+KrEGmNMURVIknVERMqQssmj\niDQAgpnnXlVVtwGo6lagahDXMoWcKvTv76oJvvcelCjhd0SmQOLjoVkz+PxzvyMJWuoo6iOP2Lqs\nQibUfVX0KVOGEcOVKe+VYd06v4MxxpjoFkiSNRL4BKgjIm8CnwNDQhiDvY0polThrrvgp5/go4+g\nTBm/IzJBiaIpg+DWtyxY4HcUJh+87quiQrWBPbir/zHuv9/vSIwxJrrlutBGRARYCVwLtMRNvbhL\nVYOZ0b1NRKqp6jYRqQ78lduDR40alfZ969atad26dRBNm1xt2wZHjkCdOp43pQqDB8OiRfDppxAb\n63mTxmtdu8Lq1X5HETL33APjxrmNik1wEhISSEhI8Oz6HvVV0alUKQaNKcXJJ8PChXDeeX4HZIwx\n0SnPEu4i8rOqNilwAyL1gRmp1xCRcUCiqo4Tkf8Ccao6NIfnWgn3cNm3D1q3hm7dXPbjIVVXXOCT\nT9zssvj4vJ9jJdxNOIm4apfHHw+zZ7uKlyZ0vCjhHmxfFWTbEVHCPbPcSrq/9x6MHg1LlkDJksHH\naQo3K+FuTFael3AHlojIWQW5uIi8BXwNNBKRjSLSB3gEaCciq4C2KefGT8eOuVGIM86Au+/2vLnR\no2HmTDeCFUiCZYwfSpVydV/GjfM7EhOgAvdV0Sq3ku7XXQf16sH//Z9/8RljTDQLZCRrJdAQ2ADs\nx03DUFU93fPgbCTLe6pwyy2webNbT+Nx5YmHHoI334SEBFeuPVXmT1wzS/8JrDFeSx092LPH7Zv1\n3XduVMuEhkcjWVHZV4VyFD/ztdavh7POUj7/VDm9aSCfuZpoZSNZxmQVbF+V45osETleVdeRdZ8r\nE02GDXOVJz7/3PME6//+D6ZMgfnzMyZY4BIsy6dNpImNhT594Nln4fHH/Y7GZMf6qoKrXx8ev3A6\n3S89l+83VLHiQ8YYE0K5fXT1fsrXV1V1Q+YjHMGZMEhddFK+vKfNPP00vPCC20qpRg1PmzKRICnJ\n7whC5vbbYfJk2LvX70hMDqyvCkLPp1pwxt6vuLvLJr9DMcaYqJJbdcEYEbkXt55qUOY7VXW8d2GZ\nsPnPfzxv4rnn4Ikn3BTB2rU9b874bcECePhhV9kkCtSrB23auETrjjv8jsZkw/qqIEjtWkx4vwrN\nOxzjtce30+vuKn6HZIwxUSG3kaxuQBIuESufzWFMnp580k0TnDfPvVk1RUDz5vD117B7t9+RhMyA\nAfDUU5Cc7HckJhvWVwWpwpXn89E9Cxn832J8O2+/3+EYY0xUCKTwxb9UdXaY4sncthW+KMQeewxe\nfNElWHXr5v5YK9EeZa66Cm64wW0JUAhlfj2qwtlnw4gR0L69f3FFC48KX0RlX+Vl4YsMVJn+rwn0\nW9iDb1dWpFat0LRpCgcrfGFMVp6XcPer0zIeWLwYfvstLE09/DC88oorcpFXgmWi0NVXu2qVUULE\njWY9+aTfkZicWF8VJBGunnkL/e8px9VXw34b0DLGmKBYzdaiYskS9xH8mjWeN/XAA/D6624Nln0a\nWkRddZVbk3X0qN+RhEznzrByJSxb5nckxgsiMlFEtonIsnS3jRSRzSKyJOW43M8YPVe8OEOHl6BJ\nEzcQbdNjjTGm4HJMskSkc8pX2x2msPvpJ7jiClfe71//8qwZVRg+HN591yVYVkWwCKtZE847LyxJ\nfbiULAn9+7u1WSZyhLCvmkT2ZeDHq2qzlKNQV3OJi3OjsqlHdpvBi7hp3omJMHRo+GM0xphokdtI\n1rCUrx+EIxDjkeXL4fLLXQ31a67xrBlVt+XW9OnwxRdQrZpnTZnCYsYMOPlkv6MIqVtugWnT4K+/\n/I7EpBOSvkpVvwKy2xI9pGvH/JSY6P6vTj1y2gC+VCn3Ov/f/9y0b2OMMfmXWwn3nSIyFzheRLIs\nrlDVq70Ly4TE7t1w6aWuvF+XLp41k5wMgwa5yt3z5kGlSlkfEx+fc4cO7hNWYyJd5cpu2uALL7gi\nGCYieN1X3S4iPYHvgbtV9e8gr1coVKoEM2coF565h+NjdtP2JisPa4wx+ZFjdUERKQk0A14Hbs58\nv6rO9zY0qy4YEr/+Cqee6tnljx2Dvn1dPY1Zs6BixewfZ9UDTWGS2+v155/d4PD69VCiRFjDihqh\nrC4Yyr5KROoBM1T19JTzKsAOVVUReRCooar/zuZ5haK6YEGu/cXQOXR9rDkLFggnn5fNJ2gmKlh1\nQWOyCravynEkS1WPAN+IyLmqul1Ejku5fV9BGzM+8DDBOnwYund3VajmzoVy5TxrypiI0aQJNGgA\nH37oRrWMv7zsq1R1e7rTl4EZOT121KhRad+3bt2a1q1bB9t8RLj4kcsYt3waV7Y9m29XH6RynTJ+\nh2SMMZ5ISEggISEhZNcLZJ+s03CfEMbj5qZvB3qr6i8hiyLntm0kK0IEMt0vMTHn+20kyxQmeb1e\n33nHTRn84ovwxRRNPNonK+i+SkTq40aymqScV1fVrSnfDwTOUtUe2TwvakeyAFBlWOPpfLXjZD7b\n2IhSpaNmmZpJYSNZxmTl+T5ZwEvAIFWtp6p1gbtTbjORxsN6u7t2/bNYOjERWraEm25yFbpzW0Bt\nDFOmwObNfkcRUtdcA6tWuboyJmIE1VeJyFvA10AjEdkoIn2AR0VkmYj8CFwEDPQi8IgnwkOL21Ht\nyEZuvnSjfWBmjDEBCCTJKqeqaZ/XqmoCYBPDIs0vv0CLFp7vILl1K7RuDa1auapTxXMrnWIMuHr+\n//uf31GEVMmSbi3i88/7HYlJJ6i+SlV7qGpNVS2lqnVVdZKq9lLV01W1qap2VNVtXgReGMQcV5bX\nljRh5YE6PPig39EYY0zkCyTJWisiw0WkfspxP7DW68BMPixdCpdcAkOGeLowas0auOAC6NQJHn/c\nTTUxJk8dOrgFTFHmlltg6lTYs8fvSEwK66tCLD4+475atVtUZ/qMGF5+2W3XYYwxJmeBJFk3AVWA\nabh9SCqn3GYiwXffuVJnzz0H3bp52tQFF8Dgwa50deYEK/Mml5kPK9FehLVr516nUTantFYtaNMG\n3njD70hMCuurQiz9NPHUaeE1argPF/r2hS1b/I7QGGMiV56FL/xkhS/ysGABXHcdTJwI7dt71szs\n2XDFFW4wokMHz5ox0axDB7dX2/XX+x1JQAItCPDFF3D77W62ro3sBs6Lwhd+itbCF5nvT3/+4IPw\n2Wfw+edQrJg38ZnwscIXxmQVjsIXJlKtXOk+UvQwwZo0Cfr0cd9bgmUKLEqnDKZW6Z7v+a6BxkSW\nYcNAjh3h4Xuia4TaGGNCxZKswuyWW6BtW08ureo+qXzgAXsDaUKgY0cYGH2F2USgXz8rgGGiQ+Y1\nWLlN8y5WDN646h2eeUZZsvhY+II0xphCIs8kS0TOC+Q2Ez2OHXNvHD/4AL7+Gk46ye+ITKEXHw/n\nnut3FJ7o2dNNm/rjD78jKdqsr8q/zGtpIeMarNz2PgSo9d8bePzEF7mx4y6OHPE+XmOMKUwCGcl6\nJsDbTCGX+ilmiRJuo9Uff4SaNa1whSl68irkEh//z2NjY13NmZds90C/WV+VT4mJ+UuqshDhho86\nU2/HEh4enN8nG2NMdMtxlyMRaQWcC1QRkUHp7ooFbJlrOB09Cvfc46YHnnqqZ83s2gWnnQbnnw9P\nP+2SLWOKorzebGYuctG/vyuieN999ncTbtZX+UtObMgLQz7lzEfPpmMfpemZUVPPxBhjgpLbSFZJ\n4DhcIlY+3bEHuM770AzgNuFp3x5Wr4a6dT1r5ptv3Nebb3brS+yNojGBa9wYGjWKuj2XCwvrq8Ik\n8whv6ohurVF9GVfrGfpev5+kJH9jNMaYSJFnCXcRqaeqG0TkOABV3ReWyLAS7mzeDFde6dayPPMM\nFM9x4DEob78Nd94J27d7VyrYmDQHD0KZMn5HEZTsSl+/+677gCIhwZeQChUvSrhHa1/lZQn3YKWP\nTQ8f4cJLSnL99XDrrf7GZfLPSrgbk1U4SriXF5GlwHJguYj8ICKnFbRBE6Aff4RWreCGG9w7Nw8S\nLFUYPRqGDnUL943x3M8/Q4sWfkfhiWuugd9+g+XL/Y6kyLK+ykdSqiTPP+82q9++3e9ojDHGf4Ek\nWS8Bg1S1nqrWA+5Ouc14aflyGD/ercXyYJfTAwegRw+30fA338Dpp4e8CWOyatzYLf5bvdrvSEKu\nRAno29fKufvI+qowSz99MD4emjRxnwv+979+R2aMMf4LJMkqp6pfpJ6oagJQzrOIjHP99dC5syeX\nXrfOzUAsWRK++AKqV/ekGWOyiolxaww/+sjvSDxxyy1uf/C9e/2OpEiyvirM0lcn3JWyJ/GoUTB3\nrtv+wxhjirJAkqy1IjJcROqnHPcDa70OzHjj00/dLMR//xsmTy70S2NMYXTNNTBtmt9ReKJWLbc/\n+Ouv+x1JkWR9VQSIjYWxY2HQXccidi2ZMcaEQyBJ1k1AFWBaylEl5TYTKmEox6QKjz0GvXrBO+/A\nHXd4MgvRmLy1aQOrVrnCLlGoXz83ZdDeYIad9VUR4voWqzi2bAXvvHHU71CMMcY3eVZTUNVdwJ0i\nUt6dhq9iU5GwbBl07+4qT9So4UkT+/fDTTfB2rWweDHUqeNJM8YEpmRJ+M9/3LzV2rX9jqZAUtei\nZKdiRfenvGABXHRReOMqyqyvihwxp5zE482HceOAoXTsXIHSpf2OyBhjwi/PkSwRaZJSsekXrGJT\naE2b5uYW3XdfSBKs+PiMe5ikHscd58pLf/+922oru8eIuDeOxoTFww/DBRf4HUWBpV+LkvnYvduN\nZj33nN9RFi3WV0WWi166njP2fc3T4w76HYoxxvgikOmCL2IVm0IrKQnuvx8GDHDl/Xr0CMlld+3K\n+GZv6lSoXBkmTIDk5JzfFKYeiYkhCcOYIq9XL7f+8Y8//I6kSLG+KpKcdhqPXrWAR8cls2OH38EY\nY0z4WXVBP1x3HSxaBN9958meQYcOwW23uTxu7ly3MaStvzImfGJjoVs3ePllvyMpUqyv8lH6cu6p\nJd0bPdWfbslTeWiYzdw0xhQ9Vl3QDyNHuuynWrWQX3r1amjZEnbuhCVL4MwzQ96EMSYA/frBSy/B\nUVv7Hy7WV/ko8xRaAKlTm5WH6/PUK2WpWNE7XKG6AAAgAElEQVTf+IwxJtzyW13wA6AyVrEpOE2b\nQrFinlz6vPNcTYF33nGfphtj/NGkCTRoELVbgkUi66siSGrS9Zlewj1DYvj7b78jMsaY8Mo1yRKR\nYsB9qnqnqjZT1eaqOiClipOJEPv3u8QK4JNP3FRBmx5oCoUZM6I6C+nf35VzN94KRV8lIhNFZJuI\nLEt3W5yIzBWRVSIyR0QqePIDRLkhQ9zXtTauaIwpQnJNslQ1CTg/TLFEn2++cdUnPPT999CsGRxM\nKeDUrJmnzRkTWocPR3UZvmuugRUr4Ndf/Y4kuoWor5oEXJbptqHAZ6p6EjAPGBZkG0VSpUru66hR\nvoZhjDFhFch0waUiMl1EeorItamH55EVZklJ8NBD0KEDlPNm3XVSEowdC1dcAQ88AK+95kkzxnjr\nX/+Cb791iwijUMmS0Levq/BpPBdUX6WqXwGZR746AFNSvp8CdAxRrEVOxYrw+usZC2MYY0w0E01d\noZrTA0QmZXOzqqrnc91FRPOKL+Js3gw9e7rvX389pJutxse7Mu05iYuzMuymELruOpds/fvffkcS\nEiL/LPwH91/C6afDhg1Qvrx/cUUSEUFVQzqpORR9lYjUA2ao6ukp54mqGp/u/gzn6W73rK/K/Hoq\nzB67bS3frq3M+3Nio+rnigYyWtCR9g9iTHrB9lV5jmSpap9sDltMnJ3PP4fmzaFdO/jss5AmWOAS\nrMmToUoVGDcOjh2zfa5MFOjaFd5+2+8oPFO7Nlx8Mbz5pt+RRLcw9VX2LjQI/etMZ9GCoyxd6nck\nxhjjvTxHsvxU6EayVq1ymU6rViG/9JYt7s3aGWe4RKtp05A3YYw/Dh6EmjVh5UpPtjUINxtxzpsX\nI1mhkM1I1gqgtapuE5HqwBeqeko2z9ORI0emnbdu3ZrWrVuHKKYoGvE5cIBnqj/Ep82GMGN+hej5\nuaKAjWQZAwkJCSQkJKSdjx49Oqi+ypKsCKfqkqr//he2b4cjR6BECb+jMibE1q+HevWitiymKpxy\nituc+MILo+hNcwFFcJJVH5dkNUk5Hwckquo4EfkvEKeqQ7N5nk0XDNChx57hxJHd2XywclT9XIWd\nJVnGZOX5dEGviMh6EflJRJaKyGK/4ohkmza5whbPPAOffupuswTLRKX69aM2wQL3o/XrF9WFFAs9\nEXkL+BpoJCIbRaQP8AjQTkRWAW1Tzk0QSt9+M/eV/D9isY2zjDHRLc8kS0SqpewfMjvl/FQRCcUK\n9WTcNIwzVfXsEFwvaiQnu0+8mzVzmwt/+62bJmiMKbx694Y5c/yOInoF21epag9VramqpVS1rqpO\nUtVdqnqJqp6kqpeq6m7vfoIiokwZbhpZh5IcYeFCv4MxxhjvBDKSNRmYA9RMOf8NGBCCtiXA9ouU\nn3+GCy6AV1+FefPg/vtt9MqYaFChgqvxYTwzGW/6KhNiJfvdzN/EMmKE35EYY4x3AklyKqvqu7iR\nJ1T1GJAUgrYV+FREvhORviG4XqG2f79bd9W2LfTqBQsXQpMmfkdljAmlfv3c16NH/Y0jSnnVV5lQ\nK1WKo5RiwwZIt8bcGGOiSiBJ1n4RqURK6VoRaQkhmUx9nqo2A64A+ovI+SG4ZqE0cyY0bgxPPumK\nW9x6KxQr9s+mjalHXJzfkRrjsTVrXCnNKHX66e7rtGn+xhGlvOqrjEdGjoThw6OrsIcxxqQqHsBj\nBgHTgQYishCoAlwXbMOq+mfK1+0i8j/gbOCrzI8bNWpU2vehLIsbCdavh0GD4Jdf4JVX3PZa1tmY\nIu3ll90fwbhxfkfiqfHjoUuXqK71kUHmsrge8aSvMt7p0QMefthtK9mund/RGGNMaOVawl1EYoCW\nwGLgJNw6qlWqGtRkFxEpC8So6j4RKQfMBUar6txMj4vKEu7798Mjj8Dzz8Ndd8GQIVC6dPSV6jUm\n3375BS6/HDZscMO5UUgEGjSA116Dc8/1Oxp/hLqEu1d9VT7atxLu+WT7yUUWK+FuTFaelnBX1WTg\nOVU9pqrLVfWXEHVa1YCvRGQp8A1uX5K5eTyn0EtOhjfegJNPhrVr4ccfYcQIl2AZY4DTToMaNf7Z\nsyBK3XUXPPGE31FEDw/7KuORxESXPCatXstp8VuYOdOdpx65JWDGGFMYBLIm63MR6SQSuoktqrpO\nVZumlG9voqpRv/fI4sWuHPuTT8Lbb8Obb0KdOn5HZUwEuvFGtwN3FOvTB774Atat8zuSqBLyvsp4\nL6ZeHUaXeJARg/ZG5YidMaboynW6IICI7AXKAceAQ7hpGKqqsZ4HFwXTBdetcwt7582Dv/+GAwdy\nfqxNjzAG90dwwgnujycKq72kTv+65x5ISnLrs4qaUE8XTLlmVPZV0TpdMD2dNJnmd57LiNcb0bGj\nu60o/NyRxKYLGpNVsH1VnkmWn3LquOrXr8+GDRt8iMiY4NSrV4/169f7HUbke+stuPRSqFzZ70hC\nLvXN48aNcOaZLpeM9TwNiCxeJFl+siQrSMeOMbNuP+4tM54fVx9HTEwR+bkjiCVZxmQVliRLROKA\nE4G01UOquqCgjQYqp44r5Yf2unljQs5euyb9m8du3eCcc2DgQH9jCjevkqxI66tCc+2ikWzo62/Q\nsl8z7n7lFLp0lSLzc0cKS7KMycrzJEtEbgbuAmoDP+IqOC1S1TYFbTTg4CzJMlHGXrsm/ZvHxYtd\nKffff4figWyoESU8mi4YcX1VaK5dRJKNpCTmnDuagbtH8POvxSlevIj83BHCkixjsvK0umCKu4Cz\ngA2qejFwJrC7oA0aY4xxzj4b6teHd97xO5KoYH1VYVasGJd+8wDxVYrz9ttuOabIP0d8vN8BGmNM\n/gSSZB1S1UMAIlJKVVfi9iExxhgTpKFD3b55ycl+R1LoWV9VyInAAw/AqFGwbZuVdDfGFG6BJFmb\nRaQi8CHwqYh8BFjViQLYsGEDMTExJIfg3dTxxx/PvHnzAnrslClTuOCCC9LOy5cvH7LiC2PHjuWW\nW24BQvvzAWzatInY2FibXleUqbqynFHsssugRAmYNcvvSAo966uiQJs2cPzx8PzzfkdijDHByTPJ\nUtVrVHW3qo4ChgMTgY5eB1ZY5ZX8+LWFS/p29+7dS/369XN9/Pz586kTwEZew4YN46WXXsq2nfzK\n/LurU6cOe/bs8e13ZiLA3LnQvr3fUXhKxI1mjR1ra1CCYX1V9HjqKXjwQfjrr5wfEx9v0wmNMZEt\nzyRLROqmHsA63ILi6p5HZnylqnkmN0lJSWGKxhRZbdrAmjXwyy9+R+KpTp1g+3b48ku/Iym8rK+K\nHqecAr26H2XYoEM5PmbXLptOaIyJbIFMF5wFzEz5+jmwFpjtZVDRIjk5mcGDB1OlShUaNmzIrEzz\ngfbs2cPNN99MzZo1qVOnDsOHD0+bGrd27Vratm1L5cqVqVq1KjfccAN79uwJqN3ExESuvvpqKlSo\nQMuWLVmzZk2G+2NiYli7di0AH3/8MY0bNyY2NpY6deowfvx4Dhw4wBVXXMEff/xB+fLliY2NZevW\nrYwePZrOnTvTs2dPKlasyJQpUxg9ejQ9e/ZMu7aqMnHiRGrVqkWtWrV4/PHH0+7r06cPI0aMSDtP\nP1rWq1cvNm7cSPv27YmNjeX//u//skw//PPPP+nQoQOVKlWiUaNGvPLKK2nXGj16NF27dqV3797E\nxsbSpEkTlixZEtDvy0SwEiWgb1+YMMHvSDxVrBgMGeJGs0yBWV8VRUbGP8PsDw6weLHfkRhjTMEE\nMl2wiaqenvL1ROBsYJH3oRV+L730Eh9//DE//fQT33//Pe+//36G+3v37k3JkiVZu3YtS5cu5dNP\nP01LHFSVe++9l61bt7JixQo2b97MqFGjAmq3X79+lC1blm3btjFx4kReffXVDPenH6G6+eabefnl\nl9mzZw+//PILbdq0oWzZssyePZuaNWuyd+9e9uzZQ/Xq7gPh6dOn06VLF3bv3k2PHj2yXA8gISGB\nNWvWMGfOHMaNGxfQ9MnXXnuNunXrMnPmTPbs2cPgwYOzXLtr167UrVuXrVu38t5773HvvfeSkJCQ\ndv+MGTPo0aMHf//9N+3bt6d///4B/b5MhOvbF6ZOhb17/Y7EU716wc8/w/ff+x1J4WR9VXSJHdqP\nxyo+zM1d/ubIEb+jMcaY/AtkJCsDVV0CnONBLKEzalTGydqpR05JSnaPDzChyc17773HgAEDqFmz\nJhUrVmTYsGFp923bto3Zs2fzxBNPULp0aSpXrsyAAQOYOnUqAA0aNKBt27YUL16cSpUqMXDgQObP\nn59nm8nJyUybNo0xY8ZQunRpGjduTO/evTM8Jn0hiZIlS7J8+XL27t1LhQoVaNq0aa7Xb9WqFe1T\n1siULl0628eMGjWK0qVLc9ppp9GnT5+0nykQORW52LRpE4sWLWLcuHGUKFGCM844g5tvvpnXXnst\n7THnn38+l112GSJCz549WbZsWcDtmghWqxZcfDG8/rrfkXiqVCkYNgxGjvQ7kuhQKPoqk7PSpenx\n9tUcv+1bxtx3KEtJ97g4vwM0xpjcBbIma1C6Y7CIvAX8EYbYCm7UqIyTtVOP3JKsQB+bD3/88UeG\n4hH16tVL+37jxo0cPXqUGjVqEB8fT1xcHLfeeis7duwA4K+//qJ79+7Url2bihUrcsMNN6Tdl5vt\n27eTlJRE7dq1s203sw8++IBZs2ZRr149Lr74Yr755ptcr59XMQwRydL2H38E/3L5888/iY+Pp2zZ\nshmuvWXLlrTz1NE2gLJly3Lo0KGQVTo0PhsyBMqX9zsKz918sxvNyuPP0GSjUPZVJldy0YW82Pkz\nXnr2MHPnZuyiExP9js4YY3IXyEhW+XRHKdx89w5eBhUtatSowaZNm9LON2z4p5pwnTp1KF26NDt3\n7iQxMZFdu3axe/futNGXe++9l5iYGJYvX87u3bt54403AiplXqVKFYoXL56h3Y0bN+b4+ObNm/Ph\nhx+yfft2OnToQJcuXYCcqwQGUukvc9s1a9YEoFy5chw4cCDtvj///DPga9esWZPExET279+f4dq1\natXKMx4TBc45B9Kt/YtWpUrB/fdDuqWLJnDWV0Wh6hNG8nT8aHpcezDad3MwxkSZQNZkjU53PKSq\nb6Zu+Ghy16VLF55++mm2bNnCrl27GDduXNp91atX59JLL2XgwIHs3bsXVWXt2rUsWLAAcGXWjzvu\nOMqXL8+WLVt47LHHAmozJiaGa6+9llGjRnHw4EF+/fVXpkyZku1jjx49yltvvcWePXsoVqwY5cuX\np1ixYgBUq1aNnTt3BlxsI5WqMmbMGA4ePMjy5cuZNGkS3bp1A6Bp06Z8/PHH7Nq1i61bt/LUU09l\neG716tXTCnKkvx5A7dq1Offccxk2bBiHDx9m2bJlTJw4MUPRjexiMaawufFGWL3aKg3ml5d9lYis\nF5GfRGSpiFgphnAqV46uv46kXfsy9OlT8G0O0pd8t3LvxphwCGS64AwRmZ7TEY4gC5P0ozF9+/bl\nsssu44wzzqBFixZ06tQpw2Nfe+01jhw5wqmnnkp8fDydO3dm69atAIwcOZIffviBihUr0r59+yzP\nzW3U55lnnmHv3r3UqFGDm266iZtuuinH577++uscf/zxVKxYkZdeeok333wTgJNOOonu3btzwgkn\nEB8fnxZXID//RRddRMOGDWnXrh1Dhgyhbdu2APTs2ZPTTz+d+vXrc/nll6clX6mGDh3KmDFjiI+P\nZ/z48VlinTp1KuvWraNmzZp06tSJMWPGcPHFF+caizGFTcmSMHy4rc3KL4/7qmSgtaqeqapnhyJe\nkw8VKvDEE/DnnzBmTMEukb7ku5V7N8aEg+T1ab+IPIXba+SNlJu6A9uADwFUNe9qDAUNTkSzi09E\nbJTCFEr22jUieX8af+yY2yvohRcg5TOKqJLydxDST0G87KtEZB3QQlV35nB/tn1VKATyeikqtm6F\n88+HwYPh1lsz3hcfnzF5iovLuG4r/e/RfqdZyWhBR9ovxZj0gu2rigfwmPNUtUW68xki8r2qDixo\no8YYU2DHjsG+fVCxot+ReKZ4cXjoIbjnHlfSPSbfdWCLJC/7KgU+FZEk4CVVfTkE1zT5VL06zJkD\nF14IpUu7qbWpMhfCsIkMxhi/BZJklRORE1R1LYCIHA+U8zYsY4zJwbPPwo8/wuTJfkfiqc6d4Ykn\n4M03i0TNj1Dwsq86T1X/FJEquGRrhap+lf4B6fcxbN26Na1btw5R0ya9Bg3g8ze3ctmVxdixsRx3\nDy+bbUKVWvI9/XlhcvQoHDjgPnApWdLty26M8VZCQkKG/VeDFch0wcuBl4C1gAD1gFtUdW7Iosi5\nbZsuaKKKvXZDYPduaNjQ1Tlv2NDvaPItP1OVvv4aunWDVaugTBlv4wonj6YLhqWvEpGRwF5VHZ/u\nNpsuGE5JSWy67WGumNKFZpdX4/m3KlIuH+l05t9pXlMNvXL4MCxdCosXw8qVruDN77/Djh1w8EAy\nZTnAMS3GES1B+eIHqR27h4anl+WsdnGcc46bOlmqVGhisemCxmQVbF+VZ5KV0kgp4OSU05Wqerig\nDeaHJVkm2thrN0RGj4Z16wrlaFZ+3zR37gzNmrmNiqOFF0lWynVD3leJSFkgRlX3iUg5YC4wOn3y\nZkmWP/a/9Cb97izO93GX8Nr0OJqfFdi82sy/07zOQyUpCb5L2M+sFzfz+Zcl+OmvGjSqsZdzrqpK\n48bQqJH73KhKFSifuAHZuwdE0D17Sdy4j80/7WRF3Ll8t60uCxe6xOyyy9y0yUsvhZTiwAViSZYx\nWXmWZInIWcAmVd2act4L6ARsAEapquef81iSZaKNvXZDpBCPZmX+1DyzzJ+ir1njtgn76SeIlm3h\nQplked1XpUw7/B9uXVZx4E1VfSTTYyzJ8omu+o03rpzK4E130v3Wiox5UPLctzycSdaBAzBrFnz0\n8jbmfFGSGslbuKLOL1x6KZzdvQHHtWriFpgVwLZt8NFH8NJLys41u7n71gP0HVWrQKNblmQZk5WX\nSdYS4BJVTRSRC4G3gTuApsApqnpdQRsNODhLskyUsdduCI0eDb/95hYtRZHs3uANH+5+1Hfe8Sem\nUAtxkhWxfVVorm1JVp6SktgxdwlD3juL2bPdqO9//pPzVLr8Jln5nU545AjMnQtvvw0zZ8LZZ8O1\nF+7ginrLqXvd2aGf+3vsGN8OmMoDr9TgZzmDUcOPcePQGvkqmGNJljFZeZlk/aSqZ6R8/xywXVVH\npZz/qKpNC9powMFZkmWijL12Q2jfPvj4Y+jSxe9IQiq7N9UHD0LjxvDSS3DJJf7EFUohTrIitq8K\nzbUtycqPH390H0osWwb33Qe9emUdKMpvkhXISFdSEsyfsYepz2xn2o8NOOUU6N4drrsOqlUL3c+X\nq0OH+GbINAZMaETxqpV4YVpVTjsnsMVqlmQZk1WwfVVun3MUE5HU6oNtgXnp7gukKqExxnjnuOOi\nLsHKSZky8PTT0L+/WyxvMrC+yqRp2hRmzICpU2H6dKhfZR+j+25i+1+hSyBSKxeKQDnZxynyK1WL\n72TANes5OO9r9iceYuFCuP12V3Y+Pj5kTeeudGlaPt2DrzfW4Ya6C7j4khjGjYPk5DC1b4zJILck\nayowX0Q+Ag4CXwKISEPg7zDEZiJQTEwMa9euDeixo0ePpmdK7elNmzYRGxsbslGc2267jYceegiA\n+fPnU6dOnZBcF+Crr77ilFNOCdn1jAmFq65yGxSPHet3JBHH+iqTxbnnwswZyhf93mfzO1/TqOZe\nep37O/NmHQzquqqu6ueYMXBy/Daqyk46nfgzX45bxLI9x/OG9uSQlkaVtCO3NZheiKlRjVsX9eaH\nX0ozYwZcfrnbyNkYE145Jlmq+hBwNzAZOD/dXIgY3Hx3k4O33nqLs846i/Lly1OrVi2uvPJKFi5c\n6HdYTJkyhQsuuCCoa0g+d3hMfXydOnXYs2dPns8PNMYJEyZw3333FTiu9DInjueffz4rVqwo8PWM\n8cpzz8Hzz7uyz8axvsrkSIRTxt3Iy7s789sb39F8zxfcffVq4khk4EC3sfGhQ4FdavZsuPtuVwHw\nkkvgzz9h4uN/s3ZHLA/+1pVTh1xFnhU3wqxuPSEhAVq2hObNYdEivyMypmjJdSqFqn6TzW2/eRdO\n4Td+/HgeffRRXnzxRS699FJKlizJnDlzmDFjBuedd16+rpWUlESxTDVZs7stUKoaVDKSeg0vBRJj\ncnIyMflZ0ZuHYH8nxoRS5k1Us9OsWe7PD8ceP5HE+iqTq5gYqnRry13d2nLXzp2cU3cLTz4Zz5NP\npt1N165QpfguKu7bzBnFhdMliaOUZC/lKUkVHnusFBdd5IrPnHlm6t9oIz9/qoAULw4PPOCKb3To\nAOPHHeGGPiX9DsuYIiF071QNe/bsYeTIkTz//PN06NCBMmXKUKxYMa644goeecRV/D1y5AgDBgyg\nVq1a1K5dm4EDB3L06FHgn2lvjz76KDVq1OCmm27K9jaAmTNncuaZZxIXF8f555/Pzz//nBbH5s2b\n6dSpE1WrVqVKlSrceeedrFy5kttuu41FixZRvnx54lMmiR85coTBgwdTr149atSoQb9+/TicbtHH\nY489Rs2aNalduzaTJk3KNSFZv349rVu3pkKFClx22WXs2LEj7b4NGzYQExNDcsrk8MmTJ9OgQQNi\nY2Np0KABU6dOzTHGPn360K9fP6688krKly9PQkICffr0YcSIEWnXV1XGjh1LlSpVOOGEE3jrrbfS\n7rv44ot59dVX087Tj5ZddNFFqCqnn346sbGxvPfee1mmH65cuZKLL76YuLg4mjRpwowZM9Lu69On\nD7fffjtXXXUVsbGxtGrVinXr1uX+QjHeeO45WL7c7yiClphIhqlGmY/kZLj6areoP7v7wz01yZhC\npVIlvt3fJO3v5eBB+P57l4A0ittOqXUr6d7kF/petJpHev7KJ8+uYf+GncybByNHug84gv1cLj7+\nnzVdmQ+v1m9ddRXMm32YEbds497Ov1kxFWPCQVUj9nDhZZXT7X775JNPtESJEpqUlJTjY4YPH66t\nWrXSHTt26I4dO/Tcc8/VESNGqKpqQkKCFi9eXIcNG6ZHjhzRQ4cOZXvbkiVLtGrVqvrdd99pcnKy\nvvbaa1q/fn09cuSIJiUl6RlnnKF33323Hjx4UA8fPqwLFy5UVdXJkyfrBRdckCGeAQMGaIcOHXT3\n7t26b98+vfrqq/Xee+9VVdXZs2dr9erV9ddff9UDBw5ojx49NCYmRtesWZPtz9aqVSsdPHiwHjly\nRBcsWKDly5fXnj17qqrq+vXrNSYmRpOSknT//v0aGxurq1evVlXVrVu36q+//ppjjDfeeKNWrFhR\nFy1apKqqhw4d0htvvFGHDx+e4feW2vb8+fO1XLly+ttvv6mqauv/Z+/Ow6uozgeOf99AWAIEEtYE\nQhAsLiigIIIii/uGuJRVEFHBBWrBtoqIBsT+RK3YqsUFAQELAq5sVqwa1ApFVAQREUTCEiKEsAeR\n5f39MZN4E+5NbpJ7M7nJ+3meeTJ3zsyZd05u5uTMnDnTrZtOmTIlN7/8+xAR3bRpU+7n1NRUTUpK\nUlXVo0eP6qmnnqoTJkzQo0eP6kcffaS1atXKzfvWW2/VevXq6cqVK/X48eN68803a79+/QL+/svq\nd7dcmDRJtVMn1QL+/sqLHTtUGzZUXbr05LRI+Iq5fwee1zGhmsL5dx0Jv09TsLi4vJdC4uICrxvu\n3/fOf3+pHaO/0Fs7fqdHj/rsd6x90YzJr6R1Vbm8kxXoClFRp6LavXs39erVK7Ar26xZs0hJSaFu\n3brUrVuXlJQUZs6cmZteqVIlxo0bR3R0NFXdl3zkXzZ58mTuuusu2rdvj4gwcOBAqlatyvLly1mx\nYgU7duzgySefpFq1alSpUoULLrggYDyTJ0/mmWeeoXbt2tSoUYNRo0Yxe/ZsAObNm8fgwYM544wz\nqF69OmPHjg2Yz9atW1m5ciWPPvoo0dHRXHTRRfTo0SPg+pUqVWLNmjX88ssvNGzYsNCBJnr27EnH\njh0BcsvFl4gwfvx4oqOj6dKlC9dccw1z584tME9fGuCy3rJlyzh06BAPPPAAlStXpnv37lx77bW5\nZQRwww030K5dO6Kiorj55ptZtWpV0Ps1IXTnnU6/n0mTvI4k7Bo1gldfhf79YedOr6MxxhQk/91p\nL7vz1r/iXP7zVV0yVu/ipjPWcjjbbmkZEy7lspHlrwtNcaaiqlu3LpmZmbld4vxJT0+nadOmuZ+T\nk5NJT0/P/Vy/fn2io6PzbJN/WVpaGk8//TTx8fHEx8cTFxfHtm3bSE9PZ+vWrSQnJwf1zNKuXbvI\nzs6mXbt2uXldddVV7N69OzdW325zycnJARsj6enpxMXFUd3nJYvJycl+142JiWHOnDm88MILJCQk\n0KNHD9avX19grIWNHhgXF0c1n5eh5C/X4tqxY8dJ+05OTmb79u25nxs1apQ7HxMTw8GDB0u8X1MM\nUVEwZYrzkuLvvvM6mrC78koYNAhuvtl5R48xxgSjxlmn8O7GVtTYs40rT93APhuD05iwKJeNLK90\n6tSJqlWr8s477wRcp3HjxqSlpeV+TktLIzExMfezv2ee8i9LSkrioYceIisri6ysLPbs2cPBgwfp\n06cPSUlJbNmyxW9DL38+9erVIyYmhrVr1+bmtXfvXva5Z9yEhAS2bt2aJ9ZAz2QlJCSwZ88eDh/+\nbXjcLVu2BCyHyy67jCVLlpCRkcFpp53G0KFDAx5/Qctz+Nt3TrnWqFGD7Ozs3LSMIoxlm5iYmKcM\ncvJu3Lhx0HmYUnTaaTBhAvTtG/ywYRFs3Dg4etR5VsQYE/l838EVzme0qiTU5bVNF9K6vTOghzEm\n9KyRFUKxsbGMGzeOYcOG8e6773L48FHIwAoAACAASURBVGGOHTvGe++9x6hRowDo27cvjz32GJmZ\nmWRmZjJ+/Pjcd0kFa8iQIbz44ousWLECgEOHDrF48WIOHTpEhw4dSEhIYNSoUWRnZ3PkyBE+//xz\nABo2bMi2bdtyB9oQEYYMGcKIESPYtWsXANu3b2fJkiUA9O7dm1dffZV169aRnZ3No48+GjCmpk2b\n0r59e1JSUjh69CifffZZngEi4LcueTt37mT+/PlkZ2cTHR1NzZo1c++85Y8xWKqau+9PP/2URYsW\n0dt9UW3btm156623OHz4MBs3bmTKlCl5tm3UqFHAd3+df/75xMTE8OSTT3Ls2DFSU1NZuHAh/fr1\nK1J8phTddhv06kVFuDxbuTLMnQuzZsH06V5HY4wpqfxdC8M5kE1UbE2efTeZHtc6dfPWddYLw5hQ\nskZWiN13331MnDiRxx57jAYNGtC0aVMmTZrE9ddfD8CYMWNo3749rVu3pk2bNrRv3z7P+56C0a5d\nOyZPnszw4cOJj4+nZcuWTHf/w4qKimLBggVs2LCBpk2bkpSUlPts0sUXX0yrVq1o1KgRDRo0AGDC\nhAmceuqpdOzYkTp16nD55Zfzww/OyMdXXnklI0aM4OKLL6Zly5ZccsklBcY1a9Ysli9fTt26dRk/\nfjyDBg3Kk55zN+rEiRNMnDiRxo0bU69ePT755BNeeOGFgDEGIyEhgbi4OBITExk4cCAvvfQSv/vd\n7wAYOXIk0dHRNGrUiMGDBzNgwIA8244dO5ZbbrmF+Ph43njjjTxp0dHRLFiwgMWLF1OvXj2GDx/O\nzJkzc/O24d/LIBF4+GFo2NDrSEpFgwawaBHcfz989JHX0RhjQincd7ZEYPw4p+fLrraX8sOy3aHd\ngTEVmAR6xqYsEBH1F5+IBHw2yJiyzL67JlxSU513/ezcWbxnSkuT+3dQbq5QBKqrQpN32f99mtIT\nru+DjBPW/O8vRC9ZxC/zl9DmausSb0xJ6yq7k2WMMeVAt27w4ovO/FdfeRqKMSYCnbX4SY7dPIg6\nPTqzfIa9y9uYkrJGljGm/Dt+HLZt8zqKsLvhBufnVVfBl196G4sxJvK0mn4/h+8bQ8yYkV6HYkzE\ns0aWMab8++wz6NABKsg7zF56yWloLVrkdSTGmHCKjw/9M1unP3U7rTe9W/KMjKngrJFljCn/unaF\n556Dyy+Hjz/2Opqwu/56mD8fhgyBv//dnukxprzasydMoxFWrhyijIypuKyRZYypGG66CV5/Hfr1\ncxpc5bzl0bEjLFsGU6c6rw3LyvI6ImNMSeUfbTAuruD0/FO43rsF4bmrZkwks0aWMabiuPhip+Ux\nZQpMnOh1NGGXnAz/+x8kJECbNvDBB15HZIwpifzv0cp/8SR/ev6puHe6jv6qvHP6KFbNWR9wnbDd\nVTMmQkVkIys5ORkRscmmiJuSk5O9/vMxp5wCy5c7Ly2uAKpXd7oMTpnidB/8/e/hp5+8jsoYUxbk\n3H2Cgu8+RUdDcpdkmvTrzIIeL3PsqJ5058rru2oV9U5aWTruwmIpaqxl6diKw7P3ZInIlcDfcRp6\nU1T1CT/rhO3dI+Ei9k4TY4yHCjoHHT4MTz8NzzwD/fvDffc5bc7SJhI578nyuq6yOsWEUv7vU85n\nGSdoihb6fdu5dB17r7uFg8eqcVv2c6zStiGLpaQCHVt5V5aOu7BYihqr18dW0rrKkztZIhIFPA9c\nAbQC+onI6V7EYk6WmprqdQgVjpW5N04q91WrYMYMOHjQk3jCrXp1GDMGvv0WataE9u2hd2947z04\ndszr6MqeilBXRfK5x2IvfQ26nsH2tybAwIG8zxV8+7d/ex1S0CK1zMFij1RedRfsAGxQ1TRVPQq8\nDvT0KBaTT0X+g/CKlbk3Tir3X3+FuXOhSRPnVs/rr8POnZ7EFk4JCfD44063wS5dYNw455DvvBPe\negv27vU6wjKj3NdVkXzusdi9sfTTTzn3xaGcxnrOuKur1+EELZLL3GKPTF41shoDW30+b3OXeSo0\nX4Tg8whmf4WtEyg92OVl4ctf0hiKun1pl3uwy0pbpJV7UdOKVe4dOsDChbBhA3TuDLNnQ8uWTssj\nBELxew9lucfGwvDhMGFCKp9+CqefDi+/7DS4zjgDBgyAYcNSWbQIvvsODh0qPN+y+n0vprDWVcUt\nl+L+LYXy92CxB58eCbET4DnNgrbbRx0q1ax+0vKfNx/mP79/gTVTv+DAz9nBxxBAccu9KP+PlTSG\n4m4X7u9MSfKJ1NhL8r9GqOsqexGCj9TUVLp161bSXIDg8ghmf4WtEyg92OWhOeaSKWkMRd2+tMs9\n2GWlLdLKvahpJSr3+vXhnnuc6dgxOHrU/3r9+8P69c4T3nXqQO3azjRsGLRocXKcr7xCt82b8z7J\nC877uxo29HdgsGtXnnVT58yhW6tWToz5LV3KjWTCmz5ZFLI+mZmkzpnD2D67GdkURg6Bo1O78N2u\n+nz5Jbz4Yio//tiNzZsh7afj1Kp2lPqxv3Lg8GLOOaUl8bV+pVaLBlSLi6FqVfjvf1NZubIb1apB\n1bT1VDp0gPkr/0Wt5zrT7nyrcnwV92+wuH9LoTzvWOzBp0dC7GwO3f5+3bWPmDUrqLL4JSrfvp60\nyonsiWnMzNhjdNv6+Unrb/8mk5+eXwRRUUiUQFQUREVRq1ldWv/pspNiyPgui81TP8r9/Nrnc6l2\nQSYXEwdc4hs90C13/W2ff8fyg2/kptZMiuOsP/qu7z//nH3U63M84Po/TTv5/Yu1kuJIzfrkpPLz\nXX/mf+dQ9cLdueufde/FTuQ+x5zxXRZbl3zHskNv5snHd31fcWSx7C8F5x9M/HO/ne/3d5+zvm/e\nOfnDxSf9vg7uOsyyvzix3wgs+0ve9QvK/0Z2B71+jpy4CjremaMn5Ym9av3anHv/pSH/38yTgS9E\npCMwVlWvdD+PAjT/A8UiUgEeWTTGmIonEga+sLrKGGMqtpLUVV41sioB63EuOewAVgD9VHVdqQdj\njDHG+GF1lTHGmOLypO+Gqh4XkeHAEn4bFtcqLWOMMWWG1VXGGGOKy7P3ZBljjDHGGGNMeeTV6ILG\nGGOMMcYYUy5ZI8sYY4wxxhhjQijiGlki0lVEPhGRF0Ski9fxVCQiEiMiX4jI1V7HUlGIyOnud32u\niNzldTwVgYj0FJGXRWS2iFzmdTwVhYicIiKviMhcr2MJhUivqyL1fB/J58xIPvdE6t+v+z1/VURe\nEpH+XsdTFJFa5hC53/Winl8irpEFKHAAqIrzYkhTeh4A5ngdREWiqt+r6t1AH+ACr+OpCFT1XVUd\nCtwN9PY6nopCVX9S1Tu8jiOEIr2uisjzfSSfMyP53BPBf783AvNU9U7gOq+DKYoILvOI/a4X9fzi\nWSNLRKaIyM8isjrf8itF5HsR+UFEHsi/nap+oqrXAKOAR0sr3vKiuOUuIpcC3wG7gDL/fpuyprjl\n7q7TA1gILC6NWMuLkpS5awzwz/BGWf6EoNzLlEiuqyL5fB/J58xIPvdE+t9vMeJvAmx154+XWqB+\nRHLZlyB2T+vZ4sRdpPOLqnoyAZ2BtsBqn2VRwEYgGYgGVgGnu2kDgYlAgvu5CjDXq/gjdSpmuT8D\nTHHL/33gba+PI9Kmkn7f3WULvT6OSJpKUOaJwATgYq+PIRKnEJzb53l9DCE+Hs/qqkg+30fyOTOS\nzz2R/vdbjPhvBq5252dFUuw+63h+zixO7F5/10tS5u56hZ5fPHlPFoCqfiYiyfkWdwA2qGoagIi8\nDvQEvlfVmcBMEblBRK4AagPPl2rQ5UBxyz1nRRG5BcgsrXjLixJ837uKyCicLkeLSjXoCFeCMv8D\nzstnY0XkVFV9uVQDj3AlKPd4EXkBaCsiD6jqE6UbuX+RXFdF8vk+ks+ZkXzuifS/36LGD7wNPC8i\n1wALSjXYfIoau4jEA3+lDJwzixG75991KFbcXXG6mAZ1fvGskRVAY367bQtOP/YOviuo6ts4fxQm\ndAot9xyqOqNUIqoYgvm+LwWWlmZQ5VwwZf4c8FxpBlUBBFPuWTj98yNBJNdVkXy+j+RzZiSfeyL9\n7zdg/KqaDdzmRVBBKij2slzmUHDsZfW7DgXHXaTzSyQOfGGMMcYYY4wxZVZZa2RtB5r6fG7iLjPh\nZeXuDSv30mdl7o3yVu6RfDwWuzcsdu9EcvwWe+kLWdxeN7KEvCMXfQGcKiLJIlIF6AvM9ySy8s3K\n3RtW7qXPytwb5a3cI/l4LHZvWOzeieT4LfbSF764PRzRYxaQDhwBtgCD3eVXAeuBDcAor+Irr5OV\nu5V7RZmszK3cK/rxWOwWe0WKPdLjt9jLX9ziZmaMMcYYY4wxJgS87i5ojDHGGGOMMeWKNbKMMcYY\nY4wxJoSskWWMMcYYY4wxIWSNLGOMMcYYY4wJIWtkGWOMMcYYY0wIWSPLGGOMMcYYY0LIGlnGGGOM\nMcYYE0LWyDJlhohcLyInRKSl17EEIiIPeh1DqIjInSIyoAjrJ4vImiLu40MRqVlA+mwRaVGUPI0x\npiwoj3WWiHwsIueGcx9FzLuHiNxfxG0OFHH9eSLSrID0p0Ske1HyNAaskWXKlr7Ap0C/cO9IRCoV\nc9PRIQ3EIyJSSVVfUtXXirhp0G8vF5GrgVWqerCA1V4AHihiDMYYUxZYnRXGfbj11AJVfbKImxal\nnjoTiFLVzQWs9hwwqogxGGONLFM2iEgN4ELgdnwqLBHpKiJLRWShiHwvIpN80g6IyEQR+VZEPhCR\nuu7yO0RkhYh87V6hquYunyYiL4jIcuAJEYkRkSkislxEvhSRHu56g0TkTRF5T0TWi8gEd/njQHUR\n+UpEZvo5hn4istqdJgQRZ3N3H1+4x9jSJ85/iMh/RWSjiNzoZ1/JIrJORF4Tke9EZK7PcZ4rIqlu\nvu+JSEN3+cci8oyIrADuFZEUEbnPTWsrIstEZJV77LXd5e3cZV8Dw3z2f6aI/M8ti1UB7kbdDLzr\nrh/j/g6/dsunl7vOp8ClImLnImNMxIj0OktEotz8V4vINyLyR5/k3u75/XsRudBnH8/5bL9ARLoE\nUS8Wp/57QUSWucecu1+33vvQrXM+EJEm7vJmIvK5exzjffbdyM37K/c4L/Tzq/Stp/yWiapuAeJF\npEHAL4Qx/qiqTTZ5PgH9gcnu/GfAOe58VyAbSAYEWALc6KadAPq68w8Dz7nzcT75jgeGufPTgPk+\naX8F+rvztYH1QHVgELARqAlUBTYDjd319geIPwFIA+JxLl58CFwXIM5n3fn/AC3c+Q7Ahz5xznHn\nzwA2+NlfsptvR/fzFOA+oDLwX6Cuu7w3MMWd/xh43iePFOA+d/4boLM7Pw6Y6LP8Qnf+SWC1O/8s\n0M+drwxU9RPjZqCGO38j8JJPWi2f+fdzft822WSTTZEwlYM661xgic/nWPfnx8BT7vxVwAfu/KCc\nusv9vADoUtA+AhxzMPWf7zEP8tlmPjDAnR8MvO3Ovwvc7M7fkxMPTp34oDsvOfVRvvhSgVYFlYk7\n/zJwg9ffO5sia7Krx6as6Ae87s7PwanAcqxQ1TRVVWA20NldfgKY686/hnNVEaC1iHwiIqvdfFr5\n5DXPZ/5yYJR7lyYVqAI0ddM+VNWDqnoE+A6nwizIecDHqpqlqieAfwFdAsTZ2b0KegEwz93/S0BD\nn/zeAVDVdUCgq2dbVHW5b77AacBZwAduvg8BiT7bzMmfiYjEArVV9TN30XSgi3s3q7aq/tdd7nuV\nchnwkIj8BWjmllN+cap6yJ1fA1wmIo+LSGdV9e0zvytfjMYYU9ZFep21CThFnF4TVwC+5+S33J9f\nBpFPYY5T9PpvHv51wilPcOqjnPK7kN9+F7711BfAYBF5BGjtUx/5SsCpg6DgMtmJ1VOmiCp7HYAx\nIhIHXAycJSIKVMLpU/0Xd5X8/asD9bfOWT4N5y7StyIyCOfKYo78J9mbVHVDvng6Ar6NhuP89rci\nBR1KAWn544wC9qhqoAeMffdflHwF+FZV/XWLgJOPv7B9+F2uqrPdLizXAotFZKiqpuZb7ZjP+hvE\neZj6auAxEflQVXO6dVQDDgfYvzHGlCnloc5S1b0i0ga4ArgL6AXc4Sbn5OWbzzHyPmJSzTcEf/sI\nIJj6L1A9VdCzVjlpubGo6qci0gW4BnhVRJ7Wk59DzsY9lnxlcidOT5Db3fWsnjJFZneyTFnQC5ih\nqqeoanNVTQZ+EpGcq38d3L7YUUAfnOd4wPn+/t6dv9lneU0gQ0Si3eWBvA/cm/NBRNoGEeuv4v8B\n5BU4d3/i3fR+OFca/cX5mXsn5ycRyVmOiLQOsM9AFVhTETnfne+Pc/zrgfpupYuIVBbnwd6AVHU/\nkOXTX30gsFRV9wF7ROQCd3nuSIQicoqq/qSqz+F01fAX+3oRae6unwAcVtVZwFPAOT7rtQS+LShG\nY4wpQyK+znKfjaqkqm8DY3C6yvmTU/9sBtqKIwmni1+B+3BVomT1n6/P+e35twH8Vn6f+SzPLT8R\naQrsVNUpwCv4P8Z1wKnu+r5l8jBWT5kSskaWKQv6AG/nW/Ymv500VwLPA2uBH1X1HXf5IZzKbA3Q\nDacvOzgnxxU4J+B1Pnnmvwr2GBDtPuT6LfBogPh8t3sZWJP/AV9VzcAZfSgV+BpYqaoLA8SZs5+b\ngdvdh3i/Ba4LEGegq3frgWEi8h1QB3hRVY/iVGhPiMgqN5ZOheQDcCvwN3ebNj4x3gZMEpGv8m3f\n232Q+Wucri0z/OS5CMgZ9vZsYIW7/iM4ZY/7IHG2qu4sIDZjjClLIr7OAhoDqe45eSa/jZ7nt/5x\nu41vdo/p7zhdCQvbB5S8/vN1L073v1Xu9jmDdYzAqQu/wen+l6Mb8I1bf/UG/uEnz8X8Vk/5LRMR\nqQy0wPm9GhM0cboMG1M2iUhX4E+qep2ftAOqWsuDsIokHHGKSDKwUFXPDmW+oSQijYDpqnpFAeuM\nAPap6rTSi8wYY8KjPNRZoVTWj1mckRw/whngye8/xCJyPc7AJimlGpyJeHYny0SySLlCEK44y/Tx\nu3f3JksBLyMG9uAMtGGMMeVdmT5nh0mZPmZV/QVnpN3GBaxWCXi6dCIy5YndyTLGGGOMMcaYELI7\nWcYYY4wxxhgTQtbIMsYYY4wxxpgQskaWMcYYY4wxxoSQNbKMMcYYY4wxJoSskWWMMcYYY4wxIWSN\nLGOMMcYYY4wJIWtkGWOMMcYYY0wIWSPLGGOMMcYYY0LIGlnGGGOMMcYYE0LWyDKmACJyQESaeR2H\nMcYYUxCrr4wpW6yRZcoFETkhIs1LmMfHInKb7zJVraWqm0sUXAiJyKMislpEjorII0Gs/4SIZIrI\nLhGZkC8tWUQ+EpFDIvKdiFySL72/iGx2K+63RKSOT1oVEZkqIvtEJF1ERubbtq2IrHTz/kJE2uRL\nHykiO0Rkr4i8IiLRxSuRk463q/tdeDPf8tbu8o9CsR9jjCkuq68Crm/1FVZflSfWyDLlhRaUKCKV\nSiuQMNsA/AVYWNiKInIncB1wNtAa6CEiQ31WmQ18CcQDY4A3RKSuu20r4EXgZqAhcBh4wWfbcUAL\nIAm4GLhfRC53t40G3gFmAHXcn++KSGU3/QrgfqA7kOzmM66I5VCQXUAnEYnzWTYIWB/CfRhjTHFZ\nfZWP1VdWX5VLqmqTTX4noAnwJrAT50TwrLtccE5ym4EM4FUg1k1LBk4AtwBp7rajffKMAkYDG4F9\nwBdAYzftdGAJsBtYB/Ty2W4a8DzOyXo/sAw4xU1b6u7zoJvWC+gKbMU5Oe4ApuOcQBe4Me125xPd\nPB4DjgHZbh45x3oCaO7Ox+KcgHcCPwEP+cQ3CPgUeArIAn4Ergzj72Ym8Egh6/wXuMPn82Dgc3e+\nJU5FVMMnfSkw1J3/K/CaT1pz4EjO+sB24BKf9HHALHf+cmBrvljSgMvd+X8Bj/mkdQd2FHAcJ4C7\ngR/c78yjbjz/BfYCrwOV3XVzfu+TgHt8vnPbcL6zH3n9d2WTTTaFfsLqq5xzpdVXVl/ZVEYmu5Nl\n/BKRKJwK4iegKdAY5+QAzsnvFpwTRHOgFk6F4utC4HfApcAjInKau/xPQB+cE3pt4DYgW0RicCqs\n14B6QF9gkoic7pNnHyAFp/L5EefEiqp2ddPPVtVYVZ3nfm7krtsUGIpz8pqKczWrKU4F9U83jzE4\nlc5wN4973Tx8rzg+7x5rM6AbcIuIDPZJ74BT2dbFqbymEICILBCRPSKS5efn/EDbFVEr4Bufz9+4\nywDOBDap6qEA6Xm2VdVNOJVWS7cbRgKwuoC8fdMKzNudb5DvSl5+lwPnAB1x/hF5CeiP87s8G+jn\ns67i/HNxi/v5CmANzj8vxphyxuorq6+w+sqUQdbIMoF0wDkx3a+qv6jqr6r6uZvWH5ioqmmqmg08\nCPR1KzpwThpj3W1W45yUcvo4345zRW0jgKquUdU9wLXAT6o6Qx3f4FyV7OUT09uq+qWqnsC5utQ2\nX8yS7/NxIEVVj6rqEVXNUtW33flDwONAl0LKQSC3Eu8DjFLVbFVNA54GBvqsm6aqU1VVca5ENhKR\nBv4yVdUeqhqnqvF+fl5XSEzBqolzJS3HfneZv7Sc9FpBpNfE+R3nzzuYbQPFJT7p/jyhqodUdR3w\nLbDE/f4dAN7DqdByqepyIE5EWuJUXjMKyNsYE9msvvLJ0+qrPOlWXxnPWCPLBJKEcxI+4SctEed2\neo40oDJOX+gcP/vMZ/PbyTIJ2OQnz2Sgo3tlLEtE9uBUjr55ZgTIM5Bdqno054OIVBeRl9yHY/fi\ndDeoIyL5Kzt/6uEc4xafZWk4V0xPik9VD+OciAuLMZwO4nQZyVHbXeYvLSf9QBDpOXnkzzuYbQPF\npT7p/uz0mT9M3u/XYfyX80xgOM5V3LcLyNsYE9msvsrL6iurr0wZYI0sE8hWoKnP1T5f6TiVTI5k\n4Ch5TyQF5dsiwPJU98pYzlWyWFUdXtTAfeR/uPhPOF1CzlPVOvx2VVACrO8rE+cY8x/39uIEJiKL\n3VGQ9vuZFhUnTz/W8tsVWXCupK71SWsuIjV80tvkS8/dVkRaANHAD6q6F6crQ5sCtm2dL5bWOFf0\nAsX1s3uFOJReA+4BFqnqLyHO2xhTdlh9lZfVV1ZfmTLAGlkmkBU4J6YJIhIjIlVF5AI3bTYwUkSa\niUhNnL7mr/tcRSzoStsrwHgRORVARM52+zYvxOk/PUBEKotItIi09+kbX5gMnP72BamFcxVpv4jE\nA2Pzpf8cKA/32OYCfxWRmiKSDIzEufpUZKp6tTrD7cb6ma4JtJ1bNtVw/naj3d9LoL/jGcB9IpIo\nIo2B+3AeyEZVNwCrgBQ3jxuBs3C6vIDTvaWHiFzoVmyPAm/69ImfCYwRkToicgYwJCdvIBU4LiJ/\nEGfo3HtxHgb+2Ceu20XkDPd3P8Zn25BRZyjjLm7+xpjyy+orH1ZfWX1lygZrZBm/3JN0D5wraVtw\nrtz1dpOn4py0PsF5oDcbuNd38/zZ+cxPxDn5LxGRfTiVWHVVPYjzsGhfnCuP6cAEoGqQIY8FZrhd\nN34fYJ2/AzE4V/k+BxbnS/8H0EtEdovI3/3Efi/OsW7COfbXVLWgk22Bw/QW02Q3hr44o15lAwMA\nRKSziOzP3bnqSzgjUq3Bec5gvqpO9smrL3AesAfnH4+bVHW3u+13wF3ALJx/CKoDw3y2TcEphzTg\nI2CCqn7gbnsUuB5nBKs9OH3Me6rqMTf9feBJnErsJ5zv0NgCjrmg71OBVPVzVc0ofE1jTKSy+srq\nK6y+MmWQOM88hilzkSk4D4j+rKqt3WVtcN5nUA3ndvY9qroybEEYY4wxBRCRqjj/iFbBeZblDVUd\nJyIpOFe9c56xGK2q//YoTGOMMREk3I2szjgPDc7waWS9DzytqktE5Cqc0YC6hy0IY4wxphAiEqOq\n2eK8CPa/OHcCrgIOqOpEb6MzxhgTacLaXVBVP8O5/errBM7oLOC8E6JYD2IaY4wxoeIO7w1Ol6/K\n/NbNJ5jR3Iwxxpg8vHgmayTwNxHZgtPP9UEPYjDGGGNyiUiUiHyN80zHB6r6hZs0XERWicgrIlK7\ngCyMMcaYXF40su4G/qiqTXEaXFM9iMEYY4zJpaonVPUcoAnQQUTOBCYBzVW1LU7jy7oNGmOMCUpY\nn8kCcIcOXeDzTNZe950POen7VNXv1UERCW9wxhhjPKGqZbYbnog8DBzyfRYrf12Wb32rq4wxphwq\nSV1VGneyhLx92reLSFcAEbkE+KGgjVU1LFNKSkpYtilonUBp/pYXtix/enGOJ1zlZGVlZWVlZWVV\nUFmVNSJSL6croIhUBy4DvheRRj6r3chvLyg9SST8boNdZrEXb7uS/s0EM9E1PN+10ojd63IvyTk6\nUmMP5zGX1dhLUveFuq6qXOIcCiAis4BuQF33Gayc4XCfdUdw+gUYGs4YAunWrVtYtilonUBp/pYX\ntqw48RdHcfdjZRXa7aysgt/Oyir47cpbWZVAAjDdfVFqFDBHVReLyAwRaYszYNNm4M5Q7rS0f7eh\n/D1Y7MGnh/T736x4m5WF2CO53CM19pLkE6mxl6TuC3ldVdwWbmlMTngmGCkpKV6HEDGsrIJnZRU8\nK6vgued2z+uYUE2RXFdF8ve2IsbOWO+/a5Fa7pEat6rF7pWS1lVeDHxhwiACrhSXGZFSVvHxIHLy\nFB9fejFESlmVBVZWJhJF8vfWYvdGpMYeqXGDxR6pwj7wRUmIiJbl+IwJJxHw9/UPtNyYSCEiaBke\n+KKorK4ypUXGCZpi3zVjSkNJ66qwPpNljDHGGGPKv2bNmpGWluZ1GMYUWXJyMps3bw55vtbIMsYY\nY4wxJZKWlhaSEdmMKW0i4elYYc9kGWOMMcYYY0wIWSPLGGOMMcYYY0LIuguaiuH4cdi9GypVgthY\niI72OiJjjDHGGFNO2Z0sU75taqHhEwAAIABJREFU3gxnnw3Vq8OZZ8Lvfuc0sm64wevIjDHGGOOx\ntLQ0oqKiOHHiRInzOuWUU/joo4+CWnf69OlcdNFFuZ9r1aoVssEXHn/8cYYOHQqE9vgAtm7dSmxs\nrD1/FwRrZJnyLTERpk6FAwcgMxOyspw7Wv/4h9eRGWNMwTIy4Ngxr6MwJuIV1vgJ18AHhfHd74ED\nB2jWrFmB6y9dupSkpKRC833wwQd5+eWX/e6nqPKXXVJSEvv37/eszCKJNbJM+ValCpx3HlSt+tuy\nmBho2tS7mMIk0MuLS/sFxsaYELn6ali2zOsojDFlhKoW2rg5fvx4KUVjCmONLBP5VOHpp+H//q9k\n+ezdC2PHwtGjIQmrtO3Z4xSFv2nPHq+jM8YUWY8eMH++11EYU66cOHGCP//5z9SvX59TTz2VRYsW\n5Unfv38/d9xxB4mJiSQlJfHwww/ndo3btGkTl1xyCfXq1aNBgwYMGDCA/fv3B7XfrKwsrrvuOmrX\nrk3Hjh358ccf86RHRUWxadMmABYvXkyrVq2IjY0lKSmJiRMnkp2dzdVXX016ejq1atUiNjaWjIwM\nxo0bR69evRg4cCB16tRh+vTpjBs3joEDB+bmrapMmTKFxo0b07hxY55++unctMGDB/PII4/kfva9\nW3bLLbewZcsWevToQWxsLH/7299O6n64Y8cOevbsSd26dWnZsiWvvPJKbl7jxo2jT58+DBo0iNjY\nWM4++2y++uqroMqrPLBGlolshw5Bnz4wZw7061eyvCpXhpUr4aab4NdfQxOfMcYUw7FjcPuqP3D0\n3cVeh2JMufLyyy+zePFivvnmG1auXMkbb7yRJ33QoEFUqVKFTZs28fXXX/PBBx/kNhxUldGjR5OR\nkcG6devYtm0bY8eODWq/99xzDzExMfz8889MmTKFqVOn5kn3vUN1xx13MHnyZPbv38+3337LxRdf\nTExMDO+99x6JiYkcOHCA/fv306hRIwDmz59P79692bt3L/379z8pP4DU1FR+/PFH3n//fZ544omg\nuk/OmDGDpk2bsnDhQvbv38+f//znk/Lu06cPTZs2JSMjg3nz5jF69GhSU1Nz0xcsWED//v3Zt28f\nPXr0YNiwYUGVV3lgjSwTuTIy4MILoUYN+OQTOOWUkuVXsya8/TZERcHNNzsjEpYhaWkwaZIz364d\ntGgBzZtD585w993O8sOH/W8bF2fdCI2JJJUrw+r0unyWdSasX+91OMaU3Nix/iuiQI0Uf+sH2aAp\nyLx58xgxYgSJiYnUqVOHBx98MDft559/5r333uOZZ56hWrVq1KtXjxEjRjB79mwAWrRowSWXXELl\nypWpW7cuI0eOZOnSpYXu88SJE7z11luMHz+eatWq0apVKwYNGpRnHd+BJKpUqcLatWs5cOAAtWvX\npm3btgXm36lTJ3r06AFAtWrV/K4zduxYqlWrxllnncXgwYNzjykYgQa52Lp1K8uWLeOJJ54gOjqa\nNm3acMcddzBjxozcdTp37swVV1yBiDBw4EBWr14d9H4jnTWyTGTasgUuusi56zR1KgQ4qRRZdLRz\nVywrC0aNCk2eJaAKCxfClVdC+/bwv/85yydNgiVLnOn//g9atnSWN20KY8ZA/t4LWVnWjdCYSNOz\npzA/8S7rMmjKh7Fj/VdEBTWygl23CNLT0/MMHpGcnJw7v2XLFo4ePUpCQgLx8fHExcVx1113kZmZ\nCcDOnTvp168fTZo0oU6dOgwYMCA3rSC7du3i+PHjNGnSxO9+83vzzTdZtGgRycnJdO/eneXLlxeY\nf2GDYYjISftOT08vNO7C7Nixg/j4eGJiYvLkvX379tzPOXfbAGJiYvjll19CNtJhWRfWRpaITBGR\nn0Vkdb7lfxCRdSKyRkQmhDMGU05VqwYPPQQPP+xc3QqlqlVh7lznrpbPLW8vXHghjB4N/fs77crp\n053l55/v3Mk69VTo0gVGjnSWL18O27bB6afb/2XGRLrrroN3My9Aq4boIpIxhoSEBLZu3Zr7OS0t\nLXc+KSmJatWqsXv3brKystizZw979+7NvfsyevRooqKiWLt2LXv37uW1114Laijz+vXrU7ly5Tz7\n3bJlS8D127VrxzvvvMOuXbvo2bMnvXv3BgKPEhjMSH/5952YmAhAjRo1yM7Ozk3bsWNH0HknJiaS\nlZXFoUOH8uTduHHjQuOpCMJ9J2sacIXvAhHpBvQAzlbVs4G/hTkGUx41aAC33hq+/OvWhf/+F7p2\nDd8+AsjOhnvvdeaHDoWvv4ZbbnFe9VWYFi3g1Vdh3jwnj5Ejy1yvR2NMkM4+G7Rqdb7t/gevQzGm\n3OjduzfPPvss27dvZ8+ePTzxxBO5aY0aNeLyyy9n5MiRHDhwAFVl06ZNfPLJJ4AzzHrNmjWpVasW\n27dv56mnngpqn1FRUdx4442MHTuWw4cP89133zE956ppPkePHmXWrFns37+fSpUqUatWLSpVqgRA\nw4YN2b17d9CDbeRQVcaPH8/hw4dZu3Yt06ZNo2/fvgC0bduWxYsXs2fPHjIyMvhHvlfcNGrUKHdA\nDt/8AJo0acIFF1zAgw8+yJEjR1i9ejVTpkzJM+iGv1gqirA2slT1MyB/h6S7gQmqesxdp/D7rMZ4\noWHD0N8lK8SaNdC2rdO9D5x2pHtuLZILL3QaZ6tXQ+/e8MsvIQ3TGFMKRGDHDmjd2p6hNKYkfO/G\nDBkyhCuuuII2bdrQvn17brrppjzrzpgxg19//ZUzzzyT+Ph4evXqRUZGBgApKSl8+eWX1KlThx49\nepy0bUF3fZ577jkOHDhAQkICt912G7fddlvAbWfOnMkpp5xCnTp1ePnll/nXv/4FwGmnnUa/fv1o\n3rw58fHxuXEFc/xdu3bl1FNP5bLLLuP+++/nkksuAWDgwIG0bt2aZs2aceWVV+Y2vnKMGjWK8ePH\nEx8fz8SJE0+Kdfbs2fz0008kJiZy0003MX78eLp3715gLBWFhLtFKSLJwAJVbe1+/hp4F7gSOAz8\nRVVXBthWK1KL11Rsb7/t3Ll65hkYMMD5p8rf178oy48ccfI6cgTefNN55CyYvIwJJxFBVctNTRvO\nukoEOnRwnse0v1cj4wRNKZtfAvfv2uswjCmyQN/dktZVXgx8URmIU9WOwP3AXA9iMJHkxAmYMsUZ\n07gcyhn578YbITMTBg50PsfFlTzvqlVh1iyny+Dtt9s/aMZEonXrYPdur6MwxhhTFJULW0FEegCL\nVDVUQ4FsBd4CUNUvROSEiNRVVb9ViO/7B7p160a3bt1CFIaJGGPGwGefOa0PL+3c6TwLFkInTjjv\nQG7bFt57D3wG4QmZ6GjnGa2uXeGpp+D++0O/D2MKkpqamue9KeEQhrqqzOjSBT780OsojDHGFEWh\n3QVF5DWgE/AmMFVVvy/SDkSa4XQXPNv9PBRorKopItIS+EBV/Y5jad0FDbNmOaMIrlgB9et7F4eq\nM4b6+PFw9dUhyfL4cRgyBKZNc4ZSr1MnuO3i4/0PvR4X99uzXP5s3ep0O5o5Ey691Flm3Y+MF8LR\nXbCkdVUJ9x3W7oJ//zt8u+AnNn64mY818LMOpvyz7oLGhJ5n3QVVdQBwDvAj8KqILBORoSJSq7Bt\nRWQW8DnQUkS2iMhgYCrQXETWALOAW4obvCnnvvoK/vhHePddbxtY4Pyn8/DD8OCDzu2nEjpxwum+\nlzOCa7ANLAj8zquCGlgASUlOA+vWW63rkSl/SlhXVRWR/4nI1+6rRVLc5XEiskRE1ovI+yJSO8yH\n4ddll8EHX8XTy3rXG2NMxAjqmSxV3Q+8AbwOJAA3AF+JSIHjyqpqf1VNVNWqqtpUVaep6jFVHaiq\nZ6tqe1Ut/FXZpuLZt88ZFu/5552htcqCnj2dcdRff71E2ajCiBGwcaPTfixNl14KvXrB3XeX7n6N\nKQ0lqKuOAN1V9RygLXCViHQARgH/UdXTgI+AB8MZfyBnnAFHK1cnmbTCVzbGGFMmFNrIEpGeIvI2\nkApEAx1U9SqgDfCn8IZnKqzjx+Evf4E+fbyO5Dci8Pjj8Mgj8Ouvxc7mkUecR8wWLYIaNUIYX5Ae\nf9wZ2t1eVmzKk5LWVaqa8zbOqjjPKyvQE8h5mc104PoQhx0UEbj8qsp8z+l2G9oYYyJEMHeybgSe\nce88PaWqOyG3Qro9rNGZiis+Hu680+soTta9OzRv7rzxtxj+8Q944w14/32o7UnHI6hWDf75T6cn\npjHlSInqKhGJcl8xkoHzrPAXQENV/dnNJwMI7cg3RXDZFVG8zY3OS9KNMcaUecE0sjJU9RPfBSLy\nBICq2nhHpuL5+9+d4b6KaMECePJJ+Pe/vX/E7JJL4PzzvY3BmBArUV2lqifc7oJNgA4i0grnblae\n1UIVbFF16QJfcS4nPvnMqxCMMcYUQTCNrMv8LLsq1IEYEzHOPBNOP71Im6xa5Qx08fbbkOx3LM3S\n9/TTzs9Nm7yNw5gQCUld5T7XlQpcCfwsIg0BRKQRsDPQdmPHjs2dwjFcfZMm8CvRrOs8JOR5G2Mi\nW1RUFJuCrMzHjRvHQPeVOFu3biU2NjZko0Lefffd/PWvfwVg6dKlJCUlhSRfgM8++4wzzjgjZPn5\nk5qamudcXlIB35MlIncD9wAtRGS1T1ItwPormNBTdR4+KGfS0+G662DSJGcI9bKicWPnZ0qKM+qg\nMZEoFHWViNQDjqrqPhGpjtNgmwDMB24FngAGAQGHqglFhVyY40TzyY7f0SrsezKm/Jk1axbPPPMM\n33//PbGxsbRt25bRo0dz4YUXehrX9OnTeeWVV/j000+LnYcU8X+nnPWTkpLYv39/oesHG+MLL7xQ\norh8RUVFsXHjRpo3bw5A586dWbduXbHzC0b+9/GOGzeuRPkVdCdrFtADp1Lp4TO1c4fKNSZ0liwp\nW4NchMiRI3DDDXDXXfD733sdjX9LlsCaNV5HYUyxhaKuSgA+FpFVwP+A91V1MU7j6jIRWQ9cgtPw\n8tRSG4/XmCKbOHEi9913H2PGjGHnzp1s2bKFYcOGsWDBgiLndfz48aCWBUtVS9QYyckjnIKJ8UQI\nXm/jq6RlUhYU1MhSVd0MDAMO+EyISHz4QzMVxp49Tl+6oUO9jiTk7r3XeT/VU085N+n8TXFx3sb4\nwAPOK8CMiVAlrqtUdY2qnquqbVW1tar+1V2epaqXquppqnq5qu4N0zEE7ZNP7AXixhTF/v37SUlJ\nYdKkSfTs2ZPq1atTqVIlrr76aiZMcK6b/Prrr4wYMYLGjRvTpEkTRo4cydGjR4Hfur09+eSTJCQk\ncNttt/ldBrBw4ULOOecc4uLi6Ny5M2t8rmBu27aNm266iQYNGlC/fn3uvfdevv/+e+6++26WLVtG\nrVq1iI+Pz43nz3/+M8nJySQkJHDPPfdw5MiR3LyeeuopEhMTadKkCdOmTSuwQbJ582a6detG7dq1\nueKKK8jMzMxNS0tLIyoqKreB9Oqrr9KiRQtiY2Np0aIFs2fPDhjj4MGDueeee7jmmmuoVasWqamp\nDB48mEceeSQ3f1Xl8ccfp379+jRv3pxZs2blpnXv3p2pU6fmfp4+fToXXXQRAF27dkVVad26NbGx\nscybN++k7offf/893bt3Jy4ujrPPPjtPg3nw4MEMHz6ca6+9ltjYWDp16sRPP/1U8BclDAq7kwXw\nJbDS/fmlz2djQmP4cOd2z6WXeh1J0a1dCzt2+E2aOtX5h2jaNNi71/8LhIN5iXC43XMPfPklfPGF\nt3EYU0wVqq6KioIff/Q6CmMix7Jlyzhy5AjXXx/4DQyPPfYYK1asYPXq1XzzzTesWLGCxx57LDc9\nIyODvXv3smXLFl5++WW/y77++mtuv/12Jk+eTFZWFnfeeSfXXXcdR48e5cSJE1x77bWccsopbNmy\nhe3bt9O3b19OP/10XnzxRTp16sSBAwfIcv8heOCBB9i4cSOrV69m48aNbN++nUcffRSAf//730yc\nOJEPP/yQDRs28J///KfA4+/fvz/nnXcemZmZjBkzhunTp+dJz2mgZWdn88c//pH333+f/fv38/nn\nn9O2bduAMQLMnj2bhx9+mAMHDvjtdpmRkUFWVhbp6em8+uqrDB06lA0bNgSMNSeWpe4t+zVr1rB/\n/3569eqVJ/3YsWP06NGDK6+8kl27dvHss89y880358l7zpw5jBs3jr1799KiRQseeuihAsspHAI2\nslT1WvfnKara3P2ZMzUvvRBNuTZ3LqxcCRM874VTPFOmwLPPnrR45UrnDtFbb0GtWh7EVQTVqsGf\n/gRPPOF1JMYUXUWrq7p0sS6DJjIF6s1R1Kmodu/eTb169YiKCnxfYdasWaSkpFC3bl3q1q1LSkoK\nM30eVq5UqRLjxo0jOjqaqlWr+l02efJk7rrrLtq3b4+IMHDgQKpWrcry5ctZsWIFO3bs4Mknn6Ra\ntWpUqVKFCy64IGA8kydP5plnnqF27drUqFGDUaNGMXv2bADmzZvH4MGDOeOMM6hevXqBz4Nu3bqV\nlStX8uijjxIdHc1FF11Ejx49Aq5fqVIl1qxZwy+//ELDhg0LHWiiZ8+edOzYESC3XHyJCOPHjyc6\nOpouXbpwzTXXMHfu3ALz9BWoG+SyZcs4dOgQDzzwAJUrV6Z79+5ce+21uWUEcMMNN9CuXTuioqK4\n+eabWbVqVdD7DZVgXkZ8oYjUcOcHiMhEEWka/tBMubdrF/zhDzBjBsTEeB1N8dx1l3PLyuc2/u7d\nzvNXL7wAYR4IJ2TuuMP5x+2HH7yOxJjiqSh1VZcusHT0+7Bxo9ehGFMkgXpzFHUqqrp165KZmVng\nM0Pp6ek0bfrb6SI5OZn09PTcz/Xr1yc6OjrPNvmXpaWl8fTTTxMfH098fDxxcXFs27aN9PR0tm7d\nSnJycoENvRy7du0iOzubdu3a5eZ11VVXsdt9EXl6enqebnPJyckBGyPp6enExcVRvXr1POv7ExMT\nw5w5c3jhhRdISEigR48erF+/vsBYCxs9MC4ujmrVquXZt2+5FteOHTtO2ndycjLbt2/P/dyoUaPc\n+ZiYGA4ePFji/RZVMEO4vwBki0gb4E/Aj4CNRWZKrm5dePfdyH5hU8uW0KYNzJsHOBXA4MFw441l\nd6ALf2rWhLvv/m1Yd2MiUIWoqzp3hs8PtYb//c/rUIyJCJ06daJq1aq88847Addp3LgxaWlpuZ/T\n0tJITEzM/ezvmaf8y5KSknjooYfIysoiKyuLPXv2cPDgQfr06UNSUhJbtmzx29DLn0+9evWIiYlh\n7dq1uXnt3buXffv2AZCQkMDWrVvzxBromayEhAT27NnD4cOHc5dt2bIlYDlcdtllLFmyhIyMDE47\n7TSGus/KB8q/sMEp/O07p1xr1KhBdnZ2blpGRkaBeflKTEzMUwY5eTfOGTa5jAimkXVMnSZyT+B5\nVf0nztC4xpRMVBS4t5kj2l13weTJADz/vDNkeyT2fvzDH5y2YhHOc8aUJRWirjrzTMg8HsfOj9d6\nHYoxESE2NpZx48YxbNgw3n33XQ4fPsyxY8d47733GDVqFAB9+/blscceIzMzk8zMTMaPH5/7Lqlg\nDRkyhBdffJEVK1YAcOjQIRYvXsyhQ4fo0KEDCQkJjBo1iuzsbI4cOcLnn38OQMOGDdm2bVvuQBsi\nwpAhQxgxYgS7du0CYPv27SxZsgSA3r178+qrr7Ju3Tqys7Nzn9Xyp2nTprRv356UlBSOHj3KZ599\ndtKIijl3wXbu3Mn8+fPJzs4mOjqamjVr5t55yx9jsFQ1d9+ffvopixYtonfv3gC0bduWt956i8OH\nD7Nx40amTJmSZ9tGjRoFfPfX+eefT0xMDE8++STHjh0jNTWVhQsX0q9fvyLFF27BNLIOiMiDwABg\nkYhEAdGFbGNMxXHttbBuHasWbOXRR+H116FKFa+DKrr69aFvX3jxRa8jMaZYyn1dFRcHlSqB/HKY\nGVOOEG/j/BoTlPvuu4+JEyfy2GOP0aBBA5o2bcqkSZNyB8MYM2YM7du3p3Xr1rRp04b27dsXeaCE\ndu3aMXnyZIYPH058fDwtW7bMHWQiKiqKBQsWsGHDBpo2bUpSUlLus0kXX3wxrVq1olGjRjRo0ACA\nCRMmcOqpp9KxY0fq1KnD5Zdfzg9uf/4rr7ySESNGcPHFF9OyZUsuueSSAuOaNWsWy5cvp27duowf\nP55BgwblSc+5G3XixAkmTpxI48aNqVevHp988knue6/8xRiMhIQE4uLiSExMZODAgbz00kv87ne/\nA2DkyJFER0fTqFEjBg8ezIABed+4MXbsWG655Rbi4+N544038qRFR0ezYMECFi9eTL169Rg+fDgz\nZ87MzbusDP8uhY2t777lvj/whap+6vZx76aqM8IenIiGe+x/Y0Lh0PwPafenroxJqcwAP2/mESmb\nwy7Hxzsj6OdXp47/5caEgoigqiGtBctrXeXv3JHy4K8c/ds/ePrYvRzRkx82N+WXjBM0pQxWJuT+\nXXsdhjFFFui7W9K6qtBGVkmIyBTgWuBnVW2dL+1PwFNAPVX1O4i1NbLKIdXiDQ9Uxt1+Oxw7BgsW\n+G+cxMV5P1R7sLp2dYZ0P3To5LRIOg5TdoWjkeWl0m5k/fvf8ESvL9h7sDJf6zlh2a8pm6yRZUzo\nhauRFczogjeKyAYR2Sci+0XkgIjsDzL/acAVfvJsAlwGpJ20hSm/Dh92nsHats3rSELq9dfh00/h\nn/90Glhl8V1YRTFsGLRv7/847O6WKatKWFdFlPPPh5W0ZxXWwDLGmLIqmGeyngSuU9XaqhqrqrVU\nNTaYzFX1M8Dfv2XPAH8pQpymPBg/Hpo2hSZNvI4kZLZuhXvvdRpaNWt6HU1oXH+9M5T7Wnuu3kSW\nYtdVkSYuDpo0KTc3Ao0xplwKppH1s6quC9UOReQ6YKuqrglVniYCfPMNvPIKPPec15GEjCoMGQJ/\n/COce67X0YROlSpO98dXXvE6EmOKJKR1VVnXqZPXERhjjClI5SDWWSkic4B3gNw3rqrqW0XdmYhU\nB0bjdBXMXVzUfEyEOXHCGeb8r38Fn5fDRbopU5z3Kd9/v+9ShX37oXZtr8IKiVtvdf6Je+KJyBwp\n0VRIIaurIkGnTjBtmtdRGGOMCSSYRlYskA1c7rNMgeJUXC2AZsA34oyv2AT4UkQ6qOpOfxuMHTs2\nd75bt25069atGLs1npo61Xl6+/bbvY4kZLZsgQcfhI8+At+XwN/CDBi6GObM8S64EGjRAk4/HRYt\nghtu8DoaE+lSU1NJTU0N925CWVeVeXYnyxhjyrawji4IICLNgAWqeraftJ+Ac1XV7+P0NrpgOfH1\n187tkFatvI4kJFThqqvgoosg/2s06kkmmbEtYPv2iH9Ia9o0ePttmD//t2VldSh6E1lsdMGi5O3/\nb+7ECahUSdn17U7qtWoYln2bsqcsjy7YrFkz0tJsPDMTeZKTk9m8efNJy0tjdMGWIvKhiHzrfm4t\nImOCyVxEZgGfAy1FZIuIDM63imLdBcu/c84pNw0scLoJZmbCAw+cnLabenDBBbBwYekHFmK9ejmj\nJmZkeB2JMYUrSV0ViaKiIJF0lg+b6XUoxgCwefNmVNUmmyJu8tfACoVgBr6YDDwIHAVQ1dVA32Ay\nV9X+qpqoqlVVtamqTsuX3lwDvCPLmLIop5vgq69C5UCdbfv0ifjuguDciLv+evjXv7yOxJigFLuu\nilTHqMwX31b3OgxjjDF+BNPIilHVFfmWHQtHMMaUZapwxx0wYgScdVYBK15/vfOw1r59pRZbuAwY\n4AxPb0wEqHB1VSZ1+WLPqXDwoNehGGOMySeYRlamiLTA6dqHiPwe2BHWqIwpg155xXmpsL9ugnnU\nqeO80Tc9vVTiCqdu3Zx3gW3Y4HUkxhSqwtVVJ6jMF1Ed0K9XeR2KMcaYfIJpZA0DXgJOF5HtwAjg\n7rBGZSLb1q3Oy6PKkS1bYPToQroJ+vq//4Mzzgh3WGFXqZLzbFY56P1oyr8KWVdFVxHS/mNXQYwx\npqwptJGlqptU9VKgPnC6qnZW1c1hj8xErhEjID7e6yhCJqeb4MiRhXQTLKf69rUug6bsq6h11Xln\nHOKLtAZeh2GMMSafgNfkReS+AMsBUNWJYYrJRLLFi2H16nI1WsIrr8CePflfOlxxdOoE+/fDt996\nHYkxJ6voddV51zfmi/2N6eV1IMYYY/Io6E5WLXdqj9PlorE73QWcG/7QTMTJzobhw+Gf/4Rq1byO\nJiRyuglOmxZkN8FyKCrKGTDR7maZMqrEdZWINBGRj0RkrYisEZE/uMtTRGSbiHzlTleG6RiK7bzz\n4IsvvI7CGGNMfoW+jFhEPgGuUdUD7udawCJV7RL24OxlxJHl4Yfhhx/KzQM8qnDFFc7gD6NHB7dN\neX1Z71dfQe/esHs37N3rf524OGdgEGMKE46XEZekrhKRRkAjVV0lIjWBL4GeQB/gQGF3w7x4GXFO\nWmYmNG/u3G2PCuYpaxPRyvLLiI0pb8L+MmKgIfCrz+df3WXG5PXrrzCx/PTMCUk3wb/9DVauDFlM\nXjnnHOfnhx86//D5m/bs8TZGU+EVu65S1QxVXeXOHwTW4dwNAwhpYzDU6taFevVg/XqvIzHGGOMr\nmEbWDGCFiIwVkbHA/4BXwxmUiVBPPAGNGxe+XgTI6Sb4ww8QHe1cMfadgh7XY98+mDs3rLGWBhG4\n4QZ45x2vIzEmoJDUVSLSDGjrbg8wXERWicgrIlI7NKGG1nnnlYtrOcYYU64U2l0Q4P/Zu/M4m+v9\ngeOv9zBomGHGvg4RpUhCCRlLJUsqt01U2rdfablpc3FpodKte28LCXWjUlqIiAwJSRRZSpF9n2HI\nMpj374/vmWlmzHJmzvI958z7+Xh8H5zz/Z7P9z1nvnM+5/P9fD7vj4i0BDp4Hi5Q1RUBjeqv89pw\nQRN0mcMEO3VyGlp5XYJrF2gUAAAgAElEQVT5DeE55fkffoC+fSPiNvOiRXDXXbBqVd77I3WopPG/\nQAwX9JTrU13lGSqYDAxX1c9EpCqwV1VVREYANVX1tjxep0OGDMl6nJSURFJSUjF/itxlFzxcUBVe\neu4YmxZu5dUvGvrlnCZ02XBBYwInOTmZ5OTkrMfDhg3zqa7yqpHlFmtkGTeMGQNjx8LixU4vlk+N\nLFWnd2/BAmjUKGAxB0NGhvOjfPNN3j+KNbKMtwLVyPKFiJQGpgMzVfWVPPYnAtNUtXke+1ybk6UK\nC2YdYVD3lSw+dn7JzdBTQlgjy5jgCcacLGNKjE2b4KmnirDocGFEoFs3mDnTD4W5KyoKrrjChgya\niPU2sCZ7A8uTECPT1UBILmTQst1prNRmHP85/HvMjTEmUlgjyxTfqlVOd0+EyFx0+OGH4eyz/Vhw\n9+7O+mER4Kqr4JNP3I7CGP8SkXbAjUBnEVmRLV37KBFZKSI/Ah2Bh1wNNB8VKkD92H38PGOz26EY\nY4zxKLSRJSL/JyLxwQjGhJGMDKdFsnat25H4zdixTp6Kv//dzwV37w5vv+3nQt3RuTOsWQM7d7od\niTE5+VJXqeq3qlpKVVuo6nmq2lJVv1TVm1S1uef5K1V1l7/j9pfWDVP4fv5ht8Mwxhjj4W0K9+9F\n5EMR6SYiITWO3rjkrbec8XS33OJ2JD5LSHBG9d11l7OoZ/ZsgvH+uL0QEwM1a/qhIPeVKeOMfvz8\nc7cjMeYUJbquan1BFN+vjnE7DGOMMR6FNrJU9WngDGAccAuwXkSeFZFC0xiJyDgR2SUiK7M9N0pE\n1npS4n4sInE+xG/csGcPPP00vP56RKx+mZoKXbvCc8+duvZTfovrxsefmtbdb42yEGep3E0o8qWu\nigStr6jF9xkt3Q7DGGOMh1ffkD1pk3Z6thNAPPCRiIwq5KXjgctyPTcbOFtVWwDrgSeKFLFx36BB\n0K8fND8lyVbYOnAAHn3U++NTUvJekDe/RlkkuewyWLgQDtvIJBNifKirwt65nSuz/kB1jhxxOxJj\njDHg3ZysB0XkB2AU8C3QTFXvAc4H+hT0WlVdCKTmem6OqmZ4Hi4B6hQncOOS1FT46ScYOtTtSPzi\njz+cf/2WTbAEqFgRWraEefPcjsSYv/hSV0WCsmXhrLOcj2djjDHu86YnKwG4WlUvU9UpqnocwNNQ\n6unj+W8Fwj+3dUkSHw/LlkFc+I/yzMwmCNC0aRBOePw47NgRhBMFXo8eEZMw0USOQNZVYaFVK2de\nqTHGGPd5c+9+JpA1CMozh+osVf1OVYudWk5EngKOq+qkgo4bmq3HJCkpiaSkpOKe0vhLhMwnHzMG\nDh4M4gmnTXNO+uWXQTxpYHTv7jS0/vOfiLkcTAAlJyeTnJwc6NMEpK4KJ61aOYuFG2OMcZ8Utkq9\niKwAWmYuZy8iUcAyVfVqhq2IJALTVLV5tuduAe4AOqvqsQJeq4XFZ0xx/PEHtG4N8+c7a2IF5TI7\ncADq1IFdu5yMg2FMFRo0cHqzMnsBRYL0PpqwJyKoql+b577WVT6eO2B1VUF/V7n3/fQT9O0Lq1cH\nJBQTAmSYoEPsg9aYYPC1rvJmuGCO2sMz9KIos1fEszkPnAUe/w5cUVADy5hAyRwm+OijQRommKli\nRWjRwskaEeZEnN6sL75wOxJjsvhaV4W9pk3hj/XpHNxlWWmMMcZt3jSyNojIAyIS7dkeBDZ4U7iI\nTAIWAY1FZLOIDAD+DVQAvhKR5SLyWrGjN8GxcSOcOOF2FH7z5pvOMMFHHnHh5F27wpw5LpzY/7p3\nt3lZJqQUu66KFNHR0Dx6LSs+3eR2KMYYU+J508i6G7gI2AZsBS4A7vSmcFXtq6q1VLWsqtZT1fGq\neoaqJqpqS892b/HDNwF39ChceiksWOB2JH7xxx8weDCMH+9SNsEIamR17uzkQDlwwO1IjAF8qKsi\nSet6u1g21/4ojTHGbYV+zVTV3cD1QYjFhKJRo6BZM+cbdZhzbZhgdm3aQP36Ts9gmOeMj4mB9u3h\nq6/gb39zOxpT0lld5Wh13klmLot2OwxjjCnxCv2WJyJVcZJU1M9+vKreGriwTEj4/Xd49VVYvtzt\nSPzC1WGCmaKjYepUFwPwr8xU7tbIMm4riXVVfHzO7J7x8bDwxXiGf1LNvaCMMcYA3mUXXAR8A/wA\nnMx8XlU/Dmxoll3QVapw+eXQqRMMGuR2ND7LzCa4YIGzYGd2lhWv+H7/3enN2r4doqLsfTTeCVB2\nwYisq4ry+SQCJ3buJb5GGTbtiyU+wdZXiDSWXdCY4PG1rvJmvFKMqob/t2xTNLNmOd+cH37Y7Uh8\nlpEBt90Gf//7qQ0s45uGDZ1hgz//7HYkxlhdBVCqehXOO2s3PyyNoWu38B6SbIwx4cybxBfTRaR7\nwCMxoeXSS53JNtHhP7b/zTfh0KGIaC+GpMxLxRiXWV3l0eryaiz70RpYxhjjJm8aWQ/iVF5HRSRN\nRA6KSFqgAzMui4qC6tXdjsJnGzY42QQnTAj7PBMh65JLYPZst6MwxuqqTK1bw/ffux2FMcaUbIU2\nslQ1VlWjVLWcqsZ5HscFIzhjfJGRAQMGwBNPhOAwwY0b4fXX3Y7CLzp3hkWL3I7ClHRWV/2lVStn\neQVjjDHuKbSRJY5+IjLY87iuiLQJfGjG+Obf/4aTJ2HgQLcjyUOZMvD0006AYa5SJTj7bLejMCWd\n1VV/adgQ0tJg9263IzHGmJLLm+GCrwFtgb6ex4eA/wYsIuOeI0fcjsBvfv0Vhg93hgmWKuU8l5Dg\nZN/KvcXHuxBg7drOcMwff3Th5P53ySVuR2CM1VWZRKw3yxhj3OZNI+sCVb0POAqgqqlAmYBGZYJv\n3To45xw4dsztSHx28iTccgsMGQKNGv31fGqqkwo595aS4lKgXbtGTMaISy91OwJjrK7KrtWBuSz7\ndKvbYRhjTInlTSPruIiUAhSyFnzMCGhUJrhU4e674cEHoWxZt6Px2UsvQblycN99bkdSiK5dYc4c\nt6PwiwsucP7ds8fdOEyJZnVVNq3if2fZ4nS3wzDGmBLLm0bWq8AnQDUReQZYCDwb0KhMcI0fD4cP\nh0GrpHCrV8MLL8DbbzsJEkPaxRfDd99Bevh/EcrM9B8hbUYTnopdV4lIHRH5WkRWi8gqEXnA83y8\niMwWkV9EZJaIVAxc+P7VOqk83/+eYAuEG2OMS7zJLvge8BjwHLADuFJVpwQ6MBMku3fD44/DmDF/\nTV4KU8ePw803wzPPQP36bkfjhUqV4OOPiaRvQREy+tGEIR/rqhPAw6p6Ns68rvtE5EzgcWCOqjYB\nvgae8H/kgVG3UyNOHs9g+3a3IzHGmJJJtJAveCJSL6/nVXVzQCLKeW4tLD7jo379oFYtGDXK7Uh8\nNmIELFwIM2c6E79zE4mo9kzIqVjRyWiWW3y8i/PeTEgSEVQ1j79Sn8r0W10lIp8C//FsHVV1l4jU\nAJJV9cw8jg9YXVWUz60cxx4+TPfYb7jrwy707mOLBEYKGSboEKvIjAkGX+sqbz55v8AZ4y5AOaAB\n8AtQaNJmERkH9AR2qWpzz3PxwAdAIvAHcK2qHihO8MYPBg1y8v2GuZ9+gldfheXL825gmcDbv9/p\nQfzyy5zrktnvwwRJseuq7ESkPtACWAJUV9VdAKq6U0Sq+THewIqJoXX8b3w/6zx69wmfsI0xJlIU\n2shS1WbZH4tIS+BeL8sfD/wbeCfbc5nDL0aJyCCc4RePe1me8bdmzQo/JsQdOwY33eR0xtWp43Y0\nJZeIk8p99uwQXPzZRDwf66rM11QAPgIeVNVDIpK7yyDfLoShQ4dm/T8pKYmkpKSinDogWj3fh/9+\nWMXtMIwxJiwkJyeTnJzst/IKHS6Y54tEVuWu0Ao4NhGYlq0nax1eDL/wHGvDBU2h/v53+O03mDq1\n4F4TGy4YeO+/D5Mnw2ef/fWcve8mt0AMF8znPEWpq0oD04GZqvqK57m1QFK2+mqeqp5yCyEkhwsC\nO3Y499H27LEe5UhhwwWNCZ6ADxcUkYezPYwCWgK+TKWtFrbDL0zISU6GSZOc4YJh/SVCNcx/AEen\nTnDPPc5aZWGeR8WEGT/UVW8DazIbWB6fA7cAI4Gbgc/yeF3IqlnTWc7ijz+gQQO3ozHGmJLFmyTX\nsdm2sjjj3nv7MQa7JRNMJ0+6HYHf7N/vZBN86y2oEs4jYpYsgZ493Y7CL6pXd/KorFjhdiSmBCp2\nXSUi7YAbgc4iskJElotIN5zG1SUi8gvQBXg+IJEHUKtWsGyZ21EYY0zJ482crGF+PucuEamebfjF\n7oIODsVx7mHtvvugdWu47Ta3I/HZ/fc7bZPLL3c7Eh81bQrz58PRo85t5zDXuTN8/bXz5c4Y8P84\n97z4Ulep6rdAfn2vXYtbbrDFx+fsEI+Ph4cfdhpZ11zjXlzGGFMSeZPCfRoF9Dap6hWFvL4+zpys\nZp7HI4EUVR3pSXwRr6p5Jr6wOVl+9vXXTtfPzz87+bbD2Pvvw9ChTjbBmBjvXhPSc4PatIEXX3QW\nKA5zn3wCb77pZBmEEH/fjSsClMLdp7rKx3OHxJysvF775ZcwcqTy9dfhPxzZ2JwsY4IpGCncNwA1\ngP95Ht8A7AI+9SK4SUASUFlENgNDcIZbTBGRW4FNwLVFD9sU2Z9/wh13wBtvhH0Da8sWeOABmDHD\n+wZWyOvUCebNi4hGVseOTrbH9HQoU8btaEwJUuy6KpKd//UL/LDo/8jIKEeUNxMEjDHG+IU3jax2\nqpp94M80EVmmqg8V9kJV7ZvPrrAZfhExHnsM2reHHj3cjsQnGRlwyy3w4IMRNhwtKcnJQT9kiNuR\n+CwhARo3hqVLnUvOmCApdl0Vyao0r0VC6TR++60cjRu7HY0xxpQc3tzXKi8ip2c+EJEGQPnAhWT8\nbu5cmD4dXnml8GND3CuvOFOXBg1yOxI/a9cO1q+PmMQknTs7HXPGBJHVVXlp0YLW8gPff+92IMYY\nU7J408h6CEgWkWQRmQ/MAwYGNizjVxdcAF98AZUquR2JT376CZ59Ft59F0oX0AebkODMRci9xccH\nL9Yii4uDzZsjJu95p07OFEBjgsjqqrw0aUKrY9+ybPFxtyMxxpgSxZvsgl+KyBlA5oLB61T1WGDD\nMn5VoQKcc47bUfjkzz/huuvg5ZfhdM+96oQESE099dj4+DBNtBBBEyY6dIBrr4UjR9yOxJQUVlfl\no3RpWtXfy5CFR4Bot6MxxpgSo9BvdSISA/wduF9VfwLqiUhkLOpjwsYDDzgdcv36/fVcaqrTmMq9\npaS4F6dxxMZC8+awaNFfaaVzbwkJbkdpIonVVflr2bYsP/5yGidOuB2JMcaUHN7cOh8PpANtPY+3\nASMCFpExubz/PnzzDfz3v25HYooic72slJS8G8N59UIa4wOrq/JRacK/qFUvmnXr3I7EGGNKDm8a\nWQ1VdRRwHEBVDwO24EYoU3WyQ0SADRucXqz333dGPZrwYckvTJBZXZUfEVq1chYlNsYYExzeNLLS\nReQ0PIs8ikhDwMa5h7IxY5w852EuPR1uuAGeegpatnQ7miDZs8fJ8BEB2raFlSvh4EG3IzElhNVV\nBWjVCsswaIwxQeRNI2sI8CVQV0TeA+YCjwU0KlN8a9Y4rZKhQ92OxGdPPw3Vqjk9WSXG8uXOImAR\n4LTToHVrZ6inMUFgdVUBWre2nixjjAkm0QLSsImIAHWAw8CFOEMvlqjq3qAEJ6IFxWdyOXrUyQ5x\n//1wxx1uR+OTWbPg9tthxQqoUiXvY0TCNItgQQ4dgho1YO9eKFfO7Wh8Nnw4HDgAL7546r6I/P0Z\nr4gIquq3oXyRXFf58neS/bWHDkH16s5cyDJl/BefCS4ZJugQ++A0Jhh8rasK7Mny1BozVHWfqn6h\nqtODVWmZYhg0CM44w2mdhLFt22DAAHjnnfwbWBGrQgVo1gyWLHE7Er+weVkmGKyuKlwF+ZMGddL5\n+We3IzHGmJLBm+GCy0WkdcAjMb5ZsQI+/RTGjnVuX4ap48ed9bDuu89Z0LZESkqC5GS3o/CL1q1h\n/XpLq2+CwuqqgsyZQ+s/59uQQWOMCRJvGlkXAItF5HcRWSkiq0RkZaADM0V03nnOgPv4eLcj8ckT\nT0DFis6/JVYENbLKlIGLLoL5892OxJQAVlcVpEULWh2cZ40sY4wJktL57RCRBqq6EbgsiPEYX1St\n6nYEPpk6FT76yMn9EOVN8z9StWsHbdq4HYXfZK6XddVVbkdiIpHVVfnLXAjcUY+vWMpbi48D0S5G\nZYwxJUNBX2U/8vz7tqpuyr0FIzhTcqxfD3ffDVOmQEKC29G4rEIFGDXK7Sj8xuZlmQCzuiofORcC\nFzKI4pf1URw54nZkxhgT+fLtyQKiRORJoLGIPJx7p6qO9uXEIvIQcBuQAawCBqhqui9lmvB0+DD8\n7W8wbJgzh8dElvPOc5KZ7NrlZDczxs8CWldFkjU05czKe1m5sjoXXOB2NMYYE9kK6sm6HjiJ0xCL\nzWMrNhGpBfwf0FJVm3vOcb0vZZY4e/YQKWmi7r8fzjnH6ckykadUKbj44oiZZmZCT8DqqkiTTBKt\n6u22RYmNMSYI8u3JUtVfgJEislJVZwbg3KWA8iKSAcQA2wNwjsh08iTceKMzb2fECLej8cm4cfDd\nd84WxkkRTSE6dXLmZV13nduRmEgThLoqYnzGlYy5Fb791u1IjDEm8hWaXiAQlZaqbgdeAjYD24D9\nqjrH3+eJWMOHQ3o6DB3qdiQ+WbLEySL48cfONKS8JCQ4ja+8tjBPpFiiZCa/MCZQfK2rRGSciOzK\nnpFQRIaIyFYRWe7ZuvkeqbtatcIyDBpjTBC4ksNNRCoBvYFEoBZQQUT6uhFL2Jk9G8aMgcmToXRB\nU+pC2/btzjyst9+GM8/M/7jU1OwTt3NuEb/20pw58O67bkfhF+ecA/v3w5YtbkdiTL7Gk3eGwtGq\n2tKzfRnsoPztnHNg40Y4dMjtSIwxJrIVlML9GlWdki09rj91BTaoaornXFOBi4BJuQ8cmq23Jikp\niaSkJD+HEka2boWbb3YaWDVruh1NsR09CldfDffcAz17uh1NCEtPh/HjoX9/tyPxWVSUs/zXvHlw\n001uR2OCLTk5meQATcrzV12lqgtFJDGvU/gQXsiJjoZmzZz16zt0cDsaY4yJXKKqee8QWa6qLTP/\n9etJRdoA44DWwDGcO4jfq+p/cx2n+cVXIs2YAWvXwiOPuB1JsanCbbfBwYPw4Yd/zcNKSHB6rXKL\njy8BPVb5SUuDWrVg714oV87taHz2+uuwdKnTbgTnd29/3iWTiKCqfmm8+LOu8jSypnkSMiEiQ4Bb\ngAPAMuARVT2Qx+sCVlf58+8ks6z774eGDeGhh/xTrgkeGSboEPvgNCYYfK2rChpvtk9EZgMNROTz\n3DtV9YrinlRVl4rIR8AK4Ljn3zHFLa/E6N7d2cLYf/7jzAdYtChnoovMYYEmm7g4aNrUaZlcfLHb\n0fisUyd4/nnn92xJTowfBayuAl4D/qmqKiIjgNE4S4+Er2PHaJW+jNnft3M7EmOMiWgFNbJ6AC2B\nd3GSVPiVqg4Dhvm7XBO6kpOdZIiLF+ef6MLkkpTkvHER0Mhq0gSOH4cNG5y76Mb4ScDqKlXdk+3h\nWGBafseGzdD20qVp/b+BPFtrCU6SX2OMMeD/oe35DhfMOkCkqqruEZEKAKoatOmyNlwwcvz2G7Rv\nD//7H3Tteup+GzqWjy++gJdeipjUfP36Oe3G22+333lJ5s/hgtnK9LmuEpH6OMMFm3ke11DVnZ7/\nPwS0VtVTkjSFy3DBzGHZ8+hIV+ZSoWJp9u/3T9kmOGy4oDHB42td5U12weoisgJYDawRkR9E5Jzi\nntAUQYR8A01NdRJcDBuWdwPLFCApCf71L7ej8JvM9bKMCQCf6ioRmQQsAhqLyGYRGQCMEpGVIvIj\n0BEI61lMKSlOtZI0sCVt6+/gwCmzy4wxxviLN42sMcDDqpqoqvWAR7D5U4F39KjzjfTnn92OxCfp\n6U4mwR494K678l/3yta8ykf58tC8udtR+E3nzk6GQVXnd57XtZCQ4HaUJkz5VFepal9VraWqZVW1\nnqqOV9WbVLW5qrZQ1StVdVfAog+m88+ndfRPbkdhjDERzZtGVnlVnZf5QFWTgfIBi8g430Dvuguq\nVYOzz3Y7mmLJbEyVLetMKRo9+q9kByVyzSsDQIMGzjWxbt1fd9Vzb3llmTTGC1ZXeatVK1odmON2\nFMYYE9G8aWRtEJHBIlLfsz0NbAh0YCXas8/CmjUwYULYpmFLTYXnnoPzznPStVtjymTq3NmGDJqA\nsLrKW40b0+rahkBkDEk3xphQ5E0j61agKjAV+Bio4nnOBMIHH8CYMfD55xAT43Y0PnntNZg2zTIJ\nmpw6dXKGDBrjZ1ZXeSsqikav/B8g7NlT6NHGGGOKodDsgm4qcdkFDx1y5t988gmce67b0RTbt986\nmQSXL3d6sowfqMKJExAd7XYkPtu6FVq0gN27ISqP2zyWdTDyBSK7oJvCJbtgXmXPnAndugWmfON/\nll3QmOAJRnZBEywVKsDq1WHdwFq92kl0AdbA8qt//hNGjnQ7Cr+oUwcqV4ZVq9yOxBjz/fduR2CM\nMZHJGlmh5rTT3I6g2LZsgcsvd5JcGD87/3wng0iEsFTuxoSGZcvcjsAYYyJToY0sEWnnzXOmZEtJ\ncYacPPgg3Hij29FEoPbt4bvv4NgxtyPxC0t+YfzN6qrisUaWMcYEhjc9Wf/28jlTQh05Aldc4fRi\nPfKI29FEqEqVoEmTiBnbk5QE33zjTDMzxk+sriqiW3mLY4fS2b7d7UiMMSbylM5vh4i0BS4CqorI\nw9l2xQGlAh1YxFOFgQPh0kudlXrD1IkTcP31UL8+jBrldjQRrmNHZ8hg+/ZuR+KzatWgbl0nOUqb\nNm5HY8KZ1VXFV4NdtE7YwLJlZ3LFFW5HY4wxkaWgnqwyQAWchlhsti0N+FvgQ4twzzwD8+eH9Rfm\njAy49VZnBNvbb+edKc74UefOTmq+CNG5s6VyN35hdVUxLeFCWp1cYkMGjTEmAApN4S4iiaq6SUQq\nAKjqoaBERgSncH/rLWfB4W+/hZo13Y6mWFThnntg7VonBXDuJb0sDbcpzKefwuuvw6xZOZ+3ayfy\nBSKFe6TWVYH8e4iTNN4tewdvJE1m5pd2lywcWAp3Y4InGCncY0VkBbAaWC0iP4jIOcU9YSYRqSgi\nU0RkrYisFpELfC0zLEyZAoMHw5dfhnUD6+GHnbbiggVQvrzzRSD7Fh/vdpQm1HXsCIsWQXq625GY\nCBGQuiqSlY6Po8KxPcyZdRIRSEhwOyJjjIkc3jSyxgAPq2qiqiYCj3ie89UrwAxVPQs4F1jrhzJD\n26FD8I9/OA2sxo3djqbYBg92pgadPOk0uPLaUlLcjtKEuvh4589g6VK3IzERIlB1VcRKSYEut51O\n1bh0Nm6E1FS3IzLGmMjhTSOrvKpmzZxQ1WSgvC8nFZE4oIOqjveUeUJV03wpMyxUqOCswBrGiw0/\n9xxMnQqzZ7sdiYkElsrd+JHf66oS4fHHaXVBlM3LMsYYP/OmkbVBRAaLSH3P9jSwwcfzNgD2ish4\nEVkuImNEJHxX4S2K0vkmdAx5o0c7CS7mzoWqVd2OxkSCTp0s+YXxm0DUVZGvUSMu6HgaS5a4HYgx\nxkQWbxpZtwJVgamerarnOV+UBloC/1XVlsBh4HEfyzQBNHKkk6Tg66/DdipZ5Fi6FDZudDsKv+jQ\nwVn668gRtyMxESAQdVWJ0L49LFzoDOHNPrfW5mgZY0zxFdqtoqqpwAMiEus89EvGpq3AFlXNHKDw\nETAorwOHDh2a9f+kpCSSkpL8cPog2bcPKld2OwqvJSTkPSa/XDlITHTmYdWuHfSwTG4ffgixsTBk\niNuR+Cw2Fpo3dxJgdOnidjQmUJKTk0lOTg7oOQJUV5UIrVs7I9n37MmZKVb8mv/RGGNKFm9SuDcD\n3gEy72ntBW5W1Z99OrHIfOAOVf1VRIYAMao6KNcx4ZvCffFiuOoq+OGHsGmZ5E4VrOrk6RgxAnbs\ngBo1Cj7eBMmsWc4v5Ztv3I7EL556yvn3mWecf+26inwBSuEekLrKy3OHZQr37Nq2debcZr+PaX+L\nocdSuBsTPMFI4f4mgcnY9ADwnoj8iJNd8Fk/lBkavvkGeveGCRPCpoGVmyo88QR89pnzOHcDy7io\nQwf48Uc4eNDtSPzikksskYrxi0DVVSVC+3YaKfdtjDEmJLiSXdBTzk+q2lpVW6jq1ap6wNcyQ0Jy\nMlx9Nbz3HnTr5nY0xZKR4ayDNWuWZX4LSTEx0KaNc61FgIsugl9+gb173Y7EhDnLLlhcJ07QfsLt\nLJx/0u1IjDEmYriVXTAyzZ0L11wDH3zg3J4PQ8ePwy23wHffOT9OlSpuR2Ty1LUrfPWV21H4RZky\nzsLEc+Y4j3NPvreJ+MZLVlcVV+nStGuwnSVLlBMn3A7GGGMiQ1GzC34MVMEyNuWtalVnEanOnd2O\npNiuusrJ1zFnjn2hDWlXX+10AUWIyy5zek7BWSA1v0WubbFUUwCf6ioRGSciu0RkZbbn4kVktoj8\nIiKzRKSi36MOEVU6N6f2aamsWuV2JMYYExkKbGSJSCngKVV9QFVbqur5qjrQk8XJ5Na8uTNfJgxl\nfnmNj4dPP82ZYcqEoCZN4Prr3Y7Cby67zJmXZZPsTXH4qa4aD1yW67nHgTmq2gT4GnjCTyGHng4d\naF9maY55WZbS3Rhjiq/ARpaqngTaBykWEyQJCXkPwypbFiZOhOhotyM0JU2jRs6wwdWr3Y7EhCN/\n1FWquhDI3SjrDUz0/H8icKUv5whp7drRPuVzFi7IyHoqd6+y9SQbY4z3vBkuuEJEPheR/iJydeYW\n8MhCXRjfck9N/cphd00AACAASURBVKvSXLMGGjRw0mcfOQJR3lwRxviZSM4hg8YUQyDqqmqqugtA\nVXcC1XwPM0TFx9O+yR4WLjgZztWbMcaEDG++UpcD9gGdgV6erWcggwp5R444Q7U+/tjtSHwyd66z\nJsrQofDkk7bwpHFX5pBBY4opGHVVRDc/Giz/mKgy0axf73YkxhgT/koXdoCqDghGIGFjzx5nDazE\nROjRw+1oim3cOKdh9eGHTmY3Y9zWuTPcdJNzD+O009yOxoSbANVVu0SkuqruEpEawO78Dhw6dGjW\n/5OSkkjKvqpvmJAooXNnmDcPGjd2OxpjjAmu5ORkkv24PI4EapV6fxARDan4fvnFaVhddx0MHx6W\nY+syMqBUKWcOzPTpTv6EwojkPToyv+dNEE2YACdPwm23uR2JX7RvD4MHO71aebFrLjKICKoacn3n\nIlIfmKaqzTyPRwIpqjpSRAYB8ar6eB6vC1hdFexrfsIEmDnTWYnE7VjMqWSYoEPsl2BMMPhaV4Vf\nK8EtixbBxRfDE084E5jCsIF1+PBfCekWL/augQX5r1sUHx+4WI2X4uJgyhS3o/AbGzJo3CIik4BF\nQGMR2SwiA4DngUtE5Begi+dxROvUyenJysgo/FhjjDH5s54sb/36K2zaFLaLDP/xh7MGVrNm8O67\ndjcyYuzfD3Xrwu7dETHGbulSuPVW+PnnvPfbnfTIEKo9WcUVST1Z4Ix0+OQTp75wOxaTk/VkGRM8\nAe/JEpHqnkUaZ3oeNxWRyBibVBSNG4dtA2vOHLjwQrjlFidFu4kglSpBixYwf77bkfjF+efDjh2w\ndavbkZhwY3WVnxw9SueztvP116fusnWzjDHGe96MeZsAzAJqeR7/CgwMVEDGf1ThpZegf3+YPBke\nfNAyCEak7t1hxgy3o/CLUqXg0kudOSHGFNEErK7y3fHjdPnqCb7+6sQpu2zdLGOM8Z43jawqqvoh\nkAGgqieAkwGNyvjs8GG48UaYNAm++84ZZ28iVI8eEbXAVK9eTlIWY4rI6ip/iI0lqXkKC+YrJ05t\nZxljjPGSN42sP0WkMp71QUTkQuBAQKMyPlm9Glq3huhoWLgQ6tVzOyITUM2aOS3pCNGtmzPx/sgR\ntyMxYcbqKj+p3v186pTby4oVbkdijDHhy5tG1sPA50BDEfkWeAf4P3+cXESiRGS5iHzuj/JKOlUY\nP95ZYPjRR51UvBGQC8EURsSZmxUhEhKcaWbz5rkdiQkzAaurSpyuXekSNa/QTJ/Z52jZ/CxjjMmp\nwEaWiEQB5YCOwEXAXcDZqrrST+d/EFjjp7IiWkJC3mnUMyu2Q4echVxffNHJgTBggM2/MuHLhgya\noghCXVWyXHABlx/6iJmfHy/wsOxztGx+ljHG5FRgI0tVM4D/quoJVV2tqj+rasGful4SkTpAd+At\nf5QX6VJTc044zl6x/fSTk5WtTBn4/nto2tTtaI3xTc+eTiMrd7ro/NZss7voJVsg66oSKTqajsM6\ns3JNKWs8GWNMMXkzXHCuiPQR8Xu/yMvA3/GMnzdFd9IzpbtrVxg8GMaNg5gYd2Myxh/OPNOZU7gy\nVz9E7uxmdhfdZBOouqpEKvfo/XS4OIqvvnI7EmOMCU/eNLLuAqYAx0QkTUQOikiaLycVkR7ALlX9\nERDP5rX69esjIiVqg1OfK13aeX7vXqF/f9/Ksi04W/369X350ynYsWNOt2YEEHGGDE6b5nYkJoz4\nva4q6S6/PGJWhzDGmKArXdgBqhobgPO2A64Qke7AaUCsiLyjqjflPnDo0KFZ/09KSiIpKYlNmzah\ntuy8CUNOIzdAduxwujV37IDShf5ph7yePeGpp+Dpp92OxPgqOTmZ5OTkgJ4jQHVVida9O4wYARkZ\nEOXNLVljjDFZxJvGiojEA2fgTCwGQFUX+CUAkY7AI6p6RR77NK/4RMQaWSYsBfzaPe88+Ne/oGPH\nwJ0jSNLToUYNZ8hgnToFHyty6vwtE7o8fwd+v+MQyLqqkPPmWVf5p2x3r+0mTZzF7Fu2LPg4t+Ms\nKWSYoEPsjTYmGHytqwq9NyUitwMLgFnAMM+/Q4t7QmNMAF11FXzyidtR+EWZMnDFFTB1qtuRmHBg\ndVVgXH45zJzpdhTGGBN+vBkA8CDQGtikqp2A84D9/gpAVefn1YtljCmGzEZWhNxS7tMHPv7Y7ShM\nmAhoXVVS9Vg9imkfHXM7DGOMCTveNLKOqupRABEpq6rrgCaBDSsybdq0iaioKDIyMnwuq0GDBnz9\n9ddeHTtx4kQ6dOiQ9Tg2NpY//vjD5xgAnnvuOe68807Avz8fwJYtW4iLi7OhoUVxzjlOWr4ff3Q7\nEr+45BInl8euXW5HYsKA1VUB0LH2b/z6i7Jtm9uRGGNMePGmkbVVRCoBnwJfichnwKbAhhW+Cmv8\nBDTxQQGyn/fgwYOFZrmbP38+devWLbTcJ554gjFjxuR5nqLK/d7VrVuXtLQ0196zsCQCQ4ZEzErU\n5co5k+8jZASkCSyrqwKgzHVX0bPCPPsbNMaYIiq0kaWqV6nqflUdCgwGxgFXBjow4y5VLbRxczJz\noS4TWvr3hxYt3I7Cb2zIoPGG1VUB0qULfQ7/j6mTbcigMcYUhTeJL+plbsBG4EegRsAjiwAZGRk8\n+uijVK1alUaNGvHFF1/k2J+Wlsbtt99OrVq1qFu3LoMHD84aGrdhwwa6dOlClSpVqFatGv369SMt\nzbslX1JSUrjiiiuoWLEiF154Ib///nuO/VFRUWzYsAGAGTNmcPbZZxMXF0fdunUZPXo0hw8fpnv3\n7mzfvp3Y2Fji4uLYuXMnw4YN45prrqF///5UqlSJiRMnMmzYMPr3759Vtqoybtw4ateuTe3atXnp\npZey9g0YMIB//OMfWY+z95bddNNNbN68mV69ehEXF8eLL754yvDDHTt20Lt3bypXrkzjxo156623\nssoaNmwY1113HTfffDNxcXE0a9aM5cuXe/V+mdDWrRssXQr79rkdiQllVlcFSJkyXHplDD8sh717\n3Q7GGGPChzfDBb8Apnv+nQtsACzXkBfGjBnDjBkz+Omnn1i2bBkfffRRjv0333wzZcqUYcOGDaxY\nsYKvvvoqq+Ggqjz55JPs3LmTtWvXsnXr1hxrhhXk3nvvJSYmhl27djFu3DjefvvtHPuz91Ddfvvt\njB07lrS0NH7++Wc6d+5MTEwMM2fOpFatWhw8eJC0tDRq1HC+q3z++edce+217N+/n759+55SHjhr\n4vz+++/MmjWLkSNHejV88p133qFevXpMnz6dtLQ0Hn300VPKvu6666hXrx47d+5kypQpPPnkkznW\n3pk2bRp9+/blwIED9OrVi/vuu8+r98uEtvLlnblZn33mdiQmxFldFSCnXd+bSyst5fPPvX9NQoIz\najlzS0gIXHzGGBOKvBku2ExVm3v+PQNoAywOfGg+GDo056d75pZfIyWv471s0BRkypQpDBw4kFq1\nalGpUiWeeOKJrH27du1i5syZvPzyy5QrV44qVaowcOBAJk+eDEDDhg3p0qULpUuXpnLlyjz00EPM\nnz+/0HNmZGQwdepUhg8fTrly5Tj77LO5+eabcxyTPZFEmTJlWL16NQcPHqRixYq0KGSYWdu2benV\nqxcA5cqVy/OYoUOHUq5cOc455xwGDBiQ9TN5I78kF1u2bGHx4sWMHDmS6Ohozj33XG6//Xbeeeed\nrGPat2/PZZddhojQv39/Vq5c6fV5TWi7/np47z23ozChLCzrqnDRrRt9XmhLrvuEBUpNdZKcZm6p\nqYELzxhjQlGR13BX1eXABQGIxX+GDs356Z65FdTI8vbYIti+fXuO5BGJiYlZ/9+8eTPHjx+nZs2a\nJCQkEB8fz913381ez3iM3bt3c8MNN1CnTh0qVapEv379svYVZM+ePZw8eZI62VZvzX7e3D7++GO+\n+OILEhMT6dSpE0uWLCmw/MKSYYjIKefevn17oXEXZseOHSQkJBATE5Oj7G3ZUl5l9rYBxMTEcPTo\nUb9lOjTu6tkTVqyArVvdjsSEi7Coq8JF6dL0vLI0ixbB7t15HxIfn/M+ZXx8cEM0xphQ482crIez\nbY+KyCTA92/NJUDNmjXZsmVL1uNNm/5KdFW3bl3KlSvHvn37SElJITU1lf3792f1vjz55JNERUWx\nevVq9u/fz//+9z+vUplXrVqV0qVL5zjv5s2b8z3+/PPP59NPP2XPnj307t2ba6+9Fsg/S6A3mf5y\nn7tWrVoAlC9fnsOHD2ft27Fjh9dl16pVi5SUFP78888cZdeuXbvQeEqsDz6AwYPdjsIvypVzEmBM\nmuR2JCZUWV0VWBUqQK9e8P77ee9PScl5nzIlJbjxGWNMqPGmJys221YWZ7x770AGFSmuvfZaXn31\nVbZt20ZqaiojR47M2lejRg0uvfRSHnroIQ4ePIiqsmHDBhYsWAA4adYrVKhAbGws27Zt44UXXvDq\nnFFRUVx99dUMHTqUI0eOsGbNGiZOnJjnscePH2fSpEmkpaVRqlQpYmNjKVWqFADVq1dn3759Xifb\nyKSqDB8+nCNHjrB69WrGjx/P9ddfD0CLFi2YMWMGqamp7Ny5k1deeSXHa2vUqJGVkCN7eQB16tTh\noosu4oknnuDYsWOsXLmScePG5Ui6kVcsJVrz5vD22xAhWSD794d3342YdZaN/wWsrhKRP0TkJxFZ\nISJL/VFmOMr8GzTGGFM4b+ZkDcu2PaOq72Uu+GhOlb035o477uCyyy7j3HPPpVWrVvTp0yfHse+8\n8w7p6ek0bdqUhIQErrnmGnbu3AnAkCFD+OGHH6hUqRK9evU65bUF9fr8+9//5uDBg9SsWZNbb72V\nW2+9Nd/XvvvuuzRo0IBKlSoxZswY3vNMfGnSpAk33HADp59+OgkJCVlxefPzd+zYkUaNGnHJJZfw\n2GOP0aVLFwD69+9P8+bNqV+/Pt26dctqfGV6/PHHGT58OAkJCYwePfqUWCdPnszGjRupVasWffr0\nYfjw4XTq1KnAWEq0s86CatXA03APd+3bQ1oa2FQ7k5cA11UZQJKqnqeqbfxUZtjp0gW2bYO1a92O\nxBhjQp8UdrdfRKYB+R6kqlf4O6hs59a84hMR66UwYSno1+4LL8Avv0C2dPfh7Kmn4NgxePHFnM+L\nWA9XOPH8Hfj1Lkgg6yoR2Qi0UtU8FxLIr67yh5C6tlV5tNvPlGnRlGdHlirSS0Pq5whjMkzQIfZG\nGhMMvtZV3gwX3AAcAcZ6tkPA78BLns0YE6r69oWpUyHbXLZw1q+fMy8rQkZAGv8KZF2lwFci8r2I\n3OFjWeFLhJt2vcC749I5ccLtYIwxJrR508hqp6rXqeo0z9YX6KCq81W18Jzixhj31K4NXbvCDz+4\nHYlfnHUW1KsHM231I3OqQNZV7VS1JdAduE9E2vsebnhq/sgl1D2xgenT3Y7EGGNCW2kvjikvIqer\n6gYAEWkAlA9sWMYYv/ngA2esToS4+2544w0nrbsx2QSsrlLVHZ5/94jIJzhrcC3Mfkz2xeKTkpJI\nSkryx6lDz7XXct/9D/HaCy9w5ZX2VcAYEzmSk5NJTk72W3nezMnqBozBGYohQCJwp6rO9lsU+Z/b\n5mSZiGLXru8OH3Z6s374ATKXgEtIyHux0/h4SyUdigI0JysgdZWIxABRqnpIRMoDs4Fh2cstMXOy\nPI49PoR6rz7CNz/G0bixd68JxZ8jHNmcLGOCx9e6qtBGluckZYEzPQ/Xqeqx4p7QU14d4B2gOk7W\nprGq+moex1kjy0QUu3b948EHITYWRowo+Dj7YheaAtHI8pTr17rKU2YD4BOceVmlgfdU9flcx5So\nRhZbt/LEGVM4fMu9vPJ6Wa9ekt+NkEx2Q8Q71sgyJngC1sgSkdbAFlXd6Xl8E9AH2AQMVdVifxyK\nSA2ghqr+KCIVgB+A3qq6Ltdx1sgyEcWuXf9Ys8ZJJ715M0RH539cSH5BNX5tZAWyripCDCWrkQVs\nnb2G5tefxfr1QuXKvpcXqj9nqLFGljHBE8jsgm8C6Z6TXAw8j9P7dABnSEaxqepOVf3R8/9DwFqg\nti9lGmNKjqZN4cwzYcoUtyMxISBgdZXJX51Lm9Knj/DqKWNQjDHGQMGNrFLZ7gBeB4xR1Y9VdTDQ\nyF8BiEh9oAXwnb/KNMbkIS0Nbr0VMjLcjsQvHn3UWQbM7n6XeEGpq8ypHnsMXnsNDh50OxJjjAk9\nBTayRCQz+2AX4Ots+7zJSlgoz1DBj4AHPT1apxg6dGjW5s+MH6Z4oqKi2LBhg1fHDhs2jP79+wOw\nZcsW4uLi/DZU7p577uGZZ54BYP78+dStW9cv5QIsXLiQs846y2/lhYzYWFi1Cr74wu1I/OLyyyE9\nHebOdTsSU5jk5OQcn+V+FvC6yuTtjDOcFSL+8x+3IzHGmNBT0Jysp3DWBNkL1ANaqqqKSCNgoqq2\n8+nETqU4HZipqq/kc0xYzsmaNGkSL7/8MuvWrSMuLo4WLVrw5JNP0q6dT2+ZzyZOnMhbb73FN998\nU+wySpUqxfr16zn99NMLPXbYsGH8/vvvvPPOOwGNcf78+fTv35/Nmzd7/ZrsoqKi+O2337z6mXzl\n+rU7aRKMHQvz5rkXgx+NHw/vvw+zZuW93+Z5hCY/z8kKaF3lZQwlbk5Wpl9+gXbtYN06qFKl+OWE\n+s8ZKmxOljHBE7A5War6DPAIMAFon60GiQL+r7gnzOZtYE1+DaxwNXr0aB5++GGefvppdu/ezebN\nm7nvvvuYNm1akcs6efKkV895S1URH9dLCnQDwZsYM/w83M3X9ySsXHMNbNwI337rdiR+0bcv/Pwz\nrFjhdiTGLUGoq0wBmjSB68/4geGD8hyMYowxJVZBwwVR1SWq+omq/pntuV9VdbkvJxWRdsCNQGcR\nWSEiyz1rnIS1tLQ0hgwZwmuvvUbv3r057bTTKFWqFN27d+f5552Mv+np6QwcOJDatWtTp04dHnro\nIY4fPw78Next1KhR1KxZk1tvvTXP5wCmT5/OeeedR3x8PO3bt2fVqlVZcWzdupU+ffpQrVo1qlat\nygMPPMC6deu45557WLx4MbGxsSQkJGTF8+ijj5KYmEjNmjW59957OXbsr6zHL7zwArVq1aJOnTqM\nHz++wAbJH3/8QVJSEhUrVuSyyy5j7969Wfs2bdpEVFRUVgNpwoQJNGzYkLi4OBo2bMjkyZPzjXHA\ngAHce++99OjRg9jYWJKTkxkwYAD/+Mc/sspXVZ577jmqVq3K6aefzqRJk7L2derUibfffjvr8cSJ\nE+nQoQMAHTt2RFVp3rw5cXFxTJky5ZThh+vWraNTp07Ex8fTrFmzHA3mAQMGcP/999OzZ0/i4uJo\n27YtGzduLPhCcVN0NDz9NAwZ4nYkflG2LAwaBNkuhRzi45075Lk3z6VlIkSg6irjnSFtZvLee8qv\nvxa/jNx/q/Y3aowJdwU2sgJFVb9V1VKq2kJVz1PVlqr6pRux+NPixYs5duwYV155Zb7HjBgxgqVL\nl7Jy5Up++uknli5dyohsi/3s3LmT/fv3s3nzZsaMGZPncytWrOC2225j7NixpKSkcNddd3HFFVdw\n/PhxMjIy6NmzJw0aNGDz5s1s27aN66+/njPPPJM33niDtm3bcvDgQVI8C5IMGjSI3377jZUrV/Lb\nb7+xbds2/vnPfwLw5ZdfMnr0aObOncv69euZM2dOgT9/3759ad26NXv37uXpp59m4sSJOfZnNtAO\nHz7Mgw8+yKxZs0hLS2PRokW0aNEi3xgBJk+ezODBgzl48GCewy537txJSkoK27dvZ8KECdx5552s\nX78+31gzY5k/fz4Aq1atIi0tjWuuuSbH/hMnTtCrVy+6devGnj17ePXVV7nxxhtzlP3BBx8wbNgw\n9u/fT8OGDXnqqacKfJ9cd/PNzkz17dvdjsQv7roLVq6ExYtP3ZeS4gxByr0VtF6PMaZoqo54kCdP\n+xd3XpNS7Lw6uf9W7W/UGBPuXGlkBVped66LsxXVvn37qFKlClFR+b+tkyZNYsiQIVSuXJnKlSsz\nZMgQ3n333az9pUqVYtiwYURHR1O2bNk8nxs7dix33303rVq1QkTo378/ZcuWZcmSJSxdupQdO3Yw\natQoypUrR5kyZbjooovyjWfs2LG8/PLLVKxYkfLly/P4448zefJkAKZMmcKAAQM466yzOO200wqc\nsL5lyxaWLVvGP//5T6Kjo+nQoQO9evXK9/hSpUqxatUqjh49SvXq1QtNNNG7d28uvPBCgKz3JTsR\nYfjw4URHR3PxxRfTo0cPPvzwwwLLzC6/YZCLFy/mzz//ZNCgQZQuXZpOnTrRs2fPrPcI4KqrruL8\n888nKiqKG2+8kR9//NHr87oiOhqWLIFatdyOxC/KlnV6skK9bWtMxIqN5cH32nBk3Wbe+s9Rt6Mx\nxpiQEJGNrLzuXBdnK6rKlSuzd+/eAucMbd++nXr16mU9TkxMZHu2HoWqVasSnWt11dzPbdq0iZde\neomEhAQSEhKIj49n69atbN++nS1btpCYmFhgQy/Tnj17OHz4MOeff35WWZdffjn79u3LijX7sLnE\nxMR8GyPbt28nPj6e0047LcfxeYmJieGDDz7g9ddfp2bNmvTq1YtffvmlwFgLyx4YHx9PuXLlcpx7\nux96anbs2HHKuRMTE9m2bVvW4xo1amT9PyYmhkOHwmBuQoTNQ7v5Zti6FWbPdjsSY0qmUt0vY1yP\nqTz12HFCecS0McYES0Q2stzStm1bypYty6effprvMbVr12bTpk1Zjzdt2kStbD0Kec15yv1c3bp1\neeqpp0hJSSElJYXU1FQOHTrEddddR926ddm8eXOeDb3c5VSpUoWYmBhWr16dVdb+/fs5cOAAADVr\n1mTLli05Ys1vTlbNmjVJTU3lyJEjWc8VlO3vkksuYfbs2ezcuZMmTZpw55135vvzF/R8przOnfm+\nli9fnsOHD2ft27lzZ4FlZVerVq0c70Fm2bVr29rZoaR0aXjxRXjgAcg2pdAYE0TnTPw7T7aaxTV/\ny+Conzu0EhIKHnlic7iMMaHGGll+FBcXx7Bhw7jvvvv47LPPOHLkCCdOnGDmzJk8/vjjAFx//fWM\nGDGCvXv3snfvXoYPH561lpS37rjjDt544w2WLl0KwJ9//smMGTP4888/adOmDTVr1uTxxx/n8OHD\nHDt2jEWLFgFQvXp1tm7dmpVoQ0S44447GDhwIHv27AFg27ZtzPZ0B1x77bVMmDCBtWvXcvjw4ay5\nWnmpV68erVq1YsiQIRw/fpyFCxeeklExsxds9+7dfP755xw+fJjo6GgqVKiQ1fOWO0ZvqWrWub/5\n5hu++OILrr32WgBatGjB1KlTOXLkCL/99hvjxo3L8doaNWrku/bXBRdcQExMDKNGjeLEiRMkJycz\nffp0brjhhiLFZwLviiucdXteftntSIwpoWJjGfjN36jfIIp77/VvSvbU1IJHntgcLmNMqLFGlp89\n/PDDjB49mhEjRlCtWjXq1avHa6+9lpUM4+mnn6ZVq1Y0b96cc889l1atWhU5UcL555/P2LFjuf/+\n+0lISKBx48ZZSSaioqKYNm0a69evp169etStWzdrblLnzp05++yzqVGjBtWqVQPg+eefp1GjRlx4\n4YVUqlSJSy+9lF89KaK6devGwIED6dy5M40bN6ZLly4FxjVp0iSWLFlC5cqVGT58ODfffHOO/Zm9\nURkZGYwePZratWtTpUoVFixYwOuvv55vjN6oWbMm8fHx1KpVi/79+/Pmm29yxhlnAPDQQw8RHR1N\njRo1GDBgAP369cvx2qFDh3LTTTeRkJDARx99lGNfdHQ006ZNY8aMGVSpUoX777+fd999N6vsiEj/\nfvKkM+s8ArzyitOjla2z2BgTRCLO+nWrVuWf9dMbubMNxscX7fWF9XxZL5gxJtDyXYw4FITrYsTG\n5Cckr92JE2HCBJg7F7yYyxfqnn0Wvv7amZ+V349jC5+6y5+LEYeCkrwYcX727IH27eGGG5wVIwJ9\nPyr3+1SU962wYxMScvaUxce7d1/KFiM2JngCthixMaaE6NcPTpyAf/3L7Uj84rHH4OhReOkltyMx\npuSqWhUWLIDPP83gjh7byDZlNuzkHqpoQxONMd6wRpYxJV2pUk5v1nPPQainn/dC6dLw3nvwwguw\nbFnex+S3SLENHTLGf6pXh+Qxv3Jo/nLa1NnG93PT3A7JL2zhZGOMN6yRZYyB00+H//4XrrrKGecT\n5hIT4bXXoE8fyCuZZH6LFNtdamP8K67NmUzedjF/bz6b3pce5vrma1g8fV9IDYEs6KZLXvPBirpw\ncu75YdYoM6ZksDlZxgRRyF+7Tz3lfAsYMcLtSPxi2DCYMcOZo1W+vHevCdc5MOHE5mQVpezIuR4P\nfb+WN+7/mTHLzkMS63FpjzK0bQtnneVkBq1Qofhl+zIny1eFncufsdmcLGOCx9e6yhpZxgRRyF+7\nGRlOtsFcC2KHK1W49VbYsgWmTYNsa2XnK5K+1IYqa2QVpezIux4zDhzkx/XlmfN1FMuWwdq1sH69\nk6im6skdVC2bRsJpR6gUc5xKFU5QqaJS6bI2VKpcmkqVyLHFl0qjUp0K1KoTxf79f50jmMkpCkuM\nkft36EsiDWtkGRM81sgyJozYtRt8J0/CzTfDjh0wdSpUrFjw8ZH4pTbUWCOrKGWXjOtRFQ4dgj0L\n1rJn4yH27zrG/t3p7N93kv2pyv5WXdmf5jSk/tqU/b/sYr9WJIMoKkWlUan0n1Qqe5hKF55Jpfio\nvxpj8VCnDjRI/4X6ratSs2k8UaUCcwkWteeqSJkQrZFlTND4WleV9mcwwZKYmBgZ6xOZEicxMdHt\nEEqczLweAwc6KaU/+QQaNXI7KmNMdiIQGwuxPc7idO9fBdSAkyc5uucgB7YcIXXrEfbvOMr+03M2\nyFJS4KcV5J05qwAAEWlJREFUJ9k4PZ2NR05wQI+RWGYnTSrvpdkZR2l2dzvOaSY0aRIxHfnGGJeF\nZU+WW0rKHUVjcjhwwJnUdNVVbkfiE1UnGcbQoTBqFNxyS95r99jfeeBZT1ZRyrbrMRAOb9/PxkU7\nWPftXlb9HMXPFduxahVs3gxnnw0XXABtzkvngno7adylbpF6vYo6HDD38dmdMvRwmMBQzXd/Yecu\n6FxFPb6o5w4nhb1PuRX1d1yU9ybQv1NfYinsXP4W7GssbNfJEpFuIrJORH4VkUFuxREpkpOT3Q4h\nbNh75b3k5GQnPd8TT0C3brB6tdshFZsI3Hef0158+WXo2hWWL/df+XZdRaZIr6vC+br1JfaYWpU4\n+29n0eflDgz9qh0ffQS//AL79sGrrzq93V9OPUL37kpCdBpdq6zgqQ4L+GzwMnb+vLfAsnNnH8zr\nS2D22Iua7bSg/YWt6ZV7f2Hny+v4efOSi3VutxXleinsfSpqVlpf3pvU1L/e80D8TosaS1HfB39+\nxoT6NZabK40sEYkC/gNcBpwN3CAiZ7oRS6QI54oy2Oy98l5ycjI0aQIrV8Lll0NSEvztb84qo2F6\ne71ZM/jhB7jmGujRA3r3htmznZwfvrDrKvKUhLoqnK/bQMQeEwMXXQQPPQSTZ1Rkw4lEfv3xCA/d\nc4xSeoLXX1Oanl+OevWcz5AXXnA+Dg8dcj/2YAnX2MM1brDYw5VbPVltgPWquklVjwPvA72DGUDx\nfumFv6agcvPbl9fzhT0XrIu2uOfx5nX2Xnn/OtffqzJl4MEHYcMGp6F1112wZk2+MRXG7fcqOhru\nvht++w169oR7702mXj24917nuJ077boKx7/BAAhoXRXs360/fw8lKfZqzWvQY/iFdB4RxZf7WrPv\naAXmzoUrr3Qylz72mLPwcsMa07nljIWM7D6fzwd/z/o5mzhx7KR/r/+NxXtZYTHkv7/g1/kzhuK+\nriifVcUVrrH7Uk64xu5L3efvusqtRlZtYEu2x1s9zwVN8d7Iwl8TaV9a7Aue90rEexUbC/ff7zSw\nmjY9db8qPPAAjBwJb7/tZJlIToYVK/I+pyqkpTnbwYPOduhQvreFk+fNg2PHnC09PeeW18+gmuOY\n5LlzcxxfvjzccQf065fMnDmQWE8RMmjaVOndex6XdMngjttO8uzwE7z1Frz2mnPcsmUwZUoy639V\n/vg1nW0b0/kz7SSpu9I5lHqcEycKfhuLokRcV6EroHVVSWqoFOV1oR67iLOu1403OkMLlyxxhvx1\nvngu7dueZPeuDN54Q7m0WxSx5dK5uvuXdOzoHP/YYzB6tDNU+aOXt/DV8z+wdPxqVk1dz7qZG9mQ\nvJktaw6ya9dfwwwPHYLDh+HP1HT4A47uP5q1leUox9KO5RlvxokMyuIcN+fLOQUen5ycjGYoZTjG\nsbS/tijm5Fs+aI5js782L/PmzSP9UHqeW56lZyjph9KZO3tugcdn/l4yj8/csr+uoPK9iSfz/Slq\n/JkxRJP38dmvxezlZ489moLjz112YeXnPj6/8vP6fWW+NnfZmeVHc+rv62T6yQLjz+/9zK/8/OLJ\n/TPnV37GiYygNbJcSXwhIn2Ay1T1Ts/jfkAbVX0g13HhOR7JGGNMgcIh8YXVVcYYU7KFYwr3bUC9\nbI/reJ7LIRwqYWOMMRHL6ipjjDHF4tZwwe+BRiKSKCJlgOuBz12KxRhjjMmL1VXGGGOKxZWeLFU9\nKSL3A7NxGnrjVHWtG7EYY4wxebG6yhhjTHGF9GLExhhjjDHGGBNuXFuM2BhjjDHGGGMiUdg1skSk\no4gsEJHXReRit+MJdSISIyLfi0h3t2MJZSJypuea+lBE7nY7nlAmIr1FZIyITBaRS9yOJ5SJSAMR\neUtEPnQ7llDm+ZyaICJvikhft+Pxh3Cvq8K17gjnz/Jw/mwN18+6cP7sCdf3HML3Wi/q50vYNbIA\nBQ4CZXHWLDEFGwR84HYQoU5V16nqPcB1wEVuxxPKVPUzT0rre4Br3Y4nlKnqRlW93e04wsDVwBRV\nvQu4wu1g/CTc66qwrDvC+bM8nD9bw/izLmw/e8L4PQ/ba72ony+uNbJEZJyI7BKRlbme7yYi60Tk\nVxEZlPt1qrpAVXsA/9/encfaUZZxHP/+2rIvlRKFAvayBZW1YKxAmxYRJYAgoBRKwcoSMRKRYJAi\nW2QJm4BQpAI2yCJbg2UpEMDaVspiWbra0hSlkGgIGJBdFPr4x7ynd7icc3rOvefeOXP7+yQT3vvO\nnJlnnnv6Psw578ydCJzfV/EWqbu5krQfsAR4HVgjHjHc3VylbQ4GpgMP9UWsRetJrpKzgV/3bpTt\noQW5WqN0I19b0flHf6v/5cqClLlWlbl2lHksL/PYWvaxrsxjT5lz34PYC/3/iO7E3dT4EhGFLMAo\nYDiwMNc3AHgR6ADWAuYDX0zrjgWuBIamn9cG7i4q/hLk6ipgSsrZI8C0os+jjXO16n2V+qYXfR5t\nnqstgEuAfYs+hxLkqjJeTS36HNo8X+OBA1P79qLjb/HvvrBaVebaUeaxvMxja9nHujKPPc3Gntum\n8PrSndiLfq/3JOdpu9WOL0X9MWIiYo6kji7dI4DlEfEygKQ7gW8DL0TErcCtkg6TtD8wGLi2T4Mu\nSHdzVdlQ0veAf/VVvEXqwftqjKSJZFN7HuzToAvSg1z9GPg6sLGk7SPihj4NvAA9yNUQSZOB4ZLO\niIhL+zbyYjSbL2AacK2kg4AH+jTY1ShzrSpz7SjzWF7msbXsY12Zx55mY5c0BLiINqgv3Yi98Pc6\ndCvuMWRTTBsaXwq7yKphSzq/toVsHvuI/AYRMY3sH8WabrW5qoiIW/okovbVyPtqNjC7L4NqU43k\nahIwqS+DalON5OoNsjnnVidfEfE+cHwRQXVTmWtVmWtHmcfyMo+tZR/ryjz21Iu9nXMO9WNv1/c6\n1I+7qfGljA++MDMzMzMza1vtdpH1D2BY7uetUp99mnPVOOeqcc5V45yr5vSnfJX5XBx7MRx7ccoc\nv2Pvey2Lu+iLLPHJJxc9A2wvqUPS2sBRwP2FRNZ+nKvGOVeNc64a51w1pz/lq8zn4tiL4diLU+b4\nHXvf6724C3yix+3AP4EPgVeA41L/AcAyYDkwsaj42mlxrpwr58q5KtPSn/JV5nNx7I59TYq97PE7\n9v4Xt9LOzMzMzMzMrAWKni5oZmZmZmbWr/giy8zMzMzMrIV8kWVmZmZmZtZCvsgyMzMzMzNrIV9k\nmZmZmZmZtZAvsszMzMzMzFrIF1lmZmZmZmYt5IssaxuSDpW0UtIORcdSi6Qzi46hVSSdJOmYJrbv\nkLSoyWPMkLRhnfV3SNqumX2ambWD/lizJM2UtEdvHqPJfR8s6WdNvuadJrefKmnrOusvl/S1ZvZp\nBr7IsvZyFPA4MK63DyRpYDdf+vOWBlIQSQMj4vqIuK3Jlzb818slHQjMj4h362w2GTijyRjMzNqB\na1YvHiPVqQci4rImX9pMndoRGBARK+psNgmY2GQMZr7IsvYgaQNgJHACuYIlaYyk2ZKmS3pB0nW5\nde9IulLSYkmPSdo09Z8oaa6keekTqnVT/02SJkt6GrhU0vqSpkh6WtJzkg5O202QdI+khyUtk3RJ\n6r8YWE/S85JurXIO4yQtTMslDcS5bTrGM+kcd8jFebWkJyS9KOnwKsfqkLRU0m2Slki6O3eee0ia\nlfb7sKTNUv9MSVdJmgucIuk8SaeldcMlPSVpfjr3wan/y6lvHnBy7vg7SvpLysX8Gt9GjQfuS9uv\nn36H81J+jkjbPA7sJ8ljkZmVRtlrlqQBaf8LJS2Q9JPc6rFpfH9B0sjcMSblXv+ApNEN1MXu1L/J\nkp5K57zquKnuzUg15zFJW6X+rSU9mc7jgtyxN0/7fj6d58gqv8p8naqak4h4BRgi6XM13xBm1USE\nFy+FL8DRwI2pPQfYPbXHAO8DHYCAR4HD07qVwFGpfQ4wKbU3ye33AuDk1L4JuD+37iLg6NQeDCwD\n1gMmAC8CGwLrACuALdN2b9eIfyjwMjCE7MOLGcAhNeK8JrX/CGyX2iOAGbk470rtLwHLqxyvI+13\nz/TzFOA0YBDwBLBp6h8LTEntmcC1uX2cB5yW2guAUan9C+DKXP/I1L4MWJja1wDjUnsQsE6VGFcA\nG6T24cD1uXUb5dqPVH7fXrx48VKGpR/UrD2AR3M/b5z+OxO4PLUPAB5L7QmV2pV+fgAYXe8YNc65\nkfqXP+cJudfcDxyT2scB01L7PmB8av+oEg9ZTTwztVWpR13imwXsVC8nqX0DcFjR7zsv5Vr86bG1\ni3HAnal9F1kBq5gbES9HRAB3AKNS/0rg7tS+jexTRYBdJf1Z0sK0n51y+5qaa38TmJi+pZkFrA0M\nS+tmRMS7EfEhsISsYNbzFWBmRLwRESuB3wOja8Q5Kn0KujcwNR3/emCz3P7uBYiIpUCtT89eiYin\n8/sFvgDsDDyW9nsWsEXuNXd13YmkjYHBETEndd0MjE7fZg2OiCdSf/5TyqeAsySdDmyd8tTVJhHx\nXmovAr4h6WJJoyIiP2f+9S4xmpm1u7LXrL8D2yibNbE/kB+T/5D++1wD+1mdj2m+/k2lur3I8glZ\nParkbySdv4t8nXoGOE7SucCuuXqUN5SsBkH9nLyG65Q1aVDRAZhJ2gTYF9hZUgADyeZUn5426Tq/\nutZ860r/TWTfIi2WNIHsk8WKroPsdyJieZd49gTyFw0f0/lvRfVOpc66rnEOAN6MiFo3GOeP38x+\nBSyOiGrTIuDT57+6Y1Ttj4g70hSWbwEPSfpBRMzqstlHue2XK7uZ+kDgQkkzIqIyrWNd4IMaxzcz\nayv9oWZFxL8l7QbsD/wQOAI4Ma2u7Cu/n4/45C0m6+ZDqHaMGhqpf7XqVL17rSrrVsUSEY9LGg0c\nBPxO0hXx6fuQ3yedS5ecnEQ2E+SEtJ3rlDXN32RZOzgCuCUitomIbSOiA3hJUuXTvxFpLvYA4Eiy\n+3gge/9+N7XH5/o3BF6VtFbqr+UR4JTKD5KGNxDrf1X9BuS5ZN/+DEnrx5F90lgtzjnpm5yXJFX6\nkbRrjWPWKmDDJH01tY8mO/9lwGdT0UXSIGU39tYUEW8Db+Tmqx8LzI6It4A3Je2d+lc9iVDSNhHx\nUkRMIpuqUS32ZZK2TdsPBT6IiNuBy4Hdc9vtACyuF6OZWRspfc1K90YNjIhpwNlkU+WqqdSfFcBw\nZT5PNsWv7jGSgfSs/uU9Sef9b8fQmb85uf5V+ZM0DHgtIqYAv6X6OS4Ftk/b53NyDq5T1kO+yLJ2\ncCQwrUvfPXQOms8C1wJ/Bf4WEfem/vfIitkiYB+yueyQDY5zyQbgpbl9dv0U7EJgrXST62Lg/Brx\n5V93A7Co6w2+EfEq2dOHZgHzgGcjYnqNOCvHGQ+ckG7iXQwcUiPOWp/eLQNOlrQE+Azwm4j4H1lB\nu1TS/BTLXqvZD8D3gV+m1+yWi/F44DpJz3d5/dh0I/M8sqktt1TZ54NA5bG3uwBz0/bnkuWedCPx\n+xHxWp3YzMzaSelrFrAlMCuNybfS+fS8qvUnTRtfkc7pV2RTCVd3DOh5/cs7hWz63/z0+srDOk4l\nq4ULyKb/VewDLEj1ayxwdZV9PkRnnaqaE0mDgO3Ifq9mDVM2ZdisPUkaA/w0Ig6psu6diNiogLCa\n0htxSuoApkfELq3cbytJ2hy4OSL2r7PNqcBbEXFT30VmZtY7+kPNaqV2P2dlT3L8E9kDnqr+D7Gk\nQ8kebHJenwZnpedvsqzMyvIJQW/F2dbnn77du1F1/hgx8CbZgzbMzPq7th6ze0lbn3NE/IfsSbtb\n1tlsIHBF30Rk/Ym/yTIzMzMzM2shf5NlZmZmZmbWQr7IMjMzMzMzayFfZJmZmZmZmbWQL7LMzMzM\nzMxayBdZZmZmZmZmLeSLLDMzMzMzsxb6P+CwD2/dcp7WAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, axes = plt.subplots(len(recs), 2, figsize=(12,15))\n",
+ "for i in range(len(recs)):\n",
+ " mec.set_eff('c', recs[i].conc)\n",
+ " qmatrix = QMatrix(mec.Q, mec.kA)\n",
+ " idealG = IdealG(qmatrix)\n",
+ " \n",
+ " # Plot apparent open period histogram\n",
+ " ipdf = ideal_pdf(qmatrix, shut=False) \n",
+ " iscale = scalefac(recs[i].tres, qmatrix.aa, idealG.initial_vectors)\n",
+ " epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=False)\n",
+ " dcplots.xlog_hist_HJC_fit(axes[i,0], recs[i].tres, recs[i].opint,\n",
+ " epdf, ipdf, iscale, shut=False)\n",
+ " axes[i,0].set_title('concentration = {0:3f} mM'.format(conc[i]*1000))\n",
+ "\n",
+ " # Plot apparent shut period histogram\n",
+ " ipdf = ideal_pdf(qmatrix, shut=True)\n",
+ " iscale = scalefac(recs[i].tres, qmatrix.ff, idealG.final_vectors)\n",
+ " epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=True)\n",
+ " dcplots.xlog_hist_HJC_fit(axes[i,1], recs[i].tres, recs[i].shint,\n",
+ " epdf, ipdf, iscale, tcrit=math.fabs(recs[i].tcrit))\n",
+ " axes[i,1].set_title('concentration = {0:6f} mM'.format(conc[i]*1000))\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that in this record only shut time intervals shorter than critical time ($t_{crit}$) were used to minimise likelihood. Thus, only a part of shut time histrogram (to the left from green line, indicating $t_{crit}$ value, in the above plot) is predicted well by rate constant estimates."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/MissedEvents-checkpoint.ipynb b/exploration/.ipynb_checkpoints/MissedEvents-checkpoint.ipynb
new file mode 100644
index 0000000..3eccfd2
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/MissedEvents-checkpoint.ipynb
@@ -0,0 +1,266 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# MissedEvents"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 5.45096768e+02 3.58690111e-02 4.58704226e-17]\n",
+ " [ 7.25589315e+01 4.77459650e-03 -3.30159469e-18]\n",
+ " [ 1.26939914e-02 8.35302916e-07 5.28345648e-12]\n",
+ " [ 3.84501585e-05 2.53013637e-09 3.88147430e-01]\n",
+ " [ -7.28448003e-18 -4.79340753e-22 6.91575829e-01]\n",
+ " [ 1.03253949e-03 6.79442118e-08 5.22642795e-06]]\n",
+ "[[ 5.45096768e+02 3.58690111e-02 4.58704226e-17]\n",
+ " [ 7.25589315e+01 4.77459650e-03 -3.30159469e-18]\n",
+ " [ 1.26939914e-02 8.35302916e-07 5.28345648e-12]\n",
+ " [ 3.84501585e-05 2.53013637e-09 3.88147430e-01]\n",
+ " [ -7.28448003e-18 -4.79340753e-22 6.91575829e-01]\n",
+ " [ 1.03253949e-03 6.79442118e-08 5.22642795e-06]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy import array\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, \\\n",
+ " ApproxSurvivor, ApproxSurvivor, MissedEventsG, \\\n",
+ " expm\n",
+ "qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ], 2)\n",
+ "qmatrix = QMatrix([[ -1.639102438935231, 0.9279328542626132, 0, 0.7111695846726181, 0, 0, 0, 0, 0],\n",
+ " [ 7319.818837397022, -7319.818837397022, 0, 0, 0, 0, 0, 0, 0],\n",
+ " [ 0, 0, -0.5849255773178983, 0, 0, 0, 0.05800330713458401, 0.5269222701833143, 0],\n",
+ " [ 554.9144283943098, 0, 0, -556.415038972956, 0.670095369096168, 0.8305152095500998, 0, 0, 0],\n",
+ " [ 0, 0, 0, 4445.029004693305, -4445.029004693305, 0, 0, 0, 0],\n",
+ " [ 0, 0, 0, 0.7249830360634507, 0, -0.7855125406770954, 0, 0, 0.06052950461364481],\n",
+ " [ 0, 0, 0.4346782743227515, 0, 0, 0, -3554.307968015994, 0, 3553.873289741671],\n",
+ " [ 0, 0, 0.6916315120151144, 0, 0, 0, 0, -0.6916315120151144, 0],\n",
+ " [ 0, 0, 0, 0, 0, 5390.604449280132, 0.435406457067279, 0, -5391.039855737199]], 3)\n",
+ "transitions = qmatrix\n",
+ "tau = 1e-4\n",
+ "a = DeterminantEq(transitions, tau)\n",
+ "G = MissedEventsG(transitions, tau, 4)\n",
+ "approx = ApproxSurvivor(transitions, tau)\n",
+ "exact = ExactSurvivor(transitions, tau)\n",
+ "factor = np.dot(qmatrix.fa, expm(tau*qmatrix.aa))\n",
+ "#print factor\n",
+ "print(G.fa(tau * 1.31838319649))\n",
+ "print(np.dot(exact.fa(tau * 1.31838319649-tau), factor))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAFBCAYAAACrYazjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtU1VXC//HPUUIhkbC0nMbxQmleYCI5jpol5aghpsNl\nKj0+iq3Sx8SsJaOLHnvMpokuTGaRt3makDhmKd7SzMpMc5Q8eAlK81ZeRkswCDHOUYHz+8PkF+MN\nDwe/5/J+rdU/rMPXD87ox733d+9tcjqdTgEAAEM0MjoAAAD+jCIGAMBAFDEAAAaiiAEAMBBFDACA\ngShiAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwAgIEoYgAADEQRAwBgIIoY\nAAADUcQAABiIIgYAwEAUMQAABqKIAQAwEEUMAICBKGIAAAxEEQMAYCCKGAAAA1HEAAAYiCIGAMBA\nFDEAAAaiiAEAMBBFDACAgShiAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwA\ngIEoYgAADEQRAwBgIIoYAAADUcQAABiIIgYAwEAUMQAABqKIAQAwEEUMAICBKGIAAAxEEQMAYCCK\nGAAAA1HEAAAYiCIGAMBAAUYHAHxJUVGRsrOytKegQCfLytQsNFQdIyM1avRotWzZ0uh4ADyQyel0\nOo0OAXg7m82mmenpWrV6tRIkmR0OhUgql7QlKEhLnU7FxcZqYlqazGazwWkBeBKKGKinebNna1pq\nqqbY7RrldCrsAp8plZRlMumloCBNz8jQmHHjrnZMAB6KIgbqYd7s2XoxNVVrKip0Sx0+v0/SwOBg\nTaGM3YolAXgzihhwkc1m05CYGH1exxI+Z5+ku4KD9f769YqOjm6oeH6BJQH4AooYcNGIhARFL1um\nJ1z4IzTDZNK2+Hi9nZvbAMn8A0sC8BUUMeCCoqIidWrbVt86HBcsgMspkRTetKn2HDrE1KkLWBKA\nL2EfMeCC7KwsxUsulbAktZAUbzIpOyvLfaH8hM1m07QrKGFJukXSmooKTUtNVX5+fkPGA64YRQy4\nYE9BgXo4HPV6htluV/6//qXDhw+ruLhY5eXlOn36tJikurSZ6emaYrdf0bq8dLaMJ9vtmpme3hCx\nAJcxNQ24YPj99ytu5UpZ6vGMHEmpwcEKCAvTqVOn5HA45HA4VFVVpaZNm9b6r0mTJlf1awEBnnnW\nD0sC8EWe+acN8HDNQkNVXs9nlEsampioudnZtb5eWVmpU6dO1Srnc//V9WsnTpxQUVGRS9/rcDhk\nMpkapOzr+tkmTZqocePG5/2euXNJYNJf/uLiUwD3oogBF7Rs00b/CgjQf1dWuvwMW1CQukZEnPf1\ngIAABQQE6Nprr61PxHqprKx0qcR//bXS0tJ6fX/jxo3PK+yTxcWa5oYlgR2FhW76nQLqjyIG6sjp\ndGrt2rXKzMzU+vXrVel0qlSujc5KJC11OvVicrJ7Q7pJQECAmjVrpmbNmhny6zudTp05c+a8cn7y\nkUcUsmFDvZ4dIqm8tNQ9QQE34GUt4DJOnDihzMxMdenSRU8++aQGDRqkf//73xo6ZIjmm0wuPXO+\nyaTBgwaxTnkRJpNJgYGBat68uVq2bKk2bdro1ltv1W/atHHLkkBImKuT24D7UcTARXzzzTdKSUlR\nu3bttH79es2ZM0cFBQUaM2aMrr32Wk1MS9OLQUHad4XP3SfppaAgTUxLa4jYPq1jZKS2NG1ar2fY\ngoLU8QJLAoBRKGLgV6qqqrR8+XL1799fMTExCgsLU0FBgRYtWqS+ffvK9KsRsNls1vSMDA0MDq5z\nGZ87WGJ6RgbHW7pgZHKylursiVmuOLckMNJDlwTgn1gjBiQdP35cb775pmbPnq3WrVsrJSVFSUlJ\natKkySW/79wpTXelpmqy3a7kixy1WKKzRy2+zFGL9dKqVSvFxcZqvotHi7IkAE/EPmL4tW3btun1\n11/XsmXL9Kc//Unjx493aaSan5+vmenpWvnBB4o3mWS222suH7D9cvnA4EGDNDEtjZFwPXHZBnwN\nRQy/c/r0aS1evFiZmZk6cuSIxo0bp0ceeUQ33HBDvZ9dXFx89jq+wkKVl5YqJCxMHSMiNDI5mVGY\nG3HWNHwJRQy/ceTIEc2dO1fz5s1Tt27dlJKSosGDB3vsKVK4tHO3L7EkAG9HEcOnOZ1Off7558rM\nzNQnn3yi4cOH67HHHlOXLl2MjgY3YEkAvoAihk/6+eefZbValZmZqVOnTiklJUWjRo1S8+bNjY6G\nBsCSALwZRQyfsn//fs2aNUvz58/XnXfeqZSUFPXr10+NGrFTD4Bn4m8neL3q6mqtXr1acXFx6tmz\npwICAmSz2Wr2A1PCADwZb6nAa/3000966623NGvWLIWEhGjChAlavHixgoKCjI4GAHVGEcPrFBYW\nKjMzU++9955iY2OVnZ2tnj171jr1CgC8BUUMr3DmzBktX75cmZmZ2rt3r8aOHaudO3eqdevWRkcD\ngHqhiOHRjh07pn/84x+aM2eOOnTooJSUFMXHx+uaa64xOhoAuAVFDI/jdDq1ZcsWvf7661q1apWS\nkpK0atUq/f73vzc6GgC4HduX4DEcDofeffddZWZmqqSkRI899phGjx6tFi1aGB0NABoMRQzDHTx4\nUHPmzNGbb76p7t27KyUlRffdd58aN25sdDQAaHBssIQhnE6n1q5dq/j4eN1xxx1yOBz617/+VbMf\nmBIG4C8YEeOqKi8vV3Z2tt544w01atRIEyZMkMViUbNmzYyOBgCG4GUtXBW7d+/WG2+8oZycHN17\n772aNWuW+vbty95fAH6PIkaDqaqq0qpVq5SZmakvv/xSjz76qL788ku1adPG6GgA4DEoYrjdjz/+\nqDfffFOzZs3STTfdpJSUFP35z39WkyZNjI4GAB6HIobbbNu2TZmZmVqyZImGDh2qRYsWyWw2Gx0L\nADwaRexnioqKzt7bWlCgk2VlahYaqo6RkRo1erRL97aePn1aubm5yszM1OHDhzVu3Djt3buXO2AB\noI54a9pP2Gw2zUxP16rVq5UgyexwKERSuaQtQUFa6nQqLjZWE9PS6jSKPXr0qObOnat58+apS5cu\nSklJ0f3336+AAP5tBwBXgiL2A/Nmz9a01FRNsds1yulU2AU+Uyopy2TSS0FBmp6RoTHjxp33GafT\nqY0bNyozM1MfffSRhg0bpvHjx6tr164N/jMAgK+iiH3cvNmz9WJqqtZUVOiWOnx+n6SBwcGa8qsy\nrqio0IIFC5SZmSm73a7x48dr1KhRCg0NbdDsAOAPKGIfZrPZNCQmRp/XsYTP2SfpruBgzbZatXHj\nRmVlZal3795KSUnRH//4RzVqxIFsAOAuLOj5sJnp6Zpit19RCUvSLZJSKyo0+sEH9ejEibLZbGrf\nvn1DRAQAv8eI2EcVFRWpU9u2+tbhuOCa8OWUSApv0kR7Dh/mDWgAaEDMMfqo7KwsxUsulbAktZAU\n36iRsrOy3BcKAHAeithH7SkoUA+Ho17PMNvt2lNY6KZEAIALoYh91MmyMoXU8xkhkspLS90RBwBw\nERSxj2oWGqryej6jXFJImKuT2wCAuqCIfVTHyEhtadq0Xs+wBQWpY0SEmxIBAC6Et6Z9lFvemm7a\nVHsOHeKtaQBoQIyIfVSrVq0UFxur+SaTS98/32TS4EGDKGEAaGCMiH1YfU/Wen/9ekVHRzdUPACA\nGBH7NLPZrOkZGRoYHKx9dfyec2dNT8/IoIQB4CqgiH3cmHHjNCUjQ3cFB+vvOnvL0oWUSHrFZNJd\n/3HhAwCgYTE17SdWrFihkUlJMjVqpPhGjWS222vuI7b9ch/x4EGDNDEtjZEwAFxFFLGfmDRpkho1\naqTJkycrOytLewoLVV5aqpCwMHWMiNDI5GRezAIAA1DEfqC8vFzt2rXTtm3b1LZtW6PjAAB+hTVi\nP/DWW2+pX79+lDAAeCBGxD6uqqpKHTt21Ntvv63evXsbHQcA8B8YEfu4lStX6oYbblCvXr2MjgIA\nuACK2MfNmDFDTzzxhEwunrAFAGhYTE37sO3bt2vIkCH69ttvdc011xgdBwBwAYyIfdirr76qlJQU\nShgAPBgjYh/1ww8/qHPnztq/f79atGhhdBwAwEUwIvZRs2bN0rBhwyhhAPBwjIh9kN1uV7t27bRh\nwwZ16tTJ6DgAgEtgROyDFixYoOjoaEoYALxAgNEB4F5Op1MzZszQq6++anQUAEAdMCL2MWvXrpXJ\nZFK/fv2MjgIAqAOK2MdwgAcAeBde1vIhu3fv1t13360DBw4oKCjI6DgAgDpgROxDZs6cqbFjx1LC\nAOBFGBH7iJKSEoWHh2vnzp1q3bq10XEAAHXEiNhH/OMf/9CQIUMoYQDwMoyIfcCZM2fUoUMHrVix\nQlFRUUbHAQBcAUbEPiA3N1fh4eGUMAB4IYrYy507wOPJJ580OgoAwAUUsZfLy8vT8ePHNXjwYKOj\nAABcQBF7uRkzZmjixIlq3Lix0VEAAC7gZS0vdvDgQd1xxx06cOCAQkJCjI4DAHABI2IvlpmZqeTk\nZEoYALwYI2IvdfLkSbVt21Zbt25Vu3btjI4DAHARI2IvlZWVpXvuuYcSBgAvx4jYC1VXV6tTp07K\nysrSnXfeaXQcAEA9MCL2QqtWrdJ1112n3r17Gx0FAFBPFLEXOneAB3cOA4D3Y2ray+zYsUODBw/W\nt99+q8DAQKPjAADqiRGxl5k5c6bGjx9PCQOAj2BE7EV++OEHde7cWfv27dP1119vdBwAgBswIvYi\nc+bM0YMPPkgJA4APYUTsJRwOh9q1a6d169apc+fORscBALgJI2Iv8c477ygqKooSBgAfQxF7Ae4c\nBgDfRRF7gXXr1qmqqkr9+/c3OgoAwM0oYi8wY8YMPfHEExzgAQA+iJe1PNyePXvUp08fHTx4UEFB\nQUbHAQC4WYDRAXBpr732msaMGUMJA/BoRUVFys7K0p6CAp0sK1Oz0FB1jIzUqNGj1bJlS6PjeTRG\nxB6stLRU4eHh+uqrr/Sb3/zG6DgAcB6bzaaZ6elatXq1EiSZHQ6FSCqXtCUoSEudTsXFxmpiWprM\nZrPBaT0TRezBXn75ZRUUFOjtt982OgoAnGfe7NmalpqqKXa7RjmdCrvAZ0olZZlMeikoSNMzMjRm\n3LirHdPjUcQeqrKyUh06dNCyZct0xx13GB0HAGqZN3u2XkxN1ZqKCt1Sh8/vkzQwOFhTKOPzUMQe\n6r333tMbb7yh9evXGx0FAGqx2WwaEhOjz+tYwufsk3RXcLDeX79e0dHRDRXP67B9yUOd27IEAJ5m\nZnq6ptjtV1TCknSLpMl2u2ampzdELK/FiNgD5eXlafjw4dq7d68aN25sdBwAqFFUVKRObdvqW4fj\ngmvCl1MiKbxpU+05dIi3qX/BiNgDvfrqq3r88ccpYQAeJzsrS/GSSyUsSS0kxZtMys7Kcl8oL0cR\ne5hDhw7p448/1sMPP2x0FAA4z56CAvVwOOr1DLPdrj2FhW5K5P040MMgF9v8fvDwYY0cOVLNmzc3\nOiIAnOdkWZlC6vmMEEnlpaXuiOMTKOKr7FKb37/IzdW7DocGDhggm83G5ncAHqdZaKjK6/mMckkh\nYa5ObvsepqavonmzZ2tITIyily3Ttw6H3nQ49N+SLJL+W9JbDoeOSLr74481JCZG82bPNjYwAPzK\nN998o+++/14b6nkBjS0oSB0jItyUyvvx1vRVwuZ3AN7o+++/18KFC2W1WnXkyBENGTJE72Zl6bvT\np3lr2k0YEV8FNptN066ghKWz++3WVFRoWmqq8vPzGzIeANRy4sQJzZ8/XwMGDFDnzp21Y8cOpaen\n6/Dhw5o7d64Gx8Vpvouj4vkmkwYPGkQJ/woj4qtgREKCopct0xMu/FbPMJm0LT5eb+fmNkAyADjr\n9OnTWrNmjXJycvThhx+qb9++slgsuv/++xUcHFzrs5ys5V4UcQNj8zsAT1VdXa1NmzbJarVq0aJF\nuu2222SxWPTnP/9ZN9xwwyW/l+U29+Gt6Qbmzs3vk/7yFzcmA+Cvdu7cKavVqgULFigoKEgWi0U2\nm03t27ev8zPOleldqamabLcr+SK3L5Xo7O1LL3P70kVRxA3MXZvfd7D5HUA9HDlyRAsXLlROTo6O\nHTum4cOHa8mSJbr99ttlcnG9d8y4cbrDbNbM9HQ9+8EHijeZZLbba7Zk2n65j3jwoEF6Py2N6eiL\noIgbGJvfARilrKxMS5YsUU5OjrZt26b4+HhlZGQoJibGbUfoRkdH6+3cXBUXFys7K0s7CgtVXlqq\nkLAwdY2I0IvJySyrXQZF3MDY/A7gajp16pRWr14tq9Wqjz76SPfcc4/GjRunuLg4BQUFNdiv27Jl\nS5bPXMT2pQbWMTJSW5o2rdcz2PwO4FKqq6u1YcMGjR07Vr/5zW80Y8YM9e/fX999952WLVumpKSk\nBi1h1A9vTTcw3poG0FC++uor5eTk6J133lFISIhGjBihYcOGqW3btkZHwxVgarqBtWrVSnGxsZrv\n4j5iNr8D+LXDhw/rnXfekdVq1Y8//qjhw4drxYoVioyMdPmlKxiLEfFVwOZ3APXx008/afHixbJa\nrfryyy+VkJCgESNG6O6771ajRqwwejv+F7wKzGazpmdkaGBwsPbV8XvObX6fnpFBCQN+yOFwKDc3\nVwkJCWrbtq1Wr16tCRMm6OjRo/q///s/xcTEUMI+gqnpq+RKNr+/ZTLpr5ISH3iAze+AH6murtb6\n9etltVq1ZMkS/f73v5fFYtGbb76pMHZO+Cympq+y/Px8zUxP18rLbH6/LyFBTzzxhPLy8hQeHm50\nbAANxOl0qqCgQFarVe+8845atGghi8WiYcOGqU2bNkbHw1VAERvk3Ob3Pb/a/N4xIkIjf7X5febM\nmbJardq4caMCAwMNTgzAnQ4dOqQFCxYoJydHJ06ckMVikcViUbdu3YyOhquMIvZgTqdTgwcPVkRE\nhF544QWj4wCop5KSEi1atEhWq1Vff/21kpKSZLFY1KdPH9Z7/RhF7OGKiooUFRWl7Oxs9evXz+g4\nAK6Q3W7XypUrZbVatW7dOg0YMEAjRozQfffdpyZNmhgdDx6AIvYCH3/8sUaPHq3t27eznxjwAlVV\nVfrss89ktVq1dOlSde/eXRaLRQkJCQoNDTU6HjwMRewlJk+erF27dmnFihVs2gc8kNPp1I4dO5ST\nk6OFCxfqxhtvlMVi0UMPPaSbb77Z6HjwYBSxlzh9+rTuvPNOjRw5UhMmTDA6DoBffPfdd1qwYIGs\nVqvsdruGDx8ui8WiLl26GB0NXoIi9iJ79+5V7969tXbtWkVGRhodB/Bbx48fr3np6ptvvtEDDzwg\ni8Wi3r17M2OFK0YRe5ns7Gy98MILys/PV3BwsNFxAL9RUVGhFStWyGq1asOGDYqNjZXFYtHAgQPZ\nXoh6oYi9jNPp1IgRIxQSEqI5c+YYHQfwaZWVlfr0009ltVq1YsUKmc1mWSwWxcfHq3nz5kbHg4+g\niL3QiRMndPvttysjI0MJCQlGxwF8itPp1NatW2W1WrVw4ULdfPPNNS9dtW7d2uh48EEUsZfKy8vT\nkCFDtHXrVo7BA9xg//79slqtWrBggc6cOSOLxaLhw4frtttuMzoafBxF7MXS09P14Ycf6tNPP1Xj\nxo2NjgN4neLiYr377ruyWq3av39/zUtXPXv25KUrXDUUsRerqqpS//79dc899+jpp582Og7gFX7+\n+WctX7685hz3uLg4jRgxQv3799c111xjdDz4IYrYyx05ckTdu3dXbm6u7rzzTqPjAB6psrJSn3zy\niaxWq95//3316tVLFotFf/rTn9SsWTOj48HPUcQ+YMWKFXr88ce1Y8cOXXfddUbHATyC0+mUzWZT\nTk6O3n33XbVr104Wi0UPPvigbrzxRqPjATUoYh+RkpKi4uJiLVy4kLUteLyioqKz14AWFOhkWZma\nhYaqY2SkRo0eXe/z1Pfu3Sur1Sqr1SpJNdcL3nrrre6IDrgdRewj7Ha7evTooSeffFIPP/yw0XGA\nC7LZbJqZnq5Vq1crQZLZ4VCIpHJJW4KCtNTpVFxsrCampclsNtf5uceOHdO7776rnJwcHTx4UA89\n9JAsFovMZjP/MIXHo4h9yNdff62+fftq48aNbLmAx5k3e7ampaZqit2uUU6nwi7wmVJJWSaTXgoK\n0vSMDI0ZN+6izzt58qSWLVumnJwc5eXl6f7775fFYtEf//hHBQQENNjPAbgbRexj5syZo7lz5yov\nL4+7TuEx5s2erRdTU7WmokK31OHz+yQNDA7WlP8o4zNnzuijjz6S1WrVqlWr1KdPH1ksFg0dOlTX\nXnttg+UHGhJF7GOcTqcSEhLUvn17vfLKK0bHAWSz2TQkJkaf17GEz9kn6a7gYK347DNVVlbKarXq\nvffeU3h4uEaMGKEHHniA+7nhEyhiH/Tjjz8qKipKc+fOVWxsrNFx4OdGJCQoetkyPeHCXzV/l/Ri\ncLBatGlTc9JVeHi4+0MCBqKIfdRnn32mYcOGafv27brpppuMjgM/VVRUpE5t2+pbh+OCa8KXUyKp\nQ2Cg9hw+rFatWrk7HuARGhkdAA0jJiZGjzzyiEaNGqXq6mqj48BPZWdlKV5yqYQlqYWkhMaN9fb8\n+W5MBXgWitiHTZs2TeXl5ZoxY4bRUeCn9hQUqIfDUa9nmO127SksdFMiwPPwjr8PCwgI0IIFC9Sj\nRw/FxMSoe/fuRkeCnzlZVqaQej4jRFJ5aak74gAeiSL2ce3atdNrr72mYcOGadu2bZyriwZ1+vRp\nbd++XZs3b9bmzZu1du1a3V3PZ5ZLCglzdXIb8HxMTfuBhx56SH369NGECROMjgIf88MPP2jp0qWa\nPHmy+vTpoxYtWmjMmDHavXu34uLi9EhKir5o2rRev4YtKEgdIyLclBjwPLw17SdOnjyp7t27a/r0\n6XrooYeMjgMvVFlZqYKCAm3atKlmxPvTTz+pZ8+e6tWrl3r37q0ePXooJOT/T0a7663pvf/+N3uG\n4bMoYj+ybds2DRw4UFu2bFH79u2NjgMPd/z48ZrC3bx5s/Lz8/W73/2upnR79eqlTp06qVGjS0+s\n1Wcf8Ssmk/7WpIn6xsbqueeeU5cuXVz9cQCPRRH7mVdeeUWLFi3Shg0buAQdNaqqqvT111/XlO6m\nTZt07Ngx9ejRo6Z0//CHPyjMhbXa+p6stWjNGuXl5emll15SXFycnnnmGbVt2/aKcwCeiiL2M9XV\n1Ro0aJCio6P13HPPGR0HBvnpp5+Ul5dXU7pbtmzRjTfeWFO6vXv3VpcuXdS4cWO3/HruOGu6rKxM\nf//73/XGG29oxIgR+p//+R8O+YBPoIj90LFjxxQVFaUFCxYoJibG6DhoYNXV1dq9e3dN6W7evFmH\nDh1SdHR0Ten27NlTN9xwQ4PmOHf70mS7XckXuX2pRGdvX3r5ErcvHTt2TM8//7xycnI0fvx4TZo0\nSaGhoQ2aHWhIFLGf+vDDD/Xoo49qx44duv76642OAzcqLy/Xli1bako3Ly9P1113Xa213cjISEOu\nCszPz9fM9HSt/OADxZtMMtvtNfcR2365j3jwoEGamJam6OjoSz7rwIEDeuaZZ7R69WpNnjxZjz32\nmIKCgq7KzwG4E0XsxyZNmqT9+/dr6dKlXJ7upZxOp/bv319Tups2bdK+ffsUFRVVU7q9evXyuPPG\ni4uLlZ2VpT2FhSovLVVIWJg6RkRoZHLyFb8d/fXXX2vq1KnKz8/XtGnTlJyczH3E8CoUsR87deqU\nevXqpUcffVTjLnEBOzxHRUWFbDZbrWnmpk2b1irdqKgoBQYGGh31qsvLy9NTTz2lI0eO6K9//auS\nkpIu+0Y34AkoYj+3e/du9enTR+vWrVO3bt2MjoNfcTqdOnjwYK3S3bVrlyIiImpNM//2t781OqrH\ncDqd+uSTT5SWlqbq6mqlp6drwIABzPjAo1HE0D//+U/NmDFDW7ZsYY3NQA6HQ9u2bas1zex0OtW7\nd++a0u3evbua1vOkKn/gdDqVm5urqVOn6qabblJ6erp69epldCzggihiyOl0atiwYbr++uv1xhtv\nGB3Hbxw5cqRW6RYWFuq2226rNdpt164do7l6qKys1Pz58zV9+nRFRUXpb3/7GzM/8DgUMSSd3Vca\nFRWlV199VUOHDjU6js85ffq0duzYUevAjIqKilpru2azWddee63RUX2Sw+HQrFmz9OKLL2rgwIGa\nPn06p8vBY1DEqLFp0yYlJCRo69atuvnmm42O49WOHTtWa213+/btCg8Prynd3r1765ZbbmG0e5Wd\nOHFCr7zyil5//XUNHz5cU6dO1Y033mh0LPg5ihi1PPfcc/r000/18ccfu+1UJV9XWVmpwsLCWpch\nlJSUnHcZQvPmzY2Oil8UFxfr+eefV3Z2tsaNG6fU1FRdd911RseCn6KIUUtVVZX69eunAQMG6Kmn\nnjI6jkf68ccfa12GYLPZ1KZNm1pru7fddhtbZ7zAwYMHNX36dK1cuVKpqalKSUlRcHCw0bHgZyhi\nnOfw4cOKjo7W8uXL1bNnT6PjGKqqqko7d+6sNc38/fff17oMoWfPni5dhgDPsWvXLk2dOlVffPGF\nnn76aT388MNcioKrhiLGBS1dulSTJk3S9u3b/eoc359++klffPFFrcsQWrZsWesyhK5duzJt76O2\nbNmip556SgcPHtRf//pXPfDAA8xsoMFRxLiocePG6cSJE8rJyfHJl4qqq6u1Z8+eWqPdAwcOnHcZ\nAhfS+5+1a9cqLS1NZ86c0fPPP6/77rvPJ/8MwDNQxLioiooKmc1mTZkyRSNHjjQ6Tr2dPHmy1mUI\nmzdvVmho6HmXITAlCens/vqlS5dq6tSpuuGGG5Senq4777zT6FjwQRQxLqmwsFD33nuvNm3apFtv\nvdXoOHV27jKEX+/b3bt3r26//fZae3dbt25tdFR4uMrKSr399tt65plnFBkZqb/97W+KjIw0OhZ8\nCEWMy8pcDfewAAAJ0ElEQVTMzFRWVpY2bdqkwMBAFRUVnb05p6BAJ8vK1Cw0VB0jIzVq9GjDpnEr\nKiqUn59fa5o5MDCw1tru7bffriZNmhiSD97v1KlTmjNnjtLT09WvXz89++yzCg8PNzoWfABFjMty\nOp0aOnSoQkND5fz5Z61avVoJkswOR81dslt+uUs2LjZWE9PSZDabGzTPoUOHapXuzp071a1bt1rT\nzG3atGmwDPBf5eXlmjFjhl577TU98MADevrpp5lZQb1QxKiTV15+Wc9OmaJpkpKdTl1os06ppCyT\nSS8FBWl6RobGuOlqxVOnTp13GUJ1dXWt0u3evTsXVuCqOn78uF544QX985//1NixYzV58uQr2sbm\niTNLMAZFjMuaN3u2XkxN1ZqKCt1Sh8/vkzQwOFhTXCzjo0eP1irdgoICderUqdbabvv27XmLFR7h\n8OHDevbZZ7Vs2TJNmjRJjz/++CUPBbHZbJqZnm74zBI8B0WMS7LZbBoSE6PP61jC5+yTdFdwsN5f\nv17R0dEX/dyZM2dqLkM4V74///xzTeGeuwyhWbNm9f5ZgIa0e/duPf3009q4caOmTp2qRx55RIGB\ngbU+M2/2bE1LTdUUu12jrvLMEjwXRYxLGpGQoOhly/SEC/83mWEyaVt8vN7Oza35WlFRUa3S3bZt\nmzp06FDrMoRbb72V0S681tatW/XUU09p3759evbZZzVs2DA1atToqs8swXtQxLiooqIidWrbVt86\nHBf8l/vllEjqEBiotGef1VdffaXNmzfrxx9/1B/+8IeaaeYePXr41cld8B/r1q1TWlqa7Ha7Ro0a\npZeffrrBZpbg3ShiXFTGSy9p57Rp+qfD4fIzhptM2te9u8aMHatevXqpc+fOHBkIv+F0OrVixQqN\n/a//0l/KyzXJhWdcaGYJviXA6ADwXHsKCtSjHiUsSXc5nQrp3FmPPPKIm1IB3sNkMqlXr146deaM\nHnbxGaOcTj37wQcqLi7mbWofxdAEF3WyrEwh9XxGiKTy0lJ3xAG8UnZWluIll5Z3JKmFpHiTSdlZ\nWe4LBY9CEeOimoWGqryezyiXFMIVgfBj7phZMtvt2lNY6KZE8DQUMS6qY2SktjRtWq9n2IKC1DEi\nwk2JAO/DzBIuhyLGRY1MTtZSnd3X6IoSSUudTo1MTnZfKMDLMLOEy6GIcVGtWrVSXGys5ru4p3e+\nyaTBgwbxggn82vU336x/BdTvvVhmlnwb25dwSQ19shbgi3bt2qXc3FwtXrxYR48elb2kRIeqqlze\njx/etKn2HDrEP2p9FCNiXJLZbNb0jAwNDA7Wvjp+z7kTgaZnZFDC8AtOp1MFBQX63//9X3Xt2lX9\n+/dXcXGxXnvtNX3//fcaOmQIM0u4KEbEqJNzZ+ROttsvevtSic6ekfsyZ+TCDzidTm3durVm5FtZ\nWanExEQlJSWpR48etQ6uYWYJl0IRo87y8/M1Mz1dKz/4QPEmk8x2e82tMbZfbo0ZPGiQJqal8ZcG\nfFJ1dbXy8vKUm5ur3NxcBQYGKikpSYmJibrjjjsueUY6Z03jYihiXLHi4uKz96gWFqq8tFQhYWHq\nGBGhkcnJTJ/B51RVVWnjxo1avHixlixZorCwsJry7dat2xVdUMLMEi6EIgaA/3DmzBl99tlnys3N\n1dKlS3XzzTcrMTFRiYmJuu222+r1bGaW8J8oYgCQdOrUKa1du1aLFy/WihUrFB4eXjPy7dChg9t/\nPWaWcA5FDMBv2e12rVmzRrm5uVq1apW6du2qxMREJSQk6He/+53R8eAnKGIAfuXkyZP64IMPlJub\nqzVr1qh79+5KTExUfHy8WrdubXQ8+CGKGIDPKysr08qVK7V48WJ9+umn6tWrl5KSkjR06FCmgWE4\nihiATyopKdHy5cuVm5urDRs2KCYmRomJiRoyZIjCOLcZHoQiBuAzioqKtHTpUuXm5uqLL75Q//79\nlZiYqLi4ODVv3tzoeMAFUcQAvNrRo0e1ZMkSLV68WDt27FBsbKySkpJ033336dprrzU6HnBZFDEA\nr3Pw4MGa06127dql+++/X4mJiRowYICa1vMObeBqo4gBeIV9+/bVnOt84MABDR06VElJSbr33nsV\nGBhodDzAZRQxAJcUFRWdPZCioEAny8rULDRUHSMjNWr0aLe9ibxz586ake8PP/yghIQEJSYmqm/f\nvgqo5x2/gKegiAFcEZvNppnp6Vq1erUSJJkdjpojGrf8ckRjXGysJqalyWw2X9Gzz10nuHjxYuXm\n5qq8vLzmaMnevXurcePGDfEjAYaiiAHU2blLC6bY7Rp1kUsLSnX20oKX6nhpgdPpVH5+fs20c3V1\ndc11gmazudZ1goAvoogB1Ik7r/E7d53guRuNmjRpUnOuc1RU1BXdaAR4O4oYwGW542L7qKgoff75\n58rNzdWSJUvUokWLmpFv165dKV/4LYoYwGWNSEhQ9LJlesKFvy5eMZn0Ztu2Ol5Rod/+9rc1a76d\nOnVqgKSA96GIAVxSUVGROrVtq28djguuCV9OiaR2AQFau2nTFb+8BfgD3oIAcEnZWVmKl1wqYUlq\nISnpmmu04bPP3BcK8CEUMYBL2lNQoB4OR72eYbbbtaew0E2JAN9CEQO4pJNlZQqp5zNCJJWXlroj\nDuBzKGIAl9QsNFTl9XxGuaQQrh4ELogiBnBJHSMjtaWeFynYgoLUMSLCTYkA38Jb0wAuyR1vTYc3\nbao9hw657QxqwJcwIgZwSa1atVJcbKzmu3jgxnyTSYMHDaKEgYtgRAzgstxxslZ0dHRDxQO8GiNi\nAJdlNps1PSNDA4ODta+O33PurOnpGRmUMHAJFDGAOhkzbpymZGToruBgzTCZdLHNSCU6e6zlXRe5\n8AFAbUxNA7gi+fn5mpmerpUffKB4k0lmu73mPmLbL/cRDx40SBPT0hgJA3VAEQNwSXFxsbKzsrSn\nsFDlpaUKCQtTx4gIjUxO5sUs4ApQxAAAGIg1YgAADEQRAwBgIIoYAAADUcQAABiIIgYAwEAUMQAA\nBqKIAQAwEEUMAICBKGIAAAxEEQMAYCCKGAAAA1HEAAAYiCIGAMBAFDEAAAaiiAEAMBBFDACAgShi\nAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwAgIEoYgAADEQRAwBgIIoYAAAD\nUcQAABiIIgYAwEAUMQAABqKIAQAwEEUMAICBKGIAAAxEEQMAYCCKGAAAA1HEAAAYiCIGAMBAFDEA\nAAaiiAEAMBBFDACAgShiAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwAgIEo\nYgAADEQRAwBgIIoYAAAD/T+9XNrfksX6MgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import network\n",
+ "from networkx import draw as nx_draw, draw_spectral\n",
+ "\n",
+ "graph = network(qmatrix)\n",
+ "nx_draw(graph)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 1.00000000e+00 -3.72362979e-20 3.98565840e-17]\n",
+ " [ -1.90203993e-16 1.00000000e+00 8.58280665e-28]\n",
+ " [ -1.83880688e-16 -1.43995601e-20 1.00000000e+00]]\n",
+ "[[ 9.99998098e-01 7.10033034e-11 -1.14561128e-21]\n",
+ " [ 5.60101709e-07 1.00000000e+00 -1.14894920e-21]\n",
+ " [ -1.21873763e-13 -4.22346238e-17 9.99999998e-01]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy import outer\n",
+ "from HJCFIT.likelihood import Asymptotes, DeterminantEq, eig, inv\n",
+ "eigenvalues, eigenvectors = eig(-qmatrix.matrix)\n",
+ "def get_ci00(i): \n",
+ " return outer(eigenvectors[:, i], inv(eigenvectors)[i, :])[:qmatrix.nopen, :qmatrix.nopen]\n",
+ "s = get_ci00(0)\n",
+ "for i in range(1, len(eigenvalues)):\n",
+ " # if abs(eigenvalues[i]) > 1e-8:\n",
+ " s += get_ci00(i)\n",
+ "print(s)\n",
+ "print(approx.af_components[0][0] + approx.af_components[1][0] + approx.af_components[2][0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.00030000000000000003\n",
+ "[ 0.0001 0.00011 0.00012 0.00013 0.00014 0.00015 0.00016 0.00017\n",
+ " 0.00018 0.00019 0.0002 0.00021 0.00022 0.00023 0.00024 0.00025\n",
+ " 0.00026 0.00027 0.00028 0.00029 0.0003 ]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEbCAYAAACP7BAbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX5//H3TUgEBQG1xoqCqCxCFAHRVApG6wKu9Ke1\nahXXSq32a6t+QatVtLVKbb8qauu+b8Vq1SpWXIigsimKJCDiwi67wbAn4f79cU5wGLNMkknOzOTz\nuq65OHPmPOfc82SYe57lnGPujoiISKppEXUAIiIiVVGCEhGRlKQEJSIiKUkJSkREUpISlIiIpCQl\nKBERSUlKUCIikpKUoEQAM+sSdQwisj0lKGn2wuR0WBL318nMft7AfXQzs4/MbK2ZXZZgma/M7KiG\nHDcqZlZkZoOijkNSixJUhjOzs8xsupmVmtkSM3vVzAZEHVdTqMMX9q/c/dmYcqeY2e/NbKSZnVPL\nMb63rbsvBHY0s54NCH8E8La7t3P3u6s4bloko0TjdPc8d59Yj/2bmZ1rZkeY2bF1KKPvvjTQMuoA\npPGY2RUEX3TDgfHAFuA44CTgvQhDSxlmdhCwKOb5zsD17t4vfD7ZzMa5++oqyta07dPA7cCv6xla\nZ+CZepZNG2aW5e4VDdjFJcAGoBwormL/Q4AfAUuB9QQ/yvOBq8LnksrcXY8MfAA7A6XA/6thmx7A\nBOAbYBZwUsxrXxH8J54Z7ucBYHdgHPAtQcJrF7f91QRfEquBh4CcOhzryvBY3xB8MeeEr/0Q+Bew\nAvgC+E3ce4gtWxKW3QF4HKgg+BL6Friqmjq4FugV8/xE4PGY5/cCp1VTtsZtgQeBNnWtf+Atgi/c\njWHs+8eVq/K9NaQeq6jTuvztRwKfh68VAUMTiHNEuP+NQFa47ihg3/Dzc3C47Z5hzIOqiXVMZR0D\nO8W99o/4vzvQH3gj6v+feiT2iDwAPRrpDxu0lLYALap5vSUwL/xyaQkcGX6JdA1f/wp4H9gt/HJb\nDnwAHATkhF+if4jZ31fAJ+EXSnvgXeCmOhxrCpAblp0NXAxYeMxrwy+xfcIvwmPijvu9sjGvHVlL\nPb0IWMzzXwFjYp7fClxTTdkatwV+Axxbz/qfAFxQQ9zfe28Nqccq9lOXv/2pQG64/DNgXczz6uKc\nEX5WdohZd1S4fBFBomsNvA6MrqEeDgfOBI4F9o1ZfwPwUDX1/suo/3/qkdij2fbDmtlvzGyOmc0y\ns1ureL1ykHpGzGD1/4Sv/SUs+7GZPR929cSW7RSO+VyRhDi7m9n7ZrapjvvbFVjl7lureT2f4Bfn\naHcvd/cJwCsE/9kr3eXuq9z9a2ASMNXdP3H3LcC/gT5x+7zL3Ze6ewlwc8y+fpTAse509+Vh2f8A\nBxP82t3N3W929wp3n0/QKoktV13ZSlZjLUFrD7+5Qh2ATTHPtwBtqilb27ZLga7VlE2k/mtT1Xur\nSz2eUcO+E/7bu/vz7r48XH6OIPEemkCcS919c/wL7v4gQQKdSpBsr6suSHd/392fcffx7v4lgJnt\nQpD4b6hi+3J3f6CG9y0pJOMTVDh4+kjcugKCcZgD3f1A4K/x5dz9M3fv4+59gX4E3RQvhC+PJ+gW\nOpjgP+M1ccX/RtAdkgyrCX6J31aPcrvVMBi8JzFjL6EFQMeY58tjljdW8Tz+i3tx3L72DJd/WMdj\nbQj33RnoaGZrwsc3BHX9g7h9VVU2UVlxz0vZ/gu1NbCmmrK1bVtC0NValUTqvz7qUo+7J7ifGv/2\nZjYs/BH3TbjvXgStr5osruX1B8P93OXuZbVsG28gMN/dtx3DzI41s9vM7LmaJlOY2c5m9udk/LiU\nhsv4BBWKv+nVJcCt7l4O4O6rail/NPBF5Qfe3d+MaZlMAfaq3NDMTgG+JG7A1syOCVtCH5jZP81s\nx4QCD37FfkgwJlEXk4HNwNBqXl8K7B23rhOwpI7HiRW7v87hMRpyrEXAl+6+S/jo4MGstpMSjCeR\nm53F1+sXbJ8Ad+W79xGvtm1bU/1AfEPrvy43cmtoPVbLzDoB9wO/DvfbgeCzX5m4q4uz2vjNbCfg\nDoJxzFFm1r6OYW0lGIP77mDu4wmSbEm4XJ0hwNvhsSVizSVBxXcxdAMGmdkUM5tgZofUUv7nVD+j\n6gLgNdj2H2sEcGPsMc1sV4Juip+4+yHAhwSD2Y3G3b8l6OK4J5wK3drMWprZkLBLcyqwwcxGhOsL\nCAb9GzJz7FIz6xh2sfweqJy6Xd9jTQNKw3KtzCzLzHol8PeqtJxg0L3GbcK/W6V3gL4xz/sSjLlg\nZvubmSWybWgXYFk1x21o/S+j9vdWqaH1WJOdCBLCKjNrYWbnA3kxryfyN4g3Bpjm7hcT9ETcV8fy\nbxH0HlS24An/bj8l6K6sXHeZmQ02s3+Ez3cDziYYvyut4zGlEWRsggqTzwyCroKTYsaTjiUYKO3g\n7vkECWVsDfvJBk4GnqvitWuBMnd/Olw1Crjd3TfEbZoP9ATeM7OPgGGEv57D7oRZZvZJ+KhcvqkB\nbx8Ad/8/4AqC5LgCWEgw7fnFsNvkJOB4YBVwN3COu8+rLB6/uwQO+TRB9+fnBF2fN4dx1PVYlfFv\nJfjSPphgEH0FwYyy2G6zmuK6BfhD2K1VXZfNO8SMl4R/u7+Y2XVm9gfgNndfEb78H4LWdCLbQjCp\noMrp/PWtkxi3VvHeGlKP2xWp5XnsvucQdGlPIUiavQgmyFSq6m9Q1f4cwMxOJpjwUDk9/wqgj5kl\nPDYX/l1OAK43syvN7DyCCS1/AwrD4/wM+DqMdX1YbhWwxN3/VdlDYmbjzOzqRI8tyWXbjw9nHjM7\nAjjX3S+IWTeOYGbQO+Hzz4HDvOpzXU4m6L4YHLf+POCXBDOPNofrJvJdd18Hgim21xMkhjPd/RcN\neB83AKVh0kk5ZvYVcKG7vx11LHVhZh0IpiJfm8C2LYAjwgkNiez7QXe/qKExSvKZ2T3AHwjGl9sD\nk9x9mZn9w90viTY6qZRQCypsBn9qZp+Z2chqthljZvMsmNl2cG1lzayDmY03s7lm9rqZtQvX9w9b\nO5WPoTFl+oati8/M7I76v21eJDjnAjPrBmRXlZxCZxLX7WJmg4H/BU6OnYXk7oPcfV9335egD/3P\n7v53gl+XA8xsv7D8jmZW3eyumtQ2I03qyN2/AVaH3bC1OY3gb1krM+sPvNGQ2KRRvU7QUssjmHa/\nNuzq/TbKoCROTXPQw9ZVC4Ium85ANvAx0CNumyHAq+HyYcCU2soCo4ER4fJIgkkLAK0Iz90B9iDo\nw658PhXoHy6PA45LIP4jgIfj1mUDTxCcHPkBwa9iCGabvRKz3Y7ASqBtXPl5BDOuZoSPv1dx3BuA\nK2KeFxCMBcwM6+HE2mIPy+USDHKXEMwQW0gNJ39G9SCYGHJU1HHUM/YWwPAEttspwf1lASOjfl96\n1PlzcCgxJ5DrEf2j1i4+M8sHbnD3IeHzq4O85qNjtrkXmODu/wyfzwm/kLtUV9bMPg0Tw3Iz2wMo\ndPceccfuQnDCYEeCKbFvu3vP8LUzwvJqjktKCT/Pa919Y9SxSGIsuLhvL2CUV3/uoDSxRK7F15Ht\nz9dYzPYn4VW3Tcdayub6dyf3LTOzbedkmNmhwMME027PcfetZtaR7c+dqDyGSEpx9+pm7kmKqvxx\nLamlsWbx1WesZFtTzt2nuXsewRnwvzeznKRFJiIiaSGRFtQSgpZMpb34/smES9j+pMPKbXJqKLvM\nzHJjuvhip+cC4O5zzWwdwUBmdcf4HjPL7KmJIiIRcfcmm6yVSAtqOrC/mXUOWzJnAC/HbfMywbk9\nlWNWJWH3XU1lXwbOC5fPBV4Ky+9jZlnhcmegO8FlS5YRzLQ5NDzpblhlmapEPbiXiY8bbrgh8hgy\n8aF6Vb2my6Op1dqCcvcKC+7oOZ4goT3k7nPMbHjwst/v7uPM7PjwfKL1wPk1lQ13PRoYa2YXEMyI\nOz1c/2PgajPbQnCG+iXuXnl9s0uBRwlm+o1z9/82tAJERCQ1JXTDwjARdI9bd1/c8ypvS11V2XD9\nGmLOyo9Z/yTwZDX7+hA4MJGYRUQkvWXspY4k+QoKCqIOISOpXhuH6jX9ZeSljszMM/F9iYhEyczw\nFJskISIi0uSUoEREJCUpQYmISEpSghIRkZSkBCUiIilJCUpERFKSEpSIiKSkjE1QpaVRRyAiIg2R\nsQlq4EAlKRGRdJaxCapN0RSKi6OOQkRE6itjE9TLnETvT56IOgwREamnjE1QD4w5mVajR8HIkVBR\nEXU4IiJSRxmboKbtVsLSN16AadPgoYeiDkdEROoo869mXlYGZtAyoVtfiYhINZr6auaZ/62dnR11\nBCIiUg8Z28UXb83GNdw++XYyscUoIpKJmk2CKt9aTquWrTAzWLkSrr8+6P4TEZGUlPljUFVZuxbO\nOgs2boTnnoNdd2264ERE0pTuqNsU2rWDl1+Gfv3gsMNg9uyoIxIRkTjNM0EBZGXx99O78OrP++IF\nBTBuXNQRiYhIjOaboICTup3EqH2+4obLD2LLxx9GHY6IiMRo1glq73Z7M/G8ibQadBQ+YsS29aWl\nMHmyLjYrIhKl5jlJogalpcGV0IuLoVcvmDQJ2rZNcoAiImlIkyQiVlQUJKfycviieJOuiC4iEhEl\nqDh5edBlwHSyBv+O6S1/xMFT7oUMbGWKiKQ6dfFVYdma9bw2fQ4/270dbc75aTAV/Z57oFWrJEYp\nIpJemrqLTwmqNuvWwYUXwpdfwvPPQ6dOydmviEia0RhUqmnTBp59lk2nDsXz86GkJOqIRESahcy/\nmnkymDE6v5w5LTtxZ8vN5EYdj4hIM6AWVIKuG3Qd3fodyyEPHELJJrWiREQam8ag6mjuqrl03617\no+xbRCSVaZJEEjRmgvqeiRODs3tPOKFpjiciEhFNkkgz3rIl5RdfBDfdBFu3Rh2OiEjGUIJqoFn7\nteHCaw+E8eNh6NDgXlMiItJg6uJLAnfHysrgyivh9dfh3/8OLuQnIpJBNAaVBE2doLbz+OOQm0vp\n4cdRVBRcOkkXmxWRTKAxqHQ3bBhv7dOOPj+dwKBBwZXRddsOEZG6U4JqBHM+38gXfc6kPP8Wimdv\n1RXRRUTqQQmqEZw76EgOeHc61vl9uvVdFgxHLVgQdVgiImlFY1CNpLT0u5setrV10LMnnH8+XH89\nZGVFGpuISH1okkQSpEKC+p5ly+Css6BFC3jqKcjVFf1EJL1okkSm2mMPvnl5LC91WIH36xdcgUJE\nRKqlFlQTqthawZtfvslxnzuMGAFTp0Lr1lGHJSKSEHXxJUGqJqjtbN0adPeJiKQJdfE1F2Fy2upb\nWbF+RcTBiIikHiWoiE1fMp2D/nEQ4+aNC1pVqd7yExFpIuriSwGTFkzirBfO4tV1Qzlo5tfw0EPQ\nrl3UYYmIbEdjUEmQbgkKYNWGVezsOeSMuCa4Mvpzz8HBB0cdlojINkpQSZCOCWo7zzwD//M/bLr+\nz3zU7yLyDjRdcFZEIqcElQRpn6CA9R9+yuIjjueRTRfx37zfM2mSroouItHSLD4BYObm7vQtGMTD\nrYcweza64KyINDstow5AqnbggUbXxY8ye3NwGT/d/1BEmht18aWw7S44G3bvuTtmTdbCFhHZRl18\nsk3btpCf/11y2lS+iYEP/5hlpw2BN96INjgRkUamBJVGWrVsxe8HXctvdptK6VmnwciRUFYWdVgi\nIo0ioQRlZoPN7FMz+8zMRlazzRgzm2dmH5vZwbWVNbMOZjbezOaa2etm1i5cf7SZfWBmM81supkd\nGVNmQrivj8xshpntVv+3np6O73o8d/91DsXjn4SiIvjxj+HLL6MOS0Qk6WpNUGbWArgbOA7oBZxp\nZj3ithkC7OfuXYHhwL0JlL0aeNPduwNvA9eE61cCJ7p7b+A84Im4kM509z7u3tfdV9Xx/WaE3Da5\n5Pc5CV55JbjH1GGHwcyZUYclIpJUibSgDgXmufsCdy8DngVOidvmFOBxAHefCrQzs9xayp4CPBYu\nPwYMDcvPdPdl4XIx0MrMsusYc/NgBpdfDu+8w+oue1CyqSTqiEREkiaRL/uOwKKY54vDdYlsU1PZ\nXHdfDhAmpN3jD2xmpwEzwuRW6dGwe++6BGJvHnr25N+f/4e7p90ddSQiIknTWOdB1Wca4nbzws2s\nF3ALcEzM6rPc/Wsz2wl4wczOdvcnGxBnxrio70VkwtR6EZFKiSSoJUCnmOd7hevit9m7im1yaii7\nzMxy3X25me0BbLspkpntBbwAnOPu8yvXu/vX4b/rzexpgi7EKhPUqFGjti0XFBRQUFBQy9tMf9ud\nH7VyJfzv/7LuhtuYtewH5OXpUkkiUjeFhYUUFhZGdvxaT9Q1syxgLvAT4GtgGsFEhTkx2xwPXOru\nJ5hZPnCHu+fXVNbMRgNr3H10OLuvg7tfbWbtgUJglLu/GBdHe3dfHY5JPQ284e73VxFzRpyo2yBb\ntjD1vOPp9O8ZDNvyL1YeeJSu5yciDZJyJ+q6ewVwGTAeKAaeDRPMcDO7ONxmHPCVmX0O3Af8uqay\n4a5HA8eYWWUCuzVcfymwH3B93HTyHYDXzexjYAbBeNYDDa6BTJWTw6fn/pVzj23Dozkncnbxb5n9\n0eaooxIRSZgudZTBSkthQMEGlufcwjOzZ3JEl8VkTZ0MO+wQdWgikoZ0u40kUIL6zrbr+fV02s79\nAPr3jzokEUlTSlBJoARVu+XrlpPbJjfqMEQkjaTcGJRkntLNpRzzxDFsLNsYdSgiItVSgmqG2u7Q\nlhnDZ9A6uzW8+y4MGwZr10YdlojIdpSgmqmWLcJT4Pr0gZ12gt69YeLEaIMSEYmhMSgBoPT5Zyj/\n5YVknXseO4++A3Jyog5JRFKMxqAkEq1/+jMefeRy3hv/EMuOzo86HBERtaBkezOWfsjGr+YxYMAZ\nUYciIilG08yTQAkq+UpLg/sj6pp+Is2Xuvgk5cxfsYrDjyhl0CAYODBIViIijU0JSmo1ZsIzHF3y\nCx4pP5uvi9dQXBx1RCLSHChBSa1uPP43TN7pab5psSuzOJCDFr0adUgi0gxoDEoSUnlNv4PWFLLj\nZRdAQQHcfju0axd1aCLSRDRJIgmUoBrZunXMHHYsm0pLyHt1Ojvl7BR1RCLSBDRJQlJfmzbs/dQr\n/OPiPvS+tzcLShZEHZGIZCC1oKRB3vryLQr2KSCrRVbUoYhII1MXXxIoQUVo+XJo0ya4vp+IZBR1\n8Ul6e+IJ1vXqysbCN6OORETSnBKUJJVfeSXPntOHnDPPhquugo2655SI1I8SlCSVmXHRH18la1YR\nLFoEffvC1KlRhyUiaUhjUNK4xo6FZcsouXgYWWXtdT0/kTSmSRJJoASVWtydvvcewqLJP6LkX7eS\n160NkyYpSYmkG02SkIxjZtza603WrFtHxRlDKJ7tup6fiNRKLShpEqWlwZXQi7/8hl77duD9G15n\nx11bw6BBUYcmIglSC0oyUtu2MGkSTBrfgUmTYMdWW+HMM+HSS+Hbb6MOT0RSkBKUNJm2bSE/Pxx7\nGjIEiopYX7qGVfvtiY8bF3V4IpJilKAkOh06kP3IYyy5/Ubs0kvh2mujjkhEUojGoCQ1rFsHixdD\njx5RRyIi1dAYlDRPbdpsS05bKrZwz7R72FKxJeKgRCRKSlCSctZtWcdrn79Gv/v7Mf2r90CtYZFm\nSV18kpLcnX8W/5N9Hnye/OISuP9+6NIl6rBEmjV18YkQ/Ec4I+8M8v/6DBxzDPTvD3feSWlJBZMn\nB+dViUhmUwtK0sNnn1F+/kUUz9zM2X47WV0P1+WSRJqYWlAiVenWjel/KeT+tn25ZLeLmT0bXS5J\nJMOpBSVpY9vlkmZvpVfPFmpBiTQxXc08CZSgMldpadBy6tXru+Tk7pRtLSMnKyfa4EQynLr4RGqw\n3eWSQu8ufJehf+jK7NtGaEq6SAZRC0oyQuF/7maXX1/J7nvsyx5Pvgjdu0cdkkjGUQtKpB4KTrqM\nfecup/3Pz4UBA+Cmm2Dz5qjDEpEGUAtKMs+iRXDZZbBsGUyeDC30O0wkGTRJIgmUoAR3mD+fh0sm\n4O5c2PfCqCMSSXtNnaBaNtWBRJqUGXTpwpDSVqwvWx91NCJSD2pBSfPizro5i5i1thN5eTqPSqQu\nNElCpBGt/2AOZb0P4tXTT+bIARt0TT+RFKYEJc3KJ+U9OaT9v+hv7/HUwl2Y9vcHog5JRKqhLj5p\nVr67XJJzzsFXcu+y58j50eFw333Qvn3U4YmkNM3iSwIlKKnJdpdLytoQ3GvqssugpeYMidRECSoJ\nlKCkvt5b+B47Zu9Inx/2iToUkZSjaeYiEVq5YSU7Ze8UPKmogKysaAMSacbUghKpSlkZ9OkDw4fD\nJZeo+08ETTMXSQ3Z2TB2LDz/PFv69mbuK49FHZFIs6MEJVKdnj1hwgQ+O/9k2v3iAt4f3Iu1i7+I\nOiqRZkMJSqQmZuT97hZyPv2cTTktWDh1PBDMBJw8GZ3oK9KINAYlUkfbzqUKp6rr1vPSXGgMSiTF\nFRUFyam8HIqXzOf9j9ZEHZJIRlKCEqmjvLyg5ZSdDbk/HkeHh4fBXXcFGUtEkkZdfCL1sN3VKBYU\nweWXw4oVMGYMHHlk1OGJNIqU7OIzs8Fm9qmZfWZmI6vZZoyZzTOzj83s4NrKmlkHMxtvZnPN7HUz\naxeuP9rMPjCzmWY23cyOjCnT18w+Cfd1R/3ftkjDtG0L+fnh2FNeHrz5JowaBeefT9mpQ1k6a3LU\nIYqkvVoTlJm1AO4GjgN6AWeaWY+4bYYA+7l7V2A4cG8CZa8G3nT37sDbwDXh+pXAie7eGzgPeCLm\nUP8ALnT3bkA3Mzuuzu9YpDGYwamnwpw5LNhrZ1751ZH8aeKf2FS+KerIRNJWIi2oQ4F57r7A3cuA\nZ4FT4rY5BXgcwN2nAu3MLLeWsqcAlWc/PgYMDcvPdPdl4XIx0MrMss1sD6Ctu08PyzxeWUYkZbRu\nzf53Ps4xr8zho2Uf8epnr0YdkUjaSuT6LR2BRTHPFxMkntq26VhL2Vx3Xw7g7svMbPf4A5vZacAM\ndy8zs45h+fhjiKScLh268Pzpz0cdhkhaa6xZfPUZRNtuVoOZ9QJuAS5OSkQiUZsxg42/Hs7ar+dH\nHYlIWkikBbUE6BTzfK9wXfw2e1exTU4NZZeZWa67Lw+771ZUbmRmewEvAOe4+/xajlGlUaNGbVsu\nKCigoKCguk1FmkanTixcOY89e+XB6Nvhggso3ZBFUVEwz0In+0qqKSwspLCwMLLj1zrN3MyygLnA\nT4CvgWnAme4+J2ab44FL3f0EM8sH7nD3/JrKmtloYI27jw5n93Vw96vNrD1QCIxy9xfjYpkC/A8w\nHXgVGOPu/60iZk0zl5TlH36IXX45Fes3cuG6MTw1f4CuSCFpISVvWGhmg4E7CboEH3L3W81sOODu\nfn+4zd3AYGA9cL67z6iubLh+F2AsQatoAXC6u5eY2bUEM/zmEXQVOnCsu68ys37Ao0ArYJy7X15N\nvEpQktrcmXfTM2wedQv5NonNHUqZ9Ore5OdHHZhI9VIyQaUbJShJB6WlMPDHTlHJB3D2YH438BJu\nOOpq2uS0iTo0kSql5Im6IpJ8bdvCpHeNd//Zn1mXfsyyjQt4cMaDUYclkjLUghJJIe6OucMvfwnD\nhsERR0Qdksg2akGJNGNmFlyV4thj4dxzKf/pUBZ8+HbUYYlEQglKJNWYwc9/DnPmsKRrLrseeTyM\nGAFr10YdmUiTUoISSVWtW9P5L/fR5rP5sGYN/OtfUUck0qQ0BiWSZtydD5Z+QP+O/aMORZoZjUGJ\nSI1WbVjFmc+fyYlPn8inqz6ltBQmTw6mrYtkErWgRNLQ5vLN3DXtLjqOfRt/qiu/++Z6fpi3q65G\nIY1KLSgRqdUOLXfgqsOvYv9jH+Pb1WUUVfTguFl/ZfYM3X9KMocSlEga6zHwB9x70N85quUkBrd5\nl/7DDmDGX69ia0V51KGJNJi6+ETSXGkpFBdDr15Q/v5LFP1tJD9+rRjLyoo6NMkwuhZfEihBiYgk\nn8agRCTpnvrkKZZ/s7j2DUVSiBKUSIZzd2Yt/ID1XTtTeNHRVKzTfHRJD0pQIhnOzLj1xNvJev0N\ndv9yBVk9DoBHHoGKiqhDE6mRxqBEmpspU+Cqq+Dbb+H++9FdEiVRmiSRBEpQIrVwhxdfhC5duKX0\nNU7d/1xWz9+TvDyd6CvV0yQJEWl8ZvDTn+K9e9OmxW6cdkIHBg2CgQN1ySRJHUpQIs2YmXFIi18y\nZ1Zrysth9myY++5KWL066tBElKBEmru8vOAk3+xs6NkTei0Zz8b9OlM4/Dg2rF0VdXjSjClBiTRz\nbdvCpEkwcWLwb+uLfsGy159nh09ms7ZzLl/ffhOU69JJ0vQ0SUJEqvXpa0/Q7baHabFiJXz4Ieyw\nQ9QhSYQ0iy8JlKBEksgd5swJ+v+Aiq0VZLXQdf6aIyWoJFCCEmk8f3znj3Ro3YHLDr0s6lCkiSlB\nJYESlEjj2VKxhY1lG2nXqh3cfTeceCLss0/UYUkT0HlQIpLScrJyguTkDitXQr9++G9/y8I5n+nW\n85JUSlAiUj9mcOONMHs2S1cvZcd+PRh31tEcPWipkpQkhRKUiDRMbi4Lfz2WAa3foEfF5wwpOZvi\n4qiDkkygMSgRabDS0uAySbNnwwEHbOXdd1vomn4ZSGNQIpJ2Yk/2jU9OWyq28MLs53Hd3kPqSAlK\nRJKibdvgzh3xLafl65az5LWxWL9+8OqrweQKkQSoi09EGl/l7T2uuw7at4c//xmOOCLqqKSOdB5U\nEihBiaSoigp4+mm44Qa++EFL1t9zBwcdcnzUUUmClKCSQAlKJLX55s28c9MFXNj2bfru92OeOfUZ\nWrZoGXVYUgslqCRQghJJDxvKNjD+i/EM7TEUCGYDFhWhO/umKCWoJFCCEkk/lVPVWxV9wE7d9+TF\nKXsqSaUYTTMXkWapqAiKi+FHFZMY+/k+zD/vF7BiRdRhSYSUoEQkJVTe2fee7N9xaq8pdN21PRxw\nAFxzjW7aS0OJAAALSElEQVRB30ypi09EUkZpadCK6tUrHINauBBuvhmKilj71jgcp32r9lGH2Wxp\nDCoJlKBEMsyWLYyd9yKXjruUyw+7nMsPu5y2O2iAqqlpDEpEJF5ODqf3Op33LniPT1d9yltfvRWs\n1w/RjKYWlIikp7Ky4NpKw4bB8OHQqlXUEWU8taBERBKRnQ0PPwwTJlC+Xxfev+Zs2Lw56qgkiZSg\nRCR99e4NL77I0sfuodOkWdC9O/znP5SWorv7ZgB18YlI5nj/fdZvbsmA3x26bTbgpEm6KkWyqItP\nRKS+Dj+cT1oFyal8azmf9D6Wv4x/jPKt5VFHJvWgBCUiGaXyhN/srJbsu+T3vFPyKMePOQx/5BEo\nV6JKJ+riE5GME3/C77KP3mWPK68PTvy97jo4+2xoqaun15VO1E0CJSgRqdI778CNN8LChSy9/AJ2\nH34FLXM0PT1RSlBJoAQlIjV65x2KLzud7DvuottPTo86mrShBJUESlAiIsmnWXwiIhGZtmQaT036\nO+WbN+pcqhSgBCUiEspukc239/wfSzruzJ8OvZqjBpYxcKCSVFSUoEREQn1+2IdLnv2cj676G0O+\neIfiiu7kFz3A7I+3RB1as6QxKBGROJW3n29f9C5/bv1H8n/wBTa7iM0toVXL5jvrT5MkkkAJSkQa\nartzqVbPZ3r2Sq6bcB2vn/161KFFRgkqCZSgRKQxrNuyjjY5baIOIzIpOYvPzAab2adm9pmZjaxm\nmzFmNs/MPjazg2sra2YdzGy8mc01s9fNrF24fhcze9vMSs1sTNwxJoT7+sjMZpjZbvV72yIidfe9\n5HTRRXz2u2GsXb4wmoAyXK0JysxaAHcDxwG9gDPNrEfcNkOA/dy9KzAcuDeBslcDb7p7d+Bt4Jpw\n/SbgOuDKakI60937uHtfd1+V8DsVEUkyv/JKVs+cTPm++zDh3EGUrVwedUgZJZEW1KHAPHdf4O5l\nwLPAKXHbnAI8DuDuU4F2ZpZbS9lTgMfC5ceAoWH5De7+PlDdncc081BEUoIdcAA/ense6ya+SfvV\nG2jZoyfcfHPUYWWMRL7sOwKLYp4vDtclsk1NZXPdfTmAuy8Ddk8w5kfD7r3rEtxeRKRRde53FH1e\n+QCbMSO4nHpIJ/s2TGNdzrc+g2iJzGo4y92/NrOdgBfM7Gx3f7KqDUeNGrVtuaCggIKCgnqEJCJS\nB507Bw+CpNTlskv5ZsrJHNj6uLS8cWJhYSGFhYWRHT+RBLUE6BTzfK9wXfw2e1exTU4NZZeZWa67\nLzezPYAVtQXi7l+H/643s6cJuhBrTVAiIk2tqAhKXvoDWzftyOwKp+Sqm2l75enQrVvUoSUs/sf9\njTfe2KTHT6SLbzqwv5l1NrMc4Azg5bhtXgaGAZhZPlASdt/VVPZl4Lxw+VzgpSqOva0lZmZZZrZr\nuJwNnAgUJRC/iEiTy8uDvH32IHvrzhzYs4Ldd62AAQMo/9lpzH1rbNThpYWEzoMys8HAnQQJ7SF3\nv9XMhgPu7veH29wNDAbWA+e7+4zqyobrdwHGErS8FgCnu3tJ+NpXQFuCFlgJcCywEJhI0OrLAt4E\nrqjqhCedByUiqSD+xomUlrLkrzeQdcedLNpvN3b641/oecK5UYeZMJ2omwRKUCKSyjatK2HaHy8h\nq+3ODLjuvqjDSZgSVBIoQYmIJF9KXklCREQaX+nmUn7ySAFlz/0TKiqiDidySlAiIimiTU4b7ux7\nLdl33gU9esCDD1K6ekuzPZdKXXwiIqlo4kTKb/ozqyYWMzrnPN7b/ze8NWn3SM+lUhefiIjAoEFM\n/+N/Gbr13wxo/TxdOu3PFS/dSMmmkqgjazJKUCIiKSovDzblHcJZa2czc800trRexLot66IOq8mo\ni09EJIV971yqWOvXw6JFwXhVE1AXn4iIbNO2LeTnV3Mdv+JiNg04jOJBB8D06U0eW2NTghIRSVeH\nHkrF5/PIHfIzOPVU+MlP4I03IEN6kNTFJyKSCcrK4OmnYfRoePBBpnbK4pA9DyGrRVbSDqErSSSB\nEpSINFtbt1LuFRQ8diQr1q9gxIARnL7/hRQXG3l5DbvlhxJUEihBiUhz5+5MXDCRVz59gzeu/hOL\nitbS4wDjv+/vXO8kpUkSIiLSYGbGEfscwf9r9yeKi+GYitd4qWhfvr30Gnzp0qjDS4gSlIhIBsvL\nC6aov5B9BsN6TOcHrdexoVsXlp5xAsydG3V4NVIXn4hIhos/l2r1wrns/OATZN/3QDA9vVOn2neC\nxqCSQglKRCQBW7ZATg4AazetZeKCiZzQ7QRaWNWdaxqDEhGRphEmJ4ClpUsZ9c4o8v6ex7gpT8Lm\nzREGFlALSkREgGDm39tfvU3Hh8bS49FX4Le/hYsvhnbtAHXxJYUSlIhIA82cCbfdBq+9BhddxIph\nvyQ3r6u6+EREJGK9e8OTT8KMGWxcu4GKw5rmgrSx1IISEZEaTZ4MRxeUsGFLB7WgREQkdeTlQdcD\n2jf5cdWCEhGRWpWWws47a5JEgylBiYgkn86DEhERQQlKRERSlBKUiIikJCUoERFJSUpQIiKSkpSg\nREQkJSlBiYhISlKCkoQVFhZGHUJGUr02DtVr+lOCkoTpP3zjUL02DtVr+lOCEhGRlKQEJSIiKSlj\nr8UXdQwiIplIF4sVEZFmT118IiKSkpSgREQkJaVMgjKzwWb2qZl9ZmYjq9lmjJnNM7OPzezg2sqa\nWQczG29mc83sdTNrF67fxczeNrNSMxsTd4y+ZvZJuK87Guv9NpUUqtcJ4b4+MrMZZrZbY73nxtbE\ndXq0mX1gZjPNbLqZHRlTRp/VWsrWs14z5rMKTV6v/cN6q3wMjSlT98+ru0f+IEiUnwOdgWzgY6BH\n3DZDgFfD5cOAKbWVBUYDI8LlkcCt4fKOwOHAxcCYuONMBfqHy+OA46Kunwyp1wlAn6jrJA3rtDew\nR7jcC1isz2qj12tGfFYjqtdWQItweQ9geczzOn9eU6UFdSgwz90XuHsZ8CxwStw2pwCPA7j7VKCd\nmeXWUvYU4LFw+TFgaFh+g7u/D2yOPYCZ7QG0dffp4arHK8ukqZSo1xip8nlriKau05nuvixcLgZa\nmVm2PquNU68xx8qEzyo0fb1ucvet4frWwFao/3drqvwROgKLYp4vDtclsk1NZXPdfTlA+GHcPYE4\nFtcSRzpJlXqt9GjYZXJdgtunosjq1MxOA2aEXxb6rDZOvVbKhM8qRFCvZnaomRUBM4FfhQmrXp/X\nVElQ9VGfufiaU1+7xqrXs9z9QGAgMNDMzq7HcdJVg+vUzHoBtxB0n0qgseq1OX9WoYH16u7T3D0P\n6A/83sxy6htIqiSoJUCnmOd7hevit9m7im1qKrssbKpWNjFXJBBHVcdIV6lSr7j71+G/64GnCboP\n0lGT16mZ7QW8AJzj7vNrOUa6SpV6zaTPKkT4HeDuc4F1QF4Nx6hRqiSo6cD+ZtY5zLZnAC/HbfMy\nMAzAzPKBkrCJWVPZl4HzwuVzgZeqOPa2XwthU3Vt2ES18HhVlUkXKVGvZpZlZruGy9nAiUBRw99e\nJJq0Ts2sPfAKMNLdp1QeQJ/VxqnXDPusQtPX6z5mlhUudwa6A/Pr/XmNepZJzEySwcBcYB5wdbhu\nOHBxzDZ3E8wqmQn0ralsuH4X4M3wtfFA+5jXvgJWAd8CC/ludko/YFa4rzujrpdMqFeC2X0fEMwC\nmgXcTngVk3R8NGWdAtcCpcAM4KPw3930WW2ces20z2oE9Xo2QUKfEdbjSTFl6vx51aWOREQkJaVK\nF5+IiMh2lKBERCQlKUGJiEhKUoISEZGUpAQlIiIpSQlKRERSkhKUiIikJCUoERFJSf8fmuJ36Aek\nSzIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "tau, i, j, n = 1e-4, 0, 0, 3\n",
+ "\n",
+ "x = np.arange(tau, n * tau, tau / 10.)\n",
+ "fig, ax = plt.subplots(1,1)\n",
+ "ax.plot(x, np.dot(exact.af(x-tau), G.af_factor)[:, i, j], '.', label=\"exact\")\n",
+ "ax.plot(x, np.dot(approx.af(x-tau), G.af_factor)[:, i, j], \"-.\", label=\"approx\")\n",
+ "ax.plot(x, G.af(x)[:, i, j], '--', label=\"G\")\n",
+ "ax.set_title(\"Component ${0}$ of the matrix $^{{e}}G_{{af}}$.\".format((i, j)))\n",
+ "fig.tight_layout()\n",
+ "#legend()\n",
+ "#display(gcf())\n",
+ "print(G.tmax)\n",
+ "print(x)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[ -6.59166060e+05 6.46519434e+05 -3.22595069e+01 2.85250486e+01\n",
+ " -6.72742082e-01 -2.90668063e-02]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "-25304.6324023797"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import DeterminantEq, find_lower_bound_for_roots, eig\n",
+ "a = DeterminantEq([[ -0.9765569699831389, 0, 0, 0, 0, 0, 0.9765569699831388, 0, 0],\n",
+ " [ 0, -21087.12668613774, 0, 0, 0, 4972.429427806393, 9423.400001111493, 0.7672868902249316, 6690.529970329637],\n",
+ " [ 0, 0, -0.02903705186960781, 0, 0.02903705186960781, 0, 0, 0, 0],\n",
+ " [ 0, 0, 0, -8967.619224739678, 0, 0, 0, 8967.455151523045, 0.1640732166323416],\n",
+ " [ 0, 0, 0.2978885248190503, 0, -0.4287224564347299, 0, 0, 0.1308339316156797, 0],\n",
+ " [ 0, 0.7275421797587975, 0, 0, 0, -1.19022223735187, 0, 0.102814653125226, 0.3598654044678464],\n",
+ " [ 0.1209377584689361, 0.05943271459974253, 0, 0, 0, 0, -0.1803704730686787, 0, 0],\n",
+ " [ 0, 0.8265398081401302, 0, 0.6009896070678163, 3588.624442956896, 0.7814141825061616, 0, -3590.83338655461, 0],\n",
+ " [ 0, 0.8191655510502869, 0, 8172.231231533744, 0, 7421.575697898968, 0, 0, -15594.62609498376]], 6, 1e-4)\n",
+ "print(eig(a.H(-126523))[0])\n",
+ "find_lower_bound_for_roots(a)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/OpenMP_example-checkpoint.ipynb b/exploration/.ipynb_checkpoints/OpenMP_example-checkpoint.ipynb
new file mode 100644
index 0000000..0ffe186
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/OpenMP_example-checkpoint.ipynb
@@ -0,0 +1,331 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# OpenMP example"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this example we illustrate how OpenMP can be used to speedup the calculation of the likelihood."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "First we set the number of openmp threads. This is done via an environmental variable called `OMP_NUM_THREADS`. In this example we set the value of the variable from Python but typically this will be done directly in a shell script before running the example i.e. something like:\n",
+ "\n",
+ "```\n",
+ "export OMP_NUM_THREADS=4\n",
+ "python script.py\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "os.environ['OMP_NUM_THREADS'] = '4'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that only the value of `OMP_NUM_THREADS` at import time infulences the execution. To experiment with OpenMP restart the notebook kernel, change the value in the cell above reexecute. You should see the time of execution change in the last cell."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some general settings:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import sys, time, math\n",
+ "import numpy as np\n",
+ "from numpy import linalg as nplin"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Load data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "HJCFIT depends on DCPROGS/DCPYPS module for data input and setting kinetic mechanism:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from dcpyps.samples import samples\n",
+ "from dcpyps import dataset, mechanism, dcplots, dcio"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# LOAD DATA: Burzomato 2004 example set.\n",
+ "scnfiles = [[\"./samples/glydemo/A-10.scn\"], \n",
+ " [\"./samples/glydemo/B-30.scn\"],\n",
+ " [\"./samples/glydemo/C-100.scn\"], \n",
+ " [\"./samples/glydemo/D-1000.scn\"]]\n",
+ "tr = [0.000030, 0.000030, 0.000030, 0.000030]\n",
+ "tc = [0.004, -1, -0.06, -0.02]\n",
+ "conc = [10e-6, 30e-6, 100e-6, 1000e-6]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Initialise Single-Channel Record from dcpyps. Note that SCRecord takes a list of file names; several SCN files from the same patch can be loaded."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# Initaialise SCRecord instance.\n",
+ "recs = []\n",
+ "bursts = []\n",
+ "for i in range(len(scnfiles)):\n",
+ " rec = dataset.SCRecord(scnfiles[i], conc[i], tr[i], tc[i])\n",
+ " recs.append(rec)\n",
+ " bursts.append(rec.bursts.intervals())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Load demo mechanism (C&H82 numerical example)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# LOAD FLIP MECHANISM USED in Burzomato et al 2004\n",
+ "mecfn = \"./samples/mec/demomec.mec\"\n",
+ "version, meclist, max_mecnum = dcio.mec_get_list(mecfn)\n",
+ "mec = dcio.mec_load(mecfn, meclist[2][0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "# PREPARE RATE CONSTANTS.\n",
+ "# Fixed rates.\n",
+ "#fixed = np.array([False, False, False, False, False, False, False, True,\n",
+ "# False, False, False, False, False, False])\n",
+ "for i in range(len(mec.Rates)):\n",
+ " mec.Rates[i].fixed = False\n",
+ "\n",
+ "# Constrained rates.\n",
+ "mec.Rates[21].is_constrained = True\n",
+ "mec.Rates[21].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[21].constrain_args = [17, 3]\n",
+ "mec.Rates[19].is_constrained = True\n",
+ "mec.Rates[19].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[19].constrain_args = [17, 2]\n",
+ "mec.Rates[16].is_constrained = True\n",
+ "mec.Rates[16].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[16].constrain_args = [20, 3]\n",
+ "mec.Rates[18].is_constrained = True\n",
+ "mec.Rates[18].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[18].constrain_args = [20, 2]\n",
+ "mec.Rates[8].is_constrained = True\n",
+ "mec.Rates[8].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[8].constrain_args = [12, 1.5]\n",
+ "mec.Rates[13].is_constrained = True\n",
+ "mec.Rates[13].constrain_func = mechanism.constrain_rate_multiple\n",
+ "mec.Rates[13].constrain_args = [9, 2]\n",
+ "mec.update_constrains()\n",
+ "# Rates constrained by microscopic reversibility\n",
+ "mec.set_mr(True, 7, 0)\n",
+ "mec.set_mr(True, 14, 1)\n",
+ "\n",
+ "# Update constrains\n",
+ "mec.update_constrains()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "#Propose initial guesses different from recorded ones \n",
+ "initial_guesses = [5000.0, 500.0, 2700.0, 2000.0, 800.0, 15000.0, 300.0, 120000, 6000.0,\n",
+ " 0.45E+09, 1500.0, 12000.0, 4000.0, 0.9E+09, 7500.0, 1200.0, 3000.0, \n",
+ " 0.45E+07, 2000.0, 0.9E+07, 1000, 0.135E+08]\n",
+ "mec.set_rateconstants(initial_guesses)\n",
+ "mec.update_constrains()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Prepare likelihood function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "def dcprogslik(x, lik, m, c):\n",
+ " m.theta_unsqueeze(np.exp(x))\n",
+ " l = 0\n",
+ " for i in range(len(c)):\n",
+ " m.set_eff('c', c[i])\n",
+ " l += lik[i](m.Q)\n",
+ " return -l * math.log(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "# Import HJCFIT likelihood function\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
+ "\n",
+ "kwargs = {'nmax': 2, 'xtol': 1e-12, 'rtol': 1e-12, 'itermax': 100,\n",
+ " 'lower_bound': -1e6, 'upper_bound': 0}\n",
+ "likelihood = []\n",
+ "\n",
+ "for i in range(len(recs)):\n",
+ " likelihood.append(Log10Likelihood(bursts[i], mec.kA,\n",
+ " recs[i].tres, recs[i].tcrit, **kwargs))\n",
+ "theta = mec.theta()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Time evaluation of likelihood function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "10 loops, best of 3: 37.6 ms per loop\n"
+ ]
+ }
+ ],
+ "source": [
+ "%timeit dcprogslik(np.log(theta), likelihood, mec, conc)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/TimeSeries-checkpoint.ipynb b/exploration/.ipynb_checkpoints/TimeSeries-checkpoint.ipynb
new file mode 100644
index 0000000..21267e8
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/TimeSeries-checkpoint.ipynb
@@ -0,0 +1,149 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Time series"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Just checking the logic."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[ 0. 8.59256356 13.17355631 22.65902932 30.51518269\n",
+ " 39.80841094 43.44484256 52.40072443 59.61475713 67.98731603\n",
+ " 76.4723764 80.89963682 90.84416819 96.54831984 105.41180332\n",
+ " 115.19328038 123.54596142 132.36917277 142.20242392 148.21030341\n",
+ " 158.20874751 161.38849311 170.48725632 176.4956325 185.39531444\n",
+ " 191.89856023 198.83685826 204.49651737 209.7973213 216.95273892\n",
+ " 221.05919062 229.65418582 238.26067727 241.70173579 245.65145402\n",
+ " 249.52013766 256.54599658 262.18962559 266.15962003 273.93633196\n",
+ " 283.39856545 286.70842402 296.25077954 305.3712874 313.01989332\n",
+ " 320.42691522 328.14012926 337.8075964 341.70598939 350.20743812\n",
+ " 353.38204688 362.27510626 371.70551543 375.2230498 384.61762256\n",
+ " 389.15553529 392.73575791 401.43023923 408.29600194 413.83360224\n",
+ " 417.92996481 423.7774031 432.98776285 442.64181207 449.18417602\n",
+ " 452.27298482 456.38927169 462.51919708 466.31855265 470.69058382\n",
+ " 480.14110632 484.75552799 490.97614438 493.98123983 502.03687601\n",
+ " 507.35256576 513.18612587 522.63779955 525.99850407 534.83319294\n",
+ " 539.53052581 546.00109775 551.15733842 557.08909557 562.36622206\n",
+ " 569.95964467 574.04627895 579.80772582 583.72298285 593.37151631\n",
+ " 600.4412491 607.52752039 612.33312193 616.38161548 624.81590068\n",
+ " 634.03294875 640.49775222 646.01028819 651.79184332 656.47139117\n",
+ " 663.41252658]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAEKCAYAAAAsDo9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuMHdd937/n7t59kHuVJZdvLU3RlghrI8mWFFO0Hklg\nxYYRiYnJKLCcyE2NVjGaNlZEig+nCObmj6IPpClsICjitFUDC5KoZeXGKZDoAdVA2sR2isiWaUUR\na9eSlVaiKIVrcXfJfdzTP+7MnfP6zZx75zqXS3+/wIXm/M5vfvM7Z2bO+c1HFKW01qAoiqL+/lUb\ndAIURVE/quICTFEUNSBxAaYoihqQuABTFEUNSFyAKYqiBiQuwBRFUQPScKyjUop/Xo2iKKoHaa1V\nyN5VBay1vix+SZIMPAeO4/Icy+UyjstpLIMeR5GIICiKogYkLsAURVED0o/kAvzTP/3Tg06hL7pc\nxgFcPmO5XMYBXD5juZTHocoYRcdRKR3rS1EURbWllILux7+EoyiKovonLsAURVEDEhdgiqKoAYkL\nMEVR1IDEBZiiKGpA4gJMURQ1IHEBpiiKGpC4AFMURQ1IXIApiqIGpK4X4Farhb179+KWW27BsWPH\n0Gq1cPz4cetv/dFaWzatNY4ePYp9+/ah1Wp1+qVzjx07hmPHjuHw4cOo1+tYXl4ujF0UK7O554Vi\nubZWq9UZp3u9Xq7j5hhz3pEjR7B9+3YcPXoUx48fx+rqqjX/5rlmfDP3ouu6827GabVaOHLkCLZu\n3Ypt27aVXjP2/qyurlpjynxXV1exY8cOrK6uFsaKuRdSXu4cfeADH7CuGRvjoYcewsTEBJaXl0vv\niztfR48e7fgeOXIEe/fu9d6N1dVVz5bFOXr0aPDeunlL74R5fsy9XFpa6ryH0pyHYrrvvDlnUg7Z\n8bFjx3DkyBHs2LEDKysr1tzt27cPq6urhWN03xtzTEeOHMG2bdusOGXrV5bPli1bsH79ehw9ejQ4\n96HjQnXxV6pprbU+dOiQBqAB6JGREX348GHdaDT0yZMndabZ2VnLNjs7q+v1ugagH3rooU6/dO7Y\n2FjHH4DevXt3YeyiWJnNPS8Uy7VlYx0ZGfGu18t13BxjzqvVahqAVkrp8fFxfffdd1vzb55rxjdz\nL7quO+/j4+Md/8OHD3euH3PN2PuTjSEbU+ab2ffv318YK+ZeSHmF5si8ZmwM89lsNBqF98WdL/PZ\nTv+ebe/dyOKZtixOdr57b928pXfCPD/mXm7evLkzVmnOQzHdd96cMymH7HhsbKzjf/PNN3tzt3//\n/sIxuu+NOSbzmc7ilK1fZj4AdK1WC8596DhdO4Prald/F0T63zQH+7ds2YJarQalFCYmJnD69Gls\n3rwZZ8+eFc/JdtXs3IWFBZw/fx6tVivoX6vV8J73vKcTe25uDiMjIzh//rwXy8yjXq9DKYWlpSVc\nc801eOedd6z+kE26/qZNm3DmzJngOdJ1VlZW8Oabb3ZynJiYwNLSEiYnJ3HmzJngeWfPnsXKykrU\nvXHnU5J73exaCwsLWFxcLDy37JpubOn+dKPR0VFcvHixE8uN7Y6jaK5j8xgbG0Oj0SiMEavsfanX\n62i1WlaV3W8NDQ0BaH9F1Go1tFqtzj+zd+LcuXO4cOGCGMMd79LSkuibzXlZzFhlc5Xl3O152Rh7\neW8AoNFoYP369d769fbbb5fet6GhIQwNDXW+FLJ32TzWwt8F0VUF/MADD1i7gPnbuXOnfuKJJ/SJ\nEyf0zp07U/u0BvZqoG75TkxMpMdD1rmPP/643rhxYzD+VVddpR977DEn9iENNDQAPTQ0lNqv0MA9\nGjihgbbv1NSUnpqaEvvDua/3cn7wwQeN/p0aeCKNdUXgOma/m2Mjzb0ov0c1MCLOd/YbGxsz5qwd\nf/369UHf6elpfejQIWcM92jgFzQwVXqt8DWVEFu6P8qLNzk5qW+88UbHflNnfvzY9vyZ9296etqa\ni+zc3N6+/vj4eGBsd2ngYMH9mg6cI/3GOnM6NTUlPtf+b9hqK6V0o9FI2xuC8yddw34nntDAY178\n9jyNCePdFriWsub8scce8563kZERPTo62tXzlD//YxqoRZ/r5vPoo4/qkRH/vdm4caP+zGc+Y319\n2D//fZ6entYPPvignpycLMlh3LrX+Vim0j65Au6KAWe7rK9pnDt3DrVarbPTApvQaMzh8OE7UK/b\n3u2ddQLAKoBG59yhoSEsLCwEr6CUwvDwsBNbodFoX7+9S02j0dA4efJezM7W0Gi0fefn59O4M8H+\nUO71ur37Ly0tOWM7h5Mna5id/Tja78eMcR23380Rae5F+dVRq5Xv5MvLy1hcXLTmM1y5TGNubg5K\nKWcM92J29l6Mjc07/hsjrjmN9jMYih2+P7WaXwhcvHgRStn2m2/O58eOPePNn3n/5ubmrLnIzm3b\n83xDVdL+/TXMzn6i4H5lsV35r9HQ0DLGx9vPwvz8vDFfxRoZqSGb+6y6u3jxIoBNGBtbDM4fMB24\nxkbnnahhdnYY9bp9/tAQMD6uhPG6zwTQvk0znTkfHh72nrfV1dWuvnaWl5c7z//YGFCvh9aZkG0C\n2f3M8qnX68F7u7i4iHq9LlSz48H3eW5uDrVaraTCn8bYmLbudbYGjI3NY3y8eOxdLcCnTp3CVVdd\nhdtvvz21jGLXrl0Afg0PP/wwTp8+jdOnT+Phhx/u2E6dOoWZmRkAHwQA7Nq1C9deey2AvXjooYcA\nfNY69+DBgwB+qbPgAr+IDRs24PXXXzdin+nEzq7VjrUnkMcZHDx4EAcOHABwT7A/ZJuZmcGuXbsw\nOzsL4DCuvfZa43qhc+4xrhPq35Pm+GtO7nJ+W7ZsAfBe3HbbbVi/fj0AhXXr1uFd73pXOv9XYPPm\nzem5+Xxmubd1e3q8x5szf95/EcAvpfd3EpOTkwCG0WivSIFrymOS7s+WLVuwadMmAMC2bdsAbMWB\nAwfwyiuvYP/+/QBWsH//fnzve98TYp0KXsue699Mr/cBxzfPd2ZmBqOjo+k1H8SmTZvw0ksvRdyv\n38To6CgmJtoL8YYNGwDUOmO6++67AbzLmCPz/u7BVVddBWDSmM+hzrmTk5Ppu/ET2L9/P7TWuOOO\nO1Lbr+HgwYPpM5G9f1d03r/8GtlcT1r5Z/PTfhez86cj7uU4Nm/e3Mmv/U6eCsTcmca8DZs3b8aW\nLVvwwQ9+EMAT2LVrV1q8bce9997rFHK3GTm036F2vPXYtm0brr/+euzYsQNAPZ272/GJT3wC733v\newHUg2Nsz9EUAGD79u2dZ+zUqVNp36bO1detWwfgjuD7nM1D+91o44nR0VFs3boVQBuRuXMfPi5Q\nNwgiU5IkOkkSDSRaa935pynDveOTJInX7/pltvwavkModkweMXm6NnOcxeckUf1FsaT83PnO234c\nKfe4Mfh5Au17EL5mXOyQXxbT94XTDscqG0dsHqH7K/m6MbNcY+6LG9O8p9mx6xd6X8zzw/OaBP/p\njs0dd9l4zftS9JwWvTvt5wuiv5uPOS/mPc1tRWP03xs3j/x87/TCebDPTTwf/1hGED0twOYkFk1A\nTLvo4TevJfWb7SoLY9H1pevZtrj+olhSfv58w/Mvi192PzKb629eX8q3bH66e9DdBTgudsz1Qvlm\nL5Qfo/x6crykC/+kdMzmuWa/FK8o/5BPkX/YV86v6H66C7Cfeyie79/N+hNegO0xdbN+5QtwXP7G\nGILrak//IUaSJGg2m4alGfDybeXn9Kp+xrKVJEmf41ePlc+/GcuP6/uU5RHybyJJEiilnPtXFqu4\nX46VdB2re9/c3r6/3cdo568sn2azGRGv7d9sNjv3R3qf5PelWdjnXku6vpRbWKrER4qZWD5xORTn\n5c9xOJ/8mfX7i9+N8PXD97cZcVwgaWV2f/B26W5L+HAlVY4gwv2h9g8DQcS03djFCKK3/PzPuXCl\n5e68sVVqZnP9pZ0/dkx2DDv/MIKo1pau102+Mb4mHov5MnFjuvNpvxshW2L1S++fdP/cMcQ8P3Iu\noZiJ93yUIQbpecqOQ1gm5vkz40tjyua/6Hy3HZuPf9znCtjfCUKrvW8rPyek8B+fK7tWv9T9Tlka\nsccc7LZfmftxi6v3kL0ZsLcriSRJCqo76Rqx/abK7nc3sSTf3F5+f8N9oQrUr2TlmPl8hiqrPF44\nj6L3z71+KJ+iSj3kH+MjxWxax/mfdon7WsjnsxmwledTfH/Lr2/Gazbb+dt/YqcZcVwgaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQKGSgxgAAARk0lEQVRkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcx\nm9YxGbAjaWV2f7B2wHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WOR\nAcdK8s3tZMB+X1hkwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3\nyYBjJPnmdjJgv69c3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+E\nL0v5y6fPFTAZcBVVj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7I\ngLPjPlfAZMCVIvaYg90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLg\nmGouMWxkwEX+ZMB+PhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlN\nYogAGbDZJgN2/RLv+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCe\nwZS1yYDL8/PnW660yIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZ\ncGB3MdtkwP7OG1ulZjaJIQJkwGabDNj1S7zngww4O+5TBay1RqvVwo4dO7B9+3YAz6DVagG4PVuk\nO37AhY6t/c+nceWVV6LVanX62+ceD5x7DM888wz+5E/+BIDC8vKy03/ciX17GuvZQKzjxiYi94ds\nrVYLV155JYDbnOuFznnWuE64352ruPyOYGJiAk8//TSAZ7G6umrM/6Jxrj2f2X0CbvPmxr0/uW3R\nmsv2Pz8IpRTGx8fTax6z8i0ak3R/VldXASAdU+7btqtOvxSr/F4cT6/nPoN2vq1WKx3TROeaMfer\n1Wrh/PnzAJA+m7djdXUV27dvT+fcnKPjgfm6Fdu3b0+v/UHs2LEDO3bsMN6Ndjz3fcnj3Jpex37/\n3LmW3838/Jh7ubS01Bmrew9yvwVv7O37O22M4TyUyt5n399+h57BU089hUajgZWVFeTP91FMT0+n\n96tojPNYv349br311sCYjqSeO9I48vuctxcxPz9vMOCnA3N/wTsulbQyuz8A+uTJk/rQoUOd3QMY\n0YcPH9bAiD558mRnxZ+dndVAo2Nrt+sagH7ooYc6/fK5Q7per3eus3v3bqd/xImd5dEIxGr7ujmF\nYrm2fKxD3vWk8Rb1u+ONy689B0opDYzru+++25p/81wzvpm7OzfytcY0MNzxb/8Tzm9IvGbs/cnG\n0B7TcMc3s+/fv78wVvm98J+H4jnKrxlzv8x52b17twZGnPsy5D0LdkwVmFfz3cjjme9LHic7337/\n3LHL71d+fsy93Lx5c2es8pzXvbFn73A+BnPOfH97jGMd/5tvvtmbu/3795eMsWbM7bAzpnzO23Fi\n1q8xbd+vWmDuG96x1sUVsNIxqzSA9ssia8uWLajValBKYWJiAqdPn8bmzZtx9uxZcSeo1+tYXl7u\nnLuwsIDz58+nO4uvWq2G97znPZ3Yc3NzGBkZwfnz571YZh71eh1KKSwtLeGaa67BO++8Y/WHbNL1\nN23ahDNnzgTPka6zsrKCN998s5PjxMQElpaWMDk5iTNnzgTPO3v2bLrzxyuLL8m9bnathYUFLC4u\nFp5bdk03tnR/utHo6CguXrzYieXGdsdRNNexeYyNjaHRaBTGiJVSClpr1Ot1tFotq8rut4aGhgC0\nvyJqtRparVbnn9k7ce7cOVy4cEGM4Y43q3xDyua8LGassrnKcu72vGyMvbw3ANBoNLB+/Xpv/Xr7\n7bdL79vQ0BCGhoawtLTkvcv1eh0vvvgitNbhP94jrczuD+luBWfXThdmDVyhgXs0cEIDOzUAPT09\nrX/jN35DT0xMOOe120NDWbyd6bm/oIGNweqgHf+AFfvQoUN6eno67W/nsXPnTv3EE0/oEydO6J07\nd6Z9UxoYL+jPrn9PJ/769eud69c1cEunPxxnPL2W3e/mmOVelN+jjz6qR0ZGhLkwf2OdOcvn0849\nv0cNDRzyxvD444/rqampiGuZ1xxzrtnQwL7S+xMe06QGtlq2m266yZif6TT2FcL8mfdv2slrOh1z\nw7HXvDzuuusu/fjjj4v3K7eX/8bGxow5ndJ+BRX++c+d6uS+YcMGb/7yezveuUatVtNm/tl9fuyx\nx7z4Y2NjeuPGjZZ/Nt5t27Z5+eXzl73vj3nPGzASnN/i56n9/G/cuFGPj49Hn+vn82h6/dA1fkLn\nlbf9C7/PDQ08qNvPp5zD1NSUc6/zNSCruKV1tSsGXK/77lprTE9Po9HQOHnyXszO1tBonMPMzAzm\n5uYwNDSEixcvWueMjCx1OE773HPpufdibGwheO3du6cwO/tLVmylFObm5jA9PQ2gnce5c+dQq9U6\nO/7MzAzGxuYxPg7MzMwE+/Prf7wT3939R0YUDh++vdMfvo7G+PiC1+/mmOVelF+9Xo/ayYeGljE+\nvmjNZ71u557fI+DwYeWNYWhoCPPz86jV8vu7cePGkmsq5x4Chw/fVnp/QmMaH7+Im2660rKZ89No\nzKWxtRU7fP/mnLzm0jHDmaMhL49sLqT7ldv981wtLy9jYWHBuL8qeG7ovGzuh4eHAWiMjFzEzMwM\nFhcXvfnL7m372Wtfo9VqpTHsd2J4eNh7rpeXl7G4uBgc7/z8fJpDrlarlc559r4Pe8/b0NAqAlMi\nqv08tZ//hYWF4DMyOjrq2SYmJoz7nOVTR60WesYUDh/+KdRqfjU7NTUlrAvA4cM1jI3JFf709DTm\n5+ede52vAfafGfbVFYJ43/veh1deeQXXXXcdJicn8Wd/9meYnJzEpz/9aezZswenT5+G1hp79uzB\nwYMH8eSTT+IP/uAP8Prrr+NnfuZncMstt+DIkSOYnJzExz/+cbz99tvYuHGjde6pU6cAACdOnMDo\n6CjuuusuPPvss7hw4QJ+67d+y4t9//334+WXXw7Gynzvu+8+AMAjjzyCJ598Mpina7vxxhtx7tw5\n/M7v/A6++tWv4tlnn8W2bdtw//33i+cUXcfNMcu96LzPf/7zmJycxNTUFL773e/irbfewvDwMDZt\n2oQbbrgBL7zwApaWlvChD30I1113XSf+iRMnOrl/7nOfw/e///3OPTKva17r1KlTOHDgAL70pS/h\n1Vdfxbp16/D1r38d58+fx/j4OJaWltBqtTA+Po5169Z51wzFDt2fz3/+81hZWcGHP/xhvPzyy3jt\ntddw55134qmnnsKtt96KL33pSzhw4AD+/M//HL//+7/vxZLaMXNt2k+cOIGXXnoJH/nIR3D11Vfj\ni1/8IjZs2IBPfepTpTF++7d/G1NTU/jJn/xJPPXUU3jnnXcwOTmJdevWefflkUce6dzf6667Dl/4\nwhdw7tw5bN26Fa+++iqWlpawYcMG7NmzBy+++CJ27dqFrVu3YnR0FPv27cOf/umf4gc/+AGef/55\n3HfffXjuuedw9dVXY+/evTh58iSUUvj0pz/deW+ye/LCCy/ghhtu8N6JEydOoNFoYO/evfja176G\n73znO4X38pOf/CQmJibw67/+6/jd3/1dzM/P4+LFi9ach2ICwC//8i933vnXXnsN73//+3HNNddg\ndnYWAPDAAw9YOWRz9e1vfxtvvPEGrrzySiwtLeGtt97ChQsXcMUVV2B6eho7d+7E888/j5WVFXzs\nYx/zxui+N61WC3feeSfeeustfPOb38TKygr27duHv/iLv8Di4iJuv/12/Oqv/qq4fk1NTeG5557D\nm2++ieHhYUxOTnYQVZIknbk377X5Ln/2s58VEURXC3CsL0VRFNVWyqmDC3BP/yEGRVEUVV1cgCmK\nogYkLsAURVEDEhdgiqKoAYkLMEVR1IDEBZiiKGpA4gJMURQ1IHEBpiiKGpC4AFMURQ1IXIApiqIG\nJC7AFEVRA9KP5AL8la98ZdAp9EWXyziAy2csl8s4gMtnLJfyOLgAr2FdLuMALp+xXC7jAC6fsVzK\n4/iRXIApiqIuBXEBpiiKGpD69v+EoyiKosKq/BeyUxRFUf0VEQRFUdSAxAWYoihqQIpagJVSH1VK\nvaSUelkpdeyHnVQVKaX+o1LqDaXUC4Ztg1LqaaXU3yilnlJK/ZjR91ml1Gml1F8rpT4ymKx9KaWm\nlVLPKaW+rZT6llLqM6l9LY5lVCn1NaXU8+lYktS+5sYCAEqpmlLqr5RSX07ba3Uc31NKfTO9L19P\nbWtuLEqpH1NKzaZ5fVspdcuaGYf0/6vPfmgv0v8bwC4AdQDfAPDesvMG9QNwO4D3A3jBsP1rAEfT\n42MA/lV6PAPgeQDDAK5Kx6kGPYY0t20A3p8eTwD4GwDvXYtjSfNbl/5zCMBXAexdw2N5EMAjAL68\nVp+vNL/vAtjg2NbcWAD8ZwCfSo+HAfzYWhlHTAW8F8BprfUrWutlAI8D+PmI8wYirfX/APB3jvnn\nAfxhevyHAD6WHv8cgMe11ita6+8BOI32eAcurfXrWutvpMfnAfw1gGmswbEAgNZ6IT0cRfvh11iD\nY1FKTQP4WQD/wTCvuXGkUvC/gtfUWJRSVwC4Q2v9MACk+c1hjYwjZgG+EsD3jfZrqW0taYvW+g2g\nvbAB2JLa3bH9LS7BsSmlrkK7qv8qgK1rcSzpZ/vzAF4H8IzW+i+xNsfy7wAcQXsDybQWxwG0x/CM\nUuovlVL/OLWttbHsBnBWKfVwioW+oJRahzUyjh/Vfwm3Zv7snVJqAsBJAA+klbCb+5oYi9a6pbW+\nEe0qfq9S6sexxsailLoLwBvpl0nwz3WmuqTHYeg2rfVNaFf0/1QpdQfW2D1B+2vqJgC/l45lHsBx\nrJFxxCzAfwvgXUZ7OrWtJb2hlNoKAEqpbQDOpPa/BbDT8LukxqaUGkZ78f2i1vqPUvOaHEsmrfUP\nAHwFwEex9sZyG4CfU0p9F8BjAD6klPoigNfX2DgAAFrr/5f+800A/xXtT/G1dk9eA/B9rfX/Stv/\nBe0FeU2MI2YB/ksAVyuldimlRgDcC+DLP9y0KkvBrlC+DOAfpse/AuCPDPu9SqkRpdRuAFcD+Prf\nV5IR+k8AXtRaf86wrbmxKKU2Zf8WWik1DuDDaDPtNTUWrfVvaq3fpbV+N9rvwXNa608C+GOsoXEA\ngFJqXfp1BaXUegAfAfAtrL178gaA7yul9qSmOwF8G2tlHJH/lvGjaP9b+NMAjg/633qW5PoogP8L\n4CKAVwF8CsAGAM+mY3gawKTh/1m0/03oXwP4yKDzN/K6DcAq2n/q5HkAf5Xeh41rcCzXp/l/A8AL\nAP55al9zYzHy+ynkfwpizY0DbXaaPVvfyt7rNTqW96FdKH4DwJNo/ymINTEO/qfIFEVRA9KP6r+E\noyiKGri4AFMURQ1IXIApiqIGJC7AFEVRAxIXYIqiqAGJCzBFUdSAxAWYumSV/jWD/yQ93q6UemLQ\nOVFUP8U/B0xdskr/EqI/1lpfP+BUKOqHouFBJ0BRBfqXAN6tlPortP/LpWu11tcrpX4F7b9ecD3a\n/ynpvwUwAuCTAC4A+Fmt9Tml1LsB/B6ATQAWANyvtX55AOOgqKCIIKhLWccBfEe3/5Yr96+A/HG0\nF+G9AP4FgPOp31cB/IPU5wsA/pnW+gPp+f/+7ytxiooRK2Bqreq/6/Zf8r6glDoH4L+l9m8BuD79\nC2ZuBTCrlMr+Yqb6APKkKFFcgKm1qovGsTbaLbSf6xqAv0urYoq6JEUEQV3KegdAIz0u+gvQPWmt\n3wHwf5RS92Q2pdQNfcyNoiqLCzB1yUpr/TaA/6na/4frfwP5/2og2e8D8I+UUt9QSp1C+/8HRlGX\njPjH0CiKogYkVsAURVEDEhdgiqKoAYkLMEVR1IDEBZiiKGpA4gJMURQ1IHEBpiiKGpC4AFMURQ1I\nXIApiqIGpP8PKs6h4slHEPcAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "from HJCFIT.likelihood import plot_time_series\n",
+ "from HJCFIT.likelihood.random import time_series as random_time_series\n",
+ "\n",
+ "perfect, series = random_time_series(N=100, n=100, tau=1)\n",
+ "print(perfect)\n",
+ "fig, ax = plt.subplots(1,1)\n",
+ "plot_time_series(perfect, ax=ax)\n",
+ "plot_time_series(series, ax=ax, marker='*', color='k', linestyle=':')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAEKCAYAAAAsDo9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnW2sZOlx1+u5d2cys5m7Xs94JzbcyYuVWYWJbUKkGIvd\nCAtEZAUpYZdFWSGHEIE/EBCIXYNnw4c+XxAvEkJ8iLBiYIligXdmWBOHLyRW8AeQTIxssx7bxAMh\n2DHYa+TMYM+Ms+u5Dx+67719nn6q6l91nnO6e7ZKau3pqn/9/nVO9z3dU/OyKedMERERERHTx866\nB4iIiIh4rUbcgCMiIiLWFHEDjoiIiFhTxA04IiIiYk0RN+CIiIiINUXcgCMiIiLWFA+gwpRS/Hm1\niIiICEfknFMtb/oGnHO+Lx6z2WztM8R53J/ncr+cx/10Lus+DyliBRERERGxpogbcERERMSa4jV5\nA37nO9+57hGaxP1yHkT3z7ncL+dBdP+cyyafR9J2FEfClDKqjYiIiIiYR0qJcovfhIuIiIiIaBdx\nA46IiIhYU8QNOCIiImJNETfgiIiIiDVF3IAjIiIi1hRxA46IiIhYU8QNOCIiImJNETfgiIiIiDVF\n3IAjIiIi1hTuG3DOmS5fvkwHBwd0+fLl3r/6c1g7zHHPtd6yb2yWZXaPTzmjZT5pDo0v+S57ve99\n7+vpkXk1dov3iee1GHotWpy/pve8J0tOjce9fty5Wa5Zi/e3xkXeQ96fe8s1srynpXMV41CkPebS\n47h69Wre29vLzz77bN7b28vXrl1bqR3muOdab9k3Nssyu8ennNEynzSHxpd8l71OnTqVT58+faRH\n5tXYLd4nntdi6LVocf6a3vOeLDk1Hvf6cedmuWYt3t8aF3kPeX/uLdfI8p6WznVx76zfV7nCinBx\nA37/+9+fL126lB955JFMRPnEiROZiPL58+fzG9/4xvymN70pX7x4MRNRfuSRR/LJkyfz+fPne8/P\nnDmj9p44cSKfPHkyE1G+ePEiy27Bkvjl7IfPaz2cT3mtzpw502Np8y3XyzlOnDiRd3d3q/zy2pS+\nh14PPfTQkWb5sbOzw87LeXpea+1aW14L7lqj1wJ9vbTzX37Navrd3V3ze3KZc/jaHP53d3eXrS1f\n8/Lclvu0a8bNbHl/a9ei9l6vzVEytJ/7kiVdI+v9i5t/+bjZDfjg4CBfuXIl7+/vL35QUyaifOHC\nhXzlypX8wgsv5AsXLixq+5noHZnooUxEeX9/Pz/zzDNLvbtC77nFQ2I/k4n2ji7CPP9QJnoqE72Q\niebac+fO5XPnzrF1md+f/bh+IRNdWbAeqvgs18sZ9xZsbL5+fW9xTY9rZ8+e7V3P1euchHN4KhP9\n2aNrvfyQ5j325Nj467Pa2/fT6suvX/nesl0L/PXSz//4/VvTr77mVxbX5CHhPXkuE53KyzeOZd6x\nR/n6LfPLczt9xFw93/0if26hx6758dynmWuxW7kWp488uPtF7Xry14tj7RTntvrzXH9Pv4O5hucq\n53Lsz91XzTvglBKllOjWrVtEtL94rffp5s2btLOzQzs7O3Tz5k0iegPt7d2iZ599jPb2MhFdolu3\nbi31niGie0S0V+09deo2nT59h4jeILAT7e0REe3TvXv3iGif9vYyXbv2NF29ukN7e3Pt7du36c6d\nO0R0qVqX+f3Zj+s36dq1Hbp69aeONMc+Zb2ckRZsbL5+nRbX9Lh29+7d3vXsX+fj16h+Dk/T1atP\n06lTt4tX+qw479xTYuOvT7/30oqfVl9+/cr3lu1a4K+Xdv7L79+afvU131lck/l7if+ZSES0TwcH\nB0R0tsc79ihfv2V+/9xOncpHzNXznV/LeX5v4U8r83HX/PD1mnuU1+JYv3wt5loS7xe168lfL451\nQESnjs6t9vNcf08/xlzD4/M7vAcc+/Ph+k24Gzdu0PPPP09Ej9J73/teIvo5ev755+nGjRtLtXnu\n+vXri+dPFc/fvuh9rtL7Mj355JP0xBNPENHL1Xqf9XML1qMK6ymWJfOvF89rPU8pM/ev1TJLm6+s\nL5/3ca1/Pblrs5xf9nryySeJ6M8R0Z+nxx9/nIgeBublz8ny+iDX2vZa/PzC70cKrTyv/fVCNHX9\nce56xbuWW+45vJ4PV3irtRrr8PXQz+X4Wsozc++/673Zau/X5fc3/16v6eX7Tznv6jn9AeEetPqz\nxr2X6ue3fCyEdQWxHESz3n/7tbq2rFewvZxWt8yBzCnx5Z4ZVJdY1vlr1wm9Ntx5l3pkXo3d4n2C\n1pdzw66FrsU0sr5+TWo5nlPjyddc7yt90fep9Hpp71fpukh678+NfA+q90je/OvecAXRj66Btpbv\nDPUxWBy/tY+1j2NYfZBAOFavWp7TDqlb/IcwrBpO7w2Jh3h1zLGV00rPHSN6ryfH0dhe7340+osY\nHZiz1If6t4yW/LFYHNeS7yp5rt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSz\nCO6rcfkgcQWBfIWvP2+zgqh7rLLkusaXe2ZQXWLZfyk1WzlGrw33S9NSj8yLXi9sBTHsueSHzotq\nMY2sR95/y73LdYmH/Hx53z8t3t/12VfriN7684hdo7o/Ms/q8WgrCOlur30CaPWh/i2jJX8sFse1\n5LtKnuu3aBDGlKwWDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPx7EfsgJt9eHh8rH0cw+qD\nBMKxetXynHZI3eI/hGHVcHpvSDzEq2OOrZxWeu4Y0Xs9OY7G9nr3I74BT84fi8VxLfmukuf6LRqE\nMSWrBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPIvgdhPlg2IHrPTMoHrsgDGt97nkFzvg\nukbSxw7YPs/qceyAN4g/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdl\nBoSBePYjdsDNPjw8PtY+jmH1QQLhWL1qeU47pG7xH8Kwaji9NyQe4tUxx1ZOKz13jOi9nhxHY3u9\n+xHfgCfnj8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfNoHGQGuJlmQFhIJ5FcLuJ\n8kGxA1Z6ZlA9dsCY1vtc8osdcF0j6WMHbJ9n9Th2wBvEH4vFcS35rpLn+i0ahDElqwXDyyv1tV4t\nV9bRmpTTapKHp0+aQeMgNcTLMgPCQDz7ETvgZh8eHh9rH8ew+iCBcKxetTynHVK3+A9hWDWc3hsS\nD/HqmGMrp5WeO0b0Xk+Oo7G93v2Ib8CT88dicVxLvqvkuX6LBmFMyWrB8PJKfa1Xy5V1tCbltJrk\n4emTZtA4SA3xssyAMBDPIrjdRPmg2AErPTOoHjtgTOt9LvnFDriukfSxA7bPs3ocO+AN4o/F4riW\nfFfJc/0WDcKYktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCe/YgdcLMPD4+PtY9jWH2Q\nQDhWr1qe0w6pW/yHMKwaTu8NiYd4dcyxldNKzx0jeq8nx9HYXu9+xDfgyfljsTiuJd9V8ly/RYMw\npmS1YHh5pb7Wq+XKOlqTclpN8vD0STNoHKSGeFlmQBiIZxHcbqJ8UOyAlZ4ZVI8dMKb1Ppf8Ygdc\n10j62AHb51k9jh3wBvHHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLM\ngDAQz37EDrjZh4fHx9rHMaw+SCAcq1ctz2mH1C3+QxhWDaf3hsRDvDrm2MpppeeOEb3Xk+NobK93\nP+Ib8OT8sVgc15LvKnmu36JBGFOyWjC8vFJf69VyZR2tSTmtJnl4+qQZNA5SQ7wsMyAMxLMIbjdR\nPih2wErPDKrHDhjTep9LfrEDrmskfeyA7fOsHscOeIP4Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvl\nyjpak3JaTfLw9EkzaBykhnhZZkAYiGc/Ygfc7MPD42Pt4xhWHyQQjtWrlue0Q+oW/yEMq4bTe0Pi\nIV4dc2zltNJzx4je68lxNLbXux/xDXhy/lgsjmvJd5U812/RIIwpWS0YXl6pr/VqubKO1qScVpM8\nPH3SDBoHqSFelhkQBuJZBLebKB8UO2ClZwbVYweMab3PJb/YAdc1kj52wPZ5Vo9jB7xB/LFYHNeS\n7yp5rt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzH7EDbvbh4fGx9nEMqw8S\nCMfqVctz2iF1i/8QhlXD6b0h8RCvjjm2clrpuWNE7/XkOBrb692P+AY8OX8sFse15LtKnuu3aBDG\nlKwWDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPxLILbTZQPih2w0jOD6rEDxrTe55Jf7IDr\nGkkfO2D7PKvHsQPeIP5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZ\nEAbi2Y/YATf78PD4WPs4htUHCYRj9arlOe2QusV/CMOq4fTekHiIV8ccWzmt9Nwxovd6chyN7fXu\nR3wDnpw/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdlBoSBeBbB7SbK\nB8UOWOmZQfXYAWNa73PJL3bAdY2kjx2wfZ7V49gBbxB/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVc\nWUdrUk6rSR6ePmkGjYPUEC/LDAgD8exH7ICbfXh4fKx9HMPqgwTCsXrV8px2SN3iP4Rh1XB6b0g8\nxKtjjq2cVnruGNF7PTmOxvZ69yO+AU/OH4vFcS35rpLn+i0ahDElqwXDyyv1tV4tV9bRmpTTapKH\np0+aQeMgNcTLMgPCQDyL4HYT5YNiB6z0zKB67IAxrfe55Bc74LpG0scO2D7P6nHsgDeIPxaL41ry\nXSXP9Vs0CGNKVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXj2I3bAzT48PD7WPo5h9UEC\n4Vi9anlOO6Ru8R/CsGo4vTckHuLVMcdWTis9d4zovZ4cR2N7vfsR34An54/F4riWfFfJc/0WDcKY\nktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCeRXC7ifJBsQNWemZQPXbAmNb7XPKLHXBd\nI+ljB2yfZ/U4dsAbxB+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dPmkHjIDXEyzID\nwkA8+xE74GYfHh4fax/HsPoggXCsXrU8px1St/gPYVg1nN4bEg/x6phjK6eVnjtG9F5PjqOxvd79\niG/Ak/PHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLMgDAQzyK43UT5\noNgBKz0zqB47YEzrfS75xQ64rpH0sQO2z7N6HDvgDeKPxeK4lnxXyXP9Fg3CmJLVguHllfpar5Yr\n62hNymk1ycPTJ82gcZAa4mWZAWEgnv2IHXCzDw+Pj7WPY1h9kEA4Vq9antMOqVv8hzCsGk7vDYmH\neHXMsZXTSs8dI3qvJ8fR2F7vfsQ34Mn5Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvlyjpak3JaTfLw\n9EkzaBykhnhZZkAYiGcR3G6ifFDsgJWeGVSPHTCm9T6X/GIHXNdI+tgB2+dZPY4d8Abxx2JxXEu+\nq+S5fosGYUzJasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM9+xA642YeHx8faxzGsPkgg\nHKtXLc9ph9Qt/kMYVg2n94bEQ7w65tjKaaXnjhG915PjaGyvdz/iG/Dk/LFYHNeS7yp5rt+iQRhT\nslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzCG43UT4odsBKzwyqxw4Y03qfS36xA65r\nJH3sgO3zrB7HDniD+GOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJM2gcpIZ4WWZA\nGIhnP2IH3OzDw+Nj7eMYVh8kEI7Vq5bntEPqFv8hDKuG03tD4iFeHXNs5bTSc8eI3uvJcTS217sf\n8Q14cv5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZEAbiWQS3mygf\nFDtgpWcG1WMHjGm9zyW/2AHXNZI+dsD2eVaPYwe8QfyxWBzXku8qea7fokEYU7JaMLy8Ul/r1XJl\nHa1JOa0meXj6pBk0DlJDvCwzIAzEsx+xA2724eHxsfZxDKsPEgjH6lXLc9ohdYv/EIZVw+m9IfEQ\nr445tnJa6bljRO/15Dga2+vdj/gGPDl/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVcWUdrUk6rSR6e\nPmkGjYPUEC/LDAgD8SyC202UD4odsNIzg+qxA8a03ueSX+yA6xpJHztg+zyrx7ED3iD+WCyOa8l3\nlTzXb9EgjClZLRheXqmv9Wq5so7WpJxWkzw8fdIMGgepIV6WGRAG4tmP2AE3+/Dw+Fj7OIbVBwmE\nY/Wq5TntkLrFfwjDquH03pB4iFfHHFs5rfTcMaL3enIcje317kd8A56cPxaL41ryXSXP9Vs0CGNK\nVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXgWwe0mygfFDljpmUH12AFjWu9zyS92wHWN\npI8dsH2e1ePYAW8QfywWx7Xku0qe67doEMaUrBYML6/U13q1XFlHa1JOq0kenj5pBo2D1BAvywwI\nA/HsR+yAm314eHysfRzD6oMEwrF61fKcdkjd4j+EYdVwem9IPMSrY46tnFZ67hjRez05jsb2evcj\nvgFPzh+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dPmkHjIDXEyzIDwkA8i+B2E+WD\nYges9MygeuyAMa33ueQXO+C6RtLHDtg+z+px7IA3iD8Wi+Na8l0lz/VbNAhjSlYLhpdX6mu9Wq6s\nozUpp9UkD0+fNIPGQWqIl2UGhIF49iN2wM0+PDw+1j6OYfVBAuFYvWp5TjukbvEfwrBqOL03JB7i\n1THHVk4rPXeM6L2eHEdje737Ed+AJ+ePxeK4lnxXyXP9Fg3CmJLVguHllfpar5Yr62hNymk1ycPT\nJ82gcZAa4mWZAWEgnkVwu4nyQbEDVnpmUD12wJjW+1zyix1wXSPpYwdsn2f1OHbAG8Qfi8VxLfmu\nkuf6LRqEMSWrBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPPsRO+BmHx4eH2sfx7D6IIFw\nrF61PKcdUrf4D2FYNZzeGxIP8eqYYyunlZ47RvReT46jsb3e/YhvwJPzx2JxXEu+q+S5fosGYUzJ\nasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM8iuN1E+aDYASs9M6geO2BM630u+cUOuK6R\n9LEDts+zehw74A3ij8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfNoHGQGuJlmQFh\nIJ79iB1wsw8Pj4+1j2NYfZBAOFavWp7TDqlb/IcwrBpO7w2Jh3h1zLGV00rPHSN6ryfH0dhe737E\nN+DJ+WOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJM2gcpIZ4WWZAGIhnEdxuonxQ\n7ICVnhlUjx0wpvU+l/xiB1zXSPrYAdvnWT2OHfAG8cdicVxLvqvkuX6LBmFMyWrB8PJKfa1Xy5V1\ntCbltJrk4emTZtA4SA3xssyAMBDPfsQOuNmHh8fH2scxrD5IIByrVy3PaYfULf5DGFYNp/eGxEO8\nOubYymml544RvdeT42hsr3c/4hvw5PyxWBzXku8qea7fokEYU7JaMLy8Ul/r1XJlHa1JOa0meXj6\npBk0DlJDvCwzIAzEswhuN1E+KHbASs8MqscOGNN6n0t+sQOuayR97IDt86wexw54g/hjsTiuJd9V\n8ly/RYMwpmS1YHh5pb7Wq+XKOlqTclpN8vD0STNoHKSGeFlmQBiIZz9iB9zsw8PjY+3jGFYfJBCO\n1auW57RD6hb/IQyrhtN7Q+IhXh1zbOW00nPHiN7ryXE0tte7H/ENeHL+WCyOa8l3lTzXb9EgjClZ\nLRheXqmv9Wq5so7WpJxWkzw8fdIMGgepIV6WGRAG4lkEt5soHxQ7YKVnBtVjB4xpvc8lv9gB1zWS\nPnbA9nlWj2MHvEH8sVgc15LvKnmu36JBGFOyWjC8vFJf69VyZR2tSTmtJnl4+qQZNA5SQ7wsMyAM\nxLMfsQNu9uHh8bH2cQyrDxIIx+pVy3PaIXWL/xCGVcPpvSHxEK+OObZyWum5Y0Tv9eQ4Gtvr3Y/4\nBjw5fywWx7Xku0qe67doEMaUrBYML6/U13q1XFlHa1JOq0kenj5pBo2D1BAvywwIA/EsgttNlA+K\nHbDSM4PqsQPGtN7nkl/sgOsaSR87YPs8q8exA94g/lgsjmvJd5U812/RIIwpWS0YXl6pr/VqubKO\n1qScVpM8PH3SDBoHqSFelhkQBuLZj9gBN/vw8PhY+ziG1QcJhGP1quU57ZC6xX8Iw6rh9N6QeIhX\nxxxbOa303DGi93pyHI3t9e5HfAOenD8Wi+Na8l0lz/VbNAhjSlYLhpdX6mu9Wq6sozUpp9UkD0+f\nNIPGQWqIl2UGhIF4FsHtJsoHxQ5Y6ZlB9dgBY1rvc8kvdsB1jaSPHbB9ntXj2AFvEH8sFse15LtK\nnuu3aBDGlKwWDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPx7EfsgJt9eHh8rH0cw+qDBMKx\netXynHZI3eI/hGHVcHpvSDzEq2OOrZxWeu4Y0Xs9OY7G9nr3I74BT84fi8VxLfmukuf6LRqEMSWr\nBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPIvgdhPlg2IHrPTMoHrsgDGt97nkFzvgukbS\nxw7YPs/qceyAN4g/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdlBoSB\nePYjdsDNPjw8PtY+jmH1QQLhWL1qeU47pG7xH8Kwaji9NyQe4tUxx1ZOKz13jOi9nhxHY3u9+xHf\ngCfnj8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfNoHGQGuJlmQFhIJ5FcLuJ8kGx\nA1Z6ZlA9dsCY1vtc8osdcF0j6WMHbJ9n9Th2wBvEH4vFcS35rpLn+i0ahDElqwXDyyv1tV4tV9bR\nmpTTapKHp0+aQeMgNcTLMgPCQDz7ETvgZh8eHh9rH8ew+iCBcKxetTynHVK3+A9hWDWc3hsSD/Hq\nmGMrp5WeO0b0Xk+Oo7G93v2Ib8CT88dicVxLvqvkuX6LBmFMyWrB8PJKfa1Xy5V1tCbltJrk4emT\nZtA4SA3xssyAMBDPIrjdRPmg2AErPTOoHjtgTOt9LvnFDriukfSxA7bPs3ocO+AN4o/F4riWfFfJ\nc/0WDcKYktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCe/YgdcLMPD4+PtY9jWH2QQDhW\nr1qe0w6pW/yHMKwaTu8NiYd4dcyxldNKzx0jeq8nx9HYXu9+xDfgyfljsTiuJd9V8ly/RYMwpmS1\nYHh5pb7Wq+XKOlqTclpN8vD0STNoHKSGeFlmQBiIZxHcbqJ8UOyAlZ4ZVI8dMKb1Ppf8Ygdc10j6\n2AHb51k9jh3wBvHHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLMgDAQ\nz37EDrjZh4fHx9rHMaw+SCAcq1ctz2mH1C3+QxhWDaf3hsRDvDrm2MpppeeOEb3Xk+NobK93P+Ib\n8OT8sVgc15LvKnmu36JBGFOyWjC8vFJf69VyZR2tSTmtJnl4+qQZNA5SQ7wsMyAMxLMIbjdRPih2\nwErPDKrHDhjTep9LfrEDrmskfeyA7fOsHscOeIP4Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvlyjpa\nk3JaTfLw9EkzaBykhnhZZkAYiGc/Ygfc7MPD42Pt4xhWHyQQjtWrlue0Q+oW/yEMq4bTe0PiIV4d\nc2zltNJzx4je68lxNLbXux/xDXhy/lgsjmvJd5U812/RIIwpWS0YXl6pr/VqubKO1qScVpM8PH3S\nDBoHqSFelhkQBuJZBLebKB8UO2ClZwbVYweMab3PJb/YAdc1kj52wPZ5Vo9jB7xB/LFYHNeS7yp5\nrt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzH7EDbvbh4fGx9nEMqw8SCMfq\nVctz2iF1i/8QhlXD6b0h8RCvjjm2clrpuWNE7/XkOBrb692P+AY8OX8sFse15LtKnuu3aBDGlKwW\nDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPxLILbTZQPih2w0jOD6rEDxrTe55Jf7IDrGkkf\nO2D7PKvHsQPeIP5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZEAbi\n2Y/YATf78PD4WPs4htUHCYRj9arlOe2QusV/CMOq4fTekHiIV8ccWzmt9Nwxovd6chyN7fXuR3wD\nnpw/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdlBoSBeBbB7SbKB8UO\nWOmZQfXYAWNa73PJL3bAdY2kjx2wfZ7V49gBbxB/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVcWUdr\nUk6rSR6ePmkGjYPUEC/LDAgD8exH7ICbfXh4fKx9HMPqgwTCsXrV8px2SN3iP4Rh1XB6b0g8xKtj\njq2cVnruGNF7PTmOxvZ69yO+AU/OH4vFcS35rpLn+i0ahDElqwXDyyv1tV4tV9bRmpTTapKHp0+a\nQeMgNcTLMgPCQDyL4HYT5YNiB6z0zKB67IAxrfe55Bc74LpG0scO2D7P6nHsgDeIPxaL41ryXSXP\n9Vs0CGPOyctbAAAUEUlEQVRKVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXj2I3bAzT48\nPD7WPo5h9UEC4Vi9anlOO6Ru8R/CsGo4vTckHuLVMcdWTis9d4zovZ4cR2N7vfsR34An54/F4riW\nfFfJc/0WDcKYktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCeRXC7ifJBsQNWemZQPXbA\nmNb7XPKLHXBdI+ljB2yfZ/U4dsAbxB+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dP\nmkHjIDXEyzIDwkA8+xE74GYfHh4fax/HsPoggXCsXrU8px1St/gPYVg1nN4bEg/x6phjK6eVnjtG\n9F5PjqOxvd79iG/Ak/PHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLM\ngDAQzyK43UT5oNgBKz0zqB47YEzrfS75xQ64rpH0sQO2z7N6HDvgDeKPxeK4lnxXyXP9Fg3CmJLV\nguHllfpar5Yr62hNymk1ycPTJ82gcZAa4mWZAWEgnv2IHXCzDw+Pj7WPY1h9kEA4Vq9antMOqVv8\nhzCsGk7vDYmHeHXMsZXTSs8dI3qvJ8fR2F7vfsQ34Mn5Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvl\nyjpak3JaTfLw9EkzaBykhnhZZkAYiGcR3G6ifFDsgJWeGVSPHTCm9T6X/GIHXNdI+tgB2+dZPY4d\n8Abxx2JxXEu+q+S5fosGYUzJasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM9+xA642YeH\nx8faxzGsPkggHKtXLc9ph9Qt/kMYVg2n94bEQ7w65tjKaaXnjhG915PjaGyvdz/iG/Dk/LFYHNeS\n7yp5rt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzCG43UT4odsBKzwyqxw4Y\n03qfS36xA65rJH3sgO3zrB7HDniD+GOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJ\nM2gcpIZ4WWZAGIhnP2IH3OzDw+Nj7eMYVh8kEI7Vq5bntEPqFv8hDKuG03tD4iFeHXNs5bTSc8eI\n3uvJcTS217sf8Q14cv5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZ\nEAbiWQS3mygfFDtgpWcG1WMHjGm9zyW/2AHXNZI+dsD2eVaPYwe8QfyxWBzXku8qea7fokEYU7Ja\nMLy8Ul/r1XJlHa1JOa0meXj6pBk0DlJDvCwzIAzEsx+xA2724eHxsfZxDKsPEgjH6lXLc9ohdYv/\nEIZVw+m9IfEQr445tnJa6bljRO/15Dga2+vdj/gGPDl/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVc\nWUdrUk6rSR6ePmkGjYPUEC/LDAgD8SyC202UD4odsNIzg+qxA8a03ueSX+yA6xpJHztg+zyrx7ED\n3iD+WCyOa8l3lTzXb9EgjClZLRheXqmv9Wq5so7WpJxWkzw8fdIMGgepIV6WGRAG4tmP2AE3+/Dw\n+Fj7OIbVBwmEY/Wq5TntkLrFfwjDquH03pB4iFfHHFs5rfTcMaL3enIcje317kd8A56cPxaL41ry\nXSXP9Vs0CGNKVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXgWwe0mygfFDljpmUH12AFj\nWu9zyS92wHWNpI8dsH2e1ePYAW8QfywWx7Xku0qe67doEMaUrBYML6/U13q1XFlHa1JOq0kenj5p\nBo2D1BAvywwIA/HsR+yAm314eHysfRzD6oMEwrF61fKcdkjd4j+EYdVwem9IPMSrY46tnFZ67hjR\nez05jsb2evcjvgFPzh+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dPmkHjIDXEyzID\nwkA8i+B2E+WDYges9MygeuyAMa33ueQXO+C6RtLHDtg+z+px7IA3iD8Wi+Na8l0lz/VbNAhjSlYL\nhpdX6mu9Wq6sozUpp9UkD0+fNIPGQWqIl2UGhIF49iN2wM0+PDw+1j6OYfVBAuFYvWp5TjukbvEf\nwrBqOL03JB7i1THHVk4rPXeM6L2eHEdje737Ed+AJ+ePxeK4lnxXyXP9Fg3CmJLVguHllfpar5Yr\n62hNymk1ycPTJ82gcZAa4mWZAWEgnkVwu4nyQbEDVnpmUD12wJjW+1zyix1wXSPpYwdsn2f1OHbA\nG8Qfi8VxLfmukuf6LRqEMSWrBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPPsRO+BmHx4e\nH2sfx7D6IIFwrF61PKcdUrf4D2FYNZzeGxIP8eqYYyunlZ47RvReT46jsb3e/YhvwJPzx2JxXEu+\nq+S5fosGYUzJasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM8iuN1E+aDYASs9M6geO2BM\n630u+cUOuK6R9LEDts+zehw74A3ij8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfN\noHGQGuJlmQFhIJ79iB1wsw8Pj4+1j2NYfZBAOFavWp7TDqlb/IcwrBpO7w2Jh3h1zLGV00rPHSN6\nryfH0dhe737EN+DJ+WOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJM2gcpIZ4WWZA\nGIhnEdxuonxQ7ICVnhlUjx0wpvU+l/xiB1zXSPrYAdvnWT1utAOes5aPP0oHBwdE9Hil9q2j3KG2\n//xbi97Lld7LSzd+vn78/PEF66MKi69r/P7zWs9HlZlXr5VlPu4aHtdWryd3bcrX5zh3t6dH5pU0\nltcHudb4a3F54bf6HtTmtb5euobXl+dTO8f6a11/jaRayV9+PbRzWb6W0nzc+2/5Pcq9X1d/huT7\nBXr/4d4zh+fE34P4nxf+tfzWyrEahw3ag4jytWvX8mFcvXo1E+3lZ599NhOdrNYOc9xzvneeWz6u\n1Zefz1l7Couva3zueXl+Ur08X8t80jXV+OW14b1OZaIHjvTIvJLG8vq0eI6cszav9fXSNbweef9x\n76/aayTVpOtjef+0eH/z12Jv5Zjjo/cf7f3Y6v4lzU/CN+CUkbs0EaWU8sWLF+kb3/gGpZTo29/+\nNn3ta1+jEydO0Kuvvkrnz5+nnZ0dSinRmTNn6MaNG/TII4/QrVu36OGHH6aXX3756PnJkyfpm9/8\npth74sQJSinRK6+8Qsu+JbsFS+KXsx8+r/VwPuW1OnPmDL3yyitHLG2+5Xo5x4kTJ+jg4IDu3bu3\nwi+vTel76HXnzh26e/cuvfrqq73XfGdnhw4ODqrzcp6e11q71pbXgrvW6LVAXy/t/Jdfs5p+d3eX\ndnd3Te/JZc7ha3P4393dXSKiam35mpfnttynXTNuZsv7W7sWtfd6bY5yZu3nvmRJ18h6/+Lmv3jx\nIp04cYI+97nPUc45Df4GTPRQJrqSiV7IRHuZiPLu7m4+rj21qF3IRJT39/fzM888ky9cuLDQ7GWi\nZzLRftF7YdH71FHvuXPn8rlz59j6IXt/f3+hSZmI8oULF/KVK1fyCy+8sOR7LhOdFuo8vz/7O47q\ndc7phVe/Xs64ytbmO67Xe88W13N/MWv5Gh1e//45fOhDH1q61ssPad5TFfbx9bG9PofzPsT4afXl\n1698b+0vzrl2LeqvJ/Z6yefff//W9KeV13z15+ncuXP57Nmzvdeoz5t77OzssNe8PLc+s3++x9rd\nyjktz1e75sev1+q1KN+vx+/vvpa7X9SuZ/169VnvOGIdX6Nd4TXo/7xw7+nV8zu+B8y/DfPfgE07\n4L29TNeu7dDVqzu0t0e0v79P9+7do/39/UXt6UXtJl26dIlu3bpFKSW6eXP+fG+P6NlnE+3t3Sp6\nby56f+qo9/bt23Tnzp1F32r9kH3r1pxFlGl/f59u3rxJOzs7tLOzc+R76tRtOn2a6NKlS9W6xO/P\n/thRve6T6fTpOyv1csaSrc23XK/33i2u563FrOVrdHj9++ewu7tLt2/fpp2d47fD2bNnlXlThf2Y\n6/U5njcz116rL79+5Xvr1uKca9ei/npir5d8/svv35p+/l6R3pOrP0+3b9+mu3fvLmabv0Z93tzj\n4OCg9/pJ59Zn9s/3WHvvSHv8M7k8X+2aH79eq9fibnEtjt/ffY/6/aJ+/evXq8967Ih1fI3uCe/L\n/s8L955ePb/je0BK9S++h2FaQVy7do1u3LhBOWd69NFH6Qtf+AJ9/etfp7Nnz9Kjjz7aqz355JP0\n4osv0gc+8AF6z3ves/Jc6333u99NREQf/OAH6cUXXxTZLViW2bkeyaeccZmlzVfWa71vectbqnzJ\nd9nr+vXr9MQTT9CHP/xh+uIXv0gPPvggve1tbxPn5Tytrw9yrS2vBXfO6LVAXy/p/Jdfs5r++vXr\n5vdkyXnppZeOXqNDXq1WXvPlcyv7pGsmzYy+v7Vrwb3XkZnRn5tDlnSNLPcvaf4bN27Qc889x64g\nTDdgVBsRERERMY+UEnsDbvQXMSIiIiIirBE34IiIiIg1RdyAIyIiItYUcQOOiIiIWFPEDTgiIiJi\nTRE34IiIiIg1RdyAIyIiItYUcQOOiIiIWFPEDTgiIiJiTRE34IiIiIg1RdyAIyIiItYUr8kb8Mc+\n9rF1j9Ak7pfzILp/zuV+OQ+i++dcNvk84ga8xXG/nAfR/XMu98t5EN0/57LJ5/GavAFHREREbELE\nDTgiIiJiTWH694BHniUiIiLivozB/yB7RERERETbiBVERERExJoibsARERERawroBpxSeldK6b+l\nlL6QUnrf2EMNiZTSP08pfTWl9NJS7vUppV9LKf1WSunfp5Ret1R7LqV0I6X0+ZTSj61n6tVIKe2n\nlH4jpfTZlNJnUkp/fZHfxnP5jpTSf04pfWpxLrNFfuvOhYgopbSTUvpkSukji+fbeh6/k1L6r4vX\n5TcXua07l5TS61JKVxdzfTal9Ee35jy4/1/94YPmN+n/TkTfQ0QniOjTRPQDWt+6HkT0OBH9EBG9\ntJT7B0T0txfH7yOiv784vkREnyKiB4joexfnmdZ9DovZ3khEP7Q4PkNEv0VEP7CN57KY78HFf3eJ\n6ONE9PYtPpe/SUQfJKKPbOv7azHfbxPR64vc1p0LEf1LIvrZxfEDRPS6bTkP5Bvw24noRs75f+Wc\nXyWiDxHRTwJ9a4mc838kot8r0j9JRL+0OP4lIvozi+OfIKIP5Zy/nXP+HSK6QfPzXXvknL+Sc/70\n4vibRPR5ItqnLTwXIqKc853F4XfQ/M2faQvPJaW0T0Q/TkT/bCm9deexiESrvwreqnNJKT1ERD+a\nc36eiGgx3y3akvNAbsB/kIi+tPT8dxe5bYrzOeevEs1vbER0fpEvz+3LtIHnllL6Xpp/q/84EX3X\nNp7L4pftnyKirxDRr+ecP0HbeS7/mIj+Fs0/QA5jG8+DaH4Ov55S+kRK6S8vctt2Lt9HRP83pfT8\nYi30iymlB2lLzuO1+ptwW/Nn71JKZ4joGhH9jcU34XL2rTiXnPNBzvmP0Pxb/NtTSj9IW3YuKaU/\nTURfXfzKpPrnOhex0eexFI/lnH+Y5t/o/2pK6Udpy14Tmv9q6oeJ6BcW53KbiC7TlpwHcgP+MhF9\n99Lz/UVum+KrKaXvIiJKKb2RiF5e5L9MRBeWdBt1bimlB2h+8/3lnPOvLNJbeS6HkXP+f0T0MSJ6\nF23fuTxGRD+RUvptIvrXRPQnUkq/TERf2bLzICKinPP/Wfz3a0T0b2n+S/Fte01+l4i+lHP+L4vn\n/4bmN+StOA/kBvwJIvr+lNL3pJROEtHTRPSRcccaHIn631A+QkR/cXH8M0T0K0v5p1NKJ1NK30dE\n309EvznVkED8CyL6XM75nyzltu5cUkpvOPxd6JTSaSL6UzTfaW/VueScfz7n/N055zfT/OfgN3LO\nP01Ev0pbdB5ERCmlBxe/uqKU0ncS0Y8R0Wdo+16TrxLRl1JKjy5Sf5KIPkvbch7g7zK+i+a/C3+D\niC6v+3c9lVn/FRH9byL6fSL6IhH9LBG9nog+ujiHXyOih5f0z9H8d0I/T0Q/tu75l+Z6jIju0fxP\nnXyKiD65eB3ObuG5vHUx/6eJ6CUi+juL/Nady9J8f5yO/xTE1p0HzXenh++tzxz+XG/pufxhmn9R\n/DQRvUjzPwWxFecRfxU5IiIiYk3xWv1NuIiIiIi1R9yAIyIiItYUcQOOiIiIWFPEDTgiIiJiTRE3\n4IiIiIg1RdyAIyIiItYUcQOO2NhY/DODf2Vx/KaU0pV1zxQR0TLizwFHbGws/hGiX805v3XNo0RE\njBIPrHuAiAgh/h4RvTml9Ema/82lP5RzfmtK6Wdo/s8LfifN/yrpPyKik0T000T0LSL68ZzzzZTS\nm4noF4joDUR0h4jek3P+whrOIyKiGrGCiNjkuExE/yPP/5Wr8p+A/EGa34TfTkR/l4i+udB9nIj+\nwkLzi0T013LOP7Lo/6dTDR4RgUR8A47Y1vgPef6PvN9JKd0kon+3yH+GiN66+Adm/hgRXU0pHf7D\nTCfWMGdEBBtxA47Y1vj9peO89PyA5u/rHSL6vcW34oiIjYxYQURscnyDiPYWx9I/gL4SOedvENH/\nTCk9dZhLKb2t4WwREYMjbsARGxs5568T0X9K8//D9T8k/v9qwOXfTUR/KaX06ZTSdZr//8AiIjYm\n4o+hRURERKwp4htwRERExJoibsARERERa4q4AUdERESsKeIGHBEREbGmiBtwRERExJoibsARERER\na4q4AUdERESsKeIGHBEREbGm+P/UHK87mpdplgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import time_filter as cpp_time_filter\n",
+ "filtered = cpp_time_filter(series, 1)\n",
+ "fig, ax = plt.subplots(1,1)\n",
+ "plot_time_series(perfect, ax=ax)\n",
+ "plot_time_series(filtered, ax=ax, marker='*', color='k', linestyle=':')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, computes the likelihood of this time series for a random QMatrix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/approx_survivor-checkpoint.ipynb b/exploration/.ipynb_checkpoints/approx_survivor-checkpoint.ipynb
new file mode 100644
index 0000000..14caa3a
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/approx_survivor-checkpoint.ipynb
@@ -0,0 +1,200 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Approx Survivor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from numpy import array\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, ApproxSurvivor\n",
+ "qmatrix = QMatrix( \n",
+ " array([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ]), 2)\n",
+ "\n",
+ "transitions = qmatrix\n",
+ "tau = 1e-4\n",
+ "a = DeterminantEq(transitions, tau)\n",
+ "approx = ApproxSurvivor(transitions, tau)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEbCAYAAACP7BAbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcTvX7x/HXNZgk2bJlG1vJLmVNNaUFhaJs2deSpUW2\nEtVPlpQlhGxjiUiLSqViSIv0tRQhZWeQZA9j5vr9cZ+ZbtMsh1nOPTPX8/G4H933OedzznWfud3v\nPud8zrlFVTHGGGMCTZDXBRhjjDHxsYAyxhgTkCygjDHGBCQLKGOMMQHJAsoYY0xAsoAyxhgTkCyg\njDHGBCQLKGMAESnldQ3GmEtZQJlMzwmnWim4vhIi0jKZ67hRRDaIyAkR6eWyzS4RuTs52/WKiGwW\nkTu8rsMEFguoDE5E2ojIOhE5JSIHRORTEbnN67rSwmV8YT+uqgv92rURkWdF5F0RaZXENv6zrKru\nBXKISIVklN8fWKGquVV1YjzbTRdh5LZOVa2kqqvToiaTfmT1ugCTekTkGXxfdD2A5cAF4H6gMfCt\nh6UFDBGpAuzze10GuE5VXxeR/MAOEflBVXfH0zaxZd8BxgI9r7C0EGDBFbZNN0Qki6pGJXMd1YGh\nQG5gDpAdqAq8o6qrkl+l8Yyq2iMDPoBcwCmgWSLL3ASsBP4GfgEa+83bBfQDNjnreRsoCCwDTuIL\nvNxxlh8IbAH+AmYAwZexrWedbf2N74s52Jl3PfAecAT4A+gd5z34tz3utL0K3xdVFHDGqbdfAvvg\neaCi3+smwF6/1+uARxJom+iywHQg5+Xuf+Br4CLwj1N72Tjt4n1vydmP8ezTy/nbDwB+d+ZtBh5y\nUWd/Z/3/AFmcaXcDpZ3PTzVn2SJOzXck8XmfDzTxe90U2Oj1v0N7JO/heQH2SKU/rK+ndAEISmB+\nVmCH8+WSFbjL+RK5wZm/C/gOyO98uR0GfgKqAMHOl+gQv/XtAn52vlDyAGuAly9jWz8AhZy2vwLd\nAXG2+bzzJVbS+SK8N852/9PWb95dSeynDwGJs18q+b3eH/NlmcA+THBZoDdw3xXu/5VA50Tq/s97\nS85+jGc9l/O3bw4Ucp4/Cpz2e51Qneudz8pVftPudp53xRd0VwNfAKNcfN53Ajmc59nwhXF7r/8d\n2iN5DzsHlXFdBxxV1egE5tcGrlHVUap6UVVXAp8Arf2WeVNVj6pqBPANsFZVf1bVC8AHwM1x1vmm\nqh5U1ePAcL911XGxrfGqethp+zFQDagB5FfV4aoapb5DZ9PjtEuobQxJdC/B1aoae0t/p77NACLy\nIPCTqm6Mr6GLZQ8CNySwXTf7PynxvbfL2Y+JnV9z/bdX1SWqeth5vhhf8NZ0UedBVT0fd4aqTscX\noGvxhe0LidSJiNyEr/dcT0QeB6YAz6jqnMTamcBn56Ayrr+A/CISlEBIFcHv3ItjD1DU7/Vhv+f/\nxPM6Z5z2++Osq4jz/PrL3NZZp00IUFREjjnTBd/Anrgn0+Nr61aW+CaKSC6gA9A2qRUksuxx4MYE\nmrnZ/1ciOfsxofUk+rcXkfbA0/h6ZgDX4Ot9JWZ/EvOnAx/h6w1HJrHs3cBSVV3u1NMEKAzsTayR\n83cbiO9/5N5IYhvGA9aDyri+B84DDyUw/yBQPM60EsCBZGzTf30hzjaSs619wE5Vzec88qpvVFtj\nl/W4+bGziwlM7w90U9XTIhKSxDoSWvZqfOdf4pPc/X85P+SW3P2YIBEpAUwDejrrzYvvPGRMrymh\nOhOsX0SuAcbhO485TETyJFHGXfg+7zHy4TuXlZSGwApnOyYAWUBlUKp6Et/Ipkki0lRErhaRrCLS\nUERG4jt8clZE+jvTQ4EHSd7IsSdFpKiI5AMGAzFDt690Wz8Cp5x22UUki4hUFJFbXdZzmKS/qA47\nX4ixnOuOPgCuEpEa+MIWESkrIuJmWUc+4FAC203u/j+Euy9hSP5+TMw1QDRwVESCRKQTUMlvvpu/\nQVwTgB9VtTu+gRlTE1rQ+Xvcge/cW4zKwF8icr2zTC8RaSAib/m1y4+vx5sH30AQE4AsoDIw57DF\nM/iO4R/Bd8ijJ/Chc9ikMdAIOApMBNqp6o6Y5nFX52KT7+Ab4fU7vvMQw506LndbMfVH4/vSrobv\nJPoRfCPKcrmsawQwRESOOUPu47MKv4t0nWvExuP7Uo/A98X3hzP7Y+Ael8uCb1BBvMP5r3Sf+BkZ\nz3tLzn68pEkSr/3XvRV4Hd97PwRUxDdAJkZ8f4P41qcQe3juPv4dnv8McLOI/OfcnHOJwHB8PdXm\nfrNm4DvHd6+IPIrvb7MGv96sqh4FDqjqezGHwEVkmYgMTOi9mrQnfueHjbliIrIL6KKqK7yu5XKI\nSF58w5+fd7FsEHCnM6DBzbqnq2rX5NZorpyITAKGALfg6y19o6qHnHmTVfVKr1MzaSDJHpSIzBCR\nwyLycyLLTBCRHSKyUUSq+U1vICLbROQ3ERngNz2viCwXke0i8oWI5Hamh4jIWRFZ7zwmJ/cNGpMY\nVf0b3+Gg61ws/giXHkpKkHO478vk1GZSxBf4emSV8A3iOAGx57ns0F6Ac3OIbxa+a2riJSINgTKq\negO+OxZMcaYH4TtscT++bn9rZzgo+EbOfKWq5fCdpBzkt8rfVbW687D/u0k/0nNXfBy+8EnKp6r6\nT1ILiUgWfNf0vJvsykyyqOpSVV2oqmNV9TW/v1/cQ5EmACUZUKq6Bt9V6Qlpiu+KcVR1LZBbRArh\nuw5ih6rucY63L3SWjWkT5jwP49KRZkldt2ICkKqWTm+H92KoarSqJngi3m+5hEbkxVUA34l+E4DE\ndyPfB4FPva7FJC4lroMqyqXXc+x3psU3PebivUJ+F/YdEpGCfsuVFJH1+LriQ5yANCbdiDnHYQKT\n9WzTj9S4UPdKekAxh4cigBKq+rdzA8gPRaSCqp5OufKMMcakBykRUAe49ILDYs60YHwXHsadDnBI\nRAqp6mERKYxv2CvObVQuOM/Xi8gf+K7EXx93oyKSns95GGNMuqWqaXIqxu11UELCPaOlQHsAEakN\nHHcO360Dyjoj84Lx3fdrqV+bjs7zDvhuaYKI5HcGVyAipYGy+G4CGa+EbjAYiI+hQ4d6XoPVGxiP\n9FSr1Wv1xn2kpSR7UCLyDhAKXCcie/HdnSAYUFWdpqrLRKSRiPyO70K4TvhmRjlX2S/HF4Qz1HdR\nH8AoYJGIdMZ3/7EWzvQ7gJdF5AK+q9N7qO+ml8YYYzKZJANKVdu4WCben6RW1c+BcvFMP4bfFfl+\n098H3k9qe8YYYzI+u9VRGgkNDfW6hMti9aae9FQrWL2pLb3Vm5bS7a2ORETTa+3GGJNeiQiaRoMk\n7PegjDHpWsmSJdmzZ4/XZWQ4ISEh7N6929MarAdljEnXnP+j97qMDCeh/ZqWPSg7B2WMMSYgWUAZ\nY4wJSBZQxhhjApIFlDHGmIBkAWWMMRlEWFgYt99+u9dlpBgLKGOMySBUFZGM85N6FlDGGJOKIiIi\neOSRRyhYsCBlypRh4sSJADzwwAP069cvdrlWrVrRtWtXAHbu3En9+vXJnz8/BQsWpG3btpw8eTJ2\n2f3799O8eXMKFixIgQIF6NOnD9u2beOJJ57g+++/59prryVfvnxp+0ZTgQWUMcakElWlcePG3Hzz\nzURERPD1118zbtw4vvzyS2bOnMm8efMIDw9n/vz5/PTTT0yYMCG23eDBgzl06BBbt25l//79DBs2\nDIDo6GgefPBBSpUqxd69ezlw4ACtWrXipptuYsqUKdSpU4dTp05x7NgxD995yrA7SRhjTCpZt24d\nR48e5fnnnwd8d73o2rUrCxcu5N577+Wtt96iffv2nDt3jo8++ogcOXIAUKZMGcqUKQPAddddx9NP\nP83LL78MwNq1a4mIiGD06NEEBfn6GHXr1vXg3aU+CyhjTIaXEqdlruRmFXv27OHAgQOxh9tUlejo\naO644w4AHnzwQXr16kW5cuWoU6dObLsjR47Qt29fvvnmG06fPk1UVFTsOvbv309ISEhsOGVkGf8d\nGmMyPdXkP65E8eLFKV26NMeOHePYsWP8/fffnDhxgo8//hiAwYMHU6FCBSIiIli4cGFsu8GDBxMU\nFMSWLVs4fvw48+bNi73tUPHixdm7dy/R0dH/2V5GGiABFlDGGJNqatasybXXXsvo0aM5d+4cUVFR\nbNmyhZ9++onVq1cTFhbG3LlzmT17Nr179yYiIgKAU6dOkTNnTq699loOHDjAa6+9dsk6r7/+egYO\nHMjZs2c5f/483333HQCFChVi//79REZGevJ+U5oFlDHGpJKgoCA++eQTNm7cSKlSpShYsCDdunUj\nIiKCjh07MmnSJAoXLky9evXo2rUrnTp1AmDo0KH873//I0+ePDRu3JjmzZtfss6PP/6YHTt2UKJE\nCYoXL86iRYsAuPvuu6lYsSKFCxemYMGCnrznlGR3MzfGpGt2N/PUYXczN8YYYxJgAWWMMSYgWUAZ\nY4wJSBZQxhhjApIFlDHGmIBkAWWMMSYgWUAZY4wJSEkGlIjMEJHDIvJzIstMEJEdIrJRRKr5TW8g\nIttE5DcRGeA3Pa+ILBeR7SLyhYjk9ps3yFnXVhG5LzlvzhhjTPrlpgc1C7g/oZki0hAoo6o3AD2A\nKc70IGCi07Yi0FpEbnKaDQS+UtVywApgkNOmAtACKA80BCZLRru5lDHGGFeSDChVXQP8ncgiTYE5\nzrJrgdwiUgioCexQ1T2qGgksdJaNaRPmPA8DHnKeNwEWqupFVd0N7HDWY4wxJpNJiXNQRYF9fq/3\nO9MSmg5QSFUPA6jqISDmplFx2xzwa2OMMSYeUVFRXpeQKlJjkMSVHJK7ohtpHfzr1JU0M8aYNDNq\n1CjKli1Lrly5qFSpEh9++CEAYWFh1KtXj969e5MnTx4qVKjAihUrYtvdddddDB48mFq1apE7d24e\nfvhhjh8/Dvh+ZyooKIiZM2cSEhJC/fr1AVi6dCmVKlUiX7583H333Wzbtg3w/YT8ddddx8aNGwE4\nePAgBQsWZPXq1Wm5Ky5bSvxg4QGguN/rYs60YKBEPNMBDolIIVU9LCKFgSNJrCtexR8sxSPlW1C+\nREFCQ0MJDQ1N3jsxxpgUVrZsWb799lsKFSrE4sWLadeuHb///jvg+3XcFi1a8Ndff7FkyRKaNWvG\n7t27yZMnDwBz585l+fLllCxZknbt2tG7d2/mzp0bu+7Vq1ezbds2goKC2LFjB23atGHp0qXceeed\nvPHGGzRu3JitW7dSunRpRo8eTdu2bVm3bh2dOnWiU6dOsT+cmJjw8HDCw8NTZd8kSVWTfAAlgV8S\nmNcI+NR5Xhv4wXmeBfgdCMEXVhuB8s68UcAA5/kAYKTzvAKwwVm+lNNeEtiudpsYpjIgv/aYNEeN\nMZmT72ss/ahWrZouXbpUZ8+erUWLFr1kXs2aNXXevHmqqhoaGqqDBg2Knffrr79qcHCwRkdH6+7d\nuzUoKEh3794dO/+VV17Rli1bxr6Ojo7WokWL6qpVq2KnNW3aVCtXrqxVq1bVCxcuJFpnQvvVme4q\nO5L7SLIHJSLvAKHAdSKyFxjqBIiq6jRVXSYijUTkd+AM0MkJvigR6QUsx3cocYaqbnVWOwpYJCKd\ngT34Ru6hqr+KyCLgVyAS6OnskHhNe7I996+5mdYfPMKq/t/w/YsTyJMze1JvyRiTychLyR8MrEOv\n7Cc95syZw9ixY9m9ezcAZ86c4ejRowQFBVG06KWn2ENCQjh48GDs6+LFi18yLzIykqNHj8ZOK1as\nWOzzgwcPEhISEvtaRChevDgHDvx7EKpr1640bdqUadOmkS1btit6P2kpyYBS1TYulumVwPTPgXLx\nTD8G3JNAmxHAiKS2GaN5vcrsLLeOuiO6UWRIXZZ1fI/QqqXdNjfGZAJXGi7JtXfvXrp3787KlSup\nU6cOADfffHPs7yz5h0fM8k2bNo19vW/fv2PG9uzZQ3BwMPnz52fv3r3ApT/xXqRIETZv3nzJ+vbt\n2xcbgmfOnOGpp56iS5cuDBs2jObNm8ceSgxUGeJOEsUK5GL3mIU0KtKJu9+pzeA5H3ldkjHGcObM\nGYKCgsifPz/R0dHMmjXrkhA5fPgwb775JhcvXmTx4sVs27aNRo0axc6fN28e27Zt4+zZswwdOpRH\nH300NpTiHlxq0aIFn376KStXruTixYuMGTOG7NmzU7duXQD69OlDzZo1mTZtGo0aNaJHjx5psAeS\nJ0MEFEBQkPDec72ZdtdSRv/Sh5rP9+fsuUivyzLGZGLly5fn2WefpXbt2hQuXJgtW7ZQr1692Pm1\na9dmx44d5M+fnyFDhrBkyRLy5s0bO79du3Z06NCBIkWKcOHCBcaPHx87L+49DG688UbmzZtHr169\nKFCgAJ9++imffPIJWbNmZenSpSxfvpzJkycD8MYbb7BhwwYWLFiQynsgeTLkT75v33eUem+044Ke\n5qsnFlCjXLF4lzPGpH/p9Sffw8LCmDFjRoJDve+66y7atWtH586d07gyH/vJ91RSrnh+IsZ8Sq3r\nGlJ75q28vOAzr0syxhhzmTJkQAFkzRLE8iGDGXfbIl5e3506QwZx7sJFr8syxhhX7DakGfQQX1xb\n9/7J7WPbEaln7JCfMRlMej3EF+jsEF8aKV+iAIfGLKN2/kZ2yM8YY9KJTNGD8jfx4294anUbamRv\ny8ohr5A9OCXu9mSM8Yr1oFJHIPSgMl1AgR3yMyYjsYBKHYEQUJniEF9cMYf86uR/gNozb2XI3I+9\nLskYY0wcmbIH5W/qsu94ckUbKmd7iFUvjCLXNVelQHXGmLRSsmRJ9uzZ43UZGU5ISEjs/QP92SE+\nF1IqoAB2RfzNbaO7cJw9fNR2IffeckOKrNcYYzIaO8SXxkpdn5f9ry+hSbEu3L+4Lk+8Nc/rkowx\nJtOzHlQci1Zvot1HLSkutVkzeCKF8+VM8W0YY0x6ZT0oD7W4oyr7XvgfQRJEyPBbeXfVRq9LMsaY\nTMl6UInoOWU+U3Y/xcP5hrC4X2+CguzWI8aYzM0GSbiQFgEFsGLjHzQJa0MO8rOy7ywqliyY6ts0\nxphAZYf4Asjd1cpwZMQayuSsQpXJ1RixaLnXJRljTKZgPajL8Pr7KxjwfQeqBbck/IVXyXl1cJpu\n3xhjvGaH+FzwIqAAduz/izte78IJ9rGkzTs0rFEuzWswxhiv2CG+AHZDses48PoHPFS8Gw8sqUfH\nCTOIjk6fIW+MMYHMelDJsPSHX2m5qBXXUY5V/aZSpkg+T+sxxpjUZj2odKJJ7QpEvPwjBa4qSrmx\nVXn9/RVel2SMMRmG9aBSyIhFy3nhp07cnK01KwYPt5vOGmMyJBsk4UKgBRTA9n1HueuN7vzNThY+\nOp+mdSt6XZIxxqSogDvEJyINRGSbiPwmIgPimZ9HRN4XkU0i8oOIVPCb11dEfnEeffymVxGR75w2\nH4lITmd6iIicFZH1zmNySrzRtFCueH72v76ElqV68/DSUB557U0bQGGMMVcoyR6UiAQBvwH1gYPA\nOqCVqm7zW2Y0cEpVXxGRcsAkVb1HRCoCC4AawEXgc6CHqu4UkR+BZ1R1jYh0BEqr6osiEgJ8rKpV\nkqgr4HpQ/r7e8DtN57QlO3n4qtcsqpW53uuSjDEm2QKtB1UT2KGqe1Q1ElgINI2zTAVgBYCqbgdK\nikgBoDywVlXPq2oUsApo5rS5UVXXOM+/Apr7rS/d3/Su/s1lOTLiGyrmrsUt025mUNiHXpdkjDHp\nipuAKgrs83u935nmbxNO8IhITaAEUAzYDNwuInlFJAfQCCjutNksIk2c5y2c5WOUdA7vrRSRepfz\nhgJJjuzZWDXsJSbf+T5jfu7HDf06sf/Pk16XZYwx6UJKDTMfCeQVkfXAk8AGIMo5DDgK+BJYFjPd\nadMFeFJE1gHXABec6RFACVWtDjwLvBNzfiq96tGoLvue30jWoGBKjarKm0tXe12SMcYEvKwuljmA\nr0cUo5gzLZaqngI6x7wWkV3ATmfeLGCWM304Tm/MORR4vzP9BuABZ/oFnLBS1fUi8gdwI7A+bmHD\nhg2LfR4aGkpoaKiLt+ONwvlysnX0VF6c9wlPrWnFnLWP8fXg/7Ph6MaYgBYeHk54eLgn23YzSCIL\nsB3fIIkI4Eegtapu9VsmN3BWVSNFpBtwm6p2dOYVUNU/RaQEvkEStVX1pN/0IHwBtlJVZ4tIfuCY\nqkaLSGl8560qq+rxOHUF9CCJxGzd+yf3jHucY+wg7KG5tLijqtclGWOMKwE1SMIZ3NALWA5sARaq\n6lYR6SEi3Z3FyuM7p7QVX6+or98qlojIZuAjoKeqxpyEaS0i24FfgQOqOtuZfgfws3O4cBG+UX+X\nhFN6V75EAfaNeY92ZfrR6tN7aTh8FBcio5JuaIwxmYhdqOuxb7fs4cG3OxJFJB92DOPuamW8LskY\nYxIUUD0ok7puqxjCn69/zd2Fm3PPwtq0eWOKXdxrjDFYDyqgfLJ2K60WduAqzcOyHjOoVb540o2M\nMSYNWQ8qk3qwVnmOjvqOW64Lpc7sW+g6cbb1powxmZb1oALUotWb6PBBB3JTguW9p1GldGGvSzLG\nGOtBGWhxR1X+fPVHbshVlWpTq9L37Xe9LskYY9KU9aDSgbAv19H9s/YUpDJfPT2ZcsXze12SMSaT\nsh6UuUSHe2sQMWw9ha4uQYU3K/PsjPe8LskYY1Kd9aDSmWmffU+vrzpSSKuy/KlJlC9RwOuSjDGZ\niPWgTIK6N6zDoaEbKXx1CJUmVeaZGYu9LskYY1KF9aDSsWmffU/vrzpRQCvzRZ9JVCxZ0OuSjDEZ\nnPWgjCvdG9YhYugGiuYoTZW3qvD09EV23ZQxJsOwHlQGMeOLtfT8oiP5qcBnvSbZdVPGmFRhPShz\n2brcX4vDL2+gxDU3Um1qFbpPmmO9KWNMumY9qAxo/or1dP24Mzm5nqXdplKnQomkGxljjAvWgzLJ\n8tjd1flrxDqq5avHbXNuodXrk7kYFe11WcYYc1msB5XBLf3hVx57twtZNJjF7aZz7y03eF2SMSYd\nsx6USTFNalfgr9FruLtIM+5fXIcHXn2Ncxcuel2WMcYkyXpQmUj4pp00m9Wd83KcmQ9Np+Wd1bwu\nyRiTzqRlD8oCKpOJjla6TprN7P0DqBXchU+fe5F8ua72uixjTDphAeWCBVTybN51mEZv9uWQ/I8R\nt03l2WZ3e12SMSYdsIBywQIqZQyZ+zEjfn6S0tzLZ0+/Rpki+bwuyRgTwGyQhEkzr7RrzO7+m8me\nJQc3jqtkt0syxgQM60GZWNM++54+X3Ylt5ZmaffJ1Cpf3OuSjDEBxnpQxhPdG9bhyCvrqZinBnXC\nbubhUeNsSLoxxjPWgzLx+mzddtrMf5zzcpJpD06jbf1bvC7JGBMAAq4HJSINRGSbiPwmIgPimZ9H\nRN4XkU0i8oOIVPCb11dEfnEeffymVxGR75w2H4lITr95g0Rkh4hsFZH7kvsmzeVrWKMcf72xgsfK\n9qH98kZUH/Q0h46d9rosY0wmkmRAiUgQMBG4H6gItBaRm+IsNhjYoKpVgQ7ABKdtRaALcCtQDWgs\nIqWdNtOB/k6bD4D+TpsKQAugPNAQmCwiaZLW5lJBQcLbT3Zga68tnIz8m2IjKvD83KVel2WMySTc\n9KBqAjtUdY+qRgILgaZxlqkArABQ1e1ASREpgC9k1qrqeVWNAlYBzZw2N6rqGuf5V0Bz53kTYKGq\nXlTV3cAOpwbjkXLF8/P7mNmMrhvGaxv7UeTpZqzbvt/rsowxGZybgCoK7PN7vd+Z5m8TTvCISE2g\nBFAM2AzcLiJ5RSQH0AiIGRq2WUSaOM9bOMvHt70D8WzPeOCZh+/iyEs/c0PuytSaVY1mo8fbIApj\nTKrJmkLrGQmMF5H1wC/ABiBKVbeJyCjgS+B0zHSnTRdggogMAZYCFy53o8OGDYt9HhoaSmhoaDLe\ngnEjT87srBr2Est+bM1j7/Qk34DZvNlgCl3ur+V1acaYVBAeHk54eLgn205yFJ+I1AaGqWoD5/VA\nQFV1VCJtdgGVVfV0nOnDgX2qOiXO9BuAuapaO+76ReRzYKiqro3TxkbxeSw6Wuk17R2m7nyOcjTh\n06dHUOr6vF6XZYxJRYE2im8dUFZEQkQkGGiFr8cTS0Ryi0g253k3YFVMODnnohCREsDDwDtxpgcB\nLwAxobUUaCUiwSJSCigL/Jisd2lSRVCQMPnxx9j57K9kkSyUHVvBfmreGJNiXF0HJSINgPH4Am2G\nqo4UkR74ejrTnF5WGBANbAG6qOoJp+1qIB8QCTytquHO9D7Ak4AC76vqYL/tDcJ3CDAS6Kuqy+Op\nyXpQASbsy3U8sexxgvVa5rSaTJPaFZJuZIxJV+xmsS5YQAWmC5FRtBk3mff/epla2bry0TMvUDDv\nNV6XZYxJIYF2iM8Y14KzZeG953qzvtvPRJzdQ5FXK9B/1vt22M8Yc9msB2VS1bgPwxm4+klyanEW\ntH2Te2+5weuSjDHJYIf4XLCASj/Onouk5dgJfHpiBHWDH+fDZweTP3cOr8syxlwBCygXLKDSn59+\nO0Dzqf04IN/zXOVxDG/XlKAgu4uVMemJBZQLFlDp1+vvr2DwmifJraVY0H4C9W8u63VJxhiXLKBc\nsIBK307/c4EWb4zj81OjqRPcgw+eHmyj/YxJByygXLCAyhh++u0Aj0ztz/6g1fS84TXGdW1ph/2M\nCWAWUC5YQGUsEz/+hudW9OYqzcP05hN45PYqXpdkjImHBZQLFlAZz4XIKNpPmMqiI8OoJC35qO/L\ndm8/YwKMXahrMqXgbFlY+GxPtvb6lYvRkZQdV572497mQmRU0o2NMRmO9aBMwFoQvoEeH/YiSs4z\n5p7xPPHAbV6XZEymZ4f4XLCAyhyio5Xe0xYw9Y8BFIu+nXe7jqJW+eJJNzTGpAoLKBcsoDKXI3+f\n4ZFxo1hzfjKhV/dh0VP97G4UxnjAAsoFC6jMac3m3bSe2Z+ILGvpXe41Xu/8qA1LNyYNWUC5YAGV\nuY3/aBX8k5+zAAAaC0lEQVQDw/sSrLmY8tB4Wofe7HVJxmQKFlAuWECZC5FRdJ40gwURL1I2+kEW\nP/F/VCld2OuyjMnQbJi5MS4EZ8vCvKe6s/OZbeQKzku1aZW475VXOXbyH69LM8akAOtBmQzj6w2/\n025Of45kWU/PG0fabZOMSQV2iM8FCyiTkHEfhjN41TNk0eyMaziWLvfX8rokYzIMCygXLKBMYi5E\nRvH4lDmE7XuB4lGhvNt1pF0/ZUwKsIBywQLKuHHo2GkeHT+Kb89Ppk7w47zbewDFCuTyuixj0i0L\nKBcsoMzlWLt1H21mvMDuoOW0LDyUmb26kj04q9dlGZPuWEC5YAFlrsT8FevptbQfZ4MOMaD6aIa1\necAGUhhzGSygXLCAMlcqOlp5ecEyRvzvOa6Jvp5JD42xC32NcckCygULKJNc5y5cpMukGSyMGEbJ\n6Pt4p8v/2UAKY5IQcBfqikgDEdkmIr+JyIB45ucRkfdFZJOI/CAiFfzm9RWRX5xHH7/pVUXkexHZ\nICI/isitzvQQETkrIuudx+SUeKPGxJU9OCvzn+7Bnue2UzhHMeqEVaP2CwPZc/i416UZY3DRgxKR\nIOA3oD5wEFgHtFLVbX7LjAZOqeorIlIOmKSq94hIRWABUAO4CHwO9FDVnSLyBfC6qi4XkYZAf1W9\nS0RCgI9VNdHf/LYelElpP/12gMfeHsqOoKU0yTuIOb17kuuaq7wuy5iAEmg9qJrADlXdo6qRwEKg\naZxlKgArAFR1O1BSRAoA5YG1qnpeVaOAVUAzp000kNt5ngc44Lc+O2tt0tytNxZl+2vT+aDpSr4/\nvILrht7Ek1Pe4WJUtNelGZMpuQmoosA+v9f7nWn+NuEEj4jUBEoAxYDNwO0ikldEcgCNgJiD/E8D\nY0RkLzAaGOS3vpLO4b2VIlLvMt+TMcnStG5FDo/9mDG3zyZs+zhy9avBa0u+9rosYzKdlLoQZCQw\nXkTWA78AG4AoVd0mIqOAL4HTMdOdNk8AfVX1QxF5BJgJ3AtEACVU9W8RqQ58KCIVVPV03I0OGzYs\n9nloaCihoaEp9HaMgb5N76R347U8O3Mxg7/rwag1ZZn88Cha3FHV69KMSTPh4eGEh4d7sm0356Bq\nA8NUtYHzeiCgqjoqkTa7gMpxQ0VEhgP7VHWKiBxX1Tx+806oau541rUSeFZV18eZbuegTJo5/c8F\nOk6cygdHh1P8Yn1mt3+F0KqlvS7LmDQXaOeg1gFlndF1wUArYKn/AiKSW0SyOc+7Aatiwsk5F4WI\nlAAeBuY7zQ6IyJ3OvPr4BmIgIvmdgRmISGmgLLAzWe/SmGTKeXUw7z3Xm339d1Aq143cvaAGVQb2\nZvOuw16XZkyG5eo6KBFpAIzHF2gzVHWkiPTA15Oa5vSywvANfNgCdFHVE07b1UA+IBJ4WlXDnel1\ngQlAFuAc0FNVN4hIM+Bl4IKzvhdVdVk8NVkPynhm694/afPWcDbpXOpd9STv9Opn9/gzmYJdqOuC\nBZQJBGs276bD7BfZleULmuQdyOxeT5AnZ3avyzIm1VhAuWABZQLJkjW/0HPJYP7K+jPtSwxjco92\ndjNakyFZQLlgAWUC0eRP1jDoq8Gcy3KEJyu8wuiOzcmaxdUNW4xJFyygXLCAMoEqOloZsXg5w38Y\nDCgDaw7nhZYN7K7pJkOwgHLBAsoEuuhoZcDs95mweQjZo69jeP1X6dX4dq/LMiZZLKBcsIAy6cWF\nyCh6TZvPrF1DyRN1E+MaD+exu6t7XZYxV8QCygULKJPenP7nAl0nT2fx4f+j8MU6TGz+Eg/fVsnr\nsoy5LBZQLlhAmfTq6ImzdJr8Fp8eH02Ji/WZ2noY9996o9dlGeOKBZQLFlAmvTv41yk6Tn6Tr86M\npczFB5nR/kXuqFLK67KMSZQFlAsWUCaj2HP4OO3fGss35yZRLro5szu9YL/sawKWBZQLFlAmo9mx\n/y/aTx3D2shpVOYxZnUZSPUbinhdljGXsIBywQLKZFSbdx2m49ujWa+zqEI7ZncdSLUy13tdljGA\nBZQrFlAmo/t55yE6vj2KjYRRjQ7M7jaAKqULe12WyeQsoFywgDKZxcY/Iug0fRSbmEN16cTsbv2p\nVKqQ12WZTMoCygULKJPZrN9xkE4zRvKLzKN6UGfCuvWnYsmCXpdlMhkLKBcsoExm9dNvB+g8cySb\nZT7VpRMzuz5nh/5MmrGAcsECymR2P/12gG6zXmMTc6hCO2Z2HmCj/kyqs4BywQLKGJ+fdx6i8/TX\nWK+zqKRteLvDALuOyqQaCygXLKCMudSW3UfoPP111kW9zU1RLZjWfiD1KpX0uiyTwVhAuWABZUz8\ntu87Sqdpb/BD5FTKRj3EpFYDufeWG7wuy2QQFlAuWEAZk7g/Dh6jy7QJrD43kRKR9zO++WCa1q3o\ndVkmnbOAcsECyhh39v95km7T3mL5ybEUulCX0Q8+T9v6t3hdlkmnLKBcsIAy5vIcPXGW7lPf5qM/\nX+O6i1V46Z7neeKB27wuy6QzFlAuWEAZc2VOnjlPz7fDeHf/SHJeDGHAbYPp3/wegoLS5DvHpHMW\nUC5YQBmTPGfPRfLMzIXM/n0kWfRqnqwymFfbP0TWLEFel2YCWFoGlKtPoog0EJFtIvKbiAyIZ34e\nEXlfRDaJyA8iUsFvXl8R+cV59PGbXlVEvheRDSLyo4jc6jdvkIjsEJGtInJfct+kMea/cmTPxpSe\n7Tj92i/0qfYCk38exTXPVaTbpDDOnov0ujxjku5BiUgQ8BtQHzgIrANaqeo2v2VGA6dU9RURKQdM\nUtV7RKQisACoAVwEPgd6qOpOEfkCeF1Vl4tIQ6C/qt7lhNt8p00x4CvghrjdJetBGZOyoqOV1z9Y\nwYhvRnAy2w4eLvgcb3XvTP7cObwuzQSQQOtB1QR2qOoeVY0EFgJN4yxTAVgBoKrbgZIiUgAoD6xV\n1fOqGgWsApo5baKB3M7zPMAB53kTYKGqXlTV3cAOpwZjTCoKChKea16fY+O+4u17F/Ptwa8p9Gpp\n7nvlVfYcPu51eSYTchNQRYF9fq/3O9P8bcIJHhGpCZTA1/vZDNwuInlFJAfQCIi5B8vTwBgR2QuM\nBgYlsL0D8WzPGJOKOt1Xk4NjP+CDh1ew88RvlBpbhluf78dPvx1IurExKSSlzoaOBPKKyHrgSWAD\nEOUcBhwFfAksi5nutHkC6KuqJfCF1cwUqsUYk0Ka1K7A72Nm8237DURHR1FzVmVufK4zn6zd6nVp\nJhPI6mKZA/h6RDGK8e/hOABU9RTQOea1iOwCdjrzZgGznOnD+bd31EFV+zrLvCci0/2253+ny/9s\nL8awYcNin4eGhhIaGuri7RhjLledCiVYP2IsfxwcQo/pk2nyfiiFFtbhpfsG0L1hHa/LM6koPDyc\n8PBwT7btZpBEFmA7vkESEcCPQGtV3eq3TG7grKpGikg34DZV7ejMK6Cqf4pICXyDJGqp6ikR2QL0\nVNVVIlIfGKmqNfwGSdTCd2jvS2yQhDEB5eiJs/SaPpslEWPIcbEYfW/tz4utG9kQ9Uwg4K6DEpEG\nwHh8hwRnqOpIEekBqKpOE5HaQBi+gQ9bgC6qesJpuxrIB0QCT6tquDO9LjAByAKcwxdWG5x5g4Au\nTpu+qro8nposoIzx2LkLF+k/+z2mbx1NlJyjdclnmdClLbmuucrr0kwqCbiACkQWUMYEjuhoZeyH\nKxn5zWscy7aJe3L1ZkqXxyl1fV6vSzMpzALKBQsoYwLTkjW/0P/DMezK9jFVac/Etk9zW8UQr8sy\nKcQCygULKGMC27rt+3lyzgR+ippB8cj7GN6on91FPQOwgHLBAsqY9GH/nyd5YvrbfHZsPDkjS/Pk\nLc/wUpsHbUBFOmUB5YIFlDHpy9lzkQycs4QZW18nMugEzYo8xYTOHSiY9xqvSzOXwQLKBQsoY9Kn\n6Ghl8qdreHXFGxy6ag11grszqUMvqpW53uvSjAsWUC5YQBmT/n35vx08u3g8m2U+pSObMrzxU7S8\ns5rXZZlEWEC5YAFlTMbxx8FjPDlzGl+emEiuyBt4ovpTDGv9IMHZsnhdmonDAsoFCyhjMp6Y81Qz\nt47lfJajNC7Yh4ldOlPkumu9Ls04LKBcsIAyJmOb/vkPvLx8HPuDv+TmoA6MbdWbO6qU8rqsTM8C\nygULKGMyh7Vb99F3/iR+vDiDwudvp/+dfejT5E6CgtLkO9LEYQHlggWUMZnLkb/P8NSsuSzZP4Eg\nstIipA+vd2xjv/ibxiygXLCAMiZzio5Wxrz/NW98O4EjV31PzaxdGNumJ3UqlEi6sUk2CygXLKCM\nMSs2/sFziyaxITqM6y+E0v/OPvRufIcd/ktFFlAuWEAZY2IcOnaap2bN4YODEwiKvopHQ3oxpkMb\nu0tFKrCAcsECyhgT18WoaMa8/zXjv5vE4avWcHNQe0Y/2pP6N5f1urQMwwLKBQsoY0xi1mzeTb+F\nU/gxcib5L9zKkzV68XzLBnaT2mSygHLBAsoY48axk//Qf867LPhjIheCjtMg/xOM69CJMkXyeV1a\numQB5YIFlDHmckRHK7O+/JHhyyeyO/gTyl58mBfu70n7e271urR0xQLKBQsoY8yV2rr3T56ZO5Ov\n/p5CcFR+Wpbuyej2Le2aKhcsoFywgDLGJNeFyChGLP6Cyesm8+dVP3BzUHtebfY49996o9elBSwL\nKBcsoIwxKWn1z7sYsHgaay/MJO/5KnSp+gTDWjcmR/ZsXpcWUCygXLCAMsakhpNnzjNw7nvM3zaV\n08G/U/fqLoxu2c3uVOGwgHLBAsoYk9o++m4LQz+exs86jwLn69Djlsd5oWXDTP07VRZQLlhAGWPS\nytETZ+k/510W7ZzCuayHuPParrzWugvVbyjidWlpzgLKBQsoY4wXFoRv4JVlU9mW5V0KnbuTx2t0\nZ9Cj92eaXlXABZSINADGAUHADFUdFWd+HmAmUAb4B+isqr868/oCXZ1Fp6vqeGf6QiBmqExe4G9V\nrS4iIcBWYJsz7wdV7RlPTRZQxhjPHPzrFAPnLuT9PW9zLushbs/ZhZEtOlOrfHGvS0tVARVQIhIE\n/AbUBw4C64BWqrrNb5nRwClVfUVEygGTVPUeEakILABqABeBz4DHVXVnnG2MAY6r6v85AfWxqlZJ\noi4LKGNMQHh31Ub+b9nbbAlaQIFzt9G1ejeGtGxE9uCsXpeW4tIyoNzclKomsENV96hqJLAQaBpn\nmQrACgBV3Q6UFJECQHlgraqeV9UoYDXQLJ5ttMAXZDHsXvnGmHSj5Z3V+GXUJA7138cDpZsx4X8j\nueb5ktw+dAirf97ldXnplpuAKgrs83u935nmbxNO8IhITaAEUAzYDNwuInlFJAfQCLik/ysitwOH\nVPUPv8klRWS9iKwUkXqX84aMMcYrBfNew8zenTg17jsWNf2M0xdOEfpOTfI9dQ99pi3k+OlzXpeY\nrqTUbX1HAnlFZD3wJLABiHIOA44CvgSWxUyP07Y1l/aeDgIlVLU68CzwjojkTKE6jTEmTTSvV5kN\nI8Zx7IV9tKvYjfm/ziDf/xWn2qC+LFnzi9flpQtuzkHVBoapagPn9UBA4w6UiNNmF1BZVU/HmT4c\n2KeqU5zXWYADQHVVPZjAulYCz6rq+jjTdejQobGvQ0NDCQ0NTfS9GGOMl1b/vIsXlszi27Mzufpi\nUR4K6cLIx1pRrEAur0tLUHh4OOHh4bGvX3rppYAaJJEF2I5vkEQE8CPQWlW3+i2TGzirqpEi0g24\nTVU7OvMKqOqfIlIC+ByoraonnXkNgAGqepffuvIDx1Q1WkRKA6vwhd3xOHXZIAljTLoUcw/Aqeum\nE5F9BaUjm9K7Xid6Nb4j4H+vKqBG8UFskIzn32HmI0WkB76e1DSnlxUGRANbgC6qesJpuxrIB0QC\nT6tquN96ZwHfq+o0v2nNgJeBC876XlTVZfHUZAFljEn3tuw+wvML5/P5kRlEBf3Dnbk6MfzRDgE7\nXD3gAioQWUAZYzKS6Ghl7tc/8dpXs/hV3iXf+Ro8VqETL7VuSp6c2b0uL5YFlAsWUMaYjOrYyX8Y\n8s4HLNg2k+PZN1JRW9Lvno60q38rQUHeXoVjAeWCBZQxJjP4dsseXlwyh9UnZ5MlOjv183dkeMu2\nVCtzvSf1WEC5YAFljMlMoqOVyZ+u4c3VYezIuoT85+ryWMUODG3VJE0PAVpAuWABZYzJrI78fYah\nCz/g3e2zOZ59AxW0JU/d1Z7O99VK9UOAFlAuWEAZY4zvEODQJXNZfWIuoNyRuz3DmrWlXqWSqbI9\nCygXLKCMMeZf0dHKrC9/ZNyKOWyRd8l1rhLNynTg5VbNU/RCYAsoFyygjDEmfifPnGf44mXM3TSH\niOwrCbnwAF1rtKNfs3uSfYd1CygXLKCMMSZp2/cdZci777LswFz+Cd5NlaBWPHtPO9rcVf2KzldZ\nQLlgAWWMMZfny//tYPjH8/n21DyCNBt35G3L0Icfu6zzVRZQLlhAGWPMlYmOVmYuX8v4lXPZIou4\n9txNPBjSllfbtCSkUJ5E21pAuWABZYwxyXf6nwuMeu8LwjbM4/8aPUf7e25NdHkLKBcsoIwxJu0F\n2k++G2OMMWnOAsoYY0xAsoAyxhgTkCygjDHGBCQLKGOMMQHJAsoYY0xAsoAyxhgTkCygjDHGBCQL\nKGOMMQHJAsoYY0xAsoAyxhgTkCygjDHGBCQLKGOMMQHJVUCJSAMR2SYiv4nIgHjm5xGR90Vkk4j8\nICIV/Ob1FZFfnEdfv+kLRWS989glIuv95g0SkR0islVE7kvumzTGGJP+JBlQIhIETATuByoCrUXk\npjiLDQY2qGpVoAMwwWlbEegC3ApUAx4QkdIAqtpKVauranVgCfC+06Y80AIoDzQEJotImtzaPTWF\nh4d7XcJlsXpTT3qqFaze1Jbe6k1LbnpQNYEdqrpHVSOBhUDTOMtUAFYAqOp2oKSIFMAXMmtV9byq\nRgGrgWbxbKMF8I7zvCmwUFUvqupuYIdTQ7qW3j6EVm/qSU+1gtWb2tJbvWnJTUAVBfb5vd7vTPO3\nCSd4RKQmUAIoBmwGbheRvCKSA2gEFPdvKCK3A4dUdWcC2zsQz/aMMcZkcFlTaD0jgfHOeaRfgA1A\nlKpuE5FRwJfA6Zjpcdq2BhakUB3GGGMyiCR/8l1EagPDVLWB83ogoKo6KpE2u4DKqno6zvThwD5V\nneK8zoKvh1RdVQ/Gt34R+RwYqqpr46zLfu/dGGM8kFY/+e6mB7UOKCsiIUAE0ApfryeWiOQGzqpq\npIh0A1bFhJOIFFDVP0WkBPAwUNuv6b3A1phwciwF5ovIWHyH9soCP8YtKq12kDHGGG8kGVCqGiUi\nvYDl+M5ZzVDVrSLSwzdbp+EbDBEmItHAFnwj92IsEZF8QCTQU1VP+s1rSZzDe6r6q4gsAn71a2O9\nJWOMyWSSPMRnjDHGeEJV0+wBNAC2Ab8BAxJYZgK+oeUbgWpJtQXy4uvdbQe+AHL7zRvkrGsrcJ/f\n9OrAz866xqWDelc669oArAfye10vkA/fpQWngAlxthFw+zeJepPcv2lc6z3AT/hGx64D7grwfZtY\nvYH42a3h1BPzeCjA929i9QbUZ9dvfgl8/9aeudx9e8l63CyUEg98hwd/B0KAbM6OuCnOMg2BT53n\ntYAfkmoLjAL6O88HACOd5xWcP1pWoKTTPqbHuBao4TxfBtwf4PWuBG4OsP2bA6gLdOe/X/iBuH8T\nqzfR/etBrVWBws7zisD+AN+3idUbiJ/d7ECQ87wwcNjvdSDu38TqDajPrt86FwPvcmlAJblv4z7S\n8l58bi74bQrMAVDfqL3cIlIoibZNgTDneRjwkPO8CfFc8CsihYFrVXWds9wcvzYBV6/ftpL6W6Vp\nvap6VlW/A877byBQ929C9fpJbP+mda2bVPWQ83wLkF1EsgXwvo23Xr9tBdpn95yqRjvTrwaiIaA/\nu/HW6ydgPrsAItIU2IlvPELMNLf71vUbS2luLvhNaJnE2hZS1cMAzj+SggmsK+aC36JO+8TqCKR6\nY8x27lv4Qjy1elFvQgJ1/yYlsf3rWa0i8giw3vmCCPh9G6feGAH32RWRmiKyGd9hycedAAjY/ZtA\nvTEC4bNbyKkzJ9AfeAnwH2ntdt9eItDvZn4lQ8k1xatwL7XqbaOqlYHb8d2Zo+0VbCc+tn99UmP/\nJrtW516WI/AdlkxtqVVvQH52VfVHVa2E7/zOYBEJTqG6EpJa9QbKZzcmMIcCY1X1bArUkaYBdQDf\nibMYxZxpcZcpHs8yibU95HRHY7qRR1ysK77pgVovqhrh/PcMvnsWxndvwrSuNyGBun8T5GL/pnmt\nIlIM3w2U2zmHfBPbRlyBUm/Af3bVd+/Q00ClRLYRqPUG4me3FjBaRHYCT+EL056JbCNxSZ2kSqkH\nkIV/T7gF4zvhVj7OMo3492Rdbf49WZdgW3wn6wbof08sxgw6CAZKcemggx/w/SEF38m6BoFar7Ou\n65xlsuE7+djd63r91tkBeDPOtIDbvwnV62b/evBZyOMs91A8+y3g9m1C9brZtx7VWxLI4jwPwXe4\nKV8A799463Wzf9O61jjrHcqlgySS3Lf/WUdSC6TkA9+Qxe34BgAMdKb18N+p+H7a43d8x1qrJ9bW\nmZ4P+MqZtxzI4zdvkLOuuMO2b8F3z8AdwPhArhff6LOfnA/HL8BYnKANgHp3AUeBk8Be/h3hE6j7\n9z/1ut2/aVkr8Dy+IbrriTN8OBD3bUL1ut23HtTbFt+NrNc79TUO5O+GhOp1u3/TstY4240bUK72\nrf/DLtQ1xhgTkAJ9kIQxxphMygLKGGNMQLKAMsYYE5AsoIwxxgQkCyhjjDEByQLKGGNMQLKAMsYY\nE5AsoIwxxgSk/wdFUDrdgI2WvgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "tau, i, j, n = 1e-4, 2, 2, 4\n",
+ "\n",
+ "transitions = qmatrix.transpose()\n",
+ "exact = ExactSurvivor(transitions, tau)\n",
+ "approx = ApproxSurvivor(transitions, tau)\n",
+ "\n",
+ "x = np.arange(0, n * tau, tau / 10.)\n",
+ "fig, ax = plt.subplots(1,1)\n",
+ "ax.plot(x, exact.af(x)[:, i, j], label=\"exact\")\n",
+ "ax.plot(x, approx.af(x)[:, i, j], label=\"approx\")\n",
+ "ax.set_title(\"Component ${0}$ of the matrix $R_{{af}}$.\".format((i, j)))\n",
+ "ax.legend()\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 0. 0.]\n",
+ " [ 0. 0.]\n",
+ " [ 0. 0.]]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHs1JREFUeJzt3X2wHXWd5/H3NwkhPBkikGQgPASQ8KASAwQfdmvvAiJg\nTWDGKQqkVlmnRgtYnVm2lGSnCsJUzQSmdETLwdISMSqK6K4lpREQ4Y6Ci6BREAIYwUAIJiAJMQIJ\n94bf/tF9kpOb+9gP54n3q6rr9PmdPt3fHG/z8df96+5IKSFJUqeZ1O4CJEkajgElSepIBpQkqSMZ\nUJKkjmRASZI6kgElSepIYwZURNwQERsi4qGmtn+NiEcj4tcR8X8i4g1Nny2JiNX552c2tS+IiIci\n4rcRcV31/xRJUi8ZTw/qRuA9Q9ruAE5IKc0HVgNLACLieOB84DjgbOD6iIj8O58H/jaldAxwTEQM\nXackSTuMGVAppXuATUPa7kwpvZa/vQ+Yk88vAm5OKQ2mlNaQhdfCiJgN7JdSeiBf7qvAeRXUL0nq\nUVWcg/oQsCKfPwRY2/TZurztEOCZpvZn8jZJkoZVKqAi4h+BgZTSNyuqR5IkAKYU/WJEXAycA5zW\n1LwOOLTp/Zy8baT2kdbtDQIlqQuklGLspYoZbw8q8il7E3EW8HFgUUppW9NytwIXRMTUiJgLHA3c\nn1JaD2yOiIX5oIkPAN8bbYMppa6arrrqqrbX8HqouVvr7saau7Vua27dVLcxe1AR8Q2gDzggIp4G\nrgL+NzAV+FE+SO++lNKlKaVVEXELsAoYAC5NO/8VlwFfAaYBK1JKt1X8b5Ek9ZAxAyql9P5hmm8c\nZfllwLJh2n8JvGVC1UmSXre8k0RF+vr62l3ChHVjzdCddXdjzdCddVtz74hWHEecqIhInViXJGmn\niCB1wCAJSZJayoCSJHUkA0qS1JEMKElSRzKgKrBlCzz3XLurkKTeYkBV4OtfhyuvbHcVktRbDKgK\nbN0KGze2uwpJ6i0GVAUGBuDFF9tdhST1FgOqAgaUJFXPgKqAASVJ1TOgKmBASVL1DKgKNALK2wdK\nUnUMqAoMDGTTK6+0uxJJ6h0GVAUGB7NXD/NJUnUMqAoMDGSvBpQkVceAqoABJUnVM6AqYEBJUvUM\nqAoMDECEASVJVTKgKjAwAG98I2ze3O5KJKl3GFAVGBiAgw6yByVJVTKgKmBASVL1DKgKDAzAgQca\nUJJUJQOqAoOD9qAkqWoGVAXsQUlS9QyoCngOSpKqZ0BVwICSpOoZUBUwoCSpegZUBZoDymdCSVI1\nDKgKDAzAfvtltzvaurXd1UhSbzCgKjAwAHvsAfvv72E+SaqKAVWBgQGYMsWAkqQqjRlQEXFDRGyI\niIea2mZExB0R8XhE3B4R05s+WxIRqyPi0Yg4s6l9QUQ8FBG/jYjrqv+ntM/goD0oSaraeHpQNwLv\nGdK2GLgzpTQPuAtYAhARxwPnA8cBZwPXR0Tk3/k88LcppWOAYyJi6Dq7VvMhPu9oLknVGDOgUkr3\nAJuGNJ8LLM/nlwPn5fOLgJtTSoMppTXAamBhRMwG9kspPZAv99Wm73Q9z0FJUvWKnoOamVLaAJBS\nWg/MzNsPAdY2LbcubzsEeKap/Zm8rSc0Amr6dANKkqoypaL1VH71z9KlS3fM9/X10dfXV/UmKpGS\nPShJrw/9/f309/e3bHtFA2pDRMxKKW3ID989l7evAw5tWm5O3jZS+4iaA6qTbd8OkyZlkwElqZcN\n7SxcffXVtW5vvIf4Ip8abgUuzuc/CHyvqf2CiJgaEXOBo4H788OAmyNiYT5o4gNN3+lqjd4TGFCS\nVKUxe1AR8Q2gDzggIp4GrgKuAb4dER8CniIbuUdKaVVE3AKsAgaAS1PacfOfy4CvANOAFSml26r9\np7SHASVJ9RgzoFJK7x/hozNGWH4ZsGyY9l8Cb5lQdV3AgJKkengniZIGB7O7SIABJUlVMqBKsgcl\nSfUwoEoyoCSpHgZUSQaUJNXDgCqpOaCmTcsu3PWZUJJUngFVUnNARXjDWEmqigFVUnNAgffjk6Sq\nGFAlDQ0oz0NJUjUMqJIMKEmqhwFVUvOFumBASVJVDKiS7EFJUj0MqJIMKEmqhwFVkgElSfUwoEoy\noCSpHgZUSQaUJNXDgCrJgJKkehhQJRlQklQPA6okb3UkSfUwoEryQl1JqocBVdJwh/i8m7kklWdA\nlTQ0oPbeO2vbtq19NUlSLzCgShoaUD4TSpKqYUCVNDSgwPNQklQFA6okA0qS6mFAlWRASVI9DKiS\nDChJqocBVZIBJUn1MKBKGnqhLhhQklQFA6oke1CSVA8DqqThAsr78UlSeQZUSfagJKkeBlRJBpQk\n1aNUQEXE/4yIhyPioYi4KSKmRsSMiLgjIh6PiNsjYnrT8ksiYnVEPBoRZ5Yvv/1GCihvdSRJ5RQO\nqIg4GPgosCCl9FZgCnAhsBi4M6U0D7gLWJIvfzxwPnAccDZwfUREufLbzx6UJNWj7CG+ycA+ETEF\n2AtYB5wLLM8/Xw6cl88vAm5OKQ2mlNYAq4GFJbffdgaUJNWjcECllJ4FPgU8TRZMm1NKdwKzUkob\n8mXWAzPzrxwCrG1axbq8rasZUJJUjzKH+PYn6y0dDhxM1pO6CEhDFh36vqcMDu4eUPvskz0P6tVX\n21OTJPWCKWMvMqIzgCdTShsBIuK7wDuBDRExK6W0ISJmA8/ly68DDm36/py8bVhLly7dMd/X10df\nX1+JUuszMLD7nSSanwl10EHtqUuSqtbf309/f3/LthcpFevgRMRC4AbgFGAbcCPwAHAYsDGldG1E\nXAHMSCktzgdJ3AScSnZo70fAm9IwBUTEcM0d6cQTYflymD9/1/ZjjoFbb4Vjj21PXZJUt4ggpVTb\nYLfCPaiU0v0R8R3gV8BA/vpFYD/gloj4EPAU2cg9UkqrIuIWYFW+/KVdk0KjGO4cFMCsWbBhgwEl\nSUWVOcRHSulq4OohzRvJDv8Nt/wyYFmZbXaa0QJq/frW1yNJvcI7SZQ0UkDNnp31oCRJxRhQJdmD\nkqR6GFAl2YOSpHoYUCWNNUhCklSMAVXScBfqQtaD8hCfJBVnQJU03IW6YA9KksoqfKFunbrpQt3J\nk7PbGg0Nqa1b4Q1vyD7r/nu2S9Lu6r5Q1x5UCa+9lk2TJ+/+2bRpsPfesGlT6+uSpF5gQJXQGCAx\nUg/JoeaSVJwBVcJII/gaHGouScUZUCWMFVAOlJCk4gyoEsbTg/IQnyQVY0CVYA9KkupjQJUw0kW6\nDfagJKk4A6qEkS7SbbAHJUnFGVAleA5KkupjQJXgOShJqo8BVcJYATVzJjz/fHa3CUnSxBhQJYwV\nUHvuCfvuCxs3tq4mSeoVBlQJYwUUeJhPkooyoEoYT0A5UEKSijGgSrAHJUn1MaBKGOtCXbAHJUlF\nGVAljHWhLtiDkqSiDKgSPAclSfUxoErwHJQk1ceAKmG8PSgDSpImzoAqYbw9KA/xSdLEGVAljCeg\nZs6EP/4Rtm9vTU2S1CsMqBLGE1B77AHTp8MLL7SmJknqFQZUCeMJKPA8lCQVYUCVMJ4LdcHzUJJU\nhAFVwngu1AWHmktSEaUCKiKmR8S3I+LRiHgkIk6NiBkRcUdEPB4Rt0fE9Kbll0TE6nz5M8uX314e\n4pOk+pTtQX0GWJFSOg44EXgMWAzcmVKaB9wFLAGIiOOB84HjgLOB6yMiSm6/rcYbUB7ik6SJKxxQ\nEfEG4D+nlG4ESCkNppQ2A+cCy/PFlgPn5fOLgJvz5dYAq4GFRbffCexBSVJ9yvSg5gJ/jIgbI2Jl\nRHwxIvYGZqWUNgCklNYDM/PlDwHWNn1/Xd7WtexBSVJ9xnGKf9TvLgAuSyn9IiI+TXZ4Lw1Zbuj7\ncVm6dOmO+b6+Pvr6+opVWSN7UJJeT/r7++nv72/Z9iKlQvlBRMwC/l9K6cj8/X8iC6ijgL6U0oaI\nmA3cnVI6LiIWAymldG2+/G3AVSmlnw+z7lS0rlb68IfhpJPgIx8Zfbk//AHmzzekJPWWiCClVNtY\ngsKH+PLDeGsj4pi86XTgEeBW4OK87YPA9/L5W4ELImJqRMwFjgbuL7r9TjDeHtRBB8HGjd7uSJIm\noswhPoCPATdFxB7Ak8B/ByYDt0TEh4CnyEbukVJaFRG3AKuAAeDSrugmjWK8F+pOmQIzZmT35Js1\nq/66JKkXlAqolNKDwCnDfHTGCMsvA5aV2WYnGW8PCnY+uNCAkqTx8U4SJYz3ThLg3SQkaaIMqBIm\n0oNyqLkkTYwBVcJED/HZg5Kk8TOgSrAHJUn1MaBKKDJIQpI0PgZUCRMJqMMPh6eeqrceSeolBlQJ\nEwmoI4+EJ56otx5J6iUGVAnjvVAX4OCD4cUX4eWX661JknqFAVXCRHpQkybBEUfAk0/WWpIk9QwD\nqoSJXKgLcNRRBpQkjZcBVcJEelDgeShJmggDqoSJBpQ9KEkaPwOqBHtQklQfA6oEe1CSVB8DqoSJ\nBtTcubBmjQ8ulKTxMKBKmGhA7bUXHHAAPPtsfTVJUq8woEqYyIW6DZ6HkqTxMaAKSikLqIlcBwWe\nh5Kk8TKgChochMmTIWJi37MHJUnjY0AVNNHzTw1HHmkPSpLGw4AqqGhAHXWUPShJGg8DqiB7UJJU\nLwOqoKIBNXMmbN0KmzdXX5Mk9RIDqqCiARVhL0qSxsOAKqhoQIHnoSRpPAyogopcpNtgD0qSxmZA\nFWQPSpLqZUAVNNGn6TazByVJYzOgCrIHJUn1MqAKKhNQhx8O69Zl65AkDc+AKqhMQE2dCn/xF/D0\n09XWJEm9xIAqqExAgeehJGkspQMqIiZFxMqIuDV/PyMi7oiIxyPi9oiY3rTskohYHRGPRsSZZbfd\nTmUDyvNQkjS6KnpQfw+sanq/GLgzpTQPuAtYAhARxwPnA8cBZwPXR0z0YRWdwx6UJNWrVEBFxBzg\nHOBLTc3nAsvz+eXAefn8IuDmlNJgSmkNsBpYWGb77VTmQl2wByVJYynbg/o08HEgNbXNSiltAEgp\nrQdm5u2HAGublluXt3Ule1CSVK/CARUR7wU2pJR+DYx2qC6N8lnXquocVOrJX0eSyit4LwQA3gUs\niohzgL2A/SLia8D6iJiVUtoQEbOB5/Ll1wGHNn1/Tt42rKVLl+6Y7+vro6+vr0Sp1StzJwmAGTOy\nR8a/8AIceGB1dUlSXfr7++nv72/Z9iJV8H/hI+K/AP8rpbQoIv4VeCGldG1EXAHMSCktzgdJ3ASc\nSnZo70fAm9IwBUTEcM0d5QtfgF/+Er74xeLrOOUU+Mxn4J3vrK4uSWqViCClVNtgtzqug7oGeHdE\nPA6cnr8npbQKuIVsxN8K4NKOT6FRlD3EB/C2t8HKldXUI0m9pswhvh1SSv8B/Ec+vxE4Y4TllgHL\nqthmu1URUAsWwP33V1OPJPUa7yRRUBUBddJJ2WFCSdLuDKiCqgiot7wFVq+GV16ppiZJ6iUGVEFl\nL9QFmDYN5s2Dhx6qpiZJ6iUGVEFV9KAgOw/lQAlJ2p0BVVBVAeV5KEkangFVUNkLdRsMKEkangFV\nUFU9qLe+FR5/HLZtK78uSeolBlRBVQXUXnvB0UfDb35Tfl2S1EsMqIKqCijwMJ8kDceAKsiAkqR6\nGVAFVRlQDjWXpN0ZUAVVcaFuw/z5sGoVvPpqNeuTpF5gQBVUZQ9q772zJ+w+/HA165OkXmBAFVRl\nQIGH+SRpKAOqoKou1G1woIQk7cqAKqjqHpQBJUm7MqAKqjqg5s/PzkENDFS3TknqZgZUQVUH1L77\nwuGHZ6P5JEkGVGFVBxR4mE+SmhlQBVV5HVSDASVJOxlQBdXRg1q4EH72s2rXKUndyoAqqI6AOvVU\neOopePbZatcrSd3IgCqojoCaMgXe/W647bZq1ytJ3ciAKqjqC3Ub3vte+MEPql+vJHUbA6qgOnpQ\nAGedBT/+sTeOlSQDqqC6AmrmTJg3D+65p/p1S1I3MaAKqiugAM45B1asqGfdktQtDKiC6gwoz0NJ\nkgFVWB0X6jYsWACbNsGTT9azfknqBgZUAdu3QwRMqunXmzQJzj7bw3ySXt8MqALqPLzX4HkoSa93\nkVJqdw27iYjUiXU1bNkCBx+cvdblxRfhsMNg/frskfCS1GkigpRS1LV+e1AFtKIHtf/+2bmou++u\ndzuS1KkKB1REzImIuyLikYj4TUR8LG+fERF3RMTjEXF7RExv+s6SiFgdEY9GxJlV/APaoa67SAx1\nzjmO5pP0+lWmBzUIXJ5SOgF4B3BZRBwLLAbuTCnNA+4ClgBExPHA+cBxwNnA9RFRW9ewTq3oQUE2\n3HzFCujgo52SVJvCAZVSWp9S+nU+/2fgUWAOcC6wPF9sOXBePr8IuDmlNJhSWgOsBhYW3X47tSqg\njj8+C6dHHql/W5LUaSo5BxURRwDzgfuAWSmlDZCFGDAzX+wQYG3T19blbV2nVQEVARdeCF/+cv3b\nkqROU/pMSkTsC3wH+PuU0p8jYugBqUIHqJYuXbpjvq+vj76+vqIlVq7Oi3SHuuSSbLDEP/0T7Ltv\na7YpScPp7++nv7+/ZdsrNcw8IqYA3wd+mFL6TN72KNCXUtoQEbOBu1NKx0XEYiCllK7Nl7sNuCql\n9PNh1tvRw8wffBA+8IHstRX++q+z50RdcklrtidJ49Hpw8y/DKxqhFPuVuDifP6DwPea2i+IiKkR\nMRc4Gri/5PbbolWH+Bo++lH43OccLCHp9aXMMPN3ARcBp0XEryJiZUScBVwLvDsiHgdOB64BSCmt\nAm4BVgErgEs7ups0ilYHVF9fdvuju+5q3TYlqd0Kn4NKKd0LTB7h4zNG+M4yYFnRbXaKVgdURNaL\n+uxn4fTTW7ddSWon7yRRQKsu1G120UVw773w+9+3druS1C4GVAGt7kEB7LMPXHwxXH99a7crSe1i\nQBXQjoACuPRSuPFGePnl1m9bklrNgCqgXQF15JHwrnfBTTe1ftuS1GoGVAGtvFB3qI99DD71KXj1\n1fZsX5JaxYAqoF09KIDTToOjjoJPfrI925ekVjGgCmhnQEXAv/87/Nu/wRNPtKcGSWoFA6qAdgYU\nwBFHwBVXZIMmuvNSZ0kamwFVQLsDCuAf/iF7HPzNN7e3DkmqiwFVQDsu1B1qjz3gC1+Ayy+HTZva\nW4sk1cGAKqATelAAb397dqfzxYvbXYkkVc+AKqBTAgrgX/4Fvv99byQrqfcYUAV0UkBNnw5f+xpc\ncAE89FC7q5Gk6hhQBbTzQt3hnHZa9ryoc87xZrKSekebT/V3p4EB2Guvdlexq/PPh+efh/e8B+65\nB2bObHdFklSOPagCOukQX7PLLssO9Z1zDmzZ0u5qJKkcA6qATg0ogKuvhpNOgkWL4IUX2l2NJBVn\nQBXQyQEVkT0zasGCLKjuu6/dFUlSMQZUAZ1woe5oJk/O7nh+3XVZT+q667wlkqTuY0AV0Mk9qGbn\nnZf1oL7+dXjf+2DjxnZXJEnjZ0AV0C0BBdlDDu+9Fw47DObNg2uugZdeandVkjQ2A6qAbgoogD33\nzA7z3XMP/OpX8KY3ZddNbdvW7sokaWQGVAGddqHueM2bB9/6FvzgB/DDH2ZB9c//DM8+2+7KJGl3\nBlQB3daDGuptb8tC6rvfhaefhhNOgL/6qyy0tm9vd3WSlDGgCuj2gGo46aTskR1PP51d3Hvlldnj\n5K+5Bp57rt3VSXq9M6AK6JWAathvP/i7v4MHHoDvfAdWr84OB150UXbeyiHqktrBgCqg1wKq2ckn\nww03wJNPwimnwIc/nD1i/vLL4Wc/g9dea3eFkl4vDKgCejmgGmbMyB4r/8gjsGJF9liPj3wEDj0U\nLrkk62l5KyVJdYrUgcdvIiJ1Yl0NJ58Mn/981sN4vXnssSywfvxj+OlPs5GAp58O73gHLFwIhxzS\n7goltUpEkFKK2tbfiUHQ6QF14omwfDnMn9/uStrr1Vfh/vuzp/n+/OfZ/NSpWVCddBK8+c3ZNHdu\ndvslSb3FgOpAxx8P3/52NjxbO6UEa9ZkQbVyZXZ48OGHs+dUHXssHHNMNkrw6KOz6cgjYfZsmOSB\nZqkrGVAd6Jhj4Pvfz141ti1bYNWqbHTgE0/A736XTb//PWzaBAcfnJ3bOvTQ7BDh7Nm7TgceCAcc\nYC9M6jQ9F1ARcRZwHdkAjRtSStcOs0xHB9Tcudlhrblz211J99u2DZ55BtauzaY//CGb1q/f+frC\nC1mQTZ++M6xmzNh1mj595/SGN2TTfvtl0777Zq9Tp7b7Xyv1lp4KqIiYBPwWOB14FngAuCCl9NiQ\n5To6oObMye4SPmfOzrb+/n76+vraVlMR3VTz9u1ZSD3/PNx5Zz9z5/axaRM7ps2b4U9/yl43b856\nbUMngH322XXae++d0157DT9Nm7brtOeeO1+HTlOn7nxtnv/pT7vnt27WTX8jDdbcOnUHVKufarQQ\nWJ1SegogIm4GzgUeG/VbHWa4Yebd+AfWTTVPnpz1ng48EL71rX4++tG+Ca/j1VezO7m/9BL8+c/w\n8svwyivZ68svZ+1bt2Ztjemll7LHlDTat27Nen2N1+bp1Vd3nW9M27ZBSv1Mm9bHHnvsDK899tg5\nDX0/2jRlys7X5vmhbZMn73w/0tRYZqTXb36znze+sW9HW/PnzdNwbZMnZw/QbLVu+rtu6MaaW6HV\nAXUIsLbp/TNkodVVXg/XQfWiRjDMmNH6bV95JSxZkgXWwEAWWgMDO6dG+3imwcGdU+N943Xr1t2X\naUzbt4/8fvv27Hvbt+/avm5ddoF2o63588b8cO+3b995UfdwwTV5cjY4Zuj8aG3NryO1TZqUnd9c\nuXLXtuGWG+8UMXZb8/vG/HBtze+bl1u5Em68cffvjzZfdLmRprGW2W+/bHBTK3Xsc2H/8i/bXcHI\ntmzxfIYmZtKknYcMu8nSpdlU1Guv7R5czQHW/Dpc22ivQ+cb09e+BhdcMPoy27dno05Hej+0LaXd\nl2m0DQ7uvsxw32u0Nb9vtK1dCz/5ya7bH7rMWPMT+WykabRlTj4ZvvSlqv6yxqfV56DeDixNKZ2V\nv18MpKEDJSKic09ASZJ26KVBEpOBx8kGSfwBuB+4MKX0aMuKkCR1hZYe4kspbY+I/wHcwc5h5oaT\nJGk3HXmhriRJtdxkJiLOiojHIuK3EXHFCMt8NiJWR8SvI2L+WN+NiBkRcUdEPB4Rt0fE9KbPluTr\nejQizuz0miPijIj4RUQ8GBEPRMR/LVJzq+tu+vywiNgSEZd3Q80R8daI+FlEPJz/5hMe4tLiv48p\nEfGViHgoIh7Jz9UWUlPdf5P/ltsjYsGQdXXqvjhszVXti63+nfPPS+2H7ah7wvtiSqnSiSz0fgcc\nDuwB/Bo4dsgyZwM/yOdPBe4b67vAtcAn8vkrgGvy+eOBX5Edrjwi/350eM0nArPz+ROAZ7rht25a\n57eBbwGXd3rNwGTgQeDN+fsZXfD3cSHwjXx+L+D3wGEd9FvPA94E3AUsaFrXcXTuvjhSzaX3xVbX\nXMV+2KbfesL7Yh09qB0X46aUBoDGxbjNzgW+CpBS+jkwPSJmjfHdc4Hl+fxy4Lx8fhFwc0ppMKW0\nBljNxK+tamnNKaUHU0rr8/lHgGkRUeTKqlb/1kTEucCTwCMF6m1HzWcCD6aUHs7Xtynle0cH15yA\nfSIbVLQ3sA340wRrrq3ulNLjKaXVwNDRW+fSofviSDVXtC+2+neuYj9sR90T3hfrCKjhLsYd+pSg\nkZYZ7buzUkobAPI/qJkjrGvdMNvrtJp3iIi/AVbm/yNPVKvqnpXXui/wCeBqhtlpOqzmxm99TF77\nbfmhnI93cM2z8vbvAC+TjXRdA3wypfRiB9U93u110r44phL7Yktrjoh9KL8fjlbTeJYp8ltPeF/s\nlAt1i/zI7R7dUbrmiDgBWAa8u5KKxqdI3Y0HvV8FfDql9HJk97Bp1Y1syvzWU4B3AScDW4EfR8Qv\nUkp3V1XcCMr8zqcCg8Bs4ADgpxFxZ94rqVsbbk5UWuma27Avlql5Ke3ZD8tua8L7Yh0BtQ44rOn9\nnLxt6DKHDrPM1FG+uz4iZqWUNkTEbOC5MdbVyTUTEXOA/wv8txL/4Wl13acC74uIfyU7frw9Il5J\nKV3fwTU/A/wkpbQJICJWAAuAiQRUq2u+ELgtpfQa8HxE3Eu2U6+ZQM111j3a9jp1XxxRBftiq2uu\nYj9sR90T3xcnclJtPBPZibDGybOpZCfPjhuyzDnsPPH2dnaeeBvxu2QnlK9Iu59QbgySmArMpdiJ\n2VbXvH++3Hnd9FsPWe9VFBsk0Y7f+hfANLL/Q/Yj4OwOrHlxU82fILtGEGAfsvMMb+6U37rpu3cD\nJzW979h9cZSap1NyX2x1zVXsh236rSe8Lxb+j+MY//CzyO4YsRpYnLd9BPhw0zKfy/+BD7LrSI/d\nvpu3vxG4M//sDmD/ps+W5Ot6FDiz02sG/hHYAqwk26FXAgd2et0V7hit/vt4P/Aw8BCwrNNrJgul\nW/KaHy76O9dY93lk5x9eITtP9sMu2BeHrZmK9sVW/85V7Idt+vuY0L7ohbqSpI5Uy4W6kiSVZUBJ\nkjqSASVJ6kgGlCSpIxlQkqSOZEBJkjqSASVJ6kgGlCSpI/1/qimkifxJArsAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import MissedEventsG, missed_events_pdf\n",
+ "\n",
+ "tau = 2e-4\n",
+ "x, i, j = np.arange(0, 8*tau, tau/10.0), 2, 0\n",
+ "missedG = MissedEventsG(qmatrix, tau)\n",
+ "pdf = missed_events_pdf(qmatrix, tau, shut=True)\n",
+ "print(missedG.fa(0))\n",
+ "#plot(x, [missedG.fa(u)[i, j] for u in x])\n",
+ "fig, ax = plt.subplots(1,1)\n",
+ "ax.plot(x, pdf(x))\n",
+ "# plot(x, missed_events_pdf(qmatrix, tau, shut=True)(x))\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 1.00078277e+00 1.95134590e-03]\n",
+ " [ 2.60179453e-05 1.02029429e+00]]\n",
+ "\n",
+ "[[ 1.00078277e+00 1.95134590e-03]\n",
+ " [ 2.60179453e-05 1.02029429e+00]]\n",
+ "[[ -1.47868762e-09 1.38459950e-10]\n",
+ " [ 8.32130331e-13 3.23290061e-10]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "def create_derivative(qmatrix, tau):\n",
+ " from HJCFIT.likelihood import inv, expm\n",
+ " \n",
+ " If = np.identity(qmatrix.nshut)\n",
+ " Ia = np.identity(qmatrix.nopen)\n",
+ " \n",
+ " def Xff(s): return s*If - qmatrix.ff\n",
+ " def Sff(s): return If - expm(-tau*Xff(s))\n",
+ " def Gaf(s): return np.dot(inv(Xff(s)), qmatrix.fa)\n",
+ " \n",
+ " def derivative(s):\n",
+ " result = np.dot(Sff(s), inv(Xff(s))) - tau * (If - Sff(s))\n",
+ " return Ia + np.dot(np.dot(qmatrix.af, result), Gaf(s)) \n",
+ " return derivative\n",
+ "\n",
+ "derivative = create_derivative(qmatrix, tau)\n",
+ "print(derivative(-1000))\n",
+ "print()\n",
+ "determinant = DeterminantEq(qmatrix, tau)\n",
+ "print(determinant.s_derivative(-1000))\n",
+ "print(-(determinant.H(-1000+1e-4) - determinant.H(-1000-1e-4)) / (2e-4) + np.identity(qmatrix.nopen) - determinant.s_derivative(-1000))"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/asymptotes-checkpoint.ipynb b/exploration/.ipynb_checkpoints/asymptotes-checkpoint.ipynb
new file mode 100644
index 0000000..e92139c
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/asymptotes-checkpoint.ipynb
@@ -0,0 +1,496 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from HJCFIT.likelihood import DeterminantEq, find_root_intervals, find_roots, QMatrix\n",
+ "from HJCFIT.likelihood.random import qmatrix as random_qmatrix\n",
+ "equation = DeterminantEq(random_qmatrix(), 1e-4)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD7CAYAAACSXhiEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPW5x/HPA4gdBDQWEEEBwRJLApioYSVS9BqwIEIM\nRTE3ig07qIElFlAEQb1ojGhAjWiwx7YY3XgTRVGkJAisCuqikquUKCoKPPeP30GGZZfd2Z2ZM+X7\nfr3mxdnfKfPMMjvP/M6vmbsjIiKSjHpxByAiIrlHyUNERJKm5CEiIklT8hARkaQpeYiISNKUPERE\nJGkN4g4gU8xMfZJFRGrB3a1iWUHVPNy9Ro9Ro0bV+NhseChexat4FW+64q1KQSUPERFJDSUPERFJ\nmpJHJYqKiuIOISmKN70Ub3op3vRKV7y2rXta+cTMvFBeq4hIqpgZnq4GczObYmYrzGx+QlkTMysx\ns8Vm9oKZNU7YN8LMyszsHTPrnlB+pJnNN7MlZjYxobyhmU2PznnNzFom7BsUHb/YzAam4vWIiMi2\npeq21X1Ajwplw4EX3f1A4CVgBICZHQT0BToAJwCTzWxTVrsTGOLu7YB2ZrbpmkOAle7eFpgI3Bxd\nqwkwEugIdAZGJSYpERFJj5QkD3f/O7CqQnFvYGq0PRU4OdruBUx39/XuvgwoAzqZ2V7Aru4+Ozpu\nWsI5ideaAXSNtnsAJe6+xt1XAyVAz1S8JhERqVo6G8x/4O4rANz9U+AHUXlz4KOE45ZHZc2B8oTy\n8qhsi3PcfQOwxsyabuNaIiJSR6++WvW+TI4wT2Vr9VaNNzVRXFz8/XZRUVHO9ZoQEUm30tJSSktL\n+fprmDSp6uPSmTxWmNme7r4iuiX176h8ObBvwnEtorKqyhPP+djM6gON3H2lmS0Hiiqc83JVAV17\nbTENCmZCFhGR5G36Yn3LLXDGGTBt2uhKj0vlbStjyxrBU8DgaHsQ8GRCeb+oB1VroA3wRnRra42Z\ndYoa0AdWOGdQtH06oQEe4AWgm5k1jhrPu0VllXrqqTq8OhGRArFhA0yeDBdcUPUxqeqq+yfgVUIP\nqQ/N7CxgLOGDfTHw8+hn3H0h8AiwEHgWGJowAON8YAqwBChz9+ej8inA7mZWBgwj9OTC3VcB1wFv\nAq8Do6OG80rdcUcqXq2ISH577jnYYw/o2LHqYwpqkODeezszZ8LBB8cdjYhI9urZE375Sxg4MM2D\nBHPFb34D//M/cUchIpK9liyBOXOgb99tH1dQNY+PP3YOPhiWLoXGGkooIrKVYcNgp53gxhvDz1XV\nPAoqebg7/frBT38KF10Ud0QiItnlyy9hv/3g7behZTQJlG5bRS64INy62rgx7khERLLLgw9Cly6b\nE8e2FFzyOPpo2HFHePHFuCMREcke7qFH6ra65yYquORhFn456rYrIrLZK6+E8R3HHVez4wuuzQPg\nq69CtWz2bGjdOubARESywOmnQ1ERnH/+luVqMK+wGNTll0O9enDzzTEGJSKSBcrL4Yc/hA8+gF13\n3XKfkkeF5PHee3DUUfDhh6ENRESkUP32t7B6Ndx++9b71NuqggMOgM6dYfr0uCMREYnPunXwhz9s\nfbuqOgWbPCA0nE+aFHoZiIgUoocfhkMPhfbtkzuvoJNH9+4h677yStyRiIhknjtMnAiXXJL8uQWd\nPOrVg4svhltvjTsSEZHM+9//hbVrw0SIySrYBvNN1q4Nw/Fffz20g4iIFIpTT4Xjj4ehQ6s+Rr2t\nqkgeAMOHwzffhOqbiEgheP996NQJli2DXXap+jglj20kj019nJctg0aNMhuXiEgcLr0UGjSofqyb\nksc2kgdA//6h6+6wYRkMSkQkBv/5D7RqBXPnVj8JosZ5VGPYMLjttjC3i4hIPvvjH0NbR01mz62K\nkkekc2fYc0946qm4IxERSZ8NG8IX5breZVHySDBsmBrNRSS/PfMMNGsGP/lJ3a6j5JHg1FPDErVz\n5sQdiYhIekycGL4o21atGMlR8kiw3XabpywREck38+bBkiXQp0/dr6XeVhWsXAlt2sDChbDXXhkI\nTEQkQ84+G9q2hREjan6OuurWMHlAGG25++7wu9+lOSgRkQz597/hwAPh3XdDm0dNKXkkkTwWLQqL\nwC9bprU+RCQ/jBwJK1bA73+f3HlKHkkkD4BeveDEE+Hcc9MYlIhIBnz1VRgU+Pe/Q7t2yZ2b14ME\nzaynmS0ysyVmdlUqrnn55TBhggYNikjuu+8+OPro5BPHtuR88jCzesAdQA/gYKC/mSW5rMnWjj0W\nmjTRoEERyW0bNoQvwpdfntrr5nzyADoBZe7+gbt/B0wHetf1omZwxRUwblyd4xMRic3jj4fZM44+\nOrXXzYfk0Rz4KOHn8qiszk45JTQw/eMfqbiaiEhmuYcvwKmudQA0SP0ls5cNHrz5h8MPD4/qTIFj\nvgNK0xSUiEg63QSnQc0/w+bODY9q5HxvKzM7Cih2957Rz8MBd/ebKhyXVG+rTb76CnYeZyzu7ylt\nbBIRSbfeveHJpyxUQWopn3tbzQbamNl+ZtYQ6AekrJl7p53Cv+PHp+qKIiLpt2gRzJqVvuvnfPJw\n9w3ABUAJ8C9guru/k+rneeSRMEJTRCQXTJgA552Xvuvn/G2rmqrtbSsAG2385hPnBz/QlCUikv1W\nrID27cMkiHv8QLetYnXZZXDXXbB2bdyRiIhs2x13QL9+sMce6XsOJY8aatsWjjkmjNQUEclWa9eG\nL7qXXpre51HySMKmKUvWr487EhGRyk2ZEmbIaNs2vc+j5JGEn/4UmjeHP/857khERLb27bdwyy3J\nrddRW0oeSRoxAsaMqVP7k4hIWjz4YFizo2PH9D+XkkeSTjgB6tULi8iLiGSLDRvgppvg6qsz83xK\nHkkyC/85N96o2oeIZI/HH4fddoOiosw8n5JHLZx2Gnz2GbzyStyRiIiEL7JjxoTb6rbViIz0UPKo\nhfr14aqrQu1DRCRuJSWwbh384heZe04lj1oaMAAWLoS33oo7EhEpdGPGwPDhoT02U5Q8aqlhwzDq\nfMyYuCMRkUL26qvwwQdhRHkmKXnUwa9/Hdo9Fi2KOxIRKVRjxsCVV0KDDK/OpORRBzvvDBddFLrH\niYhk2vz58OabcNZZmX/uglpJMB3OPx/atIEPP4SWLeOORkQKydixMGwY7LBD5p9bNY86atIEzjkn\nTAkgIpIp770Xelmlc82ObVHySIFLLoEHHghz6IuIZMKNN8LQodCoUTzPr+SRAnvtBWeeqdqHiGTG\n0qXwxBPhllVclDxS5Kqr4N57tVStiKTf2LFw7rnQtGl8MSh5pEiLFqGf9fjxcUciIvnsww9hxoz0\nL/ZUHSWPFBo+HP7whzDvlYhIOowdG8aYNWsWbxxKHim0777Qt69qHyKSHuXlMH16mN0ibkoeKTZi\nBNx9N3z+edyRiEi+uekmGDIE9tgj7kiUPFJuv/3ClO0TJsQdiYjkk48/DisFXn553JEESh5pcPXV\ncNddsHJl3JGISL4YNw4GD4Y994w7kkDJIw1atYJTToGJE+OORETywaefwtSpcMUVcUeymZJHmlx9\nNUyeDKtWxR2JiOS6W24JawjtvXfckWxWp+RhZn3M7J9mtsHMjqywb4SZlZnZO2bWPaH8SDObb2ZL\nzGxiQnlDM5senfOambVM2DcoOn6xmQ1MKG9lZrOifQ+ZWdZM9Lj//tCrF0yaFHckIpLLVqyA++4L\n065nk7rWPBYApwB/Syw0sw5AX6ADcAIw2ez7lXXvBIa4ezugnZn1iMqHACvdvS0wEbg5ulYTYCTQ\nEegMjDKzxtE5NwHjo2utjq6RNa65Bu64Q7UPEam9sWPhV7+C5s3jjmRLdUoe7r7Y3cuAikuu9wam\nu/t6d18GlAGdzGwvYFd3nx0dNw04OeGcqdH2DKBrtN0DKHH3Ne6+GigBekb7ugKPRttTCYksaxxw\nAPTurZ5XIlI75eUwbVoYApBt0tXm0Rz4KOHn5VFZc6A8obw8KtviHHffAKwxs6ZVXcvMmgGr3H1j\nwrX2SfHrqLPf/ja0ffzf/8UdiYjkmhtuCEs+7LVX3JFsrdo2AjObCSR2DjPAgWvc/el0BcbWtZna\nHvO94uLi77eLioooKipKLqJaaNUK+vcPg3s0666I1NTSpfDII7BkSWaft7S0lNLS0mqPqzZ5uHu3\nWjz/cmDfhJ9bRGVVlSee87GZ1QcauftKM1sOFFU452V3/9zMGptZvaj2kXitSiUmj0y6+mo49NAw\nkdk+WVc3EpFsdN11cMEFmZ/DquIX69GjR1d6XCpvWyXWAp4C+kU9qFoDbYA33P1Twu2oTlED+kDg\nyYRzBkXbpwMvRdsvAN2iRNEE6BaVAbwcHUt07qZrZZV99oGzzw5VUBGR6ixZAk8/HRaay1Z17ap7\nspl9BBwF/MXMngNw94XAI8BC4FlgqLt7dNr5wBRgCVDm7s9H5VOA3c2sDBgGDI+utQq4DngTeB0Y\nHTWcEx1zqZktAZpG18hKV10VJjRbtizuSEQk2xUXhzsVu+0WdyRVs82f6fnNzLy2r9VGGz6q7r+n\nkSND74l7763zpUQkTy1YAN26wbvvwi67pOCCZlCHz3kzw923al/OmkF1heDSS6Ft21Albdcu7mhE\nJBuNGhXuVKQkcaSRpifJoN12Cwlk1Ki4IxGRbPTWW/DGG2GJ2Wyn5JFhF14IL78M8+fHHYmIZJtr\nrw29M3fcMe5IqqfkkWG77BKWqx05Mu5IRCSblJbC4sVhUGAuUPKIwbnnwpw58OqrcUciItnAPbRz\n3HADNGwYdzQ1o+QRgx12gN/9LrxZCqSzm4hsw2OPwXffwRlnxB1JzSl5xGTAAFi9OgwEEpHCtX59\naOcYOxbq5dAncg6Fml/q1w9vlhEjwptHRArTvfdCixZhbEcuUfKI0Yknwh57hOUlRaTwrF0Lo0eH\nL5KW1DSv8VPyiJFZmG131Cj46qu4oxGRTJs0CY45Bjp2jDuS5Cl5xKxzZzjqKLj99rgjEZFM+uyz\nsFDc9dfHHUntKHlkgRtvDGt9fP553JGISKbceCP07RumLMpFSh5ZoF076NMHxoyJOxIRyYQPPght\nnbk8WFjJI0uMHAn33RfeVCKS3665BoYOzc7lZWtKySNL7L03nH9+mNtGRPLXG2/ASy+FQcK5TMkj\ni1xxBfz1rzB7dtyRiEg6uIeZta+7LvunXK+OkkcW2XXX8Ka65BJNWyKSjx57DL74AgYPjjuSulPy\nyDKDB4eBQzNmxB2JiKTSunVw5ZUwfnyYYSLXKXlkmfr1Q9/vK6+Eb76JOxoRSZU77oCDDoLjj487\nktRQ8shCxx0Hhx0WRp+KSO777LMwBcm4cXFHkjpKHllq3LjwWLEi7khEpK5Gj4Z+/aB9+7gjSR0l\njyzVti0MHKj1zkVy3aJFMH16/v0tK3lksd/+Fh5/HBYsiDsSEamtK64IS0/vvnvckaSWkkcWa9Ik\nJJDLLlPXXZFc9MIL8M47cMEFcUeSekoeWe43v4GPPoK//CXuSEQkGd9+CxddBBMnwvbbxx1N6il5\nZLnttgu9roYNU9ddkVwyaRK0aQMnnRR3JOlRp+RhZjeb2TtmNtfMHjWzRgn7RphZWbS/e0L5kWY2\n38yWmNnEhPKGZjY9Ouc1M2uZsG9QdPxiMxuYUN7KzGZF+x4yswZ1eT3Zqnv30HX3llvijkREauLj\nj8NCbxMnVn9srqprzaMEONjdDwfKgBEAZnYQ0BfoAJwATDb7fpHFO4Eh7t4OaGdmPaLyIcBKd28L\nTARujq7VBBgJdAQ6A6PMrHF0zk3A+Ohaq6Nr5KUJE+DWWzXrrkguGD4czjknd9fqqIk6JQ93f9Hd\nN0Y/zgJaRNu9gOnuvt7dlxESSycz2wvY1d03Tf03DTg52u4NbFrNewbQNdruAZS4+xp3X01IWD2j\nfV2BR6PtqcApdXk92axVK7j4Yrj88rgjEZFtefXVMGtuvs+Qnco2j7OBZ6Pt5sBHCfuWR2XNgfKE\n8vKobItz3H0DsMbMmlZ1LTNrBqxKSF7lwD4pezVZ6Ior4K234MUX445ERCqzYUPoWXXzzbk/a251\nqm0jMLOZwJ6JRYAD17j709Ex1wDfuftDKYzNqj+kRsd8r7i4+PvtoqIiioqKkosoZjvuGG5dXXgh\nzJsHDRvGHZGIJLrnnpA0+vePO5LaKy0tpbS0tNrjqk0e7t5tW/vNbDBwIptvM0GoHeyb8HOLqKyq\n8sRzPjaz+kAjd19pZsuBogrnvOzun5tZYzOrF9U+Eq9VqcTkkat69YK77oLbbw/jP0QkO6xcGVYE\nLSkBS+prbXap+MV69OjRlR5X195WPYErgF7uvi5h11NAv6gHVWugDfCGu39KuB3VKWpAHwg8mXDO\noGj7dOClaPsFoFuUKJoA3aIygJejY4nO3XStvGUWugCOGQOffBJ3NCKyyTXXQJ8+oWdkITCvw9Bl\nMysDGgKfR0Wz3H1otG8EoffTd8DF7l4Slf8I+COwA/Csu18clW8P3A8cEV2vX9TYvql2cw3hdtn1\n7j4tKm8NTAeaAG8Dv3L376qI1Wv7Wm204aOya4j3iBFh8OADD8QdiYi8/jqccgosXAi77RZ3NBWY\n1WmKCjPD3beqS9UpeeSSfEseX34JBx8M990HXbtWf7yIpMf69dCxY+jQ8stfxh1NJdKUPDTCPEft\nskto9zj3XI08F4nTHXdAs2a53UheG0oeOaxXLzjkkLDIjIhkXnk5XH89TJ6c243ktaHkkeNuuy18\n81m8OO5IRArPsGFhXEe7dnFHknlKHjmuRYswkvXcczVtu0gmPfNMGG81fHjckcRDySMPXHABrFkD\n998fdyQiheGrr8Lf3eTJsMMOcUcTDyWPPNCgAdx9N1x5JXz+efXHi0jdXH89HHUUdNvmEOr8puSR\nJ378Y+jbNyQQEUmfefPCNCQTJsQdSbyUPPLI9deHZS9rMC2NiNTC+vUwZEjo4bj33nFHEy8ljzzS\nqFG4B3vOOeGerIik1q23hhHkZ50VdyTxU/LIM716hdGuI0fGHYlIfikrC6sD3n134Y3pqIySRx66\n7bYw59Xrr8cdiUh+2LgRfv3rMPnh/vvHHU12UPLIQ3vsEdZOPvtsWLeu+uNFZNvuuQe+/houuiju\nSLKHkkeeOuMMaNMGbrgh7khEclt5eahxTJkC9evHHU32UPLIU2Zw551h4ah58+KORiQ3ucN554UB\ngYccEnc02UXJI4/ts0/oUnj22aGLoYgk58EHYdmysH6ObEnJI8+ddVaYLnrcuLgjEckt5eVw6aUw\nbRo0bBh3NNlHySPPmW0eDavbVyI14x4GA154IRxxRNzRZCcljwLQsiXccgsMGKDeVyI1cffdsGqV\nbldti5JHgRg4EA44AEaNijsSkez23nthmYOpU8Oko1I5JY8CYRa+TU2dCn//e9zRiGSnDRtCO+HV\nV0OHDnFHk92UPArIHnuErruDBsGXX8YdjUj2mTgxfNG6+OK4I8l+Sh4Fpndv6NIFLrss7khEssvC\nhaFr+x//CPX0yVgt/YoK0MSJUFICzz4bdyQi2eGbb6B//5A8WreOO5rcoORRgBo1Ct+uzjkH/v3v\nuKMRid+IEdCuXRhQKzWj5FGgunQJDYODBoUZQ0UK1XPPwWOPaar1ZCl5FLDiYli9GiZNijsSkXis\nWBEGA06bBk2axB1NbqlT8jCz35nZPDN728yeN7O9EvaNMLMyM3vHzLonlB9pZvPNbImZTUwob2hm\n06NzXjOzlgn7BkXHLzazgQnlrcxsVrTvITNTr+wkbLcd/OlPMGYMzJkTdzQimbVxIwweHG5VdekS\ndzS5p641j5vd/TB3PwJ4BhgFYGYHAX2BDsAJwGSz7yuEdwJD3L0d0M7MekTlQ4CV7t4WmAjcHF2r\nCTAS6Ah0BkaZWePonJuA8dG1VkfXkCS0bh1qHv37q/uuFJbbbw+jyDVwtnbqlDzcPfHjZmdg093z\nXsB0d1/v7suAMqBTVDPZ1d1nR8dNA06OtnsDU6PtGUDXaLsHUOLua9x9NVAC9Iz2dQUejbanAqfU\n5fUUqv794eijtdCNFI558+D668OsudttF3c0uanObR5mdr2ZfQj8klBDAGgOfJRw2PKorDlQnlBe\nHpVtcY67bwDWmFnTqq5lZs2AVe6+MeFa+9T19RSq226Df/wDHnoo7khE0us//4G+fUOX9QMOiDua\n3FVt8jCzmVEbxabHgujfXwC4+7Xu3hJ4ELgwhbHVpN+D+kakyC67wPTpYWRtWVnc0Yikhzv8939D\nURGceWbc0eS2ahuY3b1bDa/1J0K7RzGhdrBvwr4WUVlV5STs+9jM6gON3H2lmS0Hiiqc87K7f25m\njc2sXlT7SLxWpYqLi7/fLioqoqioqMpjC9ERR8Do0dCnD7z2Guy0U9wRiaTWnXfC4sXh/S2VKy0t\npbS0tNrjzN1r/SRm1sbd3422LwSOdfe+UYP5g4QG7ubATKCtu7uZzQIuAmYTks1t7v68mQ0FDnH3\noWbWDzjZ3ftFDeZvAkcSakpvAj9y99Vm9jDwmLs/bGZ3AvPc/a4qYvXavlYbbfio2v+ecok7/OpX\nsP32cO+9cUcjkjpvvQU9e4bE0aZN3NFkkFn4w6716Ya7b3WXp65tHmOjW1hzgeOBiwHcfSHwCLAQ\neBYYmvDJfT4wBVgClLn781H5FGB3MysDhgHDo2utAq4jJI3XgdFRwznRMZea2RKgaXQNqQMz+P3v\nYdYsJQ/JH6tXh3aOyZMLLHGkUZ1qHrlENY/kvPMO/OxnMHMmHH543NGI1J47nHoq7Ltv6BhScLK0\n5iF5qkOH0A++T5/wrU0kV40fD8uXw7hxcUeSX5Q8pEr9+oV7xGedVacvLiKxmTkzJI8ZM0I7nqSO\nkods0/jx8MkncOONcUcikpylS2HAgDB2qWXL6o+X5GguKNmm7bcPM4526gSHHgq9esUdkUj11q6F\nk08Oy8mqR356qOYh1dpnH3j00bD+x8KFcUcjsm3uYabcww+HC1M5bFm2oOQhNdK5c2hw7N07TCYn\nkq1uuQXefRfuukvrc6STkofU2KBBcNJJoSF9/fq4oxHZ2gsvwIQJ8PjjsOOOcUeT35Q8JCnjxsGG\nDWHZTpFs8q9/hQbyP/85jOmQ9FLykKQ0aAAPPwxPPKER6JI9VqwIteJbb4Vjjok7msKg3laStGbN\n4Jln4NhjQxfI44+POyIpZF9/HXpWDRyomXIzSTUPqZV27cLtgV/+Ev75z7ijkULlHpaRbdUKEibN\nlgxQ8pBa+9nPwm2Ck04KAwlFMq24GJYtg/vuU8+qTNNtK6mTM8+E99+HX/wC/vY32HnnuCOSQnHf\nfTBtWpgBeocd4o6m8KjmIXV27bVwyCHhFpa68Eom/OUvocff88/DnnvGHU1hUvKQOjODu+8ODZfn\nnqtJFCW9Zs0Kk3U++SQceGDc0RQuJQ9JiYYNwxxY8+eH+YRE0mHRotCzatq0MOuBxEfJQ1Jml13g\n2WfDGJAJE+KORvLN8uVhiYCbboITTog7GlGDuaTU7ruHKSKOPTZsDxwYd0SSD1auDInjvPPCNDkS\nPyUPSbmWLUND5nHHQZMmoSeWSG2tWQM9eoTaxpVXxh2NbKLbVpIWHTrAU0+FqbFLSuKORnLVl1/C\niSfCUUeF21Uay5E9lDwkbTp1CrOb/upX8NJLcUcjuebrr8PiYx06wKRJShzZRslD0uroo8M0Jv36\nwSuvxB2N5Ip16+DUU2HvveH3v4d6+qTKOvovkbTr0gWmT4c+feAf/4g7Gsl269ZB375hPY6pU6F+\n/bgjksooeUhGdO0KDzwAp5wCr70WdzSSrb75JrxHttsufOFooC49WUvJQzKme/fwTbJ3bygtjTsa\nyTZffRV65jVuHBJHw4ZxRyTbouQhGXXCCWExqdNPh+eeizsayRZffgn/9V+hjeOBB1TjyAUpSR5m\ndpmZbTSzpgllI8yszMzeMbPuCeVHmtl8M1tiZhMTyhua2fTonNfMrGXCvkHR8YvNbGBCeSszmxXt\ne8jM9JbLAccdF7rxDh4Mjz4adzQStzVrwgDAAw4IM+WqjSM31Dl5mFkLoBvwQUJZB6Av0AE4AZhs\n9n1HuzuBIe7eDmhnZj2i8iHASndvC0wEbo6u1QQYCXQEOgOjzKxxdM5NwPjoWquja0gO+MlPwkDC\nCy6A+++POxqJyyefhA4VRxwRJtdU4sgdqah53ApcUaGsNzDd3de7+zKgDOhkZnsBu7r77Oi4acDJ\nCedMjbZnAF2j7R5AibuvcffVQAnQM9rXFdj03XUqcEoKXo9kyBFHwF//GiZSvPXWuKORTCsrC125\nTz8dbrtN3XFzTZ3+u8ysF/CRuy+osKs58FHCz8ujsuZAeUJ5eVS2xTnuvgFYE90Gq/RaZtYMWOXu\nGxOutU9dXo9k3kEHhe67f/gDXHopbNxY/TmS+956K9Q4RoyAa67RAMBcVG0bgZnNBBKXWzHAgWuB\nqwm3rNKhJm8nveXyQMuWIYH07g39+4ceWVoZLn+9+GJYOOzuu8P06pKbqk0e7l5pcjCzQ4BWwLyo\nPaMFMMfMOhFqBy0TDm8RlS0H9q2knIR9H5tZfaCRu680s+VAUYVzXnb3z82ssZnVi2ofideqVHFx\n8ffbRUVFFBUVVXmsZFaTJmEOrAEDwiR4TzwRyiS/3HNPqGnMmAE/+1nc0UhlSktLKa1JX3p3T8kD\nWAo0ibYPAt4GGgKtgXcBi/bNAjoRag3PAj2j8qHA5Gi7H6HNBKAJ8B7QOGF7t2jfw8AZ0fadwLnb\niM9ri+LanyvJ2bDBfdgw9/bt3ZcsiTsaSZX1690vu8y9XTv9v2ZcHT77wum4V/KZmsqurR4lBNx9\noZk9AiwEvgOGRkEAnA/8EdgBeNbdn4/KpwD3m1kZ8HmUQHD3VWZ2HfBm9ByjPTScAwwHpkf7346u\nITmsXr3QeH7ggXDMMaHPf7d03RiVjPjii3Cbau3aMLtA06bVnyPZzzZ/puc3M/PavlYbbfiowvg9\nZZO//Q3I73WVAAALIElEQVTOOCP0xrrwQjWq5qKlS0O7RqdOMHlymHZEMswM6vA5b2a4+1Z/feoc\nJ1mrS5fwTfWee+DXvw4T5knueO65sA7H2WeHxnEljvyi5CFZrXVrePVVWL06jAl4//24I5LqbNwI\no0eHhP/oo3Dxxao15iMlD8l6u+wS1gQZMCB8k3388bgjkqqsXBkmN/zrX2H27NBuJflJyUNygln4\nBvv003DJJWFA4bffxh2VJHrllTBrwIEHhuSx995xRyTppOQhOaVzZ5gzB959N9zGWrQo7ojku+/g\n2mtD54Y774QJE9S+UQiUPCTnNG0KTz4JZ50VbovccYemNYnLe+/BsceG6UbmzoUTT4w7IskUJQ/J\nSWYwdGhoTL///jCl9/Jtzi8gqbRxY0janTuHKWWeeQb23LP68yR/KHlITmvXLsyLdcwx4X77Pfeo\nFpJuS5aEbtQPPQR//3toi9KMuIVH/+WS8xo0gJEjYebMMDtvURG8807cUeWf9eth3Dj46U/DNOqv\nvALt28cdlcRFyUPyxmGHhdtYp58e7sMXF8M338QdVX4oLQ01u5ISeOMNuOgiLdxU6JQ8JK/Urx+m\nMpk7F+bPhw4dwhiRApmFJ+XKy0ObxqBBIRmXlMD++8cdlWQDJQ/JSy1awGOPwb33wg03hOm/33or\n7qhyxxdfwO9+B4cfDm3bhtuAp52mkeKymZKH5LXjjgtJY9AgOOkkOPPM0OArlVu3LiwJ27Zt+D29\n8UZIIjvtFHdkkm2UPCTv1a8P55wTPgwPOigMLhw0KIxRkODbb0MtrX17eOGF8HjgAd2ikqopeUjB\n2HXXsIrdu++GD8XOnWHwYFiwIO7I4rN2LUyaBAccELreTp0axmwcdljckUm2U/KQgtO4MYwaBWVl\n4fZM9+5h6duSksJpWF++PPwO9t8/dLl9/PHQ1VlLw0pNKXlIwWrSJNREli0LPYouvxwOOQQmToTP\nPos7utRzh5degj594NBDw2v829/CtOk//nHc0Umu0UqCNTlXKwkWBPfwLXzKFHjqqVAjOfts+PnP\nc3uiv7IyePBB+NOfoGHDMK3LgAHhNp4UgDStJKjkUZNzlTwKzurVm9sA3nsPevcO39hzJZGUlYXp\n6x9+GD74IMx4e+aZ0LGjutsWHCWPulHykNr68MNwa+fPfw5TwB93XKiVdOuWPb2R1q4NS/Y+/zz8\n5S+wZk3omnzaaXD88WEKFylQSh51o+QhqfDpp/Dii6FxvaQkjH/4yU9Cz63OncOguu23T28MGzeG\ndpq5c2HWrHCrbcGC8NzHHx9W8jvySE1WKBElj7pR8pBUc4eFC8NAutdfD49Fi2C//cJ4ifbtQ2+u\n5s3Dqnr77APNmlX/oe4eRnivXAmffAJLl4ZksXRpGOk9f37oMXbYYeE2VJcu0KmTBvJJFZQ86kbJ\nQzJh3brQRrJoUfigLysLCeDjj8Nj9WrYcUfYeefw2H572LAhPNavh6+/hlWrYIcdwqJXe+4JrVuH\nR6tWYYnXH/4wJCGRGklT8tCdUJEU2n77MIr9oIMq379+PXz1VWijWLs2JJsGDcIo+AYNNieNhg0z\nG7dIspQ8RDKoQQNo1Cg8RHKZmtRERCRpdUoeZjbKzMrNbE706Jmwb4SZlZnZO2bWPaH8SDObb2ZL\nzGxiQnlDM5senfOambVM2DcoOn6xmQ1MKG9lZrOifQ+ZmWpSIiIZkIqaxwR3PzJ6PA9gZh2AvkAH\n4ARgstn3Q5PuBIa4ezugnZn1iMqHACvdvS0wEbg5ulYTYCTQEegMjDKzxtE5NwHjo2utjq4hIiJp\nlorkUdl41d7AdHdf7+7LgDKgk5ntBezq7rOj46YBJyecMzXangF0jbZ7ACXuvsbdVwMlwKYaTlfg\n0Wh7KnBKCl6PiIhUIxXJ4wIzm2tm9yTUCJoDHyUcszwqaw6UJ5SXR2VbnOPuG4A1Zta0qmuZWTNg\nlbtvTLjWPil4PZSWlqbiMhmjeNNL8aaX4k2v0jRdt9rkYWYzozaKTY8F0b+/ACYD+7v74cCnwPgU\nxlaTGXjSMktPzr05FG9aKd70UrzpVZqm61bbwOzu3Wp4rT8AT0fby4F9E/a1iMqqKk8852Mzqw80\ncveVZrYcKKpwzsvu/rmZNTazelHtI/FalSouLv5+u6ioiKKioiqPFREpRKWlpTVKkHXqnWRme7n7\np9GPpwL/jLafAh40s1sJt53aAG+4u5vZGjPrBMwGBgK3JZwzCHgdOB14KSp/AbghuiVWD+gGDI/2\nvRwd+3B07pPbijcxeYiIyNYqfrEePXp05Qe6e60fhAbv+cBc4Algz4R9I4B3gXeA7gnlPwIWEBrR\nJyWUbw88EpXPAlol7BsclS8BBiaUtyYkmyWEBLLdNmJ1PfTQQw89kn9U9plaMHNbiYhI6miEuYiI\nJE3JQ0REklZwycPM+pjZP81sg5kdWcn+lmb2hZldmlCW9JQq6Y7XzI43szfNbJ6ZzTaz47I53mhf\nyqasSRczOyx6rrfN7A0z+3Ft488UM7swimmBmY3N9nijGC4zs43RWK6sjdfMbo7imWtmj5pZo4R9\nWRdvRWbW08wWRbFcldKL16XBPBcfwIFAW0JvriMr2f9nQuP7pQllrwMdo+1ngR7R9nnA5Gj7DMKo\n+ozECxwG7BVtHwyUZ3m8HYC3CT38WhE6U1jc8VYS/wtEHTwIU+u8HG0flGz8GXo/FxFmXWgQ/bx7\nbX/fGYy5BfA8sBRoms3xAscD9aLtscCYbH4/VIi9XhTXfsB2hI5N7VN1/YKrebj7Yncvo5IBhmbW\nG3gf+FdCWTJTqvw8U/G6+zyPukm7+7+AHcxsu2yNl9RMWZPyeCuxEdg0U8JubB471Ivk48+E84Cx\n7r4ewN0/i8pr8/vOlFuBKyqUZWW87v6ib57FYhYh8UH2vh8SdQLK3P0Dd/8OmE74PadEwSWPqpjZ\nzsCVwGi2/OBLZkqV1YnV8Ewxsz7AnOgNkq3xpmLKmkzEewlwi5l9SJicc0TFWCI1iT8T2gE/szC7\n9Mtm9qOoPCvjNbNewEfuvqDCrqyMt4KzCTUJyI14K8aY0ljycgpzM5sJ7JlYROivfI27P135WRQD\nt7r7V2a1nvWkVifWMt5N5x4MjCEMnkz6qWtxTp3iraOUTEezrfgJtykudvcnoqR8L7X73abMNuK9\nlvA33MTdjzKzjoTbrvtnPsqE4LYd79XE/PusqCbvZzO7BvjO3R+KIcSslJfJw2s+pUqizsBpZnYz\n0ATYYGbfAI+R5JQqGYoXM2sRxTcgqjonxpRt8aZsyppaPPcWthW/md3v7hdHx80ws3vqEH9KVBPv\nuYT3AO4+O+qo0CyKIbGDQezxmtkhhPaBeRa+obUA5liYcSLr4t3EzAYDJ7J5pm+2EVfa401CVb/T\n1IijIScbHoSpTX5Uxb5RbNlgPotw/9AI1daeUflQNjfo9iONDboV4yXcl58LnFzJsdkY76YGxoaE\nmQESGxhjjzchzn8BXaLtnwOzaxt/ht7H/w2MjrbbAR9kc7wVYl9KqDVlbbyE5R/+BTSrUJ6V8VaI\nsT6bG8wbRp8XHVJ2/TheVJwPQuPVR8DXwCfAc5UcUzF5JD2lSrrjJdxi+QKYE72J57C5p03WxRvt\nS9mUNWl8f/wUeDP6nb4GHFHb+DP0ft4OuD96/jeJEl+2xlsh9veJeltla7zRc34Q/X3NIfoyk63x\nVhJ/T2BxFMvwVF5b05OIiEjS1NtKRESSpuQhIiJJU/IQEZGkKXmIiEjSlDxERCRpSh4iIpI0JQ8R\nEUmakoeIiCTt/wE4uMoWx/pVTgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import plot_roots\n",
+ "plot_roots(equation, size=25000);"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEACAYAAACgS0HpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VXWd//HXWxKpRiunUQvEMEVQKUXFdFRO3pBSwbzh\nmGCSllCZV0QdwTFLUUe0eWjT5AXtQuo0Qg6imBzrMXETUe5wHjn4g4PoBEgaiFw+vz++68iWOHAO\n5+yz9uX9fDzOg7W/e62zP2cD+3PW57O+36WIwMzMbEd2yTsAMzMrD04YZmbWJE4YZmbWJE4YZmbW\nJE4YZmbWJE4YZmbWJEVNGJI6SXpB0jxJcyR9Lxv/lKTnJC2S9KykTxQcM1xSnaQFkk4tGO8pabak\nxZJGFzNuMzP7W8U+w9gIXBURhwDHAEMldQOuB56PiIOAF4DhAJIOBs4DugN9gfslKfteDwCDI6Ir\n0FVSnyLHbmZmBYqaMCJiRUS8km2/CywAOgH9gDHZbmOA/tn2mcDYiNgYEUuAOqCXpH2A3SNiRrbf\nowXHmJlZG2izHoakzwGHAVOBvSPiTUhJBdgr260jsLTgsPpsrCOwrGB8WTZmZmZtpE0ShqS/A54E\nrsjONLZej8Trk5iZlbiPFPsFJH2ElCwei4hx2fCbkvaOiDezctNb2Xg9sG/B4Z2yscbGt34tJx4z\ns50QEdrRPm1xhvEQMD8i7i0YGw9cnG0PAsYVjA+Q1F5SF+AAYHpWtlojqVfWBB9YcMyHRIS/Ihgx\nYkTuMZTKl98Lvxd+L7b/1VRFPcOQ9I/AhcAcSbNIpacbgDuAxyVdArxOujKKiJgv6XFgPrABGBJb\nfpqhwCNAB2BCREwsZuxmZvZhRU0YEfE/QLtGnj65kWN+BPxoG+MzgR6tF52ZmTWHZ3pXqJqamrxD\nKBl+L7bwe7GF34vmU3PqV6VOUlTSz2Nm1hYkESXS9DYzswrghGFmZk3ihGFmZk3ihGFmZk3ihGFm\nZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3i\nhGFmZk3ihGFmZk3ihGFmZk1SVglD0mmSFkpaLGlY3vGYmVWTsrlFq6RdgMXAScByYAYwICIWFuzj\nW7SamTVTJd6itRdQFxGvR8QGYCzQL+eYzMzKWl1d0/ctp4TREVha8HhZNmZmZs20Zg1cey0cc0zT\njymnhGFmZi20aRP87GfQrRusWgVz5zb92I8UL6xWVw90LnjcKRv7kJEjR36wXVNTQ01NTbHjMjMr\nC7//PVxxBWzcWMsZZ9Ty2c/CT37S9OPLqendDlhEanq/AUwHLoiIBQX7uOltZraVJUtS+Wn6dBg1\nCs47D1TQ4q64pndEbAK+AzwHzAPGFiYLMzP7sHffhZtugiOOgB49YMECOP/8DyeL5iinkhQRMRE4\nKO84zMxK2ebN8ItfwPDhUFMDr74KnTq1/PuWVcIwM7Ptmzo19Ski4IknmncV1I6UTUnKzMwaV18P\nF10EZ58NQ4emxNGayQKcMMzMytq6dXDrrfCFL0DnzrBoEQwcCLsU4dPdJSkzszLUUHK67jo46ih4\n6SXo0qW4r+mEYWZWZl5+Gb7/ffjLX2DMGOjdu21e1yUpM7My8eab8M1vwle/mvoVM2e2XbIAJwwz\ns5K3fn2acHfIIfDJT8LChXDppdCuXdvG4ZKUmVmJioDx4+Hqq6F7d/jjH6Fr1/ziccIwMytBc+em\nPsUbb8D998Opp+YdkUtSZmYlZeXKNI/ixBOhXz945ZXSSBbghGFmVhI2bID77kulp112Ses+ffe7\nsOuueUe2hUtSZmY5mzgRrroqrfc0eXJqbpciJwwzs5wsWpQSRV0d3H03nH76zq8k2xZckjIza2Or\nV8OVV8Jxx8FJJ6UG9xlnlHayACcMM7M2s3FjuuKpW7e0BtT8+ekMo337vCNrGpekzMzawPPPp7OK\nf/gHmDQpLRZYbpwwzMyKqK4OrrkmlZ3uugv69y/90lNjXJIyMyuCNWvSfbSPOQaOPTaVn846q3yT\nBThhmJm1qk2b4Kc/TX2K1avTmcWwYbDbbnlH1nJFSxiSRklaIOkVSf8paY+C54ZLqsueP7VgvKek\n2ZIWSxpdMN5e0tjsmCmSOhcrbjOznVVbC0ccAT//Ofz3f8PPfgb77JN3VK2nmGcYzwGHRMRhQB0w\nHEDSwcB5QHegL3C/9MFJ2gPA4IjoCnSV1CcbHwysiogDgdHAqCLGbWbWLK+9lm6NevHFcOON8OKL\n0LNn3lG1vqIljIh4PiI2Zw+nAp2y7TOBsRGxMSKWkJJJL0n7ALtHxIxsv0eB/tl2P2BMtv0kcFKx\n4jYza6p33oHhw6FXr5QgFiyAc88t7z7F9rRVD+MSYEK23RFYWvBcfTbWEVhWML4sG/vQMRGxCXhb\n0p7FDNjMrDGbN8PDD8NBB8Hy5TB7djqz+OhH846suFp0Wa2kScDehUNAADdGxG+zfW4ENkTEr1ry\nWlu/dGNPjBw58oPtmpoaampqWvFlzaza/eEPadnxDh1g3Lh0P+1yU1tbS21tbbOPU0S0fjQN31y6\nGLgUODEi1mdj1wMREXdkjycCI4DXgckR0T0bHwD0jojLG/aJiGmS2gFvRMRe23i9KObPY2bV6/XX\n4brrYMoUuOMOGDCgckpPkoiIHf40xbxK6jTgWuDMhmSRGQ8MyK586gIcAEyPiBXAGkm9sib4QGBc\nwTGDsu1zgReKFbeZWaF334V//ufUozj44HR71AsuqJxk0RzFnOn9Y6A9MCm7CGpqRAyJiPmSHgfm\nAxuAIQWnBUOBR4AOwISImJiNPwg8JqkOWAkMKGLcZmZs3gy/+EVqavfunW5ktO++eUeVr6KWpNqa\nS1Jm1hqmToUrrkj31L733jRbu5LlXpIyMys3S5fChRfCOefAd76TEkelJ4vmcMIws6q3di3ccgsc\ndhjsv3/qU1x0UbpVqm3h1WrNrGpFwNixaa2nY46Bl1+G/fbLO6rS5YRhZlVpxow0n+K991Jz+/jj\n846o9PmEy8yqyvLlMGgQ9OsHgwenxOFk0TROGGZWFdatg9tuS3e6++xnYdEiuOQS9ymawyUpM6to\nEfDkk2mWds+eMH16amxb8zlhmFnFmjUrzaf4y1/SYoFeWq5lfDJmZhVnxYrUn+jbF77+dZg508mi\nNThhmFnFWL8+LQx46KGw556pT3HZZdCuXd6RVQaXpMys7EXAU0/BNdekZDFlChx4YN5RVR4nDDMr\na7Nnp/kUb70F//7vcPLJeUdUuVySMrOy9H//B9/6FpxySlr76ZVXnCyKzQnDzMrK++/D3Xene1N8\n7GNp3achQ+AjrpcUnd9iMysLEfD003D11ak/8Yc/QLdueUdVXZwwzKzkzZsHV16Zlh+/7z447bS8\nI6pOLkmZWclauTLdl+LLX4bTT08NbieL/DhhmFnJ2bAh3emue/d07+wFC+B734Ndd807surmkpSZ\nlZRnnoGrroLOnWHyZDjkkLwjsgZFP8OQdLWkzZL2LBgbLqlO0gJJpxaM95Q0W9JiSaMLxttLGpsd\nM0VS52LHbWZta+FC+MpX0tpPd94JEyc6WZSaoiYMSZ2AU4DXC8a6A+cB3YG+wP2SGm4+/gAwOCK6\nAl0l9cnGBwOrIuJAYDQwqphxm1nbWb06Tbw7/vg0j2Lu3NSv+OBTwUpGsc8w7gGu3WqsHzA2IjZG\nxBKgDuglaR9g94iYke33KNC/4Jgx2faTwElFjdrMim7jRrj//nRp7Hvvwfz5qRTVvn3ekVljitbD\nkHQmsDQi5ujDvyp0BKYUPK7PxjYCywrGl2XjDccsBYiITZLelrRnRKwqVvxmVjyTJqXLZPfeO21/\n4Qt5R2RN0aKEIWkSsHfhEBDATcANpHJUMTR6sjpy5MgPtmtqaqjxmsZmJaOuLk28mzcvzdbu18+l\npzzU1tZSW1vb7OMUEa0ejKRDgeeBtaQP906kM4lewCUAEXF7tu9EYASpzzE5Irpn4wOA3hFxecM+\nETFNUjvgjYjYaxuvG8X4ecysZdasgVtvhUceSXe+u+IK2G23vKOyBpKIiB2m7qL0MCJibkTsExH7\nR0QXUnnp8Ih4CxgPnJ9d+dQFOACYHhErgDWSemVN8IHAuOxbjgcGZdvnAi8UI24za12bNsFPfwoH\nHQRvv50a2tdd52RRrtpqHkaQlZEiYr6kx4H5wAZgSMFpwVDgEaADMCEiJmbjDwKPSaoDVgID2ihu\nM9tJtbXp6qc99oAJE9L9tK28FaUklReXpMzy99pr6UZGs2al+RRnn+0+RanLtSRlZtXnnXfg+uuh\nVy848si0nMc55zhZVBInDDNrkc2b4aGHUp9ixYq0QOANN0CHDnlHZq3Na0mZ2U77wx9Sn6JDBxg3\nDo46Ku+IrJicMMys2ZYsgWHDYMoUuOMOGDDApadq4JKUmTXZu+/CTTfBEUekhQEXLoQLLnCyqBZO\nGGa2Q5s3w6OPpnWfliyBV1+Fm29O99S26uGSlJlt15QpqU8B8OST8KUv5RuP5cdnGGa2TUuXwoUX\nwrnnptukTpniZFHtnDDM7EPWroVbboHDD4fPfz71KS66CHbxp0XVc0nKzACIgF/9Kk2+O/ZYmDkT\n9tsv76islDhhmBkzZqQVZN9/H375SzjuuLwjslLkk0yzKrZ8OQwalO5LcemlMH26k4U1zgnDrAqt\nWwe33ZbudPfZz8KiRfCNb7hPYdvnkpRZFYlIl8Zed12afDd9Ouy/f95RWblwwjCrEjNnpvkU77wD\nDz8MvnuxNZdPQM0q3PLlqdx0+ulw8cUpcThZ2M5wwjCrUOvWwQ9/mPoUe++d+hSDB0O7dnlHZuXK\nJSmzChMBTzyR+hRHHuk+hbUeJwyzCvLSS6lP8de/wiOPuPRkrauoJSlJ35W0QNIcSbcXjA+XVJc9\nd2rBeE9JsyUtljS6YLy9pLHZMVMkdS5m3GblpqFPccYZ6c+XXnKysNZXtIQhqQY4A+gRET2Au7Lx\n7sB5QHegL3C/9MFq+g8AgyOiK9BVUp9sfDCwKiIOBEYDo4oVt1k5aZhP0aOH+xRWfMU8w7gcuD0i\nNgJExJ+z8X7A2IjYGBFLgDqgl6R9gN0jYka236NA/4JjxmTbTwInFTFus5IXAY8/Dt27w6xZaWmP\n22+HPfbIOzKrZMXsYXQFTpD0Q2AdcE1EzAQ6AlMK9qvPxjYCywrGl2XjZH8uBYiITZLelrRnRKwq\nYvxmJamwTzFmDPTunXdEVi1alDAkTQL2LhwCArgp+96fiogvSToKeAJorWs1Gr0h5MiRIz/Yrqmp\nocaFXKsQy5fDjTfCs8/CrbemORUuPdnOqK2tpba2ttnHKSJaPxpA0gTgjoh4MXtcB3wJuBQgIm7P\nxicCI4DXgckR0T0bHwD0jojLG/aJiGmS2gFvRMRe23jNKNbPY5aXdevgX/8V7rknLRA4fLhLT9a6\nJBERO7wzezF7GE8BJ2bBdAXaR8RKYDxwfnblUxfgAGB6RKwA1kjqlTXBBwLjsu81HhiUbZ8LvFDE\nuM1KQgT8+tdb+hTTp8OPfuRkYfkpZg/jYeAhSXOA9aQEQETMl/Q4MB/YAAwpOC0YCjwCdAAmRMTE\nbPxB4LHsLGUlMKCIcZvlzn0KK0VFK0nlwSUpK3fLl8MNN6Q+xQ9+4D6FtY1SKEmZWRMV3p/iM5/x\nfAorTV4axCxHDfMphg2Do47yuk9W2pwwzHIyYwZceSWsXQuPPgonnJB3RGbb55KUWRsrvI/2JZek\nxOFkYeXACcOsjaxblxrZPXpsuY/2JZe4T2HlwyUpsyJr6FNcdx306pUume3SJe+ozJrPCcOsiGbM\nSPMp1q2Dxx5z6cnKm0tSZkVQ2KcYPNh9CqsMThhmraihT/GFL0DHju5TWGVxScqsFTSs+zRsWOpT\nzJjhPoVVHicMsxZyn8KqhUtSZjupvn5Ln+Kb33SfwiqfE4ZZM61bl25gVNin+MY33KewyueSlFkT\nbd2n8HwKqzZOGGZNMH16Wvfpvffcp7Dq5ZKU2XbU18PAgdC/v/sUZk4YZtuwdu2WPsW++27pU+zi\n/zFWxVySMisQAWPHwvXXw9FHu09hVsgJwywzfXqaT7F+Pfz853D88XlHZFZainaCLemLkqZImiVp\nuqQjC54bLqlO0gJJpxaM95Q0W9JiSaMLxttLGpsdM0VS52LFbdWnsE9x6aWpT+FkYfa3ilmRHQWM\niIjDgRHAnQCSDgbOA7oDfYH7JTXcfPwBYHBEdAW6SuqTjQ8GVkXEgcDo7HubtUhDn+KLX3Sfwqwp\nivlfYzPwiWz7k0B9tn0mMDYiNkbEEqAO6CVpH2D3iJiR7fco0D/b7geMybafBE4qYtxW4SLgV7+C\nbt1g7tzUp7jtNth997wjMyttxexhXAk8K+luQMCx2XhHYErBfvXZ2EZgWcH4smy84ZilABGxSdLb\nkvaMiFVFjN8qUGGf4he/cOnJrDlalDAkTQL2LhwCArgROBm4IiKeknQO8BBwSkteb6vX2aaRI0d+\nsF1TU0NNTU0rvaSVs/p6GD4cfve7dDYxcKBLT1a9amtrqa2tbfZxiojWjwaQ9HZEfHLrx5KuByIi\n7sjGJ5J6HK8DkyOiezY+AOgdEZc37BMR0yS1A96IiL228ZpRrJ/HytPatXDXXXDvvfDtb6fLZV16\nMvswSUREo7+INyjm71j1knpnwZxE6lUAjAcGZFc+dQEOAKZHxApgjaReWRN8IDCu4JhB2fa5wAtF\njNsqQGGfYt48mDnTfQqzlipmD+NS4L7sjOA94DKAiJgv6XFgPrABGFJwWjAUeAToAEyIiInZ+IPA\nY5LqgJXAgCLGbWVu2rS07pP7FGatq2glqTy4JFXdli1LfYoXXnCfwqw5SqEkZdYm1q6Ff/mXNJ9i\nv/3SfIqLL3ayMGttXhrEylZDn+L66+GYY1Kf4nOfyzsqs8rlhGFladq0NJ9iwwb45S/huOPyjsis\n8vmk3crKsmVw0UXwta/Bt76VJuI5WZi1DScMKwtr18Itt7hPYZYnl6SspLlPYVY6nDCsZLlPYVZa\nfEJvJaewT/Htb7tPYVYqnDCsZGyrTzFokPsUZqXCJSnLXWGf4thj4eWXU8Iws9LihGG5mjo1rfvk\nPoVZ6fPJvuVi6VL4+tfh7LPdpzArF04Y1qYa+hSHHQZdurhPYVZOXJKyNrF585Y+xT/+o/sUZuXI\nCcOKburUNJ9i0yYYOzYlDDMrPy4EWNEU9ikuvzxNxHOyMCtfThjW6v76Vxgxwn0Ks0rjkpS1ms2b\n4ec/hxtugBNOgFmzoHPnvKMys9bihGGt4n/+J/Up2rWDJ55ICwWaWWVpUZFA0jmS5kraJKnnVs8N\nl1QnaYGkUwvGe0qaLWmxpNEF4+0ljc2OmSKpc8Fzg7L9F0ka2JKYrXUtWQLnnw8XXJASxh//6GRh\nVqlaWlWeA5wFvFg4KKk7cB7QHegL3C+p4QbjDwCDI6Ir0FVSn2x8MLAqIg4ERgOjsu/1KeBm4Cjg\naGCEpE+0MG5roXfeSaWnI46AQw6BhQvhwgvdpzCrZC367x0RiyKiDtBWT/UDxkbExohYAtQBvSTt\nA+weETOy/R4F+hccMybbfhI4MdvuAzwXEWsi4m3gOeC0lsRtO2/TJnjwQTjoIKivh9mz4eab4WMf\nyzsyMyu2YvUwOgJTCh7XZ2MbgWUF48uy8YZjlgJExCZJayTtWTi+1feyNlZbm9Z9+vjHYdw4OOqo\nvCMys7a0w4QhaRKwd+EQEMCNEfHbYgXG3561NMnIkSM/2K6pqaGmpqaVwqlef/oTXHttuurpjjvg\n3HNBO/W3Y2aloLa2ltra2mYft8OEERGn7EQ89cC+BY87ZWONjRces1xSO2CPiFglqR6o2eqYyY29\ncGHCsJZZswZ+8AN4+GG4+uq0mmyHDnlHZWYttfUv07fcckuTjmvNFmXh75zjgQHZlU9dgAOA6RGx\nAlgjqVfWBB8IjCs4ZlC2fS7wQrb9LHCKpE9kDfBTsjErko0b4Sc/SX2K1ath7lwYPtzJwqzataiH\nIak/8GPg08DTkl6JiL4RMV/S48B8YAMwJCIiO2wo8AjQAZgQEROz8QeBxyTVASuBAQARsVrSrcBL\npFLYLVnz24pg0iS46ir4+7+HZ56Bww/POyIzKxXa8jle/iRFJf08bWnRIrjmGliwAO68E/r3d5/C\nrFpIIiJ2+D/eV81XuVWr0oS7446D3r1h3jw46ywnCzP7W04YVWrDBvjxj6FbN1i/PiWKa66B3XbL\nOzIzK1VeS6oKPfNM6lN06gS/+x306JF3RGZWDpwwqsi8eeny2P/9X7j7bvjqV116MrOmc0mqCvz5\nzzB0KNTUQN++MGcOnH66k4WZNY8TRgV7/3245x7o3j0tO75wIVxxBbRvn3dkZlaOXJKqQBHw29+m\nJvaBB8Lvf5+ShplZSzhhVJjZs9MCgStWpKug+vTZ8TFmZk3hklSFePNNuOwyOOUUOPtsePVVJwsz\na11OGGVu/XoYNSrdxGj33VOfYsgQ+IjPHc2slfljpUxFwG9+k5Yd79Ej3Rq1a9e8ozKzSuaEUYZe\nfjn1KVavhv/4DzjppLwjMrNq4JJUGXnjDbjkkjTh7utfTzc0crIws7bihFEG1q2D225Lpae99kor\ny156aZpbYWbWVlySKmER8Otfw7Bh0KsXTJ8O+++fd1RmVq2cMErUtGmpT/Hee/DYY3DCCXlHZGbV\nziWpErNsGVx0EXzta2lexUsvOVmYWWlwwigRf/0rjBwJX/wi7Ldf6lNcfDHs4r8hMysRLfo4knSO\npLmSNknqWTB+sqSXJL0qaYakLxc811PSbEmLJY0uGG8vaaykOklTJHUueG5Qtv8iSQNbEnOp2bw5\nlZy6dUtJ4uWX4Qc/gL/7u7wjMzP7sJb2MOYAZwH/vtX4/wGnR8QKSYcAzwKdsuceAAZHxAxJEyT1\niYhngcHAqog4UNL5wChggKRPATcDPQEBMyWNi4g1LYw9d3/8Y7o9qpSa28cem3dEZmaNa9EZRkQs\niog60gd54firEbEi254HdJC0q6R9gN0jYka266NA/2y7HzAm234SODHb7gM8FxFrIuJt4DngtJbE\nnbfXX4cBA+D889Ny41OmOFmYWekreoVc0jnAyxGxAegILCt4elk2RvbnUoCI2ASskbRn4XimvuCY\nsvLOO3DjjdCzZ1pufOFCuPBC9ynMrDzssCQlaRKwd+EQEMCNEfHbHRx7CPAj4JSdiK1i7ge3aROM\nGQM33QQnn5xWku3UacfHmZmVkh0mjIjYmQ97JHUCfgNcFBFLsuF6YN+C3TplY4XPLZfUDtgjIlZJ\nqgdqtjpmcmOvO3LkyA+2a2pqqKmpaWzXNvHii2k+xUc/Ck89lSbgmZnlqba2ltra2mYfp4ho8YtL\nmgxcExEzs8efAF4ERkbEU1vtOxX4HjAD+G/gvoiYKGkIcGhEDJE0AOgfEQ1N75dITe9dsu0jsn7G\n1nFEa/w8reFPf4LrroOZM+GOO+C883wPbTMrTZKIiB1+QrX0str+kpYCXwKelvRM9tR3gM8DN0ua\nJellSZ/OnhsKPAgsBuoiYmI2/iDwaUl1wPeB6wEiYjVwKylRTANu2VayKBVr1qREcfTRcOSRsGBB\nam47WZhZuWuVM4xSkecZxqZN8LOfpcl3X/lKmkvxmc/kEoqZWbM09QzDa0m1gt/9LvUp9twTJkyA\nww/POyIzs9bnhNECixfDNdfAvHlw551w1lkuPZlZ5fIMgJ2wenU6ozj2WDj+eJg/Py0W6GRhZpXM\nCaMZNmyAf/u3tO7TunUpUVx7Ley2W96RmZkVn0tSTTRxIlx1FXTsCM8/n+5+Z2ZWTZwwdmD+fLj6\nanjtNbj77nQ/bZeezKwauSTViJUr4bvfhZoa6NMH5syB0093sjCz6uWEsZX334fRo1OfAtLEu+9/\nH9q3zzcuM7O8uSSViYCnn07lpwMOSGtAHXxw3lGZmZUOJwxg9uzU0F6+HO69F/r2zTsiM7PSU9Ul\nqbfegm99C045JU26e/VVJwszs8ZUZcJYvz7NzD74YPj4x9ONjIYOhV13zTsyM7PSVVUlqQj4r/9K\nk+0OPTTdU7tr17yjMjMrD1WTMGbNSst5rFoFP/0pnHRS3hGZmZWXii9JvfEGDB6cehP/9E8pcThZ\nmJk1X8UmjHXr4Ic/TEt4fPrTsGgRXHYZtGuXd2RmZuWp4kpSEfD44zBsGBxxBEybBp//fN5RmZmV\nv4pLGMcdl84uxoyB3r3zjsbMrHJUXML45jdh4ECXnszMWluLehiSzpE0V9ImST238XxnSe9Iuqpg\nrKek2ZIWSxpdMN5e0lhJdZKmSOpc8NygbP9FkgZuL6ZvfMPJwsysGFra9J4DnAW82MjzdwMTthp7\nABgcEV2BrpL6ZOODgVURcSAwGhgFIOlTwM3AUcDRwAhJn2hh3BWvtrY27xBKht+LLfxebOH3ovla\nlDAiYlFE1AF/s+i3pH7Aa8C8grF9gN0jYkY29CjQP9vuB4zJtp8ETsy2+wDPRcSaiHgbeA44rSVx\nVwP/Z9jC78UWfi+28HvRfEW5rFbSx4HrgFv4cDLpCCwreLwsG2t4bilARGwC1kjas3A8U19wjJmZ\ntZEdNr0lTQL2LhwCArgxIn7byGEjgXsiYq12/o5DvlWRmVkpiYgWfwGTgZ4Fj39PKke9BqwG/gwM\nAfYBFhTsNwB4INueCBydbbcD3irY5ycFx/wEOL+ROMJf/vKXv/zV/K+mfNa35mW1H5wRRMQJHwxK\nI4B3IuL+7PEaSb2AGcBA4L5s1/HAIGAacC7wQjb+LHBb1ujeBTgFuH5bAUSEz0rMzIqkRQlDUn/g\nx8CngaclvRIRO7qjxFDgEaADMCEiJmbjDwKPSaoDVpLOLIiI1ZJuBV4iZcJbsua3mZm1IWWlHDMz\ns+2qiMUHtzeBUNLwbDLgAkmn5hVjHiR9MZsEOUvSdElH5h1TniR9N/t3MEfS7XnHkzdJV0vanF2N\nWJUkjcrI1IZ+AAACp0lEQVT+Tbwi6T8l7ZF3TG1N0mmSFmaTo4dtb9+KSBg0MoFQUnfgPKA70Be4\nXy24bKsMjQJGRMThwAjgzpzjyY2kGuAMoEdE9ADuyjeifEnqROoHvp53LDl7DjgkIg4D6oDhOcfT\npiTtAvwbab7bIcAFkro1tn9FJIztTCDsB4yNiI0RsYT0D6JXW8eXo81Aw6z4T5LmsFSry4HbI2Ij\nQET8Oed48nYPcG3eQeQtIp6PiM3Zw6lApzzjyUEvoC4iXo+IDcBY0ufmNlVEwtiOap/0dyVwl6T/\nRzrbqKrfnrbSFThB0lRJk6u5PCfpTGBpRMzJO5YScwnwTN5BtLGtPyMLJ1P/jbJZrXYnJxBWvO29\nL8DJwBUR8ZSkc4CHSGWIirSd9+Im0r/1T0XElyQdBTwO7N/2UbaNHbwXN/DhfwcVXaZtymeHpBuB\nDRHxyxxCLBtlkzAiYmc+6OqBfQsed6LCyjLbe18kPRYRV2T7PSnpwbaLrO3t4L34NvCbbL8ZWbP3\n7yNiZZsF2IYaey8kHQp8Dng16+d1AmZK6hURb7VhiG1mR58dki4GvsKW9euqST3QueDxdj8jK7Ek\nVfjb0nhgQLZ0ehfgAGB6PmHlol5SbwBJJwGLc44nT0+RfSBI6grsWqnJYnsiYm5E7BMR+0dEF1IJ\n4vBKTRY7Iuk0Ui/nzIhYn3c8OZgBHCBpP0ntSfPfxje2c9mcYWxPYxMII2K+pMeB+cAGYEhU18ST\nS4H7JLUD3gMuyzmePD0MPCRpDrCetMqApdJMRZekduDHQHtgUnYB5dSIGJJvSG0nIjZJ+g7parFd\ngAcjYkFj+3vinpmZNUkllqTMzKwInDDMzKxJnDDMzKxJnDDMzKxJnDDMzKxJnDDMzKxJnDDMzKxJ\nnDDMzKxJ/j81Cs+VXYgklAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1,1)\n",
+ "x = np.arange(-10, 0e0, 1e-2)\n",
+ "ax.plot(x, equation(x))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[((-2072.648424828926, -1036.324212414463), 1), ((-1036.324212414463, 0.0), 1)]\n",
+ "[((-1382.6484248289262, -1372.6484248289262), 1)]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import find_root_intervals_brute_force\n",
+ "print(find_root_intervals(equation))\n",
+ "print(find_root_intervals_brute_force(equation, 10))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "True\n"
+ ]
+ }
+ ],
+ "source": [
+ "def trial():\n",
+ " from numpy import all\n",
+ " from HJCFIT.likelihood import DeterminantEq, find_root_intervals, find_roots, QMatrix\n",
+ " from HJCFIT.likelihood.random import qmatrix as random_qmatrix\n",
+ " \n",
+ " while True:\n",
+ " #try: \n",
+ " matrix = random_qmatrix()\n",
+ " equation = DeterminantEq(matrix, 1e-4)\n",
+ " return all([r[1] == 1 for r in find_roots(equation)])\n",
+ " \n",
+ " #except: continue\n",
+ "\n",
+ "\n",
+ "print(all([trial() for i in range(500)]))\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Asymptotic vs Exact for classic Matrix\n",
+ "--------------------------------------"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "from numpy import array\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots\n",
+ "qmatrix = QMatrix( \n",
+ " array([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ]), 2)\n",
+ "equation = DeterminantEq(qmatrix, 1e-4)\n",
+ "roots = find_roots(equation)\n",
+ "asymptotes = Asymptotes(equation, roots)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 2.21137053e+03 2.09900610e+00 0.00000000e+00]\n",
+ " [ 1.67920488e-01 4.75583079e+02 0.00000000e+00]]\n",
+ "True\n",
+ "True\n",
+ "True\n",
+ "True\n",
+ "True\n",
+ "True\n"
+ ]
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import expm, eig, inv\n",
+ "transitions = qmatrix.transpose()\n",
+ "\n",
+ "right = eig(transitions.matrix)[1]\n",
+ "eigenvalues = eig(transitions.matrix)[0]\n",
+ "left = eig(transitions.matrix.T)[1].T\n",
+ "\n",
+ "tau = 1e-4\n",
+ "af_factor = np.dot(expm(tau * transitions.ff), transitions.fa)\n",
+ "print(af_factor)\n",
+ "print(np.all(abs(af_factor - np.dot(expm(tau * qmatrix.aa), qmatrix.af)) < 1e-8))\n",
+ "for i, j in zip(range(5), [0, 1, 2, 4, 3]):\n",
+ " col = right[:transitions.nopen, i]\n",
+ " row = inv(right)[i, transitions.nopen:]\n",
+ " one_way = np.dot(np.outer(col, row), af_factor)\n",
+ " col = eig(qmatrix.matrix)[1][qmatrix.nopen:, i]\n",
+ " row = inv(eig(qmatrix.matrix)[1])[i, :qmatrix.nopen]\n",
+ " other_way = np.dot(np.outer(col, row), np.dot(expm(tau * qmatrix.aa), qmatrix.af))\n",
+ " print(np.all(abs(one_way - other_way) < 1e-8))\n",
+ " # print i, \" is ok\", all(abs(np.dot(outer(col, row), af_factor) - ExactG(transitions, 1e-4).D_af(j)) < 1e-8)\n",
+ " # print\n",
+ " # print ExactG(transitions, tau).D_af(i)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[ -1.94082023e+04 -3.09352724e+03 -2.02211927e+03 -1.01817905e+02\n",
+ " -3.97221336e-14]\n",
+ "[ -1.94082023e+04 -3.09352724e+03 -2.02211927e+03 -1.01817905e+02\n",
+ " -3.41740525e-14]\n",
+ "Same order left and right: True\n",
+ "Is right eig: True -19408.2022554\n",
+ "Is right eig: True -3093.52723698\n",
+ "Is right eig: True -2022.1192695\n",
+ "Is right eig: True -101.8179048\n",
+ "Is right eig: True -3.41740524716e-14\n",
+ "Is left eig: True -3093.52723698\n",
+ "Is left eig: True -2022.1192695\n",
+ "Is left eig: True -3.97221336337e-14\n",
+ "Is left eig: True -19408.2022554\n",
+ "Is left eig: True -101.8179048\n",
+ "Is row of inv(right) a left eigenvector: True -19408.2022554\n",
+ "Is row of inv(right) a left eigenvector: True -3093.52723698\n",
+ "Is row of inv(right) a left eigenvector: True -2022.1192695\n",
+ "Is row of inv(right) a left eigenvector: True -101.8179048\n",
+ "Is row of inv(right) a left eigenvector: True -3.41740524716e-14\n",
+ "Is column of inv(left) a right eigenvector: False -19408.2022554\n",
+ "Is column of inv(left) a right eigenvector: False -3093.52723698\n",
+ "Is column of inv(left) a right eigenvector: False -2022.1192695\n",
+ "Is column of inv(left) a right eigenvector: False -101.8179048\n",
+ "Is column of inv(left) a right eigenvector: False -3.41740524716e-14\n"
+ ]
+ }
+ ],
+ "source": [
+ "from HJCFIT.likelihood import eig, inv\n",
+ "from numpy import exp\n",
+ "from numpy import diag\n",
+ "\n",
+ "right = eig(qmatrix.matrix)[1]\n",
+ "eigenvalues = eig(qmatrix.matrix)[0]\n",
+ "# print eigenvalues, \"\\n\"\n",
+ "left = eig(qmatrix.matrix.T)[1].T\n",
+ "indices = [-2, 0, 1, -1, 2]\n",
+ "print(eig(qmatrix.matrix.T)[0][indices])\n",
+ "print(eigenvalues)\n",
+ "print(\"Same order left and right: \", all(abs(eigenvalues - eig(qmatrix.matrix.T)[0][indices]) < 1e-8))\n",
+ "\n",
+ "for eigenvalue, eigenvector in zip(eigenvalues, right.T): \n",
+ " null_mat = qmatrix.matrix - eigenvalue * np.identity(qmatrix.matrix.shape[0])\n",
+ " print(\"Is right eig: \", all(abs(np.dot(null_mat, eigenvector)) < 1e-8), eigenvalue)\n",
+ "for eigenvalue, eigenvector in zip(eig(qmatrix.matrix.T)[0], left): \n",
+ " null_mat = qmatrix.matrix - eigenvalue * np.identity(qmatrix.matrix.shape[0])\n",
+ " print(\"Is left eig: \", all(abs(np.dot(eigenvector, null_mat)) < 1e-8), eigenvalue)\n",
+ "\n",
+ "for eigenvalue, eigenvector in zip(eigenvalues, inv(right)): \n",
+ " null_mat = qmatrix.matrix - eigenvalue * np.identity(qmatrix.matrix.shape[0])\n",
+ " print(\"Is row of inv(right) a left eigenvector: \", all(abs(np.dot(eigenvector, null_mat)) < 1e-8), eigenvalue)\n",
+ "for eigenvalue, eigenvector in zip(eigenvalues, inv(left).T): \n",
+ " null_mat = qmatrix.matrix - eigenvalue * np.identity(qmatrix.matrix.shape[0])\n",
+ " print(\"Is column of inv(left) a right eigenvector: \", all(abs(np.dot(null_mat, eigenvector)) < 1e-8), eigenvalue)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Same order left and right: False\n",
+ "Is right eig: True -19408.2022554\n",
+ "Is right eig: True -3093.52723698\n",
+ "Is right eig: True -2022.1192695\n",
+ "Is right eig: True -101.8179048\n",
+ "Is right eig: True 6.74160411739e-14\n",
+ "Is left eig: True -19408.2022554\n",
+ "Is left eig: True -3093.52723698\n",
+ "Is left eig: True -2022.1192695\n",
+ "Is left eig: False -101.8179048\n",
+ "Is left eig: False 6.74160411739e-14\n",
+ "Is row of inv(right) a left eigenvector: True -19408.2022554\n",
+ "Is row of inv(right) a left eigenvector: True -3093.52723698\n",
+ "Is row of inv(right) a left eigenvector: True -2022.1192695\n",
+ "Is row of inv(right) a left eigenvector: True -101.8179048\n",
+ "Is row of inv(right) a left eigenvector: True 6.74160411739e-14\n",
+ "Is column of inv(left) a right eigenvector: True -19408.2022554\n",
+ "Is column of inv(left) a right eigenvector: True -3093.52723698\n",
+ "Is column of inv(left) a right eigenvector: True -2022.1192695\n",
+ "Is column of inv(left) a right eigenvector: False -101.8179048\n",
+ "Is column of inv(left) a right eigenvector: False 6.74160411739e-14\n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy.linalg import eig, inv\n",
+ "from HJCFIT.likelihood import eig as dceig\n",
+ "from HJCFIT.likelihood import inv as dcinv\n",
+ "from numpy import exp\n",
+ "from numpy import diag\n",
+ "\n",
+ "Qmatrix2 = qmatrix.transpose()\n",
+ "try:\n",
+ " right = eig(Qmatrix2.matrix)[1]\n",
+ " eigenvalues = eig(Qmatrix2.matrix)[0]\n",
+ " eigenvaluesT = eig(Qmatrix2.matrix.T)[0]\n",
+ " left = eig(Qmatrix2.matrix.T)[1].T\n",
+ " invmat = inv(right)\n",
+ " invmatL = inv(left).T\n",
+ "except: #fallback for longdoubles to eigen\n",
+ " right = dceig(Qmatrix2.matrix)[1]\n",
+ " eigenvalues = dceig(Qmatrix2.matrix)[0]\n",
+ " left = dceig(Qmatrix2.matrix.T)[1].T\n",
+ " eigenvaluesT = dceig(Qmatrix2.matrix.T)[0]\n",
+ " invmat = dcinv(right)\n",
+ " invmatL = dcinv(left).T\n",
+ " \n",
+ "print(\"Same order left and right: \", all(abs(eigenvalues - eigenvaluesT) < 1e-8))\n",
+ "\n",
+ "for eigenvalue, eigenvector in zip(eigenvalues, right.T): \n",
+ " null_mat = Qmatrix2.matrix - eigenvalue * np.identity(Qmatrix2.matrix.shape[0])\n",
+ " print(\"Is right eig: \", all(abs(np.dot(null_mat, eigenvector)) < 1e-8), eigenvalue)\n",
+ "for eigenvalue, eigenvector in zip(eigenvalues, left): \n",
+ " null_mat = Qmatrix2.matrix - eigenvalue * np.identity(Qmatrix2.matrix.shape[0])\n",
+ " print(\"Is left eig: \", all(abs(np.dot(eigenvector, null_mat)) < 1e-8), eigenvalue)\n",
+ "\n",
+ "for eigenvalue, eigenvector in zip(eigenvalues, invmat): \n",
+ " null_mat = Qmatrix2.matrix - eigenvalue * np.identity(Qmatrix2.matrix.shape[0])\n",
+ " print(\"Is row of inv(right) a left eigenvector: \", all(abs(np.dot(eigenvector, null_mat)) < 1e-8), eigenvalue)\n",
+ "for eigenvalue, eigenvector in zip(eigenvalues, invmatL): \n",
+ " null_mat = Qmatrix2.matrix - eigenvalue * np.identity(Qmatrix2.matrix.shape[0])\n",
+ " print(\"Is column of inv(left) a right eigenvector: \", all(abs(np.dot(null_mat, eigenvector)) < 1e-8), eigenvalue)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "True\n",
+ "True\n",
+ "True\n",
+ "True\n",
+ "[[ 4.44037679e+01 -1.92479231e+02 -4.57813227e+00]\n",
+ " [ -1.53983385e+04 6.67479474e+04 1.58760470e+03]\n",
+ " [ -2.28906614e-02 9.92252936e-02 2.36008070e-03]]\n",
+ "[[ 4.44037679e+01 -1.92479231e+02 -4.57813227e+00]\n",
+ " [ -1.53983385e+04 6.67479474e+04 1.58760470e+03]\n",
+ " [ -2.28906614e-02 9.92252936e-02 2.36008070e-03]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy import array\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor\n",
+ "qmatrix = QMatrix( \n",
+ " array([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ]), 2)\n",
+ "\n",
+ "transitions = qmatrix.transpose()\n",
+ "tau = 1e-4\n",
+ "exact = ExactSurvivor(transitions, tau)\n",
+ "equation = DeterminantEq(transitions, tau)\n",
+ "roots = find_roots(equation)\n",
+ "approx = Asymptotes(equation, roots)\n",
+ "try:\n",
+ " eigenvalues = eig(-transitions.matrix)[0]\n",
+ "except:\n",
+ " eigenvalues = dceig(-transitions.matrix)[0]\n",
+ "\n",
+ "def C_i10(i): \n",
+ " from numpy import zeros\n",
+ " result = zeros((transitions.nopen, transitions.nopen), dtype='float64')\n",
+ " for j in range(transitions.matrix.shape[0]):\n",
+ " if i == j: continue\n",
+ " result += np.dot(exact.D_af(i), exact.recursion_af(j, 0, 0)) / (eigenvalues[j] - eigenvalues[i])\n",
+ " result -= np.dot(exact.D_af(j), exact.recursion_af(i, 0, 0)) / (eigenvalues[i] - eigenvalues[j])\n",
+ " return result\n",
+ " \n",
+ "def C_i20(i): \n",
+ " from numpy import zeros\n",
+ " result = zeros((transitions.nopen, transitions.nopen), dtype='float64')\n",
+ " for j in range(transitions.matrix.shape[0]):\n",
+ " if i == j: continue\n",
+ " result += ( np.dot(exact.D_af(i), exact.recursion_af(j, 1, 0)) \n",
+ " + np.dot(exact.D_af(j), exact.recursion_af(i, 1, 0)) ) / (eigenvalues[j] - eigenvalues[i])\n",
+ " result += ( np.dot(exact.D_af(i), exact.recursion_af(j, 1, 1)) \n",
+ " - np.dot(exact.D_af(j), exact.recursion_af(i, 1, 1)) ) / (eigenvalues[j] - eigenvalues[i])**2\n",
+ " return result\n",
+ "\n",
+ "def C_i21(i): \n",
+ " result = np.dot(exact.D_af(i), exact.recursion_af(i, 1, 0)) \n",
+ " for j in range(transitions.matrix.shape[0]):\n",
+ " if i == j: continue\n",
+ " result -= np.dot(exact.D_af(j), exact.recursion_af(i, 1, 1)) / (eigenvalues[i] - eigenvalues[j])\n",
+ " return result\n",
+ "\n",
+ "def C_i22(i): return np.dot(exact.D_af(i), exact.recursion_af(i, 1, 1)) * 0.5 \n",
+ "\n",
+ "print(np.all([np.all(abs(C_i10(i) - exact.recursion_af(i, 1, 0)) < 1e-8) for i in range(5)]))\n",
+ "print(np.all([np.all(abs(C_i20(i) - exact.recursion_af(i, 2, 0)) < 1e-8) for i in range(5)]))\n",
+ "print(np.all([np.all(abs(C_i21(i) - exact.recursion_af(i, 2, 1)) < 1e-8) for i in range(5)]))\n",
+ "print(np.all([np.all(abs(C_i22(i) - exact.recursion_af(i, 2, 2)) < 1e-8) for i in range(5)]))\n",
+ " \n",
+ "print(C_i22(0))\n",
+ "print(exact.recursion_af(0, 2, 2))\n",
+ "#print np.dot(exact.D_af(1) * exact.recursion_af(1, 1, 1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/.ipynb_checkpoints/exact_survivor-checkpoint.ipynb b/exploration/.ipynb_checkpoints/exact_survivor-checkpoint.ipynb
new file mode 100644
index 0000000..db5185d
--- /dev/null
+++ b/exploration/.ipynb_checkpoints/exact_survivor-checkpoint.ipynb
@@ -0,0 +1,212 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Exact Survivor Function\n",
+ "=======================\n",
+ "\n",
+ "This is equation 3.12 from [Hawkes, Jalali, Colqhoun (1990)](http://dx.doi.org/10.1098/rsta.1990.0129). A simpler form is also given in [Colquhoun, Hawkes and Srodzinski (1996)](http://dx.doi.org/10.1098/rsta.1996.0115).\n",
+ "\n",
+ "These equations were performed in two parts: \n",
+ "\n",
+ "- the recurrence on the one side (recursion_formula.h). It is a set of template functions. This means it can be tested more simply on scalars (rather than matrices, as in the paper), as is done in tests/recursion_formula.cc.\n",
+ "- the acrutal survivor functions $^{A}R(t)$ and $^{F}R(t)$ are implemented as instances of exact_survivor.cc:ExactSurvivor::RecursionInterface. \n",
+ "\n",
+ "\n",
+ "Checking the implementation\n",
+ "---------------------------\n",
+ "\n",
+ "The classic $Q$ matrix first:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "from numpy import array\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, eig\n",
+ "qmatrix = QMatrix( \n",
+ " array([[ -3050, 50, 3000, 0, 0 ], \n",
+ " [ 2./3., -1502./3., 0, 500, 0 ], \n",
+ " [ 15, 0, -2065, 50, 2000 ], \n",
+ " [ 0, 15000, 4000, -19000, 0 ], \n",
+ " [ 0, 0, 10, 0, -10 ] ]), 2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Then compares a few recursion terms by hand and by c++"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "True\n",
+ "True\n",
+ "True\n",
+ "True\n"
+ ]
+ }
+ ],
+ "source": [
+ "transitions = qmatrix.transpose()\n",
+ "tau = 1e-4\n",
+ "exact = ExactSurvivor(transitions, tau)\n",
+ "equation = DeterminantEq(transitions, tau)\n",
+ "roots = find_roots(equation)\n",
+ "approx = Asymptotes(equation, roots)\n",
+ "eigenvalues = eig(-transitions.matrix)[0]\n",
+ "\n",
+ "def C_i10(i): \n",
+ " from numpy import zeros\n",
+ " result = zeros((transitions.nopen, transitions.nopen), dtype='float64')\n",
+ " for j in range(transitions.matrix.shape[0]):\n",
+ " if i == j: continue\n",
+ " result += np.dot(exact.D_af(i), exact.recursion_af(j, 0, 0)) / (eigenvalues[j] - eigenvalues[i])\n",
+ " result -= np.dot(exact.D_af(j), exact.recursion_af(i, 0, 0)) / (eigenvalues[i] - eigenvalues[j])\n",
+ " return result\n",
+ " \n",
+ "def C_i20(i): \n",
+ " from numpy import zeros\n",
+ " result = zeros((transitions.nopen, transitions.nopen), dtype='float64')\n",
+ " for j in range(transitions.matrix.shape[0]):\n",
+ " if i == j: continue\n",
+ " result += ( np.dot(exact.D_af(i), exact.recursion_af(j, 1, 0)) \n",
+ " + np.dot(exact.D_af(j), exact.recursion_af(i, 1, 0)) ) / (eigenvalues[j] - eigenvalues[i])\n",
+ " result += ( np.dot(exact.D_af(i), exact.recursion_af(j, 1, 1)) \n",
+ " - np.dot(exact.D_af(j), exact.recursion_af(i, 1, 1)) ) / (eigenvalues[j] - eigenvalues[i])**2\n",
+ " return result\n",
+ "\n",
+ "def C_i21(i): \n",
+ " result = np.dot(exact.D_af(i), exact.recursion_af(i, 1, 0)) \n",
+ " for j in range(transitions.matrix.shape[0]):\n",
+ " if i == j: continue\n",
+ " result -= np.dot(exact.D_af(j), exact.recursion_af(i, 1, 1)) / (eigenvalues[i] - eigenvalues[j])\n",
+ " return result\n",
+ "\n",
+ "def C_i22(i): return np.dot(exact.D_af(i), exact.recursion_af(i, 1, 1)) * 0.5 \n",
+ "\n",
+ "print(np.all([np.all(abs(C_i10(i) - exact.recursion_af(i, 1, 0)) < 1e-8) for i in range(5)]))\n",
+ "print(np.all([np.all(abs(C_i20(i) - exact.recursion_af(i, 2, 0)) < 1e-8) for i in range(5)]))\n",
+ "print(np.all([np.all(abs(C_i21(i) - exact.recursion_af(i, 2, 1)) < 1e-8) for i in range(5)]))\n",
+ "print(np.all([np.all(abs(C_i22(i) - exact.recursion_af(i, 2, 2)) < 1e-8) for i in range(5)]))\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Try and compare exact and approx via plot. The following is for $^{A}R(t)$ and $^{F}R(t)$."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4XMXVuN8jWzYu6yL3KuOKtQJjE2wBXtmmN2NqAnyU\nGEwJwT9CCcUksZN8CeUjCTUkhGYCBBJCMb0aJLAw1QatXHHvFbzulnR+f8xdaSXvSiutyq583ue5\nj26ZcnZmdc/OmTNnRFUxDMMwjGQjrbEFMAzDMIxomIIyDMMwkhJTUIZhGEZSYgrKMAzDSEpMQRmG\nYRhJiSkowzAMIykxBWUYhmEkJaagDMMwjKTEFJTRJBGRgxtbBiMxxPFUAvntO5DimIIymhzei2lU\nHZbXV0R+kmAZg0XkaxH5QUSujTPPUhE5NpF6GwsRKRSR3ASLyQJ61LL+mN+BuuhPo2EwBZViiMiF\nIvK5iIREZLWIvC4ixzS2XA1BDV7YV6vqcxH5JojIFBG5RUQurqaO/dKq6gqgtYhkJSD+zcAHqtpe\nVR+MUm9KKKN45VTVbFXNS6Ceg4A1wA8i0rIWRVT4DlSSrS7602gAmje2AEb8iMgNuBfdVcA7wF7g\nJGA88EkjipY0iMhhwMqI63bAb1T1CO+6QETeUNXNUfJWlfZZ4C/ANbUULRP4Vy3zpgwi0kxVS+qg\nqB8BnYCDgG7Aiog6RgBTgfbAU16aYcCzqvpR5e9ADBLtT6MhUFU7UuAA2gEh4Owq0hwCzAS2At8C\n4yOeLQVuAuZ65fwD6Aq8AWzDKbz2ldLfCgSBzcBjQIsa1HWjV9dW3Iu5hfesB/ACsAH4Dphc6TNE\n5v3ey9sS9yIqAXZ48t4Uow1uB/wR16cDT0Vc/w04N0beKtMCjwJta9r+wPtAMbDLk31gpXxRP1si\n7RilTWvS97cAi71nhcCZcch5s1f+LqCZd+9YoL/3/TncS9vTkzm3Cnn7Awd559OAkVHSPAOcEXE9\nAZgT7TsQkeZ9oHm8/WlH4x+NLoAdcXaUGyntBdJiPG8OLPJeLs2Bcd5LZJD3fCkwC+jsvdzWA18A\nhwEtvH/eX0eUtxT4xnuhdAA+Bn5Xg7o+xf3y7QAUAVcC4tV5u/cS6+e9CE+oVO9+eSOejaumnV4G\nJOL6auD+iOs7gdti5K0yLTAZOLGW7T8TuKwKuff7bIm0Y5RyatL35wDdvPPzgO0R17Hk/Mr7rrSM\nuHesdz4Jp+haAW8Dd1XRDrk4RdwKN0L6D3BHlHRLgNbeeTpOWV8S7Tvg3esFvF/pXsz+tCM5DpuD\nSh06AZtUtTTG8xygjareparFqjoTeA24ICLNA6q6SVXXAvnAbFX9RlX3Ai8BwyuV+YCqrlHV74E/\nRJR1VBx13aeq6728rwKHA0cCnVX1D6paoqrLcL9iI/PFyhtGqmwlaKXe28ejI7A74nov0DZG3urS\nrgEGxcgbT/tXR7TPVpN2PL+KsuPue1X9r6qu987/g1O8I+OQc42q7qn8QFUfxSnQ2Thl+6tYQqpq\nnqpeoKq7VPUHVT1PVW+LTCMih+BG16NF5GrcSPcGVQ17/FX4DojICcCfgXUiclFEUVX1p5EE2BxU\n6rAZ6CwiaTGUVE/2t7svx/1yDLM+4nxXlOvKL+5Vlcrq6Z33qGFdO708mUAvEdni3Reco07lyfRo\neeOlWaXrEJARcd0KWBcjb3VpvwcGx8gbT/vXhkTaMVY5Vfa9iFwCXI8bmQG0wY2+qmJVNc8fBV7B\njYb3VZO2Oo4FZqjqOwAicgbQnfJ5qgrfAVV9V0QmAn9W1S8jHlXVn0YSYCOo1KEA2AOcGeP5GqBP\npXt9gdUJ1BlZXqZXRyJ1rQSWqGqGd3RU59U2Pk554tlds7jS9XdAl4jrTpR/jspUl7YVbv4lGom2\nf012Dk20HWMiIn2BR4BrvHI74uYhw6OmWHLGlF9E2gD34uYxp4lIhwTFHIf7fwiTgZu3ClP5OwBu\nDuzLSveq6k8jCTAFlSKo6jac59JDnit0KxFpLiKniMidOPPJThG52bs/Fjfpn4jn2M9FpJeIZABT\ngLDbbm3r+gwIefkOEpFmIuIXkR/FKc96Kr6IoqbxXohhPgJGRFyPwM25ICIDRUTiSeuRQezRV6Lt\nv47qP1uYRNuxKtoApcAmEUnzRh7ZEc/j6YPK3A98pqpX4hwz/l5b4bz+ysXNzYU5FNgsIuGRdoXv\ngOdOPs87jzSDVtWfRhJgCiqFUNU/AzfgbPgbcCaNa4CXPbPJeOBUYBPwIHCxqi4KZ69cXBxVPovz\n8FqMm4f4gydHTesKy1+Ke2kfjptE34DzKGsXp1x3AL8WkS2ey300PiJivkRVdwJ3i8ivROTXwP+p\n6gbv8avA8XGmBedUENWdv7ZtEsGdUT5bIu1YIUs115FlzwP+hFMA6wA/zkEmTLQ+iFaeQpn57UTK\n3blvAIaLSE3m5vDKOgz3HWyFc+QI8xhuDvAE77rCdwDYgltPdT7wYcT9Cv0pIm+IyK01lcuoP6Ti\nfHINM4s8hvtHWa+qh8VIcz9wCm4o/VNVnVPrCo0GQ0SWAper6geNLUtNEJGOOPfn2+NImwaM8Rwa\n4in7UVWdlKiMRv0S73fA+jP5SXQE9QTO/TkqInIKMEBVB+EWl/4twfoMo0pUdSvO3NMpjuTnUtFU\nFBMRORJ4NxHZjIYhnu+A9WdqkJCCUtWPcQsIYzEBt7gPVZ0NtBeRbonUaTQYtR9aNz734pRPdbyu\nqruqSyQizXBrep5PWDKjoYj5HbD+TB3q2828FxVdb1d799ZHT24kC6pa04nwpMGbo6l2Il5V4/Xg\n6oKb6DdShGq+A9afKULSrIMSkVT+xW4cAFR0+DNSHevP2qOqDdJ49e3Ft5qKa0N6U8W6kL5/HEbW\n8G0MG6Y884yyb1/jh9qo6pg6dWqjy3AgyJyqcpvMJndTk1m1YccRdaGghNjhZ2YAlwCISA7wvXoh\nVKJReEM+hV/6+OMf4e9/h0GD4MEHYedOCO0JUbCygNCeUB2IbBiGYSQ7CZn4RORZYCzQSURW4BaS\ntgBUVR9R1TdE5FQRWYxzM59YVXm+lj4ATj3VHZ9+CnfdBdPuCNH8ygCb04L4u/jJn5hfltYwDMNo\nmiSkoFT1wjjSxLV7aDRycuCll+BfHxdy0XtBSkuL+XZdEW99FeS8o3JqW2ydMXbs2MYWocakosyQ\nmnKbzA1HKsqdijI3NAkt1K1LRERjyRLaEyLwRICijUV0LMmi+JF8ckf5uPFGOOYYsLlOwzCMhkFE\n0AZykkgJBQVOSQU3OhNfWrGP6dPhz3+Gzp3hxhvhrLNgV0mIwg2FZHfNNhOgYRwg9OvXj+XLlze2\nGE2OzMxMli1btt99U1BxUlICM2bAPffAqg0hii8JsAGbpzKMAwnvhdnYYjQ5YrWrKaha8I+3Criq\nIBdNKyZN03nhtDzOOrLx56kMw6hfTEHVD8mgoJpMNPPzx2VzWA8/zdPS6VSaxeXj/ZxzDuTng313\nDcMwUo9Eo5mfjIt5lQY8pqp3VXreAXgcGIDbtfMyVS2KUVZCIyioOE8l+9w81f33Q9u28ItfwI9/\nDHuxeSrDaErYCKp+SIYRVK0VlLdVwULgONxuop8D56vq/Ig0dwMhVf29iAwBHlLV42OUl7CCikZp\nKbz1Ftx7L3yzIASX2Xoqw2hKmIKqH5JBQSVi4hsJLFLV5eo2a3sOF708kizgAwBVXQD0E5EuNCBp\naW7R7zvvwD1PFbJRgxSXFvPt2iL+/WGwIUUxDMOoV6ZPn04gEGhsMeqMRBRU5Ujlq7x7kcwFzgYQ\nkZFAX1w8vkZhQk42h3b3k56WTrfmWfx+sp+RI+Gf/4Q9expLKsMwjLpBVZtUENz6jmZ+J3CfiHwF\nfAt8DZTESjxt2rSy87Fjx9b5SmtfSx/5E/PL5qlaT/Hx5pvwwANw000waRL87GfQvovNUxmGUTes\nXbuWyZMnk5eXh8/n4/rrr+faa6/ltNNOY+jQodxzzz0AnH/++bRt25ZHH32UJUuWcMUVVzB37lzS\n0tI48cQT+etf/0q7du0AWLVqFddddx35+fmoKhdccAHXXHMNP/vZzyguLsbn85Gens6WLVsSlv/D\nDz/kww8/TLicWpFARNsc4K2I61uBW6rJsxRoG+OZNibz56tOnqzaoes2bX/LMG02rbke9vAw3bZ7\nW6PKZRhG1TT2u6MqSktL9YgjjtD//d//1eLiYl26dKkOGDBA33nnHV23bp1269ZNZ86cqU8//bQO\nGDBAd+zYoaqqixcv1vfee0/37dunmzZt0jFjxuj111+vqqolJSU6bNgwvfHGG3XXrl26Z88e/eST\nT1RV9cknn9RAIFAnssdqV+9+w0ROr3VGaAYsBjJxAWLnAEMrpWkPpHvnVwBPVlFeIm1ZZ7w7f5am\nTWuuTEP5dbpe/6cC3bq1saUyDCMWyfLuiMbs2bM1MzOzwr077rhDL7vsMlVVffHFF7VPnz7apUsX\nnTVrVsxyXn75ZR0xYoSqqs6aNUu7du2qJSUl+6Vragqq1nNQqloCXAu8AwSB51R1nohcJSJXesmG\nAoUiMg84CbiutvU1FKP6ZXNoNzdPNaBdFsu/8HPwwc789+WXjS2dYRi1QSTxozYsX76c1atXk5GR\nQUZGBh07duSOO+5gw4YNAJx++umUlJQwZMgQjjrqqLJ8GzZs4IILLqB379506NCBiy66iE2bNgHO\nvJeZmUlaWpNZxhqTRKOZvwUMqXTv7xHnn1Z+nuxUnqfytfSxfj089hicfTZ07+7mqU49M8R3IZun\nMoxUoLG80Pv06UP//v1ZsGBB1OdTpkwhKyuLpUuX8txzz3H++eeX3U9LSyMYDNK+fXteeeUVJk+e\nXFbmihUrKC0t3U9JNSUHCWhCkSTqEl9LHzm9c8oUT7duMGUKLFkCv/oVPPtCiJ6/CjD6sVyOfDhg\nmygahhGVkSNH4vP5uPvuu9m9ezclJSUEg0G++OIL8vLymD59Ov/85z958sknmTx5MmvXrgUgFArR\ntm1bfD4fq1ev5v/+7/8qlNmjRw9uvfVWdu7cyZ49e5g1axYA3bp1Y9WqVezbt69RPm9dYwqqBjRr\nBuPHw28fLkS6BimVYhZsKSJwTpCnn4ZduxpbQsMwkom0tDRee+015syZw8EHH0zXrl254oorWLt2\nLT/96U956KGH6N69O6NHj2bSpElMnOj2dJ06dSpffvklHTp0YPz48ZxzzjkVynz11VdZtGgRffv2\npU+fPvz73/8G4Nhjj8Xv99O9e3e6du3aKJ+5LmkywWIbksj9qYZ2zuLmzvn88zEfX3wBF10EV1wB\nfr9LZ+7qhlG/WCSJ+iEZIkmYgqolkXH/wspn6VI3V/X449B3UIg1JwVYW2JhlQyjPjEFVT+Ygoog\n1RRUVezbB3/6dwFTFpZv//HY6DwuPS7Hdv81jDrGFFT9kAwKKqE5KBE5WUTmi8hCEbklyvN2IjJD\nROaIyLci8tNE6ksV0tPh5+eWb//RRbKY+jM/w4e7qBV1sLjbMAyjyVPf0cxvA9qp6m0i0hlYAHRT\n1eIo5TWZEVSYSDNgm3QfM2c6E+Abb8App8Dll8ORx4Qo2mTzVIZRW2wEVT8kwwgqkXVQZdHMAUQk\nHM18fkQaBcJvXR+wOZpyaqqE3dXDHHecO7ZsgWefhRtuCzH/qAAlnYIM7ujns6tsnsowDCNMfUcz\nfxDIEpE1uMjmSR9JoiHIyIBrr4W/v1iIdg5SSjHzNxUx5sdBpk+H7dsbW0LDMIzGp76jmZ8EfK2q\nx4rIAOBdETlMVaO+gus7mnmykd01G39XP0UbizikSxY3ZPt5/p9u998zz4SJE2H0aNixz9zVDcNo\nHBozmnkic1A5wDRVPdm7vhUXRPCuiDSvAXeo6ife9fu4iOdfRCmvyc1BxUM0d/V16+CZZ+CJJ5xy\n2nVhgM0SxN/V3NUNozI2B1U/JMMcVCIKqhnO6eE4YC3wGXCBqs6LSPMQsEFVfysi3YAvgGGqup8f\n24GqoKpCFZ58v4BJH+dSKsVISTq3dMvjlv/JoUOHxpbOMJIDU1D1QzIoqPqOZv6/wNEi8g3wLnBz\nNOVkREcEzg2U7wKc2SaLoo/8ZGbCeefBq6+6NVeGYRhNEVuomwJUNgNu3Qr//rfbqn7hQvjJT+Ds\nC0K07F3Iod1snso4sLARFJSUlNCsWbM6LTOlR1BGw1E5unrHjnDVVfDxx/Dpp9Cuc4iTnw9wzKO5\nDLozwNdFFl3dMJKFu+66i4EDB9KuXTuys7N5+eWXAZg+fTqjR49m8uTJdOjQgaysLD744IOyfOPG\njWPKlCmMGjWK9u3bc9ZZZ/H9998Dbp+ptLQ0Hn/8cTIzMznuuOMAmDFjBtnZ2WRkZHDssccyf75b\n9bNkyRI6derEnDlzAFizZg1du3YlLy+vIZuixpiCSnH694fTLyuktHMQmhWzUYs47oIgI0fCvfeC\nF73fMA5YQntCFKwsqPW2OInmHzhwIJ988gnbtm1j6tSpXHzxxaxfvx6A2bNnM2jQIDZv3sy0adM4\n++yzy5QQULYVx7p162jWrFnZnlBh8vLymD9/Pm+//TaLFi3iwgsv5P7772fjxo2ccsopjB8/nuLi\nYvr378/dd9/NRRddxK5du5g4cSITJ04kNze3Vp+pwWiorXurO0jibZuTnW27t+mwh4dp+u/SddjD\nw3TL9m369tuql16q2qGD6vHHqz7+uOrKDdt01opZum33tsYW2TDqjKreHeH/jea/a67DHh5W4+9+\novmjcfjhh+uMGTP0ySef1F69elV4NnLkSH366adVVXXs2LF62223lT0rKirSFi1aaGlpqS5btkzT\n0tJ02bJlZc9///vf609+8pOy69LSUu3Vq5d+9NFHZfcmTJighx56qA4bNkz37t1bpZyx2pVU2PLd\nSB7CuwDnTcwjf2I+Hdv4OPFEePJJWLMGrrwS/vtaiMxpzgx46F8CrP/ezIBG06dwQyHBjUGKS4sp\n2lhEcGOwQfMDPPXUUwwfPpyOHTvSsWNHgsFg2fbtvXpVjG2QmZnJmjVryq779OlT4dm+ffvK8gL0\n7t277HzNmjVkZmaWXYsIffr0YfXq1WX3Jk2aRDAYZPLkyaSnp9f4szQ0pqCaCJXnqcK0auU8/m6/\nt5C07kE0rZgVO4sYkBPkwgthxgzYs6eRhDaMeia7azb+Ls4LNqtLFv4u/gbNv2LFCq688kr++te/\nsnXrVrZu3Yrf7y9zPohUHuH0PXv2LLteubI8WM/y5ctp0aIFnTt3LrsXucV7z549Wb58eYXyVq5c\nWaYEd+zYwS9+8Qsuv/xypk2bVsGUmKzUdzTzm0TkaxH5yotmXiwitoKnEYj8RzusZxZz3/UzejT8\n6U/Qo4eLWvHWW7Ble2L2dsNIJipbF2rq4Zpo/h07dpCWlkbnzp0pLS3liSeeoLCwsOz5+vXreeCB\nByguLuY///kP8+fP59RTTy17/vTTTzN//nx27tzJ1KlTOe+888qUUljJhfnxj3/M66+/zsyZMyku\nLuaee+7hoIMO4uijjwbg//2//8fIkSN55JFHOPXUU7nqqqtq9FkahdraBnHKbTGQCaQDc4BDqkh/\nOvBeFc+rtIcaibNt9zYtWFmwnx191SrVv/xF9UdHb9NmPx+maVOba/+73VyWYSQ7yf7u+NWvfqUZ\nGRnapUsXvfHGG3Xs2LH62GOP6ZNPPqmjR4/WyZMna/v27XXIkCH63nvvleUbO3asTpkyRUeOHKnt\n27fXCRMm6ObNm1VVy+agSkpKKtT18ssva1ZWlnbo0EHHjh2r8+bNU1XVV155RXv37q1bt25VVdXt\n27froEGD9Nlnn40pd6x2pQHnoBINdTRVVU/xrvcLdVQp/TPAB6r6WIznWltZjLqhYGUBuU/kUqzF\nUJJOh5fy+PHROZx7LowbB83rO3KjYdSCVF0HNX36dB577LGYrt7jxo3j4osv5rLLLmtgyRypvg4q\nnmjmAIhIK+Bk4L8J1GfUM+Hgtelp6QzrmUXef/0MHAi33+7MgFdcAe+8Y2ZAwzAahob6TTwe+FhV\nq5yVO9CimScbYXt7ZNSKQ38Jv/wlLFsGL7wAU6aFmDMigHYOktnaz+c/y6eTzyJXGEZdE+kA0Zg0\n2WjmEWlfBP6tqs9VUZ6Z+FKASDOglKTT9oU8zhiRwznnwEknQevWjS2hcaCRqia+ZCfVTXyfAwNF\nJFNEWgDnAzMqJxKR9sAY4JUE6jKShEgz4GE9s/jyTT9HHw0PPeTMgOee63YL3rYt8RX4hmEc2CQU\nLFZETgbuwym6x1T1ThG5CjeSesRLcylwkqpeWE1ZNoJKEaLtYQWwaZOLsP7ii/DhrBByeYAdbYIc\n0snPp1fYPlZG/WAjqPohGUZQFs3cqBfem1/Ayc/nUoLzCDzsyzwuHpfDhAkwaFBjS2c0JUxB1Q/J\noKAskoRRL4w6OJvsbs4UeGj3LKZe4+e772DMGPD7nWfg55/Dtt1mBjQMIzo2gjLqjWimwNJSp5he\nftnFB1w6NkBpJ+cROPuqfLq0NzOgUTP69eu3X4gfI3EyMzNZtmzZfvfNxGccEFT2CGz17zxOysph\n/Hg47TTo2tWlC+0JUbihkOyuthmjYTQ2ZuIzDggqewQGZ/o56yx4800YPBiOPhqm/THEkQ8HyH0y\nl8ATATMFGsYBhI2gjEYllkfg3r3w0Ufw9zcK+K8vF5oVk6bp3OPP42fjczjooEYU2jAOYFLGxOe5\nmd9LuZt5tEW6Y4G/4ALKblTVcTHKMgVl7EdoT4jRTwQo2lBEZ7I4eGY+hV/6GDMGTj8dTj0V+vQx\nM6BhNBQpoaBEJA1YCBwHrMEt3D1fVedHpGkPzAJOVNXVItJZVTfFKM8UlBGVyqOsLVvg7bfh9dfd\nFiHdM0NsPD3AlmZBsrr4+fgyW3NlGPVFqiioaqOZi8jPgB6q+ps4yjMFZdSYkhJ49K0Crvk8l1Jx\na66OXZ7HRWNzOPlkF93CMIy6I1WcJOKJZj4YyBCRmSLyuYhcnEB9hrEfzZrBhcdnc2j38l1Pz8n1\n8+abkJUFw4fDlCmQnw9bd9iaK8NIJeo7mnlzYARwLNAGKBCRAlVdHC2xRTM3akO0KOzXXA7FxfDp\np/DGG/DzG0IER7oo7L1a+HnrJ/n4B5oZ0DCqo8lGM/e2gT9IVX/rXT8KvKmq++0LZSY+oz4pWFlA\n7pO5FJcWk1aaTrsX8+i2L4eTTnJR2MeMgTZtzNnCMKojVUx88UQzfwUYLSLNRKQ1MAqYl0CdhlEr\nsrtm4+/ihV7qkcWyz/w88wx07w533+3+jjkxxJC7AuQ+kctoW3NlGI1OQ0QzvwmYCJQA/1DVB2KU\nZSMoo16JteYKIBSCv71WwK0Lyp0tjl+ZxwWBHE44wbmyG4aRIl58dY0pKKOxCe0JEXgiQNHGIga2\nz+LnrfLJf9/H++9DRgaccII7jjg6xMrdZgY0DkxMQRlGIxErwO3cufDuu/DmByHyBrgAt13Fz2PH\n5HN8rs8iWxgHDKagDCNJqeBsoekc8mkeKz7JYdQoOPZYOO44OOII2FVizhZG06QhFVR9u5kbRpMi\n7GxRtLGIrC5Z5L/ip3Q35OXBBx/AFVfA8rUhuCzA9tZBBrbz89nV+bRvZUrKMGqKjaAMo4ZU5WwB\n8Po3BUx4qXw34Xb/zePYwTmMGwfjxrkNG9PSzKXdSE3MxGcYKUyks0VWlyyePymfLwt8zJwJM2fC\nDz/A0eNCfHlYgPWlQbK6+vl4osUPNFKDlFFQ1UUzF5ExuLVQS7xbL6rq/8YoyxSU0WSoapS1ciX8\n460C/rC63KV9zJI8zjoyhzFj4NBDXQincDk2yjKSiZRQUHFGMx8D3KiqZ8RRniko44Chskv7jRn5\nfJbvIy8P1q2D0aNhVG6Ip5oFWLrDKbp8G2UZSUCqKKh4opmPAW5S1fFxlGcKyjigiDXKWr/eOV08\nP6t8s0YpSefyZnlcmOs8Blu3bkTBjQOaVAl1FE80c4CjRGSOiLwuIlkJ1GcYTQpfSx85vXP2GxV1\n6wbnnQdP3JnNsJ4uPFNm2yza7PRz++3QtSvk5MAvfwkzZsCytRal3Wia1Leb+ZdAX1XdKSKnAC/j\ntuCIikUzN4xyokVpB9i5Ez77zG0hct/DIT582y0czijx84eB+Rwf8DFgAEiD/MY1mjpNNpp5lDxL\ngSNUdUuUZ2biM4waErlwuBnpjF2ax4L3c9i3D44+Go45xh2D/CEWfm/OFkbipMpC3bJo5sBaXDTz\nCyITiEg3VV3vnY/EKcT9lJNhGLWj8sLhl27142sJK1bAJ5+4Y/pzIQpHBtBOQbrg575h+Rw72ke3\nbo0tvWFUTb1GMxeRnwM/A/YBu4DrVXV2jLJsBGUYtaC6hcMVwjORzsjCPOa/l0NGBhx1VPlx8JAQ\n87fYKMuompTw4qtrTEEZRv1QeeFw/sR82qT7WLAAZs2CggL4+PMQi0YHKO0cpIu6UdbYo3306NHY\n0hvJhikowzDqlBqPsoJ5LHw/h7ZtYdQo5zU4ahSMGAHFabZ4+EDGFJRhGA1KtFFW2xY+Fi+G2bPh\n00/d3+DiEEwMsKddkF4t/Pz3tHxGZPvKIl8YTR9TUIZhNDjVjbIAPlxcwAnP5lKsxaSVptPznTy2\nFeUwYgSMHFl+tO8SIrjRRllNEVNQhmEkJdFGWnu3+/jiC7c267PP4NOvQ3x/VoCSjCBd0/w8MDyf\n3FH7ew1anMHUxBSUYRhJS3UjrVkrChjzpDfK0nSO+CaPRTNz8PngRz9yR9bwEL/6LsCCrRZnMNVI\nlVBHiMjJIjJfRBaKyC1VpDtSRPaJyNmJ1GcYRuMTK0RTmEO7ZePv6kI0Hdo9i/f/5WfLFrfVyE9+\nAlu3wu/+VkhwQ5Di0mK+WVvEL/8vyNtvw6ZNFcsK7bEwTgcy9RrNPCLdu7h1UI+r6osxyrMRlGE0\nEaobZYX2hBjtmQp7pmcxYVM+337p46uvoH17OOIIyB4R4pmWAVbusVFWMpESJr54opl7968D9gJH\nAq+ZgjKcOcSJAAAgAElEQVQMA6IrsdJSWLIEvvwSXp1TwLMtctE0t2dWzvw8jh2Uw/DhMHw49O/v\n4g3aXFbDkioK6hzgJFW90ru+CBipqv8vIk1P4BlVHSciTwCvmoIyDCMeKu+Z9ete+cz/xsfXX8PX\nX0MoBP4RIRYeE2BL8yAD2/mZNSmfTj5TUvVJqsTii4d7gci5qSo/lEUzNwwjTNRo7ueUP9+4EZ7N\nL+SGb4OUUszCrUX0PDzIUF8Ohx8Ohx8Ow4a5I72NjbJqS5ONZi4i4a3eBegM7ACuVNUZUcqzEZRh\nGDWistv72+fns2KRjzlzYO5c3N95Ifb8T4Diji5Y7t2H5DNquI9Bg6iwwNhMhfGRKia+ZsACnJPE\nWuAz4AJVnRcjvZn4DMOoc6pzyPhkRQFjI9zeA4vzWPVpDmvXQlYWHHYYDD40xD+KAyzfZQ4Z1ZES\nJj5VLRGRa4F3KI9mPi8ymnnlLAnIaRiGEZWw23ssDvPc3sOjrFdvc1uShEJQWAjffAPvFBXyXfsg\nNCtm7poijrsgSODgHA49FLKznSJr3dpGWQ2NLdQ1DKPJE4/be6RDxm/75fNdkY9vv3VKbOFC6HVw\niI1nBNh+UJA+B/n5zyn5HJ7lIz19/7KashJLCRNfXWMKyjCMxqQqJbZvH/y7oIBLZ+ZSQjFSmk6v\nd/LYNCeHgQPdKMvvhwFDQ/xuVYDF25quqdAUlGEYRpIRLQ5h81If8+e7UVYwCPlLC5g1JBeaubVb\nJ67OI7d/Dn6/MxP27w/Nm6f2KMsUlGEYRhJSE1NhvzZZ3JiRz9L5PoJBKCqCNWug/9AQq08KEDoo\nSJ+Wfp4/yZkKW7bcv6xkVGKmoAzDMFKUqpTYzp3OVDjp43JTYd/381j/ZQ59+sAhh8DQodBvSIg/\nfx9g2Y7kMxWagjIMw2iiRDMVthQf330H8+a5I29pAe/0LDcVDp+bx6ieORxyCAwZ4hRZ376wY1/D\nj7KaTDRzETlDROaKyNci8pmIHJNIfclGY62uToRUlBlSU26TueFIJbnDETLuPeTespFRixZu5HT2\n2XD77fDCQ9kM6+kiwg/tnMXUn/nJyoJFi+CeeyAQgDYZIbreGuCYR3MZdEeAfzwV4vPP4YcfKtaX\nyhHha62gvCjlDwInAX7gAhE5pFKy91R1mKoOBy4HHq21pElIKv1ThElFmSE15TaZG45Uk9vX0seG\n4IaYo56wEsubmMfsq/KZcLKPyZPhwQfhvfdg5Up4dXYhxR2DaFoxGyni3zODXHUV9OoF3bpBbi5c\nckWIIXcFCDyey5EPB9i0LbWUVCKx+EYCi1R1OYCIPAdMAMq221DVnRHp2wKlCdRnGIZxwFDdAuRR\n/SouQH7RW4CsCmvXwoIF8FZhIes3BymVYhZscbEKe2kOgwbB4MEwaBBl5516hJi/JbmcMhJRUL2A\nlRHXq3BKqwIiciZwB9AFOC2B+gzDMAyPqMF0cVuQ9Ozpjh8dnc3bT3hKrFsWH3zjZ8s6t/B40SJ3\nvP46LFgaYuUJAZr1SC6njHrdbqNS+tG4/aNOiPHcPCQMwzBSgKSPxQesBvpGXPf27kVFVT8Wkf4i\nkqGqW6I8b5APbBiGYaQGiXjxfQ4MFJFMEWkBnA9U2EZDRAZEnI8AWkRTToZhGIZRmfqOZn6OiFyC\n2/J9F/DjuhDaMAzDaPokzUJdwzAMw6iAqtbqAE7GuZQvBG6JkeZ+YBEwBzi8urxAR9yIbAHwNtA+\n4tltXlnzgBMj7o8AvvHKujeF5J7plfU18BXQORlkBjKAD4AQcH+lOpK2rauRO1nb+njgC2AuzmQ+\nrjZtnUQyx93OjSD3kZ5c4ePMFGjrqmROyu90xPO+uP/FG2r7/lDV2ikonElvMZAJpHsf6pBKaU4B\nXvfORwGfVpcXuAu42Tu/BbjTO8/yOqI50M/LHx79zQaO9M7fwHkWpoLcM4HhSdjWrYGjgSvZ/0Wf\nzG1dldzJ2tbDgO7euR9YVdO2TjKZ42rnRpL7ICDNO+8OrI+4Tta2rkrmpPxOR5T5H+B5KiqouN8f\n4aO2ThJli3RVdR8QXqQbyQTgKQBVnQ20F5Fu1eSdAEz3zqcDZ3rnZwDPqWqxqi7DafqRItId8Knq\n5166pyLyJK3cEXXF0/4NKrOq7lTVWcCeyAqSva1jyR1BMrb1XFVd550HgYNEJL2GbZ0UMkfUFe87\npaHl3q2q4UABrfCCBiR5W0eVOYKk+04DiMgEYAkQjLhX0/dH3B8wGtEW6faKM01Vebup6noA75+g\na4yyVkeUtaoaOZJR7jBPishXIvKrJJK5KjmSua2rI6nbWkTOBb7yXgQ1aetkkTlMPO3cKHKLyEgR\nKcSZJ6/2Xv5J3dYxZA6TTN/pbp68bYGbgd8CkUuHavr+ABIMFltDarPOSetcippTX3JfqKqHAgEg\n4C10riusrSuS1G0tIn5ctJUr60Si6qkvmeuznSFBuVX1M1XNxs3tTPGWx9Q39SVzsn2nw4pzKvAX\nrRjmrtbUVkHFs0h3NdAnSpqq8q7zhpbhIeGGOMqKdj/Z5UZV13p/dwDPEiVMVCPJHItkb+uYJHNb\ni0hv4EXgYs8MXFUdySxzTdq5UeSOkHMBsB3IrqKOZJY5mb/To4C7RWQJ8AucUr2mijqqprpJqmgH\n0IzyybMWuMmzoZXSnEr5xFsO5RNvMfPiJt5u0f0nC8POBi2Ag6nobPAprnMEN/F2crLL7ZXVyUuT\njptQvDIZZI4o81LggUr3kratY8mdzG0NdPDSnRlFlrjaOllkrkk7N5Lc/YBm3nkmzsSUkeRtHVXm\nmrR1Q8tcqdypVHSSiPv9UZanugRVfMFOxrkYLgJu9e5dFdlQuO04FuPspyOqyuvdzwDe8569A3SI\neHabV1Zld+0jgG+9su5LBblxHmdfeB3+LfAXPIWbJDIvBTYB24AVlHvuJHtb7yd3Mrc1cDvOFfcr\nKrkL16Stk0HmmrZzI8h9EVDoyfsFML4275BkkLmmbd2QMleqt7KCqtH7Q1Vtoa5hGIaRnDSkk4Rh\nGIZhxI0pKMMwDCMpMQVlGIZhJCWmoAzDMIykxBSUYRiGkZSYgjIMwzCSElNQhmEYRlJiCsowDMNI\nSkxBGYZhGEmJKSjDMAwjKTEFZRiGYSQlpqAMwzCMpKR5YwtgGPWBiBysqksbWw6j5ohIBvA4kIfb\nOvxHwGxVfbUGZVj/NwFsBGU0OUTkYNzGaXVVXl8R+UmCZQwWka9F5AcRuTbOPEtF5NhE6m0sRKRQ\nRHJrk1dVtwDbVfXPuC0l7sRtAxFv3TH7vy760mg4TEGlGCJyoYh8LiIhEVktIq+LyDGNLVdDUIMX\n9tWq+lylvMNE5J446pggIlNE5BYRuRhAVVcArUUkq3aSA3Az8IGqtlfVB6PUmxLKKF45VTVbVfNq\nWUca0ElELsVtbb7d64N42a//I+Sqi740Gggz8aUQInID7kV3FW6TsL3AScB44JNGFC1pEJHDgJWV\n7t0AjAa+ryZvO+A3qnqEd10gIm+o6mbcttp/Aa6ppWiZwL9qmTdlEJFmqlqSYDHDgXdVdXrlH18i\nMgK3EV574CngIGAY8KyqfhSt/6OQaF8aDUU8uxra0fgH0A63k+nZVaQ5BJgJbMXtXBm5a+hS4Cac\nqSQE/APoitt6eRtO4bWvlP5WIAhsBh4DWtSgrhu9urbiXswtvGc9gBeADcB3wORKnyEy7/de3pa4\nl1EJsMOT96YYbXA74I9y/1Lg8Wra+HTgqYjrvwHnRlw/CrStafsD7wPFwC5P9oGV8kX9bIm0Y5Q2\nrUnf34LbXXUbbkfXM+OQ82av/F24rcKXAscC/b3vz+Fe2p6ezLlVyHt9Nc+fAc6IuJ4AzKmm/98H\nmsfbl3Ykx9HoAtgRZ0e5kdJeIC3G8+a4rZRv8c7HeS+RQd7zpcAs3PbcPYD1uG2jDwNaeP/Av44o\nbynwjfdC6QB8DPyuBnV9CnTz8hYBVwLi1Xm79xLr570IT6hU7355I56Nq6adXibK9tfEp6CuBu6P\nuL4TuC3iejJwYi3bfyZwWRV17/fZEmnHKOXUpO/PAbp55+cB2yOuY8n5lfddaRlx71jvfBJO0bUC\n3gbuqqIdhnuyTqoizRKgtXeejlPUl8Tqf6AX8H6lezH70o7kOWwOKnXoBGxS1dIYz3OANqp6l6oW\nq+pM4DXggog0D6jqJlVdC+TjPKO+UdW9wEu4lwOV0q9R1e+BP0SUdVQcdd2nquu9vK8ChwNHAp1V\n9Q+qWqKqy3C/ZCPzxcobRqpsJWil3huoFnQEdkdc7wXaRlyvAQbFyBtP+1dHtM9Wk3Y8v4qy4+57\nVf2vqq73zv+DU7wj45BzjaruqfxAVR/FKdDZOGX7q1hCqurXqnq0l2c/ROQQ3Mh6tIhcjRvl3qCq\nT3lJKvS/iJwA/BlYJyIXRRRVVV8aSYLNQaUOm4HOIpIWQ0n1ZH/b+3Lcr8cw6yPOd0W5jnwZA6yq\nVFZP77xHDeva6eXJBHqJyBbvvuAcdSpPpkfLGy/NapC2MiEgI+K6FbAu4vp7YHCMvPG0f21IpB1j\nlVNl34vIJTgzWz/vVhvc6KsqVlXz/FHgFdxoeF81aaviWGCGqr4DICJnAN2BsBNFhf5X1XdFZCLw\nZ1X9MuJRVX1pJAk2gkodCoA9wJkxnq8B+lS61xdYnUCdkeVlenUkUtdKYImqZnhHR3VebePjlCee\nkVFxnGVF4zugS8R1J8o/MziFtSNG3kTbvyajvkTbMSYi0hd4BLjGK7cjbh4yPGqKJWdM+UWkDXAv\nbh5zmoh0SEDEcbj/hTAZuHmuMNH6//BKygmq7ksjSTAFlSKo6jac99JDnit0KxFpLiKniMidOPPJ\nThG52bs/Fjfpn4jn2M9FpJe3cHIKEHbdrW1dnwEhL99BItJMRPwi8qM45VlPxZdR1DTeCzEaFUxT\nIjJQRCLvfQSMiLgegZufCZNBxRFVJIm2/zqq/2xhEm3HqmgDlAKbRCTNG31kRzyPpw8qcz/wmape\niXPM+HttBPP6Khc3LxfmUGCziIRH2RX633Mnn+edR5pAq+pLI0mIS0GJyMkiMl9EForILVGeDxGR\nWSKy23PpjXx2vbdo7xsReUZEWtSV8Aca6hYu3oCz4W/AmTWuAV72zCbjgVOBTcCDwMWquiicvXJx\ncVT5LM7DazFuHuIPnhw1rSssfynupX04bhJ9A86jrF2cct0B/FpEtlT+nkXwERXnS/AWxl4OjBWR\nqSLi8x69ChwfId9O4G4R+ZWI/Br4P1XdEFHUYcRw569tm0RwZ5TPlkg7VshSzXVk2fOAP+GUwDrA\nj3OQCROtD6KVp1BmgjuRcpfuG4DhIlKTubnw8oE/4EY+50Q8egw3/3eCd125/7cAP3jK6cOI+xX6\nUkTeEJFbayKTUf9IdfPJ3qK5hcBxODPG58D5qjo/Ik1nnAnoTGCr9yJFRHrivtyHqOpeEXkeeD1i\nQtNIUkRkKXC5qn7Q2LLUBBHpiHN/vj2OtGnAGM+hIZ6yH1XVSYnKaNQf8fa/9WVqEM8IaiSwSFWX\ne78Sn8OtOyjD8w76kuj232ZAGxFpDrSmok3fMOoUVd2KM/l0iiP5uVQ0F8VERI4E3k1ENqP+iaf/\nrS9Th3gUVC8qeietIk7PJFVdgzMXrMBNFn+vqu/VVEijUaitq3YycC9O+VTH66q6q7pEItIMt6bn\n+YQlMxqCmP1vfZla1KuThOetMwFn/usJtBWRC+uzTqNuUNX+qWbeC6Oqpapa7US8qsbrxdUFN9Fv\npADV9L/1ZQoRzzqo1Th32TC9id919nicO+wWABF5ETgaN/leARFJ5V/sxgFARYc/I5WxvkwMVW2Q\nBoxnBPU5MFBEMj0PvPOBGVWkjxR8BZDjucIKztFiXqyMdRUeo6GOqVOnNroMB4LMqSq3yWxyNzWZ\nVRt2HFHtCEpVSzw33XdwCu0xVZ0nIle5x/qIiHTDxfbyAaUich2QpaqficgLwNfAPu/vI/X1YQzD\nMIymQ1yhjlT1LWBIpXt/jzhfz/6r6MPPfgv8NgEZDcMwjAMQiySRAGPHjm1sEWpMKsoMqSm3ydxw\npKLcqShzQ1PtQt2GQkQ0WWQxDMMwoiMiaBI5SSQa6qi9iPxHROaJSFBERtWV8EZyE9oTomBlAaE9\noXpPYxhG06PaOSgvHMyDRIQ6EpFXNCLUEW4riMlEj7R9H/CGqp4XEU3CSGFCe0IUbigku2s2vpYu\nrF1pKWzfDqEQbNsG67aGmDQrwPIdQfq28nPH4Hxa4qOkhLJj+74Qv18VYM2+IL1b+rlzcD7tW/lo\n0QLS06FFC9grIa6YFWBJKMjgDD8zL8qnS3sflb2Eo8kUj9yGYSQv8ThJlIU6AhCRcKijMgWlqptw\n0Y9Pj8woIu2AgKr+1EtXjNtl1EhSwi/xoZ2y2b3Nx5o1sGYNrF3r/i5bG+LF9gG2tQzScpufDi/l\ns2OLjx07oE0b8Pnckda3kCVHByGtmGU7irj/X0E6786hWTPKji1tClnVO4imFbNiVxEP/SdI2+9z\n2LsX9u6Ffftga5tCFh4ThGbFFG0ooveIIKUrcvD5oG1bV1frDiHmHxNgZ+sgHYv9XFqaT48MHxkZ\n0KkTZGTAQe1CTMwPsPD7IP4ufvIn5kdVUqbEDCN5iEdBRQt1NDJG2socjFNcTwDDcK7o12kc4WWM\nuqfyy1cVVq+G+fNh3jyYOz/Ec60D7GgVhI1+Os3Ip3cXHz17Qo8e0LMndBpayI7vg0AxJZ2KeOTl\nIGMH5NC2LaSlRdaVTeAJP0Ubi8jqlsVbU/z4WlaWp2KaN+JIkz/Pz0Fp5aO17dth1opCrp4dRCnm\nhxZF7GoeZP36HObNgy1bYPNmWCWFLBvrFN3cNUUcdnyQfs1z6NYNunWD7t2hXZcQf9oSYOVuN1qb\ndbkb0VXXjoZh1A/1vaNuc9yeOj9X1S9E5F7gVty+Rvsxbdq0svOxY8eal0sdsnZLiNGPBVi2M0j7\nPX4OnpnPoqCP1q1h6FA45BDwDSpkd8gpn/SeRbw2O0hO75wK5YT2ZPNeWGF0yWJc1v5KBcDX0kf+\nxHyCG92IJdqLPJE0HTu6A6DPgGweXFYu090Tq1Z0gzpl8fj9frZvgfXr3bFuHeQvK2RZdzeiK9pQ\nROesID1Lc+jVi7KjU88Qj5Y4s+TADn4+uSyfjLamxIymy4cffsiHH37YKHXHs91GDjBNVU/2rm/F\nLdC9K0raqUBIy7fb6AYUqGp/73o0cItG2fnTvPgSI/KF2LaFj5Ur4ZNPYNYs97coVMCeC3KhWTHN\nSOevR+Zx3lE5ZS/5cBmBJwJlL/qqzGBVKZXGIB6ZqktT+fO/d2E+oc0+Vq+m7Ph8XQHPt8pF04qh\nJJ1mT+XRvTiHvn0pO7r2CfHQzgCr9gQ5pJOfWZPMnGg0HRrSiy8eBdUMWIBzkliL283zAnUbm1VO\nOxXYrqp/irj3EXCFqi70nrdW1WiegKagakloT4iRf3PzK77dflo/l0/JTh9HHw3HHOOOQf4Qxz+b\nmsqnIampEpt5sVNiK1ZQdny2toCXO3hKrDgd33/zGHhQDgcfDP36wcEHOyX2m6UBvgtVPSdmGMlG\nUikocG7mOG+8cKijO6sKdQRsx4U62i4iw4BHgXRgCTBRVX+IUocpqBqgCl98AS+/DM/kFbB8XPno\n6F8n5XHuqJyonm4HsvKpK2qixIZ2yeLl8flsWuNj6VJYtswdX20sYPZQ12eUpJP9eR6Hd86hf3/o\n3x8GDHB/22aECG60UZaRPCSdgmoITEHFJmwKGtIxm69n+3jpJXjlFWjdGs46C04cH+L6bwPMq2Z0\nZDQcNVFigzpk8efsfNYu97FkCSxZAt99B4tXhth8RgDtHKTdHj+XFOeTNdDHgAEwcKAzJzZvbqZC\no2ExBWWUsW13iOEPBFi6PUjaZj/Dvszn3DN8nHmmc24IY6Oj1KO6PitYWUDuk7kUlxbTnHSubJnH\nviU5LF7sFNi6ddBnQIgNpwfY0TpI92Z+7h+ez7BDfPTr55RXZF2mxIy6wBSUwQ8/wFNPwT3PFbDi\nOGcKap6WTv7EvP0864ymSXVOK7t3w0ufF3DxB7mUUEyapnPEN3ls+CqHdevcCGvQIMgcFGJG5wDr\nSoIM6uinYFI+HVqbkjJqR9IpKG8O6l7K56DuqvR8CPAEzqV8StiLL+J5Gm6OapWqnhGjDlNQQGEh\nPPQQPP88nHACXHZ1iJsXmPnuQKWmThvh78fu3c5UuGgRvDu/gId35VIqbr6rxTN5DGqVw6BBMHiw\nOwYNgp79QmygkEO72SjLiE1SKShPuSwkItQRcH5kqCMR6Yzb1v1MYGsUBXU9cATQzhRURUJ7QsxZ\nU8jS2dk8/jcfCxfCVVfBFVe4hbHhNGa+M2JRUyX21k/yWb/Cx6JFsHChO+YvCfHFYQFKMoK02u7n\ntPX5+Af5GDKkXIG1a1denpkLD1ySTUHlAFNV9RTvOu51UN693rjR1R+AG0xBlbNpW4hh97lFn212\n+nnoiHwuPNdHenpjS2Y0NWo03yXpTOmRR+mKHBYscAps0SKnoAZkhZiXE+D7Fi7G4gun5nPYkP2/\ns6bEmi4NqaDqO9QRwF+AXwLta5CnSVNa6kx4N/ylkPWnuPA7e9sXMSQQJD3d5peMusfX0lfl3GV2\n12z8Xcqjcdx0ScVoHKWlLhbjS18U8ou5QUopZvmOIs64PMjmuTlkZrqR1pAh0HdgiPu3B1i+K0hW\nFz8fm1naqCX1GupIRE4D1qvqHBEZC1SpdQ+EUEcffAA33+zi1j1+Rza3LSp/Kfi7+BtbPOMApbqw\nU2lp0Ls3/LRLNo+ti4iNmOenBc6rcOFCWLAA3p1byHdd3A+vb9YUMfL0ICO65jBkCGUmw8GDobS5\njbJSgaYc6uiPwEVAMdAKt5D3RVW9JEreJm3i+/ZbuOUW9w98xx1w3nkgYvNLRupRkzmvwR2zuO/w\nfFZ95ytTYAsWwKIVIUouDVDSMUhGiZ9fdnamwiFDIDPTRbsPl2VKLLlItjmohEIdRTwbA9x4IM1B\nhfaE+KCwkBf+ms3br/q4/Xa4+mpoGSW4qmE0JapTYh8vL2Dc9FyK1UU/OXNrHj8Ec1i4EDZscFE0\n+g8NMdsfYHNakP5t/bx7YT79elhMw8YmqeagVLVERK4F3qHczXxeVaGOROQ6vFBH9Sl8MrN1R4is\ne9zak669/XwVdFtXGMaBQHVzXsO6Z+PvWm7efuLW8jmvnTudU8Zrcwp5Y5mb71r8QxHZ44K03JhT\nZiYcMsQtVP79GrehpcU0bHrYQt16YMkSOPPaAgqPdAFD09PSybMFtoZRgZq6x+f9NJ/d23xlZsKF\nC6FgVQEfDyyPaTgymMeoXjll81xDhkCfPrBjn42y6oqkMvE1FE1BQam66A833QTX3xri+Ta2wNYw\nEqEmSmxAuyx+3z+flYt9Zeu7FiyAzdtD6MQAe9sF6YKfaZkuHNTgwW7H5XBQZTMVxocpqBRk82Y3\nvzR/PjzzDBx2mDlAGEZDUN3/2fsLCzj5OTfflUY6J67KY+u3bo2XiBtpHTwkxMz+ATYRZEA7Px9e\nmk+PDJvvikbSKajahjryFuk+BXTDbcPxD1W9P0YdKaug3n0XJk6EH/8Y/vhHOOigxpbIMIwwscJB\nqboflgsXwhvfFnDH2vJwUC2fzSNjZ05ZFI3Bg6F3/xC/XWl7eCWVgkok1JGIdAe6e+ug2gJfAhMi\n80aUkVIKKrQnxJerCvnPg9nMeMHHE0/A8cc3tlSGYUSjpvNdH12az7ZN5abCRYtg9uoCZg0pn+86\nsjCPI3uUxzQcNMhtSLm7tGmPspJNQSUU6qjS85eBB1T1/SjPUkZBhfaE+NHDARZuCdJ+r5+5v8gn\ns3vT+yIaxoFEbea7Vi9xMQ3Dx+pNIZgYYF+HIJ1K/dzSNZ/sQT4XVT6zfAuUVDYVJpWbOYmHOgJA\nRPoBhwOza5o32XjyzUIWbnEr5Xe2KWJtcZBMzEPPMFKZ6lzjq4u2AfDRkkKOfzqIajFb0oqYtSjI\n2zNyWLTI7d+VmQn9Bof46vAAW5oHyWzt56Xx+fgH+irs3wWprcTqinoNdRTGM++9AFxX1dqoVAh1\n9K9/we9+mc2AX/hZsctCFBnGgUR1SmxEr4rru6ZHrO/avRuWLoVX5xTy3kK3vmtZqIiTLw6y5Zuc\nsv27Bg6E3gNC/G1PgJW7gwzt4ueTyxpvvqvJhjry7jUHXgPeVNX7qqgn6U18f/oT3HcfvPGG2wTO\nPPQMw6hMbfbwaoGPpUth8WJnKvx4WQEvdXDrKClOp/vbeWS3z2HgQBgwwCmxgQOhS+8QS0INO8pK\ntjmohEIdichTwCZVvaGaepJWQZWWurVNb78Nb73lFv4ZhmHUlpoosaGds5g+Np91y30sXuwC8y5e\nDAuXh1g0OoB2dtv1nLkln0P6+xgwgLIjIwO2761bU2FSKSgoczO/j3I38zurCnUEbAeygGFAHvAt\noN4xRVXfilJHUiqoPXvg0kvdVgOvvAIdOza2RIZhHAjUdA+vmzrnwcocvvuuXInRIsS+iwPs9gXp\njJ/f9Mona6BTYr17lwflDdcXjyJLOgXVECSjgvrhBzjrLPcr5OmnbX2TYRjJQ6z1XWFU4a1gAWe8\nWL5I+eS1eWyf55TYpk3Qt68bafUeEOKNbgE2UP0aL1NQjUxoT4iZRYVMmZTN2KN83HdfxV8ahmEY\nyUBt5rvC6XbvhmXL3Gjr/QUF3LfNLVSuLnaoKahGJLQnxJEPB1iwJUj35n4W3JxPu4PMCcIwjNQk\nnpBr1Y3GImlIBZUWTyIROVlE5ovIQhG5JcrzISIyS0R2i8gNNcmbbLw7t5AF3hqnzVJE0aZgY4tk\nGIZRa8Ku8VXNK4XXeOVNzEuqEE71Heqo2rwRZTT6CGrLFsgZE2LHjwNsxKKQG4ZhVCbZIkmMBBap\n6np9KK0AABPmSURBVHIAEXkOmACUKRlV3QRsEpHTa5o3Wdi1C844Ayac7OM3N1e9WtwwDMOof+Ix\n8UULddQrzvITydtglJTA//yPW990113xDYkNwzCM+qVBQh3FS2OEOlKF666D77+HN9+EtLhm5QzD\nMA4MmmyooxrmbZQ5qLvuchsM5udD+/YNXr1hGEZKkWxefJ8DA0UkU0RaAOcDM6pIHyl4TfM2KE8/\nDX/9qxs5mXIyDMNILqo18alqiYhcC7xDeaijeVWFOhKR64AsVd0eLW+9fZo4CIfz2BjM5sYbfXzw\nAfRKulkxwzAM44BaqBtejBbcEEQ3+nn97HxOGmeOEIZhGPGSbCa+JkPhhkKCG4IUazF0LqL9IFuE\naxiGkawcUApqYLtsmm/104x0srvZRoOGYRjJTJ2EOvLS3C8ii0RkjogcHnH/ehEpFJFvROQZz1mi\nUfjjNB8nrs4n/7LkCudhGEbt6devHyJiRx0f/fr1a+yurbNQR6cA16rqaSIyCrhPVXNEpCfwMXCI\nqu4VkeeB11X1qSj11Osc1DvvwOWXw9y5bvsMwzCaBt6cSGOL0eSI1a7JNgdVFq5IVfcB4XBFkUwA\nngJQ1dlAe8+zD6AZ0Ebc1u+tcUquQdm0CSZOhOnTTTkZhmGkCnUV6qhymtVAL1VdA/wJWOHd+15V\n36u9uDVHFSZNcqGMjj22IWs2DMMwEqFeQx2JSAfc6CoT+AF4QUQuVNVno6Wvj1BH//gHrFgBzz+f\ncFGGYRgHHCkf6khE/gbMVNXnvev5wBggAJykqld49y8GRqnqtVHqqfM5qPnzIRCAvDwYOrROizYM\nI0mwOaj6IVXmoOIJVzQDuATKFNr3qroeZ9rLEZGDRERwjhYNEkli715n1vv97005GYZhpCLVKihV\nLQHC4YqCwHPhUEcicqWX5g1gqYgsBv4OXOPd/wx4AfgamIuL0/dIfXyQyvzmNy6E0VVXNURthmEY\njc/06dMJBAKNLUadEdcclKq+BQypdO/vla73M9t5938L/La2AtaEcJy9rQuyeeopH3PngjTIQNQw\nDKPxUVWkCb30mkwkiXCcvdwnc5kwI8CD/wjRpUtjS2UYxoHO2rVrOffcc+natSsDBgzgwQcfBOC0\n007jpptuKkt3/vnnM2nSJACWLFnCcccdR+fOnenatSsXXXQR27ZtK0u76v+3d+7BUdVZHv/8Ogmi\nEt6PKMSIy4gmUCFsTQwsuIC7jLK44GR9LgFBFlYl4OCKEJ2FwdpyRUsEZIahFBMM69tiw2NdXECh\nKgwr6+BChyAuE0JeIAISSAWS9Nk/7k3TCemkO0l3bsfzqeri9v29vvfkck/1757f+ZWUkJ6eTv/+\n/enXrx/z58+nsLCQJ598kn379hEbG0vvTrCmptM4qMOnD+P+3k2tpxZP7wJuTtY8e4qidCwiwv33\n309KSgrl5eXs3LmTN954g88//5wNGzaQm5vLF198waZNmzhw4ACrV6/2tsvKyqKiooIjR45QUlLi\njXL2eDxMnjyZwYMHU1xcTGlpKY888gh33HEH69atY9SoUVRWVnL27NkOvPJ2QkRa/AD3AoVYGSWe\n91NnNXAMOAiM8DnfA/gIKzjCjRXF11R7aQsXqi9I/L8kC7+OkeFrk+VC9YU29acoSmQQyLPDWhHZ\ntk9r2L9/vyQkJDQ49/LLL8usWbNEROTTTz+V+Ph46devn+Tn5/vtZ/PmzTJy5EgREcnPz5f+/ftL\nXV3dNfWys7Nl7NixrRPbCH92tc8H5Dva+mnxHZSd6uhNfFIdGWP+Xa5NdfRnIvIzO9XROiDNLl4F\nbBeRB32ySbQ7lytjufTmXjZucjN1dJLm2VMUxUtHRaGfOHGC0tJS73SbiODxeLj77rsBmDx5MvPm\nzWPo0KGMGjXK2+706dMsWLCAvXv3cvHiRerq6rx9lJSUkJCQgMvVaSbA/BLSVEfGmO7AWBF5xy6r\nFZELhIBly+Cx9Fgyxqepc1IUxRHEx8dz2223cfbsWc6ePcu5c+f48ccf2bJlCwBZWVkkJiZSXl7O\n+++/722XlZWFy+XC7XZz/vx5cnNzvWuS4uPjKS4uxuPxXDNeZwqQgBCnOgIGA2eMMe8YY742xqw3\nxlzfFsFN4XbDhx9aTkpRFMUppKamEhsby4oVK6iurqaurg63282BAwfYs2cPOTk5vPvuu2RnZ5OZ\nmUl5eTkAlZWVdOvWjdjYWEpLS3n11Vcb9HnTTTexePFiqqqquHz5Mvn5+QAMGDCAkpISampqOuR6\n25uQpjqy+x8JPC0iB4wxbwCLgaVNVW5NqiMR+NWv4MUXoU+f9pCsKIrSPrhcLrZu3crChQsZPHgw\nV65cYejQoSxZsoQFCxawdu1a4uLiiIuLY/bs2cycOZPPPvuMpUuXMn36dHr27MmQIUPIyMhg5cqV\n3j63bNlCZmYmt9xyCy6Xi8cee4zRo0czYcIEkpKSiIuLIyoqitOnT7f5GjpzqiOAfSJym31+DFaQ\nxf1NjCMtaWmKbdvg2Wfh0CGIiQm6uaIoEY6mOgoNnT7VkVjpjk4aY263690DFLSPdKipgYUL4fXX\n1TkpiqJ0Nlqc4hOROmNMfaojF/C22KmOrGJZLyLbjTGT7FRHl4CZPl3MBzYZY2KA443K2sRvfwuD\nB8N997VXj4qiKIpTaHGKL1wEO8X3ww9WEtgvvoDExNDpUhTF2egUX2hwwhRfxDqoefOsPHtr1oRQ\nlKIojkcdVGhwgoMKdRRfSKgPKz8Slo07FEVRlI4goKXIxph7jTGFxphvjTHP+6mz2hhzzBhz0Bgz\nolGZy14H1Ti4ImAqL1ey7+Q+LlRXsnAhvPCChpUriqJ0ZsKR6ghgAVb0XvfWiKzPVO7+3k38dUlE\nl+7lqac0W4SiKEpnJqSpjgCMMYOAScBbrRXpm6n8TxcLmPtrt4aVK4qidHJCneoIYCXwHNDqt5jD\n+g8jqV8SUcTQrTqRf5iS1NquFEVRlAghpEESxpi/AU6JyEFjzDisLd/94i/VUex1sWyespcRf+1m\nR24S3bvq9J6iKEo46MypjhYA04Ba4HogFvhURKY3MU6zYeaZmVbePXszSkVRFEDDzAHq6uqIiopq\n1z6dEGYe6lRHWSJyi52L7xFgV1POqSVKS2HTJs1WrihK8NRHAFderuyQ9q+88gpDhgyhe/fuDBs2\njM2bNwOQk5PDmDFjyMzMpGfPniQmJrJr1y5vu/Hjx5OVlcVdd91Fjx49eOCBBzh//jxg7TPlcrnY\nsGEDCQkJ3HPPPQDk5eUxbNgwevfuzYQJEygstGLZjh8/Tp8+fTh48CAAZWVl9O/fnz179rTqmsJG\nILsaYu2oexRrx9zF9rm5wByfOm8C3wHfACOb6OMvgbxmxhB/PPecyIIFfosVRfkJ09yz40L1BUn+\nXbJEL4+W5N8Fv9N2W9uLiHz88cdSUVEhIiIffvihdOvWTSoqKiQ7O1uio6Nl1apVUltbKx988IH0\n6NFDzp07JyIi48aNk0GDBklBQYFUVVVJenq6TJs2TUREioqKxBgjM2bMkKqqKqmurpZvv/1Wbrzx\nRtm5c6fU1tbKihUrZMiQIVJTUyMiIm+99ZYkJSVJVVWVTJw4URYtWtSsbn92JYw76oZlkICE+DHG\n+fMivXuLFBU1a0tFUX6iNOeg8ovzJXp5tLAMiVkeI/tO7guq77a2b4oRI0ZIXl6eZGdny8CBAxuU\npaamSm5urohYDmrJkiXesoKCAunSpYt4PB4pKioSl8slRT4Pxpdeekkefvhh73ePxyMDBw6UL7/8\n0ntuypQpMnz4cElOTpYrV640q9MJDsrxewb//vdWMtiEhI5WoihKpFEfARzjiiGxXyJJ/YKLAG5r\ne4CNGzeSkpJCr1696NWrF263mzNnzgAwcGDDgOiEhATKysq83+Pj4xuU1dTUeNsCDBo0yHtcVlZG\ngs+D0hhDfHw8paWl3nOzZ8/G7XaTmZlJTASs1XF0qqPLl2HVKti+vaOVKIoSicReF8vemXtxf+8m\nqV8SsdcFFwHc1vbFxcXMmTOH3bt3M2rUKABSUlK8wQe+zqO+/pQpV5eZnjx5dfXOiRMn6NKlC337\n9qW4uBhouMX7zTffzOHDhxv0d/LkSa8TvHTpEs888wxPPPEEy5YtIz09nZ49ewZ1PeEmpKmOjDGD\njDG7jDFuY8whY8z8YMRt2gTDh0NycjCtFEVRrhJ7XSxpg9KCdi7t0f7SpUu4XC769u2Lx+PhnXfe\naeBETp06xZo1a6itreWjjz6isLCQSZMmectzc3MpLCykqqqKpUuX8uCDD3qdUr2Tq+ehhx5i27Zt\n7N69m9raWl577TW6du3K6NGjAZg/fz6pqamsX7+eSZMmMXfu3NaYI6yEOtVRLbBQrHVQ3YD/Mcbs\n8G3rD48HXn0V1q5t3YUpiqJ0NHfeeSfPPvssaWlpREVFMX36dMaMGeMtT0tL49ixY/Tt25e4uDg+\n+eQTevXq5S3PyMhgxowZHD16lHHjxrFu3Tpvme+vJ4Dbb7+d3Nxc5s2bR1lZGSNGjGDr1q1ER0eT\nl5fHjh07OHToEACvv/46KSkpvPfeezz66KMhtkLrCXQd1FIRuc/+Hsg6qCPAOLF21PXtazOwRkR2\nNjGO+GrJy4Ply+Grr6xtNRRFUZoiUtdB5eTk8Pbbb/sN9R4/fjwZGRnMmjUrzMosImUdVFtTHQFg\njLkVGAHsD0TYihWwaJE6J0VRlJ8qYQmSsKf3PgYWiMhFf/XqUx0VF8Px4+P45S/HhUOeoiiK42g8\nhddRdNpURyJyyhgTDWwF/kNEVjUzjneKb+pUmDgRnnqqbRenKErnJ1Kn+JxOpEzxtTrVkV22ASho\nzjn5cuQI7NsHjz8eSG1FURSls9LiFJ+I1Blj5gE7sBza2yJyxBgz1yqW9SKy3RgzyRjzHXAJeBzA\nGPMXwN8Dh4wxf8TaciNLRD5raqzKy5W89losTz8NN9zQLtenKIqiRCgtTvGFC2OMJK5OpvSlvfzf\nkVjdzl1RlIDQKb7Q4IQpPkdlkij8oYD0aW769ElrubKiKApWCiCnBBR0JhIckF8upJkkAm3rrXsm\nkX9+UnfLVRQlcIqKijo82XVn/BQVFXX0n7ZlB+WTSeIXQBLwqDHmjkZ1vJkksLbhWBdoW18eOLeX\nYT+LnN1yOyr0si1EomaITN2qOXxEou5I1BxuAvkFlQocE5ETIlIDvA9MaVRnCrARQET2Az2MMQMC\nbOsl658ixzlBZN5gkagZIlO3ag4fkag7EjWHm1BlkqivE0hbLykpAahRFEVRfhKEaj8ofWOpKIqi\ntImQZpIABrfU1qcPjRNVFEWJAJwUZu7NJAGUY2WSaJyfPQ94GvjAN5OEMeZMAG2B8F2woiiKEhmE\nKpPEzObahuxqFEVRlE6DYzJJKIqiKEoDWruIC7gXKAS+BZ73U2c1cAw4CIxoqS3QC+vX1lHgP4Ee\nPmVL7L6OABN9zo8E/tfu640I0r3b7uuPwNdAXydoBnoDu4BKYHWjMRxr6xZ0O9XWfwUcAL7Bmkof\n3xpbO0hzwHbuAN0/t3XVf6ZGgK2b0+zIe9qn/Bas/4sLW/v8EJHWOSis6brvgAQgxr6oOxrVuQ/Y\nZh/fBfyhpbbAK8Ai+/h54F/t40T7DxEN3Gq3r//1tx/4uX28HfhFhOjeDaQ40NY3AKOBOVz7oHey\nrZvT7VRbJwNx9nESUBKsrR2mOSA7d5DuroDLPo4DTvl8d6qtm9PsyHvap8+PgA9o6KACfn7Uf1ob\nZh6qxbtTgBz7OAeYah//LfC+iNSKSBGWp081xsQBsSLylV1vo08bx+r2GasjF0o3qVlEqkQkH7js\nO4DTbe1Ptw9OtPU3IlJhH7uBrsaYmCBt7QjNPmMF+kwJt+5qEfHY568HPBD0fe0IzT447p4GMMZM\nAY4Dbp9zwT4/Ar7ApgjV4t0BYu8jZf8n6O+nr/ot5Qfa7ZvT4UTd9WQbY742xrzoIM3N6XCyrVvC\n0bY2xvwd8LX9IAjG1k7RXE8gdu4Q3caYVGPMYazpyX+0H/6OtrUfzfU46Z4eYOvtBiwCfkPD9bDB\nPj+A0C3UbYrWhJFLu6sInlDpfkxEhgNjgbHGmGmtGMcfauuGONrWxpgk4GWs6clwECrNobQztFG3\niPy3iAzDereTZW/AGmpCpdlp93S941wKrBSRqvYQ0loHVYr1EqyeQfa5xnXim6jTXNsK+6dl/U/C\n0wH01dR5p+tGRMrtfy8B/0bDqb+O1OwPp9vaL062tTFmEPApkGFPAzc3hpM1B2PnDtHto/MocBEY\n1swYTtbs5Hv6LmCFMeY48AyWU32qmTGap6WXVE19gCiuvjzrgvXy7M5GdSZx9cVbGldfvPlti/Xi\n7Xm59mVhfbBBF6zsFL7BBn/A+uMYrBdv9zpdt91XH7tODNYLxTlO0OzT5wxgTaNzjrW1P91OtjXQ\n0643tQktAdnaKZqDsXMH6b4ViLKPE7CmmHo73NZNag7G1uHW3KjfpTQMkgj4+eFt01KFZm6we7FC\nDI8Bi+1zc30NhbXVxndY86cjm2trn+8N/JddtgPo6VO2xO6rcbj2nwOH7L5WRYJurIizA/Yf/BCw\nEtvhOkTzn4AzwAWgmKuRO0639TW6nWxr4AWsUNyvaRQuHIytnaA5WDt3gO5pwGFb7wHg/tY8Q5yg\nOVhbh1Nzo3EbO6ignh8iogt1FUVRFGcSziAJRVEURQkYdVCKoiiKI1EHpSiKojgSdVCKoiiKI1EH\npSiKojgSdVCKoiiKI1EHpSiKojgSdVCKoiiKI/l/NCEVfq7Gxo8AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "tau, i, j, n = 1e-4, 0, 0, 4\n",
+ "\n",
+ "fig, ax = plt.subplots(2, 1)\n",
+ "\n",
+ "transitions = qmatrix\n",
+ "exact = ExactSurvivor(transitions, tau)\n",
+ "equation = DeterminantEq(transitions, tau)\n",
+ "roots = find_roots(equation)\n",
+ "approx = Asymptotes(equation, roots)\n",
+ "\n",
+ "x = np.arange(0, n * tau, tau / 10.)\n",
+ "ax[0].plot(x, exact.af(x)[:, i, j], label=\"exact\")\n",
+ "ax[0].plot(x, approx(x)[:, i, j], '.', label=\"approx\")\n",
+ "ax[0].set_title(\"Component ${0}$ of the matrix $^{{A}}R(t)$.\".format((i, j)))\n",
+ "ax[0].legend()\n",
+ "\n",
+ "roots = find_roots(equation.transpose())\n",
+ "approx = Asymptotes(equation.transpose(), roots)\n",
+ "\n",
+ "i, j = 1, 0\n",
+ "x = np.arange(0, n*tau, tau / 10.)\n",
+ "ax[1].plot(x, exact.fa(x)[:, i, j], label=\"exact\")\n",
+ "ax[1].plot(x, approx(x)[:, i, j], '.', label=\"approx\")\n",
+ "ax[1].set_title(\"Component ${0}$ of the matrix $^{{F}}R(t)$.\".format((i, j)))\n",
+ "ax[1].legend(loc=0)\n",
+ "\n",
+ "fig.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/exploration/CB.ipynb b/exploration/CB.ipynb
index 11b20bc..ebdaaa4 100644
--- a/exploration/CB.ipynb
+++ b/exploration/CB.ipynb
@@ -45,7 +45,7 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import QMatrix\n",
"\n",
"tau = 0.2\n",
"qmatrix = QMatrix([ [-2, 1, 1, 0], \n",
@@ -69,11 +69,11 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood._methods import exponential_pdfs\n",
+ "from HJCFIT.likelihood._methods import exponential_pdfs\n",
"\n",
"def plot_exponentials(qmatrix, tau, x0=None, x=None, ax=None, nmax=2, shut=False):\n",
- " from dcprogs.likelihood import missed_events_pdf\n",
- " from dcprogs.likelihood._methods import exponential_pdfs\n",
+ " from HJCFIT.likelihood import missed_events_pdf\n",
+ " from HJCFIT.likelihood._methods import exponential_pdfs\n",
" if ax is None: \n",
" fig, ax = plt.subplots(1,1)\n",
" if x is None: \n",
@@ -111,9 +111,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAKDCAYAAADsJhDzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VOX5xvHvkyCLyL4IsoZFkMViiISwSNhBQEQUcKHW\npYiI4lalWi3uov7UWqCCSgXUigIqq4BIRFZlURYRZbWKWsOOgkB4fn/MMA4xQCYkGRLuz3XNNXPe\nc8573qFtmjvvZu6OiIiIiIiIZK+YaDdAREREREQkP1LYEhERERERyQEKWyIiIiIiIjlAYUtERERE\nRCQHKGyJiIiIiIjkAIUtERERERGRHKCwJSIiIiIikgMUtkRERERERHKAwpaIiIiIiEgOUNgSERER\nERHJAQWi3YCcUrZsWa9evXq0myEiIhlYtmxZqruXy+r9+hkvInLqOtmf8flJvg1b1atXZ+nSpdFu\nhoiIZMDMtpzM/foZLyJy6jrZn/H5iYYRioiIiIiI5ACFLRERERERkRygsCUiIiIiIrnKzDqZ2Toz\nW29mgzM4X8jMxgfPLzGz6unOVzWzvWZ2d/C4ipnNNbMvzGyNmQ0Ku3aImX1nZp8FXxfn9Pc7QmFL\nRERERERyjZnFAsOBzkA94Eozq5fushuAHe5eC3gOGJru/LPAjLDjQ8Bd7l4PaArckq7O59y9UfA1\nPRu/znEpbImIiIiISG5qAqx3943ufgB4E+ie7pruwJjg5wlAWzMzADO7FNgErDlysbt/7+7Lg5/3\nAGuBSjn6LTJBYUtERERERHJTJeC/Ycff8vtgFLrG3Q8Bu4AyZnYWcC/w0LEqDw45vABYElY80MxW\nmtloMyt1sl8gsxS2REREREQkO5U1s6Vhr37ZWPcQAkMC92Z0MhjGJgK3u/vuYPG/gJpAI+B74P+y\nsT3HlW/32RIRERERkahIdfeE45z/DqgSdlw5WJbRNd+aWQGgBLANSAQuN7OngJLAYTPb7+7DzOwM\nAkHrdXefdKQid//xyGczewmYmvWvFhmFLREROb0sWgQpKZCcDElJmT8nIiLZ5VOgtpnFEQhVfYCr\n0l0zGbgWWARcDnzo7g60PHKBmQ0B9gaDlgGvAGvd/dnwisysort/HzzsAazO/q+UMYWtHLJ69Wpe\nfPFFPvnkE3bv3k3p0qWpUaMGCQkJJCUlkZCQQGxsbLSbKSJyelm0CNq2hQMHoGBBmDPnt1B1vHNH\nzmcUxBTQREQi4u6HzGwgMBOIBUa7+xozexhY6u6TCQSncWa2HthOIJAdT3OgL7DKzD4Llt0XXHnw\nKTNrBDiwGbgp27/UMShs5YAXXniBO+64g8KFC5OUlET16tXZvn07KSkpvP766wCUKlWK9u3b07Fj\nRy6++GIqVKgQ5VaLiJwGUlICYSotLfCekvJbQDreuWMFsawGNBGR01wwBE1PV/Zg2Of9wBUnqGNI\n2Of5gB3jur4n09aTobCVzcaPH8+gQYPo0aMHL730EmXKlDnq/NatW5k3bx4zZ85k5syZvPXWW5gZ\nTZs2pXv37lx66aXUqVMnSq0XEcnnkpMDoehIOEpOzty5YwWxrAS0I+c0lFFEJN9T2MpGu3btYsCA\nATRt2pTx48dzxhln/O6ac845hz59+tCnTx/cnc8//5zJkyfz3nvvMXjwYAYPHkydOnVCwSsxMZGY\nGC0aKSKSLZKSAqEnozBzvHPHCmJZCWgayigictpQ2MpGzz//PNu3b2fEiBEZBq30zIxGjRrRqFEj\nHnzwQb755ptQ8Hr22Wd56qmnOPvss+nWrRuXXnopbdu2pXDhwrnwTURE8rGkpGMHkmOdO1YQy0pA\nO1WGMiqgiYjkOIWtbPT666/ToUMHLrjggizdX7VqVQYOHMjAgQPZuXMn06dP57333mP8+PG8/PLL\nFC1alI4dO3LJJZfQpUsXypYtm83fQEREjul4QSySgHYqDGVUQBMRyRW5GrbMrBPwDwKrjrzs7k+m\nO18IGAs0JrCOfm933xx2virwBTDE3Z/JrXZnxo4dO/j666+5/vrrs6W+kiVLctVVV3HVVVfx66+/\nMnfuXCZPnszkyZOZNGkSMTExNG/enO7du9O9e3dq1aqVLc8VEZFslFEQOxWGMub2YiAKaSJymsq1\nsGVmscBwoD3wLfCpmU129y/CLrsB2OHutcysDzAU6B12/llgRm61ORKffRZYYTKrvVrHU6hQITp1\n6kSnTp0YPnw4y5YtCw03vPvuu7n77rs577zz6N69O5dcconmeYmInOqiPZQxtxcD0UIhInKays2e\nrSbAenffCGBmbwLdCfRUHdEdGBL8PAEYZmbm7m5mlwKbgJ9zr8mZt2LFCiBnwlY4MyMhIYGEhAQe\nfvhhNm3axJQpU3jvvfd4+umnefLJJ0PzvC655BLatWtHkSJFcrRNIiKSS7JrKGNuBbTjnVNAE5HT\nQG6GrUrAf8OOvwUSj3VNcLOzXUAZM9sP3EugV+zuXGhrxFasWME555xD+fLlc/W5cXFx3Hbbbdx2\n223s2LGDGTNmHDXP68wzz6RDhw5ccskldO3alXLlyuVq+0REJMqiGdCOd04BTUROA3llgYwhwHPu\nvtcsw73KADCzfkA/CCw2kZtWrFiR471aJ1KqVKnQPK8DBw6QkpLCe++9x+TJk3n33XcxM5o1axYa\nbqj9vEREJEPZFdCOd+5UD2hHziuIichJyM2JPd8BVcKOKwfLMrzGzAoAJQgslJEIPGVmm4HbgfvM\nbGD6B7j7KHdPcPeE3OzB2bdvH19++WXUw1a4ggUL0qFDB4YPH84333zDsmXLePDBB/n555+55557\nqFu3LnXr1uXee+9lwYIFpKWlRbvJIiKSlyUlwV//euwwlv7ckRD2yCO/DzlJSYx6ahQd/3gdo54a\ndVRAG1W1IR1bBt5JTsbd2bdvH780aXLUub0JCezcuZN9M2YwqlwtOia1YFS5Whz+8MPfnpOSctQ5\nUlJ+O7doEaOuHkDHGbMYdfWAQPAKGjXsNTpe/2dGDXvt99910SJ44omjrheR05e5e+48KBCevgLa\nEghVnwJXufuasGtuARq6e//gAhmXuXuvdPUMAfaeaDXChIQEX7p0aTZ/i4x98sknJCYmMnHiRC67\n7LJceebJ2LJlS2ieV0pKCocOHaJcuXJ069aNbt260b59e4oWLRrtZopIPmZmy9w9Iav35+bPeMk5\no2Ys4u1PP6RtzUa0qV2OrVu3snXrVmZ+8R2TSz4HsQcgrSDnLr6Yots3sjWmND92Whgqj329Dmmb\nAwtUUbk+XLsxdI4xNeDbNcRVrs+msPK4MTXYsnUtZ5xxBnGV6vHllV+GzsW/F88BdlG0aFHO/bUI\n47osCZ0bMK8dxZrVY+uWXYyrOSZUfveev9ClR2tKlChB+Q0bmHbPY0ysXJKe3+6k3+sjQkFx1LDX\nmLj8I3rGt6LfwGuO/nc4zjmRvOhkf8bnJ7k2jDA4B2sgMJPA0u+j3X2NmT0MLHX3ycArwDgzWw9s\nB/rkVvtORm4tjpFdqlWrFtrPa9euXaF5XhMmTGD06NEUKlSI1q1b07VrV7p27Uq1atWi3WQREcnD\n/vluCq8veJ+GZ1Wkasxu1q9fz/zNO9nYcjbEHuCDtQVhcCAcAdCiFbQ5ADFp4Af435lptChSia2F\niwZCTrC8SstGXHttdwoVKsSrGzbxVeyXoXPndmxO//o3MPKLdRBWHtM2kfuq9ODAgQOM/+4HiF0Z\nOrf1vCokHSrPzz//zIcxZxz1rDdjfmbPs89SObEZnPtb+cTlH/HMCw8D0Klyfd4PBrtZaQWZ3vdW\n1sbuoVzxqizouACqHGDWD68z59IPqPuHapQqVYoNX/7AsLIvhM79PHQvA26/jkKFCimgieQDudaz\nldty86+e/fv3Z/z48Wzfvp3jzSk71R08eJD58+czZcoUpkyZwvr16wFo2LBhKHglJiYSGxsb5ZaK\nSF6nnq38Z9SMRUxclkLX+k2pV/wwy5cvZ8WKFcz9+id+6LjgqB6nyuzi5/gL2dFociC0pMVywa5b\nefnavlSsWJF3lq7nliUdIeYAHC7IyOZz6Nc5iVEzFnHTgra/Kz/y/IzOZeWe45371wtjGPC/m0Pl\nQ3iYlm3i2bVrF4++O4Xl1ceGvlPtNT2IPyOW1Tt2s6bprFB5jY9asnFeCgBxLVqxqc380Lm4uS3Y\nNP8jzq3eiK+uXhf6d+u4sBOV4kpRunRpUr/7mVdrvBo6N8Qfou8NPSlVqhQlSpTg5RFvZBjEFNAk\nt+Snni0zKwrsd/cszblR2MoGiYmJnHnmmcydOzdXnpdbvvrqK6ZOncrUqVOZN28eaWlplClThosv\nvphu3brRoUMHSpQoEe1mikgepLCVf/z888/c+89xDN975++G8FWtWpV9CYn81GBSKEy0jR3CB3//\n23GDDvwW3no2Ts5UeXbfc9z6jhFajhn4hr3GTT/0+628wihuuPlKdu/ezajhrzF4/72hc/2/v5nK\nNUozafFSlsdPCf271VnQhr3rvmD79u1UaNwkw4AGUKNyAzZeuyH0n0X7+R2oXKM0+3bBm+e9GSr/\n28EHuPLa7pQpU4bSpUvz75HjFdAk2+TlsGVmMQRG110NXAj8ChQCUoFpwEh3X5/p+hS2Ts6hQ4co\nVqwYN998M88++2yOPy9adu7cycyZM5k6dSrTp09n+/btFChQgIsuuijU61W7du1oN1NE8giFrbzp\nSPhIrtaAYru2MG3aNObOncuvFzaFsF/+43cPYtYD91GmTJkT9h4dK+jkVZEGtGOdyyigHTk34vlX\nuSV1QOjc3Xv+QoP4Gmzfvp3XUz5mWViPYd0Fbdmzbg2FatRmY+uPMwxo6ee1tZ3XjorVSnBgTyxv\nNXgrVP7XX++n9zVdKVu2LGXKlGHsyxMU0CRDeTxsfQR8ALwHrHb3w8Hy0kBr4CrgHXfPYIWcDOpT\n2Do5a9asoUGDBowdO5a+ffvm+PNOBWlpaSxevJipU6cyZcoU1qwJjLGvU6dOKHg1b96cM844I8ot\nFZFTlcJW3vPc27O58/PuR/VenXvmQbp27YpXqs9z2wdG3Eslx5eVOVvHCmnpy/+6/z7OT6jFtm3b\n+PfsD1n2h/d+C2gL27J/w1fEVK3OxuTMBbTWKW04u0oxDv5yBhMbTgiV37tvMFdc1YWyZctStmxZ\nXv/3JCYun6d5aPlcHg9bZ7j7QTOr7u6bj3dNpupT2Do5r732Gn379mXVqlU0aNAgx593Ktq0aRPT\npk1j6tSpzJ07lwMHDlCiRAk6depEt27d6NSpE2XKlIl2M0XkFKKwlTe4O3PmzGH48OG8t20nHtYz\n0uLgYD5+4tHQtQpUp47jBbGTCWj3H7ifCxLrsm3bNl6aPpOlYQHtvEXtOLRlI4crVmZD8ryIAlrZ\nsmXZ9dNBxtUaGzr3SMwjXHdTn+P2oB3vO0l05eWwdYSZLXf3+HRlTd19cUT1KGydnLvuuosRI0aw\nZ88eChTIK3tE55y9e/fywQcfhOZ6/fjjj8TExNCsWbNQr1e9evXy9EIiInLyFLZObcPf+4jh095k\nx4r1/LD0A8qVK0ejrtcw+5wXj9l7JXlbTgW0B9IepHHT89i2bRsvTpnOp+e/+7uAlpqaSsn652c4\nDy19QGszry3nVCtJ2bJl2fHjr4wJWyjk0QKPcePNVx13DtrxvpNkn7wctsysFxAP9AQuAdaFDSVc\n6e7nR1SfwtbJadOmDXv37uWTTz7J8WflNYcPH2bZsmWh4LV8+XIAqlatysUXX8zFF19MmzZttKeX\nyGlIYevU9Msvv/CnB57h7SJPhn6BvS7mEUbcdwuFCxdW75UcJbsCGvC7VR7v3H03dRpU/l0PWt2F\nbfl149ekpqZS9g/xmQpo7ed3oFJcKcqWLcu27/fx7+qjQ+ceP+Nx/nzLNZQqVYrY2NiIv5NkLI+H\nrUpAO+D/COwLXAfYCWwFyrl7YkT1KWxlnbtTunRpevXqxciRI3P0WfnBd999x/Tp05kxYwazZ89m\n7969FCxYkOTkZDp37szFF19M7dq11eslchpQ2Dq1HDp0iJEjR/LII4/wY+26Ry120aHgI8z821+j\n3UTJJ7J1oZB/vMotP/22UMgdO++gVr1KjJ4153dz0H7+ai0//fQTFRMSMwxoZsZ5NRvzRe81oSDW\nfcWl1G1YlZ+2/szoqq+Eyp8sPJSbBvalRIkSmJkCWgbyeNgyd3cza+7uC4JlZYDqwJfu/vORazJV\nn8JW1m3evJm4uDj+9a9/0b9//xx9Vn5z4MAB5s+fz/Tp05k+fTpr164FoGbNmqFer1atWlGkSJEo\nt1REcoLCVvQd6aWqf2Z5Zo1+jjVr1tCqVSsuvOw6ngnrYdBwQYm27Axow5/7NwO33RI6N2j77dSo\nW4HU1FSmLP+czxpPCwWxWvNasWXhx1RObJZhQCtQoAB1a8Sz+opVoSDW47PLqNeoOj9+u5eXK48K\nlT9V5GluHnQtRYsWPS0CWh4PWynAROA9d/8mrLwg0AK4Fpjr7q9mqj6Frax75513uOyyy1i8eDGJ\niRH1KEo6mzdvZsaMGUyfPp05c+awb98+ihQpQuvWrUPhKy4uLtrNFJFsorAVXaHl2IO/CJaZ1oSX\nHhzEpZdeGvhFUMMFJY/LrpUc/3zL1Qx7bjS3bb81VD4w9TZq1Dmb1NRUpn22is8Tph8V0DZ+nEK1\nZi0zDGiFChXi3LhGrOq5MvS/v56rLqfBBTX4fssuRlUaGSp/uugzDLzjegoXLnzC73SqyeNhqzBw\nPYF9tuIIDCEsAsQAs4AR7r4i0/UpbGXd3//+dx599FH27NnDmWeemaPPOp3s37+fjz76KDTk8Ouv\nvwagbt26oeGGLVu2pFChQlFuqYhklcJWdHV89AlmHXwg9ItguwJDmP3g36LdLJGoy455aDcOuIph\n//cKg3YNCpXf8r+BVKtdjtTUVGauXntUQKv50UVsmDeXuBatMgxoRYsWpXa1P/BZjxWhINZrdS8a\nJtQKLan/2SfrmL/1K7o3TGLgnTeEtt+JVkDLy2ErnJmdAZQF9rn7zizVobCVdZdccgkbNmwI7TMl\nOePrr78O9XqlpKTw66+/UrRoUdq1a0fnzp3p3LkzVatWjXYzRSQCClvR1f/RYYzcf4+GCopkg+wI\naNf378M/nx3NnbtvD5Xf/OMAqtQoQ2pqKh+s/YqVF874XUCD3y+pHzemBtt2/5eaVRuyovvy3wLa\nF31odGHtUEBbvvhL5n/3JZec35zb7rqB2NjYbPs3yS9hKzsobJ2EKlWq0KpVK157LVMbSEs2+Pnn\nn0lJSWH69OlMmzaNLVu2ANCgQYPQcMNmzZppQ2WRU5zCVvSsXbuWJk2aUKZRMrXbN+WKC9soaInk\nsuwIaH/q14tt27Zx5d338lGtN0JBLGFld5pVq0zK1xuPCmg1Ulqy8eMU4PcBrcaYGuz85ftQEHvw\nwQfp2LFjlr9ffgpbZtYe6AUMd/fPzKyfu4/K9P0KW1mTmppKuXLleOaZZ7jrrrty7DlybO7Ol19+\nGRpuOG/ePA4ePEjx4sVp27YtHTt2pGPHjlSvXj3aTRWRdBS2ck/4/Ks+zevTpEkTtm/fzvLly6lc\nuXK0mycimXSye56NrDCKa66/jG3bttF38P1HBbTGn19CYuWKpKamkpqayn333Ufbtm2z3NZ8Frb+\nA9wM/A2YDlzu7gMye7924Y3QxIkTueWWWxg9ejQAF1xwQZRbdPoyM8477zzOO+887rrrLvbs2cOc\nOXOYPn06M2fO5J133gGgTp06dOzYkU6dOtGqVSvNrxOR00b4QhizFhTkXyN6sn79eubMmaOgJZLH\n9Bt4Df34/byrfgOvgWH8Logdq/zMM8/kqqQOfPTDBPBAEOvX/rJTftGNKNoTnK91t5k9CVwYyc3q\n2YpQXFwcmzdv5s9//jMvvfQS27Zto3Tp0tn+HDk57s66det4//33mTlzJikpKezfv59ChQpx0UUX\nhcJXvXr1tK+XSBSoZyt3pF8Ig7kteK7npdx+++3RbpqIRFlOLp6Rz3q2urv7e2HHt7r7PzN9v8JW\nZFq0aMGCBQsoXrw4FSpUYN26ddn+DMl++/bt4+OPP2bmzJm8//77fPHFFwBUqlQpFLzatWtHqVKl\notxSkdODwlbuCPVsBYcRXbi2D0smvKI/MolIjspPYSs9M7vZ3f+V2etjcrIx+VG1atUA2L17Ny1a\ntIhyaySzihQpQocOHfi///s/1qxZwzfffMNLL71EUlISEydOpFevXpQtW5akpCQeeughFi9eTFpa\nWrSbLSJyUvp1TuKxOm9S4ONkzpndkrlj/6mgJSKnBDPrZGbrzGy9mQ3O4HwhMxsfPL/EzKqnO1/V\nzPaa2d0nqtPM4oJ1rA/WWfAkmp7pPbYgC2HLzIqaWfatDZnHHAlbAK1bt45iS+RkVKlShRtvvJG3\n336b1NRUFixYwP3338/hw4d56KGHSEpKoly5cvTu3Zt///vfbN26NdpNFhGJ2C+//MLbz/6dsz5b\nxrw3RlC0aNFoN0lEhGCWGA50BuoBV5pZvXSX3QDscPdawHPA0HTnnwVmZLLOocBzwbp2BOvOEndf\nHMn1JwxbZhZjZleZ2TQz+x/wJfC9mX1hZk+bWa2sNjYvKlmyZOi9e/fuUW6NZIcCBQrQrFkzHn74\nYZYsWcL//vc//vOf/9C9e3fmzZvH9ddfT6VKlWjYsCF/+ctf+OCDD/j111+j3WwRkeNyd/r378/n\nn3/OG2+8Qc2aNaPdJBGRI5oA6919o7sfAN4E0v9i3R0YE/w8AWhrwa55M7sU2ASEb3abYZ3Be9oE\n6yBY56WZbWgwB71pZq+b2RtmdmUkXzQzPVtzgZrAX4EK7l7F3csDLYDFwFAzO+2WL1m/fj3FihWL\ndjMkB5QtW5Y+ffqEerQ+//xzhg4dSvny5fnHP/5B+/btKV26NJ07d+a5555j9erV5Ne5jyKSN4ya\nsYiOjz7BqBmLQmXDhg1j3LhxPPTQQ3Tu3DmKrRMR+Z1KwH/Djr8NlmV4jbsfAnYBZczsLOBe4KFM\n1lkG2Bms41jPOp5W7t7H3a9296sIZKBMy8zS7+3c/aCZVXf3w0cK3X07MBGYaGan3Q6yRYoUiXYT\nJBeYGeeffz7nn38+99xzD3v37iUlJYWZM2cya9Ys7rzzTgAqVqxIu3btaN++Pe3ataNixYpRbrmI\nnC7SL+8Oc2hQwrnzzjvp1q0b999/f7SbKCKnn7JmFr6K0ahINgI+gSEEhgTuzaU5qIXMrAuBIFcZ\niCgEnDBsufvB4MdJQHz4OTNr6u6Lw64RydfOOussunbtSteuXQH45ptvmD17NrNnz2b69OmMGzcO\ngIYNG9K+fXvat2/PRRddpL29RCTHTFyWArEHAsu7+wH+s3AmX//7ZapVq8bYsWOJidFaWCKS61JP\nsBrhd0CVsOPKwbKMrvnWzAoAJYBtQCJwuZk9BZQEDpvZfmDZMercBpQ0swLB3q2MnnU8A4DLgIYE\nAtfACO49cdgys14EQlYxMzsPWBfWwzUKOD+SB4rkJ1WrVuWGG27ghhtu4PDhw3z22Weh8DVs2DCe\nffZZChYsSPPmzUPhKz4+Xr/8iEi26dk4OdCjFdyc9Iclq9m2bRuLFi0KzTMWETnFfArUNrM4AsGn\nD3BVumsmA9cCi4DLgQ89MG+j5ZELzGwIsNfdhwUD2e/qdHc3s7nBOt4M1vkemeTuvwCvZelbkrlh\nhAuAwsCNBFb9qGNmO4GtwL6sPlgkv4mJiSE+Pp74+HjuvfdefvnlFz7++ONQ+Lrvvvu47777KF26\ndGjIYfv27Y9a4VJEJFL9OicBc5i4LIUC3+5k+gdP8corr9CoUaNoN01EJEPufsjMBgIzgVhgtLuv\nMbOHgaXuPhl4BRhnZuuB7QTCU8R1Bk/fC7xpZo8SWLr9lUjbbGYlg8/ZGcl9mRlG+B0w1sw2uPuC\n4MPKANUJrEwoIhk488wz6dixIx07dgTgxx9/5IMPPgiFr7feeguA2rVrh4JX69atKVGiRDSbLSJ5\nUL/OSVRhJxc/cDHXXXcd119/fbSbJCJyXO4+HZieruzBsM/7gStOUMeQE9UZLN9IYLXCk/F3AiHu\ntkhuyswwQvOABUfK3H0bgfGPR10TyYNFTjdnn302V199NVdffTXuztq1a5k9ezazZs1izJgxjBgx\ngtjYWJo0aUKHDh1o3749TZo04YwzTrv1Z0QkQlu2bOGaa67hD3/4A8OHD492c0REJChTS7+b2a1m\nVjW80MwKmlkbMxtDYOyjiGSSmVGvXj0GDRrEtGnT2L59OykpKQwePJi0tDQeeeQRWrRoQZkyZejW\nrRvPP/88K1eu5PDhwyeuXEROK7/++iuXX345hw4dYsKECVotV0TkFJKZOVudgOuB/wQnnO0kMIcr\nFpgFPO/uK3KuiacWdeBJTihYsCCtWrWiVatWPProo+zYsYMPP/yQ2bNnM2fOHKZOnQpAuXLlaNOm\nDW3btqVt27bUqFEjyi0Xkdw0asYiJi5LoWfj5OBcLbjzzjtZunQpkyZNolatWlFuoYiIhMvMnK39\nwAhgRHA/rbLAvkgnh+U3ubSuv5ymSpUqRc+ePenZsycQWGL+ww8/ZM6cOcyZM4fx48cDUL169VDw\nat26NRUqVIhms0UkB2W0n9ZZOzYxYsQI7r77bnr06BHtJoqI5GfDgIgDQGZ6tkKC+2l9H+lDROTk\nVK1alT/96U/86U9/wt358ssvQ8Fr4sSJvPJKYFGd+vXrh8JXq1attNiGSD6Sfj+tMR9N5bN/Pk/L\nli154oknot08EZF8zd03ZOW+iDf7MbP2ZvaSmTUKHvfLyoNFJGvMjPPOO4+BAwfyzjvvkJqayqef\nfsqTTz7JOeecw0svvUT37t0pXbo0TZs25f7772fOnDns378/2k0XkZPQs3EypBWEtFg4XJANHyyh\nWLFijB8/ngIFIvrbqYiIZIKZ1Qy+V85qHVnZWfV64C/ANWbWBtBGHiJRFBsbS0JCAvfeey+zZs1i\nx44dzJ18ItCZAAAgAElEQVQ7l/vuu4+YmBiGDh1Ku3btKFmyJG3btuXxxx9nyZIlHDp0KNpNF5EI\n9OucxMjmc+hwxsMkrOnNTyvm8uabb1KxYsVoN01EJL86sgjg41mtICtha4+773T3u4EOwIVZfbiI\nZL9ChQqRnJzMI488wsKFC9m+fTtTp05lwIABpKamcv/999O0aVPKlClD9+7deeGFF1i9erUWfxHJ\nA/p1TqJryWIsffdVHnvsMZKTk6PdJBGR/Oyb4HtzM3vIzC43s/GRVJCVcQfTjnxw98FmdmsW6hCR\nXFK8eHG6dOlCly5dAPjf//7H3LlzQ3O+Jk+eDARWOkxOTqZ169YkJydTt25dLQQjcor59NNPueuu\nu+jWrRv33HNPtJsjIpLvmNk/3H2QmRVx95eDxQuBV4GGBBbKyLSIw5a7v5euSGORRPKQ8uXL07t3\nb3r37g3A5s2b+fDDD0lJSWHu3Lm8/fbbAFSoUIHk5ORQAKtdu7bCl0gU7dy5k169elGxYkVeffVV\nYmKyMjhFRERO4KLg+3ygcfDzMHffBGyKtLLsmFF72uyxJZIfVa9eneuvv57rr78ed2fDhg2h4DV3\nbmBOCMA555wTCl6tW7emRo0aCl8iucTdueGGG/j222+ZN28epUuXjnaTRETyqzlmtgioYGbXA58D\nn2W1sojDlpldBVwCpBFYa34KsDirDRCRU4eZUatWLWrVqsWNN96Iu/P111+HgtecOXN44403AKhc\nuXJoyGHr1q2Ji4uLcutF8q/hw4czadIknn76aZKSkqLdHBGRfMvd7w6uQjgXiCOQe+qb2QFgtbv3\njqS+rPRstXL3PkcOzGw48J8s1CMipzgz49xzz+Xcc8/lpptuCu3xNXfuXFJSUnj//fcZN24cANWq\nVTuq56tq1apRbr1I/rB8+XLuuusuunTpwp133hnt5oiI5HvuvsHM2rn7V0fKzOwsoEGkdWUlbBUy\nsy7Af4HKQJEs1CEiedCRPb7OO+88BgwYgLuzZs2a0LDDKVOmMGbMGABq1Khx1IIblStneYsKkdPW\n7t276dWrF+XLl2fMmDGapyUikkvCg1bweC9ZGM2XlbA1ALiMwGoc/wUGZqEOEckHzIwGDRrQoEED\nBg4cyOHDh1m9enVo2OGkSZMYPXo0ALVq1aJ169a0atWKVq1aKXyJHMOoGYuYuCyFnvGtmDPmH2ze\nvJmPPvqIMmXKRLtpIiISoaysRvgL8FoOtEVE8riYmBjOP/98zj//fAYNGkRaWhorV64M9Xy99dZb\nvPTSSwDExcXRqlUrLrroIlq1akVcXJwW3JDT3qgZi7hpQVuIPcCshQVhYQ2eePRRmjdvHu2miYhI\nFmR5NUIzKwng7juzrzmnPm38KpJ5sbGxXHDBBVxwwQXccccdpKWl8fnnnzNv3jzmzZvHlClTePXV\nVwGoVKnSUeGrTp06Cl9y2pm4LAViD0BMGvgByiTU1X5aIiJRENxL+DV333Ey9ZzM0u9/B2KB206m\nAXmVfgkUiVxsbCzx8fHEx8dz++23c/jwYdauXctHH33EvHnz+PDDD0OrHZYvX56LLrooFL4aNGig\n+SqS7/VsnMysBQXBD8Dhgvz1yj/rv/ciItFxNvCpmS0HRgMzPQu9Ltmxz5aISJbExMRQv3596tev\nH1pwY/369aHw9dFHHzFhwgQASpUqRcuWLUPhq1GjRhQooB9hkr/8uVNTXn65D5/+tJG7ev6Ju3p1\njHaTREROS+7+NzN7AOgAXAcMM7O3gFfcfUNm69FvKiJyyjAzateuTe3atbnxxhsB2LJlSyh4zZs3\nj8mTJwNQrFgxmjdvHgpfCQkJFCxYMJrNFzlpr7zyCp9O+jePPPIIfxv0p2g3R0TktObubmY/AD8A\nh4BSwAQzm+3umRrjrbAlIqe0atWq0bdvX/r27QvA1q1b+fjjj0Ph67777gOgSJEiJCUlhcJXYmIi\nRYpoZwrJO1auXMmtt95Ku3bt+Otf/xrt5oiInNbMbBDwRyAVeBn4i7sfNLMY4Gsgx8PWMEATl0Qk\nV51zzjn07t2b3r0DG7j/9NNPzJ8/P9T79dBDD+HuFCxYkISEBFq2bEmLFi1o1qwZpUuXjnLrRTK2\nd+9eevXqRcmSJXnttdeIjY2NdpNERE53pYHL3H1LeKG7HzazrpmtJMthK5KxiiIiOaVcuXL06NGD\nHj16ALBz504WLFjARx99xPz583n22WcZOnQoAA0aNKBFixahAFa1atVoNl0ECKxyO2DAAL766is+\n+OADzj777Gg3SUREoHD6oGVmQ939Xndfm9lKIgpbZlbT3TeYWWV3/zaSe0VEckPJkiXp0qULXbp0\nAWDfvn188sknzJ8/n/nz5/PGG2/w4osvAlClSpVQ8GrRogX169fXym+S61599VXGjRvH3//+d9q0\naRPt5oiISEB74N50ZZ0zKDuuSHu2rgUeBB4nMIZRROSUVqRIEVq1akWrVq0ASEtLY9WqVcyfP5+P\nP/6YuXPnhpabL1myJM2bNw+FrwsvvJBChQpFs/mSz61Zs4ZbbrmF1q1b88ADD0S7OSIipz0zuxkY\nANQws5Vhp4oBCyKtL9Kw9U3wvbmZPQSsAq5w996ZudnMOgH/ILA/18vu/mS684WAsUBjYBvQ2903\nm1kTYNSRy4Ah7v5OhG0XESE2NpZGjRrRqFEjBg4ciLuzefNmPv7441Dv17Rp0wAoVKgQF154YWjo\nYbNmzShZsmSUv4HkFz///DO9evWiWLFivP7665qnJSJyangDmAE8AQwOK9/j7tsjrSyisOXuLwc/\nLgReBRoSWCjjhMwsFhhOoEvuWwKbhE129y/CLrsB2OHutcysDzAU6A2sBhLc/ZCZVQQ+N7Mp7n4o\nkvaLiKRnZsTFxREXF8cf/xjosP/pp59YuHBhqPfrmWee4cknn8TMaNCgQWjoYcuWLalcuXKUv4Hk\nVbfddhtr165l5syZVKxYMdrNERERwN13AbuAK7OjvhOGLTP7h7sPMrMi7r4vWDzM3TcBmyJ4VhNg\nvbtvDNb7JtAdCA9b3YEhwc8TCGweZu7+S9g1hYGId28WEcmscuXK0b17d7p37w7AL7/8wieffBLq\n/Ro7diwjRowAAkvTHxl22KxZM+rXr68eCjmh1157jdGjR3P//ffTvn37aDdHRESCzGy+u7cwsz38\nljmOrMDu7l48kvoy07N1UfB9PoHhfbj7kkgeElQJ+G/Y8bdA4rGuCfZi7QLKAKlmlgiMBqoBfdWr\nJSK55cwzzyQ5OZnk5GQADh06xMqVK0M9X3PmzOH1118HoHjx4jRt2pRmzZrRrFkzEhMTKV48op/L\nks+tW7eO/v3707JlS4YMGRLt5oiIREV2Ty8yszrA+LAqagAPuvvzZjYE+DPwU/Dcfe4+PaN2uXuL\n4HuxbPiamQpbc8xsEVDBzK4HPgdWu/uv2dGAzAoGvPpmdh4wxsxmuPv+8GvMrB/QD8ixJZ3d1akm\ncrorUKAA8fHxxMfHc9ttt+HubNy4kUWLFrFgwQIWLlwY2u8rJiaGhg0bhsJXs2bNiIuLw0zbFJ6O\n9u3bR69evfDKDbCLWjN69qf065wU7WaJiOSqHJpetA5oFFb/d0D4Gg/PufszEbTxCuB9d99jZn8D\n4oFH3H1FJN/1hGHL3e82s5rAXCAOuIRA6DlAIHRlanEMAl+4Sthx5WBZRtd8a2YFgBIEkmx4e9aa\n2V6gAbA03blRBJNuQkJCjqYi/aIkIkeYGTVr1qRmzZpcc801AOzevZslS5awcOFCFixYwGuvvca/\n/vUvACpUqHBU+IqPj9eqh6eJO++8k5Xb0+DalcyLXcq8BU8DcxS4ROR0k9PTi9oCG9LvkxWhB9z9\nbTNrAbQDngZe5Pcj844rUwtkBPfWaufuXx0pM7OzCASezPoUqG1mcQRCVR/gqnTXTCawvPwi4HLg\nQ3f34D3/DSbYakBdYHMEzxYRyVXFixenffv2ofk4aWlprFmzhoULF4YC2KRJk4DAqocJCQlHBbDy\n5ctHs/mSA9566y1efPFFql9zLZtjv4SYNPADTFyWorAlIqebnJ5e1Af4T7qygWb2RwKdNXe5+44T\ntDEt+N4FGOXu08zs0RN/taNlevfO8KAVPN7r7osjuP8QMBCYCawF3nL3NWb2sJldErzsFaCMma0H\n7uS35RZbEOgi/IxAd+AAd0/N7LNFRKItNjaW888/n/79+zN27Fg2bNjA999/z6RJk7j11ltxd/7x\nj3/Qo0cPzj77bGrXrs21117LyJEjWbVqFWlpaSd+iJyyNmzYwI033kjTpk25p/cNkFYQ0mLhcEF6\nNk6OdvNERLJbWTNbGvbql52Vu/sSd68PXAj81cwKHzlnZgUJjMR7O+yWfwE1CQwz/B74v0w85jsz\nG0lg6OL04ByyTGenIyLdZ+ukBCeiTU9X9mDY5/3AFRncNw4Yl+MNFBHJRRUqVKBHjx706NEDgP37\n97N8+fJQ79f777/P2LFjgUBPWVJS0lELbxQrli1zdyWH/frrr/Tu3ZsCBQrw5ptvUq1aNWJj5zBx\nWQo9GyerV0tE8qNUd084zvmcnF7UGVju7j+GXRf6bGYvAVMz8R16AZ2AZ9x9Z3B+2F8ycd9RcjVs\niYjIsRUuXDgUpiCwIM+mTZtCi24sXLiQIUOG4O6hPb+aNm0aetWtW5eYmIj/6CY57J577mHZsmW8\n++67VKtWDYB+nZMUskTkdJaT04uuJN0QQjOr6O7fBw97EFhk47iCc8MmhR1/T6BXLCKZDltmdivw\nWibGN4qISDYwM2rUqEGNGjXo27cvEFh4Y/HixaHXhAkTeOmllwAoUaIEiYmJofCVmJhI6dKlo/kV\nTnvvvvsuL7zwAoMGDQrt2yYicroLBqUj04tigdFHphcBS919MoHpReOC04u2EwhkEJheNNjMDgKH\nCZteZGZFCaxweFO6Rz5lZo0ILKaxOYPzvxMcNtgTqE5YZnL3hyP5rpH0bJ1NYFnG5QQmpM10rYMu\nIpKrihcvTocOHejQoQMAhw8f5uuvvz4qgD366KMcPnwYgHPPPZekpKRQAGvQoAEFCmhQQ27YvHkz\n1113HY0bN2bo0KHRbo6IyCklJ6YXufvPBBbRSF/eNwtNfA/YBSwDsrzlVab/H9fd/2ZmDwAdgOsI\nLL/4FvCKu2/IagNERCTrYmJiqFOnDnXq1OHaa68FYO/evSxdujQUvmbMmMGYMWOAwAbNF1544VHD\nDytUqBDNr5AvHZmndfjwYcaPH6+l/UVE8p7K7t7pZCuJ6M+bwXGSPwA/AIeAUsAEM5vt7vecbGNE\nROTknXXWWSQnJ5OcnAwE5n5t2bKFRYsWhQLYs88+y8GDBwGoXr36UeGrUaNGCgcn6fbbb+eTTz5h\n0qRJ1KxZM9rNERGRyC00s4buvupkKolkztYg4I9AKvAy8Bd3P2hmMcDXgMKWiMgpyMyoXr061atX\n58orrwQCKx+uWLGCxYsXs2jRIhYsWMCbb74JBPb9io+PPyqAValSRZu5Z9KYMWN48cUXueeee0Ir\nTYqISJ7TArjOzDYSGEZoBPqezo+kkkh6tkoDl6XfidndD5tZ10geKiIi0VW4cGGSkpJISkrijjvu\nAOC7775jyZIlod6vF198keeeew6AihUrkpiYSGJiIk2aNOHCCy/U0vMZ+Oyzz+jfvz+tW7fmscce\ni3ZzREQk6zpnRyWRhK3C6YOWmQ1193vdfW12NEZERKKnUqVKXHbZZVx22WUAHDx4kJUrV4bC15Il\nS3j33XcB6Nu3b2gPsLxo7969FC1aNFt763bs2EHPnj0pXbo0//nPf7QQiYhI3vYNcDVQw90fNrOq\nQAVgy/FvO1okG7K0z6AsWxKfiIices444wwaN27MLbfcwrhx4/jqq6/Ytm0bM2bMYODAgdFuXpbN\nmjWLMmXKsGLFimyr8/Dhw/zxj3/km2++4e233+bss8/OtrpFRCQqRgBJBPbtAtgDDI+0khP+2c3M\nbgYGADXNbCWB8YoAxYAFkT4wr9Nq9yJyOitdujSdOp304kxR1ahRIw4ePMjUqVOJj4/PljoffPBB\npk6dygsvvBDalFpERPK0RHePN7MVAO6+w8wKRlpJZnq2Xge6Ae8CXYOvLsAF7n51pA/MLzRRXEQk\nbypfvjyJiYlMmTIlW+obN24cjz32GDfeeGOe7vETEZGjHDSzWAIbIWNm5QhsohyRzISt6e6+GbgE\nWA2sCr5/Y2a7I32giIhItF166aUsXbqUTZs2nVQ9CxYs4MYbbyQ5OZnhw4frD3EiIvnHC8A7wNlm\n9hgwH3g80kpOGLbcvUXw/Sx3Lx72KubuxSN9oIiISLT16dMHgDfeeCPLdWzatIkePXpQrVo1Jk6c\nSMGCEY8uERGRU5S7v05ga6vHga3Ape7+dqT1RLJAhoiISL5QrVo12rRpw4svvhja3DkS33//Pe3b\nt+fQoUNMnTqV0qVL50ArRUQkt5nZnUdewMVAoeCrc7AsIpkOW2Z2hZkVC35+wMwmmVn2zCwWERHJ\nZbfffjvffvstkyZNiui+1NRU2rdvzw8//MD06dM599xzj3ntqBmL6PjoE4yasehkmysiIrmjWPCV\nANwMVAq++gMRZ59INgF5wN3fNrMWQFvgaeBfQGKkDxUREYm2Ll26UKtWLZ5++mmuuOIKYmJO/PfH\nbdu20alTJzZs2MCMGTNo2rTpMa8dNWMRNy1oC7EHmLWgIDCHfp2TsvEbiIhIdnP3hwDMbB4Q7+57\ngsdDgGmR1hfJMMK04HsXYJS7TwM0QF1ERPKkmJgYHnzwQZYtW8bIkSNPeP3mzZtp3rw5q1evZuLE\niSQnJx/3+onLUiD2AMSkQcyBwLGIiOQVZwMHwo4PBMsiEknY+s7MRgJ9gOlmVijC+0VERE4p11xz\nDe3atePee+9l3bp1x7wuJSWFpk2b8uOPP/LBBx9w8cUXn7Duno2TIa0gpMXC4YKBYxERySvGAp+Y\n2ZBgr9YS4NVIK4kkLPUCZgId3H0nUAr4S6QPFBEROVWYGaNGjaJIkSK0bt2aVatWHXV+27Zt3Hbb\nbbRt25YSJUqwYMECWrRokam6+3VOYmTzOXQo+Agjm2sIoYhIXuLujwHXATuCr+vc/YlI64lkzlYa\nUBi4wszC75sV6UNFREROFXFxcXz44Ye0bduW+Ph4OnbsSM2aNdm0aRMzZ87k0KFD3HTTTTz11FOc\nddZZEdXdr3OSQpaISB7l7suB5SdTRyRh6z1gZ/CBv57MQ0VERE4l9evXZ+XKlTz++OPMmjWLlJQU\nKleuTP/+/bnpppuoV69etJsoIiJ5UCRhq7K7d8qxloiIiERR+fLlef7556PdDBERyUcimbO10Mwa\n5lhLRERERERETgFmdquZlTrZeiIJWy2A5Wa2zsxWmtkqM1t5sg3Ia9w92k0QEREREZGcdTbwqZm9\nZWadzMyyUkkkwwg7Z+UB+VUW/71FREREROQU5+5/M7MHgA4EViUcZmZvAa+4+4bM1hNJz9Y3QEvg\nWnffAjhZ2NhLRERERETkVOeBIW0/BF+HCGx9NcHMnspsHZGErRFAEnBl8HgPMDyC+0VERERERE55\nZjbIzJYBTwELgIbufjPQGOiZ2XoiGUaY6O7xZrYCwN13mFnBSBotIiIiIiKSB5QGLguO6Atx98Nm\n1jWzlUTSs3XQzGIJDB/EzMoBhyO4X0REREREJC8onD5omdlQAHdfm9lKIglbLwDvAGeb2WPAfODx\nCO4XERERERHJC9pnUBbxgoGZHkbo7q8Hxy22DRZdGkmqExEREREROZWZ2c3AAKBGum2uihGYuxWR\nE4YtM7vzGKc6m1lnd3820oeKiIiIiIicgt4AZgBPAIPDyve4+/ZIK8vMMMJiwVcCcDNQKfjqD8RH\n+kARERERETm9BTcKXmdm681scAbnC5nZ+OD5JWZWPVjexMw+C74+N7MeYfdsNrNVwXNLw8pLm9ls\nM/s6+F7qWO1y913uvtndr3T3LWGviIMWZCJsuftD7v4QUBmId/e73P0uAsseVs3KQ0VERERE5PQU\nXHRvOIE5UPWAK82sXrrLbgB2uHst4DlgaLB8NZDg7o2ATsBIMwsfrdfa3Ru5e0JY2WBgjrvXBuZw\ndI9V+rbND77vMbPdYa89ZrY70u8ayQIZZwMHwo4PoE2NRUREREQkMk2A9e6+0d0PAG8C3dNd0x0Y\nE/w8AWhrZubuv7j7oWB5YYIrpZ9AeF1jgEuPdaG7twi+F3P34mGvYu5ePFPfLkwk+2yNBT4xs3eC\nx5cCr0b6QBERERERydfKhg/jA0a5+6iw40rAf8OOvwUS09URusbdD5nZLqAMkGpmicBooBrQNyx8\nOTDLzBwYGfbMs939++DnH8jFDqNIViN8zMxmAC2DRde5+4qcadapyz0z4VlERERE5LSVmm4YX7Zy\n9yVAfTM7DxhjZjPcfT/Qwt2/M7PywGwz+9Ld56W714NhLENmtodAaLOMHx1Z71YkPVu4+3JgeST3\niIiIiIiIhPkOqBJ2XDlYltE13wbnZJUAtoVf4O5rzWwv0ABY6u7fBcv/FxyN1wSYB/xoZhXd/Xsz\nqwj871gNc/diJ/fVjhbJnC0JY5ZR2BURERERkRP4FKhtZnFmVhDoA0xOd81k4Nrg58uBD4O9UnFH\nFsQws2pAXWCzmRU1s2LB8qJABwKLaaSv61rgvWM17DgLZOzOygIZEfVsiYiIyNFGzVjExGUp9Gyc\nTL/OSdFujojIKS84B2sgMBOIBUa7+xoze5hAD9Vk4BVgnJmtB7YTCGQALYDBZnYQOAwMcPdUM6sB\nvBPsECkAvOHu7wfveRJ4y8xuALYAvY7TttACGdnxXRW2REREsmjUjEXctKAtxB5g1oKCwBwFLhGR\nTHD36cD0dGUPhn3eD1yRwX3jgHEZlG8E/nCMZ20D2p5kk7Mk08MIzezW420AJiIicrqZuCwFYg9A\nTBrEHAgci4hInmdmhc3sTjObZGYTzewOMyscaT2R7rP1qZm9FdzxWZOWRETktNazcTKkFYS0WDhc\nMHAsIiL5wVigPvBPYBiBzZd/16N2IpEs/f43M3uAwGSz64BhZvYW8Iq7b4j0wSIiInldYMjgHM3Z\nEhHJfxq4e72w47lm9kWklUS69Lub2Q8ENgM7BJQCJpjZbHe/J9KHi4iI5HX9OicpZImI5D/Lzayp\nuy8GCG6kvPQE9/xOpsOWmQ0C/gikAi8Df3H3g2YWA3wNKGyJiIiIiEieZWarCGxqfAaw0My+CZ6q\nCnwZaX2R9GydA1zm7lvCGjPU3e81s66RPlhEREREROQUk625JpIFMtqHB62gzhDYvTn7miQiIiIi\nIpL73H3LkRewm8AigdXCXhE5Yc+Wmd0MDABqmNnKsFPFgAWRPlBERERERORUZmY3AoOAysBnQFNg\nEdAmknoyM4zwDWAG8AQwOKx8j7tvj+RhIiIiIiIiecAg4EJgsbu3NrO6wOORVnLCsOXuu4BdwJUR\nNzEfcvdoN0FERERERHLWfnffb2aYWSF3/9LM6kRayQnnbJnZ/OD7HjPbHfbaY2a7I3lYcDPkdWa2\n3swGZ3C+kJmND55fYmbVg+XtzWyZma0KvkfUfZcTtKeziIiIiEi+9a2ZlQTeBWab2XtA+vUrTigz\nPVstgu/FIm5iGDOLBYYD7YFvgU/NbLK7h28OdgOww91rmVkfYCjQm8By893cfauZNQBmApVOpj0i\nIiIiIiIZcfcewY9DzGwuUAJ4P9J6ItrU+CQ1Ada7+0YAM3sT6A6Eh63uwJDg5wnAMDMzd18Rds0a\noEiwO+/XnG+2iIiIiIicTsysMIFFAlsQ2HdrPpGt5A5kbjXCPcEHhI+bO3Ls7l48k8+qBPw37Phb\nIPFY17j7ITPbBZQh0LN1RE9guYKWiIiIiIjkkLHAHuCfweOrgHHAFZFUkplhhCc1fDA7mVl9AkML\nOxzjfD+gH0DVqlVzsWUiIiIiIpKPNHD3emHHc83si2NefQwRd4WdhO+AKmHHlYNlGV5jZgUIjI3c\nFjyuDLwD/NHdN2T0AHcf5e4J7p5Qrly5bG6+iIiIiIicJpabWdMjB2aWCCyNtJLMDCOc7+4tjjWc\nMIJhhJ8Ctc0sjkCo6kOgOy7cZOBaAhuGXQ586O4eXAlkGjDY3bWRsoiIiIiIZDszW0Ug85zB/7N3\n5/FVlGf/xz9fwiJYV0ChgsbWpe4LCKRuVGqL1ooW11aL1T5YrVZb+zyVn+vjUsVarQsu1Fr3FZdi\n1WpF4oKRB3CjilSqKCCioKKiGJJcvz9mAoeYwDnJWZLwfb9e53Vm7pm55zoDnHDlvucaeE7SO+mm\nTYHXc+2vaNUI03uwTiKpJFgG3BgRr0o6D5gaEeOBvwC3SpoFfEiSkAGcBGwBnC3p7LTtexHxfkti\nMjMzMzMzy3BAPjvLuhphIxU5ngGui4il2fYREY8AjzRoOztjeSmN3HQWERcAF2R7HjMzMzMzs1xF\nxPJnaUnaCdgzXX0mIl7Otb9c7tm6BdiOpCLH1enyrbme0MzMzMzMrDWTdApwO7BR+rpN0sm59pPL\nc7byUpHDzMzMzMyslTsOGBgRSwAkjSapK3HVKo9qIJeRrbxU5DAzMzMzM2vlBNRmrNeycqHArGRT\njTCvFTnMzMzMzMxaub8CkyU9kK4fRFLMLyfZTCPMa0WOti4iSh2CmZmZmZkViCQB9wKVJMUBAX4W\nES/m2lc2pd8zK3JsAGwJrJWxy9tfOWgNkPwZmJmZmZlZe5I+5/eRiNgBeKElfeVS+v3nwClAH+Al\nYBDJTWL7tCQAMzMzMzOzVuYFSbtFxJSWdJJLgYxTgN2AtyPiO8AuwMctObmZmZmZmVkrNBCokvQf\nSa9Imi7plVw7yaX0+9KIWCoJSV0i4nVJW+d6QjMzMzMzs1bu+/noJJeRrbmS1gceBP4p6W+sofdr\nmcnq7R8AACAASURBVJmZmZlZ80kaKmmmpFmSTm9kexdJd6fbJ0sqT9sHSHopfb0s6eC0va+kiZJe\nk/Rq+lDi+r7OlTQv47j9VxdfRLzd2CvXz5n1yFZEHJwunitpIrAe8I9cT2hmZmZmZmsuSWXAGGBf\nYC4wRdL4iHgtY7fjgI8iYgtJRwCjgcOBfwH9I6JGUm/gZUkPATXAaRHxgqR1gGmS/pnR5+URcWkO\nMa4FnEhSjTCAZ4FrI2JpLp81l5Gt5SLiqYgYHxHVzTnezMzMzMzWWAOAWRHxZppP3AUMa7DPMODm\ndHkcMESSIuLziKhJ29ciSYSIiPkR8UK6/CkwA9ikBTHeAmwHXAVcDWwL3JprJ7lUI8xLdmdmZmZm\nZmu0TYA5GetzSQpSNLpPOoq1GOgOLJQ0ELgR2Aw4OiP5AiCdcrgLMDmj+SRJPwWmkoyAfbSaGLeP\niG0z1idKeq3JvZuQy8hWXrI7MzOztmjso1V8/4KLGPtoValDMTNr7XpImprxGpnPziNickRsR1Ip\nfVQ6KASApK8B9wGnRsQnafO1wDeBnYH5wB+zOM0LkgZl9DuQJFHLSS7VCPOS3ZmZmbU1Yx+t4vhJ\nQ6CsmscndQYmMHK/ilKHZWbWWi2MiP6r2D4P6Jux3idta2yfuZI6ktSLWJS5Q0TMkPQZsD0wVVIn\nkkTr9oi4P2O/BfXLkv4M/D2Lz9APeE7SO+n6psBMSdOTLmPHLPrIaWQrL9mdmZlZW3PftEooq4YO\ntdChOlk3M7PmmgJsKWlzSZ2BI4DxDfYZD4xIlw8BnoyISI/pCCBpM+BbwGxJAv4CzIiIyzI7Sgtp\n1DuYpMjG6gwFNgf2Tl+bp20HAD/M9oOudmSrPnsDOvHV7O71bE9kZmbWVg3vNzgZ0YpqqOvM8H6D\nSx2SmVmbld6DdRLwGFAG3BgRr0o6D5gaEeNJEqdbJc0CPiRJyCCpH3G6pGVAHXBiRCyUtAdwNDBd\n0kvpvv8vIh4BLpG0M0lOMxs4PosY8/KIq2ymER6QjxO1FxFR6hDMzKzIkimDE7hvWiXD+w32FEIz\nsxZKk6BHGrSdnbG8FDi0keNupZG6ERHxLKAmznV0S+NtrtUmW5lZnaSdgD3T1Wci4uVCBWZmZtaa\njNyvwkmWmZnlJOt7ttKnMN8ObJS+bpN0cqECa+2SaaFmZmZmZtbeKHGUpLPT9U0lDci1n1yqER4H\nDIyIJekJRwNVJKXgzczMzMzM2otrSO4J2wc4D/iUpNLhbrl0kkuyJaA2Y72WJuZFmpmZmZmZtWED\nI2JXSS8CRMRHaeXEnOSSbP0VmCzpgXT9IJIqIWZmZmZmZu3JMkllJBUMkdSTZKQrJ1klW2nd+nuB\nSpJyiwA/i4gXcz2hmZmZmZlZK3cl8ACwkaQLSZ71dWaunWSVbKUPEHskInYAXsj1JGZmZmZmZm1F\nRNwuaRowhOTWqYMiYkau/eQyjfAFSbtFxJRcT2JmZmZmZtaWRMTrwOst6SOXZGsgcJSk2cASkgwv\nImLHlgRgZmZmZmbWmkjqD5wBbEaSMzUr98kl2fp+Lh2bmZmZmZm1UbcD/w1MpxmFMerlkmwtAE4k\nKZARwLPAtc09sZmZmZmZWSv1QUSMb2knuSRbt5A8zKv+IcY/Bm4FDm1pEGZmZmZmZq3IOZJuACYA\nX9Y3RsT9uXSSS7K1fURsm7E+UdJruZzMzMzMzMysDfgZ8C2gEyumEQZQsGTrBUmDIuJ5AEkDgam5\nnKw9iIhSh2BmZmZmZoW1W0Rs3dJOckm2+gHPSXonXd8UmClpOmtgVcLkOc9mZmZmZtYOPSdp24ho\n0Uy+XJKtoS05kZmZmZmZWRsxCHhJ0lsk92wVtvR7RLydW3xmZmZmZmZtUl4GmnIZ2TIzMzMzM2v3\n8jXQ5GTLzMzMzMwMkPRsROwh6VOS6oPLN5FMI1w3l/6cbJmZmZmZmQERsUf6vk4++uuQ7Y5KHCXp\n7HR9U0kD8hGEmZmZmZlZayFpdDZtq5N1sgVcA1QAR6brnwJjcj2hmZmZmZlZK7dvI2375dpJLtMI\nB0bErpJeBIiIjyR1zvWEZmZmZmZmrZGkE4ATgW9IeiVj0zrApFz7yyXZWiapjPRGMUk9gbpcT2hm\nZmZmZtZK3QE8ClwEnJ62fR2YGREf5tpZLsnWlcADwMaSLgQOBc7M9YRmZmZmZmatUUQsBhaz4tYp\nJD0QEbs2p79cHmp8u6RpwJC06cCIeL05JzUzMzMzM2sj1NwDs062JPUHzgDK0+OOl0RE7Njck5uZ\nmZmZmbVyf27ugblMI7wd+G9gOmvwvVoRsfqdzMzMzMyszZI0OiJ+BxAR1zRsy1Yupd8/iIjxEfFW\nRLxd/8rlZGZmZmZmZm1AXkq/55JsnSPpBklHSvpR/SvXE5qZmZmZ2ZpN0lBJMyXNknR6I9u7SLo7\n3T5ZUnnaPkDSS+nrZUkHr65PSZunfcxK+2zy8VWSTpA0HfiWpFfS13RJb5HM8MtJLtMIfwZ8C+jE\nimmEAdyf60nNzMzMzGzNlD5OagzJ6NFcYIqk8RHxWsZuxwEfRcQWko4ARgOHA/8C+kdEjaTewMuS\nHiLJS5rqczRweUTcJem6tO9rmwgvs/T771hRHOPTQpd+3y0its71BGZmZmZmZhkGALMi4k0ASXcB\nw4DMZGsYcG66PA64WpIi4vOMfdYifQZwU31KmgHsA/w43e/mtN9Gk6360u+SXgeOydyWFgc8L5cP\nmss0wuckbZtL52ZmZmZmtsbpIWlqxmtkg+2bAHMy1uembY3uExE1JM++6g4gaaCkV0mm9f0i3d5U\nn92Bj9N9mjpXYz4DlqSvWpL7tcqzOG4luYxsDQJeSucrfkkypBa5lH6XNBS4AigDboiIixts7wLc\nAvQDFgGHR8RsSd1JMtrdgJsi4qQc4jYzMzMzs+JZGBH9C9V5REwGtpO0DXCzpEcLcI4/Zq5LuhR4\nLNd+ckm2hubaeaYWzs1cCpwFbJ++zMzMzMysbZoH9M1Y75O2NbbPXEkdgfVIBmOWi4gZkj4jyQ+a\n6nMRsL6kjunoVmPnyka39NicZD2NMLPcezNLvy+fRxkR1UD93MxMw0jmUUIykjUknZu5JCKeJUm6\nzMzMzMys7ZoCbJlWCewMHAGMb7DPeGBEunwI8GRERHpMRwBJm5EU8JvdVJ+RPCR3YtoHaZ9/W12A\naQXC+mqErwIzgT/l+kFXO7Il6dmI2EPSp6y4AQ1WTCNcN8tzNTaPcmBT+6QVRurnZi7M8hxmZmZm\nZtaKpf/PP4lkWl4ZcGNEvCrpPGBqRIwH/gLcKmkW8CFJ8gSwB3C6pGUkFdJPjIiFAI31mR7zO+Au\nSRcAL6Z9r84BGcs1wIKM+76yttpkKyL2SN/XybXzYktvvhsJsOmmm5Y4GjMzMzMza0xEPAI80qDt\n7IzlpcChjRx3K3Brtn2m7W+SzLLLJb5cZvA1KetphJJGZ9O2CrnMzaSpuZmrEhFjI6J/RPTv2bNn\nDqGZmZnB2Eer+P4FFzH20apSh2JmZiWUPlT5x5L+n6Sz61+59pNL6fd9G2nbL4fjmz03M4dzmJmZ\nNcvYR6s4ftIQHl92FsdPGuKEy8xszfY3knoSNawoAb8k106yuWfrBOBE4BuSXsnYtA4wKdsTtXBu\nJpJmA+sCnSUdBHyvQSXDonDuZ2bWPt03rRLKqqFDLUQ1902rZOR+FaUOy8zMSqNPRLSoGjtkV/r9\nDuBR4CLg9Iz2TyPiw1xO1ty5mem28lzOZWZmlovh/Qbz+KTOENVQ15nh/QaXOiQzMyud5yTtEBHT\nW9JJNgUyFpM8sfnI+jZJvXJNtNoTSaUOwczM8iwZxZrAfdMqGd5vsEe1zMzWQJKmk1Rg7wj8TNKb\nwJesqMS+Yy795fJQ40yPALs281gzM7NWaeR+FU6yzMzWbAesfpfs5VIgI5OHdszMzMzMrF2JiLfT\nsu8DgA/T5aOBy4ENc+2vuaXf/9xIm5mZmZmZWXtwVkR8KmkP4Lskhfyuy7WTZpV+j4hr0sVcSr+b\nmZmZmZm1BbXp+w+AsRHxMNA5105Wm2xJOiG9UWxrSa9kvN4CXlnd8WZmZmZm1vYcdNBB9OvXj+22\n246xY8eWOpximyfpeuBw4BFJXWjGLVhFLf1uZmZmZma5OfXUU3nppZfy2ufOO+/Mn/70p1Xuc+ON\nN7LhhhvyxRdfsNtuuzF8+HC6d++e1zhascOAocClEfGxpN7Af+faSbNKv5uZmZmZWft25ZVX8sAD\nDwAwZ84c3njjjTUm2YqIz4H7M9bnA/Nz7Sfr0u+Szm6sPSLOy/WkZmZmZmaWndWNQBVCZWUlTzzx\nBFVVVXTr1o3BgwezdOnSosfR1uXynK0lGctrkdSgn5HfcMzMzMzMrNQWL17MBhtsQLdu3Xj99dd5\n/vnnSx1Sm5R1shURf8xcl3Qp8FjeIzIzMzMzs5IaOnQo1113Hdtssw1bb701gwYNKnVIRSXpUOAf\nafn3M4FdgQsi4oVc+sllZKuhbkCfFhxvZmZmZmatUJcuXXj00UdLHUYpnRUR92Y8Z+sPwLXAwFw6\nyeWerelApKtlQE/g/FxO1h5ExOp3MjMzMzOztuwrz9mSdEGuneQysnVAxnINsCAianI9oZmZmZmZ\nWStX/5ytfYHRhXzOVr33gOFAef1xktbIaoSSSh2CmZmZmZkVTnGes5XhbyTP25oGfJnriczMzMzM\nzNqCoj9nC+gTEUNzPYGZmZmZmVlbkq9qhLnMO3xO0g65dG5mZmZmZtYGnZUmWvXVCP9CUo0wJ6tN\ntiRNl/QKsAfwgqSZkl7JaDczMzMzs3Zm9uzZbL/99qUOo1S+Uo0Q6JxrJ9lMIzxg9buYmZmZmZm1\nG/XVCL9HC6oRZnPARsCXEfF2RLwN7A1cCZwGfJrrCc3MzMzMrACqquCii5L3PKmpqeEnP/kJ22yz\nDYcccgiff/553vpu5Q4DHgO+FxEfAxvSjGqE2SRb1wPVAJL2Ai4GbiGpTDg21xOamZmZmVmeVVXB\nkCFw1lnJe54SrpkzZ3LiiScyY8YM1l13Xa655pq89NsGfAGsDRyZrncCPs61k2ySrbKI+DBdPpxk\nzuJ9EXEWsEWuJzQzMzMzszyrrITqaqitTd4rK/PSbd++fdl9990BOOqoo3j22Wfz0m8bcA0wiBXJ\n1qfAmFw7ySrZklR/b9cQ4MmMbbmUjjczMzMzs0IYPBg6d4aysuR98OC8dCtplevt2MCI+CWwFCAi\nPqIZBTKySbbuBJ6S9DeS4bRnACRtQTKV0MzMzMzMSqmiAiZMgPPPT94rKvLS7TvvvENVOiXxjjvu\nYI899shLv5KGplXOZ0k6vZHtXSTdnW6fLKk8bd9X0rS0Mvo0Sfuk7etIeinjtVDSn9Jtx0j6IGPb\nz7MIcZmkMiDSPnoCdbl+ztWOTEXEhZImAL2BxyMi0k0dgJNzPaGZmZmZmRVARUXekqx6W2+9NWPG\njOHYY49l22235YQTTmhxn2kSMwbYF5gLTJE0PiJey9jtOOCjiNhC0hHAaJJbmhYCP4yIdyVtT1LE\nYpOI+BTYOeMc04D7M/q7OyJOyiHMK4EHgI0kXQgcApyV62fNahpgRDzfSNu/cz1Ze7Ai1zQzMzMz\na7/Ky8t5/fXXC9H1AGBWRLwJIOkuYBiQmWwNA85Nl8cBV0tSRLyYsc+rQFdJXSLiy/pGSVuRVFR/\nprkBRsTtacI2BBBwUETMyLWfnGvF2xo1V9XMzMzMLN82AeZkrM9N2xrdJyJqSG5f6t5gn+HAC5mJ\nVuoIkpGszFGS4ZJekTROUt/VBSjpZuC9iBgTEVcD70m6cXXHNeRky8zMzMzM8qmHpKkZr5H5PoGk\n7UimFh7fyOYjSOpO1HsIKI+IHYF/AjdncYod0+drAcsLZOySa5yuJmhmZmZmZvm0MCL6r2L7PCBz\ndKlP2tbYPnPTyujrAYsAJPUhuZ/qpxHxn8yDJO0EdIyIafVtEbEoY5cbgEuy+AwdJG2QJllI2pBm\n5E5OtszMzMzMrJimAFtK2pwkqToC+HGDfcYDI4AqkuIUT0ZESFofeBg4PSImNdL3kaw8qoWk3hEx\nP109EMjm3qs/AlWS7k3XDwUuzOK4lTjZMjMzMzOzoomIGkknkVQSLANujIhXJZ0HTI2I8cBfgFsl\nzQI+JEnIAE4CtgDOlnR22va9iHg/XT4M2L/BKX8l6UCgJu3rmCxivEXSVGCftOlHDaolZsXJlpmZ\nmZmZFVVEPAI80qDt7IzlpSSjSQ2PuwC4YBX9fqORtlHAqFzik7Rtmly9ltE2OCIqc+nHBTLMzMzM\nzMxWdo+k3ynRVdJVwEW5duJky8zMzMzMbGUDSQp0PEdyj9m7wO65duJky8zMzMysHaiqgosuSt7z\n4ZZbbmHHHXdkp5124uijj85Pp23HMuALoCuwFvBWRNTl2onv2TIzMzMza+OqqmDIEKiuhs6dYcIE\nqKhofn+vvvoqF1xwAc899xw9evTgww8/zF+wbcMU4G/AbkAP4DpJwyPiK/eRrYpHtszMzMzM2rjK\nyiTRqq1N3isrW9bfk08+yaGHHkqPHj0A2HDDDVscYxtzXEScHRHLImJ+RAwjKUefEydbZmZmZmZt\n3ODByYhWWVnyPnhwqSNqmyT9D0BETJXUcBRrm1z7c7KVo4godQhmZmZmZiupqEimDp5/fsunEALs\ns88+3HvvvSxatAhgTZpGeETGcsNy8UNz7cz3bJmZmZmZtQMVFS1Psuptt912nHHGGey9996UlZWx\nyy67cNNNN+Wn89ZNTSw3tr5aTraaQcr5OpuZmZmZtSkjRoxgxIgRpQ6j2KKJ5cbWV8vJlpmZmZmZ\nWWInSZ+QjGJ1TZdJ19fKtTMnW2ZmZmZmZkBElOWzPxfIMDMzMzMzKwAnW2ZmZmZmZgXgZMvMzMzM\nzKwAnGyZmZmZmZkVgJMtMzMzMzNbpXPPPZdLL7201GG0OU62zMzMzMzMCqCoyZakoZJmSpol6fRG\ntneRdHe6fbKk8oxto9L2mZK+X8y4zczMzMxau6o5VVz0zEVUzanKS38XXnghW221FXvssQczZ87M\nS59rmqI9Z0tSGTAG2BeYC0yRND4iXsvY7Tjgo4jYQtIRwGjgcEnbAkcA2wFfB56QtFVE1BYrfjMz\nMzOz1qpqThVDbhlCdW01ncs6M+GnE6joW9Hs/qZNm8Zdd93FSy+9RE1NDbvuuiv9+vXLY8RrhmKO\nbA0AZkXEmxFRDdwFDGuwzzDg5nR5HDBEktL2uyLiy4h4C5iV9mdmZpaTsY9W8f0LLmLso/n5za+Z\nWWtQObuS6tpqaqOW6tpqKmdXtqi/Z555hoMPPphu3bqx7rrrcuCBB+Yn0DVM0Ua2gE2AORnrc4GB\nTe0TETWSFgPd0/bnGxy7SaECra2t5Yorrmh02+TJkwt1WjMzK7Cxj1Zx/KQhUFbN45M6AxMYuV/z\nf/NrZtZaDC4fTOeyzstHtgaXDy51SEZxk62CkzQSGAmw6aabNrufuro6TjvttCa3b7HFFs3u28zM\nSue+aZVQVg0daiGquW9apZMtM2sXKvpWMOGnE6icXcng8sEtmkIIsNdee3HMMccwatQoampqeOih\nhzj++OPzFO2ao5jJ1jygb8Z6n7StsX3mSuoIrAcsyvJYImIsMBagf//+0dxAO3bsyOLFi5vc3rVr\n1+Z2bWZmJTS83+BkRCuqoa4zw/sNLnVIZmZ5U9G3osVJVr1dd92Vww8/nJ122omNNtqI3XbbLS/9\nrmmKmWxNAbaUtDlJonQE8OMG+4wHRgBVwCHAkxERksYDd0i6jKRAxpbA/xUqUEmsu+66herezMxK\nJBnFmsB90yoZ3m+wR7XMzFbhjDPO4Iwzzih1GG1a0ZKt9B6sk4DHgDLgxoh4VdJ5wNSIGA/8BbhV\n0izgQ5KEjHS/e4DXgBrgl65EaGZmzTFyvwonWWZmVhRFvWcrIh4BHmnQdnbG8lLg0CaOvRC4sKAB\nmpmZmZmZ5UlRH2psZmZmZma2pnCyZWZmZmZmVgBOtszMzMzMrKgkDZU0U9IsSac3sr2LpLvT7ZMl\nlaft+0qaJml6+r5PxjGVaZ8vpa+NVtVXMTjZMjMzMzOzopFUBowB9gO2BY6UtG2D3Y4DPoqILYDL\ngdFp+0LghxGxA0kV81sbHPeTiNg5fb2/mr4KzsmWmZmZmZkV0wBgVkS8GRHVwF3AsAb7DANuTpfH\nAUMkKSJejIh30/ZXga6SuqzmfI321eJPkQUnW2ZmZmZmVkybAHMy1uembY3uExE1wGKge4N9hgMv\nRMSXGW1/TacQnpWRUGXTV0E42TIzMzMzs3zqIWlqxmtkvk8gaTuS6YDHZzT/JJ1euGf6Ojrf581V\nUZ+zZWZmZmZm7d7CiOi/iu3zgL4Z633Stsb2mSupI7AesAhAUh/gAeCnEfGf+gMiYl76/qmkO0im\nK96yqr4Krd0mW9OmTVso6e0WdtOD5Ca8NZmvQcLXIeHr4GtQr6XXYbOWnDwP3/H+c0z4OiR8HRK+\nDglfh8J/x08BtpS0OUkidATw4wb7jCcpgFEFHAI8GREhaX3gYeD0iJhUv3OaRK0fEQsldQIOAJ5Y\nVV8t+HxZU5HO0yZJmrqarLzd8zVI+DokfB18Deq19evQ1uPPF1+HhK9Dwtch4etQnGsgaX/gT0AZ\ncGNEXCjpPGBqRIyXtBZJpcFdgA+BIyLiTUlnAqOANzK6+x6wBHga6JT2+QTwm4iobaqvQn6+eu12\nZMvMzMzMzFqniHgEeKRB29kZy0uBQxs57gLggia67dfEuRrtqxhcIMPMzMzMzKwAnGyt2thSB9AK\n+BokfB0Svg6+BvXa+nVo6/Hni69Dwtch4euQ8HXwNcgb37NlZmZmZmZWAB7ZMjMzMzMzKwAnW42Q\nNFTSTEmzJJ1e6nhKQVJfSRMlvSbpVUmnlDqmUpFUJulFSX8vdSylIml9SeMkvS5phqSKUsdUCpJ+\nnf57+JekO9PqRu2epBslvS/pXxltG0r6p6Q30vcNShljU1b3fS6pi6S70+2TJZUXP8rCy+I6/Cb9\nvn9F0gRJLSrN31pl+/Nd0nBJIandVaTL5hpIOizj5/8dxY6xGLL4N7Fp+v+gF9N/F/uXIs5Cauy7\nvcF2SboyvUavSNq12DG2B062GpBUBowB9gO2BY6UtG1poyqJGuC0iNgWGAT8cg29DgCnADNKHUSJ\nXQH8IyK+BezEGng9JG0C/AroHxHbk5SVPaK0URXNTcDQBm2nAxMiYktgQrreqmT5fX4c8FFEbAFc\nDowubpSFl+V1eJHk7/aOwDjgkuJGWXjZ/nyXtA7J9/7k4kZYeNlcA0lbkpTV3j0itgNOLXqgBZbl\n34UzgXsiYheS7/prihtlUdzEV7/bM+0HbJm+RgLXFiGmdsfJ1lcNAGZFxJsRUQ3cBQwrcUxFFxHz\nI+KFdPlTkv9cb1LaqIovfUL5D4AbSh1LqUhaD9gL+AtARFRHxMeljapkOgJd0wcndgPeLXE8RRER\nT5M8lyTTMODmdPlm4KCiBpWdbL7PMz/HOGCIJBUxxmJY7XWIiIkR8Xm6+jzQp8gxFkO2P9/PJ0m6\nlxYzuCLJ5hr8FzAmIj4CiIj3ixxjMWRzHQJYN11ej3b4fd/Ed3umYcAtkXgeWF9S7+JE13442fqq\nTYA5GetzWQOTjEzptJpdaIe/5cvCn4D/AepKHUgJbQ58APw1nU5xg6S1Sx1UsUXEPOBS4B1gPrA4\nIh4vbVQltXFEzE+X3wM2LmUwTcjm+3z5PhFRAywGuhcluuLJ9efaccCjBY2oNFZ7HdJpUn0j4uFi\nBlZE2fxd2ArYStIkSc9LWtXIR1uVzXU4FzhK0lySZ0GdXJzQWhX/nzgPnGzZKkn6GnAfcGpEfFLq\neIpJ0gHA+xExrdSxlFhHYFfg2nQ6xRJa4ZSxQkvvSRpGknx+HVhb0lGljap1iKSsrUvbtgPp3+n+\nwB9KHUuxSeoAXAacVupYSqwjybSxwcCRwJ8lrV/SiErjSOCmiOgD7A/cmv4dMcuJ/9J81Tygb8Z6\nn7RtjSOpE0midXtE3F/qeEpgd+BASbNJphjsI+m20oZUEnOBuRFRP7I5jiT5WtN8F3grIj6IiGXA\n/cC3SxxTKS2on06SvrfGqUbZfJ8v3yedHroesKgo0RVPVj/XJH0XOAM4MCK+LFJsxbS667AOsD1Q\nmX7vDwLGt7MiGdn8XZgLjI+IZRHxFvBvkuSrPcnmOhwH3AMQEVXAWkCPokTXevj/xHngZOurpgBb\nStpcUmeSmyLHlzimokvvWfgLMCMiLit1PKUQEaMiok9ElJP8PXgyIta4kYyIeA+YI2nrtGkI8FoJ\nQyqVd4BBkrql/z6GsAYWCskwHhiRLo8A/lbCWJqSzfd55uc4hOTfeXsbpVvtdZC0C3A9SaLVGhPn\nfFjldYiIxRHRIyLK0+/950mux9TShFsQ2fybeJBkVAtJPUimFb5ZzCCLIJvr8A7J9zyStiFJtj4o\napSlNx74aVqVcBDJ9Pn5qzvIVtax1AG0NhFRI+kk4DGSamM3RsSrJQ6rFHYHjgamS3opbft/EfFI\nCWOy0jkZuD39ofQm8LMSx1N0ETFZ0jjgBZJqnS8CY0sbVXFIupPkP1890vsXzgEuBu6RdBzwNnBY\n6SJsXFPf55LOA6ZGxHiSXyrdKmkWyY3i7a7CZJbX4Q/A14B70/og70TEgSULugCyvA7tWpbX4DHg\ne5JeA2qB/46IdjXam+V1OI1kCuWvSaZJH9PefhHTxHd7J4CIuI7kXrX9gVnA56yBP/vzQe3s742Z\nmZmZmVmr4GmEZmZmZmZmBeBky8zMzMzMrACcbJmZmZmZmRWAky0zMzMzM7MCcLJlZmZmZmZWAE62\nzMzMzMzMCsDJlpmZmZmZWQE42TJrJknrSzoxY/25Ap2nj6TDm9jWVdJTkspaeI7Okp6W5AedbBMI\ncwAAIABJREFUm5nh73gzyw8nW2bNtz6w/AdxRHy7QOcZAuzaxLZjgfsjorYlJ4iIamAC0OgPfDOz\nNZC/482sxZxsmTXfxcA3Jb0k6Q+SPgOQVC7pdUk3Sfq3pNslfVfSJElvSBpQ34GkoyT9X9rH9Q1/\neylpD+Ay4JB0n280iOEnwN9yOa+ktSU9LOllSf/K+I3qg2l/Zmbm73gzywNFRKljMGuTJJUDf4+I\n7dP1zyLia2n7LGAX4FVgCvAycBxwIPCziDhI0jbAJcCPImKZpGuA5yPilgbn+Qfw24j4V4P2zsA7\nEdErI55szjscGBoR/5Uet15ELE7/E/BeRPTM31UyM2ub/B1vZvngkS2zwngrIqZHRB3JD8UJkfxm\nYzpQnu4zBOgHTJH0Urre8LeaAFsDrzfS3gP4uBnnnQ7sK2m0pD0jYjFAOk2lWtI6zfrEZmZrDn/H\nm1lWfKOkWWF8mbFcl7Fex4p/dwJujohRTXUiqQewOCJqGtn8BbBWrueNiH9L2hXYH7hA0oSIOC/d\nrwuwdFUfzMzM/B1vZtnxyJZZ830KtOQ3hBNI5ulvBCBpQ0mbNdinHHi3sYMj4iOgTFLDH8arJOnr\nwOcRcRvwB9IbsyV1BxZGxLKcPoWZWfvk73gzazEnW2bNFBGLgEnpDch/aMbxrwFnAo9LegX4J9C7\nwW6vAz3SczRWCetxYI8cT70D8H/ptJZzgAvS9u8AD+fYl5lZu+TveDPLBxfIMGvD0qkiv46Io/PQ\n1/3A6RHx75ZHZmZmLeXveLO2zyNbZm1YRLwATGxYTjhXadWrB/1D2Mys9fB3vFnb55EtMzMzMzOz\nAvDIlpmZmZmZWQE42TIzMzMzMysAJ1tmZmZmZmYF4GTLzMzMzMysAJxsmZmZmZmZFYCTLTMzMzMz\nswJwsmVmZmZmZlYATrbMzMzMzMwKwMmWmZmZmZlZATjZMjMzMzMzKwAnW2ZmZmZmZgXgZMvMzMzM\nzKwAnGyZmZmZmZkVQMdSB1AoPXr0iPLy8lKHYWZmjZg2bdrCiOjZ3OP9HW9m1nq19Du+PWm3yVZ5\neTlTp04tdRhmZtYISW+35Hh/x5uZtV4t/Y5vTzyN0MzMzMzMrACcbJmZmZmZmRWAky0zMzMzM7MC\ncLJlZmZmZmZWAE62zMzMzMzMCsDJlpmZmZmZWQE42TIzMzMzMyuAkidbktaS9H+SXpb0qqT/bWSf\nYyR9IOml9PXzUsRqZmZmZmaWrdbwUOMvgX0i4jNJnYBnJT0aEc832O/uiDipBPGZmVl7UlUFlZUw\neDBUVJQ6GjMza8dKPrIVic/S1U7pK0oYEkuWLGG//fbjjjvuKGUYZmaWb1VVMGQInHVW8l5V9dXt\nF1301fbVbTMzM2tEyZMtAEllkl4C3gf+GRGTG9ltuKRXJI2T1LeQ8XTr1o2JEyfy0ksvFfI0ZmZW\nbJWVUF0NtbXJe2Xlim2rSsRWt81JmJmZNaJVJFsRURsROwN9gAGStm+wy0NAeUTsCPwTuLmxfiSN\nlDRV0tQPPvig2fFIok+fPsyZM6fZfZiZWSs0eDB07gxlZcn74MErtq0qEWtqW3NHypygmdkaTtJQ\nSTMlzZJ0eiPbu0i6O90+WVJ52r6vpGmSpqfv+2Qcc2Ta/oqkf0jqUbxP1LjWcM/WchHxsaSJwFDg\nXxntizJ2uwG4pInjxwJjAfr379+iqYh9+vRh7ty5LenCzMxam4oKmDCh8Xu26hOx6uqvJmJNbWss\nCavvsz4Rqz9mwoRkW1Pt9XxPmZm1c5LKgDHAvsBcYIqk8RHxWsZuxwEfRcQWko4ARgOHAwuBH0bE\nu+kAzWPAJpI6AlcA20bEQkmXACcB5xbtgzWi5MmWpJ7AsjTR6kpy0Uc32Kd3RMxPVw8EZhQ6rr59\n+/LMM88U+jRmZlZsFRWNJzGrSsSa2raqBK2pRKw5CVq9phIxJ2hm1rYMAGZFxJsAku4ChgGZydYw\nViRK44CrJSkiXszY51Wgq6QuQB0gYG1Ji4B1gVkF/RRZKHmyBfQGbk4z3A7APRHxd0nnAVMjYjzw\nK0kHAjXAh8AxhQ6qT58+zJs3j7q6Ojp0aBWzLc3MrNCaSsSa2tackbLmJGjgkTIza0t6SJqasT42\nnYFWbxMg836ducDABn0s3yciaiQtBrqTjGzVGw68EBFfAkg6AZgOLAHeAH6Zh8/SIiVPtiLiFWCX\nRtrPzlgeBYwqZlx9+/alpqaGBQsW0Lt372Ke2szM2pJcR8qaO5Ux3yNlq0rCnKCZWcssjIj+hTyB\npO1IZsN9L13vBJxAkle8CVxFkj9cUMg4VqfkyVZr1adPHwDmzJnjZMvMzJpnVYlYrlMZ8zlStrok\nrDkJmplZ9uYBmdXF+6Rtje0zN70faz1gEYCkPsADwE8j4j/p/jsD1K9Lugf4SuGNYnOy1YS+fZM/\n/7lz5zJgwIASR2NmZmuMYoyUrWo0rDkJGnikzMxyMQXYUtLmJEnVEcCPG+wzHhgBVAGHAE9GREha\nH3gYOD0iJmXsPw/YVlLPiPiApA5Ewes8rI6TrSbUJ1su/25mZq1GvkbKilV5MZttTsLM1jjpPVgn\nkVQSLANujIhXG9Rs+Atwq6RZJDUbjkgPPwnYAjhbUv1tR99LqxP+L/C0pGXA2xShzsPqONlqQvfu\n3VlrrbVc/t3MzNq2XAt75LPy4qq2ufKi2RotIh4BHmnQllmzYSlwaCPHXUAT92FFxHXAdfmNtGXy\nlmxJWhtYGhG1+eqzlPxgYzMza9eKUXlxVdtcedHM1gDNTrYkdSAZzvsJsBvwJdBF0kKSeZTXR0TJ\na9u3hB9sbGZmlqGtPqPM95OZWYm0ZGRrIvAESUnFf0VEHYCkDYHvAKMlPRARt7U8zNLo27cvTz31\nVKnDMDMza/1a6zPKmns/Wf12J2Jm1gItSba+GxHLJJXXJ1oAEfEhcB9wX1rvvs3q27cv8+bNo7a2\nlrKyslKHY2Zm1r601sqL4JEyszVMoW6JanayFRHL0sX7gV0zt0kaFBHPZ+zTJvXp04fa2loWLFjA\n17/+9VKHY2ZmtuYoZeVF8DPKzNq5Yt0S1ZJ7tg4jSbLWkbQNMDNjhGsssGNLgyu1zPLvTrbMzMxa\nuSamK1b9aTKV9y1i8PDuVFTskN22wYOpKtuDyrrdGVw2iYqMkbKqL3elsm5PBn/5DBUNRsoa3ebK\ni2atUVFuiWrJNMJJwFrAz4HLgK0lfQy8C3zRkqBaiz59+gDJg40HDhxY4mjMzMysqfyjpqaGxx//\nlAkTavjWtxawySbv8NFHH/HCC1246qph1NSUUfZkDQc/cTnrrz+DL774grlz+/L00+dQV9eRDk/U\nMOjm37Leeq8REXz44da8sOwf1EZHympq2H3U/9Kr1xV8bXZv7qh7nGo607mumpFP/J6un4xi7bXX\npvblbozO2HbFe+P51jPP8I277+btpbvwVOzF3l8+w6CJE+mQMeJVNXgUlct2Z3CnUVRUXrQ8QWu0\nfXUXwsyyVZRboloyjXAecIuk/9Q/vVlSd6AceL2lgbUGfrCxmZlZaWTmEgMG1DJnzhwefHAB//M/\n/aipER061NK//+9YsuQJ5s2bx0cfbQ1MANYB1gb+C3geOB04COhATY0YP/4TNtjgIbp27cqSJSdT\nV1cGlFFXF8yeXc7Xv/4UHTp0YP78ramJjkBHaupgxoyNmT//fj74oB9f0BnoyBcE1z7bkbqnR1NT\nU5Oea8W2kVe+DFceyXYM4k0mLE/CvnnGEOZccgnrrbceB3+6PWOrH0m2VVdzzs9/xeJhD9HnyS/4\nbUb7XX+8lp0v24Tu3bvT7eWXef47/6/JRKxq7PQVo3Ujd2j8ojpBszVcsW6Jask0QkViUn1bRCwC\nFjXcp4UxlsyGG25I165dXf7dzMysCOrq6njjjTe45545nHfeXtTUlCFV07HjUJYte5okmekHlFFb\nW8ecOd9kt93eYq+99mLmzB/x5JNrEdGBDh06MHLk3fz610t5440eHHpoGdXVQefOnZgw4RwqKs4B\nGs7u68i4cSdRUXFSo9sefPBUKipObdDeiQkTzqWi4lyWLVtGZeWXHHhgB5YtCzp2LOPKK3/MN74x\nhFtu+TozbluLuujAlxI9B5/Hd7Z/iMWLF/Pi09+m+qPO1NKRaoK//Kcvb/3hAnrX/JZqVrSfdN9C\n5ty3GQDHdNidu+tH0Kqr+e+f/BfvDrmR7t27s9asnlxy3wlUsw2dH6/mtvf+yXdO7s/6M2Y0L0Ez\na6eKdUuUmpsLSaokGWL7W0S8k9HeGdgDGAFMjIibWh5m7vr37x9Tp05tcT9bbbUVu+yyC3fffXce\nojIzMwBJ0yKif3OPz9d3vJXWww9/yB13vEtNzRPMnXsvL7/8MkuWLCFJqs4n+Z1wDXvu+U+OPnou\ny5b157TTdmLZMtG5s/JSm6I523I9ZrU1Nb5Tu2LbxDIGDQoqK79k/6GdWLYMOnas49zznqNnz1ks\nWrSIZ+/YjEdeHk4tHSljGdtv8CcWdLmMRYsW8e1lp/Es5y/ftgdn8xQX81N9m3vjn0mCRjWjtvgF\nHx7QnZ49e9Lx9Q0499YRy7f9/YpX+c7J/ZG06iTMI2XWhJZ+xxeDpE2A7wJ/BKYAWwP1t0T1jIi8\n3EPUkmRrLeBYkgoem6fBrQWUAY8D10TEi/kIsjny9YN4yJAhLF26lEmTJq1+ZzMzy4qTrTVL/f/J\n+/X7lI8/fpTHHnuMxx//lLlzbyKZdlfNjjv+hsGDu7DzzjvTocPunHDCllRXq91UXc9nUtdYglZR\nARFB5dVT+cGvtqOaTnRmGb8/7k7Y/lMqb9mEv7948PIkbJt1L+XtuIhPP/2UvTn9Kwna810uZ0C3\nIUz96N7lSdgJ+45m4++uTa9evdhq0SJqf/cgT9XsweBOk/h2xkiZR8msjSRbioiQtHtjt0RFxJJ8\nzNJrdrLVINhOQA/gi4j4uMUd5kG+fhCPGDGCiRMn8s4776x+ZzMzy4qTrTXHnXfOZsSITVi2TEA1\nMIT113+dXr2uYObMo4joQFlZcP75YtSoFce15sSpNVhl8tZIstNUgrZ06VIm/Gkyh47abXmC9j/D\nr+WLb77P3Nv6cve7v1iehO3V4Vwm1v0egKMZxLj6+9Co5uiuP+T5LRfyrWX9eWjGVcvbLzz2Dnb8\n8eb06tWLjTfemJn3vcvT93/YaCLmJK39aCPJViVFmKXXkmqEy6U3j83PR1+tTd++fXn33Xf9YGMz\nM7MszZ49m7vuuos777yTV17Zn/opgZIYOfJOrr66D1OmdMyYWqeVHnEFTT9OyxKruj4VI3egYuRX\n958wsewrCdpaa63FD07fmwkbZiY6pwFQ9c3pPHB8NdUEnVnGBdcezo4/HsWCBQu48rcLqX5wxT1l\nb5cfQ3n5OJZWbrnSvWZ/u/E//ObG/wJYuVDI49UMu2okXXeroVevXnT7z0b8/p6Ry+81G//5ZIac\nMmD1UxnNmm8oySy9OyXVz9LrCnQgmaX3p3zM0svLyBaApL2AucB5JHMCro6Ip/PSeTPk67ee119/\nPb/4xS+YM2fO8lLwZmbWMh7Zan+eeqqaa655jZkzr+fll68DoKKigkGDfs211w5n2bIOfs5vG9RU\notPUSFnV2OkMOf6by0fJbvvfSXTfuzMLFizgyXO+4IbXf7J8pGz/dS7lhXXHsGDBAnav+W2jUxkH\ndhvClIypjL/6weVsuv8G9OrVi969e7Ow8ktefrKOIYf2XDk+J2gl1RZGtjIVcpZeXka2UkcCXYDf\nkGSGNwMlS7byZbPNkso/b7/9tpMtMzOzBt566y3OPPNh7rjjWGB7pMv4xS8q+N3v9qK8vByAQw9t\nPKny6FXr19goGTQ9UlYxcgcmkJno7Lv8mL4fT+eWjJGyUZceQMXIUdTV1THhiv9j2G9WbPvOIT0Z\n+I1TmHNrHyZljJQ9//ASRj98JrDySNnvn6hm93N+RO02H1P+2Q7cNeWi5aNkV71+LxU/345evXqx\nwQYb8Pyf/+WiH7aSQs7Sy2eytR3waUS8DyBpcR77LpnMZGv33XcvcTRmZmatw6uvvsrFF1/MnXfe\nSV3d70h+31pGhw5lbLrpT0nzLMBJVXvV1J9rkwnaVxKxJNHp0KED+/56EBPWztz2GyCZyvhgg6mM\nWxz0K9577z1uOe4NrnxhRSK2Yd1ezKsex/zp3Veaynjr5S/w88sPA2Dnsj2YWfvY8kTs2NtPZ6Mh\n3ejduzfbfPwxnPF3nq7Zg8GdRrnoxxqmULP08plsnQXUZaw/lse+S6Y+2Zo9e3ZpAzEzMyuxqiq4\n/fZ5TJ9+FU8/PZpu3bpxyimnsNdep3DkkWVN3n9lVq+pRKypbV9N0HYCoFevXnxxfBnXZSRip54/\nhIqRp1I1djpPZbQfc1p/ftH/TubPn8/LV67N9NkrErGZVV0Y83Ty3LWVin5UV3PUPgcweatFGUU/\nkgRt9NS/stNR36R379706tWLf905u/Gplk7Q2pqCzNLLZ7K1CXCgpF8AAh7KY98l061bNzbaaCMn\nW2Zmtka7//75HHbYhtTWbgyczc9+9k0uueRgevToAST3Ynn2lRVCriNlX20fvvyYqrWnc09GInbe\n1Yfw8DFnsGDBAi479T2q71+RiL2z+c8oLx/HF5VbrDRSdt+f/82v/nwskDmVMUnEDh17Muvv3oH1\n3tmESx88aXn7A59MYt/fVNChQ4ckDidirVFBZunls0DG9RFxfMb6mIj4ZV46b4Z83jw9YMAANthg\nAx57rF0M1pmZlZwLZLQdn332Geeddx6XXdaZ2tpzgY6Nlmo3aytaWvTj5rOfZv09ynjvvfd45vwa\nbnzj6OWFPb7fbTTPdvwDu3xy4lcKfjxb9gc23nhjdirbg8o5f11e9OPMI//CNof2oVevXk0W/FhV\n3K1RWyuQASBpbyDqpw5KOjgiHmhpv/kc2eoi6QfAHKAPSenEdqG8vJyXX3651GGYmZkV1YMPPsjJ\nJ5/M3Llz2X//83nyyQ4sW+apgta2tbzox9Dlx2zxxXRuyxgpO/PyYVSMPJPKq6ex/8kr2vc9oje7\nf+N3zJ8/n08e2m6lkbLH73yXM+78VZMFP3r37s1G73+T6584fflI2a3zH2efX+3G+uuv7/L4eRIR\nTzVo2jgf/eYz2ToR+BGwA0nCVbJRrXwrLy9n/Pjx1NXVLR/+NTMza6/Gj/+A00//BzNmXMMOO2zA\nPffcQ0VFhQu1WbuXr6Ifg0/qx4TOme2/Wn5M1djpPJKRoP3ukh9w+XcP49afz1qp4McGdXsx78t7\nqaqqovzt8pUStKvOncgh536fLl26MHDt7zLlw3uWJ2Kn/v0iNv9hD3r16sVnVfD6c5347uG92POE\nnVeK3Qnaar2Uj07yNo3wKx1Lv4iI6wrSeRbyOcVkzJgxnHTSScyfP59evXrlpU8zszWZpxG2Xr//\n/UTOOGMg0JlOnYIJE8See+bzd7Nm1lii03C64oTr/7N823NjX+G7x2+xfNvvj7uTum0X89577zHn\ntr7cO/+ElaYsPsXFKz9Emmp2+tpBfP6NBfTu3Zu+i7fl9ucvWL7t2t/+g92P35HevXuz9tprt/jz\ntcVphIVSyG/PvGSDrUH9c0Jmz57tZMvMzNqlTz75hFNOOYWbbuoF7Al0pK4Onn0W9tyz1NGZtS/Z\nVV5cMdr07ZE7Nth23PJtVVtM52+ZRT/GHEb5AScw5rAX+ePkFaNh31xvGJ9s9hjvvfcevLLeSiNl\nf710CsdcmhQS+drXvsaf//xnjjjiiKJci9ZC0o+BA4Fa0mJ/EXFnS/stWLIVEc9ns5+ktUjKKnZJ\n4xkXEec02KcLcAvQD1gEHB4Rs/Ma8Cpkln8fNGhQsU5rZmZWFDNmzOCggw5i1qxZHHPMtdx9d9ny\nIgG+N8useHItjV/fvnIitgsABx27mKsmr0jCfnn2XlSMTO7yqRo7naczErSjTtmZY3e9mfnz5/Pe\ne++x5ZZbFuojtmZ7R8TyDFPSGKD1JFstyAa/BPaJiM8kdQKelfRog2TtOOCjiNhC0hHAaODwfMW+\nOpkPNjYzM2sP3n//fV588UWWLFnCiBEj6NatG08++SR77703I0f63iyztiTXkbKvbivaf6tbs4IU\n+8vnyFazssFIbhr7LF3tlL4a3kg2DDg3XR4HXC1JUagbzhpYZ5116N69u5+1ZWZm7UJNTQ0DB57K\n7NmbAZUMHLgd48aNo0+fPkDTRQLMrG1pzkhZsUgaClwBlAE3RMTFDbY3OrNN0r7AxUBnoBr474h4\nMj2mM3A1MBioA86IiPuyDKlhsb+TWvQBU62i9LukMmAasAUwJiImN9hlk7RfIqImfchYd2BhPgLP\nxmabbeZky8zM2oVf/vI2Zs++AehMx451jB4Nffp0LnVYZraGSP/vPwbYF5gLTJE0PiJey9itqZlt\nC4EfRsS7krYHHiPJFQDOAN6PiK0kdQA2zDamiPgcuK2ln62hfNYxPxHYANg/fc86G4yI2ojYmSRJ\nG5BeuJxJGilpqqSpH3zwQXO6aFJ5ebmnEZqZWZv34osvcsMNb1B/q3REZ557zomWmRXVAGBWRLwZ\nEdXAXSQz2TINA25Ol8cBQ9KZbS9GxLtp+6tA13QUDOBY4CKAiKiLiJwHZiStL2n9XI9rSt6SrYj4\nPCJui4iLI+L2NDvMtY+PgYnA0Aab5gF9ASR1BNYjGU5sePzYiOgfEf179uyZ+4dYhfLycmbPnk2R\nZi6amZnlXXV1NSNGjGCDDV6ha9cOlJW5CIaZlcTyWWupuawYnfrKPhFRA9TPbMs0HHghIr7MSJDO\nl/SCpHslNefBxOcA5zXjuEbl/Qm9uWaDknrW76//z969h0dRn/0ff98JLNSWk4pWRRBBUPAAEgoB\ntVFEoR5Q8YCPFjy0sVRaf/VQRUVRlIiHij5YNNUqeCyCIi0gVCR9JETLoQICWgFPiK2gKCBiJLl/\nf+wElxggyc5mssnndV1z7c7szHfv0F6RD9/v3GP2A+LTiW+XO20aMCR4fy7wak3dr1WmTZs2fP31\n12zYUGMrF0VEREI1atQoli1bxhNPXMGcOcaoUTBnju7PEpHQ7Vu22izYQr87zMw6E19aeEVwqAHx\nVXLz3f1YoAi4N+zvrapUtH6/lfiNbr/d04mBA4AJwdrNDGCSu//NzG4HFrr7NOAx4EkzWwV8DtR4\n4//EZ22FPWsmIiKSaosWLSIvL4/Bgwdz+umnAwpZIpIyG/bwUOMdq9YCrYJjFZ2ztvzKNjNrBbwI\nDHb31cH5nwFbgReC/eeJ3/cVqcgfCe/uS4GuFRy/JeH9NuC8mqyrvMRnbXXv3j3KUkRERCqtqAhe\neWU7TzxxP/vttx9jx46NuiQRkQXAYWbWlnioGgT8T7lzyla2FZGwsi1YETcduMHdC8tODj77K/FO\nhK8CfYAVRCzysJUu9KwtERFJN0VF0KcPbNtmuOdzzz2LadGiRdRliUg9F3QXH0a8k2Am8Gd3X17J\nlW3DiHcwv8XMyiZnTnH3T4Hrg2vGAuuBS6tR3jjizwwOhcJWJTVv3pzmzZur/buIiKSNggL45hvH\nPROzRnz77XFRlyQiAoC7zwBmlDu2x5Vt7n4HcMcuxvwAOCHJulbv+azKS0XYCjUN1iZ61paIiKST\nXr2KcS8BGtC4cQN1HRQRqYCZtXP31WbWyt3Xhjl26N0I3X21u68Ke9za4NBDD2XNmjVRlyEiIlIp\nf//77bifxODBq5kzx9QQQ0SkYmVdz0eHPXAoYcvM2gWvrcIYr7Zq164da9asobS0NOpSREREdmvR\nokXcddddDBnSkQkTDlfQEhHZtQ+D195mdpuZnWtmfwlj4LBmtlKWBmuTdu3a8c0337Bu3bo9nywi\nIhKRb7/9ll/84hfst99+3H///VGXIyJS65jZA8HrD9z90eDwfOAJoJj4rVFJC+uerZ3SILAMOM/d\nLwhp/FqhXbt2AKxevZpWrer0JJ6IiKSxP/zhD7z55ptMmTJF3QdFRCpW1khjHtAteD/O3d8D3gvr\nS6o9s1VTabA2KQtbq1bVyVvSREQkTRUVQV5e/HXVqlWMHDmSs846i3POOSfq0kREaqs5ZlYE/NjM\nLjOzbsCbYX9JMjNbNZIGo1JUFG+Zm5PDjnXurVu3pkGDBqxeHWpHSBERkWore5ZWcTHEYk7nzg8Q\ni8UYN67O/ZuniEho3P3aoO/EXKAtcCbQ2cyKgbfCWqGXTNjaKQ0CS0hBGoxCURHk/LyIbw8qoOFj\nORQ8mU12NjRo0IA2bdoobImISK1RUBAPWiUl8WdqLVz4I8aPH8NBBx0UdWkiIrVa0O79ZHf/d9kx\nM/sRcGRY31HtsFVTaTAKE18tonhQH8gsprgkxsRX55AdTG+1a9dOYUtERGqNnByIxaC42Ckp2cbR\nR28kN/fOqMsSEUkLiUEr2N8CvB7W+El1IwyesHyyu49w97Pc/TCgB5DerY8OKYDMYsgogYzi+H5A\nYUtERGqT7GyYMwc6d/4LDRr047nnriIjI/THaIqISDUk/du4ojTo7qGlwSgMPiGHRg1iGJk0ahhj\n8Ak5Oz5r164dX3zxBZ9//nl0BYqIiCTYuHEGS5deyIgRJ3PEEUdEXY6IiATCav1ep2QfnM3cS+ZQ\n8H4BOYfkkH3wd0+CTGz/vvfee0dVooiICABbtmxh6NChdOrUiRtuuCHqckRE0oqZ/QZ4yt03pmJ8\nha1dyD44e6eQVaZ9+/ZAPGx17969pssSERHZyciRI/nwww8pLCwkFotFXY6ISLrZH1hgZouBPwOz\n3N3DGjzpZYRm9hszqzdPTDz00EMBdN+WiIhEbtmyZYwdO5Zf/vKX9OrVK+pyRETSjrvfDBwGPAZc\nArxrZqODRoBJC+MO2rI0OMnM+pmZhTBmrbXXXntxwAEHKGyJiEikSktLGTp0KM2bNyeQNzxnAAAg\nAElEQVQvLy/qckRE0lYwk/WfYNsOtAAmm9ndyY6d9DJCd7/ZzEYApwCXAuPMbBLwWNCtsM5RR0IR\nEYlCUVH8uVo5OfDOOxMpLCzkscceY5999om6NBGRtGRmVwGDgQ3Ao8B17v6tmWUA7wK/T2b8UO7Z\ncnc3s4rS4N/dPakCa6N27drxyiuvRF2GiIjUI0VF0KdP/AHGsZjTqNEkevXqxSWXXBJ1aSIi6Wxv\n4Bx3/yDxoLuXmtnpyQ4exj1bV5nZIuBuoBA4yt2HAt2AgcmOXxu1a9eOjz/+mK+//jrqUkREpJ4o\nKIgHrZIS2LatlC+/7Mr48eP1TC0RkeQ0Lh+0zGwMgLuvTHbwMH5Dl6XBU939eXf/FuJpEEg6DdZG\nZe3f33vvvYgrERGR+iInB2IxyMx03L/h/PP34+ijj466LBGRdNe3gmP9wxo8jLCV0jRYG5WFrVWr\nVkVciYiI1BfZ2TB7dgn77/8Q++xzAfn5l0ZdkohI2jKzoWa2DOhoZksTtveApWF9TxhhK6VpsDY6\n7LDDAHj33XcjrkREROqTJUseZt263/DQQxfTtGnTqMsREUlnzwBnANOC17Ktm7tfHNaXVLtBhpkN\nBX4NHGpmiemvCfF7t+qsvffem3322Yd///vfUZciIiL1xH//+19uuukmTj75ZM4///yoyxERSWvu\n/iXwJXBhKr8nmW6EzwAzgTzghoTjm93986SqSgMdO3bknXfeiboMERGpJ2688Ua2bt3KuHHjqOOP\ntBQRSTkzm+fux5nZZsDLDgev7u6hLB+odtiqqTRYW3Xs2JGZM2dGXYaIiNQDCxcu5PHHH+eaa66h\nY8eOUZcjIpL23P244LVJKr+n2vdsmdm84HWzmW0Kts1l++GVWDt17NiR//znP2zaVOd/VBERiZC7\n89vf/pb99tuPESNGRF2OiEidYmbnmVmT4P3NZvaCmXUNa/xqh63ENOjuTYOtSdl+Zccxs4PNbK6Z\nrTCz5cFTnMufk2NmX5rZm8F2S3XrDkvZvyxqKaGIiKTS008/TVFREXl5eWqKISJ1hpn1M7N3zGyV\nmd1QweeNzOwvwedvmNkhwfG+ZrbIzJYFrydVcO00M3urkqWMcPfNZnYccDLwGPBw9X+ynYXxUONk\n0+B24Bp37wT0BK40s04VnPeau3cJttuTrTtZClsiIpJqW7Zs4frrrycrK4shQ4ZEXY6ISCjMLBN4\niHgH807AhRX8/f9yYKO7twfuB8YExzcAZ7j7UcAQ4MlyY58DbKlCOSXB62lAvrtPB2JVuH63wmj9\nnlQadPdP3H1x8H4zsBI4KIS6Uqpdu3ZkZGQobImISMqMHj2adevW8eCDD5KREcZ/skVEaoWfAKvc\nfY27FwPPAQPKnTMAmBC8nwz0MTNz93+5+7rg+HLgB2bWCMDMfgRcDdxRhVo+NrNHgAuAGcFYof3C\nDWOg0NJgMD3YFXijgo+zzWyJmc00s867uD7XzBaa2cL169dXp4RKi8VitG3bVu3fRUQkVEVFkJcH\nkyd/zH333cfFF19MdnZ21GWJiITpIOCjhP21fH+yZcc57r6deGO+fcqdMxBY7O7fBPujgPuArVWo\n5XxgFnCqu38B7A1cV4XrdyuZ1u9lytJgX2BMddNgkESnAP/P3ct3nVgMtHH3LWb2M2AqcFj5Mdw9\nH8gHyMrK8vKfh03t30VEJExFRdCnDxQXg/u+xGK9GTNmzJ4vFBGpXfY1s4UJ+/nB39NDE0y+jAFO\nCfa7AO3c/Xdl93dVhrtvBV5I2P8E+CSsOsMIW+cD/YB73f0LMzuAKqZBM2tIPGg97e4vlP88MXy5\n+wwz+6OZ7evuG5KsPSkdO3Zk7ty5lJaWanmHiIgkraAgHrRKSgAyOOGEWzjwwAMjrkpEpMo2uHvW\nbj7/GDg4Yb9VcKyic9aaWQOgGfAZgJm1Al4EBrv76uD8bCDLzN4nnnH2M7MCd8/ZXaHBRNFA4BAS\nslFYPSKSTgjuvtXdX3D3d4P9T9x9dmWvt/iTGR8DVrr7H3Zxzo+D8zCznwR1f5Zs7cnq2LEjX3/9\nNWvXro26FBERqQNyciAWc2A7ZtsZPlzLB0WkTloAHGZmbc0sBgwCppU7ZxrxBhgA5wKvurubWXNg\nOnCDuxeWnezu4939QHc/BDgO+PeeglbgJeL3h20HvkrYQpH0zFYIabA38HNgmZm9GRy7EWgdjPMw\n8T/goWa2HfgaGOTuKV8muCeJHQlbt24dcTUiIpLusrPhyitf5N57FzB6dD9ycn4adUkiIqFz9+1m\nNoz4vVKZwJ/dfbmZ3Q4sdPdpxCdjnjSzVcDnxAMZwDCgPXBLwuOgTnH3T6tZTit371ftH2YPwlhG\n+BLxG9YWAd/s4dzvcfd5gO3hnHHAuGpVl0KJYatv374RVyMiIulu06ZNTJjwK376005cf/3oqMsR\nEUkZd58BzCh37JaE99uA8yq47g720G3Q3d8HjqxkKfPN7Ch3X1bJ86skjLCV0jRYm/34xz+mSZMm\n6kgoIiKhuOuuu1i/fj333nsvwep5ERFJreOAS81sDfGJIwPc3Y8OY/AwwlZK02BtZmZ06NBBHQlF\nRCRpH374Iffffz8XXXQRWVm7u69cRERC1D+Vg4fRQu84YLGZvWNmS81smZktDWHctKD27yIiEoab\nb74Zd+fOO++MuhQRkfrkQ+B4YIi7fwA4sH9Yg4cxs5XSNFjbHX744Tz77LNs3bqVvfbaK+pyREQk\nDS1evJgnn3yS66+/njZt2kRdjohIffJHoBQ4Cbgd2Ez8kVTdwxg8jJmtlKbB2q5Tp064OytXroy6\nFBERSUPuzjXXXMO+++7L8OHDoy5HRKS+6eHuVwLbANx9IxALa/AwwtYfiT9E7MJgfzPwUAjjpoXO\nnTsDsHz58ogrERGRdDR9+nQKCgoYOXIkzZo1i7ocEZH65lszyyQ+YYSZtSQ+0xWKMMJWStNgbde+\nfXtisZjCloiIVNn27du57rrr6NChA7m5uVGXIyJSHz0IvAjsb2Z3AvOA0J69EcY9WylNg7VdgwYN\n6Nixo8KWiIhU2Z/+9Cfefvttpk6dSsOGDaMuR0Sk3nH3p81sEdAnOHSWu4d2f1AYYat8GjwXuDmE\ncdNG586def3116MuQ0RE0sjmzZu59dZbOeGEEzjzzDOjLkdEpF4xs6t38VF/M+vv7n8I43uSXkbo\n7k8Dvyc+3baOeBp8Ptlxa6v8mUWcekce+TOLdhzr3Lkz77//Plu2bImwMhERSRdFRXD22f9k/fp2\n3HPPPXqAsYhIzWsSbFnAUOCgYPsVcGxYX1Ltma2aSoO1Sf7MIq4o7AOZxcwujAFzyO2fvaNJxsqV\nK+nePZQukSIiUkcVFcFJJznbtv2UzMwCSkoaRV2SiEi94+63AZjZ/wHHuvvmYH8kMD2s70lmZqtG\n0mBtMmVRAWQWQ0YJZBTH91FHQhERqbyCAvjmm1Li/94Zo6Ag2npEROq5/YHihP1iasNDjWsqDdYm\nA7vlxGe0vBhKYwzslgNAu3btaNSokcKWiIjs0eGH/wf3ppg1IhbLJCcn6opEROq1icA/zezFYP8s\n4ImwBg+jQUZK02Btkts/G5jDlEUFDOyWE+xDZmYmhx9+uMKWiIjs0V//eiMNGqzi6quncdZZzcnO\njroiEZH6y93vNLOZwPHBoUvd/V9hjR9G2EppGqxtcvtn7whZiTp37sxrr70WQUUiIpIuVq5cyYQJ\nE7jqqqsYM6Z51OWIiAjg7ouBxakYO4xuhHcClwIbg+1Sd89Ldtx007lzZz766CM2bdoUdSkiIlJL\n3Xzzzfzwhz9k+PDhUZciIiI1IIyZrZSmwXRR1iRjxYoV9OzZM+JqRESktvnnP//JCy+8wG233UbL\nli2jLkdERGpA0jNbEqeOhCIisjvDhw+nZcuW/O53v4u6FBERCZjZb8ysRarGV9gKSdu2bWncuLHC\nloiIfM8rr7zCq6++yk033USTJk2iLkdERL6zP7DAzCaZWT8L+SnzSYetVKfBdJGZmUnnzp1ZtmxZ\n1KWIiEgt4u4MHz6c1q1b86tf/SrqckREJIG73wwcBjwGXAK8a2ajzaxdGOOHMbOV0jSYTrp06cKb\nb76Ju0ddioiI1BLTpk1j4cKFjBw5kkaNGkVdjoiIlOPxv7z/J9i2Ay2AyWZ2d7Jjh9GNMKVpMJ10\n6dKFDRs28Mknn0RdioiI1AKlpaXceuuttG/fnp///OdRlyMiIuWY2VVmtgi4GygEjnL3oUA3YGCy\n44fVjdDNrKI0+Hd3/30Y35EOjjnmGADefPNNDjzwwIirERGRqE2dOpUlS5YwceJEGjQI5T+5IiIS\nrr2Bc9z9g8SD7l5qZqcnO3gY92ylNA2mk6OPPhqIhy0REanfyma1OnbsyIUXXhh1OSIiUrHG5YOW\nmY0BcPeVyQ4exj+zpTQNppNmzZpx6KGHsmTJkqhLERGRiE2ePJm33nqLZ555RrNaIiK1V1/g+nLH\n+ldwrFrCaJCR0jSYbo455hjNbImI1HMlJSXcdtttHHHEEZx//vlRlyMiUusEjfXeMbNVZnZDBZ83\nMrO/BJ+/YWaHBMf7mtkiM1sWvJ4UHN/LzKab2dtmttzM7trD9w81s2VARzNbmrC9BywN6+cMI2z1\nreBY/8pebGYHm9lcM1sR/MFcVcE5ZmYPBn/YS83s2KQqTqEuXbrw7rvv8tVXX0VdioiIRGTSpEms\nWLGCkSNHkpmZGXU5IiK1ipllAg8RzwydgAvNrFO50y4HNrp7e+B+YExwfANwhrsfBQwBnky45l53\nPxzoCvQ2s91lkmeAM4BpwWvZ1s3dL07m50tU7bAVYhrcDlzj7p2AnsCVFfxh9yfe8fAwIBcYX926\nU61Lly64u563JSJST5XNah155JGce+65UZcjIlIb/QRY5e5r3L0YeA4YUO6cAcCE4P1koI+Zmbv/\ny93XBceXAz8ws0buvtXd5wIEYy4GWu2qAHf/0t3fd/cL3f2DhO3zEH/OpO7ZegaYCeQBiVN/m6tS\npLt/AnwSvN9sZiuBg4AVCacNACYGPfBfN7PmZnZAcG2tktiRsGfPnhFXIyIiNe3ZZ5/lnXfeYfLk\nyWRkhLGARESkzjkI+Chhfy3QY1fnuPt2M/sS2If4zFaZgcBid/8m8UIza058luqBXRVgZvPc/Tgz\n2wwkPiTX4l/pTav2I1Ws2mHL3b8EvgRCa7EUrMXsCrxR7qOK/gc5iCCk1SatW7emefPmapIhIlIP\nbd++ndtuu41jjjmGs88+m6IiKCiAnBzIzo66OhGRGrOvmS1M2M939/wwv8DMOhNfWnhKueMNgGeB\nB919za6ud/fjgtcmYdZVXrXDVthp0Mx+BEwB/p+7b6pmTbnElxnSunXr6gyRNDNTkwwRkXrq6aef\nZtWqVUydOpU33sigTx8oLoZYDObMUeASkXpjg7tn7ebzj4GDE/ZbBccqOmdtEKCaAZ8BmFkr4EVg\nsLuvLnddPvCuu49Nov7QVHt9Q2IadPemCVuTagSthsSD1tPu/kIFp1TmfxDcPd/ds9w9q2XLllUp\nIVRdunRh2bJllJSURFaDiIjUrO3btzNq1CiOPfZYzjzzTAoK4kGrpCT+WlAQdYUiIrXGAuAwM2tr\nZjFgEPFGFYmmEW+AAXAu8Kq7e7BEcDpwg7sXJl5gZncQD2X/b08FmNlmM9sUvJbfqjXxU5HIF5Ob\nmQGPASvd/Q+7OG0aMDjoStgT+LI23q9VpkuXLnz11VesXl0+aIuISF31/PPPs3r1akaMGIGZkZMT\nn9HKzIy/5uREXaGISO3g7tuBYcAsYCUwyd2Xm9ntZnZmcNpjwD5mtgq4mu96RAwD2gO3mNmbwbZf\nMNt1E/HuhouD47/YTQ1NEiaKym+h3K8FyS0jLFs+aBV8XJVlhL2BnwPLzKxs7d2NQOtgoIeBGcDP\ngFXAVuDS6tZdE7p27QrA4sWL6dChQ8TViIhIqrk7d911F506deLMM+N/T8jOji8d1D1bIiLf5+4z\niP8dP/HYLQnvtwHnVXDdHcAduxi2olxS8Ym7viWq7Hsib5ARys1k7j6PPfzBBF0Irwzj+2pCp06d\naNy4MQsWLGDQoEFRlyMiIik2Y8YMli5dyoQJE3bqQJidrZAlIlIbpXODDCC8NJiOGjZsSNeuXVmw\nYEHUpYiISA3Iy8ujdevWXHhhaA16RUSkDkhmZqtG0mC66t69O4899hglJSVkZmZGXY6IiKTIvHnz\nKCws5MEHH6Rhw4ZRlyMiIlVgZo2BXwPHEZ9AmgeMD5YxJi3yBhl1VVZWFl999RUrV66MuhQREUmh\nvLw8WrZsyeWXXx51KSIiUnUTgc7A/wLjiDfYeDKswas9s1Um1WkwXXXv3h2AhQsXcuSRR0ZcjYiI\npMKSJUuYMWMGd9xxB3vttVfU5YiISNUd6e6dEvbnmtmKsAYPY2YrpWkwneTPLOLUO/LIn1lEhw4d\naNq0qe7bEhGpw+666y6aNGnClVemTQ8nERHZ2eLg0VIAmFkPYGFYgyc9s0WK02C6yJ9ZxBWFfSCz\nmNmFMWAO3bp1U9gSEamjVq1axaRJk7j22mtp3rx51OWIiEgVmNky4qvyGgLzzezD4KPWwNthfU8Y\nYWuxmfV099ch/DSYLqYsKoDMYsgoAS9myqICsrKyeOCBByguLiYWi0VdooiIhOiee+6hYcOG/O53\nv4u6FBERqbrTa+JLkmn9XiNpMF0M7JYTn9HyYiiNMbBbDi22rKW4uJilS5eSlZUVdYkiIhKSdevW\n8cQTT3DZZZfx4x//OOpyRESkitz9g7L3ZtYCOAxonHDKB9+7qBqSmdmqkTSYLnL7ZwNzmLKogIHd\ncsjtn837778PxJtkKGyJiNQdY8eOZfv27Vx77bVRlyIiIkkws18AVwGtgDeBnkARcFIY41e7QYa7\nf1C2AZuA/YE2CVu9k9s/m1k3Dw+CF7Rp04Z9991X922JiNQhGzduZPz48VxwwQW0a9cu6nJERCQ5\nVwHdgQ/c/USgK/BFWIOH0fo9pWkwnZkZWVlZClsiInXIQw89xJYtW7jhhhuiLkVERJK3zd23mRlm\n1sjd3zazjmENHkbr95SmwXTXs2dPli9fzqZNm6IuRUREkrR161YeeOABTjvtNI4++uioyxERkeSt\nNbPmwFTg72b2EiHdrwXhhK1tZQ8wLkuDQGhpMN316tWL0tJS3njjjahLERGRJD366KNs2LCB4cOH\nR12KiIiEwN3Pdvcv3H0kMAJ4DDgrrPHDCFspTYPprkePHmRkZFBYWBh1KSIikoTi4mLuvfdejj/+\neHr37h11OSIiEgIza2xmV5vZC8BvgXaEk5GAEO7Zcvezg7cjzWwu0Ax4Odlx64qmTZty1FFHMX/+\n/KhLERGRJDz77LN89NFHPPLII1GXIiIi4ZkIbAb+N9j/H+BJ4LwwBg+jQUZj4NfAccSfuzWPENNg\nXdCrVy+eeuopSkpKyMzMjLocERGpotLSUsaMGcMxxxxDv379oi5HRETCc6S7d0rYn2tmK8IaPIxQ\nNBHoTDwNjgM6EU+DEujduzebN2/mrbfeiroUERGphpdeeomVK1dyww03YGZRlyMiIuFZbGY9y3bM\nrAewMKzBk57ZIsVpsC7o1asXAPPnz+eYY46JuBoREakKdycvL4927dpx7rnnRl2OiIiEwMyWEV+V\n1xCYb2YfBh+1Bt4O63vCCFuLzaynu78O4afBuuCQQw7hgAMOoLCwkKFDh0ZdjoiIVMGrr77KggUL\neOSRR2jQ4Pv/2SwqgoICyMmB7OwaL09ERKrn9Jr4kmqHrZpKg3WBmdGrVy81yRARSUN5eXkccMAB\nDBky5HufFRVBnz5QXAyxGMyZo8AlIpIO3H1H93QzOwY4Pth9zd2XhPU9ydyzdTpwBtAPaAv8NNja\nAv2TL61u6d27N++99x6ffPJJ1KWIiEglLViwgDlz5nD11VfTqFGj731eUBAPWiUl8deCghovUURE\nkmBmVwFPA/sF21Nm9puwxq922HL3D8o2oDnx4HUG0DwxKUpc4n1bIiKSHu666y5atGjBFVdcUeHn\nOTnxGa3MzPhrTk6NliciIsm7HOjh7re4+y1AT+CXYQ2edDfCVKfBuqJr1640btyY1157LepSRESk\nEt5++21efPFFhg0bRpMmTSo8Jzs7vnRw1CgtIRQRSVMGlCTslwTHQhFGg4yyNPgVgJmNAYr47sFg\nAsRiMXr16kWB1piIiKSFMWPG0LhxY37zm93/+2F2tkKWiEgaexx4w8xeDPbPAh4La/AwnrOV0jRY\nl5x44oksWbKEzz77LOpSRERkNz788EOeeuopfvnLX9KyZcuoyxERqXPMrJ+ZvWNmq8zshgo+b2Rm\nfwk+f8PMDgmO9zWzRWa2LHg9KeGabsHxVWb2oO3hwYjB588DlwKfB9ul7j42rJ8zjLBVlgZHmtlI\n4HVCTIN1yYknngjAP/7xj4grERGR3bnvvvsAuOaaayKuRESk7jGzTOAh4k31OgEXmlmncqddDmx0\n9/bA/cCY4PgG4Ax3PwoYAjyZcM144vdbHRZs/XZXh7s7MMPdF7v7g8H2r+R+up0lFbZqIg3WJd27\nd2evvfbSUkIRkVps/fr1/OlPf+Liiy+mdevWUZcjIlIX/QRY5e5r3L0YeA4YUO6cAcCE4P1koI+Z\nmbv/y93XBceXAz8IZsEOAJq6++tBiJpIfEngniw2s+5J/0S7kNQ9W+7uZjYjSJaLqzOGmf2ZeBv5\nT939yAo+zwFeAt4LDr3g7rdXs+RIxWIxevfuzdy5c6MuRUREduHBBx9k27ZtXH/99VGXIiJSVx0E\nfJSwvxbosatz3H27mX0J7EN8ZqvMQGCxu39jZgcF4ySOeVAlaukBXGRmHwBfEb8dyt396Cr8PLsU\nRoOMxWbW3d0XVPP6J4BxxNPnrrzm7jXylOdUyJ9ZxJRFBQzslsOJJ57IjTfeyPr163UfgIhILbNp\n0ybGjRvH2WefzeGHHx51OSIi6WpfM1uYsJ/v7vlhfoGZdSa+tPCUJIc6NYRydimMsJVUGnT3/yu7\n4a0uyp9ZxBWFfSCzmNmFMX7/4/j/zwoKCjjvvPMirk5ERBKNGzeOL774ghtvvDHqUkRE0tkGd8/a\nzecfAwcn7LcKjlV0zlozawA0Az4DMLNWwIvAYHdfnXB+qz2M+T2pfj5wGA0yTgXaAScRf6jx6cFr\nmLLNbImZzQxSbNqYsqgAMoshowQyiln8+Qf88Ic/1FJCEZFaZvPmzdx3332cdtppdOvWLepyRETq\nsgXAYWbW1sxiwCBgWrlzphFvgAFwLvBqcAtTc2A6cIO7F5ad7O6fAJvMrGfQV2Iw8VuRdsvMGpvZ\n1Wb2gplNMbPfmVnj5H/EuKRntlKdBonfC9bG3beY2c+AqcS7i3yPmeUCuUCtual5YLccZhfGwIuh\nNMZ53U+iwfHz1CRDRKSWGT9+PJ9//jkjRoyIuhQRkTotuAdrGDALyAT+7O7Lzex2YKG7TyPe3fxJ\nM1tFvAnfoODyYUB74BYzuyU4doq7fwr8mvgtSj8AZgbbnkwENvPdM4L/h3iHw1CWoFm8WUcSA8ST\n36+B4wAH5gHj3X1bFcY4BPhbRQ0yKjj3fSDL3Tfs7rysrCxfuHDh7k6pMYn3bOX2z+buu+/m+uuv\nZ926dRxwwAFRlyciUuPMbNEelpjsVti/47/66ivatm3Lsccey8svvxzauCIi9VGyv+NrkpmtcPdO\nezpWXWEsI5wIdCaeBscR75X/5G6vqAIz+3HZA8nM7CfEa06rpwLn9s9m1s3Dye2fDcDJJ58MwN//\n/vcoyxIRkcDDDz/M+vXrueWWW/Z8soiI1CWLzaxn2Y6Z9QBC+9e8MBpkHFku+c01sxWVvdjMngVy\niHctWQvcCjQEcPeHia/RHGpm24GvgUGe7HRcxLp06ULLli2ZNWsWgwcPjrocEZF6bePGjYwePZq+\nffvSq1evqMsREZGa1Q2Yb2YfBvutgXfMbBkhtIAPq/V7T3d/HaqeBt39wj18Po74jFmdkZGRwamn\nnsrLL79MaWkpGRlhTDCKiEh13HHHHWzcuJF77rkn6lJERKTm9Uvl4GH8Lb8sDb4f3E9VBHQ3s2Vm\ntjSE8eukfv36sWHDBhYvrtazoEVEJASLFy/mwQcf5LLLLuOYY46JuhwREalh7v7B7rZkxw9jZiul\nabCuOuWUUzAzXn75ZbKy0uL+QRGROmXr1q1cfPHF7L///tx9991RlyMiInVQ0jNbqU6DdVXLli3V\n9UpEJAJbt26lqKiIM844g7fffpvHH3+cvffeO+qyRESkDtLNQhHq168fr7/+Ol988UXUpYiI1Bvz\n5s2jV69ezJ8/n8cff5y+fftGXZKIiETE4i4ue2aXmbUOOqCHQmErQv369aOkpIQ5c+ZEXYqISL3R\nvXt3pk6dypo1axgyZEjU5YiISLT+CGQDZU37NgMPhTV40mEr1WmwLuvZsyfNmjVj1qxZUZciIlJv\ntGjRggEDBuih8iIiAtDD3a8EtgG4+0YgFtbgYcxspTQN1mUNGjSgb9++TJ8+ndLS0qjLERERERGp\nb741s0zAAcysJRDaX8zDCFspTYN13Zlnnsm6detYtGhR1KWIiIiIiNQ3DwIvAvuZ2Z3APGB0WIOH\n0fo9pWmwrjvttNPIzMxk6tSpdO/ePepyRERERETqDXd/2swWAX0AA85y95VhjR/GzFZK02Bdt/fe\ne3PCCSfw0ksvRV2KiIiIiEi94+5vu/tD7j4uzKAF4Txn62ng90Ae8AnxNPh8suPWJwMGDGD58uWs\nWrUq6lJEREREROoNM8sysxfNbLGZLTWzZWa2NKzxQ2n9nso0WB8MGDAAQLNbIiIiIiI162ngcWAg\ncAZwevAaijBav6c0DdZ1+TOLuOKpZzmoZz+FLRERERGRmrXe3ae5+3vu/kHZFve13EsAACAASURB\nVNbgYTTIeBq4DliGGmNUSf7MIq4o7AOZxdAnxscT27N+/XpatmwZdWkiIlJOUREUFEBODmRnR12N\niIiE5FYzexSYA3xTdtDdXwhj8DDC1np3nxbCOPXOlEUF8aCVUQJeDG32Ztq0aVx++eVRlyYiIgmK\niqBPHyguhlgM5sxR4BIRqSMuBQ4HGvLdxJEDtSZspTQN1mUDu+UwuzAWD1qlMfbdYkyaNElhS0Sk\nlikoiAetkpL4a0GBwpaISB3R3d07pmrwMMJWStNgXZbbPxuYw5RFBQzslsMH/jfGjBnDp59+yn77\n7Rd1eSIiEsjJic9olc1s5eREXZGIiIRkvpl1cvcVqRg8jLCV0jRY1+X2zw5CFyxr9SNGjx7NlClT\nGDp0aMSViYhImezs+NJB3bMlIlLn9ATeNLP3iK/SM8Dd/egwBg8jbKU0DdYnRx55JJ06deK5555T\n2BIRqWWysxWyRETqoH6pHDyM52yVpcF31Po9OWbGoEGDeO2111i7dm3U5YiIiIiI1GmJ7d5T0fo9\njLDVDzgMOIUUPAisvrngggtwd55//vmoSxERERERqZPMbF7wutnMNiVsm81sU1jfk3TYSnUarG86\ndOjAsccey7PPPht1KSIiIiIidZK7Hxe8NnH3pglbE3dvGtb3VDts1VQarI8GDRrEggULeOedd6Iu\nRURERESkzjKzMZU5Vl3VDls1lQbro4suuoiMjAyeeOKJqEsREREREQmdmfULej6sMrMbKvi8kZn9\nJfj8DTM7JDi+j5nNNbMtZjau3DUXlvWPMLOXzWzfSpTSt4Jj/avzM1Uk6WWEqU6D9dGBBx5I//79\nmThxItu3b4+6HBERERGR0JhZJvAQ8VDTCbjQzDqVO+1yYKO7twfuB8ryxTZgBHBtuTEbAA8AJwZt\n25cCw3ZTw1AzWwZ0DMJZ2fZecG0owmiQkdI0WF9deumlrFu3jtmzZ0ddioiIiIhImH4CrHL3Ne5e\nDDwHDCh3zgBgQvB+MtDHzMzdv3L3ecRDVyILth+amQFNgXW7qeEZ4k39pgWvZwBXAN3c/eLq/2g7\nS+aerRpJg/XVGWecwb777svjjz8edSkiIiIiIlWxr5ktTNhyy31+EPBRwv7a4FiF57j7duBLYJ9d\nfaG7fwsMBZYRD1mdgMd2c/6X7v6+u1+Y0ODvIXf/vHI/YuUkM7MVWho0sz+b2adm9tYuPjczezBY\ns7nUzI5Nou60EIvFuOiii3jppZfYsGFD1OWIiIiIiFTWBnfPStjyU/2FZtaQeNjqChxIfPJneFWH\nCbuuZBpkhJkGn2D3T2/uT/xZXocBucD4anxH2mnaqRff9ujFlXc9HHUpIiIiIiJh+Rg4OGG/VXCs\nwnOC+7GaAZ/tZswuAO6+2t0dmAT0qmJdf6ri+XsUxj1biaqVBt39/4DdhbQBwESPex1obmYHVOe7\n0kX+zCJGfXgJnDSPSY1Hkz9jftQliYiIiIiEYQFwmJm1NbMYMIj4arlE04AhwftzgVeDELUrHwOd\nzKxlsN8XWLmnQhIb+7n7H8sfS1bYYSv0NBiozLpOzCy3bG3o+vXrU1RKzZiyqAAyiyGjBDKK+dMr\nL0ZdkoiIiIhI0oJ7sIYBs4gHoknuvtzMbjezM4PTHgP2MbNVwNXAjvbwZvY+8AfgEjNba2ad3H0d\ncBvwf2a2lPhM1+hKlJPSZn8Nkh3AzMa4+/WwcxosO1aTgvWg+QBZWVm7S7613sBuOcwujIEXQ2mM\nktX/jbokEREREZFQuPsMYEa5Y7ckvN8GnLeLaw/ZxfGHgUrdf2NmQ4FfA+2CcAbxVXo/AkJbUpZ0\n2CKeBssHq/4VHEtGZdZ11im5/bOBOUxZVIC/t4FXpz/A2rWjadWqVdSliYiIiIiku2eAmUAe8dxS\ndjvU5jA7EobR+v3whLbvy4LW78vCKjAwDRgcdCXsCXzp7p+E/B21Tm7/bGbdPJxHbh5GaWkpjzzy\nSNQliYiIiIikvbJmf8DbwCXE7w8bAgwzs1t2c2mVhNH6/SXg9OD96cRbv19UlYHM7FmgiPgzu9aa\n2eVm9isz+1VwygxgDbCK+H1hv06i7rTTtm1bTj/9dPLz8/nmm2+iLkdEREREpK7YAnwVbCXEV+gd\nEtbg1V5G6O5fAl+aWVka3MHMcPfbqzDWhXv43IErq1NnXTFs2DD++te/8txzzzFkyJA9XyAiIiIi\nIrvl7vcl7pvZvcQbd4QijG6EKU2DEte3b1+OOuoo7rnnHkpLS6MuR0RERESkLtqLeH+IUCTdICPV\naVDizIzrr7+eiy++mOnTp3PGGWdEXZKIiIiISFoLelCUdTHPBFoClV6htydhP2cLQk6D8p0LLriA\nNm3aMGZMaM9ZExERERGpz8p6T5wBnAIc6O7jwho86bAVdCAs60a4HHgHGJt8aVJegwYNuPbaayks\nLGTevHlRlyMiIiIiktbc/YOE7ePggcuhCeM5W6cnvN8O/DfsIuU7l112Gbfddht33XUXf/vb36Iu\nR0REREQkbZlZI2Ag8Z4TO7JRVZr97U7SM1upToOys7322oteF+Qy/cst3Dj+2ajLERERERFJZy8B\nA4hPGn2VsIUi6ZmtVKdB2Vn+zCKmNb8fTiom7+N/csjMQ8jtnx11WSIiIiIi6aiVu/dL1eBhNMhI\naRqUnU1ZVACZxZBRAhnFPPrKi1GXJCIiIiKSruab2VGpGjyMe7ZSmgZlZwO75TC7MAZeDKUxvvjX\nKtwdM4u6NBERERGRtJDQ8r0BcKmZrQG+AQxwdz86jO8JI2zNN7Oj3H1ZCGPJHsSXDM5hyqIC9t5U\nynNzb+aVV16hb9++UZcmIiIiIpIuTt/zKckzd9/zWRVduHMaPAxISRqsrqysLF+4cGGUJaTcN998\nQ8eOHWnRogULFy4kMzMz6pJERCrFzBa5e1Z1r68Pv+NFRNJVsr/ja5KZnQe87O6bzexm4FhglLv/\nK4zxk7lnq+wBYP2B9sQfAnZGwnFJsUaNGjFmzBjefPNNHn/88ajLERERERFJNyOCoHUccDLwGPBw\nWINXO2yVtXsHfgJ8Hrz/OXA/sHdI9ckenH/++fTu3ZubbrqJTZs2RV2OiIiIiEg6KQleTwPy3X06\nEAtr8DC6EaY0DcrumRljx47l008/ZfTo0VGXIyIiIiKSTj42s0eAC4AZwWOtwshIENJAKU2DsmdZ\nWVkMGTKE+++/n3fffTfqckRE0lZREeTlxV9FRKReOB+YBZzq7l8QX6F3XViDh9GNsCwN9gXGhJ0G\npXLy8vKYOnUqZ/x6OG1OOJaBWSfqYcciIlVQVAR9+kBxMcRiMGcOZOvXqIhInebuW4EXEvY/AT4J\na/wwQlFK06BUzgEHHMDpQ2/gnR4zmL39Fq4o7EP+TP3TrIhIZRUUxINWSUn8taAg6opERCTdJR22\n3H2ru7/g7u8G+5+4++zkS5OqWr9XKWQWQ0YJZBQzZVFB1CWJiKSNnJz4jFZmZvw1JyfqikREJN1p\nuV8dMjDrRCiJQUkmlMYY2C0n6pJERNJGdnZ86eCoUVpCKCJSX5jZeWbWJHh/s5m9YGbHhjW+wlYd\nkts/m0d6z6HdR5fAhENp+uUHUZckIpJWsrNh+HAFLRGReqSizurjwxo86bCV6jQoVZPbP5u3//Qw\nPQ76EUOHDuWjjz6KuiQRERERkdoqLZ+zFVoalKpr0KABTz31FN9++y2XXHIJpaWlUZckIiIiIrKD\nmfUzs3fMbJWZ3VDB543M7C/B52+Y2SHB8X3MbK6ZbTGzceWuiZlZvpn928zeNrOBlShFz9mSqmvf\nvj1jx47l1Vdf5Z577om6HBERERERAMwsE3gI6A90Ai40s07lTrsc2Oju7YH7gTHB8W3ACODaCoa+\nCfjU3TsE4/6jEuWktLN6GGErpWlQqu/yyy/n/PPP58Ybb6RAPYxFREREpHb4CbDK3de4ezHwHDCg\n3DkDgAnB+8lAHzMzd//K3ecRD13lXQbkAbh7qbtv2FMhqe6sruds1WFmxqOPPkqHDh0489c3knPz\nrXr2loiIiIhE7SAgsbHA2uBYhee4+3bgS2CfXQ1oZs2Dt6PMbLGZPW9m+++pkFrfjVDP2ardmjRp\nwqDr7mTzOW/yj8w79bBjEREREUm1fc1sYcKWWwPf2QBoBcx392OBIuDeSlxX97sRVuIGuUvMbL2Z\nvRlsv0i27vpk/rp3dn7Y8cK5UZckIiIiInXXBnfPStjyy33+MXBwwn6r4FiF55hZA6AZ8NluvvMz\nYCvwQrD/PFCZTFK3uxFW8gY5gL+4e5dgezSEuuuNgd1ydnrYceyTLVGXJCIiIiL11wLgMDNra2Yx\nYBAwrdw504AhwftzgVfd3Xc1YPDZX4Gc4FAfYEUlainrPzGIFPSfaBDCGN9Lg2Z2RxWu33GDHICZ\nld0gV5k/HKmE3P7ZwBymLJzL5rfe52+T8pjY83AGDx4cdWkiIiIiUs+4+3YzG0a870Mm8Gd3X25m\ntwML3X0a8QmcJ81sFfA58TAEgJm9DzQFYmZ2FnCKu68Arg+uGQusBy6tRDnnA/2Ae939CzM7gBD7\nT4QRtsrS4CnAmGqkwYpukOtRwXkDzewE4N/A79xdT+utgtz+2eT2z6a4uJj+G1Zz2WWX0bRpU846\n66yoSxMRERGResbdZwAzyh27JeH9NuC8XVx7yC6OfwCcUMVSvgZ+CFwI3A40BL6o4hi7FGY3wlNS\n2I3wr8Ah7n408He+awO5EzPLLbsRb/369SGXUDfEYjGmTp1KVlYWF1xwAbNmzYq6JBERERGRqPwR\n6Ek8bAFsJn6LUyjCCFuJaRCqngb3eIOcu3/m7t8Eu48C3SoayN3zy27Ea9myZRVKqF+aNGnCzJkz\nOeKIIzj77LO5+g9/5tQ78tSlUERERETqmx7ufiXBc7vcfSO1rEFGsmlwjzfIBWsny5wJrKx+uQLQ\nokULZs+eTYujjuf+z4cx+9sRagsvIiIiIvXNt0HDPgcws5ZAaViDhxG2kkqDwUPKym6QWwlMKrtB\nzszODE77rZktN7MlwG+BS0Kou97bb7/96Hhqr53bwi8qiLosEREREZGa8iDwIrCfmd0JzAPywho8\njAYZSafBStwgNxwYnnypUt6g7FOYWzgGvBhKY/xo/TbcHTOLujQRERERkZRy96fNbBHxVvEGnOXu\noa2iCyNslU+D5wIjQhhXakBZW/hJ/5zDF0tX8cJLt/OLLWsZP348sVhoy1VFRERERGodM5sAXOXu\nDwX7Lczsz+5+WRjjJx22Up0GJfXK2sKXlpYycmRrRo0axZo1azhj6HBm/XsRA7vlBKFMRERERKRO\nOTroqA7Eb4kys65hDZ502Ep1GpSak5GRwe23307Hjh0ZcvO9FCw9CzKLmV0YA+YocImIiIhIXZNh\nZi2CvhOY2d6Es/ovPngIY3wvDQKhpUGpeRdddBHdz+u3U+OMZwpfjrosEREREZGw3QcUmdkoMxsF\nzAfuDmvwMMJWhpm1KNsJOw1KNC498UwoiUFJJpTGWDB5FlOnTo26LBERERGR0Lj7ROAc4L/Bdo67\nPxnW+GGEorI0+Hywfx5wZwjjSoTKGmdMWVRArwM7Mu2Hd3L22WeTm5vLvffeS5MmTaIuUUREREQk\nKWbWyd1XACsSjuW4e0Eo47t78oOYdQJOCnZfDQqOVFZWli9cuDDqMuqM4uJiRowYwT333MNBBx3E\ngCtv4t3tG9U8Q0SqxcwWuXtWda/X73gRkdor2d/xNcnM3gKeJL50sHHwmuXuofwFN+llhGVp0N3H\nBdsKM8sJoTapRWKxGGPGjGH+/PmUHtiJh7ZczexvR3BFYR/yZxZFXZ6IiIiISHX0AA4mfq/WAmAd\n0DuswcO4Z2uSmV1vcT8ws/8lxKcuS+3Ss2dPOp12wk7NM+6d/Djbtm2LujQRERERkar6Fvga+AHx\nma333L00rMHDCFspTYNS+5zX/aSdmme8O3s+RxxxBH/5y18IY1mqiIiIiEgNWUA8bHUHjgcuTOhF\nkbQwGmSkNA1K7ZPYPGNgtxwOzfmKa665hkGDBnH//ffTY+DlvL1tPQOzTtT9XCIiIiJSm13u7mU3\nAX8CDDCzn4c1eBhhawHwEvE0uC/wsJkNdPfzQhhbaqnc/tk7BanFixczYcIErh37BG98edV3D0P2\nV8j9Wa8IKxURERER2ZmZ/d7d73b3hWZ2nrsnzmYdEdb3hLGM8HJ3v8Xdv3X3T9x9ADAthHEljWRm\nZnLZZZfR7dxTd7qf69pxeTz55JMUFxdHXaKIiIiISJlBCe+Hl/usX1hfUu2wZWa/ByhLg+U+Di0N\nSnopfz/XD9dvY/DgwbRp04Yzr7yRE0eMVPdCEREREYma7eJ9RfvVlszMVo2kQUkvuf2zeaT3HE6J\njeKR3nP4+I1ZvPzyy+zT5af8tcVYCjLu4IrCPgy762G2b98edbkiIiIiUj/5Lt5XtF9tyYStGkmD\nkn5y+2cz6+bh5PbPJiMjg1NPPZWDeh+z0/LCh6Y/R6tWrbjuuutYsmQJ+TPmc+odeZr1EhEREZGa\ncIyZbTKzzcDRwfuy/aPC+pJkGmTUSBqUumFgt5ygYUYxlMYY+rPzWffGbMaOHcu9z82EIWvUVENE\nREREaoS7Z9bE9yQTto4xs03EZ7F+ELwn2G+cdGVSp5RvFx/f/zXr168nZ8StrMh8Oz7r5cVcNXYU\n//rrIfTr148PSpowfcUbCdeIiIiIiKSHaoetmkqDUneUbxcP0LJlS64a8HOuKHxix6xXh9jePPXU\nUzz8t9d2mvFasyaf2395PrFYLJL6RURERESqIoznbIkk5XuzXndkU1xcTO8bbmJh5v07ZrzGPPco\nD16XS48ePTj++OPZ1LQ1yzZ/wgU9T9asl4iIiIjUOuZeN2+vysrK8oULF+75RKm18mcWcUVhH8iI\nz3hd0fhufvDZal577TUWfVoMg1fFm26UxMhafgHn9+pEt27d6Nq1K8+//na5JYsiUpuY2SJ3z6ru\n9fodLyJSe1Xmd7yZ9QMeADKBR939rnKfNwImAt2Az4AL3P19M9sHmAx0B55w92EVjD0NONTdjwzl\nB0qCZrak1qr4Pq+4PiNH8arftmPW662v/sPC3z8R/7BV552WH7722q386rTjOOKII5j8xjsKYSIi\nIiIRMrNM4CGgL7AWWGBm09x9RcJplwMb3b29mQ0CxgAXANuAEcCRwVZ+7HOALSn+ESpNM1uSlsrP\nej3Sew7ndD+MxYsXc+Vzz7Pq4MfjQawkE+YeB/P+sVMIoyRG//W/YeBPOtC2bVsOPfRQZr71EVPf\nnPe9IJY/s0gBTSRkmtkSEam79vQ73syygZHufmqwPxzA3fMSzpkVnFNkZg2A/wAtPQgvZnYJkJU4\ns2VmPwJeBnKBSZrZEqmmXc16nXLKKVxX0oQrCp/e0XDjztyr6TL89/zuhan8O6Hr4cyV/2Rm/t3x\nAcvNho3/40B6t2nGWmvBS83u23F806YXueqck2jYsCGw6yCmgCYiIiKySwcBHyXsrwV67Oocd99u\nZl8C+wAbdjPuKOA+YGt4pSZHYUvSVkXdDcuOVxTE1loLrih8akcI++Pvb6ffhFa89957/HbSFJYn\nBLFV2zfywTPT2dj5aDipeMfx68blcd2gfjRv3pwGbbuy4Wev7whikycPpU+H/Vj2hfN05u07jn/8\n8QQu6/sTmjVrRpMmTXhs9j93GcQU3kRERKQO2NfMEpcf5Lt7fiq/0My6AO3c/Xdmdkgqv6sqFLZ2\npagICgogJweys/d8POxrakMN6Vo3kNsccjOB5gnH+mfD6nymLP4HA4/9KbmnHw9A27Zt+e03P+CK\nwsd3BLH7fnsTuf2zeeilfzBsQf8dxwdl9+Xwk09kw4YNTP7P+viSxCCIzVn1L/7+57lw3E93Cmi3\nT3iI2395fryIcjNoo0f3oU3GJvbaay/+07Albx49ecdnL75wJb3bNGPJ5yVM3mvMjuNLl/6BM7se\nSiwWIxaL8ffphcx9fxmndujGoMFn7jj+3MRpTFs2n4HH/pRf/XbwTn8++eOe+u7PYdjFezxe3c9q\n8zW1oYZ0rTvd7e7XioiIhGLDHpaKfwwcnLDfKjhW0Tlrg2WEzYg3ytiVbCDL7P+3d+fRUZVpHse/\nD8FoD9qCgitKQHG3EXClUVEcBFtFBRS1XTASEHdtR50e6XM83TrqHHcUaHXatbWndRS3cUGDC7Io\nAkk0YhBUEGURUETBxGf+uNdKVRFikapbW36fc+rk1vvee+u5T956K2/de9/YQoIxznZmVunu/TYx\n9ozSPVtNeecd6N8f1q+H0lKYPDn4RN5Yeaa3yYcYCjXuNPY38cwxPNm5PUMWraLi0Xti2zRZTvCH\n6KgvKxrvG9thImeOOJnxdz7EH767MlZ++aor2LdnV7755hvun/4uNXs+EbufrMus31G2ZjVr167l\n8/bb8uVhr8Tq2lf2ZdWbU9i675GsPvqtWPnWr/dl9VtTAOjaeV8WxN2H1vXBbixYVLNBebeHdmfJ\n8jpKS0vpvN0e1JxaHavr9Uwv1qxfxta/2oGZx8+Mlf/25b5QupaSkhLa1Lej8qjKWN2AqceyZYc2\ntG3blu9WOs8f/FysbvD7J9Fpp3asWPI9/3vAU7HyIVVD2alLe9q0acOShav4x37/iNUN//B0unTv\nxOfzV/DYno/Gys+qO5vd9t6RNm3aUPfhFzzU7cFY3YhPz2OfHmXUzv2U+3e9P1Y+clEF+/XqhplR\nPWs+E3eeGKurWDyK3xy4OwBV781nwk7jY3Wjl1xAj4O6M2fmx4zf8d7G8i8voOfBewIwe+Y87t3+\nnljdmK8upNehe/H+tFrGbT8uVn7h0ovofdjeALw3rZZxne6K1V20/GIO6rMvM6d+wN0d74yVX7L8\nEg7qG1xaPvPtGu7c9o5Y3aVfX8Yhh+8PwPQ3q7hjm9tjdZetvIxDj+jB9Dfnclv722Lll6+6nEOP\n6AHAtDfmJNVdwWFH9uCdKXO4rf2tG5SbGVMrZ29Q16ffAbFuslu3bvTq1atlfSy5u2eruW5AREQy\nI4V7ttoC84D+BIOqmcAZ7l4Tt86FwP7uPjqcIOMUdz81rv5cku7ZiqsrA57TPVuhlk79GFlAlZXB\nJ3FDQ/CzsjL4NN5Yeaa3yYcYCjXuNPZX8VkVFQsaoKQkYZsmy4GKbz+Hh3fnyV23YchnX1Mx+nNo\n144rWcVWCeXtoLwcgHaXjGVUQ2nsTNm/d+tBxZ3XAzDxkrGMapgSq7vpgCMYMfkVJl58HRc1zIiV\nX1u2H4ffdAPr1q1j7Pj7WBB3+eP2h+zLtWMv5b4XX04o73DA7gzZayDr169nSt0CKJkVq6vfpQM9\nf92ZD1avSThTt6pDW3Zo2IL6+nqWtvOEuk9tLW0/Wkx9fT2+0y4JdTVrl/Ld8x/Qbo+9E8pnr1rE\n5Deexd3ZtkfPhLoZyz7hqeceYedDDoN9GsvfWlzLw09MAKBr3yOhe2Nd5cJq/vuRcUF518byV+fP\n5q8P3tG4za6Nda/Uvc/Ev93eWLdLY91L895j/AO3BuWd48o/eo/x99/auM1OjXUv1s7knvv+a4Py\nFz6cwbi/3tK4TdyZzudrpnP3hJs3KH+2Zhp3TripyW0mVU3ljntvbLLumblTuf2eGzcof3rO29w2\n7oYmt3l6zlvcNu4vGy1vbpufjRo1ivHjx1NomusGREQkO8J7sC4CXiL4+/8Bd68xs+uBd919EnA/\n8LCZ1QFfA8N/3j48e/VroNTMTgIGJM1kmDfa5DqAuKkfBwH7AKeb2T5Jq8WmfgRuI5j6MTr9+gVf\neZaUBD/79Wu+PNPb5EMMhRp3lmOoWFbHS++8RcWyuoRtmiwHKk4fxITH9mRA5eFMeGxPKk4f1Gzd\nZpttxoXnDE4ov3rMmfTp04ejjjqKsw4fBA2lwayLP5Uyot8JjBw5kvKjByeUVww4hZtvvpnbb7+d\nCwYOS6i78LjTePzxx7nod8MTyi854QxeffVVKisrufTEMxPqrjj5LKqrq6mtreXKU85JqLtqyLl8\n8cUXXDV0REL5vw07j5UrV7Jq1SquHlaeUHf1qeWsW7eOa049P6H8mtPKaWhooL6+nquGJe7vypPP\n5ttvv+Xyk89KKL/sxDNZvnw5y5cv3yDui084g6VLl/LVV19x8fGnJ9YdP5wlS5Zw8fHDN8jP4sWL\nWbRoERced1pC3ZhBp/LZZ58xZtCpCeUXDBzGwoULWbBgwQb5Hn3sEObPn8/oY4cklI86dggff/wx\n8+bNo2JAYt3IY06mtraW2tpaRh5zUlLdSdTU1HB+Uvn5YXlTdeX9B1NdXU15/8EblFdVVVFVVbVB\nGyo/urGuqqqK6667jkLU3FtaRESyx91fcPc93H03d/9LWDY2HGjh7j+4+zB3393dD3b3T+K2LXP3\nbdx9S3fvnDzQcveF+XBWCwB3z+mD4PrKl+KeXwtcm7TOS8Bh4XJbgllIrLn99u7d29Mydar7DTcE\nP1Mpz/Q2+RBDocadDzFkMe4Jdz3sA0ac7xPuejil8kxvkw8xKO7sx5Augm8uW/zZkU4f39xbUERE\n0pduH19Mj5zfs2VmQ4GB7n5++Pws4BBPnDO/OlxnUfh8frjORqd+1P9gERHJX/o/WyIixSvdPr6Y\n5Pwywkwyswoze9fM3l22bFmuwxERERERkVYsHwZbmzL1I81N/ejuE939QHc/sFOnThGFKyIiIiIi\n8svyYbA1E+huZl3NrJRgppFJSetMAs4Jl4cCr3mur38UERERERFpRs6nfvc0p34UERERERHJRzkf\nbEEw9SPwQlLZ2LjlH4Bh2Y5LRERERESkpfLhMkIREREREZGio8GWiIiIiIhIBDTYEhERERERiYAG\nWyIiIiIiIhGwYp1B3cyWAZ+muZuOwPIMhFPIlIOA8hBQHgLKQyCdPHRxkblIQwAACPNJREFU9xb/\nQ8QM9PH6HQaUh4DyEFAeAspD+jlIq48vJkU72MoEM3vX3Q/MdRy5pBwElIeA8hBQHgKFnIdCjj2T\nlIeA8hBQHgLKg3KQSbqMUEREREREJAIabImIiIiIiERAg63mTcx1AHlAOQgoDwHlIaA8BAo5D4Uc\neyYpDwHlIaA8BJQH5SBjdM+WiIiIiIhIBHRmS0REREREJAKtcrBlZgPN7CMzqzOza5qo39zMngjr\np5tZWVzdtWH5R2Z2bDbjzrSW5sHMyszsezObHT7GZzv2TEohD0eY2SwzqzezoUl155jZx+HjnOxF\nnVlp5qAhri1Myl7UmZdCHq4wsw/MbK6ZTTazLnF1RdEWIO085FV7SKe/LyYp5OFcM1sW97s7Pxdx\nRsnMHjCzpWZWvZF6M7M7wxzNNbNe2Y4xG1LIQz8zWx3XFsZmO8aomdkuZvZ62I/VmNmlTaxT9O0h\nxTwUfXuInLu3qgdQAswHugGlwBxgn6R1xgDjw+XhwBPh8j7h+psDXcP9lOT6mHKQhzKgOtfHkMU8\nlAG/AR4ChsaVbwN8Ev7sEC53yPUxZTMHYd2aXB9DFvNwFPAv4fIFce+JomgL6eYh39pDOv1cMT1S\nzMO5wN25jjXiPBwB9NrY5xdwHPAiYMChwPRcx5yjPPQDnst1nBHnYEegV7i8FTCvifdE0beHFPNQ\n9O0h6kdrPLN1MFDn7p+4+3rgcWBw0jqDgQfD5X8C/c3MwvLH3X2duy8A6sL9FaJ08lBMfjEP7r7Q\n3ecCPyVteyzwirt/7e4rgVeAgdkIOsPSyUExSSUPr7v72vDpNKBzuFwsbQHSy0O+UT8XSCUPRc/d\n3wC+bmaVwcBDHpgGtDezHbMTXfakkIei5+5L3H1WuPwt8CGwc9JqRd8eUsyDpKk1DrZ2Bj6Pe76I\nDRtWbB13rwdWA9umuG2hSCcPAF3N7H0zm2Jmh0cdbITS+Z0WS3tI9zi2MLN3zWyamZ2U2dCyalPz\nUE7wrWdLts1n6eQB8qs9pNvPFYtUf6dDwsul/mlmu2QntLxSTO/jdB1mZnPM7EUz2zfXwUQpvHS4\nJzA9qapVtYdm8gCtqD1EoW2uA5CCtATY1d1XmFlv4Gkz29fdv8l1YJITXdx9sZl1A14zsyp3n5/r\noKJkZr8HDgSOzHUsubSRPLS69lAkngX+7u7rzGwUwdm+o3Mck+TGLIL38RozOw54Guie45giYWZb\nAk8Cl7Xmv2F+IQ+tpj1EpTWe2VoMxH9j1zksa3IdM2sLbA2sSHHbQtHiPISXUa4AcPf3CO4F2CPy\niKORzu+0WNpDWsfh7ovDn58AlQTfjBWilPJgZscAfwROdPd1m7JtgUgnD/nWHtLp74vJL+bB3VfE\n/R7vA3pnKbZ8Ukzv4xZz92/cfU24/AKwmZl1zHFYGWdmmxEMMB5196eaWKVVtIdfykNraQ9Rao2D\nrZlAdzPramalBDdEJ8+YNQn4eTaxocBr7u5h+fBw9qquBCP7GVmKO9NanAcz62RmJQDht9fdCSYE\nKESp5GFjXgIGmFkHM+sADAjLCk2LcxAe++bhckfgt8AHkUUarV/Mg5n1BCYQDDCWxlUVS1uANPKQ\nh+0hnf6+mKTyO42/F+VEgns3WptJwNnhLHSHAqvdfUmug8o2M9vh5/sWzexggr8Vi+oLiPD47gc+\ndPdbN7Ja0beHVPLQGtpD5HIxK0euHwQzzMwjOCPzx7DseoI/HAC2AP6HYAKMGUC3uG3/GG73ETAo\n18eSizwAQ4AaYDbB6eUTcn0sEefhIIJrtb8j6GBq4rY9L8xPHTAi18eS7RwAfYAqgtnNqoDyXB9L\nxHl4FfgqbPuzgUnF1hbSyUM+tod0+vtieqSQhxvDfn0O8DqwV65jjiAHfye4DP7HsD8rB0YDo8N6\nA8aFOaoCDsx1zDnKw0VxbWEa0CfXMUeQg76AA3Pj+rHjWlt7SDEPRd8eon5YmEgRERERERHJoNZ4\nGaGIiIiIiEjkNNgSERERERGJgAZbIiIiIiIiEdBgS0REREREJAIabImIiIiIiERAgy0REREREZEI\naLAlIiIiIiISAQ22RFrIzNqb2Zi451Mjep3OZnbaRup+ZWZTzKwkzdcoNbM3zKxtOvsRESkW6uNF\nJBM02BJpufZA7IPY3ftE9Dr9gV4bqTsPeMrdG9J5AXdfD0wGmvzAFxFphdTHi0jaNNgSabn/BHYz\ns9lmdouZrQEwszIzqzWzv5nZPDN71MyOMbO3zexjMzv45x2Y2e/NbEa4jwnJ316aWV/gVmBouE63\npBjOBJ7ZlNc1s3Zm9ryZzTGz6rhvVJ8O9yciIurjRSQDzN1zHYNIQTKzMuA5d98vfL7G3bcMy+uA\nnkANMBOYA5QDJwIj3P0kM9sbuBk4xd1/NLN7gGnu/lDS6/wf8Ad3r04qLwU+c/cd4uJJ5XWHAAPd\nfWS43dbuvjr8I+BLd++UuSyJiBQm9fEikgk6syUSjQXuXuXuPxF8KE724JuNKqAsXKc/0BuYaWaz\nw+fJ32oC7AnUNlHeEVjVgtetAv7VzG4ys8PdfTVAeJnKejPbqkVHLCLSeqiPF5GU6EZJkWisi1v+\nKe75TzS+7wx40N2v3dhOzKwjsNrd65uo/h7YYlNf193nmVkv4Djgz2Y22d2vD9fbHPihuQMTERH1\n8SKSGp3ZEmm5b4F0viGcTHCd/nYAZraNmXVJWqcM+KKpjd19JVBiZskfxs0ys52Ate7+CHAL4Y3Z\nZrYtsNzdf9ykoxARKU7q40UkbRpsibSQu68A3g5vQL6lBdt/APwH8LKZzQVeAXZMWq0W6Bi+RlMz\nYb0M9N3El94fmBFe1vIn4M9h+VHA85u4LxGRoqQ+XkQyQRNkiBSw8FKRy939rAzs6yngGnefl35k\nIiKSLvXxIoVPZ7ZECpi7zwJeT55OeFOFs149rQ9hEZH8oT5epPDpzJaIiIiIiEgEdGZLREREREQk\nAhpsiYiIiIiIRECDLRERERERkQhosCUiIiIiIhIBDbZEREREREQioMGWiIiIiIhIBDTYEhERERER\nicD/A098/dPCR4eWAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAKDCAYAAADsJhDzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VOXZ//HPlbCEJUAAQVatoAhhVfZFAoiGYGvt4kpR\n6oJb9amt1qdqQYttXWq1pS1StS7VR60/ixaRnUBAlsi+y1JRoCBCQoIQtly/P2YyDjFAZkgyWb7v\n12teyZlzn/tck9ocvrnvcx9zd0RERERERKRkxcW6ABERERERkcpIYUtERERERKQUKGyJiIiIiIiU\nAoUtERERERGRUqCwJSIiIiIiUgoUtkREREREREpBTMKWmaWa2QYz+8TMfnGSNn80s01mtsLMuhba\nF2dmy8zs/bD3xpjZ9uD7y8wstbQ/h4iIiIiInLnKmg+qlfUJzSwOGA8MAXYCmWb2nrtvCGszDGjj\n7uebWS9gAtA7rJt7gXVAvULdP+Puz5TqBxARERERkRJTmfNBLEa2egKb3H2bux8F3gSuLNTmSuBV\nAHdfDNQ3s6YAZtYSSANeKKJvK7WqRURERESkNFTafBCLsNUC+Dxse3vwvVO12RHW5g/A/YAX0ffd\nwWHFF8ysfgnVKyIiIiIipafS5oMKtUCGmQ0Hdrv7CgIpNTyp/gU4z927ArsATScUEREREanEyns+\nKPN7tgik0NZh2y2D7xVu06qINj8AvmNmaUAtINHMXnX3ke6+J6z934B/F3VyMysq8YqISBlz9zKf\n2qFrgIhI7BXx+z+m+aA0xWJkKxNoa2bnmFkN4Frg/UJt3gdGAphZbyDb3Xe7+y/dvbW7nxc8bra7\nF7Q7O+z47wFrTlaAu+tVxGvMmDExr6G8vvSz0c9GP5uSfcVSrD97eX3pv1f9bPSz0c+lLF4nEfN8\nUFrKfGTL3Y+b2d3AdAJh70V3X29mowO7faK7TzGzNDPbDHwFjCpG108Gl4DMBz4FRpfSRxARERER\nkRJSmfNBLKYR4u5TgXaF3nu+0Pbdp+ljLjA3bHtkSdYoIiIiIiJlo7Lmgwq1QIaUrpSUlFiXUG7p\nZ3Ny+tmcnH42UpHov9eT08/m5PSzKZp+LlLATjF3slIyM69qn1lEpLwxMzxGC2ToGiAiEjux+v0f\nKxrZEhERERERKQUKWyIiIiIiIqVAYUtERERERKQUKGyJiIiIiIiUAoUtERERERGRUqCwJSIiIiIi\nUgoUtkREREREREqBwpaIiIiIiEgpUNgSEREREREpBQpbIiIiIiIipUBhS0REREREpBQobImIiIiI\niJQChS0REREREZFSoLAlIiIiIiJSCqrFuoCKauvWraxYsYKDBw9St25d2rZtS9u2bUlISIh1aSIi\nIiIiUg4obEVow4YN3HHHHaxfv56ePXtSr1499u/fz+bNm/nss8/o0qUL/fv3Z+DAgaSkpFCnTp1Y\nlywiIiIiIjFg7h7rGsqUmXm0n3n58uWkpqbyyCOPcPvtt1Ot2olZ9eDBgyxevJj58+cza9Ysli5d\nSp8+fUhNTWXYsGFceOGFmFlJfAwRkQrNzHD3Mv+FeCbXABEROXOx+v0fKwpbxXTgwAG6du3KuHHj\nuPbaa4t1TE5ODrNnz+bDDz/kww8/JC4ujmHDhpGWlsbgwYM16iUiVZbClohI1aSwVclFe6F9/PHH\nWb16NW+++WZU53V31q9fz5QpU5gyZQqZmZn07duX4cOHk5aWRtu2baPqV0SkIlLYEhGpmhS2Krlo\nLrRHjhyhRYsWzJ8/n3bt2pVIHTk5OcycOTMUvurWrUtaWhppaWkMHDiQmjVrlsh5RETKI4UtEZGq\nSWGrLE5qlgo8S2Dp+Rfd/Yki2vwRGAZ8Bdzk7ivC9sUBHwPb3f07wfeSgLeAc4BPgavdfX8R/UZ8\noV2+fDk/+tGPWLNmTUTHFZe7s2LFilDwWrNmDSkpKaSlpTFs2DBat25dKucVEYkVhS0RkapJYau0\nTxgISp8AQ4CdQCZwrbtvCGszDLjb3YebWS/gOXfvHbb/p8DFQL2wsPUEsNfdnzSzXwBJ7v5gEeeP\n+EL7t7/9jQULFvDyyy9H+Gmjs3fvXqZNm8aUKVOYOnUqzZo1C0037NOnD9WrVy+TOkRESovClohI\n1VTew5aZVQN+CPQJvlUHOA4cBFYBb7h7XrH7i0HY6g2Mcfdhwe0HAQ8f3TKzCcAcd38ruL0eSHH3\n3WbWEvg78DhwX1jY2gAMDLY5G0h39wuLOH/EF9rRo0fTqVMn7r777mg+8hk5fvw4mZmZTJkyhQ8+\n+ICtW7cydOhQhg8fTmpqKk2bNi3zmkREzpTClohI1VSew5aZ9QAGADPcfXUR+9sAw4GV7j63OH3G\nlWyJxdIC+Dxse3vwvVO12RHW5g/A/UDhq2UTd98N4O67gCYlVfDHH39M9+7dS6q7iMTHx9O7d28e\ne+wxli5dyrp16xg2bBiTJ0/mwgsvpEePHowZM4bFixeTn58fkxpFRERERCqBPHd/pqigBeDuW9z9\nj8DnZlajOB1WqIcam9lwYLe7rzCzFOBUqfikf7ocO3Zs6PuUlBRSUlJO2kleXh7r16+nS5cukZZb\nKpo1a8aoUaMYNWoUR48eZcGCBUyZMoWbb76ZL774gtTUVNLS0rjsssto2LBhrMsVEQEgPT2d9PT0\nWJchIiJyUuEhy8yaFgzkmFktdz8U1m5rcfuM1TTCse6eGtwuzjTCDcBA4F5gBHAMqAUkAu+6+8hC\nUw3PDh7fvojzRzSFJDMzk1tvvZUVK1acvnGMbdu2LbTIxty5c+nSpUtohcPOnTvrgcoiUm5oGqGI\nSNVUnqcRApjZ/wLLgVbu/rfge92BRHefE3F/MQhb8cBGAgtk/BdYAlzn7uvD2qQBdwUXyOgNPBu+\nQEawzUDgZ4UWyNjn7k+U5AIZf/3rX1m6dCkvvPBCxJ81lvLy8pg7d27oXq+8vDyGDRvG8OHDGTJk\nCImJibEuUUSqMIUtEZGqqQKErQuBQcAtBG5l2kUgr7Rw90cj7i+GS78/x9dLv//OzEYTGOGaGGwz\nHkglsPT7KHdfVqiPwmGrIfA20ArYRmDp9+wizh3Rhfbmm2+mR48e3H777VF80vLB3dm0aVNo1Gvh\nwoX06tWLtLQ0hg8fzgUXXKBRLxEpUwpbIiJVU3kPWwXMLNXdp5pZU6AnsNPdl0bcT1W76ER6oe3a\ntSsvvPBCzBbIKA0HDhxg1qxZofBVo0aN0DO9UlJSqF27dqxLFJFKTmFLRKRqKq9hy8xqAnXdfW8x\n2rZy989P1w4Utk7p0KFDNG7cmH379lGzZs1Sriw23J01a9bwwQcfMHXqVJYuXUrv3r25/PLLSU1N\nJTk5WaNeIlLiYhq2cnJAU6lFRGKivIYtADO7gsCaEJPCF8QI298AuBpY5+7zi9WnwtbJLVq0iLvu\nuoulSyMeMaywcnJymDNnDlOnTmXatGkcOXKEyy+/nMsvv5xLL71UKxyKSImIadjq0gUyMk4MXLm5\nsGYNdOz4zSB2qn0iIhKR8hy2AIIL7f2YwGOkEgis3l7wUOPtwAvuvr/Y/Slsndz48eNZvXo1zz//\nfClXVT65O5s3bw4Fr3nz5pGcnExqaiqXX345PXr0ID4+PtZlikgFFNOwVb06zJsHvYPrLuXmwoAB\nsHYtJCefGMROta9gv0KaiEixlfewVdJi8VDjCiOWDzMuD8yM888/n5/85CdMnjyZPXv2MG7cOA4c\nOMBtt91GkyZNuOaaa3jppZfYsWNHrMsVESmeDh0CwanAmjWBMHXsGKxbF/i+OPsKgtgllwS+5uYW\nb1/B/oULv/n+6faJiEiZMrM6wa/VzCzi7KSwdQpVPWwVVrNmTYYMGcJTTz3FqlWrWLVqFampqUyb\nNo3OnTvTqVMn7r//fmbOnMnhw4djXa6ISNEKj0517BgIX9WrfzOInWpfeQtpxdkvIiLFZmYPAGPM\n7GmgPjAh4j40jbBoBw4coGnTpmRlZVGjRo0yqKxiO378OJmZmUybNo2pU6eydu1aBgwYEJpyeP75\n52uhDREJKXerEebmfj1VsKjpgEXtKwhG69YFglhR0w+L2rdwYSBMHTsWCHHhUxpPta84Uxo15VFE\nyrmKNI0w+KipRcBR4AfAZe5+S0R9KGwVbf78+fzsZz9j8eLFZVBV5bNv3z5mzpwZCl81a9YMLbQx\nePBg6tWrF+sSRSSGyl3YilZ5CWmn26/70kSknKhgYas7cLG7Px/cvt7d34ioD4Wtoj333HN88skn\n/PnPfy6Dqio3d2ft2rWhhTYWLVpE165dGTp0KEOHDqVHjx5Uq1Yt1mWKSBmqNGErWiUd0k63vzRG\n0xTSRCQKFSlslQSFrZP40Y9+xODBgxk1alQZVFW1HDx4kIyMDGbMmMH06dP5/PPPGTRoUCh8tWnT\nRlMORSq5Kh+2onWqkHaq/eVpymNphTQFOJEKoSKHLTPr6O5rIjqmQl90olDcC2379u15++236dSp\nUxlUVbXt2rWLmTNnMmPGDGbMmEHNmjW57LLLGDp0KIMHD9azvUQqIYWtGCgvUx5LI6SdSYArzn4R\nKTEVLWyZWSugKbAbaObuSyI6vjgXHTOrBvwQ6BN8qw5fP9xrFfCGu+dFcuJYKc6FNicnh+bNm5Od\nna3pbWWsYMphQfDKyMigffv2DB06lMsuu4w+ffpowRKRSkBhqwKpCCFNC4uIVBgVKWyZ2WigJnAA\naAAcd/fnIurjdBcdM+sBDABmuPvqIva3AYYDK919biQnj4XiXGjT09N56KGHWLBgQRlVJSdz+PBh\nPvroo1D42rhxIwMGDAiFr/bt22vKoUgFpLBVBZRCSNt5yaVM3pfHFQ0TaD5vZvH2LVzIziHDmNyo\nJVfs20HzWR9+Y2GRk+6P9pwFn0UhTeQbKljYutTdZ4ZtD3L3ORH1UYyw1amokFVEu/OA7e5+JJIC\nylpxLrRPPfUUO3bs4Nlnny2jqqS49u7dy6xZs0Lh6+jRo6F7vS699FKaNm0a6xJFpBgUtuRkdn66\nk8kfzOaK4YNpfm7zr9/fm0ubcf3JS1xHzZz2pI98gzrVnQMHDrDtv3sZmf4gRxtspHp2O353wT3U\nrQHHjh0je89+Htv1CofP2kLNPW14oME11K5fi7i4OMyMvNw8Ht/zemj/2GY3Uf+s+tSsWZOan3zK\nLfvfIu+srSTsOY9/tbmLen27U7NmTQ5/vIohK34X2rcm9Vm+9e3LiYuLO6OQtvPTnUyePJsrrjjx\n8xccq5AmFV0FC1s9gauBWsB+YIq7z4+oj0guOmbW1N13B7+v5e6HIjlZeVCcC+3VV1/Nd77zHUaM\nGFFGVUk03J3Nmzczffp0ZsyYQXp6Oueee24ofA0YMIBatWrFukwRKYLCVtW2c28uk5es4YqeHWne\nKJH9+/fz2WefsXztJm5e8CuOJW0kft/5XL6zM1/t28WXX37JZ/n1yP1BJsQfg2PVafh+H5rn76Nu\n3bpk123Jhj6TQvv6bLyJ5PpO9erV2XCgGnPO/WtoX+que+ncMA53Jz8/n5V7jzOz1fjQ/pRPR9Ou\nzlEOHz7Mpqx8FnR+I7QvOSONxMO7OXz4MPviG7FtWHpoX+LryRz4dCUJCQn0rFWfxVfXCwWxHy5J\n4sumDalTpw7nHjjM+HM3hvY9TSo1LupIvXr1yD/sjFo0lsONt5DwZRs+vu1dLkg+n+rVq59RSDtl\ngBMpYxUpbJWE4t6z9b/AcqCVu/8t+F53IDHSobRYO9mFds2aNXTq1Al357zzzuPDDz+kXbt2MahQ\nonXs2DGWLFkSWuVw1apV9OrViyFDhjBkyBAuvvhi4uPjY12miKCwVRUUDlQ5OTls3LiRhUtXc9/a\n33M86RPsyzbUfjMbO/oVrVu3hlYdWdfz3VCAua3G01zbvxONGzfmWHwt+v7t++TVXU/CgQ5seTiD\n5o0SQ+dqM24AeXXXRbSveMf2D56zPVsenn/KfWcn1eHQoUNM+H+z+Pnm74c+x/2Jf+KSDi04ePAg\nUz/ezN8Txnwd/j4dTYuah8jJyWHvrkPMTpka2tf+/zqx8T8rqFmzJn3qNuSj79cJhbSbVrfgwLda\nUK9ePWrE1eSvx6aERucmdn+Ic88/hwYNGnD4wBEu+ccI8oIBbssDs08cMVRIkzKmsFVUI7MLgUHA\nLcAOYBewBGjh7o+WaoUl7GQX2ilTpjB8+HD27NlDmzZtyMrKCkwFkApr//79zJ07l1mzZjFr1ix2\n7NjBwIEDQ+FL93uJxI7CVuW2Yet2ujw3jCP1NxC393xaz4zni+1badeuHdW+1ZXM5NdCgeK5bh/y\nk6sGY2bFCkZTMteS1iP5hPfPZF9p9BtpSAvt+3QnbZ4cTF6jrSTsPY8tD8ym2TnNOHjwIH99Zyb3\nb/lB6Od2d7Wn6PGtJHJycli2cD1/bzMxtG9oRhqHju8lOzub+OOJrAwbEez6bneocYgGDRqQmFCP\n6edu4PBZW6m5pw2PnD2SFuc0p0GDBuTn5XPDvF+GQtonP59Bq/Nanfj5FdQkChUxbJnZJUB8NINM\nkU4jTHX3qWbWFOgJ7HT3pZGeNJZOdqFdtmwZF198Ma+//jqvvfYaH374YQyqk9K0a9cuZs+eHQpf\nR44cYfDgwaHw1bp161iXKFJlKGxVDgWjVwPatWTz2hWkp6eTnp7Ommw4csOq0D/wx577fzx803eJ\nj48/o0BVkUQd4D7dyZQpc0hLG1T0PWvFDGkFxxbeN+e6V6hRpzrZ2dl8MCmdZxr8NvS/0w9XX0+t\n+k52djbZe44y79IZoX3nvXwBX+Z8ToMGDahfvz5JdRuyuMt/g0HtPO6peSVntz6bBg0aYMfiuGPF\n70LTIZff8R7tOl4Q+gOnQlrVVkHD1kACYWt2xMee6qJjZjWBuu6+txhFtHL3zyMtoKyd7EK7cuVK\nunbtymWXXcaQIUN44IEHYlCdlBV3Z+vWraHgNXv2bBo0aMCQIUO49NJLGTRoEI0aNYp1mSKVlsJW\nxebuzFu8jEtfH8mxpE9gz3n039SG1EH9SElJocV5F9L+ySGVPlCVtWhC2qn2RRLSPvn5DBIbJgaC\nWHY277wxhcfDpkP+aPOPaXR2LbKzs9m5LZvp/SeH9rV7PZnNn62mfv36NElqyn+GHg+FtOsP9KdJ\ni7NISkqiOjX45afPc/isQEibfe3LtOt4AfXr1w8EdYW0SkFh65udXwEkApOKWhDDzBoQWKVjXaSr\nc8TC6cIWBO7fSk5OLuvSJIby8/NZvXo1s2bNYubMmcyfP5+2bduGRr0GDBhAnTp1Yl2mSKWhsFVx\nhN97lbXrM/7xj3/wzjvv8GXC2WRftSj0D+q/9ZvHLam9TzhOgar8iyakFewrblDb8sBszmpxFtnZ\n2bz41//jf4/9LPTfzR3//Qktz2tEVlYWm9bt4L2L/3nClMf/7FhHbm4uZzVoQvbV9UIhbdjnyTQ6\nuyFJSUkkxNfiqf1vh+5Zezf1D7Rt34akpCQaNGjAnh17FNLKEYWtok9wNvBjoAmQAFTj64cabwde\ncPf9kZ48Fk4Xth599FF+9atfxaAyKU+OHDnCkiVLQiNfy5Yt46KLLgqFr169egVWhxKRqChsVQw7\n9+Zy3q/7c7jeOuzLNjT54Dgjr7mKa6+9lqat29L28UtOOnollV9pj6YV7Dt+/Dh/fuYl7s29MxTE\nfpr9ABd2ak1WVhYrMzfxfx1e+Xo1yqmX8EXWp2RlZXH0q6McGdUsFNJ6r2pOg7Pqk5SURJ0adXkh\nbkYopL3Uewznnn8OSUlJJCUlkZebx/Rp8yMOaQpwp1ZBw1YbIM7dN0V8bFW76JwqbI0cOZKVK1fG\noCop77766isyMjJC4Wvz5s30798/FL46d+6sBVVEIqCwVf6tWLGCu383gQUXvBj6R+yEPnMYndYv\n1EajVxKNsgppABPHv8boL34c+m/44cNj6db7QrKyslg4dwUvnjshtG/I3FQOHPmCrKwsDu0/xBdX\n1QqFtAvn1qJuw7okJSVRr1Z9/l+jzNDCIr9v9xNandeKpKQkjh86zrBJt0e1+mNx9lcGFTRs9XT3\nJVEdG81Fx8zquPtXZlYNyHf3/AiPTwWeBeKAF939iSLa/BEYBnwF3OTuK4L3kM0DahAYXXunYDVE\nMxsD3Ap8Eezil+4+tYh+FbbkjO3du5c5c+aEwldWVhaDBg0Kvdq1a6eVDkVOQWGrfHJ35syZw69/\n/Ws2b97MDT8ezbP7/8nhxG8uty5S1so2pP2D0V+MCgWxcfFPMGDwxWRnZzNjygLGN3kmtO/bmVeR\nX+0rsrOzOXIgnszvfPT1s9ne7soxywmMltVtyOy2m0MB7qEmP6LFOc1DI2nH845zxft3Vfpl+itS\n2CoIWWZ2t7uPj6qPSC86ZvYA0JhAUPot8Ft3vy2C4+OAT4AhwE4gE7jW3TeEtRkG3O3uw82sF/Cc\nu/cO7qvt7gfNLB5YANwT/CGMAXLd/ZnTnF9hS0rcZ599xpw5c0KvI0eOMGjQIFJSUhg0aBBt27ZV\n+BIJo7BVvuzcm8uTf3+LBf96nZwvd/LQQw9x/fXXU61aNY1eSYVXliGt8L6Fo96kZt2aZGVl8d7b\n03my3uOhIHb1mhuo3QCysrLIysoiLyeOJd+eH9rf4c0uHLX9oaCWfsHWUFD7ZeMRND+nGUlJSXAE\nRmQ8FAppm++fRYtvtTjhs5SnkFZBw9bvgUXAWe7+l4j6iCJsDQye7CjwA+Ayd78lguN7A2PcfVhw\n+0HAw0e3zGwCMMfd3wpurwdS3H13WJvaBEa57nD3zGDYOuDuvz/N+RW2pFS5O//5z3+YM2cO6enp\nzJkTeCRD+MjXt771rRhXKRJbClvlx869uZwztjfHkj6henY7tjw8n1ZNGsS6LJGYO5PFQyINcEXt\nX3LzP6lRtwZZWVn86+1pPFl3XCiIXbP2BuokxZGVlcW+3XnMHfL1Mv1tXm5H1sGdJCUl0bh+Y1b0\nzAqFtDuqDadZq7NJSkoi7lgcd61+KrRE/9LR/+LCTu1Ct0WUVkgrz2HLzK4EVrj7tuB2C3ffYWZD\n3H1WVH1GEba6Axe7+/PB7evd/Y0Ijv8+cHnBaJiZjQB6uvs9YW3+TWDE7KPg9kzgAXdfFhwZWwq0\nAf7s7v8bbDMGuAnYD3wM/KyoRTsUtqSsuTubN28+YeQrISEhFLxSUlL0jC+pchS2yo+RDz3Fa/G/\nPOmqgiJSck4V0k61P5LRtI0/m07t+rXJysrijZcnMTbs/983bb2Vxs1rk52dzfat+5ja7/3Qvgvf\n6MimbatITEykScOmbLvMQyHtutx+JyzR/9C2iaEl+mdd83fadbyABg0anHaJfij3YesPwOvu/rGZ\nfcfd3z/jPsv6onOmYSusTT1gEoHphuvM7CzgS3d3MxsHNHP3m4s4v48ZMya0nZKSQkpKisKWlBl3\nZ8OGDaHglZ6eTr169U4Y+WrevHzPtxaJVMHDbgs8+uijClvlwD//+U/uuu9Bcr5fh8OJG3Rflkg5\nVhbTIZu2asr+/fv5219e58Ej94Ut0X8Prds2Jisri0/WbmfSRW+H9nX7V08+3bmOnJwcGtVrzP5r\n6he5RH/B68477yzPYWsQcA+B1dcTgA+A1cAad98RVZ9netExs47uviaC9r2Bse6eGtwuzjTCDcDA\n8GmEwfcfAb4qfJ+WmZ0D/NvdOxdx/iIvtCtWrODGG29U2JIyl5+fz7p160Lha+7cuTRu3PiEka+m\nTZvGukyREqWRrbIX/rys5o0SmTp1KjfeeCPTpk2jSas2ui9LpJIqq3vW8vPzGf/MS9ybc0coiN2X\n/Qsu7Nw6dF9aVlYWzz//fLkNW+HM7D4Cs+mSgY5AcwKPvPqTu28sdj8lELZ6ufviCNrHAxsJLJDx\nX2AJcJ27rw9rkwbcFVwgozfwrLv3NrPGwFF3329mtYBpwO/cfYqZne3uu4LH/xTo4e7XF3H+k4at\nm266iRUrVkTy8UVKXH5+PqtWrQqFr4yMDJo3bx4KXikpKTRu3DjWZYqcEYWtsrVzby5txg0gL3Et\nCbnJ/N9lT3PryOt477336Nu3b6zLE5FyqDTuS4PyPY3wdMzsGqCVuz9d7GOiXPq9FdAU2O3un0dx\nfCrwHF8v/f47MxtNYIRrYrDNeCCVwNLvo4L3a3UCXgkeFwe85e6PB9u/CnQF8oFPgdGFR8KC7RS2\npEI5fvw4K1asCIWv+fPnc8455zBw4EAGDhzIJZdcQpMmTWJdpkhEFLbK1sQPFzJ64SWhvzbXfedi\n3v3jYwwdOjTWpYlIJXO6+9IqeNj6HoGBn38X+5goFsgYDdQEDgANgOPu/lxEncSQwpZUdMeOHWPp\n0qXMmzePuXPnMn/+fJo3b35C+NI9X1LeKWyVrdDIVt118OV5/K3vWG750bWxLktEqqCT/f6P9jm8\nYfviCCySt93dvxN8Lwl4CziHwGDM1UUtoFeaoglbl7r7zLDtQe4+p8QrKyUKW1LZHD9+nJUrVzJ3\n7lzmzp1LRkYGDRs2DIWvgQMHarVDKXcUtsrekhXrSB05mkdGj+Snd90a63JEpIoq6vf/mT6HN7j/\np8DFQL2wsPUEsNfdnzSzXwBJ7v5gKX/EE8RFcUyOmT1tZn82s98QeN6WiMRIfHw8F110ET/96U+Z\nNGkSe/bs4d1336Vr1668//779OjRg3PPPZcbb7yRl156iS1btlBV/7EpUlXt3r2bEVd/lzE3/0BB\nS0TKo57AJnff5u5HgTeBKwu1uRJ4FSC4XkR9M2sKYGYtgTTghSKOeSX4/SvAd0un/JOrFukB7r6E\nwKIWIlIOxcXF0alTJzp16sTdd98dWmp+3rx5zJw5k0ceeQQz45JLLgmNfLVr1w6zCjl9WkTCFF5x\nECArK4vLLruMESNGcO+998a4QhGRIrUAwteB2E4ggJ2qzY7ge7uBPwD3A/ULHdOkYA0Hd99lZsW6\nyd3MfgL8w92ziv0JTiLisBVWxACgWkWaQihSFZkZ7du3p3379owePRp3Z8uWLcydO5d58+bx29/+\nlkOHDp0IpKSvAAAgAElEQVQQvpKTk0NPkBeRiuGEFQenJ7Pl4Qwa1Irn29/+NoMHD+aRRx6JdYki\nUgUVfs5iSTOz4QQW7VthZinAqf56XNypPU2BTDNbBrwETIt2DnrUS7+b2UAg3t1nR9VBjOieLZFv\n2rZtW+ier7lz55Kdnc2AAQNCC2506dKF+Pj4WJcplYju2Sp5hVccnNB7Nh88/yT16tXj1Vdf1R9Q\nRKRcOMk9W1E/hxe4FxgBHANqAYnAu+4+0szWAynuvtvMzg4e376YdRpwGTAK6A68TWDhji2RfF79\n5hURzjnnHEaOHMmLL77I5s2bWblyJVdffTUbNmzghhtuoFGjRqSlpfHb3/6W+fPnc/jw4ViXLCKF\nXNGzIwm5yXCsOgkH2pP+9iscOXKEl156SUFLRMq7TKCtmZ1jZjWAa4H3C7V5HxgJoXCW7e673f2X\n7t7a3c8LHjfb3UeGHXNT8PsbgfeKW1DwL3O7gq9jQBLwjpk9GckH08hWkEa2RE7uiy++YP78+WRk\nZJCRkcGGDRvo1q0bAwYMYMCAAfTt25f69QtPkxY5OY1slY6de3OZkrmWFdMnkblgDrNmzaJu3bqx\nLktEJOQ0S79H/BzeQn0MBH4WthphQwIjUq2AbQSWfs8uRo33Egh2XxJYdGOSux8Nrpq4yd3bFPvz\nnkHYagPEufumqDqIEYUtkTOXm5vLokWLyMjIYP78+WRmZtKmTRsGDBhA//79GTBggJ71JaeksFV6\nnn32WSZMmMD8+fNp3LhxrMsRETlBRXiosZk9Crzk7tuK2Nfe3dcXt6+oF8iIdL6iiFQeiYmJDB06\nlKFDhwJw5MgRli1bRkZGBm+88QZ33nknDRo0OCF8XXDBBVrxUKSUvfHGG/z+979X0BIROTMJhYOW\nmT3h7r+IJGhBdA817unuSwq+RnRwOXCyv2ouX76cUaNGaWRLpATk5+ezfv36E6Ye5uXl0b9//1D4\n6tq1K9WqRf33HqngNLJV8qZNm8bIkSOZNWsWHTt2jHU5IiJFqiAjW8vc/aJC761y986R9nUm/9Lp\nSSV73pb+6i5SMuLi4khOTiY5OZnRo0cD8Nlnn4XC14svvshnn31G7969Q+GrV69e1K5dO8aVi5Rv\nRT1HC2DJkiWMGDGCf/3rXwpaIiJRMrM7gDuB88xsVdiuRGBBVH1GMbLVwt13mNnvgUXAWe7+l2hO\nHgunGtn68Y9/zPLly2NQlUjVs2/fPhYsWBC672vVqlV06tQpFL769etHo0aNYl2mlBKNbEXuhOdo\n5Qaeo9W8USIbN24kJSWFiRMn8u1vfzvWZYqInFJ5Htkys/oEVh38LfBg2K5cd98XVZ+nu+iY2ZXA\niiLmLQ5x91nRnDSWFLZEyqeDBw+yZMmS0LTDxYsX06xZM/r16xd66b6vykNhK3KFn6P1t37zGNap\nFf369WPMmDGMGjUq1iWKiJxWeQ5bpaE40whTgB3ANjP7jru/D1ARg5aIlF+1a9cmJSWFlJQUAI4f\nP86aNWtYsGABs2bN4rHHHuPAgQP07duXfv360bdvX3r06EFCQkJsCxcpI1f07EjC9GTy6q4j4UAH\n+p7fnNTUVG6//XYFLRGREmBm8929v5nlAgV/mSsIhu7u9SLusxgjW4OAe4CE4OsDYDWwxt13RHrC\nWNPIlkjFtWPHDj766CMWLFjARx99xNq1a+ncuXMofPXr14+mTZvGukwpBo1sRafgOVqDO57Hjdd9\nn+7du/PMM89oxFdEKoyqNrIV0T1bZnYfsBRIBjoCzYHtwJ/cfWOpVFjCFLZEKo+CqYcFAWzhwoU0\nbNgwFLz69etHhw4diIuLi3WpUojCVvSOHz/O1VdfTY0aNXj99df137eIVCgVIWyZ2Q+Bqe6ea2YP\nAxcBv3b3iINC1A81DivmGqCVuz99Rh2VEYUtkcorPz+fDRs2sGDBgtDo1549e+jdu3cofPXs2ZM6\nderEutQqT2ErOu7O//zP/7By5UqmTZtGzZo1Y12SiEhEKkjYWuXunc2sPzAOeAr4lbv3irSvknjI\nzVGgQoxqiUjlFhcXR4cOHejQoQO33norAF988UVo5Ovhhx9m5cqVXHjhhaHw1bdvX1q2bBnjykWK\n5w9/+AOzZs1i/vz5CloiIqXnePDrcGCiu39gZuOi6eiMR7YqGo1siVRteXl5LF26NBTAFixYQO3a\ntenXrx99+vShT58+dOnSherVq8e61EpNI1uRe+utt/j5z3/ORx99RKtWrWJdjohIVCrIyNZkAgsE\nDiUwhfAQsMTdu0TcV0W96ERLYUtEwrk7mzdvDt3ztXDhQrZu3Uq3bt1C4at37940a9Ys1qVWKgpb\nkZk3bx4/+MEPmDlzJp07d451OSIiUasgYas2kAqsdvdNZtYM6OTu0yPuqyJedM6EwpaInE5OTg6Z\nmZmh8LVo0SISExNDwatPnz507dqVGjVqxLrUCkth6+R27s1l8pI1XNGzI80bJbJ27VoGDx7MG2+8\nwZAhQ2JdnojIGakIYaskFfueLTP7CfAPd88605OaWSrwLBAHvOjuTxTR5o/AMOAr4CZ3X2FmNYF5\nQI1g7e+4+6PB9knAW8A5wKfA1e6+v7g1lfeLr4iUnXr16jFkyJDQP2zdnU2bNoXC19///nc2b95M\n165dQ+GrT58+NG/ePMaVS0W3c28ubcYNIC9xLQnTk1lwyz+5Ki2Np59+WkFLRKSMBDPH94FzCctL\n7v5YpH1FskBGUyDTzJYBLwHTovnzoJnFAeOBIcDOYJ/vufuGsDbDgDbufr6Z9QImAL3d/bCZDXL3\ng2YWDywwsw/dfQnwIDDT3Z80s18A/xt8L5LaIv04IlIFmBkXXHABF1xwATfeeCMAubm5odGvl19+\nmdGjR1O7du0Tph5269ZNixhIRCYvWUNe4lqIP0Ze3XVcectPuPP22/nRj34U69JERKqS94D9BB55\ndfhMOip22HL3h83sEeAyYBQw3szeJjAytSWCc/YENrn7NgAzexO4EtgQ1uZK4NXgeRebWX0za+ru\nu939YLBNzWD9HnbMwOD3rwDpRBi2RESKKzExkcGDBzN48GDg63u/CqYdvvLKK3zyySd06dLlhOmH\nWvlQTuWKnh1JmJ5MXt11xO1rw6Dk83jwQV3KRETKWEt3Ty2JjiJa+t3d3cx2AbuAY0AS8I6ZzXD3\nB4rZTQvg87Dt7QQC2Kna7Ai+tzs4MrYUaAP82d0zg22auPvuYJ27zKxJBB9NROSMmBnnn38+559/\nPiNHjgTgwIEDZGZmsmjRIl577TXuvPNOEhISTph62K1bNxISEmJcvZQXzRslsvmhefzgzp+ReHAv\nL036o2ZdiIiUvY/MrJO7rz7TjiK5Z+teYCTwJfACcL+7Hw2Gn01AccPWGXH3fKCbmdUDJplZB3df\nV1TTsqhHRORk6taty6BBgxg0aBAQGP3aunVr6N6vf/zjH2zcuJEOHTrQq1ev0Ktt27bExcXFuHqJ\nlQnPPUX+tlX8a/ZsqlUricdhiohIhPoDo8xsK4FphEZg3Cni5WAj+S3eEPhewfS/Au6eb2ZXRNDP\nDqB12HbL4HuF27Q6VRt3zzGzOQSWZVxHYNSrqbvvNrOzgS9OVsDYsWND36ekpJCSkhJB+SIi0TEz\n2rRpQ5s2bRgxYgQABw8eZNmyZSxevJjJkyfzyCOPkJOTQ48ePULhq2fPnpx11lkxrv7MpKenk56e\nHusyyr2JEyfy5ptv8tFHH1GnTp1YlyMiUlUNK6mOir30u5k94e6/ON17xegnHthIYIGM/wJLgOvc\nfX1YmzTgLncfbma9gWfdvbeZNQaOuvt+M6sFTAN+5+5TzOwJYJ+7PxFcICPJ3b8x0f1ky/4uW7aM\nW265hWXLlkXycUREStyuXbtYsmQJS5YsYfHixWRmZtKwYcMTwle3bt2oVatWrEuNmpZ+/6bJkydz\n6623kpGRQdu2bWNdjohIqagIS79bYP72DcB57v6YmbUGzg4uyhdZXxGErWXuflGh91ZFM5wWXPr9\nOb5e+v13ZjaawPDcxGCb8QRGrb4CRrn7MjPrRGDxi7jg6y13fzzYviHwNoERsW0Eln7PLuLcClsi\nUqHk5+ezcePGUPhavHgxGzZsoH379qHw1atXLy644IIKM/1QYetEmZmZDB8+nH//+9/06tUr1uWI\niJSaChK2/grkA4PdvX3wEVPT3b1HxH2d7qJjZncAdxJYkGIzgTmLAInAAne/IdKTxpLClohUBocO\nHWL58uWh8LVkyRKysrLo0aNHKHz16tWLJk3K51pBCltf27p1K/3792fChAl85zvfiXU5IiKlqoKE\nrWXufpGZLXf3bsH3Vrp7l0j7Ks49W68DHwK/IbCUuhFYfCK3JB5wLCIikatVqxZ9+/alb9++ofe+\n+OKL0OjX+PHjGTlyJA0aNDghfF100UUVevphZbN3716GDRvGww8/rKAlIlJ+HA3e+uQAZnYWgZGu\niBVnZGu+u/c3swOFTlKwKke9aE4cKxrZEpGqIj8/n02bNoVGvhYvXsy6deto164dPXv2pEePHnTv\n3p3k5OQyX/VOI1uQl5fHpZdeSr9+/XjiiSdiXY6ISJmoICNbNwDXABcDLwM/AB52939G3Fd5ueiU\nFYUtEanK8vLyWL58OZmZmXz88cdkZmby+eef06VLF3r06BF6lfby81U9bOXn53PttdcSHx/P66+/\nXmHutRMROVMVIWwBmNmFBBb0A5gdvphfRP2Uh4tOWVLYEhE5UU5ODkuXLiUzMzP0ys7O5uKLLz4h\ngLVq1arEHrBb1cPWz3/+czIzM5k+fTo1a9aMdTkiImWmPIctM7vvVPvd/ZlI+4zkocY/BKa6e66Z\nPQJ0A8a5e6VIJ+Xh4isiEgv16tU74eHLAHv27AmNfL388svcdddduDvdu3c/IYCV1wU4yrM//elP\nTJoyk7see5q9B47QXGFLRKS8SAx+bQf0AN4Pbn+bwOOqIhbJ0u+r3L2zmfUHxgFPAb9y9wq1Ru3J\n/qq5dOlSbrvtNpYuXRqDqkREyjd3Z8eOHSeMfn388cckJiaeEL4uvvhiGjRocNr+qurI1qRJkxh9\nz8/Z/73aHK63noTcZLY8nEHzRomnP1hEpBIozyNbBcxsHjDc3XOD24nAB+5+SaR9RXJH9PHg1+HA\nRHf/wMzGRXpCERGpeMyMli1b0rJlS6666iogEMC2bNkSCl9jx45l+fLlNG/e/IQA1q1bN2rXrh3j\nTxB7ixYt4tZbb+W2X/+R3+wcCfHHyKu7jimZa7kltXesyxMRka81BY6EbR8JvhexSMLWDjN7HrgM\neMLMahJ4sLCIiFRBZkbbtm1p27Yt1113HQDHjh1j/fr1oSmIr7/+OmvXrqVt27ah8NW9e/cYV172\nNm/ezFVXXcXLL79Mt96X8My4ZPLqriPhQAfSeiTHujwRETnRq8ASM/tXcPu7BFYljFgk0whrA6nA\nanffZGZnA53dfXo0J44VTSMUESlbhw8fZtWqVaEAtnTpUlatWlVlphF++eWX9OnTh/vvv5/bbrsN\ngJ17c5mSuZa0HsmaQigiVUpFmEYIYGYXAQOCm/PcfXlU/UQQtmoC3wfOJWxEzN0fi+bEsaKwJSIS\ne1Xlnq1Dhw4xZMgQUlJS+M1vflNm5xURKa8qStgqKZFMI3wPyAaWAYdLpxwREZHK4fjx44wYMYJv\nfetbjBunW5xFRKqiSMJWS3dPLbVKREREKgl353/+53/Yt28fU6dO1UOLRUSqqEh++39kZp1KrRIR\nEZFK4vHHHycjI4NJkybpocUiIhWMmf3EzJJKoq9IRrb6A6PMbCuBaYQGuLt3LolCREREKoOJEyfy\n97//nfnz51O/fv1YlyMiIpFrCmSa2TLgJWBatDf8RhK2hkVzAhERkari3XffZezYscybN49mzZrF\nuhwREYmCuz9sZo8QeOTVKGC8mb0NvOjuWyLpK5JphJ8RWP7wRnffBjhRPtxLRESksklPT+f2229n\n8uTJtG3bNtbliIjIGQiOZO0Kvo4BScA7ZvZkJP1EErb+AvQBrgtu5wJ/juRk5VlZP3dFREQqj2XL\nlnH11Vfz5ptvctFFF8W6HBEROQNmdq+ZLQWeBBYAndz9DuBiAo/CKrZIphH2cveLzGw5gLtnmVmN\nSE5W3plVmSX/RUSkhKxatYq0tDQmTJjA4MGDY12OiIicuYbA94Kz+ULcPd/Mroiko0hGto6aWTyB\n6YOY2VlAfiQnExERibWSnMmwbt06Lr/8cp577jm+973vlVi/IiISUwmFg5aZPQHg7usj6SiSsPVH\n4F9AUzN7HJgP/CaSk4mIiMRaRkZGifTzySefMHToUJ566imuueaaEulTRETKhaFFvBfVYoHFnkbo\n7q8H5y4OCb713UiTnYiISKz9+c9/5pJLLjmjPtasWUNqaiq//vWvGTFiRAlVJiIisWRmdwB3AueZ\n2aqwXYkE7t2K2GnDlpndd5Jdw8xsmLs/E82JRUREYiE9PZ01a9bQsWPHqI5fuHAh3/3ud/nDH/7A\n9ddfX8LViYhIDL0BfAj8Fngw7P1cd98XTYfFmUaYGHx1B+4AWgRftwNRLblkZqlmtsHMPjGzX5yk\nzR/NbJOZrTCzrsH3WprZbDNba2arzeyesPZjzGy7mS0LvlKjqU1ERCq3+++/n1/96ldRHTt16lSu\nvPJKXn755dMGrZ17c5n44UJ27s2N6lwiIlK23H2/u3/q7te5+7awV1RBC4oRttz9UXd/FGgJXOTu\nP3P3nxFY+rB1pCc0szhgPHA5kAxcZ2YXFmozDGjj7ucDo4EJwV3HgPvcPZnAMvR3FTr2GXe/KPia\nGmltIiJS+d11111kZmYyY8aMYh/j7jz99NOMGjWKSZMmMWzYqafu79ybS5txAxi98BLajBugwCUi\nUgGY2fzg11wzywl75ZpZTjR9RrJARlPgSNj2EaJ7qHFPYFMwJR4F3gSuLNTmSuBVAHdfDNQ3s6bu\nvsvdVwTfPwCsJzDKVkBrt4uIyCnVqlWLV155hRtvvJH//ve/p23/5Zdfcs011/Dmm2+yePFi+vbt\ne9pjJi9ZQ17iWog/Rl7ddUzJXFsSpYuISCly9/7Br4nuXi/sleju9aLpM5Kw9SqwxMzGmtlYYDHw\nchTnbAF8Hra9nRMDU1FtdhRuY2bnAl2DdRS4Ozjt8AUzqx9FbSIiUgUMHjyYO++8k8svv5zPPvus\nyDbuzptvvkmnTp1o0aIFGRkZtG5dvAkdV/TsSEJuMhyrTsKBDqT1SC7J8kVEpIKIZDXCx83sQ2BA\n8K1R7r68dMo6NTOrC7wD3Bsc4QL4C/CYu7uZjQOeAW4u6vixY8eGvk9JSSElJaVU6xURqerS09NJ\nT0+PdRkneOihh6hVqxY9e/bk/vvv5/vf/z5NmzZl+/btTJ8+nYkTJxIfH8+7775Lnz59Iuq7eaNE\ntjycwZTMtaT1SKZ5o8RS+hQiIlJSzCyXwDOFi5ot59GMbllJPtyxWCc06w2MdffU4PaDBIp/IqzN\nBGCOu78V3N4ADHT33WZWDZgMfOjuz53kHOcA/3b3zkXs86I+88cff8ztt9/Oxx9/fOYfUkRETsnM\ncPcyn/pd1DVg+fLlPPXUU2RkZLB7926aNWvGJZdcwvXXX09qaipmmqEuIlJSYvX7P1aKPbJVgjKB\ntsFA9F/gWuC6Qm3eB+4C3gqGs2x33x3c9xKwrnDQMrOz3X1XcPN7wJpIiirr0CkiIuVDt27deOON\nN2JdhoiIxJiZzXf3/mEjXCeIZmSrzMOWux83s7uB6QTuGXvR3deb2ejAbp/o7lPMLM3MNgNfATcB\nmFk/4AZgtZktJ/BD+GVw5cEng0vE5wOfEljFUERERERE5LTCF8goqT5jMbJFMBy1K/Te84W27y7i\nuAVA/En6HHmmdWmqiIiIiIiIlJRir0ZoZj8xs6TSLEZERERERCSWzCzBzO4zs3fN7P+Z2U/NLCGa\nviJ9zlammb1tZqmmYSAREREREal8XgWSgT8B44EOwGvRdBTJ0u8Pm9kjwGXAKGC8mb1N4J6rLdGc\nXEREREREpJzp6O4dwrbnmNm6aDqKZGSL4Hq5u4KvY0AS8I6ZPRnNyUVERERERMqZZcEV0QEws15A\nVM+HKvbIlpndC4wEvgReAO5396NmFgdsAh6IpgAREREREZFYM7PVBFY7rw58ZGafBXe1BjZE02ck\nqxE2B77n7tvCCnrC3X9hZldEc3IREREREZFyosQzTSTTCIeGB62gYQDuvr7kShIRERERkaokuADf\nBjP7xMx+cZI2fzSzTWa2Ivh8XcysppktNrPlZrbazMaEtR9jZtvNbFnwlXqqGtx9W8ELyCGwQOA5\nYa+InXZky8zuAO4EzjOzVWG7EoEF0ZxUREREREQEIHhb0nhgCLCTwAro77n7hrA2w4A27n5+8B6q\nCUBvdz9sZoPc/aCZxQMLzOxDd18SPPQZd38mwnpuAe4FWgIrgN7AQmBwpJ+tOCNbbwDfBt4Pfi14\nXezuIyI9oYiIiIiISJiewKbgqNJR4E3gykJtriSwJDvuvhiob2ZNg9sHg21qEhhM8rDjonlc1b1A\nD2Cbuw8CugHZUfRz+rDl7vvd/VN3vy58aM3d90VzQhERERERkTAtgM/DtrcH3ztVmx0FbcwszsyW\nE1gxfYa7Z4a1uzs47fAFM6tfzHry3D0v2HfN4Ahbu+J/nK8VZxrhfHfvb2a5fDMlurvXi+bE5U1g\nVXsRERERESkp6enppKenl+o53D0f6GZm9YBJZtbB3dcBfwEec3c3s3HAM8DNxehyu5k1ACYBM8ws\nCyi8dkWxnDZsuXv/4NfEaE5QkZhFM8ooIiIiIiJFSUlJISUlJbT96KOPFtVsB4Hl1Qu0DL5XuE2r\nU7Vx9xwzmwOkAuvcfU/Y7r8B/y5Oze5+VfDbscH+6gNTi3NsYRE91FhERERERKSEZQJtzewcM6sB\nXEtgvYhw7xN45i/BBw5nu/tuM2tcMD3QzGoBQwk+E8vMzg47/nvAmuIUY2YJZnafmb0L3AO0Icrc\nVJxphAXTB8OHfQq2K800QhERERERKXvuftzM7gamEwg1L7r7ejMbHdjtE919ipmlmdlm4CtgVPDw\nZsArwRUN44C33H1KcN+TwSXi84FPgdHFLOlVIBf4U3D7euA14IeRfrbiTCOs9NMHRUREorFzby6T\nl6zhip4dad5Il0sRkWi5+1QKLULh7s8X2r67iONWAxedpM+RUZbT0d07hG3PMbN10XSkaYQiIiJR\n2Lk3lzbjBjB64SW0GTeAnXtzY12SiIiUjGXBqYoABJ/r9XE0HZ02bJnZ/ODXXDPLCX4teOVEc1IR\nEZGKbvKSNeQlroX4Y+TVXceUzLWxLklERM6Ama02s1XAxcBHZvapmX1K4IHG3aPpU6sRioiIROGK\nnh1JmJ5MXt11JBzoQFqP5FiXJCIiZ+aKku7wtGGrgJklAHcC/QkskJEBTCh44JeIiEhV0rxRIlse\nzmBK5lrSeiTrni0RkQrO3UPP0jKzLsCA4GaGu6+Mps9I7tl6FUgmsCrH+OD3r0VzUhERkcqgeaNE\nbkntraAlIlKJmNm9wOtAk+DrH2b2k2j6KvbIFiW4KoeIiIiIiEg5dTPQy92/AjCzJwjct/WnUx5V\nhEhGtkpsVQ4zSzWzDWb2iZn94iRt/mhmm8xsRXB9fMyspZnNNrO1wRvY7glrn2Rm081so5lNK3i4\nmYiIiIiISAQMOB62fZwTnzlcbMV5qPFqAvdoVSewKsdnwV2tCT6dORLBB46NB4YAO4FMM3vP3TeE\ntRkGtHH384OhbgLQGzgG3OfuK8ysLrDUzKYHj30QmOnuTwYD3P8G3ysWd4/0o4iIiIiISOXzd2Cx\nmf0ruP1d4MVoOirONMKSXpWjJ7Cp4AY0M3sTuJITg9uVBO4Rw90Xm1l9M2vq7ruAXcH3D5jZeqBF\n8NgrgYHB418B0okgbAVrifYziYiIiIhIBWeBQPBPAlmif/DtUe6+PJr+irP0e/iqHEnA+UBCWJNt\n3zjo1FoAn4dtbycQwE7VZkfwvd1htZwLdAUWBd9q4u67gzXvMrMmEdYlIiIiIiJVmLu7mU1x907A\nsjPtL5Kl328B7gVaAisITOtbCAw+0yIiFZxC+A5wb8GNa0XQvEAREREREYnUMjPr4e6ZZ9pRJKsR\n3gv0ABa5+yAzuxD4TRTn3EHgfq8CLYPvFW7Tqqg2ZlaNQNB6zd3fC2uzOzjVcLeZnQ18cbICxo4d\nG/o+JSWFlJSUyD+FiIgUW3p6Ounp6bEuQ0REpDh6ATeY2TbgKwKLY7i7d460IyvuwhBmlunuPcxs\nBYGlEA+b2Vp3T47ohGbxwEYCC2T8F1gCXOfu68PapAF3ufvw4AqIz7p77+C+V4Ev3f2+Qv0+Aexz\n9yeCC2Qkufs37tkyMy/qMy9evJh77rmHxYsXR/JxREQkCmaGu5f5jbInuwaIiEjZiNXv/0iY2TlF\nvR9+e1VxRTKytd3MGgCTgBlmlkXk92vh7sfN7G5gOoGl51909/VmNjqw2ye6+xQzSzOzzQTS5E0A\nZtYPuAFYbWbLCUwV/KW7TwWeAN42sx8H67o60tpERERERKRqiyZUnUyxw5a7XxX8dqyZzQHqA1Oj\nOWkwHLUr9N7zhbbvLuK4BUD8SfrcB1waTT0iIiIiIiIAZpYA3ElgNUIH5gN/dfe8SPuKZGQrxN3n\nRnOciIiI/H/27jzOyrL+//jrPTNs6oiyiGyiggsMmZoLmhpuicsvLbPU1CItf27569u31LTU1Mr6\nZmZphZppX8tyXyKlVARcAAWTVQFZBITYxBEEGebz++PcA8dhtnNmzpwzc97Px+M85tz3fd3X/TlH\nPGc+c1335zIzswJ3H1AJ/DrZPhv4E3BGph1lUo2wxTI8MzMzMzOzAjU0IoakbT8vaWY2HZVk0PY+\noLZ8rAcAACAASURBVIJUhvcbYAipDM/MzMzMzKy9mJIU6QNA0qHAq9l0lMk0whbL8MzMzMzMzArU\np4CXJC1KtncD3pQ0jQxLwGeSbE2RNCwiXoHmZXhmZmZmZmYFakRLddRoslWTwQEd2DbDm91SgeSb\n110xMzMzM7PWLv1+SktdrNBJBb2+mpmZmZmZtSGNJlvpmZ2kTwJHJpvjI+LfuQrMzMzMzMysLWty\nNUJJlwP3A7skj/+VdFmuAjMzMzMzM2ttSjlH0g+T7d0kHZJNX5kUyDgfODQi1iUXvRl4ma2LfZmZ\nmZmZmbV1dwDVwDHAj0gtcPwwcHCmHWWSbAnYnLa9OdlnZmZmZmbWXhwaEQdKmgoQEWskdcymo0yS\nrXuAiZIeTbZPA+7O5qJmZmZmZmYFapOkUlIV2ZHUk9RIV8aalGwpVabvQWAscESye2RETM3momZm\nZmZmZgXqNuBRYBdJNwFfBK7JpqMmJVsREZJGR8QngCnZXMjMzMzMzKzQRcT9kl4DjiV129RpETEr\nm74ymUY4RdLBETE5mwuZmZm1RUtXVfLUpOmccshQ+nQvz3c4ZmbWCiJiNjC7uf1kkmwdCpwjaQGw\njlSWFxGxX3ODMDMzK0RLV1Uy8MYj2VA+g85jKph3zXgnXGZm7Zykg4CrgQGk8qWs855Mkq0TMu3c\nzMysLXtq0nQ2lM+A0io27DCT0ZNncMGIYfkOy8zMcut+4LvANLIsjFEjk2RrOXAxqQIZAUwAftuc\nixeSiMh3CGZmVmBOOWQoncdUsGGHmXT+YAgnHVyR75DMzCz3VkTEEy3RUSbJ1n2kFvSqWcT4bOBP\nwBktEUghSBVdNDMzS+nTvZx514xn9OQZnHRwhacQmpkVh2sl3QU8C2ys2RkRj2TaUSbJ1tCIGJK2\n/bykmZle0MzMrC3p073cUwfNzIrLSGBfoANbpxEGkNNka4qkYRHxCoCkQ4FXM72gmZmZmZlZATs4\nIvZpiY4ySbY+BbwkaVGyvRvwpqRpuCqhmZmZmZm1Dy9JGhIRzZ7Fl0myNaK5F6shaQRwK1AC3B0R\nN9fR5jbgRFJl5kdGxNRk/93AKcDy9ARP0rXAN4D/JLu+HxFPt1TMZmZmZmZWFIYBr0uaT+qerdyX\nfo+IhZl2XhdJJcBvSK3IvBSYLOnxZOGwmjYnAgMjYq9kuuJvSb1ogHtIFem4r47ub4mIW1oiTjMz\nMzMzK0otNsiUychWSzkEmFOTvEl6ADiVj6/QfCpJMhUREyV1ldQrIpZHxARJA+rp2+UEzczMzMws\nay01yASpaXytrS/wTtr24mRfQ22W1NGmLpdKel3SXZK6Ni9MMzMzMzMrFpImJD8rJb2f9qiU9H42\nfeZjZCtX7gB+FBEh6UbgFuD8uhped911W54PHz6c4cOHt0Z8ZmZFa+zYsYwdOzbfYZiZmdUrIo5I\nfrbYoopNTraUWvH3K8CeEfEjSbsBu0bEpAyvuYRUJcMa/ZJ9tdv0b6TNx0TEirTNO4En62ubnmyZ\nmVnu1f7D1vXXX5+/YMzMzBog6eaIuKKxfU2RyTTCO4DDgLOS7Urg9kwvCEwGBkkaIKkjcCbwRK02\nTwDnAUgaBrwXEcvTjota92dJ2jVt8wvA9CxiMzMzMzOz4nZ8HftOzKajTKYRHhoRB0qaChARa5Jk\nKSMRsVnSpcAYtpZ+nyXpwtThGBURoyWdJGkuSen3mvMl/RkYDnRP1vy6NiLuAX4maX9SqzwvAC7M\nMK5MX4qZmZmZmbUTki4CLgb2lPRG2qFy4MVs+swk2dokqRSIJJiepBKbjCXrX+1Ta9/va21fWs+5\nZ9ez/7xsYjEzMzMzMwP+DPwD+AlwZbKvD/BmRKzOpsNMkq3bgEeBXpJuAs4ArsnmooUqdVuamZmZ\nmZkVm4hYC6xl621TSHo0Ig7Mts9MFjW+X9JrpBYjBvhc+kLEZmZmZmaWvd13352FC1tsiae8GjBg\nAAsWLMh3GC2hWaMxmVQjPAi4Gtg9Oe9CSUTEfs0JwMzMzMzMYOHChe2mjkA7mjF2Z3NOzmQa4f3A\nd4FpZHmvlpmZmZmZWSFLL/MeEXfU3peJTEq/r4iIJyJifkQsrHlkekEzMzMzM7MClpfS79dKugt4\nFthYszMiHsnmwmZmZmZmZoUirfT7wLTS7wJ2AF7Kps9Mkq2RwL5AB7ZOIwzAyZaZmZmZmbV16aXf\nr2BrcYzK1ij9fnBE7NN4MzMzMzMzs7alpvS7pNnA19KPJYUBf5Rpn5ncs/WSpCGZXsDMzMzMzKwN\n+QBYlzw2k7pfa/dsOsok2RoGvC7pTUlvSJqWNpfRzMzMzMzauZtvvplBgwax4447MnToUB577LF8\nh9TiIuIXaY+bgOHAntn0lck0whHZXMDMzMzMzNqHQYMG8eKLL9KrVy8efPBBzjnnHObNm0evXr3y\nHVoubQf0y+bEJo9spZd7b4+l39vLAnJmZmZm1n5JapFHtk4//fQtidUZZ5zBXnvtxaRJk1rq5RWE\nmhl8yWMG8CZwazZ9NTqyJWlCRBwhqZJU9cEth4CIiB2zuXAhakcrXZuZmZlZO5TvAYL77ruPX/7y\nlyxYsACAdevWsXLlyrzGlAOnpD2vApZHRFU2HTU6shURRyQ/yyNix7RHeXtKtMzMzMzMrH6LFi3i\nm9/8JnfccQdr1qxhzZo1VFRUtEgCKGmEpNmS3pJ0RT1tbpM0R9LrkvZP9nWSNFHS1GRE6tq09jtL\nGpPUnHhGUtemxFJrJt+SbBMtyGAaoaSbm7LPzMzMzMzan3Xr1lFSUkKPHj2orq7mnnvuYfr06c3u\nV1IJ8BvgBKACOEvSvrXanAgMjIi9gAuB3wFExEbg6Ig4ANgfOFHSIclpVwL/Spaveg64qonxdJJ0\ntqTvS/phzSOb15ZJNcLj69h3YjYXNTMzMzOztmXw4MF85zvfYdiwYey6667MmDGDI444oiW6PgSY\nk4wkbQIeAE6t1eZU4D6AiJgIdJXUK9len7TpROo2qUg7597k+b3AaU2M5/Hk3Cq2loBfl+FrApp2\nz9ZFwMXAnrVKvZcDL2ZzUTMzMzMza3tuuOEGbrjhhpbuti/wTtr2YlIJWENtliT7licjY68BA4Hb\nI2Jy0maXiFgOEBHLJO3SxHj6RUSLVGJvSun3PwP/AH5CaiiuRmVErG6JIMzMzMzMzLIREdXAAZJ2\nBB6TNCQiZtbVtIldviTpExExrbmxNZpsRcRaYC1wVs0+Sbs60TIzMzMzs4aMHTuWsWPHNtZsCbBb\n2na/ZF/tNv0bahMR70t6ntT6wDNJjXr1iojlknYF/tNQEJKmkUrIyoCRkt4GNrK1Cvt+jb2Q2jJZ\n1DjdaODALM81MzMzM7MiMHz4cIYPH75l+/rrr6+r2WRgkKQBwLvAmaQN9CSeAC4B/ippGPBekkT1\nADZFxFpJXUjVmfhp2jlfA24GvkrqXqyGnNLI8YxlUiAjnRekMjMzMzOzZouIzcClwBhgBvBARMyS\ndKGkbyZtRgPzJc0Ffk+qpgRAb+B5Sa8DE4FnkraQSrKOl/QmcCxbk7D64lgYEQtJ3S+2Onl+LvBL\noFs2r63JI1uSbo6Impr3d9axr8kkjSC1CnMJcHdE1FVW/jZS1Q7XASMjYmqy/25SWefy9KE8STsD\nfwUGAAuALyVTIM3MzMzMrIBFxNPAPrX2/b7W9qV1nDeNembcJbc9HZdFOD+IiAclHZGc/3NSpeYP\nzbSjrEq/R8QdydOMS79nWUf/t2mH70nOrS2rOvpmZmZmZmZpNic/TwZGRcTfgY7ZdNRosiXpouRm\nsX0kvZH2mA+80dj5dWhuHf0JwJo6+s22jj5Jv5k0NzOzdmTpqkpG/eNllq6qzHcoZmaWf0sk/R74\nMjBaUieyvP0qH6Xfm1VHv4F+s62jv4XkW9HMzIrN0lWVDLzxSDaUz6DzmArmXTOePt3L8x2WmZnl\nz5dIVTT8n4h4T1Jv4LvZdJRV6fc2ot6hquuuu27L89oVUszMrOU1sfRvXjw1aTobymdAaRUbdpjJ\n6MkzuGDEsHyHZWZWcPbYYw/uvvtujjnmmHyHklMRsR54JG37XVJVEjOWSYGMH9YTzI8yvGaL1NGv\nQ5Pr6KcnW2ZmlntNLP2bF6ccMpTOYyrYsMNMOn8whJMOrsh3SGZm1k5kMvdwXdpjM6niGLtncc0t\ndfQldSRVR/+JWm2eAM4DSK+jn3ZcbFt+vqaOPjStjr6ZmRl9upcz75rx3PnpcZ5CaGZmLarJyVZE\n/CLtcRMwHNgz0ws2s44+kv4MvATsLWmRpJHJoYzq6JuZmdXo072cC0YMc6JlZoWtshJefjn1M099\nTJo0iYqKCrp3787555/PRx99lH0sBUrSGZLKk+fXSHpEUp3l5RvtK9sqfMm6VpMjYlBWHeSJpKjr\nNU+YMIErr7ySCRMm5CEqM7PiIomIaPWqRPV9B5iZFYLks7Hug5WVcOSRMGMGVFTA+PFQnuEfiJrZ\nxx577EF5eTlPP/002223HaeccgrHHHMMP/rRtncV1fda8vX5nwlJb0TEfsk6WzeSWmfrhxGRu3W2\nJE1LK/s+A3gT+FWmFzQzMzMzswxNn55KkqqqYObM1PM89HHZZZfRp08fdtppJ66++mr+8pe/ZB5H\n4WuxdbaaXCADOCXteRWwPCKqsrmomZmZmZllYOjQ1GjUzJkwZEjqeR766Nev35bnAwYMYOnSpZnH\nUfhq1tk6Hrg51+ts1VgGnE6qKEYZbBkGzLQaoZmZmZmZZaK8PDXtr2YKYKZTCFuoj3fe2boU7sKF\nC+nTp0/mcRS+1ltnK83jpNbbeg3YmM3FzMzMzMwsS+XlMKyZ6wA2s4/bb7+dk08+mS5duvDjH/+Y\nM888s3nxFKC8rLMF9IuIEdlcxMzMzMzM2jZJnH322Xz2s5/l3Xff5bTTTuPqq6/Od1gtTtIZwNMR\nUSnpGuBA4MaImJJpX5kkWy9J+kRETMv0ImZmZmZm1ra9/fbbAFxxxRV5jiTnfhARDybVCI8jVY3w\nt0DG1QgbTbYkTQMiaTtS0tukphEKiIjYL9OLFiKXAjYzMzMzM+qoRijpxmw6asrI1imNN2kfpIIu\n+W9mZmZmZrlXU43wszSzGmFTTtoF2BgRCyNiIfAZ4DbgO0Azlq82MzMzMzMrOF8CngE+GxHvAd3I\nshphU5Kt3wMfAUg6CvgpcB+pyoSjsrmomZmZmZlZgfoQ2B44K9nuALyXTUdNSbZKI2J18vzLpOYt\nPhwRPwAGZXNRMzMzMzOzAnUHMIytyVYlcHs2HTUp2ZJUc2/XscBzaccyqWZoZmZmZmZW6A6NiEuA\nDQARsQbomE1HTUmW/gK8IGklqSG18QCSBpGaSmhmZmZmZtZebJJUSqoiO5J6AtXZdNRoshURN0l6\nFugNjImtNdJLgMuyuaiZmZmZmVmBug14FNhF0k3AF4EfZNNRk6YBRsQrdex7K5sLmpmZmZmZFaqI\nuF/Sa6RuoRJwWkTMyqavrOrFm5mZmZmZtUeS7gWWRcTtEfEbYJmkP2TTl5MtMzMzMzOzrfZL1tcC\nthTIOCCbjpxsmZmZmZm1AZWV8PLLqZ/56mPx4sWcfvrp7LLLLvTs2ZNvfetb2QdTuEok7VyzIakb\nWVZhd7KV2Fr3w8zMzMyssFRWwpFHwlFHpX5mkyw1t4/q6mpOOeUU9thjDxYtWsSSJUs488wzMw+k\n8P0CeFnSDZJuAF4CfpZNR0620kjKdwhmZmZmZtuYPh1mzICqKpg5M/W8tfuYNGkS7777Lj/72c/o\n3LkzHTt25PDDD888kAIXEfcBXwCWJ48vRMSfsunLixKbmZmZmRW4oUOhoiKVJA0Zknre2n288847\nDBgwgJKS9j1eI2lIRMwEZqbtGx4RYzPtKy/vlKQRkmZLekvSFfW0uU3SHEmvS9q/sXMlXStpsaQp\nyWNEa7wWMzMzM7NcKy+H8eNh3LjUz/Ly1u+jf//+LFq0iOrqrNb3bUv+JukKpXSR9GvgJ9l01OrJ\nlqQS4DfACUAFcJakfWu1OREYGBF7ARcCv2viubdExIHJ4+ncvxozMzMzs9ZRXg7DhmWXaLVEH4cc\ncgi9e/fmyiuvZP369WzcuJGXXnop+2AK16FAf1L3ak0GlgKfzqajfIxsHQLMiYiFEbEJeAA4tVab\nU4H7ACJiItBVUq8mnOubrszMzMzMcqCkpIQnn3ySOXPmsNtuu9G/f3/+9re/5TusXNgEfAh0AToD\n8yMiq+G8fNyz1Rd4J217MakkqrE2fZtw7qWSzgVeBb4TEWtbKmgzMzMzs2LXr18/Hn300XyHkWuT\ngceBg4EewO8knR4RZ2TaUVu5u60pI1Z3AHtGxP7AMuCW3IZkZmZmZmbt0PkR8cOI2BQR70bEqcAT\n2XSUj5GtJcBuadv9kn212/Svo03H+s6NiBVp++8EnqwvgOuuu27L8+HDhzN8+PCmxm5mZlkYO3Ys\nY8eOzXcYZmZm9ZL0vYj4WUS8KumMiHgw7fDgrPps7cV8JZUCbwLHAu8Ck4CzImJWWpuTgEsi4mRJ\nw4BbI2JYQ+dK2jUiliXnfxs4OCLOruP6UddrHjduHNdccw3jxo1r6ZdsZma1SCIiWv0+2/q+A8zM\nCkHy2ZjvMFpEfa8lX5//TSFpSkQcWPt5XdtN1eojWxGxWdKlwBhS0xjvTpKlC1OHY1REjJZ0kqS5\nwDpgZEPnJl3/LCkRXw0sIFXF0MzMzMzMrClUz/O6tpskL4saJ2XZ96m17/e1ti9t6rnJ/vNaMkYz\nMzMzMysqUc/zurabJC/JViFqL0O2ZmZmZmaWlU9Kep/UKFaX5DnJdudsOnSyZWZmZmZmRS8iSlu6\nz7ZS+r1VSAV5r56ZmZmZmbVBTrbMzMzMzCwrI0eO5Ic//GG+wyhYTrbMzMzMzMxywMmWmZmZmZlZ\nDjjZMjMzMzNrAyo3VvLyOy9TubEyb31MnTqVT33qU3Tt2pUzzzyTDRs2ZB1LMXCyZWZmZmZW4Co3\nVnLkPUdy1B+P4sh7jswqWWpuH5s2beLzn/88X/3qV1m9ejVnnHEGDz/8cMZxFBMnW2ZmZmZmBW76\nf6YzY8UMqqqrmLliJjNWzGj1Pl555RWqqqr41re+RWlpKaeffjoHH3xwxnEUEydbZmZmZmYFbugu\nQ6noWUGHkg4M6TmEip4Vrd7H0qVL6du378f2DRgwIOM4iokXNTYzMzMzK3DlncoZP3I8M1bMoKJn\nBeWdylu9j969e7NkyZKP7Vu0aBGDBg3KOJZi4ZEtMzMzM7M2oLxTOcP6Dcsq0WqJPg477DDKysr4\n9a9/TVVVFY888giTJk3KOpZi4GTLzMzMzMwa1aFDBx555BHuueceunfvzoMPPsjpp5+e77AKmqcR\nJiIi3yGYmZmZmRW0Aw88kClTpuQ7jDbDI1tpJOU7BDMzy7Glq7Jfn8bMzCwTTrbMzKyoDLzxSCdc\nZmbWKpxsmZlZUdmww0xGT858fRozM7NMOdkyM7Oi0vmDIZx0cObr05iZmWXKyZaZmRWVedeMp0/3\n7Msmm5mZNZWTLTMzKypOtMzMrLW49LuZmZmZWQEYMGBAu6mOPWDAgHyHUBCcbJmZmZmZFYAFCxbk\nOwRrYXmZRihphKTZkt6SdEU9bW6TNEfS65L2b+xcSTtLGiPpTUnPSOraGq+lPRk7dmy+QyhYfm/q\n5/emfn5vrC3xv9f6+b2pn9+buvl9yVy2+YGkfpKekzRD0jRJ30prf62kxZKmJI8RrfV6arR6siWp\nBPgNcAJQAZwlad9abU4EBkbEXsCFwO+acO6VwL8iYh/gOeCqVng57Yo/GOrn96Z+fm/q5/fG2hL/\ne62f35v6+b2pm9+XzDQnPwCqgP+KiArgMOCSWufeEhEHJo+nc/1aasvHyNYhwJyIWBgRm4AHgFNr\ntTkVuA8gIiYCXSX1auTcU4F7k+f3Aqfl9mWYmZmZmVkLyDo/iIhlEfF6sv8DYBbQN+28vN4El497\ntvoC76RtLyb1BjfWpm8j5/aKiOUAEbFM0i71BfDkk09us2/atGlNDN/MzMzMzFpQNvnBkmTf8pod\nknYH9gcmprW7VNK5wKvAdyJibYtF3RQR0aoP4HRgVNr2OcBttdo8CRyetv0v4MCGzgXW1OpjVT3X\nDz/88MMPP/L/aO3vH38H+OGHH34UxqMl84O07R1IJVSnpu3rCSh5fiNwd2t/7+RjZGsJsFvadr9k\nX+02/eto07GBc5clQ4nLJe0K/Keui0dE+6inaWZmGfN3gJlZQWpOfoCkMuAh4E8R8XhNg4hYkdb+\nTlIJW6vKxz1bk4FBkgZI6gicCTxRq80TwHkAkoYB70VqimBD5z4BfC15/lXgcczMzMzMrNA1Jz8A\n+AMwMyJ+lX5CMgBT4wvA9FwE35BWH9mKiM2SLgXGkEr27o6IWZIuTB2OURExWtJJkuYC64CRDZ2b\ndH0z8DdJXwcWAl9q5ZdmZmZmZmYZyjI/+BqApE8DXwGmSZpKaqri9yNVefBnSYn4amABqSqGrapm\nDqOZmZmZmZm1oLwsapwvTVksrRg1tBicpdZ+SBbCqz2cXdQkdZX0oKRZyb+dQ/MdU6GQ9G1J0yW9\nIen+ZEpEUZJ0t6Tlkt5I25fTReizXRizGDT23kg6W9K/k8cESZ/IR5z50NTfESQdLGmTpC+0Znz5\n1MT/p4ZLmpp89j3f2jHmSxP+n9pR0hPJZ800SV/LQ5itrq7P/jraFMXncNEkW01ZLK2INbYYXLG7\nHJiZ7yAK0K+A0RExGPgkqXUtip6kPsBlpCok7UdquvaZ+Y0qr+4h9bmbLmeL0DdzYcx2rYnfg28D\nR0XEJ0lV7rqzdaPMj6b+jpC0+ynwTOtGmD9N/H+qK3A7cEpEDAXOaPVA86CJ/24uAWZExP7A0cAv\nkmIO7V1dn/1bFNPncNEkWzRtsbSiFI0vBle0JPUDTgLuyncshUTSjsCREXEPQERURcT7eQ6rkJQC\n2ydfqNsBS/McT95ExARgTa3duVyEPuuFMVswhkLV6HsTEa/E1jVoXqF4vgua+jvCZaQqntVZ8bid\nasp7czbwcEQsAYiIla0cY7405b0JoDx5Xk5qaaKqVowxL+r57E9XNJ/DxZRs1bdQsqVR3YvBFbNf\nAt8l9WFpW+0BrJR0TzLFcpSkLvkOqhBExFLgF8AiUiVp34uIf+U3qoKzS6QtQg/Uuwh9FpryWV/f\nwpjtXabfgxcA/8hpRIWj0fcmGbU+LSJ+CxTTEgJN+XezN9BN0vOSJiu1gGwxaMp78xtgiKSlwL9J\nzZaxIvocLqZkyxohaQdSf7G7PBnhKmqSTgaWJ6N+ori+XBtTRmqh8dsj4kBgPampYUVP0k6k/mI3\nAOgD7CDp7PxGVfD8x4wCI+loUpWAfX/zVrfy8ffD3wlb1XwnnAiMAH4gaVB+QyoYJwBTI6IPcABw\ne/L7lhWJYkq2mrJYWtFSPYvBFblPA5+T9DbwF+BoSfflOaZCsRh4JyJeTbYfIvVFa3Ac8HZErI6I\nzcAjwOF5jqnQLK+ZLqIGFqHPUrMWxmznmvQ9KGk/YBTwuYhoaBpQe9KU9+Yg4AFJ84Evkvql+XOt\nFF8+NeW9WQw8ExEbImIVMI7UvbztXVPem5GkvgeIiHnAfMD3xRfR53AxJVtNWSytmNW5GFwxi4jv\nR8RuEbEnqX8vz0XEefmOqxAkU8DekbR3sutYXESkxiJgmKTOkkTqvSn24iG1R4ZzuQh9cxfGbM8a\nfW8k7QY8DJyb/GJYLBp9byJiz+SxB6k/MF0cEcXwe0RT/p96HDhCUqmk7YBDKY7Pvaa8NwtJ/RGO\n5I9Me5MqRFMMGpoVVDSfw8VQDQVodEHkoqaGF4Mzq8+3gPsldSD1xTEyz/EUhIiYJOkhYCqwKfk5\nKr9R5Y+kPwPDge6SFgHXkqrm9qBysAh9lgtjFsW/3aa8N8APgG7AHckfCzZFxCH5i7p1NPG9+dgp\nrR5knjTx/6nZkp4B3gA2A6Miot3/Aa6J/25uBP6YVgL9exGxOk8ht5p6Pvs7UoSfw17U2MzMzMzM\nLAeKaRqhmZmZmZlZq3GyZWZmZmZmlgNOtszMzMzMzHLAyZaZmZmZmVkOONkyMzMzMzPLASdbZmZm\nZmZmOeBky8zMzMzMLAecbJmZmZmZmeWAky2zFiCpq6SL0rYn5CGGzpLGSlIz++kg6QVJ/nwwM2sC\nfweYWX38P5JZy9gZuLhmIyKOyMVFJO0r6ap6Dn8deDgiojnXiIhNwL+AM5vTj5lZEfF3gJnVycmW\nWcv4CTBQ0hRJP5NUCSBpgKRZku6R9Kak/5V0rKQJyfZBNR1I+oqkiUkfv63nr5NHA1PrieErwOOZ\nXFfSdpKekjRV0huSzkj6ejzpz8zMGufvADOrk5Mts5ZxJTA3Ig6MiO8B6X9ZHAj8PCL2AfYFzkr+\n6vld4GpI/bUS+DJweEQcCFRT64tO0gjgAqC/pF61jnUA9oiIRZlcFxgBLImIAyJiP+DpZP904ODs\n3w4zs6Li7wAzq5OTLbPcmx8RM5PnM4Bnk+fTgAHJ82OBA4HJkqYCxwB7pncSEU+T+lK8MyKW17pG\nD+C9LK47DThe0k8kHRERlcm1qoGNkrbP/OWamVkafweYFbGyfAdgVgQ2pj2vTtuuZuv/gwLujYir\nqUfyl8xl9Rz+EOic6XUjYo6kA4GTgBslPRsRNyTtOgEb6ovHzMyaxN8BZkXMI1tmLaMSKE/bVj3P\na6s59izwRUk9ASTtLGm3Wm0PASZJOkhSl/QDEfEeUCqpYybXldQb+DAi/gz8HDgg2d8NWBkRmxvo\nw8zMUvwdYGZ18siWWQuIiNWSXpL0Bqk57+nz9et7vmU7ImZJugYYk5Tb/Qi4BEiff7+U1DSTeRHx\nYR1hjAGOAJ5r6nWBTwA/l1SdXLOmdPHRwN/req1mZvZx/g4ws/qomRVCzaxASDoA+H8R8dUWxNQN\nUQAAIABJREFU6Oth4IqImNv8yMzMLNf8HWBWmDyN0KydiIipwPMtsaAl8Ki/ZM3M2g5/B5gVJo9s\nmZmZmZmZ5YBHtszMzMzMzHLAyZaZmZmZmVkOONkyMzMzMzPLASdbZmZmZmZmOeBky8zMzMzMLAec\nbJmZmZmZmeWAky0zMzMzM7MccLJlZmZmZmaWA20q2ZJUImmKpCfqOX6bpDmSXpe0f2vHZ2ZmZmZm\nmZM0QtJsSW9JuqKeNtv8ri+pk6SJkqZKmibp2rT2O0saI+lNSc9I6tpar6dGm0q2gMuBmXUdkHQi\nMDAi9gIuBH7XmoGZmZmZmVnmJJUAvwFOACqAsyTtW6tNnb/rR8RG4OiIOADYHzhR0iHJaVcC/4qI\nfYDngKta4/WkazPJlqR+wEnAXfU0ORW4DyAiJgJdJfVqpfDMzMzMzCw7hwBzImJhRGwCHiD1u326\nen/Xj4j1SZtOQBkQaefcmzy/FzgtZ6+gHm0m2QJ+CXyXrW9ebX2Bd9K2lyT7zMzMzMyscNX+PX4x\n2/4eX+/v+smtRlOBZcA/I2Jy0maXiFgOEBHLgF1yEHuDylr7gtmQdDKwPCJelzQcUDP6qi9ZMzOz\nVhQRWX+WZ8vfAWZm+dfSn/8RUQ0cIGlH4DFJQyKirluPWv07oK2MbH0a+Jykt4G/AEdLuq9WmyVA\n/7Ttfsm+bUSEH3U8rr322rzHUKgPvzd+b/zetOwjn/L92gv14X+vfm/83vh9aY1HPZYAu6Vt1/V7\nfKO/60fE+8DzwIhk1/KaqYaSdgX+k9UXRzO0iWQrIr4fEbtFxJ7AmcBzEXFerWZPAOcBSBoGvBfJ\nsKGZmZmZmRWsycAgSQMkdST1+37t6uN1/q4vqUdNlUFJXYDjgdlp53wtef5V4PGcvoo6tIlphPWR\ndCEQETEqIkZLOknSXGAdMDLP4ZmZmZmZWSMiYrOkS4ExpAaD7o6IWU38Xb83cG9S0bAE+GtEjE6O\n3Qz8TdLXgYXAl1rzdUEbTLYi4gXgheT572sduzQvQbUTw4cPz3cIBcvvTf383tTP7421Jf73Wj+/\nN/Xze1M3vy+Zi4ingX1q7Wv0d/2ImAYcWE+fq4HjWjDMjKmBuZPtkqQottdsZlZoJBF5KpDh7wAz\ns/zJ1+d/vrSJe7bMzMzMzMzaGidbZmZmZmZmOeBky8zMzMzMLAecbJmZmZmZmeWAky0zMzMzM7Mc\ncLJlZmZmZmaWA062zMzMzMzMcsDJlpmZmZmZWQ442TIzMzMzM8sBJ1tmZmZmZmY54GTLzMzMzMws\nB5xsmZmZmZmZ5YCTLTMzMzMzsxxwsmVmZmZmZpYDTrbMzMzMzMxywMmWmZmZmZlZDjjZMjMzMzMz\nywEnW2ZmZmZmZjngZMvMzMzMzCwHnGyZmVlxqayse9/LL9d9zMzMLEs5S7YklUk6S9JtyeNuSaMk\n3Srp65I65+raZmZm9TryyI8nVZWVqX1HHbXtsZrjTsTMzHJK0ghJsyW9JemKetrcJmmOpNcl7Z/s\n6yfpOUkzJE2T9K209p+U9LKkqZImSTqotV7PlhgiouU7lQ4GjgL+GRFv1HF8IHAy8O+IeKHFA2g4\ntsjFazYzs6aTREQoD9eN6NABxo2DYcNSO19+OZVoVVVB7WM1idiMGVBRAePHQ3n51g4rK2H6dBg6\n9OP7GztmZlak6vr8l1QCvAUcCywFJgNnRsTstDYnApdGxMmSDgV+FRHDJO0K7BoRr0vaAXgNODUi\nZkt6BvhFRIxJzv9eRBzdOq80JVcjWxsi4hcR8YakXjU7JXUBiIh5EXEb8I6kjjmKwczMbFtDhqQS\npxpDh6a2O3TY9tj06alEq6oKZs5MPa/R0IhYc0bLPJJmZsXnEGBORCyMiE3AA8CptdqcCtwHEBET\nga6SekXEsoh4Pdn/ATAL6JucUw10TZ7vBCxpLJCWnp1XlknjpoqIaZKuBF4H+gN3JocqJJVHxPNJ\nu7dzcX0zM7N61R6dKi9P7asZvUo/VpOIzZzZtESsZkSsoWMNjZY1ZyTNzKzt6gu8k7a9mFQC1lCb\nJcm+5TU7JO0O7A9MTHZ9G3hG0i8AAYc3FEQyO+9IUrPz/lLH8YHANyU1eXZeLgtkPAbsAfxfSU9I\nGkXqxR+VaUeSOkmamMy3nCbp2jrafEbSe5KmJI9rmv8SzMys3akrSSkvTyVDtY/VJGLjxm2b+DQ0\nIpbtaFm2I2npbTxiZmZFKJlC+BBweTLCBXBRsr0bqcTrD410syEibomIaXUdzGZ2Xk5GtpJgZgOz\nJc2PiKeT6YSHAFOz6GujpKMjYr2kUuBFSf+IiEm1mo6LiM+1QPhmZmYpNYlYXfvrGxHLdrQs25E0\nyN2ImUfTzKwZxo4dy9ixYxtrtgTYLW27H9tO+VtCasbcNm0klZFKtP4UEY+ntflqRFwOEBEPSbq7\noSDSk6xkiuLy5HmXiPgwrV2TZ+e1eIEMSZ2AHSJiVRPa9o+IdxprV+uc7YBxwEURMTlt/2eA/46I\n/9PI+S6QYWaWZ3ktkFEI3wGVlXUnYg0dq0mYahKx2glTQ4U+si0C4mmNZtbC6imQUQq8SapAxrvA\nJOCsiJiV1uYk4JKkQMYw4NaIGJYcuw9YGRH/VavfGcDFEfGCpGOBn0bEwY3EdxWpwaH+EXFnsu8g\nYMutUJlo8WmEEbEROCy5saxLXW0k7STpm8CApvYrqUTSVGAZqXmUk+todlhSCvLvkoZk9QLMzMxy\nrb5piw0da2hKIxTetEZPaTSzJoqIzcClwBhgBvBARMySdGGSMxARo4H5kuYCvyc1RRBJnwa+AhyT\n3HI0RdKIpOtvAr9Icogbk+3GPEoL3QoFOSr9DpCUYfw6sAvQmdSUxc3AelI3vd0VEWuz6HdHUveD\nXRoRM9P27wBUJ1MNTyRVDnLvOs6Pa6/desvX8OHDGT58eKZhmJlZBmpPI7n++uuLe2QrV1p6xKyh\nY/kYLfNImlmbl6+ZDZmSNKLWrVBLI+K1jPtpi186kn4ArIuIWxpoMx/4VESsrrU/Nm7cSMeOrjhv\nZpYvRT+NsNC0dJJWaFManaSZFYxCTbZydStULqsR1im55yrTc3pI6po87wIcD8yu1SZ9Pa9DSCWS\nH0u0arzzTka3iZmZmbVvLT2tsZCmNDa3iqOZFYVc3QqVs2qE6SR9PiIelXQBsIekBTU3nDVRb+De\nZHXpEuCvETFa0oVARMQo4IuSLgI2AR8CX66vswULFjBw4MDsX5CZmZm1jUqNzaniWHPcI2ZmRSEi\nnkpuhfq2pBa5FapVphFK+m1EXCSpAngLOKCOsu2tQlLcddddnH/++fm4vJmZ4WmE1oDWvO8MPK3R\nrJUV6jTCXGmtaYR/kXQUsJHUiNMHjbTPqfnz5+fz8mZmZlaflp7S2JwqjvmY1ugpjWYFKZtboaCV\nkq2IGAcsAHYCXkivIpgPCxYsyOflzczMrKU1kKRVUs7LMYxK6k7gKkeP5+Xbp1A5ett7zyr3PZiX\nS4+gcp+DtpnWWO+x6dOpnL6Ql6sOonLGom2StHqPVVZSefgJvHzk96g8/ASX0zfLM0mfT35eAFwt\n6RuZ9tFa92xdCHQiNaK1k6TNEfGr1rh2XZxsmZmZtS/1zcyrrIRPf7qaWbPEwIEbuO2214l4n/Xr\n17N+/XpWr97ET396MsuWDaZHj//w5S//lJKSdWzevJn160t5fMkDrKnuzU6Ll3LcBd9G+gBJbN68\nHc8u/gvvVfdh58VLOfnSq+jSpYqSkhLKPizjWcbzFnuzd7zFmY8+RpcJE+jcuTOlH5ZxuybwJnux\nr+by4/lvs+PGF+jSpQtdpi3gnOm/ZSaDGTJ9FuMnzmTH4w7d8kIqDz+B6bNKGTp4M+UvPfOxKY31\nHgMql1Yy/akFDD1ld8r7eEqjWQY+S2rdrZeBe4EDMu2gVZItYF5E/KtmQ9LRrXTdOjnZMjMza3vS\n84KOHTeyePFilixZwrx5/+Hqq49i+fJu7LjjEioq/i9r1y5mzZo1rFgxiI8+GgN05M03S/nv/76H\n3r0Xst1227HddttRWTmUZct2prq6lJUrexIxhN13X0FpaSkLF/Zhzdq+VEcpayv7MXjwF9lnnzUA\nzJ69M4880o/qKOW9yn707n0cu+++jM2bNzN3bk9mx2CqKWV27Mu85T3oXjWHjRs3snBhH2Zt3ptq\nOjCzai9u+OXv6NLl36xfv57K5Xsyjz9RRUdmsi99TziGsh1nsv3223OodmTu4j8zkyEMmT6Tz/6f\ns1k9cBd22GEHBq3exF3T70iOzeLW3/4v2w//FF27dqXswzK+cNgmZm7Yh4rO8xk/r8/WhKs5SZpZ\ncai5FWopqVuhpmTaQWsVyDgE+BLQBVgLjI6ICTm/cN2xRMeOHXn//ffp1KlTPkIwMyt6LpBh9UlP\nqLbfvpq3336b6dOnM336Qm699QusXr0rZWVzgCPp06ecvn370rnzcMaOvZ7q6jJKSzdz661TOeqo\njnTr1o2ysp054YTtmDVLddbHyLa2Rs6OHb6ZmbPFkH2DZ8dupqRkHR988AEv/Wsd53x9IFV0oAMf\ncd3VY+i1x3Lef/993prambv+dD5VdKSMjRx6wLfZWDqZtWvX0v3d3Xn1g6eooiMd2MgRPc+gcsC7\ndO3alf02dODZF3+SStKYyXcu/Rtlhw2lW7dudK7qwre+uAuzNg5kSOf5TEhP0mreuwaSMSdqVp9i\nK5DRJhc1bg5JscceezBmzBgGDRqU73DMzIqSky2rbcOGDYwf/zojRw7i3Xd3olOnt5GOomfPzgwd\nOpTttz+Ohx66jOrqUsrKqnn++WqOOCI1QaexgoMNFThs7HihHKudiI1/qbTeJO1jx5ZWcuTApczc\nsDuDO83nj//cwKZOH7F27VpeG1/FD244dksidvrnbkHbT2P16tV0mL0zTy+8d8uxT3YewareC+nW\nrRvdunWjZ+eeTB19FXM2783eZXO4/OaX6DVwF3beeWe6VHXhgpPKmblxz21H03CSVuzacrIlaWhE\nTM/onHx86WQTaAteO44++mi+//3vc9xxx+UjBDOzoudkq7hVVsILL6zivfcmMHXqOF566SXeeOMN\n+vf/EnPm3El1dRllZZsZPXo9xx9fvuWc5iRU7UHWCdzSSmaMXkjFSQM+nvQ0NUnrvIAnX9uOTZ0+\nYvXq1axZs4ZZDy7mv+86Z0sy9rXDrmJ5z3msXr2aLnN78vyyB7YcO6Trqby/21K6d+9Or+168cYz\n12xJ0r7zi0nsOqgXPXr0oHNVF849pkNWSZrvPWs72lqyJak/0AtYDvTOdPmqVku2mhtoC8YRI0eO\n5PDDD+eCCy7IRwhmZkXPyVbxSY1cjeepp15g1Khz2bBhD3bccTHf/vajHH30QRx00EFUV29f9AlV\na8smSas5VpOMDem84GOJ0ccTtfn8bUIJG8o+ZNWqVcx4YCH/dedXtiRi5x56BUt3fpOVK1ey/fxd\neXHVw1uOfWbXM/lo79V0796dnl12YcJfL+WtzXuzT9kcrr/rTfrs3ZsePXrQvWNHyk4+kxmzy3zv\nWRvQlpKt2kX+gIyL/LXWPVvNDrQFY4nrr7+ejRs3ctNNN+UjBDOzoudkq/2rrISXXnqfefMe5+9/\nf4Bx48ax3377MXjw17n33pFUVZVss4ZwzXlOqNqGxpKxOkfTmpqkdZrPXaMrWVeyjlWrVjHn0WX8\n4P5vbJ3yOPRS5m8/jZUrV7LbsnWsXPcPZjGEwczkUxUXsWZQL7p37073Tj34+53n8VbVXuzbYS63\nPriMvvv0oUePHuy8886sX77eUxpbWRtLto6rXeQvIp7PqI9WSraaHWgLxhL33nsvzzzzDPfff38+\nQjAzK3pOttqvtWvX8qc/PcZVVx3BBx/0p2vXJdxyy6t84QvHs9NOOzU6HdDav5ZO0l7+1zqOOr7j\nluIhv/nlFHoOeJdVq1ax6O+r+clj/29Lknbinl9ndtmrrFy5kqo1Vewa43ibwQzSbCo+ewM799+J\nHj160K1jd+798Ym8WbUXgzvO488vVDOgYjd22GEHJPm+s2ZoY8lWs4v8FWU1wnHjxnHllVfy4osv\n5iMEM7Oi52Srfai5TWbIkGqmTHmBP/zhDzz55JMccMDFjB9/A5s3l3r0ylpMc+89q52kTfjdvzn6\nosFbErFfXvRXOuy/gZUrV/KfZ9dz+3M/3HLssG5f4LWNL1BVVUX/nfpT+p+HmRf7slfJmxx33p10\n3707PXv2pGtJV356+QHM/mgQQzq9zXOze9J99+4few0NJWLFkKi1pWSrJRRlNcJFixYxbNgwlixZ\nku9wzMyKkpOttq+yEg4/fDMzZ0JZ2ZsMGvR1vvnNs/jKV75Cp049PHplrSqrAiFNnNKYfuzDDz/k\nuV9N4rSrDtuSiP3wzN/x0V6rWLFiBesnlfLnKbdsOTa45BgWls+gR48e9NmxLyv+/WvmVu/L3qVv\ncc4VT9Fr4C706NGDHj16sF319nz1uE7ZFQhpQ5xstXOSoqqqiu22285rbZmZ5YmTrbZtwYIFXHnl\n4/z1rxcBHSkrq2bcOHHYYVv/k3r0ytqCXN53NqTzAl6YsyvV21ezcuVKJt41g5E/O2lLInbZCT9m\nde9FrFy5kpUrV9Jlbk/Gr3xoy/Hhvc/io71X07NnT3p22YUX/nxRqkBIh7n85N636btPH3r27EmP\nHj2oWlPVZqY1tsVkK1nYuDSb26BaNdlqTqAtGENEBAMHDuTpp59mr732ylcoZmZFy8lW2zRnzhx+\n9KMfMXr0aM455yL++c8fMnduR49eWdFp6SSt9vHBneZz59/fZ13JOlasWMHcx5Zz7V8u3JKInTb4\nIuZ0mpoaTVu+np5Vz/E2Qxio2Qw66uqP3Xv211s+z5tVe7Fvx3n88Zn17FaxG926daO0tDQv9561\n0WTrM6RymOcyPreVk62sA23BGCIiOPbYY7nyyis5/vjj8xWKmVnRcrLVdlRWwpgxS3nssRv5xz/+\nxuWXX87ll1/Ojjvu6NErsww1lKQ1dLyhRO2lUW/wmQv33ZKI3f6tR+j0qU2sXLmSd//5Abc+feWW\nY0f1+jKvV03gvffeo3d5H7Zf+yTzYjCDSmZz5Jdvp/uAbvTo0YOupTvxq+8dxuxNgxjcaR5Pv7ET\nvffaFUlb4sk2SXOylUOFlGydf/75DBs2jG984xv5CsXMrGg52WobFi9ey4EHfsCKFT3p1WsVkyd3\noX//nfIdlllRasl7zzZv3syzv5rEyd/51JZE7IZz7mLz4LWsXLmS918K7p1485ZjQzt+lhm8Qo8e\nPejXtR/vv3knc6v3Za/St/jS5Q/Rc8/UdMYdtSNXnLc7szYOZEjnt5kwr+82CVexJVtlOYinTdh9\n992ZP39+vsMwMzMrOJs3b+aPf/wj3/veo7z33mNAGatX92bJEujfP9/RmRWn8j7lDLtgaJ37x8/r\nw4zRc7ZJxOo7VlpaymFnDqXi6vlbErGLbz7vY0naqwO3Hnth3lOU7VzGypUrefH3b3DuTamRtLmb\n92LDm2XM+HAGK1asoPqN7Zm1cRRVdGTWhj04es8TWNP3nS33lvXo0aN13qyWtxgoyebE1h7ZGgiU\nRMScVrvotjFERHD//ffz5JNP8sADD+QrFDOzouWRrcI1Y8YMzj//fEpKSvjJT37D5Zcf6KqCZu1U\nThem7ryAp6Zsz4ayD7cUAVmxYgXnn39+WxzZOiQiJmV1bisnW1kH2oIxREQwceJELrnkEl599dV8\nhmNmVpScbBWWMWNeJqKCcePuYNSoX3DjjTfyjW98g5KSEt+XZWbbyCZJq1Hf57+kEcCtpEaQ7o6I\nm+tocxtwIrAO+FpEvC6pH3Af0AuoBu6MiNvSzrkMuBioAv4eEVc29XXW5C6SLo2I3zT1vI/10VqL\nGjc30BaMJSKClStXMmjQINasWbPlZj8zM2sdTrYKx8MPj+GMM3oRMZjy8sVMnNiRwYP75TssM2un\n6vr8l1QCvAUcCywFJgNnRsTstDYnApdGxMmSDgV+FRHDJO0K7JokXjsArwGnRsRsScOB7wMnRUSV\npB4RsTKDWGtymF8ArwA9I+KOTF5vVnMPm2EPSWdIuriVr7uN7t1Tq3mvXr06z5GYmZnlx+zZs7ng\nglspLf0E0JENG/Zg7VonWmbW6g4B5kTEwojYBDwAnFqrzamkRrCIiIlAV0m9ImJZRLye7P8AmAX0\nTc65CPhpRFQlxxtMtCSdKmlA2q4lyc/REfFgpokW5CjZykWgLU0SgwYNYu7cufkOxczMrNWtWbOG\nz33uc9x001lUVJTQoQMMGSIqKvIdmZkVob7AO2nbi9maMNXXZkntNpJ2B/YHJia79gaOkvSKpOcl\nHdRIHMOBnklfn4uIJQAR8WxTX0htuapGOJzUG7AwCfQJaF6guTBw4EDmzZvHoYcemu9QzMzMWk1V\nVRVnnXUWJ598MhdffC7nnuv7sswsN8aOHcvYsWNzfp1kCuFDwOXJCBekcp2dk+mGBwN/A/ZsoJsn\ngKsldQY6S9obmAZMr0m8MpWrZKvFA80Fj2yZmVkxuuKKK6iurubnP/85kEqwhg3Lc1Bm1i4NHz6c\n4cOHb9m+/vrr62q2BNgtbbsfW2fGpbfpX1cbSWWkEq0/RcTjaW3eAR4BiIjJkqoldY+IVXUFERHP\nA88nff4Xqfu/KoBTJfUhNeL264h4s4GX/DE5SbZyEWguDBw4kBdeeCGfIZiZmbWKykqYPh3+/e/7\neeKJJ5g4cSJlZUW73KaZFZbJwKDkNqR3gTOBs2q1eQK4BPirpGHAexGxPDn2B2BmRPyq1jmPAccA\nLySDPx3qS7Rqi4hbkqdbkgVJXwb+D5DfZCtdSwQqqRMwDuhIKuaHImKbtLiucpAN9Tto0CDuvvvu\npoRgZmbWZlVWwpFHwowZ1UR8kldeeYpu3brlOywzMwAiYrOkS4ExbC39PkvShanDMSoiRks6SdJc\nkt/1ASR9GvgKME3SVCCA70fE08A9wB8kTQM2Auc1M9RNZJBoQSskW/XIKNCI2Cjp6IhYL6kUeFHS\nP9LX7ErKQQ6MiL2ScpC/AxqcFDFo0CDmzZuX5UswMzNrG6ZPhxkzgqqqEsrKBlNVVZrvkMzMPiZJ\njvapte/3tbYvreO8F4E6P9SSyobntmCMj2R6TmuXfgdSgUbEkxmesz552olUklh7oZQ6y0E21Gfv\n3r15//33qayszCQUMzOzNmXQoA106DCHkpIqKipKXXHQzKyV5CXZyoakkmRocBnwz4iYXKtJo+Ug\n6+hzS0VCMzOz9urqq7/FCSfcyIQJpYwf74qDZmatpc0kWxFRHREHkKo8cqikIS3Rr5MtMzNrz+6+\n+24mTJjAfffdzmGHyYmWmVkjJF0maeeW6Cun92xJugz434hY01J9RsT7kp4HRgAz0w7VWw6ytuuu\nu27L806dOrn8u5lZjrXWOiv2ca+99hpXXXUV48aNo9xZlplZU/UCJkuaQqrS4TMRUfsWpiZRluc1\nrXPpRlKlG5sVqKQewKaIWCupC/AM8NOIGJ3W5iTgkog4OSkHeWtEbFMgQ9LHQvjd737HlClTGDVq\nVKZhmZlZliQREcrDdbP9vmwTasq7Dx0KH320ioMOOoj/+Z//4fTTT893aGZmQP4+/zMlScBngZHA\nQaQWRL47IjKaEpfTaYQRcQ2wF3A3qfKMcyT9WNLADLvqDTwv6XVgIqmkbbSkCyV9M7nWaGB+Ug7y\n98DFTel44MCBHtkyM7M2r6a8+1FHwRFHBF/+8gWcccYZTrTMzLKQ/GVuWfKoAnYGHpL0s0z6yenI\n1paLSJ8klRX+f/buPDyq8uzj+PdOCEQxrCIqFBFElgQUFYgKGkUrINaXtta1fcG2WpVX1Fa7oaKi\nFa11V6pFW637rgi4VFNAQRBkC4sIKLKIyiKDyhJyv3/MJIYYSDKZkzOT+X2uKxdzlnnOb/C6Mt6c\n59zPAKKLHecTbXJxVeAX/36WXf5Vc8WKFRx//PGsXLmyrqOIiKQt3dlKvGnTooVWcTFkZBRz2GGX\nMmPGXVq4WESSSirc2TKzEUTX5PoS+AfworvvMLMMYKm7V/vGUdDTCBMWNIGZdvmiLS4uZp999mHT\npk1kZ2fXdRwRkbSkYivxvlu4eCewmMWLW9Gx435hxxIR2UWKFFvXAQ+5+yeVHOvq7ouqO1bQ3Qhb\nAD9291Pc/ZnYwmK4ewkwOOBrV0uDBg1o164dK1asCDuKiIhI3HJy4F//Ws4++wxm0qSvVWiJiMQv\nu2KhZWZjAGpSaEHwxVbCggbpkEMOUft3ERFJadu2beP888/g+usH0b9/77DjiIikspMr2TcwnoGC\nLrYSFjRIhxxyCEuXLg07hoiISNyuvPJK2rdvz/Dhw8OOIiKSkszsIjObD3Q2s3nlflYA8+IZM5Cn\nZs3sIqLdADuYWflgOcA7QVyzNjp37sz8+fPDjiEiIhKX559/nvHjxzN79myi3YpFRCQOjwMTgb8A\nfyi3P+LuG+IZMKgWRQkPGqQuXbrwzDPPhB1DRESkxpYvX85vfvMbXn31VZo1axZ2HBGRlOXuXwFf\nAWcnasw6af2eTCrrRLVq1Sp69erF2rVrQ0olIpJe1I0wPuUXLc7Jge3bt9O3b1/OOeccLrvssrDj\niYhUKZm7EZrZVHfva2YRoPTLojSru3uTGo8ZxJdOEEETpbIvWncnJyeH1atX07Rp05CSiYikDxVb\nNfdda3fIzYUpU+Caay5nxYoVvPDCC5o+KCIpIZmLrSAE0iDD3fvG/sxx9yaxn5zS7SCuWRORyK7b\nZkbnzp1ZsmRJOIFERESqsGBBtNAqLoaFC+H++yfzwgsv8NBDD6nQEhFJIDM7w8xyYq9HmtnzZtYz\nnrEC7UaYyKCJdMwJke8VXJ07d2bx4sXhBBIREalCXl70jlZWFhxyyHZuvXUoTz75JC1gYPEqAAAg\nAElEQVRatAg7mohIfXO1u0fMrC9wEjAOGBvPQEG3fk9Y0ERa0KsfM+buWm3pzpaIiCSznJzo1MG3\n3iomJ2cQV111Efn5+WHHEhGpj3bG/jwVeMDdXwUaxjNQ0MVWwoImVKuF0Kpol11dunRRsSUiIkkt\nJwfefHM0TZtm8Nvf/jbsOCIi9dVqM/s7cCYwwcwaEWfdFFTr91KlQU8GxtQmaCLl7d+N3u1zd9mn\naYQiIpLs3n33XcaOHcvs2bPJyAj961REpL76GTAA+Ku7bzKzA4Ar4xko0NbvZrY30aDz3X1pLGh3\nd389sItWnck3b91MTqOcXfZ/8803tGzZki1btpCZmRlSOhGR9KBuhDX31Vdf0bNnT26//XZOP/30\nsOOIiMQl3boRap2tcg466CDeeustOnbsWMepRETSi4qtmvv5z39O48aNGTs29EefRUTitrvf/2Y2\nALiD6Cy4ce4+ppJz7gIGAl8DQ919jpm1BR4BWgMlwIPufleF9/0WuBXY1903VCNjI+AnQHvKzQR0\n9+ur+zlLBTqNMJFB60JpkwwVWyIikkwef/xxZs6cyaxZs8KOIiKScGaWAdwD9AfWADPN7CV3X1zu\nnIFAR3fvZGZ9iDbdyweKgStihdc+wCwze730vbFi7GTgkxpEegn4CpgFbKvNZwv6ma2EBa0LpU0y\nBg0aFHYUERERAD7++GNGjBjBa6+9RuPGjcOOIyIShN7AUnf/BMDMngROB8o3VDid6B0s3P09M2tq\nZq3d/TPgs9j+LWa2CGhT7r23E33e6uUa5Gnr7gNq84FKBV1sJSxoXejcuTPz5s0LO4aIiKSxSCS6\ngHFeHuy1VzHnnXceV111FUcccUTY0UREgtIG+LTc9iqiBdiezlkd27eudIeZtQcOB96Lbf8I+NTd\n59dw8fd3zay7u8+vyZsqE3SxlbCgdaFLly4888wzYccQEZE0FYlAv35QVBRdwHjw4Nto1KiR2ryL\nSMoqLCyksLAw8OvEphA+C4yI3eHaC/gT0SmEZadVc7i+wDAzW050dp4B7u49apwr4G6EC4FOQK2D\nJjDTbh+OXrVqFUcddRSfffZZHacSEUkvapBRuWnT4LjjoLgYGjQoISdnMPPnP0ibNm3CjiYikhCV\n/f43s3xgVOmMODP7A9GaYUy5c8YCb7v7U7HtxcDx7r7OzBoA44GJ7n5n7Hge8CbwDdEapC3Ru2G9\n3f3zKjIeVNn+0mmONRH0na2BAY+fUG3atGHLli1s2rSJZs2ahR1HRETSTF5e9I7WwoVORsYSbrvt\nfBVaIpIOZgKHxIqctcBZwNkVznkZuAR4KlacbXL30imEDwELSwstAHdfAOxfum1mK4Aj3H1jNfKs\nBM4FOrj79WbWLjZWjYutoFdEXAn0A/43Vgk60baMScnMtLixiIiEJicHpkyBn/zkLgYNuplhw34a\ndiQRkcC5+05gOPA6UAQ86e6LzOxCM7sgds4EYIWZfQT8HbgIwMyOJVoYnWhmH5jZ7Fgb+e9dhupP\nI7wPOJrvCr4IcG88ny3oO1v3Ee13fyJwPdGgzwG9Ar5u3Lp168bChQvJz88PO4qIiKShDz6YzH//\nO0YNm0Qkrbj7JKBzhX1/r7A9vJL3vQNkVmP8DjWI08fdjzCzD2Lv3WhmDWvw/jJBF1sJC1pX8vLy\nKCoqCjuGiIikoS1btjB06FDGjh3LvvvuG3YcEZF0tcPMMoneDcPMWhG9gVRjQU8jTFjQupKbm8uC\nBQvCjiEiImnod7/7Hccffzw/+tGPwo4iIpLO7gJeAFqb2Y3AVOCmeAYK+s5WxaA/BUbWdJDYys+P\nEH3eqwR40N3vqnDO8UQXUV4e2/W8u4+u6bV0Z0tERMLw2muvMXHiRE0fFBEJmbs/ZmazgP6xXf/j\n7oviGSvQ1u8AZtaF74K+FU9QM9sf2N/d58R66M8CTnf3xeXOOR74rbvv8Z8Dq2r7W1JSQtOmTVm5\nciXNmzevaVQREakGtX7f1caNG+nRowcPP/wwJ510UthxREQCE9bv/+owsyv2dNzd/1bTMQO5s7WH\noAPNbGBNg7r7Z8BnsddbzGwR0RWjK7YNrPV/uIyMDLp160ZRURF9+/at7XAiIiJVGjFiBKeffroK\nLRGRcOXE/uxMtKHfy7Ht04AZ8QwY1DTChActZWbtgcOB9yo5fLSZzSG6YNmV7r4wnmuUTiVUsSUi\nIkF78cUXmTZtGnPmzAk7iohIWnP36wDMbDLRNbkise1RwKvxjBlIsRVE0Nj79wGeBUa4+5YKh2cB\n7dz9GzMbCLwIHBrPdfLy8tQkQ0REArdx40YuueQSnnzySRo3bhx2HBERiWoNbC+3vZ041woOukFG\nwoKaWQOihdaj7v5SxePliy93n2hm95lZC3ffUPHcUaNGlb0uKCigoKBgl+O5ubm88sor8cQUEZFK\nFBYWUlhYGHaMpPO73/2OIUOG0K9fv7CjiIjIdx4BZpjZC7Ht/wH+Gc9AgTbIMLM/Az8j2pEQokGf\ncve/xDHWI8CX7l7p82Bm1trd18Ve9waedvf2lZxX5cPRa9as4fDDD+fzzz+vaUwREamGdG+QEYnA\nQw/N4LbbhlFUNJ2cnJyq3yQiUg8kc4OM8szsCKD0X8Imu/sHcY1TB90Iax3UzI4FJgPzia7Z5cCf\ngIMAd/cHzOwS4CJgB/AtcLm7f++5rup80bo7LVq0YMmSJey33341jSsiIlVI52IrEoFjjtnJggUl\nHHzwt8yd2wTVWiKSLlKl2EqUoKcR4u6zgdm1HOMdILOKc+4F7q3NdUqZWVmTDBVbIiKSSAsWwMKF\nDmSxalUWRUWQnx92KhERCUJG2AGSlZpkiIhIELZsmU5GxhKyspxu3SA3N+xEIiISFBVbu5Gbm0tR\nUVHYMUREpB7ZunUrl146jIceWsrkycaUKWgKoYhIkjGz/zOz5okYK9BiK5FB65rubImISKKNHj2a\nrl27ct55p5Ofr0JLRCRJtQZmmtnTZjbAzOJ+xizoboSjgbOIPrP1EPBa2E8mV/fh6C+++IJOnTqx\nceNGavH3KyIilUjHBhlz5szhhz/8IXPnzuWAAw4IJYOISNhSpUFGrMD6ITAMOAp4Ghjn7stqMk6g\nd7bcfSTQCRgHDAWWmtlNZtYxyOsmQqtWrcjOzmbVqlVhRxERkRS3c+dOfvWrX3HzzTer0BIRSQGx\nf5n7LPZTDDQHnjWzW2oyTuDPbCUqaBgOP/xw5syZE3YMERFJcffeey85OTkMGzYs7CgiIlIFMxth\nZrOAW4B3gO7ufhFwJPCTmowVaOt3MxsB/AL4EvgHcKW77zCzDGApcFWQ16+t0mLrtNNOCzuKiIik\nqNWrV3P99dczdepUTUsXEUkNLYAfu/sn5Xe6e4mZDa7JQEHf2SoNeoq7P+PuOyAaFKhR0DD07NmT\nDz6Ia7FoERERAEaMGMHFF19Mly5dwo4iIiLVk12x0DKzMQDuvqgmAwVdbCUsaBg0jVBERGrj1Vdf\nZe7cufzpT38KO4qIiFTfyZXsGxjPQEEXWwkLGrRIBKZNi/5Z6pBDDuHzzz9n06ZN4QUTEZGU9PXX\nXzN8+HDuv/9+srOzw44jIiJVMLOLzGw+0NnM5pX7WQHMi2fMQIqtIIIGKRKBY06I0O/saRxzQqSs\n4MrMzKRHjx7MnTs33IAiIpJyrr/+eo455hhOOumksKOIiCS92HpWi83sQzP7/W7OucvMlprZHDM7\nPLavrZm9ZWZFZjbfzC4td/4tZrYodv5zZtakihiPA6cBL8f+LP050t3Pi+tzBbHeiJk1Jdp18C/A\nH8odirj7hoRfsAYqW2PlzSkRTn68H7Qqgi9yefPcKfTvG11p8uKLL6Zz586MGDEijLgiIvVSfV9n\na/78+fTv35/58+fTunXrwK8nIpIqKvv9H2ue9yHQH1gDzATOcvfF5c4ZCAx391PNrA9wp7vnm9n+\nwP7uPsfM9gFmAae7+2IzOwl4K9bY4maijdL/WDefNCqQO1vu/pW7f+zuZ7v7J+V+Qi20dmu/BdFC\nK7MYWi2Mvo7p2bOnntsSEZFqKykp4cILL+SGG25QoSUiUj29gaWxemEH8CRweoVzTgceAXD394Cm\nZtba3T9z9zmx/VuARUCb2PabscZ8ANOBtnsKYWZTY39GzGxzuZ+ImW2O54MFNY0w4UGD1Kd9Hnn7\n59LAssjbvxu92+eWHTv88MPVkVBERKrtH//4BwC//vWvQ04iIpIy2gCfltteFdu3p3NWVzzHzNoD\nhwPvVXKN84GJewrh7n1jf+a4e5NyPznuXtUUxEoFss5W+aBBjJ9oOY1yePeXUyj6oojcVrnkNPou\ndl5eHh9++CHbt2+nYcOGIaYUEZFk9/nnnzNy5EjefPNNMjKC7kElIiKlYlMInwVGxO5wlT/2Z2CH\nuz9e17kCXdQ4leQ0yiG/bf739u+111506NCBoqIievbsGUIyERFJFX/84x/5+c9/To8ePYhEYMEC\nyMuDnJT4p0cRkcQrLCyksLCwqtNWA+3KbbeN7at4zg8qO8fMGhAttB5195fKv8nMhgKDgBOrCmFm\nEcCByp4p9njubgXVICPhQRMlnoejzzvvPPr378+wYcMCSiUikl7qY4OM9957jyFDhrB48WLMmtCv\nHxQVQW4uTJmigktEBHbbICMTWEK0QcZaYAZwdvl1ec1sEHBJrEFGPnCHu+fHjj0CfOnuV1QYdwBw\nG3Ccu68P8nPtTlDTCOvVV4oWNxYRkT0pKSlh+PDhjBkzhiZNmjBtWrTQKi6GhQujr/O/P3lCREQA\nd99pZsOB14n2lBjn7ovM7MLoYX/A3SeY2SAz+wj4GhgKYGbHAucC883sA6I3fP7k7pOAu4GGwBtm\nBjDd3S/eXQ4zm+rufcvdOKqYs8Y3jAIptoIIGqaePXvy8ssvhx1DRESS1EMPPUSjRo0477zoMix5\nedE7WgsXQrdu0dciIrJ7seKoc4V9f6+wPbyS970DZO5mzE41zJDwvhOBTCNMZvFMIVm/fj0HH3ww\nmzZt0gPPIiIJUJ+mEW7YsIGuXbsyadKkXZ7tjUS+m0aoKYQiIlFh/f4Pi4qtaurYsSPjx4+na9eu\nAaQSEUkv9anYGj58OCUlJdx3330JHVdEpD5KhWLLzLKBi4G+RGfpTQXud/etNR0r0G6EiQwatl69\nejFz5kwVWyIiUmbu3Lk888wzLFq0qOqTRUQkVTwCRIg+8wVwDvAocEZNBwp6TtwjQC7RoPcA3YgG\nTTm9e/dmxowZYccQEZEk4e4MHz6cG264gRYtWoQdR0REEifP3X/p7m/Hfn5NtKapsaDX2cpz927l\ntt82s4UBXzMQvXr14qmnngo7hoiIJInHH3+cb775hl/+8pdhRxERkcSabWb57j4dwMz6AO/HM1DQ\nxVbCgobtiCOOYMGCBWzfvp2GDRuGHUdEREK0efNmrrrqKp599lkyMyttgiUiIinGzOYTffQpC3jX\nzFbGDrUDFsczZlCt3xMeNGyNGzemY8eOzJs3j6OOOirsOCIiEqLRo0dz8sknc/TRR4cdRUREEmdw\nogcM6s5WQoOaWVuiz3+1BkqAB939rkrOuwsYSGyhM3dP6ErEpc9tqdgSEUlfy5Yt46GHHmL+/Plh\nRxERkQRy909KX5tZc6ATkF3ulE++96YqBFJsBRC0GLjC3eeY2T7ALDN73d3L7pKZ2UCgo7t3ik1X\nHAvkx/0hKtGrVy+mT5+eyCFFRCTFXHXVVVxxxRUccMABYUcREZEAmNmvgBFAW2AO0ZpiGnBiTccK\ntBthLOhk4DXgutifo2o6jrt/VnqXyt23AIuANhVOO53o3S/c/T2gqZm1jjt8JdSRUEQkvf33v/9l\n1qxZXH755WFHERGR4IwAegGfuPsJQE9gUzwDBd36PWFBS5lZe+Bw4L0Kh9oAn5bbXs33C7JaycvL\n4+OPPyYSiSRyWBERSQE7d+7k8ssvZ8yYMey1115hxxERkeBsLV0X2MwaxWbTdY5noKC7EW51961m\nVhbUzOIKChCbQvgsMCJ2hysuo0aNKntdUFBAQUFBtd6XlZXFYYcdxqxZs6r9HhERgcLCQgoLC8OO\nUSuPPPIIe+21Fz/72c/CjiIiIsFaZWbNgBeBN8xsI3E8rwVg7p7QZLsMbvYCMAy4jOgcx41AlrsP\nimOsBsB4YKK731nJ8bHA2+7+VGx7MXC8u6+rcJ7X5jNfdtlltGnThiuvvDLuMURE0p2Z4e4WwnXj\n+g7YsmULnTt35oUXXqB3794BJBMRSQ9h/f6Pl5kdDzQFJrn79pq+P9A7W+4+JPZylJm9TSxonMM9\nBCysrNCKeRm4BHjKzPKBTRULrUTo1asXL7zwQqKHFRGRJHbzzTdz4oknqtASEUkDZpYNXAz0Jbqc\n1VTifPwq6DtblQW9v3QOZA3GOZZoo43S9bsc+BNwEODu/kDsvHuAAURbvw9z99mVjFWrO1vLli3j\nuOOOY9WqVZilTFEuIpJUUunO1sqVK+nZsydz586lbdu2ASUTEUkPqXBny8yeBiLAv2O7zgGaufsZ\nNR4r4GIrYUETmKlWxZa7c+CBBzJt2jTat2+fuGAiImkklYqtc845h06dOnHdddcFlEpEJH2kSLG1\n0N27VbWvOoJukJFXIdTbZrYw4GsGysw49thjeeedd1RsiYjUc9OmTWPy5Mk8+OCDYUcREZG6M9vM\n8t19OkBsDd/34xko6Nbvs2PPTwG1C5pMSostERGpv0pKSrj88su56aabaNy4caXnRCIwbVr0TxER\nSW1mNt/M5gFHAu+a2cdm9jHRBY2PimfMQO5smVnps1VZRIOujB1qBywO4pp1qW/fvjz88MNhxxAR\nkQA98cQT7Ny5k/POO6/S45EI9OsHRUWQmwtTpkBOTh2HFBGRRBqc6AEDeWbLzA7a03F3j6tPfSLE\nM18/EoEFCyAvL/pFumPHDlq0aMGnn35Ks2bNAkoqIlJ/JfszW9988w1dunThscceo1+/fpWeM20a\nHHccFBdDVhZMngz5+ZWeKiIiManwzBaAmR0GlH4BTHH3ufGME8g0Qnf/pPQHaAacFvtpFmahFY9I\nBI45IUK/s6dxzAkRIpHo4sZHHXUU06dPDzueiIgE4Pbbb6dPnz67LbQg+g9wubnRQqtbt+hrERFJ\nfWY2AngM2C/2828z+7+4xgq4G+EI4NfA87FdQ4AH3P3uwC5adaYa3dl6c0qEkx/vB62K4Itc3jx3\nCv375nD11Vfj7owePTrAtCIi9VMy39lau3Yt3bt3Z8aMGXTo0GGP50Yi300j1BRCEZGqpcKdrdhz\nW0e7+9ex7cbANHfvUdOxgm6Q8Uugj7tf4+7XAPlEi6/Usd+CaKGVWQytFkZfoyYZIiL11dVXX835\n559fZaEF0QIrP1+FlohIbZnZADNbbGYfmtnvd3POXWa21MzmmNnhsX1tzewtMyuKNbi4tNz5zc3s\ndTNbYmavmVnT6sYBdpbb3hnbV2NBt35PWNCw9GmfR97+uSz+ciFd9u9G7/bReSJHH30077//Pjt2\n7CArKyvklCIikghz587llVdeYcmSJWFHERFJG2aWAdwD9AfWADPN7CV3X1zunIFAR3fvFOtwPpbo\njZxi4Ap3n2Nm+wCzzOz12Hv/ALzp7rfECrg/xvZV5WHgPTN7Ibb9P8C4eD5b0MVWwoKGJadRDu/+\ncgpFXxSR2yqXnEbRf75s2rQpBx98MHPmzKFXr14hpxQRkdpyd6644gquvfZaNT8SEalbvYGlpb0d\nzOxJ4HR27WJ+OvAIgLu/Z2ZNzay1u38GfBbbv8XMFgFtYu89HTg+9v5/AYVUUWyZmQHPxM7tG9s9\nzN0/iOeDBVZsJTpomHIa5ZDf9vstpvr27cvUqVNVbImI1APjx49n7dq1XHDBBWFHERFJN22AT8tt\nryJagO3pnNWxfetKd5hZe+BwoLSL3X7uvg7A3T8zs/2qCuLubmYT3L07MLtmH+P7Aiu2Eh00GfXr\n14+nn36ayy+/POwoIiJSCzt27OB3v/sdt99+Ow0aBD3pQ0QkfRQWFlJYWBj4dWJTCJ8FRpQ2tqhE\ndbvkzTazXu4+s7a5gv5GSVjQZFRQUMAll1zCzp07yczMDDuOiIjE6f7776d9+/YMHDgw7CgiIvVK\nQUEBBQUFZdvXXXddZaetBtqV224b21fxnB9Udo6ZNSBaaD3q7i+VO2ddbKrhOjPbH/i8mrH7AOea\n2SfA10R7Tng83QiDLrYSFjQZHXDAAey///7MnTuXI444Iuw4IiISh3Xr1nHDDTdQWFhIdAa8iIjU\nsZnAIWZ2ELAWOAs4u8I5LwOXAE+ZWT6wqXSKIPAQsNDd76zkPUOBMcD/Ai9RPafU+BPsRtDFVsKC\nJqsTTzyRt956S8WWiEiKuuqqqxg6dCi5WpVYRCQU7r7TzIYDrxNdmmqcuy8yswujh/0Bd59gZoPM\n7COiN3GGApjZscC5wHwz+4DoVME/ufskokXW02Z2PvAJ8LNq5vkkUZ8t0EWNk1FNFzWuynPPPce4\nceOYMGFCwsYUEanvkmVR4ylTpnDOOeewcOFCcrRYlohI4FJkUeNs4GKiTf4cmArc7+5bazxWkMVW\nIoMmMFNCi63169fToUMHvvzyS623JSJSTclQbG3dupUjjzySUaNGccYZZ9R1FBGRtJQixdbTQAT4\nd2zXOUAzd6/xl0XQ0wgfIRr07tj2OcCjQL35VmvZsiUdOnTg/fff5+ijjw47joiIVNPVV19Nt27d\n+OlPfxp2FBERSS557t6t3PbbZrYwnoGCLrYSFjSZlT63pWJLRCQ1TJo0iccee4y5c+eqKYaIiFQ0\n28zy3X06gJn1Ad6PZ6CMhMb6vtmxbiFA7YImsxNOOIG33nor7BgiIlINCxYs4Be/+AXPPPMMrVq1\nCjuOiIgknyOBd83sYzP7GJgG9DKz+WY2ryYDBf3M1iKgM7AytqsdsAQoJqQW8Il+Zgtg8+bNtGnT\nhi+++ILs7OyEji0iUh+F+cxW69atuf322zn77IpdhUVEJGgp8szWQXs6XpNuhUFPIxwQ8PhJoUmT\nJuTm5jJ9+vRdFm0TEZHk89xzz3HssceGHUNERJKUWr/XQhB3tgD+/Oc/A3DjjTcmfGwRkfomGboR\niohI3UuFO1uJFPQzW2ljwIABTJw4MewYIiIiIiKSJFRsJcjRRx/NihUr+Oyzz8KOIiIiIiIicbKo\n88zsmth2OzPrHc9YgRZbiQya7Bo0aED//v157bXXwo4iIiIiIiLxuw84GijtpBQB7o1noKDvbCUk\nqJmNM7N1u2u1aGbHm9kmM5sd+xkZf+T4DRw4UFMJRURERERSWx93vwTYCuDuG4GG8QwUdLGVqKAP\nA6dUcc5kdz8i9jM6jmvU2oABA3jjjTcoLi4O4/IiIiIiIlJ7O8wsE3AAM2sFlMQzUNDFVkKCuvtU\nYGMVp4XW1WTN+ggPTJyGZTehTZs2zJgxI6woIiIiIiJSO3cBLwD7mdmNwFTgpngGCnqdrYpBfwoE\nNcXvaDObA6wGrnT3hQFdZxdr1kfoOLofW3OKyH49l2EnDmDSpEkcc8wxdXF5EREJWCQCCxZAXh7k\n5ISdRkREgubuj5nZLKA/0Rs6/+Pui+IZK9BiK5FBqzALaOfu35jZQOBF4NDdnTxq1Kiy1wUFBbVa\niHj8jAVszSmCzGK27rOQvVtexsTH7uX666+Pe0wRkfqmsLCQwsLCsGPUWCQC/fpBURHk5sKUKSq4\nRETSgbsvBhbXdpyUWdTYzA4CXnH3HtU4dwVwpLtvqORYQhe0LLuztc9Csrd0Y9FV/+GwLh1YunQp\n++23X8KuIyJSn6TKosbTpsFxx0FxMWRlweTJkJ8fYEARkXouFRY1NrOjgD8DBxG9OWWAV6cOqSjQ\nO1uJDBp7b6X/Ycystbuvi73uTbSI/F6hFYQDW+awbOQUJswsYlCvXA5smcNJJ53EhAkTGDp0aF1E\nEBGRgOTlRe9oLVwI3bpFX4uISL33GHAlMJ84G2OUCvTOlpktoZKg7v5JDcd5HCgAWgLrgGuJdjV0\nd3/AzC4BLgJ2AN8Cl7v7e7sZK6F3tirz6KOP8uyzz/LSSy8Feh0RkVSVKne2IDqVsHQaoaYQiojU\nTorc2Zrq7n0TMlbAxVbCgiZKXRRbGzZsoH379qxdu5bGjRsHei0RkVSUSsWWiIgkTooUW/2JrhP8\nH2Bb6X53f76mYwXdjfBaM/sHCQiaSlq0aEHv3r157bXX+PGPfxx2HBERERERqb5hQBcgi+9m5zmQ\ndMVWwoKmmiFDhvDiiy+q2BIRERERSS293L1zIgYK/JmtRAVNlLqaQrJq1SoOO+wwPvvsM7KysgK/\nnohIKtE0QhGR9LS73/9mNgC4A8gAxrn7mErOuQsYCHwNDHP3D2L7xwGDgXXlG/GZ2WHAWCCbaG+H\ni939/WpkfBi4NRHr9mbUdoAqvGtm3QK+RlJq27YtHTt2ZPLkyWFHERERERFJWmaWAdwDnALkAmeb\nWZcK5wwEOrp7J+BC4P5yhx+OvbeiW4Br3b0n0QZ7t1YzUj4wx8yWmNk8M5tvZvNq9KFigp5GWBp0\nBdFntmrT+j3lDBkyhBdeeIH+/fuHHUVEREREJFn1BpaWdiw3syeB09l1UeHTgUcA3P09M2tauvyT\nu0+NrclbUQnQNPa6GbC6mnkGxPMhKhN0sZWwoKloyJAhnHTSSdx9992YJXXTFRERERGRsLQBPi23\nvYpoAbanc1bH9q3bw7iXA6+Z2W1Eb/ocU50wNV2mak8CnUbo7p9U9hPkNZNJly5daNKkCdOnTw87\nioiIiIhIurkIGOHu7YgWXg/t6WQzmxr7M2Jmm8v9RMxsczwBArmzVbq+lplFiHYfLDtEdBphkyCu\nm4zOOussnnjiCY4++uiwo4iIiIiI1KnCwkIKCwurOm010K7cdlu+P+VvNfCDKrFmnFgAACAASURB\nVM6p6H/dfQSAuz8ba6SxW6XrA7t7wpawD7QbYTKq605US5cupV+/fqxatYoGDYKetSkikhrUjVBE\nJD1V9vvfzDKBJUB/YC0wAzjb3ReVO2cQcIm7n2pm+cAd7p5f7nh74BV3715uXxHRDoT/jS1UfLO7\n96pGxjHu/vuq9lVHoNMIzayylo3f21efderUiR/84AfVqehFRERERNKOu+8EhgOvA0XAk+6+yMwu\nNLMLYudMAFaY2UfA34GLS99vZo8D7wKHmtlKMxsWO3QBcJuZfQCMjm1Xx8mV7BsYx0cLfJ2t2e5+\nRIV988LsRhjGv2r+7W9/Y8GCBTz00B6niYqIpA3d2RIRSU9h/f6vDjO7iGgR1wFYVu5QDvCOu59X\n4zGD+NIJImiihPFFu3r1arp3787atWtp1KhRnV5bRCQZqdgSEUlPSV5sNQWaA38B/hDbfSCwxN03\nxDNmUNMIHwdOA16O/Xka0cXHjgyz0ArDmvURXp23kkO7H8nEiRPDjiMiIiIiIpVw96/c/WN3P7tc\nF/V74y20oA4bZFQ2pTAMdfmvmmvWR+g4uh9bc4posKkzA9b04JVnH6+Ta4uIJDPd2RIRSU/JfGer\nMmb2gbv3jPf9gTbIqCBl/lITZfyMBWzNKYLMYoqbfsibc5fy1VdfhR1LRERERESq58HavLkui61a\nBU1Fg3vnkR3JheIssrd048TuHXniiSfCjiUiIiIiIrtRvnu6u99XcV+Nxgq4G2HCetQnMFOdTiFZ\nsz7ChJlFDOqVy7yZ73D11Vczc+bMOru+iEgy0jRCEZH0lArTCBPZUV2t3+vQzp07Ofjggxk/fjw9\neoT2VyAiEjoVWyIi6SmZi61yHdU7Ah+V7gb2Ad5193NrPGbArd8TFjSB2UL9or3mmmv46quvuPPO\nO0PLICISNhVbIiLpKcmLrfKt33/Pdz0nIvF2JAyq2Ep40EQJ+4t2+fLl9OnTh1WrVmnNLRFJWyq2\nRETSUzIXW6XM7Frge18W7n59TcdqkJBE3w/yFfCVmS0GhpY/FvsLrnHQ+qJDhw706NGDF198kTPP\nPDPsOCIiIiIisqst5V5nA4OBRfEMFPQzW78tt1kW1N3PD+yiVUiGf9V8/PHHefjhh3njjTdCzSEi\nEhbd2RIRSU+pcGerIjNrBLzm7gU1fm9dfunUJmgCM4T+Rbtt2zbatWtHYWEhXbt2DTWLiEgYVGyJ\niKSnFC22mgMz3f2Qmr63LtfZAtgbaFvH10w6jRo14oILLuCee+4JO4qIiIiIiJRjZvPNbF7spwhY\nAtwR11gBTyOcz3cPl2UCrYDr3T20KiNZ/lVz9erV5OXl8fHHH9O0adOw44iI1Cnd2RIRSU+pcGfL\nzA4qt1kMrHP34rjGCrjYSkhQMxtH9Hmvdbtbo8vM7gIGAl8DQ919zm7OS5ov2jPPPJNjjjmGESNG\nhB1FRKROqdgSEUlPqVBsJVKdPrMVLzPrS7QryCOVFVtmNhAY7u6nmlkf4E53z9/NWEnzRfvOO+8w\ndOhQlixZQkZGXc/oFBEJj4otEZH0lArFVqzPxE+A9pTr3p40rd9LJSqou0+tcJesotOBR2Lnvmdm\nTc2stbuvq3nqutO+c3e27deJx555iZ+fOSTsOCIiaSsSgQULIC8PcnLCTiMiIiF7CfgKmAVsq81A\ngRZbJDBoFdoAn5bbXh3bl7TF1pr1EQ658Ti29i/ifyevoP9JJ3FgS33Di4jUtUgE+vWDoiLIzYUp\nU1RwiYikubbuPiARAwVdbCUsaCKNGjWq7HVBQQEFBQV1nmH8jAVszSmCzGK8xTLueeoVbrr4nDrP\nISJSFwoLCyksLAw7RqUWLIgWWsXFsHBh9HV+pRPRRUQkTbxrZt3dfX5tBwq6QcYDwN0JCRqdRvjK\nbp7ZGgu87e5PxbYXA8dXNo0wWebrr1kfoePofmzdZyENNnWi/yddmfTys2HHEhGpE8n0zFbpna2F\nC6FbN93ZEhEJUjI/s1Wuk3oDoBOwnOjsPAN8d4369jhmEIVHIEHN2hMttrpXcmwQcEmsQUY+cEcq\nNMhYsz7ChJlFnJB7MMcc1YO3336bbt26hR1LRCRwyVRsQbTgKp1GqEJLRCQ4SV5s7alHBO7+SY3H\nDKjYSmhQM3scKABaEn0O61qgYXQofyB2zj3AAKKt34e5++zdjJU0xVZ5o0ePZunSpfzrX/8KO4qI\nSOCSrdgSEZG6kczFVikzOwOY5O4RMxsJHAHc4O4f1HisgKcRJixoAjMl5Rftxo0b6dixI7Nnz6Z9\n+/ZhxxERCZSKLRGR9LS73/9mNgC4A8gAxrn7mErOKb+u7rDSmmJPa/Ka2f8BFxNd8/dVd/9DNTLO\nc/ceseWnRgO3Ate4e5+afdrohwnS1bFCqy9wEjAOGBvwNVNS8+bNueCCC7jpppvCjiIiIiIiUmfM\nLAO4BzgFyAXONrMuFc4ZCHR0907AhcD95Q4/HHtvxXELgNOA7rFHkf5azUg7Y3+eCjzg7q8SnVVX\nY0EXWwkLmg6uvPJKnn/+eT766KOwo4iIiIiI1JXewFJ3/8TddwBPEl1Ht7xd1tUFmppZ69j2VGBj\nJeNeBNzs7sWx876sZp7VZvZ34ExgQmzt4LjqpqCLrYQFTQctW7ZkxIgRXHvttWFHERERERGpKxXX\nzF0V27enc1ZXck5FhwLHmdl0M3vbzI6qZp6fAa8Bp7j7JqAFcGU137uLoNfZ+hnRphV/dfdNZnYA\ncQZNF5dddhmdOnVi3rx59OhR46aNIiIiIiJJI+R1FhsAzd0938x6AU8DHap6k7t/AzxfbnstsDae\nAIE2yEhGqfBw9B133MHbb7/NSy+9FHYUEZFAqEGGiEh6quz3f2zpplHuPiC2/QeiXcfHlDtnj+vq\nVrYmr5lNAMa4+39j2x8Bfdx9faAfshxN6UtCv/nNb5g5bxG/v+dR1qyPhB1HRERERCRIM4FDzOwg\nM2sInAW8XOGcl4FfQFlxtqm00Iqx2E95LwInxt5zKJBVl4UWqNhKShu+3sGXpzXkls/Pp+Poviq4\nRERERKTecvedwHDgdaAIeNLdF5nZhWZ2QeycCcCK2N2pvxNt5w6Urcn7LnComa00s2GxQw8DHcxs\nPvA4sWKtKmZ2hpnlxF6PNLPnzeyIeD5bGOtsjd7dgsN1IRWmkDwwcRoXTjsOMouhOIsHj53Mrwbk\nhx1LRCRhNI1QRCQ9pciixim9ztb9Vbwn7Q3unUd2JBeKs+DLDvTr/IOwI4mIiIiIpAuts1WfHdgy\nh2Ujp/DgsZM58+u+jLv/zrAjiYiIiIiki4QtXxX0NMLxRHvgn0x0CuG3wAx3Pyywi1adKaWmkHz2\n2Wd0796dyZMn07Vr17DjiIgkhKYRioikpxSZRrg30eWr5rv70tjyVd3d/fUajxVwsZWwoAnMlHJf\ntPfeey9PPPEEkydPJiNDPU1EJPWp2BIRSU+pUGwlUqD/5+7u37j78+6+NLa9NsxCK1VddNFFAIwd\nOzbkJCIiIiIi9VsiuxEGWmwlMmg6y8jI4MEHH+Taa6/l008/DTuOiIiIiEh9lrAmf+pGmCK6du3K\npZdeykUXXYSmwIiIiIiIBEbdCNPR73//e9asWcNf7x7LAxOnabFjEREREZHEK+1GeBYp0o3wh0BP\n1I2w1v47fRYF/zoHWi0nO5LLspFTOLBlTtixRERqRA0yRETSUyo0yEhkk7+g72z9DHgN+KG7bwJa\nAFcGfM16bcnG7dBqOWQWs3WfhUyYWRR2JBERERGR+uRboDFwdmw7C9gUz0BBF1sJCypRg3vnkR3p\nBsVZZG7qxKBeuWFHEhERERGpT+4D8vmuhokA98YzUNDFVsKCStSBLXNYNnIqf+vxKq1fLWbGlP+E\nHUlEREREpD7p4+6XAFsB3H0jcfadaJDIVJXo4+5HmNkHEA1qZmqQUUsHtszh8jNO5tiDHmXw4MF0\n7dqVzp07hx1LRERERKQ+2GFmmYADmFkroCSegYK+s5WwoPJ9vXv35sYbb2TIkCFEIupMKCIiIiKS\nAHcBLwD7mdmNwFTgL/EMFHQ3wnOBM4EjgH8BPyW69tbTgV206kz1rhPVr3/9a7744guee+45MjMz\nw44jIlIldSMUEUlPqdCNEMDMugD9AQP+4+6L4hon6C+dRAVNYJ5690W7fft2BgwYQPfu3bnzzjvD\njiMiUiUVWyIi6SkVii0z+xcwItZNHTNrDtzm7ufXeKyA72wlLGgCM9XLL9pNmzZx7LHH8rPzzueA\nw49hcO88rb8lIklLxZaISHpKkWLrA3fvWdW+6gj6ma0epYUWlHXyqHFIADMbYGaLzexDM/t9JceP\nN7NNZjY79jOyFrlTTrNmzXj4sWcYtfJBLpx2HB1H92PNej3HJSIiIiJSQxmxm0QAmFkL4mwsGHQ3\nwgwzax4rsuIOamYZwD1EpyOuAWaa2UvuvrjCqZPd/Ue1DZ2q5qz9Clot22XB418NyA87loiIiIhI\nKrkNmGZmz8S2zwBujGegoIutRAXtDSx1908AzOxJ4HSgYrGV1Lckgza4dx7Zr+eydZ+F8OXBNP76\ni7AjiYiIiIikFHd/xMzeB06M7fqxuy+MZ6xAi60EBm0DfFpuexXRAqyio81sDrAauDLev5RUFV3w\neAoTZhbRiq/51c/PYt8mj3PyySeHHU1EREREJCWYWbdYHbGw3L4Cdy+s6ViBPrNVGtTd74n9LDSz\ngoAuNwto5+6HE51y+GJA10lqB7bM4VcD8jl9QH+ef/55zj33XJ5//vmwY4mIiIiI7FZV/Rli59xl\nZkvNbI6Z9Sy3f5yZrTOzebt532/NrCT2SFN1PG1mv7eovczsbuJcZyvoaYRPm9mjwC1AduzPo4Cj\nazjOaqBdue22sX1l3H1LudcTzew+M2vh7hsqDjZq1Kiy1wUFBRQUFNQwTmro168fkyZN4tRTT2Xz\n5s388LSfMH7GAnUqFJE6V1hYSGFhYdgxREQkCVWnP4OZDQQ6unsnM+sD3A+UNid4GLgbeKSSsdsC\nJwOf1CBSH2AM8C6QAzwGHFvTzwXBt35vTDTokXwXdIy7l9RwnExgCdH/AGuBGcDZ5dfsMrPW7r4u\n9ro38LS7t69krLRr+7tkyRJOHPgjPj+1AcXNPyQ7ksuykVNUcIlIaNT6XUQkPVX2+9/M8oFr3X1g\nbPsPgLv7mHLnjAXedvenYtuLgIJy//9/EPCKu/eoMPYzwPXAy8CRld2IqSRjQ6J9Jk4G9gFGuvuT\n8XzeoFu/7wC+BfYiemdrRU0LLQB33wkMB14HioAn3X2RmV1oZhfETvupmS0wsw+AO4AzE/IJ6oHO\nnTtz2Y13UNz8w106FYqIiIiIJIHK+jO0qeKc1ZWcswsz+xHwqbvPr2GemURrmF5AP+Dscg3/aiTo\naYQzgZeIBt0XGGtmP3H3M2o6kLtPAjpX2Pf3cq/vBe6tXdz669wf9uWaGd3Yus8ibENHerat7pRV\nEREREZH4hDWN3Mz2Av5E9O5U2e5qvv2X7v5+7PVa4HQz+3k8OYIuthIWVGon2qlwKuPfm8+y6f9h\n8MnH889//pNTTjkl7GgiIiIiUk9V7I9w3XXXVXZalf0ZYts/qOKc8joC7YG5Zmax82eZWW93/7yy\nN5jZVe5+i7u/b2ZnuHv5u1ld93Ct3QpkGqGZXQVQGrTC4biCSu0d2DKHCwYdw5jrr+bJJ5/kl7/8\nJX/+858pLi4OO5qISJ2JRMJOICIiFcwEDjGzg2LPS51F9Bmr8l4GfgFlz3htKn1eK8Yod+fK3Re4\n+/7u3sHdDyY6NbHn7gqtmLPKvf5jhWMDavSJYoJ6ZivhQSWxjj/+eGbNmsWMGTM47rjjmDpzDg9M\nnMaa9fq/EBGp3/r1U8ElIpJMqtOfwd0nACvM7CPg78DFpe83s8eJdg481MxWmtmwyi5D1dMIbTev\nK9uulkC6EZrZB+7es+LryrbrmjpR7aqkpIQbb72Taz4eC62W02hzN5ZfPVWdCkUkUGF2I8zKciZP\nhvz8qs8XEZHECuv3f3WY2Wx3P6Li68q2qyuoO1u+m9eVbUuIMjIyaN0jH1oth8xituUs4spb7qGk\npMZNI0VEUkK3bpCbG3YKERFJQoeZ2WYziwA9Yq9Lt7vHM2BQd7Z2Al8Tvd22F/BN6SEg292zEn7R\n6mfTna0K1qyP0HF0P7bus5BGkS50n9mSLN/GAw88QF5eXtjxRKQeCvPO1ubNTo5u3ouIhCKZ72wF\nIdBFjZORiq3KrVkfYcLMIgb1ymX/5o158MEHGTlyJGeddRYXXvpb3v1oLYN752l6oYgkhBY1FhFJ\nTyq26jl90Vbfl19+ye/+fB3/yngdWi0nO9KNZSP1PJeI1J6KLRGR9JRuxVZQz2xJPbDvvvtyzP+c\nU/Y819Z9FnHN3f9Qq3gRERERkWpQsSV7NLh3HtmRXCjOouHmzsx78xW6devGo48+qqJLRERERGQP\nNI1QqlT+ea4DWuzD22+/zXXXXceaNWu44P+uYO+DujGk7xGaXigi1aZphCIi6SndphGq2JK4PfvK\na5w56TJKWn5E5sZDmfGbFzkit1PYsUQkBajYEhFJT+lWbGkaocRtQ4MmlLT8CDKL2dlsKX2HnMvZ\nZ5/Nm2++SUlJCWvWR3hg4jTWrI+EHVVEREREpM7pzpbErfz6XNlbujFr+Mv8Z8JLjBs3jvWRbXw2\nKIPi5h+SHcll2cgpmmYoImV0Z0tEJD2l250tFVtSK+Wf5yotptydkX9/kpvW/AIyi6E4i7O2XsPf\nrvglBxxwQMiJRSQZqNgSEUlPKrbqOX3R1o3yd72yNnfmR18eyX8mvMRhhx3GGWecQa9jT2DO2q+0\nULJImlKxJSKSnlRs1XP6oq07Fe96bd26lddff51Hnnqe55pMg1bLydx4KE+dcjs/OuUEsrKywo4s\nInVExZaISHpSsVXP6Ys2fA9MnMaF044rm2LY7q2T+aroHY499lgKCgooKCigdbtDmDR7se58idRT\nKrZERNKTiq16Tl+04avYWGPZyClklWxl8uTJFBYW8sbk6Sw5ZjO0Wk6DjYfy6Im3MOCEY2nWrFnZ\n+8fPWKBCTCSFqdgSEUlPKrbqOX3RJofKGmuUqnjnq9M7g1k78w3atGlD7hF9eLnl+xQ3/5BGm7ux\n/Oqpu7xfhZhIalCxJSKSnlRs1XP6ok1+ld352q/pXixatIhbn5zEo5l/KivEmr3Yh6N/kEP37t1p\n26ELv1t0O9ubLKq03bwKMZHkoWJLRCQ9qdiq5/RFmxp2d+dr10KsK2///DE+X7Wc+fPn8+L7H/F+\n93+XFWIdpwyi38HN6dSpEy0PbM+lc26OFWLdWDZSd8REwqRiS0QkPanYquf0RZv6qlOINYp04d/9\nb2XjZytZunQpbyxay5yeT5YVYvtN6EePFhm0a9eOpvu15e6vn6O42RIabe7Ku79+ju6Hti/rjrin\nQkxFmkh8VGyJiKQnFVv1nL5o67dqFWJbuvLamQ+x9asvWblyJS/NWsar+91WVojlPHck3y59n6ZN\nm9Ji/3Z8dPy3eMuPyNxwKL9tcRbtD9iX5s2bU9Jgb4ZNHcn2JototLkbS//0X36wX7NdrhlPkaYC\nTtKBii0RkfSkYque0xdt+qre1MToM2Ktm+3N+vXrueel/3LDp+eUFWKnrL2UgzIjbNy4kfkbncVH\nv1h2jH92psnmlTRv3px9Wu7Pwvyv8JYfkbG+E2d+3ZfWzRuTk5NDSYO9GfPFvyluvoSsTV14pOAv\ntD9wX/bee2++2rqTkx//X7Y1WUSjSDeW/P5tDtq/xS5Z91SIBVHgJdMxqT9UbImIpCcVW0nKzAYA\ndwAZwDh3H1PJOXcBA4GvgaHuPqeSc9w3b4acCv8TF4nAggWQl1ezY7V5r44lzd/pmo/XMOHVtxh0\n6okc2P7A7/avj9BxdF+27rOI7C1dd3nWq+KxpX+aTOMGJWzcuJFxr7/HTWt+UVaInVd8Az1bZRGJ\nRHhn5WbeaHNX2bEu00+nyeaVfPvtt6xtsC9fDp6ySwGXuXYR2dnZNNynBZuG7I23WoZ92ZEe7+9L\nk+yM6LGGDSnOyOaNHxRR0vIjMtd34mdf96V54yyysrLY5ln8o2QCxc0/pMHGQ7lq3/NomdOIrKws\nvi7O4Orl98eKv87c1fOP7JvTiMzMTDZ9W8yF069jR7MlNNzUhUdOHMN+TfciMzOTjd/s4GcTL2N7\n08U0+qoLr/z4AVo3b0xmZibrt2zjh08MjRaNm7sy9fynOaBlDpmZmXyxeSu97vtR2bHZ/zeeA1s2\nwcz4bMMWDrtzENuaLCR7czeKfvcGB+4bPWZmrF25lgkTChk8+ETatG9Ttr/0v+H48W8xePCu/w2r\nOlab96bzsdq+V8WWiEh62t3v/zj+X3+Yu38Q2z8OGAysc/ce5c6/BTgN2AYsi71nc+I/1e6lRLFl\nZhnAh0B/YA0wEzjL3ReXO2cgMNzdTzWzPsCd7p5fyVjuhx0GU6Z89z/ckQj06wdFRZCbW/1jtXlv\nEh4rnD+fgu7dw82ShH83a447idvXfMnlB+7LgZPf/N6xCRu2MqhF9i7H1ny8ho63nMjWlsvJXt+B\nZVe9VfY/nDU9tl/b/fj222958MW3+e3Sn5QVYn9u+QAn9zyYrVu3sn37dibN+oj7Sq4qOz506zUc\neVAzduzYwfSPvuDplreWHRv06UUc2jyDHTt2sPCL7bzd+eGyY/lzzuTAht+wc+dOVm1txKzez5cd\n6/7OYFqUbGDnzp18STMWnzAJVhbDD7Lo8PoJ7P3NGnbu3MmWvQ7g01Mnl72v9Qu9ydiwnJ07d1Lc\nrD0bzpz9XUfJJ3pQ8sVS3B1adSJy7ryyY3s/2pXitYtxd/bK3IttQ/dnW6vlNPqiA5kPreab7V8D\nsHfDxuw8v03Zsex/rePbnd9iZuyd1Zhvztu37FjOkxvZtnMrZkZGRgZ7NdibDT/dp+x4qxe+ZVvJ\nVgAaZWTzxZC9yo7t98K3bGd79Jg1Yt3/ZJcd2/+lbWzzbZgZjawRa3/UkG1ff0Sjxodw4Cs72Obb\nyt635rSssve1GV+8y5irTs0sO9Z2QgnbY2M2tEZ8OtDKjrWb5Gz36PsaZjRi5SmUHTvodWNH7FiW\nNeSTH3rZsfavZ1BsO6LHaMiKk3eWHevwZgN2sB0zI4uGLOu/o+zYIW81ZEcsJ0BDa8TSE7aVHe/0\ndqOycRt41i7HDi3MLjsGcNFFF3HppZeq2EoyhYWFFBQUhB0jKenvZvf0d1M5/b3sXmXFVm3/X9/M\n+gJbgEcqFFsnAW+5e4mZ3Qy4u/8x4I+4K3dP+h8gH5hYbvsPwO8rnDMWOLPc9iKgdSVjuWdluU+b\n5mXefde9QQP3mh6rzXuT8Ni1yZClHv3drN6rqT/Ytpuv3rtZQo6tnvgfz/7Noc7ILM/+zaG+etJb\nu/y17el4oMf6ZdTJ9f5+96PO1Q2cUTgjs/zBe//t7u4lJSU+9q5Hdjl2/53/9G+//da/+eYbv+dv\nD+1y7J6/jfNNmzb5xo0bfcOGDX7HLQ/scvz2W/7u69at83Xr1vnfbh6767ExY33t2rW+du1a/9vN\n9+9y7G83j/XVq1f76tWr/a833Rc9dnz02G1/ud9XrVrlq1at8ltvuneX9932l/t85cqVvnLlSr/1\nxl2P/fWme/3jjz/2jz/+2G8Zfc8ux2698V5fsWKFL1++3MfccPcux24ZfY8vW7bMly1b5jffcNcu\nx8bccJcvXbrUly5d+v/t3XusHGUZx/Hvr1JELhIQrAZoVYwlJEJbsSJUEYimkCAaMdy8RSAGMGJI\nEBRMQdRG+UOLUQlEiYJEEhukiJDKRZOGq1Bo6blIsYqu0EigFkLBSh//mDntdtk5Z/bMzs7uzu+T\nTM7MvnN595nnzDvvzu5M27Lx8fEYHx+PpVcs26ls6beWxdjYWIyNjcXo6Gh89/If7Fx+xbIYGRmJ\nkZGR+E5r2eU/jHXr1m0fNm7cGGmDV0V7EtbekiVLqq5C33Jssjk27Tku2dod/7txrg/MAda0rrup\n/BPADVnlZQ09b+imVUn4FHBt0/RngKtb5rkNOKpp+i5gQZt1RRx+eMTmzTv2+ubNyWszZ3ZWVmTZ\nPixbMmNG9XVxbCYta8xbGNfNPiwa8xa2jVtmeYllJ735rT3ZXmNDI3Y7d27SETt3bjQ2NAqXlbXe\n7WUfmtH9dfZBWdFlI9o3tr0Y3NnK5pPDbI5NNsemPcclW0Znq/C5fo7O1grgjKzysobKO1K5Ktnt\nzlbrSWpE8tr993deVmTZPitbctZZ/VGXKrY5KLHpw7j1MjaNDY247sc3tj15n25ZWettbGjESSd+\nsuvr7Jeyosu6s9V/fHKYzbHJ5ti057hkq6KzBVwKLG9XVvYwKL/ZOhK4PCIWp9OXkOyo7zXNcw1w\nb0TcnE6PAcdExMaWdfX/GzYzq4Go6Ddbvd6mmZntrPX4341zfUlzgNui6Tdb6etfAM4BjotIf0Dd\nQ7v0eoPT9DDw7jSIzwCnAae3zLMCOB+4Od1hm1o7WlBN425mZv3BbYCZWV/qxrm+0mHHC8kdDi8C\nPlxFRwsGpLMVEa9J+jKwkh23gxyV9KWkOK6NiN9LOlHSetLbQVZZZzMzMzMzm1rRc31JNwEfAd4i\n6WlgSURcD/wI2BX4Q/qomAci4rxevreB+BqhmZmZmZnZoJlRdQW6SdJiSWOS/iLp4ox5rpb0pKTH\nJM3rZNlBNo3YzG96/W+SHpe0WtJDvat1+aaKi6S5ku6T9IqkCztZdtAVjM3Q5gzkis0Z6ft/XNIq\nSYflXXbQFYxNV/KmSFsw7HLsn2MkbZL0aDpcVkU9qyDpZ5I2SlozyTx1zZtJY1PXvJF0oKR7JK2T\ntFbSVzLmq13e5IlNbfKmirtylDGQdBzXk9yJZCbwGHBIyzwnALen4x8gWoCU6gAABmtJREFUuZSY\na9lBHorEJp3+K7BP1e+jorjsB7wPuBK4sJNlB3koEpthzpkOYnMksHc6vtjHmqlj0628KXq8G+Yh\nZ2yOAVZUXdeK4rMImEf23cxqmTc5Y1PLvAHeBsxLx/cExn286Sg2tcibYbqytRB4MiL+HhFbgV8D\nJ7fMczLwS4CIeBDYW9KsnMsOsiKxgeTHhsOUKxOmjEtEPBcRjwD/63TZAVckNjC8OQP5YvNARPwn\nnXwAOCDvsgOuSGygO3lT9Hg3zPLmXy1vIhIRq4AXJpmlrnmTJzZQw7yJiGcj4rF0/CWSh+we0DJb\nLfMmZ2ygBnkzTCdDBwD/aJr+J6/fqVnz5Fl2kE0nNo2meYLkh4UPSzqntFr2XpH97pyZ3LDmDHQe\nm7OBO6a57KApEhvoTt4UPd4Ns7z754Pp151ul3Rob6o2EOqaN3nVOm8kvYPk6t+DLUW1z5tJYgM1\nyJuBuBthiYa+N90lR0fEM5L2JzkRGk0/5TLL4pwBJB1LcrekRVXXpd9kxMZ5U71HgNkR8bKkE4Df\nAu+puE7W/2qdN5L2BH4DXJBexbHUFLGpRd4M05WtBjC7afrA9LXWeQ5qM0+eZQdZkdgQEc+kf/8N\n3ELyVZRhUGS/O2cmMcQ5Azljk9744Vrg4xHxQifLDrAiselW3hQ63g25KWMTES9FxMvp+B3ATEn7\n9q6Kfa2ueTOlOueNpF1IOhM3RMStbWapbd5MFZu65M0wdba2PwxN0q4kD0Nb0TLPCuBzsP1J1RMP\nQ8uz7CCbdmwk7Z5+KoGkPYCPAU/0ruql6nS/N18Jdc7sbHtshjxnIEdsJM0GlgOfjYinOll2wE07\nNl3MmyJtwbDLs39mNY0vJHlEzPO9rWalXvdQ1CZ1zZsJmbGped78HBiJiGUZ5XXOm0ljU5e8GZqv\nEUaBh6FlLVvRW+m6IrEBZgG3SAqSfPlVRKys4n10W564pAeCPwN7AdskXQAcGhEv1T1nsmID7M+Q\n5gzkiw3wTWBf4CeSBGyNiIU+1mTHhi4dawoe74Zazv1ziqRzga3AFuDU6mrcW2rzUFSSh6HWOm9g\n6thQ07yRdDRwJrBW0mqS351+g+SOn7XOmzyxoSZ544cam5mZmZmZlWCYvkZoZmZmZmbWN9zZMjMz\nMzMzK4E7W2ZmZmZmZiVwZ8vMzMzMzKwE7myZmZmZmZmVwJ0tMzMzMzOzErizZWZmZmZmVgJ3tszM\nzMzMzErgzpZZF0jaO30K+sT0qgrqsJukP0pSwfXMlPQnST4+mJnl4DbAzLL4H8msO/YBzpuYiIhF\nZWxE0iGSvp5R/EVgeUREkW1ExFbgLuC0IusxM6sRtwFm1pY7W2bdsRQ4WNKjkr4v6UUASXMkjUq6\nXtK4pBslHS9pVTp9xMQKJJ0p6cF0HT/N+HTyWGB1Rh3OBG7tZLuSdpf0O0mrJa2R9Ol0Xbem6zMz\ns6m5DTCzttzZMuuOS4D1EbEgIr4GNH+yeDBwVUTMBQ4BTk8/9bwIuBSSTyuBU4GjImIBsI2Whk7S\nYuBs4CBJs1rKZgLvjIinO9kusBhoRMT8iDgMuDN9/Qng/dMPh5lZrbgNMLO23NkyK9+GiBhJx9cB\nd6fja4E56fjxwALgYUmrgeOAdzWvJCLuJGkUr4uIjS3b2A/YNI3trgU+KmmppEUR8WK6rW3Aq5L2\n6PztmplZE7cBZjW2S9UVMKuBV5vGtzVNb2PH/6CAX0TEpWRIP8l8NqN4C7Bbp9uNiCclLQBOBL4t\n6e6IuDKd743AK1n1MTOzXNwGmNWYr2yZdceLwF5N08oYbzVRdjdwiqT9ASTtI2l2y7wLgYckHSHp\nTc0FEbEJeIOkXTvZrqS3A1si4ibgKmB++vq+wHMR8dok6zAzs4TbADNry1e2zLogIp6XdJ+kNSTf\neW/+vn7W+PbpiBiVdBmwMr3d7n+B84Hm79//i+RrJk9FxJY21VgJLALuybtd4L3AVZK2pducuHXx\nscDt7d6rmZntzG2AmWVRwTuEmlmfkDQf+GpEfL4L61oOXBwR64vXzMzMyuY2wKw/+WuEZkMiIlYD\n93bjgZbALW5kzcwGh9sAs/7kK1tmZmZmZmYl8JUtMzMzMzOzErizZWZmZmZmVgJ3tszMzMzMzErg\nzpaZmZmZmVkJ3NkyMzMzMzMrgTtbZmZmZmZmJXBny8zMzMzMrAT/BxPuZDs9ValKAAAAAElFTkSu\nQmCC\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -121,7 +121,7 @@
}
],
"source": [
- "from dcprogs.likelihood import missed_events_pdf\n",
+ "from HJCFIT.likelihood import missed_events_pdf\n",
"\n",
"fig, ax = plt.subplots(2,2, figsize=(12,9))\n",
"x = np.arange(0, 10, tau/100)\n",
@@ -158,7 +158,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 6,
"metadata": {
"collapsed": false
},
@@ -174,28 +174,35 @@
}
],
"source": [
- "from dcprogs.likelihood import DeterminantEq, find_root_intervals, find_lower_bound_for_roots\n",
+ "from HJCFIT.likelihood import DeterminantEq, find_root_intervals, find_lower_bound_for_roots\n",
"from numpy.linalg import eig\n",
"tau = 0.5\n",
"determinant = DeterminantEq(qmatrix, tau).transpose()\n",
"x = np.arange(-100, -3, 0.1)\n",
"\n",
"matrix = qmatrix.transpose()\n",
- "qaffa = np.array(np.dot(matrix.af, matrix.fa), dtype=np.float128)\n",
- "aa = np.array(matrix.aa, dtype=np.float128)\n",
+ "#qaffa = np.array(np.dot(matrix.af, matrix.fa), dtype=np.float128)\n",
+ "qaffa = np.array(np.dot(matrix.af, matrix.fa), dtype=np.longdouble)\n",
+ "#aa = np.array(matrix.aa, dtype=np.float128)\n",
+ "aa = np.array(matrix.aa, dtype=np.longdouble)\n",
"\n",
"def anaH(s):\n",
" from numpy.linalg import det \n",
" from numpy import identity, exp\n",
- " arg0 = 1e0/np.array(-2-s, dtype=np.float128)\n",
- " arg1 = np.array(-(2+s) * tau, dtype=np.float128)\n",
- " return qaffa * (exp(arg1) - np.array(1e0, dtype=np.float128)) * arg0 + aa\n",
+ " #arg0 = 1e0/np.array(-2-s, dtype=np.float128)\n",
+ " #arg1 = np.array(-(2+s) * tau, dtype=np.float128)\n",
+ " #return qaffa * (exp(arg1) - np.array(1e0, dtype=np.float128)) * arg0 + aa\n",
+ " arg0 = 1e0/np.array(-2-s, dtype=np.longdouble)\n",
+ " arg1 = np.array(-(2+s) * tau, dtype=np.longdouble)\n",
+ " return qaffa * (exp(arg1) - np.array(1e0, dtype=np.longdouble)) * arg0 + aa\n",
"\n",
"def anadet(s):\n",
" from numpy.linalg import det \n",
" from numpy import identity, exp\n",
- " s = np.array(s, dtype=np.float128)\n",
- " matrix = s*identity(qaffa.shape[0], dtype=np.float128) - anaH(s)\n",
+ " #s = np.array(s, dtype=np.float128)\n",
+ " #matrix = s*identity(qaffa.shape[0], dtype=np.float128) - anaH(s)\n",
+ " s = np.array(s, dtype=np.longdouble)\n",
+ " matrix = s*identity(qaffa.shape[0], dtype=np.longdouble) - anaH(s)\n",
" return matrix[0,0] * matrix[1, 1] * matrix[2, 2] \\\n",
" + matrix[1,0] * matrix[2, 1] * matrix[0, 2] \\\n",
" + matrix[0,1] * matrix[1, 2] * matrix[2, 0] \\\n",
@@ -214,10 +221,11 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -229,7 +237,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/CH82 -- optimization.ipynb b/exploration/CH82 -- optimization.ipynb
index eebea47..fba3a74 100644
--- a/exploration/CH82 -- optimization.ipynb
+++ b/exploration/CH82 -- optimization.ipynb
@@ -22,8 +22,8 @@
},
"outputs": [],
"source": [
- "from dcprogs import read_idealized_bursts\n",
- "from dcprogs.likelihood import QMatrix\n",
+ "from HJCFIT import read_idealized_bursts\n",
+ "from HJCFIT.likelihood import QMatrix\n",
"\n",
"name = \"CH82.scn\"\n",
"tau = 1e-4\n",
@@ -61,9 +61,9 @@
"from scipy.optimize import minimize\n",
"from numpy import NaN, zeros, arange\n",
"import numpy as np\n",
- "from dcprogs.likelihood.random import qmatrix as random_qmatrix\n",
- "from dcprogs.likelihood import QMatrix, Log10Likelihood\n",
- "from dcprogs.likelihood.optimization import reduce_likelihood\n",
+ "from HJCFIT.likelihood.random import qmatrix as random_qmatrix\n",
+ "from HJCFIT.likelihood import QMatrix, Log10Likelihood\n",
+ "from HJCFIT.likelihood.optimization import reduce_likelihood\n",
"\n",
"likelihood = Log10Likelihood(bursts, nopen, tau, tcrit)\n",
"reduced = reduce_likelihood(likelihood, graph)\n",
@@ -87,7 +87,7 @@
" \n",
"def random_starting_point():\n",
" from numpy import infty, NaN\n",
- " from dcprogs.likelihood.random import rate_matrix as random_rate_matrix\n",
+ " from HJCFIT.likelihood.random import rate_matrix as random_rate_matrix\n",
" \n",
" \n",
" for i in range(100):\n",
@@ -126,73 +126,73 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "-12.425436251427712 [[ -6.44069267e+03 5.74181654e-01 6.44011849e+03 0.00000000e+00\n",
+ "-640.830069172272 [[ -6.21619693e-01 3.80010323e-01 2.41609369e-01 0.00000000e+00\n",
" 0.00000000e+00]\n",
- " [ 1.16073652e+03 -1.16142765e+03 0.00000000e+00 6.91127353e-01\n",
+ " [ 3.10903942e+03 -3.10919359e+03 0.00000000e+00 1.54171557e-01\n",
" 0.00000000e+00]\n",
- " [ 3.22274403e-01 0.00000000e+00 -2.90372168e+03 2.90281124e+03\n",
- " 5.88161958e-01]\n",
- " [ 0.00000000e+00 3.41367880e-01 7.55204456e-01 -1.09657234e+00\n",
+ " [ 1.59277846e-01 0.00000000e+00 -9.08913654e+03 9.08867581e+03\n",
+ " 3.01453712e-01]\n",
+ " [ 0.00000000e+00 4.39644066e-01 2.78736992e-01 -7.18381058e-01\n",
" 0.00000000e+00]\n",
- " [ 0.00000000e+00 0.00000000e+00 5.08084841e-01 0.00000000e+00\n",
- " -5.08084841e-01]]\n",
- "x= [ 5.74181654e-01 6.44011849e+03 1.16073652e+03 6.91127353e-01\n",
- " 3.22274403e-01 2.90281124e+03 5.88161958e-01 3.41367880e-01\n",
- " 7.55204456e-01 5.08084841e-01]\n",
- " fun: -1274.8592956677317\n",
- " maxcv: 8.3266726846928772e-17\n",
+ " [ 0.00000000e+00 0.00000000e+00 1.54808746e-01 0.00000000e+00\n",
+ " -1.54808746e-01]]\n",
+ "x= [ 3.80010323e-01 2.41609369e-01 3.10903942e+03 1.54171557e-01\n",
+ " 1.59277846e-01 9.08867581e+03 3.01453712e-01 4.39644066e-01\n",
+ " 2.78736992e-01 1.54808746e-01]\n",
+ " fun: -2062.8258070089187\n",
+ " maxcv: 8.7670065147940707e-16\n",
" message: 'Maximum number of function evaluations has been exceeded.'\n",
" nfev: 1000\n",
" status: 2\n",
" success: False\n",
- " x: array([ 7.94011045e+01, 6.43080806e+03, 7.21170754e+02,\n",
- " -8.32667268e-17, 3.24655178e+01, 2.91303530e+03,\n",
- " 3.95923541e+00, 1.26710451e+02, 7.33402048e+00,\n",
- " 2.84881446e+00])\n",
- "-82.59000956544635 [[ -9.51866450e-01 8.38697463e-02 8.67996704e-01 0.00000000e+00\n",
+ " x: array([ -8.76700651e-16, 1.75097884e+02, 3.11563723e+03,\n",
+ " 2.68478978e+02, 6.06596893e+02, 9.06857871e+03,\n",
+ " 1.73472348e-18, 1.77190965e+01, -3.03804457e-16,\n",
+ " 7.92641819e-01])\n",
+ "-697.0699667052597 [[ -2.18554574e-01 8.96065006e-02 1.28948074e-01 0.00000000e+00\n",
" 0.00000000e+00]\n",
- " [ 4.62211254e+03 -4.62275606e+03 0.00000000e+00 6.43518503e-01\n",
+ " [ 6.92249289e+02 -6.92781143e+02 0.00000000e+00 5.31853771e-01\n",
" 0.00000000e+00]\n",
- " [ 7.83410975e-01 0.00000000e+00 -1.32656283e+00 2.17272465e-01\n",
- " 3.25879386e-01]\n",
- " [ 0.00000000e+00 9.06343131e-01 3.58030477e-01 -1.26437361e+00\n",
+ " [ 8.75734586e-01 0.00000000e+00 -1.91477903e+00 6.89175466e-01\n",
+ " 3.49868979e-01]\n",
+ " [ 0.00000000e+00 5.54235637e-01 4.39234514e-02 -5.98159089e-01\n",
" 0.00000000e+00]\n",
- " [ 0.00000000e+00 0.00000000e+00 1.12428009e-01 0.00000000e+00\n",
- " -1.12428009e-01]]\n",
+ " [ 0.00000000e+00 0.00000000e+00 9.79442657e+02 0.00000000e+00\n",
+ " -9.79442657e+02]]\n",
"Inequality constraints incompatible (Exit mode 4)\n",
- " Current function value: -1932.1916761250732\n",
- " Iterations: 25\n",
- " Function evaluations: 314\n",
- " Gradient evaluations: 25\n",
- " fun: -1932.1916761250732\n",
- " jac: array([ -7.79186472e+07, -4.69091861e+07, -4.69091859e+07,\n",
- " -4.69091861e+07, -9.37225744e+07, -1.72530690e+08,\n",
- " -8.62568783e+07, -9.37225740e+07, -6.50024414e-02,\n",
- " -9.06735762e+07, 0.00000000e+00])\n",
+ " Current function value: -2284.629372492554\n",
+ " Iterations: 177\n",
+ " Function evaluations: 2189\n",
+ " Gradient evaluations: 177\n",
+ " fun: -2284.629372492554\n",
+ " jac: array([ -2.08709717e-01, -5.42224910e+08, -2.52990723e-02,\n",
+ " 2.75032878e+05, 1.75594303e+09, -1.57243136e+09,\n",
+ " -5.42756597e+08, -2.75028975e+05, 5.62684071e+08,\n",
+ " -6.88560304e+07, 0.00000000e+00])\n",
" message: 'Inequality constraints incompatible'\n",
- " nfev: 314\n",
- " nit: 25\n",
- " njev: 25\n",
+ " nfev: 2189\n",
+ " nit: 177\n",
+ " njev: 177\n",
" status: 4\n",
" success: False\n",
- " x: array([ 2.78696256e+02, 6.43421935e+03, -3.98123191e-14,\n",
- " 1.79885994e+02, 3.33000335e+02, 2.92612560e+03,\n",
- " 1.58470668e+01, 2.08011337e+02, 3.92637131e+01,\n",
- " -1.11022302e-16])\n",
- "20.291820543659554 [[ -1.00114729e+00 3.80618205e-02 9.63085473e-01 0.00000000e+00\n",
+ " x: array([ 4.64593912e-07, 3.41051917e+02, 2.65544934e+03,\n",
+ " 1.38876283e+03, 9.99999918e+03, 4.32621889e+03,\n",
+ " 2.19612726e+02, 2.99939102e+00, 2.05470191e+00,\n",
+ " -1.68337691e-14])\n",
+ "-447.89702673666727 [[ -2.96248722e+03 2.73428480e-01 2.96221379e+03 0.00000000e+00\n",
" 0.00000000e+00]\n",
- " [ 5.68001382e-02 -6.93721904e-01 0.00000000e+00 6.36921766e-01\n",
+ " [ 9.99336618e-01 -1.00764635e+00 0.00000000e+00 8.30973004e-03\n",
" 0.00000000e+00]\n",
- " [ 3.91225175e+03 0.00000000e+00 -3.91254095e+03 2.23487236e-01\n",
- " 6.57170036e-02]\n",
- " [ 0.00000000e+00 8.36963851e-01 4.68661911e-01 -1.30562576e+00\n",
+ " [ 5.19874297e-03 0.00000000e+00 -5.01074858e+03 3.97100105e-01\n",
+ " 5.01034628e+03]\n",
+ " [ 0.00000000e+00 8.74501090e-01 2.32778358e+03 -2.32865808e+03\n",
" 0.00000000e+00]\n",
- " [ 0.00000000e+00 0.00000000e+00 7.98806965e-01 0.00000000e+00\n",
- " -7.98806965e-01]]\n",
- "[ 5.75020352e-01 6.44012717e+03 1.20695765e+03 6.97562538e-01\n",
- " 3.30108513e-01 2.90281341e+03 5.91420752e-01 3.50431311e-01\n",
- " 7.58784761e-01 5.09209121e-01]\n",
- "-1932.1916761250732\n"
+ " [ 0.00000000e+00 0.00000000e+00 6.91322340e-03 0.00000000e+00\n",
+ " -6.91322340e-03]]\n",
+ "[ 3.80906388e-01 2.42898850e-01 3.11596192e+03 1.59490095e-01\n",
+ " 1.68035192e-01 9.08868270e+03 3.04952401e-01 4.45186422e-01\n",
+ " 2.79176226e-01 9.94923531e+00]\n",
+ "-2284.629372492554\n"
]
}
],
@@ -221,10 +221,11 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -236,7 +237,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/CH82.ipynb b/exploration/CH82.ipynb
index 042b93d..fa6c791 100644
--- a/exploration/CH82.ipynb
+++ b/exploration/CH82.ipynb
@@ -46,7 +46,7 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import QMatrix\n",
"\n",
"tau = 1e-4\n",
"qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
@@ -74,9 +74,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFiCAYAAAAN91qTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8XGeV8PHfmRn1LqtakiUXuVfZsZ1KOnYCpDiBhM4G\nsiXZBZZlF7a9CyzvwrILLEvZN0CAAJtCekhCqkPiNPduy5Yl2+q995l53j9m5CiOZKuM5s69c76f\nz3wyunM99/gTzxw9zz3PecQYg1JKKaXsyWV1AEoppZSaOk3kSimllI1pIldKKaVsTBO5UkopZWOa\nyJVSSikb00SulFJK2ZgmcqWUUsrGNJErpZRSNqaJXCmllLIxj9UBhENWVpYpKSmxOgylQm7Xrl0t\nxpjsqf55/WwoJ5ru58JuoiKRl5SUsHPnTqvDUCrkROTUdP68fjaUE03kcyEibmAnUGuM+YCIzAUe\nAGYBu4BPGGOGRCQOuA9YC7QCHzHGnJyx4KdAp9aVUkpFo88DR0b9/G3ge8aYBUA7cEfw+B1Ae/D4\n94LnRRRN5EoppaKKiBQC1wM/C/4swJXAw8FTfgXcGHx+Q/Bngq9fFTw/YmgiV0opFW2+D/wt4A/+\nPAvoMMZ4gz/XAAXB5wVANUDw9c7g+RFDE7lSSimnyRKRnaMed468ICIfAJqMMbssjC+koqLYTSml\nVFRpMcasG+e1i4EPich1QDyQCvwXkC4inuCouxCoDZ5fCxQBNSLiAdIIFL1FjIgbkYvIJhEpF5EK\nEfnKGK9/WkSaRWRv8PFZK+JUSillP8aYrxpjCo0xJcBtwMvGmI8BW4Fbgqd9Cngi+PzJ4M8EX3/Z\nGGPCGPJ5RdSIPLgc4EfANQTuUewQkSeNMYfPOvVBY8zdYQ9QKaWUU/0d8ICI/CuwB/h58PjPgV+L\nSAXQRiD5R5SISuTAeqDCGFMJICIPEKgYPDuRK6WUUtNijHkFeCX4vJJADjr7nAHg1rAGNkmRNrV+\npjowaHTl4GhbRGS/iDwsIkVjvZGI3DlS6NDc3DwTsSqllFKWi7REPhFPASXGmJXAC7yzvu9djDH3\nGGPWGWPWZWdHTac+pZRSUSbSEvlIdeCI0ZWDABhjWo0xg8Eff0agbZ5SSikVlSLtHvkOoDTY87aW\nQFHBR0efICL5xpj64I8f4t0t9sbU0jPIsM9PjDvSfm9RaupeKW+yOoSIYozhVGsfh+u76B4YJsbt\nYm5WEstmpxHr0c++cq6ISuTGGK+I3A08B7iBe40xh0Tk68BOY8yTwF+JyIcAL4EKwk+f733rOwc4\n2dJLaW7KDEavVPgMen3c8Svd7ARgYNjHb98+zf3bT1PR1POe11PiPWxalsfnLpvHQv0OUA4UUYkc\nwBjzDPDMWcf+edTzrwJfnez7Hmvs0USuHKOyuRefP6KWslrijRMt/N0j+6lu62dtcQbfuGEZq4sy\nyEyOpX/Ix/HGbl4+2sTv99fzu1013HZBEV/dvIS0xBirQ1cqZCIukc+U8sZuriff6jCUColjjd1W\nh2ApYwz/79VK/v0PRymZlcRv7tjAJaVZ7zlvQU4ym1fk8/fXLeEnfzzBz7dV8fLRJn78sTLWlWRa\nELlSoRcVN47iPC6ONUT3F59yluONPbhdEbUBU9gYY/j2H8r51rNHuW5FPk/95SVjJvHRMpJi+fvr\nlvDEXReTGOvmtnve4sEdp8MUsVIzK0oSuZtjTZrIlXMca+ymZFai1WFY4ocvV/A/fzzBxzfO4Qe3\nrSEpbuITi8sL0nji7ku4aEEWf/fIAX6+rWoGI1UqPKIikcfHuDjZ0svAsM/qUJQKiWON3SzKi76a\nj9/vr+M/XzjGTWsK+MYNy3FNYVYiLSGGn31yHZuX5/GN3x/mZ69VzkCkSoVPlCRyN34DJ5rfW9Gq\nlN0MDPs41dZHaU50JfITzT38ze/2cUFJBt/asgKRqd9aiPW4+O/b13Ddijz+9ekjPLWvLoSRKhVe\n0ZHIPW4gcF9RKburaOrBGKJqKdWwz88XH9xLfIybH360jLjgZ3o6PG4X3/3wai4oyeBLD+1je1Vb\nCCJVKvyiIpHHxriIcQvlUV7pq5zheLDeY1FessWRhM+Ptlawv6aTb928gtzU+JC9b3yMm59+ch2F\nGQnc9b+7aeoaCNl7KxUuUZHIBZiXlayV68oRyht6iHELxbOSrA4lLE619vLjV07wwVWz2bQ89EtI\n0xNj+cnH19Iz4OXu+/fg9flDfg2lZlJUJHKA0txkrVxXjnC8sZt5WclR03L4608dJsYl/OP1S2bs\nGovyUvi/Ny9ne1Ub33/x+IxdR6mZEB3fBMCi3BSq2/rpHfRaHYpS03KsqZuFUVKxvu14Cy8dbeKv\nrioN6ZT6WG5aU8gtawv58SsV7DndPqPXUiqUoiaRj3zxHR+jF7NSdtE76KW6rZ+FOc6/P26M4T+e\nL2d2WjyfvrgkLNf85w8uJT8tgS89tI/+IV2uquwhehJ5sMI32ltbKnsb2RQkGvYN2FrexN7qDv7y\nqtKQVKlPRGp8DN+5ZSWVLb38x/PlYbmmUtMVNYl8TmaitmpVtjfyi+jCXGePyI0xfPeFY8zJTOSW\ntYVhvfZFC7L4+MY5/OL1Kg7Wdob12kpNRdQkcrdLKM1N1iVoytbKG7qJj3E5vmJ9W0ULB2u7uPvK\nBZYU9X35/YvJTIrlHx8/iF93mVMRLmoSOcDCnBRtCqNsrbyxm9KcFMdvmPKz16rITonjhtWzLbl+\nWkIM/3D9EvZWd3C/bq6iIlx0JfK8FBq6BujsH7Y6FKWm5GiD83usH2/s5o/HmvnUhcVhuzc+lhtX\nF7BxXibffvYo7b1DlsWh1PlEVSJfFCwQOq7T68qG2nqHaO4eZLHDE/m9r1cRH+PioxuKLY1DRPja\nh5bTM+jlBy/r2nIVuaIqkZcGC4T0Prmyo6MNXQCOHpF3DQzz2J5ablpTQGZSrNXhsCgvhY9cUMSv\n3zxFVUuv1eEoNaaoSuQF6Qkkxbq1cl3ZUnnDSI915ybyp/bVMTDs57YL5lgdyhlfvGYhsR4X3372\nqNWhKDWmqErkIsLCvBSOacGbsqHyhm4yk2LJTo6zOpQZ8+COahbnpbCyMM3qUM7ISYnnz943nz8c\namDHSd0hTUWeqErkEKhc16Ywyo6ONnSzKDdlWvtwR7Ij9V3sr+nkIxcURdzf8XOXziM3NY5//8NR\njNHlaCqyRF8iz0uhtXeIlp5Bq0NRasL8fsOxRmdXrD+4o5pYt4sbVxdYHcp7JMS6ufuKBew42c62\niharw1HqXaIukS/SVq3Khmra++kb8jm2Yn3Y5+eJvbVcsyyXjAgochvLhy8oYnZaPN994ZiOylVE\nibpEPtLaUgvelJ04vWL9jROttPcNc8MqaxrATEScx81fXlXKntMdvFLebHU4Sp0RdYk8OyWO9MQY\nyrXgTdnISMX6QodulvLUvjpS4jy8b1G21aGc0y1rCynKTNBRuYooUZfIRYRFuSmUB0c4StnB0cZu\n5mQmkhTnsTqUkBv0+njuUAPXLMu1tJPbRMS4XfzllaUcqO3kxSNNVoejFBCFiRxgcV4K5Q3duhmC\nso1yB7dmfe1YC90DXj64MnKn1Ue7eU0BczIT+eHWCh2Vq4gQnYk8P5XeIR817f1Wh6LUeQ16fVS1\n9Dq20O33++tIT4zh4gVZVocyIR63izsvm8e+6g7erGy1OhylojSRB78Qj+j0urKBiqYefH7jyBH5\nkNfPS0eauHZpLrEe+3wd3bK2kKzkOH7yygmrQ1EqOhP5wtwUROBovVauq8h3pjWrAwvdtle10T3o\n5ZqleVaHMinxMW7+5JISXjvewsHaTqvDUVEuKhN5UpyH4szEM0t6lIpk5Y3dxLpdlGQlWR1KyL14\npJE4j4tLbDKtPtrHNxaTEufhJ3/UUbmyVlQmcoDFeakc1bXkygbKG7qZn5NMjNtZH1djDC8eaeSS\nBVkkxEZ2tfpYUuNj+PiFxTx7oF53RlOWctY3wyQszk/hZGsvfUNeq0NR6pzKG7odWeh2rLGHmvZ+\nrlqSa3UoU/aZi0vwuF389LVKq0NRUSx6E3leKsagO6GpiNbZN0x954AjC91ePNIIwFVLciyOZOpy\nUuK5eU0Bj+6uob13yOpwVJSK2kS+JD/wxXi0Xu+Tq8hV3ujcPchfOtLIysI0clPjrQ5lWj5z8VwG\nhv3cv+O01aGoCRKReBHZLiL7ROSQiHwteHyuiLwtIhUi8qCIxAaPxwV/rgi+XmJl/GeL2kRelJFI\nYqxb75OriDbSgdBpU+udfcPsre7g8kX2HY2PWJSXwiULsrjvjVMM+/xWh6MmZhC40hizClgNbBKR\njcC3ge8ZYxYA7cAdwfPvANqDx78XPC9iRG0id7mERXkpHNERuYpgRxu6SY33kGfzUevZ3qxswW/g\n0lL7VauP5U8uKaGha4BnDzZYHYqaABMwcl81JvgwwJXAw8HjvwJuDD6/IfgzwdevEhEJU7jnFbWJ\nHN6pXNc2iypSHW3oZnFeKhH0nRESrx1vITnOw+qidKtDCYnLF+YwNyuJe7dVWR2KCsgSkZ2jHnee\nfYKIuEVkL9AEvACcADqMMSMV0DVAQfB5AVANEHy9E5g103+JiYrqRL4kP4XO/mEaugasDkWp9/D7\nDUfru87UczjJtooWNs7LdMySOpdL+MzFJeyt7mD36Xarw1HQYoxZN+pxz9knGGN8xpjVQCGwHlgc\n9ihDxBmfoilanJcKaIc3FZmq2/voHfKxdHaq1aGEVHVbH6da+2zZBOZctpQVkhrv0VG5zRhjOoCt\nwIVAuoiMbDFYCNQGn9cCRQDB19OAiGm0H9WJfJH2XFcRbKR+Y0m+sxL5a8dbALikNLL3Hp+spDgP\nt6+fw7MHG6jv1A2ZIpmIZItIevB5AnANcIRAQr8leNqngCeCz58M/kzw9ZdNBN2TjepEnpYQQ0F6\ngo7IVUQ6XNeFSwJ7AzjJtopm8tPimZ/tvJazH99YjN8YHthebXUo6tzyga0ish/YAbxgjPk98HfA\nX4tIBYF74D8Pnv9zYFbw+F8DX7Eg5nF5zn+Ksy3OS9Ge6yoiHa7vZn52MvEx9mtfOh6f3/B6RSvX\nLs11XAEfQFFmIu9bmM39209z95ULHFMD4DTGmP3AmjGOVxK4X3728QHg1jCENiUR969MRDaJSHlw\n4f17fusJ9cL8xfkpnGjuZdDrm87bKBVyR+q7HDetfrShi87+YS5aEDEFvyH38Q3FNHUP8uLhRqtD\nUVEiohK5iLiBHwGbgaXA7SKy9KzTQrowf3FeKj6/oaJJW7WqyNHZN0xtR7/jEvn2qjYA1s91biK/\nYnEOBekJ/ObtU1aHoqJEpE2trwcqgtMbiMgDBBbiHx51zg3AvwSfPwz8UETkXIUHQ1VVnPrEJ8d8\nrXTYxwM15bh2x3AqtzQEfwWlpq+i/STf6R1iYcVcTv08xupwQmZ7VRsF6QkUpCdYHcqMcbuE29cX\n8R/PH6OyuYd52clWh6QcLqJG5IxadB80ekH+e84518J8EblzpBnA8PDwuBeMj3GTJAO4hnUbQhU5\n+rx94Boi0Ybbe47HGMOOk21smJtpdSgz7sMXFOFxCb99W/uvq5kXaSPykAk2ALgHYN26dab41/eN\ne+6Bf70Yv9tF8VfHP0epcPrEr2+lo2+Y/X/6m3Of+JtfhyegEKhs6aWlZ4gLoiCR56TE8/7lefxu\nZzV/c+0iW+63ruwj0kbkZxbdB41ekP+ec0K1MD8x1kPfoBa7qcjRN+QjMc5ZX/7v3B93fiIH+MTG\nYroGvDy1v87qUJTDRVoi3wGUBreSiwVuI7AQf7SQL8xPjHUz7PfT3D04nbdRKiS8Pj/9Qz6SYp01\nYbajqo2s5FjmZTlv/fhYNszNpDQnmd++pUVvamZFVCIP3vO+G3iOQJedh4wxh0Tk6yLyoeBpIV+Y\nnxgX+MI8rDuhqQhQ2dKL3xhH3R8HeLuqjQtKMh25fnwsIsLHNsxhX00nB2s7rQ5HOVhEJXIAY8wz\nxpiFxpj5xphvBo/9szHmyeDzAWPMrcaYBcaY9SMV7tORFPzCPFSnHzZlvcN1gV8oEx00Iq/t6Ke2\noz9qptVH3LSmkFiPi4d2aqc3NXMiLpFbweNyEet2nfkCVcpKR+q7cImQ4KCObrtOBXYEW1ccXYk8\nLTGGzcvzeGxPLQPDWoejZoYm8qCkOI8mchURDtd3kRDrxkkz0HtOtxMf42KxA7dkPZ+PXFBE94CX\nZw/WWx2KcihN5EFJsW6qWnvpHfSe/2SlZtCR+i7H3R/fW93BioK0qOw9vnHuLIpnJfLgDp1eVzMj\n+j5V40iM82AMuoGKslRT9wAtPUOOqlgf9Po4VNfFmjkZVodiCZdL+PC6It6qbKOqRRtPqdDTRB40\nUvCm0+vKSkeCW+o6aUR+pL6bIa+f1UXpVodimVvWFuIStOhNzQhN5EGxHhfpiTEc0kSuLHSmYj3O\nOSPyvacDhW5r5kRvIs9NjefKxTk8vKsGr89vdTjKYTSRBwnC0vxUXUuuLHWkvouC9AQ8LudUuu2p\n7iA3NY78NOdulDIRH15XRHP3IFvLm60ORTmMJvJRls1O5WhDN8P6G7OySGAPcmdVdu+t7mBNUXTe\nHx/tisU5ZKfE8eAO3UhFhZYm8lGWzU5jyOunslkLUlT49Q/5ONHcw1IH7UHe2jPIqdY+VkfxtPqI\nGLeLW9YW8vLRJhq7BqwORzmIJvJRls4OfIFqhzdlhaMNXfgNLCtIszqUkNlX0wHAmigudBvtw+uK\n8Bt4eFeN1aEoB9FEPsq8rCTiPNrhTVnjYPDf3XInJfLqTlwCKwqd83eajrlZSWyYm8lDO6uZ5l5P\nSp2hiXwUj9vF4rwUrVxXljhU20lGYgyz0+KtDiVkDtV1Mj872VF946fr1nVFnGrtY2ewba1S06WJ\n/CxLZ6dxuL5Lf1tWYXewrpPlBWmO2h3sYG2Xo2YYQmHz8jwSY908otPrKkQ0kZ9l6exUOvuHqe3o\ntzoUFUWGvH7KG7rP1Gk4QXP3IA1dAyxz0N8pFJLiPGxens/v99fTP6Qbqajp00R+lpEvHb1PrsLp\nWGM3wz7D8tnOGb2OFI3qiPy9bllbSM+gl+cPN1gdinIATeRnWZyXggh6n1yF1WEHFrqNfIacNMsQ\nKhvmZlKQnqDV6yokNJGfJTHWw7ysJO3wpsLqYF0nyXEeijMTrQ4lZA7WdlIyK5HU+BirQ4k4Lpew\nZW0h2ypaqNPbeGqaNJGPYensNJ1aV2F1sLaTpbNTcTmoNevBuk5HrYkPtS1lBRgDj+2ptToUZXOa\nyMewbHYqtR39dPQNWR2KigI+v+FwfZejisI6+4apbut31D3/UCuelcT6kkwe2VWjq2TUtGgiH8NI\ni0wdlatwqGzuYWDY76ik906hm3N+OZkJt6wtpLKllz3VHVaHomxME/kYlp1p1aqJXM28gw6s7h75\nOy1z0C8nM2HzijziY1xa9KamRRP5GGYlx5GfFs+BWu25rmbeodou4jwu5mcnWR1KyBysDWzHmpkU\na3UoES0lPobNy/N5al8dA8O6plxNjSbycawoSOOgJnIVBgfrOlmSn4rH7ZyP46G6Tl12NkFbygrp\nHvDywuFGq0NRNuWcb44QW1GQRmVLL90Dw1aHohzM7zccqu1y1L3kgWEfVS29LMlz1r7qM+XC+bOY\nnRbPI7t1el1NjSbycSwP7tak98nVTKpu76N70Ouoe8kVTT34DSzKc84vJzPJ7RJuLivk1WPNuk+5\nmhJN5ONYESw8OlCj0+tq5hysDXZ0c1AiP9rQDcAiHZFP2M1lBfh1TbmaIk3k48hKjmO2FrypGXaw\nrhOPS1iYl2x1KCFT3hAo3iuZ5ZwudTNtXnYya4szdE25mhJN5OewXAve1Aw7WNvJwtwU4jxuq0MJ\nmaMN3ZTmJjuqeC8ctpQVcrypRwcPatL0k3YOWvCmZpIxhsN1zip0g0AiX5TrrL9TOFy/Mp9Yj0v3\nKVeTpon8HEYK3kbuYyoVSvWdA7T2Djmq0K2td4jm7kEW6/3xSUtLiOGapbk8ua+OIa/f6nCUjWgi\nP4eRgjedXlczYX+wkHJFoXMS+dGGwC+9Wug2NbeUFdLeN8zLR5usDkXZiCbyc9CCNzWTDtR24HHJ\nmd7+TlAerFhfnK+JfCouLc0iOyWOR3VN+YwSkSIR2Soih0XkkIh8Png8U0ReEJHjwf9mBI+LiPxA\nRCpEZL+IlFn7N3g3TeTnoQVvaqbsrwkUusXHOKjQrb6bzKRYspPjrA7FljxuFzeuns3W8ibaenX3\nxRnkBb5kjFkKbATuEpGlwFeAl4wxpcBLwZ8BNgOlwcedwE/CH/L4NJGfx0jBW5cWvKkQMsawv6aT\nVUXOmVYHONrYzaLcFEScs696uG1ZW8iwz/DkXl1TPlOMMfXGmN3B593AEaAAuAH4VfC0XwE3Bp/f\nANxnAt4C0kUkP8xhj0sT+Xmc6fCmBW8qhE639dHZP8yKgnSrQwkZv99wrKFb749P0+K8VJbmp/LI\nbk3k05AlIjtHPe4c70QRKQHWAG8DucaY+uBLDUBu8HkBUD3qj9UEj0UETeTnoQVvaibsCxa6rXRQ\noVt1ex/9wz6tWA+BLWsLOVDbybHGbqtDsasWY8y6UY97xjpJRJKBR4AvGGPeNVozgc48tujOo4n8\nPLTgTc2EAzUdxHpcjhq9HmvsAaA01zl/J6vcsHo2HpfoRiozSERiCCTx3xpjHg0ebhyZMg/+d2T5\nQC1QNOqPFwaPRQRN5BOwvCBNE7kKqX01nSzNTyXGQd3PKpoCiXxBjnPazVolKzmOyxdl8/ieWnx+\nWwwKbUUCRRw/B44YY7476qUngU8Fn38KeGLU8U8Gq9c3Ap2jpuAt55xvkRm0oiCNKi14UyHi8xsO\n1XayykHT6hBI5DkpcaQlxFgdiiNsKSuksWuQbRUtVofiRBcDnwCuFJG9wcd1wLeAa0TkOHB18GeA\nZ4BKoAL4KfAXFsQ8Lo/VAdjBilEFbxfOn2VxNMruKpt76B3ysaLQOYVuABXNPToaD6Erl+SQlhDD\nI7tqeN/CbKvDcRRjzDZgvKUVV41xvgHumtGgpkFH5BOgBW8qlEY6ujlpRG6M4USTJvJQivO4+eCq\nfJ471KCzgeqcNJFPwKxgwdu+mg6rQ1EOsL+mg8RYN/OynZP0GrsG6Rn0aiIPsS1lhQx6/Tx7IGJu\nx6oIFDGJfLzWeGOc5xt1T+PJcMW3qij9zEhKqenYX9vJ8oI03C7nNE05U+jmoF9OIsHqonTmZSfx\nyK6IKZBWEShiEjnjt8Y7W78xZnXw8aFwBbeqKJ3TbX3aNlFNy7DPz+G6LkdNqwNUNAXWO+uIPLRE\nhC1lhWw/2cbp1j6rw1ERKpIS+Xit8SLC6qJAYZJOr6vpONbYzaDX78hCt9R4D9kp2mM91G4uK0AE\nXVOuxhVJiXy81nhniw+23HtLRMKW7FcUpOES2HtaE7maOicWukFgan1BTrL2WJ8B+WkJXDw/i0f3\n1ODXNeVqDGFN5CLyoogcHONxw+jzztMar9gYsw74KPB9EZk/zrXuHOmz29zcPO3Yk+I8lOak6Ihc\nTcv+mg7SEmKYk5lodSghVdHUq9PqM+jmsgKq2/rZcbLN6lBUBAprIjfGXG2MWT7G4wnGb4139nvU\nBv9bCbxCoNn9WOfdM9JnNzs7NGswVxWlsa+6g8DvGUpN3v6aTlYWpjlq5NrRN0RLz6Am8hm0aXke\nSbFuHtWNVNQYImlqfbzWeGeISIaIxAWfZxHoznM4XAGuLsqgvW+Y6rb+cF1SOcjAsI/yhm5HbZQC\n2po1HBJjPWxekc/TB+rpH/JZHY6KMJGUyMdsjSci60TkZ8FzlgA7RWQfsBX4ljEmbIl8ZO/ovTq9\nrqbgcH0XXr9x1NalMHrpmW6WMpO2lBXSM+jl+cMNVoeiIkzEtGg1xrQydmu8ncBng8/fAFaEObQz\nFuamEB/jYu/pDj60arZVYSib2hMslCyb46xEfqK5hziPi4KMBKtDcbQNczMpSE/g4V013LA6YrbC\nVhEgkkbkES/G7WL57DQteFNTsud0OwXpCeSkxlsdSkhVtfQyNyvJUQ1uIpHLJWwpK+D1ihYaOges\nDkdFEE3kk7SqKJ2DtZ0M+/xWh6JsZm91x5l+BE5S1dJLyawkq8OICjeVFeI38PheLXpT79BEPkmr\ni9IZ9Popb+i2OhRlI83dg9S097PGYdPqXp+f0219zM3WRB4Oc7OSWFucwSO7anT1jDpDE/kkaYc3\nNRV7qwP/Xpw2Iq/rGGDYZ5irI/Kw2VJWyPGmHg7obowqSBP5JBVmJJCZFKsd3tSk7DndjsclLC9w\n1tKzypZAxXpJlibycLl+ZT6xHheP7NKWrSpAE/kkiQirCrXgTU3OntMdLMlPJT7GbXUoIXWypRcI\nTPmq8EhLiOHapbk8ua+OIa/W6ihN5FOyuiiD40099Ax6rQ5F2YDPb9hf0+G4++MAJ1v7SI7zkJUc\na3UoUWXL2kLa+4bZWj5mA0wVZTSRT8GqojSMgQO6P7magONN3fQO+RyZyCuDS8+c1HLWDi5dkEV2\nSpxOrytAE/mUrCrUgjc1cSP1FKuLMiyOJPROtvTq/XELeNwublw9m63lTbT1DlkdjrKYJvIpyEiK\npXhWIntOt1sdirKBPac7SE+MoWSWs3Y8G/L6qWnvY67D/l52sWVtIcM+w5O6pjzqaSKforI5Gew+\nrTuhqfPbU93O6qJ0x00/n27rw2/QNeQWWZyXyrLZqTyiO6JFvSklchFJEhFnld9OUllxxpkmH0qN\np3tgmONNPaxx6LQ6oF3dLLSlrJADtZ0ca9QGVdFsQolcRFwi8lEReVpEmoCjQL2IHBaR74jIgpkN\nM/KMbHyxW6fX1Tnsr+nEGFjtwEK3Kl16ZrkPrZ6NxyU8sluL3uxsuoPjiY7ItwLzga8CecaYImNM\nDnAJ8BbwbRH5+FSDsKNFuSkkxbrZfUoTuRrfmY5uhQ5M5K29ZCTGkJ6oS8+skpUcx+WLsnl8Ty0+\nv97ms4ss8SWIAAAgAElEQVRQD44nmsivNsZ8wxiz3xhzpgOBMabNGPOIMWYL8OBkLmx3HreLVUXp\n7NIRuTqHPafbmZedRFpijNWhhFxVs1asR4ItZYU0dg2yraLF6lDUxIV0cDyhRG6MGQYQkVdFJDX4\n/M9E5AsiEjv6nGhSNieDI/Xd9A1pYxj1XsYY9pzucOT9cYCTrb06rR4BrlySQ1pCjK4pt5eQDo4n\nW+yWZozpEpG1wOeADOCnk3wPx1hbnIHPb9hXrY1h1HvVtPfT2jvkyPvj/UM+6jsHdLOUCBDncfOh\nVbN57lADXQNRN56ypVAPjiebyIdFxAN8Evi2Meb/AMsm+R6OsUYL3tQ57DzVBsDaOc4bkZ9u6wOg\nWEfkEWHL2kIGvX6ePVBvdShqckIyOJ5sIv8BsA/4APBU8FjyZC/qFOmJsczPTtKCNzWmnSfbSYnz\nsCgvxepQQu5MIs/UZjCRYFVhGvOzk3hkl64pt5mQDI4nlciNMfcBG4Dlxpj+YGXdm5O9qJMEGsO0\na2MY9R67TrWzek46bpezGsHAO4l8jibyiCAi3FxWyPaTbZxu7bM6HDVxIRkcT3Qd+ZlvImNMjzGm\nP/i8whjzmbPPiSZrizNo7xs+s6ZWKYDO/mHKG7tZW+y8aXWA6rY+UuI8pDuwGt+ubi4rQARdU24j\noRocT3gduYj8pYjMGX1QRGJF5EoR+RXwqcle3AnKgl/Uu0/rBirqHXurOzAG1hVnWh3KjDjd1kdR\nZqLj2s7aWX5aAhfPz+LRPTX4dU15RAv14HiiiXwT4APuF5G64KL1SuA4cDvwfWPMLyd6USdZkJ1M\nSrxHC97Uu+w62YZLnNnRDQKJXKfVI8+t6wqpbuvnzcpWq0NR5xbSwbFngue5jTE/Bn4sIjFAFtBv\njIn6YajLJayZk6EFb+pddp5qZ0l+KslxE/2I2Yffb6hu6+PKxTlWh6LO8v5leaQnxnD/9tNcvCDL\n6nDU+DYBf0JgcDwX6ADiATfwPIHB8Z6JvtlER+TlIvJjEVlhjBk2xtRrEn9H2Zx0yhu76dY1nArw\n+vzsre5gnUPvjzd1DzLo9VOkI/KIEx/j5qY1BTx3qIHWnkGrw1HjcxtjfmyMuRgoBq4CyowxxcaY\nz00micPEE/kiYA/wcxF5XUQ+KSJxk4vbudYWZ2DMO321VXQLdPvzsbbEuffHQSvWI9Xt6+cw7DM8\nqtubRrKQDo4n2qK11xjzU2PMeuAu4ELgiIj8p4iUTvXiThHYaxp2n9JErt5pBOPUEbkm8si2MDeF\ntcUZ3L/jtC6LjVwhHRxPdPnZAhEpE5H3AUXANuDHwPUEdm2JainxMSzKTTnzBa6i285T7cxOi2d2\neoLVocyI0219uAQKHPr3c4LbLiiisrmX7VX6nRSJQj04nujU+jHgCWALsA6YDfQA3wBumuxFnWhd\nSaDgzevzn/9k5VjGGHadbD+zLNGJqtv6yE9LINYz2caQKlw+sHI2KfEeHthRbXUoagyhHhxP9JNY\nBvweuAIYAu4zxvyPMea3xpgnJ3tRJ7qgJJPeIR9H6rutDkVZqK5zgIauAcdOq4MuPbODhFg3N64u\n4OkD9XT0DVkdTsQRkXtFpElEDo46likiL4jI8eB/M4LHRUR+ICIVIrJfRMpCEEJIB8cTvUe+1xjz\n58BGoAl4XEQeEpErJ3tBp1o/N1DYtP2kTmVFs53B///rHFroBprI7eK29UUMef08tkeL3sbwSwJL\nwEb7CvCSMaYUeCn4M8BmoDT4uBP4SQiuH9LB8WTnxvwEfov4BPAigXXlRyZ7USfKT0ugMCOBHXpP\nKqrtOtVOYqybxQ7cKAUC25c2dw8yZ5Ym8ki3bHYaqwrTeGB7tRa9ncUY8ypw9pf1DcCvgs9/Bdw4\n6vh9JuAtIF1E8qd5/ZAOjifUrUJE2gED9AJdwUc3cDD4XAHrSzL547FmjDHaujJK7TzZzpo56Xjc\nzrx/XN0eqFjXNeT2cNv6OXz10QPsPt3h2L7/48gSkZ2jfr7HGHPPef5MrjFmZB/YBiA3+LwAGF1s\nUBM8Foo9Y0cGx1uBKwkMjo0xZslk3mSibacyjf5Kd14XzM3k0T21VLb0Mj87and3jVrdA8Mcbeji\n7iuduyJzZGctnVq3hw+ums03fn+YB7afjrZE3mKMWTfVP2yMMSIyYzkv1IPjCSXykSQeXOe20hiz\nY7IXigYXBO+L7qhq00QehXaeasdvYMNc594fP6VryG0lOc7DDatn89ieWv7x+qWk6W5159IoIvnG\nmPrg1HlT8HgtgcryEYXBY1MiIrGEeHB83vk/EflrEfmFiDwG7Oe9BQIqaH52ErOSYrXgLUptr2rD\n4xLK5jh35FPd1kdynIcMTQi28fGNxQwM+/ndLl2Kdh5P8s5GJZ8iMOU9cvyTwer1jUDnqCn4qfh+\ncMT/vmm8x7tM5EbeeuBFY8xNwMvGmG+E6uJOIyKsK8lghybyqPR2ZSsrC9NIiHVbHcqMqW7rozAj\nQWtAbGTZ7DTWFWfw67dO6famQSJyP4F9vxeJSI2I3AF8C7hGRI4DVwd/BngGqAQqgJ8CfxGiMD4S\novc5fyI3xtwGdIvIr3nn5r8axwUlmVS39dPQOWB1KCqM+od87K/pZMO8WVaHMqNqO/opzNBpdbv5\nxIXFnGrt49XjzVaHEhGMMbcbY/KNMTHGmEJjzM+NMa3GmKuMMaXGmKuNMW3Bc40x5i5jzHxjzApj\nzM7zvf95rBeRHwNLRGSViEy7Mnai68ifBD4L7BaRn073ok6m68mj0+7T7Xj95sz/fycyxlDb3k9h\nhrZmtZvNy/PJSo7jvjdPWR1K1AsW4f1f4PsEGsI8ON33nPBvAsaYQSAF+Pro4yLy7ekG4SRL81NJ\ninXrevIo83ZVGy5x7kYpAF39XroHvdpj3YZiPS4+ur6IreVNVAcLFpV1jDE1xpgngDhjzK2jX5tK\nTp3skP4aY8zZFRObJ3tRJ/O4XZQV633yaLO9qpVls9NIiXduEVhNRyABFOiI3JY+uqEYlwi/eUtH\n5RHkmjGOTTqnTnT3sz8XkQMECgP2j3pUAQcme1Gnu6Akk/LGbjr7hq0ORYXBoNfHntMdjp5WB6ht\n7wd01zO7ykuL5/3LcnlwZzUDwz6rw4lqoc6pEx2R/y/wQQJl+B8c9VhrjPnYZC/qdBeUZGIMuq1p\nlNhf08mg1+/o9eMQKHQD9B65jX1iYwkdfcM8ua/O6lCiXUhz6kSL3TqNMSeBjwGXAp8yxpwCkkVk\n/WQvOhYRuVVEDomIX0TG7cgjIptEpDy4E81XxjvPSmvmpBPjFt0LOEqM/H++wMEbpUBgRB4f4yIz\nKdbqUNQUbZyXycLcZO5786T2X7dQqHPqZO+R/4jABui3B3/uDh4LhYPAzcCr450gIu7g9TYDS4Hb\nRWRpiK4fMvExbtYUZfBWZavVoagweKuylUW5KWQ4PMHVtPdTkK5ryO1MRPjkhSUcrO1i56l2q8NR\nIcqpk03kG4wxdwEDAMaYdiAk317GmCPGmPLznLYeqDDGVBpjhoAHCOxME3E2zsvkQG0nXQN6n9zJ\nvD4/u061s2Ges0fjEJhaL9A15LZ3c1kB6Ykx/Oy1SqtDUSHKqZNN5MPBUfFI7/VsAru3hMt4u9C8\nh4jcKSI7RWRnc3P4myBsnD8Lv0GXoTncwbou+oZ8ji90g5FmMHp/3O4SYz18bMMcnj/cyMmWXqvD\niXYhyamTTeQ/AB4DckXkm8A2AgvbJ0REXhSRg2M8Qj6qNsbcY4xZZ4xZl52dHeq3P6+yORnEely8\neUKn151se1Xg/6/TE3nfkJe23iGtWHeIT11YQozLxb2vV1kdSrSbVk4dMdFtTAEwxvxWRHYBVwUP\n3WiMOTKJP3/1ZK43hpDuQjOT4mPclM1J5029T+5ob1W2MS8riZyUeKtDmVF1WrHuKDmp8Xxo9Wx+\nt7OGv75mIemJzq7viFTTzakjJrqO/K9HHsB1QFzwsTl4LFx2AKUiMje4FdxtBMr3I9KF87I4XN9F\nR9+Q1aGoGTDs8/N2ZSsXznd2f3WAal1D7jh3XDKX/mEfv337tNWhRJ1Q59SJTq2nBB/rgD8ncF+6\nAPgzoGyyFx2LiNwkIjUEKvieFpHngsdni8gzAMYYL3A38BxwBHjIGHMoFNefCRfOn4Ux6DI0hzpQ\n20nvkI+LF2RZHcqMO9MMRkfkjrEkP5VLS7P41RsnGfKGs9RJEeKcOqGpdWPM1wBE5FWgzBjTHfz5\nX4CnJ3vRca7xGIF7BWcfryPwG8vIz88Q2FYu4q0qSiM+xsWbla1cuyzP6nBUiI3UP2x0+I5nECh0\ni3GL428hRJvPXjqPT927nSf31XHL2kKrw4kaoc6pky12ywVGzxMPoVubjivO42ZtcYYWvDnU6xUt\nLMlPjYoGKbXt/eSnJeB26RpyJ7msNItFuSnc8+oJ3avcGiHJqZNN5PcB20XkX4K/ObwN/HKyF40m\nF86bxdGGbtp69T65kwwM+9h5qp2LouD+OATXkOv9cccREf7s8nkca+zhhSONVocTjUKSUyeVyI0x\n3wQ+A7QHH58xxvzbZC8aTUYKod7W6nVH2X26nSGvP2oSeU17n94fd6gPrpzNnMxEfrS1Qtu2hlmo\ncuqklp8FL7wb2D3ZPxetVhamkxjr5s3KVjavyLc6HBUib55oxe0Sx68fBxjy+mnqHtSlZw7lcbv4\n88vn89VHD/Da8RYuWxj+vhvRLBQ5dbJT62qSYtwu1pVkat91h3m9ooWVhc7ef3xEfWc/xujSMye7\nuayAvNR4fvhyhdWhqCnQRB4GF86bxbHGHlp6Bq0ORYVAz6CXfTWdUTOtPrJ9qSZy54rzuPnT981j\n+8k2XS5rQ5rIw2DkPrlWrzvDjqo2fH7DRfOdv34coL5jAIB8TeSOdtsFc5iVFMsPt+qo3G40kYfB\nioI0UuM9bDveYnUoKgTeONFCrMfF2uIMq0MJi4auYCJP0zXkTpYQ6+azl87j1WPN7Dqlo3I70UQe\nBm6XcNH8LLZVtGhVqAO8XtHK2jkZxMe4rQ4lLOo6+slIjImav280+9RFxWQlx/Kd58r1u8pGNJGH\nySWlWdR29FOl2wbaWnvvEIfru6Lm/jhAQ+cA+Wk6rR4NEmM93H3FAt6qbOP1Cr0VaBeayMPk0tLA\n/dTXdHrd1kZ2s7toQfQk8rrOAZ1WjyK3b5hDQXoC33nuqI7KbUITeZgUz0qiKDNBE7nNvXqsmZR4\nD6sK060OJWzqO/vJT9dEHi3iPG4+f3Up+2o6ef6wdnuzA03kYXRpaTZvVbYy7NOdhuzIGMNrx1u4\neH4WHnd0fHT6h3x09A3r1HqUuXlNAfOyk/jP58vx2awHezQu842Ob6MIcemCrMAa5OoOq0NRU3Ci\nuZfajn4uXRgdy84gMBoHrViPNh63iy9ds4hjjT38bme11eFMyl/dv8fqEMJOE3kYXTQ/C5fofXK7\neu14MwCXlUZPC8uGzpGlZzoijzbXrchjXXEG//F8Od0Dw1aHMyFH6rt4Iwr7dWgiD6O0xBhWFKaf\nSQjKXl491szcrCSKMhOtDiVs6jp1DXm0EhH++YNLaekZsk3r1nterSQxNvqWSWoiD7NLF2Sxr6aT\nLpv8hqsCBr0+3qps47LS6JlWB2gITq3naSKPSisL07llbSH3vl7FyQhfOlvd1seT++r46Po5VocS\ndprIw+yS0ix8fqPtWm1m18l2+od9XBpF0+oQGJFnJsVqM5go9rfvX0SM28U3nzlidSjn9PNtVbgE\n7rh0rtWhhJ0m8jArm5NBYqxb27XazKvHW4hxy5m++dGivqNfp9WjXE5qPHddsYAXDjfy8tHIXI7W\n2jPIAztOc+Pqgqis59BEHmaxHhcb583S++Q28+qxZsrmZJAU57E6lLCq12YwCvjcpfMozUnmnx4/\nRO+g1+pw3uP/vVrJoNfPn75vvtWhWEITuQUuK83iZGtfxN9zUgHN3YMcru/isoXRNa0OI4k8+kY4\n6t1iPS7+7eYV1Hb0890Xjlkdzrs0dA7wqzdOctOaAhbkJFsdjiU0kVvg8kU5ALxS3mRxJGoitlVE\n37IzgL4hL539w1ropgBYV5LJxzfO4RevV0VUL4z/euk4fmP44tULrQ7FMprILVCSlcS8rCReOabT\n63bw2rEWMpNiWTY71epQwqo+uPRstrZnVUF/u2kx2SlxfPnhfQwM+6wOh6qWXh7aWc3t6+dE1bLQ\ns2kit8jli3J480Qr/UPWfxjU+Hx+wx+PNXNpaRYul1gdTljVd2gzGPVuqfEx/PstqzjW2MO3nj1q\naSzGGL7+1CHiPS7uvnKBpbFYTRO5Ra5YnM2g189blboMLZLtq+mgtXeIKxfnWB1K2Gl7VjWW9y3M\n5tMXlfDLN07yRwtnFV880sTW8ma+cPVCclKi+9+oJnKLrJ+bSUKMm616nzyibT3ahEsCX17RZmRq\nPTc1ur8k1Xt9ZfNiFuYm8ze/20dT10DYr98/5ONrTx2iNCeZT19cEvbrRxpN5BaJ87i5eEEWLx9t\n0j1/I9jLR5tYW5xBemKs1aGEXX3nALO0GYwaQ3yMm/++vYyeAS9/8dvdDHnDu6Pjt/9wlJr2fr5+\nw3JiprgToYhsEpFyEakQka+EOMSw0kRuoSsWZ1PT3s+JZl2GFokaOgc4VNfFFVE4rQ66D7k6t0V5\nKXzn1pXsPNXON35/OGzXfb2ihV++cZJPX1Qy5QZNIuIGfgRsBpYCt4vI0hCGGVbR1d0iwoxehhat\n6x8j2chtj6sW51ocyczpaOzjsf/cPeZrF58+jtsl476uFMAX3Wk0/PEg/7a9nMWzZrY96rDPT9PR\nCr4sQt6xgen821wPVBhjKgFE5AHgBiB8v5GEkI7ILVSQnsDC3GS9Tx6hXj7adOb/UTSK8/eTYMJ/\n/1PZS1FmAjExw3QP9tLaOzhj1zEYjjf1EDs8SDpeXHLOVSRZIrJz1OPOs14vAEZvtF4TPGZLOiK3\n2BWLcrj39Sp6B71R1/4zkg0M+3i9ooWbywqQc39h2Fp6biI3fansPcf7h3zs+9e/oCgjkYIv/okF\nkSk7eeLZ/+ZIfTftJ+7gpx9Zd2a2MVSMMXztqcP8srmBh3ueITs5juIvfWz8P/A3tBhj1oU0iAim\nI3KLXb4oh2GfYVuFbqISSd6uaqNvyBeVy84AmroDI/FYj35FqPNzibAoL4XSnBQ+d99Onj1QH9L3\n/8FLFfzyjZPccclcspPjQvGWtUDRqJ8Lg8dsST+lFltXkkFKvIeXjkTmrkLRauvRJuJjXFw0P7r2\nHx/R2BWYIo1xO3c2QoWWxyXcf+dGVhamc9f/7ubXb56c9oocYwz//dJxvvfiMbaUFfIP1y0JTbCw\nAygVkbkiEgvcBjwZqjcPN03kFotxu7hiUQ4vHWnC59dlaJHAGMNLRxu5aH5W1C69aujSEbmavLSE\nGH59x3quWJTDPz1xiC/9bh99Q1PbLW3Q6+PvHzvIf75wjJvWFPDtLStC1l3RGOMF7gaeA44ADxlj\nDoXkzS2gn9IIcO2yXFp7h9hzut3qUBRwormH6rb+qF12Bpxp8hE7xTW6Knolxnr46SfX8YWrS3ls\nTy3Xfu/VSW8QdbShixt/9Ab3bz/NX1w+n+9+eBWeEP9bNMY8Y4xZaIyZb4z5ZkjfPMz0UxoB3rcw\nmxi38PxhnV6PBM8dCvx/uCqKE3lj1wAuAXeU9ZdXoeFyCV+4eiEPfG4jsR4Xn/7FDm6/5y1eKW/C\n6xu/eUxFUzd/9/B+rvuv12jqGuBnn1zH325a7OiC01DQMukIkBIfw4Xzs3jhcCNf3az/aK32/OFG\nVhamMTs9ejcLaewaJMbtQtB/i2rqNsybxbOfv5Rfv3mK//dqJZ/+xQ6ykmPZMHcWi/NSSE2IYcjr\np7q9jx0n2zlS30Ws28VnLp7LXVcsIDMp+joqToUm8ghxzdJc/unxg5xo7mFBTorV4USths4B9lV3\n8OX3L7I6FEs1dg3otLoKiTiPm89eOo+PbyzmlfJmnjlQz57qdp4eVdmeGOtmzZx0/vH6Jdy4poCs\n0FSmRw1N5BHimiWBRP784UZN5BZ64XADANcudW43t4lo6h7UQjcVUvExbjYtz2PT8jwg0Kuhd9CL\nx+0iNd6jM5HToJ/UCJGXFs/KwjRe0Pvklnr+cCPzspKiumWuMYaGzoEpb0ah1ETEx7iZlRxHWkKM\nJvFp0k9qBLlmSS57qzvONONQ4dXZN8ybJ1q5dlleVH+xdA966R/26YhcKZvQT2oEuWZZLsbAS0e0\n97oVtpY34fUbrl0W5dPquvRMKVvRT2oEWZSbQlFmgk6vW+S5Qw3kpMSxujDd6lAsNdLVTUfkStlD\nxHxSReRWETkkIn4RGbfZvYicFJEDIrJXRHaGM8aZJiK8f2ke24630DUwbHU4UWVg2McfjzVzzdLc\nkHWPsqvG4Ihc75ErZQ+R9Ek9CNwMvDqBc68wxqx24u42m1fkM+Tza+/1MNt2vIW+IR/vX5ZndSiW\n0xG5UvYSMZ9UY8wRY0y51XFYbU1ROvlp8Ty9v8HqUKLKswcbSIn3sHHeLKtDsVxj1wApcR7cUVzw\np5SdREwinwQDPC8iu8bYLP4MEblzZFP55ubmMIY3PS6XsHl5Pq8eb6Zbp9fDYtDr4/nDDbx/WZ6O\nQgkk8ty0eKvDUEpNUFi/tUTkRRE5OMbjhkm8zSXGmDJgM3CXiFw21knGmHuMMeuMMeuys7NDEn+4\nXL8yjyGvX6vXw2Tb8Ra6B7xcvzLf6lAiQmPXALmp2llLKbsIa2c3Y8zVIXiP2uB/m0TkMWA9E7uv\nbhtrijLIS43n6QP13LimwOpwHO/3++tJS4jh4ijde/xsjV2DbJibCX1WR6KUmghbzSOKSJKIpIw8\nB64lUCTnKC6XsHlFHn88ptPrM21g2McLhxvZpNPqQKCrW1P3ADmpOrWulF1EzDeXiNwkIjXAhcDT\nIvJc8PhsEXkmeFousE1E9gHbgaeNMX+wJuKZdf2KfIa8fl4+qtPrM+nVY830DOq0+oj2vmGGfUan\n1pWykYjZNMUY8xjw2BjH64Drgs8rgVVhDs0SZXOC0+v767lhtU6vz5Tf768nIzGGC+drtTq8s4Y8\nV0fkStlGxIzI1bu5XMKm5Xm8EhwxqtAbGPbx4pFGNi3P1+YnQQ2ayJWyHf32imAfWBmYXn/+kK4p\nnwmvlDfRN+TjAzqtfkbTmUSuU+tK2YUm8gi2tjiDwowEHt9bZ3UojvTU/npmJcUGKrQV8E5Xt+wU\nTeRK2YUm8ggmIty4uoBtx5t1a9MQ6x4Y5sXDjVy3Ih+PTquf0dg1QGZSLHEet9WhKKUmSL/BItyN\na2bjN/D7ffVWh+Iozx5sYNDr56YyLSQcrbFrkBwdjStlK5rII9yCnBSWzU7l8b21VofiKI/trmVu\nVhJriqJ7y9KzNfcM6rS6UjajidwGblpTwP6aTk4091gdiiPUdfTzVlUrN64uQHRjkHdp6dZErpTd\naCK3gQ+umo0IPLFHR+Wh8PjeWowJ/IKk3mGMoVkTuVK2o4ncBnJT47l4fhaP763DGGN1OLZmjOGx\n3bWsK85gzqxEq8OJKF39XoZ8frKTNZErZSeayG3ihtWzOd3Wx57qDqtDsbVDdV0cb+rRzWjG0NwT\nWBmhfdaVshdN5DaxaXke8TEuHt5VY3UotvbYnlpi3S5tAjOGpu7gGnIdkStlK5rIbSIlPobrlufz\n1N46+od8VodjS8M+P0/sreOKxdmkJ8ZaHU7Eae7WZjBK2ZEmchv58AVFdA96eeaArimfipePNtHS\nM8hHLiiyOpSIpIlcKXvSRG4jG+ZmUjIrkQd3Vlsdii09uKOavNR4LivNtjqUiNTcPUisx0VqfMRs\niqiUmgBN5DYiIty6rojtVW1UtfRaHY6t1Hf280p5E7euK9SWrONo7h4kOzlO19YrZTP6jWYzt6wt\nxCXwkI7KJ+XhnTX4DXx4nU6rj0e7uillT5rIbSY3NZ4rFuXwyK4avD6/1eHYgt9veHBnNZcsyKIo\nU9eOj0ebwShlT5rIbejDFxTR1D3IK+XNVodiC2+caKWmvV+L3M5DE7lS9qSJ3IauXJxDdkoc/7v9\ntNWh2ML9O06TnhjDtctyrQ4lYg37/LT1DekacqVsSBO5DcW4Xdx+QRFby5uobuuzOpyI1tQ1wHMH\nG7ilrFD32D6Htt4hjNGlZ0rZkSZym/rohmJcIvzmrVNWhxLR/nf7aXzG8PGNxVaHEtF0DblS9qWJ\n3Kby0uK5dmkuD+6sZmBYO72NZcjr57dvn+byhdmUZCVZHU5E00SulH1pIrexT1xYTEffME/uq7M6\nlIj0h0MNNHcP8smLSqwOJeI1a591pQAQkVtF5JCI+EVk3VmvfVVEKkSkXETeP+r4puCxChH5Srhj\n1kRuYxfOm0VpTjK/fvOUbm86hvveOEnJrETep53czqu5R0fkSgUdBG4GXh19UESWArcBy4BNwI9F\nxC0ibuBHwGZgKXB78Nyw0URuYyLCJy8s5kBtJ3t1e9N3OVjbyc5T7XziwhJcLu1Udj7N3YOkxHuI\nj9GCQBXdjDFHjDHlY7x0A/CAMWbQGFMFVADrg48KY0ylMWYIeCB4bthoIre5m8oKSYnzcO/rJ60O\nJaLc9+ZJEmLc3LK20OpQbKGpe0BH40qdWwEwuqVmTfDYeMfDRhO5zSXHebh9wxyeOVCvS9GCmroG\neHxPHVvWFpCWEGN1OLYw0mddKYfIEpGdox53jn5RRF4UkYNjPMI6kg4V3ebIAT5zcQn3bqvi3ter\n+D8fXGZ1OJb7xRsn8fr9fO7SeVaHYhvN3YOsKEy3OgylQqXFGLNuvBeNMVdP4T1rgdHtIQuDxzjH\n8bDQEbkD5Kcl8KFVs3lwRzWdfcNWh2OpnkEvv3nrFJuW51E8S5ecTZSOyJU6ryeB20QkTkTmAqXA\ndkiHwZcAAA8tSURBVGAHUCoic0UklkBB3JPhDEwTuUN87rJ59A35+M3b0d0g5oHtp+ke8PKnl823\nOhTb6B300jvk03vkSgEicpOI1AAXAk+LyHMAxphDwEPAYeAPwF3GGJ8xxgvcDTwHHAEeCp4bNjq1\n7hBL8lO5bGE2v3j9JHdcMjcqq4+HfX7u3VbFhrmZrCrSaeKJatGlZ0qdYYx5DHhsnNe+CXxzjOPP\nAM/McGjj0hG5g9x56TxaegZ5dHdYb89EjKf21VHXOcCfvk/vjU+GdnVTyt40kTvIxQtmsaoonR+/\nUsGQN7r2Kvf5DT98uYLFeSlcvjDH6nBsRbu6KWVvmsgdRET4wlWl1LT38+juGqvDCaun9tVR2dLL\nF64u1QYwkzTS1S0rJdbiSJRSU6GJ3GEuX5TNysI0fri1gmFfdIzKfX7DD146zuK8FK5dmmd1OLbT\n0jOECGQmaiJXyo40kTuMiPD5KBuV62h8elp7BslIjMXj1q8DpexIP7kOdOXiHFYURMeo3Oc3/OBl\nHY1PR0vPIFnJOhpXyq40kTuQiPDFa0qpbuvngR3V5/8DNvbI7hoqm3v5/FU6Gp+q1p4hZiVpoZtS\ndqWJ3KGuWJTD+rmZ/NeLx+gZ9FodzozoH/Lx3eePsaoonU3LdTQ+Va29Q8zSEblStqWJ3KFEhL+/\nbgktPUPc82ql1eHMiHtfr6Kha4C/37wYER2NT1Vgal1H5ErZlSZyB1tdlM4HVubz01craeoasDqc\nkGrtGeQnr5zg6iW5bJg3y+pwbMsY6B7wMitJR+RK2ZUmcof78vsX4fX7+d6Lx6wOJaR+8NJx+oa8\nfGXzIqtDsTWvP1AMOUtH5ErZVsQkchH5jogcFZH9IvKYiIzZLFtENolIuYhUiMhXwh2n3RTPSuIT\nG0t4YEc1B2o6rQ4nJA7XdfHrt05x+/o5LMhJsTocW/P6DIBWrStlYxGTyIEXgOXGmJXAMeCrZ58g\nIm7gR8BmYClwu4gsDWuUNvSFa0qZlRTHPz5xEL/fWB3OtPj9hn9+4iDpibF8+f06Gp8ub/Dfg47I\nlbKviEnkxpjng9vBAbxFYHP2s60HKowxlcaYIeAB4IZwxWhXqfEx/MP1i9lX3WH75WiP7qll56l2\nvrJpMenaiWzaRqbWdUSulH1FTCI/y58Az45xvAAYnYlqgsfUedy4uoANczP59+eO0tY7ZHU4U9LZ\nN8y/PXOENXPSuWXtWL/nqckamVrXEblS9hXWRC4iL4rIwTEeN4w65x8AL/DbaV7rThHZKSI7m5ub\npxu67YkI37hxOT0DXr72VFj3vA+Zbzx9mI7+Yb5xw3Jt/hIiXr8hzuMiKTb69q9Xyik84byYMebq\nc70uIp8GPgBcZYwZ62ZuLVA06ufC4LGxrnUPcA/AunXr7H1jOEQW5qZw95UL+P6Lx9m8PN9WTVS2\nHm3i4V013HXFfJYXpFkdjmN4/X6ykuN0Hb5SNhYxU+sisgn4W+BDxpi+cU7bAZSKyFwRiQVuA54M\nV4xOcNcVC1ian8o/Pn7ANlPsnf3DfOXR/SzKTeGvriq1OhxH8fqM3h9XyuYiJpEDPwRSgBdEZK+I\n/A+AiMwWkWcAgsVwdwPPAUeAh4wx9pwntkiM28V3P7KKzv5h/unxg4w98RE5jDH8y5OHaOkZ4j9u\nXUWcR6eAQ8nrN3p/XCmbC+vU+rkYYxaMc7wOuG7Uz88Az4QrLidanJfKF65eyHeeK+eSHVncvn6O\n1SGN63e7anhsTy1fvHohKwp1Sv3/t3f3QVbVdRzH3599gBUhZIEFkQQUZAWGASWSzEJ8wgYjKydI\nRaeZygnGphnTkHzKnLHIlCFU0JhxCrW0SCQMhRQfJkcNAVlgEQEFnNQ1DAERd/fXH/cgl/Xu3QV2\n77nn3s9r5sze87jf3zn33O89D/d821pDQ/BT3cwSLp+OyC2HrvrqyZw1qAc3Laqh5u38fFDMxnc+\n5MbH1vKlk7szbVzG73l2lOobG31EbpZwTuRFqrRE3PmdEXTrVM7UBSv5cN8ncYd0iN0f1zN1wUo6\ndyzjrkkjKPVd6u0i4N+QmyWdE3kR69G5I7Mnn8a2nR8x7cFXqW9ojDskABoaAz9+6FU21+1h1qSR\nVHWpiDukgubKZ2bJ5kRe5EYPqOSX3xjGio3vccvj6/Li5rfbn1jP8g3vcvNFQzhzYI+4wyl4rkVu\nlmx5c7ObxWfy6BPZWreHuc9u5sTKTnz/KyfFFsv857dw33NbuGJMPy4f0z+2OIpJ92N9RG6WZE7k\nBsB146vZvvMjbluynorykliS6EMvvcUvFq/jwmG9uWGCa+Hkiq+RmyWbE7kBUBLd/PZxfQM3PFZD\nSYm49Iv9cvb///TyW1y/8DXGDu7JrEkjKSv1VZ9cqfTPz8wSzZ+W9qkOZSXMufQ0xlVXMWPhWmYt\ne73dr5mHEJjz9Cau+8trnDWoJ/dedjodyvy2zJXSEvlLk1nCeQ+2Q3QsK+Xey07nW6f15c5lG/np\no2vY90lDu/yvfZ80cP3C15i5tJaLR57A/VNGUVHuJ7flUpl/1meWeD61bp/RoayE31wynL7djmHW\n8tepeXsXsyePZGBV5zb7H2++v4epD65k7Y5d/GjsyVxz/mBXNItBWYm/y5slnfdiy0gSPznvFOZf\nOYp3du1jwuznmPP0JvbXH91vzesbGrl3xRtccNezvPX+Xu6fMoprx1c7icekrNTr3SzpfERuWY2r\n7sWSq8/ipkVrmbm0NiolOpCJI/pQfhjXVhsaA4tW72D28k1srtvD+UN6ccvEoRzf9Zh2jN5a4lPr\nZsnnRG4t6t21grmXj+Lp2nf51RMbuOaR1fxmaS0TR/Zh/NDeDDuha8akXt/QyJod/2PZunf468od\n/GfXPqp7d+G+KaM4b0ivGFpiTflGN7PkcyK3Vjt7cBVjT+nJM7Xv8cC/tvL757Ywd8VmKspLGFjV\nmd6fq6BDWQn76xt5+4N9bH1/D3v3N1AiGDu4ilsmDuW8U3v5NHoe8RG5WfI5kdthkcTZ1VWcXV3F\nzj37eeGNOla++QGb63azfedH1DcGykpE764VjB5QyRf6V3LGSZWusJWnyn2N3CzxnMjtiHU7tgMT\nhvdhwvA+cYdiR6hLRXncIZjZUfIFMjMzswRzIjczM0swJ3IzM7MEcyI3MzNLMCdyMzOziKSZkjZI\nWiNpoaTj0sZNl7RJUq2kC9KGj4+GbZL0s1zH7ERuZmZ20FPAsBDCcGAjMB1A0hBgEjAUGA/cLalU\nUikwB7gQGAJMjqbNGSdyMzOzSAjhyRBCfdT7ItA3ej0ReDiE8HEIYQuwCRgddZtCCJtDCPuBh6Np\nc8aJ3MzMLLPvAU9Er08AtqWN2x4Na254zviBMGZmVmh6SHolrX9eCGHegR5Jy4DeGeabEUJ4LJpm\nBlAPLGjXSNuAE7mZmRWauhDCqOZGhhDOzTazpCuBCcA5IYQQDd4BfD5tsr7RMLIMzwmfWjczM4tI\nGg9cC3w9hLA3bdQiYJKkjpIGAIOAl4CXgUGSBkjqQOqGuEW5jNlH5GZmZgf9DugIPCUJ4MUQwlUh\nhBpJfwbWkTrlPjWE0AAgaRqwFCgF5ocQanIZsA6eNShckt4D3mzl5D2AunYMJx8UehsLvX1wsI39\nQgg9j3Qhh7lvxKkYtmlreD2ktLQejmq/SJqiSOSHQ9Ir2a6tFIJCb2Ohtw+Ko43piq29zfF6SPF6\nOJSvkZuZmSWYE7mZmVmCOZF/1ryWJ0m8Qm9jobcPiqON6Yqtvc3xekjxekjja+RmZmYJ5iNyMzOz\nBHMiNzMzSzAn8gwk3RrVol0l6UlJfeKOqS1lq7dbKCRdIqlGUqOkgvmZStx1j3Mt23ZsrjZ0oZN0\ns6Qd0efTKklfizumXCm2939rOZFnNjOEMDyEMAJYDNwYd0BtLGO93QKzFvgm8GzcgbSVfKh7HIOM\n27G52tC5Dy82d4YQRkTdkriDyYUiff+3ihN5BiGEXWm9xwIFdUdglnq7BSOEsD6EUBt3HG0s9rrH\nuZZlOzZXG9oKV9G9/1vLibwZkm6TtA24lMI7Ik+XXm/X8lvsdY/zSLGvi2nRpbH5krrFHUyOFPs2\nb1bRFk1pqR5tCGEGMEPSdGAacFNOAzxKhVZvN5PWtNHyn7fjZ2VbJ8A9wK2kzhTeCtxB6gu5Fami\nTeQt1aNNswBYQsIS+RHW202Uw9iGhSJbPeTEOsLtWJDr4oDWrhNJ95G6j6cYFPQ2Pxo+tZ6BpEFp\nvROBDXHF0h6y1Nu1/BZ73eM80lxt6IIn6fi03otJ3RBYDPz+b0bRHpG34HZJg4FGUiUer4o5nraW\nsd5uvCG1LUkXA7OBnsDfJa0KIST6J0ohhPq46x7nWnPbMVtt6CLwa0kjSJ1a3wr8MN5wcqMY3/+t\n5Ue0mpmZJZhPrZuZmSWYE7mZmVmCOZGbmZklmBO5mZlZgjmRm5mZJZgTuZmZWYI5kZuZmSWYE3mR\nkrQ7n5Zjlg+8X1gSOZGbmZklmBO5fUrS3yT9W1KNpB9Ew/pL2iBpgaT1kh6V1Kk180bDp0TlFldL\n+kPa8MskvSRplaS5kkozLPOKaJlrJD3fXu02y8b7heW9EIK7IuyA3RmGVUZ/jyFViKE70J/UM53P\njMbNB65pupxm5h0KbAR6NJnmVOBxoDzqvxuY0iSWLqSeo90h6j8u7nXmrvA77xfuktj5iNzSXS1p\nNfAiqXKBB6rAbQshvBC9/iPw5VbOOw54JIRQBxBC+G807TnA6cDLklZF/Sc1WV4DqQ+/OySNCiF8\n0BYNNDsC3i8sr7n6mQEgaSxwLjAmhLBX0jNARTS6aWWdQ/pbmDfjvwMeCCFMb26CaDnDgIuAeZLu\nDyHc3foWmR097xeWBD4itwO6AjujD4pq4Iy0cSdKGhO9/i7Q9Lpcc/P+E7hEUncASZXR8OXAtyVV\nHRguqV/6AiUNCiHsCSE8DCwm+wegWXvxfmF5z4m8eHWStP1AB1QDZZLWA7eTOhV4QC0wNRrXDbin\nybL+kWnekKoVfBuwIjq9+Nto+Drg58CTktYATwHHN1nmDEm1klYCA0hdLzRrb94vLHFcj9yyktQf\nWBxCGBZzKGZ5w/uF5RMfkZuZmSWYj8jNzMwSzEfkZmZmCeZEbmZmlmBO5GZmZgnmRG5mZpZgTuRm\nZmYJ5kRuZmaWYE7kZmZmCfZ/CfQlfjMe4ZcAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAFjCAYAAAAtnDI1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm83OP5//HXlQ0hiC1Jxb4EsUQQsZ9aQ62l1oitlqJU\nW9uXH9HqFy36bWtrS1VridBaSyTKUZQkSCKbJJYsEoktCBGyXL8/7jmM4yxzzpmZ+7O8nx7ncebM\n+czc1+fIzDX3/bnv6zZ3R0RERNKnXewAREREpHWUxEVERFJKSVxERCSllMRFRERSSklcREQkpZTE\nRUREUqpD7AAqzcy0hk4yy92tLY/X60OyqqHXhpm1A14C3nb3g82sK3AvsB4wHTjS3T8uHHsxcDKw\nBDjX3YdXK/aWyEVP3N1L+rr88stLPrYcX1lvLw/nGPNvWu3XR+zzr1ZbaifZ7ZTSVhPOBSYV/XwR\n8KS79wKeAi4GMLMtgCOBzYH9gZvMrE0fmCslF0lcRETyzcx6AgcAtxbdfQhwR+H2HcChhdsHA0Pc\nfYm7TwemAf2qFGqLKImLiEge/BY4Hyjuqndz93kA7j4XWKtw/9rArKLjZhfuSxwl8SI1NTVqL+Vt\nZr29WG02ppqxVKsttZPsdlrTlpl9D5jn7mOBpobFUzdHxJq5fpB6ZuZZP0fJJzPDyzCxTa8PSbva\n2lpqa2u/+vmKK674xmvDzP4XGEiYpLYC0AV4ANgeqHH3eWbWHXja3Tc3s4sAd/drCo8fBlzu7iOr\ndU6lSmwSN7MBwP8RRgtuq/tjFv1+D+Ah4M3CXf909ysbeB69SUkmKYmLNKyp10Yhd/zMw+z0XwMf\nuPs1ZnYh0NXdLypMbLsL2JEwjD4C2CSJL5ZELjErLAO4AdgLmAOMNrOH3P21eof+x90PrnqAIiKS\nBVcDQ83sZGAGYUY67j7JzIYSZrIvBs5MYgKHhCZxwizAae4+A8DMhhBmEdZP4omc8i8iIsnk7s8A\nzxRufwjs3chxVwFXVTG0VknqxLb6MwPfpuGZgTuZ2Vgz+1dh+ENERCQ3ktoTL8XLwLruvtDM9gce\nBDaNHJOIiEjVJDWJzwbWLfq5Z+G+r7j7p0W3Hzezm8xstcLwyDcMHjz4q9s1NTWJWqIjUqr6M3BF\nRBI5O93M2gNTCBPb3gFGAce4++SiY75apG9m/YCh7r5+A8+V1PkIIm2i2ekiDSvHayMtEtkTd/el\nZnY2MJyvl5hNNrPTw6/9T8ARZvYjwszBz4Gj4kUsIiJSfYnsiZeTehqSRTfeCGefrZ54sQ8/hH/9\nC155BT74AFZcETbeGPbaC7bZBpK5fYVUQp564kmdnS4ijXCHSy+NHUVyzJkDp5wCG24IDzwA3/lO\nSNxbbglvvQWHHx6S+J13wrJlsaMVKa9EDqeX2/z50LVr7ChEymPuXOiQi1du8+66C849F049Fd58\nE1Zb7dvHuMOTT4YPPjfdBLfeCltoQapkRC564pMmNX+MSFpMnAi9e8eOIi53uOACGDwYnnoKrrqq\n4QQOYRh9n33ghRdg0CDYYw+4556qhitSMblI4hMnxo5ApHwmTsx3T9I99L6ffhpGjoStty7tce3a\nwRlnwIgR8D//A1dfXdk4RaohF4NySuKSJZMmlZ64sujXv4bnnw898FVWafnj+/SB556DffeFTz6B\nX/1Kk94kvdQTF0mZPPfEH34Y/vAHeOih1iXwOmuvDc88A488AtdeW774RKpNPXGRFHEPPfE8XhOf\nMydMYHvoIejZs+3Pt8Ya8PjjsMsu0L07HH98259TpNpy0RP/7LOwhlQk7ebOhfbtYa21YkdSXe5w\n8snwox9B//7le96ePUMi/+lP4aWXyve8ItWSiyS+xRbqjUs25HUo/Y474P334ZJLyv/cW2wBt9wC\nRxwR2hBJk1wk8d69lcQlG/I4lP7xx3DxxXDzzdCxY2XaOPxwOOqoMKSekQJ2khO5SeJaKy5ZkMee\n+C9/CQccADvsUNl2rrwylGu9+ebKtiNSTrmY2Na7d6ipLJJ2kybB0UfHjqJ6ZsyA22+vzofwjh3h\n73+HXXcNxWE22aTybYq0VW564hpOl7Rzz19P/Fe/gtNPh27dqtNer15w+eWhstvSpdVpU6QtcpHE\n114bPv88DJWJpNXcuaHqWF5mpr/1FvzjH/Czn1W33TPPDLXp//Sn6rYr0hq5SOJmmqEu6Vc3qS0v\n1cWuuiosKVt99eq2265duC5+2WXhg5NIkuUiiYOG1CX98jSU/u67cN99cN55cdrfcsuwvWm1RwFE\nWkpJXCQl8rS87JZb4Mgjq98LL/b//l+o0f700/FiEGlOrpK4lplJmuWlJ/7FF2E4+5xz4sax4oph\ns5Wf/QyWLYsbi0hjcpXE1ROXtHKHCRPCMG/WDR0KW22VjFGHH/wAllsO7rwzdiQiDctNEv/Od8In\nfJVVlDSaPRs6dcrHzPRbboGzzoodRWAG110Xyr0uXBg7GpFvy00S1wx1SbO89MKnTIE33ggV2pJi\n551hp53g+utjRyLybblJ4qAhdUmvCRPCEHPW3X57qF9eqRrprXXVVfB//6fdECV5lMRFUmD8+Oz3\nxJcsgb/9DU46KXYk37bRRvD974ehdZEkURIXSYE89MSfeALWWSe5M/AvuSRcr3/vvdiRiHxNSVwk\n4ZYuhcmTk5vcyuXvf4cTT4wdRePWWy9sPvOb38SORORr5hnfPNfMvO4c3aFrV5g2DdZcM3JgIiWa\nOhX22y/UEi9mZrh7m4qwFr8+Ylq4EHr0gNdfT/Zr8+23Yeutw4eqam3KIi1XjtdGWuSqJ26m3rik\nTx6G0h9/POwXnuQEDtCzZ5h49+tfx45EJMhVEocwOWjChNhRiJQuD5Pahg4NZVbT4Pzzwyx6zVSX\nJMhdEt9qq/CmKJIWWe+JL1wIw4bBYYfFjqQ0PXuGWG+8MXYkIjlN4q++GjsKkdJlvdDLY49Bv37J\nH0ovdv75cMMN8NlnsSORvMtlEp8wQRsaSDosWgTTp0OvXrEjqZx//hOOOCJ2FC2z2Waw665w222x\nI5G8y10SX201WHllmDEjdiQizXvttVBopFOn2JFUxpIlYSj9wANjR9JyF14I114LixfHjkTyLHdJ\nHMISEV0XlzTI+qS2//4XNtgA1l47diQt168fbLIJ3HNP7Egkz3KZxDW5TdIi65PaHn00nb3wOhdc\nEHrjCVhqLzmlJC6SYFmf1Jb2JL7vvuGSwNNPx45E8kpJXCTBsjyc/uabYa31dtvFjqT1zODcc+F3\nv4sdiTTHzJYzs5FmNsbMxpvZ5YX7u5rZcDObYmZPmNkqRY+52MymmdlkM9s3XvSNy1XZ1TpffAGr\nrgoffQTLLRcpMJFmfPxxuFb8ySfQroGP22kvu/qHP8DYsemf4b1wYair/uKLYRKixNfYa8PMOrv7\nQjNrDzwPnAMcDnzg7r82swuBru5+kZltAdwF7AD0BJ4ENklEneIiueyJL7dcmEzz2muxIxFp3MSJ\nYdOThhJ4FgwbBvvvHzuKtuvcGU45JXwokWRz94WFm8sBHQAHDgHuKNx/B3Bo4fbBwBB3X+Lu04Fp\nQL/qRVuajL49NE9FXyTpxo/P7qS2L7+EZ5+FPfeMHUl5nHVW2Av9k09iRyJNMbN2ZjYGmAuMcPfR\nQDd3nwfg7nOBtQqHrw3MKnr47MJ9iZLrJK7r4pJkWZ7UNnIkbLppqNuQBeusA/vsE2qqS3K5+zJ3\n35YwPN7PzHoTeuPfOKz6kbVeh9gBxLL11nDzzbGjEGnc+PFw8MGxo6iMf/8b9tordhTlde65MGgQ\nnH02tG8fO5p8qa2tpba2tuTj3f0TM6sFBgDzzKybu88zs+7Au4XDZgPrFD2sZ+G+RMnlxDYIezPv\ntlvYH1gkadxDLfEJE6B794aPSfPEtl13hcsvD73XrHAP26n+4hdwwAGxo8m3hl4bZrYGsNjdPzaz\nFYAngKuBPYAP3f2aRia27UgYRh+BJrYlx3rrhetX8+fHjkTk2+bODd+7dYsbRyUsWBBmpe+yS+xI\nyssMfvQjuOWW2JFII3oAT5vZWGAk8IS7PwZcA+xjZlOAvQiJHXefBAwFJgGPAWcmLYFDjofT27WD\n3r3DkOXuu8eORuSbXn01XPKxNvWzk+k//wklSzt3jh1J+R19dKjiNnMmrLtu7GikmLuPB/o2cP+H\nwN6NPOYq4KoKh9Ymie2Jm9kAM3vNzKYWhjgaOub3hYX4Y82sT0vb0OQ2Sapx42CbbWJHURlPPgl7\nN/iWmX4rrgjHHQd//nPsSCQvEpnEzawdcAOwH9AbOMbMNqt3zP7ARu6+CXA60OJBLCVxSaq6nngW\nPfVUdpaWNeT000MBG+1uJtWQyCROWFA/zd1nuPtiYAhhQX6xQ4C/Abj7SGAVM2vRFUQlcUmqrPbE\n58+HN95Id6nV5vTuHXY3e+ih2JFIHiQ1iddfZP82315k3+aF+HVJPHlTFSTPvvgCXn89VGvLmhde\nCNfDO3aMHUllnXGGJrhJdeRiYpudeOLXP/TpE77qPAztnql6SCJNexxWeLHefWPHhq8Ue/bZsLQz\n677/ffjJT2Dq1FDURqRSkprEZwPFczsbWmRf8kJ8/+tfG21owAB4YifDL1d3XJLhjjvghBPt20NE\nNTXf+NHuuIO0ee45uOyy2FFU3nLLwUknwR//CNddFzsaybKkDqePBjY2s/XMrBNwNPBwvWMeBgYB\nmFl/4KO6+rctkdXa1JJe48bFjqAyFi2CV16B/v1jR1Idp58ePpAtWhQ7EsmyRCZxd18KnA0MByYS\ndpKZbGanm9lphWMeA94ys9eBPwJntqYtJXFJmqwm8Zdegs03hy5dYkdSHRtsANtuCw8+GDsSybKk\nDqfj7sOAXvXu+2O9n89uazvbbAO81dZnESkP9+wm8bxcDy92yilhudnRR8eORLIqkT3xatp88/D9\n88/jxiEC8M472azSBuF6+K67xo6iug49FMaMgenTY0ciWZX7JN6pU/g+YULcOEQgu+vDly2D//43\nf0l8+eXh2GO1RalUTu6TeJ2sDmFKuowbl81KbVOnQteu2dzQpTmnnBKS+NKlsSORLFISL0j58lvJ\niFdfzWZPfOTIUOQlj7bZBtZaK9SMFyk3JfEC9cQlCbI6nD5qFOy4Y+wo4qmb4CZSbkriBePGhet2\nIrEsWgRvvvn1ZMssGTUqvz1xgGOOgeHD4f33Y0ciWaMkXrDqqvCWlppJRJMmwcYbh2pfWbJoEUyc\nGNZM59Wqq8JBB8Gdd8aORLJGSbxgm200pC5xZXUofexY2Gwz6Nw5diRx1Q2pa8MlKScl8YI+fTS5\nTeLKahLP+1B6nT32CPUoRo+OHYlkiZJ4QZ8+6olLXFldXpbnmenFzODEE6GJ/ZhEWkxJvGCbbdQT\nl3jcs7u8LO8z04sNHAhDh4Y940XKQUm8YMMNYf788CVSbbNnQ4cO0L177EjK68MPYd68cE1cYP31\nw6ZLjz4aOxLJCiXxgnbtwotLQ+oSQ1aH0l9+OcxKb98+diTJccIJ8Le/xY5CskJJvIgmt0ksY8Zk\ncwlWVs+rLQ4/HJ55Bt57L3YkkgVK4kU0uU1iyWqyy+p5tUWXLmHN+N13x45EskBJvIgmt0ksWU12\nWT2vttKQupSLkniRLbeEKVPgyy9jRyJ58tFHYWh1k01iR1Jen34Ks2Zls4xsW333u2HCn7ZAlrZS\nEi/SuTOstx689lrsSCRPxo4Nk9qyNvnr1Vdhiy2gY8fYkSRP+/Zw/PFwxx2xI5G0UxKvR5PbpNpe\neSWbQ85ZPa9yGTQI7roLliyJHYmkmZJ4PZrcJtWW1evGWT2vctl8c+jZU/uMS9soidejyW1SbVlN\ndlk9r3LSBDdpK/OMb6ljZt7cOdoVhl8ejpk7N0xwe++9UOtYpJI+/xxWXz1UCvzGFqRmzW53ZWa4\ne5v+lZby+miNL78M22++/752L2vKBx/ARhvBjBmwyiqxo8mOcrw20kI98Xq6dw/lL99+O3Ykkgfj\nx0OvXtnbQ3zSpFBiVAm8aauvDnvuCffdFzsSSSsl8Qb07RuGAkUqLauTv8aMCa8jad4JJ2iWurSe\nkngD+vYNNZ9FKi2r143Hjg2TRKV5++8flrW++WbsSCSNlMQb0Ldv6CGJVFpWe6wTJoQNhaR5nTrB\n0UfDnXfGjkTSSEm8AdttpyQulbdkCUycmM09xMePVxJvieOPh7//vdm5jCLfoiTegHXXhUWLwkx1\nkUp57bWwTnillWJHUl7vvhs+oPToETuS9Nhhh1DF7cUXY0ciaaMk3gAzDalL5WV1Utv48WGZppZo\nls7s6964SEsoiTdCSVwqTdfDpdjAgTB0KHzxRexIJE2UxBux3XaaoS6VldWZ6RMmhJ64tMx664W/\n22OPxY5E0kRJvBHqiUsluYdlWFlM4prU1nqDBqkMq7SMkngjNtwQPv44lI0UKbe33oIuXWCNNWJH\nUl7LloUZ9717x44knY44Ap5+OpRjlfIys55m9pSZTTSz8WZ2TuH+rmY23MymmNkTZrZK0WMuNrNp\nZjbZzPaNF33jlMQb0a5d6CWpNy6VkNVJbTNnhprpXbvGjiSdVl45FH+5997YkWTSEuCn7t4b2Ak4\ny8w2Ay4CnnT3XsBTwMUAZrYFcCSwObA/cJNZ8qZrKok3QUPqUilZvR5eNzNdWk+z1CvD3ee6+9jC\n7U+ByUBP4BCgrvDtHcChhdsHA0PcfYm7TwemAf2qGnQJlMSboCQulfLSS2FtcNZoUlvb7btvuNwy\ndWrsSLLLzNYH+gAvAt3cfR6ERA+sVThsbWBW0cNmF+5LlA6xA0iyvn3hsstiRyFZ4x5WPmy3XexI\nym/CBNhvv9hRpFuHDnDMMaEM6y9+ETuadKitraW2trakY81sJeB+4Fx3/9TM6tfJS1XdPO0nzjf3\nEy+2dGm4vjdzpq7xSflMnw677trMdrcp3U98663hr3/N5vr3ahozBr7/fXjjjTA/R1qmsdeGmXUA\nHgUed/ffFe6bDNS4+zwz6w487e6bm9lFgLv7NYXjhgGXu/vI6p1J8/TPownt24e61mPHxo5EsuSl\nl2D77WNHUX5LlsC0abDZZrEjSb8+fWDFFeH552NHkjl/ASbVJfCCh4ETC7dPAB4quv9oM+tkZhsA\nGwOjqhVoqZTEm6FtSaXcsprEp0+H7t2hc+fYkaSfmdaMl5uZ7QIcB+xpZmPM7BUzGwBcA+xjZlOA\nvYCrAdx9EjAUmAQ8BpxZ1mGrMtE18WZstx088UTsKCRLXnoJfv7z2FGU3+TJsPnmsaPIjmOPDZcn\nfv97WGGF2NGkn7s/D7Rv5Nd7N/KYq4CrKhZUGagn3gzNUJdyyvKkttde01B6OfXsGf6dPPJI7Egk\nyZTEm7H55jBrFixYEDsSyYI33oBVVoE114wdSfkpiZef1oxLcxKXxJsqgVfvuOlmNq5wbaNikw06\ndAh1oMeMqVQLkidZvR4OGk6vhO9/H559NuzRLtKQxCVxGimB14BlhGUB27p7RavobLddePMVaaus\nJnF39cQrYaWV4KCDYMiQ2JFIUiUxiTdWAq8+o0rx77ADjB5djZYk67KaxN97L8yoztqGLkmgWerS\nlCQm8bUaKYFXnwMjzGy0mZ1ayYD69VMSl7ZbtixMkszipLbJk0MvPHnbQ6TfnnvCO+/ApEmxI5Ek\nipLEzWyEmb1a9DW+8P3gBg5vbF3eLu7eFziAsBvNrpWKt1evcE3qww8r1YLkwdSpsNZa2az+99pr\nuh5eKe3bw3HHaYKbNCzKOnF336ex35nZPDPrVlQCr8EpHe7+TuH7e2b2AGF3mecaOnbw4MFf3a6p\nqaGmpqZF8bZvH5aavfRS2JxApDXaOpTekvrQ1abr4ZU1aFDYovRXv1IZVvmmJBZ7qSuBdw3fLIH3\nFTPrDLQrFK9fEdgXuKKxJyxO4q21ww4wapSSuLReW5N4/Q+gV1zR6D/5qps8GfbaK3YU2bXllmG+\nQW1tGF4XqZPEz3QNlsAzsx5m9mjhmG7Ac2Y2hrCV3CPuPrySQWlym7RVVie1gYbTq2HQIA2py7dp\nFzMa38Ws2FtvwS67wJw55YxO8mLJkrAj3pw5sPLKJTwgRbuYLVwIq68On34aLj1JZcydGz4ozZ6t\n+vTNKcdrIy2S2BNPpPXXh8WLwwtIpKVeey2U0SwpgafM1Kmw8cZK4JXWvTvstBM8+GDsSCRJlMRL\nZKYhdWm9LA+lT5kSVnBI5R1/vNaMyzcpibdA3eQ2kZYaPTqb68Mh7CG+ySaxo8iHQw6BkSPDunER\nUBJvEfXEpbVGjoQdd4wdRWUoiVdP585w2GFw992xI5GkUBJvgR12CMOiGZ8LKGX2+edhCda228aO\npDJefz1cE5fq0Cx1KaYk3gLdukGXLuFNS6RUY8aEWcUrrBA7kspQT7y6dt8d5s+HV1+NHYkkgZJ4\nC6mOurRUlofSP/44jDR07x47kvxo1w4GDlRvXAIl8RbSdXFpqSwn8WnTwlC6Nj6pruOPh7vugqVL\nY0cisSmJt5BmqEtLZTmJ63p4HJttFuoO/PvfsSOR2JTEW2i77WDcuFCBS6Q5774LH32U3WvGuh4e\nj9aMCyiJt9gqq4RPwBMnxo5E0mDkyDCPIqs7TymJx3P00fDoo7BgQexIJKaMvrVU1o47hjdnkeZk\neSgdlMRjWnPNMFP9n/+MHYnEpCTeCv37w4svxo5C0iDrSVzXxOMaNEhD6nmnJN4KSuJSimXLwkqG\nfv1iR1IZH30EixaF+gkSx4EHwtixMGtW7EgkFiXxVthqq/CimT8/diSSZFOmhC0611wzdiSVUTeU\nruVl8Sy/PBxxRFhuJvnUodQDzawD8ANgp8JdKwJLgYXAq8Dd7r6o7BEmUIcOYZb6qFGw336xo5Gk\nysNQuq6Hx3f88XD66XDhhfpAlQblzqUlJXEz2wHYDRjh7vc08PuNgNPMbJy7P1Nq42lWN6SuJC6N\nqZuZnlV1hV4krl12CVXzXnkluzvlZUUlcmmpw+mL3P16dx/f0C/d/Q13/z0wy8w6lficqbbTTvDC\nC7GjkCTLek9cM9OTwSz0xlWGNRXKnktLSuLFDZpZZzNbq5Hj3nT3L0t5zrTr3z+8SS9bFjsSSaKF\nC8M18azuXAZK4kly/PFwzz2weHHsSKQplcilrZnYNhA4wMweMrPbzGxAK54j9bp1g65dYerU2JFI\nEr3yCmyxRZh4lFVvvgkbbRQ7CoFwWWOjjWD48NiRSAuUJZe2JokvAiYBq7v7KcDKrWk4C/r315C6\nNCzrQ+mffhq+tLwsObRmPHXKkktbk8RfBo4GzjGzE1r5HJmg9eLSmBdeCP8+suqtt2CDDTQbOkmO\nPBKGDQvr9yUVypJLW/wgd5/o7j9191eAOcDk1jScBTvtpCQu3+YOzz8fZg1nVV0Sl+RYbTXYe2+4\n//7YkUgpypVLm03iZracma3eSBAj3H1c0bHrtCaItNpmm7BWVhsQSLEZM8L39dePGkZFvfkmbLhh\n7CikPs1ST65K5dJmk7i7fwHsZGbHmNkKjQS3qpmdBqxXasNZ0KkT9OkTSmuK1Pnvf0MvPMtDzeqJ\nJ9MBB8CkSTB9euxIpL5K5dJSK7a9AcwHzitMiV++8Ni6KjNvA7e6+8elNpwVdevF99wzdiSSFP/9\nL+y8c+woKuvNN+G7340dhdTXqVO4Nn7nnXDppbGjkQaUPZeWmsT/DBzi7v/bsnizr39/uOOO2FFI\nkjz/PAwcGDuKynrrLQ2nJ9WgQWFY/ZJLsj0alFJlz6WlTmz7HbCpmX3PzFYtV+NZUDe5zT12JJIE\nCxaEIihZLvLiruH0JKsr9TtqVNw4pEFlz6Ul9cTd/b6622a2s5l1BZ7L4/B5fWuvHQp6vPGG6khL\neOPcdltYbrnYkVTOu+9C587QpUvsSKQhZl+vGc9yrYI0qkQuLaknbmZHFf04pvB1lJmdZ2a5LfZS\nZ6edwnVQkbxcD1cvPNkGDoShQ8N+7xIUqqLNM7NXi+7rambDzWyKmT1hZqsU/e5iM5tmZpPNbN8y\nxVD2XFrqcPqthZOfSVigfj9wKLAD8NPWNJwlu+wSroOKPP989pO4rocn3/rrh5UzDzwQO5JEuR2o\nv+/kRcCT7t4LeAq4GMDMtgCOBDYH9gduMivLDIOy59JSJ7adDIwADgA+cPcnWtNYVu26K/z5z7Gj\nkNiWLQvzI7Je+lI98XQ47TS4+WY45pjYkSSDuz9nZvWXbh0C7FG4fQdQS0jsBwND3H0JMN3MpgH9\ngJFtDKPsubTUnvhj7v6Ru98NvGpmp5vZAW1tPCu22QZmzoQPP4wdicQ0aRKstVb4yjL1xNPhkENg\n4kRt0tSMtdx9HoC7zwXqXr1rA7OKjptduK+typ5LS03ifzWzQWY2CNiHULh9ZzOrNbMD2xJAFnTo\nECaQ6Lp4vuXhejioJ54WnTrBCSfArbfGjiRVKr3OqOy5tNTh9D7AMsIi9Y8K32cBNwGft6bhrNl1\nV3juOTgw9x9p8ivr9dLraHlZevzwh7DbbvDLX2Z7xURtbS21tbWteeg8M+vm7vPMrDvwbuH+2UBx\n6dOehfvaquy51LyEBc5mtlXxZuZpYmbe3DnaFYZf3rYPYE8+CYMHh0Qu+bTJJmEi0ZZbluHJzJot\nPmBmuHubJtuU8vootngxrLRS2Ia0Y8e2tCzVsueecMYZoZJbXjT22jCz9YFH3H2rws/XAB+6+zVm\ndiHQ1d0vKkxsuwvYkTCMPgLYpEUvlm+3vS2wkrs/29rnaEhJw+lpTeDVtOOOMGaMlnTk1bvvwvvv\nwxZbxI6ksmbOhB49lMDT5LTTNPEWwMzuBv5LKLYy08xOAq4G9jGzKcBehZ9x90nAUMJ+348BZ7Yl\ngRfUAK82d1BLNTucbmYrAt2LvnZx99wvK6uvSxfYfHN4+eV8DKnKN73wQvgg165VOwKnhya1pc9h\nh8E554SCVBttFDuaeNz92EZ+tXcjx18FXFXGEF4GVjCzHwJ31k2oa6tS3nIuB64AtgA2BNQrb0Td\ndXHJn2faghkYAAAgAElEQVSfDdces+6tt7K9xWoWLbdcqKWuCW7RXQgcBMwpXIP/TjmetJStSC8A\nfgF8Akxy99vL0XAWKYnn13/+A7vvHjuKypsxQ0k8jU49FW6/Hb78MnYkufZzYBzQw8z+DPylHE9a\n6jXxqe5+L/ClmV1QjoazqK5y27JlsSORalqwIKwR32GH2JFU3owZsO66saOQltpsM+jVCx55JHYk\n+eXuk919lLtf7+6nAueX43lbdAXP3UcA/ylHw1nUowd07QqTJ8eORKrphRegb9+wEU7WzZwJ69Wv\neSWpcPrpcNNNsaOQOuWaMN7iaTju/mI5Gs6qXXdVHfW8efbZfAylQ+iJK4mn0xFHhBGjSZNiRyIA\nZta57ruZ7W5mK7XmeVqcxMvVcFbpunj+5OV6+JIlMGcO9OwZOxJpjU6dwnKzG2+MHYkUHA3g7gsJ\nS98Obc2TtGZBTFkaboyZHWFmE8xsqZn1beK4AWb2mplNLSzSTwQl8XxZtCgsK9xpp9iRVN4778Ca\na4ZkIOl0+ulwzz3wcat3r5a2KuS4u4ALzOwpM3saGA5s15rnK7XsKmZ2BHAYsJ2ZDQSMUGd2HHBn\naxpvxPhCO39sIpZ2wA2ExflzgNFm9pC7v1bGOFpls83gk09g9mxYuxzl8iXRRo8O9QG6dIkdSeVp\nKD39vvMd2GefsNPej38cO5p8cvf7zWwksD3wMLAi8Lm7L27N85XcE3f3+wlbtF1MKNx+CLCfu5/X\nmoabaGeKu08jfEhoTD9gmrvPKJz4kEI80ZmF9cL/0fS/XMjLUDqESW2amZ5+Z58NN9ygVTQxufss\noBuhA3wusHKho9xiLZ2dXraG26j+NnFvU55t4sqipgZaV4tf0kaT2iRtdt01rKR48snYkeTeB+5+\nDDDK3T+gdZe3W/WgNjdsZiPM7NWir/GF7we1Ip7E2WMPeOaZ2FFIpS1ZErYf3XXX2JFUh9aIZ4NZ\nGEq/4YbYkeReHzPbm1D8ZTdg09Y8ScnXxOs1PL8tDbv7Pq1ot9hsoPjtpMlt4gYPHvzV7ZqaGmpq\natrYfNO23jpsiPHOO2HtuGTT2LEhqa2+enXaa8N2i2Uxc6a22s2KY4+Fiy4Ke8OrFn40VxLKmm9D\nqKt+b2uepKStSL/xALMV6jdciV3OCjP2fu7uLzfwu/ZA3a4z7wCjgGPc/VtlVqq1FWl9hx4KRx8d\nviSbrr8eXn+9QgU0ErgVae/eMGQIbLVVW1qUpDj//DCa9Nvfxo6k/Mrx2qiEQrnV9sV3Fd3e1t37\ntPQ5S+qJN9LwXMJ16L8TNjovCzM7FPgDsAbwqJmNdff9zawH8Gd3P9Ddl5rZ2YRp+e2A2xpK4DHV\nDakriWfXf/4DRx0VO4rqcNdwetaccw5ssw1cfjmsumrsaHLjHeC2wu0DgKcJq7w60chuas0pdTi9\n7A03xt0fBB5s4P53gAOLfh4G9Cpn2+VUUwN/+lPsKKRSli0L9QDycl1x/nzo0AFWWSV2JFIu66wD\n3/teeJ+6QDtiVIW7X1Z328ymFy+LNrMNWvOcJSXxSjScdVtvDXPnhq/u3WNHI+U2YULoveSleplm\npmfTz34W5jn85Ccq4hPBlma2DvAGsBawMWHdeIu0Znb6lmZ2mpntZWbHEK6NSz3t22u9eJY9/TTs\nuWfsKKpHa8SzqU+fUKDq3lZNqZK2cPffAMuAHwArEya6tVhrNkApS8N5oPXi2fXUU/lK4uqJZ9fP\nfw7XXtvsPEqpAHe/1d3PcPc/ljzDtJ5WLS4vR8N5oCSeTUuXhhGWCq9UTBQl8ezab78wx0PFX9Kp\nVUlcSrPNNmGt+Lvvxo5EymnMmFCDOk9zHTScnl1m4dr4b34TOxJpDSXxCmrfPlTzUvW2bMnbUDqo\nJ551xx4Lr70Go0bFjkRaSkm8wjSknj1PPw3f/W7sKKpLPfFs69QpLDO7UjOcUkdJvMJURz1bvvwS\nnn8+/H/Niy++COvE83T5II9OOQVeeimUE5b0UBKvsG23DXuLz50bOxIph9GjYaONqlcvPQnmzAl7\nALTTu0WmrbBCmKn+q1/FjkRaQi/LCmvfPgypP/VU7EikHPK2Phzg7bfzU9Qm704/PWyvO2lS7Eik\nVEriVbD33lq+kRV5nNSmJJ4fK64YqrepN54eSuJVUJfEtaI+3RYtCrN3d9stdiTVpSSeL2edBSNG\nwOREbSkljVESr4JNNw0J/PXXY0cibfHCC7DllrDyyrEjqS4l8Xzp0iVcG/9//y92JFIKJfEqMNOQ\nehY89VT+lpaBkngenX02vPhimMgpyaYkXiV77aUknnb//nf+roeDkngede4Ml10GF18cO5KW+/zz\n2BFUl5J4ley1V5jZvHRp7EikNT76CMaPz9/1cFASz6uTTgpFftLW+cjbZQAl8Srp0SPU237lldiR\nSGs89RTssgssv3zsSKpr8WJ47z0Vesmjjh1DBbeLLgobpKTBJ5/A7bfHjqK6lMSrSNfF02v4cNh3\n39hRVN/cubDWWtChQ+xIJIYjjgi1Lu68M3YkpfnLX2CffWJHUV1K4lWkJJ5eI0bkM4lrKD3f2rWD\n3/8+XBtfsCB2NE1buhR+9zs477zYkVSXkngV7bEHjBwJCxfGjkRa4o03wmSZ3r1jR1J9SuKy446h\nA5L0AjAPPBAuWe64Y+xIqktJvIq6dIE+fcIGGpIew4eHITqz2JFUn5K4AFx9Ndx6a3JrXbiHDxkX\nXBA7kupTEq8yDamnT16vh4OSuAQ9esD554eSrEmsPPnww+H7wQfHjSMGJfEq23dfeOKJ2FFIqRYv\nDksD9947diRxKIlLnfPOg+nT4d57Y0fyTe4weHD4yuNomZJ4lfXrF9ZezpkTOxIpxahRsMEG0K1b\n7EjiUBKXOp06hSH1886DDz6IHc3XHnoofM9jLxyUxKuuQ4dwfVW98XTI81A6KInLN/XvD0cdlZwZ\n4IsXh3XsV16Zz144KIlHMWAADBsWOwopRZ6T+NKl8M47YcavSJ0rrwx7jj/6aOxI4JZbYN114YAD\nYkcSj5J4BAMGhHXHS5bEjkSaMn8+TJgQKrXl0bvvwmqrhWFUkTorrQR33AGnnho+5MUyf374QHH9\n9aX3ws1sgJm9ZmZTzezCykZYHUriEfToET49jhoVOxJpyvDhoVZ63kqt1tFQujRm991DEj/hhHgl\nWS+6CA4/PGwPXAozawfcAOwH9AaOMbPNKhdhdSiJR7L//vD447GjkKY89hh873uxo4hHSVyactll\n8NlncN111W/7mWfC6/Oqq1r0sH7ANHef4e6LgSHAIZWIr5qUxCPRdfFkW7YsfMjK87U2JXFpSocO\ncPfdYTh7+PDqtbtwYRgFuPFGWGWVFj10bWBW0c9vF+5LNSXxSHbeGaZNC9cdJXleegnWWCMsL8sr\nJXFpznrrhXXjxx8f3s+q4dxzw1LdvC4pq097E0XSsSPsuWf4BDtwYOxopL5//Ss/Q+m1Vtvg/fvX\n/f7iqoUiKXUvMHtTmF2Fto4rfK+96+v7xhb+a8ZsYN2in3tSnZAryjyJNfTKyMy8uXO0Kwy/vPp/\nhz//GWpr4a67mj1UqmyHHeA3v4GamkgBmDVb39LMcPc2rY5t6vXx3e9CbU2c14akkBl9t3WeegpW\nXbX8Tz9mTFjuOWIEbPtRLd7Ei7Oh14aZtQemAHsB7wCjgGPcfXL5o60eDadHNGBA6IkvXRo7Eik2\nd27Y6CGvS8vqqKqgtNRuu4URrI8/Lu/zzpgBBx4Y1oX36dO653D3pcDZwHBgIjAk7QkclMSjWmcd\n6N4dRo+OHYkUGzYs1Erv2DF2JHEpiUtL/fa3sO22YQlauf79zJwZXo/nnx+WlLWFuw9z917uvom7\nX12eCONSEo/s4IO/3oFHkiFP18Mbs2BBvPW/kl7t2sEf/hBKs+68c9s7KJMnhw8EZ50VdlCTb1MS\nj+ygg5TEk2Tx4rBV7IABsSOJS+VWpbXM4H/+B669NnwYvu661lWnvO++kMCvuEIJvClK4pH16wfv\nvw9vvhk7EgF4/nnYeONwmSPP5sxREpe2OeIIGDkyjGz17Rvm/5Qyj/rNN+Gww8IHgWHDQlU4aZyS\neGTt2oUJG488EjsSgfCGk+cCL3XmzAnlgUXaYoMN4N//DtXdzjsPtt4arr4aXnklFG2BkNjffhuG\nDAnXvPv1g+22g/Hjw3dpmpJ4AmhIPRnc4cEHVUQCNJwu5WMWeuUTJsDvfhcS9sCBYXOdLl3C3gTb\nbx+W2u63H0yfDpdemt89C1pKxV4SYO+9Q8Wjjz6qzPpKKc3kybBoURj6y7uvhtM/ix2JZIVZKHC1\n557h56VLQ+31jh1hhRXixpZm6oknwIorwh57qJZ6bA89BIceWvq2hlmm4XSptPbtYeWVlcDbSkk8\nITSkHt+DD4YkLhpOF0kLJfGEOPDA0BNfvDh2JPk0e3ao0rb77rEjSQbNThdJh8QlcTM7wswmmNlS\nM2v06qSZTTezcWY2xsxGVTPGSvjOd8LSpueeix1JPj38cJiVnvcqbXU0nC6SDolL4sB44DDgmWaO\nWwbUuPu27t6v8mFV3sEHhyFdqb4HH4RDDokdRTIsWBC+d+kSNw4RaV7ikri7T3H3aUBz04uMBMbf\nFocdBg88UFpBBCmfjz6CF14Iy1vk66F0TfATSb40J0EHRpjZaDM7NXYw5bDFFmGmujZEqa7HHw/X\nwtXzDDSULpIeUdaJm9kIoFvxXYSkfIm7l1q7bBd3f8fM1iQk88nu3uAV5cGDB391u6amhppom0Q3\nzSxULLr//lC1SKojLbPSa2trqa2trXg7mtQmkh7mCR27NbOngZ+5+yslHHs5sMDdr2/gd97cOdoV\nhl+ejL/DmDGhutHrr2s4sxo+/zz0OqdMgW7dmj++asyava5iZrh7m/6VNPT6uPbasMTsuuuS9dqQ\nhCvh32zZmqqtxZvojJXjtZEWSR9Ob/B/gpl1NrOVCrdXBPYFJlQzsEqp2/B+3Li4ceTFE0+ECm2J\nSuCRqScukh6JS+JmdqiZzQL6A4+a2eOF+3uY2aOFw7oBz5nZGOBF4BF3Hx4n4vIqHlKXyhs6FH7w\ng9hRJIuuiYukR+KSuLs/6O7ruPsK7t7D3fcv3P+Oux9YuP2Wu/cpLC/byt2vjht1eR1+OPzjH7Gj\nyL7PP4fHHoPvfz92JMmiam0i6ZG4JC5hUttnn8GkSbEjybZhwzSU3hANp4ukh5J4ApmF3qF645V1\n331w5JGxo0gWdw2ni6SJknhCHXFESDJSGRpKb9iCBdCundbMi6SFknhC7bwzzJ8PEyfGjiSbhg2D\n7baDtdaKHUmyaChdJF2UxBOqXTs4+mi4557YkWSThtIbpqF0kXRREk+wY4+Fu+9WLfVyW7gwlFo9\n7LDYkSSPeuIi6aIknmB9+sByy8HIkbEjyZaHH4b+/TWU3pC5c6F799hRiEiplMQTzOzr3riUz513\nwsCBsaNIJiVxkXRREk+4Y46Be++FJUtiR5IN770Hzz2Xjg1PYpg3T0lcJE2UxBNu441hvfXgqadi\nR5IN994LBx0UtnyVb5s7V8VvRNJESTwFNKRePnfeCccdFzuK5NJwuki6KImnwFFHwUMPhQIl0nrT\npsH06bD33rEjSS4Np4uki5J4CvToATvsAA8+GDuSdLvrrrD2vkOH2JEk05IlocDQGmvEjkRESqUk\nnhInnQS33x47ivRy16z05rz3Hqy+OrRvHzsSESmVknhKHHoovPwyzJwZO5J0+u9/oWPHUGpVGqZJ\nbSLpoySeEiusEMqE/u1vsSNJp1tvhZNPDmvvpWGa1CaSPkriKXLSSfDXv6oMa0t98kmYTzBoUOxI\nkk2T2kTSR0k8RXbYIZRhffbZ2JGky733wne/q6Hi5mg4XSR9lMRTxCwMCWuCW8vcdhucckrsKJJP\nPXGR9FEST5mBA8PQ8IIFsSNJh4kTYdYs2G+/2JEkn3riIumjJJ4y3bpBTY32GS/VbbfBiSdqbXgp\nNLFNJH2UxFPojDPg5ps1wa05X3wR1oaffHLsSNJBw+ki6aMknkL77BOG07XPeNPuuy/syb7RRrEj\nSQcNp4ukj5J4CrVr93VvXBp3441w1lmxo0iHL76ATz+F1VaLHYlI9ZnZEWY2wcyWmlnfer+72Mym\nmdlkM9u36P6+ZvaqmU01s/+rftSBknhKnXRS2BTlgw9iR5JML78Mc+bAgQfGjiQd3n0X1lwzfEAU\nyaHxwGHAM8V3mtnmwJHA5sD+wE1mX5WMuhk4xd03BTY1syjTZ/WSTanVV4dDDtFys8bceCP86Eeq\nA14qTWqTPHP3Ke4+Dahf0/EQYIi7L3H36cA0oJ+ZdQe6uPvownF/Aw6tWsBFlMRT7Ec/gltugWXL\nYkeSLB98AA88oLXhLaFJbSINWhuYVfTz7MJ9awNvF93/duG+qlMST7Edd4RVVoHHH48dSbL85S9w\n0EFheFhKo0ltknVmNqJwDbvua3zh+0GxY2sLrZ5NMTM47zy4/nr43vdiR5MMS5eGCX9aR98y6olL\nmtXW1lJbW9vkMe6+TyueejawTtHPPQv3NXZ/1SmJp9yRR8JFF8HYsWE5Vd498EBIRjvuGDuSdJk7\nFzbeOHYUIq1TU1NDTU3NVz9fccUVbXm64uviDwN3mdlvCcPlGwOj3N3N7GMz6weMBgYBv29Lo62l\n4fSU69QJfvzj0BvPO3f4zW/g5z+PHUn6aGKb5JmZHWpms4D+wKNm9jiAu08ChgKTgMeAM92/KrN1\nFnAbMBWY5u7Dqh+5euKZcNppoaDJ7NmwdpSpFcnw/PPw4Ydh1r60jIbTJc/c/UHgwUZ+dxVwVQP3\nvwxsVeHQmqWeeAZ07Ro2RrnxxtiRxPWb38BPf6plZa2hiW0i6aQknhHnngt//nOoupVHU6bAiy/C\nCSfEjiSd1BMXSScl8YzYaCPYa6/8lmK99tqwbr5z59iRpM/ChaHs6iqrxI5ERFpK18Qz5JJLwuYo\nZ52Vr2Q2Ywb8858wdWrsSNJp3jxYa62wZFFE0kU98QzZaivYeWf4059iR1JdV10VJvetvnrsSNLp\nvfd0PVwkrdQTz5hLLw3Vys44A5ZfPnY0lTdzJgwdql54W7z7buiJi0j6qCeeMX37wrbbhtKjeXD1\n1XDqqbDGGrEjSS8lcZH0Uk88gy67DA4/PGxXusIKsaOpnFmzYMiQMDNdWk9JXCS91BPPoH79YPvt\n4YYbYkdSWb/8Jfzwh9ropK3q9hIXkfRRTzyj/vd/YY89wlDzqqvGjqb8Jk0KddJ1Lbzt3ntPdfdF\n0ko98YzafHM4+GC45prYkVTGxRfDhReGanXSNhpOF0mvxCVxM/u1mU02s7Fm9g8zW7mR4waY2Wtm\nNtXMLqx2nGkweHBYbjZnTuxIyuvZZ8OubWefHTuSbFASF0mvxCVxYDjQ2937ANOAi+sfYGbtgBuA\n/YDewDFmtllVo0yBnj3DNeNLL40dSfm4wwUXhOvheVhCVw26Ji6SXolL4u7+pLsvK/z4ImGz9fr6\nEbZ+m+Hui4EhgPauasAll8CwYTByZOxIyuPvf4fFi+G442JHkh3vvackLpJWiUvi9ZwMPN7A/WsD\ns4p+frtwn9Sz8srhuvhZZ8HSpbGjaZuPPgrXwW+6STuVldMKK2hUQyStoiRxMxthZq8WfY0vfD+o\n6JhLgMXufneMGLNk4MDwJp32AjCXXx6q0fXrFzuSbNH1cJH0irLEzN33aer3ZnYicACwZyOHzAbW\nLfq5Z+G+Bg0ePPir2zU1NdTU1JQWaEaYhTXj++0Hhx2Wzupmr74K99wTlpblVW1tLbW1tWV/Xg2l\ni6SXuXvsGL7BzAYA1wG7u/sHjRzTHpgC7AW8A4wCjnH3yQ0c682do11h+OXJ+jtUwk9/CnPnwt0p\nG9tYsiRs7HLqqeErF8zCLL4mDzHcvU17j5mZH3KI8+CDjfw+J68NKYMS/s2WranaWryJzlg5Xhtp\nkcRr4n8AVgJGmNkrZnYTgJn1MLNHAdx9KXA2YSb7RGBIQwlcvunKK2H0aHjoodiRtMy114a9rn/4\nw9iRZJOG00XSK3EV29x9k0bufwc4sOjnYUCvasWVBZ07w223wTHHwG67wWqrxY6oeRMnwnXXwUsv\nab/rSlESF0mvJPbEpYJ23z1sjnL22VUb+Wq1L7+EE08MIwjrrRc7muxSEhdJLyXxHLr66jBR7Pbb\nY0fStIsvhh494LTTYkeSbZrYJpJeiRtOl8rr3BmGDg0bpOy4I/TuHTuib3vkEbj/fhgzRsPolaae\nuEh6qSeeU1tsEYrAHHkkLFgQO5pvmjEjTGK75550XLdPOyVxkfRSEs+xk04KS7eOOy451dwWLAgF\nXS66KMQmlackLpJeSuI5ZgY33hgS58Xf2mam+pYuhWOPhf794Sc/iR1Nfqy+euwIRKS1lMRzrlMn\n+Mc/4IEH4Oab48XhDuecA599Fj5Y6Dp49XTQzBiR1NLLV1htNXjiCaipCZthnHhidduv21501Ch4\n8kno2LG67YuIpJWSuACw4YYwYgTsuWfomQ0cWJ123cN+5088AU8/HSqziYhIaZTE5Su9eoVEPmAA\nzJsXaq1Xclh76VI488xQje3JJ3VtVkSkpZTE5Ru22AKefx723x/eeguuvz5cNy+3+fPh+OPhiy+g\ntha6dCl/GyIiWaeJbfIt66wDzz0HM2eGGuvTp5f3+UePhu22g002gX/9SwlcRKS1lMSlQauuGnY7\nO+oo2H57+N3vwpagbfHZZ3D++fC974VCM7/9bWV6+SIieaEkLo0yC9fFn38eHn4Ytt0WhgxpeWGY\nRYvCsrFevWDOHJgwAX7wg8rELCKSJ0ri0qxevcLEs2uugT/8ATbeGC65JExIa6x3vmhRmG1+zjlh\neH7YMHjwQbjrLlUIExEpF01sk5KYwQEHhAlvY8bA3XeH9eQzZ4Zr29/5TljfvWhRqH0+YwZstVWY\n6T56NKy/fuwzEBHJHiVxaREz6Ns3fF17bZhl/sYbMHt2GGbv1AnWXRc22ghWXDF2tCIi2aYkLm3S\ntWuY+Lb99rEjERHJH10TFxERSSklcRERkZRSEhcREUkpJXEREck1M/u1mU02s7Fm9g8zW7nodxeb\n2bTC7/ctur+vmb1qZlPN7P/iRK4kLiIiMhzo7e59gGnAxQBmtgVwJLA5sD9wk9lX20LdDJzi7psC\nm5rZftUPW0lcRERyzt2fdPdlhR9fBHoWbh8MDHH3Je4+nZDg+5lZd6CLu48uHPc34NBqxlxHSVxE\nRORrJwOPFW6vDcwq+t3swn1rA28X3f924b6q0zpxERFJtdraWmpra5s8xsxGAN2K7wIcuMTdHykc\ncwmw2N3vqVCoZaeeeJHm/hGoveS3mfX2YrXZmGrGUq221E4r26lKKwVjx37jx5qaGgYPHvzVV0Pc\nfR9337roa6vC97oEfiJwAHBs0cNmA+sU/dyzcF9j91edkniRrCeAPCScrLcXq83GKImrna/aqUor\nBfWSeFuZ2QDgfOBgd/+i6FcPA0ebWScz2wDYGBjl7nOBj82sX2Gi2yDgobIGVSINp4uISN79AegE\njChMPn/R3c9090lmNhSYBCwGznR3LzzmLOCvwPLAY+4+rPphK4mLiEjOufsmTfzuKuCqBu5/Gdiq\nknGVwr7+UJFNZpbtE5Rcc3dr/qjG6fUhWdXW10ZaZD6Ji4iIZJUmtomIiKSUkriIiEhK5TqJm9kv\nzGycmY0xs2GFUnoNHTfAzF4rFLq/sA3tNVpkv95x04viGlWF9spyfoXnOsLMJpjZUjPr28Rx5TrH\nUtsr1//DrmY23MymmNkTZrZKI8e16fxKidfMfl/YmGGsmfVpaRtt0djf3cz2NrOXCuc+2sy+W4l2\nCr9rcGOKtjKzbczshbr/d2a2fbmeu5H2flw4h/FmdnWF2/qZmS0zs9Uq9Pwlvee04fnL9l6VGe6e\n2y9gpaLbPwZubuCYdsDrwHpAR2AssFkr29sbaFe4fTVwVSPHvQl0LcP5NdteOc+v8Hy9gE2Ap4C+\nTRxXrnNstr0y/z+8BrigcPtC4Opyn18p8RI2Y/hX4faOhCUxFX29lPJ3B7YBuhdu9wberlA7mwNj\nCCts1i/8vaxM5/YEsG/R3/npCv4dawibb3Qo/LxGBdvqCQwD3gJWq1AbJb3HtfK5y/pelZWvXPfE\n3f3Toh9XBJY1cFg/YJq7z3D3xcAQ4JBWttdYkf36jDKMkpTYXtnOr9DmFHefRjiHppTrHEtpr5zn\neAhwR+H2HTS+6UFbzq+UeA8hbLqAu48EVjGzblRJY393dx/noRAG7j4RWN7MOpa7HcL5f2tjita2\nU88yoG6EZVUqW4nrR4QPgksA3P39Crb1W0JBk4ppwXtca5T1vSorcp3EAczsSjObSSi1d1kDh9Qv\ngF+uQvcnA4838jsnFB0YbWanlqGtptqr1Pk1pxLn2JhynuNa7j4PoJCs1mrkuLacXynxNrYxQ2KY\n2RHAK4U33HKr5PmfB1xbeF/4NYVtKStkU2B3M3vRzJ6u1NC9mR0MzHL38ZV4/kY09R7XGrHeqxIt\n88Vemit67+6XApcWrq/8GBhcyfYKx9QV2b+7kafZxd3fMbM1CYlgsrs/V8H2WqSUNktQ1nMspyba\nu7SBwxtbo1ny+SVVW/7uZtabUCBjn0q201pNtUkYEj7X3R8sfBD5CyWcRyvaupTwHtzV3fub2Q7A\nUGDDCrTzP3zzHFq9hjrGe440LvNJ3N1LffHdTdh+bnC9+2cD6xb93GSh++bas6+L7O/ZxHO8U/j+\nnpk9QBhGajABlKG9Fp1fKW2WopznWIKy/T80s3lm1s3d51mYCPluI89R8vm1Mt6Kb8DQ2r+7mfUE\n/gkcXxjqrkQ7bTr/Zv4f/93dzy0cd7+Z3daK+Ept6wzC3wp3H12YdLa6u39QrnbMbEvCvIFxZmaE\nvyaRva8AAAQBSURBVNXLZtbP3Rv899uadoraO5Fm3uNaqcXvVXmQ6+F0M9u46MdDgckNHDYa2NjM\n1jOzTsDRhKL4rWmvsSL7xcd0NrOVCrdXBPYFJlSqPcp4fg2F0EhcZTvHUtqjvOf4MHBi4fYJNLDp\nQRnOr5R4HyZsuoCZ9Qc+qhvmj+Crv7uF2fqPAhe6+4uVaodGNqYoUzuzzWwPADPbC5hapudtyIMU\nkp2ZbQp0bE0Cb4q7T3D37u6+obtvQBiG3rY1Cbw5Jb7ntFYl36vSK/bMuphfwP3Aq4RZjg8BPQr3\n9wAeLTpuADCFMHnmoja0Nw2YAbxS+LqpfnvABoV4xgDjK91eOc+v8FyHEq5bfQ68Azxe4XNstr0y\n/z9cDXiy8FzDgVUrcX4NxQucDpxWdMwNhNm642hiJUCFXjuN/d0vARYU/r2NKXxv9Yzrxtop/O7i\nwvlPpjCbvEzntjPwUiH+FwgJr1J/x47A3wv/Tl4C9qjC/7s3qdzs9Abfc8r4/GV7r8rKl8quioiI\npFSuh9NFRETSTElcREQkpZTERUREUkpJXEREJKWUxEVERFJKSVxERCSllMRFRERSSklcREQkpZTE\nc8jMFiTpeUSSRK8PSRMl8XwqV5k+lfuTLNLrQ1JDSVwAMLMHCntfjzezHxbuW8/MJpvZnWY2ycyG\nmtnypTy2cP8gMxtnZmPM7I6i+48zs5Fm9oqZ3VzYWUkksfT6kKRS7fQcMrNP3H3levet6u4fFd6E\nRgO7AysDbwE7u/uLhS0ZJ7r79cXP08hjexC2WNzJ3ecXHbMZ8GvgMHdfamY3Ai+4+5314ukNbAcs\nD9zp7gsr+CcR+YpeH5Im6olLnZ+Y2VjgRcI+vZsU7p/pX28peSewa4mP3RO4z93nA7j7R4Vj9wL6\nAqPNbEzhuA0beM5TgNeAL4GV2nhuIm2l14ckUofYAUh8hb2T9wR2dPcvzOxpwif8hnxj6Kbw2L0a\neWxDw4AG3OHulzQT1p3A74EP3P2vpZ2JSPnp9SFJpp54PtV/81gFmF94k9kM6F/0u3XNbMfC7WOB\n5+o9z8rAhw089ingCDNbDcDMuhbu/3fh/jXr7jezdb8RnNk+wFbuvivwfltOVKQV9PqQ1FASz6cV\nzGymmc0ys5lAL6CDmU0E/hd4oejYKcBZZjYJWBW4ueh3DgwDOtZ/rLtPAn4FPFMYFryucP9k4FJg\nuJmNA4YD3evF9y7whZkdCdxXxvMWKYVeH5IamtgmjTKz9YBH3X2r2LGIJI1eH5IE6olLc/QpT6Rx\nen1IVOqJi4iIpJR64iIiIimlJC4iIpJSSuIiIiIppSQuIiKSUkriIiIiKaUkLiIiklJK4iIiIiml\nJC4iIpJS/x8A+luC+6wRZwAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -84,7 +84,7 @@
}
],
"source": [
- "from dcprogs.likelihood import plot_roots, DeterminantEq\n",
+ "from HJCFIT.likelihood import plot_roots, DeterminantEq\n",
"\n",
"fig, ax = plt.subplots(1, 2, figsize=(7,5))\n",
"\n",
@@ -125,7 +125,7 @@
}
],
"source": [
- "from dcprogs.likelihood import ApproxSurvivor\n",
+ "from HJCFIT.likelihood import ApproxSurvivor\n",
"approx = ApproxSurvivor(qmatrix, tau)\n",
"components = approx.af_components\n",
"print(components[:1])"
@@ -140,18 +140,18 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import MissedEventsG\n",
+ "from HJCFIT.likelihood import MissedEventsG\n",
"\n",
"weight, root = components[1]\n",
"eG = MissedEventsG(qmatrix, tau)\n",
"# Note: the sum below is equivalent to a scalar product with u_F\n",
- "coefficient = sum(np.dot(eG.initial_occupancies, np.dot(weight, eG.af_factor)))\n",
+ "coefficient = sum(np.dot(eG.initial_vectors, np.dot(weight, eG.af_factor)))\n",
"pdf = lambda t: coefficient * exp((t)*root) "
]
},
@@ -167,16 +167,16 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFiCAYAAADiNTGtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXZyZMQkDFFaygKJd6q4JUqDCV1oGAggt6\n3fG6L1St222t1VaxbrXa5eeudavS60K1WukVrTYQLRqp4EaF1lrFgrtWERWYJPP5/TEzOKaBzElO\ncmYy7+fjcR6ZM3PmfD88BD/5fs53MXdHREREylcs6gBERESkc5TMRUREypySuYiISJlTMhcRESlz\nSuYiIiJlTslcRESkzCmZi4iItMPMbjOzd83sL+v4/L/N7EUzW2RmT5nZzt0Zn5K5iIhI+24HJq3n\n89eA3d19GHAxcFN3BJXXrcnczCaZ2d/M7BUzO2cd1xxiZovN7CUzu6s74xMREWmLuz8B/Gs9nz/l\n7h/mTp8GBnZLYDlV3dWQmcWB64CJwHLgGTOb5e6LC64ZCpwL7ObuH5rZFu3dd7PNNvPBgwd3UdQi\npW/hwoXvu/vmnbmH/h1JpQvj31GB44GHQ7pXUbotmQO7Aq+4+6sAZnYPsB+wuOCaE4Hr8r/duPu7\n7d108ODBLFiwoAvCFSkPZvZ6Z++hf0dS6czsUzMr/Edwk7sHLpWb2TiyyXxsaMEVoTuT+VbAsoLz\n5cDoVtd8GcDMngTiwI/c/ZHuCU9ERCrY++4+qjM3MLPhwC3AZHf/IJywitOdybwYVcBQIEX2ecMT\nZjbM3T8qvMjMpgHTALbeeuvujlFEROQLzGxr4H7gSHd/ubvb785k/gYwqOB8YO69QsuB+e7eBLxm\nZi+TTe7PFF6UK33cBDBq1Cht+yYiIl3KzO4m29HczMyWAxcAvQDc/UZgOrApcL2ZATR3tqcfRHcm\n82eAoWa2LdkkfhhweKtrfgdMBX5lZpuRLbu/2o0xioiI/Bt3n9rO5ycAJ3RTOP+m26amuXszcCrw\nB2AJ8Bt3f8nMLjKzKbnL/gB8YGaLgbnA97r7uYOIiEi56dZn5u4+G5jd6r3pBa8d+E7uEBERkSJo\nBTgREZEyp2QuIiJS5pTMRUREypySuYiISJlTMhcRESlzPTqZuzuHHnolBx+8kMbGqKMRKU9/+ctf\nOOaYY/j73/8edSgisg49Opk//bRx773f4r77RlBXhxK6SAe8//773HHHHbzxRusFG0WkVPToZN7Q\nAJAA4qTTnjsXkSD69OkDwKeffhpxJCKyLj06madSUFXlQBO9ejmpVMQBiZQhJXOR0tejk3kyCbfd\n9jownbPPfpRkMuqIRMpPbW0toGQuUsp6dDIHmDp1MH37XssHH/xf1KGIlCX1zEVKX49P5vF4nF13\n3ZWnn3466lBEypKSuUjp6/HJHGDMmDG88MILfPbZZ1GHIlJ2evfujZkpmYuUsIpJ5s3NzSxcuDDq\nUETKjplRW1urZC5SwioimY8ePRpApXaRDurTp48qWyIlrCKS+RZbbMGQIUOUzEU6qE+fPuqZi5Sw\nikjmkC21NzY24u5RhyJSdlRmFyltFZXM33rrLZYvXx51KCJlRz1zkdJWUckc9NxcpCOUzEVKW8Uk\n8+HDh1NTU0OjdlsRCUzJXKS0VUwyTyQSjBw5Uj1zkQ5QMhcpbRWTzAG23vpQ/vznOh5/PB11KCJl\nRVPTREpbxSTzxkb47W9PpqXlAvbcM669zUUCUM9cpLRVTDJvaICWljhQRTqN9jYXCUBT00RKW8Uk\n81QKEgkDmjFr1t7mIgH06dOHdDpNc3Nz1KGISBsqJpknk1BfD7vs8gAbbLA/Y8Zo8RiRYmnnNJHS\nVjHJHLIJ/eSTV7BixSO8/PLLUYcjUjaUzEVKW0Ulc4CxY8cCMG/evIgjESkfSuYipa3ikvn222/P\npptuqmQuEoCSuUhpq7hkbmaMHTtWyVwkgHwy11xzkdIUOJmbWR8zi3dFMN1l7NixvPLKK7z99ttR\nhyJSFmprawH1zEVKVbvJ3MxiZna4mT1kZu8CfwXeMrPFZvZTM/uPrg8zXPnn5k8++WTEkYiUB5XZ\nRUpbMT3zucAQ4FxggLsPcvctgLHA08DlZnZEF8YYul122YWamhqV2kWKpGQuUtqqirhmgrs3mdlg\nd8/k33T3fwG/BX5rZr26LMIukEgkGD16tJK5SJGUzEW6lpn1AVa7e0tHvt9uz9zdm3Iv72+j8TGt\nrikbY8eO5bnnnuOTTz6JOhSRkqdkLhKusB9hF/PM/BAz+wmwgZl9xcwKv3NTsPBLx9ixY2lpaWH+\n/PlRhyJS8pTMRUIX6iPsYsrsTwI1wAnAL4Dtzewj4E1gVcDgS0YymQSSXHYZ1NZmV4cTkbb16tWL\nXr16KZmLhCfUR9jFlNnfcPcZwH7uPtndtwMmAhcA44PHXxoWL94Is3rq61PU1aEtUUXaUVtbq3nm\nUrHM7DYze9fM/rKOz83MrjazV8zsRTPbZX33C/sRdjFldsvddO08Lnf/wN0XuvunhdeUk+wWqAkg\nTjrt2hJVpB3a01wq3O3ApPV8PhkYmjumATes72ZhP8IuamqamZ1mZlu3CiRhZuPN7A7g6KANRy2V\ngl69HGiiqiqjLVFF2qFkLpXM3Z8A/rWeS/YDZnjW00A/M9tyPdc/CSwBNib7CPsVM3vWzP6PDjzC\nLuaZ+STgOOBuM9sW+IjsM/Q48Chwpbs/F7ThqCWT8LvffcJee13OMcf8J8lk2f0+ItKtlMxF1msr\nYFnB+fLce2+t4/o33f0OM3slX/k2s02BwWRHtmNm5u5F7dfdbjJ399XA9cD1uYfxmwGr3P2jYhoo\nZZMn92PYsId49dWFlGFxQaRbKZlLD7eZmS0oOL/J3btyxtZcM/st8GD+DXf/wMxWAmPN7GiyI95v\nL+ZmxfTM18o9jF/XbxllKZVKceutt5JOp0kkElGHI1Ky+vTpw4oVK6IOQ6SrvO/uozrx/TeAQQXn\nA3PvrUtbVe/eZB9/B656d2SjlYlmdrOZjcidTwt6j1KSSqX47LPPWLBgQfsXi1Qw9cxF1msWcFRu\nVPsYYIW7r7Pz6+6r3f16d98N2AaoA77q7tu4+4lBH18H6pnnHAecDJxnZpsAIzpwj5LxzW9+E4CG\nhga+/vWvRxyNSOnS1DSpZGZ2N5AiW45fTnZ6di8Ad78RmA3sBbwCfAYcW+y9w6h6d2Q/85Xu/pG7\nnwXsAXytMwFEbbPNNmPYsGE0aG6ayHqpZy6VzN2nuvuW7t7L3Qe6+63ufmMukZMbxf5tdx/i7sPc\nPVC5t7NV744k84fyL9z9HGBGB+5RUlKpFE8++STpdDrqUERKlpK5SJc6DvgecISZjSdg1TtwMnf3\nB1u91Vzsd81skpn9LbdCzjltfH6Mmb1nZs/njhOCxtcRem4u0r58Mi9ypoyIBNOpqndHeuatFfWQ\n3sziwHVkV8nZAZhqZju0celMdx+RO24JIb52FT43F5G29enTB3dn9erVUYci0hN1qurd6WSeW+mm\nGLsCr7j7q+6eBu4hu2JO5PTcXKR92jlNpOt0puoNHZuadriZ3WNmd5rZXWY2tcivrmt1nNYOzC1S\nf5+ZDWrjc8xsmpktMLMF7733XsA/QdtSqRRPPNHEJZc0a9MVkTbU1tYCSuYi3STQ1LSO9Mx3d/fD\n3P2/3f1wsnuvhuX3wGB3Hw48BtzR1kXufpO7j3L3UZtvvnkoDW+55QGsWfMQF1wQ1y5qIm1Qz1yk\n+wSoegMdm2debWZ7k+1lDyS7Yk0x2l0dx90/KDi9BbiiA/F1yGeffQ1IkMkY6XR2VzXtcS7yuXwy\n11xzkfCZ2eHAFKAFMOD37n53sd/vSM/8FLK7vOyV+3lqkd97BhhqZtuaWQI4jOyKOWu12mFmCtkd\nZbrFXnv1wawZaCaRQLuoibSinrlIl+pU1Ttwz9zdPwP+twPfazazU4E/kN1x7TZ3f8nMLgIWuPss\n4HQzm0L2wf+/gGOCttNRySQcfvit3H33W/z+9z8gmaztrqZFyoKSuUiX6mjVG+hYmR0AM+sHEGT3\nNHefTXbJu8L3phe8Phc4t6MxddYxx2zPnXeeSjq9G9kZdCKSp2Qu0qVOAQ4AhpFN6MVWvYFOJHOy\n69LGgdM7cY+Ssttuu1FdXc1jjz3G5MlK5iKFlMxFuk5Hq955YSwa02P07t2bsWPH8sc//jHqUERK\njqamiXQ9M+uXr3wHoWTeysSJE1m0aBFvv/121KGIlBT1zEW6xQXARUG/pGTeyoQJEwCor6+POBKR\n0pLvmWtqmkjp6Uwyvxa4OqxASsWIESPYZJNNVGoXaSUWi9G7d2/1zEVKUIcHwLn7P8IMpFTE43Hq\n6ur44x//iLtjZlGHJFIytA2qSGkK1DM3syG5nwO7JpzSMGHCBJYvX87LL78cdSgiJUXJXKTLdajq\nHbTMfnTu54+DNlRO8s/NH3vssYgjESktSuYiXcvd/+HurwT9XtBk/s/cz93M7EIzO8jMZgZttNRt\nt912bLnlAVx//UbacEWkQG1trZK5SMjCqHq3m8zN7Krcz97ufkvu7aeA24E02ZJAj9LYCO++ezdL\nlkylrs6V0EVy1DMX6RKdrnoX0zP/Zu7nvIL3rnX319x9lrv/qaONl6qGBnCvAqpYs8ZpaIg4IJES\noWQu0iU6XfUuJpnXm1kjMMDMjjOzkcDzQSMtJ6kUVFcb0EQs1qwd1ERy+vTpo3nmIiEIu+rdbjJ3\n97OAI8jusbotcD7wFzN7qSc+L4fsDmr19ca22/6Kbbc9Ufuai+SoZy4SmlCr3kUNgMvNKZ/g7ue7\n+/7uPhQYDfy/II2Vk2QSpk37F3//+wzeeuutqMMRKQlK5iKhCbXqXfRodnd/udX5J+7+dEcbLgf5\nndMeeeSRiCMRKQ1K5iLhCLvq3ZktUHu84cOHs+WWW/Lwww9z7LHHRh2OSORqa2tZs2YNLS0txOPx\nqMMRKWvu/g8zm1DYWTazvsBOQe+ljVbWw8yYNGkSjz32GM3NzVGHIxI57ZwmEq6wqt5FJ3MzO83M\nNg7aQLmbPHkyH330EfPnz486FJHIKZmLlKYgPfP+wDNm9hszm2QVsgPJxIkTicfjPPzww1GHIhK5\nfDLX9DSR0hJkANx5wFDgVuAY4O9m9uP8MnQ9Vb9+/RgzZoySuQjqmYuELayqd6Bn5u7uwNu5oxnY\nGLjPzK7obCClbPLkyTz7bIIf/nCllnaViqZkLhK6UKreQZ6Zn2FmC4ErgCeBYe5+MjASOLAjjZeL\nrbY6CKjnJz/pQ10dSuhSsZTMRcIVVtU7SM98E+AAd9/T3e9196ZcIBlgnyCNlps33xwKJMhkYqTT\naK12qVi1tbWAkrlImMKoegdJ5jXu/nrhG2Z2eS6QJQHuU3bGjYsRj2eAJhIJ11rtUrHUMxcJV1hV\n7yDJfGIb700O8P2ylUzCj388H5jOT36yQGu1S8VSMhcJXShV72L2Mz/ZzBYB25vZiwXHa8CLHY2+\n3Jx66khqaq7kH//436hDEYmMkrlI6EKpehfTM78L2BeYlfuZP0a6+xFFh1vmamtrqaurY9asWWQf\nb4hUHs0zFwldKFXvYrZAXeHuS919qru/XnD8K2hj5W7KlCksXbqUl156KepQRCKRSCSIx+PqmYt0\nUthV73Y3WjGzee4+1sxWAvkuaX4enLv7hkEbLVf77JN9fPH73/+enXYKvA6+SNkzM+2cJhKOu4CH\ngcuAcwreX9mRznIxPfOxuZ8buPuGuWOD/HnQBsvZl770JUaOHMmsWbOiDkUkMrW1tUrmUnFyC7r8\nzcxeMbNz2vh8azOba2bP5XrYe63vfmFXvYMsGnOwmW2Qe32emd1vZl/tSKPlbMqUKcyfP5933303\n6lBEIqGeuVQaM4sD15F9lr0DMNXMdmh12XnAb9z9q8BhwPXt3HNe7udKM/s4d6zMnweNMcjUtPPd\nfaWZjQUmkF2t5sagDZa7fffdF3fnoYceijoUkUgomUsF2hV4xd1fdfc0cA+wX6trHMhXqzcC3lzf\nDcOuegdJ5i25n3sDN7n7Q0AiaIPlbsSIEWy++RR+9rMqLesqFUnJXCrQVsCygvPlufcK/Qg4wsyW\nA7OB04q5cVhV7yDJ/A0z+yXZ8sFsM6sO+P0e4emnjQ8/vJfFi6dSV+dK6FJxlMylh9rMzBYUHNMC\nfn8qcLu7DwT2An5tZsXkyFCq3kGS8SHAH4A93P0jsmvHfi9og+WuoQEymSqgijVrXOu0S8VRMpce\n6n13H1Vw3FTw2RvAoILzgbn3Ch0P/AbA3RuBGmCzItoNperd7tS0Vg3WAAebWeH3Hg3aaDlLpaC6\n2li1qgmzDKlUddQhiXSrjTbaiBUrVkQdhkh3egYYambbkk3ihwGHt7rmn0AdcLuZfYVsvnyviHvn\nq94Tgcs7WvUO8oUHgSlkd3T5tOCoKMkk1NcbI0Y8QG3tFEaNaoo6JJFu1a9fPz766KOowxDpNu7e\nDJxKtjq9hOyo9ZfM7CIzm5K77LvAiWb2AnA3cIwXt1xovuq9Z67qvQkdqHoH6ZkPdPdJQRvoiZJJ\nuOCCBP/1X4/y+OOPM2HChKhDEuk2/fr14+OPP6alpYV4PB51OCLdwt1nkx3YVvje9ILXi4HdOnDf\nz4D7C87fAt4Kep8gyfwpMxvm7ouCNtIT7bHHHtTW1nL//fcrmUtF6devHwAff/wxG2+8ccTRiJS3\nXFn9QGAwBTnZ3S8Kcp8gZfaxwMLcCjgvmtkiM6uYXdNaq62tZa+99uKBBx4gk8lEHY5It8knc5Xa\nRULxINk56516hB2kZ14Re5cHccABB3DffffR2NjIbrsFrq6IlCUlc5FQhfIIu+ieeau1Y9cenQ2g\nnO29994kEgnuv//+9i8W6SGUzEVC9ZSZDevsTYKszW5mdoSZTc+db21mu3Y2gHK24YYbMnHiRO6/\n/37tcS4VQ8lcJFRjgWc7+wg7yDPz64Ek2VVuAFaSXXi+oh1wwAEsXTqA0057U6vBSUVQMhcJ1WTg\nP4A9gH2BfXI/AwmSzEe7+7eB1QDu/iEVuDZ7a1tueQBQz/XXD6CuDiV06fGUzEVC9U/gG8DRuUfX\nDvQPepMgybwptw2cA5jZ5kDFD+N+/vl+QDXucdJpLe8qPd+GG2Y3dFIyFwlFKFXvIMn8auABoL+Z\nXQrMA34cpLH2NncvuO5AM3MzGxXk/lFIpaBXLweaqKpyUqmIAxLpYvF4nA033FDJXCQcoVS9g4xm\nvxM4m2wCfxPY393vLfb7RW7uTm4ruDOA+cXeO0rJJMya9Smx2I846KAbSCajjkik62lJV5HQhFL1\nbjeZm9l38gfZbd2qc8fk3HvFKmZzd4CLgcvJ/ZZSDiZN2og993yOefN+qlHtUhGUzEVC0+mqNxTX\nM98gd4wCTia7IftWwEnALgHaandzdzPbBRiU2wKurBx22GG8/vrrzJ9fFgUFkU5RMhcJR2er3nnt\nrgDn7hcCmNkTwC7uvjJ3/iMgtKSb28T9F8AxRVw7DZgGsPXWW4cVQqfst99+JBIJZs6cyZgxY6IO\nR6RL9evXj6VLl0YdhkjZWk9le7KZTXb3XwS5X5ABcP2BdMF5mmDD59vb3H0DYCegwcyWAmOAWW0N\ngnP3m/IbyG+++eYBQug6G220EXvttRczZ86kpaWl/S+IlDH1zEU6LayqNxAsmc8A/mxmP8r1yucD\ntwf4/trN3c0sQXZz91n5D919hbtv5u6D3X0w8DQwxd0XBGgjUocddhhvvfUW8+bNizoUkS6lZC7S\nOe5+Ya7yPZBs1fu77v5dYCQQuOQcZDT7pcCxwIe541h3vyzA94vZ3L2s7bPPPtTW1jJz5syoQxHp\nUoV7motIp3S26g0E2zUNd38WeDZoIwXfX+/m7q3eT3W0naj06dOHfffdl7vueo2ttmph/Pi4pqpJ\nj5RfBW7lypVrX4tIh+Sr3g/kzvcnWNUbCFZmlyKMGHEyK1b8lunTTcu7So+lJV1FwtHZqndeoJ65\ntK+pKbuveSYTI52GhgbUO5ceR8lcJDydrXpDsC1QTzOzjTvTWCWYMKGKeDwDNJFIaHlX6ZmUzEVK\nS9Cpac+Y2W9ya6xbVwVVzpJJuPbaJcB0zjrrYfXKpUdSMhcpLUFGs58HDAVuJbuwy9/N7MdmNqSL\nYitb3/rWcLbddiaNjf8v6lBEuoSSuUg4wqp6BxoA59mFx9/OHc3AxsB9ZnZFZwPpScyMI444gvr6\net544432vyBSZpTMRUITStU7yDPzM8xsIXAF8CQwzN1PJjvB/cCONN6THXnkkbg7d911V9ShiIRO\ne5qLhCOsqneQnvkmwAHuvqe73+vuTblAMsA+QRqtBEOHDmX06NH8+te/jjoUkdBpT3OR8IRR9Q6S\nzGvc/fXCN8zs8lwgSwLcp2IceeSRLFrUh9NPf0vzzaXH0ZKuIp0XVtU7SDKf2MZ7kwN8v+Jst91/\nA/Vce+0WWkBGehwlc5FQhFL1bjeZm9nJZrYI2N7MXiw4XgNe7Gj0leD55/sB1bjHSaedhoaoIxIJ\nj5K5SChCqXoX0zO/C9iX7A5n+xYcI939iKLDrUCpFCQSDjQRj2e0gIz0KErmIqEIperdbjLPbU26\n1N2nuvvrBce/gjZWaZJJ+OMfoW/fK9h113O1gIz0KErmIh0XdtW7mDL7vNzPlWb2ce5n/vg4+B+h\nsnzjG1WccsrHNDb+grfeeivqcERCo2Qu0imhVr2L6ZmPzf3cwN03zP3MHxsGbbASHXfccbS0tDBj\nxoyoQxEJTX5P80wmE3UoImUn7Kp3MT3zfI+8zaMjjVaa7bffnrFjx3LbbbeRnU4oUv769euHu/Px\nx/rfgEhQbVS9Py6ofgf+R1VMzzzfI2/z6MgfohIdf/zxvPzyy8ybNy/qUERCoSVdRTqujar3hgXV\n78C5NdDa7NJxBx98MBtssAG33npr1KGIhELJXKR0VLV3gZnNc/exZrYScMAKf6p3Xpw+ffpw2GGH\nMWPG39lmm9VMmlSj0e1S1pTMRTquVU5tLXBu7egAuA6XAirZrruewZo1D3HxxQmtCCdlo3FZI5f9\n6TIal33xL6ySuUjHrWNQeYcHl7fbM5fwvPvuDkAL7rHcinCm3rmUtMZljdTNqCPdkiYRT1B/VD3J\nQdm/tErmIh3XRtX7C4Im9KKTuZnVAKcAY3MNzwNucPfVQRqsZOPGGb16OU1NTVRVxUil4lGHJLJe\nDUsbSLekafEW0i1pGpY2KJmLhKCw6h3G/YIMgJsB7AhcA1wL7ABof88AkkmYPTtNInEp48dfql65\nlLzU4BSJeIK4xUnEE6QGp9Z+pj3NpZKY2SQz+5uZvWJm56zjmkPMbLGZvWRmd3VnfEHK7Du5+w4F\n53PNbHHYAfV0Eyb04fjj3+W2227jgw++zaabbhp1SCLrlByUpP6oehqWNpAanFrbKwftaS6Vw8zi\nwHVk11FfDjxjZrPcfXHBNUOBc4Hd3P1DM9uiyHuHUvUO0jN/1szGFAQwGlgQpDHJOvnkk1mzZg23\n33571KGItCs5KMm53zj3C4k8T0u6SoXYFXjF3V919zRwD7Bfq2tOBK5z9w8B3P3dIu8dStW7mBXg\nFpnZi2Q3Sn/KzJaa2VKgERgVtEGBYcOGsdtuu3HjjTdqKUwpa0rmUiG2ApYVnC/PvVfoy8CXzexJ\nM3vazCYVee+d3P14d5+bO04km9wDKaZnvg/Zxd8nAdsCu+eObenANm2SdfLJJ/PKK5txwgn/0BQ1\nKVtK5tKDbGZmCwqOaQG/XwUMBVLAVOBmM+tXxPdCqXq3+8y8cNN0M9s4F2xNwSWv/9uXpF0DBx4M\n/Be/+lU199wD9fVoQJyUnX79+vH66/pfgPQI77v7uqrNbwCDCs4H5t4rtByY7+5NwGtm9jLZfPlM\nWzfMbX/qQC+yVe9/5j7aGvhr0OCDTE07ATiD7B/ieWAM2VL7+KCNCjz1VAKzOO5xzTmXstWvXz9e\neOGFqMMQ6WrPAEPNbFuySfww4PBW1/yObI/8V2a2Gdmy+6vruec+YQYYZADcGcDXgNfdfRzwVUD1\ntQ5KpaC62oAmzJpIpSIOSKQDVGaXSuDuzcCpwB+AJcBv3P0lM7vIzKbkLvsD8EFultdc4Hvu/sF6\n7rl221PgY6A/sE3BEUiQqWmr3X21mWFm1e7+VzPbPmiDkpVMwpw5MaZNu5ulS+9g+PAHgD5RhyUS\nSOGe5rGY9m2SnsvdZwOzW703veC1A9/JHUULq+od5F/f8tzD/N8Bj5nZg+h5eackk3DjjYP55JPH\nmDFjRtThiASmPc1FOi2UqnfRydzd/8vdP3L3HwHnA7cC+wdtUL7o61//OiNHjuTqq6/WNDUpO1rS\nVaTTVucXiMlXvYHAVe+ik7mZ1ZjZd8zsfuB0YEiQ70vbzIwzzzyTv/71rzz66KNRhyMSiJK5SKeF\nUvXW2uwl4JBDDmHAgAFcddVVUYciEoiSuUjnhFX1DpLMQ1mlRv5dIpHglFNO4ZFHPuJ//uddLSIj\nZUPJXKRzwqp6a232ErHLLt8G6rnqqk2pq0MJXcpCPpl/+OGHEUciUrZCqXq3OzUt7FVqpG0vvrgJ\nZi1aREbKymabbQbA+++/H3EkImUrlB1Ji5lnHuoqNdK2/CIyq1c3YeakUomoQxJpV9++fenduzfv\nvPNO1KGIlKtnzWyMuz8NHa96t1tmb7VKTT+ym67sC/QrXLddOie/iMyOO86kpmYfdtppZdQhibTL\nzBgwYABvv/121KGIlJWwdyQNMjXtDOBOYIvc8b9mdlrQBmXdkkm49dahfPLJY9xyyy1RhyNSlP79\n+yuZiwQX6o6kQQbAHQ+MdvfpuSXsxpDdjF1CNHr0aHbffXd+8YtfkE6now5HpF0DBgxQmV0koLCr\n3kGSuQEtBectufckZN///vdZvnwg//3ff9Godil56pmLdFxYVe8gG638CphvZg/kzvcnO7ldQrbR\nRpMwS3Hffb146CGnvl4j26V0DRgwgA8++ICmpiZ69eoVdTgi5SZf9f4UwMwuJ/vc/JogNymqZ25m\nBtwLHAuPfo1XAAAgAElEQVT8K3cc6+5XBmlMivP444ZZNVDFmjVOQ0PUEYmsW//+/XF33nvvvahD\nESlHoVS9i+qZu7ub2Wx3HwY8G7QRCSY/TW3Vqmbcm9l992r0RENK1YABAwB45513+NKXvhRxNCJl\nJ5Sqd9AV4L4WtAEJLpmE+nrjgAOex30cH330cNQhiaxTPpnrublIMGFWvYMk89FAo5n9w8xeLJgj\nVzQzm2RmfzOzV8zsnDY+Pyl33+fNbJ6Z7dDWfSpBMgn33LMz22zzFhdddBHZfe9FSk///v0BNKJd\nJCDP/o99trs/6+5X547nOnKvIMl8T7ILwI8nO3w+P0euKGYWB64jO39uB2BqG8n6Lncf5u4jgCuA\nXwSIr8fp1asX5557LvPnz+exxx6LOhyRNuWTuXrmIh0SStW76GReOCeu1fy4Yu0KvOLur7p7GrgH\n2K9VGx8XnPYhuyZ8RTvmmGMYOHCgeudSsvr06UPfvn3VMxfpmE5XvSHA1DQzqwFOAcaSTbLzgBvc\nfXWRt9gKWFZwvpzsH6J1O98GvgMkyFYB2oplGjANYOutty6y+fJUXV3NOeecw6mn/i/Tpr3KcccN\n0TQ1KTla0lWkw/YM4yZByuyhbNPWHne/zt2HAN8HzlvHNTe5+yh3H7X55puHHULJ2XHHE4A53HLL\nNtTVuRaSkUg1Lmvksj9dRuOyz/8i9u/fXz1zkQ4IoeoNBFs0prPbtL0BDCo4H5h7b13uAW4IcP8e\nq7GxGrMM7jHWrMloe1SJTOOyRupm1JFuSZOIJ6g/qp7koCQDBgxg8eLAuzaKVLwQqt5A8KlpYwoC\nCLpN2zPAUDPb1swSwGHArMILzGxowenewN8D3L/HSqWgpsaAZtzT7L67np1LNBqWNpBuSdPiLaRb\n0jQsbQC0pKtIJ4RS9Q6SzNvapu1rxT6sd/dm4FTgD8AS4Dfu/pKZXWRmU3KXnWpmL5nZ82Sfmx8d\n5A/TU+XnnR94YHbe+Tvv/C7qkKRCpQanSMQTxC1OIp4gNTgFZJ+Zf/jhh6xZsybaAEXKz07ufry7\nz80dJ5JN7oEEKbNPCnrz1tx9NjC71XvTC16f0dk2eqrsvPMR7LTTh5x//vlMmTKFeDwedVhSYZKD\nktQfVU/D0gZSg1MkB2Wf9+Snp7377rsMGjRofbcQkS961szGuPvT0KGqNxAgmXfkgbyEq6qqiosu\nuohDDz2Uu+++myOOOCLqkKQCJQcl1ybxvMIlXZXMRQLJV73/mTvfGvibmS0iu67M8GJuEqRnLiXg\noIMOYsSIEXz/+79j6dKp1NXFNRhOIqeFY0Q6rNNVbwj2zFxKQCwW44gjruPNN2cwfbpRV4emqknk\nCnvmIlK8dU1NCzpFrehkbllHmNn03PnWZrZrR4KXzlmzJglU4x4jndYWqRI99cxFohWkZ349kASm\n5s5Xkl1rXbrZuHFGdTVAE2ZNpFIRByQVr6amho022kg9c5GIBNo1zd2/DawGcPcPyS65Kt0smYS5\nc+PsvPP9xGJ7MGjQ8qhDEtFcc5EOCKvqHSSZN+V2PvNcg5sDmaANSjiSSXjwwTGYPc1557W56q1I\ntxowYIB65iLBhVL1DpLMrwYeALYws0vJLjn346ANSni22WYbzjjjDO6442VOO+1NDYSTSGmzFZEO\nCaXqHWQL1DuBs4HLgLeA/d393qANSrjq6s4D/si11/bXJiwSKW22ItIhoVS9A80zd/e/An8N2oh0\nnYULN9AmLFISBgwYwIoVK1i1ahW9e/eOOhyRctG66n0Q69gxdH2C7Gc+CvghsE3ue0aA1Wmka+Q3\nYVm1qhn3JpLJGFAddVhSgfLT09555x0GDx4cbTAiZcLd7zSzhUAd2by6v7svCXqfIM/M7wR+BRwI\n7Avsk/spEcpvwnLCCf/EfTxPPHF51CFJhdLCMSId4+5/dffr3P3ajiRyCFZmf8/dZ7V/mXS3ZBKS\nye34+OOtueyyyzj66KPZZpttog5LKowWjhEJLqyqd5BkfoGZ3QLUA2v3OXT3+4M0KF3nZz/7Gb//\n/e859tibmDjxUlIp9Pxcuo165iIdcifwPWARnZjuHSSZHwv8J9CroEEHlMxLxKBBgzjiiOu4+eZD\nefzxDNXVMerrldCle2yxxRaAeubSM5nZJOAqIA7c4u4/Wcd1BwL3AV9z92K2Mg2l6h0kmX/N3bfv\nbIPStQYNOgIwMpn8uu0a3S7dI5FIsMkmm6hnLj1OburYdcBEYDnwjJnNcvfFra7bADgDmB/g9qFU\nvYMMgHvKzHYIcnPpfhMm9KK62siu296sddulW2lJV+mhdgVecfdX3T0N3APs18Z1FwOXk1sApkjH\nAiPIboW6L58PMA8kSM98DPC8mb1G9rcHTU0rQfl120866V4WL76eTTa5GVBBRbqHlnSVHmorYFnB\n+XJgdOEFZrYLMMjdHzKz7wW4dyhV7yA980nAUGAPNDWtpCWT8Ic/pOjbdxEnnXQS7h51SFIh1DOX\nMraZmS0oOKYV+0UziwG/AL7bgXZDqXoX3TMPskm6RG/AgAFcfvnlfOtbv+KQQ57lO98ZqWfn0iUa\nlzXSsLSB1ODU2vXZ3R0zizo0kSDed/dR6/jsDWBQwfnA3Ht5GwA7AQ25v/cDgFlmNqWIQXChVL3b\nTeZmNs/dx5rZSnJrx+Y/yjW4YZAGpfvsuOMJxGJHcd99Vfzf/zlz5mgwnISrcVkjdTPqSLekScQT\nnPClE/j000/58MMP2WSTTaIOTyQszwBDzWxbskn8MODw/IfuvgLYLH9uZg3AWUWOZp8URoDtltnd\nfWzu5Q3uvmHBsQFwYxhBSNd44on80q5VuXXbIw5IepyGpQ2kW9K0eAvpljQfbvghAP/4xz8ijkwk\nPO7eDJwK/AFYAvzG3V8ys4vMbEon7/16W0fQ+wR5Zj6hjfdC+Y1CukYqBdXVhlkL7muAhogjkp4m\nNThFIp4gbnES8QR7br8nAK+++mrEkYmEy91nu/uX3X2Iu1+ae296W3PE3T3VXq/czOblfq40s48L\njpVm9nHQ+Iops58MnAIMMbMXCz7aAHgqaIPSfbLrtmePX//6FK688mGmTVvMpptuGnVo0kMkByWp\nP6p+7TPzYRsPA9QzF2lPvuqdq3J3WjED4O4CHia7j/k5Be+vdPd/hRGEdJ3suu1xpkz5DiNH3snU\nqVczbtyFWupVQpMclCQ56PO/TP3791fPXKRIZna5u3+/vffaU8wz8xXuvtTdpxbU8tcokZeX4cOH\nc/TRN/LYY9/nvPMy1NVBY2PUUUlPNGTIEPXMRYo3sY33Jge9SZBn5oVmd/B7EqHBg48GEgVLvUYd\nkfRE2223nZK5SDvM7GQzWwRsb2YvFhyvAS+29/3WOprMNYG0DNXVVVFTEwOacE+z++5aTEbCN2TI\nEJYvX86aNWvav1ikct1FduG1WXy+jOu3gJHufkTQm3U0md/cwe9JhJJJmDMnxt57/5lMJsWiRTdF\nHZL0QNtttx3uztKlS6MORaRkreMR9nUdfYRd9ApwZlYNHAgMBqrMbHouoIs60rBEI5mEWbOSTJq0\nAf/zP//DRhtN4rXXttGAOAnNkCFDgOz0tO23174AIgF0uOodZKOVB4EVwEIKtmmT8hOLxbj99tv5\nz/88lsMP708s5iQSpr3PJRT5ZK7n5iKBdbjqHaTMPtDdD3X3K9z95/mjow1LtL70pS+x774/x72K\nlhYjnUYD4iQU/fv3p7a2VslcpAhmdnn+tbtf3/q9YgXdz3xY0AakdJ166k7E4xmgiXi8RXufSyjM\njO22205zzUWK0+1T08YCC83sb7nh84tarQgnZSaZhD/+0Rkw4HpqavZm0KDlUYckPYTmmousX8HU\ntP8smJa2KDc1bVHQ+wV5Zh74NwUpfalUNQ0Nkxg58ofsvfclHHLIdYwfH9ezc+mU7bbbjkcffVRb\noYqsW+Hqqt/n88FvHVpdVfuZC9tvvz1nnfVbLrzwGyxaBJdeigbDSacMGTKEVatW8fbbb7PllltG\nHY5Iycltm7rCzP4KHFP4mZkFnilWdJndso7IT0kzs63NbNcgjUnpqq7eE7Nq3OPaLlU6bbvttgM0\nol2kCJ8An+aOFrJV8MFBbxLkmfn1QBKYmjtfCVwXtEEpTakUudXhmslkVrPttirESMcVzjUXkXUr\nnB2W21o1BWwX9D5Bkvlod/82sDoXwIdAImiDUpqy26UaZ5/9CRttdCAXXTSZlStXRh2WlKnBgwdj\nZuqZiwRXCwwM+qUgA+CazCwOOICZbQ5kgjYopSu7XWo/9tzze0ycOJF99/0xe+zxY8aNMz0/l6I0\nLmtcu7f5oEGD1DMXaUduRHt+o4w4sDkQeGXVIMn8auABoL+ZXQocBJwXtEEpfePHj+eUU37Ntdfu\nzxNPODU1Wh1O2te4rJG6GXWkW9Ik4gm+8tWvqGcu0r59Cl43A++4e3PQmwQZzX6nmS0E6nJv7e/u\nS4I2KOVhyy2nAhncY7kBcTElc1mvhqUNpFvStHgL6ZY0sW1j/KNRyVxkfcKaKRZko5UaYC/gG2TL\n6wkze83dV4cRiJSWceOM3r1jrFrVTCaTpn//14GvRB2WlLDU4BSJeGJtz3zUZqNY8O4CPvnkE/r2\n7Rt1eCIlqfUmZvn3u2xqGjAD2JFsuf1aYAfg10Eak/KRHxD3gx+sZsCAIzj77LM555wVNDZGHZmU\nquSgJPVH1XPxuIupP6qecUPHARrRLtKOB4H9yJbYPy04AgnyzHwnd9+h4HyumS0O2qCUj+yAuL58\n5Ss/5cgjt+TyyxNcfbVTX68BcdK25KAkyUHZvxy93ukFZJP58OHDowxLpJQNdPdJnb1JkJ75s2Y2\nJn9iZqOBBZ0NQErfsmVDiMVqgCpWrWqhvr4l6pCkDGgrVJGihLKJWZBkPjLX6FIzWwo0Al8LsuGK\nmU3KbdTyipmd08bn3zGzxbkF5+vNbJsA8UkXSaWgujpGLJYB0jz11I9x9/a+JhVu4403ZpNNNuFv\nf/tb1KGIlJyC3DmWbGe5U5uYBSmzd6oMkJujfh3Z7d6WA8+Y2Sx3LyzVPweMcvfPzOxk4Arg0M60\nK52XfX4ODQ0xXn31Hm65ZTrHHrsF22//LVIpTVmTdRsxYgTPPfdc1GGIlKJ92r+keIE2WjGzncmO\nZgf4k7u/EKCtXYFX3P1VADO7h+xD/7XJ3N3nFlz/NHBEgPtLF8o+Pwf3Y3n33Xe5444jMctQUxPT\nHHRZp5EjR3LVVVeRTqdJJLRgpEhefkqamR0MPOLuK83sPGAX4GIg0JS1IButnAHcCWyRO/7XzE4L\n0NZWwLKC8+W599bleLLbw0kJMTN23fV7QHXBHPSoo5JSNXLkSNLpNC+99FLUoYiUqvNziXwsMAG4\nFbgx6E2CPDM/nuz67NPdfTowBjgxaIPFMLMjgFHAT9fx+TQzW2BmC957772uCEHWY/z4OL17f74p\ni9njUYckJWqXXXYBYOHChRFHIlKy8iOK9wZucveH6MC+J0GSuRU0mg/A1nFtW94ABhWcD8y998VG\nzCYAPwSmuPuatm7k7je5+yh3H7X55psHCEHCkJ+DfsEFLey005mcd955HHvsy5qDLv9myJAhbLjh\nhkrmIuv2hpn9kuz4sNm5RWSC5GYg2AC4XwHzzeyB3Pn+ZMsBxXoGGGpm25JN4ocBhxdeYGZfBX4J\nTHL3dwPcW7pZ9hl6NV//+s+ZNKkXt99exd13tzB3blzPz2WtWCzGLrvswrPPPht1KCKl6hCyA8x/\n5u4fmdmWwPeC3qTo7O/uvwCOBf6VO4519ysDfL8ZOBX4A7AE+I27v2RmF5nZlNxlPwX6Avea2fNm\nNqvY+0s0Fi7cgFisGqhizZoMt92mOcXyRSNHjuSFF16gqakp6lBESo67f+bu97v733Pnb7n7o0Hv\nE6Rnjrs/C3T4V2x3nw3MbvXe9ILXEzp6b4lGKgWJhJFOO5lMMzNmHM/w4T/jk09Gadqa0LiskeXb\nLmfN5mtYvHgxO++8c9QhifRIgZK5SGufz0E3hg9fxemnD+T003cgFstQXa1pa5UsvyXqmuY1cDTM\nfGqmkrlIFwn8kF2ktWQSzj0X9t57E6ZOvRFIkMlo2lqly2+JmiEDMZjz6pyoQxIpOWZ2sJltkHt9\nnpndb2a7BL1PkHnmoTQoPdvee/elpiZOftpaOh340Y/0EPktUeMWJ0aMlYtWRh2SSClqa575DUFv\nEqTMfr6731vQ4E9zDY4O2qj0XMkkzJljPPJIM7NmncWFF97IZ5/dT79+++sZeoXJb4nasLSBF2a9\nwIOPP0hzczNVVXq6J1Lg3+aZm9klQW8S5F9VKA1Kz5edtlbDOef8nAkTarniij1yS7+atk+tMPkt\nUe/8553MXD2TJUuWMGxYpzeIEulJ8vPMJwKXd3SeeZAvhDKxXSpH7969mTz5cvJLv65enWHOHG2f\nWom0EpzIOh1Cdsr2nu7+EbAJXTnPPKwGpbLU1WWXfjVrwX0NM2fewIUXprVaXIX58pe/TJ8+fZTM\nRVoJa555kEVjQmlQKkt+6ddLL40zdep8Fi06jh/9KMb48a6EXkHi8Thf/epXlcylbJnZpNye46+Y\n2TltfP4dM1uc25O83sy2KfK+Gs0u5SE/dW3YsHHEYjVAFatXt3DXXW9GHZp0o5EjR/L888/T3Nwc\ndSgigZhZHLgOmAzsAEw1sx1aXfYcMMrdhwP3AVcUeftQRrMHKbOH0qBUrlQKqqtjxOOOWRM33/zf\n/OQnj3PZZaiXXgFGjRrFqlWrWLRoUdShiAS1K/CKu7/q7mngHmC/wgvcfa67f5Y7fZrsZmLF6PZd\n00JpUCpXfrW4iy82Zs36jCFDhnDuuV/jhz/MUFensntPt9FOG8FY+OVDv4w6FJGgtgKWFZwvz723\nLscDDxd57/zg8sPoxODyjoxm71SDUtnyJfd99tmUQw+9gfxI91WrWnjkkdVRhyddpHFZI4c+dCiM\nh5vTN9O4TL+5ScnZzMwWFBzTOnITMzsCGEV2LZZi5AeX79Hdo9k71aBI3sSJvejdO0YslgHS3HDD\nxZx55jvqofdA+aVdiUGGDLMXz27/SyLd6313H1Vw3FTw2RvAoILzgbn3vsDMJgA/BKa4+5oi210F\n9AGm5s57AR8FDT5IMg+lQZG8/Ej3Sy6J8b3vvcF7753HVVdtSirVrITew+SXdo1lszlVb2gVOCkr\nzwBDzWxbM0uQrVB/YYtuM/sq8EuyifzdAPe+HhjD57l1JdnBdoEESeahNChSKF9233jjocTj2ZHu\n6bRz6qn3MWfOKg2O6yHyS7teNO4iNnpwI/4+5+9RhyRSNHdvBk4lW51eAvzG3V8ys4vMbErusp8C\nfYF7zex5M5u1jtu1Ntrdvw2szrX1IR0Yjxbk1+PR7r6LmT2XbzD3G4pIpxXui24Gzz77KBMm7I2Z\nU11t2kq1B8gv7frXEX/l4YcfpqWlhXg8HnVYIkVx99nA7FbvTS94PaGDt27KTX1zADPbHMgEvUmQ\nnnkoDYq0pXCk+xNP9OK4487GvReZjLFmTYa5c/VXrafYe++9+eCDD/jzn/8cdSgipeBq4AFgCzO7\nFJgHXBb0JkF65q0bPAg4P2iDIuuS3aAlf/Yf3HWXs3p1M5lMmgce+D477ng+ixdvod3Xytyee+5J\nLBZj9uzZJPUfUiqcu99pZguBOsCA/d19SdD7FJ3Mw2pQpBj5rVTnzo3z8cePceWVf2H//fsSi2Vy\nZXftvlauNt54Y77+9a/z0EMPcfHFF0cdjkikzOwO4Ax3vy53vrGZ3ebuxwW5T5DlXO8A3nb369z9\nWuBtM7stUNQiASST8IMfGD/5yX58+9v3Agkymeyc9Btu+FSD48rY3nvvzXPvPce5s8/VnHOpdMNz\n072BtQPgvhr0JkGemYfSoEhHHHTQZvTuHccsAzTz61/HtXJcGdtq9FZwNFz+zOXUzahTQpdKFjOz\njfMnZrYJwR6BZ2/S3Q2KdMTnu6/FOOyw1UDV2pXj7r33vajDk4CWVS2DODhOuiVNw9KGqEMSicrP\ngUYzu9jMLgaeovhNWtYKkozzDd6bOz8YuDRogyIdlR8g19jYjwcfdNasyZDJpLnmmgNZseIoBg8+\nmgkTeulZehkYN3gcVVZFc0szvRK9SA1ORR2SSCTcfYaZLQDG5946wN0XB71PkAFwoTQo0ln5XnpD\ngzFs2Cquvnoct912OGBcckkLc+fG+PrXLeowZT2Sg5LM3GsmB511EId88xCSg/QbmFQmM9shl0sX\nF7yXcveGIPcJMgBuB3df7O7X5o7FZpYK0phIWAo3bBk37sK1+6Sn0xkOPfQhvvvd9/QsvcQdsOsB\nTNlkCrN/OZvVq7XJjlSs35jZ9y2rt5ldQwfmmQd5Zh5KgyJhK9wnPR43li+fwC9+sTHf/GaaRx5Z\nEXV4sh6nnXYa77//PjNnzow6FJGojCa7ictTZNeAfxPYLehNgiTzUBoUCVvh6nEnnlhFPF4NVNHc\nbPzXf13FaafdxcUXa/OWUjR+/Hh22GEHrrnmGtw96nBEotBEdiOz3kAN8Jq7B17yMsgAuFAaFOkK\nnw+OgzvuMNJp6NUrzpAhG3HttfsDcPHFzVx1FXz0UZVWkSsRZsapp57KKaecws2P3MwHfT8gNTil\nZ+hSSZ4BHgS+BmwG3GhmB7r7wUFuYsX+NmxmL+QavDjfIJAO2mDYRo0a5QsWLIgyBCkxjY3Q0JAt\nvzc0wHnnZchkYkAz4MRi8R61ipyZLXT3UZ25R5T/jj755BMGfG0Aqw9ZDXFIxBPUH1WvhC7dKox/\nRx1sd5S7L2j13pHu/usg9wnSMz++oMG3gP3M7MggjYl0hy+u8Z59np5OO2C0tFhuFblmrrlmCZnM\njjzxREw99Qj17duXnffbmad4Cpy1886VzKUnM7Oz3f0Kd19gZge7+70FH38l6P3afWZuZmcD5Bts\n9XHgBkW6U+Hz9Ouvj9O7d4xYLINZE3fffTXf+MYazjtPK8lF7cz9z4QWMDcS8YTmnUslOKzg9bmt\nPpsU9GbFDIALtUGR7pafxjZtWnZ++iWXxHjiiQSHHnpqbpvV7EpyV1wxn4aGNVrzPQIHjzmYIzNH\n4vXOz4b9TL1yqQS2jtdtnbermDJ7qA2KROnzEnyceHxnZs3KriQHzfzud7fwu99djVl2Z7Y5c3rG\nM/VyceN5NzJvp3lc8/1r2HGnHXnqjac0GE56Ml/H67bO21VMMg+1QZFSUbiS3O67V/OrX53DLbck\ncI+xenUTxx//JHvu+RUOOaS/kno3qK2t5brrrmOvaXsx8dcTyVhGg+GkJ9vZzD4m2ynunXtN7rwm\n6M2KSeahNihSSj7vqRtmQ7jzTkinHXdYsmQMS5ZUcfXVq7nkkqcZO3Ys8+ZpWltXmjx5MjvtuxN/\nyfwFYhoMJz2Xu8fDvF+7yTzsBkVKVX6wXEOD8c9/9uLmm6tyo9/hBz9YgtloIEZ1NVx1VYwPPkCJ\nvQtceuKl7Pfb/QBIJDQYTqQYQVaAE+nx8oPljjoKEgkjHofeveNMmjQJ93wJPsNJJzVrFHwXmfLV\nKfxg4A9gDtS9UceYgWOiDkmk5Gk/cpE2fN5Lh1TKgG15/PHPS/CZjOX2U2/irLP+wLRpX+bNN7+s\nnnpILj3pUuJvxrn44os5f5Pz2ftbe9OwtEED4kTWQclcZB1aLz6TL8FvumkVZ56ZHQVvlmH+/Id4\n6qnxQDO9ejn33PM+W2655dpV6JTcO+bCCy/k7bff5tI7LuWKXldoQJzIeiiZixSpMLkPG5YdBZ9K\nVTN79s+59NIa3GM0NTVx4IG/IxY7FveEnq93gplx/fXXM++UeSzJLNGAOJH1UDIX6YAv9tpr+fnP\nWbu5y/Dhu/LnP1cBMVavbuakkzLkB87NmZMdpqJee3Gqqqq4/uzrqZtRR6YlAwYbxDfgsj9dppK7\nSAElc5FO+uLz9Rgwkrq6/PP17Gj4bGJvYsqU+1mxYj9aWqqoroYrrzT12tuR+o8Ujx//ONNvm87c\n/5vL6ZnTsSqjuqpaJXeRHCVzkRCs+/l6nDPPzCb2WAxiMaOpyQBj1apmTj45+zq/ixuo196WsduM\nZc6Fczhm62O445934Dirm1dT/w8lcxFQMhfpEl98vk7u+Xov4EDGj8+QTmdyo+IBsqPiDz30Ud5+\new/12tfjW3t8i5l3zGR182q82bnphzfR+4zepLdMq+wuFU3JXKSLte61z5kTo6EBNt00tnZUfCzm\nrFix4gu99pNOArNYj9p7vbOSg5LMOXoODUsbqHm7hivnXslZL54Fi6GmqoY5R89RQpeKpGQu0s3a\nHhWfAA7/Qq/dPTuXfc0ap6FBvfO85KDk2oT96eafMv3x6dmye3o1p992OlO+OYUJ/zFBSV0qilaA\nE4lQfsW5fIKfMyfGJZfEuPHGKnr3jhGPO9XV2VK7/Lu6IXXUVNUQtzgxi7GgeQHTG6aT+lWKPy39\nU9ThiXSbbu2Zm9kk4CogDtzi7j9p9fk3gSuB4cBh7n5fd8YnErV/77Xrmfn6JAclqT+qnoalDfxz\nxT+5aeFNZMiQbk6z3+n7ceIeJ9J3p75MGKKeuvRs5t49u5iaWRx4GZgILAeeAaa6++KCawYDGwJn\nAbOKSeajRo3yBQsWdEXIImXBzBa6+6jO3GN9/44aG8tjhH3jskbqZtSRbkkTJ86WL2zJ6195HeJQ\nZVXMqJvB4MGDtSystCmMf0dR6s6e+a7AK+7+KoCZ3QPsB6xN5u6+NPdZphvjEpF1aGwkN2ceEons\nlDv4YnIvTPatP+tOhb301OAUc5fO5fw555MhQ3NLM4dffjixXWJ43KmOV3PV5Kv44LMPlNilR+jO\nZL4VsKzgfDkwuiM3MrNpwDSArbfeuvORiUibGhqyibylJftzxgy4447Pk/uVV5KbRw/xOJhBc3Pb\niQsZa24AABCfSURBVL/wdetfAsJK/IWD4wCqq6pJt6TpVd2LEckRPJ1+GoDV6dV8a9a3MDMS8QQP\nH/YwNTU16rVL2SrL0ezufhNwE2TLgxGHI9JjpVLZxJxP3vDF5P7b335+nsnV09z/PfG3TvSFvwQE\nTfytP1uX1j11YG0Z3uNOxjO4OWua1lD33TpshOExp1esFxeMvgBqYdzgcSQHJWlc1qhELyWtO5P5\nG8CggvOBufe61vr+L9C6a1Dste3dR6SH+OJStdn3CnvmBx4If/pT2wkb1p3oC38JCJL4g/b+WZ6E\neUmoyp5fuUs9v13YwIgvb8pVfzuTdEuaqngVOwz/T16wF8Ag3Zzmh0/+EAxiHmPsJ2Np3KiRFlpI\nxBM8duRjxGPxL/ySoEQvUevOZP4MMNTMtiWbxA8DDu/SFgsf+LXXNVjf/zGK/ayzXYywfvEQCVHb\nS9V+/tctu8Ldv/9VhHUn6MJfAoIk/s70/rPnSdLpJA1x8IHDYGAD9kaKU66B0xfUkc6ksbiR8RYw\nJ5NxnvzwSVo2aIFYtjz/zdO+CTvH8FgG8xgWMzJk/n97Zx8eVXkl8N+ZIQlUWoRkaxUoAduForEI\nWBgFCaL1a11qg8pqd+lqjd/70P2j1druWp+urbgfbmu3C/rwVLuxrSX9wFULbHTAEr4RiQoiJnxW\nVgSlS60kmZz9474Jk/EmmUlm5s5Nzu957jPve8+59z33Tc6c92veS5EU8diFS3j77dNYuWsL86bO\npuLszoE+uYcP1ggwskfegrmqtorIncAKvJ+mLVXVV0XkfmCzqi4XkfOAXwHDgatE5NuqelavC02e\n8Oupa9DdN0a6sr50MTJpMGRzojIbjYtUmdGvSQ3ufvl2Unv13TUC0gn8fen9f8iNm2JoY4xEFF5a\nDrqqDkbGkQ9K4ZKFEGmGtmLmn/MwNUcWgnr5kSNnciBSBxFF27wNfogoLYlWFvzLd2HSXog2s6o+\nCvUJiLQR0SgX/CFG/bD1JCRBlAiI12gYFCnmJxf/mP37hvHb1zdz7XkXUX3F+Sx5bh21W+JUTfEq\nqD1dfXmsW5lNCQxM8jpnrqrPAs+mnPuHpPQmvOH37JA84ddT16C7b4x0ZX3pYmTSYMhuVyW7DY9M\nlzvnYhrEGhQFQ3eBvrseP2S/999ToyCxJ4a+GaNNgLcqYEycyL5KDk+IEdlZQdsnvfwZU+FA6Yte\ncNcoIKCt0FbMiNLPcTT6BkQSgPPNiNKWUOrf20diWBtIG4k2hfZGQGsL8x+4r6MRUFf/AHd8ezqt\nl6yHaDMr610ZkVZWri3mwaXX0Dj+F76ypzfczApZTIu2UCRF/HDaD9i392O8sGc7V06cTlFREc/u\n2EjV5FncdtVMHluxIa0GQ08NiN7KwkQa+6SUAE8AU4AjwHXtv9DKi335+p15rujxd+b5njOH9Ib2\nc9UzX7AAHn3UC/TivYULVU9vzhzvGzOR+HC+O91MZDffnP5y52w9s59u8htK+vm6iVz/zrzQycaf\nFzKbkbtr0TpaRsaJ7q/0dEfFKTpYycKFsOjQHK9X3x7oxQv0n9n7MDvGLPSVDd83j3fHPuk1AhJR\nSt6axokzNnj5NudjEYVEFNk7GS3f6iuj6c9h3K6O+7D10x2NBNpOBn4SxfDcZLh8q69s2Lo5HIvV\nebJEMZ/YdhWHJj3tqzuh6QZ2jq3xlZ135DY2lf7IV/Z3w/6daDTK7w7sYPa4zzJv2niWb23k+aaX\nuXT8VKKRKCt3beHKs6ez4KIpPLlmO//9ynqunjyTSCTKb7a9SNXU2Rk3PLqiOz9Kc5+U24FzVPVW\nEZkPXK2q16XxL5wVQrmaPSMy6RpkqtuVrDddjExk+eiq9FYGuZm+SFf3xAm4805PJ1cNhqDWTQRF\ndxExiJGXFFmMdcSIA57sZDpV1o1uLEbdww3Ea49QWVXqFeHSseoKKmhIyQ8lXhuj8u6hTjdG5deG\nEquu4MxHllC7dTWTTvs8Dz91Oi0jV1N0cBYLvz6Dux6cSMvI1UT3z0IQWkfHKTo4i5u/GmXRoWUd\nQ/nzJi6g5shLvr3/6yd95eSwf4ps6inVbE58o+M+ZWXTeMdnpABtZshU4U/RZl/Z++XveAE4kgBt\n5nDZnpP5FN2d0Ze6lG06HoeP+8u+v/oJmLQFPtrMpkPFLLrVNS5KmqlvdM81qJU1rxbz9X8+2fB4\nfnPn0YhbvjUVLtvsjVSsLebO+2O0zFnnO3IBdb0dEehxnxSXv8+llwGPiIhonnrM/T+YB0G2GgW9\nbXik25jIVuMiWQbpL3fOZPoiXV2RkwE/Vw2GINZN1NUFE9BTd43JVQMoF1M+GZYRW7iQWHMzxD1Z\nrLUVXiwGkmSpeR/d6q8tpLq5GaJP8AWdTrxpBpVF3yTG9VQceJJ40wVURr8BIsT3Olnx9Zz55Hhq\nR51K1YH3qL4bLvyBy+97F0SoHd2zrOKacioff4aW8rUU7bmAGy/dwaLEU76B/4vRadQktvjKri25\ngJrEyx2NgvkfmUlNosFX94ahldQkXvO/z+AZPJXY4Sv7VGkZu5MaDMMmK8e6aBR87Nw2/tCFbOg5\nzRxPuk/JhD/S0oVubd2vehvM09knpUPHrRE7BpQC7/SmwEyxYN4fCWI0ojfLnbM1GpEsKy3t/AWe\niwZDEOsm4vFggnk83nWDJ4iRl6DLyPA+MV4kpmu8Ie/aEmKJ3xHT1ZDwhseTZdX7GqhuclNgtbUn\n824qq3qP9izb9iPiv/8j8QMzqYx8i9j+Uzhz1aeo/eQIqvYcAaC2vJSqfUepntDAhc+kIctE90Oy\nncxZ6S9jQjG3jC7uaDD8xVujqDnNfzTiqkOjqfnENl/Z3LfHUHPG9o77zD08hpqR2311q5oHd/ff\nXiYiyXNNS9yeJuFAVUN9TJkyRQ2jE/X1qg884H2m5ruTZaLbk2zIENVoVLW4WLWkxEsPGaK6eHHv\nZO3l+ID3a5Dc+FHys6Ta2JfnycV98lHGQLQ1h8+8eOwk/fzMSl08dlLn/JjP6uLyXsh60u2lHwEx\nYEVS/h7gnhSdFUDMpQfh9cilr76Z7tH/F8AZRhDk8Sd/OV8AV+Bz5oEscBxotvanZ+6CHhbADcJb\nADcHb5+UTcD1qvpqks4dQIWeXAD3RVW9tssCs4wFc8MIOQN9NbthZIOe/EhErsB7RXf7Pin/lLJP\nymDgJ8C5wFG813g35sN2sDlzwzAMw+gR7XmflA+Aa/JtVzuRoAo2DMMwDCM7WDA3DMMwjJBjwdww\nDMMwQo4Fc8MwDMMIORbMDcMwDCPkWDA3DMMwjJBjwdwwDMMwQo4Fc8MwDMMIORbMDcMwDCPkhH47\nVxE5DOztQa2MPL2GLouEzeaw2Qv9x+YxqvpnfblpGn7UX+qq0DGb80NO/ChIQh/M00FENvd17+p8\nEzabw2YvmM1hKLcvmM35wWwuDGyY3TAMwzBCjgVzwzAMwwg5AyWYLwnagF4QNpvDZi+YzWEoty+Y\nzfnBbC4ABsScuWEYhmH0ZwZKz9wwDMMw+i2hDuYicpmIvC4iu0Xkbh95iYj83Mk3iEh5kuwed/51\nEbm0gGz+exF5TUS2i0idiIxJkiVEZJs7lheQzV8WkcNJtn0lSbZARN5wx4ICsvnfkuzdJSLvJcny\nXs8islRE3haRV7qQi4h83z3PdhGZnCTrUx2bHxWMzQXlR2HzIVduYH4UOKoaygOIAm8C44Bi4GVg\nYorO7cB/uvR84OcuPdHplwBj3X2iBWLzbOAjLn1bu80uf7xA6/nLwCM+144AGt3ncJceXgg2p+jf\nBSwNuJ4vBCYDr3QhvwJ4DhBgOrAhG3VsfpS3v2+o/CiMPuTKDcSPCuEIc8/8c8BuVW1U1WbgZ8Dc\nFJ25wOMuvQyYIyLizv9MVU+oahOw290vcJtV9QVVfd9l1wOj8mBXd6RTz11xKbBKVY+q6rvAKuCy\nHNmZTKY2/xXw0zzY1SWqugY42o3KXOAJ9VgPnCoip9P3OjY/yg9h86PQ+RAE6keBE+ZgPhLYn5Q/\n4M756qhqK3AMKE3z2lyQabk34bUi2xksIptFZL2IfCEXBvqQrs1VbthqmYiMzvDabJN2uW74dSzw\nfNLpIOq5J7p6pr7WsflRfgibH/VHH4Lc+VHgDAraAMMfEfkSMBWYlXR6jKoeFJFxwPMi0qCqbwZj\nYSeeBn6qqidE5Ba8XtxFAduULvOBZaqaSDpXqPVsZIj5UV4wHyoAwtwzPwiMTsqPcud8dURkEDAM\nOJLmtbkgrXJF5GLgXuAvVfVE+3lVPeg+G4E4cG4ujXX0aLOqHkmy8zFgSrrX5ohMyp1PyvBgQPXc\nE109U1/r2PzI/MiP/uhDkDs/Cp6gJ+17e+CNKjTiDe+0L9A4K0XnDjov3HnKpc+i88KdRvKzcCcd\nm8/FW3jy6ZTzw4ESly4D3qCbBSl5tvn0pPTVwHqXHgE0OduHu/SIQrDZ6U0A9uD2Wwiynl155XS9\ncOdKOi/c2ZiNOjY/Mj/qrb1Or6B8yJWZdz8qhCNwA/r4R7sC2OWc9l537n68ljjAYOAXeAtzNgLj\nkq691133OnB5Adn8P8D/AtvcsdydPx9ocE7VANxUQDZ/F3jV2fYCMCHp2htd/e8G/rZQbHb5+4Dv\npVwXSD3j9WzeAlrw5utuAm4FbnVyAX7onqcBmJqtOjY/KhibC8qPwuZDruzA/Cjow3aAMwzDMIyQ\nE+Y5c8MwDMMwsGBuGIZhGKHHgrlhGIZhhBwL5oZhGIYRciyYG4ZhGEbIsWBuGIZhGCHHgrlhGIZh\nhBwL5v0QETlVRG5PytfnqJxRInJdF7IhIrJaRKJ9LKNYRNa4bUQNI2+YHxlhwoJ5/+RUvHdQA6Cq\n5+eonDl47w7240bgl9r55QsZo97rF+sA3y87w8gh5kdGaLBg3j/5HnCmiGwTkYdE5DiAiJSLyE4R\n+bGI7BKRGhG5WETWisgbItLxLmoR+ZKIbHT3WJzaMxCRGcC/AvOczrgUG24AfpNJuSJyiog8IyIv\ni8grSb2VX7v7GUY+MT8ywkPQ+8nakf2DlBcNAMeTzrcCFXgNuS3AUrz9iucCv3Z6n8F7HWORy/8H\n8Dc+5fwWONvnfDFwKMWedMqtAh5Num6Y+4wCh4OuVzsG1mF+ZEeYDuuZDzyaVLVBVdvwXupQp56n\nN+B9WYA37DcF2CQi21w+tccAMB7Y6XO+DHivF+U2AJeIyIMiMlNVjwGoN8TYLCIf7dUTG0b2MT8y\nCgpbDDHwOJGUbkvKt3Hy/0GAx1X1nq5uIiJlwDFVbfUR/wnvTVsZlauqu0RkMt7bmr4jInWqer/T\nKwE+6O7BDCOPmB8ZBYX1zPsn/wf0pfVdhzeH93EAERkhImNSdMqB3/tdrKrvAlERSf0i6hYROQN4\nX1X/C3gItyhIREqBd1S1JaOnMIy+YX5khAYL5v0QVT0CrHWLXx7qxfWvAd8EVorIdmAVcHqK2k6g\nzJXht8p3JTAjw6IrgI1uSPIfge+487OBZzK8l2H0CfMjI0zY+8yNnOCG+b6qqn+dhXv9ErhbVXf1\n3TLDCA/mR0a6WM/cyAmquhV4IRubXeCt0rUvIGPAYX5kpIv1zA3DMAwj5FjP3DAMwzBCjgVzwzAM\nwwg5FswNwzAMI+RYMDcMwzCMkGPB3DAMwzBCjgVzwzAMwwg5FswNwzAMI+T8P4HY4RUCF79kAAAA\nAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFjCAYAAAApaeIIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYVPXZ//H3vYU+VCkGBWmCuwvYQQWydjT2qBGNsSXm\nsf2MKZpcKRKfJMYUk1iSaGKMJvrYommWRBQEdBU77C6IgiJKR8oIAlvu3x8zA8O6sHNmz87Z2f28\nrmsu5kw531t0vM/9Pd9i7o6IiIjkr4KoAxAREZHmUTIXERHJc0rmIiIieU7JXEREJM8pmYuIiOQ5\nJXMREZE8F0kyN7PJZrbAzBaa2XW7+Ey5mb1uZpVmNj3XMYqIiJjZXWa20szm7uL9c83szeRjtpmN\nznWMAJbreeZmVgAsBI4GlgEvA+e4+4K0z/QAXgCOc/cPzWwPd1+T00BFRKTdM7MJwMfAve4+ppH3\nxwPz3X2DmU0Gprr7+FzHGUVlfijwtrsvcfca4AHg1AafORf4m7t/CKBELiIiUXD32cC63bz/ortv\nSB6+CAzMSWANRJHMBwJL044/4NP/8PsCvc1supm9bGbn5yw6ERGR7HwZeDKKhouiaDQDRcCBwFFA\nV6DCzCrc/Z1owxIREfk0MzsSuAiYEEX7USTzD4FBacd7JV9L9wGwxt23AFvMbCYwFtgpmZuZFpaX\ndsfdLRft6Pcl7VE2vy8zGwPcCUx29112ybekKLrZXwaGm9lgM+sAnAP8s8Fn/gFMMLNCM+sCjAPm\nN3Yyd291j+uvvz7yGBRX24wr16L+582Xfy+KK/9jct/t78uSj0+/YTYI+BtwvrsvaoGfYUZyXpm7\ne52ZXQn8l8TFxF3uPt/Mvpp42+909wVm9h9gLlAH3Onu1bmOVURE2jczux8oB/qY2fvA9UAHkvkK\n+D7QG/itmRlQ4+6H5jrOSO6Zu/tTwMgGr93R4PgXwC9yGZeIiEg6dz+3ife/AnwlR+HsklaAawHl\n5eVRh9AoxRVMa42rvWut/14UV+ZaY0z5LueLxoTJzDyf4xcJyszwHA6A0+9L2pNc/r7CpspcREQk\nzymZi4iI5DklcxERkTyX98k8Ho86AhERkWjlfTIfN26bErqIiLRreZ/MFy4spKoq6ihERESik/fJ\nvHv3DyktjToKERGR6OR9Mu/W7QRisaijEBERiU7eJ/Oamo949913ow5DREQkMnmfzMvLy5k+fXrU\nYYiIiEQm75P5kUceqWQuIiLtWptJ5lpDWkRE2qu8T+bDhw8HYNGiyPaEF2mz6uvrow5BRDKQ98nc\nzNTVLtJCtmzZEnUIIpKBvE/moEFwIi1l06ZNUYcgIhloE8lc981FWoaSuUh+aBPJfMiQIXTo0IG3\n3nor6lBE2hQlc5H80CaSeeq++YwZM6IORaRNUTIXyQ9tIpkDjB9/LA8//IF2UBMJkZK5SH4oijqA\nMMTjcMstZzF/PkyY4MyebVqvXSQEmzdvjjoEEclAm6jMKyvh7bc7AB2ornZtiSoSElXmIvmhTSTz\nsjIoLYWCghr22GO1tkQVCYmSuUh+aBPJPBaDWbPgpz99kX33vURd7CIhUTIXyQ9tIplDIqH/z//s\nz2uvPaf7fCIhUTIXyQ9tJpkDxGIxDjjgAGbOnBl1KCJtgpK5SH5oU8kc4Nhjj+Xpp5+OOgyRNkHJ\nXCQ/KJmLyC7plpVIfmhzyfzggw/mgw8+YPny5VGHIpL3VJmL5Ic2l8yLioo48sgjmTZtWtShiOQ9\nJXOR/NDmkjmoq10kLErmIvmhTSdzbYkq0jxK5iL5oU0m82HDhtGpU1/uu2+xNl4RaQYlc5H80CaT\neTwO8fjjXHDBPkyciBK6SJaUzEXyQ5tM5pWVsH79Z6ivL6S6Gm28IpIlTU0TyQ9tMpmXlcF++wFs\nZeTIOm28IpIlVeYi+SGj/czNrAg4Czgs+VJXoA7YDMwF7nf3LS0SYRZiMXjhhUKOOuprfOMbk4nF\nPhd1SCJ5SclcJD80mczN7BBgIvC0u/9fI+8PAy41szfd/bkWiDErsRhMmTKE6dP/yTnnKJmLZKO2\ntpba2lqKijK67heRDIVdJFtT07fMbLS7z8sgsKHAB+6+LdPGm8vMfHfxz58/n+OPP54lS5ZgZrkK\nS6TFmBnunpP/mM3MY7EYS5cupUePHrloUiRSufp9NSiSP5Vfk0Xy54CMi+Qm75mnN2Rm/dOed27w\nucW5TOSZGDVqFIWFhVRpBJxIVrp27aqudpHwbXH3m3dVKLv7Ine/BVhqZh0yOWFGA+DM7DtmNhk4\nJe3lUjM7MpPvR8XMOPHEE3niiSeiDkUkL3Xp0kUj2kVC1hJFcqaj2R8DhgD/Y2b/NLM7gf2BSRl+\nfydmNtnMFpjZQjO7rpH3P2tm683steTje9m0AyiZizSDKnNp78zsLjNbaWZzd/OZW8zsbTN7w8z2\nz/C8oRbJux3VYmYdgW7uvgBYYGbvuvtTySuJQ4HX0z67t7svzeAfoAC4DTgaWAa8bGb/SLaRbqa7\nn/KpEwR05JFHcs4557Bhwwbd9xMJSMlchLuBW4F7G3vTzE4Ahrn7CDMbB/weGJ/BeR8DjgS+bGYn\nAyuAOcBAYHrQIHdbmbv7VuAwM5tiZp3d/ank6yvd/V/u/qqZ9TSzS4HBGbZ5KPC2uy9x9xrgAeDU\nRj4XyiCELl26MGHCBG28IpIFJXNp79x9NrBuNx85lWSid/eXgB7pXee7Oe8Cd/8d8N1k4fp9YCXw\n72zibHK+ibv/28wGANeYWV+gc/J7qSH0HwB/dPcNGbY5EEiv4D8gkeAbOszM3gA+BL7l7tUZnv9T\nUl3tZ555ZranEGmXlMxFmtQwp32YfG1lYx9O6/FeC5BeJAP/avDZjHq8IcNFY9x9BfCTTD4bkleB\nQe6+OdmF8Xdg38Y+OHXq1O3Py8vLKS8v/9RnTjjhBH70o9/w/PP1jBlTQCzWIjGLhG7GjBnMmDEj\nsvaVzKUti+L35e5bzexYM4sBf3f3Txp+xsx6AmcD1ex8obBLTc4zD5uZjQemuvvk5PG3AXf3m3bz\nnXeBg9z9owav73aeeUo8Dn37zqeubiSlpQXMmoUSuuSlXM8z//KXv8whhxzCpZdemosmRSK1q9+X\nmQ0G/uXuYxp57/fAdHd/MHm8APhsstLeXVsDgIuBfkAnmtfjnVll3kgQXd19k5kVA3XuXh/g6y8D\nw5N/OcuBc4ApDc7fP/UXYWaHkrjo+OhTZ8pQZSXU1Iygvr5g+8Yr4zMZniDSzmlqmgiQGMO1q4vo\nfwJXAA8mi9X1TSVyCL/HO3AyN7NrgT2So9JvTD4yvmx39zozuxL4L4kBeHe5+3wz+2ribb8TONPM\nLgNqgE+ALwSNM11ZGQwZsoVFizpQUtJBG6+IZEjd7NLemdn9QDnQx8zeB64HOpDMV+7+hJmdaGbv\nAJuAi7JsJ1UkFwH1AYvkrCrzl4AXSSTaM8li57XkDf+RDV67I+357cDtWcTWqFgMXn65E/vs8znu\nu+8PxGKDwjq1SJumZC7tnbufm8FnrmxOG80tkiG7LVA3ARe6e727PwQ8m8U5cq5XryJOO20A06f/\nM+pQRPKGkrlITrxEYmratSTWYAmcm7Opql9pUEXfH/QcUTn11FP5xz/+EXUYInlDyVwkJ5pdJGdT\nme/EzMqae45cOe6443jppZdYv3591KGI5AUlc5GWF0aRnFUyN7O9zexgM9sb6JLNOaLQrVs3Jk2a\nxJNPPhl1KCJ5QaPZRXIvmyI5cDJPjjo/HRjDzhur5wV1tYtkTpW5SG40t0jOZjT7IneflhZAq94G\ntaGTTz6Zb33rW2zbto0OHTLaJlak3VIyF2l5ySK5I/Ax0JPE4jFzgpwjm2S+0cx+QWKN9g1AXu0v\nOmDAAEaNGsVzzz3HscceG3U4Iq2akrlITjS7SA6czN19DgGvGFqbU089lYcffopu3Y6lrExLu4rs\nipK5SE40u0jO+drsYcp0bfaGXn55AYcfXgeUUFpqWqtd8kau12ZftmwZBxxwACtWrMhFkyKRyuXv\nK2xZT00zs0n5dr88paZmJLW1+1Jba9vXaheRT+vSpYsqc5E80Jx55rtbeL5VGz3a6NdvNQUFtZSU\noLXaRXaha9eubN68mXzuwRPJF80pkpu9aEw+isXgkUdWseee5zBzpquLXWQXioqKKCoqYuvWrVGH\nItIeZF0kt8tkDjBhwlg6dHiNxYvfjDoUkVZNg+BEWr/mJPMPgKVhBZJrZsaZZ57JI488EnUoIq2a\nkrlI69ecZN7H3d8OLZIInHnmmTz88MO6HyiyG0rmIjmTdZGczXKuhyafHrrbD+aBQw45hE8++YQq\nDWcX2SUlc5GcybpIbk5lPsTMzjKzy5txjkipq12kaZqeJtKywiiSm0zmZnaqmQ1Oe+nD5J9PuPvD\n7v7bbBtvDZTMRXYvNT1NRFpc1kVyJpV5OdAXwMxOcfcPAdz9maCNtUbjx49n3bp1zJ8/P+pQRFol\ndbOLhKsliuRMkvk/ge+a2ZPANWb2TTM73swGBm2sNSooKODkk8/lV796kXg86mhEWh8lc5HQlRNy\nkdzkRivuPh2Ynmz068CrQClwqpl9hsTou1vd/a1sg4hSPA7Tpl3PokUdmTMHrdMu0oCSuUjoUkVy\nJ6CTme0LzAMqU4k9qEC7prn7zcmnz6VeM7MvACcDeZnMKythyZKugFFVVU9VVQHjx0cdlUjroWQu\nEq6WKJKz2c+8oRryNJEDlJVBaakxb14tffqsprR0z6hDEmlVNJpdpOWEVSQ3ezlXd3/U3f/V3PNE\nJRZLdK3/8Y9v06XLZLp10wIyIuk0ml0k5wIXye12bfZ0sRhceOEoCgs388orr0Qdjkirom52kdzK\npkhWMk8yM6ZMmcL9998fdSgirYqSuUjrl3EyN7OrzKxXSwYTtSlTpvDggw9SV1cXdSgirYaSuUjr\nF6Qy7w+8bGYPmdlkM8tqz9XWbL/99qN///7MnDkz6lBEWg0lc5GWEWaRnHEyd/fvASOAu4ALgbfN\n7CdmNiyMQFqLc889V13tImk0ml2kxYRWJAe6Z+6JvUJXJB+1QC/gETP7WbYBtDZf+MIXePTRR9m2\nbVvUoYi0CqrMRVpGmEVykHvmV5vZq8DPgOeB0e5+GXAQ8PmgDbdWgwYNYt99D+I3v5mj5V1F0NQ0\nkZYUVpEcZNGY3sAZ7r6kQSD1ZnZSkEZbs3gcli69n+uu68F992l5VxFV5iItw8yuBr4ErAH+CHzL\n3WvMrAB4G7g203MF6Wbv1DCRm9lNAO7eZrYcq6yElSv74F5MdbVTVRV1RCLRUjIXaTGpIvn45G5p\nNZAokoFARXKQZH5sI6+dEKSxfJBa3tWshv7911JaGnVEItFSMhdpMaEVyU0mczO7zMzmASPNbG7a\n411gbpDG8kFqedebbnqRgQOnqItd2r3OnTuzdetWrb8gEr7QimRL3HvfzQfMepC4IX8j8O20t+Lu\n/lE2jYbFzLyp+LNVU1PDXnvtxezZsxkxYkSLtCESlJnh7jlZ4yH999W1a1dWrFhBTFe30obl6vdl\nZpcBlwNDgUVpb8WA5939i4HP2VLJMBdaMpkDXHPNNXTr1o3//d//bbE2RIKIKpn369ePuXPnMmDA\ngFw0LRKJHCbz0IvkTLrZZyf/jJvZxuQjnjrOptF8ccEFF3DvvfdSX18fdSgikdL0NJHwuPsGd3/P\n3ae4+5K0R9a93U0mc3efkPwz5u7dk49Y6jjbhvPB/vvvT8+ePXnuueea/rBIG6ZBcCLhaYkiOcii\nMWeZWSz5/Htm9qiZHZBNo/nkggsu4J577ok6DJFIKZmLhKcliuQgU9O+7+5xM5sAHENi+bnfZ9No\nPjnvvPP4+9+f4ZlnNmtFOGm3lMxFwhdmkRwkmafmpXwOuNPdHwc6ZNNoPunSpT/uz3HccR2ZOBEl\ndGmXtNmKSIsIrUgOksw/NLM7gHOAJ8ysY8Dvb5fcHWaBmS00s+t287lDzKzGzM7Ipp0wVFbCpk2D\nqa8vpLoarQgn7ZIqc2nPmspZZtbdzP5pZm+Y2TwzuzDDU4dWJAdJxmcD/wGOc/f1JIbVfytog8k1\nZ28DjgdKgSlmNmoXn/tpss3IpFaEg60MHbpFK8JJu6TR7NJeZZizrgCq3H1/4Ejgl2aWyd4nqSL5\nCzSzSA6y0Uod0Ak4q0GQ/w3Y5qHA26kl7MzsAeBUYEGDz10FPAIcEvD8oYrFYPbsAq688k/EYu8T\ni90YZTgikVBlLu1YJjnLSSz4QvLPte5em8G5zwYmA79w9/VmtidZFMkQ7ArgH8ApJLZo25T2CGog\nsDTt+IPka9uZ2WeA09z9d0BOFsjYnVgMfvCD43jwwT+ydevWqMMRyTklc2nHmsxZJCr3EjNbBrwJ\nXJ3Jid19s7s/6u5vJ4+Xu3vQAhkIVpnv5e6Ts2kkC78G0u9L7DKhT506dfvz8vJyysvLWySgYcOG\nMXbsWB577DHOOeecFmlDpKEZM2YwY8aMqMNQMpc2KcTf1/HA6+5+lJkNA542szHu/vHuvpTsVv88\nsA9p+djdbwgaQMbLuZrZncCt7j4vaCMNzjMemJq6MDCzb5PYn/2mtM8sTj0F9iDRA3Cpu/+zwbla\ndDnXhh566CHuuOMOnnnmmZy1KZIuquVcb775Zt5//31+/etf56JpkUg09vvKMGf9G7jR3Z9PHj8D\nXOfurzTR3lPABuBVdgyGw91/GTT2IJX5BODC5G5pW0kkWnf3MQHbfBkYbmaDgeUkRsdPSf+Auw9N\nPTezu4F/NUzkUTj11FO56qqreOeddxg+fHjU4YjkTI8ePdi4sU2v3iyyK03mLGAJiallz5tZf2Bf\nYDFNC63HO0gyD2XvcnevM7MrSQycKwDucvf5ZvbVxNt+Z8OvhNFuGDp27Mj555/P7bffy9ln30BZ\nGdoiVdqFnj17sn79+qjDEMm5DHPWj4A/m1lqW/BrM1xn/QUzG93cHm/QrmmBvfrqQsaPrwFKKC01\nZs1SQpfciaqb/ZlnnuHHP/4xzz77bC6aFolELn9fyfaqgREkqvjm9HhnXpmbmQHnAUPd/QYzGwQM\ncPc5QRvNZ9u27UttbQ1g2xeRGT8+6qhEWpYqc5EWEUqPNwSbmvZb4DB23CuIA7eHFUi+KCuDQYM+\nxqyGkhK0iIy0C0rmIi3ifWAicEFyHrsD/bM5UZBkPs7drwC2ALj7OtrB2uwNxWLw+uvd6NPnDH7/\n+yp1sUu7oGQu0iJCK5KDJPMaMyskOSDNzPoC9dk0mu969y7myisP5p57bos6FJGc6NGjBxs2bKC+\nvl3+5EVaSmhFcpBkfgvwGNDfzH4MzAZ+kk2jbcGll17KAw88wIYNG6IORaTFFRUV0aVLFz7+eLdr\nYIhIMKEVyRknc3e/D7iWRAJfRmK51YezabQt2HPPPTn++OO55557og5FJCfU1S4SutCK5CanppnZ\n13f3vrvfnE3DYYhialq62bNnc8kllzB//nwKCrLa6EYkkKimpgGMHj2a++67jzFjAs+aEckLuZ6a\nlmxzFHB08vBZd5+fzXkymZqWGuI1ksQOZqmV2E4G2tW0tIaOOOIIiot7c+utr3DxxYdqMJy0aarM\nRcKxmyL5BDM7IZsiuclk7u4/TDY+EzjQ3ePJ46nA40EbbEs+/tjYsOFfXHNND+6+Gy0gI22akrlI\naEIvkoMs59of2JZ2vI0s58O1FZWVsGJFH9yNqqp6qqoKtICMtFlK5iLhaIkiOUgyvxeYY2aPJY9P\nA/6cTaNtRVkZlJYa8+bV0rPnSkpLG25xK9J29OzZU7M3RMIVWpGccTJ39x+b2ZMkVqsBuMjdX8+m\n0bYiFkt0rU+f/hEXXHAYtbVvAr2iDkukRagyFwldaEVyoCHY7v6au/8m+WjXiTwlFoNTTunHSSd9\nlj/84Q9RhyPSYpTMRcLl7j8GLgLWJR8XufuN2ZxL86lC8vWvf51bb72VmpqaqEMRaRFK5iLhC6tI\nVjIPyQEHHMCIESN46KGHog5FpEUomYu0XhknczO7ysx0Q3g3vv71r3PzzTeTz3vEi+yKkrlI6xWk\nMu8PvGxmD5nZ5OT+5pLmxBNPZONG53e/e4N4POpoRMKlZC4SrjCL5CBrs38PGAHcBVwIvG1mPzGz\nYWEE0hZs2lTAJ5/8lyuvLGPiRJTQpU1RMhcJXWhFctDR7A6sSD5qSczDesTMfpZtAG1JZSWsXNkH\n9+LkIjJRRyQSHiVzkXCFWSQHuWd+tZm9CvwMeB4Y7e6XAQcBnw/acFuUWkSmoKCWbt2WUloadUQi\n4Untaa4xISLhCatIDlKZ9wbOcPfj3f1hd69JBlIPnBSk0bYqtYjMf/6zBbNJrF69OOqQREJTVFRE\n586dtae5SEjCLJKDJPNO7r6kQSA3AWS7ZVtbFIvBMcd047LLvsjPf/7zqMMRCZW62kVCFVqRHCSZ\nH9vIaycEaaw9ufrqq3nwwQdZvnx51KGIhKZHjx5K5iLhCa1IbjKZm9llZjYPGGlmc9Me7wJzgzTW\nnvTr148vfvGL/OpXv4o6FJHQqDIXCVVoRXImG63cDzwJ3Ah8O+31uLt/lE2j7cU3v/lNxo6dwNFH\nf4/DD++uvc4l7ymZizSfmV0GXA4MNbP0ojhG4t55YE0mc3ffAGwApmTTQHvWq9cgzGZz4oldGT06\nMThOCV3ymZK5SChCL5KbTOZmNtvdJ5hZHHAgfVK7u3v3bBpuDyorIR7fi/r6AqqrnaoqY/z4qKMS\nyZ6SuUjztUSR3OQ9c3efkPwz5u7dk3+mHkrku5GYd15AQUENvXuv1LxzyXtK5iLNZ2azk3/GzWxj\n2iNuZhuzOWcmA+AaNrbTI5tG24vUvPMHH1xJTc146ur0P0HJb0rmIs3XSJHcPa1YzqpIzqQyb9jY\nTo9sGm1PYjE488y9OPXUozSyXfKekrlI66T9zHPke9/7Hrfffjvr1q2LOhSRrCmZizRfWo93vJFH\ni3WzN+zbjze3b789Gjp0KKeddho33ngbFRXaUU3yk5K5SPPtYgxas8aiZTI1bXvffjYNyA5f+9r3\n2X//jfzqV05pqWmqmuQdJXOR5mtklthOsknomSwaIyGJxwfjXktdnVFdDVVVaKqa5BUlc5Hma4ki\nOcgWqJ3M7Otm9qiZ/c3MrjGzTmEF0h6UlcGoUfXAVoYP36apapJ3lMxFWifLdG9iM3sIiAN/Tb50\nLtDT3c9qodgyicnzbW/leBwuv/x2Cgrmc889t0UdjuQZM8PdrelPhtLWp35fNTU1dO7cmZqaGsxy\nEoZIzuTy95VsrxOJZV0nkOhunw38zt23BD5XgGRe7e4lTb2WS/mYzAHWrVvHvvvuy6xZsxg1alTU\n4UgeiTqZA3Tr1o3ly5cT04APaWMiSOahFclBpqa9Zmbb7/Ca2TjglaANCvTq1YtvfvObfPe73406\nFJHA1NUuEpoyd7/E3acnH18BsroBm8nUtHnJXV0OAl4ws/fM7D2gAjg4m0YFrrrqKl566SWeffZl\nTVWTViu+9dP/YSqZi4QmtCI5k9HsJ2VzYtm9Ll26cN11P+KUU3qxdaumqknrNPHuicy6aBaxjjv+\nw1QyF2keM5tH4h55MYki+f3kW4OABdmcM5N55kvSAugFjADSR7Ev+dSXJCP77/9FNm1KbESnqWrS\nGlWvrqZqdRXj99rxH6aSuUizhV4kB5ma9mVgJvAf4IfJP6dm06iZTTazBWa20Myua+T9U8zsTTN7\n3czmmNkR2bTT2u2/fxFDhmwGtrHffvWaqiatTknfEkr77vwfZs+ePdmwYUNEEYnkXlM5K/mZ8mTO\nqjSz6bs7n7svST2AjUB/YHDaI7AgA+CuBg4Blrj7kcABQODLczMrAG4Djidxo3+KmTUc0j3N3ce6\n+wHAJcAfg7aTD2IxeOON7hxyyDc577w71MUurU7DLnZQZS7tSyY5y8x6ALcDJ7l7GZDRaPQwi+Qg\nyXxLau6bmXV09wXAyCzaPBR4O3lVUgM8AJya/gF335x22A2oz6KdvNC9u/GnP13Kz3/+Az766KOo\nwxHZScNEDkrm0u40mbNITCn7m7t/CODuazI8dyhFMgRL5h+YWU/g78DTZvYPsrtfPhBYmn7e5Gs7\nMbPTzGw+8C/g4izayRtlZWWceeaZ/PCHP4w6FJEmKZlLO5NJztoX6G1m083sZTM7P8Nzh1UkZ742\nu7ufnnw6NXk/oAfwVDaNZtje34G/m9kE4EfAsS3VVmtwww03MGrUIYwffw0nnbSPutyl1erZsycL\nFmQ14FakrSoCDgSOAroCFWZW4e7vNPG9hkXyOrIcVJ5xMt/FsnPZ7If+IYnh9yl7JV9rlLvPNrOh\nZtbb3T/VDz116tTtz8vLyykvL88ipOh16tSXjh3ncN55vRgzBk1TEwBmzJjBjBkzog5jJ6rMpa3I\n8PeVSc76AFiTrLK3mNlMYCyw22QeZpGc87XZzawQeAs4GlgOzAGmuPv8tM8Mc/dFyecHAv9w970b\nOVdeLufamIoKmDTJqa01iorqmDWrUNPU5FNaw3Ku06ZN46c//SnTpk3LRRgiOdPY7yvDnDUKuBWY\nDHQEXgK+4O7VTbQX2trsQbZALWuwDvt0M9ttoI1x9zozuxL4L4nK/i53n29mX0287XcCnzezLwHb\ngE+As4O2k2/KyqC01KiqqsPsLYYOHQJ0jjoskU9RZS7tSSY5y90XmNl/gLlAHXBnU4k86V4SRfKt\nyeNzgb+Q4Wj4dEEq878Ct7n7i8njccAV7v6loI2GpS1V5pBY0rWqCn760/MZO3aoBsTJp7SGyvyd\nd95h8uTJvPNOU7cDRfJLBButhLaBWZPJvMGycyOBnZad065p4Vu6dCkHHHAAL774IsOHD486HGlF\nWkMyX7NmDaNGjWLNmkxn34jkhwiSeWhFcibJfLer0aQv95prbTWZA/zsZz9j2rSXmDr1EUaPNg2G\nE6B1JPOamhq6dOnCtm3btKe5tCm5+n21RJGccTd7MoCxwMTk4Sx3fzNog2Fqy8l87dptDBy4mNra\nEZSVFWq2PikWAAAgAElEQVR0uwCtI5lDYk/zFStW0K1bt1yEIpITOUzmoRfJQdZmvxq4D+iXfPzV\nzK4K2qBkZuHCDtTWjqCurpDqaqeqKuqIRHbQIDiR7DVYm70ncHLy0TPb3u4g88QvAca5+w/c/QfA\neOAr2TQqTSsrg7KyQgoKauje/UNtwiKtipK5SPOFWSQHSeZGYsh9Sl3yNWkBsVhi4ZgnnthMUdGR\nzJv3QtQhiWynZC4SitCK5CDzzO8GXjKzx5LHpwF3ZdOoZCYWg+OP78Ett/yYL3/5y7z++ut07Ngx\n6rBElMxFwhFakZxRZW6JIasPAxcBHyUfF7n7r7NpVII566yzGD58OD/84c1UVCTmo4tEqVevXqxd\nuzbqMETyXapInmpmU4EXybJIzqgyd3c3syfcfTTwWjYNSfbMjJ/97HeUla3j5z+vp7S0QKPbJVID\nBgxg5cqVUYchkrfSiuQZJJZzhUSR/Ho25wvSzf6amR3i7i9n05A0z7p1A3EfQF1dQXJ0u2ntdolM\n//79WbZsWdRhiOStsIvkIAPgxpHY1m2Rmc01s3lmNre5AUhmEqPbCzCroU+flRrdLpFSZS4SitfM\n7JAwThSkMj8+jAYlO7EYzJ5tPPvsR1xyyWEsWvQY+++/f9RhSTvVv39/VqxYEXUYIvluHHCemS0B\nNpEY/ObuPiboiTJO5lEu2yoJsRicemp/Nmz4IRdccAFz5szR6HaJhCpzkVCEViQH2TUttH1Xw9KW\nl3PdHXfn9NNPZ/jwA/j856+nrEyD4dqL1rKc66pVqygpKdFmK9Km5HqjlTAFSeYPkdh39a/Jl84l\nsfRc4H1Xw9JekznAokWrGDVqNbCfRre3I60lmdfV1dGpUyc2b95McXFxLsIRaXER7JoWWpEc5J55\nWYOdXKabWSabr0sLWLWqH+59NLpdIlFYWMgee+zBqlWrGDhwYNThiOSre0kUybcmj88F/gIELpKD\njGZ/zcy2p4vkvquvBG1QwpG+dnvXru9TUtI+eygkOrpvLtJsZe5+ibtPTz6+AmQ1VylIMj8IeMHM\n3jOz94AK4BBNUYtGau32Z5+to3//M/n73/8SdUjSzmhEu0izhVYkB+lmn5xNA9JyYjH47Gc78fDD\nf6K8/GQ6dz6KyZP30r1zyQlV5iLNliqS308eDwLeMrN5BJyipqlpbcA++4ymU6eXOfvsnoweXc/z\nzxcooUuLU2Uu0myhFclBKnNppSorYdWqPQCjqqqGqqoCDYaTFjdgwACWLNE1vki2wiySg9wzl1aq\nrAxKS43iYqeo6B0WLPhb1CFJO6DKXKT1yDiZW8IXzewHyeNBZnZoy4UmmUoNhps503jmmW1861v/\nw4IFC6IOS9qQ+NY4FUsriG/dsf+u7pmLtB5BKvPfAocBU5LHceD20COSrMRiMH48TJgwlhtvvJHT\nT/8Szz77ifY+l2aLb40z8e6JTPrzJCbePXF7QldlLtI8YRbJgXZNc/crgC0A7r4O6JBNo9Kyzj77\nElaufIRjjiliwgRXQpdmqVxVSdXqKmrra6leXU3V6ipAlblICEIrkoMk8xozKySx5Bxm1heoz6ZR\naVlVVUY8vjfuxVRW1lNVFXVEks/K+pVR2reU4oJiSvqWUNo3saZFr169+Pjjj9m6dWvEEYrkrdCK\n5CCj2W8BHgP6mdmPgTOB72XTqLSs1IC4qqp6YEGyejoq6rAkT8U6xph10SyqVldR2reUWMfEvMeC\nggL69evHqlWr2HvvvSOOUiQvhVYkB5lnfp+ZvQocTWLP1dPcfX42jUrLSg2Iq6oqYP369VxwwRQG\nD36BTz4Zph3WJCuxjjHG7/Xp+Y6p++ZK5iJZCa1IDjTP3N0XABomnQdSA+LgCL7znZ8wfnwNdXVO\naalphzUJTf/+/XXfXCRLYRbJGSdzMzsY+C4wOPk9I+BycxKNceMuoaamlvp60w5rEqoBAwZoRLtI\nM4RVJAepzO8DvgXMQwPf8kpih7UC5s2roXv3lZSUDCRxLSbSPKrMRbIXZpEcZDT7anf/p7u/6+5L\nUo+gDUruxWIwe3YB//3vVvr2PYM//ek3UYckbYQqc5FmuQ+4G/g8cDJwUvLPwIJU5teb2R+BZ4Dt\nc1Hc/dFsGpbcisXgmGO68dRTD3P44YfTv/9w9tnnJA2Ik2bp378/zz//fNRhiOSr1e7+zzBOFCSZ\nXwSMAorZ0c3ugJJ5Hhk8eDD33/8vjj66A2b1lJYWaECcZE2VuUizhFYkB0nmh7j7yKANSOvTocOB\nQB21tQVUVdVrlzXJmu6ZizRLaEVykGT+gpmVuHt10EakdUkMiCuksrIOs7fo2bMHMDDqsCQPqTIX\naZbQiuQgA+DGA2+Y2VtmNtfM5pnZ3DCCkNxKLSoze3Yh118/jTPOOJb33ltLRQVax10C6dmzJ1u2\nbOGTTz6JOhSRfPSCmZWEcaIglfnkMBqU1iG1qMz48f+P1atXU1Kylpqa3lpURgIxs+1d7fvss0/U\n4Yjkm1SR/C6Je+ZZT00LspyrpqG1UWeffQO33lqnRWUkK0rmIlkLrUhuMpmb2Wx3n2BmcZKLwafe\nInEF0T2sYCQao0db8h56DR07vs+wYQOBTlGHJXlC981FshNmkdzkPXN3n5B8+jt37572iAG/DysQ\niU5iURnjueeM4477X84//3xmzqzR/XPJiEa0iwRjZrOTf8bNbGPaI25mG7M5Z5B75sc08tpk4Nps\nGpbWJRaDCROKKCn5A0OGfEB5OZSV1fP88wW6fy67pcpcJJhUkZwsikPRZGVuZpeZ2TxgVHIUe+rx\nLol12gMzs8lmtsDMFprZdY28f66ZvZl8zDaz0dm0I8G99VYxmzfvg3sxlZV1vPba1qa/JO2aKnNp\n65rKWWmfO8TMaszsjAzPe1Mmr2Uik6lp95NYK/YfyT9Tj4Pc/bygDZpZAXAbcDxQCkwxs1ENPrYY\nmOTuY4EfAX8I2o5kp6wMSkuN4mKne/cPueGGL7B58+aow5JWTJW5tGUZ5qzU534K/CfA6Y9t5LUT\nsokzk3vmG9z9PXefkra5ylZ3/yibBoFDgbeT56oBHgBObdDmi+6+IXn4IlrRJGdSc9BnzjTefXcv\n9tyzG5Mnn8Uzz2zWPXRplCpzaeOazFlJVwGPAKuaOmFaj/fIRnq8s1q/Jcg983RPAAdm+d2BwNK0\n4w9I/GXtypeBJ7NsS7KQmoMORdx22z0MHfohxxxTTGlpLRUVRbqHLjtRZS5tXJM5y8w+A5zm7kea\n2e7yWcr9JPLajcC3k699Bngr20I522Sek82wzexIEmvXTtjVZ6ZOnbr9eXl5OeXl5S0eV3syf34h\n8fjegFFVtY3p01dxyin9og6r3ZgxYwYzZsyIOozdUmUu+SrE39evgfR76bvNkcme5w3AlO1fMHvM\n3bMtkjF3b/pTDb9kdrm7/zarBs3GA1PdfXLy+Nsk5qvf1OBzY4C/AZPdfdEuzuXZxC+Zi8dh4kSo\nrnb69FlFhw5H89hjj7F16whtnxoBM8Pdc3UxndHvy93p0qULa9asoWvXrjmITKRlNPb7yiRnmdni\n1FNgD2ATcGmQ7U3N7HV3PyDb2DOuzM2sI4kN1PcBiszsBwDufkPANl8GhpvZYGA5cA5pVyfJtgaR\nSOTn7yqRS26k7qFXVRmlpf25995rGTduG6DtU9uz+NY4lasqKetXRqxjjD333JNly5YxYsSIqEMT\nCVuTOcvdh6aem9ndwL+y2Ke8WQO9g2y08g8SN/1rSVx1pB6BuHsdcCXwX6AKeMDd55vZV83s0uTH\nvg/0Bn5rZq+b2Zyg7Uh4UvfQYzE48MAv4T4quX1qHVVVUUcnuRbfGmfi3ROZ9OdJTLx7IvGtcYYM\nGcLixYub/rJInskwZ+30lUzPnT4NLdXbne3UtCD3zPdKdTM0l7s/BYxs8Nodac+/AnwljLYkXKnt\nU6uq6oEFPPfcc5SUXEZVlanbvZ2oXFVJ1eoqautrqV5dTdXqKoYNG6ZkLm1WUzmrwesXBzj1sex8\nrx0SU9N2OZd9V4JU5i9o8RZJdbvPmlXA66934+6772bo0A+ZNMmZOFFbqLYHZf3KKO1bSnFBMSV9\nSyjtW8qwYcNYtEh3xEQysYvF2OY1azG2TAeQmVk1MBxo9lZtYdEAuOj9979xJk/uhHsxxcXOzJna\nca0ltZYBcPGtcapWV1Hat5RYxxgPP/ww//d//8ejjz6ai9BEWkSufl9m1gPoRWJq2nXsGP0ez8XU\ntKxWpZG27bDDYowe7VRW1mD2Dlu2FFJRsa+63Nu4WMcY4/facdWmylwkc6mpaWa2ALgw/b3kBUXQ\ngeXaz1yaJ7XjWlVVMRUVb3LMMWVAHWVlhRrp3o4MHTqUxYsX4+6Y5aTjQKQt+DjteSfgJGB+NicK\n0s1uwHnAUHe/ITl9bIC7RzbSXN3srUtFBUyaVE9tbQEFBbXMnGkccURh1GG1Ka2lm70xffr0Yf78\n+fTrp0WFJD/l8ve1i/Y7Av9x9/Kg3w0yAO63wGHsmF8XB24P2qC0XYlNWgooLnY6d36P7373NBYv\nXk1FhQbGtQdDhw5VV7tI83QB9srmi0GS+Th3vwLYAuDu64AO2TQqbVP6Ji0ffDCEQw89lJEjVzFp\nUr1GurcDmp4mEkxyBHtqNHsV8BaJpWEDCzIArsbMCklOiDezvkB9No1K27Vjk5ZCTj/9+9x8cx11\ndQXMm1fL3Lnqdm/LVJmLBHZS2vNaYKW712ZzoiCV+S3AY0B/M/sxMBv4STaNSvuQWmCmqCjR7X7t\ntZ9j/vwP1O3eRqkyFwkmta148vFhtokcgo1mv8/MXgWOTr50mrtnNepO2of0dd1HjRrCr399LKNH\nrwf21Gj3Nmjo0KH8+c9/jjoMkbzRcM+T1OvZTE3LuDI3s07AicAxwFHA5ORrIruU6nbv2bOQ44//\nBmYl1NUVMm9eDRUVG6MOT0KkylwksFD2PIFgU9MeIjGC/a/Jl84Ferr7Wdk0HAZNTcsv6dup9uix\njA4djubWW29lzz2P1SIzGWrNU9Pq6uro2rUr69ato3Pnzi0YmUjLyPXUNDOrdPeyMM4VZABcmbuX\npB1PTy7xKpKRnbdTHchzz93BGWf0pa6ulv32g4qKIiX0PFZYWMjgwYN59913KSkpafoLIvKCmY12\n96zWY08XZADca8lN2gEws3HAK80NQNqX9O1U+/T5LO77UV9fRFVVHbfdNp2NG10D5PKYlnUVaVpq\nShowgURufStts5W52ZwzSGV+EImriPeTx4OAt5I7v0S64Yrkp8QiM0Z1NQwaVMNdd/2An/70XjZv\n3ofSUtMAuTyUWtZVRHbrpKY/EkyQZB7KXuYiKTu63aG0tBuvvfYMRx1VSH29MW9eLRUVEIsV6X56\nHlFlLtK01F4nZnYW8JS7x83se8CBwP8CgfdCybibPdl4T+Dk5KNn+hy5oA2LwM7d7gce2IHRowsp\nKqqnS5f3OeWUxUycqNXj8okqc5FAvp9M5BNIzBS7C/h9NicKMjXtauA+oF/y8VczuyqbRkUak6rU\nZ80q4LHHhlBbO4y6ugLmzq3h6aeXEY+j++mtVHxrnIqlFQwYNECVuUjm6pJ/fg64090fJ8tl0oNM\nTZsLHObum5LHXYGKKO+Va2pa25U+ja1375Vs3XoUHTpM46OP9mzX99Nb49S0+NY4E++eSNXqKvbr\nsx8Lv7OQzes2U1AQZHytSPQimJr2b+BD4FgSXeyfAHPcfWzQcwX5tRk7riJIPtfGxdIi0jdtefvt\nAdxzz3OsXt2X2lqjsrKON9+sVaXeSlSuqqRqdRW19bUsWLuArvt0ZdmyZVGHJZIPzgb+Axzv7uuB\n3sC3sjlRkAFwdwMvmdljyePTSPTvi7SIHZu2wJFH9mXMGKiqqqdTp/c4//zzcX+cDz/s2a4r9dag\nrF8ZpX1LqV5dTUnfEjr16MSiRYvYa6+sdnIUaTfcfTPwaNrxcmB5NufKuJsdwMwOJDEvDmCWu7+e\nTaNhUTd7+xKPp0a+w913v8zVV+8PFFNUVMfMmQWUlRmVlbTp0e+tsZsdEl3tVaurKO1byhVfuYIj\njzySiy66qIUjFAlXrrvZwxQombc2SubtVzwOEyY41dX1FBa+zX77fZ0NGx5g6dJYm67UW2syTzd1\n6lRqa2v50Y9+1AJRibScfE7mGqEieSkWg9mzjVmzClm5cl/OOOPrvPtuZ2prjaqqOiorXffUI6IN\nV0QyY2ZnmVks+fx7ZvZosgc8MCVzyVupe+o9ehTwta8dw5gxRRQW1lFU9A6XXHIsZWXrmDTJNU89\nx4YOHarpaSKZaWye+e+yOVGQeeahXUGIhC1Vqc+enajUL754Ku+/32376PeZMz9RlZ4jI0aMYOHC\nhegWmEiTopln7u5jklcQPwJ+DvzA3cdl03AYdM9cdiU1T72qqo7OnZeyefNm3Pdl1Kh6XnyxQ97e\nT8+He+YAAwcOZNasWQwdOjTkqERaTnuZZx7aFYRIS9uxmlwhjz66D2ajqK8vorraOf307/H00y/y\nwguuSr2FHHTQQbz22mtRhyHS2oU2zzxIMv/QzO4AvgA8YWYdA35fJKdS99THjYPS0gKKi6GsrIhJ\nkwZz0kk9OOKIWkpK1rB8+ccaLBeygw46iFdffTXqMERaNXff7O6PuvvbyePl7v7fbM4VJBmHdgUh\nkks7VpODF14o5Nhjv0J9/SigmA8/7MG++57HkCFLmTRJm7qERclcpGlhjkXTPHNpd3as+w4lJfDt\nb6/mvPN6U19fCGzjmmv+zv/7f0ezfHmfVrcATb7cM1++fDllZWWsWbMGs7yctivtUAT3zEMbi6bR\n7NLupFfqs2bB5z7Xl9GjCykudoYO3cq77z7HsGHLOOKIGkaPXs97721VF3xAe+65Jx06dOD999+P\nOhSR1kyj2ZMxqTKXUKQvFVtZCZMmObW1BtRQUPA+MJghQ7bwyiudKSwsjGzZ2HypzAFOOukkLr74\nYs4444wQoxJpORGOZj8OOACNZhdpntRguVgskaRLS43iYhg+vJiCgqHU1xexaFEHhg07h6FDP2TS\npHomTEiMhtfguZ2l9jYvO6hM981Fdi81Fu24KEazn4NGs0sblt4N/9xzOxL72LEd+MUvfslHHw2g\ntraAuXO3cd55v2b//eNaaS4ptbf5pD9P4sEuD/LS6y9FHZJIa/YJ0BWYkjwuBtZnc6JsRrM3+wpC\npLVLVeqf+czO99fPPHNQ8v46jBrl9O3bj8WLO1Fba8ybV8MttzzDsmXxdlupp+9t/sG2D3h16ata\nCU5k134LjGdHMo8Dt2dzoiDJPLQrCJF8kt4Fn161z5nTiV//+lzGji2mqMjZc88NTJt2F3vv/S5H\nHFHDqFGrePXVhWzc6O0muaf2Ni8uKKakbwlF64r44IMPog5LpLUa5+5XAFsA3H0dORgA9zugHjjK\n3fczs17Af939kGwaDoMGwElrsKvBcwUFNfTq9UXi8euprd2Xvff+mCefhPXre2Y9eC4fBsCl723+\nhdO/wKWXXsppp53WAhGKhCuCAXAvAYcDL7v7gWbWl0RePSDouYJU5qFdQYi0JbsaPDd6dDEPPPAA\n9fWJpWSXLOlKaekaDj+8huHDl/P44zNZvXpLm6vaYx1jjN9rPLGOMS0eI7J7twCPAf3M7MfAbODG\nbE4UJJnXmFkh4ADJK4j6bBoVaasazmEfN862LyU7fHgxhYXDgGLWrOnLN77xIP37L+SII2oYMWIF\nTzwxi1Wrdt7dLd9HyiuZi+yau98HXEsigS8HTnP3h7I5V5Bu9vNIrMt+IHAPcCaJvVizajgM6maX\nfJDqhh80CE48ccfKc7/4BZxwQqpLvpYRI65m4cKv4r4fffuu5qab5vLLXx7DW28VUVqauDjo3r31\nd7One//99znkkENYsWKFVoKTVi+CbvZ7gKuTg8pJ3r7+pbtfHPhcQX6sZjYKOBow4Bl3nx+0wTAp\nmUu+Sb+/DjsvK9swuY8ceSvz518BdKC4OFHtH3ZYfiVzd6dfv3688cYbDBw4MKTIRFpGBMn89Yb3\nxxt7LRNBlnO9B1jh7re7+23ACjP7U9AGk+eabGYLzGyhmV3XyPsjzewFM9tiZl/Ppg2R1mhXI+MT\nXfLp99uLmDbtGsaMKaa42Ckp2XEBkE/MTF3tkvcyyFnnmtmbycdsMxud4akLktV46jy9gaJsYgzy\npTGprgBIDIAzs8BXD2ZWANxGosJfBrxsZv9w9wVpH1sLXAVoCKy0aanknjJr1o7KPRaD2bNtp+N8\nlErmp5xyStShiASWYc5aDExy9w1mNhn4A4n54035JVBhZg8nj88CfpxNnEEGwIV1BXEo8La7L3H3\nGuAB4NT0D7j7Gnd/FajN4vwieSu9cm/sOB8dcsghVFRURB2GSLYyyVkvuvuG5OGLQEb3lNz9XuAM\nYGXycYa7/yWbIIMk47CuIAYCS9OOPyDxlyUibdDBRxzM7Gtns2LdCgb0GhB1OCJBBc1ZXwaezOTE\nZlbi7tVAddpr5e4+I2iQGSdzd7/XzF4Bjkq+dEYyiEhNnTp1+/Py8nLKy8sji0UkbDNmzGDGjBlR\nh5G1+NY4J/3tJD6Z8gmH/+Fw3rz6TWId87ibQdqUsH9fZnYkcBEwIcOvPGRmfwF+BnRK/nkwcFjg\ntgNMTStpmLyzuYIws/HAVHefnDz+NuDuflMjn70eiLv7zbs4l/vGjYk+yHicnfalDHIMRLanpUgA\n+bACXLqKpRVM+vMkautrKfACnv/y84zfK5NbiSK519jvK9OcZWZjgL8Bk919UYbtdQVuAg4CYsB9\nwE3uHngNlyD3zB8ys+ssobOZ3Up2K9W8DAw3s8Fm1oHELmz/3M3nd/8/rokTYdmyxJ+TJgU/Pvzw\nxCP1XmN7Wu7uOMhng55LJM+l1movsiIKPyqkZI+SqEMSCarJnGVmg0gk8vMzTeRJNST2PelMojJ/\nN5tEDiTmgWbyILHJym1ABVAJfAcoyPT7Dc41GXgLeBv4dvK1rwKXJp/3J3GPYj3wEfA+0K2R87gX\nF7vfead7UZF7NseFhTu/N22a+9ixidfGjnX/8MNdH5eVJR6ZfDbouTZuTDxeeCHxp/vuj4N8trnn\nksgkfrLBf3PZPJJtNdvGLRv9hfdf8L2H7e2VlZWhnFOkJezq95VBzvoDiVlYrwGvA3MaO08j530T\nuIHExmV7Av8AHs7ku586V8YfTKzD/nPgDeAd4JxsGgzzAeycFIuLgx+nkmjqvaefzv5CoC1eVDT8\nbFPJPpcXFe3wIiMfk3nK5Zdf7jfddFOo5xQJUy5/X4nmOLiR187P6lwBGg3tCiLEv4id/8deUZHd\nccPn2V4ItMWLioaf3d1FRi4vKnJ5kdHcC5QQ5XMy//e//+2f/exnQz2nSJhy9fsCrk17flaD936S\n1TkDNB7aFUSIfyEZ/0sKJNsLgaDf3d25WstFRcPP7u4iI5cXFbm6yGjuBUrDi4FmXhjkczLftGmT\nx2IxX79+fajnFQlLDpP5a409b+w443Nm0GjoVxAh/oVk/m8pH7WGi4rG3msNFxW5usho7gVK+kVG\nCBcG+ZzM3d1POOEEf+ihh0I/r0gYcpjMX2/seWPHGZ8zg0ZDv4II8S8k839LEp7WcFHR2Gdb4iKj\nuRco6RcZzb0wqKjI+2R+6623+oUXXhj6eUXCkM+VeZPzzNN3cGm4m0u2u7uERbumyU7StyRLrSWQ\nvkXZrt5r6ri5301tjTZyZOL4rbcS26Q98cTOe6I2dTxrFta9O55H88wbWrx4MeM/O57Hnn+MMf3H\naAEZaVVytY6DmdUBm0hMve4MbE69BXRy9+LA58wgmb/m7gc2fN7Yca4pmUteCOvCIBbLu0VjGopv\njdP3ur7U9a6jtF8psy6apYQurUaut0ANUybJPPQriLAomUt7k+/JvGJpBRPumkC91VNcUMzMi2Zq\nRThpNfI5mTe5Apy7F7p7d3ePuXtR8nnqOLJELiL5p6xfGfv22hfqYFSfUZT2zcNN2kVaoSDLuYqI\nNEusY4w5/zOH8fPHc1mny9TFLhISJXMRyalYxxjfv+j7/PH2P6LbZCLhUDIXkZybPHkyGzdupKKi\nIupQRNoEJXMRybmCggKuuOIKbr311qhDEWkTMt7PvDXSaHZpb/J9NHu69evXM2TIEOa8MYc1BWso\n61eme+gSqXweza5kLpJH2lIyB7jk8kt4vN/jrC1cS2lfzTuXaOVzMlc3u4hE5qhzjmJl/Upq62up\nXl1N1eqqqEMSyUtK5iISmVPGnUJsS4xCCinpW6J55yJZUjIXkcjEOsaY/qXpdH2oKw8c94C62EWy\npHvmInmkrd0zT7n++uupqqrikUceyUl7Io3RPXMRkWb4zne+w5tvvsnjjz9OfGuciqUVxLfGow5L\nJG+oMhfJI221MgeYNm0al1x2CT2u6cH8tfM1ul1yTpW5iEgzHXPMMYycNJKqVVUa3S4SkJK5iLQa\nv5v6OwrWFlBEkUa3iwSgZC4ircawvYfx5NlP0vXhrvxqzK8AdP9cJAO6Zy6SR9ryPfN0//73v7nk\n8kvo/Y3evLPxHd0/l5zQPXMRkRCddNJJXPLtS1iwdoHun4tkQMlcRFql71zyHQYUDoA6GNp9qO6f\ni+yGkrmItEqxjjHeuu4trut3HatvWs1//vUfzUEX2QXdMxfJI+3lnnlDr776Kp+f8nk2fWET6zus\n1z10aRG6Zy4i0oIOOugg7njsDtYWrKW2vpaqVVW6hy6SRslcRPLC4cMPZ/SeoymkENbAL6/7JQsW\nL1C3uwjqZhfJK+21mz0lvjVO1eoq9um6DzfffDM3r7sZ7+uU9ivl+YufV7e7NIu62UVEciDWMcb4\nvcYzoNcATr/0dKyfUU8985bP489P/FkD5KTdUmUukkfae2WeLr41zsS7J1K9upqBHQZSc3cNH5/+\nMVxhOusAAA/YSURBVJs6b6K0nwbISXD5XJkrmYvkESXznaW63Uv7lvLK+69wzP3HUE89BfUF3DHp\nDkr3LaWsX5mSumREyTwi+fA/G5EwKZnvWnql3qu+F2vXrqW+Vz37dN2H1658jcLCQipXVSq5yy4p\nmUck3/5nI9JcuU7mGzc6sRjE41BZCWVlNHrcWqQq9Y+3fcwJ951AbX0t1EGfp/pQeEIhHxV+tL0L\nHlByl50omUdEyVzam1wn87FjnSeegBNPhKoqKC3lU8ezEnlxe3JPfx5V4k+v0kv6lnDliCv56qyv\nUm/1UAfn1J7DK31e4b3N721fgAaU3Ns7JfOIKJlLe5PrZF5c7Nx+O1x+OdTWQnExnzp+8kn4xjcS\nyX3UqMR3FyzILPE3VfU3/GwQ6ffTge3JfXDXwRy89mAeKHwACsHqjcu7X87TBU+z+OPFSu7tWD4n\n86KoAxCR1qukBD73uUQirq5u/Ng9kaxra2H+fDBLPK+uhscf3/FedTXMmbMj8TeW7NOPG14YBL8Q\niOFLx0OPxHuzLpq1U3Kff/d8qlZX8ZkOn2Hxu4tZ2HshFMLcZXO56PsX8XLvl1m2bRn79d2Pp857\niiUblmxP7PGtcSV6aVWUzEVkl2bNSibCWTsSbsNj2JHcR45MHL/1VtOJv7Fkn37c8MKg+RcCOyf3\nJ86axeNzqvjcoaXEusHhd01kwepq9uo6iJ4de7L0k6V4gTNv2TwG/3AotV1r2MP34NrPfJM7Nt3B\nks1LKOlbwuyLZwM7V/Hpyb7heyItQd3sInmktY5mj8d3Tu7pib/hexMn7kjuqQTc2HHDC4Nf/AJO\nOGHX3f3px4WFOy4EGt4K2NWFwPGnxJm/por99ijlb4/A2N9MZEu3aoo3D6Km6xIorIW6YsatPZyX\n+syEQoda6POfPmyesIVPYp/Qu64PX+l0MX/l/1het4zBXQZTVFTE4o2L2K9vKS9cMov4x/DvOZWc\ndGgZn+kTY9na+G6P1QuQO/nczR5JMjezycCvSaxAd5e739TIZ24BTgA2ARe6+xuNfEbJXNqV1prM\ng0hP7g2TfWPJP9cXAqnjy74Wp653FRYfhE85EfaohjUlPHDyE1z49Ils6VZNp4/34xfHfZsrK760\nPdlP2nQCM7s+kTiuLQQDCuugtoheTwxh/bgCfI9FFKwdzkkbJvJ4r+ep67WQonX78t19ruAnS35H\nTc8FdNiwH49+/la+8dplvLPhbUb12Y9HP/8UM95YkvGFQPoxBLuIaHjcHuzq9xVWzmpJOU/mZlYA\nLASOBpYBLwPnuPuCtM+cAFzp7p8zs3HAb9x9fCPnapXJfMaMGZSXl0cdxqcormBaY1xtIZk3RzwO\nf/nLDM4/v7zFLgQauzCoK4qzcF2iav/VT2NMPjWR6IvWlXLzL+H/vTERPq6EbmX8bMwTXDs3mfzX\njkwk895v/f/27j3MirqO4/j7w7KwhWd3YTEKLxg3YckbGW6EhvqkiFlq+hjQzTAr00fMHshLaUny\nJBVe8YJXKtPMVORuyKbEimgkxLLsnoVMpLQFxfV5ZNmz++2Pmd09Z2OXs3D2XOj7ep55dr47vzPz\n5TDf/f3mzMwZqBvJ1MNv4IGGi8KOPp+Tdk5jTcmc1nhw1SS2jHy0Ne5bcSLvjF3bNjDYdRgUb4f/\nDOGIP0fYNr6+dWAw7h/HsOqov9NcUkPezmFMaj6Lx/KWEttVRV7xMISIFUfJf/doZo2awTWVt9BY\nFAwaHjz9l0x9/moaCjfR+72RLJz0KJ9/bAoNkUoK6kupvT44lZCKgQHAL++fz9WXfG2/BhXdOUDZ\nW32lss/qTpk4Zz4GqDGz1wEkPQZ8EaiKa/NFYD6Ama2RVCRpgJm9lfZs90M2dgLgeXVVtub1/ywS\ngbffLicSGd8al5UlLo+P4+c7O++/7+sCImzcWNY6MPjEsAiVlWWUlsKXzoH75r3IxuhVjBo6hyk/\nijD/gRfZVLeR4X2DF7QMBKbPgN/eNio8qi9l7rRpfGbu8tb4iZtn8Zm5r7Utv+oPTFoYDgx2HQnF\n4cf9/bdwwkU380bTNZAXo7lfLRRcQHOfpyAvRlPfKBv/HSPWvxo2NNM0KBqcd8iL0VhUza1LltB4\nbBXkxdhTWMUVt99Bw9hNkBejIVLF2dOmsedzlZAXY/chmzhszHg44304dAs8+/FggFKyFT07hKFr\nDiV6Uh3WP4oWDmVMzXDWDqumuSRKj4VDObPuJJYd+jLN/WrosXgIQjSt38xt2+YytdeXeHDPk8T6\nVtNz8XC+/5Gp/Oo/DxIr3kzPJUdz49Cr+El0Do3Fm8lfOoI5n/wx33/1p+wpqqLn0mFIorGwmt7L\nRvLrCXfy1aWXBwOSZSN5+sJHOPeJb9BQWEnv5aU89/UnOOORC9kdqaRgeSl/uWwJr0RfT+aTh5zo\nszLxoJXDgDfi4m3h7zpr8+Ze2jjnult9fdvPiork4q603Z91vfHGfr02Qj1lVkGErscJ8xF4cXE9\nL9y1gRcX1zNwIKxeAN88OZ/VC2iNV13XhzWLYM2iYH71Ahh+VITaKxcz76MPUnvlYkYPG9hpfPYp\nA/nES+Xk/bqc4atW0vu9UojlU/D+SG6YPJmC+rZ4zne+mxDfP31GEDf3oFf9CHrXj2hd9szsXyS0\n/dPd9yTEFfPnJ8SzZt0cdOR5MSjZAiVbIS+GlWxh2MSzsf7RIO5XS5/jjqe5JNo6yNj1kQE096sJ\n4uIoTX2jIKOpuIaKHXXE+lZDXoxYcQ1PV1YSK94cxEXVzCsvpzGMGws3M/P3T7CnKBiExAqraSys\nbh2ATP35LTQUtg1Izps+g4bCYEDScMgmTr30UnZHWgYolXzyjk/z7YpTGDJzHNt3dPpgnpzos/yp\nac65jp18MmzfHvw85ZR9x2PHBlMybfd3XQ89lPE8IhNPpuyy0UQmtsWHL7o3IS67bDSRM8cSOXNs\nQtuB507kkmkXM/DcifuMI/XbWR2byKpt03ll9wVseT6fefNHUltewOg+UFtesM/4nNf6s/X5Aras\n6N3l17bEXxs1mIK6IRDLp9fOwfTe8fGgo98xmJvOmtC6rGDHYGafd15CfMekSf/72uYeFOwYzMOX\nXprQ9ndXXJ4Q//EHVyfEi669tsM8yn82M6HtX2bfkhC/fOutrXHPltMV4ScPi194JdOVdsAycc68\nDLjRzCaE8Q8Bi7+gQNI9wEozezyMq4DPtv/IQlJ2ndBzLg3Sec48HdtxLpvs5Zx5yvqs7pSJc+Zr\ngaGSBgH/Ar4MTGrXZgHwPeDx8I18d29vSq7eQuBcLvD6cg5IYZ/VndLemZtZk6TLgeW0Xea/SdK3\ng8V2n5ktljRRUpTgMv+L052nc845lyt9Vk5/aYxzzjnncuQCOEkTJFVJqpY0o4M2t0uqkfQ3Scdn\nQ16SJkt6LZxWSTomG/KKa/cpSY2Szs+GnCSNl7RO0t8lrezunJLJS1KhpAXhfrVB0jfSlNcDkt6S\ntL6TNinZ572+UpdTXLu01VayeXl9tW4zbbWVVmaW1RPBgCMKDALygb8BI9q1OQtYFM6fBLyUJXmV\nAUXh/IRsySuu3QpgIXB+pnMCioCNwGFh3D8b3ivgGmBWS07ADqBnGnIbBxwPrO9geUr2ea+v1OYU\n1y4ttdWF98rrq22baamtdE+5cGTeesO+mTUCLTfsx0u4YR8okjQg03mZ2UtmtisMXyI99x0m834B\nXAH8AXg7S3KaDDxpZm8CmFldluRlQMs3SkSAHWYW6+7EzGwV8E4nTVK1z3t9pTCnUDprK9m8vL5a\nNpi+2kqrXOjMs/WG/WTyincJsKRbMwrsMy9JA4Fzzexugu9yynhOwHCgn6SVktZK+mqW5HUnUCpp\nO/AacGUa8kpGqvZ5r6/kZWNtJZUXXl9dkfEvgNkf/gjUNJB0KsHVjeMynUvoViD+/FU23ILUExgN\nnAb0ASokVZhZNLNpcSawzsxOkzQEeE7SsWb2fobzcqEsq69srC3w+jro5UJn/iZwZFx8ePi79m2O\n2EebTOSFpGOB+4AJZtbZRzvpzOtE4DFJIjhPdZakRjNbkMGctgF1ZrYb2C3pBeA4gnNu3SWZvC4G\nZgGYWa2krcAIINNfGZWqfd7rK7U5pbu2ks3L6yt5mdjfD1ymT9rvawLyaLuIohfBRRQj27WZSNsF\nC2Wk5wKdZPI6EqgByrLp/WrX/iG6/wK4ZN6rEcBzYdsPAxuA0izI6y7ghnB+AMHHb/3S9H95FLCh\ng2Up2ee9vlKbU7v23V5bXXivvL4St9vttZXuKeuPzC1Lb9hPJi/gR0A/YG44Um80szFZkFfCS7oz\nn2RzMrMqScuA9UATcJ+ZVWY6L2Am8HDcbSzTzWxnd+YFIOlRYDxQIumfwA0EfxBTus97faU8p4SX\ndFcuXc3L66tNumor3fxLY5xzzrkclwtXszvnnHOuE96ZO+eccznOO3PnnHMux3ln7pxzzuU478yd\nc865HOeduXPOOZfjvDN3zjnncpx35s4551yO8878ICKpSNJ34+JVGcihQFJ5+I1cB7KefEl/luT7\nqMs4ry2X7fw/8+DSF7isJTCzbnmKlKQRkq7pYPE3CZ6bfEBfLWjB84//BHz5QNbjXIp4bbms5p35\nwWUWMETSXyXdIqkeQNIgSZskPSRps6TfSDpd0qowPrFlBZKmSFoTruPuDo4CTgXWdZDDFOCZrmxX\n0oclLZS0TtJ6SReG63omXJ9zmea15bJbpp/04lPqJoKnE62Pi9+L+/0ewqckETxe8P5w/gvAU+H8\nCGABkBfGdwFfabeNCcCrwLeAAe2W5QPb2+WTzHbPB+6Ne10k/NkDeDvT76tPPnlt+ZTtkx+Z///Y\nam1PSdoIrAjnNxD8YQA4HRgNrJW0DjgNGBy/EjNbCrxpZvPM7K122+gPvLsf290AfE7SLEnjzKw+\n3FYz0CCpT9f/uc6ljdeWy7isfwSqS5mGuPnmuLiZtv1AwCNmdl1HK5E0APh3B4s/AAq6ul0zq5E0\nmuA5wjMlrTCzm8J2vYHdHeXjXBbw2nIZ50fmB5d6IBIXq4P59lqWrQAukHQogKS+ko5s13YM8LKk\nEyV9KH6Bmb0L5Enq1ZXtSvoY8IGZPQrMBk4If98PqDOzpk7W4Vw6eG25rOZH5gcRM9spabWk9cBS\nIP6q147mW2Mz2yTpemB5eNvKHuB7wD/j2m4n+Liw1sw+2Esay4FxwPPJbhc4BpgtqTncZsstQKcC\ni/b2b3Uunby2XLaT2QHd5eBcAkknANPM7OspWNeTwAwzix54Zs7lNq8t1xn/mN2llJmtA1am4ost\nCK7I9T82zuG15TrnR+bOOedcjvMjc+eccy7HeWfunHPO5TjvzJ1zzrkc5525c845l+O8M3fOOedy\nnHfmzjnnXI7zztw555zLcf8FHh1/CxxzJ84AAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -184,10 +184,10 @@
}
],
"source": [
- "from dcprogs.likelihood._methods import exponential_pdfs\n",
+ "from HJCFIT.likelihood._methods import exponential_pdfs\n",
"\n",
"def plot_exponentials(qmatrix, tau, x=None, ax=None, nmax=2, shut=False):\n",
- " from dcprogs.likelihood import missed_events_pdf\n",
+ " from HJCFIT.likelihood import missed_events_pdf\n",
" if ax is None:\n",
" fig, ax = plt.subplots(1,1)\n",
" if x is None: x = np.arange(0, 5*tau, tau/10)\n",
@@ -225,16 +225,16 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFjCAYAAAApaeIIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8U3W6+PHPk3QBERQKgtJKgQFHxBGlClHUQFFxxgEV\nF1DHZbh6r8uM/mZxGQUXQEa9Vx2vK3dcQJ1R3HHcLY0jGlTEBUFZFBQQNxBZpA1Nnt8f56SE2iUn\nTUnTPO/X67ySnJxzvt+i7XOe7/kuoqoYY4wxJnv5Ml0BY4wxxjSPBXNjjDEmy1kwN8YYY7KcBXNj\njDEmy1kwN8YYY7KcBXNjjDEmy1kwN8YYY7KcBXNjjDEmy1kwN8YYY7KcBXNjjDEmy+VlugItpWvX\nrlpaWprpahjTIt59993vVLVbqufb74dpy5r7+5GN2mwwLy0tZf78+ZmuhjEtQkQ+b8759vth2rLm\n/n5kI2tmN8YYY7KcBXNjjDEmy1kwN8YYY7KcBXNjjDEmy1kwN8YYY7KcBXNjjDEmy1kwN8YYY7Kc\nBXNjjDEmy1kwN8YYY7KcBXNjzE+EwzBtmvNqjGn92ux0rk2588472XfffRk+fHimq2JMqxIOQ3k5\nRCJQUAAVFRAIZLpWxpjG5GxmPmnSJB5//PFMV8OYVicUcgJ5NOq8hkKZrpExpik5G8y7d+/OV199\nlelqGNPqBINORu73O6/BYKZrZIxpSs42s3fv3p2vv/4609UwptUJBJym9VDICeTWxG5M65ezwTwv\n73A++KAj4bD9sTKmrkDAfi+MySY5GczDYaisvJKaGh/l5dbBxxhjTHbLyWfmoRBEo3lAHpGIWgcf\nY4wxWS0ng3kwCPn5MWAb+flqHXyMMcZktZwM5oEATJv2DjCJv/1tkTWxG2OMyWo5GcwBhg9vB/yV\nPfb4NNNVMcYYY5olZ4N59+7dAWysuTHGmKyXs8G8W7duADbW3BhjTNbL2WCen59P165dLTM3xhiT\n9XI2mIPNAmeMMaZtyOlg3qNHDwvmxhhjsl5OB3NbbMUYY0xbkPPB3DJzY4wx2S6ng3mPHj3YsmUL\nmzdvznRVjDHGmJTldDCPjzW37NwYY0w2s2COBXNjjDHZLaeDeY8ePQCbBc4YY0x2y+lgbpm5McaY\ntiCng3m3bt0QEQvmxhhjslpOB/O8vDyb0tUYY0zWy+lgDjbW3BhjcpGIjBKRJSKyXEQur+f7QhF5\n1P3+LREpdfcfJSLvishC93VEwjmD3f3LReQ2EZGd9fPkfDDv0aOHZebGGJNDRMQP3AEcCwwAxovI\ngDqHTQC+V9WfAbcAN7j7vwN+rar7A2cBDyaccxdwLtDP3Ua12A9Rh+dgLiId3H+INsEyc2MaFw7D\ntGnOqzFtxCHAclX9TFUjwCPAmDrHjAFmuO8fB8pFRFT1PVX90t2/CGjvZvF7Ap1UdZ6qKjATOL7l\nfxRHXlMHiIgPGAecDhwMVAOFIvId8Bxwj6oub9FatqB4MFdVdmKLiDFZIRyG8nKIRKCgACoqIBDI\ndK2MaVJXEZmf8Hm6qk5P+NwTWJXweTUwpM41ao9R1RoR+QEowsnM48YCC1S1WkR6utdJvGbP5v0Y\nyWsymAOVwKvAFcBHqhoDEJEuwHDgBhF5SlUfarlqtpwePXrw448/snnzZjp27Jjp6hjTqoRCTiCP\nRp3XUMiCuckK36lqWUsWICL74TS9H52m63UAqlQ1msr5yQTzkaq6TURK44EcQFXXA08AT4hIfiqF\ntwaJY80tmBuzo2DQycjjmXkwmOkaGZMWa4CShM/F7r76jlktInnAbsA6ABEpBp4CzlTVTxOOL27i\nmrXS3erd5DNzVd3mvn2ynsoMrXNM1rFZ4IxpWCDgNK1PnmxN7KZNeQfoJyK9RaQAJ6jOrnPMbJwO\nbgAnAXNUVUVkd5xge7mqvhE/WFXXAhtFZKjbi/1M4JlG6lAJ9MVp9e6hqiWqugcwDJiH0+p9RrI/\nUDLPzE8BDgI6isi+wJKEDH068ItkC2uNbBY4YxoXCFgQN22L+wz8IuAlwA/cp6qLROQ6YL6qzgbu\nBR4UkeXAepyAD3AR8DNgkohMcvcdrarfABcADwDtgRfcrSFpbfVOppn9DaAd8B/AzcA+IrIB+BLY\nmmxB4IzrA/6G84/3d1X9a53v/wu4EIgCm4HzVHWx+90VOEMFosDvVfUlL2U3xIK5McbkHlV9Hni+\nzr5JCe+rgJPrOW8KMKWBa84HBiZZfmKr90GJ34nIULdXfNKt3k0Gc1VdA8wUkU/jTQoiUgSUAp8k\nW1DCuL6jcHr5vSMis+PB2vUPVb3bPX40zs3DKHf83zhgP2Av4FUR6Z9qR4FE3bp1w+fzWTO7McaY\nnSbdrd7JNLOLOhKfDazD7QiQeEwTl6od1+eeEx/XVxvMVXVjwvEdgPg1xwCPqGo1sMJt9jgEaPbI\nV7/fT9euXS0zN8YYszO9gdMc35lmtnpDkkPTROQJ4BlV/SK+0+00MAyng0AlznOCxiQzrg8RuRD4\nA1AAxKfJ64nTISDx3LSN37OJY4wxxuxkX6rqDBFZ3lCrd5KJMpDcDHCjcJ5T/1NEvhSRxSLyGbAM\nGA/cqqoPeP856qeqd6hqX+Ay4Cov54rIeSIyX0Tmf/vtt0mfZ1O6GmOM2ckqReR3JCS5bqv3QmCI\niMxge2/6JiUzNK1KVe9U1cOAXkA5cJCq9lLVc1X1vSTLSmZcX6JH2D4VXlLnqup0VS1T1bJu3bol\nWS3LzI1JtHnzZqZMmcJbb72V6aoY05bVlyivIMVEOZlm9lpuz7q1Xs5JUDuuDycQjwNOSzxARPqp\n6jL3469wfihwxvv9Q0RuxukA1w94O8V6/EQ8M7cpXY0BVWXixIm0a9eOIUN+8iTMGJMGbm/5O4E7\n3SFoXYGtqrohleulstDKESLSR0QeEpFZInJEMuepag3O+LyXgI+BWfFxfW7PdYCLRGSRiLyP89z8\nLPfcRcAsnM5yLwIXpqMne1wkMpiqqkt4+eVN6bqkMVlr1113JS8vj3Xr1jV9sDGm2VR1m6quTTWQ\ng8fM3DUeKMQJthtwVpX5dzInJjGu7+JGzp0KTE2hvo0Kh+Huu08CTuL4433MmWMTZJjcJiIUFRVZ\nMDdmJ3IT49XAdTgdwG9X1aRiK6QWzPcDNrmz3eCuJJO1QiGoqfEDQiQSs4UkjAGKiopYv359pqth\nTC5JOVGG1IL5RLaP/wan2TxrOQtJKFVVNfj9QjDo+cmDMW1Oly5dLDM3ZudqVqLsOXKp6mt1Uv/u\nXq/RmgQC8PLLMeBqfvObBywrNwasmd2YnW8izpKqcZ4S5XSkoe+n4RoZdfjheey55wOIzGv6YGNy\ngDWzG7NzNTdRbnYwV9U2EQF79uzJ6tWrM10NY1oFa2Y3JuM8Jcqen5mLyGnAaJzB7gI8q6r/9Hqd\n1qa4uJjly5NeB96YNq2oqIiqqip+/PFHdtlll0xXx5ic4zVRTqUD3JGqGl/XFRG5A2gTwTwUCmW6\nGsa0CkVFRQCsX7/egrkxO0FzE+VUmtkLReRXIvILEfklzqovWa9nz55s2LCBLVu2ZLoqxmRcly5d\nAKyp3Zid50hVHaeqp6vqaTgLmSUtlWB+Ac6Sbb90Xy9K4RqtTnFxMQBr1jQ2XbwxuSGemVswN2an\naVai7LmZXVV/BB7yel5rFw/mq1evpn///hmujTGZldjMXlc47Ey2FAzaBEvGpNEFwInA/jgrqXlK\nlFN5Zg6AiOwO0Jy5ZFuTxGBuTK5rqJk9HIbycohEoKAAKiosoBuTDs1NlJszNO1qnDlk24SePXsC\nFsyNgYYz81DICeTRqPNqfUaNSS8R2T2eLHuRcmbe1rRv354uXbrYM3NjgHbt2rHLLrv8JDN3pj/e\nnpkHgxmpnjFt2dWAH/i9l5MsmCcoLi62zNwYV30TxwQCTtO6PTM3pnWxYJ7AZoEzZruGpnQNBCyI\nG9PaNCeY344zsL3NKC4uZsGCBZmuhjGtgk3pakz2SDmYq+qn6axIa1BcXMzXX39NJBKhoKAg09Ux\nJqOKior46KOPMl0NY3JNSomyp97sItLXfS32WlA2iPdo//LLLzNcE2Myz1ZOM2bnU9VPVdXzQiFe\nh6ad5b5e77WgbGCzwBmzXZcuXVi/fj2qmumqGNOmpSNR9hrMv3BfDxORa0XkJBF5NNXCWxubOMaY\n7YqKiqipqWHjxo2ZrooxbV2zE+Umg7mI/M19ba+qf3d3vwk8AERw2vfbBAvmxmzX2JSuxpi0anai\nnExmfoT7Ojdh3+2qukJVZ6vq614KbM06depEhw4dLJgbg62cZkxLSneinExv9goRCQM9ROS3wAfA\n+14KyRYiQnFxsT0zNwZbOc2YFpaYKA9239+uqiuAFV4v1mQwV9U/uQ/nK4HeOIun7yciEeAjVT3V\na6Gtmc0CZ4zDmtmNaVFpTZSTGmeuqp+KyEhVXRrfJyK7AgNTLbi16tmzJ5WVlZmuhjEZZ83sxrSc\ndCfKSU8akxjI3c+bgXleCssGxcXFrF27lmg0it/vz3R1jMkYC+bGtKx0JsrNWQK1TSouLqampoZv\nvvkm01UxJqPy8vLYbbfdrJndmBZUX6Ksqp4TZQvmddi65sZsZ/OzG5Mdkg7mIvI7EenckpVpDWwW\nOGO2KyoqsmBuTBbwkpl3B94RkVkiMkpE2tSKaXElJSXAUO69dw/C4UzXxpjMsvnZjWlZ6UqUkw7m\nqnoV0A+4FzgbWCYi18fnlG0rli3rClTw3HNDKC/HArrJadbMbkyLS0ui7OmZuTorLnzlbjVAZ+Bx\nEbkxlcJbo9deE6AAVT+RCIRCma6RMZnTVDN7OAzTptlNrzGpSleinPTQNBG5GDgT+A74O/BnVd0m\nIj5gGXCpl4Jbq2AQfL4osRgUFOQRDGa6RsZkTlFRERs2bKh3qGY4DOXlEIlAQQFUVEAgkKGKGpPF\nVFVFpL5E+RVVTSq2esnMuwAnquoxqvqYqm5zKxEDjvNY91YrEIATTridwsKp9sfJ5Lz4WPPvv//+\nJ9+FQk4gj0axVixjUiQiF4vIu8CNwBvA/qp6Ps4Ur2OTvY6XYN5OVT+vU4kbAFT1Yw/XafUCAaiu\nvoZ9992Q6aoYk1GNTekaDDoZud/vvForljEpSUui7CWYH1XPvmM9nJ81evfuDcCKFZ7nujemTWls\nsZVAwGlanzzZmtiNaYa0JMrJrGd+vogsBPYRkQ8TthXAh15rnQ1KS0sBWLlyZUbrYUymNTWlayAA\nV1xhgdyYZkhLopxMB7h/AC8A04DLE/ZvUtU2OQDVMnNjHLZymjEtQ0TOBy4A+ohIYmLcEefZuSfJ\nLIH6A/ADMN7rxbPV7rvvTqdOnSyYm5xna5ob02LSmig3GcxFZK6qDhORTYDGd7uvqqqdvBba2okI\nvXv3tmZ2k/M6deqEz+ezYG5MmqU7UU4mMx/mvnZMR4HZorS0lOXLl2e6GsZklM/no0uXLtbMbkya\npTtR9rLQyski0tF9f5WIPCkiB3opLJvEM3Nn0jtjcpcttmJM+iUmyqrayd06xj97vZ6XoWkTVXWT\niAwDRuJMPXe31wKzRWlpKVu2bOG7777LdFWMySibn92YlpOuRNlLMI+6r78Cpqvqc0CB1wKzRbxH\nuz03N7nOVk4zpkWlJVH2EszXiMg9wDjgeREp9Hg+7oowS0RkuYhcXs/3fxCRxe449goR6ZXwXVRE\n3ne32V7KTUV8rLn1aDe5rkePHqxZsybT1TCmrUpLouwlGJ8CvAQcraobcCaC/3OyJ4uIH7gDZzD8\nAGC8iAyoc9h7QJmq/gJ4HGeu2ritqjrI3UZ7qHdKbOIYYxx9+vThm2++YcuWLZmuijFtUTxRPpUU\nE2U8nhAF2gEni8gk4DxgqIfzDwGWq+pnqhoBHgHGJB6gqpWq+qP7cR5Q7OH6adWpUye6dOlimbnJ\neX369AHgs88+y3BNjEmfJFqKC0XkUff7t0Sk1N1fJCKVIrJZRG6vc07IvWa8FXmPJKoST5SPcRPl\nLnhIlOO8BPNngNE4y7NtSdiS1RNYlfB5tbuvIRNwBtTHtROR+SIyT0SO91BuymysuTEWzE3bk2RL\n8QTge1X9GXALcIO7vwqYCPypgcufntCK/E1TdVHVH1X1SVVd5n5eq6ove/2Zkl7PHChW1VFeC0iF\niJwBlAFHJuzupaprRKQPMEdEFqrqp3XOOw+nxYC999672fXo3bs3CxcubPZ1jMlmFsxNG1TbUgwg\nIvGW4sUJx4wBrnHfPw7cLiKiqluAuSLys3RUxG1WHwuUkhCTVfU6L9fxkpm/KSL7e7l4HWuAkoTP\nxe6+HYjISOBKYLSqVsf3q+oa9/UzIAT8pOu+qk5X1TJVLevWrVszquooLS3l888/t7HmJqd16dKF\nTp06WTA32aSr25Ib386r830yLcW1x6hqDc5sbUVJlH2/28Q+UUSk6cN5BufGIdVWb8BbZj4MONtd\nLa0aZ6YadTurJeMdoJ+I9MYJ4uOA0xIPcMfW3QOMSmyeEJHOwI+qWi0iXYHD2LFzXIvo3bs3VVVV\nfPXVV+y5554tXZwxrZKI0LdvXwvmJpt8p6plGSj3dLcFuSPwBPAbYGYT56Sl1dtLMG/W2uWqWiMi\nF+E86PcD96nqIhG5DpivqrOBm4BdgcfcG5ov3J7r+wL3iEgMpzXhr6q6uN6C0iixR7sFc5PL+vTp\nw6JFixo9JhyGUAiCQVsS1bR6ybQUx49ZLSJ5wG5Ao7MnJbQgbxKRf+A05zcVzN8Ukf1VtVnPdJMO\n5nUXT0+Fqj4PPF9n36SE9yMbOO9NoDlN/ClJXAo1YH+dTA7r06cP//rXv4jFYvh8P306Fw5DeTlE\nIlBQABUVFtBNq9ZkSzEwGzgLCAMnAXO0kWeubsDfXVW/E5F84Djg1STqMgw4R0Q+I7VWb8BDMHfb\n/k8H+qjqdSKyN9BDVd/2UmA26dXLmbPGerSbXNenTx+qq6tZu3YtPXv+dBBKKOQE8mjUeQ2FLJib\n1ivJluJ7gQdFZDmwHifgAyAiK4FOQIE7uupo4HPgJTeQ+3EC+f8lUZ1mtXrHeWlmvxOIASOA64BN\nOM8EDk5HRVqjXXbZhe7du9tYc5PzEnu01xfMg0EnI49n5sHgzq2fMV4l0VJcBZzcwLmlDVx2cApV\n+YJ6EmWcm4OkeenNPkRVL8QZY4eqfk8bnps9rqjoOCorhxIOZ7omxmROU8PTAgGnaX3yZGtiN8aj\nO4EA29c134QzBt4TL5n5NnegvQKISDecTL3NCodhyZI7iEb9lJfbHymTu/bee298Ph+ffvppg8cE\nAvb7YUwKhqjqQSLyHjiJsoi06NzstwFPAd1FZCowF7jea4HZJBSCWCwfyCMSUUKhDFfImAwpKCig\npKTEhqcZk35pSZS99GZ/WETeBcrdXcer6sdeC8wmwSDk58eIRKLk5/sJBpMZ/29M29SnTx8L5sak\nX91E+STgKq8XaTKYi8gfGvjqWBE5VlVv9lpotggE4K67ljFhwkyuvnoUgcCRTZ9kTBsVH55mjEmf\ndCXKyWTmHd3XfXB6rsfXEv810GaHpcWNHbsXEyb8FZ+vMztOFW9Mbunbty9ff/01W7ZsoUOHDpmu\njjFZLd2JcpPBXFWvdQv+N3CQqm5yP18DPOelsGy022670b17d5YuXZrpqhiTUfEe7StWrGDgwIEZ\nro0xWS+tibKX3uzdgUjC54i7r83r37+/BXOT8xKHp1kwN6Z50p0oewnmM4G3ReQp9/PxwANeC8xG\n/fv3t2eFJufZUqjGtIi0JMpeerNPFZEXgMPdXeeo6nteC8xG/fv35+uvv2bjxo106tQp09UxJiNs\nKVRjWkRaEmUvmTmqugBY4LWQbNe/f38Ali1bxuDBqczWZ0z2ExEbnmZMmqUrUfYUzHNVv379AFi6\ndKkFc5PT+vTpw+LFLb76sDE5JR2JspcZ4HJW3759ERHrBGdyXp8+fVixYgWxWJueydmYrJN0MBeR\n34lI55asTGvVrl07evXqZcHc5LzEpVCbEg7DtGnYIkXG7AReMvPuwDsiMktERrnrm+cMG55mzPYe\n7cuXL2/0uHAYysth4kTn1QK6MfVLV6KcdDBX1auAfjgLtp8NLBOR60Wkb3MrkQ3iwVxVM10VYzJm\n//33B+D9999v9LhQyFnbPBp1Xm2RImMalJZE2dMzc3Ui2VfuVgN0Bh4XkRtTKTyb9O/fn40bN/LN\nN99kuirGZMxee+3FXnvtxfz58xs9LhiEggLw+53XYHCnVM+YrJOuRDnp3uwicjFwJvAd8Hfgz6q6\nTUR8wDLgUi8FZ5v48LSlS5fSvXtOTHxnTL3KysqaDOaBAFRUOBl5MGjrnBvTGFVVEakvUX5FVZOK\nrV6GpnUBTlTVz+tUIiYix3m4TlZKDOaHH354E0cb03aVlZXx7LPPsmnTJjp27NjgcYGABXFjmpKu\nRNlLM3u7uoFcRG4AaOvrmgPsvffeFBQUWCc4k/PKyspQVd57LycmgDSmpcUT5WNU9TFV3QZOogwk\nnSh7CeZH1bPvWA/nZzW/38/PfvYzC+Ym58UnTmqqqd0Yk5S0JMpNBnMROV9EFgL7iMiHCdsK4EOv\ntc5m/fr1s2Buct4ee+xBSUmJBXNj0iMtiXIyz8z/AbwATAMuT9i/SVXXey0wm/Xv358XX3yRaDSK\n3+/PdHWMyZhkOsEZYxomIucDFwB9RCQxMe4IvOH1ek0Gc1X9AfgBGO/14m2N3z+M6mo/zzzzDSee\nuGemq2NMxpSVlfHUU0+xYcMGdt9990xXx5hslNZEOZlm9rnu6yYR2ei+xreNXgvMVuEw3HLLr4DJ\njB+/h81oZXJaWVkZAAsW5Nwiisakhar+oKorVXW8qn6esKXU4t1kMFfVYe5rR1Xt5L7Gt5xZ3DsU\ngpoaH5DHtm02o5XJbdYJzpjmqSdR3piQMHtOlJtsZheRTUCDc5jmSkB3ZrQStm6tweeLEgzaM3OT\nu4qKiujdu7cFc2NSlJgop+N6yTwzT0tB2S4+o9VZZz2IyGsEAg9kukrGZJR1gjOm9bD1zD0IBGD0\n6EV8/vkjRKPRTFfHmIwqKytjxYoVrFu3LtNVMSbrNNAPLeX+aKl2gEu5XT/bDRw4kOrqaj799NNM\nV8WYjPLSCc7WNjdmRw30Q0u5P1qqHeA65VoHuLiBAwcC8NFHH2W4JsZk1kEHHQQ03QnO1jY35qca\n6QC3sUUyc7OjAQMGICIWzE3O23333enXrx/z5s1r9Dhb29yYn6onUd5h83q9pIO5iLQTkT+IyJMi\n8oSI/D8Raee1wGy3yy670LdvXwvmxgDBYJDXXnuNmpqaRo6xtc2NaWleMvOZwH7A/wK3AwOAB1ui\nUq3dwIEDWbhwYaarYUzGjRw5kh9++IF33323wWPiI0EmT3ZebVlUY7ZLV6LsZT3zgao6IOFzpYgs\n9lpgWzBw4ECeffZZqqqqaNcu5xonjKk1YsQIAF599VWGDBnS4HG2trkxDZoJbMJJlAFOw0mUT/Zy\nES+Z+QIRGRr/ICJDgJwcZDpw4ECi0ShLlizJdFWMyaiuXbty4IEH8uqrr2a6KsZkq4GqOkFVK93t\nXJxWcE+SGZq20F3RZTDwpoisFJGVQBgo81pgW2A92k0uCa8KM+31aYRX1d8NfeTIkbzxxhts2bJl\nJ9fMmDYhLYlyMs3sx3m9aFvXr18/8vPzLZibNi+8Kkz5zHIi0QgF/gIqzqwAILQyRLA0SKAkwMiR\nI7npppt4/fXXGTVqVIZrbEx2EJGFOFOl5+Mkyl+4X+0NfOL1eslM5/p5QuGdgX5A4oPiz39yUhtX\nUFDAPvvsY53gTJsXWhkiEo0Q1SiRaISZH8xkxgczdgjuw4YNo6CggFdffdWCuTHJS2uinHQHOBH5\nD+BioBh4HxiK09Q+Ip0Vyhb7778/b775ZqarYUyLCK8KE1oZomiXIgr8BbXBG9ghuIdWhgiUBBg2\nbJg9NzfGg3Qnyl56s18MHAzMU9XhIvJz4HovhbUlAwcO5J///CcbN26kU6ecmwjPtGF1m9ZvHXUr\n635cR7A0CLBDZl60SxHTXp9G/xH9ufuqu/nmm2/YY489MvsDGJNF0pUoewnmVapaJSKISKGqfiIi\n+3gprC2Jd4JbvHgxQ4cObeJoY7JH3ab1dT+u44rDr6j9vuLMitqs/ZIXLyESjZAneVAMFRUVjB8/\nPoO1NybrpCVR9jI0bbWI7A48DbwiIs+Qg8/L45xgPpQbb/TbXNOmTQmWBinwF+AXPwX+gtqMPC5Q\nEuCKw69g3Y/raoN+jdbQbt921tRujHdVqloF1CbKgOdEOelgrqonqOoGVb0GmAjcCxzvpTARGSUi\nS0RkuYhcXs/3fxCRxSLyoYhUiEivhO/OEpFl7naWl3Jbwtq1pUAFTz99kC0eYdqUQEmAijMrmDx8\nMhVnVhAoqX+2l7pBf0j3Ibzyyiuo6k6usTFZLS2JspcOcO2AC4BhON3p5+Jtbnc/cAdwFLAaeEdE\nZqtq4ixy7wFlqvqjiJwP3AicKiJdgKtxxrUr8K577vfJlp9u//63DyhA1V+7eITNcGXaikBJoMEg\nnnhMvMk9WBrkg+c+4PyHzufjjz9mwIABjZ4bDju/M8Gg/d6Y3KaqJ7hvrxGRSmA34EWv1/HyzLy5\nU84dAixX1c8AROQRYAxQG8xVtTLh+HnAGe77Y4BXVHW9e+4rwCjgnx7qn1bBIOTlxaip2UZBQR7B\noGSqKsZkTGLQ7zW6F+effz5PPfVUo8E8viRqJOIsvGLztZtc1txEOc7LCc2dcq4nsCrh82p3X0Mm\nAC94OVdEzhOR+SIy/9tvv/VQNe8CAbj00peBSdx77+f2x8jkvM+jn7P3aXszs3Jmo8fZkqjG7CAt\ni5i1yrnZReQMnCb1m7ycp6rTVbVMVcu6devWElXbwbhxvYC/Eou90eJlGdOaxYezreq/iqVDl/Lk\n2082eKwtiWrMDrJubvY1QEnC52J3X93yRgJXAqNVtdrLuTvbvvvuS/v27Zk/PyfXmzGmVnw4m6Lg\ng3vn3NtwRFk7AAAgAElEQVTgsbYkqjE7yLq52d8B+olIb5xAPA7nuXstETkQuAcYparfJHz1EnC9\nO0sOwNHAFWRYXl4eBxxwQKNrORuTC+I92yPRCDGNsXru6kaPtyVRTa7L9NzsBwCHux9fV9UPki1I\nVWtE5CKcwOwH7lPVRSJyHTBfVWfjNKvvCjwmIgBfqOpoVV0vIpNxbggArot3hsu0wYMHM2PGDKLR\nKH6/P9PVMSYjEnu2fzbnM+59/l6++uorevTokemqGdNapXVudi9Dyy4GHgb2cLeHROR3XgpT1edV\ntb+q9lXVqe6+SW4gR1VHqmp3VR3kbqMTzr1PVX/mbvd7KbcllZWVsXnzZpYuXZrpqhiTUfHJZC4e\nezGqyjPPPJPpKhnTaqnq5/EN2B34tbvtnphEJ8tLB7gJwBA3+E7CmT/2XK8FtjWDBw8GsKZ2Y1z7\n7bcf/fr144knnsh0VYxp9dKRKIO3YC5ANOFz1N2X0+Kd4CyYG+MQEU488UTmLJ3DxJcnEl5l0yMa\n04i0JMpegvn9wFsico2IXIMzqUvDXVZzRF5eHoMGDbJgbkyCfsP7ET0jytTwVMpnlltAN61OEtOL\nF4rIo+73b4lIqbu/SEQqRWSziNxe55zB7giw5SJym7idv5qqCmlIlJMK5m6FHgPOAda72zmqeqvX\nAtuiwYMHs2DBAqLRaNMHG5MDvt7la/CDorXrnhvTWiRML34sziQt40Wk7rSFE4DvVfVnwC3ADe7+\nKpz1Sf5Uz6Xvwsmq+7nbqCSqk5ZEOalgrs7KCc+r6gJVvc3d3vNaWFs1ePBgtmzZYp3gjHENLx3u\nLIsahXxf/k9WXjMmw2qnF1fVCBCfXjzRGGCG+/5xoFxERFW3qOpcnKBeS0T2BDqp6jw3Zs6kicXI\n0pkoe50B7mCvBeQC6wRnzI4CJQEeOvohqIQJeRMaXbQlHIZp02zlQZNWXeNTe7vbeXW+T2aK8Npj\nVLUG+AEoaqTMnu51GrvmDtKZKHsJ5kOAsIh86i5RGp8ZLufZTHDG/NSph55KIBog9FCowWVR44uu\nTJyILSVs0um7+NTe7jY90xVqRFoSZS/B/BigLzACZyzcce5rzsvLy6Nv3zN4+ul97Y+RMQnOPPNM\nFi1axPvvv1/v97boismQZKYIrz1GRPJwliZd18Q1i5u4Zn3SkignvQRqKoPYc0U4DJ98cjs1NT7K\ny5WKCrGpKo0BTjnlFC6++GL++tBfGbR5EMHS4A5N7vFFV+LLodqiK2YnaXJ6cWA2cBbOOiQnAXO0\noSYmQFXXishGd571t4Az2b5keGOOSaH+P5F0MG9gzdW7VLWq0RNzQCgEsVge4CMSUUIhm3faGIAu\nXbpw6KmHMqv9LJ6ofIICfwEVZ1bUBvT4oiuhkBPI7ffG7AxJTi9+L/CgiCzH6Zg2Ln6+u9hYJ6BA\nRI4HjlbVxTgx8gGgPc4S3i/QhHQlykkHc5yeeZvYfqdxGs6aqyenoyLZLJ5dVFVtw+eDYDA/01Uy\nptUoObwEVkNUo7XD1BKzc1t0xWSCqj4PPF9n36SE91U0EN9UtbSB/fOBgV7qka5E2csz87SsudoW\nOdmF0LHjTQSDU+wPkzEJzh15rjMNhkKBv8CGqRmzo5k4sfR/gdtxxr0/6PUiXoemNXvN1bbq0EOF\nUaPeZ8mSBzJdFWNalcN7H84pW0/BF/Lx2K8fa3SYmjE5KC2JspdgPhhnzdWV7vOCMHCwDVHbbtiw\nYXzxxResWrWq6YONySHX/Mc1xF6LsfD5hZmuijGtTVoSZS/BfBTQGzjS3Xq7+2yImuuwww4D4I03\n3shwTYxpXfbdd1+GDx/O3XffbdMeG7OjtCTKNjQtjQ444AA6dOjA3LlzGTduXNMnGJNDLrjgAk4+\n+WReeOEFjjvuuExXx5jWIpn525vkpTe7aUJeXh5Dhw61zNyYeowZM4Y999yTO++8k6IDigitDP1k\n3LkxuSZdibKXZnaThGHDhvHhhx+ycePGTFfFmFYlPz+f8847jxc+eoERM0YwsXLiT5ZHtXnajUlN\n0sFcHGeIyCT3894ickjLVS07HXbYYcRiMebNm5fpqhjT6px77rlIb6G6pnqHcedg87Qb0xxeMvM7\ngQAw3v28CWc9WJNg6NCh+Hw+a2o3ph49e/bkyF5HojWKX/w7jDu3edpNLkpXouxp1TRVvRB3DVdV\n/R4o8FpgW9exY0cOOOAA5s6dm+mqGNMqTTpnEsyAMZ3G7DC1a3wmRb/f5mk3OSUtibKXYL5NRPw4\n080hIt2AmNcCc8GwYcN466232LZtW6arYkyrEwwGOaDoAD6e/jFDeg6p3R+fp33yZOfVZlI0OSIt\nibKXYH4b8BSwh4hMxZk/9nqvBeaCww47jC1b9ueSS762537G1CEiXHrppXz88cc899xzO3wXCMAV\nV1ggNzklLYly0sFcVR8GLgWmAWuB41X1Ma8F5oL27UcAFdx1117WkceYepxyyin06tWLG2+8MdNV\nMSbT0pIoexpnrqqfAJ94LSTXLFrUDahB1VfbkccyDWO2y8vL449//CO///3vmf78dNZ1XGdjzk1O\nUtWHReRdoBwQnET5Y6/X8bKeeRlwJdDLPU+ceugvvBba1gWDkJcXo6ZmGwUFeQSDkukqGdPq/Pa3\nv+XKu6/k/LfOR/zyk7XOjckV6UiUvTwzfxi4HxiLMxe7zcnegEAAJk8OA5P47/9+37JyY+rRoUMH\nDj7pYGLEfjLm3JhcISJlIvKUiCwQkQ9TXbzMSzP7t6o622sBuer88wdx1VXlrF2bBxyY6eoY0yr9\n8aQ/MufROYgIBXm21rnJSQ8DfwYW0owRYl4y86tF5O8iMl5EToxvqRbc1u22224ccsghvPLKK5mu\nijGt1i/3/yUnbz0ZKmFG+YyfNLHb9K4mB3yrqrNVdYWqfh7fvF7ES2Z+DvBzIJ/tdw8KPOm10Fxx\n1FFHMWXKFL7//ns6d+6c6eoY0yr97U9/49k+z/Kvu/7FyUNPrt0fn941EnEmkbGx56aNulpE/g5U\nANXxnarqKbZ6ycwPVtUyVT1LVc9xt996KSzXHHXUUcRiMSorKzNdFWNarT333JMLL7yQhx56iE8+\n2d4HyKZ3NTniHGAQzlKov2Z7nzRPvATzN0VkgNcCctmQIUPo2LGjNbUb04TLLruM9u3bc9ENFzHt\n9WmEV4VteleTK9KSKHtpZh8KvC8iK3CaAmxoWhPy8/MJBoMWzI1pQrdu3Rh7yVhmMpPKOZUU5hVS\ncWYFFRUBQiEnkFsTu2mj3hSRAaq6uDkX8RLMRzWnoFx11FFH8eyzz7JixQp69+6d6eoY02rtfcTe\n8AbEiNUOU7vi8IAFcdPWpSVR9jKd6+f1bd7qnHuOOuooYCh/+MO31iPXmEb8ct9fkufLgyjkSZ4N\nUzO5YhTQDziaZszh0mQwF5G57usmEdmYsG0SkY1eC8w169fvg8gcnn56sM3TbkwjAiUBXhj3ArvO\n35V+b/ZjaPHQTFfJmBaXrkS5yWCuqsPct3epaqeErSNwt9cCc81rrwnOanZ+IhG1HrnGNGLkPiP5\n20l/46MXP+LRRx/NdHWMaTHpTpS99GYfWc8+e47ehGAQ8vMBtpGXF7MeucY04ayzzmLQoEFceuml\nbN26tXa/TSBj2pJ4oqyqHesmyqrayev1kmlmP19EFgI/d+eNjW8rcKafM40IBOCll2rIz5/Cccfd\nap15jGmC3+/nlltuYdWqVdx8883A9glkJk7EHleZNkVEbkhmX1OS6c3+D+AFnHXML0/Yv0lV13st\nMBcFg4Ucd9xC3nrrHVT/gIitomZMY4LBICeccAJTZkxh84Gb2fDeaCKRwA4TyNiNsWkjjgIuq7Pv\n2Hr2NSqZZ+Y/qOpKVR2f8GC+2gK5N2PGjGH16tUsWLAg01UxJiuMv3Q8VadUccPbN3B/rBx/adgm\nkDFtRkKr9z71tHq36KppiZ4HDkrx3Jx03HHH4fP5ePrppxk8eHCmq2NMq7d823IkT1BRajTCudeG\n2PuLgE0gY9qK+lq99wKWpJIse+kAl8jaiT0qKiriiCOO4Omnn850VYzJCsHSIIV5hRAFiQlnHhHk\niisskJu2oYFW7ztSbfVONZj/X4rn5bTjjz+ejz76iOXLl2e6Ksa0eoGSAHPOmsPAbwdS+Ggh++22\nX6arZExLSzlRTjqYi0ihiJwmIn8BuorIJBGZ5KUwERklIktEZLmIXF7P90eIyAIRqRGRk+p8FxWR\n991ttpdyW4sxY8YA8Mwzz2S4JsZkh0BJgPsn3M+WT7Zwzz33ZLo6xrS0lBNlL5n5M8AYoAbYkrAl\nRUT8wB04vfQGAOPrWYXtC+BsnGcJdW1V1UHuNtpDvVuN0tJSBg0axMyZy2y8rDFJKisrY8SIEdxy\nyy1UV1c3fYIxWSRxGJqq3ll3X7K8BPNiVT1VVW9U1f+Jbx7OPwRYrqqfqWoEeATn5qCW+/zgQyDm\n4bpZZfDgi/jww5uZOFFtvKwxSbrssstY61/LaXeeRniV80tjk8iYNuKoevYd6/UiXtcz399rAQl6\nAqsSPq929yWrnYjMF5F5InJ8M+qRUR06/BIoIBqV2vGyxpjG7frzXZGzhSc3PEn5zHKmvxC2SWRM\nVmtgQraFqU7I5iWYDwPedZ95xwv1PBauGXqpahlwGnCriPSte4CInOcG/PnffvvtTqxa8k49tQci\n24AaGy9rTJJe+/w1JE/AB9U11TzxbohIhB0mkTEmy/wDZ3W0Z9i+UtpxwGBVPd3rxbyMM/ec9tex\nBihJ+Fzs7kuKqq5xXz8TkRBwIPBpnWOmA9MBysrKtJn1bRGHHir81389zl13LWbGjAsJBIozXSVj\nWr34MLWtka1oTDmh7HBeL3ACud0Um2ykqj8AP4jIJzh9xWqJCKp6nZfr7cz1zN8B+olIbxEpAMYB\nSfVKF5HOIlLovu8KHAYs9lB2q3LFFUFEbuDjj+/LdFWMyQqBkgAVZ1Zw2p6noQ8ou36/kooKmDwZ\nKips7LnJapvZ3qE8ipM4l3q9iKgml8CKM6H46UAfVb1ORPYGeqjq20kXJvJL4FbAD9ynqlNF5Dpg\nvqrOFpGDgaeAzkAV8JWq7icihwL34HSM8wG3quq9jZVVVlam8+fPT7ZqO92IESNYtWoVS5cutbna\njWci8q772Cklrf33oyGxWIwDDzyQrVu3snjxYvLyUp3E0rRlzf39yCQ3cX1JVYNezvPyzPxOIACM\ndz9vwhlqljRVfV5V+6tqX1Wd6u6bpKqz3ffvqGqxqnZQ1SJV3c/d/6aq7q+qB7ivjQbybHDGGWew\nfPly3n476XshY3Kez+fjmmuuYdmyZfzjH/WNYDUm6+2C8xjaEy/BfIiqXoiTMaOq3wMFXgs0jrFj\nx9KuXTsefPDBTFfFmKxy/PHHM2jQIP5y11+Y+trU2qFqxmSjeGdyd1sELMFpwfbESzDf5k78om4F\nutGGx4O3tN12243Ro0fzyCOPsG3btkxXx5isISKM+/M41pSvYWJoYu1QNRtzbrJUvCf7r4Gjgb1U\n9XavF/ESzG/DeZ7dXUSmAnOB670WaLb7zW9+w7p1/ZgwYbn9ETLGg2hJFPygKNU1ES68KWRjzk1W\nqtOpfI2q1qRynaR7j6jqwyLyLlDu7jpeVT9OpVDj2G23UcAIHnywkMcft165xiRreOlwCvMKqd5W\nDeQR+zRILGHMuf0emWzhdngbi9ODvTYmt9jQNBFpB/wSGAmMAEa5+0yK5s7Nw/nv6CcSUZv4wpgk\nBUoCVJ5dSb81/Wj36AEUfjsUv9/GnJus1Kx1T+K8jOuYidOD/Tb382nAg8DJXgs1jmAQCguFqqpt\niEAwmJ/pKhmTNQIlAWb9bhYH3ncgv/nN3ey77/kEg5aVm6xTrKqjmnsRL8/MB6rqBFWtdLdzAVtg\nuBkCAZgzx0e/fg+x224nUlZmHeGM8WLQoEGcfvrpPPrmJWz8xRVQbA/MTdZp7rongLdgvkBEhsY/\niMgQIPtmnWhlAgG4+eZurFv3L55++ulMV8eYrHPC708gMi7CDe/cQPnMchuqZrJCwvomw3Dia7PW\nPfHSzD4Y5w7iC/fz3sASd9UXVdVfeC3cOI499lhKS0u54447OPlke2phjBdLq5cieYKKEqmJMPPf\nIUJfBKzJ3bR2x6XzYl6CebPb9E39/H4/559/PpdddhkfffQRAwcOzHSVjMkawdIg7fLbsTWylVhM\nuO/qI4mudDrD2QgR01rF1zYRkZOBF1V1k4hcBRwETAa8rH3ibaEVYHe2D27fPcUFV0w9fvvb35Kf\nfwT/8R+f2jhZYzyIL8IyuuNo9IHx1KwYakujmmwy0Q3kw3BGi90L3O31Il6Gpl0MPAzs4W4Picjv\nvBZo6rdsWVdisZd5661fUV6uFtCN8SBQEuCJS56gT0EM1Wr8frVhaiZbRN3XXwHTVfU5Upgq3UsH\nuAk487NPUtVJwFDgXK8FmvqFQqBaAORRVRWzjMIYj/Ly8pg+/Ry058H0PvM8bn0ibE3spkEiMsrt\ndLZcRC6v5/tCEXnU/f4tESlN+O4Kd/8SETkmYf9KtwPb+yKSbAfxNSJyD3Aq8Lw7iYyX2AweTxC2\n30Hgvre1O9MkPuYcalCtZsiQrZmukjFZZ5f+u+D77ccsL/k7F787wnq2m3q564zcgbN2+ABgvIgM\nqHPYBOB7Vf0ZcAtwg3vuAGAcztDsUcCd7vXihqvqIA9LsJ4CvAQco6obgC7An73+TF6C+f3AWyJy\njYhcA8zDads3aRAIOJ11/vM/VwPlfPjhPZmukjFZJ7Qy5PxV80FVTRWhlSHCYWwRFlPXIcByVf1M\nVSPAIzizsCUaA8xw3z8OlIuIuPsfUdVqVV0BLHevlxJV/VFVn1TVZe7ntar6stfreOkAdzNwDrDe\n3c5RVc/LtJmGBQJw992lHHlkITfddBPV1dWZrpIxWSVYGqQwrxBBoAbWziuivBxbhCX3dBWR+Qnb\neXW+7wmsSvi82t1X7zHu4ic/AEVNnKvAyyLybj1ltihP7fKqukBVb3O391qqUrnuyiuv5Msvv2TG\njBlNH2yMqRXv2X7tkdfSK9SLB6/fQCSi1rs993ynqmUJ2/SdVO4wVT0Ip/n+QhE5YieV6/0hu2l5\nI0eO5OCDD+baa19m6tSoZRPGeBAoCTAxOJEZU2ewYcNTiGyzRVhMXWuAkoTPxe6+eo8RkTxgN2Bd\nY+eqavz1G5wlw5tsfheRk0Wko/v+KhF5UkQO8voDWTBvhUSEsWP/my+/nMmkSWLNg8ak4Mgjj+Ts\ns39ObK+DGfKnv1jvdpPoHaCfiPQWkQKcDm2z6xwzGzjLfX8SMEdV1d0/zu3t3hvoB7wtIh0SgnIH\n4GjgoyTqUt8487u8/kBexpmn5e7BJCcaHQYUEIv5bHlUY1J0yh9PIfabD3mzcBqXLLB5243DfQZ+\nEU4v8o+BWaq6SESuE5HR7mH3AkUishz4A3C5e+4iYBawGHgRuFBVo0B3YK6IfAC8DTynqi8mUZ20\njDP3Mp3rRFV9LOHu4Sacu4chXgs1TRs+3EdhoVJdvQ2fz5ZHNSYV73//Pr58HzFiVNVU2bztppaq\nPg88X2ffpIT3VTSwxLeqTgWm1tn3GXBAClWJjzM/CrhhZ4wzT8vdg0lOIACVlX769XuIwsJfsc8+\n6zNdJWOyTrx3Owq6Tbhv0hHWs920Njt9nHlaZqkxyQsE4MknD+bHHyuYMmVKpqtjTNaJ927/y9C/\nUPjoBCKfDbGe7aZV2enjzEnT3YPxZuDAgZxzzjncdts7/OlP6yybMMajQEmAqaOmMvHsU6H4dTh8\nKv7SsPVsN63CTu/Nnq67B+Pd6NHTiEZf4n/+Z3drHjQmRSPO3AXfOUfD8InomSOg2H6RTKtgvdlz\nxaJF3RBpB/iprrZFWIxJRWhlCMlT8CnbolW8tPQlm+rVtAY7fdW0tNw9GO+CQWjXzhZhMaY5gqVB\nCvwF+PBBFF68e41N9Wpag3h/tHHspFXTrDd7hjiLsAjnnvsFqiN48cWrM10lY7JOvDPclBFTmJA/\ngbce70pVtzeIBqZR3S1sLV4mU+L90Y5uTn80L+PM43cPR9OMsXAmNYEABAJ9UB3IzTffzPjx4znw\nwAMzXS1jskqgJECgJED00Cj/fu1klh36N/BHiEULKBpUAdjgc7PTbQU6AOOB64B8YIPXi6TSm71Z\ndw+meW688Ua6du3K+PG32bztxqTI7/dz4h/7g38r+KL48iOs2zWU6WqZ3HQnMBQnmANswllr3RMv\nwTzx7gFSvHswzdO5c2d+97uHWbLkDiZOtHnbjUnVmF+McSaUiYLEoGjTkdYZzmTCEFW9EKgCUNXv\naeEOcGm5ezDNJzICKETVR3W1zdtuTCoCJQEqz65kVLtRRO/7ORcdf7B1hjOZsE1E/DhroSMi3YCY\n14t4CeZpuXswzTd8uNC+vQ+nd3sVgwdvynSVjMlKgZIAz1/xPPt3vpJt3edZZziTCbfhLJe6h4hM\nBeYC07xexEsHuLTcPZjmi/duf/DBtUyffho33HAE8+dPYfhwscUjjPFIRDj3uj35/fxjrDOc2elU\n9WEReRcoBwQ4XlU/9nodL8G87t3DScBErwWa9HB6t5egei53330SlZVKu3ZCRYWtBmWMV5uLwvjy\nI8SIAlv5nH8RDgcIhbAV1kyLEpEZwMWqeof7ubOI3Keqv/VynaSDebruHkx6lZScAaj7/DxGKOSz\nPzzGeOSsrlZApCZCNBrl4es/5L/Xvsm2nq+Rf2+Q0IMB+70yLeUX7ggxwHmELSKexx0nHczTdfdg\n0mv4cB/t2ilVVTXEYtvYZ58NwJ6ZrpYxWSU+oUxoZQjfKh+Xz1gEZ40Ef4RItICZcyoIWDQ3LcMn\nIp3dfmiISBe8tZqDxxPScvdg0isQgDlzhMceW8/06adz6aU9+PDDv3PMMYWWSRjjQXxCGYDZH47n\nTX8EfFHQCJSGsGfopoX8DxAWkcfczycDU71exEtvdp+IdI5/SPXuwaRfIAA337wHU6ZM4dNP7+Ha\na/MoL1cbXmNMiv77wt/jxwdRwS8+DuxsY9BNy1DVmcCJwNfudqKqPuj1Ol6CefzuYbKITAbeBG70\nWqBpOVu3DqldXa2qKkZlpWa6SsZkpUBJgH9PCBGoHkr0vv5ccEENV744jeBvwhbQTVqJyABVXayq\nt7vbYhEJer2Ol/XM03L3YFqOs7qaD5EoqtV88MHfULWAbkwqDt37UOZOm8vPf34a0TNGocGJRMaV\nM3OORXOTVrNE5DJxtBeR/6Ulx5nH7x6AxQn7gqoa8lqoaRnO+HOorPTxwQfTmTXr/9GhQwf69TvX\nhtcYkwKfz8cRZymfLNv+/FxLK7Hn5yaNhgA34LR2dwQeBg7zehEvz7xniciDOE3r7dzXMuz/6lbF\nGX8uqF7Mjz/+yP33n45IzB2DbpPKGOPV2UeOYMaKqVTXVENMWTB3Icd8dj1jy4Zz3rH2C2WabRvO\n2iftcWLrClVt2elcgRKcu4d3gC9J4e7B7BwiwtChlxOfw915hm4T9hnjlTOHewVTyydz4Ncn8E7R\nM7xcM4n/fKOc6S9Yk7tptndwgvnBwOHA+ISe7UnzEsybffcgIqNEZImILBeRy+v5/ggRWSAiNSJy\nUp3vzhKRZe52lpdyc9WIET7at9/+DP3ZZx9gyhRbNtUYrwIlAf5yxF/otvdBEB+y5osw6+2KTFfN\nZL8JqjpJVbep6lpVHQPM9noRL8G8WXcP7rzudwDHAgPc8wfUOewL4GzgH3XO7QJcjdM6cAhwdeIw\nOVO/+BzuU6b4GD16DvPmjXNXhbJha8akYmzZcIgWQNQPsQJWzHmHm2e9zDFTplmWbjwRkUsBVHW+\niJxc5+t9vV7PSzBv7t3DIcByVf1MVSPAI8CYxANUdaWqfshPF3A5BnhFVde7s+S8AozyUHbOCgTg\nL38Rhg49rnbY2tatUZ58cn2mq2ZM1jnv2AD3HFbB0QWT+c92N/LFqi/444fH8/K2idbsbrwal/D+\nijrfeY5vTXaAE5FLVfXG+N2DqiZm417uHnoCqxI+r8bJtFM9t6eHsnNefNhadXWMWCzCPfeMp6Rk\nClu2HGw93Y3x4LxjA7Ud397b8AVv+xfW9nR/4t2QdYozyZIG3tf3uUnJZOZpvXtoSSJynojMF5H5\n3377baar06rEh61NmeJj1qz1dO3alYsv3o8rr4xZs7sxKZpQfsIOze5rP13DMZOvtwzdJEMbeF/f\n5yYlMzQtXXcPa3B6w8cVu/uSPTdY59xQ3YNUdTowHaCsrMxmS6nDGbYGUMyiRfdx7bV5qPrYurWG\nO+7YSijU0bJ0YzxwsvAKZr1dwaeLl7Lw5/exsCbCy28UABWWpZvGHCAiG3HiaHv3Pe7ndl4vlkxm\nnq67h3eAfiLSW0QKcDL+ZJ+5vwQc7a7U1hk42t1nUnTMMYW0b+/D54sBNTz8cD5XXWVZujFenXds\ngFevvor+B/x8h57u//fKk4TD2Jzupl6q6lfVTqraUVXz3Pfxz/ler5dMZp6WuwdVrRGRi3CCsB+4\nT1UXich1wHxVnS0iBwNPAZ2BX4vItaq6n6qud+eDf8e93HWqaj24miHe0z0UEhYurOaf/+xALOZk\n6U8/vRnYnVAIy9SNSdLYsuFORq4RiBUw/7GlHP7kv4n1mkv+vcNtTXTToqStzt1dVlam8+fPb/iA\ncJjaaAXkcuQKh53halVVMVSrKSi4DNWbicXyKCgQKipy8p+lVRORd1W1LNXzm/z9MCmZ/kKYJ94N\ncdx+Q7njzjBLhkxxsvVoAcdvrOCQPQO5+mdmp2ru70c2ys0lTJ3oBZEI+P0gAjU1UFDg9BKDnAr0\n27N0P/37b+Dyyw9k+XIBhOrqGDNn+tr6P4ExaZHY033xj/NYsnT7nO5Pr7ifZz6otCzdtIjcDOah\nkHwwkD0AABGcSURBVBPIo1GIuUPaVZ19M2fCjBn1B/pbb4V167ZHtcTsPst/M7d3jtuLPfc8h+HD\no0QiNcRiNUyf7gPyKSy0LN2YZJ15RJD7PysgEo2g6oNBM1FfDZFoATPnVBCwXySTRrkZzINBJzjX\nF7Ch/kBfXQ0XXeTsiwf2Sy5xjm1jgf7QQ4VQKI9XX93G889/wrx5AwGhqirKrbf+QCjUJRt/LGN2\nqvic7qGVId5e+gVPf/F/tVn6Y0svZfGVwzl92LHW492khT0zr9uUDvU3wYs4gTwWc/aXlztN8tEo\n+HzOvjYY6MNhGDFCqa6OobrN3etk6ZWVvtZe/TbLnplnl/CqMMMfKCcSi0BM0JgffDUQLeCWA2cz\nZK+R2fInISvk4jPz3A3mjakv0BcV/TRAxz+nK9DHy2plv9Hxf44lS7Yyc2YBqn5gG336zOCCCwZQ\nXT2U4cMtsO9MFsyzT3hVmNDKEE+HvuDtGjdLj/rx/3sMfH4Jsb1fJ3+NPU9Ph1wM5rnZzN6U7Q+Q\nt38G2H//HYNt/HPdQD92LLz++vZAH2+yj0TgiSe2N+MnNt234o548X+OcLg9s2ZBJKL4fLBu3RL+\n9KfTgBj5+VFuuKGaqqpdW9u9iDGtQqAkQKAkQNHmMG+/MaN2CFvHvD3ZcPox4I8QiRbw50f+hw4V\nGxg7OGhN8CZplpmnS92m8/jnZDN6cSfTU3UC+7nnNtwRL4OBPvHHrKio4eqrfcRiPqAGZ30cP4WF\n8Oqr4Pf7W2NDQ5tgmXl2iw9hGzs4yHvrQ9y9dKKbqfsAH4hCtIB7DrNZ5FJhmblJXX3ZvJeMPtmO\neM3pcQ/NDvo7/ph5XH99/L7ER02N84eounobxxzzTyKRccRi+RQWwq23yg7VMiaXJQ5hC6/C6fUe\nc27wlRj4YqARpj501/9v7/6jpCrvO46/vzO7s8GYSFhIgj8CKGpJ2RMqKWYUccVILG1CTpGqxR+n\nac7WWls3bdqj1dQcT6RRj4TWJieLP44VbTRHPEpOlKjoQgKrIFQFf2BED4o/ESoqAjM78+0f9+7s\nzDC7zMLuzo/7eZ0zh7lz7zz32Tk89zPPc597h+3vvceqN15QT136pZ55pQ10Il4iARdfDLfcEgR9\nfo++v/PzQ9S7338AwonHM4wd+yhbt55F8H2xm1jMgJiCfZCoZ15fes6nf/B2Mzc81w6xYAie5V+F\ns5/O3XjmL0fdxPufaAj+QKLYM1eYV7PBnHE/DMP4xdWdOdNJpRz3DO5Gb7BDEOzGihVWbvGSR2Fe\nv/KH4P9n9XJWxq/rcwgeyG2rcO8VxTDXMHs162siHgSBe6AZ9/kT8YZhGD+ZLJyF+/jjwb3fm5tj\nXH65k0plcYdsNuil79mTZt685bz33tlkMg3qtYtQOAQPsHL1jcFkOQysdwj+8tuuYe8f/A7iwa+0\nbdmygpEf6XaxUaUwr1UDnXFfqnffV2DDoNw4J0kXSTqhpZWWx5O5YG9vD65bj8Wc3bt3k04Ht47d\ns6ebSy6BnuH4xx6DWEy3kpXo6vmJ1aXrOxnz6Wbu3tGemwWfde/9lTZPccPyO7CPgtvF3vwvSX0p\njhgNs0dZhW6c07XxcDqX7qB1bjO0tDBzZpZUCtyz4XB8cB17U9MS0un5uDeSSDg33ZThww8TOkCh\nYfaoyh+CB/ib1WcG59c9DljuRjQsX4gdtpPGt1rpXHIKGz/oitRwfBSH2RXmUtpQ3TinxPn5nnBv\nnnIM7f8xPvwOkWHCcavZvPk0es61B5e+xWhoyDJ//jo+97mJzJ07munT47V0U71BoTAX6A33vU2v\ns+rjW/LOrceDIflMglFrv8vOabfmJtHNb17E9t076jrYFeZ1RAerITLE19N3+dfo7J5Oa+NqaG/n\nzBtmkaIRw8kQx4kD3VgY7EaK8cf+J6+//o9kMg0kErBwYYZduxrrOtgV5pIv/3axhpHNhufWM3Hi\nr08iM+7FkkH/02nLaWhsrLteu8K8juhgVQHlBH25l9mFvfuux3bTmT2NZnbQzqJcsGeJkaWBOGnG\nHr6WbR+fTE8Pvifo47Fu2i65j4kTJ/Luu5P41rc+i5nVRQ9eYS7Fei5vaz6smX94qJ1UNkUiluDy\nExf1Xu6WP4kuE4cNp8KUdble+5/GrmFfQzfz/ngmULsz5RXmdUQHqypzMNfTF/XuuzLT6PQZBcGe\nIM2iGffTvurPSwZ9M7fyPhfjJIBuzAw8TkNDlh/fsIET9u3j2SeynDF3NLS01EzQK8ylPz3B3jq+\nleQxydxwfG4SXXgd+6g3vsHO8b/a/9K3bOE5+AUn3suoUaO4/39X5c7XV3PQK8zriA5WNaS/u9T1\n0bvPH45PfmcSXYs37teDT5DmghOf4vbNp5GhASMDgBMnTprjuZWtXEyKBHG6yVqMrMdpbMzygwue\nxl//hDP/4vMk21qq7py8wlwOVp+T6PJ77dlwlCzmYQ8+CVPWBz34oqC//g/v44jPHlFVQa8wryM6\nWNWhMnv3BefdZ8/mzAcuI0UjcTIY0E2cBGnOHfMwS7bP2S/oY3QTI4sTI0GKk8f9hNXbvk8m00Bj\nY5ZrLtpAdutuZs4bU7GgV5jLYCnZa++ZHW/dkE0w9t1v8vaRS4Me/ACCfmbqn9ljac6Z2sr35p3F\nLcufLPgikR/6+V8yDvVLgMK8juhgFTH9BH1X65V0pk+lNf5bMCs5wS4/6IuH6ic3/pZN6RlkaNgv\n6L827if87o3vk8k25Hr02a27+fq5XwiqEV6Cl2xrGdQ/V2EuQ6G4197vZXBh0H/x3W/yTsmgL7xj\nXcGtaYtC/5Rdf8+aI27Onbufd/j1fJD+iHO+esZ+QZ9fr75CX2FeR3Swkpx+hvG7Fm8MAnfKB7Bo\nEZ3pU2mO7aQ9c1NZ5+T7Cvo43eGXgwYSpLj2ojsZPWYMr647jFnnH0k8FisI+oH27hXmMtwGHPRF\nk+0+9U6SvWO7SvfuX/sKHPtsydvWHrZqBp/MWFXyS0BfvyoXxTDXHeCk/vVzW9xkWwvJtnDh218g\n2dkJrX9Gy8YtvWHbchwtrbOLgt5JkObS5Fu0r0qRwguCPktwsHLipHAevNNZz5+QIsH1q3qCfhKJ\nR1Kce9cSftF1HulMjEQjLGp/jZ3PbBuSHn3ZypnHUOp0Rznb1UIZquN+27WNhLY4MDJYlXueTMKW\nxSzdsJK5J50OwNINKxnzxfHcHbsud8e6uZMu5O4d64PlntD3oHc/54TzeXDfiyVvW9t9woe9d7oj\nvCNlzMFTLF3fWZUT8CrC3evyMXXqVBcZNGvWuC9Y4L5mja/peM4XzHrC13Q8FywnTvcF9q/eEb/E\nR7Db46Q8wR5vYo/HSfkIdvtfTXzU46Qd3I1uN7od3OOkfBIP59bFSHsD+zxO2kewO9hHCcDTPlTt\nY80a9xEj3ONx90TCvakpeD5ihHtHR+l15W5XC2WojoNWRsf4KT7rtFbvmDDFvaPDOyaEy+O+0ue6\n+VNnOFeNcH4Qd64a4fP/9p96l69OOFc35dZ13LzkoNsHcDawGXgFuKLE+ibg3nD9U8D4vHVXhq9v\nBr5RbplD+ah46A7VQ2Euw6aPoC9+3lfQ/+zUO3LrGtjnsTDY46R8wawnSu5ySMN8wYLgYAzuZsED\ngtdmzSq9rtztaqEM1bHiZXQcPdlnTT/dO77U4j5rlnd8qSVYPnpy4boFCw6qfRDcM3oLcCyQAJ4F\nvly0zaXAz8Pn5wH3hs+/HG7fBEwIy4mXU+ZQPjTMLnKo8obxk0l6h+0pfL6Cjb33pCdvclzLCUzp\nYxi/Z9th1doaXOdf6tr/vn6Jr9ztaqEM1bHiZbRt/z1tb78YrLvqMtra22l7s/d9uXU9pwMGbhrw\niru/CmBm9wBzgBfytpkD/DB8fh/wX2Zm4ev3uPs+4DUzeyUsjzLKHDIKc5FhUnB+nqLQ7/z30ufr\nK3HOPJks/RO75fwSXznb1UIZqmP1lHGgdaWNNrP8GZ6L3X1x3vJRwBt5y9uAk4vKyG3j7t1mtgto\nDl9/sui9R4XPD1TmkNFsdpEapNnsIn07UPsws3OAs939u+HyhcDJ7n5Z3jabwm22hctbCML5h8CT\n7n5X+PptwMPh2/otcyjFhmMnIiIiVeRN4Ji85aPD10puY2YNwBHAjn7eW06ZQ0ZhLiIiUbMOON7M\nJphZgmCC27KibZYBF4fPzwEeDyfXLQPOM7MmM5sAHA+sLbPMIaNz5iIiEinhOfDLgN8QzEK/3d2f\nN7NrCWbCLwNuA5aEE9x2EoQz4Xa/JJjY1g38nbtnAEqVOVx/k8JcREQix90fAh4qeu3f8p7vBeb1\n8d7rgOvKKXO4aJhdRESkxinMRUREapzCXEREpMYpzEVERGqcwlxERKTGKcxFRERqXN3eztXMtgNb\nD7DZaOD9YahOrdDnUaiaP49x7j7mYN+s9nFQ9HkUqubP45DaRy2q2zAvh5k9fSj3t643+jwKRf3z\niPrfX0yfRyF9HtVFw+wiIiI1TmEuIiJS46Ie5osPvEmk6PMoFPXPI+p/fzF9HoX0eVSRSJ8zFxER\nqQdR75mLiIjUvEiGuZmdbWabzewVM7ui0vWpNDO73czeM7NNla5LNTCzY8zsCTN7wcyeN7PLK12n\n4aT2UUjto1DU20e1itwwu5nFgZeBs4BtBD8of767v1DRilWQmc0APgbudPfJla5PpZnZWGCsu28w\ns88A64FvR+H/iNrH/tQ+CkW5fVSzKPbMpwGvuPur7p4C7gHmVLhOFeXuq4Cdla5HtXD3t919Q/j8\nI+BF4KjK1mrYqH0UUfsoFPH2UbWiGOZHAW/kLW9D/xGlD2Y2Hvgj4KnK1mTYqH1I2SLYPqpWFMNc\npCxmdjiwFGh39w8rXR+RaqL2UV2iGOZvAsfkLR8dviaSY2aNBAequ939/krXZxipfcgBRbh9VK0o\nhvk64Hgzm2BmCeA8YFmF6yRVxMwMuA140d0XVro+w0ztQ/oV8fZRtSIX5u7eDVwG/IZg4sYv3f35\nytaqsszsF0AXcKKZbTOzv650nSrsVOBCYKaZPRM+Zle6UsNB7WN/ah/7iWz7qGaRuzRNRESk3kSu\nZy4iIlJvFOYiIiI1TmEuIiJS4xTmIiIiNU5hLiIiUuMU5iIiIjVOYS4iIlLjFOZ1zMxGmtmlectr\nhmg/R5vZuX2sG2FmK8Of1jyUfSTMbJWZNRxKOSI91D6knijM69tIIHewcvdThmg/ZwIn9bHuO8D9\n7p45lB2EP8e5Aih5UBQ5CGofUjcU5vXtx8Bx4e0WbzSzjyH42UIze8nM7jCzl83sbjP7upmtNrPf\nm9m0ngLM7AIzWxuW0VHcgzCz6cBC4Jxwm2OL6jAfeHAg+zWzT5vZr83sWTPblNereSAsT2QwqH1I\n/XB3Per0AYwHNuUtf5z3ejfQQvCFbj1wO2DAHOCBcLtJwK+AxnD5Z8BFJfazHJhc4vUE8E5RfcrZ\n71zglrz3HRH+Gwe2V/pz1aM+HmofetTTQz3z6HrN3Te6exZ4Hljh7g5sJDioQDA8OBVYZ2bPhMvF\nPQuAE4GXSrw+GvjgIPa7ETjLzK43s9PcfReAB0ORKTP7zEH9xSLlU/uQmqLJEtG1L+95Nm85S+//\nCwP+292v7KsQMxsN7PLg17aK7QE+NdD9uvvLZnYSMBv4kZmtcPdrw+2agL39/WEig0DtQ2qKeub1\n7SPgUL6lryA41/d5ADMbZWbjirYZD7xV6s3u/n9A3MyKD1j9MrMjgU/c/S7gRsLJQ2bWDLzv7ukB\n/RUipal9SN1QmNcxd98BrA4nydx4EO9/AbgaeMTMngMeBcYWbfYSMDrcR6nZwI8A0we46xZgbTh0\neQ3wo/D1M4BfD7AskZLUPqSe6PfMZUiFw4Hfc/cLB6Gs+4Er3P3lQ6+ZSOWpfchgUc9chpS7bwCe\nGIybYhDM5tWBSuqG2ocMFvXMRUREapx65iIiIjVOYS4iIlLjFOYiIiI1TmEuIiJS4xTmIiIiNU5h\nLiIiUuMU5iIiIjXu/wHM8YUppizzCwAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFjCAYAAAApaeIIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcFOW1wP3fmYVFaFbZkR2BmQFFFAZlcNSoIG5xRxMj\nJtFrNPomeRNN4hU0LlfjzZu4oJK4L5dgohEj7jIyIAgKCrMJGnbZ11bZZua8f1Q1NE3PTFdP73O+\nn09/pqu6qp6nle7T56lnEVXFGGOMMekrK9kVMMYYY0zjWDA3xhhj0pwFc2OMMSbNWTA3xhhj0pwF\nc2OMMSbNWTA3xhhj0lxSgrmIjBORKhFZLiK3hnn9fBH5XESWiMhCETkl6LVVwa8ltubGGGPSWUPx\nxz3mIRFZISKficjx7r6eIvKBiJSLyDIRuTno+Mkisk5EFruPcYl6PwfrkOhx5iKSBSwHzgC+BhYB\nV6hqVdAxR6nqd+7zocAMVR3ibv8HGKGqOxJacWOMMWktwvgzHrhJVSeIyCjgL6paKCJdga6q+pmI\ntAY+BS5Q1SoRmQz4VfVPCX9TrmRk5iOBFaq6WlUPANOBC4IPCARyV2ugNmhbsNsDxhhjvGsw/rjb\nzwGo6sdAWxHpoqobVfUzd/83QCXQI+g8iXvt65GMoNgDWBu0vY7D/4MAICIXikgl8DpwbdBLCrwr\nIotE5KdxrakxxphMEkn8CT1mfegxItIHOB74OGj3TW6z/N9EpG2sKhyplM1wVfVfbtP6hcDdQS+d\noqonAOcAN4rImKRU0BhjTJPjNrH/A7jFzdABpgL9VPV4YCOQ8Ob2nEQXiPMrp1fQdk93X1iqOldE\n+olIB1Xdrqob3P1bRORVnGaTuaHniYhNOm8yhqompAnPPjcmk4T53EQSf9YDx4Q7RkRycAL586r6\nWlA5W4KO/ytOi3JCJSMzXwQMEJHeItIMuAKYGXyAiPQPen4C0ExVt4vIUe6vIkSkFXAWUFZXQaqa\nMo/JkycnvQ6pWp9Uqksq1ifRkv1+U/n/hdUnPeqiWufnpsH4425fDSAihcBOVd3kvvYUUKGqfwk+\nwe0cF3AR9cSleEl4Zq6qNSJyE/AOzo+JJ1W1UkSud17WacDFInI1sB/YA1zmnt4FeNXNHnKAF1X1\nnUS/B2OMMeknkvijqrNE5BwR+RL4FrgGwB0ifRWwTESW4PTf+p2qvgU84A5hqwVWAdcn+r0lo5kd\n980PCtn3RNDzB4AHwpy3EqfTgTHGGONZQ/HH3b4pzHnzgOw6rnl1LOsYjZTtAJdpiouLk12Fw6RS\nfVKpLpB69WnKUu3/hdWnbqlUl6Yo4ZPGJIqIaKa+N9O0iAiawA5w9rkxmSCRn5tUYJm5McYYk+Ys\nmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYY\nk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpzoK5McYYk+YsmBtjjDFpLqODud+f7BoYY4wx8ZfRwbyo\nyAK6McaYzJfRwbyiAsrLk10LY4wxJr4yOpgPGaLk5ye7FsYYY0x8iaomuw5xISK6atU2evfukOyq\nGNMoIoKqSoLK0kz9TjBNSyI/N6kgozPzb77ZkOwqGGOMMXGX0cH866+/TnYVjDHGmLizYG6MMcak\nOQvmxhhjTJqzYG6MMcakuYwO5hs2WAc4Y4wxmS+jg7ll5sYYY5oCC+bGGGNMmsvoYL5hwwZsAgxj\nvLH1DIxJPxkdzFu1asX27duTXQ1j0ootUGRM+snoYN69e3drajfGI1ugyJj0k9HBvFu3bhbMjfEo\nLw9boMiYNJPRwdwyc2O8Ky0Fny/ZtTDGeJHxwdzGmhvjjQVyY9JPxgdzy8yNMcZkOgvmxhhjTJrL\nieQgEckBLgVGu7taATXAd8BS4CVV3RuXGjaCdYAzxhjTFDQYzEXkJKAIeFdV/y/M6/2B60Tkc1X9\nMA51jJrdMzfGGJOKYp0kS0MzpInIUFVdFkHF+gHrVHV/pIXHk4jo3r17adOmDXv27CErK6PvKJgM\nJiKoqiSoLLVZE00mSOTnxquQJPmI+OomyROAiJPkBoN5SAFdVHWT+7ylqu6J+OQEC3wpHX300VRW\nVtKpU6dkV8mYqFgwN8a7FA/mMU+SI0pXReS3IjIOOD9od76InBbJ+clkneCMMcakkuBALiJdgp63\nDDnuP5G2dkfa9vwq0Bf4LxGZKSLTgOOBsRGefxgRGSciVSKyXERuDfP6+SLyuYgsEZGFInJKpOeG\nsk5wxhhjUk2sk+R6O8CJSHOgtapWAVUislJV33J/SYwElgQde4yqro3gDWQBjwBnAF8Di0TkNbeM\ngPdUdaZ7/FBgBjAkwnMPY53gjDHGpKBXgdOAn4jIecBGYCHQA5jt9WL1BnNV3SciZ4qID/iXqr7l\n7t8EvA4gIu2Ay4AKoMFgjvMjYIWqrnbPnw5cABwMyKr6XdDxrYHaSM8NZc3sxhhjUk0kSbIXDQ5N\nU9V/i0hX4Bci0glo6Z4X6EK/Dvibqu6KsMweHB701+G8gcOIyIXAfUAnnF59EZ8brHv37pTbElDG\nGGNSQFCL9zaAcEly0LERtXhDhJPGqOpG4F5PNW4kVf0X8C8RGQPcDZzp9RpTpkyhsrKSzz//nJKS\nEoqLi2NdTWNirqSkhJKSkmRXwxgTB2FavI8YFRZFi7e3oWmxICKFwBRVHedu3waoqt5fzzlfAScB\nx0Z6bmCIzYIFC7jlllv4+OOP4/F2jIk7G5pmjHepPDQNwG3xvhboDLSgcS3ekWXm9VTmqJD725FY\nBAwQkd7ABuAKYGLIdfur6lfu8xOAZqq6XUQaPDdU9+7dWb9+vccqGmOMMfET6xZvz8FcRL6vqq+K\nyE+AviKySlX/Gun5qlojIjcB7+AMjXtSVStF5HrnZZ0GXCwiVwP7gT04zQ11nltfed26dWPz5s1U\nV1eTk9Oo3y7GGGNMXEWZJHtvZheRx1T1BhHJB5YDw1V1odeC4y3QXOj3Q79+5/Phh4+Sl3dMsqtl\njGfWzG6Md6nezB4sNEkGPCXJEN0SqP8nImOBfcDlwDdRXCMh/H4oKoKtW//J+ee3x+9Pdo2MMcaY\nI5zl/p0PTAE+93oBz8FcVee4jy9V9QVVrfB6jUQpKwNnVFouq1a1xEaoGWNM0xbJLKIi8pCIrBCR\nz0TkeHdfTxH5QETKRWSZiNwcdHx7EXlHRL4QkbdFpK3HajU6SW50b3YRKVDVskZdJA5ERHfvVoqK\nYNmyajp33sby5V3w+ZJdM2O8sWZ2Y7wL97lxZxFdTtAsosAVwbOIish44CZVnSAio4C/qGqh2/u8\nq6p+JiKtgU+BC1S1SkTuB7ap6gPuD4T2qnpbYt6pI6p1QUXkGBE5UUSOAY6KcZ1ixueD0lL45S9f\nY9y4eyyQG2NM03ZwFlFVPQAEZhENdgHwHICqfgy0dVcM3aiqn7n7vwEqcSYyC5zzrPv8WeDCxlRS\nRAq8nuM5mLu9zr8PDOPwhdVTks8HxcUt2LhxRbKrYkxa8fth/nysr4nJJOFmEe3RwDHrQ48RkT44\ni40tcHd1DiwP7g456+y1Yo1NkqMZq/WVqr4XVIGUXwa1d+/erF69OtnVMCZtBDqPlpdDfr7TwmUt\nWyaVJWrmRLeJ/R/ALar6bR2HebpX5SbJzXHulbfDmTzG0yixaIL5bhF5EGeO9l3ArCiukVC9evVi\nzZo1qCoiaTFSwZikCnQera6GigrneWFhsmtlTN2Ki4sPm7L7zjvvDHfYeqBX0HZPd1/oMceEO0ZE\ncnAC+fOq+lrQMZvcpvhN7r31zR6r3+gk2XMwd8eUp9y48vq0adOG3Nxctm/fTseOHZNdHWNSXkGB\nk5FXVEBenvPcmAwQySyiM4Ebgb+704/vDDShA08BFar6lzDnXAPcD/wIeA1vGp0kN5kp0QLZuQVz\nYxoW6DwaaGa3JnaTCSKZgVRVZ4nIOSLyJfAtTpBGRE4BrgKWicgSnKb037mrnt0PzBCRa4HVuLOW\neqhXo5PkqIemuWPislXV8yLqiRA6xOb888/n2muv5cILG9XJ0JiEs6FpxniXTjPAxUJUQ9Nc4j7S\nQq9evawTnDHGmJQlImOj7VTemGCeVnr37s2aNWuSXQ1jjDGmLlEnyU0qmFtmbowxJhM1pgPcOtLo\nx0CgA5wxxhiTaRoTzDum4tKndbHM3BhjTIqLOkmOZjrXke7TkfUemGK6dOnCrl272LNnT7KrYowx\nxoTTUVWjmnu8Mc3kfUXkUhH5WSOukTBZWVn07NmTtWvXNnywMcYYkyCxSJIbDOYicoE7W05AYOq7\nWar6sqpOjbbwRLOmdmOMMSks6iQ5ksy8GOgEICLnq+p6AFV932thyWad4IwxxiRbPJLkSDrAzQR+\nLyItgBYiciywDCgLBPZ0YZm5McaYFFCME8BXu0nyTGhcktxgMHena50NICK/BD4F8oELRKQ7Tu+7\nh1X1i2grkSi9evXiww8/THY1jDHGNG0xT5I9DU1T1T+5Tw9GRBG5HDgPSPlgbrPAGdOw2tpasrLS\nZgoJY9JOPJLkWKyadoA0CORg87MbE4ldu3bRvn37ZFfDmCYhVklyo4O5qr7S2GskyjHHHMP69eup\nqakhOzs72dUxJiVt3brVgrkxyeU5SW5SbWktWrSgQ4cObNy4MdlVMSZlbdmyJdlVMKZJU9VXVPV1\nL+c0qWAO1tRuTEO2bt2a7CoYYzyKOJiLyM9FJO3b3qwTnDH1s2BuTPrxkpl3ARaJyAwRGSciUa25\nmmyWmRtTv3DN7H4/zJ/v/DXGxEYsk+SIg7mq3g4MBJ4ErgFWiMi9ItI/FhVJlG7djrUvJWPqEZqZ\n+/1QVARjxzp/7bNjTMzELEn2dM9cVRXY6D6qgfbAP0TkgWgrkEh+Pzz66BXMnPlL+1Iypg6hwbys\nDMrLoboaKiqc58aYxotlkuzlnvktIvIp8AAwDxiqqjcAI4CLvRacDGVlsHZta1Rz7UvJmDqEBvOC\nAsjPh9xcyMtznhtjYiNWSbKXceYdgItU9bAbzqpaKyLneik0WQoKIC9PWLp0H4MH55Kf3+Q68xvT\noNB75j4flJY6P37z851tY0zjicgtwNXAVuBvwK9V9YCIZAErgN9Eei0v0axFaCAXkfsBVLXSw3WS\nxueDuXOFnj1/wNNPf2lfSsaEEa43u88HhYUWyI2JsUCSfLa7WtoBcJJkwFOS7CWYnxlm33gvhaUC\nnw8KCr5h48YVya6KMSnJhqYZkzAxS5IbDOYicoOILAMGicjSoMdKYKmXwlJF//79+fLLL5NdDWNS\n0rfffsv+/fuTXQ1jmoKYJcmR3DN/CXgTuA+4LWi/X1W3R1Nosg0YMMCCuTF16NixI9u2baNbt27J\nrooxGUlEbgB+BvQTkeCk2IfTwdyzSNYz3wXsAiZGU0AqGjBgAG+//Xayq2FMSjr66KPZunWrBXNj\n4ifmSXKDwVxE5qrqGBHxAxrY7f5VVW0TTcHJZJm5MXU7+uijbbEVY+IoHklyJJn5GPdvxvRj7du3\nL2vWrOHAgQPk5uYmuzrGpJROnTpZJzhj4igeSbKXSWMuFRGf+/x2EXlFRIZ7LTAVNG/enG7dutmC\nK8aEEWhmN8bER3CSrKpt3IcvsB3NNb0MTftvVfWLyBjgezjTzz0eTaGpYMCAAXz11VfJroYxKcea\n2Y1JjFgmyV6CeY37dwIwTVXfAJpFU2gqsPvmxoRnmbkxCROzJNlLMF8vIk8AVwCzRKS5x/MPcleH\nqRKR5SJya5jXrxSRz93HXBEZFvTaKnf/EhFZGE35YMHcmLrYPXNjEiZmSbKXYHwZ8DZwlqruxJkM\n/tdeC3TnnH0EOBvIByaKyOCQw/4DjFXV44C7gWlBr9UCxao6XFVHei0/wIK5MeFZZm5MwgSS5Mtp\nZJLsZaGVGqAFcKmIBJ/3jscyRwIrAlPYich04AKgKnCAqi4IOn4B0CNoW4jyzQazWeCMCc/umRuT\nMJcB44AHVXWniHQjiiQZvAXz14CdwGJgXzSFuXoAa4O21+EE+Lr8BGdwfYAC74pIDU6zxF+jqUS/\nfv1YuXIlNTU1ZGdnR3MJYzKSNbMbkxiq+h3wStD2BmBDNNfyEsx7quq4aAqJloicBkwCxgTtPkVV\nN4hIJ5ygXqmqc8OdP2XKlIPPi4uLKS4uPrjdqlUrOnTowPr16+nVq1c8qm9MVEpKSigpKUla+R07\ndmTr1q2oKiLS8AnGmKi4zeoXA30IiseqepfnaznrokdU6DTgYVVd5rWQkOsUAlMCPwxE5DacQfL3\nhxw3DPgnME5Vw44hE5HJONPf/SnMa9rQezv11FOZPHkyp59+enRvxpgEEBFUNSFRNfC5adWqFRs3\nbsRna56aNJXIz020ROQtnJngPuVQZzhU9X+9XstLZj4GuMZdLW0fzr1rVdVh9Z92hEXAABHpjdOc\ncAUhU9qJSC+cQP7D4EAuIkcBWar6jYi0As4C7vRY/kGBTnAWzI05XKCpva5g7vdDWRkUFNga58Y0\nQsxavL0E85isXa6qNSJyE07HuSzgSVWtFJHrnZd1GvDfOIu2TxWnne+A23O9C/CqiKhb9xdV1WsH\nvINs4hhjwgv0aO/bt+8Rr/n9UFQE5eWQnw+lpRbQjYnSRyIytLEt3uAhmIcuoN4YqvoWMChk3xNB\nz38K/DTMeSuB42NVjwEDBjB9+vRYXc6YjFFfj/ayMieQV1dDRYXzvLAwwRU0JjOMASaJyH9oXIt3\n5MHczZCvAvqp6l1uU3hXVY164pZks7HmxoRX31jzggInI6+ogLw857kxJioxafEGb+O1pwKjOXR/\n2w88GquKJEP//v356quviLQToDFNRX3D03w+p2l9zhxrYjemkdYARcCP3NZvxbmd7JmXYD5KVW8E\n9gKo6g7SeG52gDZt2tCyZWdef30rfn+ya2NM6mho4hifz2lat0BuTKPELEn2EswPiEg27tqr7jjv\n2mgKTRV+P+zZ8w4XXdSBoiIsoBvjsildjUmImCXJXoL5Q8CrQBcRuQeYC9wbTaGpoqwM9uzpQ01N\n9sGOPMYYmwXOmASJWZLspTf7iyLyKXCGu+tCVa2MptBUUVAAXbvuYOPGduTl5VpHHmNclpkbkxCh\nSfIlwO3RXKjBYC4iv6zjpfEiMj7c7GvpwueDxx8vZ/LkGXz44VS7/2eMyxZbMSb+YpkkR5KZB0Lc\nIOAkYKa7fR6QtsPSAkaMOJZ16/6Bzzc12VUxJmVYM7sx8ROPJLnBYK6qd7qFzwFOUFW/uz0FeMNr\ngammW7du7N+/ny1bttCpU6dkV8eYlNC+fXt27txpqwoaEx8xT5K9TOfaBdgftL2fKMfDpRIRIS8v\nj8rKSgvmxrhycnJo27Yt27dvt8+FMTEWjyTZS2/254CFIjLFLfBj4JloCk01gWBujDmke/furFu3\nLtnVMCaTxSxJjjiYq+o9OGuL73Afk1T1vmgKTTV5eXlUVFQkuxrGpJSBAweyYsWKZFfDmJgSkXEi\nUiUiy0Xk1jqOeUhEVojIZyIyPGj/kyKySUSWhhw/WUTWichi9xHpSmgxS5K9NLOjqouBxdEUlMry\n8vJ48803k10NY1KKBXOTaUQkC3gEp/f418AiEXlNVauCjhkP9FfVgSIyCngMCCwl9DTwME4QDvUn\nrx3XVPUeEXkTZ0pXcJLkJZ7elMtTMM9UQ4YMsczcmBADBw5k7ty5ya6GMbE0ElgRWAVURKYDFwBV\nQcdcgBusVfVjEWkrIl1UdZOqzhWR3nVcW6KpUKySZC/3zDPWMcccw65du9i5c2eyq2JMyrDM3GSg\nHsDaoO117r76jlkf5phwbnKb5f8mIm0bV03vvCyB+nPgBXfu2IySlZXFkCFDqKysZPTo0cmujjEp\nwYK5SSclJSWUlJQkq/ipwF2qqiJyN/An4MeJrIDXoWmLRGQx8BTwtmbQ2qGBHu0WzI1xdOvWje++\n+45du3bRtm3diYbf76xzUFBgq6iZ5CkuLqa4uPjg9p133hnusPVAr6Dtnu6+0GOOaeCYw6hq8HSJ\nfwVeb7DCxDZJ9tKb/XZgIPAkcA2wQkTuFZH+ja1EKrAe7cYcTkQYMGBAvdm53w9FRTB2LLbyoEkH\ni4ABItJbRJoBV3BowpaAmcDVACJSCOxU1U1Brwsh98dFpGvQ5kVAWYT1CSTJM9xe9lHddweP98zd\nTHyj+6gG2gP/EJEHoq1AqrBgbsyRGmpqLytzVhusrsZWHjQpT1VrgJuAd4ByYLqqVorI9SJynXvM\nLGCliHwJPAH8LHC+iLwEfAQcKyJrRGSS+9IDIrJURD4DTgV+EWF9YpYke7lnfgvOr5WtwN+AX6vq\nAber/wrgN14LTyXWo92YIx177LH1BvOCAsjPdwJ5Xh628qBJear6Fs40qsH7ngjZvqmOc6+sY//V\njaiPiki4JPldVY04rnq5Z94BuCjQpT+oIrUicq6H66Skvn37snnzZr755htat26d7OoYkxIGDhzI\n+++/X+frPh+UljoZeX6+3TM3xotYJslemtlbhAZyEbkfIN3XNQfIzs7m2GOPpaqqquGDjWkiIunR\n7vNBYaEFcmOiEEiSz1bVl1X1ADhJMuApSfYSzM8Ms2+8l8JSnc3RbszhBg4cyPLly5NdDWMyVcyS\n5AaDuYjcICLLgEHuDf7AYyWwtKHz00n//sfz7rvfWI9cY1ydOnWipqaGbdu2JbsqxmSimCXJkdwz\nfwl4E7gPuC1ov19Vt0dTaCry++H5569jzZpWLF3q3Ae0ZkPT1InIwab2jh07Jrs6xmQEEbkBp5d8\nv5BFW3zAvGiu2WAwV9VdwC5gYjQFpIuyMli/vg2qWQeH2BQWNnyeMZkuEMwL7QNhTKzEPEluMJiL\nyFxVHSMifkA5fLC8qmqbaApONQUFkJcnLF26j2OPzSY/39agMQZsWldjYi0eSXKD98xVdYz716eq\nbdy/gUdGBHJwmtTnzhWOO+4W7r231JrYjXFZMDcmtkRkrvvXLyK7gx5+EdkdzTUjycwDGXlYmRbQ\nTz21OcuXfwqcluzqGJMSLJgbE1vBSXKsrhnJPfMmlaMOHz6cd999N9nVMCZlBIK5qtKIqaONMXFk\n65mHGD58OEuWLEl2NYxJGR07diQ7O5stW7Y0fLAxpkFBzev+MI+4NbOH6wB38G8mNbODM0f7qlWr\n+O677zjqqKOSXR1jUkIgO+/cuXOyq2JM2otHi3e0HeDaZFoHuIBmzZoxePBgli1bluyqGJMy7L65\nMbFTTwe43dFm5tbMHoY1tRtzOAvmxsROmCT5sEc014w4mItICxH5pYi8IiL/FJFfiEiLaApNdccf\nf7wFc2OCeJmj3e+H+fOxaZGNSSAvmflzQD7wMPAIkAc8H49KJZtl5sYc7vjjj2fx4sUNHuf3Q1ER\njB3r/LWAbkzdYpkki2qdQ8hDC61Q1byG9qUKEdFI31sov99P165d2bVrFzk5NhOcSS4RQVUTMias\nrs9NbW0tHTp0YPny5fV2gps/3wnk1dWQmwtz5ti0yCY5Evm5iZaIzAD8wAvuriuBdqp6qddrecnM\nF4vIwY+liIwCPvFaYDrw+Xz06NGDL774ItlVMSYlZGVlMWrUKBYsWFDvcQUFkJ/vBPK8POe5MaZO\nBar6Y1Wd7T5+itMC7lkkS6Auc1d1GQF8JCKrRGQVMB84MZpC04HdNzfmcKNHj2b+/Pn1HuPzOSsO\nzpljKw8aE4GYJcmRtCGfG82F013gvvkPfvCDZFfFmJRQWFjI/fff3+BxPp81rRtTHxFZhjNfSy5O\nkrzGfakXUBXNNSOZznV1UAXaAwOB4Bv0q484KQMMHz6cP/7xj8muhjEpY9SoUXzyySdUV1dbXxJj\nGifmSbKXoWk/AeYAbwN3un+nRFOoiIwTkSoRWS4it4Z5/UoR+dx9zBWRYZGeGyuBzDzaTnTGZJr2\n7dvTs2dPysrKkl0VY9Kaqq4OPIDdQBegd9DDMy8d4G4BTgJWq+ppwHBgp9cCRSQLZ2jb2Tg3+ieK\nyOCQw/4DjFXV44C7gWkezo2JLl26kJvbgVdf3WjDa4xxRXLf3BgTmVgmyV6C+V5V3etWoLmqVgGD\noihzJLDC/VVyAJgOXBB8gKoucBdvB1gA9Ij03Fjx+2HPnne47LLONl7WGFdhYWGDPdqNMRGLSZIM\n3oL5OhFpB/wLeFdEXiO6++U9gLXB1+VQsA7nJ8CbUZ4btbIy+Pbb3tTUZFNRAeXl8SjFmPRSWFho\nmbkxsROrJDmi3uwAqOr33adTRGQ20BZ4K5pCIyUipwGTgDHxLCecggLo0+c7Vq5sQV5ero2XNQbI\nz89n48aNbNu2jY4dOya7Osaku9AkeQdRdiqPOJi7U8z9DCewKjCX6BZqWY/T/T6gp7svtLxhOPfK\nx6nqDi/nBkyZMuXg8+LiYoqLiyOupM8HH35Yy8CBZ/HBB+/g8+VGfK4xjVFSUkJJSUmyqxFWdnY2\nJ510EgsWLGDChAnJro4xaS2WSbKX6VxjMu2ciGQDXwBnABuAhcBEVa0MOqYX8D7wQ1Vd4OXcoGOj\nns41WEFBAc8++ywjRoxo9LWMiUYqTOca7Pbbb0dE+MMf/pCIKhkTlTSZzjVckvxYoOndCy+DRQtC\n5mGfLSIVXgtU1RoRuQl4Byezf1JVK0XkeudlnQb8N9ABmCoiAhxQ1ZF1neu1Dl4Eeu9aMDfGUVhY\nyJ///OdkV8OYTPAcTpL8sLt9Jc4CZp7nZveSmb8APBLIlN1p525U1au9FpoIscrMn3rqKT744ANe\neOGFhg82Jg5SLTPfunUr/fr1Y8eOHWRnZzd4Tb/f6VBaUGDTu5rESZPMPGYLmNnc7A2w3rvGHO7o\no4+mS5cuVFQ03DBnS6IaUy+bmz1RBg8ezLZt29i8eXO9Sz8a05SMHTuW2bNnM3To0HqPKytzhnVW\nV3NwiKfN226aunjMzd5gZh4y7Vw74Dz30S543vZMFenSj8Y0JePHj2fWrFkNHmdLohoT1rk4cXQc\n0Bc41X2cKCKrAAAgAElEQVT0BcZHc0Evc7PfArwIdHYfL4jIz6MpNN3YFJbGHO7MM89k3rx5fPvt\nt/UeZ0uiGnOkeCTJXsaJ/xgYpap3qOodQCHw02gKTTejR4+2zNyYIG3btuXEE09k9uzZDR4bWBLV\nArkxh4tlkuwlmAtQE7Rd4+7LeCNHjjy49KMxTYV/n5/5a+fj3xe+19o555wTUVO7MaZOMUuSvYwz\nfxr4WERedbcvBJ6MptB00759e4455hiWLVvG8OHDk10dY+LOv89P0dNFlG8pJ79TPrOunMXqXasp\n6FyAr7mTYp9zzjlMmDABVcWZDsIY41HMkuSIMnN34paXceZJ3+4+Jqlqk5k5wlaLMk1J2eYyyreU\nU11bTfnmck599lTGPjOWoqeLDmbqeXl5qCqVlXGdt8mYTBZIkqeIyBScVUKjSpIjCubuLBKzVHWx\nqj7kPpZEU2C6Gj58LDNnbrFxsibj+ff5KehcQH6nfHKzcunTrg+rdq6iuraaii0VlG9xlhAUESZM\nmMAbb7yR5Bobk35inSR7uWe+WEROiqaQdOf3wyOPXM5bb/3WJr4wGa/o6SIASieVMmfSHD685sOD\ngT2vUx75nQ6NL7P75sZEJ9ZJspfpXKuAATjLs32L066vqjos2sLjKVbTuQLMnw9jxyrV1UJOjlJa\nKjbxhUmYRE/nmntXLnMmzaGw56F/5P59/oP3z33Nffj3+SnbXEbf1n0Z2Gsg69ato23btomoojER\nSZPpXJ/FmSZ9UWOv5aUD3NmNLSxdORNfCEuXHqBbNz/5+R2SXSVj4iY0+wbwNfcdDO6hneNGFY3i\nvffe4+KLL05GdY1JZ6OAq0Sk0UlyxJl5uollZg5O0/pdd/2TDRve44UXHovZdY1pSKIz8917dx/s\nsR7O/LXzGfvMWKprq8nNyuWmVjexq3wXTz7ZJAa3mDSRJpl573D7o5k4xksze8zWXU2EWAdzgKqq\nKs4++2xWrVplQ3FMwqTaqmmBzLxiSwV5nfJ4tvhZzi4+m/Xr1ze4ipqtoGYSJR2CeSx5CeYzcNZd\nDawFeiXO1HOe111NhHgEc1WlR48ezJ07l379+sX02sbUJdWCORx5D33EiBE88MADnHHGGXWf466g\nVl7uzNFu07uaeEqHYB7LJNlLb/YCVf2xqs52Hz8FmtSyCSLCaaedxgcffJDsqhiTVIF76IHOcKMv\nG82z05+t95xwK6gZ08Q9hxNHHwYeAfKA56O5kNehaTFZdzWdnX766RbMjXEFmtyf2P8ELzV/ia27\nt9Z5rK2gZswRYpYkewnmI3DWXV0lIquA+cBJIrJMRJZGU3g6Ov3005k9ezaZ2nHQGC+CZ4qr7VDL\nU/9+qs5jbQU1Y44QsyTZy9C0cdEUkGn69u1L8+bNqaqqYsiQIcmujjFJFZgprmJLBZ1zOvPxvz92\netPUIbCCmjEGOJQkr3G3ewFfiMgyPA5RiziYR7vGaiYKNLVbMDdNna+5j9JJpZRvKadrVleOG3Ic\n33zzDa1bt0521YxJBzFLkr00sxuX3Tc35pBAZ7g+3ftwyimnMHPmzGRXyZi0oKqr63t4uZYF8yic\ndtpplJSUUFtbm+yqGJNSrrzySp6b/ly966AbY2Iv4mAujh+IyB3udi8RGRm/qqWuHj160KFDb55/\n/ktbdMWYIKePP513j3n3iOVSjUkVIjJORKpEZLmI3FrHMQ+JyAoR+UxEhgftf1JENoV2+haR9iLy\njoh8ISJvi0jCFyrwkplPBUYDE91tP/BozGuUBvx+2LHjNa69tr+tomZMkNXfrUaP1iOWSzUmFYhI\nFs547rNxhoBNFJHBIceMB/qr6kDgeiB4/u6nCb9OyW3Ae6o6CPgA+G2E9YlZkuwlmI9S1RuBvQCq\nugNoFk2h6a6sDHbu7E5tbbZNfmFMkILOBfRp1Qdqwi/YYkySjQRWuPekDwDTgQtCjrkAZzIXVPVj\noK2IdHG35wI7wlz3AiAwa9KzwIUR1idmSbKXYH5ARLJxppxDRDoBTfKmcUGBM+kF7GPQoGqb/MIY\nl6+5j8U3LabLrC48fMLD9S7YYkwS9ADWBm2vc/fVd8z6MMeE6qyqmwBUdSPQOcL6xCxJ9jLO/CHg\nVaCziNwDXALcHk2h6c7ng3nzsjnrrP+X//qvIny+i5JdJWNSRruj2nHThTfx4lMvUjSyqN5jbeEV\nEyslJSWUlJQkuxoBkc4qFrMk2dMSqO69hTNw1lx9X1Uroyk0EeKx0Eqoxx57jPnz5/Pcc8/FtRzT\ntKXiQisN+frrr8nPz2fNmjX46ojStvCKiadwnxt3trUpqjrO3b4NZ3KW+4OOeRyYrap/d7ergFMD\nmbe7bOnrwRO6iEglUKyqm0Skq3t+gxORiMhVwOXACTjN85cAt6vqy17fr6ehaapapaqPquojqRzI\nE2XChAm8+eab1NTUJLsqxqSU7t27U1xczPTp0/Hv84cdqmYLr5gkWAQMEJHeItIMuAIInRhhJnA1\nHAz+OwOB3CXuI/Sca9znPwJei6Qyqvoi8BvgPmADcGE0gRy8LYF6IvB7oDdO87zgcbq5REpEZg5w\n3HHH8dhjj3HyySfHvSzTNKVjZg7w1ltv8dvJv0Un6cHlUksnlR68jx7IzCsqnD4olpmbWKrrcyMi\n44C/4CSzT6rq/4jI9TjxbJp7zCM4s7N9C0xS1cXu/peAYqAjsAmYrKpPi0gHYAZwDLAauExVd8b7\nPR72vjwE8y+AXwPLCGrTT9VpXhMVzH//+99TW1vLfffdF/eyTNOUrsG8pqaGnoU92XreVqq1mtys\nXOZMmkNhz0OTs/v9h5rZLZCbWEqT9cxjliR7aWbfoqozVXVltNPNZaJzzz2Xf//738muhjEpJzs7\nm59e8FPa7G9DblZu2KFqgYVXLJCbJupFnLHrFwPnAee6fz3zkpmfgTMW7n1gX2C/qr4STcHxlqjM\nvKamhq5du7Jo0SL69OkT9/JM05OumTk4HeHyjs/jn6X/ZGSfkTZUzSRMmmTmc1V1TCyu5SUznwQc\nj3Mf4TwO/Ypo0rKzsznnnHN44403kl0VY1JO9+7dGX/GeD5/43ML5MYcabKI/E1EJorIRYFHNBfy\ndM/cnaouLSQqMwd4+eWXmTbt/7jrrldsvKyJuXTOzAE++eQTLrroIr766ityc3Njem1j6pImmfkL\nwGCgnEN90VRVr/V8LQ/B/Gngj6pa4bWQZEhkMF+3bhe9e68mK2so+flivXJNTKV7MAcoLi7m+uuv\nZ+LEiQ0fbEwMpEkwj1mS7KWZvRD4zF0VZqmILAtdOaapWru2LapDqK4WGy9rTBi/+tWvePDBB9m9\nd7ctj2rMIR+JSF4sLuQlM+8dbn+q9mhPZGbu90NBwXbWrvUxbFiuZeYmpjIhM6+trWXwsMHUXlPL\n6j2rjxhzDja1q4mtNMnMK4H+wEqcjuVRD03zNJ1rOklkMAdYv343xx77fSoqXqZ37w4JK9dkvkwI\n5gC3PnIrf9zyRzRLjxhzblO7mlhLk2AesyS5wWZ2EZnr/vWLyO6gh19EdnstMFP16NGG8ePb8+67\nKTlSz5ik+9UPfkXW9ixysnKOGHNuU7uapih4zpbGzt/SYDAPGgP3mKq2CXr4gMejKTRTTZw4kenT\npye7GsakpM7tOvObo3/D+A3jj2hiLyhwMvLcXGdqV1tW2GSyeCTJXu6ZL1bVE0L2LW3qc7MH27Nn\nD926daOqqoquXbsmtGyTuTKlmR1g27ZtHHvssXzyySf07dv3sNdsalcTS+nQzB5LkTSz3yAiy4DB\nbi/2wGMlzjztnonIOBGpEpHlInJrmNcHichHIrJXRH4Z8toqEflcRJaIyMJoyo+Xli1bct555/GP\nf/wj2VUxJiV17NiRG264gXvvvfeI12xqV9PUiMj9keyL6FoN/QoXkbZAe5wl2m4Lesmvqts9FyiS\nBSzHWRf9a5wl6a5Q1aqgY47GmXj+QmCHqv4p6LX/ACNUdUcD5SQ8Mwd44403uO+++5g7d27CyzaZ\nKZMyc4Dt27czcODAsNm5MbGSDpl5LFu8I7lnvktVV6nqxKCb8/uiCeSukcAK91oHgOnABSFlblXV\nT4HqMOdLJPVOljPPPJPKynW8+upG/DaU1pgjdOjQgZ/97Gfcfffdda51bkwmC2rxHhSmxTuq+Vty\noqzLLOCEBo8KrwewNmh7HU6Aj5QC74pIDTBNVf8aZT3iYt++ZkApl1zSiaFDbYiNMeH84he/YEDe\nAD56/CO+3P1l2HHnxmSwl4A3ObzFuzvwRbSJcrTBPJlNF6eo6gYR6YQT1CtVNWyb9pQpUw4+Ly4u\npri4OO6VKyuD3bt7UFubRUWFUl4uFBY2fJ4xASUlJZSUlCS7GnHVoUMHLrzuQp7d8Sy1UkvFlgrK\nt5Qftta5MZlKVXcBu3BWIgVARF4NbXL3IqpJY0TkZ6o6NaoCRQqBKao6zt2+DWfGm3AdASbj3Jv/\nU+hrDb2erHvmfj+MGaMsXXqA/v33s2RJa8vMTaNk2j3zgDWb1tDvD/2QLmIzwpmYS4d75sFEZImq\nDo/2/IjvPYtIcxG5UkR+BxwtIneIyB1RlLkIGCAivUWkGXAFMLO+ooPqcJSItHaftwLOAsqiqEPc\n+Hwwd65w883/ZOTIX9mXkDF16NWlF7/v9nvGLB8TNpAXFcHYsc5f639imoBG3TL2Ms78LZxmgU+B\nmsB+Vf1fz4WKjAP+gvNj4klV/R8Rud65nE4TkS7AJ4APZ1m4b4A8oBPwKs598xzgRVX9nzrKSEpm\nHrB161YGDBjAypUrad++fdLqYdJfpmbmAN999x2DBw/mpZdeYsyYMQf3z5/vBPLqamcimTlzsNtV\nxpN0yMxF5H5VvbWhfRFdy0MwL1PVAq8FJEuygznAlVdeSWFhITfffHNS62HSWyYHc4Dnn3+eRx55\nhAULFiDivM1AZl5R4cwIZx1JjVdpEswTNzQtyEciMtRrAU3Zddddx7Rp00j2jwpjUtlVV11FTU0N\nz/zfMweHqfl8TgCfM8cCuck8dUzGtqxRk7F5yMwrgAHEYKm2REiFzFxVGTRoEM888wwnn3xyUuti\n0lemZ+YAs96bxYUzL0Q7qQ1TMzGRypl5yGRst3Kob1hUk7GBt6Fp46MpoCkTEa677joeffQ5RE62\nXrnG1KH9oPZUt69Ga9WGqZmMFxiaJiJVwDXBr7k/Qu7yek1bzzzOVq7cyoABG8jKKiA/X6zJ0HjW\nFDJz/z4/Ix8fSdW2KvI65bHgugWWmZtGSeXMPEBEfhW02QI4F6hU1Ws9X8tDM7sAVwH9VPUuEekF\ndFXVlFrsJCBVgvn8+XDKKQdQzbVeuSYqTSGYgxPQb777ZnZ9uYtX/u+VpNTBZI50COahRKQ58Laq\nFns910sHuKnAaA7NWOMHHvVaYFNTUAADBx4A9jF4cK2t02xMHXzNfUz93VQ+X/g5b731VrKrY0wy\nHAX0jOZEL8F8lKreCOwFcFctaxZNoU2JzweffHIUo0bdyvXXv2BN7MbUo2XLljz66KPceOON7Nmz\n5+B+v99p5bLJY0wmcXuwB3qzlwNfAH+O6loemtk/Bk4GFqnqCe7c6O80Zvq5eEqVZvaA999/n5//\n/OeUlZWRlZWyi76ZFNRUmtmDXX755fQa2IuLrr+I3kcVcM4ZPsrLIT/fhqqZyKRDM7uI9A7arAY2\nqWq41UIbvpaHYH4VcDkwAngGuAS4XVVfjqbgeEuVL6UAVeXEE09kypQpnHfeecmujkkjTTGYL1+1\nnLwH85DOQp9W+ay8o5Sa73zW78RELB2CeSxFPDRNVV8UkU+BM9xdF6pqZXyqlXlEhN/85jc88MAD\nFsyNacC27G1oJ6VGa1j9XQV9R5azel4heXlYvxOTMdwObxcDfQiKx9EMTfOy0EoL4Bzge8DpwDh3\nn4nQxRdfzNq1O5k2band+zOmHgWdC8jvlA810Ld1Xz78R77NBmcy0WvABThN7N8GPTzz0sw+A6cH\n+wvuriuBdqp6aTQFx1uqNBcG8/th8OAtbNjQjmHDcu2LyUSkKTazgzNU7Y5H7mD53OW88eobya6O\nSTPp0MweyzVPPE3nqqp5De1LFan0pRTgrASlVFcLOTm1lJZm2b0/06CmGswB9uzZw8CBA3nttdcY\nMWJEsqtj0kiaBPNpwMOqGtV87MG8dKteLCIHQ4+IjMJZptREqKAA8vOF7OwaWrT4j937M6YBLVu2\n5LbbbmPy5MnJrooxMRMYkgaMwYmtXwQttrI0qmt6yMwrgUHAGndXL5wxcdWk4IIrqZZhBPj98Pnn\n1fzoRyfyxBMP8r3vfS/ZVTIpriln5gB79+6lf15/7px6J5efdjm+5j78figrw9Y7MHVK5cw8ZEja\nEVR1tedregjmMS88nlLxSynY3//+dx588EEWLlx4cA1nY8Jp6sHcv8/PkD8O4esDXzOs2zBmXVpq\n485Ng1I5mAeIyKXAW6rqF5HbgROAP6jqEq/XiriZ3Q3W7YDz3Ec7VV0deHgtuKm79NJLqamp4ZVX\nbA5qY+pTtrmMTboJzVLKN5fzxsJyysuhuhoqKqC8PNk1NCZq/+0G8jE4I8WeBB6P5kJehqbdArwI\ndHYfL4jIz6Mp1EBWVhb33Xcfv/3tvZSWVttQNWPqEBimlk02uTtzGX/iEPLzITcXG3du0l2N+3cC\nME1V3yDKadK9NLMvBUar6rfuditgfqrdKw9IxebCULt3K927f8WePX0ZOjTbmgtNWE29mR2cpvZl\nm5Zx46U3cusvbmXChCsONrPbZ8aEkybN7P8G1gNn4jSx7wEWqupxnq/lIZgvA05S1b3udgucedqH\nei00EVL1SymYM1StlurqLHJzlTlzxIaqmSNYMD9k9uzZ/PjHP6ayspLmzZsnuzomhaVJMD8KGAcs\nU9UVItINGKqq73i9lpehaU8DH4vIFBGZAizAad83UXKGqmWRlVVN69ZrrbnQmAacdtpp5OXlMXXq\n1GRXxZhGU9XvVPUVVV3hbm+IJpCDh8wcQEROwBkXB1AaTY+7REn1DCPA74eFC7/lhz88gRkznmTM\nmDENn2SaFMvMD1dWVkbx2cW8+O6LnNz/ZHzNrZ3dHCkdMvNY8hTM00k6fCkFmzFjBlOm/C9PPDGP\n44/PsfuA5iAL5ofz7/PT564+7MzdydCuQymdVAr7fTbu3BymqQVzW1g7RYwbdylr175EcbFQVIT1\nbjemDmWby9jdYje1Ukv5lnIWriqnqAjGjsU+OyatiMilIuJzn98uIq+4LeCeWTBPEeXlwt69famt\nzaa8vNbGzhpTh8BQtSyyaOlviW7Ot3HnJl2FG2f+WDQX8jLOPGa/IMyRAp3hsrNraNbsKwYNqk52\nlYxJSb7mPkonlVJydQld3ujCjo3zbNy5SVfJGWeuqsPcXxB3A38E7lDVUdEUHG/pcO8vlN8Py5bV\n8rvfXcD3vjeK22+/PdlVMinA7pnX7c033+SWW27ho4+W8eWXzW3cuTkoHe6ZJ2uc+RJVHS4i9+GM\niXspsM9roYmQbl9KwdatW8eIESN4/fXXGTlyZLKrY5LMgnn9zj33XEYVjeJ7V36Pgs4F1rvdAGkT\nzGM2ztxLMI/ZL4hESMcvpWAzZszgd7+7j2nTPuKkk1pattGEWTCv35KKJZw09SSki5DfKZ/SSaUW\n0E1aBPNY8tIB7jLgbeBsVd0JdAB+HZdaGcaPv4xt2/7FmWfmMmaMWg9dY+qw17cXPVqprq2mYksF\nC1eVM3++9Wo3qS8pvdljOVONaVhZGXzzTS9qa3Osd7sx9SjoXEB+53yogW65Pfl/rsq3YWomXVhv\n9kzn9G4XcnJqgUp27pyX7CoZk5J8zX3M+/E8/jL8L+ydmk/V561tmJpJFzHrze6lmT1mvyBMw3w+\nKC2F0tIsXn55I9deeymVleus+dCYMHzNfdz8/Zs57eSutG//tQ1TM3USkXEiUiUiy0Xk1jqOeUhE\nVojIZyJyfEPnishkEVknIovdx7gIq7NeRJ4ArgBmiUhzopz/xctJMfsFYSLj80FhIXz/+9/jhht+\nw4gR3zJ2rFrzoTF1ePjhe6nJOYVbH57OrPf91nHUHEZEsoBHgLOBfGCiiAwOOWY80F9VBwLXA49H\neO6fVPUE9/FWhFUK9EU7q7F90bwE85j9gjDenXHGLezd24/qaqGiQq350JgwWrRpwVE31nD3+omM\nnzEG/z771WsOMxJYoaqrVfUAMB24IOSYC4DnAFT1Y6CtiHSJ4Nxoes7vAVoBE93tXGBnFNeJqjd7\no39BGO+GDhWGDs1G5ACtWq1hyJDaZFfJmJRTtrmMjbUbIdt5Xr6lHL8fuz1lAnoAa4O217n7Ijmm\noXNvcpvl/yYibSOsz1SgkEPB3A88GuG5h8nxcGzwL4i7aMQvCOOdzwdz52bx6af7ue22n/Db357A\nD37wPwwdKtaUaIwrMG97+ZZydLPi/0opusXpCJef7/RDsc9LZiopKaGkpCQel44k454K3KWqKiJ3\nA38CfhzBeaNU9QQRWQKgqjtEJO7TuT4G1AKnq+oQEWkPvKOqJ0VTcLyl4+QXkVqzZgeDBm1i//6B\nDB2abV9QGc4mjfHGv89P+ZZyPnv3Mx68Zx6rVz9HdbWQmwtz5jj9UEzmC/e5EZFCYIqqjnO3bwNU\nVe8POuZxYLaq/t3drgJOBfo2dK67vzfwuqoOi6COHwMnA4vcoN4JJ656nlnVSzP7KFW9EdgLzi8I\nrANcUqxf357q6kHU1mazbFk1ZWXp/eVrTCz5mvso7FnI9ddcz7HH7qddly/J7jOfQcP81rvdLAIG\niEhvNwO+ApgZcsxM4Go4GPx3quqm+s4Vka5B518ElEVYn4eAV4HOInIPMBe4L5o35qWZ/YCIZAMK\n4P6CsBu3SRAYg15RoWRnf8Xzzz9Ffv7/UF4uFBRYlm4MOJnZQ4/fw+AH8tBOCp3yoVkpYB+QpkpV\na0TkJuAdnGT2SVWtFJHrnZd1mqrOEpFzRORL4FtgUn3nupd+wB3CVguswukFH0l9XhSRT4EzcJrz\nLwy6pidemtmvAi7HmZf9WeASnLHnM6IpON4yobmwPn6/cx+wR4+dXHLJJXz55dPs3t2T/HyxZvcM\nY83s0Zu/dj5FTxVRQw25Wbm8edkcjtpeaD96m4B0mJtdRJ4FbnE7lePevv5fVb3W87W8fHDdMXWB\nXxDvR/sLIhEy7UupPu+//x1nnpmLai65ucqcOWL3BTOIBfPo+ff5KXq6iGUbl+Hb25ae767ii6Vt\nrDNcE5AmwfyIlUejXY3Uy3SuzwIbVfVRVX0E2CgiT3kt0L1WvTPwiMggEflIRPaKyC+9nNsUjRx5\nFAUF2WRlHSA7+wuystbaUBxjcO6fl04q5YMffkD7V8+k8rNWNtWrSSVZbjYOgIh0wNvt74O8nDQs\n0BQAB7vQe/71EDSLzhnA18AiEXlNVauCDtsG/By4MIpzmxyfD+bNy6KsTHjnnTmccsopQC35+VmW\nfZgmz9fcx6n9T+Xvz3dmdPEnZHeuZtDRw8jPtw+GSbr/BeaLyMvu9qXAPdFcyEtv9lj9gmhwBh5V\n3aqqnwLVXs9tqnw+GD1aOOus61AdTHV1FsuW1VhPd2NcQ47rSdffXkLN1UXUXnMKNLOmK5Ncqvoc\nTu/3Te7jIlV9PppreQnmgV8QfxCRPwAfAQ9EUWYkM/DE49wmoaAACgqyycmppXnzr7jzzstYtWqb\nNbubJq9scxmb2QjZStWWcso2l9nscCapRCRPVStU9RH3USEixdFcK+LMWlWfE5FPgNPdXRepakU0\nhSbKlClTDj4vLi6muLg4aXVJlMBqa+XlWQwc2Ic//GEwAwduRLUdBQU2wUw6iONMVk1aYHa4ii0V\nZO/K5t0X53PD9NE2O5xJphki8jxOYtzC/XsiMNrrhbwMTcsLDd4iUqyqJZ4KjGAGnqBjJwN+Vf1T\nFOdmVK/caM2fD0VFNdTUOB3k3nprL4WFPsrKsOE5acJ6s8dOYHa41ntaM3bUreza+xK1HSvI2VFA\n6Xs+GwWSQdKkN3sr4H5gBM4ECC8C96uq5zlcvDSzzxCRW8XRUkQeJrqZaiKZgSdY8P8Mr+c2eYFm\n99xcpX37jfzwh6cybNguxo7FllI1TU5gdriCgQVM/dsN1P5oFEwaS85Pi+g10D4MJuEO4Kx70hIn\nM18ZTSAHj9O5Asfg3CtfhNOb/BSvBapqDRCYRaccmB6YgUdErgMQkS4ishb4BfB7EVkjIq3rOtdr\nHZqSQLP7nDnCypXHcMcdT7Jq1VFUV0N5eS0LF9o9Q9M09T6pI1ldV0B2NTUdKlizx8aqmYRbhBPM\nTwKKcNZIf7n+U8Lz0szeDKfL/JlAa+B2VZ0eTaGJICKqu3c7G8Ftyn4/TbmN2e+HU06ppbxcgS9o\n374du3Z1s5njUpg1s8eHf5+fMU+PoWxjGa2+a8XqyavJqW3flL8eMkqaNLOfqKqfhOz7YTQ92r1k\n5jH7BZEwJ5/sPAJtyl9/7fwNbmMO7s7aBLq2Bsakz5uXzYwZ3dmxozPV1cKyZdUsXPhtU/hPYAzg\nNLnPnTSXD6/5kJFlI/l/b76T0cW7KZo4n5NP89tnwMSNiPwGQFU/EZFLQ14eEtU1PWTmMfsFkQgi\nopqdDSJQXQ25ufDoo/Cznx3afvNN+NWvnKmgBg92TqyqOtS1FQ5l8cHPM+Qnu9/v/KYpL6+ldeu1\nZGVNoFmz99m6tbNl6inEMvP42717N8ed9FNWnV4FnSpgSz7vXVXKGWPsA5CuUjkzF5HFqnpC6PNw\n25FqMDOPxy+IhBkyxAnSubmQlwcTJjiBOrCt6gTy6mqorHQCeWCux4ULD2XxoRl+uCw+DVPawP30\n0tIs1qzpzcMPv86mTR0OZupvvmnj003T0KZNG+598ionkGdXO3872T10EzdSx/Nw2xGJpJn9iqDn\nv98TzjcAABW4SURBVA15bVw0hSbMRx85jzlznKjVvXugN5jzd9SoQ8E9NPBHGujDNd9//XXaBHqf\nDwoLnb/nndeXYcNyycmppV27TUycuJExY6oZMeK7pnIXwjRh5550GgPb9YcaoVfLHgw5Ot/+vZt4\n0Tqeh9uOSIPN7MEruISu5hLt6i6JEHFzYWAt0fx8Zzv4eVGRE7wHDXK2v/jCCfQPPgjjx4dvvs/J\ngT59YNUq5zqzZsE55xy67qxZsHp1ynbIC/zn+OYbGD9eqa4WYD8DB97Mnj33sHFjB2uCTzBrZk8c\n/z4/r8x9hV/+4A58vo9Yt38NQ44u4KPZPvv3nmZSvJm9BmetdMEZlvZd4CWgharmer6oqtb7ABaH\nex5uO5UezltrpN27VefPd/6GPj/uONXcXOfv+vWHtgcMUM3JUQVne9q0Q9s5OYdeDz4vePujj5zr\nB8oP3k6g4Lc4bFit3nPPAhXZr6CalbVfH354ke7cWZOs6jUp7r/l9PncZIA/T/1I+a+hyn/nKP91\nnL5Xav/I000iPzep8IgkM4/9L4gEiHuGEZzRBzLs8nLo1cvJxCsqnCw+kJlXVEDv3k7GHk1Gn4QO\neaGNFk5DhdKp0xbatbuK5cv/TG3tIPr128fs2S1ZuzYrVRoYMopl5on33hfzOfPFsc7985pc3rtq\nDmcMsunh0kkqZ+bxEHFv9nST1C+lWAf6xva8j1FTfvDbKiuDsWNrqa7OAvaTnb0O1V706bOHhQub\n06xZs1S6e5DWLJgnnn+fn5OfLKJySzlsEf4xYQZnjLnQ/k2nEQvmGSJlv5SiCfSh9+lDh9zVF+jj\nlOEHhrUd+h1yKLC3anUJOTkP4fcfw+DBtbz7bu5h3QSMNxbMkyMwj7v/Kz8TL76O1h1KWbd/rd1D\nTxMWzDNEWn4p1RXovXTIS+DY+rp+h/z+99u54oq21NZmA/to1mwj1dU96N37W+bMgbZt21qG44EF\n8+R79K+LuGnxj6FTpY1BTxMWzDNERn4pRdPzPlYZfmigD2m+9/uh/I1V5E/oAz7fwer06qWsWqXU\n1GQhcoDmzS9E5P9j375+9Or1LTNnVvPNNx1TtXN/SrBgnnyh99Bf+/6HdNo72v6dpjAL5hmiyX0p\n1RXoY5XhBwf60Ob7MIE/ENx7ndqHcy4+iooqIW+wct8DNZx/fo7bJH8AkdWo9qZ9+w38+tezeeaZ\nS/nPf1oeHP4GFtwtmCdf4B561ZYKsnc046hXPmR31j6GHD3UmtxTlAXzDGFfSvWI9dj6BjJ8f81R\nlC/PJX9ILbz9NkVnO8G9dy9l1ZosqquF7OwaCgufZ968q4Bc4ADnnz+VJUt+wIYN7cnLgzffzErl\nIfpxY8E8NQTuoa/6vCMT/32JO+1rHu9dNdea3FNQUwvmXhZaMZkieNq30OeBGfJCZ88Lni0vdGrc\nBmbP861YTGHNPHxffML/3965R0dV3Xv885vMhKCEhACCARIwPPJAUaQIAlrqtQpavb2+au2t1kep\n6K3gstJWvPisj+q61dWrvaD4utcqLVqpBkSEqiAIVZRHHoQAARLBxTMTgbzY94+ZDJMhMxmYmTMz\nZ36ftc6avWfvOfs3O/Pb3/z22WefzPLVfMIEPjYX8JHzXyhJq8RFI8Ndm5k39ypGDHfgcrZSMOgw\nubn9qN3ZnZYWB+vWNVMwqIbx45opGrqbefOWM3ZsS9BN9xQl2rQ9C73X4D3Htn3tVcbOxkW6O6IS\ndzQyV8KnswV6JzGV7yaTja3DKHFuInPRX3BPu5+N5Q5PFD9/PhNG1FN2ZCB5rq+pae5HCy6cNDJk\n0NOUb70HSAeaye6+H3dDDoPyD/HB0mZ69uxpmyffamSeWPim3PeUcZr04chzDjIzV+hK9wQj1SJz\nFXMlNkRpKt99+71sbB1GnuxksnmPMgoppoLSN+qZdNNplB8ZyIC0Ora39vcJfVbXq6hvepzW1mH0\n6PE1d/xHKa+9ch07dnanuNCwcLEzqabrVcwTj7Yp95LeJbz00gbu+mqKd6W7TrsnCirmNkEHpQQm\nHKEPXIk/bFi7a++Z//UQ7kuv6VDon3qihUkzzqIFFy6auHjc6yxe8WNaSCeNRlzOOppa+tOz527u\nmv4Bc+f8kO07Mz1C/9Zhav6xjeGXDyQzNzMhhF7FPLFpt9K9xcmfL5nPBUUTeXf1Bi4fPZzcnirs\n8UDF3CbooJSknORUfrtFdo8+yoQrc45F8U+uZ/K9Z1JGIXlsp4aBXqFvZOJ5r7H0s5/6hL4f26kj\nnyFpm7hu+ge8PO9Gdu7MonBYK+//rTEuQq9intj4T7v3PNqLppecNFyZRXN2BRnuEqpnfqKCHgdU\nzG2CDkopQAihd59/ie/ae+b7f8V9ydVsLHeQN+Aok7c9H0Lo82khHReNXHPOXOatveU4oR/sqOTi\nG9/k7UW/ZNfunhSccYSlHx0lE9jwrkfs8UtHKvwq5omP/7T7I3Pe4clvfuaN1F08O/JjRvUdk7CX\nceyKirlN0EEpxQmxbW6bsB8n9AUuJtc8T1njIIoztlH60m4mX5/VodDfOP5NXl7+I1pIx0kjOc4r\nyG55ki0UMUg2keZwsLl1MIWuzTz9Rj1333cOlZtdlBQaSucfah/h17nbCX8gKubJRd1eN2c8Mp7G\nbuWw5wxyl77D7sZ9ujjOYlTMbYIOSkpQQkzlu92wsbSGksn5niJvhB9K6Iup4KlpO5j0h+97o/gm\nBPFN5Z/X60FW7XnAF+H3lx3UmjyGOquY+puP+dMTF1LRNJjijC0sr+4HtI/qVcyTj7q9bkrXbGT7\nejcPb7lH70mPAyrmNkEHJSUqhCH0gbfRDUuvAYHKxvxOI/zrBz3N61vv8eVHdb2KfUd+R7UppCRj\nK59U59K9X3cV8yQlcHHc1FOmMePm37LoiwpdHBdjVMxtgg5KSswJiPDddW6f2EOYEf6KLCaPO0jZ\nkYEUZWzjgV/t4tqHx/rE/eM5VYy97UwV8yTFf3HcoMwCchb2Z/XgHZhe1bo4LsaomNsEHZSUhCJY\nhJ97/D8BEwrqKDsykOKMbRqZ2wD/xXF//nA9U1Zd6FscN/20FykcPFij9BigYm4TdFBSkhV/cddr\n5vaibq+bgkcmcKRbGWkHC2htaYVeW+lSX8SW+1eQmZ4Z930N7IKKuU3QQUmxCyrm9qJtcdw+dwMz\n1k/yRenf2XgLBzY9xJaGzbryPQqomNsEHZQUu6Bibk/8o/QuDUVccfAW/tLlBd+2sG/8YCEHpUan\n4E8SFXOboIOSYhdUzO1LW5Q++TsllO3Z4LfyPQ2p74/JqiXDXUz1zOUq6CeIirlN0EFJsQsq5qmB\n/8r33ul5fH2oxjcFf8W+e/jP22/i8x17NVIPExVzm6CDkmIXVMxTh7aV7zlpeYx4crJnCt5dyOUH\nJjC/6xLovQXXgUI2/XoZ6V266MNcQqBibhN0UFLsgop5auI/Bf/u6g1MWXmBL1Lv+tYomiYeoDWn\nigx3MSumLuSfm/X6uj8q5jZBByXFLqiYK/6L5TIaiplWfB+P7/ixb2c5cQ/AdN/hu74OpHzUrmJu\nE3RQUuyCirkC7SN14Nj96t8OoLXbdl/UPmLDDZQNWENzdiUZ7hJWTC1Nyahdxdwm6KCk2AUVc6Uj\n2sR9ZEEe455ru75exGXOa3jrlAd9UbvDPYCjKRi1q5jbBB2UFLugYq50RtCovWEArZnHovZBn/6A\nHcUVtPTYRBd3MVtsLO4q5jZBByXFLqiYKydKh1F7QxE39LyNuU3TfeJ+2pKL2HtuDa05VXSpL+Lj\nKX/ny211PmGv2+tOWqFXMbcJOigpdkHFXImEYFF7RkMRtw6Yxh8P/Nw3Jc/BfpBdi2PfEO7ufTPP\n7nuFpqyKDq+9J7rQq5jbBB2UFLugYq5Ek2Di7jyUT8up23xR+5Cqf6dq6KvHhL6+P2TtxLl/KE+P\nvJ97v/odjd3LE1boVcxtgg5Kil1QMVdiSUdT8hkNxayYWurLp32bR2u3YzvS9V37r+wa+faxW+Pq\n+2O8Qv/AkOk8VP2MN6I/ftGdfzqWwq9ibhN0UFLsgoq5YhX+UXub0HYu9O1vjcvfeC01w9/05TMX\njKVh3DeYXptx7D8DwUFrj824DhTywsSn+PlHvwo7wvfPQ+iFeyrmNkEHJcUuqJgricDJCH1GQxHT\nS+7nse3X+x4gg4hP6HusmsT+saXHX7PfO5iLvxnNkj5raM2pwrl/KDMH3cmj256jObsC18GhiAhN\n3SuD3nKXamLuiEejInKpiFSIyCYRmRGkzrMiUiUiX4rIOX7vbxORr0RkrYists5qRUkR3O5jrytX\nel790ydSFq3zWNFGop0nwWzNTYdbswy56Z6itvzIvplU31XKnL5zqb6rlJFDcv3yC7nzh5eQ4S6G\nFhfp7kK6uAuhxUVGQxFLnnveV+b8Nh+yayGthaM51TScnktrThWktdCSXcXLn66kObsC0lpo7l5J\nU/dKSGvhSLdy8sZ8j34zRzFl5QUUPDKeur3uoD/vk9Cfszv7rIj0EJHFIlIpIu+LSFZQA2KFMcbS\nA88/EJuBfMAFfAkUBtSZBLznTZ8HrPIr2wL0CKMdk0gsW7Ys3ia0I5HsSSRbjEk8e7y/Zav805gR\nI4yprfW8Op3GDB/uOZzOEyuLwnmWORwxbyMh7QmzjU7tsdDWZQ5H0DZqzx5t5uSdZWrPPNfUnnmu\nJ3326HZln581xmTcPsww02Uybh9mPl+xNmg+feoQ02XqEF/Zw8+/brjfaXgAw0yXmfPW0g79JhL9\nCfVZ4AngXm96BvC4VT7rs9vyBmEMsNAv/2tgRkCdPwHX+eXLgT7e9FagZ1iDUgIxa9aseJvQjkSy\nJ5FsMSbx7LFczF0uY2bP9gzGYExa2rH0iZRF4TyzLGgjIe0Js41O7bHQ1llRaKO2a5aZ07/Y1J6S\nbczs2cHzGd3bldU+85zJ+MVQj7j/YqipXRRUzE9af0J9Fqjw06i+QIVVPtt2xGOavR+wwy+/0/te\nqDq1fnUM8IGIrBGR22JmpaKkKsXFcNllUFICLhcUFUFhoSd9ImXROI/DEfs2EtGecNvozB4rbXU4\nIm4jt2AAt+6uIndIPlx2GblDB3acH5zXrm7u1VdSvSqbOa8WUb0qm9zzRwX7dZ+M/rTVCfXZPsaY\n3QDGmF3AaSfle5Fg9X8PwFXAbL/8T4BnA+r8HTjfL78EGOlNn+597Y1nmmN80AgjgUi0aC+R7Ekk\nW4xJPHuwOjKvr/c0XF9vzMqVnlf/9ImURXieWbfcEvM2EtaeMNoIyx6LbPXZEse/j3++I7+JRH9C\nfRbYH3COvYFtx/qIh5iPARb55cOZ5vBNYQTUmwXcHaQdo4cedjks9M+4f1c99IjWEU39CfVZ2l8K\n7guUW62tTqxnDTBYRPKBr4EfAdcH1FkA3AG8KSJjgAPGmN0icgrgMMY0iMipwPeBBztqxKTQLQmK\nEi3UbxSbE4n+7Anx2QXATXgWwt0IvBPrLxKI5WJujGkVkTuBxXhWB75ojCkXkSmeYjPbGFMqIpNF\nZDPwLfAz78f7AG+LiPHa/n/GmMVWfwdFURQl+YhEf4J91nvqJ4B5InIzUANca/FXs++mMYqiKIqS\nKsRl05hoEcnN//GwR0QuFJEDIvKF95gZY3teFJHdIrIuRB0r+yekPVb2j4j0F5GlIrJRRNaLyC+D\n1LOkf8KxJ5r9o74T0hb1m+C2pLTfJDRWX6SP4kKdiDafiZM9FwILLOyj8cDZwLog5Zb1T5j2WNY/\neBapnO1NdwMq4/z7CceeqPSP+k7Ev1P1G5N6fpPoRzJH5qOBKmNMjTGmGXgDuDKgzpXAqwDGmM+A\nLBHpE0d7ACxbYGSMWQ7sD1HFyv4Jxx6wqH+MMbuMMV960w14VqMG3m9qWf+EaQ9Ep3/Ud0KgfhPS\nllT2m4QmmcU80s1n4mEPwFjv1NN7IlIcI1vCxcr+CRfL+0dEBuKJfD4LKIpL/4SwB6LTP+o7kaF+\nQ0r6TUITj1vTUpnPgTxjzCERmQT8DRgaZ5sSCcv7R0S6AX8F7vL+Zx9XOrEnlX8/qfzdO0P9Rv0m\nqSPzWiDPL9/f+15gnQGd1LHMHmNMgzHmkDe9EHCJSE6M7AkHK/unU6zuHxFx4hkAXjPGdHRfqKX9\n05k9Uewf9Z3IUL9JTb9JaJJZzH03/4tIOp4b+BcE1FkA/BRA/G7+j5c9/teNRGQ0nlsD98XIHl9T\nBL9eZGX/dGpPHPpnLlBmjHkmSLnV/RPSnij2j/pO56jfBCdV/SahSdppdhPZ5jNxsQe4WkRuB5qB\nw8B1sbIHQEReB74L9BSR7Xi2v00nDv0Tjj1Y2D8iMg64AVgvImvxbP/4Wzwrqi3vn3DsIUr9o74T\nGvWbkLakrN8kOrppjKIoiqIkOck8za4oiqIoCirmiqIoipL0qJgriqIoSpKjYq4oiqIoSY6KuaIo\niqIkOSrmiqIoipLkqJgriqIoSpKjYq4oiqIoSY6Kuc0QkSzvbkdt+eVxsCFDRP4hIhE9dlBEXCLy\nkYjo71SJKeo3SrKjf2z70QOY2pYxxoyPRSMiUigivwlSfDMw30S4vaD32dZL8OzVrSixRP1GSWpU\nzO3HY0CBiHwhIk+KiBvA+xCLchF5SUQqReR/ReQiEVnuzY9qO4GI3CAin3nP8XyQSGEisDaIDTcA\n75xIuyJyioi8KyJrRWSdiFzjPdc73vMpSixRv1GSG2OMHjY68DxgYJ1fvt7v/Sag2Jv/J/CCN30F\n8LY3XYjnqUdp3vx/Az8JaONSPM8Ivg3oE1DmAuoC7Amn3X8D/sfvc5neVwfwTbz7VQ97H+o3eiT7\noZF5arHVGFPmTW8EPvSm1+MZPAAuAkYCa7xPIfoecIb/SYwxi4BaY8wcc/yjDXsBB06i3fXAxSLy\nmIiMN8a4vW0dBRpF5NQT/7qKEhXUb5SEJ2kfgaqcFI1+6aN++aMc+y0I8Iox5r5gJxHP84F3BSk+\nDGScaLvGmCoRGQlMBh4RkQ+NMQ9763UBjgSzR1FijPqNkvBoZG4/3ECmX16CpANpK/sQz/N/ewOI\nSA8RyQuoOxpYLSKjRKSrf4Ex5gCQJiLpJ9KuiJwOHDbGvA78HjjH+34OsMcY0xriHIoSKeo3SlKj\nkbnNMMbsE5FPRWQdsAjwXxkbLO3LG2PKRWQmsNh7a0sTcAew3a9uHZ4pxWpjzOEOzFgMjAeWhtsu\ncCbwexE56m2z7TahicB7HX1XRYkW6jdKsiPGRHQXhKIch4icA0wzxtwYhXPNB2YYYzZHbpmiJC7q\nN0ok6DS7EnWMMWuBZdHY/ALPql0dkBTbo36jRIJG5oqiKIqS5GhkriiKoihJjoq5oiiKoiQ5KuaK\noiiKkuSomCuKoihKkqNiriiKoihJjoq5oiiKoiQ5KuaKoiiKkuT8PykCxv3t1j0iAAAAAElFTkSu\nQmCC\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -258,7 +258,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 11,
"metadata": {
"collapsed": false
},
@@ -267,12 +267,12 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "[[ 4.33877934e-12 -4.33864056e-12]]\n"
+ "[[ 4.33875158e-12 -4.33864056e-12]]\n"
]
}
],
"source": [
- "from dcprogs.likelihood import QMatrix, MissedEventsG\n",
+ "from HJCFIT.likelihood import QMatrix, MissedEventsG\n",
"\n",
"tau = 1e-4\n",
"qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
@@ -284,15 +284,25 @@
"meG = MissedEventsG(qmatrix, tau)\n",
"t = 3.5* tau\n",
"\n",
- "print(eG.initial_CHS_occupancies(t) - meG.initial_CHS_occupancies(t))"
+ "print(eG.initial_CHS_vectors(t) - meG.initial_CHS_vectors(t))"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -304,7 +314,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/CHSvectors.ipynb b/exploration/CHSvectors.ipynb
index 0d745ae..fc1dcfc 100644
--- a/exploration/CHSvectors.ipynb
+++ b/exploration/CHSvectors.ipynb
@@ -45,7 +45,7 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import QMatrix\n",
"\n",
"tau = 1e-4\n",
"qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
@@ -65,17 +65,17 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import MissedEventsG\n",
+ "from HJCFIT.likelihood import MissedEventsG\n",
"\n",
"eG = MissedEventsG(qmatrix, tau)\n",
- "assert np.all(abs(eG.initial_CHS_occupancies(4e-3) - [0.220418, 0.779582]) < 1e-5)\n",
- "assert np.all(abs(eG.final_CHS_occupancies(4e-3) - [0.974852, 0.21346, 0.999179]) < 1e-5)\n",
+ "assert np.all(abs(eG.initial_CHS_vectors(4e-3) - [0.220418, 0.779582]) < 1e-5)\n",
+ "assert np.all(abs(eG.final_CHS_vectors(4e-3) - [0.974852, 0.21346, 0.999179]) < 1e-5)\n",
"np.set_printoptions(precision=15)"
]
},
@@ -88,9 +88,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEZCAYAAADG0WEtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8FGX+wPHPNz20AAk1ARIgSBOlSLciig3EcuJZQeHO\niqdX9Hd31tM7r3iWU08U24n99ETFcoCAqCBFBemhN4EASSAQ0r6/P2YCay6Qnewmu9n9vl+vee3s\n7Mwz34FNnjzzPPN9RFUxxhhjwlVMqAMwxhhjjsUqKmOMMWHNKipjjDFhzSoqY4wxYc0qKmOMMWHN\nKipjjDFhzSoqY0xUE5ETROQrEVkqIu+LSJOj7DdRRL4XkWUicluQzv2xiOSJyAfBKC9SWUVljIka\nInKaiLxYafNzwJ2qejzwLvCrKo7rCYwH+gMnAOeLSOcghPQX4KoglBPRrKIyxkS7LsAcd/2/wMVV\n7NMNmK+qB1S1FJgNXAQgIp3cltEiEflcRLr6e2JVnQHsCyz8yGcVlTEm2i0DRrnrlwLtqtjne+Bk\nEUkVkQbAuT77TQJuUdW+wC+Bp2o53qgTF+oAjDGmtonIfCARaAQ0F5Fv3Y9+A4wDHheR3wNTgeLK\nx6vqChF5GPgUKAS+BcpEpBEwGHhLRCp2T3TPeRFwfxXhbFXVs4N1bdFALNefMSZaiMhpwLWqeu1R\nPu8CvKKq/asp5yFgC/AKsEpV2wQY0y9V9fyalhHp7NafMSaqiUhL9zUG+B3wz2r2a4/TP/WqqhYA\n60XkUvczEZET6iTwKGIVlTEm2l0uIquBlcA24AUAEWkrItN89vu3iCwH3gduUtU8d/sVwHUi8h0/\n7u+qloh8DrwFDBORLSJitwSrYLf+jDHGhDVrURljjAlr9X7UX1pammZmZoY6DBMBFi1alKuqLWp6\nvH0XTbAE+l2MNPW+osrMzGThwoWhDsNEABHZGMjx9l00wRLodzHS2K0/Y4wxYc0qKmOMMWHNKipj\njDFhzSoqY4wxYc0qKmOMMWHNKipjjDFhzSoqY4wxYS1yK6qlb0NhbqijMKZWFBSVMHPlDpZsySP/\nQEmowzGmVtX7B36rtH8nvHczJDWBUU9B9pmhjsiYoFiyJY+Xv9rIB0u2UVRSfnh7h9QG/GZEV87p\n2RqfeZFMBBOREcBjQCzwnKr+qdLnicDLQF9gN3CZqm4QkVTgbeAk4EVVvdnnmL7Ai0AyMA2YqGGQ\nEDYyW1SNWsL106FBKky5GKb9CkqKQh2VMQGZtnQ7Fz75BR8t3c7o3um8ev0AnrmqL789txvJ8bHc\nOGUxYybNY/UOm9k80olILPAkcA7QHScDfPdKu10H7FXVzsDfgYfd7UXA73FmI67saWA8kO0uI4If\nvXeR2aICaN0Txn8GM+6DeU/Bxq/g0hcgLTvUkRnj2YwVO7j1tW/o074Zz489iSZJ8T/6fOyQTF5f\nsJm/fbqKi5/6kufHnsRJmc1DFK2pA/2BHFVdByAir+NML7LcZ59RwL3u+tvAP0REVLUQmCsinX0L\nFJE2QBNVnee+fxm4EPioNi/EHwG1qEQkUUROClYwQRefBCP+CD99Cwq2wjOnwndvhDoqYzz5IieX\nG15ZTPe2TaqspADiYmO4cmAHPrj1ZFo0TuSqyfOZvXpXCKI1QZImIgt9lgmVPk8HNvu83+Juq3If\nVS0F8oHUY5wz3S3nWGWGhOeKSkRuF5EXRORdYAlh0jQ8pi5nwc/nQtsT4d0J8P5tdivQ1AsHikv5\nxRvfkpnWgJfH9a+ykvKV3jSZN38+iI5pjbj+pQXMWrWzjiI1QZarqv18lkmhDiiUatKi6g9MV9XR\nwExVfSDIMdWOlHS4eioMuQ0WvQDPnw17LUGxCW/PzlnPzn2H+ONFx9O0QYJfx6Q1SuS1CQPJbtmY\nW177hrW79tdylCYEtgLtfN5nuNuq3EdE4oAUnEEVxyozo5oyQ8JzRaWqY4B9IvIvoFXwQ6pFsXEw\n/D64bArsWQeTToW1M0MdlTFV2rmviGfmrOWcnq3p28Fbf1NKcjyTru5LfGwM419eSEGRDWGPMAuA\nbBHJEpEEYAwwtdI+U4Fr3PVLcBoWRx3Bp6rbgQIRGSjO0NGrgfeCH7p3NeqjUtWpwPXAYhF5Nrgh\n1YFu58OEWdCoNbxyMcx9FEI/AtOYH3l0+hqKS8v59YiuNTo+o1kDnrqiD5t2H+AXr39Lebl9xyOF\n2+d0M/AJsAJ4U1WXicj9IjLS3W0ykCoiOcDtwJ0Vx4vIBuAR4FoR2eIzYvBG4DkgB1hLEAdSuBVq\njXga9eeeKFZVD6rqIeAPItKuuuPCUmonZwj71Jth+j2w7RsY9SQkNgp1ZMaQs3MfbyzYzFUDO5CV\n1rDG5QzsmMrdF3Tn7veW8dJXGxg7JCt4QZqQUtVpOM86+W6722e9CLj0KMdmHmX7QqBn8KL8kUeB\nG0XkVFWd7eVAv1tUIjIR2A7kiMgKEbkZQFU3H/vIMJbYCC55AYbfDyumwuSznFuCxoTY5LkbSIiN\n4ZYzOle/czWuGtiBM7q25OGPV7LO+qtM6F3m9YBqKyoReUxErgEmAt1UNR04BeguIvVjIMWxiMCQ\niXDF284Q9kmnQ870UEdlolhRSRkfLtnGiJ6tSW2UGHB5IsKfLjqexLhY7njrO8rsFqAJjf4i8hTQ\nTUROEBG/G0r+7PgZ0AlIA74UkcXAX3DuX44RkWY1iTjsdB7m9Fs1SYcpl8Lcv1u/lQmJz1bupKCo\nlNG9g/cIS8smSdw/qgffbMrjmTlrg1auMf5S1X7AQzi3AC8G/H6otdqKSlX/4973nIfzpPOZOLmg\nSoHmwEwRiYxvfvMsuP6/0P1CmH4vvHUNHLJ0NKZuvfPNVlo2TmRI57SgljvyhLac07M1j05fw6bd\nB4JatjFHIyLZIvK8iPxDVbeo6nuqereqVtl/VhUvo/5uAl4B/gb0welwW6qqvYFuniIPZwkN4ZLn\nYfgDsOJ9eHYY7Fod6qhMlNhTWMysVTsZdWJbYmOCm1xWRLjngh7Exwj3f7AsqGUbcwz/At7C6TJC\nRHq66Zn85ndFpaprgAE4OaOScLJSjHY/K/Zy0rAnAkNuhav+Awd2w7NnwPKweJzARLgPlmyjpEwZ\n3Tuj+p1roHVKEhPPzGb6ip1MX76jVs5hTCUxqvoRUAagqt/jcWShp+eoVLVYVT9U1YdU9QlV3evl\n+Hqn46nws9nQ4jh482r46E4ojaw62YSXdxZvpWvrxnRv26TWzjF2SBadWzbivg+WUVRSVmvnMca1\nTUSyAAVwHyZO9lJAZE7zEUwpGTD2IxhwA8x/Gl4YYamXTK3YuLuQbzfnBXUQRVXiY2O4f2QPNu85\nyDOz7XEMU+tuA54FWovIWOB14HsvBfhVUYmjfj7YGwxxCXDOn+AnL0PuGvjnyfD9O6GOykSYOWuc\nGanP6tG61s81uHMa5/RszTNz1rJznyVoNrVHVTfgJC+/FegIzAau8lKGXxWVmx9qWrU7Rrruo+Dn\nn0OLLvD2WHjvJhsVaILmq7W5tE1JIjO1QZ2c79cjulJcWs6j09fUyflM9FLVUlV9W1V/r6pPuVkz\n/Obl1t/isJ57qq40y3RuBZ58B3wzBZ4eAhu+CHVUpp4rL1e+WrubQZ3S6mwq+ay0hlw5sANvLNhM\nzk77g8uELy8V1QDgKxFZKyJLRGSpiCyprcDCWmw8DLsbxn0MEgMvngcf3wXFhaGOzNRTK34oYO+B\nEgZ3Ota8dsF367BsGsTH8qePVtbpeU10CFa3kZeK6mycDBVnABcA57uv0av9QGdCxn7jnOnunxwI\nayz9kvHuq7XONEGDO9dtRdW8YQI3nN6J6St2Mn/dsaYqMsa7YHUbeXmOaiPQFKdyugBo6m6LbomN\n4PxHnNuB8Ukw5WJ461rI31LtocZU+HLtbjqmNaRNiqdRu0ExbkgWLRsn8rdPV3OM6YqMqamAu428\nZk+fArR0l1dE5JZATh5ROgx2Wlen/R+s+gie6Aez/wzFlqrGHFtJWTnz1+1mUB3f9quQFB/LzWd0\n5usNe5ibkxuSGExEC7jbyMutv+uAAW6OpruBgcB4LyeLeHGJcNpv4OYF0OUs+OxBeLw3LHweymyG\nVVO1pVvzKSwuY3Cn4Ob28+Kyk9qR3jSZv1qrygRfwN1GXioqwU2B4Spzt5nKmrZ3nrka+7EzSvCD\nX8CT/WHxy5bZwvyPiv6pgR29TTcfTIlxsdw6rDPfbc5j5sqdIYvDRJ5gdBt5qaheAOaLyL0ici9O\nNvXnvZws6nQY5IwMvPx1SGwMU29xWlhfPQVFBaGOzoSJL3Jy6damSVDmngrERX0y6JDagL99utqm\nrTdBE4xuIy+DKR4BxgJ73GWsqv7dy8mikggcdw5MmO1Mzti0HXxyFzzSDab9GnauCHWEJoRKy8pZ\nvGkvA7JC15qqEB8bw8Rh2SzfXsB/V1jCWhM0AXcbeRlM8bCqLlbVx93lGxF52MvJRGSEiKwSkRwR\nubOKz9uLyGci8o3b6Xaul/LDmghkD3daWONnQtfznb6rpwY62dkXTIZCGx4cbdblFlJUUk6vjJRQ\nhwI4c1Z1SG3AEzPXWF+VCZaAu4283PobXsW2c/w9WERigSfdY7oDl4tI90q7/Q54053jagzwlIf4\n6o/0vnDRM3DHSjj7j1ByED68Hf6aDf8aDYtehILtoY7S1IFl2/IB6NE2PCqquNgYbjq9M99vLeCz\nVdZXZYIi4G6juOp2EJEbgBuBjpWGFDYGvOQO6g/kqOo6t9zXcWYMXu6zjwIV8xukANs8lF//NEyD\nQTfCwBvgh6Ww7F1Y9g68P9H5vM0J0GkYZJ0C7QZAQt3kgDN1Z9nWAhLjYujUomGoQzlsdO90Hp+x\nhsdm5HD6cS3rLKWTiUyq+oiIzAKGupvGquo3XsqotqICXgU+Av4I+N6u26eqezycKx3Y7PN+C874\nel/3Ap+6HW0Ncaa9/x8iMgGYANC+fXsPIYQpEWjTy1mG3e30W63+GNZ8Cl8+DnMfgdgEp+LK6A8Z\n/Zz1ZlkQYzO11GfLthXQtXVj4mLD5/8xPjaGG0/rzP+9u5Q5a3I5tUuLUIdk6jG32+g3wOIqtvml\n2p8OVc1X1Q2qermqbvRZvFRS/roceFFVM4BzgX+JyP/EqKqTVLWfqvZr0SLCfohEoFV3OPl2pz/r\nNxucQRgDb4CYOFg42cnc/kQf+FN7mHw2TL0V5j3tpG/avRbKSkN9FcYPqsqybfl0D5Pbfr4u6ZtB\n25QknphhmdXDlR99/oki8ob7+XwRyfT57C53+yoROdtn+y9EZJmIfC8ir4lIUhBCDajbCPxrUQEg\nIi8BE1U1z33fDPibqo7zs4itgG9ywgx3m6/rcOYtQVW/cv+R0oDovVme2NgZhJHt/l+XFsPO5fDD\nEtj+HexYDiumwuKXjhwjsdAk3XmeKyUDmrSBxm2gUSto1BIatoAGqZDU1FpkIbRl70EKikrpUYuz\n+dZUQlwME07pyL3vL+fr9XvoHwajEs0RPn3+w3HuTi0Qkamq6tuVch2wV1U7i8gY4GHgMndswBig\nB9AWmC4iXYDWOHNGdVfVgyLyprvfizWMMVjdRv5XVECvikoKQFX3ikhvD8cvALLdKYm34vwD/LTS\nPpuAYcCLItINSAJ2eThH5ItLgLYnOksFVSjc5bSm9qyFPesgbzPkb4aNX8K+7VBeRWYMiXEqq+Sm\nkJTiLImNIbEJJDSChIbOEt8A4pOdJS7JfU101mMTnPWYeCerfGyC8xoTd+S1YrG+jh+pGEjRMz38\nWlQAl53Unidm5vDUrBz6Z/UPdTjmx/zp8x+F050C8DbwD3ca+FHA66p6CFgvIjlueZtw6oRkESkB\nGhDYOIFgdRt5qqhiRKSZqu4FEJHmXo5X1VIRuRn4BIgFnlfVZSJyP7BQVacCdwDPisgvcAZWXKs2\nRrZ6Ik5LqVFL5yHjysrL4cBu2L8DCnfC/l3O+4N74MAeKMqHojzndd8OOFQAxfvh0H7Qsv8tr+aB\nupVWrNPqi4l1KsuKpfJ7EecYEec98r/bq3zF530V6xc/B6mdgnhdNbNsWwGxMULX1o1DHUqVkhNi\nGTc0i798sorvt+aHbYUaodJEZKHP+0mqOsnnvT99/of3cX//5gOp7vZ5lY5Nd+9i/RWnwjoIfKqq\nn9b0AlQ1H8jH6dIJiJeK6m/APLc5CHAp8KCXk6nqNCqlfHcfAKtYXw4M8VKm8UNMDDRq4SxeqEJZ\nMZQccIbQlxyE0iIoKXJeyw45tyLLfJcS57W81FnKSqC8zKnwykqc1/Iy0PIjr+rzHnXXy4+sq/qs\n+773feV/t/tuO7yOUyGGgWXbCujUoiFJ8eERT1WuHNiBp2et5enZa3nyp31CHU40yVXVfnV5Qrc7\nZxSQBeQBb4nIlar6SoDlBtpt5KlF9LJbw5/hbrqo0v1QE2lE3Ft8iZDcLNTRRJxl2/JDmojWHynJ\n8Vw5sAPPzFnLul376diiUahDMg5/+vwr9tkiInE4j/zsPsaxZwLrVXUXgIi8AwwGAqqoCLzbyFNm\nCgH6AM1V9R/AfhGxG9fG1EDu/kPsKDgUlgMpKrtuaBYJsTFMmrMu1KGYIw73+YtIAk6f/9RK+0wF\nrnHXLwFmul0pU4Ex7qjALCAb+Brnlt9AEWng/r4fBgQjx1uM24oCvHcbgbfMFE8Bgzhyv3EfzqgT\nY4xHy7Y5SYm714OKqkXjRC7pm8E7i7eys6Ao1OEYnD4noKLPfwVORp9lInK/iIx0d5sMpLqDJW7H\nHdCgqsuAN3EGXnwM3KSqZao6H2fQxWJgKU794NsvVlMV3UYPiMgDwJfAn70U4KVWG6CqfUTkGzjc\nfEvwcjJjjOP7rW7qpDb1Y4DC+JM78trXm3jhyw38ZkTXUIdj8KvPvwhnLEFVxz5IFWMMVPUe4J4g\nxxlwt5GXFlWJO3ZfAUSkBVDu5WTGGMeK7QWkN00mpUF8qEPxS2ZaQ87p2YZX5m1kX5FNAmr8F4xu\nIy8V1ePAu0BLEXkQmAs85OVkxhjH+txCOresXwMTfnZqR/YVlfLa15tCHYqpXwLuNvIyH9UU4Nc4\nD29tBy5U1be8nMwY46ROWp9bSFZa+CSi9UevjKYM7pTK5LnrOVQazOfrTIQboKo3AUXgdBsBnrqN\nvIz6ux3nieInVfUfqmoz/hlTA7v2HeJAcRkdwyhjur9+dmondhQc4r1vI3tiAxNUAXcbebn11xgn\ns/nnInKziLTyciJjjGNdbiEAman1r6I6JTuNrq0b89zn62xiReOvgLuNvNz6u09VewA3AW2A2SIy\n3cvJjDFO/xRQ7279AYgIE07pyOod+5m12tJwmuoFo9uoJqmzdwI/4Dzh3LIGxxsT1TbkFpIQF0Pb\npsmhDqVGzu/VltZNkpg02x4ANtULRreRlz6qG91ZGmfgJDYcr6q9vJ7QmGi3LreQDs0bEBtTP7PJ\nJ8TFMG5oJl+t283SLfmhDseEv4C7jby0qNoBt6lqD1W91/L8GVMz9XHEX2Vj+renUWIckz63VpU5\ntmB0G3npo7pLVb/1GKMxxkdZubJp94F6X1E1SYrnpwPaM23pdrbsPRDqcEz9UONuI5ve1Zg6tC3v\nIMVl5fW+ogK4dnAmArzwxYZQh2LCWDC6jayiMqYO1ecRf5W1bZrMeb3a8MaCzRRYWiVzdAF3G1Vb\nUYnISSLS2uf91SLynog87qZrN8b4KZIqKnCS1e4/VMrrllbJHEUwuo38aVE9AxQDiMgpwJ+Al3Gm\nGA5GCnhjosb63EIaJsTSonFiqEMJip7pKQzqmMoLX2ygpMxyVJva4U9FFauqe9z1y4BJqvpvVf09\n0Ln2QjMm8qzPLSSrRUOchNKRYfwpWWzPL+LDJdtDHYqJUH5VVO40xuDM+DjT5zNPszQaE+3W5xbW\ny9RJx3Jal5Z0btmIZy2tkvERzG4jfyqq13DGvb8HHAQ+d0/aGef2nzHGD8Wl5WzZe4COEdI/VSEm\nRrhuaBbLthUwb92e6g8w0SJo3UbVVlTuTJB3AC8CQ/XIn0wxwC1eTmZMNNu05wDl6kxCGGlG904n\ntWECz9kDwOaIoHUb+TU8XVXnqeq7qlros221qi72cjJjolmkjfjzlRQfy5UDOzBj5U5ydu4PdTgm\nPASt26janUXkCdx5RKqiqrd6OaEx0WrTHieDQ4cI66OqcNWgDjw9ey2T567njxcdH+pwTOhVdBvl\nEmC3kT+12kKf9fuAe7ycwBjj2J53kKT4GJo1iA91KLUirVEiF/dJ553FW/jlWV1IbRQZQ/BNzajq\ngyIyAye/36eBdBtVW1Gp6ksV6yJym+97Y4z/tucX0TYlOaKGpld23dAsXvt6M/+at5HbzuwS6nBM\niKnqvCq2rfZajtfh5Tb21Jga2pp3kDZNk0IdRq3q3LIxpx/XglfmbeTnp3YiKT421CGZEAlmt5Hl\n+jOmjmzPP0jblPo5WaIX40/uSO7+Yt77dmuoQ4loIjJCRFaJSI6I3FnF54ki8ob7+XwRyfT57C53\n+yoROdtne1MReVtEVorIChEZFECIC4FF7jLSZ71i8Zs/gyn2caRWbCAiBRUfAaqqTbyc0JhoVFJW\nzs59h2hTT2f19WJQp1S6tWnCc5+v5yf92kX0rc5QEZFY4ElgOLAFWCAiUyslfL0O2KuqnUVkDPAw\ncJmIdAfGAD2AtsB0EemiqmXAY8DHqnqJiCQADWoaYzC7jfx5jqqxqjZxlzif9cZWSRnjnx/yi1CF\ntimRfesPQEQYf3IWa3buZ/bqXaEOJ1L1B3JUdZ2qFgOvA6Mq7TMKqKgc3gaGifNXwyjgdVU9pKrr\ngRygv4ikAKcAkwFUtVhV84IUb0DdRv5kT+8sIkOq2D5ERDoFcnJjosX2/CLAmRojGpzfqy2tmiQy\nee76UIdSX6WJyEKfZUKlz9OBzT7vt7jbqtxHVUtxhoSnHuPYLGAX8IKIfCMiz4lIWDxL4U8f1aNA\nQRXbC9zPjDHV2J5/EIC2ET6YokJCXAzXDM7k8zW5rNhe1a8PU41cVe3ns9TFTBVxQB/gaVXtDRQC\n/9P35S8R2SciBW53Ua+K9YrtXsryp6JqpapLK290t2V6OZkx0WprnlNRtYmCwRQVrujfgeT4WJ77\n3FpVtWArzoSEFTLcbVXu42aISMGZBv5ox24BtqjqfHf72zgVV40Es9vIn4qq6TE+i56fOmMCsD2v\niJTkeBomRs+EAykN4vlJvwymfreVHQVFoQ4n0iwAskUkyx30MAaYWmmfqcA17volwEz3odupwBh3\nVGAWkA18rao/AJtF5Dj3mGGA59l4KwSz28ifimqhiIyv4mTX43GIoTHRanv+QdpEwUCKysYNzaK0\nXHnpyw2hDiWiuH1ONwOfACuAN1V1mYjcLyIj3d0mA6kikgPcjnsbT1WXAW/iVEIfAze5I/7AyRgx\nRUSWACcCDwUQZtC6jfz58+424F0RuYIjFVM/IAEY7eVkxkSrrXlFpEfJQApfHVIbcnb31kyZv4mb\nz+hMg4ToaVHWNlWdBkyrtO1un/Ui4NKjHPsg8GAV27/F+f0eDEftNvJ9pssf/gxP36Gqg3Hy/G1w\nl/tUdZDbVDTGVGN7fuRnpTia60/OIv9gCW8v2hLqUEzdClq3kd+ZKVT1M1V9wl1mVn+EMQbgQHEp\neQdKomogha++HZpxYrumTJ67nrJyy8IWRYLWbVSnKZSqS/nh7vMTEVkuIstE5NW6jM+Y2rAtzxlI\nEI23/qDiAeCObNx9gP8ut5swUeQ2YKyIzBKRv7nLbJyMGRO9FFRnN4z9SfkhItnAXcAQVd0rIi3r\nKj5jakvFM1TROJiiwtk9WtGueTLPfr6eET3bhDocUwdUdQcwWEROB3q6mz+syR25umxR+ZPyYzzw\npKruBVDVnXUYnzG1YntedGWlqEpcbAzjhmSxaONeFm3cG+pwTB0KRreRPymUDj9dXGnx+nSxPyk/\nugBdROQLEZknIiOOEtOEitQiu3ZZLjET3rblH0QEWjWJ3hYVwE/6taNJUhzPfb4u1KGYesZrUlrf\npTaS0sbhPHx2GnA58KyI/M/IEVWdVJFapEWLFkEOwZjg2pZ3kBaNEkmIi+5ZdRomxnHFwA58suwH\nNu0+EOpwTD3i6SdHRJqJSH8ROaVi8XC4Pyk/tgBTVbXEzeq7GqfiMqbe2p5fFBXTe/jj2sGZxMYI\nk+daq8r4z++Kyh1SOAfnSej73Nd7PZzLn5Qf/8FpTSEiaTi3Au0bbeq1bXkHSY/SZ6gqa9UkiZEn\npPPmwi3kHSgOdTimFgWx28hTi2oicBKwUVVPB3oDfs9V4mfKj0+A3SKyHPgM+JWq7vYQozFhRVXZ\nllcUtc9QVWX8KVkcLCljyvxNoQ7F1KJgdht5GZ5epKpFIoKIJKrqSp/khf4GXl3KD8XJSXW7l3KN\nCVf5B0s4WFIW1UPTK+vaugmndGnBC19s4LqhWSTFx4Y6JFPLRKQZTjfO4R8EVZ3j7/FeWlRb3IEN\n/wH+KyLvARs9HG9M1CkuLee8Xm3o3tYmw/Y14eSO5O4/xHvfVu6mNpEmCN1GnlIojVbVPFW9F/g9\nTmbeC72czJho07JJEk/+tA+DO6WFOpSwMqRzKt3bNOHZz9dTbmmVIl1A3UZQwwd+VXW2qk51H9w1\nxhhPRIQJp3QkZ+d+Pltlz/VHuCI3k/vhbiPAU7eRPw/8znVfK4/g8DxywxhjKpzXqw1tU5J4Zo4N\n7I1wAXcbVTuYQlWHuq+NaxSiMcZUIT42hnFDs/jDhyv4dnMeJ7Y71qwQpr5S1Yp5C+8Vkc+AFOAj\nL2V4eY7qYX+2GWOMv8b0b0/jpDgmzVkb6lBMLXGnvP+piPwfcCrOzMF3eSnDSx/V8Cq2nePlZMYY\n46tRYhxXDuzAR9//wIbcwlCHY2rHezgJyEuBQp/Fb9Xe+hORG4AbgY4issTno8bAF15OZowxlY0d\nnMnkz9fz3Nx1/OHC40Mdjgm+DFWtMsG4v/xpUb0KXICT7ugCn6Wvql4ZyMmNMaZlkyRG907nrYVb\n2L3/UKhtY7d+AAAgAElEQVTDMcH3pYgE9BeIP9nT81V1g6perqobfZY9gZzYGGMqjD+lI4dKy3np\nyw2hDsUE31BgkTu7+xIRWVrp7ly1/Ln1N1dVh4rIPkAB8flYa2GqD2NMlOncshHDu7fipa828rNT\nO9Ewsc4mHze1L+CxDP60qA4PT/dJKFixWCVljAmKn5/aifyDJbyxYHP1O5t6o9KduMOLlzL8/rNF\nRBKBi4FM3+NU9X4vJzTGmKr07dCM/pnNmTx3PVcN6kB8bHRPNFnfVXE37vBHeLwb5+WbEPAQQ2OM\nOZafndqRrXkH+WDJtlCHEvZEZITb75MjIndW8XmiiLzhfj5fRDJ9PrvL3b5KRM6udFysiHwjIh8E\nEl8Vd+PqZJqPgIcYGmPMsZx+XEu6tGrEP2et48IT0xGR6g+KQiISCzyJ83zrFmCBiExV1eU+u10H\n7FXVziIyBngYuExEuuNMXNsDaAtMF5EuqlrmHjcRZ87AgLp2RORfqnqViExU1ccCKctLiyrgIYbG\nGHMsMTHCz0/txKod+yxZ7bH1B3JUdZ2bHPx1nDtevkYBL7nrbwPDxKn5RwGvq+ohVV0P5LjlISIZ\nwHnAc0GIsa+ItAXGiUgzEWnuu3gpyEtFFfAQQ2OMqc4FJ7QlvWkyT8+K6rRKaSKy0GeZUOnzdMB3\n1MkWd1uV+7gzrOcDqdUc+yjwa6A8CNfwT2AG0BVYVGlZ6KUgL7f+LF2SMabWxcfGMP7kLO59fzkL\nNuzhpExPf3xHilxV7VeXJxSR84GdqrpIRE4LtDxVfRx4XESeVtUbAinLy8SJAQ8xNMYYf1x2Unua\nN0zgn9HdqjqWrUA7n/cZ7rYq9xGROJys5buPcewQYKSIbMC5lXiGiLwSaKCBVlJg81EZY8JQckIs\n1w7OZMbKnaz8wX7NVGEBkC0iWSKSgDM4YmqlfaYC17jrlwAzVVXd7WPcUYFZQDbwtarepaoZqprp\nljczXNLk1eSB3xoPMTTGGH9dPagDDRJio72vqkpun9PNwCc4I/TeVNVlInK/iIx0d5sMpIpIDnA7\ncKd77DLgTWA58DFwk8+Iv7BkeUqMMWGpaYMErhjQnslz13PH8ONon9og1CGFFVWdBkyrtO1un/Ui\n4NKjHPsg8OAxyp4FzApGnO5IwyuAjqp6v4i0B1qr6tf+lmGPfhtjwtb1J3ckLiaGZ2xixfrsKWAQ\ncLn7fh/OM2B+s4rKGBO2WjVJ4uK+Gby1cAs7C4pCHY6pmQGqehNQBKCqe4EELwV4mYpeRORKEbnb\nfd9eRPp7OZkxxnj181M7UlpeznNz14c6FFMzJW4mDQUQkRZ4fE7LS4sq4OabMcZ41SG1Ief3asuU\neRvJO1Ac6nCMd48D7wKtRORBYC7wkJcCvFRUATffjDGmJm48vROFxWW88MWGUIdiPFLVKTjZLh4C\ntgEXqupbXsrwUlEF3Hwzxpia6Nq6CWd2a8WLX25gX1FJqMMxHrhTRPXBeeA4Fbi0ogvJX14qqoCb\nb8YYU1M3n9GZ/IMlvDJvU6hDMd4EPEWU389RqeoUEVkEDHM3XaiqK7yczBhjaurEdk05OTuNyXPX\nce3gTJITYkMdkvFPwFNEeRn1F3DzzRhjAnHz6Z3J3V/M6wusVVWPBDxFlJfMFO/hpIlfBBwK5KTG\nGFMTAzqmclJmM56ZvY6fDmhPYpy1qsKViCzFGdMQB4wVkXU4dUfFVPS9/C3LZvg1xtQrt5yRzdXP\nf83bi7ZwxYAOoQ7HHN35wSrIZvg1xtQrJ2encUK7pjw9ay0lZTbwOFz5TAV1YxXTQ93opSx/pvmo\nmMl3KLDYZvg1xoSSiHDrGZ3Zsvcg735TeQomE4aGV7HN00S8/tz6C1rzzRhjguGMri3p0bYJT36W\nw0W904mLtbSl4UZEbsBpOXWs1KhpDHzhpSx/5qMKWvPNGGOCQUS45YxsNu4+wPtLtoU6HFO1V4EL\ncCZqvMBn6et1QkYvf4YE3HwTkRHurcMcEbnzGPtdLCIqIv28lG+MiR5ndW9F19aNeWJmDmXlGupw\nTCWqmq+qG1T18kqNnD1ey/Knj+oGd5jhcW7fVMWyHvC7j8pNv/QkTuXWHbhcRLpXsV9jYCIw39+y\njTHRJyZGuHVYNut2FfKBtaoimj8tqmA13/oDOaq6TlWLgddx0mpU9gDwMG7yW2OMOZoRPVpzXKvG\nPD5jjbWqIpg/fVTBar6lA5t93m9xtx0mIn2Adqr6oceyjTFRKCZGuGVYZ9buKuTDpdtDHY7xISL/\ncl8nBlpW2AyVEZEY4BHgDj/2nSAiC0Vk4a5du2o/OGNM2Dq3ZxuyWzayVlX46SsibYFxItJMRJr7\nLl4KqsuKaivQzud9hrutQmOgJzBLRDYAA4GpVQ2oUNVJqtpPVfu1aNGiFkM2xoS7ir6qnJ37mWat\nqnDyT2AG0BUn9Z7vstBLQf4MpghW820BkC0iWSKSAIzB6fcCDt9iTFPVTFXNBOYBI1XV0wUZY6LP\nucc7rarHrFUVNlT1cVXtBjyvqh1VNctn6eilLH9aVEFpvqlqKXAz8AmwAnhTVZeJyP0iMtJL0MYY\n4ys2RrjtzC7k7NxvIwDDjKreICIniMjN7uJ3MtoK/lRUQWu+qeo0Ve2iqp1U9UF3292qOrWKfU+z\n1pQxxl/n9GxN19aNeWz6GkqjIAdgdc+likiiiLzhfj5fRDJ9PrvL3b5KRM52t7UTkc9EZLmILAvG\nIAi33FuBKUBLd5kiIrd4KcOfUX9Ba74ZY0xtiYkRbjszm3W5hUz9LrJbVX4+l3odsFdVOwN/x3ns\nB3e/MUAPYATwlFteKXCHqnbHGSNwU1XPutbA9cAAt1Fyt1v2eC8F+D2YIhjNN2OMqU1ndW9N9zZN\neGxGxLeq/HkudRTwkrv+NjBMRMTd/rqqHlLV9UAO0F9Vt6vqYgBV3YfTRZNO4AQo83lf5m7zm5cZ\nfgNuvhljTG2qaFVt3H2Ad+p3ZvW0ikdw3GVCpc+rfS7Vdx93jEA+zuzs/jzTmgn0JjgZgl4A5ovI\nvSJyL85AucleCvAycWJF860QQEQeBr4CnvByQmOMqU3Du7eiV0YKj01fw4UnppMQFzaPi3qRq6oh\nyXUqIo2AfwO3qWpBoOWp6iMiMgtnqiiAsar6jZcyvPwPBtx8M8aY2iYi3HHWcWzNO8gbCzdXf0D9\nVN1zqT/aR0TigBRg97GOFZF4nEpqiqq+E6xgVXWxO97hca+VFHirqAJuvhljTF04JTuNkzKb8Y+Z\naygqKav+gPrnmM+luqYC17jrlwAzVVXd7WPcUYFZQDbwtdt/NRlYoaqP1MlV+MnLYIpHgLHAHncZ\nq6qP1lZgxhhTUxWtqh0Fh3hl3sZQhxN0fj6XOhlIFZEc4HbgTvfYZcCbwHLgY+AmVS0DhgBXAWeI\nyLfucm6dXthReOmjwh0RsriWYjHGmKAZ2DGVoZ3TeHrWWsb0b0+jRE+/7sKeqk4DplXadrfPehFw\n6VGOfRB4sNK2udRCd46IXAp8rKr7ROR3QB/gDxUjDP1RL3sZjTHGH3ec1YXdhcW8MHd9qEOJZr93\nK6mhwJk4Lb2nvRRgFZUxJmL1bt+M4d1bMWnOOvIOFIc6nGhV0Ul4HjDJncYpwUsBXp6jutSdfRcR\n+Z2IvOPOH2WMMWHrjrO6sL+4lH/OXhfqUKLVVhF5BrgMmCYiiXhsJHnZOeDmmzHG1LWurZsw6oS2\nvPjlenYW2MThIfATnEEfZ6tqHtAc+JWXArxUVAE334wxJhR+MbwLpWXK4zPXhDqUaHSPqr6jqmsA\nVHU7MMxLAV4qqoCbb8YYEwodUhty2UnteP3rzWzcXRjqcKLN8Cq2neOlAC8VTcDNN2OMCZWJw7KJ\nj43hb5+uDnUoUUFEbhCRpcBxIrLEZ1kPLPFSlpeKKuDmmzHGhErLJkmMG5rJ1O+2sWxbfqjDiQav\nAhfgZMK4wGfpq6pXeinIS0UVcPPNGGNCacIpnUhJjufPH68KdSgRT1XzVXWDql6uqht9lj1ey6r2\nUW0RuQG4EegoIr7NtcbAF15PaIwxoZKSHM9Np3fioWkr+XJtLoM7pYU6pIjnjme4GMjEp85R1fv9\nLcOfFlXQmm/GGBNqVw/KpG1KEg9/tBInR6upZe/hTNZYChT6LH6rtkWlqvk4E25dXoMAjTEmrCTF\nx/KL4V341dtL+HDpds7v1TbUIUW6DFUdEUgBfmdpDEbzzRhjwsFFfTKYPHc9f/lkFWd1b11fJ1es\nL74UkeNVdWlNC/DyvxNw880YY8JBbIzwm3O6snH3AV77elOow4l0Q4HFIrLKHZ6+tNJ4h2p5yXsf\ncPPNGGPCxWldWjCoYyqPzVjDRX3SaZwUH+qQIlXAo8O9tKi+FJHjAz2hMcaEAxHh/87txp7CYv45\ne22ow4lkm4CTgWtUdSOgQCsvBXipqAJuvhljTDg5PiOFC09sy3Ofr2db3sFQhxOpngIGcWRA3j7g\nSS8FeKmozgE6A2fhDE8/3301xph665dnH4cCf/3UHgKuJQNU9SagCEBV91Jb81ERhOabMcaEm4xm\nDRg7JJN3v9nK91sttVItKBGRWJw6AxFpAZR7KcBLRRVw880YY8LRjad1pmlyPA9+uMIeAg6+x4F3\ngVYi8iAwF3jISwFeKqqAm2/GGBOOUpLjmTgsm6/W7Wb6ip2hDieiqOoU4Nc4ldM24EJVfctLGV4q\nqoCbb8YYE66uGNiBTi0a8tC0FRSX2q+2YHGTRfQBUoBU4FIRudtLGV4qqoCbb8YYE67iY2P47Xnd\nWJ9byJT5G0MdTiSp/Vx/FVR1iogs4sgcVBeq6govJzPGmHB2+nEtGdo5jUenr2F073SaNgjf3g0R\nGQE8BsQCz6nqnyp9ngi8DPQFdgOXqeoG97O7gOuAMuBWVf3EnzJrKOBkEX63qILRfDPGmHAmIvzu\n/G7sKyrhsRlrQh3OUbndME/iPDbUHbhcRLpX2u06YK+qdgb+DjzsHtsdGAP0AEYAT4lIrJ9l1kTA\nySIs158xxvjo2roJY/q3519fbSRn575Qh3M0/YEcVV2nqsXA6zi/n32NAl5y198GhomIuNtfV9VD\nqroeyHHL86fMmhgKLLJcf8YYE0R3DO/C+99t44EPVvDSuP6hCCFNRBb6vJ+kqpN83qcDm33ebwEG\nVCrj8D6qWioi+Th3w9KBeZWOTXfXqyuzJgLO9eelogo4Vbsxqkq5Qlm5Uq56+LW8HOfV/VxRVDny\nXp33FdvULct5Bdz9K947n1Sc88evHVs0JCk+tm4v3NQrqY0SmTgsmz98uILPVu7k9K4t6zqEXFXt\nV9cnrQ2qulFETsBJGAHwuap+56UMLxXVUOBaEVkPHALEiUF7eTmhCR+qSkFRKQUHS8g/WMK+olL2\nHypl/6ESCg+VcaC4lMJDZRSVlHGwpIyDxWUUlZZzqKSMQ6XlHCoto7i0nJIypaSs3FkvL6e0TCkp\nU8rc9dJyp0IqLS+nPAyepfxo4sl0a9Mk1GGYMHf1oExenb+JBz5czpDOaeE2Z9VWoJ3P+wx3W1X7\nbBGROJzxBburOba6Mj0TkYnAeOAdd9MrIjJJVZ/wtwwvFVXAzTdTN0rLytmx7xBb9x5ke/5Bfsgv\nYkfBIXbuKyJ3/yFy9xezt7CYvIMllPlRcyTFx5AcH0uSuyTGxZAYH0tibAwNEuJIiIshPlaIi40h\nITaGuBhnPT5WiI0R4mNjiI0RYkWIcV9jYzi8HuNujxFnniABkIrPQMTp5Bac18PbEEScGI98fmS7\n+FyDHH4jpDdLDuY/t4lQCXEx/O78box7cSEvf7WB60/uGOqQfC0AskUkC6cyGQP8tNI+U4FrgK+A\nS4CZqqoiMhV4VUQeAdoC2cDXOD8y1ZVZE9fhJIwoBBCRh92Ygl9RBaP55sdwytuB63EGbOwCxrl5\nBU0VCopKWPXDPtbs2M+anftYn1vIhtxCtuw9SGmlCqhhQiwtmySR1iiBzi0a0TwrgWYN4mnWIIEm\nyfE0SYqnSVIcjZPiaZgYS6OkOBomxJEcH0tMjBwlAmMi2xldW3H6cS14dPoaRp7YlpaNk0IdEnC4\nz+lm4BOc36fPq+oyEbkfWKiqU4HJwL9EJAfYg1Px4O73JrAc53ftTapaBlBVmUEIV3CGwVco48d/\nR1ZfgL95rapovo3G6eDzq1Z0hz6uBobjdNItAC5X1eU++5wOzFfVAyJyA3Caql52rHL79eunCxcu\nPNYuEaGopIwlW/JZvGkv323OY9m2AjbtOXD48+T4WLLSGpKV1pAOqQ3IaNaAjGbJtG2aTOuUJBol\nemk8RycRWRRIv0C0fBejzbpd+zn70TlceGI6f7n0hDo5Z6DfxXDiNkCuwUkYAXAh8KKqPupvGV5+\newXafDs89NE9vmLo4+GKSlU/89l/HnClh/giSmlZOYs35TE3J5d5a3fzzea9lJQ5f1S0b96A49NT\nuOykdnRr05jslo1Jb5psLR9jakHHFo0YNzSLZ2av44qBHTixXdNQh1SvqOojIjILZ5wDwFhV/cZL\nGV4qqkCbb/4Mp/R1HfBRlYGITAAmALRv395DCOHtQHEpM1fu5NNlO5i9ehf5B0uIEeiZnsK4IVn0\ny2xO7/ZNSWuUGOpQjYkqt5yRzTuLt3LP1GW8e8Ng+6PQI1VdDCyu6fFeKqoXgPki4tt8m1zTEx+L\niFwJ9ANOrepz93mCSeDcbqmNGOpKaVk5s1fv4p3FW5mxcgdFJeWkNkzgzG6tGNatJUM6pZHSID7U\nYRoT1RolxnHXOV25/c3veGvRZi47KXL+QK5tIpIE3IjTolKcPLFPq2qRv2V4GUwRaPPNn+GUiMiZ\nwG+BU1X1kIfy65Utew/wyrxN/HvxFnbtO0RqwwQu7duO83q14aTM5sTaX2zGhJXRvdN57etNPPzx\nKs7u0Tqs8wCGmZdx5i+s6Cb6KfAv4FJ/C/DUwx5g863a4ZQi0ht4BhihqhE5KcyCDXuY/Pl6Pl3+\nAyLC6ce15Cf9Mji9a0viY8PqOQ1jjA8R4b6RPTn/ic/566er+MOFAaWviyY9VdU3Z+BnIrL8qHtX\nwe+KKtDmm5/DKf8CNALeclJSsUlVR3q5oHCkqsxZk8uTM3P4esMemjaI52enduKqgR1o29Se6TGm\nvujetglXD8rkpa82MOak9vRMTwl1SPXBYhEZqKrzAERkAOBpeKyX4elv4jTfXnE3/RRoqqp+N99q\nQ7gPCZ6/bjcPf7ySxZvyaJOSxIRTOjLmpPYkJ1gKn3Bjw9ONP/IPljDsb7PIaNaAd2ppYEWEDU9f\nARwHbHI3tQdW4TzD5Vd2Iy+3/gJuvkWTnJ37+MOHK5i1ahetmiTy4OieXNq3XbilYTHGeJSSHM9d\n53Tjjre+442Fm7m8vw2sqEZVycwVD6PGvVRUATffokFBUQmPTV/DS19uIDkhljvP6co1gzKtBWVM\nBLmoTzpvLNzMnz5ayVndW5Fqj4wcSwucAXId8KlzvOSJ9VJR9cXJoP6j5puILMWS06KqfLBkO/e9\nv4zdhcWMOak9vzyri32BjYlAIsIfLuzJuY99zsMfr+TPl9RNxop6agrwK2ApUF6TArxUVAE33yLV\n1ryD/P4/3zNz5U56ZaTwwrX9OT7DOlmNiWRdWjXmupOdjBU/6deOfpnNQx1SuNrlDparMS8VVcDN\nt0ijqry1aAv3v7+csnLld+d1Y+yQLHsGypgoMXFYNu9/u43fvvs9H9w61B4xqdo9IvIcMANniigA\nVPWdox/yY14qqoCbb5Fk175D3PXOEqav2En/rOb87dITaNe8QajDMsbUoQYJcdw3qifjX17Ic5+v\n54bTOoU6pHA0FugKxHOk7lCOJDivlpeKKuDmW6SYs3oXt7/5HQVFJfzuvG6MG5Jlub+MiVLDu7fi\n7B6teGzGas7v1cb+YP1fJ6nqcYEU4KWdeo+IPCcil4vIRRVLICevb4pLy3lo2gqufv5rmjeM5/2b\nh3L9yR2tkjImyt07sgexIvz+ve/x99nUKPKliHSvfrej89KiCrj5Vp9tzTvIza8u5ptNeVw5sD2/\nO687SfE25NwYA21SkrnjrOO4/4PlfLBkOxec0DbUIYWTgcC3IrIep49K8DhS3EtFFXDzrb76bNVO\nfvHGt5SWKU9d0Ydzj28T6pCMMWHmmsGZ/Ofbrdz3/jJOyW5hsx4cUdWIcU+83PoLuPlW35SXK3//\n72rGvrCANinJvH/LUKukjDFVio0R/njR8ew9UMIfP1oR6nDChqpurGrxUoaXFlXAzbf6JP9ACbe9\n8Q2frdrFxX0yeHB0T7vVZ4w5ph5tU7jefbbqwt7pDOyYGuqQwoKInACc7L79XFW/83K8lxbVCCAb\nOAu4ADjffY04K7YXcME/5jI3J5c/XNiTv17ayyopY4xfbhvWhXbNk7nrnaUUlZRVf0CEE5GJOI83\ntXSXV0TkFi9l+F1RBaP5Vh98sGQbFz31JUUlZbw+YRBXDuyAO+WIMcZUKzkhlj+O7sX63EIen7Em\n1OGEg+uAAap6t6rejXN3bryXAjxNnBho8y2clZUrf/5kJc/MXkffDs14+oo+tGySFOqwjDH10NDs\nNC7tm8Ezc9Zx7vFton3eKgF8m5ZleEy953eLKhjNt3CVd6CYa1/4mmdmr+OKAe15bfxAq6SMMQH5\n3Xndad4wgV+/vYSSsqhO5vMCMF9E7hWRe4F5wGQvBXjpowq4+RaOVmwvYOQ/vmD+uj386aLjeXD0\n8TZnlDEmYCkN4nlgVA+Wby9g0px1dXZeEWkuIv8VkTXua7Oj7HeNu88aEbnGZ3tfEVkqIjki8ri4\nfR8i8hcRWSkiS0TkXRFpWk0cnUVkiKo+gvMc7h53uRV438s1efmNHHDzLdy89+1WRj/1BYdKy3ht\nwkDG2ARoxpggGtGzDef0bM1j09eQs3NfXZ32TmCGqmbjJIK9s/IOItIcuAcYAPTHyTxUUaE9jdMI\nyXaXiueg/oszgW4vYDVwVzVxPAoUAKjqYlV9XFUfB/a6n/nNS0UVcPMtXJSUlfPAB8uZ+Pq3HJ+e\nwvu3DKVvhyr/6DDGmIDcP6onDRNj+dXbSygrr5P0SqOAl9z1l4ALq9jnbOC/qrpHVffiVEIjRKQN\n0ERV56mTC+rliuNV9VNVLXWPnwdkVBNHK1VdWnmjuy3TywVVW1EFs/kWDnYUFHH5pHlMnrueawZ1\nYMr1A2nZ2PqjjDG1o0XjRO4d2YNvNuXx/Nz1dXHKVqq63V3/AWhVxT7pwGaf91vcbenueuXtlY0D\nPqomjmPdGkyu5tgf8WfU36O4TTxVXQwsBhCR493P6s2zVF+uzeXW176h8FAZj405kVEnVvXvb4wx\nwTXyhLa8/912/vrpKoZ1a0nHFo2qOyRNRBb6vJ+kqpMq3ojIdKB1Fcf91veNqqqIBLUZJyK/BUpx\nBtcdy0IRGa+qz1Y6/npgkZdz+lNRHbX5JiKZXk4WKmXlyuMz1vD4zDV0TGvIq+MH0qVV41CHZYyJ\nEiLCQ6N7Mvzvc/jlW9/x1s8HVzfBaq6q9jvah6p65jHOtUNE2qjqdvdW3s4qdtsKnObzPgOY5W7P\nqLR9q0/Z1+Ikexim1aeJvw14V0Su4EjF1A9IAEZXc+yP+NNHFbTmWyj8kF/Elc/N57EZaxjdO52p\nNw+1SsoYU+daNknivpE9WLwpj8lza3UU4FSgYhTfNcB7VezzCXCWiDRzB1GcBXzi3jIsEJGB7mi/\nqyuOF5ERwK+Bkap6oLogVHWHqg4G7gM2uMt9qjpIVX/wckH+tKiC1nyra9OWbueud5ZSXFrOXy89\ngUv6Vtf3Z4wxtWfUiW2ZtnQ7f/10NWd0bUnnlrXyR/OfgDdF5DpgI/ATABHpB/xcVa9X1T0i8gCw\nwD3mflXd467fCLyI0xD5iCN9Uf8AEoH/uiPW56nqz6sLRlU/Az4L5IKkutabiLQC3gWKqaL55rVm\nDLZ+/frpwoULf7St8FAp90xdxtuLtnBCRgqPjulNVlrDEEVo6gsRWXSs2y3Vqeq7aExlu/Yd4qy/\nz6Z98wb8+4bBxMX+742tQL+LkabaW3/BbL7VFRH4dnMet57RmbdvGGyVlDEmbLRonMgDF/Yk/2AJ\nPxQUhTqcesHvXH/BaL7VlQYJcXx461AS4yzjuTEm/Jzfqy3Du7ey31F+ithcQfYFMMaEM/sd5b+I\nraiMMcZEBquojDHGhDWrqIwxxoQ1q6iMMcaENauojDHGhDWrqIwxxoQ1q6iMMcaEtWpTKIU7EdmF\nk8+qKmlAbh2GU1ci9bogtNfWQVVb1PRg+y5GnHr7XYw09b6iOhYRWRiJ+bIi9bogcq/Nrqv+ieRr\nq2/s1p8xxpiwZhWVMcaYsBbpFdWk6neplyL1uiByr82uq/6J5GurVyK6j8oYY0z9F+ktKmOMMfWc\nVVTGGGPCWkRUVCIyQkRWiUiOiNxZxeeJIvKG+/l8Ecms+yi98+O6bheR5SKyRERmiEiHUMRZE9Vd\nm89+F4uIikjYDxOO1O8h2HfR3a/efBcjjqrW6wWIBdYCHYEE4Duge6V9bgT+6a6PAd4IddxBuq7T\ngQbu+g314br8vTZ3v8bAHGAe0C/UcQfh/6vefQ89XJt9F22ptSUSWlT9gRxVXaeqxcDrwKhK+4wC\nXnLX3waGiYjUYYw1Ue11qepnqnrAfTsPyKjjGGvKn/8zgAeAh4GiugyuhiL1ewj2XYT69V2MOJFQ\nUaUDm33eb3G3VbmPqpYC+UBqnURXc/5cl6/rgI9qNaLgqfbaRKQP0E5VP6zLwAIQqd9DsO9iffsu\nRpy4UAdgAiciVwL9gFNDHUswiEgM8AhwbYhDMR7Zd9HUhkhoUW0F2vm8z3C3VbmPiMQBKcDuOomu\n5vy5LkTkTOC3wEhVPVRHsQWqumtrDPQEZonIBmAgMDXMO7Ej9XsI9l2sb9/FyBPqTrJAF5xW4Tog\ni3jO40sAAANXSURBVCOdoT0q7XMTP+7EfjPUcQfpunrjdARnhzreYF9bpf1nEeYd2JH6PfRwbfZd\ntKXWlnrfolLnXv/NwCfACpwf/mUicr+IjHR3mwykikgOcDtw1CGo4cLP6/oL0Ah4S0S+FZGpIQrX\nEz+vrV6J1O8h2HfRhJ6lUDLGGBPW6n2LyhhjTGSzisoYY0xYs4rKGGNMWLOKyhhjTFizisoYY0xY\ns4rKGGNMWLOKyhhjTFiziipMiUiGiFwWhHKSRWS2iMQGWE6CiMxxU/+YKGLfRRNqVlGFr2FAnyCU\nMw54R1XLAilEnSkQZgAB/8Iy9Y59F01IWUUVhkRkKE7G5kvcdDQdAyju/9u7f9cooiiK49+joEER\nCyOIjSsErWwsrEwhRBCRINgIIsRfhVgJFpYS0oj/hIqx1CgGRUynlTaSCCERBAUVCZpUgpE9FvOK\nZVEw2cDOkvOpdmbe3JmBO3Pfzs7OOwM8KnEbkmYl3ZY0J2lc0pCkV5LmJR0q7bZKmpT0VtJMS296\nosSLdSK5GHWQVyjVlKRnwDXbMx3E2AR8tL2rTDeA91QvEH0HvKZ6CecFYBg4Z/ukpFPAMduXynrb\nbS+VWzZfbe9c/ZFFr0kuRrflG1V97Qdm/7VQ0gZJw5IGJY1IOvGXZv3AYtu8D7anbTepLhBTrnor\n00CjtJkGjkq6KWnQ9hJAuWXzS9K2zg4tekxyMboqP0bWkKR+YMn2b0l7gDHgG/AQGACGgDdUJ34T\nOAxskYTtJy2hfgJ9beFbxwlqtkw3Kflge66ManocGJM0ZXu0tNtMhuNeN5KLUQcpVPXUAD6Xz1eA\nUdvzAJIGgKe2xyWNlDYvgYW2CwO2f0jaKKnP9n+f0JJ2A99t35O0CFws83eU7Sx3cGzRWxokF6PL\nUqjqaRbolzQDfKHqYbZaaptuX97qOVUv98UKtn8AuCWpCSwDl8v8I8DkCuJE70suRtflYYqak7QX\nuEF1kXgM7KP0WEsvdgH4RDUE+H3bE23rHwSu2j67BvvyALhue67TWNF7kovRLSlU64Ck88CdTv6/\nUp7aOm377trtWaw3ycVYjRSqiIiotTyeHhERtZZCFRERtZZCFRERtZZCFRERtZZCFRERtZZCFRER\ntZZCFRERtfYHTj9xf6XL16kAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEbCAYAAABk26sYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecFdX5x/HPlyoIUiyoIKKoKERFBERBxRbRxF5REywh\nBrsxivrTWBIVLAmWRINB7FFjjxorQWwICtJEwIYdCwoIAsvu8/vjzMJ1Xdg7u7N35u4+79drXtyZ\nO3POuTr3PnvOnCIzwznnnMuyBmkXwDnnnKuKByvnnHOZ58HKOedc5nmwcs45l3kerJxzzmWeByvn\nnHOZV9BgJWmUpHmSpq7hnBskzZH0lqTuhSyfc87VBTX5rZU0QNI7kmZLGppz/GpJM6PzH5K0Tm1/\njlyFrlmNBvZd3ZuS9gM6m9mWwMnALYUqmHPO1SHV+q2V1AC4Kbq2GzBQ0tbRZc8C3cysOzAHuKD2\niv9TBQ1WZvYy8O0aTjkIuDM693WglaR2hSibc87VFTX4re0NzDGzuWZWAtwXnYuZPW9mZdH144EO\ntVX+ymTtmVV74OOc/U+jY84555JT8bf2k+jY6o5XdCLw31orXSWyFqycc84VnvI+Ufo/oMTM7q3F\n8vxEo0JmlodPgU1y9jtEx35Ckk9q6BJlZnl/YWvC712XpGret6v7rW0CdKzkOACSjgf2B/asRp41\nkkbNSqw+ij8O/BpAUh/gOzObt7qEzKzg2yWXXFIv8qxvn7XQ6st/1/p0D6WRbxWq81s7EdhC0qaS\nmgBHR+ciaQBwLnCgmS2r+bcgnoLWrCTdC/QH1pX0EXAJIZKbmY00s6ck7S/pXWAxcEIhy+ecc3VB\ndX9rzaxU0mmEnn8NgFFmNjNK9sYojeckAYw3s1MK9ZkKGqzM7Jg8zjmtEGVxzrm6qia/tWb2NNCl\nkuNbJlC0avMOFjH179+/XuSZVr5pfda6zu+huptvfaE82j0zSZIVa9ld9kjCCtjBwu9dl4RC3rdp\n85qVc865zPNg5ZxzLvM8WDnnnMs8D1bOOecyz4OVc865zPNg5ZxzLvM8WDnnnMs8D1bOOecyz4OV\nc865zCvqYPXGZ2+kXQTnnHMFUNTB6hf3/oLznjuPJSVL0i6Kc865WlTUwWrakGl8tOAjut/Sndc+\nfi3t4jjnnKslsSeylbQ2sGHO1tfMfl8LZauqHCsnA33w7Qc57anTOKH7CVza/1KaNmpa6OK4IucT\n2bpiVJ8msq1OsLoa2Bh4EWgNfG1mo2uhbFWV40df+Hnfz+PkJ07mg+8+4N5D76XbBt0KXSRXxDxY\nuWLkwaqqi6StgB2A783sycRLlV8ZfvKFNzNGvzWaoc8P5eLdLub03qcTrWjp3Bp5sHLFqJiClaQd\ngA/M7LtqXV+TL42kfYAdzOzqaidS/bxX+4V/d/67HPfwcbRp1obbD7qddi3aFbh0rth4sHLFqMiC\n1dnAbWa2oDrX16iDhZk9B4yrSRq1YYu2W/DSCS/RY8Me9BjZg+feey7tIjnnXH33JtBM0jmSYtcg\nYtWsJHUGLgUaA9eaWWoDnfL963TMB2P49SO/5phtj+GKPa+gccPGBSidKzZes3LFqMhqVk8CjxIe\nH/1L0sZm9lm+11dZs5K0l6SNo93DgFOBC4GDJe1WnUIX0p6b7clbv3uLt796m11H78oH336QdpGc\nc65WSRolaZ6kqWs45wZJcyS9Jal7zvEBkt6RNFvS0JzjbSQ9K2mWpGcktYpZrD8AU4CNJN0K3Bbn\n4nyaAf8HtJK0N9AS6AdsAgwHtoxX1nSs13w9/jPwPxzV7Sh2+udOPDDjgbSL5JxztWk0sO/q3pS0\nH9DZzLYETgZuiY43AG6Kru0GDJS0dXTZ+cDzZtYFGANcEKdAZjbTzCaY2V/MbDBwbpzr4zYDnmxm\n/5DUDNgR2A8YC5SZ2QtxMq6p6jalvPHZGwx8aCB7dNqDEQNG0Lxx81oonSs2xdwMuHgxPPUUPPgg\nvPYabLABbLIJdOsGQ4ZA+/aJZeUyZk33raRNgf+Y2XaVvHcL8D8zuz/anwn0BzYDLjGz/aLj5wNm\nZsMlvQPsbmbzJG0IjDWzrSumvZqytANamNl7Ubk+ivsliNvB4hlJo4FDgHWBZWb2XKEDVU303Lgn\nb/72TZaULKHXrb2YNm9a2kVyrtoefBA6dIBbb4W994YXXoC//Q2OPRa+/x623RZ++1t4//20S+oy\npj3wcc7+J9Gx1R0HaGdm8wDM7Atggxj5HQZsKqk/MB8YGLfAsYKVmX0InEUYDNyO0BRYdNZpug53\nHXIX5+1yHnveuSc3TbgJf+DtiokZXHMNnH02jBkDzz4LgwfDllvCTjvB4YfDiBEwezZsuGE4ds89\naZfaZVh1WhXi/Gg2NbMxwNpmtgiI3X29UdwLoj7yf497XdZIYlD3QfTt2JeBDw3k6Xef5raDbmOD\nteP8seBc4ZnBKaeEJr/XXgs1q9VZbz24/HI44gg49NBw/l/+Ak2aFK68Ljljx45l7NixSST1KaHv\nQbkO0bEmQMdKjgN8IaldTjPglzHymynpJWCOpEbAdkCsCSVqNCg4TUm2+y8vXc4l/7uEO6bcwT9+\n+Q8O6HJAIum64lFMz6xuuQVGjQo1qpYt879uwQIYNAjmzw/PuFq0qHYRXEZU8cyqE+GZ1baVvLc/\ncKqZ/UJSH2CEmfWR1BCYBewFfA5MAAaa2UxJw4H50fOroUAbMzs/Rlk7AgcDPwAPxB0cnFewUpiz\nqIOZfVzlyQVSG2NVXpr7EoMeHcTem+/NdT+/jpZNY/wSuKJWLMHqww+hVy8YNw622Sb+9WVl4RnW\nnDkhYK29drWK4TJidfetpHsJHSbWBeYBlxBqTWZmI6NzbgIGAIuBE8xsUnR8AHA94THRKDMbFh1v\nCzxAqJHNBY6s7tRJ1ZF3zUrStMoidFpqa2DlwmULOfvpsxnz4RhGHTiKPTfbM/E8XPYUQ7Ayg332\nCdvQoVWfvzplZXDCCfDJJ/DEE9CsWfXTcukqpkHBNRWng8UkSb1qrSQZsU7TdRh10Cj+vv/fGfTo\nIIY8MYSFyxamXSznuPVWWLgQzjmnZuk0aAC33RY6XhxxBJSWJlM+5ypSsEnVZ1YtTrDaCXhN0nuS\npkqatqbR0cVuvy33Y/qQ6ZSUldDt7914ZOYjaRfJ1WPffgsXXgijR0Oj2N2ifqphQ7j9dliyJKTr\nXG2ImhCeSiKtOM2Am66mMHOTKEhchZxf7cUPX+R3T/6OrdbdiusHXE+n1p0Kkq8rnKw3A159NUyf\nDnfemWxZvvkGeveGyy6D445LNm1X+4qhGVDSHcBNZjaxRunEnMFie2DXaPclM5tSk8xrotCTgS5b\nsYxrXr2GEeNHcGqvUxnab6jPflGHZDlYlZRA587w6KPQo0fy5Zk+HfbcMzy/6t07+fRd7SmSYPUO\nsAWhU8Ziwpguq2xmjTXJuxlQ0pnAPYRRyxsAd0s6PU5mxaxpo6ZctNtFTDp5ErO+mcU2f9uGu6bc\nRWmZN/i72vXww7DZZrUTqAB+9jMYORKOPDI0NzqXsH2BzsCewAHAL6N/Y4nTDDgV2NnMFkf7awOv\nxY2OSUl7mYWXP3qZoc8PZdGyRQzbexj7bbGfr0pcxLJcs9p5ZzjvPDjkkFosFHD66TBvHtx/P/it\nXByKoWYFybTKxelgISC3GlFK9aboqBP6dezHyye8zJ/2+BN/ePYP7DxqZ56c/aRP2+QSNX58CCAH\nHlj7eV1zDbzzThhw7FxSkmqVi1Oz+j0wCCjvFncwcIeZ/TVupklIu2aVq7SslIdmPsSfx/2Zxg0b\n84ed/8DhXQ/3hR6LSFZrVkcfDX36wFln1XKhIm+/DbvvXv1Bx66wiqFmlVSrXNwOFj0I61lBqMpN\njpNZlMYAYASrRkcPr/D+OsDdhPmpGgLXmdntlaSTmWBVrszKeGL2E/zltb/w3rfvcWqvUzlxhxN9\nvsEikMVg9e230KkTfPQRtIq7zF0N3HIL/POfoVaXRDd5V3uKJFhNA3qZ2dJofy1gYtxJJuLUrIab\n2dCqjlWRRgNgNmHeqc+AicDRZvZOzjkXAOuY2QWS1iPMU9XOzFZUSCtzwSrX5M8nc8OEG3hk5iP8\nvPPP+U2P37DXZnvRsEHDtIvmKpHFYHXPPfDAA/DYYwUoVA4z+PnPQw/BC2Itr+cKrUiCVSKtcnGC\n1SQz61Hh2NQ4VblowsRKF/bKOed8wjyEp0naDHjGzLaqJK1MB6tyC5Yu4N5p9zJq8ig+W/QZR3Y7\nkoE/G0iv9r1ooLjLibnaksVgdcQRsP/+YWqkQps7F3r2hBdfhK5dC5+/y08xBCtIqFWuqi+NpCHA\nKcDmwHs5b7UEXjGzvIcSSjoM2NfMfhvtHwf0NrMzcs5pATwObA20AI4ys/9WklZRBKtcs76exb+m\n/4v7Z9zPwmULOXCrAzmwy4Hs3ml3H7OVsqwFq6VLw3RIc+bA+usXolQ/9Y9/hGmZXnnFmwOzqhiC\nVRKtcpBfsGoFtAGuAnKng19kZvNjZZZfsDoM2MXMzpHUGXgO2M7Mvq+QVtEFq1yzvp7FY7Me44nZ\nTzD5i8n02rgXe2++N7ttuhs9N+7JWo3WSruI9UrWgtVTT8GwYaGjQ1rMwurDAwbAueemVw63ekUS\nrGrcKgd5LL5oYc2RBVRjGeJKfMrqF/YqdwIhMGJm70n6gFDLeqNiYpdeeunK1/3796d///4JFLEw\nuqzXhfPWO4/z+p7HomWLeHHui7zw/guc/czZvP3V23TfsDu9Nu5Fz417suNGO7LlulvSqIH/eZuU\nBBexqxWPPgoHH5xuGaQweW7v3qFJslOndMvjiktuq1yFeWRbAq/ETi/GM6s7gDPL1y+R1IbQU+/E\nvDNbw8JeOef8DfjSzC6T1I4QpLavWIsr9prVmny//HsmfDqBNz57g4mfTWTS55P4fNHnbL3e1vxs\ng5/RZd0udFmvC1u23ZLN2mzGOk3XSbvIRS9LNavSUmjfPjS/de5ciBKt2ZVXwquvwn/+44OFsybL\nNaskW+UgXrCabGY7VHUsj3R+srCXpJOJFgWTtBFwO7BRdMlVZvavStKps8GqMt8v/54ZX85gxlcz\nmPX1LGZ9M4s58+fw4Xcf0qxRMzq17sQmrTahQ8sOtF+nPRu12IgNW2xIuxbtWL/5+qzXfD2aNmqa\n9sfIrCwFq1dfhd/9DqZmZE2D5cthhx3g8svhsMPSLo3LleVglbQ4wWoK0N/Mvo322wIvxu0rn5T6\nFqxWx8z4cvGXfPjdh3yy8BM+Xvgxny78lC8Wf8Hniz7ny8Vf8tWSr/h6ydes1Wgt2jZrS9tmbWm9\nVmtaNW1Fq7VasU6TdWjRpAUtm7akRZMWrN14bdZusjbNGjWjeePmNGvcjLUarUWzRs1o2qgpTRs2\npWmjpjRp2GTl1lANi3q6qSwFq/POg7XWCsEhK156CY45BmbMgHW8Ip8ZxRCskmiVg3jB6tfA/xGW\nNQY4ArjCzO6Kk2FSPFjFY2YsWr6I+T/MZ/4P8/lu6XcsWLqA75Z+x6Lli1i0bBGLli9i8fLFLC4J\n25KSJfxQ8gM/rPiBpSuWsmzFMn5Y8QPLS5ezbMUylpUuY3npckpKSyizMho1aETjho1p3KAxjRo0\n+tHWsEFDGqrhT/5toAY0bBD+rbgJhX+llfuSqvUv8KPXAL/p8Rv23nzvle9lJVhtvXUYY7XjjoUo\nTf5OOglatoQRI9IuiStXJMEqmVa5mDNYdCXMnAswxszejpNZkjxYZUtpWSkrylZQUlZCSWkJpRbt\n57wuLSul1EpX/ltmZStfm1nYz3ldZmUYOa/NMCz2v8CPXpfruXFPtmi7BZCdYPXFF2Fc09dfhxV9\ns+Srr6BbNxgzJszU7tJXJMEqkVa5vLuXKbTx9ADamtnlkjpK6m1mE+Jk6Oqmhg1Cbakp/lysJl55\nBXbZJXuBCsJ4r0suCbOzjxnjnS1c3q4Dxkv6Uatc3ETifCX+DuzMqi7si4C/xc3QObd6r7wCffum\nXYrVO/nkMGfhv/+ddkncmkgaIOkdSbMl/WTwraTWkh6WNEXS+KjVrPy9MyVNi7bcMbDbS3pN0mRJ\nEyT1zKcsZnYncAgwL9oOrc7jozjBaiczOxVYGhXgW6BJ3Aydc6uX9WDVqBHcdBOccw58/33V57vC\ni+ZgvYmw6GE3YKCkrSucdiEw2cy2J8zbd0N0bTfgJKAn0B04QNLm0TVXE6bL2wG4BLgmz/Lktsrd\nBHwvKfaa1HGCVUk0TsqiAqwPlMXN0DlXuSVLwhLzvXqlXZI169cvLCNy1VVpl8StRm9gjpnNNbMS\n4D7goArndAXGAJjZLKBT9Ju+DfC6mS0zs1LgReDQ6JoyoHz+/9b8dEKH1UmkVS5OsLqBMGvuBpKu\nAF4GroyboXOuchMmwHbbQbNmaZekasOHh7kDP/ww7ZK4SrQHPs7Z/yQ6lmsKURCKajkdCTMKTQd2\nldRGUnNgf2CT6JqzgWslfUSoZeU7J38irXJ5Byszuwc4jzAa+XPgYDPzlmvnEvLyy9luAszVvj2c\neWYYE+aK0jCgjaRJwKnAZKDUwnJNwwlzsj5Vfjy6ZghhvFRHQuC6Lc+8EmmVi9Mb8PfA/WbmnSqc\nqwWvvBI6MBSLc84JqwmPGwe77ZZ2aeqHPOe0rHIOVjNbBKwclBvNwfp+9N5oYHR0/ApW1dIGmdmZ\n0TkPShqVZ7ErtsodDlyU57UrxRkUfAlwJDAfuB/4t5nNi5thUnyclUtS2uOsSkth3XVh9mzYoIgW\nlr7vPrj6apg4ERr6uqIFV9l9m+ccrK2AJWZWImkw0NfMjo/eW9/MvpLUEXia0Iy3SNIM4BQze1HS\nXsAwM8vrCWvUwWMvQMALuWXJ+7PG/cGXtB1wFHAY8ImZ7R030yR4sHJJSjtYTZ0Khx8eglUxMQsd\nLk46CU6MNXmOS8Lq7ts85mDtA9xBaI6bAZwUrbCBpHFAW6AEONvMxkbHdyHUkhoSnj+dYnksopjT\nKpdvh4zK06lGsNqQMKjraKClxVyTJCkerFyS0g5WN98caie35fsUIENefx0OPTQE2rXXTrs09UuR\nzGCRSKtc3h0sJJ0iaSzwArAuMDitQOVcXZP18VVrstNO4ZnVtdemXRKXRWZ2mZl1I3Tk2Ah4UdLz\ncdOJ88zqKkJV7q24mdQGr1m5JKVds+rcOawX1bXrai7KuA8/DBPvTpsGG2+cdmnqj2KoWZWraatc\n7GbArPBg5ZKUZrBatAg23BAWLizuTgpDh4YJeEfl20fM1VgxBCtJpxCaAdcH/g08UJ1J0H2ddOdS\nNn166AJezIEK4MILoUsXmDIFtt8+7dK4DNkEOKumrXIZnNvZufpl2jTYNpUlTJPVqhVcdJEPFHY/\nZmYXJPH4qMpgJalX1NZYvv9rSY9JuiFal8Q5VwPTpoVpluqCk0+GDz6AZ59NuySursmnZvUPYDmA\npN0I03TcCSwARtZe0ZyrH6ZOrRs1K4DGjWHYMDj33DDQ2bmk5BOsGprZ/Oj1UcBIM3vIzC4Gtqi9\nojlX95nVrZoVwCGHQIsWcFfsFYtcXZJ0q1xewUpSeUeMvYimlY94Bw3nauDTT0NtpJimWKqKBNdc\nAxdfDD/8kHZpXIoSbZXLJ1j9izCI6zHgB+ClKPMtokydc9VUVzpXVLTLLmGw8IgRaZfEpSjRVrkq\ng5WZXQGcA9wO9MsZINIAOD1uhs65VepaE2CuK6+E664LY69cvZRoq1xeXdfNbLyZPWJmi3OOzTaz\nSXEzdM6tUpc6V1S01VZw5JFwxRVpl8SlJNFWuSpnsJB0I9GiWZUxszPiZpoEn8HCJSmtGSy23z7M\n+NCzZyFyLrx588IUUm+8AZttlnZp6p6sz2ARze6+EfBseWVH0lZAi7iVnXyC1aCc3cuAS3LfN7M7\n4mSYFA9WLklpBKuSElhnHfjmG2jevBA5p+Oyy8KM7Pfck3ZJ6p6sB6skxZobUNJkM9uhFsuTNw9W\nLklpBKvp0+Gww2DWrELkmp7vvw9Ngk88AT16pF2auiXLwSrpVrm40y15dHAuIXW5c0WuFi1CN/bz\nz0+7JK7A3gDejLYDc16Xb7H4OCnnUlKXO1dU9JvfwF//Cs89B/vsk3ZpXCHkPiKSdFZNHxnlMzfg\nIkkLJS0Etit/XX68Jpk7V5/V1TFWlWncOHRlHzoUysrSLo1LQY1b5fIZZ9XSzNaJtkY5r1ua2To1\nLYBz9dXMmcW72GJ1HHZYCFr33Zd2SVwxyqc34BZAOzN7pcLxvsAXZvZeLZZvTeXyDhYuMYXuYLF8\nudGiRVh4sUmTQuSaDS++CCecEAJ106Zpl6b4ZbyDxSJW1aiaA0vK3wIsbmUnnw4WI4DKmvsWRu85\n52KaOzcs/16fAhXA7ruHhSb/8Y+0S1K3SRog6R1JsyUNreT91pIeljRF0nhJXXPeO1PStGg7o8J1\np0uaGb03bE1lSLpVLp9g1c7MplVSkGlAp7gZOufgvfegc+e0S5GOYcPCrBYL/Yl3rZDUALgJ2Bfo\nBgyUtHWF0y4EJpvZ9sAg4Ibo2m7ASUBPoDtwgKTNo/f6AwcA25rZtsC1VZRji6gFruLxvpJi3/35\nBKvWa3ivWdwMnXPw7ruwRT1dYGfbbWG//cLM7K5W9AbmmNlcMysB7gMOqnBOV6K5+sxsFtBJ0vrA\nNsDrZrbMzEqBF4FDo2uGAMPMbEV0XVWzPibaKpdPsHpD0uCKByX9hmr0lXfO1e+aFcDll8Pf/w6f\nf552Seqk9sDHOfufRMdyTSEKQpJ6Ax2BDsB0YFdJbSQ1B/YHNomu2QrYLWo2/J+kqiYJS7RVLp9x\nVmcBj0g6llXBqSfQBDgkbobOuRCs+vVLuxTp6dgxdLS4/HK4+ea0S1MvDQOulzQJmAZMBkrN7B1J\nw4HngO/Lj0fXNALamFkfSb2AB4DN15BHoq1yVQYrM5sH7CJpD+Bn0eEnzWzMGi5zzq1BfW4GLHfh\nhdClC5x1VvjXVW3s2LGMHTu2qtM+JdSUynWIjq1kZouAE8v3JX0AvB+9NxoYHR2/glW1tE+Ah6Nz\nJkoqk7SumX2zmnK8IWmwmd2ae7C6rXKx5gZMgqQBhPbKBsAoMxteyTn9gb8CjYGvzGyPSs7xrusu\nMYXuut6smfHll2Eqovps+HCYOBEefDDtkhSnyu5bSQ2BWYQ1pD4HJgADzWxmzjmtgCVmVhI95ulr\nZsdH761vZl9J6gg8DfQxs4WSfgu0N7NLopnTnzOzTddQtnbAI4TVgn/SKmdmX8T6rIX8wY96qcwm\n/Ef8DJgIHG1m7+Sc0wp4Ffi5mX0qab3KHuR5sHJJKnSw2nBD8+c1hGXvt9oK/v1v6NMn7dIUn9Xd\nt1Gl4HpWVQqGSTqZML5pZLR0xx1AGTADOMnMFkTXjgPaAiXA2WY2NjreGLiN0EtwGXCOmb2YRxlz\nW+VmVLdVrtDBqg9wiZntF+2fT/iPNzznnCHARmb2xyrS8mDlElPoYNW3r/Hyy4XILftuuw1uvz0M\nGFYmh7dmV5YHBSct7qzrNZVPL5WtgLZRb5OJkn5VsNI5VyD1uSdgRYMGwfz58OSTaZfEZVmVHSwq\nTJnxo7eoxpQZeZapB7AnsDbwmqTXzOzdiideeumlK1/379+f/v37J1wUV1fl+aC61tT3zhW5GjaE\nq64KS4jst1/Yd66iNJoBLzWzAdF+Zc2AQ4G1zOyyaP+fwH/N7KEKaXkzoEtMoZsB77nHOOaYQuRW\nHMzCVEzHHw8nnljl6S5Sn5oB464U3AbYElir/JiZjYtxfT69VLYGbgQGAE2B14GjzOztCml5sHKJ\nKXSwev11o3fvQuRWPMaPh8MPh9mzoXnztEtTHLIcrJJulct78cWob/yZhD77bwF9gNcIzXV5MbNS\nSacBz7Kql8rM3F4q0aC0Z4CphMFoIysGKueKnT+z+qk+fcJ2/fVwwQVpl8bVlJm1TDK9vGtWkqYB\nvYDxZtY9qgFdaWaHVnFprfCalUtSoWtWZWXmPd8qMXs27LILvPMOrLde2qXJvizXrHLVtFUO4vUG\nXGpmS6OMm0Zjo3zcuXPV4IGqclttBUceGWZld3VD1Co3DngGuCz699K46cQJVp9Iag08Cjwn6TFg\nbtwMnXNuTS65BO68E95/P+2SuIScSWiVmxvNRrQD8F3cRKrVG1DS7kAr4GkzWx47gQR4M6BLUqGb\nAf3eXbPLLw+rCf/rX2mXJNuKoRlQ0kQz6yXpLWAnM1smaYaZdYuTTt4dLHLlM8WGc85V1+9/H5oE\nJ06EXr3SLo2roYqtct9SjVa5KmtWkl42s36VdEOsrUHBefG/Tl2SvGaVPSNHwr33wv/+58/4VqcY\nala5clrl/hstDJn/tcX6pfEvvEuSB6vsWbECttsOrr4afvnLtEuTTcUQrCQ1BQ4jLLi4sjXPzC6P\nk07eHSyiBbmqPOacc0lo1CgsITJ0aAhcrmg9BhwErAAW52yxxBlnNcnMelQ4NtXMtoubaRL8r1OX\nJK9ZZZMZ9O8Pxx0HgwenXZrsKZKa1XQz+1nVZ65ZlTUrSUOiAcFdJE3N2T4gzDLhnHO1QoJrrw3d\n2b//Pu3SuGp6VdK2NU0knw4WrYA2wFXA+TlvLTKz+TUtQHX5X6cuSV6zyrZjj4Utt4SchRYcRVOz\nehvYAviAsGhjeee8WK1y3sHCOTxYZd2HH8KOO8K0abDxxmmXJjuKJFhtWtlxM4vVfb06Xddz/8N4\n13VXJ3iwyr6hQ8MijbfemnZJsqMYglVSvGblHB6sisF330GXLvD887BtjZ+A1A1ZDlZJj9GN0xsw\nkb7ySfEvvEuSB6vicOON8MQT8MwzaZckG7IcrJIWZyLbRPrKO+dcdf3ud+H51dNPp12SbJM0QNI7\nkmZHq69XfL+1pIclTZE0XlLXnPfOlDQt2s6o5NpzJJVJaltFGe4qTy+RzxSjZpVIX/mk+F+nLkle\nsyoejz0G//d/8NZbYeBwfVbZfSupATCbsCL7Z8BE4OhoWafyc64m9Oj+k6QuwN/MbG9J3YB/EWZJ\nXwH8F/jrDlNKAAAgAElEQVSdmb0fXdcB+Cdheagd19QjPOoFuHeURn9+3N+BuL3J49SsEukr75xz\nNXHggbD++nDbbWmXJLN6A3PMbG40/959hFaxXF2BMQBmNgvoJGl9YBvgdTNbZmalhHWochfY/Stw\nbp7luAV4AdgaeLPC9kbcDxUnWPUD3pQ0KxoUPE2SDwp2zhWUBNddFwYKL1yYdmkyqT3wcc7+J9Gx\nXFOIgpCk3kBHoAMwHdhVUhtJzYH9gU2i8w4EPjazafkUwsxuMLNtgNvMbHMz2yxn2zzuh4pTid4v\nbuLOOVcbevSAffeFq64Km4ttGHC9pEnANGAyUGpm70Rzvj4HfF9+XFIz4EJgn5w08mo2N7MhSRQ4\n72AVdwCXc87VpiuvDF3YTz4ZOnVKuzSFMXbsWMaOHVvVaZ8SakrlOkTHVjKzRcCJ5fvR9HnvR++N\nBkZHx68g1NI6E3qCT5GkKM03JfU2sy+r/4ny5+tZOYd3sChWl18OM2bA/fenXZJ0rKaDRUNgFqGD\nxefABGCgmc3MOacVsMTMSiQNBvqa2fHRe+ub2VeSOgJPA33MbGGFPD4AepjZt7X48X6kypqVmfWL\n/m1Z+8Vxzrn8/eEPYaDwK69A375plyYbzKxU0mnAs4R+CaPMbKakk8PbNpLQkeIOSWXADOCknCQe\nirqllwCnVAxU5dmQZzNgVBM7FtjczC6PguCGZjYhzufyGSycw2tWxeyuu8Jg4fHjoUGcLmN1QDEM\nCpZ0M1AG7Glm20hqAzxrZr3ipFPP/tc65+qaY48NPQTvuSftkrjV2MnMTgWWAkRNh03iJuLByjlX\n1Bo0gBEj4IILfM2rjCqJnqMZhGdihJpWLHGWtZek4yT9MdrvGPXPd865VO28M+y+OwwfnnZJXCVu\nAB4B2kW9C18GroybSJzplhJpd0yKt/u7JPkzq+L38cfQvTtMmgSbVrqCUt1TDM+sACRtTeidCDAm\nt2divuI0AybS7uicc7Vhk03gjDPgvPPSLonLFa3Y0QNoBawLHFHeQhdHnGCVSLujc87VlnPPDb0C\nX3wx7ZK4HIms2BFnuqWK7Y6HAxfFzdA552pL8+ZwzTVw5pnw5pvQsGHaJXJABzMbUNNEYo2zSqLd\nMSne7u+S5M+s6g4z2GMPOProsP5VXVYMz6wkjQRuzHcC3NWm4ysFO+fBqq6ZMgV+/nN45x1o0ybt\n0tSeLAcrSdMIj40aAVsS5h5cxqqp+raLlV6MYPU0sICwFklp+XEzuy5OhknxL7xLkgerumfIEGjc\nGG64Ie2S1J6MB6s19smMOzm6rxTsHB6s6qKvv4auXeGFF8Ls7HVRloNVOUnDzWxoVceq4isFO+fq\npPXWg0svhdNPD8+xXGr2qeRY7PUR81kiJNF2x6T4X6cuSV6zqptKS2HHHcNUTEcdlXZpkpflmpWk\nIcApwObAezlvtQReMbPjYqWXR7BKtN0xKf6Fd0nyYFV3vfRSmOx25kxYe+20S5OsjAerVkAb4Crg\n/Jy3FpnZ/LjpVdkMaGZzo4B0Svnr3GNxM5Q0QNI7kmZLWm2bpaRekkokHRo3D+ecK7frrmG74oq0\nS1K/mNkCM/vQzAZWiB2xAxXE62Axycx6VDg2NU4zoKQGwGzCWK3PgInA0Wb2TiXnPQf8ANxmZg9X\nkpb/deoS4zWruu2zz2C77eDVV2GrrdIuTXKyXLNKWpU1K0lDoudWXSRNzdk+AKbGzK83MCeKriXA\nfYRpOCo6HXgQ+DJm+s459xMbbxyeW3lni+KVT2/Ae4EDgMejf8u3HeM+IAPaAx/n7H8SHVtJ0sbA\nwWZ2M3kum+ycc1U54wz45BN45JG0S1I/SLor+vfMJNKrcm5AM1tAGAw8MIkM8zACyH2W5QHLOVdj\njRvD3/4GgwbBvvvWvc4WGbRjVPk4UdKdVPgtj/vsKs5Etkn4FOiYs98hOparJ3CfJAHrAftJKjGz\nxysmdumll6583b9/f/r37590eV0dNXbsWMaOHZt2MVyB9e8P/frBn/8MV12VdmnqvFuAFwhd19/k\nx8HKouN5izWRbU1FS4zMInSw+ByYAAxc3YS4kkYD//EOFq62eQeL+uPzz0Nni3HjYJtt0i5Nzazu\nvpU0gNBK1QAYZWbDK7zfGrgN6EzoyHaimb0dvXcm8Jvo1H+a2fXR8asJj4CWEcZNnWBmC/Mo481m\nNqSaH3GlfDpYJNbuaGalwGnAs8AM4D4zmynpZEm/reySmubpnHO5NtoILr4YTj21bna2iHpT3wTs\nC3QDBkYrZuS6EJhsZtsDgwhLQCGpG3ASoYWrO/BLSeU1oGeBbmbWHZgDXJBPecxsiKTtJZ0WbdWa\nSCKfDha57Y5tJLXN3eJmaGZPm1kXM9vSzIZFx/5hZiMrOffEympVzjlXE6ecAt9+C/fem3ZJakU+\nva67AmMAzGwW0ClaUHcb4HUzWxZVLl4EDo3Oe97MyhfcHU94jFMlSWcA9wAbRNs9kk6P+6HyeWaV\naLujc86lrVEjuOUWOOQQ+MUvoHXrtEuUqMp6XfeucM4UQhB6RVJvQl+CDsB04M+S2hCa+/YnjIet\n6ERCEMzHb4CdzGwxhElsgdeAG/O8HshvBosbzGwbwuDczc1ss5zNA5VzrijttBMccABcVD/XOx8G\ntJE0CTgVmAyURhM0DCdMyvBU+fHcCyX9H1BiZvnWS1UhjVKq0cs7796A5e2OwK7RoXFmFndQsHPO\nZcZVV0G3bvDrX0PvinWPDMqzF2uVva7NbBGhdgRANMnD+9F7o4HR0fEryKmlSTqeUNvaM0axRwOv\nSyof4XYwMCrG9SHvGNMtnQH8Fih/hnQIMNLMYlXlkuI9qlySvDdg/XX33XDddTBxYmgeLCaV3bf5\n9LqOJpldYmYlkgYDfc3s+Oi99c3sK0kdgaeBPma2MOpheB2wm5l9E7OcPYB+0e5LZjY59meNEaym\nAjvntDuuDbzmS4S4usCDVf1lBvvsE55dnX122qWJp4qu69ezquv6MEknE5Z1GimpD3AHUEbomX1S\nNAEEksYBbYES4GwzGxsdnwM0AcoD1Xgziz2ZeXXFCVbTgF5mtjTaXwuYaGapLMjoX3iXJA9W9dvs\n2bDLLjBpEnTsWPX5WeET2VauvN3xUkmXErouxm53dM65rNlqqzB3oE90m12xZrBIot0xKf7XqUuS\n16zcsmXQvXtY9+rQIllFrxhqVpKOAJ42s0WSLgJ6AH82s0mx0inWL41/4V2SPFg5gJdfhqOPhhkz\noFWrtEtTtSIJVlPNbDtJ/YA/A9cAfzSzneKkE6cZ0Dnn6rR+/eCXvwxrX7nElI+x+gWhB/mThI4a\nsXjNyjm8ZuVW+e67MPbqgQegb9+0S7NmRVKzeoIwzmsfQhPgD8CEaF7CvOVds5J0hKSW0euLJD0c\nPcNyzrk6o3VruP56GDw4PMdyNXYk8Aywr5l9R+gWf27cROI0A14cPSDrB+xN6Al4c9wMnXMu6w47\nDLp0gSuvTLskdcIlZvawmc0BMLPPCQOWY4kTrBJpd3TOuayT4Kab4O9/h+nT0y5N0dunkmP7xU0k\nTrD6VNI/gKOApyQ1jXm9c84VjfbtQzf2k06C0tKqz3c/JmlINJlEF0lTc7YPgNjzysaZwaI5MACY\nZmZzJG0EbGtmz8bNNAn+kNolyTtYuMqUlcGee8JBB2VzKqYsd7CI5h9sA1wFnJ/z1iIzmx87vRjB\nariZDa3qWKH4F94lyYOVW505c2DnneH116Fz57RL82NZDlZJixOsJplZjwrHpvpEtq4u8GDl1uS6\n6+CJJ+CFF6BBhh5+FEOwih4ZHQZ0ImdZKjO7PE46Vf5nT7rd0Tnnis1ZZ8GSJTByZNolKUqPAQcB\nK4DFOVssVdaskm53TIr/deqS5DUrV5W334bdd4c338zOzOxFUrOabmY/q3E6xfql8S+8S5IHK5eP\nK6+EsWPhmWdC9/a0FUmwGgncaGbTapROjGdWibQ7JsW/8C5JHqxcPlasgD594OSTwwwXaSuSYPU2\nsCXwPrAMEGERyFj9HeIEq6eBBcCbrBogjJldFyfDpPgX3iXJg5XL1/TpsMce2WgOLJJgtWllx81s\nbqx0YgSrRNodk+JfeJckD1Yujqw0BxZJsBJwLLC5mV0uqSOwoZlNiJNOnE6Yr0pKZQl755zLkvPO\ng2+/9d6Befo7sDMwMNpfBPwtbiJxalaJtDsmxf86dUnympWLq7x34Ouvw+abp1OGIqlZTTKzHpIm\nm9kO0bEptbZECGHiwS2AnwMHAL+M/nXOuXqna1c4/3w4/vjszR0oaYCkdyTNlvSTWYYktY6WeZoi\nabykrjnvnSlpWrSdkXO8jaRnJc2S9Ew0rCkfJZIaAhalsz5QFvczxQlWHwG7AoOiB2MGtIuboXPO\n1RVnnRX+vf76dMuRS1ID4CZgX6AbMFDS1hVOuxCYHNVuBgE3RNd2A04CegLdgQMkldcbzweeN7Mu\nwBgg3/WUbwAeAdpJugJ4GYi9+EqcYJVIu6NzztUVDRvC6NGhw8Xbb6ddmpV6A3PMbK6ZlQD3EWaQ\nyNWVEHAws1lAp6jGsw3wupktM7NS4EXg0Oiag4A7otd3AAfnUxgzuwc4jxCgPgMONrN/x/1QcYLV\nTmZ2KrA0KsC3+HpWzrl6rnPnsJTIr34Fy5enXRoA2gMf5+x/Eh3LNYUoCEnqDXQEOgDTgV2jJr/m\nwP7AJtE17cxsHoCZfQFskE9hojG6PYBWwLrAEZL+GPdDxQlWibQ7OudcXfPb38KGG8Kf/pR2SfI2\nDGgjaRJwKjAZKDWzd4DhwHPAU+XHV5NGvr2EEpkbsFHVp6xUsd3xcOCiuBk651xdI8GoUdC9O+y/\nf1hSpDaMHTuWsWPHVnXap4SaUrkO0bGVzGwRcGL5fjQx+fvRe6OB0dHxK1hVS/tCUjszmydpQ+DL\nPIvdwcwG5HnuasWaGzB6SLdXtDvGzGbWtADV5d1/XZK867pLwsMPhzFYb70FLVrUfn6V3bdRC9gs\nwm/158AEYGDu73XUk2+JmZVIGgz0NbPjo/fWN7OvosG7TwN9zGyhpOHAfDMbHvUwbGNmuZObr66M\nPjegf+FdUjxYuaSccAI0blyYAcOru28lDQCuJzzqGWVmwySdTBgbO1JSH0IniTJgBnCSmS2Irh0H\ntAVKgLPNbGx0vC3wAOEZ1lzgSDP7Lo8yvk0Y9vQBPjegczXjwcolZdGi0Bx47bVwyCG1m1eRDAr2\nuQH9C++S4sHKJem11+Dgg2HyZNh449rLpxiCFYCk7QnjdAFeMrMpcdPwuQFdUTKDsrIwc8CKFVBS\nEroNL1sWtqVL4YcfwuquS5bA4sXw/fdhW7QobBnpZuzqoJ13hiFDwuwWZfW8z7SkM4F7CF3dNwDu\nlnR67HRizg1Y83bH0JY6glVtqcMrvH8MUD49yCJgSGUP5vyv05pbvhwWLgxb+Q/44sWrtiVLVv3g\nL126KgiUB4Rly1YFiZKSVduKFavfSktXBZnyrazsp1t5MKrsdS6p8i33vYrnle9ffz2ceGL5vtes\nXLJWrIDddoPDD4ff/7528iiGmpWkqcDOZrY42l8beC1u7IjTdX2/OAlXJmcakL0II5knSnos6ttf\n7n1gNzNbEAW2W4E+Nc27Pli6FD75BD77DD7/HL74AubNg6++Ctv8+au2b78NX6ZWrWCddULPpfJt\n7bXD1rx52NZaC5o1g7ZtoWnTH29NmoSHyY0br3rdqNGqfxs2DK8bNvzx1qDBT183aBCCSIMGq39d\nMeg4l1WNGsE990Dv3tC/P/TokXaJUiN+PFarNDoWS97ByszmJtDuuHIaEABJ5dOArAxWZjY+5/zx\n/HTkdb1lFoLOrFlhe/ddeP99+OADmDsXFiwI7ePt28NGG4VBiu3aQc+esP76sO66IeC0aRO25s39\nR9+52rTZZqEGP3BgWKyxEN3ZM2g08LqkR6L9g4FRcROJ0wx4JjAYeDg6dAgw0sxuzDsz6TBgXzP7\nbbR/HNDbzM5Yzfl/ALYqP7/Ce3W6KaW0NASkiRNh0iSYNi1spaXQpUvYttwyLE2w2WbQqRNssEGo\nfbj4vBnQ1aZBg0ILwz//mWy6xdAMCCCpB9Av2n3JzCbHTSNOM+BJhPkBy9sdhwOvAXkHqzgk7QGc\nwKoPWKf98AO88gq8/HLYJkwItaJevULzwf77w7bbhhqT14acKy433RS+x/ffD0cdlXZpCs/MJgGT\napJGnGCVRLtjldOAAEjaDhgJDIgmzK3UpZdeuvJ1//796d+/f8zipMcMZs6EJ56AZ58NC7htt114\nIHv22aE3Udu2aZey7spz2hrnEtGyJdx3H+y3X/gDNK3FGtMgaS3gFELFwwhLhNxsZktjpROjGfD3\nhHVPctsdbzezETEKnc80IB2BF4BfVXh+VTGtomtKMYM33oAHHoBHHw0dIg44AAYMCA9g11kn7RLW\nX94M6AphxAi4997QetIkgTUriqEZUNIDhJ7dd0eHjgFam9kRsdKJOTdgjdsd85gG5FbC1PVzCTW3\nEjPrXUk6RfOF//BDuP32cJOWlcHRR8Ohh8IOO3iTXlZ4sHKFYAYHHghbbw3XXFPz9IokWL1tZl2r\nOlZlOsX6pcn6F37FCnjssTA/2JtvwjHHhPVuevb0AJVFHqxcoXzzTfhD9ZZbwrPomiiSYHU3cFN5\nS5mknYBTzezXsdKJ0QyYSLtjUrL6hf/uu9Dj58YbYZNNwij2Qw8N45RcdnmwcoX08sthsPDEieF3\norqKJFjNBLoAH0WHOhIeB60gxsQScYJVIu2OScnaF/6rr+Avfwk1qQEDQieJnj3TLpXLlwcrV2jD\nh8Pjj8PYsaFbe3UUSbCqbCJbI+qgl++EtrGmW0qi3TEpWfnCf/MNDBsWFl476ig4/3zYtNI5hl2W\nebByhVZWBr/8ZRiSMnx41edXpkiCVU/g/4BN+fHyUrU23dIkSX0qtDu+ESezumTx4tCz569/hSOO\ngKlToUOHtEvlnCsWDRrAnXeG8Ve77hoCVx11D3AuMI2wfla1xAlWOxJmXv9Ru6OkaVRjQttiVVYW\n5vu64ALo1w/Gj4cttki7VM65YrTeemH81SGHhN+SzTZLu0S14isze7ymicRpBkyk3TEpaTSlvPkm\nnH56mFn8xhuhj0+vW2d4M6BL04gRcNddYRabtdbK/7oiaQbcCxhIGD+7rPy4mT282osqSydGsEqk\n3TEphfzCL1wIF10UBvNedVWY58vn4KtbPFi5NJnBkUeGmtbNN+d/XZEEq7uBrYEZrGoGNDM7MU46\ncZoBE2l3LDaPPQannQY//znMmBFmLnfOuSRJoZNWr17hOdavY41AyrxeZtalponECVaJtDsWi6+/\nhjPOCNMj3X037L572iVyztVl66wDDz0Ee+wR5gnt3j3tEiXmVUldzeztmiQSpzHrEkn/lDRQ0qHl\nW00yz6pHHlk1w/lbb3mgcs4Vxs9+BjfcAIcdFhZIrS5JAyS9I2m2pKGVvN9a0sOSpkgaL6lrzntn\nS5ouaaqkeyQ1iY5vL+k1SZMlTYgeDeWjD/CWpFlRmtOi1YPjfaYYz6wSaXdMSm20+y9YEGpTr74a\n5vLr2zfR5F2G+TMrlyVnnRUWV3388TU/H6/svo1WZJ9NzorswNG5K7JLuhpYZGZ/ktQF+JuZ7S1p\nY8LsRFub2XJJ9wNPmtmdkp4BrjOzZyXtB5xnZntU9VlW0zkvdqe8OM2AibQ7ZtW4caGdeMAAmDy5\n3q7o6ZzLgGuugb32gssvh5yVkPJV5YrsQFfgKgAzmyWpk6T1o/caAmtLKgOaEwIehEpKq+h1aypZ\n3qkySfUUjxOsEml3zJqSErjssvBw89Zb6/TAPOdckWjcGP797zBlW48eYab2GNoDH+fsf0IIYLmm\nEFa3eEVSb8K42Q5mNlnSdYR5/JYAz5rZ89E1ZwPPRO8L2CXfAknaHtg12n3JzKbE+kTEC1bl7Y4f\nEPrKiyIfDPz++2E29DZtwrOpdu3SLpFzzgXt2sGDD4Y178aNC8uKJLho6DDgekmTCD28JwOlkloT\namGbAguAByUdY2b3AkOAM83sUUmHA7cB+1SVkaQzgcFA+biquyWNNLNYq8zXdFBwwQcDl6tpu/99\n94UBvhdeCGee6eOm6jt/ZuWyatQouPbasJp4xQVaV/PMqg9wqZkNiPbPJ1QsVjsDoaT3ge2AAcC+\nZjY4Ov4rYCczO03Sd2bWOueaBWbWqvIUf5T2VGBnM1sc7a8NvFZrcwOmFZSStnhxCE7jxsEzz4Qq\ntnPOZdVJJ8GkSXDssWHcZx5/WE8EtogqGJ8DRxNmkFhJUitgiZmVSBoMjDOz76Pp9PpES0ItI3TS\nmBBd9qmk3c3sxWhWitl5fgQBpTn7pdGxWOI0AybS7pimadPCzOi9eoWpk1q2TLtEzjlXtREjYO+9\n4Y9/hD//ec3nmlmppNOAZ1m1IvtM5azIDmwD3BF1opgBnBRdO0HSg4RmwZLo31ujpAcDN0hqCCwF\nfptn8UcDr0t6JNo/GBiV57UrxWkGrNjueAgQu90xKXGaUszCqpx//GNYc+pXv6rlwrmi482ALuu+\n+gp69w7LiRx5ZDiW5emWJG0BtDOzVyT1ICzcC/AW8KmZvRcrvRjBKpF2x6Tk+4WfPx8GD4YPPgjP\nqbbaqgCFc0XHg5UrBm+9BccdF5oFmzTJfLB6ArjAzKZVOL4tcKWZHRAnvTjdChJpdyykcePClCUd\nO8Jrr3mgcs4Vt+7dwzjQJk3SLkle2lUMVADRsU5xE4vzzCqRdsdCKCkJ7bojR8I//wm/+EXaJXLO\nuWQ0bpx2CfLWeg3vNYubWJXBKqfd8S+SxrKq3fEM8hzBXEjvvhuqya1bh6ryRhulXSLnnKuX3pA0\n2MxuzT0o6TfAm3ETq/KZVdLtjkmp2O5vFsYjXHABXHxxWNbDx065fPkzK1eMMv7Mqh3wCLCcVcGp\nJ9AEOMTMvoiTXj7NgKttd5TUKU5mteWzz0Inis8/h//9L8xc7JxzLj1mNg/YRdIeQPmv8pNmNqY6\n6eVT90i03TFJZmGtqR12CHNojR/vgco557LEzP5nZjdGW7UCFeRXs0q03TFJv/gFfPopPPlkCFbO\nOefqpnyC1VnAI5KOpZJ2x9oqWD769oXzziuq3jHOOeeqIc6g4Nx2xxk1qc4lwR9SuyR5BwtXjLLc\nwSJpeQerrPEvvEuSBytXjOpTsPLO3c455zLPg5VzzrnM82DlnHMu8zxYOeecyzwPVs455zLPg5Vz\nzrnM82DlnHMu8zxYOeecyzwPVs455zKv4MFK0gBJ70iaLWnoas65QdIcSW9J6l7oMq7J2LFj60We\naeWb1met6/weqrv5Vqaq31lJrSU9LGmKpPGSuua8d7ak6ZKmSrpHUpOc906XNFPSNEnDCvV5oMDB\nSlID4CZgX6AbMFDS1hXO2Q/obGZbAicDtxSyjFXxL1/dy7M+8Huo7uZbUT6/s8CFwGQz2x4YBNwQ\nXbsxcDrQw8y2I0x2fnT03h7AAcC2ZrYtcG0BPs5Kha5Z9QbmmNlcMysB7gMOqnDOQcCdAGb2OtAq\nWnHSOedc1fL5ne0KjAEws1lAJ0nrR+81BNaW1AhoDnwWHf8dMMzMVkTXfV27H+PHCh2s2gMf5+x/\nEh1b0zmfVnKOc865yuXzOzsFOBRAUm+gI9DBzD4DrgM+Ivz2fmdmz0fXbAXsFjUb/k9SYVcRNLOC\nbcBhwMic/eOAGyqc8x9gl5z95wlV0oppmW++JbkV8HuQ+mf1re5s1fydbQncBkwC7gBeB7YjrAz/\nAtCWUMN6BDgmumYacH30uhfwfiHjRz6LLybpU0IEL9chOlbxnE2qOKfeTIvv6h6/d10tq/J31swW\nASeW70t6H3gfGEAIQvOj4w8DuwD3EmpoD0fXT5RUJmldM/umFj/LSoVuBpwIbCFp06iHydHA4xXO\neRz4NYCkPoRq6LzCFtM554pWlb+zklpJahy9HgyMM7PvCc1/fSStJUnAXsDM6LJHgT2ja7YCGhcq\nUEF+y9onxsxKJZ0GPEsIlKPMbKakk8PbNtLMnpK0v6R3gcXACYUso3POFbN8fmeBbYA7JJUBM4CT\nomsnSHoQmAyURP+OjJK+DbhN0jRgGVGlolCKdqVg55xz9UfmZ7BIYxBxHgPqukh6VdJSSb+vaX4x\n8j0mGsQ3RdLLkrYtQJ4HRvlNljRBUt+a5plPvjnn9ZJUIunQ2s5T0u6SvpM0Kdouqq28onMSH/ye\nxr2bxn2bZ76J37tp3Lf55JvkvZtZhezNUY1eUw2Ad4FNgcbAW8DWFc7ZD3gyer0TML4Aea4H7Aj8\nCfh9AT9rH6BV9HpAgT5r85zX2wIzC/FZc857AXgCOLQAn3V34PFivG/TunfTuG/TunfTuG8Lfe9m\nect6zSqNQcRV5mlmX5vZm8CKGuRTnXzHm9mCaHc8NR9/lk+eS3J2WwBlNcwzr3wjpwMPAl8WMM8k\neuqlNfg9jXs3jfs233yTvnfTuG/j5Fune5lmPVilMYg4nzxrQ9x8fwP8txB5SjpY0kzCGLgTK75f\nG/kqTPtysJndTDJfwnz/++4cNcs9qZz50mohr9oY/J7GvZvGfZt3vgnfu2nct3nlG0ni3s2sQo+z\ncglQmKPrBKBfIfIzs0eBRyX1A/4M7FOAbEcAuW3zhfir8U2go5ktUZij8lHCqH2XgELft5DKvZvG\nfQv14N7Nes0qsUHECedZG/LKV9J2hK6kB5rZt4XIs5yZvQxsLqltAfLtCdwn6QPgcOBvkg6szTzN\n7PvypiMz+y/QuJqfNY37Nt98k5bGfZt3vuUSunfTuG/zyjfBeze70n5otqaNMN1H+YPFJoQHi9tU\nOGd/Vj2o7kPNOx1UmWfOuZcA5xTws3YE5gB9Cphn55zXPYCPC5FvhfNHU/MOFvl81nY5r3sDHxbL\nfUzXkYYAAAMnSURBVJvWvZvGfZvWvZvGfVvoezfLW6abAS2FQcT55Bk9CH+DML9WmaQzga4WRoDX\nWr7AxYQ5u/4uSUCJmfWu5TwPk/RrYDnwA3BkdfOLme+PLilQnodLGkIYDPkDcFRt5ZX0fZtvvknf\nu2nctzHyTfTeTeO+jZFvIvdulvmgYOecc5mX9WdWzjnnnAcr55xz2efByjnnXOZ5sHLOOZd5Hqyc\nc85lngcr55xzmefByjnnXOZ5sKqjFJalHhsNwqxJOo0lvSjJ7xVXEH7vusr4/8QMkrS1pAtqmMyJ\nwENWw1HfFpYkeB44uoblcfWA37uutniwyqY9gMk1TONY4DEASZtKmilptKRZku6WtFe0aussST2j\n85pLeiJaWXWqpCOitB6L0nOuKn7vulrhwSpjJA0grPmzSXUX45PUGNjMzD7KOdwZuMbMugBbAwPN\nrB9wLvB/0TkDgE/NbAcz2w54Ojo+HehVnbK4+sPvXVebPFhljJk9TfjS3Wpm8yo7R9LekjZdQzLr\nAd9VOPaBmb0dvZ5BWHYbYBphNufy1/tIukpSPzNbFJWpDFgmae1qfCRXT/i962qTB6uMif4i/aKK\n0xYDiyVtI2m3St7/AVirwrFlOa/LcvbLiBbhNLM5hKUUpgF/lnRxzjVNgaV5fQhXL/m962pTppcI\nqad6AxMk9QLWJyxv0JXwBW0CvAesALoBWwLNJU0u/0sSwMy+k9RQUhMzWx4dXlPPKgFI2giYb2b3\nSloAnBQdbwt8bWalSX5QV+f4vetqjQer7PmM8Bfie8AAMzsDeF7S7kADM/tf9Bpg9hrSeZawfPiY\naD+3Z1XFXlbl+9sC10gqI/zQDImO7wE8WZ0P4+oVv3ddrfH1rDJM0v5AKfAt0B1obmYjJP2O8Nfq\ns8ABwAtRM0jutTsAZ5nZoATK8RAw1MzerWlarn7we9clzYNVHSbpeOCOmoxXiXpnHWVmdydWMOeq\n4Peuq8iDlXPOuczz3oDOOecyz4OVc865zPNg5ZxzLvM8WDnnnMs8D1bOOecyz4OVc//fXh0LAAAA\nAAzyt57GjpII2JMVAHuyAmAv9IUb1M3P1EkAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -102,11 +102,11 @@
"\n",
"x = np.arange(0, 5*tau, tau/10)\n",
"\n",
- "ax[0].plot(x*1e3, [eG.initial_CHS_occupancies(u)[0] for u in x])\n",
+ "ax[0].plot(x*1e3, [eG.initial_CHS_vectors(u)[0] for u in x])\n",
"ax[0].set_xlabel('$t_{\\mathrm{crit}}$ (ms)')\n",
"ax[0].set_ylabel('Components of the initial CHS vector $\\phi_A$')\n",
"\n",
- "ax[1].plot(x*1e3, [eG.final_CHS_occupancies(u)[0] for u in x])\n",
+ "ax[1].plot(x*1e3, [eG.final_CHS_vectors(u)[0] for u in x])\n",
"ax[1].set_xlabel('$t_{\\mathrm{crit}}$ (ms)')\n",
"ax[1].set_ylabel('Components of the final CHS vector $e_F$')\n",
"ax[1].yaxis.tick_right()\n",
@@ -127,7 +127,7 @@
"output_type": "stream",
"text": [
"[[ 0.17394315362718 0.82605684637282]]\n",
- "[ 0.976491211386196 0.222305380522348 0.999257244552635]\n"
+ "[ 0.976491211386195 0.222305380522348 0.999257244552635]\n"
]
}
],
@@ -139,8 +139,8 @@
" [ 0, 0, 10, 0, -10 ] ], 2)\n",
"qmatrix.matrix /= 1e3\n",
"eG = MissedEventsG(qmatrix, 0.2)\n",
- "print(eG.initial_CHS_occupancies(4))\n",
- "print(eG.final_CHS_occupancies(4))"
+ "print(eG.initial_CHS_vectors(4))\n",
+ "print(eG.final_CHS_vectors(4))"
]
},
{
@@ -162,8 +162,8 @@
"source": [
"qmatrix = QMatrix([[-1, 1, 0], [19, -29, 10], [0, 0.026, -0.026]], 1)\n",
"eG = MissedEventsG(qmatrix, 0.2)\n",
- "print(eG.initial_CHS_occupancies(0.2))\n",
- "print(eG.final_CHS_occupancies(4))"
+ "print(eG.initial_CHS_vectors(0.2))\n",
+ "print(eG.final_CHS_vectors(4))"
]
},
{
@@ -188,16 +188,26 @@
" [50, 0, -50, 0],\n",
" [ 0, 5.6, 0, -5.6]], 1)\n",
"eG = MissedEventsG(qmatrix, 0.2)\n",
- "print(eG.initial_CHS_occupancies(4))\n",
- "print(eG.final_CHS_occupancies(4))"
+ "print(eG.initial_CHS_vectors(4))\n",
+ "print(eG.final_CHS_vectors(4))"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -209,7 +219,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/CKS.ipynb b/exploration/CKS.ipynb
index 8568be5..4d6bdd6 100644
--- a/exploration/CKS.ipynb
+++ b/exploration/CKS.ipynb
@@ -45,7 +45,7 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import QMatrix\n",
"\n",
"tau = 0.2\n",
"qmatrix = QMatrix([[-1, 1, 0], [19, -29, 10], [0, 0.026, -0.026]], 1)"
@@ -66,11 +66,11 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood._methods import exponential_pdfs\n",
+ "from HJCFIT.likelihood._methods import exponential_pdfs\n",
"\n",
"def plot_exponentials(qmatrix, tau, x0=None, x=None, ax=None, nmax=2, shut=False):\n",
- " from dcprogs.likelihood import missed_events_pdf\n",
- " from dcprogs.likelihood._methods import exponential_pdfs\n",
+ " from HJCFIT.likelihood import missed_events_pdf\n",
+ " from HJCFIT.likelihood._methods import exponential_pdfs\n",
" if ax is None: \n",
" fig,ax = plt.subplots(1, 1)\n",
" if x is None: x = np.arange(0, 5*tau, tau/10)\n",
@@ -105,9 +105,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAALLCAYAAADg7/PMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuclWW99/HPl+EsoBwGlJOQom3ylDIoL0jZoYaKh90W\nU/PZaO5tZfS0t0+Z7ifJNHPbrrSSSstSyzJDfcKkLC12iWQgKoRo4omDkJxUPCDM8Hv+uO+ly3Fw\n1pp1z6xZa33fr9f9us/X9Rv+AH5zXffvUkRgZmZmZmZm2elS7gDMzMzMzMyqjRMtMzMzMzOzjDnR\nMjMzMzMzy5gTLTMzMzMzs4w50TIzMzMzM8uYEy0zMzMzM7OMOdEyMzMzMzPLmBMtMzMzMzOzjDnR\nMjMzMzMzy5gTLTMzMzMzs4x1LXcA7WXQoEExatSocodhZmateOihhzZGRH1b3/ff92ZmlaHUv+8r\nTdUmWqNGjWLx4sXlDsPMzFoh6blS3vff92ZmlaHUv+8rjacOmpmZmZmZZcyJlpmZmZmZWcacaJmZ\nmZmZmWXMiZaZmZmZmVnGnGiZmZmZmZllzImWmZmZmZlZxpxomZmZmZmZZcyJlpmZmZmZWcacaJmZ\nmZmZmWXMiZaZmZmZmVnGnGi1wYYNG4iIcodhZmYZWLZsGc8++2y5wzAzsyrjRKtIK1euZPDgwVxz\nzTXlDsXMzDLwgQ98gKuvvrrcYZiZWZVxolWkp556CoBf//rXZY7EzMyy0L9/fzZv3lzuMMzMrMo4\n0SqSJABPHTQzqxIDBgxgy5Yt5Q7DzMyqjBOtInXpkvyROdEyM6sOAwYM8IiWmZllzolWkXIjWjt3\n7ixzJGZmlgVPHTQzs/bgRKtInjpoZlZdPHXQzMzagxOtIjnRMjOrLrmpg/573czMsuREq0hOtMzM\nqkv//v1pbGzklVdeKXcoZmZWRZxoFcnFMMzMqsuAAQMAPH3QzMwy5USrSC6GYWZWXXKJlgtimJlZ\nlpxoFclTB83Mqkv//v0BJ1pmZpYtJ1pFcqJlZlZdPHXQzMzagxOtIjnRMjOrLp46aGZm7cGJVpGc\naJmZVRdPHTQzs/bgRKtIuaqDLoZhZlYdevfuTffu3T110MzMMtWhiZakqZKekLRS0kUt3D9S0hJJ\njZJObeF+P0lrJF3bMRG/k0e0zMyqi6Q3Fy02MzPLSoclWpLqgNnAccBY4AxJY5s9tgo4G/jpLpq5\nHPhje8VYCK+jZWZWffr37+9Ey8zMMtWRI1rjgZUR8XREbAduBU7OfyAino2IpcA75uVJOgwYAvy2\nI4LdFY9omZlVn4EDBzrRMjPrBKphBlxORyZaw4DVeedr0mutktQF+Drw2XaIqyhOtMzMqs+AAQPY\ntGlTucMwM6tp1TIDLqdSimGcD8yLiDXv9pCk8yQtlrR4w4YN7RJILtFyMQwzs+oxcOBAJ1pmZuVX\nFTPgcjoy0VoLjMg7H55eK8QEYKakZ4GvAf8i6b+aPxQR10fEuIgYV19fX2q8LfI3WmZm1cdTB83M\nOoWqmAGX07UD+1oEjJE0miTBOh04s5AXI+KjuWNJZwPjIuIdczY7gke0zMyqz4ABA3j99dd5/fXX\n6dWrV7nDMTOrVoMkLc47vz4irs+o7TdnwOX+v15uHZZoRUSjpJnAPUAd8MOIWC7pMmBxRMyV1ADc\nCfQHTpT0pYh4X0fFWAiPaJmZVZ+BAwcCsGnTJoYPH17maMzMqtbGiBj3LvdLnQH3AUnnA32A7pJe\nKdfgDHTsiBYRMQ+Y1+zarLzjRSR/oO/Wxo3Aje0QXkE8omVmVn2caJmZdQpVMQMup1KKYXQaHtEy\nM6s+uUTL32mZmZVPRDQCuRlwK4DbcjPgJJ0EIKlB0hpgOnCdpOXli/jddeiIVjXIJVoe0TIzqx4D\nBgwAcOVBM7Myq4YZcDke0SqSpw6amVWf/KmDZmZmWXCiVSQvWGxmVn1yI1qeOmhmZllxotVGHtEy\nM6sevXr1olevXh7RMjOzzDjRaiOPaJmZVZeBAwc60TIzs8w40Wojj2iZmVWXgQMHeuqgmVmNkrSb\npLos23Si1UYe0TIzqy4DBgxg48aN5Q7DzMw6gKQuks6UdLekF4DHgXWSHpP035L2LbUPJ1pt5BEt\nM7PqMmjQIE8dNDOrHX8A9gEuBvaMiBERMRiYBPwZuErSWaV04HW0ipQbyfKIlplZdamvr2fDhg3l\nDsPMzDrG0RGxQ9KoiHhzBCUiNgO3A7dL6lZKBx7RaiMnWmZm1WXQoEFs2bKFxsbGcodiZmbtLCJ2\npId3NL8n6Yhmz7SJE602cqJlZlZd6uvriQgXxDAzqwGSTpP0X0BfSf8gKT8vuj6LPjx1sI38jZaZ\nWXUZNGgQABs3bmTw4MFljsbMzNrZAqAX0B/4BrC/pBeB54HXs+jAiVYbeUTLzKy61NfXA/g7LTOz\n2vB8RNwkaWVELACQNBAYRVKBEEmKEv7T76mDbeQRLTOz6pI/omVmZlXvD5I+DazOXYiITcAy4HBJ\nNwEzSunAI1pt5ETLzKy6eETLzKymTAU+BvxM0mjgRZKphF2A3wLXRMTDpXTgRKuNPHXQzKy6DBw4\nEPCIlplZLYiIbcB3gO+kZdwHAa9HxItZ9eFEq408omVmVl169OhBv379PKJlZlZj0jLu67Ju199o\ntZFHtMzMqs+gQYM8omVmVoMkHSPp+5IOSc/PK7VNj2i1kUe0zMyqT319vRMtM7Pa9DHgk8AXJA0A\nDim1QY9otZFHtMzMqs+gQYM8ddDMrDZtjYgXI+KzwLFAQ6kNOtFqI49omZlVH08dNDOrWXfnDiLi\nIuDmUht0otVGHtEyM6s+9fX1bNiwwX/Hm5nVmIj4ZbNLjaW26USrjTyiZWZWfQYNGsS2bdt47bXX\nyh2KmZmVV0lraEEbEi1Ju0mqK7XjSuffdpqZVR8vWmxmZgAR8edS22i16qCkLsDpwEdJPgp7A+gh\naSPJXMbrImJlqYFUilyC5REtM7PqM2jQICBZtHjUqFHlDcbMzDqMpDOBk4AmQMBdEfGzUtosZETr\nD8A+wMXAnhExIiIGA5OAPwNXSTqrlCAqkUe0zMyqj0e0zMxq1lERcXpEfDQiziTJdUpSyDpaR0fE\nDkmjIuLNYZyI2AzcDtwuqVupgVQaJ1pmZtUnf0TLzMxqSg9JJwCrgeFAr1IbbHVEKyJ2pId3NL8n\n6Yhmz7wrSVMlPSFppaSLWrh/pKQlkholnZp3/RBJCyUtl7RU0kcK6c/MzKwYHtEyM6tZ5wP9gePT\n/cxSGyzkG63TgEOBvpL+AXgib2TreuCgQjpKC2jMBo4B1gCLJM2NiMfyHlsFnA18ttnrrwH/EhFP\nShoKPCTpnoh4sZC+zczMCrH77rvTtWtXj2iZmdWYiHgN+EmWbRYydXAB0BP4V+AbwP6SXgSeB14v\noq/xwMqIeBpA0q3AycCbiVZEPJvee1uliYj4W97x85JeAOoBJ1pmZpYZSQwaNMgjWmZmNUrSHgBZ\nDOi0mmhFxFrgZklPRcSCNICBwCjg8SL6GkYy5zFnDXB4Ee+T9j0e6A48Vey7ZmZmrRk0aJBHtMzM\natcXgTrgf5faUCFTBxWJBblrEbEJ2NT8mVKDKSCWvYAfAzPyC3Pk3T8POA9g5MiR7R2OmZlVofr6\neo9omZlZyQoq7y7p05LelrlI6i7pg5JuAmYU0M5aYETe+fD0WkEk9SNZt+v/7moBsYi4PiLGRcS4\n3AfNZmZmxfCIlpmZZaGQb7SmAh8DfiZpNMl3UT1JhtR+C1wTEQ8X0M4iYEzaxlqSRZDPLCRISd2B\nO4GbI2JOIe+YmZm1hb/RMjOzLBRS3n1bRHwnIiYCewNTgEMjYu+I+LcCkywiopGkTOI9wArgtohY\nLukySScBSGqQtAaYDlwnaXn6+mnAkcDZkh5Jt0OK/WHNzMxaU19fz+bNm2lsbCx3KGZmNacTLAd1\nLfCttsafr5ARrTel62Wta2tnETEPmNfs2qy840UkUwqbv/cTMi63aGZm1pIhQ4YAyVpae+21V5mj\nMTOrHZ1hOaiIyKzgXiHfaL2NpGMkfT83opQWoDAzM6sKuUTr73//e5kjMTOrOW8uBxUR24HcclBv\niohnI2Ip8I7loCLiyfT4eSC3HFSrJO2T7t8x4FOKohMtku+1PgecJemDgKfwmZlZ1XCiZWZWNi0t\nBzWs2EbasBxUrrDfV4rt6920JdHaGhEvRsRngWOBhiwDMjMzKycnWmZm7WaQpMV5W+Yz4/KWgzqn\npeWgdmFVup8o6UuSTpX081JjKeobrdTduYOIuEjSp0sNwszMrLNwomVm1m42RsS4d7nf7stB5T37\nzYj4jKReEfGD9PIDwI3AgSRFMUpSdKIVEb9sdsllmczMrGr07duXnj17OtEyM+t4Hbkc1JHp/n7g\nsPT42oh4BnimqKh3oS1TB5srqLx7tYiIcodgZmbtSBJDhgxxomVm1sE6eDmo+yQtBPaU9DFJhwGP\nZPnzFD2iJelM4CSgCRBwF/CuQ3NmZmaVxImWmVl5dNRyUBHx2bTa4B+A0ST5zfskbQf+GhFtXYfr\nTW35RuuoiDg9dyJpNvCzUgMxMzPrLPbcc0+effbZcodhZmbtKCKeknR0RPwtd01SH+CALNpvy9TB\nHpJOkHSQpOOBXlkEYmZm1ll4RMvMrDbkJ1np+SutFdIoVFsSrfOB/sDx6X5mFoGYmZl1FkOGDGHD\nhg00NTWVOxQzM6tQbak6+BpFzH80MzOrNEOGDGHnzp1s2rSJwYMHlzscMzOrQG2uOihpD0l7ZBmM\nmZlZZ+C1tMzMaoOkT0vq3x5tl1Le/YvAZVkFYmZm1lk40TIzqxlDgEWSbpM0VZKyajiLdbTMzMyq\nihMtM7PaEBFfAMYANwBnA09K+kpa+r0kTrTMzMyacaJlZlY7IiKA9enWSFLwb46kr5bSblvW0TIz\nM6tqu+++O927d3eiZWZW5SR9BvgXYCPwA+BzEbFDUhfgSeDCtrZdSqJ1LZDZHEYzM7POQpLX0jIz\nqw0DgA9HxHP5FyNip6RppTTc5qmDEfFURKwspXMzM7POyomWmVlN6Nk8yZJ0FUBErCil4aISrdxH\nYZKGl9KpmZlZZ+dEy8ysJhzTwrXjsmi42BGtGen+K1l0bmZm1lk50TIzq16SPilpGbC/pKV52zPA\n0iz6KPYbrVXpfqKkLwHLgOkR8ZEsgjEzM+sshgwZwgsvvMDOnTvp0sVFes3MqsxPgV8DVwIX5V3f\nGhGbs+igqEQrIn6QHj4A3AgcSFIUo2Yk1R/NzKzaDRkyhMbGRrZs2cLAgQPLHY6ZmWUoIl4CXgLO\naK8+Wv0VnaRvpvteeZevjYhnImJuRPypvYIzMzMrl9xaWuvXry9zJGZmljVJ96f7rZJeTretufMs\n+ihkLsSR6f7+3IWIeDCLzs3MzDqroUOHAk60zMyqUURMSvd9I6JfuvXNnWfRRyGJ1n2SFgJ7SvqY\npMMk9ciiczMzs85qr732AuD5558vcyRmZtZeJE2X1Dc9/oKkOyS9P4u2W020IuKzwFlAEzAauAT4\nq6Tlkn6eRRBmZmadjRMtM7OacElEbJU0CTgauAH4XhYNF1QMIyKeknR0RPwtd01SH+CALIIwMzPr\nbPr06UO/fv2caJmZVbemdH8CcH1E3C3py1k0XHC92vwkKz1/JSL+nEUQZmZmndHQoUOdaJmZVbe1\nkq4DPgLMSz+RymRNDy8MYmZmtgtOtMzMqt5pwD3AhyLiRWAA8LksGu7QREvSVElPSFop6aIW7h8p\naYmkRkmnNrs3Q9KT6Taj46I2M7Na5UTLzKy6RcRrEXFHRDyZnq+LiN9m0XbBCxZL+jTwk4jY0paO\nJNUBs4FjgDXAIklzI+KxvMdWAWcDn2327gDgi8A4IICH0nfbFIuZmVkhcolWRCCp3OGYmVnG0qmC\n/wyMIi83iojLSm27mBGtISTJ0W3pyFSx/+KMB1ZGxNMRsR24FTg5/4GIeDYilgI7m737IeB3EbE5\nTa5+B0wtsn8zM7OiDB06lO3bt7N58+Zyh2JmZu3jlyQ5SSPwat5WsoJHtCLiC5IuAY4FzgGulXQb\ncENEPFVAE8OA1Xnna4DDC+y+pXeHFfiumZlZm+QWLX7++ecZOHBgmaMxM7N2MDwi2mUAp6hvtCIi\ngPXp1gj0B+ZI+mo7xFY0SedJWixp8YYNG8odjpmZVbj8RMvMzKrSA5IObI+GC060JH1G0kPAV4EF\nwIER8UngMJJ5ja1ZC4zIOx+eXitEQe9GxPURMS4ixtXX1xfYtJmZWcucaJmZVb1JwJK0YN9SScsk\nLc2i4YKnDpKUOvxwRDyXfzEidkqaVsD7i4AxkkaTJEmnA2cW2Pc9wFck9U/PjwUuLvBdMzOzNtlr\nr70AJ1pmZlXsuPZquJipgz2bJ1mSrgKIiBWtvRwRjcBMkqRpBXBbRCyXdJmkk9L2GiStAaYD10la\nnr67GbicJFlbBFyWXjMzM2s3PXv2ZMCAAU60zMyq1yrgA8CMNNcJkiKAJStmROsY4PPNrh3XwrVd\nioh5wLxm12blHS8imRbY0rs/BH5YaF9mZmZZ8FpaZmZV7TskFc8/CFwGbAVuBxpKbbjVREvSJ4Hz\ngX3S+Yq5su59Sb7VqilJPRAzM6sVTrTMzKra4RFxqKSHASJii6TuWTRcyIjWLcCvga8AF5EkWgFs\n9YLBZmZW7YYOHcpjjz1W7jDMzKx97JBUR5LfIKmed67p2yaFfKM1LyKeBU4C/gosS/erJL2cRRBm\nZmad1dChQ1m3bh07d2by766Zmb0LSVPTCoArJV3Uwv0jJS2R1Cjp1Gb3Zkh6Mt1mFNjlt4A7gSGS\nrgDuJxlgKlmrI1oRMSnd98miQzMzs0oydOhQmpqa2LBhA0OGZPJ9tJmZtSAdWZpNUhtiDbBI0tyI\nyJ9WsAo4G/hss3cHAF8ExpGMTj2UvvuuM/Ai4pZ0Casp6aVTCin0V4hiimGYmZnVnPy1tJxomZm1\nq/HAyoh4GkDSrcDJwJuJVjrTDknNpxl8CPhdrjK5pN8BU4GftdSRpAt2EcNxko6LiG+U8HMAxS1Y\nPF1S3/T4Ekl3SDq01ADMzMw6My9abGbWYYYBq/PO16TX2uPdvuk2Dvhk+uww4BNAJjlOMSNal0TE\nLyRNIhla+2/gu8DhWQRiZmbWGeUSrbVr15Y5EjOzijdI0uK88+sj4vpyBBIRXwKQ9Efg0IjYmp5f\nCtydRR/FJFpN6f4Ekj+UuyV9OYsgzMzMOqu99tqLLl26sGbNmnKHYmZW6TZGxLh3ub8WGJF3Pjy9\nVoi1wORm784v4L0hwPa88+2UYcHitZKuA44FrpLUgyKmHlajiEBS6w+amVnF6tq1K3vttRerVq0q\ndyhmZtVuETBG0miSxOl04MwC370H+Iqk/un5scDFBbx3M/AXSXem56cANxYc8bsoJlE6jeQHODYi\nXgT6A5/LIohK5cWLzcxqw4gRI1i9enXrD5qZWZtFRCMwkyTnWAHcFhHLJV0m6SQASQ2S1gDTgesk\nLU/f3QxcTpKsLQIuyxXGaKXPK4BzgC3pdk5EXJnFz1Ps1MGewHRJ+e/9NotAKtHOnTvp0qWmB/XM\nzGrCyJEjefjhh8sdhplZ1YuIecC8Ztdm5R0vIpkW2NK7PwR+2IY+lwBLin2vNcVkCb8kWbS4EXg1\nb6tZTU1NrT9kZmYVLzei5ZkMZmZWqGJGtIZHxNR2i6QC7dzZvHy/mZlVoxEjRrBt2zY2btxIfX19\nucMxM7MKUMyI1gOSDmy3SCqQR7TMzGrDiBFJESx/p2VmVl0kfTqvgEamikm0JgFLJD0haamkZZKW\ntkdQlcIjWmZmtWHkyJGAEy0zsyo0BFgk6TZJU5VhSfFipg4el1Wn1cIjWmZmtcEjWmZm1SkiviDp\nEpJy8OcA10q6DbghIp4qpe1iRrRWAR8AZkTEc0CQ0WJelST/Q2iPaJmZ1Yb6+nq6d+/uRMvMrApF\n8h/89enWSLKM1RxJXy2l3WISre8AE4Az0vOtwOxSOq90HtEyM6sNXbp0Yfjw4V602Mysykj6jKSH\ngK8CC4ADI+KTwGHAP5fSdjFTBw+PiEMlPQwQEVskdS+l80rnES0zs9oxcuRIj2iZmVWfAcCH0xl7\nb4qInZKmldJwMSNaOyTVkUwZRFI9UNOZhke0zMxqR24tLTMzqyo9mydZkq4CiIgVpTRcTKL1LeBO\nYIikK4D7ga+U0nml84iWmVntGDFiBGvXrvUv2czMqssxLVzLpAhgwVMHI+KWdP7ilPTSKaVmeZXO\niZaZWe0YMWIETU1NrF+/nmHDhpU7HDMzK4GkTwLnA+9ptmRVX5JvtUrWaqIl6YJd3DpO0nER8Y0s\nAqlE/q2mmVntyJV4X7VqlRMtM7PK91Pg18CVwEV517dGxOYsOihkRKtvut8faADmpucnAn/JIohK\n5REtM7Pakb9o8YQJE8ocjZmZlSIiXgJe4q2K6plrNdGKiC8BSPojcGhEbE3PLwXubq/AKoFHtMzM\naocXLTYzqx6S7o+ISZK2khb7y90iWVqrX6l9FFPefQiwPe98OzW4YHE+j2iZmdWO3XffnT59+ngt\nLTOzKhARk9J939aebatiEq2bgb9IujM9PwW4MfOIKohHtMzMaock9t57b5577rnWHzYzs5pXTNXB\nKyT9GvhAeumciHi4fcKqDB7RMjOrLaNHj+aZZ54pdxhmZlaivCmDauF2JlMHi1lHi4hYEhHfTLei\nkyxJUyU9IWmlpItauN9D0s/T+w9KGpVe7ybpJknLJK2QdHGxfbcHj2iZmdWWXKIVEa0/bGZmnVZE\n9I2Ifum++VZykgVFJlqlkFQHzCZZAGwscIaksc0eOxfYEhH7AlcDV6XXpwM9IuJA4DDg47kkrJw8\nomVmVltGjx7N1q1b2bw5k8q/ZmZWJpLuT/dbJb3cfMuijw5LtIDxwMqIeDoitgO3Aic3e+Zk4Kb0\neA4wRZJIhvV2k9QV6EVSiCOTP4BSONEyM6sto0ePBvD0QTOzCpdfDCMd2XrblkUfHZloDQPya+Ku\nSa+1+ExENJLUth9IknS9CqwDVgFfy2ohsVJ46qCZWW1xomVmZoUqONGS9GlJ/dszmHcxHmgChgKj\ngf8j6T3NH5J0nqTFkhZv2LCh3YPyiJaZWW1xomVmVl0k9ZR0gaQ7JN0u6T8k9cyi7WJGtIYAiyTd\nlha1aKlCx7tZC4zIOx+eXmvxmXSa4O7AJuBM4DcRsSMiXgAWAOOadxAR10fEuIgYV19fX2R4hcn/\nANojWmZmtaVfv34MGDDAiZaZWfW4GXgf8G3gWpJaEj/OouGCE62I+AIwBrgBOBt4UtJXJO1TYBOL\ngDGSRkvqDpwOzG32zFxgRnp8KvD7SDKbVcAHASTtBhwBPF5o7O3FI1pmZrVn9OjRPPvss+UOw8zM\nsnFARJwbEX9It38jSbxKVmx59wDWp1sj0B+YI+mrBbzbCMwE7gFWALdFxHJJl0k6KX3sBmCgpJXA\nBUCuBPxsoI+k5SQJ248iYmkxsbcHj2iZmdUer6VlZlZVlkg6Inci6XBgcRYNF7xgsaTPAP8CbAR+\nAHwuInZI6gI8CVzYWhsRMQ+Y1+zarLzjbSSl3Ju/90pL18vNI1pmZrVn9OjR3HXXXezcuZMuXTqy\nppSZmWVF0jKSyubdgAckrUpvjSSjmXMFJ1okhSg+HBHP5QV4VUR8XtK0LIKpNB7RMjOrPaNGjeKN\nN95g/fr1DB06tNzhmJlZ27R7/lLMr+KOyU+yUscBRMSK7EKqHB7RMjOrPa48aGZW+SLiudxGsj7v\nEGDvvK1krSZakj6ZDq3tL2lp3vYMUPbvpMrJI1pmZrXHiZaZWfWQ9K/AH0nqSHwp3V+aRduFTB38\nKfBr4EreKk4BsLUzLBpcTh7RMjOrPaNGjQKcaJmZVYnPAA3AnyPiHyW9F/hKFg23mmhFxEvAS8AZ\nWXRYTZxomZnVnp49e7LXXns50TIzqw7bImKbJCT1iIjHJe2fRcOtJlqS7o+ISZK2klTmePMWScX3\nflkEUok8ddDMrDa5xLuZWdVYI2kP4P8Bv5O0BWhel6JNChnRmpTu+2bRYTXxiJaZWW3aZ599mD9/\nfrnDMDOzEkXEP6WHl0r6A7A78Jss2vYCICXwiJaZWW0aM2YMq1ev5vXXXy93KGZmVUXSVElPSFop\n6aIW7veQ9PP0/oOSRqXXu0m6SdIySSskXVxgfz0lXSDpDuB/A/uQUY5USNXBrZJeTvdbm52/nEUQ\nlcojWmZmtWnMmDEAPPXUU2WOxMysekiqA2aTLCE1FjhD0thmj50LbImIfYGrgavS69OBHhFxIHAY\n8PFcEtaKm4H3Ad8Grk37/XFpP0mikKmDnjK4Cx7RMjOrTblE629/+xsHHHBAmaMxM6sa44GVEfE0\ngKRbgZOBx/KeOZm3yq/PAa6VJJJaErtJ6gr0AraTrI/VmgMiIj+Z+4Okx3b5dBE8dbAEHtEyM6tN\nuUTrySefLHMkZmYVZZCkxXnbec3uDwNW552vSa+1+ExENJJURx9IknS9CqwDVgFfK3ApqiWSjsid\nSDocWFzEz7RLbak6qLzbrjpoZmY1p1+/fgwePNiJlplZcTZGxLh2ans80AQMBfoDf5J0b250rDlJ\ny0hym27AA5JWpbdGAo9nEZCrDhYp4q0K9x7RMjOrXWPGjHGiZWaWrbXAiLzz4em1lp5Zk04T3B3Y\nBJwJ/CYidgAvSFoAjANaTLSAaVkG3pKCpw7mV+SQdLukf5fUsz2D6+w8omVmVrucaJmZZW4RMEbS\naEndgdOBuc2emQvMSI9PBX4fyUjIKuCDAJJ2A47gXUamIuK53AbsAZyYbnuk10pWzDdazStyvI+M\nKnJUKo9omZnVrjFjxrBu3TpeeeWVcodiZlYV0m+uZgL3ACuA2yJiuaTLJJ2UPnYDMFDSSuACIFcC\nfjbQR9JykoTtRxGxtLU+JX0GuAUYnG4/kfTpLH6eVqcO5mm3ihyVyomWmVntyhXEWLlyJYccckiZ\nozEzqw6FPPWgAAAgAElEQVQRMQ+Y1+zarLzjbSSl3Ju/90pL1wtwLnB4RLwKIOkqYCHJ4FJJihnR\nareKHJXKUwfNzGpXfol3MzOrWCIpopHTxNuL/7VZIVUH270iR6XyiJaZWe3ad999AZd4NzOrcD8C\nHpR0Z3p+Csn0xJIVMnWw3StyVCqPaJmZ1a4+ffowdOhQJ1pmZhUqXej4F8B8YFJ6+ZyIeDiL9gsp\n7/5m1Q1J/YExQH61wUyqclQij2iZmdU2Vx40M6tcERGS5kXEgcCSrNsvprz7vwJ/JKkC8qV0f2nW\nAVUSj2iZmdU2J1pmZhVviaSG9mi4mGIYnwEagOci4h+B9wMvtkdQlcIjWmZmtW2//fZjw4YNbN68\nudyhmJlZ2xwOLJT0lKSlkpZJarUsfCGKKe++LSK2SUJSj4h4XNL+WQRRqTyiZWZW28aOTVY9WbFi\nBRMnTixzNGZm1gYfaq+Gi0m01kjaA/h/wO8kbaGGv88CJ1pmZrXOiZaZWWXLr0eRtYITrYj4p/Tw\nUkl/AHYHftMuUVWIxsbGcodgZmZltPfee9OrVy8ee+yxcodiZmZtIKkncD5J1cEA7ge+my6MXJJi\nRrTeFBH/U2rH1cCJlplZbevSpQvvfe97nWiZmVWum4GtwLfT8zOBHwPTS2244ESrPbO9SuVEy8zM\nxo4dyx//+Mdyh2FmZm1zQESMzTv/g6RMfntWTNXBm4H3kWR71wJjSbK9muVEy8zMxo4dy+rVq9m6\ndWu5QzEzs+ItkXRE7kTS4cDiLBouZupgu2V7lcqJlpmZ5QpiPP744zQ0tMtSLGZm1n4OAx6QtCo9\nHwk8IWkZyZrGB7W14WJGtErO9iRNlfSEpJWSLmrhfg9JP0/vPyhpVN69gyQtlLQ8rW/fs5i+sxIR\nbx470TIzs1yi5e+0zMwq0lRgNHBUuo1Or00DTiyl4VZHtHLZHNCNd2Z7jxfakaQ6YDZwDLAGWCRp\nbkTk/8t0LrAlIvaVdDpwFfARSV2BnwD/KyIelTQQ2FFo3+3FiZaZmb3nPe+he/fuTrTMzCpQucu7\nT8uor/HAyoh4GkDSrcDJQP6/TCcDl6bHc4BrJQk4FlgaEY8CRMSmjGIqiRMtMzPr2rUr++23nxMt\nMzN7m1anDkbEc7kN2INkCO1EYI8iM8BhwOq88zXptRafiYhG4CVgILAfEJLukbRE0oVF9NtunGiZ\nmRkk0wdXrFhR7jDMzKwTKfgbLUmfAW4BBqfbTyR9ur0Ca6YrSVn5j6b7f5I0pYUYz5O0WNLiDRs2\ntHtQTrTMzAySROvpp5/m9ddfL3coZmZWBCXOkjQrPR8paXwWbRdTDONc4PCImBURs4AjgH8r4v21\nwIi88+HptRafSb/L2h3YRDL69ceI2BgRrwHzgEObdxAR10fEuIgYV19fX0RobeNEy8zMIEm0IoLH\nHy/402UzM+scvgNMAM5Iz7eS1JUoWTGJloCmvPOm9FqhFgFjJI2W1B04HZjb7Jm5wIz0+FTg95GU\n+bsHOFBS7zQBO4q3f9tVFk60zMwM4MADDwRg6dKlZY7EzMyKdHhEfArYBhARW4DuWTRczDpaPwIe\nlHRnen4KcEOhL0dEo6SZJElTHfDDiFgu6TJgcUTMTdv7saSVwGaSZIyI2CLpGyTJWgDzIuLuImJv\nF060zMwMYMyYMfTq1YtHH3203KGYmVlxdqTV0QNAUj2wM4uGC0q00sp/vwDmk3wjBXBORDxcTGcR\nMY9k2l/+tVl5x9uA6bt49yckJd47DSdaZmYGUFdXxwEHHOBEy8ys8nwLuBMYLOkKkll1X8ii4YIS\nrYgISfMi4kBgSRYdVwMnWmZmlnPwwQdz5513EhEkv580M7POLiJukfQQMIXks6hTIiKTMrLFfKO1\nRFJDFp1WCydaZmaWc/DBB7Np0yaef/75codiZmZFiIjHI2J2RFybVZIFxX2jdThwlqRngVdJMr6I\niIOyCqbSONEyM7Ocgw8+GIBHH32UYcOaLxNpZmadkaRxwP8F9ibJjTLLcYpJtD5UamfVxomWmZnl\nHHRQ8m/yo48+yvHHH1/maMzMrEC3AJ8DlpFREYycYhKtvwPnkxTDCOB+4LtZBlNpnGiZmVnO7rvv\nzqhRo1wQw8yssmxIq59nrphE62aSBby+nZ6fCfyYXVQJrAVOtMzMLN/BBx/sRMvMrLJ8UdIPgPuA\nN3IXI+KOUhsuJtE6ICLG5p3/QVLZFw0uF0lOtMzM7G0OPvhg7rrrLl577TV69+5d7nDMzKx15wDv\nBbrx1tTBADo00Voi6YiI+DOApMOBxaUGUGkiAoCuXbs60TIzs7c5+OCD2blzJ3/9618ZP358ucMx\nM7PWNUTE/u3RcDHl3Q8DHpD0bFp5cCHQIGmZpKXtEVxn5kTLzMyay1UefOSRR8ociZmZFegBSWNb\nf6x4xYxoTW2PACpVt27dnGiZmdnbvOc972GPPfbgoYceKncoZmZWmCOARyQ9Q/KNVseXd4+I50rt\nrJp4RMvMzJqTxLhx41i0aFG5QzEzq0iSpgLfBOqAH0TEfzW734OkSN9hwCbgIxHxbHrvIOA6oB/J\n91YNEbGtlS7bbTCpmKmDlseJlpmZtaShoYFly5axbVtr/7abmVk+SXXAbOA4YCxwRgvT+s4FtkTE\nvsDVwFXpu12BnwCfiIj3AZOBHa31GRHPtbRl8fM40WojJ1pmZtaShoYGGhsb/Z2WmVnxxgMrI+Lp\niNgO3Aqc3OyZk4Gb0uM5wBRJAo4FlkbEowARsSkimnbVkaT70/1WSS/nbVslvZzFD+NEq42caJmZ\nWUsaGhoA+Mtf/lLmSMzMKs4wYHXe+Zr0WovPREQj8BIwENgPCEn3SFoi6cJ36ygiJqX7vhHRL2/r\nGxH9svhhCk60lDhL0qz0fKSkmq1d60TLzMxaMmzYMPbcc09/p2Vm9k6DJC3O287LsO2uwCTgo+n+\nnyRNae0lSVcVcq0tihnR+g4wATgjPd9KMoeyJjnRMjOzlkiioaHBiZaZ2TttjIhxedv1ze6vBUbk\nnQ9Pr7X4TPpd1u4kRTHWAH+MiI0R8RowDzi0gJiOaeHacQW816piEq3DI+JTwDaAiNgCdM8iiErk\nRMvMzHZl/PjxPPHEE7z00kvlDsXMrJIsAsZIGi2pO3A6MLfZM3OBGenxqcDvIyKAe4ADJfVOE7Cj\ngMd21ZGkT0paBuwvaWne9gyQyRrBxayjtSOtBBJpcPUkZRNrUteuXWlqaiIiSL6/MzMzS+S+03ro\noYf44Ac/WOZozMwqQ0Q0SppJkjTVAT+MiOWSLgMWR8Rc4Abgx5JWAptJkjEiYoukb5AkawHMi4i7\n36W7nwK/Bq4ELkqvDQWeiIjNWfw8xSRa3wLuBIZIugKYDnwhiyAqUdeuyR9dY2Mj3bp1K3M0ZmbW\nmYwbNw6ARYsWOdEyMytCRMwjmfaXf21W3vE2kjykpXd/QlLivZB+XiIppJH7LApJd0ZEIdMNC1LM\ngsW3SHoIyH1UdlJEPJ5VIJUml1zt2LHDiZaZmb3NwIED2WeffXjwwQfLHYqZmRUu02lqBSdaksYB\n/xcYlb73cUlExEFZBlQpevToAcD27dvp3bt3maMxM7POZuLEifzmN7/xFHMzs8rx/SwbK6YYxi3A\nj4APA9OAE9OtJnXvntQBeeONN8ociZmZdUYTJ07khRdeYOXKleUOxczMdiG/lHtEfKf5tVIUk2ht\niIi5EfFMRDyX27IIohLlEq3t27eXORIzM+uMJk2aBMD9999f5kjMzOxddIry7l+U9ANJZ0j6cG7L\nIohKlD910MzMrLn3vve9DBgwgAULFpQ7FDMzayavvPt780q7L0vLuy/Loo9iqg6eA7wX6MZbZd0D\nuCOLQCpFUqb/rUTLUwfNzKwlXbp0YeLEiR7RMjPrnPLLu3+etwphbC1HefeGiNg/i06rgUe0zMys\nNZMmTeKuu+5iw4YN1NfXlzscMzNL5cq7S3ocODv/Xlrw77JS+yhm6uADksaW2mG1cDEMMzNrzcSJ\nEwE8fdDMrPN6BXg13ZpIvs8alUXDxYxoHQE8ks5bfINkeC1qtby7i2GYmVWHhQth/nyYPBkmTMi2\n7XHjxtGjRw8WLFjAKaeckm3jZmZWsoj4ev65pK8B92TRdjGJ1tRSO5M0FfgmUAf8ICL+q9n9HsDN\nwGHAJuAjEfFs3v2RwGPApRHxtVLjKYWnDpqZVb6FC2HKFNi+Hbp3h/vuyzbZ6tGjBw0NDfzpT3/K\nrlEzM2tPvYHhWTRU8NTB/JLubSnvLqkOmE0yHDcWOKOFqYjnAlsiYl/gaqB5DftvkHy0VnaeOmhm\nVvnmz0+SrKamZD9/fvZ9HHXUUSxevJiXX345+8bNzKwkaaXBXNXB5cATwDVZtN1qoiXp/nS/VdLL\nedtWScX8qzEeWBkRT0fEduBW4ORmz5wM3JQezwGmSFLa/ynAM8DyIvpsN546aGZW+SZPTkay6uqS\n/eTJ2fdx9NFH09TUxP/8z/9k37iZmZVqGnBiuh0LDI2Ia7NouNWpgxExKd33LbGvYcDqvPM1wOG7\neiYiGiW9BAyUtI2k7OIxwGdLjCMTLu9uZlb5JkxIpgu21zdaSR8T6NWrF/fddx8nnnhi9h2YmVmb\nFTNDr1gFf6Ml6aqI+Hxr19rJpcDVEfFKOsDVIknnAecBjBw5sl0D8oiWmVl1mDChfRKsnB49ejBp\n0iTuvffe9uvEzMzaJK0R8c8klQbfzI06urz7MS1cO66I99cCI/LOh6fXWnxGUldgd5KiGIcDX5X0\nLPDvwH9Kmtm8g4i4PiLGRcS49l6vxMUwzMysUEcffTTLly9n/fr15Q7FzMze7pckny818laZ91ez\naLjVES1JnwTOB94jaWnerb5AMQuDLALGSBpNklCdDpzZ7Jm5wAxgIXAq8PuICOADefFcCryS1dzJ\ntnIxDDMzK9SUKVMAuO+++/joRz9a5mjMzCzP8Igoubp6SwoZ0fopycdhc3nrQ7ETgcMi4qxCO4qI\nRmAmSV36FcBtEbFc0mWSTkofu4Hkm6yVwAXARQX/JB3MUwfNzKxQhxxyCAMGDOC+++4rdyhmZvZ2\nD0g6sD0aLqQYxkvAS8AZuWuS9oyIzcV2FhHzgHnNrs3KO94GTG+ljUuL7bc9eOqgmZkVqq6ujn/8\nx3/k3nvvJSJ4t++Nzcys/UlaBgRJPnSOpKeBNwABEREHldpHMQsW55sHHFpq55XMUwfNzKwYxxxz\nDLfffjsrVqxg7Njmy0iamVkHm9beHRRTDCNfzf8qrmvXrnTp0sUjWmZmVpDjjz8egLvvvrvMkZiZ\nWUQ8l5Z2Hw9sTo//F3A1MCCLPgpOtCRdlXf6/Rau1Zzu3bt7RMvMzAoyYsQIDj74YH71q1+VOxQz\nM3vLJRGxVdIk4GiSmhHfy6LhNpV3j4jvpIfFlHevCkkRxESvXr14/fXXyxiNmZlVkmnTprFgwQK2\nbNlS7lDMzCzRlO5PAK6PiLuB7lk03GqiJemT6cdi+0tamrc9Ayxt7f1q1rt3b1577bVyh2FmZhVi\n2rRpNDU1cc8995Q7FDMzS6yVdB3wEWBeuoBxWz+vepsOK+9ebSSx2267OdEyM7OCNTQ0UF9f7+mD\nZmadx2kky099KCJeJPk+63NZNNym8u6W6N27N6++msnC0WZmVgPq6uo47rjj+NWvfkVjYyNdu7a1\n+K+ZmWUhIl4D7sg7Xwesy6Ltgv+GlzSrpesRcVkWgVQiTx00M7NiTZs2jZtvvpkHHniAI488stzh\nmJlZOylm/uGreVsTSSGMUe0QU8XYbbfdPKJlZlZDFi6EK69M9m113HHH0bNnT+bMmZNdYGZm1ukU\nnGhFxNfztiuAycB72i2yCuARLTOz2rFwIUyZApdckuzbmmz16dOH448/njlz5tDU1NT6C2Zm1m4k\nTZfUNz3+gqQ7JB2aRdulVNToDQzPIohK5W+0zMxqx/z5sH07NDUl+/nz297W9OnTWbduHQsWLMgq\nPDMza5uW1tH6bhYNF7Ng8bK80u7LgSeAb2YRRKVy1UEzs9oxeTJ07w51dcl+8uS2tzVt2jR69uzJ\nL37xi6zCMzOztmm3dbSKKXc0Le+4Efh7RDRmEUSl8tRBM7PaMWEC3HdfMpI1eXJy3lZ9+vThhBNO\nYM6cOVxzzTXU1dVlFaaZmRUnt47WMcBVWa6jVUyitR74Z5ICGF0hWUuqlqsOuhiGmVltmTChtAQr\n3/Tp07n99tu5//77Oeqoo7Jp1MzMinUaMBX4WkS8KGkvMlpHq5hs7ZfAySSjWfkVCGtW7969aWxs\nZMeOHeUOxczMKswJJ5zAbrvtxi233FLuUMzMalZEvBYRd0TEk+n5uoj4bRZtF5NoDY+Ij0TEV/Mr\nEGYRRKXq3bs3gEe1zMysaH369OHUU0/l5z//uaehm5mlJE2V9ISklZIuauF+D0k/T+8/KGlUs/sj\nJb0i6bMF9tcpqg4+IOnALDqtFv369QPg5ZdfLnMkZmZWic4++2xefvll7rzzznKHYmZWdpLqgNkk\n6/WOBc6QNLbZY+cCWyJiX+Bq4Kpm978B/LqIbstXdTBXbRCYBCxJM8yleddrVv/+/QHYsmVLmSMx\nM7NKdOSRRzJ69GhuvPHGcodiZtYZjAdWRsTTEbEduJXk06V8JwM3pcdzgCmSBCDpFOAZYHkRfZa1\n6uC01h+pTU60zMysFF26dGHGjBl86UtfYtWqVYwcObLcIZmZldMwYHXe+Rrg8F09ExGNkl4CBkra\nBnyepHpgQdMGU7mqg8eScdXBQhoZDLwREc9FxHPAUcC3gP8DbM0iiEq1xx57AE60zMys7WbMmEFE\ncNNNN7X+sJlZZRskaXHedl6GbV8KXB0RrxT53mnAPcCxEfEiMIAOrDp4HbAdQNKRwH8BNwMvAddn\nEUQliYg3j3MjWi+++GK5wjEzswo3atQojj76aL7//e/T2FjTy1OaWfXbGBHj8rbmucRaYETe+fD0\nWovPSOoK7A5sIhn5+qqkZ4F/B/5T0swCYnod2A04Iz3vBmTyn/tCEq26iNicHn+EZO7i7RFxCbBv\nFkFUIkmeOmhmZpmYOXMmq1evZu7cueUOxcysnBYBYySNltQdOB1o/hfjXGBGenwq8PtIfCAiRkXE\nKOAa4CsRcW0BfX4HOIK3Eq2tJAU5SlZQopVmiwBTgN/n3StmweOq069fPyQ50TIzs3dYuBCuvDLZ\nt2batGnsvffefPvb327/wMzMOqmIaARmkkzlWwHcFhHLJV0m6aT0sRtIvslaCVwAvKMEfJEOj4hP\nAdvSGLbQgcUwfgb8j6SNJENrfwKQtC/J9MGa1aVLF/bYYw8nWmZm9jYLF8KUKbB9O3TvDvfdBxMm\n7Pr5uro6zj//fD7/+c+zbNkyDjzQq6mYWW2KiHnAvGbXZuUdbwOmt9LGpUV0uSMtKx8AkuqBnUW8\nv0utjmhFxBUkhS9uBCbFWx8pdQE+nUUQlWzw4MH8/e9/L3cYZmbWicyfnyRZTU3Jfv781t8599xz\n6dmzJ9deW8hMFzMzy8i3gDuBwZKuAO4Hrsyi4YJKF0bEnyPizoh4Ne/a3yJiSRZBVLJhw4axdm3z\nb/TMzKyWTZ6cjGTV1SX7yZNbf2fgwIGcddZZ3Hzzzf4FnplZB4mIW4ALSZKrdcApEXFbFm1nUiO+\nlg0fPpw1a9aUOwwzM+tEJkxIpgtefnnr0wbzfe5zn2P79u1cc8017RugmZkBIOkmYH1EzE6LZ6yX\n9MMs2naiVaLhw4ezbt06mpqaWn/YzMxqxoQJcPHFhSdZAPvttx/Tp09n9uzZ/v7XzKxjHJSunwW8\nWQzj/Vk07ESrRMOGDaOxsdHTPMzMLBP/+Z//ydatW5k9O5PqwmZm9u66SOqfO5E0gIwqq3dooiVp\nqqQnJK2U9I5SjJJ6SPp5ev9BSaPS68dIekjSsnT/wY6M+92MGTMGgCeeeKLMkZiZWTU46KCDmDZt\nGtdccw1bt24tdzhmZtXu68BCSZdLuhx4APhqFg13WKKVlk2cDRwHjAXOkDS22WPnAlsiYl/gauCq\n9PpG4MSIOJBkgbIfd0zUrcuV4F22bFmZIzEzs2oxa9YsNm3axNe+9rVyh2JmVtUi4mbgw8Df0+3D\nEZFJrtGRI1rjgZUR8XREbAduBU5u9szJwE3p8RxgiiRFxMMR8Xx6fTnQS1KPDom6FUOGDKG+vp5H\nHnmk3KGYmVmVaGhoYPr06Xz9619n/fr15Q7HzKxqSRobEY9FxLXp9pikyVm03ZGJ1jBgdd75mvRa\ni8+kK0O/BAxs9sw/A0si4o12irMokpg4cSL33nsvby0xZmZmVriFC+HKK5N9zhVXXMEbb7zB5Zdf\nXr7AzMyq322SPq9EL0nfpiPX0eosJL2PZDrhx3dx/zxJiyUt3rBhQ4fFNW3aNFavXs3C/H8hzczM\nCrBwIUyZApdckuxz/5SMGTOG8847j+uvv97fAZuZtZ/DgREk32YtAp4HJmbRcEcmWmtJfoic4em1\nFp+R1BXYHdiUng8nWbX5XyLiqZY6iIjrI2JcRIyrr6/POPxdO+200xg0aBCf+tSneOqpFkMzMzNr\n0fz5sH07NDUl+/nz37o3a9YsdtttN2bOnOlZE2Zm7WMH8DrQC+gJPBMRO7NouCMTrUXAGEmjJXUH\nTgfmNntmLkmxC4BTgd9HREjaA7gbuCgiFnRYxAXq27cvN954IytWrOD9738/L7zwQrlDMjOzCjF5\nMnTvDnV1yX7y5LfuDRkyhCuuuIJ7772X2267rVwhmplVs0UkiVYD8AGSgn2/yKLhDku00m+uZgL3\nACuA2yJiuaTLJJ2UPnYDMFDSSuACIFcCfiawLzBL0iPpNrijYs+3q98onnDCCfzpT3/itdde48IL\nL+zgqMzMrFJNmAD33QeXX57smy9w/IlPfIJDDz2U//iP/+Dll18uT5BmZtXr3IiYFRE7ImJdRJzM\nOweD2qRDv9GKiHkRsV9E7BMRV6TXZkXE3PR4W0RMj4h9I2J8RDydXv9yROwWEYfkbZ1u2KihoYGL\nL76Ym266ieuuu67c4ZiZWYWYMAEuvvidSRZAXV0d3/ve91i/fj0XXfSOJSjNzKwNJF0IEBGLJU1v\ndvsfsuijoophdCaSWrw+a9YsTjjhBD7xiU9w4YUXerFJMzMrWUNDAxdccAHf/e53ueeee8odjplZ\nNTg97/jiZvemZtGBE62MdevWjTlz5vDxj3+c//7v/2bkyJGcffbZ/OhHP+Ivf/kLzz//PNu3by93\nmGZmVmG+/OUvM3bsWD72sY+xZcuWcodjZlbptIvjls7bpGsWjdjb9ezZk+9973uce+65fOtb3+KX\nv/wlN91009ue6dOnD7169aJHjx707NmTHj160KNHD7p160bXrv+fvTuPj6q+/j/+OpksgCyyqayC\nCq3WDcUlbqRlCZuI+9qCG1WrrVsttC6tWnfb6ld/rStQRFGpAgICGokVDCqICohUNgU3BJFVmCzn\n98dMQohJmCSTuZnk/Xw87mPu3Hvm3nMncGfOfD73c1NJTU0lFArFZb6idaUfK5qvjfUpKSkVtgiK\niEj5GjVqxLhx4zj22N9xyinTeeyxCzjhBJ1LRUSqySuYL+95tajQqkXHHHMM48aNo7CwkJUrV7Jk\nyRK+/vpr1q9fz3fffceOHTvYsWMHO3fuLJkvKCigsLCQgoICdu7cyfbt23dbVtX5ujoccGXFWTwL\nvaCLynisV2EqIsV27jyKlJQ3WLzYyMoq4M0308q9rktERPboCDPbTKT1qnF0nujzRvHYgQqtBAiF\nQnTr1o1u3bolfN9FRUUlRVfpQqz4eel1ZePivb629rljx4645FRUFJdbJtQKFaWxr09JUY9oqb9y\nc6GoKBUw8vPzGTNmNZmZXQLOSkQk+bh7qLb3oUKrnktJSSElJYW0tLSgU6nz3D2pC85Y14fD4bhs\ns662lgK7FV9li7GaLK+r24rnPopbUaVuitxzywiHnaKiAl588TeMGvUoXbp0CTo1EREpQ4WWSJSZ\nlVzHlpGREXQ6dV5xa2kyFKTlPa/K8vKK0+puqy4XqMXMrEqF2dChQ3nggQeCTrtBKL7nVm6u0aXL\nN1x11dsMGDCAt99+m5YtWwadnoiIlKJCS0SqRa2l1VNey2msBVtNC8ba2lbXrl2DflsblMzM4vtt\ndaFDh8n07duXoUOHMmPGDBo3bhx0eiIiEqVCS0QkgdRyKvF0yimnMHbsWC644AJOO+00Jk+erGJL\nRKSOUEd8ERGRJHbeeecxevRoXn/9dYYOHcoPP/xQsi4vD+6+O/IoIiKJpRYtERGRJDds2DCKioq4\n9NJL6du3L1OmTGHZslb07g3hMKSnR67t0lDwIiKJoxYtERGReuDiiy9mwoQJvPfee5x00km8/PJG\nwmEoLIwUW7m5QWcoItKwqNASERGpJ8455xxmzpzJl19+yeOPX0BqaiGhUKRFKysr6OxERBoWFVoi\nIiL1SFZWFu+88w4dOnxOOHwKvXvnMmtWoboNiogkmAqtKkqGe+CIiEjD9pOf/IR58+Zx9tkdmTXr\n5/zxjz9n9erVlb5GA2eIiMSXCi0REZF6qFmzZkyYMIExY8bwwQcfcOihh3LfffcRDod/FJuXB717\nwy23RB5VbImI1JwKrWoys6BTEBERqZSZMWzYMD766CN69+7NH/7wB4444ghef/313eJyc9HAGSIi\ncaZCS0REpJ7r0qULkydPZurUqYTDYfr27Uvfvn2ZM2cOEBkoIz2dmAfOUDdDEZE9U6ElIiLSQAwa\nNIglS5bwwAMP8NFHH3HyySfTu3dvtmyZxWuvFXHHHXu+35a6GYqIxEaFloiISAPSqFEjbrjhBlat\nWsXf/vY3Pv74Y7Kzsxk2rDtpaQ/Qrdv6Sl+vboYiUpvMrL+ZLTOz5WY2spz1GWb2fHT9O2bWJbq8\nr3wZTisAACAASURBVJktMLNF0cdfJDr3slRoiYiINEBNmjThuuuuY/Xq1Tz77LO0a9eO3//+97Rr\n146BAwcyduxYNm3a9KPXqZuhiNQWMwsBjwIDgEOA883skDJhlwIb3f0g4O/AvdHl64FT3f0wYBgw\nLjFZVyw16AREREQkOBkZGZx//vmcf/75LFq0iGeeeYbnn3+e4cOHk5aWxoknnkj//v3Jzs7m8MMP\nJzMzhZycSEtWVlZs3QzD4UhRtqduiSLS4B0LLHf3lQBmNgE4Dfi4VMxpwJ+j8xOBR8zM3H1hqZgl\nQGMzy3D3nbWfdvnUoiUiIiIAHHbYYdx7772sWrWKefPmcd1117Fx40ZGjhxJjx49aN26Nf3792fW\nrL9w9NGz+OlPN1a6vap2M1Trl0iD1wFYU+r52uiycmPcvQDYBLQuE3Mm8H6QRRaoRUtERETKMDOO\nO+44jjvuOO69916++uorXnvtNebOnUteXh5/+ctfcHcA2rdvz89+9rOS6YADDqBLly506tSJrKw0\n0tN3tWhV1s1QrV8iDUIbM5tf6vnj7v54PHdgZj8j0p2wXzy3Wx0qtERERKRS7dq141e/+hW/+tWv\nANi8eTPvvvsu77//PkuWLGHx4sU89thj/PDDDyWvSUlJoX379nTrNgjIonv3L3n99W188EEb2rZt\nWzK1aNGCpk2b8sYbTQmHQ7u1fu2pW2Is3RdFpE5Z7+49K1n/BdCp1POO0WXlxaw1s1SgBbABwMw6\nAi8Dv3L3FXHLuppUaImIiEiVNG/enD59+tCnT5+SZYWFhXz22WesXr2a1atXl5pfypdf5vDaa98y\nceKPB9fY5XggB0ijqKiAJ564jEmTlpOenk56ejppaWkl85s2HcLs2X+iqCiV1FTn4YeXMHhwa9q1\na0coFKrtwxeR2vMe0M3MuhIpqM4DLigTM4XIYBd5wFnAG+7uZrY3MA0Y6e5zE5hzhVRoiYiISI2F\nQiEOOOAADjjggApjwuEw69evZ/369Xz77bd8++23bNmyha1bt7J161aWLRvN8uUdadXqQxo33sHW\nrXuTn5/Pzp072bp1K+FwmPz8fL7+OpPCwhAQIj8/nyuvnMCVV95DKBSiY8eOdO7cebdp+/Yj+Oyz\nrmRnZ9C/fwtSUnSJukhd5O4FZnY1MBMIAU+7+xIzux2Y7+5TgKeAcWa2HPiOSDEGcDVwEHCrmd0a\nXdbP3dcl9ih2UaElIiIiCZGenk779u1p3779HiJPq3Ttruu5nLS0EHfddRp77dWVzz//vGR6++23\nef755yko6EmkpSydhx8Ok5JyCvvtt4p27dqx3377/What+5A/ve/9vTpk0q/fs1IT0+vNA91XxSJ\nL3efDkwvs+zWUvM7gLPLed2dwJ21nmAVJLTQMrP+wENEKtQn3f2eMuszgH8DRxPpa3muu6+OrhtF\nZNz8QuC37j4zgamLiIhIHZGZSXSIeSMry8jMPJ5I18PdFRYWcvPN27jvvsYUFRkpKSmccsqtHHjg\nC3z11Vd89dVXLFy4kG+++YbCwkJ2dV9M56GHwkAvmjVbQqtWrWjduvVu0/btR/DMM8MpKAiRllbE\nffe9T2ZmpFtl8bTXXnthZkDVijIVcCL1Q8IKrVI3IOtLZKjG98xsiruXHhe/5AZkZnYekRFDzo3e\nqOw84GdAe+B1M+vu7oWJyl9ERETqjszMPRchoVCIIUOa89BDxaMZpnDXXf3IzNx9MLKioiI2bNjA\nnXcW8sgjjSgqSiElJYVf/OKvHHroK2zYsKFkWrVqFRs2bGDjxuaAASmEw4Vce+3LwG6/H5OSkkLz\n5s3JyMhi3bpncU8jJaWAU065nU6d1tKkSRP22msvmjRpUjJ9/XVX/va3gRQUpJCW5jz00BKOPbaw\nZH2jRo3IyMggIyOD9PR05s2zWingVOyJ1FwiW7SqfQOy6PIJ0bHwV0X7ZB5L5CI4ERGR6qutb5+K\nrROxmZmQ849F5P5nA1lntiYz87AfxaSkpNC2bVvOOw+eeKyQcLiQ9DS4/fZfkJn5i3K3O2dOIf36\nQDhcSFqa8feHzqNz55PZvHkzmzZtYvPmzSXTnDknse6bNCAVL4KPP96Hzz6bwPbt29m2bRvbt2+n\nqKgouuWRwEAghZ0787niiucoW8Dtcjwp5OCkY4Rp1eY8mjVbXFKIlZ62bz+Cd+fdSVFRKikpBQw6\n9SE6dlxDWloaqamppKamlsx/+eX+jH7qfAoKQqSmFvK766bRvfuG3WJ2i5+1hU/mpnJYltH9jHak\npqYSCoUIhUKkpESK1uL5pS+uYf7MnRw7oAk9fnnQbuvKxs8fs4w5k77nlDNaceKvD6/02rq8x0v9\njUf8+G9ck3jFVj1WIhJZaJV3A7LjKoqJXgxXfAOyDsC8Mq8te/OyuPr73//O8uXLf7R83brArqcT\nEZF4q8rNmxSbtLGZ1/YmMxyGt9LhsIpjM8kjx0eRy4lk+VwyuRsoP/ak0Lu7YplL5hF3Q+bA8lN4\nfBG9fx0mjJNOPpPu6E3miGtL1rs74XCY7du3k/fEYs76w67Y/7u2B22yJpUUZTt37iyZ3vtPd6Ys\nSKeIVFJwjmpzJvv0bLFbzM6dOyOv+7QdXpRKEalYkbN05k7eavIcBQUF5OfnlzwCdGIkhaRQRIjC\ngiIm3P8uayoo9n7G8awkhzDppM8Pc8ADvVmy21e2CmLfCnPAH2OMfT3MAVedyBLmlVuQ/TS/J0t2\nTiPMwaTPCtPjxmxWNV2EmZU7ddl6GO9ueL4kPvPm01jb8pMfxaWkpND+u5/w1pf/LonNuvNcvmm7\nvNzYfdYdyGsrHy+Jzb7/V3zX/rNyY1t+0ZmpS/+vJHbIw5ezZf8vfxQL0Oyz9rz04YMlsWf+8yq2\nH/ANQElMcXzjlfvy4oJ7S2LPfeIadhy0vtzYjE/b8Ny7d5XEXvj0dYR/8l25sWnLWjHu7dtLYnNY\npGIrBvVqMAwzGwGMAOjcuXONtjV79mzyKrg1fefOnenWrVuNti8iInVAbm7ky3osN29SbIOIzSyc\nQ6a/CYWhuMVmbphKTso0cotOJivlLTI3DAJ2fUk1s5KWp4GFc8hJGbUrdp9BcNqocreb9/m/mbFg\nV1H25ywj85/jyo+98t/0/teu2DHDu5D5zw0/iisqKmLur8eQ/eSu2Kd/2Zmf3rWmpCArXZw9f9Ua\nHnwnnUJSCeNkH3UD9/ylEYWFhRQVFVFUVFQyP/cu55NFu2J7HfIbrvnt8N1iiueXPdaKTz7dFXvc\ngZdx5oX9yt3u+ondWPj5rtiuzYdwyIDOuHu5U/i1noTZFd829Ava9mhcbmxozom7xe614zjatdtW\nbmzq/47cLdY2HIZ1+Bx3p6ioaLfYJl923y12+5oD+KbRwt1iIFKEd1xx3G6xG5d34LOCt3aLKZ7v\n+vnhu8V+8/G+rNg8q9zYbl/8arfYtR+25JNvJv1o/wCHrLt0t9jc/2wgc0T5/zWklIr+EcZ7IvKT\n0MxSz0cBo8rEzAQyo/OpwHoiHaB3iy0dV9F09NFHu4iI1H1Ehuyt9udLjc73b7/t3rixeygUeXz7\nbcUqNqli307v5XfZH/3t9F6BxL792EfemG0eIuyN2eZvP/ZRnY6tK3nU59jK1PR8n2yTebRSrW3R\nOzf/D+hN5AZk7wEXuPuSUjG/AQ5z9yuig2Gc4e7nmNnPgGeJXJfVnsiQQN28ksEwevbs6fPnz6+9\nAxIRkbgwswXu3rO6r6/x+T6JrjdSrGLrYmxduCZI12jVrdiK1PR8n2wSVmgBmNlA4B/sugHZX0vf\ngMzMGgHjgB5Eb0DmuwbP+BNwCVAAXOvur1a2LxVaIiLJIfBCS0REEqKhFVoJvUbLq3kDsui6vwJ/\nrdUERURERERE4qDicTJFRERERESkWlRoiYiIiIiIxJkKLRERERERkThToSUiIiIiIhJnKrRERERE\nRETiTIWWiIiIiIhInKnQEhERERERiTMVWiIiIiIiInGmQktERERERCTOzN2DzqFWmNm3wGc13Ewb\nYH0c0kl2eh8i9D7sovciQu9DRE3fh/3dvW11X6zz/R7p2JKTji151efjC/R8n2zqbaEVD2Y23917\nBp1H0PQ+ROh92EXvRYTeh4j68D7Uh2OoiI4tOenYkld9Pr76fGy1QV0HRURERERE4kyFloiIiIiI\nSJyp0Krc40EnUEfofYjQ+7CL3osIvQ8R9eF9qA/HUBEdW3LSsSWv+nx89fnY4k7XaImIiIiIiMSZ\nWrRERERERETiTIVWOcysv5ktM7PlZjYy6HyCYmadzGy2mX1sZkvM7HdB5xQkMwuZ2UIzmxp0LkEx\ns73NbKKZfWJmS80sM+icgmBm10X/Tyw2s+fMrFHQOSWKmT1tZuvMbHGpZa3M7DUz+zT62DLIHCuz\np/O7mWWY2fPR9e+YWZfEZ1k9MRzbKWb2vpkVmNlZQeRYXTEc2/XRz6qPzCzHzPYPIs/qiOHYrjCz\nRWb2gZnNMbNDgsizOmL9PmVmZ5qZm1nSjGYXw99tuJl9G/27fWBmlwWRZ3XE8nczs3NKfT98NtE5\nJg1311RqAkLACuAAIB34EDgk6LwCei/aAUdF55sB/2uo70X0PbgeeBaYGnQuAb4HY4HLovPpwN5B\n5xTAe9ABWAU0jj5/ARgedF4JPP5TgKOAxaWW3QeMjM6PBO4NOs8Kct/j+R24CvhXdP484Pmg847j\nsXUBDgf+DZwVdM5xPrafA02i81fWs79b81LzQ4AZQecdr2OLxjUD/gvMA3oGnXcc/27DgUeCzrWW\njq0bsBBoGX2+T9B519VJLVo/diyw3N1XunsYmACcFnBOgXD3r9z9/ej8FmApkS+ZDY6ZdQQGAU8G\nnUtQzKwFkS/ZTwG4e9jdvw82q8CkAo3NLBVoAnwZcD4J4+7/Bb4rs/g0IkU40cehCU0qdrGc30sf\ny0Sgt5lZAnOsrj0em7uvdvePgKIgEqyBWI5ttrtvjz6dB3RMcI7VFcuxbS71dC8gWS6uj/X71B3A\nvcCORCZXQ/X5u2Isx3Y58Ki7bwRw93UJzjFpqND6sQ7AmlLP19JAi4vSot1negDvBJtJYP4B3ETy\nfUGJp67At8DoaBfKJ81sr6CTSjR3/wJ4APgc+ArY5O6zgs0qcPu6+1fR+a+BfYNMphKxnN9LYty9\nANgEtE5IdjVTnz+7qnpslwKv1mpG8RPTsZnZb8xsBZHW498mKLea2uOxmdlRQCd3n5bIxOIg1n+T\nZ0a7s040s06JSa3GYjm27kB3M5trZvPMrH/CsksyKrRkj8ysKfAf4Noyv6w1CGY2GFjn7guCziVg\nqUS6jP3T3XsA24h0E2tQotcfnUak8GwP7GVmFwWbVd3hkX4kyfKLu9Qz0f+LPYH7g84lntz9UXc/\nEPgDcHPQ+cSDmaUAfwNuCDqXWvIK0MXdDwdeY1dLeX2QSqT7YBZwPvCEme0daEZ1lAqtH/sCKP2r\nQ8fosgbJzNKIFFnj3f2loPMJyInAEDNbTaQJ/Rdm9kywKQViLbDW3YtbNScSKbwamj7AKnf/1t3z\ngZeAEwLOKWjfmFk7gOhjXe1GEsv5vSQm2jW0BbAhIdnVTH3+7Irp2MysD/AnYIi770xQbjVV1b/b\nBOpu19yy9nRszYBDgdzo5+vxwJQkGRBjj383d99Q6t/hk8DRCcqtpmL5N7kWmOLu+e6+isg1/N0S\nlF9SUaH1Y+8B3cysq5mlE7kYekrAOQUiel3CU8BSd/9b0PkExd1HuXtHd+9C5N/DG+7e4Fow3P1r\nYI2Z/SS6qDfwcYApBeVz4HgzaxL9P9KbyPWLDdkUYFh0fhgwOcBcKhPL+b30sZxF5P97MrTQ1efP\nrj0em5n1AB4jUmTV1UK/PLEcW+kvsIOATxOYX01Uemzuvsnd27h7l+jn6zwif7/5waRbJbH83dqV\nejqE5PmciOVcMolIaxZm1oZIV8KViUwyWaQGnUBd4+4FZnY1MJPIyCtPu/uSgNMKyonAL4FFZvZB\ndNkf3X16gDlJsK4BxkdPviuBiwPOJ+Hc/R0zmwi8DxQQGXnp8WCzShwze47IB2wbM1sL3AbcA7xg\nZpcCnwHnBJdhxSo6v5vZ7cB8d59C5MelcWa2nMigH+cFl3HsYjk2MzsGeBloCZxqZn9x958FmHZM\nYvy73Q80BV6Mjl3yubsPCSzpGMV4bFdHW+vygY3s+iGgTovx2JJSjMf2WzMbQuRz4jsioxDWeTEe\n20ygn5l9DBQCv3f3ZGj5TzhLjh/qREREREREkoe6DoqIiIiIiMSZCi0REREREZE4U6ElIiIiIiIS\nZyq0RERERERE4kyFloiIiIiISJyp0BIREREREYkzFVoiIiIiIiJxpkJLpIbMbG8zu6rU87draT8d\nzezcCtY1NrM3zSxUw32km9l/zUw3MxcRKUPnexGpChVaIjW3N1DywevuJ9TSfnoDR1Ww7hLgJXcv\nrMkO3D0M5ADlfsCLiDRwOt+LSMxUaInU3D3AgWb2gZndb2ZbAcysi5l9YmZjzOx/ZjbezPqY2Vwz\n+9TMji3egJldZGbvRrfxWNlfKs3sJOBvwFnRmAPK5HAhMLkq+zWzvcxsmpl9aGaLS/16Oim6PRER\n2Z3O9yISM3P3oHMQSWpm1gWY6u6HRp9vdfem0eXLgR7AEuA94EPgUmAIcLG7DzWzg4H7gDPcPd/M\n/h8wz93/XWY/M4Ab3X1xmeXpwOfuvl+pfGLZ75lAf3e/PPq6Fu6+Kfqh/7W7t43fuyQikvx0vheR\nqlCLlkjtWuXui9y9iMiHYI5Hft1YBHSJxvQGjgbeM7MPos/L/oIJ8BPgk3KWtwG+r8Z+FwF9zexe\nMzvZ3TcBRLujhM2sWbWOWESkYdL5XkR2owsgRWrXzlLzRaWeF7Hr/58BY919VEUbMbM2wCZ3Lyhn\n9Q9Ao6ru193/Z2ZHAQOBO80sx91vj8ZlADsqOzAREdmNzvcishu1aInU3BagJr8G5hDpi78PgJm1\nMrP9y8R0Ab4s78XuvhEImVnZD99KmVl7YLu7PwPcT/TCazNrDax39/wqHYWISP2n872IxEyFlkgN\nufsGYG70AuP7q/H6j4GbgVlm9hHwGtCuTNgnQJvoPsob5WoWcFIVd30Y8G60+8ptwJ3R5T8HplVx\nWyIi9Z7O9yJSFRoMQ6QeiHYJuc7dfxmHbb0EjHT3/9U8MxERiSed70WSh1q0ROoBd38fmF12mOCq\nio5oNUkfuiIidZPO9yLJQy1aIiIiIiIicaYWLRERERERkThToSUiIiIiIhJnKrRERERERETiTIWW\niIiIiIhInKnQEhERERERiTMVWiIiIiIiInGmQktERERERCTOVGiJiIiIiIjEmQotERERERGROFOh\nJSIiIiIiEmcqtEREREREROJMhZaIiIiIiEicpQadQG1p06aNd+nSJeg0RERkDxYsWLDe3dtW9/U6\n34uIJIeanu+TTb0ttLp06cL8+fODTkNERPbAzD6ryet1vhcRSQ41Pd8nG3UdFBERERERiTMVWiIi\nIiIiInGmQktERERERCTOVGiJiIiIiIjEmQotERERERGROFOhJSIiIiIidYKZ9TezZWa23MxGlrM+\nw8yej65/x8y6RJe3NrPZZrbVzB6pYNtTzGxx7R7BLiq0REREREQkcGYWAh4FBgCHAOeb2SFlwi4F\nNrr7QcDfgXujy3cAtwA3VrDtM4CttZF3RVRoiYiIiIhIXXAssNzdV7p7GJgAnFYm5jRgbHR+ItDb\nzMzdt7n7HCIF127MrClwPXBn7aX+Yyq0RERERESkLugArCn1fG10Wbkx7l4AbAJa72G7dwAPAtvj\nk2ZsVGiJiIiIiEgitDGz+aWmEbW9QzM7EjjQ3V+u7X2VlZroHYqIiNQpeXmQmwtZWZCZGXQ2IiL1\n2Xp371nJ+i+ATqWed4wuKy9mrZmlAi2ADZVsMxPoaWaridQ++5hZrrtnVTH3KlOhVYEHH3wQgBtu\nuCHgTEREpNbk5UHv3hAOQ3o65ORUXmxVpSirrVgRkfrrPaCbmXUlUlCdB1xQJmYKMAzIA84C3nB3\nr2iD7v5P4J8A0REKpyaiyAIVWhX673//y0cffcT111+PmQWdjoiI1Ibc3EiRVVgYeczNrbjQqUpR\nVluxxfEq4ESkHnL3AjO7GpgJhICn3X2Jmd0OzHf3KcBTwDgzWw58R6QYAyDaatUcSDezoUA/d/84\n0cdRTIVWBfr378+UKVP49NNP6d69e9DpiIhIbcjKihQ3xUVOVlbFsVUpymorNhkLOBV7IlIF7j4d\nmF5m2a2l5ncAZ1fw2i572PZq4NAaJxkjFVoVyM7OBmDGjBkqtERE6qvMzEgBEkshUJWirLZik62A\nqyvFnohIAFRoVeCAAw6gW7duzJw5k9/+9rdBpyMiIrUlMzO2L+pVKcpqKzbZCri6UOyVfo1a7EQk\ngVRoVSI7O5unnnqKHTt20KhRo6DTERGRoMValNVWbLIVcHWh2AO12IlIIFRoVaJ///488sgjzJkz\nhz59+gSdjoiISHIVcHWh2IP632Kn1jqROkmFViWysrJIT09nxowZKrRERKR+q6+tdVC/W+zUWidS\nZ6nQqsRee+3FySefzMyZM3nggQeCTkdERKR+q81ir7622Km1rvZjRapJhdYeZGdnc9NNN7F27Vo6\nduwYdDoiIiJSHfW1xU6tdbUbWxyvAk6qISXoBOq6/v37AzBr1qyAMxEREZGklpkJo0bFXpjFEltc\nlN1xx54LhtqKLS7KQqHYC7hYYssryiqJzdt5FHcX/p68nUfFLzYvj7ysUdz9p63kZY2KFFLxiC31\nGu6+O9hYqTVq0dqDQw89lPbt2zNjxgwuueSSoNMRERER2V0daK3L+8c75P5nA1lntiYz87Aqxbo7\nBQUF7Nixo2QKh8Okdu3K2tBJvFl0IqekzGHvNm34fs4cCgoKKCgoID8/v2R+7ep2/KFoFmHSSS8K\nc8en42kzdizuDoC7l8xvWLo3t5WKvXXJaFo9/njJejMjJSWFlJQU7JkV/CY8PRIbDvPYrffQ5Iov\nS9aHQqGS+c2PLGB4qdhn7v0/2v0BQqEQaWlpJVNqaippaWk0+fBD/nfWg+Tmn0hW2iiOee12Uk8+\nGTP78fsWLeKKYzNz7660xS7mWCDv8UW7/h4jKvnbSZWp0NoDMyM7O5tJkyZRWFhIKBQKOiURERGR\nWle2F5y788MPP/Ddd9+xceNGNm/ezJYtW1iwII2//KUXBQUppM4u5Lw5/6R58yVs2bKFLVu2sHXr\nVn744Qd27NjBhg3dWb36SdwPhllhGv3uF4TDb1JUVFROBseTQg5OOpYfpmhEb2BeBdmOBNKBVH7A\nuXH0Shh9T0yxo8avhfHlx3ZiJGHSKSSVMM6fXs9nzetnxRR77eTvWTP5hArf319yPBPJKSnMzurV\nm3HMIxQKlRRjxdMZWw9jbKkibsSgs3mr69cl6zMyMkhPTycjI4MjP9qLe0vF3v7r61g/cPJuMcWP\nW952bv33rwhzMOmzwjy0ZALdTt/vR3HFjy1atKBJkyYVHpPsToVWDLKzsxk9ejTvvfcexx9/fNDp\niIiIiFRL6eKpR48dfPPNNz+aNmzYwCeftGTmzJsoKgphlk/Llmezbdvr7Ny5s5ytjgR6ASnk5xcy\nfvwX7L33czRr1oymTZvStGlTmjRpQvPmzfnhhwG4pwMhzIyePW+kV68TaNSoEY0bN6ZRo0ZkZGSQ\nkZHBtGmH8+KLjfCiFCwlheG/GsuFF35OampqyVTcQrR4cTMuuyyF/HwnLS3EuHFXc9RRl2NmJS1E\nxfMLFqRzwQW7Yp9//np69rymJMbdKSoqorCwkPnz07joAiC/kLQ04+6nL+fwwy8oWV9UVFQy/9FH\ne/G7axwKCklNhRvuP52f/KQXhYWF5Ofnl0zFrXGzx7Yn/Nauwmz7MTdx28APS9aXjl+ZezzhT3bF\nLmxxGu3aTSE/P59wOMwPP/zApk2b2LlzJys2XLhbwfevT/ZjzbJ7CIfDP/rL9SpTHI5/+EPefPj8\nCv/93H333YwcObKG/wobDituJk0GZnYdcBngwCLgYnffUV5sz549ff78+XHZ74YNG9hnn3245ZZb\n+POf/xyXbYqISISZLXD3ntV9fTzP9yLJqLyWp2+//ZY1a9bw+eefs2bNGtasWcP772eQm3szRUWp\nQBgov4WoadOmhEI3s2nTDUR+ky/gmGOm8POfv0OrVq1o1aoVLVu2pHnz5jRr1owVK/bh8su7kp9v\n0bElrF6NWVGbsb1/Xrjr+GaHKn8vahjr7iWF2c6dOwmHw8wfs4xz/3gsYdJIJ5/HbppFpwF7s3Pn\nzpKY0o/HHXccPXr0qPzAKlHT832ySZpCy8w6AHOAQ9z9BzN7AZju7mPKi6/pB2/Z/yjHH388Zkae\nLioUEYkrFVoiVbdlyxZWrFjBtGkb+MtfTqGgIAWzfNq1+yUbNkxlx47df4fOyMhgr73u5LvvrgVS\nMSukT5//cs45K9h3333Zb7/92Hfffdlnn31o1KhRUhY5yaguvG+JvEZLhVYdFS205gFHAJuBScDD\n7l7ucIA1+eAt7+QyY8Zt3Hnnnaxbt47WrVtX9zBERKQMFVoiP5aXB7NnOwcf/A0ZGe+zePFili5d\nyvLly/n000/55ptvopEjgTsobnk67LAXyc5+n86dO9OpUyc6depE586dadOmDfPmWa0VTyKxaGiF\nVtJco+XuX5jZA8DnwA/ArIqKrJoqbzTRgQMHcvvttzNr1izOP7/ivqsiIiIiVbVx40YWLlzI4sWL\nycnZztSp10a7+DUnUkjNY7/99qN79+4MGjSIgw46iG7durFt2+FceWUoWjyl8thj55OZWf73lKrc\nnqs4XgWWSPUlTaFlZi2B04CuwPfAi2Z2kbs/UypmBDACoHPnztXeV3n36DvmmGNo27YtU6dOmqWD\nWAAAIABJREFUVaElIiIiVVbcQnTMMdtITX2P+fPnl0wrVqwoiWvS5HaKitKAyNDhl132HPfc04KW\nLVuWu93u3VU8idRFSVNoAX2AVe7+LYCZvQScAJQUWu7+OPA4RLqSVHdH5f/ik8LAgQOZMmUKBQUF\npKYm01snIiIiQXB3Vq9ezejRS7nrrj4UFqYABowC5rH//vvTs2dPLrvsMo4++mgOP/xwVqzYhz59\nLPqDbwrDh3ehghoLUPEkUlclU7XwOXC8mTUh0nWwN1BrnfLLO2kNHjyYsWPHkpeXx8knn1xbuxYR\nEZEk5e4sXbqUN954gzlz5vDWW2/x5ZdfErmWqh+RgSiMYcPGct99LWnbtu2PtrHvvlXr4icidVPS\nFFru/o6ZTQTeBwqAhURbrxKlX79+pKamMnXqVBVaIiIiQl4eTJ++jfT0PFavfo5Zs2axdu1aADp2\n7EivXr046aSTaN48mxEjiq+lCjFiRHfKqbFKqJVKJPklTaEF4O63AbcFtf/mzZvTq1cvpk2bxr33\n3htUGiIiIhKgoqIiFixYwP/7fwsZO/ZXuGcAJ9C06X3073882dnZ9OnThy5duuz2ugMPVCuVSEOS\nVIVWXTBo0CCuv/56Vq1aRdeuXYNOR0RERBIgPz+f3NxcJk2axOTJk/niiy8w+yPuqUAqoVCIkSNn\n8Kc/pVS4DbVSiTQsFZ8NpFyDBw8GYNq0aQFnIiIiIrWpoKCAWbNmMWzYMNq2bUu/fv0YPXo0xx57\nLGPHjuXVV/9A48aphEKQnm784hf6WiUiu6hFq4q6detG9+7dmTp1KldffXXQ6YiIiEgcuTtPP72U\np59eydKl/2Tjxuk0b96c008/ndNPP52+ffvSpEmTkngNWiEiFVGhVQ2DBw/mkUceYevWrTRt2jTo\ndERERKSGvvnmG8aMGcMjjyxg7doxQHdCob7cdVce1113PI0aNSr3deoOKCIVURt3NQwePJhwOExO\nTk7QqYiIiEg1FRUV8frrr3P22WfTsWNHRo4cSWpqH8waEfktOgPIqrDIEhGpTMILLTPby8xCid5v\nPEWGaW3O1KlTg05FREREquj777/n/vvvp3v37vTt25fZs2fz29/+lk8++YRnnx1Bo0Yp0euuIl0C\nRUSqo9a7DppZCnAecCFwDLATyDCz9cA04DF3X17becRTWloa2dnZTJs2DXfHzIJOSURERCqRlwcv\nv7yRzz4by/Tpt7B161Z69erFHXfcwemnn75bq5WuuxKReEjENVqzgdeBUcBidy8CMLNWwM+Be83s\nZXd/JgG5xM3gwYN58cUXWbhwIUcddVTQ6YiIiEgFnnrqY3796wMpLGwGjCA7exP33HMaRx55ZLnx\nuu5KROIhEV0H+7j7HcDm4iILwN2/c/f/uPuZwPMJyCOuBgwYgJnxyiuvBJ2KiIiIlGPu3Ln069eP\nyy4bR2FhiMj9rhrTq9dtFRZZIiKl1eSyp1ovtNw9Pzr7Utl1ZnZ8mZik0bZtW0444QQmT54cdCoi\nIiJSSnGBddJJJ/Hhhx/ym98cSuPGoZL7Xem6KxGpiJmlmNkFZjbNzNYBnwBfmdnHZna/mR0U67Zq\nvdAys3PM7B6gmZkdHL1mq9jjtb3/2jR06FAWLlzI6tWrg05FRESkwfvwww/p379/SYH1wAMPsHLl\nSh555EJycow77ohcf6VugSJSidnAgUQue9rP3Tu5+z7AScA8Ipc9XRTLhhLRdXAu8DHQEvgbsNzM\n3jezqcAPCdh/rRk6dCiAWrVEREQCtGbNGoYPH06PHj149913uf/++1m5ciU33HADe+21FxAprkaN\nUpElInsUt8uean0wDHf/Avi3ma1w97kAZtYa6EKkKS5pHXTQQRx66KG8/PLL/O53vws6HRERkQZj\n2rTvuO++d2jZ8iNmzvwz7s6NN97IqFGjaNmyZdDpiUiSKnPZ024j3pnZ8e4+L9bLnhLRddAAious\n6PwGd1/g7ttKxySjoUOH8tZbb7F+/fqgUxEREWkQZs7czKmnNua//+3L5MnX0KvXSJYtW8Z9992n\nIkskyZlZfzNbZmbLzWxkOeszzOz56Pp3zKxLdHlrM5ttZlvN7JEyr5lhZh+a2RIz+1dlg1vE87Kn\nRHQdnG1m15hZ59ILzSzdzH5hZmOBYQnIo1acfvrpFBUVafRBERGRBNi8eTOXXjoO9zRKjyK4//77\nB52aiNRQtAB6FBgAHAKcb2aHlAm7FNjo7gcBfwfujS7fAdwC3FjOps9x9yOAQ4G2wNmVpDEXWEoc\nLntKRKHVHygEnjOzL6MjdqwEPgXOB/7h7mMSkEet6NGjB506dWLSpElBpyIiIlKvbd++ncGDB/P1\n1xNITzeNIihS/xwLLHf3le4eBiYAp5WJOQ0YG52fCPQ2M3P3be4+h0jBtRt33xydTQXSAa8khy/d\nfSxwmrsPcPcDgL7AbcAvIPbeeIm4RmsH8P+A/2dmaUAb4Ad3/762950IZsbQoUN54okn2LZtW8lF\ntyIiIhI/O3fu5IwzzmDu3Lk8++yzdO4cIjcXsrI0wIVIPdIBWFPq+VrguIpi3L3AzDYBrYFKr+Mx\ns5lECrlXiRRoFZltZv8BSka7c/cNZrYFOMnMhhEZmXDMng4mES1aJdw9392/qi9FVrHTTz+dHTt2\nMHPmzKBTERERqXcKCgo4//zzmTlzJk888QTnnnuuRhEUSU5tzGx+qWlEonbs7tlAOyCDaMtUBcrr\njbeKavTGq/UWrbLM7BQi1entRJruHnH3/yY6j3g6+eSTadWqFS+//DJnnHFG0OmIiIjUG0VFRQwf\nPpyXX36Zhx9+mEsuuSTolESk+ta7e89K1n8BdCr1vGN0WXkxa80sFWgBbIhl5+6+w8wmE+l++FpF\nMcSpN17CCy0ilWAGcD3wPZE+lkldaKWmpnLqqacyefJk8vPzSUtLCzolERGRpJOXx27dAd2dq666\nivHjx3PXXXdxzTXXBJ2iiNSu94BuZtaVSEF1HnBBmZgpRAbSywPOAt5w9wqvuTKzpkAzd/8qWpgN\nAt6KJZnoMO5fVfkoooIotH4GbHH3dQDRfpVJb+jQoYwdO5Y333yTPn36BJ2OiIhIUsnLg969IRyG\n9HR4/XXnpZd+z2OPPcaoUaMYNWpU0CmKSC2LXnN1NTATCAFPu/sSM7sdmO/uU4CngHFmthz4jkgx\nBoCZrQaaA+lmNhToR6S1a4qZZRC5bGo28K9Yc6pJb7wgCq1bgKJSz+vFhU39+vWjcePGTJo0SYWW\niIhIFeXmRoqswsLI4623vkFOzoNcc801/PWvfw06PRFJEHefDkwvs+zWUvM7qGB4dnfvUsFmj6lB\nStXujZfQwTCiOgC/MbPxZvYs0CiAHOKuSZMmZGdnM2nSJIqKivb8AhERESmRlRVpyQqFICUln5yc\nm7n44ov5xz/+QYwjKYuI1IafAfu6+7rokPMx98YLotDq5e7nufuF7n4BcFIAOdSKM844gy+++IJ3\n3nkn6FRERESSSmYm5OTA4MHvkJ9/Cueeuz9PPPEEKSlBfFURESlxC7tuigxV6I0XxNkrw8wGmdnh\nZjYQaBxADrViyJAhpKen88ILLwSdioiISNJZuXI8U6ZkMnhwG8aNG0coFAo6JRFp4Nz9zTLXZO0b\n62uDKLSuAloCA6OPvwkgh7jKy4O774aPP25BdnY2EydOVPdBERGRKnjllVcYNmwYWVlZvPjiixrB\nV0Tqqg9iDUz4YBjuvh14pvi5mV1BFUb+qGvKjpJ0441X8sorA3nnnXfI1F0URURE9ig3N5ezzz6b\no446ismTJ9OoUb24fFtE6iF3nxdrbF3o+BxzVVgXlR0lyezn6j4oIiISo/nz5zNkyBAOPPBAXn31\nVZo1axZ0SiIiJczsAjObUDyQn5mdH+trAy+0qlIV1kWlR0lKT4f+/Rup+6CIiEhUcff6vLwfr1u6\ndCn9+/endevWzJo1i9atWyc+QRGRylV7IL+Edx00swuAIUAhYMAr7v5covOIl+JRkkrfyf7ss8/m\nlVdeUfdBERFp0Mp2r8/JiXxOAqxevZq+ffuSmprKa6+9RocOHYJNVkSkfBlmNghYA3SkCgP5aXj3\nOMjMhFGjdn14aPRBERGRH3evz82NLP/666/p27cv27ZtY9asWRx00EFBpikiUpmyA/ldHesLNbx7\nLWjRQqMPioiIlO1en5UF33//PdnZ2Xz55ZdMnz6dww8/POg0RUQq5O7b3f0Zd7/H3cdHB/aLSV0Y\n3j3mqjCZnHPOOaxdu1Y3LxYRkQaruHv9HXdEHg8/fBuDBg1i6dKlTJo0Sd3rRSRpmNneZrZ3VV4T\n+PDu9dWpp55a0n1QHyQiItJQZWZGpnA4zJAhZzJv3jxeeOEF+vbtG3RqIiJVcRsQAn4b6wsCG3Ww\nOlVhMlH3QRERkYjCwkIuuugiZs6cyRNPPMGZZ54ZdEoiIrUuyOHdbwNuD3D/ta64++C8eUk9gr2I\niEi1uTu//vWvefHFF3nwwQe55JJLgk5JRCQhAr+PVn02ZMgQMjIymDBhQtCpiIiIJJy7c9NNN/HU\nU0/xpz/9ieuvvz7olEREEkaFVi1q3rw5gwcP5vnnn6egoCDodERERBLqnnvu4YEHHuA3v/kNd9xx\nR9DpiIjUxCPAw1V5gQqtWnbhhReybt06cnJygk5FREQkYf71r3/xxz/+kQsvvJCHH34YMws6JRGR\nanP3Fe6+vCqvCbLQqnJVmIwGDhxIixYtePbZZ4NORUREJCFefPFFrrrqKgYNGsTo0aNJSdHvuiKS\nfMzswOhjx+q8PrAzX3WqwmSUkZHBWWedxUsvvcT27THf30xERKTOysuDu++OPJaVk5PDRRddxAkn\nnMALL7xAWlpa4hMUEYmPYdHHu6rz4oQWWjWtCpPVhRdeyNatW5k6dWrQqYiIiNRIXh707g233BJ5\nLF1sLViwgKFDh9K9e3deeeUVmjRpElyiIiI193n08UQz+4uZnWVmz8f64kS3aNWoKkxWp5xyCh06\ndGD8+PFBpyIiIlIjubkQDkNhYeQxNzey/NNPP2XAgAG0bt2aGTNm0LJlyyDTFBGpFjN7KPrY2N2f\njC5+GxgDhIlc/hSTRBdaNaoKk1UoFOK8887j1Vdf5bvvvgs6HRERkWrLyoL0dAiFIo9ZWfDll1/S\nr18/3J1Zs2bRoUOHoNMUEamuU6KPc0ote8TdV7n7FHd/K9YN1XqhFc+qMJldeOGF5OfnM3HixKBT\nERERqbbMTMjJgTvuiDz+9Kcbyc7OZv369bz66qt079496BRFRGoix8zygP3M7BIzOxr4oDobSo1v\nXuUqXRUeHZ1/xN1XAasSsP864cgjj+SnP/0p48ePZ8SIEUGnIyIiUm2ZmZFp+/bt9Ot3KsuWLWP6\n9On07Nkz6NRERGrE3W+MjisxG+gKDAF+ZmZhYLG7nxvrthJRaO1WFQIfUs2qMJmZGRdeeCG33HIL\na9asoVOnTkGnJCIiUm0FBQWce+65vP3220yYMIE+ffoEnZKISFy4+woz6+Pu/yteZmZNgUOrsp1a\n7zro7jcCFwGFRKrCW4DFZrakIVyfVdoFF1wAwHPPPRdwJiIiItXn7lx++eVMnTqVRx99lHPOOSfo\nlERE4qp0kRV9vtXd51VlGwkZDMPdVwB93P0Wdx/q7t2A44C/J2L/dcUBBxzA8ccfzzPPPIO7B52O\niIhItYwcOZIxY8Zw2223ceWVVwadjohInZSwUQfjURXWB8OGDWPRokV88EGD6z0pIiL1wAMPPMB9\n993HlVdeyW233RZ0OiIidVaih3dv8M4991wyMjIYM2ZM0KmIiIhUyb///W9+//vfc/bZZ/N///d/\nmFnQKYmI1Aozu8bManRDQBVaCdayZUuGDh3K+PHjCYfDQacjIiISk2nTpnHJJZfQu3dvxo0bRygU\nCjolEZHatC/wnpm9YGb9rRq/LCWs0IpHVVhfDB8+nA0bNjBt2rSgUxEREdmjuXPncvbZZ3PkkUfy\n8ssvk5GREXRKIiK1yt1vBroBTwHDgU/N7K7o0O8xSWSLVo2rwvqib9++tG/fntGjRwedioiISKU+\n/vhjTj31VDp27Mj06dNp1qxZ0CmJiCSER0av+zo6FQAtgYlmdl8sr0/kYBg1rgrri1AoxC9/+Uum\nT5/ON998E3Q6IiIi5OXB3XdHHoutXbuW/v37k5GRwcyZM9lnn32CS1BEJIHM7HdmtgC4D5gLHObu\nVwJHA2fGso2EXqNV06qwPij+IDviiCsoLCxk/PjxQackIiINXF4e9O4Nt9wSeczLg++//54BAwbw\n/fffM336dLp27Rp0miLSAER7vi0zs+VmNrKc9Rlm9nx0/Ttm1iW6vLWZzTazrWb2SKn4JmY2zcw+\nid7H954YU2kFnOHu2e7+orvnA7h7ETA4lg0k8hqtGleFya70B9mll3bhkEMuZfTo0bqnloiIBCo3\nF8JhKCyMPL7+egFDhw5l2bJlvPTSS/To0SPoFEWkATCzEPAoMAA4BDjfzA4pE3YpsNHdDyJyT957\no8t3ALcAN5az6Qfc/adAD+BEMxsQQzqN3P2zMvndC+DuS2M5nkS2aNW4KjSzvc1sYrQiXWpmmbWZ\ncLyV/SDr1u1yFi9ezMKFC4NOTUREGrCsLEhPh1AI0tOd3Nw/8+abbzJmzBj69OkTdHoi0nAcCyx3\n95XuHgYmAKeViTkNGBudnwj0NjNz923uPodIwVXC3be7++zofBh4H+gYQy59y1kWS4FWIpGFVo2r\nQuAhYEa0Ij0CiPV1dcLuH2Rw5ZUH655aIiISuMxMyMmB2293Tj31Id5446/cf//9XHDBBUGnJiIN\nSwdgTanna6PLyo1x9wJgE9A6lo2b2d7AqUBOJTFXmtki4Cdm9lGpaRXwUcxHQmILrRpVhWbWAjiF\nyGAauHvY3b+PU24JUfxBdscdkcfs7OYl99TauXNn0OmJiEgDlpkJaWkP8MIL13Httddyww03BJ2S\niNQ/bcxsfqlpRKJ2bGapwHPAw+6+spLQZ4kUY1Oij8XT0e5+UVX2mVrNXGNmZlcCVwEHmFnpKrAZ\nkWu1YtUV+BYYbWZHAAuA37n7trglmwCZmZGp2PDhw3n++eeZPHky55xzTnCJiYhIg/bMM89w0003\nce655/Lggw/SgO/CIiK1Z72796xk/RdAp1LPO0aXlRezNlo8tQA2xLDvx4FP3f0flQW5+yYirWTn\nx7DNSiWiRSteVWEqcBTwT3fvAWwDdhuJxMxGFFfI3377bVySr219+/Zl//3354knngg6FRERaaBe\ne+01Lr74Yn7+858zduxYUlISOiixiEix94BuZtbVzNKB84jUEKVNAYZF588C3vA9jCxnZncSKciu\n3VMCZjYn+rjFzDZHpy3Fz6tyMLV+JnX3Te6+2t3Pd/fPSk3fVXFTa4G17v5O9PlEIoVX6X097u49\n3b1n27Zt45F+rQuFQlx22WW8/vrrrFixIuh0RESkgVm4cCFnnHEGhxxyCC+//DIZGRlBpyQiDVT0\nmqurgZlExmJ4wd2XmNntZjYkGvYU0NrMlgPXU6rhxcxWA38DhpvZWjM7xMw6An8iMorh+2b2gZld\nVkkOJ0Ufm7l78+jUrPh5VY6n1guteFWF7v41sMbMfhJd1Bv4uBZSTriLL76YUCjEk08+GXQqIiLS\ngKxatYoBAwbQqlUrXn31VVq0aBF0SiLSwLn7dHfv7u4Huvtfo8tudfcp0fkd7n62ux/k7seWvt7K\n3bu4eyt3b+ruHd39Y3df6+7m7ge7+5HRaY9fus3sbDNrFp2/2cxeMrMq3esiES1acasKgWuA8dFr\nvY4E7op3vkHo0KEDgwcP5umnnyYcDgedjoiINADr168nOzubcDjMjBkzaN++fdApiYjUJbe4+xYz\nOwnoQ6Ql7V9V2UAib1hc46rQ3T+Idg083N2HuvvG2sk28UaMGMG6det45ZVXgk5FRETquW3btjF4\n8GDWrFnDK6+8wsEHHxx0SiIidU1h9HEQ8Li7TwPSq7KBRF7tWuOqsD7Lzs6mU6dOPP7440GnIiIi\n9VhBQQHnnXce7733Hs899xwnnnhi0CmJiNRFX5jZY8C5wHQzy6CKtVMiC60aV4X1WfGgGLNmzWLV\nqlVBpyMiIvWQu3PllVcydepUHn30UYYOHRp0SiIiddU5RAblyI7eu7cV8PuqbCCRhVaNq8L67pJL\nLiElJUWDYoiISK248847efLJJ7n55pu54oorgk5HRKTOcvft7v6Su38aff6Vu8+qyjYSWejUuCqs\n7zp27MigQYN4+umnyc/PDzodERGpR8aOHcutt97KsGHDuP3224NOR0SkTjOzDDO7wMz+aGa3Fk9V\n2UbCCq14VIUNwYgRI/j666+ZOnVq0KmIiEg9kZOTw2WXXUafPn14/PHHMbOgUxIRqesmA6cBBcC2\nUlPMUmshqXJFuwqeCXQpvV93189qpfTv35+OHTvyz3/+k9NPPz3odEREJMktWrSIM844g4MPPpiJ\nEyeSnq7Lo0VEYtDR3fvXZAOJ7DpY46qwIUhNTeWKK67gtddeY9myZUGnIyIiSeyLL75g4MCBNGvW\njOnTp+uGxCIisXvbzA6ryQYSWWh1dPdz3f0+d3+weErg/pPG5ZdfTnp6Oo8++mjQqYiISJLavHkz\nWVmjWLfuUu66azYdO3YMOiURkWRyEvC+mS0zs4/MbJGZfVSVDSSs6yDRqtDdFyVwn0lpn3324Zxz\nzmHMmDH89a9/pVmzZkGnJCIiSSQ/P5++fW9l+fJ/kZLSiCuuSKFbN8jMDDozEZGkMaCmG0hki1aN\nq8KG5Oqrr2bLli2MGzcu6FRERCSJuDu//vWveffdxpg1oqgohXAYcv8/e3ceH1V1/3/89UlCCFAW\nN2gLCGhsRQtuAYm4BFAExKKIFrQuVawLWhQsClalKKJYakVRf65VixXFDQUKskRUoiWi4t6ili8g\nboCyKGT7/P6YCY4xQIaZuTeTvJ+Px33M3HvPPfc9EUY+ufeeUxh2MhGRtPJ/wFHA2e6+AnCgVTwd\nBFlo9QVygd7AiUD/6KtUo2vXruTl5XHHHXfg7mHHERGRNHH99dfz4IMPct55ueTkZJCZCdnZUFAQ\ndjIRkbRyJ5APDImubwTieq4nyEIr4aqwPjEzLr30Ut5//30WLFgQdhwREUkDDz30ENdddx3nnHMO\n9957LvPnw/XXw/z5um1QRCROh7v7MGALgLuvB+IatjXIQivhqrC+Oe2009hzzz254447wo4iIiK1\n3Lx58xg6dCjHHXfctrmy8vNh9GgVWSIiu6DUzDKJXBzCzPYCKuLpIMhCK+GqsL7Jycnh/PPPZ8aM\nGaxYsSLsOCIiUkstW7aMgQMHcsABBzB9+nQaNGgQdiQRkXQ3GXgaaGVm44GXgRvj6SDIQivhqrC+\nKSqC8vJRuHfj7rvvDjuOiIjUQqtWraJfv340a9aMmTNn0qxZs7AjiYikPXefCowiUlx9Cpzk7k/E\n00eQw7tXrQoHAX8K8PxppagIevWCkpIWZGQs4M47B3Dttd/RqFGjsKOJiEgtsWHDBk444QQ2bNjA\nyy+/rLmyREQSZGYjtrOrr5n1dfe/1rSvwK5oJaMqrE8KC6GkBMrLwb0BGzYcwsMPPxx2LBERqSVK\nS0sZNGgQ7733Hk8++SSdO3cOO5KISF3QNLrkARcBraPLhcCh8XSU8itayawK65OCgshwvCUlkJ1t\ntG27hltvfZrzzz+fjIwg7/gUEZHapnKurBdeeIEHH3yQ4447LuxIIiJ1grv/GcDMFgGHuvvG6PpY\nYGY8fQVx62DT6OsvgS7AjOj6icC/Azh/WsrPjwzHW1gIBQXGJ5/05owzHmLWrFn0798/7HgiIhKi\nyrmyxo4dyznnnBN2HBGRuqgVUBKzXkKcU1NZUJPhRqvCE2KqwqbATHc/OhXny8vL8+Li4lR0HYrS\n0lL22WcfcnNzWbhwYdhxRESSxsxed/e8XT2+rn3f78w//vEPzjzzTM4++2wefPBBzCzsSCIiNZLo\n932QzOxq4DQiY0wAnARMc/cJNe0jyHvQEq4K67MGDRowfPhwCgsLWbp0adhxREQkBIsWLeLcc8+l\nZ8+e2+bKEhGR5HP38cDvgPXR5XfxFFkQbKH1MPBvMxsbvcfxNeDvAZ4/7Z1//vk0bdqUSZMmhR1F\nREQC9uGHH3LSSSeRm5vLk08+SXa2pqIUEUkld1/q7rdFlzfiPT7IUQcTrgrru+bNmzN06FCmTZvG\nypUrw44jIiIB+fLLL+nXrx8NGjRg5syZtGjRIuxIIiKyE4EOX5doVSgwfPhw3J3JkyeHHUVERALw\n3XffMWDAAD799FNmzJhBhw4dwo4kIiI1oHHC00y7du0YNGgQ99xzDxs3bgw7joiIpFBFRQXnnHMO\nr776KlOnTuXwww8PO5KISL1gZpea2W6J9KFCKw2NHDmSDRs2cO+994YdRUREUujqq6/m8ccf55Zb\nbmHgwIFhxxERqU9aAUvM7HEz62O7MPpQYIVWMqpCiejatSsFBQVMmjSJrVu3hh1HRERS4N577+Wm\nm27iwgsvZMSIEWHHERGpV9z9T8B+wP3AOcB/zexGM9u3pn0EPbx7QlWhfG/MmDF8+umnPPzww2FH\nERGRJJs7dy4XXXQRffr04fbbb9cw7iIiIfDIhMOfRZcyYDdguplNrMnxQY46mHBVKN879thjycvL\n4+abb6asrCzsOCIikiTvvPMOgwYN4sADD2TatGlkZWWFHUlEpN4xs+Fm9jowEXgF6OTuFwGHAafU\npI+gRx1MqCqU75kZY8aM4aOPPmL69OlhxxERkSRYs2YN/fr1o2nTpsycOZNmzZr9qE1REUyYEHkV\nEZGU2R0Y6O7Hu/sT7l4K4O4VQP+adBDkM1oJV4XyQwMGDKBjx47ceOONRGpYERFJV5sGBfgAAAAg\nAElEQVQ3b+bEE09k3bp1PP/887Rp0+ZHbYqKoFcvuOaayKuKLRGRlMlx9xWxG8zsZgB3f78mHQR5\nRSvhqlB+KCMjg9GjR/P2228zc+bMsOOIiMguKi8v5/TTT+eNN95g2rRpHHLIIdW2KyyEkhIoL4+8\nFhYGGlNEpD45rpptfePpIMhCK+GqUH5s8ODBtGvXjvHjx+uqlohImho5ciQzZsxg8uTJnHDCCdtt\nV1AA2dmQmRl5LSgILKKISCCig+Z9aGbLzeyqavY3NLNp0f2vmVn76PY9zGyhmW0yszuqHDPezFaa\n2aYanP8iM3sb+KWZLYtZPgGWxfNZgiy0Eq4K5ccaNGjAqFGjePXVV3nxxRfDjiMiInG6/fbbue22\n27j88ssZNmzYDtvm58P8+XD99ZHX/PyAQoqIBMDMMoEpRGqEA4AhZnZAlWbnAevdPRe4Fbg5un0L\ncA1wRTVdPwd0rWGMR4ETgRnR18rlMHf/bc0/DViqr4KY2UXAxcA+wEcxu5oCr8QbuKby8vK8uLg4\nFV3XOt999x0dOnSgU6dOvPDCC2HHERGJi5m97u55u3p8On/fP/fcc5x00kmceOKJPPnkk2RmZoYd\nSUQkZXb2fW9m+cBYdz8+uj4awN0nxLSZE21TZGZZRAbZ2ys66B5mdg6Q5+6XVNP/Jnf/STI/044E\ncUUraVWhVK9Ro0ZcccUVzJs3j1deeSXsOCIiUgOvv/46gwcP5tBDD2Xq1KkqskSkPtjTzIpjlt9X\n2d8aWBmzviq6rdo27l4GfAPskayAZvZy9HWjmW2IWTaa2YZ4+kp5oeXu37j7/9x9iLuviFnWpfrc\n9clFF11Ey5Ytue6668KOIiIiO7Fy5UpOPPFE9txzT5577jmaNGkSdiQRkSB85e55Mcs9YQeqyt2P\njL42dfdmMUtTd//xnBs7kPJCK5lVoWzfsmVNyMubzvz5m3nppZfCjiMiItuxYcMGTjjhBDZv3sys\nWbP46U9/GnYkEZHaYjXQNma9TXRbtW2itw42B9YGki5OKZ9uPrYqTPW56qvKeVVKSo4EFnDZZX/k\n9dePCjuWiIhUUVpayqmnnsr777/P7NmzOfDAA8OOJCJSmywB9jOzDkQKqsHA6VXazADOBoqAQcCC\nyuezksHMNgIOWDW7PZ6rWkGOOigp8v28KkZGRkOWLm1KoSZXERGpVdydYcOGMXfuXO6++26OPfbY\nsCOJiNQq0WeuLgHmAO8Dj7v7u2Y2zsx+HW12P7CHmS0HRgDbhoA3s/8BfwXOMbNVlSMWmtlEM1sF\nNI5uH7uDDE1jbhWsusR162DKr2glsyqU6lXOq1JSAtnZRuPG73DddYspLCzErLofu4iIBO2WW27h\n3nvvZfTo0Zx33nlhxxERqZXcfRYwq8q2a2PebwFO3c6x7bezfRQwqibnN7OX3f3ImBqmal81rl2C\nuHVQtwymWOW8KoWFUFBgFBf35g9/+AMLFy6kZ8+eYccTEan3nnjiCa688kp+85vfcMMNN4QdR0RE\ntiOZjz0FMY9W0qrCeKTzvCqJ2rJlC7m5uXTo0IFFixbpqpaI1Gp1fR6tRYsWcdxxx9GlSxfmzZtH\nTk5O2JFEREKR6Pd9ugliePftDZHYTLcNpkZOTg6jR4/m5ZdfZu7cuWHHERGpt959910GDBjAPvvs\nw4wZM1RkiYikCTPLMbMRZvaUmT1pZpebWVxf4hoMo44aOnQo7du3Z/To0VRUVIQdR0Sk3lm9ejV9\n+/YlJyeH2bNns/vuu4cdSUREau5h4EDgduAO4ADgkXg6CKzQSkZVKDXXsGFDrr/+et544w0ef/zx\nsOOIiNQr33zzDf369WP9+vXMmjWL9u3bhx1JRETi8yt3P8/dF0aX84kUXjUW5BWthKtCic/pp59O\n586d+dOf/kRJSUnYcURE6oWSkhJOOeUU3nvvPZ588kkOOeSQsCOJiEj8lppZt8oVMzsciOuB4CAL\nrYSrQolPRkYGEyZM4KOPPuLee+8NO46ISJ1XUVHBueeey/z587nvvvvo3bt32JFERCQOZva2mS0D\nDgMWm9n/ovNzFQFxDeSR8uHdYyw1s27u/irsWlUo8evbty/HHHMM48aN4+yzz+YnP/lJ2JFEROqs\nMWPGMHXqVG644QbOPvvssOOIiEj8+iero5Rf0UpmVSjxMzNuuukmvvjiC2699daw44iI1FmTJk3i\n5ptv5oILLmDMmDFhxxERkV3g7isqF2AD0ApoF7PUWBBXtJJWFcqu6datGyeffDK33HILF154IXvt\ntVfYkURE6pR7772XK664glNPPZUpU6Zo/kIRkTRnZkOB4UAb4E2gG5ELRT1r2kcQ82glrSqUXTd+\n/Hg2b97M+PHjw44iIlKnPPbYY1xwwQX07duXf/zjH2RmZoYdSUREEjcc6AKscPcewCHA1/F0EOTw\n7kOBRcAc4M/R17FBnb++69ixI0OHDmXKlCn85z//CTuOiEid8Pzzz3PmmWdy5JFHMn36dLKzs8OO\nJCIiybHF3bcAmFlDd/8A+GU8HQQ56mDCVaEkZty4cTRq1Igrrrgi7CgiImlvwYIFDBo0iIMPPpjn\nn3+exo0bhx1JRESSZ5WZtQCeAV4ws2eBFfF0EGShlXBVKIlp1aoVf/rTn3juueeYN29e2HFERNLW\nnDlzOOGEE8jNzWX27Nk0a9Ys7EgiIpJE7n6yu3/t7mOBa4D7gZPi6SPIQivhqlASN3z4cDp06MDl\nl19OWVlZ2HFERNLOjBkz+PWvf83+++/PwoUL2XPPPcOOJCIiSWZmOWY2wsyeAv4A7EuctVNghVYy\nqkJJXMOGDRk69H7eeac/V1/9fNhxRETSyhNPPMEpp5zCQQcdxPz58zWKq4hI3fUwcCBwO3AHcADw\nSDwdBDZhsZnlABcDRwIOvMwuFHpmlklkouPV7q6h4+NUVAQ33FAAHMXEiaUce+wmjjtOkxiLiOyI\nu3PbbbcxYsQI8vPzmTVrFs2bN09a/0VFUFgIBQWQn5+0bkVEZNf9yt0PiFlfaGbvxdNBkLcOJlwV\nRg0H3k9irnqlsBBKSoxIjZ3F9de/FHIiEZHarbS0lD/84Q9cfvnlnHTSSbzwwgtJL7J69YJrrom8\nFhUlrWsREdl1S82sW+WKmR1O5GJPjQV2RYskVIVm1gY4ARgPjEhmuPqioACys6GkBKCCxYtv5L//\nzWW//fYLOZmISO3zv//9jyFDhvDqq68yYsQIJk6cmPR5siK/AIPy8shrYaGuaomIhMXM3iZy910D\nYLGZ/V90197AB/H0FWShtdTMurn7q7BrVSHwN2AU0DTZ4eqL/HyYPz/yP/JOnTZxxhnLuPTSS5k9\nezZmFnY8EZFaoby8nPvuu4+rrrqKiooKpk2bxmmnnZaSc8X+Aiw7O7IuIiKhSdqjSSkvtJJVFZpZ\nf+ALd3/dzAq20+b3wO8B9t5770Ri12n5+ZW/Ld2DcePGcdlll/H0008zcODAsKOJiISqrKyMmTNn\nct111/HWW29x9NFH88ADD7Dvvvum7JyxvwDTM1oiIuFy922jopvZQcBR0dWX3P2tePoyd09mth+f\nwKzdjvbHfpid9DMBOBMoA3KAZsBT7v7b6trn5eV5cXG8F8zqn7KyMvLy8li3bh3vv/8+TZo0CTuS\niNQzZva6u+ft6vGJft+ff/75lJSU8NVXX1FUVMT69etp3749EydOZNCgQbraLyKSJIl+3wfJzIYD\n5wNPRTedDNzj7rfXtI+UD4bh7isqF6AFcGJ0aVHTIivaz2h3b+Pu7YHBwILtFVlSc1lZWUyZMoWV\nK1dyww03hB1HRCRwb775Ji+++CKrV69mwIABPPPMM/z3v//l1FNPVZElIlJ/nQcc7u7Xuvu1QDci\nhVeNBTm8e9Wq8B9mFldVKKnRvXt3zjnnHCZNmsTZZ5/N/vvvH3YkEZHALFmyJOwIIiJS+xhQHrNe\nHt1WY0EO755wVVjJ3Qs1h1Zy3XzzzTRp0oRLLrmEVN9OKiIiIiJSyz0IvGZmY81sLPAqcH88HQRZ\naCVcFUrqtGzZkvHjxzN//nymTZsWdhwRERERkVBY5L7xJ4DfAeuiy+/c/W/x9BPk8O6VVeHT0fWT\niLMqlNS64IILePDBBxk+fDi9e/dm9913DzuSiIiIiEig3N3NbJa7dwKW7mo/gVzRSlZVKKmVmZnJ\nfffdx9q1a7niiivCjiMiIiIiEpalZtYlkQ4CKbQ88tDPLHdf6u6To8sbQZxb4nPQQQcxatQoHnzw\nQebNmxd2HBERERGRMBwOFJnZR2a2zMzeNrNl8XQQ5DNaCVeFEoxrrrmG3NxcLrjgAr799tuw44iI\niIiIBO14YF+gJ5GpqfpHX2ssyEIr4apQgtGoUSPuuecePv74Y8aOHRt2HBERERGRQMXOBVxlXuAa\nC3IwjOMDPJckqEePHgwdOpRJkyYxePBgDj300LAjiYiIiIgEwsxygIuBIwEHXgbucvctNe0jsCta\nyagKJVgTJ06kRYu+9O//Ci+9VBZ2HBERERGRoDwMHAjcDtwBHAA8Ek8HgRVaZpZjZiPM7Ckze9LM\nLo9WilJLffDBbmza9Axr1lxEz55OUVHYiURERESkLjOzPmb2oZktN7Orqtnf0MymRfe/Zmbto9v3\nMLOFZrbJzO6ocsxh0ceWlpvZ5OiI6DvzK3c/z90XRpfziRReNRbkM1oJV4USrMJCKC/PArIoK4Op\nU1eHHUlERERE6igzywSmAH2J1ApDzOyAKs3OA9a7ey5wK3BzdPsW4BqgujmK7gLOB/aLLn1qEGep\nmXWLyXY4UFzzTxNsoZVwVSjBKiiA7GzIzHSgjJkz/8iWLTW+LVVEREREJB5dgeXu/rG7lwCPAQOq\ntBkAPBR9Px3oZWbm7pvd/WUiBdc2ZvYzoJm7vxqdcuph4KQaZDkMWGxm/zOz/wFFQJd4BvQLcjCM\npWbWzd1fhV2rCiVY+fkwfz4UFho5OW8xYsQ/ue66ttx88807P1hEREREJD6tgZUx66uIjFxebRt3\nLzOzb4A9gK920OeqKn22rkGWmlz12qEgC63KqvD/out7Ax+a2dtE5jTuHGAWqaH8/MgC3fjgg99z\nyy23MGDAAI444oiwo4mIiIhIetnTzGIvtNzj7veElmYHkjFoX5CFVsJVoYTrL3/5C3PnzuXss8/m\nzTffpEmTJmFHEhEREZH08ZW75+1g/2qgbcx6m+i26tqsMrMsoDmwdid9ttlJnykR+vDuGuY9fTRt\n2pS///3vfPTRR4wYMSLsOCIiIiJStywB9jOzDmaWDQwGZlRpMwM4O/p+ELAg+uxVtdx9DbDBzLpF\nRxs8C3g2+dF/LMjBMKQOOOaYY7jyyiu55557eOqpp8KOIyIiIiJ1hLuXAZcAc4D3gcfd/V0zG2dm\nv442ux/Yw8yWAyOAbUPARwet+Ctwjpmtihmx8GLgPmA58BEwe2dZLOK3ZnZtdH1vM+saz+exHRSA\naS0vL8+LizXWRiqUlpbSvXt3li9fzltvvUXbtm13fpCIyHaY2es7uZVkh/R9LyKSHhL9vg+Smd0F\nVAA93b2jme0GzHX3LjXtI8gJixOuCqV2aNCgAY8++iilpaX89re/pby8POxIIiIiIiLJdLi7DyM6\nXLy7rwey4+kgyFsH7wTygSHR9Y1EJiSTNJSbm8uUKVNYtGgREyZMCDuOiIiIiEgylUYnUHYAM9uL\nyBWuGguy0Eq4KpTa5cwzz2TIkCGMHTuWoqKisOOIiIiIiCTLZOBpoKWZjQdeBm6Mp4MgC62Eq0Kp\nXcyMu+66i7Zt2zJ48GDWrt3RyJoiIiIiIunB3acCo4AJwBrgJHd/Ip4+giy0Eq4KpfZp3rw5jz/+\nOGvWrOGss86iokK1s4iIiIikP3f/wN2nuPsd7v5+vMcHOY9WwlWh1E5dunThb3/7G7NmraNv3xfR\nXYQiIiIiks7MLM/MnjazpWa2zMzeNrNl8fSRlapw1XH3D4APgjynBOPggy8iM/M85s7N5MUXy1m4\nMJP8/LBTiYiIiIjskqnAH4G32cXHnQIrtMwsD7gaaBc9rwHu7p2DyiCp8+KLRmRsE2Pr1lJmzNhM\nfn6zsGOJiIiIiOyKL919RiIdBHlFK+GqUGqvggLIzjZKSpzy8lJmz76SceMm06BBg7CjiYiIiIjE\n6zozuw+YD2yt3OjuT9W0gyALrYSrQqm98vNh/nwoLDS2bn2JP//5bkaObMDkyZPDjiYiEoqiIigs\njPwiSrdSi4iknd8B+wMN+P4ikQO1stBKuCqU2i0/v/IfE8ezYcPl3HrrrRx88MGce+65YUcTEQlU\nURH06gUlJZCdHflFlIotEZG00sXdf5lIB0EWWglXhZI+Jk6cyNtvv81FF11Ex44dyde/MESkHiks\njBRZ5eWR18JCFVoiImlmsZkd4O7v7WoHQRZaCVeFkj6ysrKYNm0aXbp0YeDAgRQXF9O6deuwY4mI\nBCLy3Or3V7QKCsJOJCIiceoGvGlmnxC5Gy/ugfyCLLQSrgolvey+++7MmDGDbt26cfLJJ7No0SJy\ncnLCjiUiknLfP7eqZ7RERNJUn0Q7CLLQSrgqlPRz4IEH8sgjj3DyySdz3nnn8Y9//AMzCzuWiEjK\nff/cqoiIpBt3X5FoH0EWWglXhZKeTjrpJMaPH8/VV19Nbm4uf/7zn8OOJCIiIiLyI2b2srsfaWYb\niYwnsW0XkYtENZ4oNrBCKxlVoaSv0aNH89FHHzFu3Dj23XdfzjrrrLAjiYiIiIj8gLsfGX1tmmhf\nGYnH2TEzezn6utHMNsQsG81sQ6rPL7WDmXH33XfTq1cvhg4dSmFhYdiRRERERESqZWY312TbjqS8\n0IqtCt29WczSNJ5Lb5L+GjRowPTp08nNzeXEE29kxIgvKCoKO5WIiIiIyI8cV822vvF0kPJCq1Iy\nqkJJfy1atOCGG+azadOz3Hrr7vTsWaFiS0RERERqBTO7yMzeBn5pZstilk+AZfH0FVihRRKqQqkb\nPvzwZ2Rk5ABZbNlSwezZ34UdSUREREQE4FHgRGBG9PVE4ALgMHf/bTwdBfGMVtKqQqkbCgqgYUMj\nI6MCKOG550by3XcqtkREREQkXO7+jbv/z92HuPuK6IB+U9x9Xbx9BTHq4KPAbGACcFV028+BD3cl\nsKS/7yfyzKCsbDHXXXc3Q4Z8yvTp08nKCnLGARERERGRndqlSWBT/q9ad/8G+AYYUrnNzJ5290NT\nfW6pvb6fyPNYdtttMpdeeikXXHAB9913nyY0FhEREZHa5N5dOSjIZ7Ri6V/Sss0ll1zCtddeywMP\nPMDIkSNx950fJCIiIiKSIrGD9rn7nVW31URY92ntUlUoddfYsWNZv349t956Kzk5OYwfP15XtkRE\nREQkLMcBV1bZ1reabdsVWKFlZje7+5Xww6qwcpvUb2bGbbfdxtatW5kwYQKNGjXimmuuCTuWiIiI\niNQjZnYRcDGwr5lVDtxnwE+AxfH0FeQVrYSrQqnbzIy77rqLrVu3cu2119KwYUNGjRoVdiwRERER\nqT9iB/K7ku8fedoY70B+KS+0klkVSt2XkZHB/fffz9atW7nyyivJzs7msssuCzuWiIiIiNQDlQP5\nmdkHwDmx+8wMdx9X076CHt49oapQ6ofMzEwefvhhSktLufzyy1m+fC9atz6DgoLKkQpFRERERFJq\nU8z7HKA/8H48HQQ2vHsyqkKpPxo0aMA///lP+vYdx5QpJ2NWQU5OBvPnq9gSERERkdRy90mx62b2\nF2BOPH0EObz7JmBzdCkn8nxW+wDPL2mmQYMG9OgxFmiIewZbtpSzcKGGfhcRERGRwDUG2sRzQGCD\nYSSjKpT6p2fPTBo1crZsKcd9K++++wDuwzT0u4iIiIikjJm9DVT+hj8T2AuI6068sCYshl2oCqX+\nyc+H+fONG24wTj55Co8+eikXXngh5eXlYUcTERERkSQzsz5m9qGZLTezq6rZ39DMpkX3v2Zm7WP2\njY5u/9DMjo/ZPtzM3jGzd82spqOs9QdOjC69gZ+7+x3xfJYg59FKuCqU+ik/H/LzM3C/gquvXs+E\nCRP48ssvefTRR8nJyQk7noiIiIgkgZllAlOITAu1ClhiZjPc/b2YZucB690918wGAzcDvzGzA4DB\nwIHAz4F5ZvYLoCNwPtAVKAH+ZWbPu/vyHWVx9xWJfp4g59HqH/O+DPjc3csCPL+kOTPjxhtvpFWr\nVlx22WX06dOHZ599lubNm4cdTUREREQS1xVY7u4fA5jZY8AAILbQGgCMjb6fDtxhkWdKBgCPuftW\n4BMzWx7trw3wmrt/G+3zRWAgMHFHQcysIXAKkTElttVM8QzkF9itg+6+ImZZrSJLdtXw4cN59NFH\nWbx4Mccccwxr1qwJO5KIiIiIJK41sDJmfVV0W7VtovXEN8AeOzj2HeAoM9vDzBoD/YC2NcjyLJHi\nrYzvB/TbHM+HCfLWwYSrQpFKQ4YMYY899mDgwIF0796duXPnkpubG3YsEREREdm+Pc2sOGb9Hne/\nJ5UndPf3zexmYC6RQulNIiOg70wbd++TyLmDHAwj4apQJFbv3r1ZsGABGzdupFu3brz00kthRxIR\nERGR7fvK3fNilqpF1mp+eLWpTXRbtW3MLAtoDqzd0bHufr+7H+buRwPrgf/UIOtiM+tUw89VrSCf\n0Uq4KhSpqmvXrhQVFdG/f3969erFqFFP06TJCRQUaGJjERERkTSzBNjPzDoQKZIGA6dXaTMDOBso\nAgYBC9zdzWwG8KiZ/ZXIYBj7Af8GMLOW7v6Fme1N5PmsbtsLEDOAXxbwOzP7GNgKGODu3rmmHybI\nQmuxmXVy97d35WAzaws8DLQi8uHvcffbkhlQ0lNubi5FRUX07n0d48f3wKycnJwM5s83FVsiIiIi\nacLdy8zsEiJz7WYCD7j7u2Y2Dih29xnA/cAj0cEu1hEpxoi2e5zIwBllwDB3r7xF8Ekz2wMojW7/\negcx+u9gX1xSXmglsSosA0a6+1Izawq8bmYvVBnuUeqp3XbbjQEDbuX118E9k+++K2POnHLy8xuG\nHU1EREREasjdZwGzqmy7Nub9FuDU7Rw7Hhhfzfaj4jj/CgAzOxX4l7tvNLM/AYcC1wM1HvY9iGe0\nKif76gvkEpnw68SY7TXi7mvcfWn0/UbgfX48ConUY716ZZKTk0FGRgVQwkMP/Y7ly3c4RYKIiIiI\nSHWuiRZZRwLHErmSdnc8HaS80Koc0p3IOPbrou/PBG4Fdt+VPqMzQB8CvJakmFIH5OfD/PnGDTdk\nMHnye2zcOJcuXbowe/bssKOJiIiISHqpvO3wBCKPLM0EsuPpIMhRBxOuCgHM7CfAk8Bl7r6hyr7f\nm1mxmRV/+eWXSQkt6SU/H0aPhksvzaO4uJj27dtzwgknMGHCBNw97HgiIiIikh5Wm9n/A34DzIpO\nVRVX7RRkoZVwVWhmDYgUWVPd/amq+939nsrhIvfaa6+EA0t6a9++Pa+88gqDBw9mzJgxnHbaaWza\ntCnsWCIiIiJS+51GZFCO46ODZ+wO/DGeDoIstBKqCs3MiFwFe9/d/5qijFLHNG7cmKlTp/KXv/yF\np556iq5du/LOO++EHUtEREREajF3/9bdn3L3/0bX17j73Hj6CLLQSrQq7E7k2a6eZvZmdOmXgpxS\nx5gZI0eO5IUXXmDdunV07dqVBx98ULcSioiIiEjKBDaPlrt/CzwVs74GWBPH8S8TGRJeZJf07NmT\nN998kzPOOINzzz2Xxx9fyeGHX8nxxzfUfFsiIiIiklRBXtESCd1Pf/pT5s6dy9Ch9/Ovf13Bn/+c\nSc+eFRQVhZ1MRERERGoLMzs1OncvZvYnM3vKzA6Npw8VWlLvZGZmss8+55KRkQNksWVLORMmFOlW\nQhERERGpVN2I6XfF00FghVYyqkKRZCkogIYNM8jMdDIyynnuuRH069ePNWtqfDeriIiIiNRdaT+P\nVlxVoUiyRCY3huuvN156qSF33PFbCgsL6dSpE08//XTY8UREREQkXPVrHi2RZKqc3PiII4xhw4bx\nxhtv0L59ewYOHMi5557Lxo0bw44oIrVMURFMmICe6xQRqfvqzzxaIqm2//77s3jxYq6++moeeugh\nOnXqxAsvvBB2LBGpJYqKoFcvuOaayKuKLRGRuqu+zaMlknLZ2dnccMMNvPTSS+Tk5NC7d2/OPfdc\n1q9fH3Y0EQlZYSGUlEB5eeS1sDDsRCIikippNepgMqpCkaAcccQRvPnmm1x11VU8/PDD7LffWZx5\n5nv6DbZIPVZQANnZkJkZeS0oCDuRiIikkEYdFEmVnJwcJkyYwL33vsO6dY/zj3/8gqOO2srMmevC\njiYiIfh+EJ3IqyY6FxGp0zTqoEiqffbZ/tvm3Covz+CUU27nzjvvpLy8fKfHikjdUjmIjoosEZE6\nr3J8icFo1EGR1IjcLmRkZkJOTiadOn3FsGHD6NatG8XFxWHHExEREZHkqxxfonc6jTq4y1WhSBhi\nbxdasCCDf/97Mo8++iirVq2ia9euDBs2jK+//jrsmCIiIiKSPN8BTYAh0fUGQFz/4Atj1MFdrgpF\nwhJ7u5CZMWTIED744AMuueQS7r77bvbbbz/uuusuysrKwo4qIiIiIom7E+jG94XWRmBKPB0EWWgl\nXBWK1CbNmzdn8uTJFBcXc+CBB3LxxRdz8MEH87e/vaYJTUVERETS2+HuPgzYAuDu66nFg2EkXBWK\n1EaHHHIICxcu5Mknn2T9+v25/PJOjBlTTs+eFSq2RERERNJTqZllAg5gZnsBFfF0EGShlXBVKFJb\nmRkDBw7kwgsfwywHyGTLlnJGjnyOL7/8Mux4IiIiIhKfycDTQEszGw+8DEyIp4MgC62Eq0KR2u7Y\nY7PIyckgM9PJzHReffUm9tlnH6677jq++eabsOOJiIiISA24+1RgFJHiag1wktkgoOgAABxtSURB\nVLs/Hk8fQRZaCVeFIrXd9yMUGi+9lM27795Hnz59GDduHPvssw+33HIL3377bdgxRURERGQHzOwh\n4DN3n+LudwCfmdkD8fQRWKGVjKpQJB3EjlDYsWNHnnjiCV5//XUOP/xwRo0aRW5uLnfddRclJSVh\nRxURERGR6nWOjpQObHvs6ZB4Ogis0EpGVSiSrg499FBmzZrFokWL2Hfffbn44ov55S9/yZVXPsP1\n15dp0AwRERGR2iXDzHarXDGz3YGsuDpIeqTtS7gqFEl3Rx11FIsWLWLWrFk0btyLiRN7c+21cMwx\npSxY8F3Y8UREREQkYhJQZGbXm9n1wGJgYjwdBFloJVwVitQFZkbfvn0544x7ycjIAbIoLYUTT5zE\nhAkTNGiGiIiISMjc/WFgIPB5dBno7o/E00eQhVbCVaFIXdKjh9GwYQaZmdCwYQadO69jzJgxtGvX\njjFjxvDpp5+GHVFERESkXjKzA9z9PXe/I7q8Z2YF8fQR5GAYCVeFInXJ9yMUwsKFmRQV/ZXi4mKO\nPfZYbrrpJtq3b89ZZ53FG2+8EXZUERERkfrmcTO70iIamdntxDliurl7irJVOVG0KqyyrcDdC1Nx\nvry8PC8uLk5F1yIp99FHHzF58mTuv/9+Nm/eTI8ePejXbxwlJUfQo0cG+flhJxRJHjN73d3zdvV4\nfd+LiKSHRL/vg2RmTYCbgcOApsBU4GZ3r/E8wEHeOphwVShSX+y7777cdtttrFq1iokTJ/LOO035\n4x8P5eqrKzjmmFLmzNkQdkQRERGRuqwU+A5oBOQAn8RTZEGwhdbhQFsiz2YtAT4Fugd4fpG006JF\nC/74xz/yhz889YOBM/r3/wvnnnsuS5YsCTuiiIiISNKYWR8z+9DMlpvZVdXsb2hm06L7XzOz9jH7\nRke3f2hmx8dsv9zM3jWzd8zsn2aWU4MoS4gUWl2Ao4AhZvZEPJ8lyEIr4apQpL7q1SszZuCMTPr1\na8y0adPo2rUreXl53H///Xz77bdhxxQRERHZZWaWCUwB+gIHECluDqjS7DxgvbvnArcSub2PaLvB\nwIFAH+BOM8s0s9bAH4A8d/8VkBlttzPnufu17l7q7mvcfQAwI57PE2ShlXBVKFJf/XDgjAyeffYq\nPv30U26//Xa+++47hg4dys9+9jN+//vfs3jxYhYvdiZMQBMhi4iISDrpCix394/dvQR4DBhQpc0A\n4KHo++lALzOz6PbH3H2ru38CLI/2B5EppRqZWRbQmMidddUys1EA7l5sZqdW2d0xng8TZKGVcFUo\nUp/l58Po0WwbCKN58+ZccsklvPPOO7z44oucfPLJTJ06le7dR3LkkVu4+uoKevasULElIiIi6aI1\nsDJmfVV0W7Vt3L0M+AbYY3vHuvtq4C/A/wFrgG/cfe4OMsRe7RpdZV+fmn2MiJQXWsmsCkXkx8yM\no48+mr///e989tlnnHLK7bg3wD2DLVvKOeusB/jnP/+pWwtFREQkbHuaWXHM8vtUn9DMdiNytasD\n8HOgiZn9dkeHbOd9des7FMQVraRVhSKyY02bNmXkyDwaNcoiM9PJyoJNm57n9NNPp2XLlpxxxhnM\nmDGDrVu3hh1VRERE6p+v3D0vZrmnyv7VRAbPq9Qmuq3aNtFbAZsDa3dw7LFExob40t1LgaeAI3aQ\n0bfzvrr1HQqi0EpaVSgiO/f981zGokUNWL16OgsWLOCMM87gX//6FwMGDKBVq1b87ne/Y86cOZSW\nllJUhJ7pEhERkbAtAfYzsw5mlk3kgk3VR41mAGdH3w8CFnhkYuAZwODoqIQdgP2AfxO5ZbCbmTWO\nPsvVC3h/BxkOMrMNZrYR6Bx9X7neKZ4PkxVP412UtKpQRGomP5+YSY0z6NGjBz169OCOO+5g/vz5\nPPbYYzz11FP8/e9/p1mz49m8eQbuWTRsaMyfb5oQWURERALn7mVmdgkwh8jogA+4+7tmNg4odvcZ\nwP3AI2a2HFhH9O65aLvHgfeAMmCYu5cDr5nZdGBpdPsbQNUrabEZMpP1eSxSAKaOmZUDm4lcvWoE\nVD4oYkCOuzdIxXnz8vK8uLg4FV2L1Albtmxhzpw5XHvtdyxbNojI711K6dz5SUaPhr59+9K8efOw\nY0o9YGavu3verh6v73sRkfSQ6Pd9ukn5Fa1kVoUikjw5OTkMGDCAli2hVy9n69YKzJyVKx9hyJBZ\nNGjQgB49enDSSSfx61//mtatqw76IyIiIiLbE8StgyJSi0We6TIKC42Cgmy6dp3Ba6+9xjPPPMMz\nzzzDxRdfzMUXX0ynTp3o27cvbduextdfH0SvXlm6xVBERERkO1J+62BYdCuJSOLcnQ8++IDnnnuO\nf/3rXyxaVEp5+Rwgm4yMckaOnMXFFx9C+/btw44qaUy3DoqI1A/17dbBICcsFpE0Y2Z07NiRUaNG\nsWDBAv70p3lkZOQAWVRUZHLLLf+mQ4cO/OIXv+CCCy5g2rRpfP7559uO12iGIiIiUl/p1kERqbHj\nj2/IxIlQUgLZ2Zk88MCFfPZZq20jGd5zT2QQnwMOOICOHc/lueeGU16eSXa2MX8+utVQRERE6g0V\nWiJSY5VzdBUWQkGBkZ/fDriMyy67jLKyMpYuXcrChQtZsGABM2ZsoLQUwPjuuzJGjpzN8OHf0r17\nd9q0aRPuBxERERFJMT2jJSIpsWhRKb17Z1BSAmalZGX1oaTkRQD23ntvunfvzhFHHEH37t3p1KkT\nS5ZkRQs4Xfmqb/SMlohI/VDfntHSFS0RSYmjj27AwoWVV78yyct7gTfffJNXXnmFxYsX8+KLL/LP\nf/4TgEaNerJ160zcG9CggTNt2loGDGhJZAJ3ERERkfSjK1oiEgp3Z8WKFSxevJjJk5vw2msnUDlp\nMlxLq1YPkpeXR5cuXcjLyyMvL49WrVoBkcE1dPWr7tAVLRGR+kFXtEREAmBmtG/fnvbt29OhA/Tq\nBSUlTlZWBsOGHcbatWtYsmQJs2bNovIXQm3btqVDh9NZvPh6Kioyyc6GefOge3cNoCoiIiK1iwot\nEQnd94NsGAUFmeTnDwIGAbBp0ybeeOMNlixZQnFxMS+8sBdlZQZksGVLKT17jicv7wU6d+5M586d\nOeigg/jVr35Fs2bNAF39EhERkXDo1kERSStFRdCrl1NSAhkZ5fz617fx5ZczeOutt/jmm2+2tWvf\nvj0/+9lAliyZQHl5FtnZzrPPbub445uFmF6qo1sHRUTqB906KCJSi0Wufln0KlUW+fkjgZG4OytX\nrmTZsmW89dZbvP3227z44t6UlWUAGWzdWkqfPhNo2fIBOnbsyP7770/Hjh23vW/Tpg2vvZahq18i\nIiKSFCq0RCTt5Of/uBAyM/bee2/23ntv+vfvD8Re/XIyMzM4//xf8d13/fnggw94/PHHWb9+/bbj\nGzQ4mrKyf+GeTVZWOcOHP8dxx/2E3Nxc2rVrR1bWD78udUuiiIiI7IgKLRGps3549SuT/PwzgDOA\nyKiHX3zxBe+//z4ffPABjz66Ny+9lA1kUlZWwaRJxUyadBMAWVlZtGvXjtzcXPbdd1/MjuDee39D\nWVkm2dmuATlERETkR1RoiUidVt3VL4hcAWvVqhWtWrWioKCAgw6qHPkQsrOzeOyxEey2Wz+WL1/O\nRx99tO31tdde4+uvmwG/AYwtW8o45phxdOjwGO3atfvBsvfee9OuXTtWrmzD4sXZuvolIiJSj6jQ\nEhEhduRDKCgw8vP3AvbiqKOO+lHbefM2c+KJGZSUVJCZCaee2oqyskNZsWIFs2fPZs2aNTGtuwHz\ngQzMSunadQy/+tVGfv7zn9O6desfvLZs2VLPiYmIiNQRKrRERKK2d/WrqmOPbcKCBZVFWQb5+ZcA\nl2zbv3XrVlauXMmKFSu4887mPP10Du4ZuMPKlfvyf/93I5999hlVR33NzDySioq5uDcgI6Oc/v1v\npVOnTbRq1YqWLVvSsmXLbe933313FWUiIiK1mAotEZFdsKOirGHDhuTm5pKbm0vjxjB79ve3JE6f\nfgn5+ZdQVlbG559/zurVq/n0009ZvXo106fnUlgYeU6sogIWLCjn+ecnUFFR8aNzZGR0p6LiBaAB\nGRllHHvsTRx44Ab22msv9thjD/bYYw923333ba/Ll+9FUVFDFWUiIiIBUaElIpJCP7wl8fsiJysr\ni9atW9O6dettbQ899IfPic2dezWHHz6adevW8fnnn/PFF19se3366f158cVs3CNF2ZIlTXjllb+w\nefPmalJU3r5Yhlkp++zze9q2XVVtQbbbbruxalVbPvzwZxQUQI8eOTRv3vxHoy5W0uiLIiIi1dOE\nxSIitUhNC5fI0PWVRVmkmMvPh2+//ZZ169axbt061q5dy9q1a5k6dW+efTYP9wzMytl//0fZY497\nWLt27bZ2ZWVl0Z4ri7JsoAToBbxKkyZNaNGiBc2bN6dFixa0aNGC0tI8Fi68moqKLBo2zNiWIV6a\nsFhEpH7QhMUiIhKamj4ntr0rZY0bN6Zx48a0adNmW9vWrWHOnMqiLJP77z+T/Pwzt+13dzZt2sTa\ntWuZNCmbO+9sREWFkZGRQb9+k+jSZR7ffPMNX3/99bbXL774go8/brptQuiSkkgWXdUSERGJSKtC\ny8z6ALcBmcB97n5TyJFEREKTaFFWycxo2rQpTZs25fTT4f77K4uyDMaMOYL8/COq7bfqVbWCgkQ/\nkYiISN2RNoWWmWUCU4DjgFXAEjOb4e7vhZtMRKT2S1ZRtqttRURE6puMsAPEoSuw3N0/dvcS4DFg\nQMrOVlQEEyZEXtVWbety29qSQ21rTdt8ihjNBPJJbtvaKt6/LiIiIjXi7mmxAIOI3C5YuX4mcMf2\n2h922GG+yxYvdm/UyD0zM/K6eLHaqm3dbFtbcqht3W+7A0CxJ/D/h0S+75P0EUREpAYS/b5PtyWd\nrmjtlJn93syKzaz4yy+/3PWOCgsjDx2Ul7PtCW+1Vdu62La25FDbut+2lqoDH0FERGqpdCq0VgNt\nY9bbRLdt4+73uHueu+fttddeu36mgoLIk92ZmTt/wltt1Tad29aWHGpb99vWUnXgI4iISC2VNvNo\nmVkW8B8ik7qsBpYAp7v7u9W1T3helXhm4VRbtU3ntrUlh9rW/bbbEfY8Wpp0WUQkGPVtHq20KbQA\nzKwf8Dciw7s/4O7jt9dWE1iKiKSHsAstEREJRn0rtNJmeHcAd58FzAo7h4iIiIiIyI6k0zNaIiIi\nIiIiaUGFloiIiIiISJKp0BIREREREUkyFVoiIiIiIlIrmFkfM/vQzJab2VXV7G9oZtOi+18zs/Yx\n+0ZHt39oZsdHt/3SzN6MWTaY2WVBfJa0GgxDRERERETqJjPLBKYAxwGrgCVmNsPd34tpdh6w3t1z\nzWwwcDPwGzM7ABgMHAj8HJhnZr9w9w+Bg2P6Xw08HcTn0RUtERERERGpDboCy939Y3cvAR4DBlRp\nMwB4KPp+OtDLzCy6/TF33+runwDLo/3F6gV85O4rUvYJYqjQEhERERGR2qA1sDJmfVV0W7Vt3L0M\n+AbYo4bHDgb+mcS8O6RCS0REREREgrCnmRXHLL8P6sRmlg38GngiqHPqGS0REREREQnCV+6et4P9\nq4G2Mettotuqa7PKzLKA5sDaGhzbF1jq7p/vYva4mbsHda5AmdmXQKL3X+4JfJWEOEFR3tRS3tRL\nt8zKmxzt3H2vXT1Y3/dpId3yQvplVt7USre8UDsz7/D7Plo4/YfIs1SrgSXA6e7+bkybYUAnd78w\nOhjGQHc/zcwOBB4l8lzWz4H5wH7uXh497jFgjrs/mKLP9iN19opWIv/TrmRmxTupumsV5U0t5U29\ndMusvLWDvu9rv3TLC+mXWXlTK93yQnpmdvcyM7sEmANkAg+4+7tmNg4odvcZwP3AI2a2HFhH5Lkr\nou0eB94DyoBhMUVWEyIjGV4Q5Oeps4WWiIiIiIikF3efBcyqsu3amPdbgFO3c+x4YHw12zcTGTAj\nUBoMQ0REREREJMlUaO3YPWEHiJPyppbypl66ZVbeuiPdfjbKm3rplll5Uyvd8kJ6Zq5T6uxgGCIi\nIiIiImHRFS0REREREZEkq7eFlpn1MbMPzWy5mV1Vzf6GZjYtuv81M2sfs290dPuHZnZ8bc5rZseZ\n2etm9nb0tWdtzhuzf28z22RmV9T2vGbW2cyKzOzd6M85p7bmNbMGZvZQNOf7ZjY61VlrmPdoM1tq\nZmVmNqjKvrPN7L/R5ezanNfMDo75s7DMzH5Tm/PG7G9mZqvM7I4g8oYp0e+moNUg7wgzey/6522+\nmbULI2dMnh3mjWl3ipm5mYU6IlpN8prZadGf8btm9mjQGavJs7M/E3ub2UIzeyP656JfGDmjWR4w\nsy/M7J3t7Dczmxz9LMvM7NCgM1aTaWeZz4hmfdvMFpvZQUFnrJJnh3lj2nXZ3v8DJIXcvd4tRIaL\n/AjYB8gG3gIOqNLmYuDu6PvBwLTo+wOi7RsCHaL9ZNbivIcAP4++/xWwujb/fGP2Tycyc/cVtTkv\nkZE7lwEHRdf3qOV/Hk4HHou+bwz8D2hfC/K2BzoDDwODYrbvDnwcfd0t+n63Wpz3F0Tm7IDIHB5r\ngBa1NW/M/tuIzD1yRyqzhr0k47upFubtATSOvr+otueNtmsKLAJeBfJqc15gP+CNyu8doGVYeePI\nfA9wUfT9AcD/Qsx7NHAo8M529vcDZgMGdANeC/PnW8PMR8T8eegbduad5Y35c7OAyEh+P/p/gJbU\nLfX1ilZXYLm7f+zuJcBjwIAqbQYAD0XfTwd6mZlFtz/m7lvd/RNgebS/WpnX3d9w90+j298FGplZ\nw9qaF8DMTgI+ieYNQiJ5ewPL3P0tAHdf69E5G2ppXgeaWGRCwEZACbAh7Lzu/j93XwZUVDn2eOAF\nd1/n7uuBF4A+tTWvu//H3f8bff8p8AWQ8BxPqcoLYGaHAa2AuSnOWRsk9N0Ugpr8t13o7t9GV18F\n2gScMVZNfr4A1wM3A1uCDFeNmuQ9H5gS/f7B3b8IOGNVNcnsQLPo++bAp4TE3RcRmedoewYAD3vE\nq0ALM/tZMOmqt7PM7r648s8D4f+dq8nPGOBS4Eki/0+SANXXQqs1sDJmfVV0W7Vt3L0M+IbI1Yqa\nHJtsieSNdQqw1N23pijnj7JE1Tivmf0EuBL4c4ozVpslKp6f7y8AN7M50VuzRtXyvNOBzUSutPwf\n8Bd339kXdBB5U3HsrkrKOc2sK5HfOH+UpFzbs8t5zSwDmAQEcotuLZCs79KgxPvf9jwiVwfCstO8\n0VvD2rr7zCCDbUdNfr6/AH5hZq+Y2atmlupf9OxMTTKPBX5rZquIXMG4NJhouySM7/hkCvvv3E6Z\nWWvgZOCusLPUR5qwuJ4wswOJ/Aaxd9hZdmIscKu7bwrvl8hxyQKOBLoA3wLzzex1d58fbqzt6gqU\nE7mtbTfgJTOb5+4fhxurbon+RvYR4Gx3/9FVpFrkYmCWu69Kk79vsh1m9lsgDzgm7CzbEy3s/wqc\nE3KUeGQRuX2wgMiVi0Vm1sndvw411Y4NAf7u7pPMLB94xMx+Vcu/i9KOmfUgUmgdGXaWnfgbcKW7\nV+h7Pnj1tdBaDbSNWW8T3VZdm1XR26yaA2treGyyJZIXM2sDPA2c5e6p/u16bJZK8eQ9HBhkZhOB\nFkCFmW1x91Q+pJ9I3lXAInf/CsDMZhG5VzqVhVYieU8H/uXupcAXZvYKkX+cpbLQSuTvzGoi/8CJ\nPbYwKal2fM5d/jtuZs2AmcDV0VthUi2RvPnAUWZ2MfATINvMNrn7dgcxSHMJfZeGoEb/bc3sWOBq\n4JgA7ljYkZ3lbUrkWeHC6D/4fgrMMLNfu3txYCm/V5Of7yoiz+CUAp+Y2X+IFF5Lgon4IzXJfB7R\nW6zdvcgiAzTtSe28bSyMf1MlzMw6A/cBfd09rO+HmsoDHov+ndsT6GdmZe7+TLix6omwHxILYyFS\nYH5MZDCLyodJD6zSZhg/fCD68ej7A/nhYBgfk/rBDxLJ2yLafmA6/HyrtBlLMINhJPLz3Q1YSmRg\niSxgHnBCLc57JfBg9H0T4D2gc9h5Y9r+nR8PhvFJ9Oe8W/T97rU4bzaRIvuyVP+5TUbeKvvO+f/t\n3F2oZWMcx/Hvr5GXEDGExImkEWWIC40LeUmUhKJQZqTkTlFEkeaCmXJHKRczIhdqQkSYvNRIQxrO\nmMaYUi5E0Zi8G+bvYi3sszuHvWevY+9z5vupXWut/azn+a+1135W//XysPgHw+ikb5qweJfTPJ56\n2kLYv33l32K8g2EMsn8vB9a300tpHnM7esJjfgW4pZ1eRvOOVsYY8xRzDyxxJTMHw9g8rjiHiPkk\nmvfzLxh3nIPE21duznOAn3n6bcYdwNg2vBnpZkd7grqvXfYQcFU7fTDNqHc7gc3AKT3r3teu9ynN\n1YyJjRe4n+adnC09n3kfNWmU/dtTx4P8D4lWB8fDTTQDd2wF1kxyvDR3LZ5r490G3D0h8Z5Hc+X4\nR5q7B5/0rLuq3Y6dwMpJjrc9Fvb0/d/OntR4++q4hUWeaA24r/6zb5qweN8Avu453l6c5Hj7yr7F\nGBOtAfdvaB533AZMAzeMM94BYz4D2ESThG0BLhtjrM/SvBO8p+2DbgVuB27v2b+PtdsyPe7jYcCY\nnwR29fznPpjkePvKrsNE63/9pN3xkiRJkqSO7K+jDkqSJEnSvDHRkiRJkqSOmWhJkiRJUsdMtCRJ\nkiSpYyZakiRJktQxEy1JkiRJ6piJliRJkiR1zERLGlGSI5Pc0TP/7jy1c2KS6+f47pAkbydZMmIb\nByZ5J8kBo9QjSYuR/b2kYZhoSaM7Evj7xFtVF8xTOxcD58zx3SpgQ1X9MUoDVfUbsBGY9QQvSfs5\n+3tJAzPRkkb3MHBqki1J1ib5ASDJVJLtSdYl2ZHkmSSXJNmU5LMk5/9VQZKbkmxu63ii/0plkhXA\no8B1bZlT+mK4EXhhmHaTHJrk5SQfJdnac/X0+bY+SdJM9veSBpaqGncM0oKWZAp4qarObOd/qKrD\n2uU7geXAJ8D7wEfArcBVwMqqujrJMmANcE1V7UnyOPBeVT3V186rwF1VtbVv+YHAF1V1XE88g7R7\nLXB5Vd3WrndEVe1uT/pfVdUx3e0lSVr47O8lDcM7WtL8+ryqpqtqL81JcGM1Vzemgam2zMXAucD7\nSba08/1XMAFOB7bPsnwp8N0+tDsNXJrkkSQXVtVugPZxlN+SHL5PWyxJ+yf7e0kz+AKkNL9+7Zne\n2zO/l3/+fwHWV9W9c1WSZCmwu6p+n+Xrn4GDh223qnYkOQe4AlidZGNVPdSWOwj45d82TJI0g/29\npBm8oyWN7ntglKuBG2mexT8WIMlRSU7uKzMFfDnbylW1C1iSpP/k+6+SnAD8VFVPA2tpX7xOcjTw\nTVXtGWorJGnxs7+XNDATLWlEVfUtsKl9wXjtPqy/DbgfeC3Jx8DrwPF9xbYDS9s2Zhvl6jVgxZBN\nnwVsbh9feQBY3S6/CHh5yLokadGzv5c0DAfDkBaB9pGQO6vq5g7q2gDcU1U7Ro9MktQl+3tp4fCO\nlrQIVNWHwJv9wwQPqx3R6nlPupI0mezvpYXDO1qSJEmS1DHvaEmSJElSx0y0JEmSJKljJlqSJEmS\n1DETLUmSJEnqmImWJEmSJHXMREuSJEmSOmaiJUmSJEkd+xNKRD7b90nSBQAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAALLCAYAAAAPLZjyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYVOWZ7v/v3d2cxEYRFQUBAyhIg2cFozgdjQSJpzFj\nFJOfiRMjO0bjxOxEkx0jjomzNTPJaNBERifRjIetRhOTEDUHiWeU4IGDKHjgJKBEwRYEG/r5/VFV\nWLYNXdW9qlZ31/25rnVVrVWr6n2qkyuVm+dd71JEYGZmZmZmZsmqSrsAMzMzMzOzrshhy8zMzMzM\nrAQctszMzMzMzErAYcvMzMzMzKwEHLbMzMzMzMxKwGHLzMzMzMysBFIJW5ImSloo6SVJF7fw+ghJ\nj0vaKOmiZq/tJOkuSS9Imi9pbPkqNzMzMzOzpHXVfFBT7gElVQHTgGOB14GnJf0mIhbmnfZ34ALg\nlBY+4hpgRkScJqkG2KHUNZuZmZmZWWl05XyQRmfrcGBRRCyJiEbgDuDk/BMiYk1E/A3YnH9cUh9g\nfET8PHve5oh4p0x1m5mZmZlZ8rpsPkgjbA0EluXtL88eK8THgDWSfi5pjqTpknolXqGZmZmZmZVL\nl80HnW2BjBrgYOC6iDgY2ABckm5JZmZmZmaWkg6dD8p+zRawAhict79X9lghlgPLImJ2dv9u4CMX\n0AFIijZXaGZmJRERKveY/j0wM+tYWvgtKEs+SEMana2ngeGShkjqDpwB3Led87f+hxERq4FlkvbN\nHjoWWLCtN0aEtxa2yy67LPUaOvLmv4//Nv77lGZLU9rfvVxbpf13sJK+byV9V3/frr1tQ9nyQbmV\nvbMVEVsknQ88SCbs3RQRL0iaknk5pkvqD8wGaoEmSRcCoyLiXeBrwK2SugGvAGeX+zuYmZmZmVky\nunI+SGMaIRFxPzCi2bEb8p6vBgZt473PAYeVtEAzMzMzMyubrpoPOtsCGZaA+vr6tEvo0Pz32Tb/\nbbbPfx9LW6X9d7CSvm8lfVfw97WuQ9uZO9mpSYqu+t3MzDojSURKC2T498DMrGNI67cgLe5smZmZ\nmZmZlYDDlpmZmZmZWQk4bJmZmZmZmZWAw5aZmZmZmVkJOGyZmZmZmZmVgMOWmZmZmZlZCThsmZmZ\nmZmZlYDDlpmZmZmZWQk4bJmZmZmZmZWAw5aZmZmZmVkJOGyZmZmZmZmVgMOWmZmZmZlZCThsmZmZ\nmZmZlUDFha3zzz+fL3/5y2mXYWZmZmZmXZwiIu0aSkJStPTdunXrxubNm+mq39vMrKOSREQohXFb\n/D0wM7PyS+u3IC0V19mSKuY/WzMzMzMzS1HFha2qqor7ymZmZmZmloKKSx7ubJmZmZmZWTk4bJmZ\nmZmZmZWAw5aZmZmZmVkJVFzY8jVbZmZmZmZWDhWXPNzZMjMzMzOzcnDYMjMzMzMzKwGHLTMzMzMz\nsxJw2DIzsy5v06ZNaZdgZmYVqOLClhfIMDOrPGvWrEm7BDMzq0AVlzzc2TIzqzxvvvlm2iWYmVkF\nctgyM7Muz2HLzMzSkErYkjRR0kJJL0m6uIXXR0h6XNJGSRe18HqVpDmS7mvD2G0t28zMOimHLTOz\nji3NfFBKZQ9bkqqAacCngDpgsqSRzU77O3AB8MNtfMyFwII2jt+Wt5mZWSfmsGVm1nGlnQ9KKY3O\n1uHAoohYEhGNwB3AyfknRMSaiPgbsLn5myXtBUwCbmzL4F4gw8ys8rzxxhtpl2BmZtuWaj4opTSS\nx0BgWd7+8uyxQv0Y+CYQbRncnS0zs8rjsGVm1qGlmg9KqSbtAooh6dPA6oh4VlI9sN3kNHXq1K3P\n6+vrqa+vd2fLzKxMZs6cycyZM9MuA3DYMjNLS6l/C4rNB+WmiPIGQEnjgKkRMTG7fwkQEXFVC+de\nBjRExI+y+1cCnyfTPuwF1AL3RMRZLbw3WvpugwYNYvny5ZT7e5uZVTpJRETZfwQlxbhx43jiiSfK\nPbSZmTXT0m9BufJBGtJo8zwNDJc0RFJ34Axge6uGbP0PIyK+ExGDI2Jo9n1/KfYP6c6WmVnl8QIZ\nZmYdWqr5oJTKPo0wIrZIOh94kEzYuykiXpA0JfNyTJfUH5hNJpk2SboQGBUR77Z3fIctM7PK42mE\nZmYdV9r5oJTKPo2wXLY1jXDo0KG8+uqrnkZoZlZmaU4j7N69O2vXrqVXr17lHt7MzPKk9VuQlopr\n87izZWZWeXbffXdPJTQzs7KruOThpd/NzCrP7rvv7qmEZmZWdp1q6fckuLNlZlZ5HLbMzCyfpBrg\nNOCI7KHewBZgA/A8cFtEbGzvOA5bZmbW5e22224OW2ZmBoCkw4DxwB8j4vYWXh8GnCvpuYj4a3vG\nqriw5WmEZmaVx9dsmZlZno25+3S1JCJeBq6VNFRS94h4v60DVVybx50tM7PK079/f1atWpV2GWZm\n1gFExNzc8+yS8rnnvZqd90p7ghZUYNhyZ8vMrPL079+f1atXp12GmZl1EJK+LWkicFLe4TpJn0hy\nHE8jNDOzLm+PPfZwZ8vMzPLdC3wCOEfSicAq4ClgIPBQUoNUXNjyNEIzs8qzxx57uLNlZmZbRcRC\nYKGkVyPi/ux0wsOBZ5Icp+LCljtbZmaVx50tMzMDkNQD2DEi/g4QEfdnH1cDv2127qCIWNae8Squ\nzePOlplZ5enXrx9r166lsbEx7VLMzCxFEbEJOELS5OYLYuRI2lnSucCQ9o7nzpaZmXV51dXVW++1\nNXDgwLTLMTOzFEXE7yTtAXxd0u5ATzK5KHdT4+XAjRGxrr1jVVzYcmfLzKwy5aYSOmyZmVlErAKu\nLPU4FZc8HLbMzCqTr9syM7NtkdQ7+1gjKbHAUHHJw9MIzcwqk8OWmZm1RNK3gMsk/TuwE/CzpD7b\n0wjNzKwi9O/f32HLzMxaMgt4EmgE/okEG1IVlzzc2TIzq0zubJmZ2TasB74YEU0RcSfwl6Q+uOLC\nljtbZmaVyWHLzMxaEhGzI+KGvP3bkvrsikseDltmZpVpjz32YPXq1WmXYWZmHZyk0Ul9VsVds+Vp\nhGZmlcmdLTMz2xZJg4D+wGpgh6Q+t6CwJakGOA04InuoNx/c9Ot54LaI2JhUUaXkzpaZWWVy2DIz\ns5ZImgL0AN4FdiaTc55K4rNbDVuSDgPGA3+MiNtbeH0YcK6k5yLir0kUVUrubJmZVaY+ffrQ2NjI\n+vXr6d27d9rlmJlZx/FyRPwptyPpE0l9cCGdrY0R8aNtvRgRLwPXShoqqXtEvJ9UcaXgsGVmVpkk\nbb1ua+jQoWmXY2ZmHcc72Xts9QLWATOS+uBWw1ZEzM09l9Q/IlZnn/eKiPfyznslqaJKydMIzcwq\nV24qocOWmZnlRMRTJDRtsLmCkoekb0uaCJyUd7guyRZbubizZWZWuXxjYzMzK6dCVyO8F/gEcI6k\nE4FVZNLfQOChEtVWEu5smZlVLi+SYWZm2yLpaKA6IhLLNwWFrYhYCCyU9GpE3C+pP3A48ExShZSL\nO1tmZpXLYcvMzLZD2S0x223zSOohqV9uPyLuzz6ujojfRsTf8s4dlGRhpeLOlplZ5XLYMjOzctpu\n8oiITcARkiZL6tXSOZJ2lnQuMKQUBSbNYcvMrHLlViM0MzMrh0JWI/ydpD2Ar0vaHeiZfV/upsbL\ngRsjYl1JK02IpxGamVUud7bMzGw7llPgAoKFKujDImJVRFwZEf8SEf8rIs6JiCkR8fWI+I9ig5ak\niZIWSnpJ0sUtvD5C0uOSNkq6KO/4XpL+Imm+pLmSvlbMuODOlplZJdtjjz1YuXJl2mWYmVkzaeaD\nPP0iYlE73v8RbUoeknpnH2skFfUZ2fOnAZ8C6oDJkkY2O+3vwAXAD5sd3wxcFBF1wBHAV1t4b2vj\nF3O6mZl1IbnOVlNTU9qlmJlZVgfIB4dnnx6+3RPboOiwJelbwGXZuyzvBPysyI84HFgUEUsiohG4\nAzg5/4SIWJNdfGNzs+OrIuLZ7PN3gRfILD9fMHe2zMwqV8+ePenTpw9vvvlm2qWYmdkHUs0HeT4m\n6TRJ57Xx/R9R6H228s0CngQagX+i+MA2EFiWt7+cNqRISXsDB2brKZjDlplZZRs4cCArVqygf//+\naZdiZmYZZc0Hkk4Gno2IJdlDK7KPMyLiz8WOuz1tCVvrgS9GxA3AnZLa8hntImlH4G7gwmyCbdHU\nqVO3Pq+vr6e+vt7TCM3MymTmzJnMnDkz7TI+YuDAgbz++uscfPDBaZdiZtblleu3oNB8kFVPJmAt\nkXRSRNwHkHTQgjaErYiYDczO27+tyI9YAQzO29+LD9Jkq7Lh7m7glxHxm+2dmx+2ctzZMjMrj9w/\ncuVcfvnl6RWTJ9fZMjOz0ivwt6Bs+SDrPuD/SOoJ9JS0LzAXmBcRif5AtLsrJWl0RMwr4i1PA8Ml\nDQFWAmcAk7c3RLP9/wYWRMQ1xVWa/TB3tszMKprDlplZh1PWfBARDwEPAWRXNvwbmYU5TpY0gMw0\nxp9ExItFfYsWJDEFsHcxJ0fEFknnAw+Sud7rpoh4QdKUzMsxXVJ/Mt2zWqBJ0oXAKOAA4HPAXEnP\nAAF8JyLuL3R8hy0zs8o2cOBAnnzyybTLMDOzrDTzQUT8KPv0r7ljkk4HTgTSCVuSBgH9gdURUdQC\nFQDZLz+i2bEb8p6vBga18NbHgOpix8vnaYRmZpXNnS0zs44nzXzQgkYSCFrQhrCVTZg9gHeBnSVt\naeuUvjS4s2VmVtkctszMbHsi4p6kPqstna2XI+JPuR1Jn0iqmHJwZ8vMrLI5bJmZWbm0JWy9k72h\ncS9gHTAj2ZJKy50tM7PK1q9fPzZs2MB7771Hr1690i7HzMy6sLYs/f4U8FQJaikLd7bMzCqbJAYM\nGMCKFSsYPnx42uWYmVlKJF0A/E9EvF2qMdqcPCSN72xTCMGdLTMz81RCMzMDMgv+PS3pTkkTVYKg\n0J42TxUfXeO+w3Nny8zMcp0tMzOrXBHxXWAf4Cbgi8AiSVdKGpbUGBWXPBy2zMzMnS0zM4PMTbyA\nVdltM9AXuFvS1Ul8fhI3Ne5UPI3QzMwGDhzI8uXL0y7DzMxSlL0x8lnAGuBG4JsR0SipClgEfKu9\nY7QnbC2nE3bG3NkyM7OBAwcya9astMswM7N07QKcGhFL8g9GRJOkE5IYoM3JIyJejohFSRRRTu5s\nmZmZpxGamRnQs3nQknQVQES8kMQARYctSYfnP3Y27myZmZnDlpmZAce1cOz4JAdoT/Jw2DIzs05p\nwIABrFy5kqamprRLMTOzMpP0FUlzgRGSns/bXgWeT3KstlyzlfunwI9JOg3YLSKuT7CmkvI0QjMz\n69mzJ7W1taxZs4bdd9897XLMzKy8bgP+APwbcEne8YaIeCvJgVoNW5JOBp7NzWeMiFzYmhERf06y\nmHJw2DIzM/hgKqHDlplZZYmIdcA6YHKpxypkTl09sBuApJNyBztj0AKHLTMzy/Dy72ZmlUnSo9nH\nBknvZLeG3H6SYxUyjfA+4P9I6gn0lLQvMBeYl9fl6jR8zZaZmQEMHjyYZcuWpV2GmZmVWUQclX2s\nLfVYrSaPiHgoIv4xIo4Hfgs8DQwjE8B+LWmapBGlLjQpDltmZgYwZMgQlixZ0vqJZmbWJUk6TVJt\n9vl3Jd0j6aAkxyhqgYyI+FH26V9zxySdDpwIvJhgXSXjaYRmZgaZztbzzye66JSZmXUul0bEXZKO\nAj4J/BD4GTA2qQGSaPM00kmCFrizZWZmGYMHD2bp0qVpl2FmZunZkn38NDA9In4PdE9ygLYs/f4h\nEXFPEoWUiztbZmYGnkZoZmaskHQDmZsbXyWpB8k0o7aquDZPLmxFRMqVmJlZmgYMGMAbb7xBY2Nj\n2qWYmVk6Pgs8AHwqItYCuwDfTHKAigtbOU1NTWmXYGZmKaqpqWHPPfdkxYpOt7CumZklICI2RMQ9\nEbEou78yIh5McoyCpxFKugD4n4h4O8kC0tLU1ER1dXXaZZiZWYoGDx7MkiVL2HvvvdMuxczMyiw7\nbfAzwN7k5aKI+Nekxiims9UfeFrSnZImqpNf/ORphGZm5kUyzMwq2m+Ak4HNwPq8LTEFd7Yi4ruS\nLgUmAGcD0yTdCdwUES8nWVQ5eBqhmZl5kQwzs4q2V0RMLOUARV2zFZl20KrsthnoC9wt6eoS1FZS\n7myZmZk7W2ZmFe1xSWNKOUDBYUvShZL+BlwNPAaMiYivAIeQmevYqbizZWZmDltmZhXtKGCOpBcl\nPS9prqRE73ZfzH22dgFOjYgPzbeIiCZJJyRZVDk4bJmZmacRmplVtONLPUAx0wh7Ng9akq4CiIgX\nEq2qhHLTBz2N0MzMBg0axNKlS/2bYGZWmZYC44EvZHNOkFkUMDHFhK3jWjjWpjSYXc1woaSXJF3c\nwusjJD0uaaOki4p5b6Hc2TIzsz59+tC9e3feeuuttEsxM6toKeWD64EjgMnZ/QbgujZ/iRa0GrYk\nfUXSXGBk3lzGuZJeA+YWO6CkKmAa8CmgDpgsaWSz0/4OXAD8sA3vLYj/FdPMzMBTCc3M0pZiPhgb\nEV8FNgJk7yfcva3foyWFdLZuBU4Efg2ckN0+DRwUEZ9rw5iHA4siYklENAJ3kFnffquIWBMRfyOz\n4mFR7y2UO1tmZgZeJMPMrANIKx80SqomM30QSbsBiYaEQsLWjIh4DTgJmEemmzUPWCrpnTaMORBY\nlre/PHus1O/9EIctMzODTNhyZ8vMLFVp5YNrgXuB/pJ+ADwKXFngewvS6mqEEXFU9nHHJAdOm6cR\nmpkZZKYRurNlZlZ5IuLW7K2tjs0eOiXphf+KWfo9KSuAwXn7e2WPJf7eqVOnbn1eX19PfX391n13\ntszMSmvmzJnMnDkz7TJaNXjwYGbNmpV2GWZmXVKBvwVlywcAzRfYyHO8pOMj4kcFjt2qgsOWpNOA\n+yOiQdKlwEHA9yNiTpFjPg0MlzQEWAmcwQcrgLQ4dFvfmx+2mnNny8ystJr/I9fll1+eXjHbMXTo\nUF599dW0yzAz65IK/C0oWz7Iqs0+jgAOA+7L7p8IPNXKe4tSTGfr0oi4S9JRZFptPwR+CowtZsCI\n2CLpfOBBMteM3RQRL0iaknk5pkvqD8wm84doknQhMCoi3m3pvcWMn+POlpmZQSZsvfLKK2mXYWZW\nscqdDyLicgBJDwMHR0RDdn8q8Pskv1sxYWtL9vHTwPSI+L2k77dl0Ii4n0ySzD92Q97z1cCgQt/b\nFg5bZmYGsMsuu9DU1MTbb79N37590y7HzKwipZQP+gPv5+2/T4o3NV4h6QYyrbkZknoU+f4OxdMI\nzcwMQBJDhw7l5ZdfTrsUMzMrr1uApyRNzXa1ZgG/SHKAYsLSZ4EHgAkRsRboC3wzyWLKyZ0tMzPL\n8VRCM7PKExE/AM4G3s5uZ0fEvyU5RrHTCHsCp0nKf9+DSRZULu5smZlZjsOWmVllyi72V+yCfwUr\nprP1GzI3Nt4MrM/bOiV3tszMLMdhy8zMSqGYztZeETGxZJWUmcOWmZnlDBs2jF/96ldpl2FmZl1M\nMZ2txyWNKVklZeawZWZmOe5smZlVHkkXSCrpMrTFhK2jgDmSXpT0vKS5kp4vVWGlkrtWy2HLzMxy\nBg8ezIoVK2hsbEy7FDMzK5/+wNOS7pQ0UZJafUeRiplGeHzSg6fJYcvMzHK6d+/OnnvuydKlSxk2\nbFja5ZiZWRlExHclXQpMILMq4TRJd5K5MXIi9wMpprO1FBgPfCEilgBBwjf9KqctW7a0fpKZmVUM\nTyU0M6s8kZn2tiq7bSZze6u7JV2dxOcXE7auB44AJmf3G4DrkigiDe5smZlZPoctM7PKIulCSX8D\nrgYeA8ZExFeAQ4DPJDFGMdMIx0bEwZKeAYiItyV1T6KINLizZWZm+Ry2zMwqzi7AqdlZe1tFRJOk\nE5IYoJjOVqOkajLTB5G0G9Bp20PubJmZWb5hw4Y5bJmZVZaezYOWpKsAIuKFJAYoJmxdC9wL9Jf0\nA+BR4MokikiDO1tmZpZv6NChvPxyItdDm5lZ53BcC8cSXRSw4GmEEXFrdk7jsdlDpySV+NLgsGVm\nZvlyYSsiKMHqv2Zm1kFI+gpwHjC02a2saslcu5WYVsOWpIu28dLxko6PiB8lWVC5eBqhmZnl22WX\nXQB466236NevX8rVmJlZCd0G/AH4N+CSvOMNEfFWkgMV0tmqzT6OAA4D7svunwg8lWQx5eTOlpmZ\n5ZPEvvvuy0svvcQRRxyRdjlmZlYiEbEOWMcHq6yXTKthKyIuB5D0MHBwRDRk96cCvy9pdSXkzpaZ\nmTXnsGVm1vVJejQijpLUQHbxv9xLZG691SepsYpZ+r0/8H7e/vv4psZmZtaFjBgxghdffDHtMszM\nrIQi4qjsY21r57ZXMWHrFuApSfdm908BfpF4RWXisGVmZs3tu+++3H333WmXYWZmXUQxqxH+QNIf\ngPHZQ2dHxDOlKav0PI3QzMyac2fLzKzry5s+2NLSs6lNIyQi5gBzkho8Te5smZlZc/vssw+LFy+m\nqamJqqpibkVpZmadRTmmD+ZU3C9JROYaOHe2zMysuR133JF+/fqxdOnStEsxM7MSkfRo9rFB0jvN\ntyTHqriwlePOlpmZtSS3IqGZmXVN+QtkRESf5luSYzlsmZmZ5fF1W2ZmlpSCw5akCyT1LWUx5eRp\nhGZm1hJ3tszMKoOknpIuknSPpF9J+rqknkmOUUxnqz/wtKQ7JU2U1NLqHZ2GO1tmZtYSd7bMzCrG\nLUAd8BNgGjAK+GWSAxSz9Pt3JV0KTADOBqZJuhO4KSJeTrKocnBny8zMWuLOlplZxRgdEaPy9h+S\ntCDJAYq6ZisyS/mtym6bgb7A3ZKuTrKocnBny8zMWrL33nuzatUq3nvvvbRLMTOz0pojaVxuR9JY\nYHaSAxTc2ZJ0IXAWsAa4EfhmRDRKqgIWAd9KsrBSc2fLzMxaUlNTw8c+9jEWL17MmDFj0i7HzMwS\nJmkumZsadwMel5S738dgYGGSYxVzU+MBwKkRsSR3QNJVEXGxpBOSLKoc3NkyM7NtyV235bBlZtYl\nlS27FDON8Lj8oJV1PEBEvFDMoNkFNhZKeknSxds451pJiyQ9K+nAvONflzRP0vOSbpXUvZixcxy2\nzMxsW0aMGMHChYn+46aZmW1HOfNBRCzJbcA7ZBYCHJK3JabVsCXpK9lW24jsF8htrwLPFztgdtrh\nNOBTZFb/mCxpZLNzjgeGRcQ+wBTgZ9njA4ALgIMjYn8ynbkziq0BPI3QzMy2ra6ujvnz56ddhplZ\nRUgrH0g6B3gYeAC4PPs4NYGvtFUhna3bgBOB+7KPue2QiPh8G8Y8HFiUTZONwB3Ayc3OOZnMUoxE\nxCxgJ0n9s69VA70l1QA7AK+3oQZ3tszMbJsctszMyiqtfHAhcBiwJCI+ARwErG3XN2mm1bAVEesi\n4rWImJzfcouIt9o45kBgWd7+8uyx7Z2zAhgYEa8D/wEszR5bGxF/aksR7myZmdm27LfffixatIjG\nxsa0SzEzqwRp5YONEbERQFKPiFgIjGhD/dvU6gIZkh6NiKMkNZBZtWPrS2RWg++TZEGt1LIzmVQ7\nBFhHZtn5MyPitpbOnzp16tbn9fX11NfXb913Z8vMrLRmzpzJzJkz0y6jTXbYYQcGDhzI4sWL2W+/\n/dIux8ys0yr1b0Gx+aCZ5dn3/xr4o6S3geZrVLRLq2ErIo7KPtYmNOYKMssq5uyVPdb8nEEtnPNJ\n4JVcV03SPcDHyUx1/Ij8sNWcw5aZWWk1/0euyy+/PL1i2mD06NHMnz/fYcvMrB0K/C0oWz7IFxH/\nmH06VdJDwE7A/a29rxhF3dQ4IU8DwyUNya4UcgaZ68Hy3Ufmnl5kbzS2NiJWk2kPjpPUU5KAY4Gi\nVkLM3JfZ0wjNzGz7fN2WmVnZpJIPsu+5KBvQvgYMI+F8VMg0wtz0QeUdzu0XPY0wIrZIOh94kMyX\nuSkiXpA0Jft50yNihqRJkhYD64Gzs+99StLdwDNAY/ZxejHj57izZWZm21NXV8e9996bdhlmZl1e\nivngFqAB+El2/0zgl8BpSX23QqYRJjV9MP8z76fZxWcRcUOz/fO38d7LySzN2GaS3NkyM7PtGj16\nNN///vfTLsPMrCKklA9GR8SovP2HJC1ow+dsUxrTCFNXVVXlzpaZmW3XiBEjeOWVV9i0aVPapZiZ\nWWnMyU5JBEDSWGB2kgO0ZTXCD00nLOdqhEmprq522DIzs+3q0aMHe++9Ny+99BJjxoxJuxwzM0uI\npLlkck034HFJS7MvDQYWJjlWGqsRpq6qqsrTCM3MrFW5FQkdtszMupQTyjVQq2ErR1JP4DzgKDJJ\n8BHgZ7kbgXUm7myZmVkh6urqmDdvXtplmJlZgiJi6720JB0AjM/uPhIRzyU5VjHXbN0C1JFZrWNa\n9vkvkyymXKqrq93ZMjOzVuU6W2Zm1vVIuhC4Fdg9u/2PpAuSHKPgzhZlWK2jXLxAhpmZFWL06NHM\nnTs37TLMzKw0vgSMjYj1AJKuAp7gg6Xg262YzlbJV+soF3e2zMysEPvuuy8rV67knXfeSbsUMzNL\nnoD8DswWPrwYYLsVshph2VbrKBd3tszMrBDV1dWMHj2a5557jvHjx7f+BjMz60x+DsySlLuD/SnA\nTUkOUMg0wrKt1lEuXiDDzMwKddBBB/HMM884bJmZdSGSBNwFzCSzACDA2RHxTJLjFLL0e/5qHX2B\nfYCeeacs+cibOjhPIzQzs0IddNBBPPnkk2mXYWZmCYqIkDQjIsYAc0o1TsHXbEk6B3gYeAC4PPs4\ntTRllZanEZqZWaFynS0zM+ty5kg6rJQDFLNAxoXAYcCSiPgEcBCwtiRVlZg7W2ZmVqgxY8bw4osv\nsmnTprRLMTOzZI0FnpD0sqTnJc2V9HySAxSz9PvGiNgoCUk9ImKhpBFJFlMOEeFrtszMrGC9evVi\n2LBhLFiwgIMOOijtcszMLDmfKvUAxYSt5ZJ2Bn4N/FHS23TC67XAC2SYmVlxclMJHbbMzLqO/LUp\nSqXgsBVkeSHFAAAgAElEQVQR/5h9OlXSQ8BOwP0lqarEPI3QzMyK4eu2zMy6Hkk9gfPIrEYYwKPA\nTyNiY1JjFHPN1lYR8deIuC8i3k+qkHLyAhlmZlaMAw880GHLzKzruQWoA34CTANGAb9McoCCO1vl\nSH7l4s6WmZkV48ADD+S5556jqamJqqo2/TulmZl1PKMjYlTe/kOSFiQ5QDG/GCVPfuXizpaZmRVj\nl112oV+/fixevDjtUszMLDlzJI3L7UgaC8xOcoBiFsgoefIrFy+QYWZmxTr00EN5+umn2XfffdMu\nxczMknEI8Likpdn9wcCLkuaSue/x/u0doJiwNUfSuIh4EkqT/MqlqqrK0wjNzKwoY8eOZdasWXzu\nc59LuxQzM0vGxFIP0GrYyiU7oBsfTX4LS1hbybizZWZmxRo7dix333132mWYmVlCOsrS7yeUuohy\n8wIZZmZWrEMOOYR58+axadMmevTokXY5ZmbWCbS6QEZELMltwM7Aidlt53KkwVLwAhlmZlas3r17\ns88++/Dss8+mXYqZmXUSBa9GKOlC4FZg9+z2P5IuKFVhpeRphGZm1ha567bMzKzzU8bnJX0vuz9Y\n0uFJjlHM0u9fAsZGxPci4nvAOODLSRZTLjU1NQ5bZmZWNIctM7Mu5XrgCGBydr8BuC7JAYoJWwLy\nE8qW7LFOp6amhs2bN6ddhpmZdTIOW2ZmXcrYiPgqsBEgIt4Guic5QDFLv/8cmCXp3uz+KcBNSRZT\nLg5bZmbWFiNHjuTNN99kzZo17LrrrmmXY2Zm7dMoqZrMyutI2g1IdBW9gjpbkgTcBZwNvJXdzo6I\n/0yymHKICGpqamhsbEy7FDMz62Sqq6s59NBDeeqpp9IuxczM2u9a4F5gd0k/AB4FrkxygII6WxER\nkmZExBhgTpIFpKFbt27ubJmZWZuMHTuWJ598kkmTJqVdipmZtUNE3Crpb8CxZC6POiUiXkhyjGKm\nEc6RdFhEPJ1kAWlw2DIzs7b6+Mc/zn/+Z6eb2GFmZi2IiIXAwlJ9fjELZIwFnpT0sqTnJc2V9Hxb\nBpU0UdJCSS9Jungb51wraZGkZyUdmHd8J0l3SXpB0nxJY4sd39dsmZlZWx155JHMmjWL999/P+1S\nzMy6jDTygaRDJd0raU578822FNPZ+lQSA0qqAqaRade9Djwt6TfZVJk753hgWETsk/1j/YzMUvMA\n1wAzIuI0STXADsXW4LBlZmZt1bdvX4YNG8acOXMYN25c628wM7PtSjEf3Ap8E5hLwgtj5BQTtlYD\n5wFHkVmx41Hgp20Y83BgUUQsAZB0B3AyH27fnQzcAhARs7JptT/wHjA+Ir6YfW0z8E6xBThsmZlZ\nexx99NE8/PDDDltmZslIKx+8GRH3JfMVWlbMNMJbgDrgJ2SS5yjgl20YcyCwLG9/efbY9s5ZkT32\nMWCNpJ9n233TJfUqtgCHLTMza49c2DIzs0SklQ8uk3SjpMmSTs1tbf0SLSmmszU6Ikbl7T8kaUGS\nxRSgBjgY+GpEzJb0n8AlwGUtnTx16tStz+vr66mvr898iJd+NzMruZkzZzJz5sy0yyiJ8ePHc845\n57Blyxaqq6vTLsfMrMMqw29BUfmgmbOBkUA3PphGGMA9SRZXqDmSxkXEkwDZuZKz2zDmCmBw3v5e\n2WPNzxm0jXOWRURu3LuBFi+ggw+HrXxejdDMrPTy/5EL4PLLL0+vmIT179+fPfbYg7lz53LggQe2\n/gYzswpV4G9B2fJBM4dFxIgCz22TYqYRHgI8Luk1Sa8BTwCHtWHVjqeB4ZKGSOoOnAE0nyt5H3AW\ngKRxwNqIWB0Rq4FlkvbNnncsUHR3zdMIzcysvTyV0MwsMWnlg8cljWr9tLYrprM1MYkBI2KLpPOB\nB8mEvZsi4gVJUzIvx/SImCFpkqTFwHoyLb6crwG3SuoGvNLstYI4bJmZWXsdffTR/PrXv+ZrX/ta\n2qWYmXVqKeaDccCzkl4FNpG5sXFExP4JfTUUEUl9VociKVr6bhdffDG9evXiqquu4r333kuhMjOz\nyiSJiFAK47b4e9BeS5cu5dBDD2X16tVIZf9aZmadUlq/BS2RNKSl47lVEZNQTGery3Bny8zM2mvw\n4MH06dOHuXPnsv/+if0jqJmZlUmSoWpbirlmq8uorq5m8+bNdNWunpmZlceECRN48MEH0y7DzMyK\nIOnR7GODpHfytgZJRd/Dd3sqMmxVVVVRVVXFli1b0i7FzMw6MYctM7POJyKOyj7WRkSfvK02Ivok\nOVbBYUsZn5f0vez+YEmHJ1lMOXn5dzMza69PfOITPPHEE74G2MysE5J0VSHH2qOYztb1wBHA5Ox+\nA3BdksWUQ27qoK/bMjOz9tppp5044IADeOSRR9IuxczMindcC8eOT3KAYsLW2Ij4KrARICLeBron\nWUy5SHLYMjOzRHgqoZlZ5yLpK5LmAiMkPZ+3vQoUc//gVhWzGmGjpGogskXuBjQlWUw5OWyZmVkS\nJkyYwLnnnpt2GWZmVrjbgD8A/wZckj02AHgxIt5KcqBiOlvXAvcC/SX9AHgsW2Cn5LBlZlY5GhpK\n99mHHnooy5cvZ+XKlaUbxMzMEhMR6yLitYiYHBFLskvAX5d00IIiwlZE3Ap8C7gSeB04KSLuTLqg\ncnHYMjOrHOPHly5w1dTUcMwxx/DAAw+UZgAzMyuHktxouZjVCA8l08k6B/hfwJ2SEp3TWE41NTU0\nNjamXYaZmZXBggUwf37pPv+EE07gt7/9bekGMDOzUvuvUnxoMdMIbwV+DpwKnACcmN06JS/9bmZW\nOUaNgrq60n3+CSecwJ/+9Cc2btxYukHMzCxR+cu8R8T1zY8loZiw9WZE3BcRr+bmNmbnN3ZKnkZo\nZlY5HnkEamtL9/m77rorBxxwAH/5y19KN4iZmSWt5Eu/F7Ma4WWSbgT+DGzKHYyIe5IsqFwctszM\nKkcpg1bOySefzG9+8xsmTZpU+sHMzKzNJH0FOA8YlndZlIAdgceTHKuYsHU2MBLoxgdLvgfgsGVm\nZhXvpJNO4uijj+anP/0pVVXFTBwxM7Myy1/6/WI+WByjIekVCYsJW4dFxIgkB0+Tw5aZmSVpn332\noW/fvjz99NOMHTs27XLMzGwbImIdsE7SQuCL+a9JIiL+Namxivmnt8cljUpq4LQ5bJmZWdJOPvlk\n7rvvvrTLMDOzwrwLrM9uW8hcr7V3kgMUE7bGAc9KelHS85Lmeul3MzOzD5xyyin86le/IiLSLsXM\nzFoREf+Rt/0AqAeGJjlGMdMIJyY5cNrc2TIzs6QdfvjhbNq0ieeee44DDzww7XLMzKw4OwB7JfmB\nBYetzrzMe0t8ny0zM0uaJM444wxuv/12hy0zsw5O0lwyC/4BVAO7AYldrwUFTCOU9Gj2sUHSO3lb\ng6R3kiymHHJTOzyN0MzMSmHy5MnccccdNDU1tX6ymZml6QTgxOw2ARgQEdOSHKDVzlZEHJV9LMNd\nSspDEt26dXPYMjOzxI0ZM4Ydd9yRJ598ko9//ONpl2NmZttQjpl7BS+QIemqQo51Fj169GDTpk2t\nn2hmZlYESUyePJnbb7897VLMzGw7JPWQdKak70j6Xm5LcoxiViM8roVjxydVSLk5bJmZWamcccYZ\n3HXXXb422MysY/sNcDKwmQ+WgF+f5ACtTiOU9BXgPGBos6Xea4HHkiymnLp3787777+fdhlmZtaB\nNDTAvHkwejTUtmPy/PDhwxkyZAgPPvggkyZNSq5AMzNL0l4RUdIV1wvpbN1G5qKx+/jgArITgUMi\n4vMlrK2k3NkyM7N8DQ0wfjwcfXTmsaGhfZ93zjnncOONNyZTnJmZlcLjksaUcoBWw1ZErIuI1yJi\nckQsyV5Itiki3iplYaXmsGVmZvnmzYP582HzZliwIPO8Pc444wweeughVq1alUyBZmaWCElzszP2\njgLmSHpR0vN5xxNTzE2N880ADk6ykHLr0aOHpxGamdlWo0dDXV0maI0alXneHrW1tZx66qnccsst\nfOtb30qmSDMzS8IJ5RqomAUy8inRKlLQvXt3d7bMzGyr2lp45BF4+OHMY3uu2crJTSXM3ePRzMzS\nlzdb73Dgrezz/w/4MbBLkmO1den3/2rhWKfiaYRmZtZcbS2MG5dM0AIYN24c3bp145FHHknmA83M\nLEmXRkSDpKOATwI3AT9LcoA2Lf0eEddnn7Zp6XdJEyUtlPSSpIu3cc61khZJelbSgc1eq5I0R9J9\nbRkfHLbMzKz0JPHlL3+Z66+/vvWTzcwqWEr5YEv28dPA9Ij4PdC9bd+gZa2GLUlfkTQXGJG9cCy3\nvQoUfQGZpCpgGvApoA6YLGlks3OOB4ZFxD7AFD6aMC8EFhQ7dj4v/W5mZuVw9tln8+CDD7Js2bK0\nSzEz65BSzAcrJN0AnA7MkNSDtl9m1aI0ln4/HFiUnSvZCNxB5mZi+U4GbgGIiFnATpL6A0jaC5gE\ntGs9XXe2zMysHHbaaSfOOusspk2blnYpZmYdVVr54LPAA8CnImItmeu1vtnmb9GCNi39nt3auvT7\nQCD/n/eWZ49t75wVeef8mMwfoV1XGztsmZlZuXzta1/jpptu4t133027FDOzjiiVfBARGyLinohY\nlN1fGREPFvMZrSl46XdJ32vpeET8a3LltFrDp4HVEfGspHrasSqiw5aZmZXL0KFDOfroo7nllls4\n77zz0i7HzKzLSDIflEIx99lan/e8J5n16V9ow5grgMF5+3tljzU/Z1AL5/wTcJKkSUAvoFbSLRFx\nVksDTZ06devz+vp66uvrty6/62u2zMxKa+bMmcycOTPtMjqMr3/963zpS19iypQpVFdXp12OmVlZ\nFPhbULZ8UG5q670/sheQPRAR9UW+rxp4ETgWWAk8BUyOiBfyzpkEfDUiPi1pHPCfETGu2ef8A/CN\niDhpG+NES9/tf//v/80ee+zByJEj+elPf8rvf//7Yso3M7M2kkRElP1fHLf1e1BuEcH48eM577zz\nOPPMM9Mux8wsFS39FpQrH7RQy2nA/dnl378LHAx8PyLmtOMrfkh7VtvYgUyiLEpEbAHOBx4E5gN3\nRMQLkqZIOjd7zgzgVUmLgRuAxOdceBqhmZm1R0MDPPFE5rEQkrjsssu44oor2LJlS+tvMDOrECnm\ng5bus/XTBD53q2Ku2ZrLBxedVQO7AVe0ZdCIuB8Y0ezYDc32z2/lM/4K/LUt44PDlpmZtV1DA4wf\nD/PnQ10dPPJIYTdC/uQnP0nfvn256667OOOMM0pfqJlZJ5FSPvjIfbYkfb+I97eqmM7WCXyw7PsE\nYEBE/CTJYsrJ12yZmVlbzZuXCVqbN8OCBZnnhcjvbjU1NZW2SDMza02HuM9WzirgSOBzwJeA72xr\nhcLOwJ0tMzNrq9GjMx2tbt1g1KjM80JNmDCBPn36cPvtt5euQDMzK0TJ77NVzGqEvwHWAX8DOn1K\ncdgyM7O2qq3NTB3MTSMsZAphjiSuvvpqPv/5z3PqqafSq1ev0hVqZmbbFBEbgHvy9leSWaAjMcV0\ntvaKiNMj4uqI+I/clmQx5eSwZWZm7VFbC+PGFRe0csaPH8+hhx7KNddck3xhZmZWEEmnSarNPv+u\npHskHZzkGMWErccljUly8DT16tWL9957L+0yzMysQl111VX8+7//O6tXr067FDOzSlXy1QhbDVuS\n5kp6HjgKmCPpRUnP5x3vlHr37s369etbP9HMzKwEhg8fzllnncWll16adilmZpXqI6sRAt2THKCQ\na7ZOSHLAjiIXtiICqez32DQzM+N73/sedXV1PPbYYxx55JFpl2NmVmlyqxFOAK5KazXC3YFNEbEk\nIpYA/wBcC3wDKPBWjh1PTU0NNTU1vm7LzMxSs/POO3PNNddw7rnn+nYkZmbll1uNcEKpViMsJGzd\nALwPIOlo4P8Ct5BZmXB6ksWUm6cSmplZuTQ0wBNPZB7zfeYzn2HYsGFcffXV6RRmZla53gN6A5Oz\n+92AtUkOUEjYqo6It7LPTyczn/FXEXEpMDzJYsrNYcvMzMqhoQHGj4ejj8485gcuSVx33XVcc801\nzJs3L70izcwqz/XAOD4IWw3AdUkOUFDYkpS7tutY4C95rxVzn64Op3fv3mzYsCHtMszMrIubNy9z\nT67Nm2HBgszzfIMGDeLqq6/mzDPPZOPGjekUaWZWecZGxFeBjQAR8TYJL5BRSNi6HfirpN+QabU9\nAiBpOJmphJ1KRGx9vsMOO7izZWZmJTd6dObmx926wahRmefNffGLX2TEiBFccskl5S/QzKwyNUqq\nBgJA0m5AU5IDtNqZiogfSPozsCfwYHyQVqqAC5Isptw8jdDMzMqhthYeeSTT0aqra/lGyJKYPn06\nBxxwABMmTGDSpEnlL9TMrLJcC9wL7C7pB8A/AYnej6OgaYAR8WQLx15KspByyi317rBlZmblUlsL\n48Zt/5y+ffty++23c+qpp/LYY48xfHinvjTazKxDi4hbJf2NzKVSAk6JiBeSHCPRdeQ7G4ctMzPr\naI488kguv/xyTjnlFBqaL11oZmaJkXQzsCoirouIacAqSf+d5BgOWw5bZmbWwUyZMoVDDqnnhBN+\nwNq1W9Iux8ysq9o/e38tYOsCGQclOUCnXk2wvbwaoZmZdUTvviueeeZa5s3bwvDhK3nllYH06aO0\nyzIz62qqJPXNhiwk7ULC+aiiO1u1tbW88847aZdhZmb2IfPmwQsvVBHRjb//fXe+8Y1EZ7WYmVnG\nfwBPSLpC0hXA40Cid5iv6LDVt29f3n777bTLMDMz+5APLxUv/vzna/nRj36UdllmZl1KRNwCnAqs\nzm6nRsQvkxyjoqcR7rLLLrz22mtpl2FmZvYhH14qvhtr1/6OY445hk2bNvHtb3877fLMzLoESaMi\nYgGwIO9YfUTMTGqMig5bffv25a233kq7DDMzs4/IXyq+tnYQf/3rXznmmGNYv349V1xxxdbbmJiZ\nWZvdKemXZKYO9sw+HgockdQAFT2NcJdddnHYMjOzTmHAgAE8/PDD/PGPf+Sss85i06ZNH3q9oQGe\neCLzaGZmBRkLDCJzrdbTwOvAkUkOUNFhy9dsmZlZZ7L77rvz0EMPsWHDBiZMmMAbb7wBZALW+PFw\n9NGZRwcuM7OCNALvAb3IdLZejYimJAeo6LDlzpaZmXU2O+ywA3fddRdHH300Bx98MI8++ijz5mWu\n79q8GRYsyDw3M7NWPU0mbB0GjAcmS7oryQEqOmy5s2VmZp1RVVUVV1xxBdOnT+czn/kMM2ZczahR\nkV29MLOSoZmZtepLEfG9iGiMiJURcTJwX5IDVHTY6tOnDxs2bOD9999PuxQzM7OiTZo0idmzZzNr\n1p+orq7n5ptf5ZFHMotrmJlZyyR9CyAiZks6rdnL+yU5VkWHraqqKvbcc09ef/31tEsxMzNrk0GD\nBvHAAw8wZcqZXHDBYUyd+g3WrVvX6vu8oIaZVbAz8p43v5/GxCQHqriwFREf2h80aBDLli1LqRoz\nM7P2k8SUKVOYP38+69atY+TIkdx4441s2bKlxfO9oIaZVTht43lL++1ScWEL+NC9SRy2zMysq+jf\nvz833ngjv/vd77j55pupq6vj5ptvprGx8UPneUENM6twsY3nLe23S0WGrXwOW2Zm1tUccsghPPzw\nw1x33XXcfPPN7Lvvvlx//fU0ZFtYo0dnFtEoZkENTzs0sy7kAEnvSGoA9s8+z+2PSXKgVMKWpImS\nFkp6SdLF2zjnWkmLJD0r6cDssb0k/UXSfElzJX2tvbUMHjyYJUuWtPdjzMzMOhRJHHvssfzlL3/h\ntttu489//jODBw/m3HPP5cUXZ/PII/DwwxS0oIanHZpZqZUzH0REdUT0iYjaiKjJPs/td0vye5U9\nbEmqAqYBnwLqyKxnP7LZOccDwyJiH2AK8LPsS5uBiyKiDjgC+Grz9xarrq6OefPmtecjzMzMOrQj\njjiCX/3qVyxYsIC9996b0047jSOOGM39909l6dLW5xB62qGZlVJHywdJSqOzdTiwKCKWREQjcAdw\ncrNzTgZuAYiIWcBOkvpHxKqIeDZ7/F3gBWBge4o54IADeO6552hqSvRm0WZmZh3OnnvuyXe+8x1e\nfvllpk+fzrp165g4cSL77bcf3/jGN7j//vvZsGHDR97naYdmVmIdKh8kKY2wNRDIv0hqOR/9gzQ/\nZ0XzcyTtDRwIzGpPMf369WOnnXbi5Zdfbs/HmJmZdRpVVVV8/OMf58c//jFLlizhlltuoW/fvlx5\n5ZX079+f+vp6LrnkEu69915WrlxJbS2edmhmpdSh8kGSatIuoC0k7QjcDVyYTbAtmjp16tbn9fX1\n1NfXt3jecccdx+9//3v+5V/+JdlCzcwq2MyZM5k5c2baZVgrqqqqOOywwzjssMP47ne/S0NDA48/\n/jizZs3iv/7rvzjnnHPo3bs3Bx10EHV1dSxePIq6ujpGjhxJr169WvzMlqYdjhu3/ToaGjLvGz3a\nN2U260rK9VtQaD4oNzW/71TJB5TGAVMjYmJ2/xIgIuKqvHN+BjwUEf8vu78Q+IeIWC2pBvgd8IeI\nuGY740RL3+2iiy5ir7324qKLLtp6bMaMGVx66aXMnj37Q8vCm5lZciQREWX/H9lt/R5YYSKCxYsX\n89xzz7FgwQLmz5/P/PnzWbx4MbvuuitDhgzZuu29994MGTKE2toBnHvuSBYt6saoUWq1G5brhM2f\nn5miWEj3zMw6p5Z+C8qVD9KQRmfraWC4pCHASjJ3cJ7c7Jz7gK8C/y/7x18bEauzr/03sCDJP+TE\niRO57LLLuOKKK/j2t79Nt26JLkJiZmbWaUlin332YZ999vnQ8c2bN7NixQqWLFmydZs9ezb33HMP\nq1ev5u9/X09TU39effU1DjlkB3bbbTd23nln+vTp85Ft9eqhzJs3iS1bqpk/fwu/+MUcDjpoEz17\n9qRHjx4f2mpqaqiurua992p47bUdGTNGDmZmnV+HywdJKXvYiogtks4HHiRzzdhNEfGCpCmZl2N6\nRMyQNEnSYmA98EUASUcCnwPmSnqGzE3HvhMR97enpqqqKu655x5OP/10HnvsMR544IH2fJyZmVmX\nV1NTs7WjtS1NTU2sXbuWN998kzfeeIN33nnnI9srr7zCmjUvsOOOY3jnnYH06rWUu+6ayh13rGXj\nxo1s2rTpQ9uWLVtobOxJQ8MMIkbSs+erHHvsVPbeux977rknAwYM2Lrtueee9OvXD0mepmjWgXXE\nfJCUsk8jLJdiphHmbN68mf3335/LLruM008/vRxlmplVDE8jtO1paPhgGmFrYeiJJzKLb2zeDDU1\nTVx++Uxqa+fz+uuv8/rrr7Ny5cqtz9evX0///sP5+9/v5b33Pkbfvqv4whduZK+9dmLXXXdlt912\n2/q42267scMOO7QpnDnMmRUmrd+CtHTKBTJKpaamhl/84heccMIJ7Lfffuy///5pl2RmZlYRamtb\nX0QjJ7cU/YIFMGpUFRdccAy1tce0eO57773HjBlvc8YZexBRxbp1A9iw4WMsW/YczzzzDG+++SZv\nvvkma9as4c033yQi2GWXIbz11q/ZuHEYffosY9Kk/8tuu/Vk5513bnGrqenLmWcO4sUXq6mra/0a\nNSgunDnImXVeDlvNHH744UybNo3jjjuO6dOnc9JJJ3nRDDMzsw4ktxR9IZ2wXr16MWFCr7xwVs0P\nf/jFbb5nw4YN3H//Ok4/vT9QxYYNQxg+/GR23XUxa9euZdmyZcydO5e1a9du3Vat+hirVt0B1PDc\nc5sYOPBEdt55ITvuuOOHtt69e7PjjjvSvXs/7r77Qtas2Z0993yb73znD/TtW0OvXr3o2bPn1see\nPXuyZcsOfP7zQ1i0qBsjRzbx8MNB377b/79vpe7KuetnVjiHrRZ89rOfZeDAgfzzP/8zP/zhD/nC\nF77AMcccw9ChQx28zMw6o4aG5P9fYUf7f6gVdn4tDYyLecBoYPvn19bCIzMa+P/Zu+84qcqz/+Of\naxt1QSI2kC6KLCKgEizIWkAQH8FYIthL0NgSnxg1if40JhKJ8Ykao9FIsMeCCtLUKCIWQKMgZekg\nXRBFWMqy7fr9MbO4rFtmlpk5M7vf9+t1XjPnzDX3fZ1lmbPXnPvcZ8GkL8kZ3J7satpv3Lgx/fs3\nJqdLCXmLSunaBW69dXDNsymeUELeohK6HJHOGxP/jdl2tm/fzo4dO9i+fftey/z52WzefAClpels\n2NCcSZO+JDt7AQUFBezatWuvx2+/PYJ1654HjPnzi9l//1NIS/tkr4Ks7HmDBg1IT9+PvHmPsmNn\ne7KbruakfnfQuHEJWVlZZGVlkZmZudeje1Oeeeoqvt58AAcd+A03/2oczZrZXnHp6el7JibZvTuL\nW2/5MatXN6Vdux089nge2dnsFVP+eUFBJhecdxBLl2VyeOdiJk3Zzn77/TA2Le37W7/mr89n/sQv\n6XZWe7Jb1fy7oPjYxScil/qm3hVbkY7bP/HEE1mwYAHjxo3jlVde4Z577mHbtm20adOGgw8+eM+4\n7saNG9OoUSMaNWpEVlYWGRkZVS5lHyiVba/4IVXTek2x6enpKgxFRMr07VvzfOLRzD8e7Vzlig88\nPvvMvvSJMD6bfD7gDBZ4GjmUks1bVFfQ7RVvpWTv/xZkVz1xSP76fKb/czl5Be3pmvUlL/7zl1X+\noZq/Pp++nVaGYht+yQfL36LhAQ1/UJjt2rWLoqIi5nzsXDerPaVksnN7G/oddzltu3xHYWEhRUVF\nez0WFhayelELNm/anxIy2PTVfnz2wbdkH7Ryr7iSkhJKSkooLi5m+6aOrP4yl2LSWbWyAb/75T+x\npvP3iin/vHT7Uazd9DLFpLNkUTE/PupCCtI+2Su2uLgYCBVszawZBxRPZQVd6UgeW5sMoiBjF2ZG\nWh8ZR2cAACAASURBVFraXouZ0aS0Cekbx7KcI+nEQtLbXkRh1u69Ysq/p2FxI77Le5zl3oXDbBEH\n9ryJogaFlbadlpZGVmEDVnw4kmWlXTgsbRGH5/4/ShoV7/kby8z2LAAZBZks+M+de+K7DxxJaeOS\nSmPNjIxdGXw24VaWlh5B57TFHDf0AbxJaZXx6bsy+OiVG1lacgSd0xfT96d/h6ZeZXzajjTefe6a\ncPwSBlz25J5f5YqxtiONKU9expKSIzg8fQmDRzxLWrPvXy//CMB2Y/yjw/bED73+xR/E7/U8H8b+\n7YIq/1/UVfWu2AIiLkIyMjI477zzOO+88wD45ptvWLduHRs2bGDz5s17Ptx27ty5ZykuLq5xKftg\nKS4upqioaM+HUsUPqco+tCKNLS0tJS0trVaF3L4WevFcT0Rf5b9dE5E6IpI760ZzJ95o79qr+JSL\nz170KX1KimFxZszjs1fN54OiM1nAEeQULyF79WRoVXl8VbGZmZmVnqHrsnUWfyePPLrQlUVce1IL\nsk87o8pc8t+ZxYxnFu6Jf+Km08g+rXe18X37fx//7sPXRBX/wbh7K40vLS2lpKSEGf+cz2nXd6WY\nLFZyJG/96Q16XtKZ0tJS3J3S0tK9ljnPLWfo7UdSTBYr6MIrIx6i6wVt94op/75FY9dxyYIuFJPF\ncj+C3w24mQ5ntay0bXfny4nfcN30cHzpEfyy6/m0GtAMCH2BX7aUra9/O5/xpd/HX9fmDA4+rWml\nse7Oxnd38mLpERSTxbLSw7m6+Qm0zG1YZfw37xfyVEk4vuRwLk07iha9MqqM3/phCUtLDg/Hd2bY\n9nZkH2WVxm+faSwJxy4t6UzDr/ancdvSvWLKuDu78jL2iufLJmQdW/yDuLLH3UuzWFK89y0k6oN6\nNxvhzTffTNu2bbn55psDyCpx3H2vQizaYm1fCr1U6quyvuGHwyHqYlEZj751NlWqE+hshEcfHfnZ\nktCFPZGd2YokVvGK35f4WrSdf8IZLFiYRs6RpWR//FZKxYfO5K0vdyavVbXD0xQfu/hE5fJFQZd6\nNRuhii2RCsq+XatvRea+tlVaWhoaEhHBENealtq8Z1+XZOuzbBhLXRJosbVtW+TXDUU6/3g0sYpX\n/L7EJ1MuCYjPX5/PgsmryDmzXcTXASk+NvGJyKVZ62YqtuoCFVsiiVU2BCOS4qymJdr4WCzJ1qe7\n7zUUONWLyszMTK644grdZ0tEpJ7TfbZERGrBzPb8cZ2VlRV0OimvsqHAyVpUFhUVUVBQUG2fde0s\nnYiISCRUbImIJKGyIZkZGXXnY/rJJ58MOgUREZGE0rRrIiIiIiIicaBiS0REREREJA5UbImIiIiI\niMSBii0REREREZE4ULElIiIiIiISByq2RERERERE4kDFloiIiIiISByo2BIREREREYmDeldsuXvQ\nKYiIiIiISD1Q74otADMLOgUREREREanj6mWxJSIiIiIiEm8qtkREREREROJAxZaIiIiIiEgcqNgS\nERERERGJAxVbIiIiIiIicaBiS0REREREJA5UbImIiIiIiMSBii0REREREZE4ULElIiIiIiISByq2\nRERERERE4iCQYsvMBprZIjNbYma3VRHzsJktNbM5ZtYjmvdK9aZNmxZ0CklNP5+q6WdTPf18JGj1\n7XewPu1vfdpX0P7WR3W1Pkh4sWVmacAjwBlADjDMzLpUiBkEdHL3zsA1wD8ifa/UTP+hq6efT9X0\ns6mefj4StPr2O1if9rc+7Stof+ubulwfBHFmqzew1N1XuXsR8CIwpELMEOAZAHefBTQ3s4MifK+I\niIiIiKSOOlsfZATQZ2tgTbn1tYR+SDXFtI7wvXtMmDDhB9tWrFhB+/bto0pYRERERETiJmH1QaKZ\nuye2Q7NzgTPcfUR4/WKgt7vfVC5mAvAnd/84vP4OcCvQoab3lmsjsTsmIiI1cndLdJ86HoiIJJeK\nx4JE1QdBCOLM1jqgbbn1Q8PbKsa0qSQmK4L3AsEc0EVEJPnoeCAikvQSUh8EIYhrtj4FDjOzdmaW\nBVwIvFEh5g3gUgAz6wN85+4bI3yviIiIiIikjjpbHyT8zJa7l5jZDcDbhIq90e6+0MyuCb3sT7j7\nZDM708yWATuAK6p7b6L3QUREREREYqMu1wcJv2ZLRERERESkPgjkpsbxlMw3NQuamR1qZlPNbIGZ\nzTOzpLhwMJmYWZqZfW5mSXP6OVmYWXMze8XMFoZ/h34cdE7JwsxuNrP5ZjbXzJ4PD2Oot8xstJlt\nNLO55ba1MLO3zWyxmb1lZs1j3Getb4aZimraXzM7wsw+NrMCM/vfIHKMpQj2d7iZfRFePjSzo4LI\nMxYi2Nezw/s528w+MbMTg8gzViL9u83MjjOzIjP7SSLzi6UI/m37mdl34b9DPjezO4LIM1Yi/FzO\nDf8uzzez9xKdY0K4e51ZCBWPy4B2QCYwB+gSdF7JsgAHAz3Cz5sCi/Xz+cHP6GbgOeCNoHNJtgV4\nCrgi/DwDaBZ0TsmwAK2AFUBWeP0l4NKg8wr4Z3IS0AOYW27bKODW8PPbgPti2F+Nn/3AIGBS+PmP\ngZlB/5zivL8tgWOAPwD/G3TOCdjfPkDz8POBqfrvG+G+Ni73/ChgYdB5x3N/y8W9C0wEfhJ03nH8\nt+1XV/7+iHB/mwMLgNbh9ZZB5x2Ppa6d2Urqm5oFzd2/cvc54efbgYWE7k0ghM78AWcCTwadS7Ix\ns2ZAX3cfA+Duxe6+LeC0kkk60MTMMoDGwPqA8wmUu38IbKmweQjwdPj508DQGHa5LzfDTEU17q+7\nb3b3z4DiIBKMsUj2d6a7bw2vziR1j22R7OvOcqtNgdIE5hdrkf7ddiMwFtiUyORiLNJ9rSuzp0ay\nv8OBV919HYQ+txKcY0LUtWKrqpudSQVm1p7QN8+zgs0kqfwV+DWgCxl/qAOw2czGhIc2PGFmjYJO\nKhm4+3rgAWA1oalmv3P3d4LNKikd6KFZo3D3r4ADY9h2JJ/9FWPWVRKTKurbsS7a/b0amBLXjOIn\non01s6FmthCYAFyZoNziocb9NbNWwFB3f4zULkQi/T0+PjzUeZKZdU1ManERyf4eDvzIzN4zs0/N\n7JKEZZdAda3YkgiYWVNC3xD9InyGq94zs8HAxvCZPyO1P9DjIQPoBfzd3XsBO4Hbg00pOZjZfoS+\nrWtHaEhhUzMbHmxWKUFfakjMmdkphGYoq9PXbLv7OHc/ktAZ4j8GnU+cPcje/551+fj8GdDW3XsA\njwDjAs4n3sr+thhEaPjvnWZ2WLApxV5dK7YiuSFavRYe5jQWeNbdxwedTxI5ETjbzFYA/wZOMbNn\nAs4pmawF1rj7f8PrYwl9QAqcDqxw92/dvQR4DTgh4JyS0cayYXtmdjCxHQ60LzfDTEX17VgX0f6a\nWXfgCeBsd684jDVVRPVvGx6y29HMfhTvxOIkkv09FnjRzFYC5wF/N7OzE5RfLNW4r+6+vWyYqLtP\nATLr+L/tWuAtdy9w92+A6cDRCcovYepasZXUNzVLEv8C8tz9oaATSSbu/lt3b+vuHQn93kx190uD\nzitZhId/rTGzw8ObTgPyAkwpmawG+phZQzMzQj+bpLm/R4AqniF+A7g8/PwyIJZf9uzLzTBTUbTH\nulQ/E1Dj/ppZW+BV4BJ3Xx5AjrESyb52Kve8F6HJeb5NbJoxU+P+unvH8NKB0Bd917l7Kv5tF8m/\n7UHlnvcmdIumOvtvS+g4cJKZpZtZY0KTF9W542fCb2ocT57kNzULWnh62IuAeWY2m9Awnt+6+5vB\nZiYp4ibgeTPLJDT73hUB55MU3P0TMxsLzAaKwo9PBJtVsMzsBSAX2N/MVgN3AfcBr5jZlcAq4IJY\n9VfVZ79FcDPMVBTJ/ob/aPsvkA2UmtkvgK6pOHQ8kv0F7gR+BDwa/tKjyN17B5d17US4r+ea2aVA\nIbCLGP5fSrQI93evtyQ8yRiJcF/PM7OfEzqW7AJ+GlzG+ybCz+VFZvYWMBcoAZ5w9zr3Ra5uaiwi\nIiIiIhIHdW0YoYiIiIiISFJQsSUiIiIiIhIHKrZERERERETiQMWWiIiIiIhIHKjYEhERERERiQMV\nWyIiIiIiInGgYktERERERCQOVGyJiIiIiIjEgYotkSiZWfPwHd7L1j8MIIeGZjbNzGwf28k0s/fN\nTJ8FIiJR0vFARGqi/1Ai0WsBXFe24u4nxaMTM+tiZr+p4uUrgVfd3felD3cvAt4BLtyXdkRE6ikd\nD0SkWiq2RKL3J6CTmX1uZn82s3wAM2tnZgvNbIyZLTaz58zsNDP7MLx+bFkDZnaRmc0Kt/FYFd9I\nngLMriKHi4Dx0fRrZo3NbKKZzTazuWZ2frit8eH2REQkOjoeiEi1VGyJRO92YJm793L3W4Hy3yZ2\nAu539yOALsCw8DedvwZ+B6FvKIGfAie4ey+glAoHNzMbCFwNtDGzgyq8lgl0cPfV0fQLDATWuXtP\nd+8OvBnePh84rvY/DhGRekvHAxGplootkdha6e554ecLgHfDz+cB7cLPTwN6AZ+a2WzgVKBj+Ubc\n/U1CB8J/uvvGCn20BL6rRb/zgP5m9iczO8nd88N9lQK7zaxJ9LsrIiJV0PFARMgIOgGROmZ3ueel\n5dZL+f7/mwFPu/vvqEL428uvqnh5F9Aw2n7dfamZ9QLOBP5oZu+6+x/CcQ2AgqryERGRqOl4ICI6\nsyVSC/lAdrl1q+J5RWWvvQucZ2YHAJhZCzNrWyG2N/CJmR1rZo3Kv+Du3wHpZpYVTb9mdgiwy91f\nAO4Heoa3/wjY7O4l1bQhIiI/pOOBiFRLZ7ZEouTu35rZx2Y2l9A49/Jj9Kt6vmfd3Rea2R3A2+Ep\ndguB64HyY+7XExpastzdd1WSxtvAScDUSPsFjgLuN7PScJ9l0xWfAkyqbF9FRKRqOh6ISE1sH2cK\nFZEAmFlP4JfuflkM2noVuM3dl+17ZiIikkg6HogkNw0jFElB7j4beC8WN7EEXteBVUQkNel4IJLc\ndGZLREREREQkDnRmS0REREREJA5UbImIiIiIiMSBii0REREREZE4ULElIiIiIiISByq2RERERERE\n4kDFloiIiIiISByo2BIREREREYkDFVsiIiIiIiJxkJLFlpn9wszmhZebgs5HRERERERqz8wGmtki\nM1tiZrdVEfOwmS01szlm1rPc9tFmttHM5lbxvl+ZWamZ/She+Vcl5YotM8sBrgKOBXoAZ5lZx2Cz\nEhERERGR2jCzNOAR4AwgBxhmZl0qxAwCOrl7Z+Aa4LFyL48Jv7eytg8F+gOr4pB6jVKu2AKOBGa5\n+253LwGmAz8JOCcREREREamd3sBSd1/l7kXAi8CQCjFDgGcA3H0W0NzMDgqvfwhsqaLtvwK/jkvW\nEUjFYms+0NfMWphZY+BMoE3AOYmIiIiISO20BtaUW18b3lZdzLpKYvZiZmcDa9x9XiySrI2MoDqu\nLXdfZGajgP8A24HZQEnFODPzROcmIiLVc3dLdJ86HoiIJJdEHAvMrBHwW0JDCPdsjne/FaXimS3c\nfYy7H+vuucB3wJIq4lJqueuuuwLPoS7nq5yVr3IOdglS0Pte1/9tlbPyVc7KOdKlCuuAtuXWDw1v\nqxjTpoaY8joB7YEvzGxlOP4zMzswisPHPkvJYsvMDgg/tgXOAV4INiMREUlq+fmRxcyYEVmsiIjE\n0qfAYWbWzsyygAuBNyrEvAFcCmBmfYDv3H1judeNcmeu3H2+ux/s7h3dvQOhoYk93X1TPHekopQs\ntoBXzWw+MB64zt23BZ2QiIgksb59qy+i8vNDMSefXHNsWXykhZmKOBGRanlo0rsbgLeBBcCL7r7Q\nzK4xsxHhmMnASjNbBjwOXFf2fjN7AfgYONzMVpvZFZV1QwDDCFPumi0Adz856BziITc3N+gUopJq\n+YJyToRUyxeUc72QlwcLFkCfPpW/Pn9+6PXi4ppjywqzBQsgJwc++ACys/c9Nhyfe8ABofdVF1e+\n/fnzoVu3muOjiY1SKv4+plrOqZYvKOdEScWcK+PubwJHVNj2eIX1G6p47/AI2g/kVlFWzdjJlGZm\nXlf3TUQkFZkZHtAEGX700ZEVRXl50LVr9bEzZoTOgBUXQ2YmTJ9edWEWTWwtCrN4Fn3JUMSJSN0T\n1LEgKKk6jFBERCRyNRUX2dmhmOnTa47t1i1UsGRmhgqznJzYxFZ2dq060cRHExvNkEoNvxQRqZaK\nLRERqfsiOeOSnR0661RTbDSFWbyKuGjj41X0JUsRV/aeeBRyKvpEZB9oGKGIiCREoMMIU+V4kJ//\n/VC/SK/ZijQ+0thohlQmw/DL8nnEekilhl+KxJyGEYqIiEgwIj27Vpv4VDpzF+1ZvnidjUuWM3fR\nnl3T2TiRpKFiS0RERPaWSkUcxK+QS7Xhl7WN1/BLkbjRMEIREUkIDSOUuIrHkMpoYpNh+GW08ak4\n/LI28ZJUNIxQREREJNXE42xcNLHJMPwy2vhUG35Z23iduZMAqdgSERERiYWgi7ho41Nt+GW08fG6\nji5ZCj5JCRpGKCIiCaFhhCJJKE7DL/PX5zN/0iq6DW5HdqvqhxDmn3AG8xem0+3IErI/fqvGIYcR\nx8+YQX7fM5lf0oVuGYvJ/mBytTNgxiU2mnyj/VkQ/jlP/JJuZ7Wv/uccbj8Zhl/Wt2GEGUEnICIi\nIiLByCeb+d6HbkBNf36Xj21YVMTOnTvZsWMHO3fu3GvZvHk3v/51H9auPZJDDtnCNdeMprR0K4WF\nhXuWoqIiCgsL2bEjjbdWP8/WkkPJXrWaY4ZeQmnp1j2vFxcXU1paumcpLm7E6pXPUFDSiQZLlnFw\n9xOB/L1iypYGRQ1pVDKNFRxJp+KFFP7PORRkFmBmpKWlYWZ7lkYljfGSaSwPx2YNv5TCrN17Xs/I\nyNizNC5twsbS91lGFw4rXUTn394JTX2vmLKl7Vc7eH3+o+TRla7z87j4ql/ybacD97yemZlJVlYW\nDRo0oOXyTdy3J3Yhox4cjR97BFlZWXtiyp5nZWVRtKWYC/tC3u4j6NpgBe8tPpAWbVtgVkkdU4tC\nTmJDxZaIiIhIHRLJCQx3Z926bfTv34Bly7I49NB8br11AoWF37B161a2bt3Kd999t+f5t98WsWDB\nY+ze3QmzhZj1o2lTp3HjxnstTZo0YffuXqxZczru6WzY0JxFi9Lp1KmExo0b07x5870KhlWrWvHK\njraUks6OXe0566zbOProXWRlZZGZmUlmZuaewigtLY25c5tw+eXtcdIoLu3C/fdP5phjikhLS/vB\n8t//ZjJ06H4UF6exIuMoXv3XLHr1KsTdcXdKS0v3PP/ssyyGDTuE4uI0lmccxXN/eoOjj95VodAr\npri4mDlzGnL9dTkUl6SzLC2Hn511G4cdtnnP6+WX5fOakjelK8VksZAjWbffiRzUbCPFxcUUFRVR\nUFCwpwCdvuIg8gjF5tGFv0x5moyP3tyrSC2/tPr2CPJ2vx5qe3cHTul4KnNLP97r51u29CxqyMoN\nL+0p+o47aRBrD2lKgwYN9loaNmxIgwYNGD58OMccc0xif3HrKA0jFBGRhNAwQpH4W78+n1NPzWTZ\nskxatdrKlVeOYcuW1Xz99dd7LZs3byYt7UQKCt4CMjEr4owzRnLYYZtp3rw5++23H82bN9+zrFlz\nKD//+ZEUF6eRmem8/z4cf3zl/53jNTFjPNuOa+wJJeQtMrp2cT74OD0msRAaQti303ryCtrTteGX\nfLC8FU0ObrLnrGDZsnv3bj6ZtpuLruhIMZlkUshDf/mU9l23sXv37r2WgoICdu/ezaBBg8ipaTKW\nWqpvwwhVbImISEKo2BKpnbIzVV27lpKfv54VK1awcuVKVqxYwapVq1i3bt2epaCgJ4WF/wEySUsr\nYvjwJ+jVq5ADDjhgr6Vly5YUFzeKa1EUj5n449l2qsVCqOBaMHkVOWdWf21ctIVcPKnYqiPMzLdu\n3UqzZs2CTkVERFCxJVJeVUP93J21a9eycOFCFi5cyPz5q3jppevJz2+LWR4HHHAuhx12EB06dKBj\nx460a9eO1q1b07p1aw499FDS0/fj5JMtKYoiSS7J8u+nYquOMDMfN24cQ4YMCToVERFBxZZImfx8\nOOkkJy/Pad16G5dd9iQrVnzBwoULWbx4MU2bNqVLly4ceeSRZGX145FHzqOkJJ3MTGf6dKv2nsZl\n7SfDH9UilalvxVadniDjP//5j4otERERCVRhYSELFy5k9uzZzJkzh/ffL2Tu3AeBLFavbsKyZQ04\n7bRTuO666+jSpQstWrTY8978fJg2rWz4ntV4T2P4/hZeIhK8On1mq3PnzixZsiToVEREBJ3Zkrqv\nbGjgj360nnnzPmbGjBnMnDmTOXPm0K5dO3r06EHPnj05/PBj+O1v+7J0aWbMh/qJJLv6dmarThdb\nBx54ILNmzaJ9+/ZBpyMiUu+p2JK6yN3Jy8tj8uQPuPfegWzd2or09CX0738Pffv2oE+fPhx33HFk\nV6iSVEBJfaViq44wMx8+fDi5ubn87Gc/CzodEZF6T8WW1AXuzvLly5k6dSpTp07lvffeo2nTpuTk\nXM3kybdGdW2VSH2kYquOMDN/6qmnmDRpEi+//HLQ6YiI1HsqtiQV5efDp5/uYtOmqUydOp4333yT\nkpISTj31VE499VROOeUU2rdvH/XU6CL1lYqtOsLMfO3atXTv3p1NmzaRnp4edEoiIvWaii1JJV9+\n+SVjx77F739/Otu3t6FJk9X89rdT+MlP+nPEEUdg9sNfZQ0NFKlZfSu20oJOIJ5at27NIYccwuef\nfx50KiIiIpLkvvzyS+6//3569+7Ncccdx9Spm9i1qz2QRWHhYZx66o106dKl0kILvp8FUIWWiJSp\n08UWQP/+/Xn77beDTkNERESSRH4+zJgRelyzZs1eBdbSpUu599572bBhAy+9dCfduqWTmRkaGhjJ\ntOsiIuXV6WGE7s6UKVMYNWoU06ZNCzolEZF6TcMIJRnk58OJJ5aQlweNGn1JZuapnHvuAC644AJO\nOeUUMjIyfhCvoYEisVPfhhGmZLFlZjcDVwGlwDzgCncvrBDj7s6OHTs4+OCD2bBhA02bNg0iXRER\nQcWWBMvdmTVrFvfd9z7jx98MZJGeXsK77xbRr1/DoNMTqTfqW7GVcsMIzawVcCPQy927AxnAhZXF\n5udDkyZNOO6443j//fcTmaaIiIgkgV27djFmzBiOOeYYLrnkEnr0yODIIyEzE7p1S6dXLxVaIhI/\nKVdshaUDTcwsA2gMrK8sqG/fUME1YMAAXbclIiJSj6xatYrbb7+ddu3aMXbsWEaOHMnixYu5++5f\nMWtWFtOna3p2EYm/jJpDkou7rzezB4DVwE7gbXd/p7LYvLzQOOsBAwZw0UUXJTRPERERSZz8fJg/\nH3bv/oxHHvkT7733Hpdddhkff/wxhx122F6xZbMGiojEW8oVW2a2HzAEaAdsBcaa2XB3f6FibNnM\nQU2a9GDLli2sXLmSDh06JDplERERiaNt25yePbezcmVD0tMb8sc/nspTTz2la7VFJHApV2wBpwMr\n3P1bADN7DTgB+EGxNWjQ3TzwQOh5jx49mDJlCtddd10CUxURqb+mTZummWAlrtydN998k1/9aiwr\nVvwDyMSsK/365aA6S0SSQcrNRmhmvYHRwHHAbmAM8Km7/71C3F6zT7388ss888wzTJw4MZHpiohI\nmGYjlFiaNm0ad9xxB99++y23334vDzwwlIULja5ddS2WSDKrb7MRplyxBWBmdxGagbAImA1c7e5F\nFWL2Orhu2bKFdu3asWnTJho21MxDIiKJpmJLYuG///0vv/nNb1i5ciV33303w4YNIz09XffDEkkR\n9a3YSsnZCN399+5+pLt3d/fLKhZalWnRogVHH320poAXERFJQevWrePSSy/l7LPP5vzzz2fhwoVc\nfPHFpKenA99PeqFCS0SSSUoWW7V15plnMnny5KDTEBERkRrk58PHHzsbN+7knnvuoXv37rRp04bF\nixczYsQIMjMzg05RRKRGKrZEREQkqeTnw9FHb+XEE4to1WoZc+Ys57PPPuPee+8lW6euROokMxto\nZovMbImZ3VZFzMNmttTM5phZz3LbR5vZRjObWyH+HjP7wsxmm9mbZnZwvPejonpVbHXv3p2dO3ey\ndOnSoFMRERGRKrzwwlxWrmwEZJGefhS33vo07du3DzotEYkTM0sDHgHOAHKAYWbWpULMIKCTu3cG\nrgEeK/fymPB7K/qzux/t7j2BScBd8ci/OvWq2DIzBg0axJQpU4JORURERCoxb9487rhjKB06FJCZ\nCV27Gjk5QWclInHWG1jq7qvCczG8SOi+uuUNAZ4BcPdZQHMzOyi8/iGwpWKj7r693GoToDQOuVer\nXhVboKGEIiIiyWrlypUMGjSIhx++ly++aMb06ZrGXaSeaA2sKbe+Nrytuph1lcT8gJn90cxWA8OB\n/7ePeUYtITc1NrMM4Hzg+PCmJkAJsBOYC7zg7gWJyOX000/n8ssvZ+fOnTRu3DgRXYqIiEgNNm3a\nxIABA7j99tsZNmwYEJpdUERSW9A3uHf3O4A7wteB3Qjcncj+415smdlxwMnAf9z935W83gkYYWZf\nuHvc52Vv1qwZxxxzDO+99x6DBw+Od3ciIiJSg23btjFw4ECGDx/ODTfcEHQ6IhJDubm55Obm7ln/\n/e9/X1nYOqBtufVDw9sqxrSpIaY6LwCTqWvFFlDg7g8AmNlB7r4x/LyRu+9y9+XAw2bW0cyy3L0w\n3gmVDSVUsSUiIhKsgoIChgwZwvHHH8/dd98ddDoiEoxPgcPMrB2wAbgQGFYh5g3geuAlM+sDfFdW\nV4RZePl+g9lh7r4svDoUWFhTIrEekWfuHmlsrZnZ7cAcoI27/zO87Vgg293fi1OfXtW+LViwTFUC\nbwAAIABJREFUgLPOOosVK1ZgVm9uYC0iEigzw90T/qFb3fFAEis/H+bPh27dQtdhFRcXc8EFF5CV\nlcXzzz+/5wbFIlJ3VXUsMLOBwEOE5pQY7e73mdk1gLv7E+GYR4CBwA7gCnf/PLz9BSAX2B/YCNzl\n7mPMbCxwOKGJMVYB17r7hmpyOw7oS2hE3rxKXu8EDAYiHpGXqGKrC3AKcDWh031fAZ8Ard290nOJ\nMeizyoOru9O+fXvefPNNjjzyyHh0LyIiFajYqt/y86FvX1iwAHJyYPp051e/GsGqVauYOHEiWVlZ\nQacoIgkQ1LEgEmZ2VGVFViVxHYG1kYzIS8gEGe6+CFhkZivd/c3wNI29gdmJ6L8iM2Pw4MFMnDhR\nxZaIiEgCzJ8fKrSKiyEvD2688R8sXPgFU6dOVaElIkmhfKFV2eVP5eJWRNpmXKd+N7MGZrZ/2bq7\nvxl+3OjuE9z9s3KxbSprI17OPvts3njjjUR2KSIiUm916xY6o5WZCQccsIkZM55k8uTJNG3aNOjU\nRET2MLPfhIc0nl1uc46ZnVKb9uJabLn7buB4MxtmZo0qizGz/cxsBNAunrlUdMoppzBv3jy+/vrr\nRHYrIiJSL2Vnh+6Zdfvtk0lLy+Wdd16nZcuWQaclIlLR60AH4Foze8PMngB6EJpdPWpxH0bo7hPN\n7GDgZjM7EGgY7rdsVo+1wJPuvjXeuZTXoEED+vfvz6RJk7j88ssT2bWIiEi9NH36JJ544iree+89\n2rZtW/MbREQSLNaXPyVkgowgRHJB9LPPPsvrr7/Oa6+9lqCsRETqL02QUb999NFHnHPOOUycOJHe\nvXsHnY6IBCRZJ8gwswZAU3f/JoLYNu6+JqJ2gzwAmVljd98Zp7ZrPLh+8803dOzYkY0bN9KwYcN4\npCEiImEqtuqvvLw8Tj31VJ5++mnOOOOMoNMRkQAla7EFYGZnAdnAuPITYpR7fT/gAiDP3T+MpM2E\nzEZYnpmd4+6vm9nVQAcz+7Ls3luJtv/++9OjRw/effdd3eBYREQkDtauXcugQYP4y1/+okJLRJJa\nPC5/SnixBQwgdOHZDOBpoGcAOexRNiuhii0REZHY2rJlC4MGDeLGG2/k4osvDjodEZEauftXwMhY\ntZfwYYRmVjaTx3qgD/C5u+fFoZ+Iho0sXbqUfv36sXbtWtLS4jo5o4hIvaZhhHVTfn7oHlrduoVm\nHCxTUFDAgAEDOPbYY3nggQcwS8pRQyKSYMk8jLA6tb38KeHVhbtPB74E9gPej0ehFY3OnTuz3377\n8dlnn9UcLCIiInvk50PfvnDyyaHH/PzQ9pKSEi666CJat27NX/7yFxVaIpKSzOyc8OPVwO/M7GfR\ntpHwYsvMrgGGAt2B883sF4nOoaKzzz6b8ePHB52GiIhISpk/HxYsgOJiyMsLPXd3brzxRrZu3cpT\nTz2lUSMiksoGhB9nAHcDX0TbQBCfgMvd/WF3/5e7/x8wN4Ac9lJ23ZaIiIhErls3yMmBzEzo2jX0\n/N5772XGjBm89tprNGjQIOgURUT2xb/Dl0DtBn4KbI+2gSCu2epNaMrERsBWYHKkUydG2U/EY/RL\nSkpo1aoVM2fOpEOHDrFORURE0DVbdVV+fuiMVk4OvPTSk4wcOZKPP/6Ygw8+OOjURCQJpeo1W7VV\nr29qXN5VV11F9+7d+cUvAh/VKCJSJ6nYqtsmTJjAiBEjeP/99zn88MODTkdEklQqF1tm1s3d50fz\nnsAHUptZt6BzAF23JSIiUlszZszgyiuvZPz48Sq0RKROMbM2ZnasmbUBGkf9/iC+7QsnexCwETjE\n3T+JQx9RfZO5c+dODjnkEJYvX07Lli1jnY6ISL2nM1t106JFi8jNzWXMmDEMGjQo6HREJMml0pmt\n8MR+DQhdq7UfUOLuD0XTRsJvalxZ0kDExZaZHQ68BDhgQEfgTnd/eF/yaty4MQMGDGD8+PFcddVV\n+9KUiIhIvbB+/XoGDhzIqFGjVGiJSF203N3fKVsxs1OibSDhxRb7mLS7LwF6ht+bBqwFXq9tMuVv\nxnjuuefyzDPPqNgSERGpwXfffcfAgQO59tprueyyy4JOR0QkHraZ2V8oN7FftA2k9GyEZjaA0Fmt\nvpW8VuOwkbKbMZbNojR5cj5durRm9erV7LfffrVJSUREqqBhhHVHQUEBAwcOpHv37jz00EO6abGI\nRCyVhhHGQsLPbIWvz4rVNVo/Bf5d2zdXvBnj6tXZ5ObmMnHiRC6++OIYpSgiIlJ3lJaWcumll3Lg\ngQfy17/+VYWWiEg1ghhGGBNmlgmcDdxeVczdd9+953lubi65ubl7vV52M8a8vO9vxnjuuefy6quv\nqtgSEdlH06ZNY9q0aUGnIbVQfoh9dvber91yyy1s3LiRt956i/T09GASFBFJoPCNjdPd/b2o3xvU\n0Ip9STr8/rOB69x9YBWvRzRspPzNGLOzYcuWLbRv355169bRtGnT2qQmIiKV0DDC1FBxiP0HH3xf\ncD300EM8/vjjfPTRR7Ro0SLYREUkJaXiMEIz60eobpka7XuDvM+WhZfaGsY+DCEsk50Nffp8fyBp\n0aIFffr0YcqUKfvatIiISMqpOMR+wYLQ9ldffZX777+fKVOmqNASEYlQ4Dc1rg0zawycDrwWj/bP\nPfdcxo4dG4+mRUREklrZEPvMzO+H2H/00Udce+21TJgwgXbt2gWdoohIyghyGGGtT8dF2H6th41s\n2rSJzp0789VXX9GoUaMYZyYiUj9pGGHqKD/Efv36xfTr14+nn36aM844I+jURCTFpegwwk5Amrsv\njfa9QZ7ZWgusCbD/Kh144IH06tWLt99+O+hUREREEq5siP3OnRs588wzGTlypAotEanP9q9NoQXB\nFlu1TjoRymYlFBERqY927NjBWWedxSWXXMKVV14ZdDoiIgkXvj8wQO9qA6uR8GIrFkknwjnnnMPE\niRMpLCwMOhUREZGEKi4u5sILL+Soo47irrvuCjodEZGgdTCz883sumjfGOSZrVonnQitW7emS5cu\nvPvuu0GnIiIikjDuzg033EBhYSGPP/64blosIvWGmQ0xs/KzAK0LP05291fc/dFo24x7sRWPpBPl\nwgsv5MUXXww6DRERkYS57777mDlzJq+88gqZmZlBpyMikki5wAEQuqevu68DcPdan32J+2yEZvZX\n4Hl3/2846Tfi2uH3/e7z7FMbNmyga9eubNiwgYYNG8YoMxGR+kmzESa/559/nt/97nd8/PHHtGrV\nKuh0RKQOSubZCM3sFOAmoGF4mQTMA+aXFV5Rt5mAYivmSUfYb0wOrqeeeio33ngj55xzTgyyEhGp\nv1RsJbepU6cybNgwpk6dSk5OTtDpiEgdlczFVnlm9r/AZ0AO0A1oRWg29b+5++KI20nkAShWSUfY\nV0wOrk888QTvvvsuL730UgyyEhGpv1RsJa958+Zx2mmn8fLLL5Obmxt0OiJSh6VKsVUZM/sp0Mbd\n/xLxe4I+ANUm6QjbjcnBdfPmzXTq1Il169bRtGnTGGQmIlI/qdhKTmvXruWEE05g1KhRDBs2LOh0\nRKSOS/Fi6ydAkbtPiPQ9Qc5GWKYIiOlZrVhq2bIlJ554IhMmRPwzFRERSQnbtm1j8ODB3HDDDSq0\nRERq4O6vRVNoQRIUW7VJOtGGDRumWQlFRCSl5efDjBmhR4CioiLOP/98TjzxRH79618Hm5yI1Htm\nNtDMFpnZEjO7rYqYh81sqZnNMbOe5baPNrONZja3QvyfzWxhOP5VM2sW7/2oKPBiKxUMGTKEadOm\nsWXLlqBTERERiVp+PvTtCyefHHrcts25/vrrycjI4OGHH9a9tEQkUGaWBjwCnEFobodhZtalQswg\noJO7dwauAR4r9/KY8HsrehvIcfcewFLgN3FIv1oqtiLQrFkzTj/9dF5//fWgUxEREYna/PmwYAEU\nF0NeHvzmN8/xySef8OKLL5KRkRF0eiIivYGl7r7K3YuAF4EhFWKGAM8AuPssoLmZHRRe/xD4wVkR\nd3/H3UvDqzOBQyNJxsxuNLMWtdqTChJWbMUy6SDoBsciIpKqunWDnBzIzIRWrb5j3Lh7mThxItnZ\n2UGnJiIC0BpYU259bXhbdTHrKompzpXAlAhjDwI+NbOXw8Mba336P5FntmKWdBAGDx7MJ598wqZN\nm4JORUREJCrZ2fDBB/Doo/PZvr0nkya9yKGHRvQFr4hIyjOz3xGaRfCFSOLd/Q6gMzAauBxYamYj\nzaxTtH0nbOyAu99hZncCA4ArgEfM7GVgtLsvT1QetdW4cWMGDx7M2LFjue6664JOR0REJCpff72C\nO+/szzPPjKZHjx5BpyMi9cS0adOYNm1aTWHrgLbl1g8Nb6sY06aGmB8ws8uBM4FTa4otz93dzL4C\nvgKKgRbAWDP7j7vfGmk7Cb/PlpkdTajYGgi8B/QBoko6wn5ifl+ViRMnct999/Hhhx/GtF0RkfpA\n99kKzpYtWzjhhBO48cYb9YWhiASqsmOBmaUTuhXUacAG4BNgmLsvLBdzJnC9uw82sz7Ag+7ep9zr\n7YEJ7n5UuW0DgQeAk939myhy/AVwKbAZeBIY5+5F4Yk8lrp7xGe4ElZsxTLpCPuL+cG1qKiI1q1b\nM2PGDDp1imm6IiJ1noqtYBQWFnLGGWfQs2dP/u///i/odESknqvqWBAujB4idJnTaHe/z8yuIXSS\n6YlwzCOETtjsAK5w98/D218AcoH9gY3AXe4+xsyWAllAWaE1091r/MbJzH4P/MvdV1Xy2pHli8Aa\n20pgsRWzpCPsLy4H15tuuon999+fu+66K+Zti4jUZSq2Es/dufzyy9m2bRtjx44lPT096JREpJ4L\n6lgQDTMb5e631bQtEomcIKNhxULLzEYBxLrQiqdLLrmEZ599lvp64BYRkdTxxz/+kby8PJ577jkV\nWiIiketfybZBtWkokcVWzJIO0rHHHktmZiYzZswIOhUREZEqPf/884wePZoJEybQpEmToNMREUl6\nZvZzM5sHHGFmc8stK4G5tWoz3mdozOznwHVAR6D8rIPZwEfufnGc+o3bsJGRI0eyZs0aHnvssZqD\nRUQE0DDCRJo+fTrnnXce7733Hjk5OUGnIyKyRzIPIzSz5oRmHfwTcHu5l/Ld/dtatZmAYivmSUfY\nb9wOrqtWraJXr16sX7+eBg0axKUPEZG6RsVWYixZsoSTTz6Z5557jtNPPz3odERE9pLMxVY8xH0Y\nobtvdfcv3X2Yu68qt8St0IqX/HyYMQN+9KN2dO/enUmTJgWdkoiIyB6bN2/mzDPP5N5771WhJSIS\nJTP7MPyYb2bbwkt+2Xqt2kzAma0P3f0kM8sHyjorq2bd3ZvFqd+YfpOZnw99+8KCBZCTAz/72TP8\n5z+vMW7cuJj1ISJSl+nMVnwVFBRw2mmn0a9fP0aOHBl0OiIilapvZ7YSflPjWAgPTXwS6AaUAle6\n+6wKMTE9uM6YASefDMXFkJkJU6bs4NxzW7Ns2TJatmwZs35EROoqFVvx4+5cdNFFlJaW8sILL5CW\nlsj5r0REIpcKxZaZnQ+86e75ZnYH0Av4g7vPjrathH0am9n5ZpYdfn6Hmb1mZj1r2dxDwGR3PxI4\nGoj71PHduoXOaGVmQteu0Lt3EwYNGsRLL70U765FRESqdc8997By5UqeeuopFVoiIvvuznChdRJw\nOjAa+EdtGkrkJ3JMkjazZkBfdx8D4O7F7l6rMZTRyM6GDz6A6dNDj9nZcOmll/Lss8/Gu2sREZEq\n/fvf/2bMmDGMGzeOhg0bBp2OiEhdUBJ+HAw84e6TgKzaNJTIYitWSXcANpvZGDP73MyeMLNGMcuy\nGtnZ0KdP6BGgf//+rFq1isWLFyeiexERkb3MnDmTX/ziF0yYMIGDDjoo6HREROqKdWb2OPBTYLKZ\nNaCWdVNGTNOqXlnS/YFR+5B0BqFxk9e7+3/N7EFCU8rfVTHw7rvv3vM8NzeX3NzcWnRXTSIZGVx8\n8cX861//YtSoUTFtW0Qk1U2bNo1p06YFnUadtWrVKoYOvYRbb32d9u2PCjodEZG65AJgIPAXd//O\nzA4Bfl2bhhI2QYaZNSaU9Dx3XxpO+ih3fzvKdg4CZrh7x/D6ScBt7v4/FeISckH0okWLOOWUU1i9\nejWZmZlx709EJFVpgozY2bZtG3369Gfr1ols2nQAOTnfD3EXEUlmqTBBRiwlbBihu+9099fcfWl4\nfUO0hVb4fRuBNWZ2eHjTaUBeDFONSpcuXejUqROTJ08OKgUREalHSkpKGDZsGEcccS6bNrWkuBjy\n8kK3JhERkX1nZg3MbLiZ/dbM/l/ZUpu2EjaMMDxs8Fygffl+3f2eWjR3E/C8mWUCK4ArYpFjbV11\n1VWMHj2aIUOGBJmGiIjUA7fccgu7d+/m2Wdv5tRTjby80Cy5OTlBZyYiUmeMB7YCnwG796WhRA4j\nfJPvky6bLAN3fyBO/SVs2Mj27dtp06YNCxYsoFWrVgnpU0Qk1WgY4b77xz/+wYMPPsiMGTNo0aIF\n+fmhM1o5ORpCKCKpIRWGEZrZfHfvFpO2ElhsxSzpCPtL6MF1xIgRdOjQgd/85jcJ61NEJJWo2No3\n77zzDhdffDEffvghhx12WNDpiIjUSooUW08Af3P3efvaViKnfv/YzOrsdElXXXUV//rXv6gLB3QR\nEUkuixYtYvjw4bz00ksqtERE4u8k4HMzW2xmc81snpnNrU1DiZz6/STgCjNbQWjsowHu7t0TmEPc\n9O7dmwYNGjB9+nT69esXdDoiIlJHfPPNN5x11lmMGjVKxxcRkcQYFKuGEjmMsF1l2919VZz6S/iw\nkb/+9a/Mnj2bZ555JqH9ioikAg0jjF5hYSH9+/fn+OOP57777gs6HRGRfZYiwwgNuAjo6O73mFlb\n4GB3/yTqthJYbMUs6Qj7S/jBdfPmzXTu3Jkvv/yS5s2bJ7RvEZFkp2IrOu7OVVddxZYtW3j11VdJ\nS0vkyH8RkfhIkWLrMaAUONXdjzSzFsDb7n5ctG0l8pP7UeB4YFh4PR/4ewL7j7uWLVvSv39//v3v\nfwedioiIpLj777+fOXPm8Nxzz6nQEhFJrB+7+/VAAYC7bwGyatNQIj+9Y5Z0Mrv66qt5/PHHNVGG\niIjU2uuvv87f/vY3JkyYQJMmTYJOR0Skvikys3TAAczsAEJnuqKWyGIrZkkns9NPP538/HxmzZoV\ndCoiIpKCPv/8c0aMGMG4ceNo3bp10OmIiNRHDwOvAweZ2b3Ah8DI2jSUyGIrZkkns7S0NK699loe\ne+yxoFMREZEUs379eoYMGcLjjz/OMcccE3Q6IiL1krs/D9xKqFZZDwx191dq01bCJsgAMLMuwGnh\n1anuvjCOfQV2QfQ333zDYYcdxrJly9h///0DyUFEJNlogozq7dy5k379+nHOOefw29/+Nuh0RETi\nIpknyDCz/63udXf/v6jbjPcBKB5JR9hvoAfXyy67jKOOOopbbrklsBxERJKJiq2quTvDhg0jIyOD\nZ599ltAEviIidU+SF1t3hZ8eARwHvBFe/x/gE3e/OOo2E1BsxTzpCPsN9OA6c+ZMLr74YpYsWaJZ\npEREULFVnXvuuYfJkyczbdo0GjZsGHQ6IiJxk8zFVhkzmw4Mdvf88Ho2MMndT462rYxYJ1eRu/8e\n9iTdq1zSdwOT4t1/UH784x+TnZ3NO++8w4ABA4JOR0REktQrr7zCk08+ySeffKJCS0QkORwEFJZb\nLwxvi1oiT7nELOlUYGb8/Oc/59FHHw06FRERSVKfffYZ1113HePHj+fggw8OOh0REQl5BvjEzO4O\nnyCaBTxVm4YSNkGGmf0OuIDQjIQAQ4GX3P1Pceov8GEj27dvp127dsyZM4c2bdoEmouISNA0jHBv\nGzZsoHfv3jz00EP85Cc/CTodEZGESIVhhABm1gvoG16d7u6za9VOgmcjjEnSEfYV6ME1Px/mz4en\nnrqFAw9sxB/+8IfAchERSQYqtr63a9cu+vXrx9lnn80dd9wRdDoiIgmTKsVWrCS02EqkIA+u+fnQ\nty8sWACdOu1iy5ajWLMmj6ysrEDyERFJBiq2Qtyd4cOHY2Y8//zzmnlQROqV+lZsaZq8OJg/P1Ro\nFRfDihWNaN16AK+++mrQaYmISBIYOXIky5cvZ/To0Sq0RETqOBVbcdCtG+TkQGYmdO0Kt946mAcf\nfDDotEREJGCvvfYajz/+OOPHj6dRo0Y/eD0/H2bMCD2KiEgwzOxGM2sRi7YSVmzFMulkl50NH3wA\n06eHHs8/fyBff/01M2fODDo1EREJyOzZs7n22msZN24chxxyyA9eLxuCfvLJoUcVXCIigTkI+NTM\nXjazgbYPwxASPfV7TJJOBdnZ0KdP6DE9PZ2bbrpJZ7dEROqpr776iqFDh/Loo4/Sq1evSmPKD0HP\nyws9FxGpL8L1wSIzW2Jmt1UR87CZLTWzOWbWs9z20Wa20czmVog/z8zmm1lJeKK+iLj7HUBnYDRw\nObDUzEaaWado9ythxVYsk05FV155JW+//TZr1qwJOhUREUmggoIChg4dylVXXcV5551XZVzFIeg5\nOQlMUkQkQGaWBjwCnAHkAMPMrEuFmEFAJ3fvDFwDPFbu5THh91Y0DzgHeD/anMIzK30VXoqBFsBY\nM/tzNO0k9JqtWCWdipo1a8all17K3//+96BTERGRBHF3rr76atq3b8+dd95ZbWzFIejZ2QlKUkQk\neL2Bpe6+yt2LgBeBIRVihhC62TDuPgtobmYHhdc/BLZUbNTdF7v7UiCqEXVm9gsz+wz4M/ARcJS7\n/xw4Bjg3mrYSec1WzJJOVTfeeCOjR49m586dQaciIiIJcN9997F48WLGjBkT0cyD5Yegi4jUI62B\n8sO/1oa3VRezrpKYWPkR8BN3P8PdXwkXgLh7KXBWNA0l8sxWzJJOVZ06deKEE07g2WefDToVERGJ\ns3HjxvHoo49WOfOgiIgkrYbuvqr8BjMbBeDuC6NpKCOWWdWg0qTd/bZokzazL4GtQClQ5O69Y5dm\nfP3yl7/k+uuvZ8SIEbq/iohIHfXFF18wYsQIJk+eTKtWrYJOR0QkMNOmTWPatGk1ha0D2pZbPzS8\nrWJMmxpiYqU/UHGSjkGVbKuRhS6jij8z+9zde1XYNtfdu9eirRXAMe7+g7GZ5WI8UfsWDXenR48e\n3H///QwYMCDodEREEsbMcPeEf8uU6OPBxo0b+fGPf8yf//xnLrjggoT1KyKSCio7FphZOrAYOA3Y\nAHwCDCt/QsbMzgSud/fBZtYHeNDd+5R7vT0wwd2PqqTP94Bb3P2zGnL7OXAd0BFYXu6lbOAjd784\nmn2FBAwjNLOfm9k84Agzm1tuWQnMren9VTVLit6Q2cz45S9/yQMPPBB0KiIiEmMFBQWcc845XH75\n5Sq0REQi5O4lwA3A28AC4EV3X2hm15jZiHDMZGClmS0DHidUFAFgZi8AHwOHm9lqM7sivH2oma0B\n+gATzWxKDam8APwP8Eb4sWw5pjaFFiTgzJaZNSc06+CfgNvLvZTv7t/Wss0VwHdACfCEu/+zkpik\nPLMFsHv3bjp27MikSZPo0aNH0OmIiCREXT+z5e5cdtllFBQU8OKLL5KWlpLfCYqIxFVQx4KgJGwY\nYSyZ2SHuvsHMDgD+A9wQnvKxfEzSFlsA999/P7Nnz+aFF14IOhURkYSo68XWqFGjeOWVV5g+fTqN\nGzeOe38iIqkomYstM/vQ3U8ys3yg/IHDCN3Fqlm0bcZ9gox4JO3uG8KPX5vZ64Tm5v+wYtzdd9+9\n53lubi65ubnRdhU3I0aMoGPHjqxcuZIOHToEnY6ISMxFeFF0nfDGG2/wt7/9jVmzZqnQEhFJUf7/\n27vz+KjKu///rw8kAkIEFFBBQUUFCaCAQoQE0wIVlRbxpm71dqmorbZ42/5cb614W2pd2p/7LhYU\nS7WoaF1Qq5FVZBUIq7sVREXRAIKEfL5/zARjzDKZzJwzy/v5eMwjs5xznffkMScnn7nOuS73wujP\nhE3AkXY9W2a2O9DE3TebWUsi53Ze5+4vVVsupXu2AK644gq2bNnCHXfcEXYUEZGky9Serbfeeoth\nw4bx3HPPcdRRRyVtOyIimSCVe7aSIR2LrQOBp4j0kuUAk939zzUsl/LF1vr168nPz2fNmjW0a9cu\n7DgiIkmVicXWunXrKCgo4JZbbtGAGCIiMUjlYqvKmXg15YvrjLwgBshIeOgYt5vyxRbAeeedR6dO\nnb53yqOISCbKtGJry5YtDB48mNGjR3PllVcmvH0RkUyUysVWMqRdz1as0qXYWr16NUVFRbz33nu0\nbNky7DgiIkmTScXWzp07Oemkk2jXrh0PPvigJqkXEYlRKhdbdYw1AUA8nURBzLM1K/qzzMy+rn5L\n9vZTXbdu3SgsLGTChAlhRxERkRhdeumllJWVcc8996jQEhHJEFUHyHD3Parf4mlTPVspYN68eZxy\nyimsXbuW3NzcsOOIiCRFpvRs3X333dxxxx3MmTOHtm3bJqxdEZFskMo9W8mgGRdTwIABAzjooIM0\n55aISIp74YUXuP7663nuuedUaImIZCgza25mvzOzJ81sqpldYmbN42orqN6faMALgUIi50DOAu5x\n921J2l7a9GxBZD6a888/n5UrV9K0adOw44iIJFy692wtXbqUoUOH8vTTTzNw4MAEJBMRyT7p0LNl\nZo8DZcCj0adOB9q4+88b2laQPVuTgHzgDuBOoAfwSIDbT2l9+x5DixY/5m9/mxp2FBERqeajjz5i\nxIgR3H777Sq0REQyX093P9fdX4veziNSxzRYkD1bK9y9R33PJXB7adOzVVYGRUWwfPlOcnLW8skn\nh9CmjXq3RCSzpGvP1saNGykqKuLcc8/l97//fQKTiYhknzTp2XoUuNPd34g+HgBc5O5GnbcPAAAg\nAElEQVRnNrStIHu2FplZQeWDaOgFAW4/ZS1fDqWlsHNnU7Zv78qdd74WdiQRESEyl9aIESM44YQT\nVGiJiGQ4M1tmZkuBfsAcM3vfzN4H5gJHxtVmAJMaLyNyjVYu0A34MPpSZ2CVera+69lasQL22+9r\nmjcfxvLlc2nSROOXiEjmSLeerR07dnDiiSfSrl07Hn74Yf1NFhFJgFTu2TKzLnW97u4fNLTNnPjj\nxGxEANtIa3l5MHNmpHerR488hgypYNq0aYwaNSrsaCIiWamiooIxY8YA8OCDD6rQEhHJAlWLKTNr\nCxwCVB2FsMHFVqDzbNUU2t1nJGlbadOzVd0zzzzDtddey6JFizRZpohkjHTp2XJ3xo4dy4IFC3jl\nlVdo2bJlEtOJiGSXVO7ZqmRmY4CLgf2AJUABMNfdf9zQtgL7qi4aegYwHbgu+nNcUNtPJz/96U9x\nd5599tmwo4iIZJXKQuvNN9/khRdeUKElIpKdLgaOAj5w9x8BfYBN8TQU5HkRCQud6cyMcePGce21\n11JRURF2HBGRrODuXHzxxcybN4/p06fTpk2bsCOJiEg4tlXOBWxmzdx9FZGxJxosyGIrYaGzwciR\nI8nJyWHqVM27JSKSbBUVFfz2t7/ljTfe4KWXXlKhJSKS3f5jZm2Ap4GXzWwacVyvBcHOs/UUcA7w\nP8CPgS+BXHc/PknbS9trtiq99NJLjB07luXLl5OTE8RYJiIiyZOq12xt27aNM888kw0bNjBt2rSE\nF1plZZEpPnr2jAyIJCKSzdLhmq2qzOwYoDXwort/29D1A+vZcvdR7r7J3ccB1wAPAScGtf10NGzY\nMPbZZx8effTRsKOIiGSkTz/9lGOPPRYgKacOVk7tMXhw5GdZWUKbFxGRJDCz5mb2OzN7EhgLdCXO\nuinIATISFjpbmBnjx49n3LhxbN++Pew4IiIZZfbs2fTr14+ioiKmTJlC8+bN61+pgSonrS8vj8yl\nWFqa8E2IiEjiTQLygTuAO4EewCPxNBTkaYSPA2VAZTfN6UAbd/95kraX9qcRVjrhhBM4/vjjueii\ni8KOIiISt1Q5jbCsrIzrr7+eiRMnMmHCBE444YSkbbvqpPU9ekTmVNSphCKSzdLhNEIzW+HuPep7\nLhZB9iz1dPdz3f216O08IhWj1OOPf/wj48ePZ+vWrWFHERFJW5s3b+bee++lR48efPrppyxdujSp\nhRZ8N2n9jBkqtERE0sgiMyuofGBmA4AF8TQUZLGVsNDZpk+fPhQWFnLnnXeGHUVEJC0NHjyYjh07\n8uKLL/L444/zt7/9jb333juQbeflQUGBCi0RkVRnZsvMbCnQD5hjZu+b2fvAXODIuNpM9ql2ZrYM\ncCCXyFDvH0Zf6gysiqc7LsbtZsxphACrVq1i8ODBrFmzRkMSi0haCvM0wldeeYUjjzyS1q1bB715\nERGpIpVPIzSzLnW97u4NHv49iGIr4aFj3G5GFVsA5513Hm3btuWmm24KO4qISIOlyjVbIiISnlQu\ntqoys8OBoujDme7+VlztBHkASlToGLeVcQfX9evX07NnTxYuXMgBBxwQdhwRkQZRsSUiIulQbJnZ\nxcB5wJPRp0YB97v7HQ1uK8DRCBMWOsbtZeTB9brrrmPNmjVMnjw57CgiIg2iYktERNKk2FoKHO3u\nW6KPWwJz3b13g9sKsNhKWOgYt5eRB9fNmzfTrVs3pk2bxpFHxnWdnohIKFRsiYhImhRby4Cj3H1b\n9HFzYL6792poW0GORmjAziqPd0afkwZo1aoVV175J847bwJff61/HkREREREEuxhYJ6ZjTOzccAb\nwEPxNBRkz9bvgLOAp6JPnQj8zd1vjbO9JkSGjv+Pu/+shtcz8pvMsjIoLHSWLi3ngAO2snRpaw0n\nLCJpQT1bIiKS6j1bZmbAfkB7oDD69Ex3XxxXe0EcgBIdOtrmJUTGwN8jm4qtuXNh8GAoLwf4lpkz\nm1BYmBN2LBGReqnYEhGRVC+2IHIaYTynDNYkkNMIo0e55919kbvfHr01ptDaDzgeeDBhIdNEz56Q\nnw+5uU6rVh8xb96EsCOJiIiIiGSSRWZ2VCIaCvI0wonAne4+PwFtPQGMB1oDv8+mni2InEpYWgpQ\nysiRP2bFihXstddeYccSEamTerZERCRNerZWAQcDHwBbiIwz4fEM7Bfk+WcDgF+YWaNCm9kJwAZ3\nX2JmxdQxyMa4ceN23S8uLqa4uLjhqVNQXh4UFADkc/LJJ3PNNddw9913hx1LROR7SkpKKCkpCTuG\niIhIQx2bqIaC7NnqUtPz7v5BA9v5E3AGUA60APKAJ939zGrLZcU3mV988QWHHXYY06dP54gjjgg7\njohIrdSzJSIitR0LzGw4cCuRy5wecvcba1jmduA4Ih0351RelmRmDwEjiHTI9K6yfFvgH0AX4H3g\nZHf/KuFvqg6BFVvJYGbHkIWnEVZ33333MXnyZF5//XUiY5GIiKQeFVsiIlLTsSA6yvgaYAiwDpgP\nnOruq6oscxzwG3c/wcwGALe5e0H0tUJgMzCpWrF1I7DR3W8ys8uBtu5+RQwZmwMXEhnYz4FZwD2V\n8241RGDzbJlZczP7nZk9aWZTzeyS6BuRRhozZgybN2/mH//4R9hRREREREQaqj+w1t0/cPcdwBRg\nZLVlRgKTANx9HtDazPaOPp4FfFlDuyOBidH7E4lMPRWLSUA+cAdwJ9ADeCTmd1NFkNdsTQLKiIQG\nOJ1I6J/H26C7vw683vho6a1p06bccccdnHrqqYwYMYJWrVqFHUlEREREJFadgI+qPP4PkQKsrmU+\njj63oY52O7j7BgB3/8TMOsSYp6e796jy+DUzWxHjut8TZLGVsNDyQ4MGDeKYY47hhhtuYPz48WHH\nERERERFJtcGSYj2nfJGZFbj7GwDR0xYXxLPBIIuthIWWmt14440cfvjhnHnmmXTr1i3sOCIiIiKS\n5aqPCH7dddfVtNjHQOcqj/eLPld9mf3rWaa6DWa2t7tvMLN9gE9jjN0PmGNmH0YfdwZWm9kyGjia\nepDFVsJCS806derE1Vdfza9+9SteffVVDZYhIiIiIulgPnBwdPTy9cCpwGnVlnkGuAj4h5kVAJsq\nTxGMMn44JdQzwNnAjcBZwLQY8wxvUPo6hD70e6WGDgEfw/aycvSp8vJyBgwYwMUXX8yZZ55Z/woi\nIgHRaIQiIlLP0O+38d3Q7382swuIdMrcH13mTiKFUOXQ74uizz8GFAN7EbmG61p3f9jM9gQeJ9Ij\n9gGRod83Jfs9fu99ZeoBKJsPrgsWLGDEiBGUlpay1157hR1HRARQsSUiIuEdC8KiYitDXXzxxWze\nvJmHHnoo7CgiIoCKLRERUbGVMbL94Pr111+Tn5/P5MmTGTx4cNhxRERUbImISFoUWxYZ+OAXwEHu\n/n9m1hnYx93fbGhbQU5qbGZ2hpn9Ifq4s5lVHz9fEmSPPfbgtttu41e/+hXffvtt2HFERERERNLF\n3cDRfDdIRxlwVzwNBVZskcDQEptRo0ZxwAG9uOiiRykrCzuNiIiIiEhaGODuFwHbANz9S2C3eBoK\ncuj3Ae7e18wWQyS0mcUVWmKzebPx/vuP8MILMGPGNyxY0IK8vLBTiYiIiIiktB1m1pToJMhm1h6o\niKehIHu2EhZaYrN8OaxduxuwG2vWNOWtt8rDjiQiIiIikupuB54COpjZeGAW8Kd4Ggqy2EpYaIlN\nz56Qnw+5uU6rVh/x8su3hh1JRERERCSluftk4DLgBiKTLJ/o7k/E01agoxGaWXdgCJHZnf/t7iuT\nuC2NPgWUlUFpKeyxx0ccc0xfSkpKyM/PDzuWiGQhjUYoIiLpMBphImno9yxy3333MWHCBGbPnk1O\nTpCX64mIqNgSEZH0KLbM7Ejgf4EuRMa4MMDdvXeD2wrqAJTI0DFuTwfXatydoUOHcuyxx3LZZZeF\nHUdEsoyKLRERSZNiazVwKbCMKmNMuPsHDW4rwGIrYaFj3J4OrjV477336N+/P6+99ho9e/YMO46I\nZBEVWyIikibF1ix3L0xIWwEWWwkLHeP2dHCtxYQJE7jtttt48803adasWdhxRCRLZFKxVVYWGfG1\nZ080pYaISAOkSbE1hMjcwP8Gtlc+7+5PNritAIuthIWOcXsqtmrh7px00kkcfPDB3HzzzWHHEZEs\nkSnFVlkZFBVFBh/Kz4eZM1VwiYjEKk2KrUeB7kAp352R5+7+ywa3FWCxlbDQMW5PxVYdPv/8cw4/\n/HAmT55McXFx2HFEJAtkSrE1dy4MHgzl5ZCbCzNmQEFBwpoXEcloaVJsrXb3boloK8gh6Y5KVGhp\nvHbt2vHQQw9x1lln8dZbb9GmTZuwI4mIpIXKOQxXrIAePSL3RUQko8wxsx7uvqKxDQXZs/UwcHMi\nQse4PfVsxeA3v/kNX375JZMnTw47iohkuEzp2YLv5jDMz9cphCIiDZEmPVsrga7Ae0Quf0qLod8T\nFjrG7anYisHWrVvp168fV199Nb/4xS/CjiMiGSyTii0REYlPmhRbXWp6PtWHfk9Y6Bi3p4NrjN56\n6y2GDh3K7NmzOfTQQ8OOIyIZSsWWiIikQ7GVSIEVW0HTwbVh7r33Xu66axJ33PEa/fo102kxIpJw\nKrZERCSVi63KqarMrAyoeuCoPCNvjwa3mewDUDJCx7hdHVwb4Ouvnc6dP6CsbD969crRUMYiknAq\ntkREJJWLrWRokuwNVE5k7O557r5HlVteXNWhWTMzm2dmi81smZldm/jU2ae01NiypQsVFTksX76T\n0tKwE4mIiIiIBM/MbozluVgkvdiqlKjQ7r4d+JG79wGOAI4zs/4JiJjVIkMZGzk5FcBKWrR4N+xI\nIiIiIiJhGFbDc8fF01BgxRYJDO3uW6N3mxGZK0znhzRSXh7MnAkzZzbhT3+aybnnnsy2bdvCjiUi\nIiIiEggz+7WZLQO6mdnSKrf3gKVxtRnANVu/Bi4EDgLeqfJSHjDb3c+Io80mwEIiQ8nf5e5X1rCM\nztGPk7tz6qmn0qpVKx588EHMsua0WhFJIl2zJSIiqXzNlpm1BtoCNwBXRJ/uCKx29y/iajOAYivh\noau0vQfwNPCb6pMl6+DaOJs3b6agoICxY8dy/vnnhx1HRDKAii0REUnlYqsmZrbI3fvGu35OIsPU\nxN2/Ar4CTqt8zsyeakzoKm1/bWavAcOBFdVfHzdu3K77xcXFFBcXN3aTWaNVq1Y89dRTDBo0iN69\ne1NQUBB2JBFJMyUlJZSUlIQdQ0REpDEaVRiGMs+WmS2ODnARz7rtgB3u/pWZtQCmA3929+erLadv\nMhPg2Wef5cILL2TBggXsvffeYccRkTSmni0REUnDnq0L3f3ueNcPcoCMqh5oxLr7Aq+Z2RJgHjC9\neqElifPTn/6UX/7yl5x88sns2LEj7DgiIiIiIklVdcT0ykIr3qHfA+vZMrMb3f3y+p5L4Pb0TWaC\nVFRU8LOf/YwuXbpw1113hR1HRNKUerZERCQderZquk7LzJa6e++GtpWWQ79LsJo0acJjjz1GSUmJ\nii0RERERyUhVhn7vXmXY92XRod+XxdVmgEO/dwXernwaaAXMcfdfJGm7+iYzwd577z0GDhzIxIkT\n+clPfhJ2HBFJM+rZEhGRVO7ZqjaK+uV8NzhGWboM/Z6Q0DFuVwfXJJg1axYnnXQSr7/+OocddljY\ncUQkjajYEhGRVC62KpnZtcAPDhzu/n8NbSuwod/NbBVwdtXXor/sBoeW8BQWFnLzzTdzwgmnctdd\nr1NY2Ia8vLBTiYiIiIgkzOYq95sDI4CV8TQU5AAZv6/ycFdod/9lkranbzKTpKwMunZdx2eftadX\nr6bMnt1EBZeI1Es9WyIikg49W9WZWTMiI6AXN3jdsA5AjQkdY/s6uCbJ3LkweLBTXm6Y7WDWrKYM\nHBjWLAIiki5UbImISJoWW22B+e5+cEPXDfM/5N2B/ULcvsSpZ0/Izzdyc53dd/+ARx+9Ev0jIyIi\nIiLxMrPhZrbKzNaYWY1TQ5nZ7Wa21syWmNkR9a1rZr3NbI6ZvWVm08ysVYxZllUZjbAUWA3cGtf7\nCvA0wmV8d6FZU6A98H/ufmeStqdvMpOorAxKS6Fjxy85/vgizjnnHH7/+9/Xv6KIZC31bImISE3H\nAjNrAqwBhgDrgPnAqe6+qsoyxwG/cfcTzGwAcJu7F9S1rpm9CfzO3WeZ2dnAQe7+hxgydqnysBzY\n4O7l8bzfpA+QUcWIKvcbFVrCl5cHBQUAbXnhhRcYOHAgHTt25LTTTgs7moiIiIikl/7AWnf/AMDM\npgAjgVVVlhkJTAJw93lm1trM9gYOrGPdQ919VnT9V4DpQL3FVmVbiRBYsZXI0JJa9t9/f55//nmG\nDBlC+/btGTp0aNiRRERERCR9dAI+qvL4P0QKsPqW6VTPusvN7Gfu/gxwMjFewhQdW+K/gAOoUi+l\n5NDvlRIZWlJPr169mDp1Kv/1X//F008/zcCBA8OOJCIiIiIhKykpoaSkJBlNx3Ja+rnA7WZ2DfAM\n8G2MbU8DvgIWAtvjixcR5GmECQstqamoqIhJkyYxatQopk+fzhFHHFH/SiIiIiKSsYqLiykuLt71\n+LrrrqtpsY+BzlUe7xd9rvoy+9ewzG61revuq4FjAczsEOCEGGPv5+7DY1y2TkEWWwkLLalr+PDh\n3HXXXRx//PG89tprdOvWLexIIiIiIpLa5gMHRwemWA+cClQfCOAZ4CLgH2ZWAGxy9w1m9nlt65pZ\ne3f/LDqIxtXAvTHmmWNmvdx9WWPfWJDFVsJCS2obPXo0mzdvZtiwYcycOZMuXbrUv5KIiIiIZCV3\n32lmvwFeIjI11UPuvtLMLoi87Pe7+/NmdryZvQ1sAc6pa91o06eZ2UVERkR/0t3/VleOKqOn5wDn\nmNm7RM7Is2iO3g19b0kf+r1a6EOARoeOcbsa6jdkt99+O7fddhslJSXsv//+9a8gIhlNQ7+LiEgq\nT2pcbcj3H4hnwL8gerZG1L+IZKKxY8dSXl7OMceM4K9/fYkhQ/YmLy/sVCIiIiIiP1Rl+PifAy+6\ne5mZXQ30Ba4HGlxsBTmpcY2h3X1xkranbzJTQFkZdO/+KevWteWww5x583ZTwSWSpdSzJSIiqdyz\nVcnMlrp7bzMrBP4I3Az8wd0HNLStJglPV7trooVWITAUeIjYL1KTNLV8OXz6aQcgl5Ur4d///iTs\nSCIiIiIiddkZ/XkCcL+7P0dk1MMGC7LYSlhoSR89e0J+PuTmQseOm7jkkp/wwQea31pEREREUtbH\nZnYfcArwfHS+4LjqpiCLrYSFlvSRlwczZ8KMGbBqVQcuuWQMRUVFrF69OuxoIiIiIiI1ORmYDhzr\n7puAPYFL42koyGu2dgeGA8vcfa2Z7Qv0cveXkrQ9naOfoh5++GGuuuoqXnjhBU18LJJFdM2WiIik\nwzVbiRRYsRU0HVxT2z//+U8uvPBCnn76aQYOHBh2HBEJgIotERHJtmJLp/FJKEaPHs2kSZMYOXIk\nL7/8cthxREREREQSTsWWhGb48OE89dRTnHHGGUyePDnsOCIiIiIimNnPzSwvev9qM3vSzPrG01Zg\nxVYiQ0vmKCws5NVXX+Wqq67ixhtvRKf6iIiIiEjIapqy6p54Ggp7nq24Qktmyc/PZ86cOTz22GOM\nHTuWTZt2MnduZEJkEREREZGAZe88W2a2n5m9amalZrbMzMYmNKWEolOnTsyYMYOlS9+jS5cPGTzY\nKSpSwSUiIiIigUvYlFVBDv3+L+BjYBjQF/gGeNPdD29gO/sA+7j7EjNrBSwERrr7qmrLafSpNDRj\nxg6Ki8E9l5ycCmbObEJBQdipRCQRUn00wrIyWL48Mhl7Xl4AwUREslA6jEaYyCmrguzZSsjkYO7+\nibsvid7fDKwEOiUyqISnT59cevXKoWnTncBKPv/89bAjiUgWKCuDoiIYPBj1qouIZDl33+ruT7r7\n2ujj9fHODRxYsZXI0JXM7ADgCGBe4xNKKsjLg1mzjFmzmvL00xs577xTufXWWzVwhogk1fLlUFoK\n5eWwYkXkvoiIZKdEDuyXk9hotTOznwMvRgfJuJrIqYR/dPdFcbbXCvgncHG0h+sHxo0bt+t+cXEx\nxcXF8WxKApaXR/TUwcHMnTuXUaNGsWjRIu677z5atGgRdjwRiVFJSQklJSVhx4hJz56Qnx8ptHr0\niNwXEZGsdY27P1FlYL+biQzsN6ChDQV5zdZSd+8dDf1HIqH/4O4ND22WA/wLeMHdb6tlGV2zlSG2\nbt3KmDFjWLNmDU8++SSdO3cOO5KIxCEdrtkqLY0UWrpmS0QkOdLkmq3F7t7HzG4gct3WY5XPNbSt\ntBuNMGoCsKK2Qksyy+67787kyZM57bTTGDBgAK+/ruu4RCTxKnvVVWiJiGS9ytEITyUNRyP8CdCH\n+EcjHATMAJYBHr1d5e4vVltOPVsZ6OWXX+aMM87gmmuu4aKLLsIspb8YEZEqUr1nS0REki9NerYS\nNhphkMVWwkLHuD0dXDPUu+++y4knnki/fv246aZ7ePvt5hqqWSQNqNgSEZE0KbYMOAM40N3/z8w6\nE5l66s2GthXkaYTfAC2B06KPc4FNAW5fMsRBBx3E3Llz2bRppyZAFhEREZFEuxso4Lu6pQy4K56G\ngiy2EhZapGXLllx66US2b+9KeblRWrpTQzWLiIiISCIMcPeLgG0A7v4lcY41EWSxlbDQIgC9ehm9\nejUlJ6cCs9U8+OAlfPPNN2HHEhEREZH0tsPMmhIZGwIzaw9UxNNQkMVWwkKLQOQarZkzYebMJrzz\nTkfKytbRv39/StXFJSIiIiLxux14CuhgZuOBWcAN8TQU5AAZvwBOITKZ8URgNJEJwx5P0vZ0QXSW\ncXcmTJjA5Zdfzvjx4zn//PM1WqFICtEAGSIikg4DZACYWXdgCGDAv919ZVztBHkASlToGLelg2uW\nWrlyJaeffjodO3bkgQceoGPHjmFHEhFUbImISHoUW2Y2EbjY3TdFH7cF/uLuv2xoW4GdRhgN/Ym7\n3+XudwKfmNmEoLYv2eOwww5j3rx59OvXjz59+jBlypSwI4mIiIhI+uhdWWjBrrEm+sTTUJCnES52\n9z71PZfA7embTGH+/PmceeaZ9O7dmxtvvJv16/fSnFwiIVHPloiIpEnP1ltAcbTIwsz2BF53914N\nbSvIATKaRLvggF2hcwLcvmSho446ikWLFtGhQ1cOOeQTiop2ak4uEREREanLX4C5Zna9mV0PzAFu\niqehIHu2zgSuAp6IPvVzYLy7P5Kk7embTNll7lwYPLiC8vImmO3gmWe+YsSIdmHHEskq6tkSEZF0\n6NkCMLMewI+jD1919xVxtRPwABkJCR3jtnRwlV3KyqCoCFascNq2/YTy8qO54YarGDNmDE2aBNnB\nK5K9VGyJiEg6FFtm1qN6nWJmxe5e0uC2AuzZSljoGLeng6t8T1kZlJZCfj68//4yxowZQ7NmzXjg\ngQfo1q1b2PFEMp6KLRERSZNiaznwCJFTB5tHfx7p7kc3tK0gv9J/3Mwut4gWZnYHcU4OJhKPvDwo\nKIj87NWrF3PmzGH06NEMGjSIq6++mq1bt4YdUURERETCNwDYn8i1WvOBdcCgeBoKsthKWGiRRGja\ntCljx45lyZIlvPPOOxx22GFMnToVfQMuIiIiktV2AN8ALYj0bL3n7hXxNBRksZWw0CKJtN9++/H3\nv/+diRMncu2113LssceycOEa5s7VqIUiIiIiWWg+kbrlKKAIOM3Mnqh7lZoFWWwlLLRIMhQXF7N4\n8WJ+/OORDBjwLYWF5Rx9dLkKLhEREZEkM7PhZrbKzNaY2eW1LHO7ma01syVmdkR965rZ4WY218wW\nm9mbZnZkjHHOdfc/uPsOd1/v7iOBZ+J5X0EWWwkLLZIsubm5HHPMRZjlU1GRQ2npTq65Zgrffvtt\n2NFEREREMpKZNQHuBI4F8ol0ynSvtsxxQFd3PwS4ALg3hnVvAq519z7AtcDN9eS4DMDdF5jZz6u9\nfFg87y3pxVYyQoskU8+ekJ9v5ObCoYdWsGLFE/To0YMnnnhC13OJiIiIJF5/YK27f+DuO4ApwMhq\ny4wEJgG4+zygtZntXc+6FUDr6P02wMf15Di1yv0rq702vAHvZ5cgerYSHlokmfLyYOZMmDEDFixo\nwUsvTeXee+9l/PjxDBo0iDlz5oQdUURERCSTdAI+qvL4P9HnYlmmrnUvAW4xsw+J9HJVr0Wqs1ru\n1/Q4JkEUWwkPLZJsVYeJBxg6dCgLFy7kggsu4JRTTmHkyJEsWbIk3JAiIiIi2SuWOuLXwMXu3plI\n4TWhnuW9lvs1PY5JTjwrNVDCQ4uEoWnTppx11lmcfPLJ3HfffRx33HEMGjSIyy67np07D6Nnz++K\nMxERERGBkpISSkpK6lvsY6Bzlcf78cNT/j4mMo1U9WV2q2Pds9z9YgB3/6eZPVRPjsPN7GsihVyL\n6H2ij5vX9yZqYsm+BsXMdgJbiIYGKmeONaC5u+cmabuu62skmbZs2cJf//oA1103lIqKbhx66E7m\nz2+ugkukFmaGuwd+RoOOByIiqaOmY4GZNQVWA0OA9cCbwGnuvrLKMscDF7n7CWZWANzq7gW1rHuq\nu68ys1LgQnd/3cyGAH9296OCeJ+7cmfqAUgHVwnC3LkweLBTXm7Ado477kb++teT6d69e73rimQb\nFVsiIlLbscDMhgO3EbnM6SF3/7OZXQC4u98fXeZOImM+bAHOcfdFta0bfX4gcDvQFNhGpPBanOz3\n+L33lakHIB1cJQhlZVBUBCtWQLduOznxxL9w//1/obCwkCuuuIKjjgr0yxORlKZiS0REwjoWhEXF\nlkgjlZVBaSnk50eu2dqyZQsTJkzglltu4eCDD+bKK69kyJAhmGXN3xWRGqnYEifay4kAABTWSURB\nVBERFVtpIHpx2whgg7v3rmUZHVwlVDt27ODvf/87N954Iy1atODyyy9n1KhRfPNNDsuXowE1JOuo\n2BIRERVbacDMCoHNwCQVW5LqKioqePbZZ7nlllt4//2N7NxZwmeftSc/35g5UwWXZA8VWyIiomIr\nTZhZF+BZFVuSTh5+eBXnntsV91yaNNnBI498xOmnHxR2LJFAqNgSEZFsK7aCmNRYRKJGj+5O7965\n5OY67dtv5JJLfsKwYcOYNm0a5eXlYccTERERkQQKYlLj0IwbN27X/eLiYoqLi0PLIgKRUwZnzoTS\nUiM/fx92262Uxx9/nJtuuokLL7yQc889lzFjxtC5c+f6GxNJcTFOZCkiIpKxdBqhSIpYvnw5999/\nP5MnT6agoIDzzz+fwYNPYNWqHA2mIRlBpxGKiEi2nUaYzsXWAUSKrV61vK6Dq6SlrVu38sQTT3DP\nPY+ycOGtVFR045BDypk/v7kKLklrKrZERETFVhows8eAYmAvYANwrbs/XG0ZHVwlrc2dC4MHV1Be\n3gTYTrduF/DrX/fhtNNOo0OHDmHHE2kwFVsiIpJtxVZaDpDh7qe7e0d3b+bunasXWiKZoGdPyM9v\nQm4u9O69GzfddBYLFy7k0EMPZcSIETz++ONs27Yt7JgiIiIiUou07NmKhb7JlExQVgalpZCf/901\nW5s3b+app55i0qRJLFy4kBEjRnDyySdTUDCMtWub6fouSVnq2RIRkWzr2VKxJZLG1q1bx9SpU/n7\n3//FvHm34N6dLl22Mn9+c9q1axZ2PJHvUbElIiIqtjKEDq6STSLXdznl5YbZDlq2PJ5Ro/Zl9OjR\nDB06lN133z3siCIqtkREJOuKrbS8ZktEvi9yfZdFr+/KZeHCSfTv35+//vWv7LPPPvzsZz/jgQce\nYP369UDk9MS5cyM/RURERCQ51LMlkiFqur4L4IsvvuDFF1/kmWeeYfr06Rx00OF8/PEUNm7sQI8e\nxqxZpmu8JBDq2RIRkWzr2VKxJZJFduzYwb33vsX//M8RVFTkAN/y05/ewhlnHMzQoUPZc889w44o\nGUzFloiIZFuxpdMIRbJIbm4uZ599JL165ZCb63TrVkFhYVsmTpzIAQccwIABA/jDH/7A7NmzKS8v\nB3TKoYiIiEi81LMlkoVqOuVw+/btzJ49m5deeonp06fz3nvvMWjQcJYsuZ1PP22nUw6l0dSzJSIi\n2dazpWJLRGq0YcMG7r9/GePGFUdPOdxOYeHVjBq1L8cccwxHHHEETZs2DTumpBEVWyIiomIrQ+jg\nKtJ4ZWVQVAQrVsAhh+zgssueZd68VygpKWHdunUUFRVRWFjIwIEDOfLIIykvb8Hy5WhiZamRii0R\nEVGxlSF0cBVJjNpGOdywYQMzZsxg9uzZzJkzh+XLPwBmsn37Qey3XxnPP19Gjx77Y5Y1f0+lHiq2\nRERExVaG0MFVJFglJdsZNiyX8vImmO2gTZuRNG++hKOPPpr+/fvTr18/+vbt+70RD8vKUE9YFlGx\nJSIiKrYyhA6uIsGqesphjx4wY4azceP7zJ07l/nz57No0SIWL15Mu3bt6NevHz17Hs2kSefx4Yet\nyM83Zs5UwZXpVGyJiIiKrQyhg6tI8Go75bBSRUUFa9euZeHChTz77OdMmfJrIBf4luLiaxkypCW9\nevWiV69eHHDAATRp0uR7basXLL2p2BIRERVbGUIHV5HU9l1PmNO163YuvfRZ1qxZyLJly1i2bBlf\nfvkl+fn59OrVi0MO6cv995/BBx+oFyydqdgSEREVWxlCB1eR1FdXT9iXX37J8uXLWbZsGS+/vJmn\nn76ESC/Ydo466lL696+ge/fuu26dOnXaNRiHesFSk4otERFRsZUhdHAVyRxVe8EOPngHf/zj63z4\nYSmrVq1i1apVrF69mrKyMrp160bXrkcwY8Z4Pv+8PV27fsvMmdChQ4uw34IQbrH19deuwltEJAWo\n2MoQKrZEMkt914Nt2rSJ1atX89xzGxk//ifRiZi/JTd3KO3bv0PXrl3p2rUrBx100PfuN2vWjtJS\nUy9YAMIstg4/3HX6qYhIClCxlSFUbIlkp+qjIpaU7OTrrz/mnXfe4d133+Wdd97Zdf/ttzfw9df/\noqLiMPbY4z+cffZDHHLIPnTu3HnXrW3btjo9MUHCLLZyc50ZM6CgIOiti4hIVSq2MoSKLZHsVV8v\nWKW5c2HwYKe83GjadCfnnz8ZeIMPP/xw1628vJzOnTvTqVN3Fi26jU2bOtKp01fcd98KunfvRMeO\nHWnWrFmNGVSYfZ96tkRERMVWhlCxJSL1qd4LVtM/41999RUfffQR06d/zWWXDaCioilNmuygV6/f\n8uWXL/DJJ5/QqlUrOnbsuOu2555dmDLlIjZs2JMDD9zG009v5OCD966xKKuaJdOLM12zJSIiKrYy\nhIotEYlFrL1gtRVmFRUVbNy4kfXr17Nu3TrWrVvHG28YDz3037uuG2vffjSbNr1I69at2Xfffdl3\n331p3749HTp0oEOHDuTldeQvfxnJRx/lcfDBO3jttXL22adlnVnSsTDTaIQiIqJiK0Po4CoiidaY\nwqxlywo+//xz1q1bx/r16/nss8/47LPP+PTTT1m+PI8XXrgc98gEz7vtNoycnAXfK8g6dOhA+/bt\nadVqX+6//79Zv74NBxzwDY888j7779+GvfbaixYtfjjqYioVZiq2RERExVaG0MFVRMIUa2FWuWzV\n4mzGDKdJky27irHK22effcayZa2YMuVXVFTkYLaDAw88m23bSti4cSNmxp577rnrlpfXkTlzbuSr\nrzrSocNGrrjiOfbee3fatGlDmzZtaN269a77zZs3Z/NmS2phpmJLRERUbGUIHVxFJJ009nRGgK1b\nt/LFF1/sus2dC1dfXRS9zqycESNuplmzxXz11Vds2rRp189NmzZRUdGSiorXce9Or145SRlMQsWW\niIio2EoDZjYcuBVoAjzk7jfWsIwOriKSkRJRmFVXUrKdYcN2o7zcyM0lKcOkq9gSEZHajgUx/n9/\nO3AcsAU4292X1LWumU0BDo2u3hb40t37Jv5d1a5JkBtLBDNrAtwJHAvkA6eZWfdwUyVGSUlJ2BEa\nJN3ygjIHId3yQvplzsuDbdtK6u15ysuLFFgzZtRdaAH069eM/PxIodWjR6SQk3Ck2+cRlDkI6ZYX\nlDko6Zi5ulj+vzez44Cu7n4IcAFwb33ruvup7t43WmBNBZ4M6C3tknbFFtAfWOvuH7j7DmAKMLLG\nJcvK6m+trCwy2U6Yy0aXL3nkkfTJnKy8ceQIPXOS31/omZOVN8k50up3HEfbsWbOo4wCn0sedS+b\nlwczny9jxl3LmPl8WeiDaWSzdPzHSZmTL93ygjIHJR0z1yCW/+9HApMA3H0e0NrM9o5xXYCTgb8n\n6w3UJh2LrU7AR1Ue/yf63A8VFdX9z0jlOTaDB4e3bNXlH344PTInK286Zg7i/WXi5yIdM2fB5yLv\n+CIKLuxL3vExZBYREUmcWP6/r22Zetc1syLgE3d/J1GBY5WOxVbsVqyIXNhQm+XLI6+Xl4e3bNXl\n3dMjc7LypmPmIN5fJn4u0jGzPhciIiKppCHXAJ9GCL1akIYDZJhZATDO3YdHH18BePWL6Mwsvd6Y\niEgWCGuAjKC3KSIitat+LIjl/3szuxd4zd3/EX28CjgGOLCudc2sKfAx0Nfd1yX9zVWTE/QGE2A+\ncLCZdQHWA6cSqVa/J5uGlBQRkdrpeCAikvJi+f/+GeAi4B/R4myTu28ws8/rWXcYsDKMQgvSsNhy\n951m9hvgJb4b3nFlyLFERERERCQOtf1/b2YXRF72+939eTM73szeJjL0+zl1rVul+VMI6RRCSMPT\nCEVERERERNJB2g2QYWbDzWyVma0xs8trWeZ2M1trZkvM7IiGrJtKmc1sPzN71cxKzWyZmY1N9cxV\nXmtiZovM7JlUz2tmrc3sCTNbGf1dD0iDzJeY2XIzW2pmk81st1TIbGbdzGyOmW0zs981ZN1UyxzW\n/teY33H09UD3veg2G/O5SMj+19i/WWGI4fd2upm9Fb3NMrNeYeSslimm/djMjjKzHWZ2UpD5asgR\ny+ei2MwWR/+mvhZ0xhry1Pe52MPMnol+jpeZ2dkhxKya5yEz22BmS+tYJtX2vTozp+i+V+/vObpc\nqux7sXwuUmrfSxp3T5sbkeLwbaALkAssAbpXW+Y44Lno/QHAG7Gum4KZ9wGOiN5vBaxO9cxVXr8E\neBR4JtXzAn8DzonezwH2SOXMQEfgXWC36ON/AGemSOZ2QD/geuB3DVk3BTMHvv81Jm+V1wPb9xKR\nORH7X2P/BoRxizFzAdA6en94OmSusty/gX8BJ6VyXqA1UAp0qvyspvrvGLgSuKEyL7ARyAkxcyFw\nBLC0ltdTat+LMXNK7XuxZK7y+Ql934vxd5xS+14yb+nWsxXEhGcpk9ndP3H3JdHnNwMrqW1OsRTJ\nDJEeAeB44MEAsjYqr5ntARS5+8PR18rd/etUzhx9rSnQ0sxygN2BIC76rDezu3/u7guB8oaum2qZ\nQ9r/GvM7DmPfg0ZkTuD+19j9KQyx/N7ecPevog/fIJi//3WJdT/+LfBP4NMgw9UglrynA1Pd/WOI\nfFYDzlhdLJkdqJx2PA/Y6O4/+HsQFHefBXxZxyKptu/VmzkF971Yfs+QOvteLHlTbd9LmnQrtpI6\n4VmSxJP54+rLmNkBRL4hmJfwhD/U2Mz/P3ApkQNCEBqT90DgczN7OHrq1f1m1iKpaWvOE3Nmj4ym\n8xfgw+hzm9z9lSRmrS1PQ/ahVN7/6hXg/tfYvEHve9C4zIna/xLydzZgDf29jQFeSGqi+sUycWhH\n4ER3v4eGzYGTDLH8jg8F9jSz18xsvpn9d2DpahZL5juBHma2DngLuDigbPFKtX2voVJh36tXiu17\nsUi1fS9p0q3Yikc6fODqZGatiHxTcXH0G/aUZWYnABuiPQJG6v/+c4C+wF3u3hfYClwRbqS6mVkb\nIt8UdiFySmErMzs93FSZK132vzTc9yAN978wmNmPiIy6Fdi1jo1wK9/Pmeqfw8rP4HFEThe7xswO\nDjdSvY4FFrt7R6APcFf075QkmPa9pErHfS8u6Tb0+8dA5yqP94s+V32Z/WtYZrcY1k2GxmQmeprY\nP4FH3H1aEnNWzxNv5tHAz8zseKAFkGdmk9z9zBTNC/CRuy+I3v8nwfxRbUzmocC77v4FgJk9CQwE\nHkta2u/yxLsPNWbdxmjUdkPY/xqTdxDB73vQuMz/ITH7X2P/BoQhpt+bmfUG7geGu3t9pxAlWyyZ\njwSmmJkRuZ7oODPb4e6BDdhSRSx5/wN87u7bgG1mNgM4nMh1U2GIJfM5wA0A7v6Omb0HdAcWkJpS\nbd+LSYrte7FIpX0vFqm27yVNuvVs7ZrwzCKjr51KZIKzqp4BzoRds1FvcvcNMa6bapkBJgAr3P22\nALJWijuzu1/l7p3d/aDoeq8G8M9eY/JuAD4ys0Ojyw0BViQ5b6MyEzl9sMDMmkf/qA4hcj1RKmSu\nquq3aqm8/1VV/ZvAoPe/uPOGtO9B4zInav9r7N/ZMNSb2cw6A1OB/3b3d0LIWF29md39oOjtQCLF\n84Uh/rMXy+diGlBoZk3NbHciAziEOXdnLJk/IPKlG9Frnw4lMmhSmOrqTU+1fa9SrZlTcN+rVGvm\nFNv3KtX1uUi1fS95POQROhp6I9LVuBpYC1wRfe4C4Pwqy9xJpDJ+C+hb17opmrlP9LlBwE4ioxEt\nBhYR+YYlFTP3raGNYwhuRLTGfC4OJ3KAWwI8SXQEohTPfC2RP0pLgYlAbipkBvYmcm7+JuALIoVh\nq9rWTeXMYe1/jfkdV2kjsH0vAZ+LhOx/jdmfwrrF8Ht7gMhIc4uin8E3Uz1ztWUnEP6IaLF8Lv4/\nIqOiLQV+m+q/Y2BfYHo071LgtJDzPkZkkKbt0X37nDTY9+rMnKL7Xr2/5yrLpsK+F8vnIqX2vWTd\nNKmxiIiIiIhIEqTbaYQiIiIiIiJpQcWWiIiIiIhIEqjYEhERERERSQIVWyIiIiIiIkmgYktERERE\nRCQJVGyJiIiIiIgkgYotERERERGRJFCxJSIiIiIikgQqtkQayMxam9mvqzyeFUKG5mZWYmbWyHZy\nzex1M9PfAhGRBtLxQETqox1KpOHaAhdWPnD3wmRsxMy6m9mVtbz8S2Cqu3tjtuHuO4BXgFMb046I\nSJbS8UBE6qRiS6ThbgC6mtkiM7vJzMoAzKyLma00s4fNbLWZPWpmQ8xsVvTxkZUNmNkvzGxetI17\navlG8kfA4loy/AKY1pDtmtnuZvYvM1tsZkvN7OfRtqZF2xMRkYbR8UBE6qRiS6ThrgDedve+7n4Z\nUPXbxK7Aze7eDegOnBb9pvNS4H8h8g0lcAow0N37AhVUO7iZ2XBgDLC/me1d7bVc4EB3/7Ah2wWG\nAx+7ex937w28GH1+OXBU/L8OEZGspeOBiNRJxZZIYr3n7iui90uBf0fvLwO6RO8PAfoC881sMfBj\n4KCqjbj7i0QOhA+4+4Zq22gHbIpju8uAYWZ2g5kVuntZdFsVwHYza9nwtysiIrXQ8UBEyAk7gEiG\n2V7lfkWVxxV8t78ZMNHd/5daRL+9/KSWl78Bmjd0u+6+1sz6AscDfzSzf7v79dHlmgHbassjIiIN\npuOBiKhnSyQOZUBelcdWy/3qKl/7NzDazNoDmFlbM+tcbdn+wJtmdqSZtaj6grtvApqa2W4N2a6Z\n7Qt84+6PATcDfaLP7wl87u4762hDRER+SMcDEamTerZEGsjdvzCzOWa2lMh57lXP0a/t/q7H7r7S\nzK4GXooOsfstcBFQ9Zz7dUROLXnH3b+pIcZLQCHwaqzbBXoBN5tZRXSblcMV/wh4rqb3KiIitdPx\nQETqY40cKVREQmBmfYD/cfezEtDWVOByd3+78clERCRIOh6IpDadRiiShtx9MfBaIiaxBJ7SgVVE\nJD3peCCS2tSzJSIiIiIikgTq2RIREREREUkCFVsiIiIiIiJJoGJLREREREQkCVRsiYiIiIiIJIGK\nLRERERERkSRQsSUiIiIiIpIEKrZERERERESS4P8BEMNrOxHFi+IAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -115,7 +115,7 @@
}
],
"source": [
- "from dcprogs.likelihood import missed_events_pdf\n",
+ "from HJCFIT.likelihood import missed_events_pdf\n",
"\n",
"fig,ax = plt.subplots(2, 2, figsize=(12, 10 ))\n",
"#ax = fig.add_subplot(2, 2, 1)\n",
@@ -152,10 +152,11 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -167,7 +168,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/Distribution_histograms_and_individual_benchmark.ipynb b/exploration/Distribution_histograms_and_individual_benchmark.ipynb
index d75c505..bd75385 100644
--- a/exploration/Distribution_histograms_and_individual_benchmark.ipynb
+++ b/exploration/Distribution_histograms_and_individual_benchmark.ipynb
@@ -46,7 +46,7 @@
},
{
"cell_type": "code",
- "execution_count": 60,
+ "execution_count": 3,
"metadata": {
"collapsed": true
},
@@ -74,7 +74,7 @@
"from dcpyps import dcio\n",
"from dcpyps import dataset\n",
"from dcpyps import mechanism\n",
- "from dcprogs.likelihood import Log10Likelihood\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
"\n",
"# LOAD DATA: Burzomato 2004 example set.\n",
"scnfiles = [[\"./samples/glydemo/A-10.scn\"], \n",
@@ -123,795 +123,16 @@
},
{
"cell_type": "code",
- "execution_count": 161,
+ "execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
- "application/javascript": [
- "/* Put everything inside the global mpl namespace */\n",
- "window.mpl = {};\n",
- "\n",
- "\n",
- "mpl.get_websocket_type = function() {\n",
- " if (typeof(WebSocket) !== 'undefined') {\n",
- " return WebSocket;\n",
- " } else if (typeof(MozWebSocket) !== 'undefined') {\n",
- " return MozWebSocket;\n",
- " } else {\n",
- " alert('Your browser does not have WebSocket support.' +\n",
- " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
- " 'Firefox 4 and 5 are also supported but you ' +\n",
- " 'have to enable WebSockets in about:config.');\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
- " this.id = figure_id;\n",
- "\n",
- " this.ws = websocket;\n",
- "\n",
- " this.supports_binary = (this.ws.binaryType != undefined);\n",
- "\n",
- " if (!this.supports_binary) {\n",
- " var warnings = document.getElementById(\"mpl-warnings\");\n",
- " if (warnings) {\n",
- " warnings.style.display = 'block';\n",
- " warnings.textContent = (\n",
- " \"This browser does not support binary websocket messages. \" +\n",
- " \"Performance may be slow.\");\n",
- " }\n",
- " }\n",
- "\n",
- " this.imageObj = new Image();\n",
- "\n",
- " this.context = undefined;\n",
- " this.message = undefined;\n",
- " this.canvas = undefined;\n",
- " this.rubberband_canvas = undefined;\n",
- " this.rubberband_context = undefined;\n",
- " this.format_dropdown = undefined;\n",
- "\n",
- " this.image_mode = 'full';\n",
- "\n",
- " this.root = $('');\n",
- " this._root_extra_style(this.root)\n",
- " this.root.attr('style', 'display: inline-block');\n",
- "\n",
- " $(parent_element).append(this.root);\n",
- "\n",
- " this._init_header(this);\n",
- " this._init_canvas(this);\n",
- " this._init_toolbar(this);\n",
- "\n",
- " var fig = this;\n",
- "\n",
- " this.waiting = false;\n",
- "\n",
- " this.ws.onopen = function () {\n",
- " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
- " fig.send_message(\"send_image_mode\", {});\n",
- " if (mpl.ratio != 1) {\n",
- " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
- " }\n",
- " fig.send_message(\"refresh\", {});\n",
- " }\n",
- "\n",
- " this.imageObj.onload = function() {\n",
- " if (fig.image_mode == 'full') {\n",
- " // Full images could contain transparency (where diff images\n",
- " // almost always do), so we need to clear the canvas so that\n",
- " // there is no ghosting.\n",
- " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
- " }\n",
- " fig.context.drawImage(fig.imageObj, 0, 0);\n",
- " };\n",
- "\n",
- " this.imageObj.onunload = function() {\n",
- " this.ws.close();\n",
- " }\n",
- "\n",
- " this.ws.onmessage = this._make_on_message_function(this);\n",
- "\n",
- " this.ondownload = ondownload;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_header = function() {\n",
- " var titlebar = $(\n",
- " '');\n",
- " var titletext = $(\n",
- " '');\n",
- " titlebar.append(titletext)\n",
- " this.root.append(titlebar);\n",
- " this.header = titletext[0];\n",
- "}\n",
- "\n",
- "\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_canvas = function() {\n",
- " var fig = this;\n",
- "\n",
- " var canvas_div = $('');\n",
- "\n",
- " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
- "\n",
- " function canvas_keyboard_event(event) {\n",
- " return fig.key_event(event, event['data']);\n",
- " }\n",
- "\n",
- " canvas_div.keydown('key_press', canvas_keyboard_event);\n",
- " canvas_div.keyup('key_release', canvas_keyboard_event);\n",
- " this.canvas_div = canvas_div\n",
- " this._canvas_extra_style(canvas_div)\n",
- " this.root.append(canvas_div);\n",
- "\n",
- " var canvas = $('');\n",
- " canvas.addClass('mpl-canvas');\n",
- " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
- "\n",
- " this.canvas = canvas[0];\n",
- " this.context = canvas[0].getContext(\"2d\");\n",
- "\n",
- " var backingStore = this.context.backingStorePixelRatio ||\n",
- "\tthis.context.webkitBackingStorePixelRatio ||\n",
- "\tthis.context.mozBackingStorePixelRatio ||\n",
- "\tthis.context.msBackingStorePixelRatio ||\n",
- "\tthis.context.oBackingStorePixelRatio ||\n",
- "\tthis.context.backingStorePixelRatio || 1;\n",
- "\n",
- " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
- "\n",
- " var rubberband = $('');\n",
- " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
- "\n",
- " var pass_mouse_events = true;\n",
- "\n",
- " canvas_div.resizable({\n",
- " start: function(event, ui) {\n",
- " pass_mouse_events = false;\n",
- " },\n",
- " resize: function(event, ui) {\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " stop: function(event, ui) {\n",
- " pass_mouse_events = true;\n",
- " fig.request_resize(ui.size.width, ui.size.height);\n",
- " },\n",
- " });\n",
- "\n",
- " function mouse_event_fn(event) {\n",
- " if (pass_mouse_events)\n",
- " return fig.mouse_event(event, event['data']);\n",
- " }\n",
- "\n",
- " rubberband.mousedown('button_press', mouse_event_fn);\n",
- " rubberband.mouseup('button_release', mouse_event_fn);\n",
- " // Throttle sequential mouse events to 1 every 20ms.\n",
- " rubberband.mousemove('motion_notify', mouse_event_fn);\n",
- "\n",
- " rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
- " rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
- "\n",
- " canvas_div.on(\"wheel\", function (event) {\n",
- " event = event.originalEvent;\n",
- " event['data'] = 'scroll'\n",
- " if (event.deltaY < 0) {\n",
- " event.step = 1;\n",
- " } else {\n",
- " event.step = -1;\n",
- " }\n",
- " mouse_event_fn(event);\n",
- " });\n",
- "\n",
- " canvas_div.append(canvas);\n",
- " canvas_div.append(rubberband);\n",
- "\n",
- " this.rubberband = rubberband;\n",
- " this.rubberband_canvas = rubberband[0];\n",
- " this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
- " this.rubberband_context.strokeStyle = \"#000000\";\n",
- "\n",
- " this._resize_canvas = function(width, height) {\n",
- " // Keep the size of the canvas, canvas container, and rubber band\n",
- " // canvas in synch.\n",
- " canvas_div.css('width', width)\n",
- " canvas_div.css('height', height)\n",
- "\n",
- " canvas.attr('width', width * mpl.ratio);\n",
- " canvas.attr('height', height * mpl.ratio);\n",
- " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
- "\n",
- " rubberband.attr('width', width);\n",
- " rubberband.attr('height', height);\n",
- " }\n",
- "\n",
- " // Set the figure to an initial 600x600px, this will subsequently be updated\n",
- " // upon first draw.\n",
- " this._resize_canvas(600, 600);\n",
- "\n",
- " // Disable right mouse context menu.\n",
- " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
- " return false;\n",
- " });\n",
- "\n",
- " function set_focus () {\n",
- " canvas.focus();\n",
- " canvas_div.focus();\n",
- " }\n",
- "\n",
- " window.setTimeout(set_focus, 100);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items) {\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) {\n",
- " // put a spacer in here.\n",
- " continue;\n",
- " }\n",
- " var button = $('');\n",
- " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
- " 'ui-button-icon-only');\n",
- " button.attr('role', 'button');\n",
- " button.attr('aria-disabled', 'false');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- "\n",
- " var icon_img = $('');\n",
- " icon_img.addClass('ui-button-icon-primary ui-icon');\n",
- " icon_img.addClass(image);\n",
- " icon_img.addClass('ui-corner-all');\n",
- "\n",
- " var tooltip_span = $('');\n",
- " tooltip_span.addClass('ui-button-text');\n",
- " tooltip_span.html(tooltip);\n",
- "\n",
- " button.append(icon_img);\n",
- " button.append(tooltip_span);\n",
- "\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " var fmt_picker_span = $('');\n",
- "\n",
- " var fmt_picker = $('');\n",
- " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
- " fmt_picker_span.append(fmt_picker);\n",
- " nav_element.append(fmt_picker_span);\n",
- " this.format_dropdown = fmt_picker[0];\n",
- "\n",
- " for (var ind in mpl.extensions) {\n",
- " var fmt = mpl.extensions[ind];\n",
- " var option = $(\n",
- " '', {selected: fmt === mpl.default_extension}).html(fmt);\n",
- " fmt_picker.append(option)\n",
- " }\n",
- "\n",
- " // Add hover states to the ui-buttons\n",
- " $( \".ui-button\" ).hover(\n",
- " function() { $(this).addClass(\"ui-state-hover\");},\n",
- " function() { $(this).removeClass(\"ui-state-hover\");}\n",
- " );\n",
- "\n",
- " var status_bar = $('');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
- " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
- " // which will in turn request a refresh of the image.\n",
- " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_message = function(type, properties) {\n",
- " properties['type'] = type;\n",
- " properties['figure_id'] = this.id;\n",
- " this.ws.send(JSON.stringify(properties));\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.send_draw_message = function() {\n",
- " if (!this.waiting) {\n",
- " this.waiting = true;\n",
- " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
- " }\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " var format_dropdown = fig.format_dropdown;\n",
- " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
- " fig.ondownload(fig, format);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
- " var size = msg['size'];\n",
- " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
- " fig._resize_canvas(size[0], size[1]);\n",
- " fig.send_message(\"refresh\", {});\n",
- " };\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
- " var x0 = msg['x0'] / mpl.ratio;\n",
- " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
- " var x1 = msg['x1'] / mpl.ratio;\n",
- " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
- " x0 = Math.floor(x0) + 0.5;\n",
- " y0 = Math.floor(y0) + 0.5;\n",
- " x1 = Math.floor(x1) + 0.5;\n",
- " y1 = Math.floor(y1) + 0.5;\n",
- " var min_x = Math.min(x0, x1);\n",
- " var min_y = Math.min(y0, y1);\n",
- " var width = Math.abs(x1 - x0);\n",
- " var height = Math.abs(y1 - y0);\n",
- "\n",
- " fig.rubberband_context.clearRect(\n",
- " 0, 0, fig.canvas.width, fig.canvas.height);\n",
- "\n",
- " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
- " // Updates the figure title.\n",
- " fig.header.textContent = msg['label'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
- " var cursor = msg['cursor'];\n",
- " switch(cursor)\n",
- " {\n",
- " case 0:\n",
- " cursor = 'pointer';\n",
- " break;\n",
- " case 1:\n",
- " cursor = 'default';\n",
- " break;\n",
- " case 2:\n",
- " cursor = 'crosshair';\n",
- " break;\n",
- " case 3:\n",
- " cursor = 'move';\n",
- " break;\n",
- " }\n",
- " fig.rubberband_canvas.style.cursor = cursor;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
- " fig.message.textContent = msg['message'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
- " // Request the server to send over a new figure.\n",
- " fig.send_draw_message();\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
- " fig.image_mode = msg['mode'];\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Called whenever the canvas gets updated.\n",
- " this.send_message(\"ack\", {});\n",
- "}\n",
- "\n",
- "// A function to construct a web socket function for onmessage handling.\n",
- "// Called in the figure constructor.\n",
- "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
- " return function socket_on_message(evt) {\n",
- " if (evt.data instanceof Blob) {\n",
- " /* FIXME: We get \"Resource interpreted as Image but\n",
- " * transferred with MIME type text/plain:\" errors on\n",
- " * Chrome. But how to set the MIME type? It doesn't seem\n",
- " * to be part of the websocket stream */\n",
- " evt.data.type = \"image/png\";\n",
- "\n",
- " /* Free the memory for the previous frames */\n",
- " if (fig.imageObj.src) {\n",
- " (window.URL || window.webkitURL).revokeObjectURL(\n",
- " fig.imageObj.src);\n",
- " }\n",
- "\n",
- " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
- " evt.data);\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
- " fig.imageObj.src = evt.data;\n",
- " fig.updated_canvas_event();\n",
- " fig.waiting = false;\n",
- " return;\n",
- " }\n",
- "\n",
- " var msg = JSON.parse(evt.data);\n",
- " var msg_type = msg['type'];\n",
- "\n",
- " // Call the \"handle_{type}\" callback, which takes\n",
- " // the figure and JSON message as its only arguments.\n",
- " try {\n",
- " var callback = fig[\"handle_\" + msg_type];\n",
- " } catch (e) {\n",
- " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
- " return;\n",
- " }\n",
- "\n",
- " if (callback) {\n",
- " try {\n",
- " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
- " callback(fig, msg);\n",
- " } catch (e) {\n",
- " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
- " }\n",
- " }\n",
- " };\n",
- "}\n",
- "\n",
- "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
- "mpl.findpos = function(e) {\n",
- " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
- " var targ;\n",
- " if (!e)\n",
- " e = window.event;\n",
- " if (e.target)\n",
- " targ = e.target;\n",
- " else if (e.srcElement)\n",
- " targ = e.srcElement;\n",
- " if (targ.nodeType == 3) // defeat Safari bug\n",
- " targ = targ.parentNode;\n",
- "\n",
- " // jQuery normalizes the pageX and pageY\n",
- " // pageX,Y are the mouse positions relative to the document\n",
- " // offset() returns the position of the element relative to the document\n",
- " var x = e.pageX - $(targ).offset().left;\n",
- " var y = e.pageY - $(targ).offset().top;\n",
- "\n",
- " return {\"x\": x, \"y\": y};\n",
- "};\n",
- "\n",
- "/*\n",
- " * return a copy of an object with only non-object keys\n",
- " * we need this to avoid circular references\n",
- " * http://stackoverflow.com/a/24161582/3208463\n",
- " */\n",
- "function simpleKeys (original) {\n",
- " return Object.keys(original).reduce(function (obj, key) {\n",
- " if (typeof original[key] !== 'object')\n",
- " obj[key] = original[key]\n",
- " return obj;\n",
- " }, {});\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.mouse_event = function(event, name) {\n",
- " var canvas_pos = mpl.findpos(event)\n",
- "\n",
- " if (name === 'button_press')\n",
- " {\n",
- " this.canvas.focus();\n",
- " this.canvas_div.focus();\n",
- " }\n",
- "\n",
- " var x = canvas_pos.x * mpl.ratio;\n",
- " var y = canvas_pos.y * mpl.ratio;\n",
- "\n",
- " this.send_message(name, {x: x, y: y, button: event.button,\n",
- " step: event.step,\n",
- " guiEvent: simpleKeys(event)});\n",
- "\n",
- " /* This prevents the web browser from automatically changing to\n",
- " * the text insertion cursor when the button is pressed. We want\n",
- " * to control all of the cursor setting manually through the\n",
- " * 'cursor' event from matplotlib */\n",
- " event.preventDefault();\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " // Handle any extra behaviour associated with a key event\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.key_event = function(event, name) {\n",
- "\n",
- " // Prevent repeat events\n",
- " if (name == 'key_press')\n",
- " {\n",
- " if (event.which === this._key)\n",
- " return;\n",
- " else\n",
- " this._key = event.which;\n",
- " }\n",
- " if (name == 'key_release')\n",
- " this._key = null;\n",
- "\n",
- " var value = '';\n",
- " if (event.ctrlKey && event.which != 17)\n",
- " value += \"ctrl+\";\n",
- " if (event.altKey && event.which != 18)\n",
- " value += \"alt+\";\n",
- " if (event.shiftKey && event.which != 16)\n",
- " value += \"shift+\";\n",
- "\n",
- " value += 'k';\n",
- " value += event.which.toString();\n",
- "\n",
- " this._key_event_extra(event, name);\n",
- "\n",
- " this.send_message(name, {key: value,\n",
- " guiEvent: simpleKeys(event)});\n",
- " return false;\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
- " if (name == 'download') {\n",
- " this.handle_save(this, null);\n",
- " } else {\n",
- " this.send_message(\"toolbar_button\", {name: name});\n",
- " }\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
- " this.message.textContent = tooltip;\n",
- "};\n",
- "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
- "\n",
- "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
- "\n",
- "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
- " // Create a \"websocket\"-like object which calls the given IPython comm\n",
- " // object with the appropriate methods. Currently this is a non binary\n",
- " // socket, so there is still some room for performance tuning.\n",
- " var ws = {};\n",
- "\n",
- " ws.close = function() {\n",
- " comm.close()\n",
- " };\n",
- " ws.send = function(m) {\n",
- " //console.log('sending', m);\n",
- " comm.send(m);\n",
- " };\n",
- " // Register the callback with on_msg.\n",
- " comm.on_msg(function(msg) {\n",
- " //console.log('receiving', msg['content']['data'], msg);\n",
- " // Pass the mpl event to the overriden (by mpl) onmessage function.\n",
- " ws.onmessage(msg['content']['data'])\n",
- " });\n",
- " return ws;\n",
- "}\n",
- "\n",
- "mpl.mpl_figure_comm = function(comm, msg) {\n",
- " // This is the function which gets called when the mpl process\n",
- " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
- "\n",
- " var id = msg.content.data.id;\n",
- " // Get hold of the div created by the display call when the Comm\n",
- " // socket was opened in Python.\n",
- " var element = $(\"#\" + id);\n",
- " var ws_proxy = comm_websocket_adapter(comm)\n",
- "\n",
- " function ondownload(figure, format) {\n",
- " window.open(figure.imageObj.src);\n",
- " }\n",
- "\n",
- " var fig = new mpl.figure(id, ws_proxy,\n",
- " ondownload,\n",
- " element.get(0));\n",
- "\n",
- " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
- " // web socket which is closed, not our websocket->open comm proxy.\n",
- " ws_proxy.onopen();\n",
- "\n",
- " fig.parent_element = element.get(0);\n",
- " fig.cell_info = mpl.find_output_cell(\"\");\n",
- " if (!fig.cell_info) {\n",
- " console.error(\"Failed to find cell for figure\", id, fig);\n",
- " return;\n",
- " }\n",
- "\n",
- " var output_index = fig.cell_info[2]\n",
- " var cell = fig.cell_info[0];\n",
- "\n",
- "};\n",
- "\n",
- "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
- " var width = fig.canvas.width/mpl.ratio\n",
- " fig.root.unbind('remove')\n",
- "\n",
- " // Update the output cell to use the data from the current canvas.\n",
- " fig.push_to_output();\n",
- " var dataURL = fig.canvas.toDataURL();\n",
- " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
- " // the notebook keyboard shortcuts fail.\n",
- " IPython.keyboard_manager.enable()\n",
- " $(fig.parent_element).html('
');\n",
- " fig.close_ws(fig, msg);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.close_ws = function(fig, msg){\n",
- " fig.send_message('closing', msg);\n",
- " // fig.ws.close()\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
- " // Turn the data on the canvas into data in the output cell.\n",
- " var width = this.canvas.width/mpl.ratio\n",
- " var dataURL = this.canvas.toDataURL();\n",
- " this.cell_info[1]['text/html'] = '
';\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.updated_canvas_event = function() {\n",
- " // Tell IPython that the notebook contents must change.\n",
- " IPython.notebook.set_dirty(true);\n",
- " this.send_message(\"ack\", {});\n",
- " var fig = this;\n",
- " // Wait a second, then push the new image to the DOM so\n",
- " // that it is saved nicely (might be nice to debounce this).\n",
- " setTimeout(function () { fig.push_to_output() }, 1000);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._init_toolbar = function() {\n",
- " var fig = this;\n",
- "\n",
- " var nav_element = $('')\n",
- " nav_element.attr('style', 'width: 100%');\n",
- " this.root.append(nav_element);\n",
- "\n",
- " // Define a callback function for later on.\n",
- " function toolbar_event(event) {\n",
- " return fig.toolbar_button_onclick(event['data']);\n",
- " }\n",
- " function toolbar_mouse_event(event) {\n",
- " return fig.toolbar_button_onmouseover(event['data']);\n",
- " }\n",
- "\n",
- " for(var toolbar_ind in mpl.toolbar_items){\n",
- " var name = mpl.toolbar_items[toolbar_ind][0];\n",
- " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
- " var image = mpl.toolbar_items[toolbar_ind][2];\n",
- " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
- "\n",
- " if (!name) { continue; };\n",
- "\n",
- " var button = $('');\n",
- " button.click(method_name, toolbar_event);\n",
- " button.mouseover(tooltip, toolbar_mouse_event);\n",
- " nav_element.append(button);\n",
- " }\n",
- "\n",
- " // Add the status bar.\n",
- " var status_bar = $('');\n",
- " nav_element.append(status_bar);\n",
- " this.message = status_bar[0];\n",
- "\n",
- " // Add the close button to the window.\n",
- " var buttongrp = $('');\n",
- " var button = $('');\n",
- " button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
- " button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
- " buttongrp.append(button);\n",
- " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
- " titlebar.prepend(buttongrp);\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._root_extra_style = function(el){\n",
- " var fig = this\n",
- " el.on(\"remove\", function(){\n",
- "\tfig.close_ws(fig, {});\n",
- " });\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._canvas_extra_style = function(el){\n",
- " // this is important to make the div 'focusable\n",
- " el.attr('tabindex', 0)\n",
- " // reach out to IPython and tell the keyboard manager to turn it's self\n",
- " // off when our div gets focus\n",
- "\n",
- " // location in version 3\n",
- " if (IPython.notebook.keyboard_manager) {\n",
- " IPython.notebook.keyboard_manager.register_events(el);\n",
- " }\n",
- " else {\n",
- " // location in version 2\n",
- " IPython.keyboard_manager.register_events(el);\n",
- " }\n",
- "\n",
- "}\n",
- "\n",
- "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
- " var manager = IPython.notebook.keyboard_manager;\n",
- " if (!manager)\n",
- " manager = IPython.keyboard_manager;\n",
- "\n",
- " // Check for shift+enter\n",
- " if (event.shiftKey && event.which == 13) {\n",
- " this.canvas_div.blur();\n",
- " // select the cell after this one\n",
- " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
- " IPython.notebook.select(index + 1);\n",
- " }\n",
- "}\n",
- "\n",
- "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
- " fig.ondownload(fig, null);\n",
- "}\n",
- "\n",
- "\n",
- "mpl.find_output_cell = function(html_output) {\n",
- " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
- " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
- " // IPython event is triggered only after the cells have been serialised, which for\n",
- " // our purposes (turning an active figure into a static one), is too late.\n",
- " var cells = IPython.notebook.get_cells();\n",
- " var ncells = cells.length;\n",
- " for (var i=0; i= 3 moved mimebundle to data attribute of output\n",
- " data = data.data;\n",
- " }\n",
- " if (data['text/html'] == html_output) {\n",
- " return [cell, data, j];\n",
- " }\n",
- " }\n",
- " }\n",
- " }\n",
- "}\n",
- "\n",
- "// Register the function which deals with the matplotlib target/channel.\n",
- "// The kernel may be null if the page has been refreshed.\n",
- "if (IPython.notebook.kernel != null) {\n",
- " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
- "}\n"
- ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEbCAYAAABgLnslAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXv8FVX1//98ISKigJc+ommCN9LMQkzEtHxnWl4Ky49m\npuatsvJC6te8lIG/6uOlvJaXLMNLKeYlxUJFP4mmJaCAIoJi3i+804+piIoC6/fH3geGw7nMOWfO\nec/7vNfz8TiPM7Nnz9prZvbMntl77bVkZjiO4zhOHunV1Qo4juM4Tjm8kXIcx3FyizdSjuM4Tm7x\nRspxHMfJLd5IOY7jOLnFGynHcRwnt3gj1SCSlkiaLmlG/P9hE8o4VdI8SXMkfaFMnsmSpiXWt5N0\nT4l8gyW9E3WdKel+SVtkpOc+krZsYP8rJHVKerTM9hMlLZW0TlzvLelKSY9Kmi3plETe4TH9SUkX\n1KuT0xjNvj8krSPpb5IWSLqoQr52uD8GSrohPgdmS9ohC73yjjdSjbPQzIab2bbx/5wshUvaCvga\nsBWwJ3CJJJXIasB/SfpiUVopnoq6DgOuBn5Uo07l6s1XgK1rkVXEOOCLpTZI2gjYHXgukbw/0MfM\nPgF8CjhK0sZx26XAkWY2FBhadF6c1tHU+wN4D/gxcGKVfO1wf1wITDSzrYBPAnMakNVt8EaqcVZq\nMCQNkDS38AYm6VpJR8blBZLOk/SYpLskrVtF/j7AeDNbbGbPAvOAEWXy/oJww9ai8wDg9ajboZJ+\nlTiO2yR9NqH3LyXNAEZKOjO+zc2UdI6kHYFRwDnxLXQTSccl8lxbTSkzux/4T5nN5wMnFe8CrCFp\nFaAfsAh4S9L6QH8zK7w5X014QDitp6n3h5m9Y2b/IFz7anTb+0PSAOAzZjYuHvdiM3srxbF0e7yR\napzVi7oz9o+V52jgKkkHAGuZ2RUx/xrAVDP7OHAfMAZA0lGSvlNC/obAC4n1l2JaMQb8E1gkaZcq\nOm8WdX0KOB44r0hOKdYA/mlm2wJzga+a2dbxbfNnZvZPYAJwUnwLfQY4GRgW83w3Hud2ki6vot8K\nSBoFvGBms4o23Qi8A7wCPAv80szeIJyfFxP5XqT0OXOaT7Pvj7R09/tjE+A1SeOibpdLWj3doXdv\nvJFqnHeKujNuADCz/wVmARcDRybyLwH+FJf/AOwc8//GzGp6eBdRePv7OXB6lbyF7ozNgR8Av00h\nfzFwc1x+E3hX0u8kfRV4t8w+jwDXSjqIcNyY2cNmlvphE2/E04gPqyJGRL3WBzYF/p+kIWllOy3B\n749s7o/ewHDgYjMbTng5O6VEvrbDG6kmEceNtgIWApW6LKo5T3wJ+EhifaOYVlqY2T1AX2BkOk25\nDfhMXF7MinWib2L5PYuOHs1sCaGBuBH4EnBHGdl7A78m3FzTKvTVV2IzYAjwiKRnCMc/XdJ6wDeA\nO8xsqZm9CjxAGJuq6Zw5rSfD+6MmuvH98SKhN+GhuH5j3K/t8UaqcUoZMQCcADxOeJCOi+MmAKsA\n+8Xlg4D7q8ifAHxdUh9JmwCbA1Or7PNzoJIVVVLnzwD/isvPAsMU+Agrjn0t20fSGoQumjsIx/mJ\nuGkBoQ+/8BDa2MzuJbzxDQDWrKJ3oZxlZZnZY2a2vpltamabEG7Wbc3s38DzwK4JnUYCc8xsPvCm\npBFRj28Ct6Yo28meZt8facoqptvdH2bWCbwgaWhM+jzh/LU9vbtagTagr6TphEpqhLemK4EjgO3N\n7B1J9xIGbM8gvDmOkHQ60AkcAKHPHbDiLg0ze1zSnwgV8gPg+4U3tiIssc/tkv5N+bfQTaPOvQgD\nzt+K+z0g6VlgNsFy6OFS8oH+wK2SCm+Sx8f/8cBvJR0LfB34vaSBcduFZvaWpO2Ao0p1acTB4w5g\nXUnPA2MKA8VFehQeCBcTHnCPxfUrzGx2XD6acB36Eiyiyr3NOs2lqfdH3PYMoU72kbQP8AUzm1uU\nrdvfH8BxwB8lrQo8DRxeRv+2Qs0M1SHpCsLnbmc0E0bSOcCXCRf/X8DhBSsVSacSKu9iYLSZTYrp\nw1nxgfODpindZCQtMLP+Xa2H0/UomNVfDQwClgK/NbOV5voozP/Zk/AAP8zMZrZU0Rbi94dTTLO7\n+0rNe5kEFKxe5gGnAkj6GOXnA7XTnBcP4OUUWAycYGZbAzsCR6tosqekPYHNzGwL4Cjgstar2VL8\n/nBWoKmNVKl5L2Z2t5ktjasPEga1IcwhWGk+kNpszouZDehqHZx8YGbzC19FZvY2oQup2FR+H0Kd\nx8ymAAMlDWqpoi3E7w+nmK42nDgCmBiXy80H8jkvTtsTTeeHAVOKNqWdJ+c4bUmXNVKSfgR8YGbX\ndZUOjpMHJK1JMCkeHb+oHMeJdIl1n6TDgL2I5sORcnNbaprzIsn7tJ3cYGYVzaIl9SY0UNeYWSkz\n+VT13+u9kzeq1f20tOJLaoV5L5L2IPhgG2VmSX9bJecD1TPn5bzzLuLoo48v+Tv22BPp7OzEzCr+\nxowZUzVPmp/L6X46ZSUnJb8HHjezC8tsnxDrPJJGAm9YmDOzElldj2aft6hthV/9x5JlveyO5edF\nhyxp6pdUqXkvBBc3fYC7ovHeg2b2fas8H6imOS8nnvgDzM6mVBvcp88fGTFiGAcffHAGR+g49SNp\nJ8KE1VkKjkmNcH8MJs4JMrOJkvaKfuQW0kPmxjhOgaY2Umb2jRLJxZMzk/nPBM4skf4wsE1tpR9P\nmLy+In36TK9NjOM0CTN7gFKVdOV8x7RAHcfJJV1t3ZdbOjo6XE4L5GQpK29yehp5OG9drUNXl58X\nHbKkqR4nugJJJvXC7H1KvaSuuebBXHrpHt7d5zQdSVhGg8cpyrLuci+Hbv5KuirzcQ2ntWRZ9/1L\nynEcx8kt3kg5juM4uaVqIyVpM0mrxeUOhZDHazVfNcdxHKenk+ZL6iZgiaTNgcsJEwuvbapWjuM4\njkO6RmqpmS0Gvgr8ysxOAjZorlqO4ziOk66R+kDSgcChwF9i2qrNU8lxHMdxAmkaqcMJsW5+bmbP\nRJdF16QRLukKSZ2SHk2krS1pkqQnJN2ZiEyJpFMlzZM0R9IXEunDJT0q6UlJF6Q/PMdxHKc7k6aR\n2t3MjrPordzMngHeSym/VNDDU4C7zeyjwN/oeUEPHcdxnJSkaaQOLZF2WBrhViLoISGI21Vx+SqW\nBzDsEUEPHcdxnPSU9d0Xx6G+AWwiaUJi0wDg9QbKXM+iF2czmy9pvZi+IfDPRL5CcLfFeNBDx3Gc\nHkklB7P/AF4BPgScm0hfADxaco/6yNz/SYhOfwbhQ7Ej/hynuUyePJnJkyd3tRqO01aUbaTM7Dng\nOUm7Ae+a2VJJQ4EtgVkNlNkpaZCZdcauvH/H9EyCHgIE331jSOFg2nEyo6OjYwXnnmeccUbXKeM4\nbUKaMan7gL6SNgQmAYcQYjulZYWgh4QgbofF5UNZHsAws6CHjuM4TnuQppGSmb0D7AtcYmb7A1un\nER6DHv6DYJH3vKTDgbOA3SU9AXw+rmNmjwOFoIcTWTno4RXAk8C8akEPHcdxnPYgTdBDSdqREEH0\nyJiWqh+tTNBDgN3K5M8w6KHj5B9JVwBfAjrN7BMltu9C6Dl4OibdbGY/a6GKjtOlpGmkRhPmMv3Z\nzGZL2hS4p7lqOU6PYRzwK8LUinLcZ2ajWqSP4+SKio2UpFWAUckbxMyeBo5rtmKO0xMws/slDa6S\nrSWBEx0nj1QckzKzJcDOLdLFcZzS7ChppqS/Rs8sjtNjSNPdNyNO5r0BWFhINLObm6aV4zgFHgY2\nNrN3JO0J3AIM7WKdHKdlpGmk+gL/B+yaSDPAGynHaTJm9nZi+XZJl0hax8xW8voyduzYZcvFc7Yc\np5k0cyK7llt5tweSLEzmfZ9SRohrrnkwl166BwcffHDrlXN6FJIws6rjSZKGALeZ2UoWrIWJ73F5\nBPAnMxtSIp91l3s5THespKvoLsfilCZt3U9D1S8pSeMoUaPM7IgsFHCcnkycS9gBrCvpeWAM0Acw\nM7sc2E/S94APgHeBA7pKV8fpCtJ09/0lsdyXEKH35eao4zg9iwpzCQvbLwYubpE6jpM7qjZSZnZT\ncl3SdcD9jRYs6XjC5OClBF+AhwNrANcDg4Fnga+Z2Zsx/6nAEQSv6KPNbFKjOjiO4zj5Jo1bpGK2\nANarmqsCkj4MHAsMj7PsewMHUl9ARMdxHKdNqdpISVog6a3CP3AbcHIGZa8CrCGpN7A6wbN5TQER\nM9DBcRzHyTFpuvv6Z12omb0s6VzgeeAdYJKZ3Z20ZEoZENFxHMdpY9IYTiBpX4LnCQP+bma3NFKo\npLUIX02DgTeBGyQdxMpWhHXZoXrQQ6cr8KCHjpM9aUzQLyHEdrouJn1X0u5mdnQD5e4GPF2YkCjp\nz8CnqT0gYhmdPeih03o86KHjZE+aL6ldga0KMwUlXQXMbrDc54GRkvoCiwhxpaYBbxMCIp7NygER\n/yjpfEI33+bA1AZ1cBzHcXJOmkbqKWBj4Lm4/pGYVjdmNlXSjcAMwiTFGcDlQH/gT5KOiOV9LeZ/\nXFIhIOIHrBgQ0XEcx2lTyjZSkm4jjAn1B+ZImhrXdyCDrxgzO4MwcJTkdWoMiOg4juO0L5W+pH7Z\nMi0cx3EcpwRlGykzu7eVijiO4zhOMfV4nHAcx3GcluCNlOM4jpNbyjZSkv43/p/dOnUcx3EcZzmV\nDCc2kPRpYJSk8cAKDl3NbHpTNXMcx3F6PJUaqZ8ApxO8O5xXtM1YMZy84ziO42RO2e4+M7vRzPYE\nzjGzzxX9Gm6gJA2UdIOkOZJmS9pB0tqSJkl6QtKdkgYm8p8qaV7M/4VGy3ecPCDpCkmdkh6tkOei\nWPdnShrWSv0cp6upajhhZj+VNErSL+PvSxmVfSEw0cy2Aj4JzMXjSTk9j3HAF8ttlLQnsJmZbQEc\nBVzWKsUcJw+kiSd1JjCa4JLocWC0pP9ppFBJA4DPmNk4gBgn6k08npTTwzCz+4H/VMiyD3B1zDsF\nGChpUCt0c5w8kMZ3397AMAvxLwoOZmcApzVQ7ibAa5LGEb6iHgJ+AHg8KcdZkQ2BFxLrhbrf2TXq\nOE5rSRVPCliL4FcPYGCljDWUOxw42sweit7NTyGjeFKO48ALL7zAccedxuLFS0pu33DD9bn44l+w\nyioe0sbJL2kaqTOBGZLuIZihf5bQoDTCi8ALZvZQXL8pyswknpQHPXS6giYFPUxd98eOHbtsuaOj\ng/nz53PHHU/x3nvHlhTcu/e3OOusn7DWWmtlp20mrEa5IedBgwYzf/6zrVWnCuuvP4TOzudKbsuj\nvtWo53iaGfBTaSJeSNoA2D6uTjWz+Q0XLN0LfNvMnpQ0BugXN71uZmdLOhlY28xOiYYTfyR4YN8Q\nuAvYolS4DkkWgh6+T6mgh2uueTCXXroHBx98cKOH4DgVkYSZVTXwkTQEuM3MtimxbS9Cj8PekkYC\nF5jZyBL5Vrodxo8fz3e+cwsLFowvWW6fPmvR2flsyxup0ABVeu5U2i7yFqWn8vHkT99qZHE8aet+\nGlJ195nZK4TAg1lyHCGQ4arA08DhhFbF40k5PQZJ1xI+9deV9DwwBugDmJldbmYTJe0l6SlgIeE+\ncZweQ9oxqcwxs0dY/nWWxONJOT0GM/tGijzHtEIXx8kj7mDWcRzHyS0VGylJq0ia2yplHMdxHCdJ\nxUbKzJYAT0jauEX6OI7jOM4y0oxJrQ3MljSVMHALgJmNappWjuM4jkO6Rur0pmvhOI7jOCWo2kiZ\n2b2SBhPmJd0tqR+lJiA5juM4TsakcTD7beBG4DcxaUPglmYq5TiO4ziQzgT9aGAn4C0AM5sHrFdx\nD8dxHMfJgDSN1CILPoYAkNSbjBy/SuolabqkCXHdgx46juM4y0jTSN0r6TRgdUm7AzcAt2VUfiFO\nVQEPeug4juMsI00jdQrwKjCLEBl0IvDjRguWtBGwF/C7RLIHPXQcx3GWkca6b2kMdDiF0M33REbO\nXc8HTmLF+FQe9NBxHMdZRhrrvr2BfwEXAb8GnpK0ZyOFRpmdZjaT4Je/HO7p3HEcpweTZjLvucDn\nzOwpAEmbAX8Fbm+g3J2AUTFWzupAf0nXAPM96KHTXWlm4DfH6amkaaQWFBqoyNPAgkYKNbPTgNMA\nJO0CnGhmh0g6BzgMOBs4FLg17jKBEHvqfEI33+bA1HLyQ9DDMficY6eVdHR00NHRsWz9jDPO6Dpl\nHKdNKNtISdo3Lj4kaSLwJ0L32/7AtCbpcxYe9NBxHMeJVPqS+nJiuRPYJS6/SuiiywQzuxe4Ny6/\njgc9dBzHcSJlGykz8zDVjtNkJO0BXEAYQL3CzM4u2r4Lodv76Zh0s5n9rLVaOk7XUXVMStImwLHA\nkGR+D9XhOI0hqRfBYvbzwMvANEm3mllxoNH7/H5zeippDCduAa4geJlY2lx1HKdHMQKYZ2bPAUga\nT5jQXtxIuXcVp8eSppF6z8wuaromjtPz2BB4IbH+IqU9qewoaSZh2sVJZvZ4iTyO05akaaQulDQG\nmAQsKiSa2fSmaeU4ToGHgY3N7J04if4WYGipjGPHjl22nDSFd5xm08w5gmkaqW2AQ4BdWd7dZ3Hd\ncZz6eQnYOLG+0iR1M3s7sXy7pEskrRMtYVcg2UgBjB8/PlNlHacczZwjmKaR2h/YNBmuw3GcTJgG\nbB4jX78CfB04MJmh4IElLo8AVKqBcpx2JU0j9RiwFstdFDmOkwFmtkTSMYSu9IIJ+hxJR4XNdjmw\nn6TvESaxvwsc0HUaO07rSdNIrQXMlTSNFcek6jaJjWE6rgYGEboQf2tmF0laG7geGAw8C3zNzN6M\n+5wKHAEsBkab2aR6y3ecvGBmdwAfLUr7TWL5YuDiVuvlOHkhTSM1pgnlLgZOMLOZktYEHpY0CTic\nEPTwHEknE4IenlIU9HAj4G5JW7hrJMdxnPYmTType7Mu1MzmA/Pj8tuS5hAan31Y7n7pKmAyIeji\nsqCHwLOSCkEPp2Stm+M4jpMf0sSTWiDprfh7T9ISSW9lpYCkIcAw4EGKgh4CyaCHyfkkHvTQcRyn\nB5DmS6p/YVmSCF87I7MoPHb13UgYY3pbUnH3XV3deR5PyukKPJ6U42RPmjGpZcQxoFvi5N5TGilY\nUm9CA3WNmRXiRnVmEfTQ40k5XYHHk3Kc7EnjYHbfxGov4FPAexmU/XvgcTO7MJE2gQyCHjqO4zjt\nQZovqWRcqcUE0/B9GilU0k7AQcAsSTMI3XqnERonD3roOI7jAOnGpDKPK2VmD1C+L86DHjqO4zhA\n5fDxP6mwn5nZT5ugT0s45pj/xyGHHFJy26BBg5k//9nWKuQ4juOUpNKX1MISaWsARwLrAt22kXrz\nzU7KGQ52dnroHsdxnLxQKXz8uYVlSf2B0QSPEOOBc8vt5ziO4zhZUXFMStI6wAkEI4ergOFm9p9W\nKOY4juM4lcakfgHsC1wObJOMa+M4juM4raCSW6QTgQ8DPwZeTrhGWpClWyTHcRzHKUelMamqfv3a\nk9UI3p9K49Z/juM4raMmt0g9g0VUchno1n+O4zito1t9LUnaQ9JcSU/GeFNNZHI2UjJyONqucrKU\nlTc5aUhTpyVdJGmepJmShrVMuRrJg3Pdrtehq8vPwznIlm7TSEnqBfwa+CKwNXCgpC2bV+LkMumh\nO7DUb/31h6wsJWcPzrzJyVJW3uRUI02dlrQnsJmZbQEcBVzWEuXqIA8Px67XoavLz8M5yJZu00gR\nghzOM7PnzOwDwnythnwI1kehO3DlX2fn/JUarjPOOKNsA+b0eNLU6X2AqwHMbAowUNKg1qrpOF1H\ndxqTKg58+CLhJi/DbynVBn/wwbyM1UpSajxrLDCWzs6+bpDhFJOmTpcL+NmZpoD333+KMItkZZYs\nWZRWT8fpMtRdnIlL+m/gi2b2nbh+MDDCzI4rytc9DsjpEZhZ2TeTNHVa0m3AmWb2j7h+N/BDM5te\nJMvrvZMrKtX9WuhOX1IvARsn1ksGPszqxDhOC0hTp1MF/PR677Qr3WlMahqwuaTBkvoAXycEQ3Sc\n7kqaOj0B+CaApJHAG2aWqqvPcdqBbvMlZWZLJB0DTCI0rleY2ZwuVstx6qZcnZZ0VNhsl5vZREl7\nSXqKEJkg8/hujpNnus2YlOM4jtPz6E7dfRVpZKKvpCskdUp6NJG2tqRJkp6QdKekgVVkbCTpb5Jm\nS5ol6bg65awmaYqkGVHOmHrkJOT1kjRd0oQG5Twr6ZGo19R6ZUkaKOkGSXPiudqhjnM0NOoxPf6/\nKem4OvU5XtJjkh6V9EdJfeqUMzper7qvfb00UvdrLKemOiDpVIVJyHMkfaHOMmu6N8uVKWl4vMZP\nSrogAx3GSHox1sHpkvZolg71PFtaoMOxLTsPZtbtf4TG9ilgMLAqMBPYsob9dwaGAY8m0s4mWFEB\nnAycVUXG+sCwuLwm8ASwZa1yYr5+8X8V4EGCWXLNcmLe44E/ABPqOa6EnKeBtYvS6jm2K4HD43Jv\nYGC9OiWu/csE44Jar9mH43H1ievXA4fWIWdr4FFgtXjNJgGbNXJcrar7NZaVug4AHwNmxGs8JOqo\nOspMfW9WKhOYAmwflycSrCob0WEMcEKJvFtlrQM1PluacR4q6ND085B5Re6KHzASuD2xfgpwco0y\nBhdVwrnAoMQFmlujvFuA3RqRA/QDHgK2r0cOwRLsLqCD5Y1UXfoAzwDrFqXVJAsYAPyrRHoj5+gL\nwN/r1OfDwHPA2vFmmlDPNQP2A36bWP8xcBIwp5E61Kq6X0NZqetAsR7A7cAOdZab6t4sV2bM83gi\n/evApQ3qMAY4sUS+pumQ2Lfis6WFOny+FeehXbr7Sk2K3LBBmetZtKIys/nAeml3lDSE8Ob1IKES\n1SRHoYtuBjAfuMvMptUjBzif8LBMDjzWI4co4y5J0yR9q05ZmwCvSRoXuwYul9SvAZ0ADgCurUcf\nM3uZEGX6eYJZ95tmdncd+jwGfCZ2v/QD9iJ82TVyXGlpRt0vRy11oNwk5Cwod2+WK3NDwnkpkNU5\nOkbBn+LvEl1tTdUh5bOlVTpMiUlNPQ/t0ki1glQWJpLWBG4ERlsIFFm8X1U5ZrbUzLYlfAmNkLR1\nrXIk7Q10mtlMoNIcmlTHBexkZsMJD+CjJX2mVp0IXyvDgYujrIWEN66azxGApFWBUcANZfardo7W\nIrgdGkz4qlpD0kG1yjGzuYSul7sI3RczgCWlslaS0w3Iog40g64o8xJgUzMbRniZPLfZBWbxbGmC\nDk0/D+3SSKWa6FsjnYo+0iStD/y72g6SehMu4DVmdmu9cgqY2VsEj5V71CFnJ2CUpKeB64BdJV0D\nzK9HHzN7Jf6/SvjUH1GHTi8CL5jZQ3H9JkKjVe852hN42Mxei+u1ytkNeNrMXjezJcCfgU/Xo4+Z\njTOzT5lZB/AGoc++7mtfA82o+yWpsQ6kmoRcJ7WWmbkuZvaqxf4qgg+2gjurpuhQ47OlZTq04jy0\nSyOVxURfseIXxwTgsLh8KHBr8Q4l+D2hv/XCeuVI+lDhk1nS6sDuhLGNmuSY2WlmtrGZbUo4H38z\ns0OA22o9Lkn94hsUktYgjAPNqkOnTuAFSUNj0ueB2bXKSXAgoQEuUKuc54GRkvpKUtTn8Xr0kfRf\n8X9j4KuELsh6j6sWWjLJvY46MAH4uoK15CbA5sDUeosn3b1ZsszYFfampBHxOn+T2q/FCjrERqHA\nvoQu32bqUMuzpWU6tOQ81DNolscf4WvjCWAecEqN+15LsBBbRHhwHU4YTL87ypwErFVFxk6ELp6Z\nhO6e6VGndWqUs03cdybBYuxHMb0mOUUyd2G54UTNcghjSYXjmlU4v3XK+iThwToTuJlg3VePnH7A\nq0D/RFo9csYQXgIeBa4iWMjVI+c+wg06A+ho9Jq1qu7XUEbNdQA4lWDVNQf4Qp3l1nRvlisT2C7q\nPQ+4MAMdro51Zibhq3JQs3SgjmdLC3Vo+nnwybyO4zhObmmX7r7cIWmJlk82nS7phxnL303SQwqT\nK6dJ+lyZfJMlTUusbyfpnhL5Bkt6J+o6U9L9krbISNd91ECASpWYTBnTz1GYKDhT0k2SBjSurdMo\nLaj720fZhd9XyuRr57r/CUn/iPf/rYWu2HbEG6nmsdDMhpvZtvH/nIzlvwp8ycw+SeiXvqZMPgP+\nS9IXi9JK8VTUdRjhM/5HtSikEGm2FF8hTHitl3GE6LXFTAK2jvrOI3QvOF1Ps+v+LGA7CxawewK/\nKVP32rnu/44wkfeTBIOfTF8E8oQ3Us1jJbNvSQMU3NdsEdevlXRkXF4g6TwFFz13SVq3knAze8TC\nICRmNhvoq2CSXYpfECaY1qLzAOD1qNuhkn6VOI7bJH02ofcvFeZ1jZR0poLrlJnxS2dHgpn4OfFN\ndRMFF0aFPNdSBTO7H/hPifS7zWxpXH2QYCnkdD3NrvvvJa776sDSCtnbsu4DW8RtEMal/jvFMXZL\nvJFqHqsXdXnsb8Gk/GjgKkkHEAY6r4j51yBYv3ycMAg/BkDSUZK+U6kgSfsB0y2EIC/GgH8CiyTt\nUkXnzaKuTxHcKZ1XJKcUawD/jG+1c4Gvmlnh6+ZnZvZPgqXPSfFN9RmCC5dhMc934zFsJ6l0CNl0\nHEGY1e50PU2v+wrWYY8BjwDfTTRaSdq57s+WNCouf412fkGrx+LGf6msYd6qsO03wGvABom0D4Be\ncXkTQqOTppytCV1dQ8psv4cwF+lzhDeu7Qjm6MX5it2+7E90t0Mwb70ose024LNx+X2W++RahWD5\n8zuCGfaqMX0csG9i/4mECbgHAWukPM4V9Cva9iPgpq6+5v5bdj1aUvdj/o8SPB/0KbGtbes+MBS4\nk2Apezrwaldf92b9/EuqxUgSwfniQqBSt0ZVs0tJGxHMuA8xs2cr5TWze4C+BF9vabgN+ExcXsyK\nX919E8vvWbxrLEyIHUGY8Pcl4I4ysvcGfk14gEyr0J9fFUmHETwgfKNeGU5ryLLuL8to9gTwNvDx\nCnnaru5WIu+GAAAdBklEQVSb2ZNm9kUz2x4YD/yrHjndAW+kmkc5V0QnECaMfgMYJ2mVmL4KwVEp\nhLes+0vsu1x4mPD7F4ITxwdT6vRzKg+wJnX+DMsr/rPAMAU+wvJZ5SvsozDJcy0zu4NwnJ+ImxYQ\n+vkLD6qNzexegkukAQSvytUontCJQliAk4BRZrYohQynNTS77g8p7CtpMOFr6tkqOrVb3S9MHu9F\nGHO7LIWcbkm3iczbDekraTqhchnhzepKwtjJ9mb2jqR7CRXsDMLb5QhJpwOdBMepKBGltUj+MYRw\nED9RiDllhAlzrxXlW/ZWama3S/o35d9UN4069yJMXPxW3O8BSc8SvEPMAR4uJR/oD9wqqfC2eXz8\nHw/8ViEGzdeB32u5I8oLzewtSdsBR5nZSmMQcYC5A1hX0vPAGDMbB/wK6ENwegrwoJl9v8yxOa2j\n2XV/Z+AUSe8TjCa+Z2avl9Cjnev+gZKOjjrcbGZXljmubk9uJvPGN4KHgBfNbFSJ7RcRzE0XAodZ\ncJzaNkhaYGb9u1oPJ5/EB+WbhIfyB2Y2ovIe3Qev+04l8vQlNZrQFbDShExJewKbmdkWknYgfNqm\n7V/uLuTjbcHJK0sJ7pZKmSN3d7zuO2XJxZhUNADYi2AZU4p9CBPsMLMpwEBF77/tgpm5twSnEiIn\n92vWeN13KpGXSl8qOF+SZgZQc5zugLE84OC3u1oZx2kVXd7dp0RwPkkdVA7Ql0aedx04ucHMGqrP\nCXYys1eiVdddkubYco8DXu+d3JFV3c/Dl1RxcL7PSbq6KE+NgbKsxO81+vVbJ/UEsjFjxmQyEc3l\ndD+dspKTJbZiwME/s6IpdCFPpr9azkP5+67wI9M604x62B3kdRcds6TLGykrHZzvm0XZJhCCYyFp\nJPCGhQB6jtP2qHTAwccq7+U47UGXd/eVIzlHwswmStor+tVaSAg65jg9hUHAn2OXXm/gj2Y2qYt1\ncpyWkKtGysJM7Hvj8m+Kth3TSl06OjpcTgvkZCkrb3KywoJj0mGtLjfr89CM85p3HXviMWdNbibz\nZkV42yx1TP9Hv35DWbjw/1quk9MzkYRlZzhRrSzryns5ePyoVL4yH6tw8kuWdb/Lx6Qcx3Ecpxze\nSDmO4zi5pcsbKUmrSZoSA6TNis5Si/PsIumNGJRsuqQ0kTYdx3Gcbk5mhhOSNiM4h10UJ+V+Arja\nzN6otF/M/zkLnpFXAR6QdLuZTS3Kep+VcDzrOI7jtC9ZfkndBCyRtDlwOWHy7bVpdjSzd+LiaoSG\ns9QIa0sGoB3HcZz8kGUjtdTMFhNCJ//KzE4CNkizo6RekmYA84G7zGxaiWw7Spop6a+SPpad2o7j\nOE5eybKR+kDSgcChhIixAKum2dHMlprZtgR3RzuUaIQeJkS0HEYIvXxLRjo7juM4OSbLybyHA98F\nfm5mz0jaBLimFgEWolTeA+xBiC1VSH87sXy7pEskrWOlo3ECYxPLHfHnOM1l8uTJTJ48uavVcJy2\nIrPJvJJGm9mF1dJK7PchQqTRNyWtDtwJnGVmExN5BhV89UkaAfzJzIaUkeeTeZ1c4JN5V8jhk3l7\nEHmdzHtoibTDUuy3AXCPpJnAFODO6KvvKEnfiXn2k/RYHLe6ADggE40dx3GcXNPwl1Qch/oGsDPw\n98SmAcASM/t8QwXUro9/STm5IMu3SUm9gIcI0zxWmorhX1JOnsiy7mcxJvUP4BXgQ8C5ifQFwKMZ\nyHccB0YTxmk91LrTo2i4u8/MnjOzycBuwN+jJ/NXCJZ6PrfJcRpE0kbAXsDvuloXx2k1WY5J3Qf0\nlbQhMAk4BLgyQ/mO01M5HziJyv1pjtOWZGmCruja6EjgEjM7JxpDOI5TJ5L2BjrNbGZ0N1a2d2Ls\n2LHLljs6OnIfJ8hpH5o5/SJLE/QZwPcJb31HmtlsSbPMbJsq+61G+ArrQ2g0bzSzM0rkuwjYkxCZ\n9zAzK9kAuuGEkxeyGDyW9D/AwcBiYHWgP3CzmX2zKJ8bTji5Ia8m6KOBU4E/xwZqU+CeajuZ2SLg\nc9HjxDBgzzgXahmS9gQ2M7MtgKOAyzLU23Fyi5mdZmYbm9mmwNeBvxU3UI7TzmTS3Re9l49Kmsaa\n2dPAcWn2T+Fgdh/g6ph3iqSByQm+juM4TnuSyZeUmS0hzJOqixQOZjcEXkisvxTTHKfHYGb3erga\np6eRpeHEDEkTgBsI40YAmNnN1XY0s6XAtpIGALdI+piZPV5tv/KMTSx34L77nFbgvvscJ3uyNJwY\nVyLZzOyIGuWcDiw0s/MSaZcB95jZ9XF9LrBLqe4+N5xw8oL77lshhxtO9CDy5nECADM7vJ79SjiY\n3R04qyjbBOBo4HpJI4E3fDzKcRyn/ckyfPw4SrxKpfiS2gC4Kvom6wVcX3AwG3a3y+P6XpKeInQl\n1tUgOo7jON2LLLv7/jux2pcQofdlM0tl4ZcV3t3n5AXv7lshh3f39SDy2t13U3Jd0nXA/VnJdxzH\ncXoeWU7mLWYLYL0mynccx3HanCzHpBYQvvcL3/3zgZOzku84juP0PLLs7uuflSzHcRzHgYy7+yTt\nK+k8SedK+krKfTaS9DdJsyXNkrSSoYWkXSS9IWl6/P04S70dx3GcfJJld98lwObAdTHpu5J2N7Oj\nq+y6GDghhiJYE3hY0iQzm1uU7z53CeM4jtOzyNIt0q7AVgU7WElXAbOr7WRm8wnjV5jZ25LmEPzy\nFTdSHuXX6ZGkDWfjOO1Ilt19TwEbJ9Y/EtNSI2kIIVzHlBKbd5Q0U9JfJX2sXiUdp7uRJpyN47Qr\nDX9JSbqNYM3XH5gjaWpc3wGYWoOcNYEbgdFm9nbR5oeBjWPk3z2BW4Ch5aWNTSx34A5mnVbQTAez\nKcLZOE5b0rDHCUm7VNpuZvemkNEb+Atwu5ldmCL/M8B2ZvZ6iW3uccLJBVnOuo9uwx4GNgMuNrNT\ni7a7xwknN+TK40SaRigFvwceL9dAJQMcxm4OlWqgHKddSRPOJjQUpVlnnfV5+eVnWW211ZqsqeNk\nS5aGE3UhaSfgIGBWDHxowGnAYKKDWWA/Sd8DPgDeBQ7oKn0dpysxs7ck3QPsARTFXPsBMDAud5Ds\n5l6woD8bbzyUf//7+ZJyBw0azPz5z2atrtNDaGZXd2YOZvOCd/c5eSGrLo8S4WzuBM4ys4mJPAbP\nsaLt0nJWXbU/H3zwNuW75BrrjvPuPidJlt19DVv3Sfrf+H924+o4jlOCDYB7JM0kWL7emWygHKed\nyaK7bwNJnwZGSRpP0XwmM5ueQRmO02Mxs1nA8K7Ww3G6giwaqZ8ApwMbAecVbTPCJF/HcRzHqZks\nrPtuBG6UdLqZ/bTW/SVtBFwNDAKWAr81s4tK5LsI2JMQmfcwM5vZmOaO4zhO3snSC/pPJY0CPhuT\nJpvZX1LsWtV3X5zAu5mZbSFpB+AyYGRWujuO4zj5JDO3SJLOBEYTzGIfB0ZL+p9q+5nZ/MJXUfQ0\nUfDdl2QfwtcWZjYFGChpUFa6O47jOPkky3lSewPD4qTDgoPZGYQ5T6mo4LtvQ+CFxPpLMa2zfnUd\nx3GcvJN1+Pi1EssDy+YqQRXffY7jOE4PJMsvqTOBGXE2vAhjU6ek2TH67rsRuMbMbi2R5SWCV/UC\nG8W0MoxNLHdQmHn/zjvvVnQd47PunUZo5qx7x+mpZOpxQtIGwPZxdWqMFZVmv6uB18zshDLb9wKO\nNrO9JY0ELjCzkoYTlTxOwIfwWfFOq8hy1n2KstzjhJMbcuVgNomZvQJMqGWfNL77zGyipL0kPUUw\nQT88S70dx3GcfNLlDmbN7AFglRT5jmmBOo7jOE6OyNpwwnEcx3EyI5NGStIqkuZWz+k4Tq1I2kjS\n3yTNljRL0nFdrZPjtIpMGikzWwI8Ian0qK3jOI1Q8MqyNbAjcLSkLbtYJ8dpCVmOSa0NzJY0lWDc\nAICZjcqwDMfpcUQr2flx+W1JBa8s3nvhtD1ZNlKn17ujpCuALwGdZvaJEtt3AW4Fno5JN5vZz+ot\nz3G6KxW8sjhOW5Klg9l7JQ0GtjCzuyX1I4XVXmQc8Cuif74y3OdfZU5Pxr2yOD2RzBopSd8GvgOs\nA2xG6I64DPh8tX3N7P7YwFUsomElHaebksIrC3A+y72RdVDwtJKO1draG8v66w+hs/O5stu7+/F1\nNc30tpKZx4kY2noEMMXMto1ps8xsm5T7DwZuq9DddxPwIsEd0klm9ngZOe5xwskFWc66T+GVpWGP\nE43cG3n3OJF3/dqNvHqcWGRm7xfexuKbX1ZX/WFgYzN7J8aWugUYWj772MRyB7W9UTpOfTTrbbKc\nVxYzuyPzwhwnZ2T5JXUO8AbwTeBY4PvA42b2o5T7l/2SKpH3GWA7M3u9xDb/knJyQXfz3edfUn7v\nZ0WWdT9LjxOnAK8Cs4CjgInAj2vYX5QZd0oGOJQ0gtC4rtRAOY7jOO1FltZ9S2OgwymEV5YnLOWr\niaRrCX1y60p6HhgD9CE6mAX2k/Q94APgXeCArPR2HMdx8kuW3X17E6z5/kX4ItoEOMrMbs+kgPR6\neHefkwu8uy/9/s0m7/q1G3k1nDgX+JyZPQUgaTPgr0BLGynHcRynfchyTGpBoYGKPA0syFC+4ziO\n08No+EtK0r5x8SFJE4E/Eb6r9wemNSrfcRzH6blk8SX15fjrC3QCuxCMIF4FVk8jQNIVkjolPVoh\nz0WS5kmaKWlY42o7juM4eafhLykzyyKUe0XffXEC72ZmtoWkHQgGGiMzKNdxHMfJMVn67tuEMIl3\nSFJuGqewKXz37UNswMxsiqSBkgaZWWdjWjuO4zh5JkvrvluAK4DbgKUZyoXgrPaFxPpLMc0bKcdx\nnDYmy0bqPTO7KEN5juM4Tg8ny0bqQkljgEnAokKimU3PQPZLwEcS6xvFtDKMTSx3kJWD2Uru/nv1\n6sfSpe+U3bfa9q4KFVAthEElvds1vEGlc1LpmJvoYLZiUFDHaWey9DhxJnAIweNEobvPzGzXlPsP\nITiYXSm0h6S9gKPNbG9JI4ELzKyk4UQzPU5UnrVefUZ7Hme8p5mJX+mY23GWfrXrnPaYs5p1L2ln\n4G3g6nKNlHucqEze9Ws38upxYn9gUzN7v9Ydq/nuM7OJkvaS9BSwEMjCotBxugUpg4I6TluSZSP1\nGLAW8O9adzSzb6TIc0w9SjmO4zjdlywbqbWAuZKmseKYVFUTdMdxHMcpRZaN1JgMZTmOUzPnAwPj\ncgf5iki9GoWo3aWoZoRTzcCnXY14sqJeY6Bq+xb2Hz/+yqYYDUGGhhN5wQ0nasMNJ1Ymb4YTUdYQ\nyhgWxe25N5zoSsOMnm440Uidrufc5TIyr6QFkt6Kv/ckLZH0VlbyHaenEg2L/gEMlfS8JDcccnoM\nWUbm7V9YVmh69yGlfz1JewAXEBrNK8zs7KLtuwC3EsJ/ANxsZj/LQm/HyTtpDIscp13JMp7UMixw\nC/DFankl9QJ+HfNuDRwoacsSWe8zs+Hx5w2U4zhODyBLB7P7JlZ7AZ8C3kux6whgnpk9F+WMJ3yF\nzS0uIgs9HcdxnO5DltZ9X04sLwaeJTQ21Sh2HvsioeEqZkdJMwnukE4ys8fr1NNxHMfpJmQ5JtXM\nwdyHgY3N7J0YW+oWYGj57GMTyx3kyxTXaVea5bvPcXoyDZugS/pJhc1mZj+tsv9IYKyZ7RHXT4n7\nnV1hn2eA7czs9RLb3AS9BtwEfWXyaIKeoiw3QXcT9LL0dBP0hSV+AEcCJ6fYfxqwuaTBkvoAXwcm\nJDNIGpRYHkFoXFdqoBzHcZz2Iovw8ecWliX1B0YTHMCOB84tt19i/yWSjiGE+CiYoM+RdBTRwSyw\nn6TvAR8A7wIHNKq34ziOk38y8TghaR3gBOAg4CrgQjP7T8OC69PFu/tqwLv7Vsa7+0pv9+6+7kt3\n7u5r+EtK0i+AfYHLgW3M7O2GtXIcx3EcsjGcWErwer6YFZtbEbrrBjRUQO36+JdUDfiX1Mr4l1Tp\n7f4l1X3p0V9SZtYUrxWO4ziOk4sGRtIekuZKelJSSYtASRdJmidppqRhrdbRcbqSNPeI47QjXd5I\npfHdFyfwbmZmWwBHAZc1W6/sJmVmIycrffJ2XJDHY8sXNfi3zJjJOZeXvcys61Az6mS71vNydHkj\nRcJ3n5l9QDBdL3antA9wNYCZTQEGJudONYO8Pczz9yDPSk4ejy13pLlHmsDknMvLXqY3UvkjD41U\nKd99G1bJ81KJPI7TrqS5RxynLcnSwWxuGDDgyyulmb3PggVdoIzjtIj+/Q9H6ldy28KFi1qsjeNk\nQ5eHj0/ju0/SZcA9ZnZ9XJ8L7GJmnSXkta8dqdPtyMIMN+U94vXeyRW5MUHPgGW++4BXCL77DizK\nMwE4Grg+3rBvlGqgILsT4zg5ouo94vXeaVe6vJFK47vPzCZK2kvSUwQHts0MC+I4uaLcPdLFajlO\nS+jy7j7HcRzHKYuZtcUP2IMQcv5J4OQqeTcC/gbMBmYBx8X0tQlvq08AdwIDE/ucCswD5gBfKJLX\nC5gOTKhXDjAQuCGmzwZ2qFPO8cBjwKPAH4E+Nci5A+gEHk1sr0eHWwge6xcBF8S0c2K+mcBNwIB6\n5CS2nQgsBdapVw5wbMw7CzirzuP6JPBPYAYwFfhUCjnD4/V5svi4ml33E/tckcW1btY9FbevBkyJ\n53YWMKZRmVndr0XyngUeKdSBDI47k2dB3DY06jU9/r8JHJfBMTfynCkps2xdbfQGycMvVrqngMHA\nqoQH4ZYV8q8PDIvLa8aTuiVwNvDDmH4y8cEFfCxe4N7AkFiWii7YHxKVvmY5wJXA4XG5d6yoNckB\nPgw8DfSJ+a4HDq1BzovAMFZ8cNVzLLMJHvEfBSYSJqHuBvSK288CzqxHTkzfiNCgPkNspICtatSn\ng3BD9Y55PlSnnDuJNx2wJ8HAp9pxTQG2j8vLjqsVdT+x385ZXOtm3VMJuf3i/yrAg4Q5Y43KbPh+\nLZL3NLB2UVoj5/JKGnwWVKgrLwMfaVC/Rp8zZXUsqXe9N0eefsBI4PbE+imkfKOM+W8hPETnAoMS\nN93cUvKA24Ed4vJGwF2Eh16h0tckBxgA/KuEXrXK+TDBy+jasUJMqOO49mHFB1etOqwPPE54aD5K\nGOS/tOi4vgJcU68cwlvmNqzYSNUkh3Bj7VrinNcq53Zg/5j3QOAPaeQk0lc6P62q+4VjqfdaN+ue\nKiOvH/AQsH0jMsngfi2h2zPAuo3cu4n1TJ4FZc7hF4C/NyqPbJ4zFetP8peHybxZUPdkR0lDCG+U\nDxJOcCeAmc0H1isjPzmZ+HzgJFZ0E1yrnE2A1ySNkzRd0uUKE15qkmNmLxMCTT4f0940s7trlLN+\n0Slar8Zj2ZBw/guUuhZHEL4gapYjaRTwgpnNKpJZqz5Dgc9KelDSPZK2q1PO8cAvJT1P6NI8tU45\n9ZLlRN9ar3VJMrinkrJ6SZoBzAfuMrNpDcrM4n4txoC7JE2T9K0GZWbyLCihI4Rgsdc2eswZPWdS\n19F2aaTqQtKawI3AaAtxsKwoS/F68f57A51mNpPQ3VaOinIIbyPDgYvNbDjBgvGUOvRZi/AlNJjw\ntrOGpINqlVOFRvZF0o+AD8zsujp27wWcBoxpRIdIb0IXzUjgh4Svs3r4HqH+bExosH6fgW55oeZr\n3eg9tZICZkvNbFvCF9AISVvXKzPD+7WYneJ9uxdwtKTP1KsjGT0LipG0KjCK5fW8bnktes4so10a\nqZdYMZDORjGtLJJ6E26ma8zs1pjcWfAJKGl94N8J+R8pIX8nYJSkp4HrgF0lXQPMr1HOi4Svg4di\n+k2EilqrPrsBT5vZ62a2BPgz8Oka5cwvOlW16lAuHUmHEW7kbyS21yJnIaFP+xFJz8S06ZLWo3wd\nKCf/BeBmgPh2vkTSunXIOdTMbolybiR0R9V1fuqk5rpfgVqv9QpkdE+VxMzeIjjq26MBmVndr8W6\nvRL/XyV0c45oQMesngXF7Ak8bGavxfVG5GXxnElfR9P2C+b5RxhULQwe9yEMHm9VZZ+rgfOK0s4m\n9p1SeuCvD+FzvNRg4i4s7+M+p1Y5wL3A0Lg8JupSkz6Em2MW0DeuX0mYBF2LnCHArEbOCaGbZ5+o\ny0TCg2UPguFBcd99TXKK9n2GOGBdhz7fAc6I24cCz9UpZzbB+wnA54FpKeWMiNdopeNqdt1P7Nvw\ntW7yPfUhooUYsDpwH+ElpyE9s7hfE3L6AWvG5TWABwhjP40cd8PPghLHex3hhSqL65LFc6ZnGU7E\nE7EHwaJoHnBKlbw7AUsIN3TBPHMPYB3g7ihnErBWYp9T48ktZzaarPQ1yyGYMk+LOt1MsOipR86Y\nmPYocBXB4iutnL8RrH8WEfqbDycMjtaqw+0EU+2lwFtRzjzCYOv0+LukHjlF5/xpVjZBT6tPb+Aa\nws32ELGhqUPOp+P+Mwim6NumkLNdLHcecGEr635in2uzuNZNvqe2iXJmEurzj+q9v7K+XxPbN0kc\n86zC+W9QZibPgsT2fsCrQP9EWkPnkMaeMzWZoPtkXsdxHCe3tMuYlOM4jtOGeCPlOI7j5BZvpBzH\ncZzc4o2U4ziOk1u8kXIcx3FyizdSjuM4Tm7xRqpFSNpQ0i2SnpQ0T9L5cYZ+1uUcJengrOXWK1/S\nLpJua4IegyUVR3B2cojX/cz16FF13xup1nEzcLOZDSV4OOgP/E/WhZjZb8zsD1nLbVB+3ZPxJK1S\nZtMmrOheyckvXvfrwOt+wBupFiBpV+BdM7sawMIM6uOBIyT1lXRofNO8R9ITkn6S2PcgSVOiR+RL\nJSmmL5D0M0kzJf1D0n/F9DGSTojL90g6K+4/V9JOMX11SddLekzSzdET+PDocXqcpEclPSJpdIlj\nqSq/BAMl/SXmuSQha0Fi+b8ljYvL4+KxPgicLemzkmbEc/CwpDWAM4GdY9pKejr5wOu+1/1GyfyT\n2ynJ1sDDyQQzWyDpOWDzmLR9zPceME3SX4B3CO71P21mSyRdTAi69weCn7B/mNmPJZ0NfJvSb6er\nmNkOkvYExgK7A98HXjezjyt4lZ4R8w4jhPz4BICkASmOrZT8YrYnBBN8HrhT0r5mdjOVvSZvaMFD\nOZImAN83s38qhC14j+AZ+kQzG5VCR6fr8Lrvdb8h/Euqa0mGC7jLzN4ws/cIno93Jjgs3Y5w484A\ndiV86gO8b2aFmEwPE5yFluLmRJ7BcXlnYDyAmc0m+N+C4AtvE0kXSvoisIDqlJJfzFQzey6+RV8X\ny4fK4RKSoTMeAM6XdCzBoezSFHo5+cbrfnm87ifwRqo1PA58KpkQ39Q+QnC6CCu+SSmxfqWZDTez\nbc1sKzP7aUx/P5F/CeW/ihelyCMAM3uD4NxyMnAU8LsKx1SL/HJvjcn0vkV5Fi7LbHY2cCTBE/YD\nkoam0MvJB173S6973U+JN1ItwMz+F1hd0TJIYUD0l8C4+PYIsLuktSStTgiv/gDBK/l+iT73tSUV\n4rJUehOrxgOErhQkfQz4eFxel9CF8WfgdGDbGuWW02kHBYukXrHcv8f0+ZI+GtO/WlaotKmZzTaz\ncwjeobckvOmm6ZJxuhCv+173G8UbqdbxVeBrkp4E5gLvAj9KbJ9K6D6YCdxgZtPNbA7wY2CSpEcI\n7u83iPnTWA2Vy3MJ8CFJjwH/HyEm0puEkM6TY/fKNYS+71rklytvKvDrWM6/LAYJJLjv/ytwPyFs\nRDk5P5A0S9JMwlv07YRumiVxULntB4+7OV73ve7XjYfqyAGSDgW2M7PjWlReL2BVM1skaVPgLuCj\nZra4FeU7TgGv+0413LqvZ9IPuEfSqnH9e36TOj0Er/vdDP+SchzHcXKLj0k5juM4ucUbKcdxHCe3\neCPlOI7j5BZvpBzHcZzc4o2U4ziOk1u8kXIcx3Fyy/8PHrJlFQBnhksAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
"
- ],
- "text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -1062,7 +283,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "10 loops, best of 3: 22.9 ms per loop\n"
+ "10 loops, best of 3: 55.1 ms per loop\n"
]
}
],
@@ -1082,7 +303,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "100 loops, best of 3: 5.9 ms per loop\n"
+ "100 loops, best of 3: 13.9 ms per loop\n"
]
}
],
@@ -1104,7 +325,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "100 loops, best of 3: 6.66 ms per loop\n"
+ "100 loops, best of 3: 16.3 ms per loop\n"
]
}
],
@@ -1126,7 +347,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "100 loops, best of 3: 5.8 ms per loop\n"
+ "100 loops, best of 3: 13.6 ms per loop\n"
]
}
],
@@ -1148,7 +369,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "100 loops, best of 3: 4.69 ms per loop\n"
+ "100 loops, best of 3: 10.9 ms per loop\n"
]
}
],
@@ -1170,10 +391,11 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "DCProgs GCC Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "dcprogsgcc"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -1185,7 +407,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/Example_MLL_Fit_AChR_1patch.ipynb b/exploration/Example_MLL_Fit_AChR_1patch.ipynb
index 68faa5a..f75d334 100644
--- a/exploration/Example_MLL_Fit_AChR_1patch.ipynb
+++ b/exploration/Example_MLL_Fit_AChR_1patch.ipynb
@@ -35,8 +35,7 @@
"outputs": [],
"source": [
"import sys, time, math\n",
- "import numpy as np\n",
- "from dcprogs.likelihood import inv"
+ "import numpy as np"
]
},
{
@@ -147,9 +146,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAFiCAYAAAAEIxJ0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucJGV56PHfs8sa5DJ4gWPG1QVEoo4YN2R1XTkhHm8x\nioxRkpWVJKgnYGKQ4zWa6NEkmqhJjNcoqygqrK5c4uI1GhQ1hqwuMCgMop41rGxGwXgZwBvoc/7o\nGmyG6e6a6aru6pnf9/Ppz3Rd+q2na2r6maffqrciM5EkSZIkVWPVsAOQJEmSpOXEIkuSJEmSKmSR\nJUmSJEkVssiSJEmSpApZZEmSJElShSyyJEmSJKlCFlmSJEmSVCGLLEmSJEmqkEWWJEmSJFXIIkuS\nJEmSKrTPsANod/DBB+dhhx027DAkSQNy6aWXficzDxl2HEthzpKklads3mpUkXXYYYexa9euYYch\nSRqQiLh22DEslTlLklaesnnL0wUlSZIkqUIWWZIkSZJUIYssSZIkSaqQRZYkSZIkVcgiS5IkSZIq\nZJElSZIkSRWyyJIkSZKkCllkSZIkSVKFLLIkSZIkqUIWWZIkSZJUoX2GHYCk5WXbzj3smNrbdzuT\n69eyZeO6CiKS6rH7hpvZfMYlHZd7DEvSymVPlqRK7Zjay/TMbF9tTM/MVlKoSXX60S0/67jMY1iS\nVjZ7sqRloGm9RxPjY2w/ddOSX9+td0BqijuvWd3xOPcYlqSVzZ4saRmw90iSJKk57MmSlgl7j6Ry\nIuKdwHHA9Zl5VDHvbsB24DDgP4Hfy8zvDStGSdJosydLkrTSnAU8bt68FwMXZeaRwEXFtCRJS2KR\nJUlaUTLzs8B3582eBN5dPH838KSBBiVJWlYssiRJgntk5kzx/FvAPYYZjCRptFlkSZLUJjMTyIWW\nRcQpEbErInbdcsstA45MkjQqLLIkSYJvR8Q4QPHz+oVWysytmbkhMzesWbNmoAFKkkaHRZYkSXAh\n8IfF8z8EdgwxFknSiLPIkiStKBHxPuAS4H4RcV1EPBN4NfCYiPga8OhiWpKkJfE+WZKkFSUzT+yw\n6FEDDUSStGzZkyVJkiRJFbLIkiRJkqQKWWRJkiRJUoUssiRJkiSpQhZZkiRJklQhiyxJkiRJqpBD\nuEu6zfTMLJvPuKTvNibGxyqKSJIkafRYZEkCYHL92kramRgfq6wtSZKkUWSRJQmALRvXsWXjumGH\nIUmSNPK8JkuSJEmSKmSRJUmSJEkVssiSJEmSpApZZEmSJElShSyyJEmSJKlCFlmSJEmSVCGLLEmS\nJEmqkEWWJEmSJFXIIkuSJEmSKmSRJUmSJEkVssiSJEmSpApZZEmSJElShSyyJEmSJKlCFlmSJEmS\nVCGLLEmSJEmqkEWWJEmSJFXIIkuSJEmSKlRrkRURz42IqyLiyoh4X0TsW+f2JEmSJGnYaiuyImIt\n8BxgQ2YeBawGnlrX9iRJkiSpCfYZQPt3johbgP2A/6p5e5IkNcL0zCybz7ik6zqT69eyZeO6AUUk\nSRqU2oqszNwbEX8P7AF+BHwiMz9R1/akUbRt5x52TO3tu53pmVkmxscqiEhSFSbXr+25zvTMLIBF\nliQtQ7UVWRFxV2ASOBz4PnBuRJyUmWfPW+8U4BSAdetMNFpZdkztraRAmhgfK/VPnaTB2LJxXc/i\nqVcvlyRpdNV5uuCjgW9k5g0AEXEB8HDgdkVWZm4FtgJs2LAha4xHaqSJ8TG2n7pp2GFIkqRlqMxZ\nM566XL06RxfcAzwsIvaLiAAeBVxd4/YkSZIktZk7a6aT6ZnZSi5d0O3VeU3Wzog4D7gMuBW4nKLH\nSpJ6KTNoQC9+MydJUvezZjx1uR61ji6YmS8HXl7nNiQtP1VcX+agApIkaVjqHsJdkhatzKABvfjN\nnCRJGpY6r8mSJEmSpBXHIkuSJEmSKuTpgpKWrSoGzwAH0JAkSYtjkSVpWarq5swOoCFJkhbLIkvS\nslTF4BngABqSJGnxvCZLkiRJkipkkSVJkiRJFbLIkiRJkqQK9SyyIuKJEWExJklqlDryU0Q8NyKu\niogrI+J9EbFvle1LklaGMslpM/C1iHhtRNy/7oAkSSqp0vwUEWuB5wAbMvMoYDXw1H7blSStPD1H\nF8zMkyJiDDgROCsiEngX8L7MvLHuAKWm2rZzDzum9vbVxvTMLBPjYxVFJK0sNeWnfYA7R8QtwH7A\nf1UTrSRpJSl1mkVmzgLnAe8HxoHfAS6LiNNqjE1qtB1Te2+7h9JSTYyPVXY/J2klqjI/ZeZe4O+B\nPcAM8IPM/ESF4UqSVoiePVkRMQmcDNwXeA/w0My8PiL2A6aBN9UaodRgE+NjbD9107DDkFakqvNT\nRNwVmAQOB74PnBsRJ2Xm2W3rnAKcAnDA+BFVvA1J0jJU5mbETwb+MTM/2z4zM38YEc+sJyxJknqq\nOj89GvhGZt4AEBEXAA8HbiuyMnMrsBXgboc+IJcauCRpeStzuuC35iewiHgNQGZeVEtUkiT1VnV+\n2gM8LCL2i4gAHgVc3X+YkqSVpkyR9ZgF5v121YFIkrRIleanzNxJ6/quy4Av08qRW5faniRp5ep4\numBE/DHwJ8AREfGltkUHAp+vOzBJkhZSZ37KzJcDL++nDUmSul2TtQ34GPC3wIvb5t+Ymd+tNSpJ\nkjozP0mSGq1bkZWZ+Z8R8ez5CyLibiYySdKQmJ8kSY3WqyfrOOBSIIFoW5bAfWqMS5KkTsxPkqRG\n61hkZeZxxc/DBxeOJEndmZ8k6Re27dzDjqm9HZdPz8wyMT42wIgEJUYXjIhjImL/4vlJEfG6iFhX\nf2iSJHVmfpIk2DG1l+mZ2Y7LJ8bHmFy/doARCcrdjPitwIMj4sHA84F3AO8FfrPOwCRJ6sH8JEm0\nCqntp24adhhqU+Y+WbdmZgKTwJsz8y20hsmVJGmYzE+SpEYq05N1Y0S8BDgJODYiVgFr6g1LkqSe\nzE+SpEYq05O1GfgJ8MzM/BZwL+Dvao1KkqTezE+SpEbq2ZNVJK7XtU3vAd5TZ1CSJPVifpIkNVWZ\n0QWfHBFfi4gfRMRsRNwYEZ2HMJEkaQDMT5KkpipzTdZrgSdm5tV1ByNJ0iKYnyRJjVSmyPq2CUyS\n1EDmJ0mqwPTMLJvPuKTj8sn1a9my0dsQLkaZImtXRGwHPkjrAmMAMvOC2qKSJKk385Mk9anXjYrn\nbnRskbU4ZYqsMeCHwGPb5iVgEpMkDZP5SZL6tGXjuq4FVLceLnVWZnTBpw8iEEmSFsP8JElqqjKj\nC/5KRFwUEVcW078aES+tPzRJkjozP0mSmqrM6YJvB14InAGQmV+KiG3AK+sMTJKkHsxPkpa9bTv3\nsGNqb8fl0zOzTIyPDTAildGzJwvYLzO/MG/erXUEI0nSIpifJC17O6b23jb4xEImxsd6Dl6hwSvT\nk/WdiDiC1sXERMQJwEytUUmS1Jv5SdLIK9tTtf3UTQOMSv0qU2Q9G9gK3D8i9gLfAE6qNSpJknoz\nP0kaeXM9VZ1O+bOnajSVGV1wN/DoiNgfWJWZN9YfliRJ3ZmfJC0X9lQtPx2LrIh4Xof5AGTm62qK\nSZKkjsxPkqSm69aTdWDx837AQ4ALi+knAvMvNJYkaVDMT5KkRutYZGXmXwJExGeBo+dOw4iIVwAf\nGUh0kiTNY36SJDVdmSHc7wH8tG36p8U8SZKGyfwkSWqkMqMLvgf4QkT8czH9JOCs2iKSJKkc85Mk\nqZHKjC74qoj4GPAbxaynZ+bl9YYlSc0xPTPL5jMu6auNyfVr2bJxXUURCcxPkqTmKtOTRWZeBlxW\ncyyS1DhV3JtkemYWwCKrBuYnSVITlSqypOWm193Vy+h240AtH1s2ruu7OOq3F0ySJI2WMgNfSMvO\n3N3V++Ed2CVJkrSQnj1ZEXEacHZmfm+xjUfEXYB3AEcBCTwjM/1KV43g3dWl0dZPfpIkqU5lh3D/\nYkR8ICIeFxGxiPbfAHw8M+8PPBi4eilBSpK0gH7ykyRJtSkzuuBLI+JlwGOBpwNvjogPAGdm5v/r\n9LqIOAg4Fji5aOen3P5+JpIkLdlS81OT9Bq50lEpJWk0lbomKzMT+FbxuBW4K3BeRLy2y8sOB24A\n3hURl0fEOyJi/34DliRpzhLzUyNMrl/bdfCc6ZnZvgfokSQNR5lrsk4H/gD4Dq3rq16YmbdExCrg\na8CLurR9NHBaZu6MiDcALwZeNq/9U4BTANat89s6SVI5feSnRug1cqWjUkrS6CozhPvdgCdn5rXt\nMzPz5xFxXJfXXQdcl5k7i+nzaBVZt5OZW4GtABs2bMhSUWvgqhjyHDz1RVKllpqfJEmqVZki62PA\nd+cmImIMeEBm7szMjgNZZOa3IuKbEXG/zLwGeBQw3XfEGoq5Ic/7uS+UN2SVVLEl5SdJ0uJ4/eji\nlSmy3krrtL85Ny0wr5PTgHMi4k7AbloXJmtE9Tvkuae+SKpYP/lJklRCr3uC+iX6wsoUWVFcWAzc\ndhpGmdeRmVPAhqUGJ0lSF0vOT5Kkcrx+dGnKjC64OyKeExFrisfptHqlJEkaJvOTJKmRynzj9yzg\njcBLgQQuohgNUFqsXuf0luF5v5IK5idJUiOVuRnx9cBTBxCLlrle5/SW4Xm/kuaYnyRJTVXmPlmH\nAH8EHNa+fmY+o76wtBz1Oqe3DM/7lTTH/CRJaqoypwvuAD4H/Cvws3rDkSSpNPOTJKmRyhRZ+2Xm\nn9UeiSRJi1N5foqIuwDvAI6idZ3XMzLTLnRJ0qKUKbI+HBGPz8yP1h6NJEnl1ZGf3gB8PDNPKO7x\nuF+FbUtaZrbt3MOOqb19tTE9M8vE+FhFEakpygzhfjqtRPbjiJiNiBsjYrbuwCRJ6qHS/BQRBwHH\nAmcCZOZPM/P7FcUqaRnaMbX3tkG5lmpifKySwcHULGVGFzxwEIFIkrQYNeSnw4EbgHdFxIOBS4HT\nM/PmircjaRmZGB9j+6mbhh2GGqbM6IIBPA04PDP/OiLuDYxn5hdqj05aQBX32rJrXoPmPeKqV0N+\n2gc4GjgtM3dGxBuAFwMva9vmKRT34jpg/Ii+4pckLV9lThf8J2ATsKWYvgl4S20RSV1Mrl9bSXFk\n17wGqYrjdnpmtu/z/pehqvPTdcB1mbmzmD6PVtF1m8zcmpkbMnPDmjVr+tiUJGk5KzPwxcbMPDoi\nLgfIzO8VFwNLA1fFvbakQfMecbWpND9l5rci4psRcb/MvAZ4FDBdVbCSpJWjTJF1S0SspjWU7dzN\nH39ea1SSJPVWR346DTinKNZ2A0/vsz1J0gpUpsh6I/DPwP+IiFcBJwAvrTUqSZJ6qzw/ZeYUsKGC\n2CRJK1iZ0QXPiYhLaZ02EcCTMvPq2iOTJKkL85MkqanKjC64Dvgh8KH2eZm5p87AJEnqxvwkSWqq\nMqcLfoTW+e4B7EvrPiLXAA+sMS5JknoxP0mSGqnM6YIPap+OiKOBP6ktIkmSSjA/SZKaqsx9sm4n\nMy8DNtYQiyRJS2Z+kiQ1RZlrsp7XNrmK1o0Z/6u2iCRJKsH8JElqqjLXZB3Y9vxWWufAn19POJIk\nlWZ+kiQ1Uplrsv5yEIFIkrQY5idJUlOVOV3wQ7RGb1pQZh5faUSSJJVgfpIkNVWZ0wV3A78MnF1M\nnwh8G/hgXUEN07ade9gxtbeStibXr2XLxnVDj6XfOCSpoVZUfpIkjY4yRdYxmbmhbfpDEbErM59b\nV1DDtGNqL9Mzs0yMj/XVzvTMLEBfxU0VsVQRhyQ11IrKT5Kk0VGmyNo/Iu6TmbsBIuJwYP96wxqu\nifExtp+6qa82Np9xSSNiqSoOSWqgFZefJEmjoUyR9Vzg4ojYDQRwKHBqrVFJktSb+UmS1EhlRhf8\neEQcCdy/mPWVzPxJvWFJktSd+UmS1FSreq0QEfsBLwT+NDOvANZFxHG1RyZJUhfmJ0lSU5U5XfBd\nwKXA3IVBe4FzgQ/XFZQkSSWYnyR1VWakZkdhVh169mQBR2Tma4FbADLzh7TOfZckaZjMT5K6mhup\nuZPpmdnKbt0jtSvTk/XTiLgzxQ0fI+IIwHPeJUnDZn6S1FO3kZodhVl1KVNkvRz4OHDviDgHOAY4\nuc6gJEkqwfwkSWqkrkVWRATwFeDJwMNonYZxemZ+ZwCxSZK0IPOTJKnJuhZZmZkR8dHMfBDwkQHF\nJElSV+YnSVKTlTld8LKIeEhmfrH2aFSL6ZnZvs85np6ZZWJ8rKKIJKkS5idJteo1OqH/H6mTMkXW\nRuBpEXEtcDOtUzIyM3+11shUicn1aytpZ2J8rLK2JKki5idJtZobnbBTIeX/R+qkY5EVEYdn5jeA\n3xpgPKrYlo3rvPeDpGXF/CRpkLqNTih10q0n6zzg14F3ZuajBhSPJEm9mJ8kSY3WrchaFRF/DvxK\nRDxv/sLMfF19YUmS1JH5SZLUaKu6LHsq8DNahdiBCzwkSRoG85MkqdE69mRl5jXAayLiS5n5sQHG\nJElSR+YnSVLTdevJAsAEJklqIvOTJKmpygzhLkmShqDXfQ4n1691BFmpT93+zrwPVjl+Vt1Rx56s\niPjd4ufhgwtHkqTuVkp+mly/tus/d9Mzs11vkiqpt15/Z94Hqzc/qxbWrSfrJcC5wPnA0YMJR5LU\nSa9vCstaBt8oroj81Os+h1UcC9JK5/1E++dn1cK6FVn/HRGfAA6PiAvnL8zM4+sLS5LUrqpvUqdn\nZgFG/Z8K85MkqdG6FVlPoPUN4XuBfxhMOJKkhVT1besy+UbR/CRJarRuQ7j/FPiPiHh4Zt4QEQcU\n828aWHSSJM1jfpIkNV3PIdyBe0TE5cBVwHREXBoRR5XdQESsjojLI+LDS45SkqQ76is/SZJUlzJF\n1lbgeZl5aGauA55fzCvrdODqpQQnSVIX/eYnSZJqUabI2j8zPz03kZkXA/uXaTwi7kXr3Pl3LCk6\nSZI6W3J+kiSpTmVuRrw7Il5G6wJjgJOA3SXbfz3wIuDAJcS2aNt27ul7HH5vOidJI6Of/CRJUm3K\n9GQ9AzgEuIDWPUkOLuZ1FRHHAddn5qU91jslInZFxK4bbrihRDid7Zjae9vwxEvlTeckaWQsKT9J\nklS3nj1Zmfk94DlLaPsY4PiIeDywLzAWEWdn5knz2t9KcQ79hg0bcgnbuZ2J8TG2n7qp32YkSQ3X\nR36SJKlWZXqyliQzX5KZ98rMw4CnAp+aX2BJkiRJ0nJT5pqsgdl9w8193SjT66kkSZIkDVvPnqyI\nOKbMvG4y8+LMPK7Xej+65WeLafYOvJ5KklaOKvKTJEl1KNOT9Sbg6BLz+nbnNau9nkqSVFYt+Ski\nVgO7gL1lviCUJGm+jkVWRGwCHg4cEhHPa1s0BqyuOzBJkhYygPx0OnB10Z4kSYvW7XTBOwEH0CrE\nDmx7zAIn1B+aJEkLqi0/RcS9gCcA7+gzRknSCtaxJyszPwN8JiLOysxrI+KAYv5NA4tOkqR5as5P\nrwdeRKtokyRVYHpmtuvgdpPr17Jl47oBRlS/MkO4HxgRlwNXAVdFxKURcVTNcUmS1Eul+SkijgOu\nz8xLu6xzSkTsiohdt9xyy1I3JUkrxuT6tV1H/56emWXH1N4BRjQYZQa+2Ao8LzM/DRARjyjmPbzG\nuCRJ6qXq/HQMcHxEPB7YFxiLiLPb7/GYmVuLbXC3Qx+QfcQuSSvClo3ruvZS9XP7piYrU2TtP5fA\noDUce0TsX2NMy0avrtEyr/e+X5LUUaX5KTNfArwEbivYXtBeYEmSVFaZImt3RLwMeG8xfRKwu76Q\nlocq7tflfb8kqSvzkySpkcoUWc8A/hK4oJj+XDFPXfTqGpUk9a22/JSZFwMXV9GWJGnl6VlkZeb3\ngOdExIGtSUcXlCQNn/lJktRUPUcXjIgHFaM3XYmjC0qSGsL8JElqqjJDuJ9Ba/SmQzPzUOD5FCMr\nSZI0ROYnSVIjlSmy7jB6E+DogpKkYTM/SZIaydEFJUmjyvwkSWqkMj1ZzwAOoTV60/nAwTi6oCRp\n+MxPkqRG6tqTFRGrgb/IzOcMKB5JknoyP0mSmqxrT1Zm/gz4nwOKRZKkUsxPkqQmK3NN1uURcSFw\nLnDz3MzMvKDzSyRJqp35SZLUSGWKrH2B/wYe2TYvaZ0DL0nSsJifJEmN1LPIysynDyIQSZIWw/wk\nSWqqMqMLSpIkSZJKssiSJEmSpAqVuSZLkiRJqty2nXvYMbW36zqT69eyZeO6AUUkVaNnT1ZE3CMi\nzoyIjxXTExHxzPpDkySpM/OTNPp2TO1lema24/LpmdmeRZjURGV6ss4C3gX8RTH9VWA7cGZNMUmS\nVMZZmJ+kkTcxPsb2UzctuGzzGZcMOBqpGmWuyTo4Mz8A/BwgM28FflZrVJIk9WZ+kiQ1UpmerJsj\n4u607j1CRDwM+EGtUUmS1Jv5SVrhel3TNT0zy8T42AAjklrKFFnPAy4EjoiIzwOHACfUGpUkSb2Z\nn6QVbu6ark6F1MT4GJPr1w44KqlHkRURq4B9gd8E7gcEcE1m3jKA2CRJWpD5SdKcbtd0ScPStcjK\nzJ9HxFsy89eAqwYUkyRJXZmfJElNVmbgi4si4ikREbVHI0lSeeYnSVIjlSmyTgXOBX4SEbMRcWNE\ndL6hgSRJg2F+kiQ1Us+BLzLzwEEEIknSYpifJElNVWZ0QSLirsCRtC4yBiAzP1tXUJIklWF+kiQ1\nUc8iKyL+N3A6cC9gCngYcAnwyHpDkySpM/OTJKmpyvRknQ48BPiPzPxfEXF/4G/qDUuSpJ7MT1If\net3Id87k+rVs2bhuABFJy0eZgS9+nJk/BoiIX8rMr9C6J4kkScNkfpL6MHcj326mZ2ZLFWKSbq9M\nT9Z1EXEX4IPAJyPie8C19YYlSVJP5iepT71u5Lv5jEsGGI20fJQZXfB3iqeviIhPAwcBH681KkmS\nejA/SZKaqszAF+0n4X6j+PnLwJ5aIpIkqQTzkySpqcqcLvgRIIGgNUTu4cA1wANrjEuSpF7MT5Kk\nRipzuuCD2qcj4mjgT2qLSJKkEsxPkqSmKjO64O1k5mXAxhpikSRpycxPkqSmKHNN1vPaJlcBRwP/\nVVtEkiSVYH6SJDVVmWuyDmx7fiutc+DPryccSZJKMz9JkhqpzDVZfzmIQCRJWgzzkyQtD9Mzsz3v\nyTa5fi1bNq7ruk6TlDld8EO0Rm9aUGYeX2lEkiSVYH6SpNE3uX5tz3WmZ2YBlleRBeymdd+Rs4vp\nE4FvAx+sKyhJkkowP0nSiNuycV3P4qlXL1cTlSmyjsnMDW3TH4qIXZn53LqCkiSpBPOTJKmRygzh\nvn9E3GduIiIOB/bv9aKIuHdEfDoipiPiqog4vZ9AJUmaZ0n5SZKkupXpyXoucHFE7AYCOBQ4pcTr\nbgWen5mXRcSBwKUR8cnMnF56uJIk3Wap+UmSpFqVGV3w4xFxJHD/YtZXMvMnJV43A8wUz2+MiKuB\ntYBFliSpb0vNT8tJmRG5uhm10bo0erbt3MOOqb0dl0/PzDIxPta1jW7HeZnXS8PQsciKiIcA38zM\nb2XmTyLiwcBTgGsj4hWZ+d2yG4mIw4BfA3b2Ga8kqU/9/mMOw/3nvMr8NMrKjMjVzSiO1qXRs2Nq\nb9dCaGJ8rOux3Os47/V6aVi69WSdATwaICKOBV4NnAasB7YCJ5TZQEQcQOvmkP8nM2cXWH4Kxekd\nB4wfsZjYJUmLVMU/Iw3457yS/DTqyozI1c0ojtal0TQxPsb2Uzct6bX9HufSsHQrsla3fRu4Gdia\nmecD50fEVJnGI2INrQLrnMy8YKF1MnMrraTI3Q59QMf7nUiS+lfFPywN+Oe87/y0kIi4N/Ae4B60\n7r+1NTPf0He0kqQVp9vogqsjYq4IexTwqbZlZW5iHMCZwNWZ+bqlhyhJ0u30lZ+6mBuwaQJ4GPDs\niJjooz1J0grVLRm9D/hMRHwH+BHwOYCIuC/wgxJtHwP8PvDltm8W/zwzP9pHvJIk9ZufFuSATZKk\nqnQssjLzVRFxETAOfCIz507lW0Xr3PeuMvPfaA2pK0lSZfrNT2U4YJMkqR9dT6vIzP9YYN5X6wtH\nkqTe6sxP3QZscrAmSVIZ3a7JkiRpRek1YFNmbs3MDZm5Yc2aNYMPUJI0EiyyJEnCAZskSdWxyJIk\nqWVuwKZHRsRU8Xj8sIOSJI2efoa6lSRp2XDAJklSVezJkiRJkqQK2ZMlSdIKNT0zy+YzLum4fHL9\nWrZsXLektrft3MOOqb1d1+mnfQ1Or+Ok12snxscqjkgrUZ2fV3WwyJIkaQWaXL+26/Lpmdbo9Uv9\np2XH1N6u/2D3274Go9dx0svE+FjfbUh1f17VwSJLkqQVaMvGdV3/IVlqz0W7ifExtp+6qbb2Vb9e\nx4k0CIP4vKqa12RJkiRJUoUssiRJkiSpQhZZkiRJklQhiyxJkiRJqpBFliRJkiRVyNEFJUnSovW6\nD5b3Rxo+f0fS8NiTJUmSFm3uPlideH+k4fN3JA2PPVmSJGlJut0HS83g70gaDnuyJEmSJKlCFlmS\nJEmSVCGLLEmSJEmqkEWWJEmSJFXIIkuSJEmSKmSRJUmSJEkVssiSJEmSpApZZEmSJElShSyyJEmS\nJKlC+ww7AEmSJN3Rtp172DG1t+s6k+vXsmXjugFFJKkse7IkSZIaaMfUXqZnZjsun56Z7VmESRoO\ne7IkSZIaamJ8jO2nblpw2eYzLhlwNJLKsidLkiRJkipkkSVJkiRJFbLIkiRJkqQKWWRJkiRJUoUs\nsiRJkiSpQhZZkiRJklQhiyxJkiRJqpBFliRJkiRVyCJLkiRJkipkkSVJkiRJFbLIkiRJkqQKWWRJ\nkiRJUoUssiRJkiSpQhZZkiRJklQhiyxJkiRJqpBFliRJkiRVyCJLkiRJkipkkSVJkiRJFbLIkiRJ\nkqQKWWRJkiRJUoVqLbIi4nERcU1EfD0iXlzntiRJ6pd5S5JUhdqKrIhYDbwF+G1gAjgxIibq2p4k\nSf0wb0mSqlJnT9ZDga9n5u7M/CnwfmCyxu1JktQP85YkqRL71Nj2WuCbbdPXARtr3J4kSf0wb80z\nPTPL5jM4kM79AAAN+klEQVQu6bhsYnystvZVbh/X/TuSRkWvz5OJe47x8ic+cGDx1FlklRIRpwCn\nANz1nvcZcjSSpF4m7rly/2lbSTlrcv3arssnxsd6rtNP++q9j+v+HUmjoonHeWRmPQ1HbAJekZm/\nVUy/BCAz/7bTazZs2JC7du2qJR5JUvNExKWZuWHYccDi85Y5S5JWnrJ5q85rsr4IHBkRh0fEnYCn\nAhfWuD1Jkvph3pIkVaK20wUz89aI+FPgX4DVwDsz86q6tidJUj/MW5KkqtR6TVZmfhT4aJ3bkCSp\nKuYtSVIVar0ZsSRJkiStNBZZkiRJklQhiyxJkiRJqpBFliRJkiRVyCJLkiRJkipkkSVJkiRJFbLI\nkiRJkqQKWWRJkiRJUoUssiRJkiSpQpGZw47hNhFxI3DNsOPo4SDgByOwjaW2sZjXlVm31zrdlnda\ndjDwnZ7RDd9yPlaqPk7KrOexMvz26zhWDs3MQ5Ye0vDUkLOq/Lta7N/L/HndptufV/03Noh9UHb+\nMPbBYv/GqtwHveZ12x/LdR+UnR7Fv4NOy5rwd9AptqWuW/U+ODIzD+oZVWY25gHsGnYMJWLcOgrb\nWGobi3ldmXV7rdNteadlo3CcVPV7HMQ2ltJG1cdJmfU8Vobfft3Hyqg9qj6+qvy7Wuzfy/x53abn\nPR+5fVB2/jD2wWL/XqrcB73m9dgfy3IflJ0exb+DKvbBqH8WVHUcdHp4uuDifWhEtrHUNhbzujLr\n9lqn2/JB7Os6LedjperjpMx6HivDb7/uY2Wlq/LvarF/L/PndZuu83c6iH1Qdv4w9sFi261yH/Sa\n12v/VKVJ+2Cx01Xxs2B09kFHTTtdcFdmbhh2HGo2jxOV5bGiOnl8uQ/AfQDug5X+/sF9sJCm9WRt\nHXYAGgkeJyrLY0V18vhyH4D7ANwHK/39g/vgDhrVkyVJkiRJo65pPVmSJEmSNNIssiRJkiSpQhZZ\nkiRJklShkSmyImL/iNgVEccNOxY1V0Q8ICLeFhHnRcQfDzseNVdEPCki3h4R2yPiscOOR8vPSs9b\nfh77ORMR94mIMyPivGHHMkjF3/67i9/904YdzzCs1N99u9qLrIh4Z0RcHxFXzpv/uIi4JiK+HhEv\nLtHUnwEfqCdKNUEVx0pmXp2ZzwJ+Dzimzng1PBUdKx/MzD8CngVsrjNejRbzlp/H4OdMRe9/d2Y+\ns95IB2OR++PJwHnF7/74gQdbk8Xsg+X0u1+q2kcXjIhjgZuA92TmUcW81cBXgccA1wFfBE4EVgN/\nO6+JZwAPBu4O7At8JzM/XGvQGooqjpXMvD4ijgf+GHhvZm4bVPwanKqOleJ1/wCck5mXDSh8NZx5\ny89j8HOm4vd/XmaeMKjY67DI/TEJfCwzpyJiW2ZuGVLYlVrMPsjM6WL5yP/ul2qfujeQmZ+NiMPm\nzX4o8PXM3A0QEe8HJjPzb4E7nFYREY8A9gcmgB9FxEcz8+d1xq3Bq+JYKdq5ELgwIj4CjFRSVzkV\nfa4E8GpaiXBk/vFR/cxbfh6DnzNVHQPLxWL2B61i417AFCN0aU4vi9wH04ONrnlqL7I6WAt8s236\nOmBjp5Uz8y8AIuJkWt8IjkyiUt8WdawU/9g8Gfgl4KO1RqamWdSxApwGPBo4KCLum5lvqzM4jTzz\nlp/H4OfMYo+BuwOvAn4tIl5SFGPLSaf98UbgzRHxBOBDwwhsgBbcByvgd9/TsIqsJcnMs4Ydg5ot\nMy8GLh5yGBoBmflGWolQqs1Kzlt+Hvs5k5n/Tet6tBUlM28Gnj7sOIZppf7u2w2rC3MvcO+26XsV\n86T5PFZUlseK6uTx5T4A98FKf//zuT/cBx0Nq8j6InBkRBweEXcCngpcOKRY1GweKyrLY0V18vhy\nH4D7YKW///ncH+6DjgYxhPv7gEuA+0XEdRHxzMy8FfhT4F+Aq4EPZOZVdceiZvNYUVkeK6qTx5f7\nANwHK/39z+f+cB8sVu1DuEuSJEnSSrJshpWUJEmSpCawyJIkSZKkCllkSZIkSVKFLLIkSZIkqUIW\nWZIkSZJUIYssSZIkSaqQRZYaIyKeFBEZEfcfdiydRMSfDzuGqkTEsyLiDxax/mERceUi1o+I+FRE\njHVZ5/0RcWTZNiWpaZZj7oqIiyNiQ53bWGTbx0fEixf5mpsWuf55EXGfLsv/PiIeuZg2tbJZZKlJ\nTgT+rfhZq4jYZ4kvXRZFVkTsk5lvy8z31LiZxwNXZOZsl3XeCryoxhgkqW7mrhq3UeSrCzPz1XW0\nX2zjgcDqzNzdZbU3AYsq9LSyWWSpESLiAOB/As8Ento2/xER8dmI+EhEXBMRb4uIVcWymyLiHyPi\nqoi4KCIOKeb/UUR8MSKuiIjzI2K/Yv5Zxet3Aq+NiP0j4p0R8YWIuDwiJov1To6ICyLi4xHxtYh4\nbTH/1cCdI2IqIs5Z4D2cGBFfjogrI+I1bfM7xXlEsY1LI+Jzc9+CFnG+MSL+PSJ2R8QJC2zrsIj4\nSkScExFXF9/Azb3PX4+IzxTt/ktEjBfzL46I10fELuD0iHhFRLygWLY+Iv4jIr4UEf8cEXdta+uK\niLgCeHbb9h9Y7Lep4jUL9UY9DdhRrL9/8Tu8otg/m4t1Pgc8uo9/HCRpaEY9d0XE6qL9K4v89dy2\nxb9bbOOrEfEbbdt4c9vrP1y81175cSl5sP0937bdIv99qsg9F0XEumL+4RFxSfE+Xtm27fHidzFV\nvM/fWOBX2Z6vFtwnmXktcPeI+OWuB4U0JzN9+Bj6g9YH3JnF838Hfr14/gjgx8B9gNXAJ4ETimUJ\nPK14/n+BNxfP797W7iuB04rnZwEfpvVtFcDfACcVz+8CfBXYHzgZ2A0cBOwLXAvcu1jvpg7x3xPY\nAxwC7AN8CnhSjzgvAo4snm8EPtUW57m0vgSZAL6+wPYOK9o9pph+J/ACYE2x/w4p5m8G3lk8vxj4\np7Y2XgG8oHj+JeA3i+d/Bby+bf6xxfO/A64snr+p7T3dCbjzAjFeCxxYPH8K8Pa2ZQe1Pf/k3O/b\nhw8fPkbpsQxy168Dn2ybvkvx82LgH4rnjwf+tXh+8ly8xfSHgUd020aP99wtD7a/55PbXvMh4A+L\n588APlg8vxD4g+L5s+fiAZ4P/EXxfPVcXpoX32eAB3XbJ8XztwNPGfZx52M0HvZkqSlOBN5fPH8/\ntz/t4guZuTszfwa8j9a3hgA/B7YXz89um39U8Y3Yl2klwAe2tXVu0Q7AY4EXR8QUrYSyL7CuWHZR\nZv4gM38MTAOH9oj/IcDFmXlDZt4KnAMc2ynO4tvPhwPnFts/Axhva++DmfnzzJwG7tFhm9/MzM/P\ne//3A44CPlm0+1LgXm2v2c48EXEQrSTymWLWu4FjI+IuxfzPFvPf2/ayS4A/j4g/Aw7NzB8tEN/d\nMvPG4vmXgcdExGsi4jcy8wdt611Pq0iVpFEz6rlrN3CfiHhTRDwOaD+9+4Li56W0vtjrx1LyYPt7\nbrcJ2FY8fy+/2H/H0NrPc/PnfBF4ekS8glYhdSN3NA7cUDzvtk/MVyrNU3Q0dBFxN+CRwIMiIml9\n05QR8cJilZz3kvnT8+efRasX6YqIOJnWN4pzbm7fNK1vpK6ZF89G4Cdts35GtX8rSauX6vuZub7D\nOu3bjy7tzJ8O4KrM3NThNTd3mL8ombmtOI3jCcBHI+LUzPzUvNVujYhVRbH41Yg4mtY3oq+MiIsy\n86+K9fYFFirSJKmxlkPuyszvRcSDgd8CngX8Hq3eIdraam/nVm5/qcm+3drvtml658Gl5Ks77OPM\n/GxEHEsrX50VEa/LO16P/COK99Jjn5ivVJo9WWqCE4D3ZuahmXlYZt4b+AYwd970Q4tzrVfROv3t\n34r5q4rXAmxpm38gMBMRa2h9G9jJvwCnRUQARMSvlYj1lqLd+b4A/GZEHBwRq2l9mznXM3SHOLM1\nGMQ3IuJ3i21H8aG+GOsiYq6Ymnv/1wCHzM2PiDXRuqC3o6JX6Xtt56n/PvCZzPw+8P2ImPuW8LZ9\nGa0RmHZn5htpncf+qws0fQ2tU2WIiHsCP8zMs2mddnh023q/ApQetVCSGmLkc1dEHAysyszzaZ35\ncPQdXnl7/wmsj4hVEXFv4KG9tlGoMg/+O7+4/u1ptK7tBfj8vPkU7R4KfDsz3w68g4Xf49XAfYv1\nu+0T85VKs8hSE5wI/PO8eefzi9Muvgi8mdaH4Dfa1r2ZVhK7kta3iXM9Iy8DdtL6wP1Kl+3+Na1r\nmL4UEVcV071sLda/3YW9mTlDa9ShTwNXAJdm5o4ecT4NeGa0BpW4Cpgssf121wDPjoirgbsCb83M\nn9JKZK8p2p2idTpGL38I/F1EfAlY3xbj04G3FKdytPeo/R5wZTH/KGChUQo/wi++iX0Q8IVi/ZfT\nut6AiLgH8KPM/Fa5tyxJjTHyuQtYC1xcfDafDbykRzufL97LNPBG4LIS24Bq8+BptE7/+xKtLwVP\nL+afTisnfrl4X3MeAVwREZfTKnbfsECb7flqwX1SFJD3BXaViFEiMjv1XkvDFxGPoDU4w3ELLLsp\nMw8YfFSLU0ecEXEY8OHMPKrKdqsUrVEN35OZj+myznOB2cw8c3CRSVK9lkPuqlLT33NE3JnWl6TH\ndLgOjIj4HeDozHzZQIPTyLInS1Itit69t0eXmxED36c10IYkSUNRDN70cm7fAzbfPsA/DCYiLQf2\nZEmSJElShezJkiRJkqQKWWRJkiRJUoUssiRJkiSpQhZZkiRJklQhiyxJkiRJqpBFliRJkiRV6P8D\nBTlP4Ce+1b8AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAFgCAYAAABJ67N/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8bWVZ6PHfs9kqioBrmYJKbEEPWt5ol7cwXWmFlwQz\nU1DKW1lHUxI/HjU1djcrPWpqHY8oB69oIoKoeUTR6aU0RDYCcolCofRA2d4KaimX5/wxx4LJcs37\nGHOMMcfv+/nMz55zzDHH+7xrjDGf/c73He+IzESSJEmSVI4tdQcgSZIkScvERpYkSZIklchGliRJ\nkiSVyEaWJEmSJJXIRpYkSZIklchGliRJkiSVqNJGVkScGBFXR8T5A8tWIuLMiLg0Ij4eEftWGYMk\nSeMMyVevjoiLI+K8iDg1IvapM0ZJUntU3ZN1EnD4hmUvBT6ZmfcCPgW8rOIYJEkaZ7N8dSZwn8w8\nFLgM85UkaUKVNrIy8/PA7g2LjwTeUTx/B/CEKmOQJGmczfJVZn4yM28sXn4ROGDhgUmSWqmOa7Lu\nnJlXA2TmVcCda4hBkqRpPAv4WN1BSJLaYWvdAQA57I2IGPqeJKm9MjPqjmFSEfFy4LrMPHnI++Yq\nSVpC8+SqOnqyro6I/QAiYn/g30atnJmNexx//PGN2+60n510/UnWG7XOsPemXV73w33uPm/Cdpdl\nn7dJRDwDeCzw1FHr1XF8jFt3mv2ycdmo18OeL6reZR6Pddfbfd69ene57m2r97wW0ciK4rHuDOAZ\nxfOnAx9aQAylWltba9x2p/3spOtPst6odYa9V9XfsCru88nXcZ9Xt133eeVuka8i4tHAi4EjMvMH\niwhgmr/ZuHWn2S8bl416XcV+LfPYblO9p91uV/f5MtV72u0uU927Vu8oo6U2dOMRJwNrwB2Bq4Hj\ngdOBU4AfB64AnpyZ3x7y+awyPjXPjh072LFjR91haIHc590TEWTDhgsOyVe/D9wa+I9itS9m5nM3\n+Wxnc1VXz9+u1hu6W/eu1hu6W/d5c1Wl12Rl5rDhFb9QZblqrxb+8q05uc/VBEPy1UkLD6Rlunr+\ndrXe0N26d7Xe0O26z6PSnqx5dfnXQUlaVk3syZqHuUqSls+8uaqOiS8kSZIkaWnZyJIkSZKkEtnI\nkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciS\nJEmSpBLZyJIkSZKkEtnIksTqKkTM9lhdrTt6SZKkZtladwCS6rd7N2TO9tmIcmORJElqO3uypAaY\npyfJ3iRJkqRmsSdLaoB5epLA3iRJkqQmsSdLkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpk\nI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQj\nS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkq0te4AJM1vZQUi5vu8JEmSymEj\nS1oCu3bVHYEkSZLWOVxQkiRJkkpkI0uSJEmSSmQjS5IkSZJKZCNLkiRJkkpkI0uSJEmSSmQjS5Kk\nOUUMf6yu1h2dJGnRnMJdkqQ5ZQ5/b5572EmS2smeLElS50XEiRFxdUScP7BsJSLOjIhLI+LjEbFv\nnTFKktrDRpYkSXAScPiGZS8FPpmZ9wI+Bbxs4VFJklrJRpYkqfMy8/PA7g2LjwTeUTx/B/CEhQYl\nSWotG1mSJG3uzpl5NUBmXgXcueZ4JEkt4cQXkiRNZuj0Fjt27Ljp+draGmtrawsIR5JUll6vR6/X\nK217kaOmRKpZRGST45PKEjF6drIma3PsqkdEkJmNm3MvIrYBH87M+xevLwbWMvPqiNgf+HRm/sQm\nnxuZqzxHJKl95s1VDheUJKkvise6M4BnFM+fDnxo0QFJktrJniypAdr8S3ebY1c9mtiTFREnA2vA\nHYGrgeOB04FTgB8HrgCenJnf3uSz9mRJ0pKZN1fZyJIaoM3/CWtz7KpHExtZ87CRJUnLx+GCkiRJ\nktQgtTWyIuKFEXFhRJwfEe+JiFvXFYskSZIklaWWRlZE3BV4PrC9mMVpK3BUHbFIkiRJUpnqvE/W\nHsBeEXEjcDvgmzXGIkmSJEmlqKUnKzO/CbwWuBL4BvDtzPxkHbFIkiRJUplq6cmKiDsARwLbgO8A\nH4iIp2bmyRvX3bFjx03P19bWWFtbW1CU0nRWV2H37tk+u7JSbixSk/R6PXq9Xt1hSJK0MLVM4R4R\nTwIOz8zfKl7/OvDgzPzdDes5hbtao6vTNHe13pqdU7hLkpqurVO4Xwk8JCL2jIgAHgVcXFMskiRJ\nklSauq7JOhv4ALAT+AoQwAl1xCJJkiRJZapluOCkHC6oNunqkKB5rkWD/vVou3aVF4+az+GCkqSm\nmzdX1TmFu6QlMG8DKZbmv9qSJEl9dV2TJUmSJElLyUaWJEmSJJXIRpYkSZIklchGliRJkiSVaGwj\nKyIeHxE2xiRVYmWlP/nFrI/V1bproCYwV0mSmmSShPQU4LKIeHVE3LvqgCR1y65d/emtZ33MM328\nloq5SpLUGBPdJysi9gGOBp4JJHAS8N7MvLbS4LxPllrEe+HUw797+1R1n6ym5iqPUUlqn3lz1URD\nKzLzGuADwPuAuwC/ApwbEc+ftWBJkspkrpIkNcUk12QdGRGnAT3gVsCDMvMxwAOAF1UbniRJ45mr\nJElNsnWCdZ4IvD4zPzu4MDO/HxHPriYsSZKmYq6SJDXGJMMFr9qYtCLiLwAy86xKopIkaTrmKklS\nY0zSyPrFTZY9puxAJEmag7lKktQYQ4cLRsR/B54L3CMizh94a2/g76oOTFq01dX5pgNfWSkvFkmT\nMVdJkppo6BTuEbEvsAL8GfDSgbeuzcxdC4jNKdy1UE6z3E7ut/Ypcwr3NuQqj1FJap95c9WoRtY+\nmXlNRKxu9v4ikpeNLC2S/xFqJ/db+5TcyGp8rvIYlaT2mTdXjZpd8GTgl4Ev07+p42AhCRw8a6GS\nJJXEXCVJapyhPVlNYE+WFslfm9vJ/dY+ZfZkNYE9WZK0fObNVZPcjPiwiNireH5MRLwuIg6ctUBJ\nksrW5Fy1stJvaA17rG460FGS1GaTTOH+ZuD7EfEA4EXAPwPvqjQqSZKm09hctWtXvydr2GOeWU0l\nSc00SSPr+mIcxJHAX2XmX9OfGleSpKYwV0nqpNVVe8ubaNTEF+uujYiXAccAD4+ILcCtqg1LkqSp\nmKskddLu3aOv+4yluQK2XSbpyXoK8APg2Zl5FXAA8JpKo5IkaTrmKklSYzi7oFRwBrB2cr+1T9dm\nFxz/eY9hSbMb9x3id8xsFjG74BMj4rKI+E5EXBMR10bENbMWKElS2cxVkqQmGduTFRH/BDw+My9e\nTEi3KNueLC2Mv/S0k/utfaroyWpzrvIYljQPe7KqUXlPFnB1HUlLkqQpmKskSY0xyeyC50TE3wCn\n07+oGIDM/GBlUUmSNB1zlSSpMSZpZO0DfB/4pYFlCZi4JElNYa6SJDWGswtKBccst5P7rX2cXXDj\n5z2GJc3Oa7KqsYjZBQ+JiLMi4sLi9f0j4hWzFihJUtnMVZKkJplk4ou3Ai8DrgPIzPOBo6oMSpKk\nKVWSqyLihRFxYUScHxHviYhbz7tNSdLym6SRdbvMPHvDsuurCEaSpBmVnqsi4q7A84HtmXl/+tcx\n+yOjJGmsSSa++FZE3IP+BcRExJOA/1dpVJIkTaeqXLUHsFdE3AjcDvhmCduUJC25SRpZzwNOAO4d\nEd8AvgYcU2lUkiRNp/RclZnfjIjXAlfSn7nwzMz85NyRSpKW3thGVmZeDvxCROwFbMnMa6sPS5Kk\nyVWRqyLiDsCRwDbgO8AHIuKpmXnyxnV37Nhx0/O1tTXW1tbmLV6StEC9Xo9er1fa9oZO4R4Rx436\nYGa+rrQohnAKdy2SU5y2k/utfcqcwr3KXFUMOTw8M3+reP3rwIMz83c3rOcU7pJq4xTu1Zg3V43q\nydq7+PdewAOBM4rXjwc2XlwsSVIdqsxVVwIPiYg9gR8AjwK+NOc2JUkdMPZmxBHxWeBx60MvImJv\n4KOZ+fDKg7MnSwvkLz3t5H5rnypuRlxVroqI4+nPKHgdsBP4zcy8bsM69mRJqo09WdWosidr3X7A\nDwde/7BYJklSU1SSqzLzD4E/nHc7kqRumaSR9U7g7Ig4rXj9BODtlUUkSdL0zFWSpMYYO1wQICK2\nAz9XvPxsZu6sNKqby3W4oBbG7vR2cr+1TxXDBYvttjJXeQxLmofDBasxb66aqJFVFxtZWiS/hNrJ\n/dY+VTWy6mIjS1KdbGRVY95ctaXMYCRJkiSVZ3W131Aa9lhZqTtCbWaSa7IkSZIk1WD3bnui2mhs\nT1ZEPD8ibCNLkhrLXCVJapJJhgvuB3wpIt4fEY+OiKUZRy9JWhrmKklSY0w6u2AAvwQ8E/gZ4P3A\niZn5z5UG58QXWiAvDG0n91v7VDi7YCtzlcewpFHm/Y7wO2Y2C5n4osgeVxWP64EV4AMR8epZC5ak\nMqysjL4geNRjdbXu6FUmc5UkqSnG9mRFxLHAbwDfAt4GnJ6Z10XEFuCyzLxHZcHZk6UF8pee7nGf\n16OKnqw25yqPQ0mj2JNVj3lz1SSzC64CT8zMKwYXZuaNEfHLsxYsSVKJzFWSpMaYZLjgx4Bd6y8i\nYp+IeDBAZl48a8ERsW9EnBIRF0fEV9e3Kc1j3L0kvM+EtLQqyVWSJM1ikuGCO4Ht62MhiqEX52Tm\n9rkKjng78JnMPCkitgK3y8xrNqzjcEFNxS5xTcPjpR4VDResJFdNWLbDBSVVZt7viNXV/r22hllZ\ngV27hr/fVYsYLniL7FEMvZjrJsYRsQ/wc5n5jGKb1wPXjPyQJEnDlZ6rJGkZjGtAecOLakwyXPDy\niHhBRNyqeBwLXD5nuQcB34qIkyLi3Ig4ISJuO+c2JUndVUWukiRpJpP8yvc7wBuBVwAJnAU8p4Ry\ntwPPy8xzIuIvgZcCx29ccceOHTc9X1tbY21tbc6iJUmL1Ov16PV6VRdTRa6SJGkmE92MuPRCI/YD\nvpCZBxevHwa8JDMfv2E9r8nSVLy2QdPweKlHVTcjrovXZEmqUtXfEX4Hba7ya7Ii4k7AbwF3H1w/\nM581a6GZeXVE/EtEHJKZ/wg8Crho1u1JkrqtilwlSYsyanIKZz9up0mGC34I+BzwSeCGEst+AfCe\niLgV/XHzzyxx25rDuFloRnGGGkk1qSpXSVLldu+2N2nZTDKF+3mZeeiC4tlYtsMFazBPt3HdXc51\nl6928XipR0VTuLc2V3kcSsuvydOo+x20uXlz1SSzC34kIh47awGSJC2AuUpSY633VA17OApo+UzS\nk3UtsBfww+IRQGbmPpUHZ09WLezJUld4vNSjop6s1uYqj0Np+TX5PG9ybHWqfOKLzNx71o1LkrQI\n5ipJUpOMHS4YfcdExCuL1z8eEQ+qPjS10cpK/xeRWR+rq3XXQFIbmaskSU0yyXDBNwM3Ao/MzJ+I\niBXgzMx8YOXBOVywFnV2G89btl3emobHSz0qGi7Y2lzlcSgtvyaf502OrU6VDxcEHpyZ2yNiJ0Bm\n7o6IW89aoCRJFTBXSZIaY5LZBa+LiD2AhJtu+HhjpVFJkjQdc5UkqTEmaWS9ETgNuHNE/CnweeBV\nlUYlSdJ0zFWSpMYYe00WQETcG3gU/Slxz8rMi6sOrCjXa7Jq4DVZ6gqPl3pUcU1Wsd1W5iqPQ2n5\nNfk8b3JsdZo3V00y8cWBmy3PzCtnLXRSNrLqYSNLXeHxUo+KJr5oba7yOJSWX5PP8ybHVqdFTHzx\nUfpj3APYEzgIuBS4z6yFSpJUMnOVJKkxJrkZ8f0GX0fEduC5lUWkTlu/z9Y8n5cmVcbxtmtXefFo\nduYqSVKTTHRN1o98KOKCjQmtCg4XrIfdxtJkPFdmU9U1WZuU04pctboKu3cPf9/GvNR+Tc4XTY6t\nTpUPF4yI4wZebgG2A9+ctUBJksrW5lw1rgE1T2+rJKkek1yTtffA8+vpj3s/tZpwJEmaiblKktQY\nMw0XXBSHC9bDbmNpMp4rs1nUcMFFqTpXeZxJ7dfk89ghy5tbxHDBD9OfsWlTmXnErIVLklQGc5Uk\nzcYhy9WYZLjg5cD+wLuL10cDVwOnVxWUJElTMldJkhpjkpsRn5OZPzNuWRUcLliPJndpS03iuTKb\nim5GvLS5yuNMar82n8dtjn0e8+aqLROss1dEHDxQ4EHAXrMWKElSBcxVkqTGmGS44AuBXkRcDgSw\nDfjtSqOSJGk65ipJUmNMNLtgRNwGuHfx8pLM/EGlUd1crsMFa9DVbmFpWp4rs6lqdsGqclVE7Au8\nDbgvcCPwrMz8h4H3HS4oaaQ2n8dtjn0elQ8XjIjbAS8GfjczvwIcGBG/PGuBkiSVreJc9QbgbzPz\nJ4AHABeXtF1J0pKa5Jqsk4AfAg8tXn8D+JPKIpIkaXqV5KqI2Af4ucw8CSAzr8/Ma+bdrqR2WV3t\n9+jM+lhZqbsGWrRJGln3yMxXA9cBZOb36Y93lySpKarKVQcB34qIkyLi3Ig4ISJuW8J2JbXI7t39\nIXOzPrp4M9+um2Tiix8WCSUBIuIewEKuyarTuLtfjzPP3bHrLFuSWqqqXLUV2A48LzPPiYi/BF4K\nHD+40o4dO256vra2xtraWglFS5IWpdfr0ev1StveJPfJ+kXgFcBPAmcChwHPyMzyohhedm0TX8x7\nkd88n6+z7DI+L3WF58psKrpPViW5KiL2A76QmQcXrx8GvCQzHz+wjhNfSEuuy+dhV+s+b64a2ZMV\nEQFcAjwReAj9oRfHZua3Zi1QkqQyVZmrMvPqiPiXiDgkM/8ReBRw0bzblSQtt0l6si7IzPstKJ6N\nZduT1cLPS13huTKbinqyKstVEfEA+lO43wq4HHhmZn5n4H17sqQl1+XzsKt1r7Qnq3BuRDwwM780\nayGSJFWsslxVTAn/wLK3K0laXpP0ZF0C3BO4Avge/WEYmZn3rzw4e7Ja+XmpKzxXZlNRT9bS5iqP\nM6l+XT4Pu1r3ynqyIuKgzPwacPisG5ckqUrmKklSEw3tyYqIL2fmT0fEWZn5qAXHtR6DPVkt/LzU\nFZ4rsymzJ6sLucrjTKpfl8/Drta9ymuytkTE7wOHRMRxG9/MzNfNWqgkSSUxV0mSGmfLiPeOAm6g\n3xDbe5OHJEl1M1dJkhpnkokvHpOZH1tQPBvLdrhgCz8vdYXnymwqmvhiaXOVx5lUvy6fh12t+7y5\namwjq042str5eakrPFdmU0Ujq042sqTl1+XzsKt1nzdXjRouKEmSJEma0tBGVkT8WvHvQYsLR2VY\nWen/6jDrY2Wl7hpI0mTMVZKkJho1hfu5mbl9/d8Fx7Ueg8MFJTWW5+psSp7CfelzlceZVL8un4dd\nrXuVU7j/R0ScCRwUEWdsfDMzj5i1UEmSSmKukiQ1zqhG1uOA7cC7gNcuJhxJkqZirpIkNc4kU7jf\nKTP/PSJuD5CZ311IZDhcUFKzea7OpqIp3Jc2V3mcSfXr8nnY1bovYnbB/SJiJ/BV4KKI+HJE3HfW\nAiVJqoC5SpLUGJM0sk4AjsvMbZl5IPCiYpkkSU1hrpIkNcYkjay9MvPT6y8yswfsVVlEkiRNz1wl\nSWqMSRpZl0fEKyPi7sXjFcDlVQcmSdIUzFVSx62ujr4P6Opq3RGqSyZpZD0LuBPwQeBU4MeKZZIk\nNYW5Suq43bv7EzQMe+zeXXeE6pKxswvWydkFJTXZ6ursSXtlBXbtKjeetqhidsE6Obug1AzjzhX/\nbzabrta9ypsRS5JGmKeRFEvTxJAkSRtNMlxQkiRJWlrjrudaWak7QrXN2EZWRBw2ybJZRMSWiDg3\nIs4oY3uSpG6qMldJWn7jrufq6vBuzW6Snqw3TbhsFscCF5W0LUlSd1WZqyRJmsrQa7Ii4qHAzwJ3\niojjBt7aB9hj3oIj4gDgscCfAseNWV2SpB9Rda6SJGkWoya+uDVw+2KdvQeWXwM8qYSyXw+8GNi3\nhG1Jkrqp6lwlSdLUhjayMvMzwGci4u2ZeUVE3L5Y/t15C42IxwFXZ+Z5EbEGDJ1na8eOHTc9X1tb\nY21tbeJy5p1eWZI0v16vR6/Xq2TbVeYqSZJmNfY+WRFxX+BdwPp9sr8FPD0zL5y50IhXAccA1wO3\npf/r4wcz8zc2rDfXvUfqnNffezFIGqXL53kV98mqIldNUbb3yZIaYJ77ZHmeDdfVv828uWqSRtbf\nAy/PzE8Xr9eAV2Xmz85a6IbtPwJ4UWYescl7NrIkLaUun+cVNbIqzVVjyraRJTWAjaxqdPVvM2+u\nmmR2wb3WkxZAZvaAvWYtUJKkCixtrlpZGX7vntXV8Z+X1DfqXPIykeH8DprNJD1ZpwHn0h+GAf1h\nfj+dmb9ScWxERMLsTeeVlfrua2BPlqRRunyeV9STVWuuqrIna3TZ3T2OpI08HxZvmf/mi+jJehZw\nJ+CDxeNOxbKFGHVjuHEPbxwnSZ1Ra66SJGnQ2J6sm1aM2BvIRc7YVOevg/OyJ0vSKF0+z6voyRrY\ndqdyVZePI2kjz4fFW+a/eeU9WRFxv4jYCVwIfDUivlzM4iRJUiOYqyRJTTLJcMG3AMdl5rbM3Aa8\nCDih2rAkSZqKuUqS1BjOLihJWgbmKklSY2ydYJ3LI+KV3HLGpsurC0mSpKmZqyRJjTHt7IKnAj+G\nMzZJkprFXCVJaoyRPVkRsQfw8sx8wYLiWRrrN26b9bOSpMmYqyRJTTOykZWZN0TEwxYVzDLxHl2S\ntBjmKklS00xyTdbOiDgDOAX43vrCzPxgZVFJkjQdc5UkqTEmaWTtCfwH8MiBZUl/3LskSU1grpIk\nNUbUdZf6SURENjk+SZpVBHT16y0iyMwZr1pdvIjYApwD/GtmHrHJ+7Xlqi4fR9JGng+Lt8x/83lz\n1SSzC0qS1GXHAhfVHYQkqT1sZEmSNEREHAA8Fnhb3bFIktrDRpYkScO9Hngx/eu7JEmayNiJLyJi\nP+BVwF0z8zER8ZPAQzPzxMqjkyRpAlXkqoh4HHB1Zp4XEWvA0LH5O3bsuOn52toaa2trsxYrSa0x\n7r6wKyvtua1Rr9ej1+uVtr2xE19ExMeAk+jf6PEBEbEV2JmZ9ystiuFlO/GFpKW0zBcLj1PFxBdV\n5KqIeBVwDHA9cFtgb+CDmfkbG9Zz4gupATwfmqfN+2QRE1/8WGa+H7gRIDOvB26YtUBJkipQeq7K\nzN/PzAMz82DgKOBTGxtYkiRtZpJG1vci4o4U49Ej4iHAdyqNSpKk6ZirJEmNMclwwe3Am4D7AhcC\ndwKelJnnVx6cwwUlLak2D6GYV0XDBTuZq7p8HEkbeT40T5v3yby5auTEF8UNGPcEHgHci/5Fv5dm\n5nWzFihJUpnMVZKkppmkJ2tnZv7UguLZWLY9WZKWUpt/3ZtXRT1ZncxVXT6OpI08H5qnzftkERNf\nnBURvxoxaoJGSZJqZa6SJDXGJD1Z1wJ70Z/C9r/oD8PIzNyn8uDsyZK0pNr86968KurJ6mSu6vJx\nJG3k+dA8bd4nlV6TBZCZe8+6cUmSFsFcJUlqkrGNLICIWAH+G/0LiwHIzM9WFZQkSdMyV0mSmmJs\nIysifhM4FjgAOA94CPAF4JHVhiZJ0mTMVZKkJplk4otjgQcCV2TmzwM/BXy70qgkSZqOuUqS1BiT\nNLL+KzP/CyAibpOZl9C/D4kkSU1hrpIkNcYk12T9a0TcATgd+ERE7AauqDYsSZKmYq6SJDXG2Cnc\nb7FyxCOAfYH/m5k/rCyqm8tzCndJS6nN09rOq4op3DdsvzO5qsvHkbSR50PztHmfzJurJrlP1oGb\nLc/MK2ctdFI2siQtqzYnnnlVdJ+sTuaqLh9H0kaeD83T5n2yiEbWBUDSv7HjnsBBwKWZeZ9ZC504\nOBtZkpZUmxPPvCpqZHUyV3X5OJI28nxonjbvk0XcjPh+GwrcDjx31gIlSSqbuUpqvtVV2L17+Psr\nK7Br1+Likao01TVZN30o4oKNCa0K9mRJWlZt/nVvXlVfkzVQztLnqi4fR2qfccfrvMez50PztHmf\nVN6TFRHHDbzcAmwHvjlrgZIklc1cJUlqkkmmcN974Pn1wEeBU6sJR5KkmZirpCU3yXBDqSlmGi64\nKA4XlLSs2jyEYl6LGi64KA4XlCYz73BBj/f2afM+W8RwwQ/Tn7FpU5l5xKyFS5JUBnOVJKlJJhku\neDmwP/Du4vXRwNXA6VUFJUnSlMxVkqTGmOQ+Wedk5s+MW1YFhwtKWlZtHkIxr4ruk9XJXNXl40jt\n43DB7mnzPps3V22ZYJ29IuLggQIPAvaatUBJkipgrpIkNcYkwwVfCPQi4nIggG3AcyqNSpKk6Zir\nJEmNMdHsghFxG+DexctLMvMHlUZ1c7kOF5S0lNo8hGJeVc0u2MVc1eXjSO3jcMHuafM+q2y4YEQ8\nMCL2BygS1QOAPwJeExGrsxYoSVJZzFWSpCYadU3WW4AfAkTEw4E/B94JfAc4ofrQJEkay1wlTWF1\ntd+7MOyx6k8TUilGXZO1R2buKp4/BTghM08FTo2I86oPTZKkscxV0hR27x4/JE/S/Eb1ZO0REeuN\nsEcBnxp4b5IJMyRJqpq5SpLUOKMS0HuBz0TEt4D/BD4HEBH3pD8MQ5KkupmrJEmNM3J2wYh4CHAX\n4MzM/F6x7BDg9pl5buXBObugpCXV5hmX5lX27IJdzlVdPo40mzpn8HN2we5p8z6bN1dNNIV7XWxk\nSVpWbU4886pqCve62MhSm9jI0iK1eZ9VNoV7lSLigIj4VER8NSIuiIgX1BGHJEmSJJWtrouCrweO\ny8zzIuL2wJcj4szMvKSmeCRJkiSpFLX0ZGXmVZl5XvH8u8DFwN3qiEWSJEmSylRLI2tQRNwdOBT4\nh3ojkSRJklSWlZXu3vy61nuIFEMFPwAcW/Ro/YgdO3bc9HxtbY21tbWFxCZJVVpPPPN8fteu8es1\nQa/Xo9fUTudoAAAQxklEQVTr1R2GJGnBxuWpZb75dW2zCxY3j/wI8LHMfMOQdZxdUJI20eUZm5rG\n2QXVJs4uqCZp8j5t5eyChf8DXDSsgSVJkiRJbVTXFO6HAU8DHhkROyPi3Ih4dB2xSJIkSVKZvBmx\nJLVQk4dYjONwwTLLbu9xoHo4XFBN0uR92ubhgpIkaQ7jZu4a91jmmb20eKuro4+3lZXRnx93PI/7\nvNQk9mRJUgs1+de/cdrUkxURBwDvBPYDbgTemplv3LBOa3NVm48jzabK3iKPJ02rycfMvLnKRpYk\ntVCTE9M4LWtk7Q/sn5nnFbcd+TJwZGZeMrBOa3NVm48jzcZGlpqkyceMwwUlSapIZl6VmecVz78L\nXAzcrd6oJElNZyNLkqQJRMTdgUOBf6g3EklS022tOwBJkpquGCr4AeDYokfrFnbs2HHT87W1NdbW\n1hYWmyRpfr1ej16vV9r2vCZLklqoyePYx2nTNVkAEbEV+Ajwscx8wybvtzZXtfk40my8JktN0uRj\nxmuyJEmq1v8BLtqsgSVJ0mZsZEmSNEREHAY8DXhkROyMiHMj4tF1xyVJajaHC0pSCzV5iMU4bRsu\nOE6bc1WbjyPNxuGCapImHzMOF5QkSZKkBrGRJUmSJEklspElSVJHraz0h+sMe6yuzr7t1dXqtq3q\njDsmRj1WVuqOXm1T5XdQ3bwmS5JaqMnj2Mfxmqz2qPL6nDYfw23m311tUufx6jVZkiRJktQgNrIk\nSZIkqUQ2siRJkiSpRDayJEmSJKlENrIkSZIkqUQ2siRJkiSpRDayJEnSTEbdC8t7JtVj3P3J3C/S\nYnifLElqoTbf68b7ZLVHlfe6avMx3GT+XbVMvE+WJEmSJAmwkSVJkiRJpbKRJUmSJEklspElSZIk\nSSWykSVJkiRJJbKRJUmSJEklspElSZIkSSWykSVJkiRJJbKRJUmS1CCrq/2bsG72WF2tOzpJk9ha\ndwCSJEm62e7dkLn5exGLjUXSbOzJkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmS\npBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKk\nEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS2ciSJEmSpBLZyJIkSZKkEtnIkiRJkqQS\n1dbIiohHR8QlEfGPEfGSuuJQs/R6vbpD0IK5z9Vk5qpxenUHUIsuf291te5drTd0u+7zqKWRFRFb\ngL8CDgfuAxwdEfeuIxY1iydy97jP1VTmqkn06g6gFl3+3upq3btab+h23edRV0/Wg4DLMvOKzLwO\neB9wZE2xTK2qg22e7U772UnXn2S9UesMe69tJ6z7fPJ13OfVbdd9vnALz1XT/M3GrTvNftm4bNTr\nKvZrmcd2m+o97Xa7us+Xqd7TbneZ6t61etfVyLob8C8Dr/+1WNYKTTjp5v2s//majvt88nXc59Vt\n132+cAvPVV37T8is2yzreKy73tNut6v7fJnqPe12l6nuXat3ZGZpG5u40IhfBQ7PzOcUr48BHpSZ\nL9iw3uKDkyRVLjOj7hjGMVdJUrfNk6u2lhnIFL4BHDjw+oBi2S20IQlLkpaWuUqSNJO6hgt+Cbhn\nRGyLiFsDRwFn1BSLJEmbMVdJkmZSS09WZt4QEb8LnEm/oXdiZl5cRyySJG3GXCVJmlUt12RJkiRJ\n0rKq7WbEkiRJkrSMbGRJkiRJUola2ciKiNtFxJci4rF1x6LqRcS9I+LNEfH+iPiduuNR9SLiyIg4\nISLeGxG/WHc8ql5EHBQRb4uI99cdS1m6mqu6+p3d5e+tZTx/J1Gc42+PiLdExFPrjmdRurq/Ybrz\nvJXXZEXEHwLXAhdl5t/WHY8WIyICeEdm/kbdsWgxIuIOwGsy87fqjkWLERHvz8wn1x1HGbqeq7r6\nnd3l761lOn8nUdw7b3dmfjQi3peZR9Ud0yJ1bX8PmuQ8r60nKyJOjIirI+L8DcsfHRGXRMQ/RsRL\nNvncLwAXAf8OeG+SFpl1nxfrPB74CNC5/6i02Tz7vPAK4K+rjVJlKmGfN0qXc1VXv7O7/L21bOfv\ntGao/wHAvxTPb1hYoCXr8n6fo+7jz/PMrOUBPAw4FDh/YNkW4J+AbcCtgPOAexfv/TrweuBE4HXA\nx4HT6orfx8L2+euAuwys/5G66+FjIfv8rsCfA4+suw4+FrbP71K8PqXuOpRQn6XIVV39zu7y99ay\nnb8LqP/TgMcWz0+uO/5F1XtgnVbv71nrPul5XltPVmZ+Hti9YfGDgMsy84rMvA54H3Bksf67MvOF\nmfnszDwOeA/w1oUGrbnMuM+PAw6JiDdExP8GPrrQoDWXOfb5rwKPAp4UEc9ZZMyazxz7/AcR8Wbg\n0Cb9YtrlXNXV7+wuf28t2/k7rWnrD5xGf3//NfDhxUVarmnrHRGry7C/Yaa6P58Jz/NabkY8wt24\nudsV4F/pV/RHZOY7FxKRqjZ2n2fmZ4DPLDIoVWqSff4m4E2LDEqVmmSf7wL++yKDmkOXc1VXv7O7\n/L21bOfvtIbWPzO/DzyrjqAWYFS9l3l/w+i6T3yet3J2QUmSJElqqqY1sr4BHDjw+oBimZaX+7x7\n3Ofds2z7fNnqM42u1r2r9YZu1x26W/+u1htKqnvdjazglrMufQm4Z0Rsi4hbA0cBZ9QSmariPu8e\n93n3LNs+X7b6TKOrde9qvaHbdYfu1r+r9YaK6l7nFO4nA39P/wLZKyPimZl5A/B84Ezgq8D7MvPi\numJUudzn3eM+755l2+fLVp9pdLXuXa03dLvu0N36d7XeUG3dW3kzYkmSJElqqrqHC0qSJEnSUrGR\nJUmSJEklspElSZIkSSWykSVJkiRJJbKRJUmSJEklspElSZIkSSWykSVJkiRJJbKRpcaIiCdExI0R\ncUjdsQwTES+rO4ayRMRvR8QxU6y/LSIumLKMsyLi9iPef29E3GOabUpSEyxjzoqIT0fE9irLmHLb\nj4+I/zHlZ66dcv1TIuLuI95/TUT8/DTblMBGlprlKOBzwNFVFxQRe8z40d8vNZCaRMQemfmWzHz3\nlB+d+O7lEfFY4LzM/O6I1d4MvGTKGCSpCcxZFZZR5KkPZ+arp/zoNHnqJ4Etmfn1Eau9CXjplDFI\nNrLUDBGxF3AY8GwGElZEPCIiPhMRH4mISyLifw28d21EvC4iLoyIT0TEHYvlvxkRZ0fEzuIXqj2L\n5SdFxJsj4ovAX0TE7SLixIj4YkR8OSIeX6z39Ig4NSI+FhGXRsSfF8v/DLhtRJwbEe/apA5HR8T5\nxePPJ4jz4KKMLxV1PGQgzjdExN9FxD9FxBM3KWtbRFwcEe+OiIsi4v0D9dweEb1iux+LiP2K5Z+O\niNdHxNnACyLi+Ig4rnjv0Ij4QkScV9R932L5TxfLdgLPGyj/JyPiH4q/xXlDeqOeBnyoWP92xT7c\nWfx9fq1Y53PAL0SE30WSWqPtOSsithTbPz8ivhIRxw68/eTi+/2SiDhsoIw3DXz+wxHx8Any4iz5\n780R8YWizjeVW+S9s4qc84mIOKBYfveI+PuiHn88UPb+xbbPLep52Ca7cjBPbfo3ycwrgdWIuPPQ\nA0LaTGb68FH7A3gq8Nbi+eeBnyqePwL4PrANCOBM4InFezcCRxXPXwm8qXi+MrDdPwaeVzw/CThj\n4L0/BZ5aPN8XuBS4LfB04J+A2wO3Ab4O3K1Y75oh8d8FuAJYpf/jxVnAEUPifGPx/JPAPYrnDwLO\nGojzb4rnPwFctkl524rtPqR4fSJwHLAV+DvgjsXyJwMnFs8/DfzVwDaOB44rnn8FeFjx/A+B1w0s\nP6x4/mrg/OL5G4Gji+dbgdtsEuPXgb2K508E3jLw3t4Dzz++vr99+PDhow2PJchZ24EzB17vU/z7\naeA1xfPHAJ8onj99PXcVrz8MPHxUGUPqPEn+G6zz0wc+cwZwTPH8mcBpxfMPAU8rnj93PR76OfFl\nxfNYz0cb4usB9xn1NymenwD8St3HnY92Pfz1WE1xNPC+4vnf0E9g687OzCsyM4H3Ag8rlt8IvL94\n/m76vyoC3D8iPhsR5xfbuc/Atk4ZeP5LwEuLXpoecGvgwOK9szLzu5n5A+Ai+glzlAcCn87MXZl5\nI/Ae4OFD4nxY8SvozwKnFOW/BdhvYHunA2TmxcCwX8+uzMwvDm4XuBdwX+ATxXZfDtx14DN/s3Ej\nEbEPsG9mfr5Y9A7g4UVv1r6Z+XfF8sFfKb8AvDwiXgzcvfg7bbSSmd8rnl8A/GJE/FlEPCwzB8fM\n//uGGCWp6dqesy4HDor+qInDgcHv5A8W/355gu2McwPT579T2NxD6f89oZ+P1v9+h3HzvhjMU18C\nnhkRfwDcfyAfDboL/RwEo/8m/4Z5SlPaWncAUkSsAI8E7hsRCexBf0z1i4tVNo6vHjbeen35SfR7\nkS6MiKfT/2Vx3cYv2V/NzMs2xPMQYLDRcAM3nysxqioj3tsY5xZgd2YOu8B4sPxpthvAhZm52bAI\n+NH6jytj0+WZ+d5iCMsvA38bEc/JzN6G1a4fWP+y6F9M/VjgTyLirMxcH9axJ/CfQ8qXpEZZhpyV\nmd+OiAcAhwO/A/wa8JvF2+vbGtzO9dzyEpM9B0PYrIwhJsl/w/LUqGut1t+7KZbM/FxEPBx4HPD2\niHht/uh1yN+nqMuGv8lv0x8J8uxiPfOUpmZPlprg14B3ZuZBmXlwZm4DvhYR67/+PagYi70FeAr9\n63igf/w+qXj+tIHltweuiohbFcuH+TjwgvUXEXHoBLH+MDa/APls+r0/q8X7R9P/pXGzOD9f9OR8\nLSLWlxMR9x9S5rAEdmBEPLh4/lT69b8UuFORdImIrdG/sHeozLwG2DUwXv3Xgc9k5neA3RHxs8Xy\nm2YijIiDMvNrmfkm+kM1Nov90og4uFj/LsB/ZubJwGuAnxpY7xDgwlExSlKDtD5nFddG7ZGZpwGv\noD9UbjPr+efrwKHR9+P0h/iNLKOwB/Plv0F/z83Xvx3DzX+/zw8sv+nvFxEHAv+WmScCb2PzOl4M\n3LNYf/Bv8krMU5qTjSw1wVOA0zYsO5WbvzTPAf4K+Crwz5l5erH8e/ST2QXAGv2x7ND/cjyb/hfw\nxQPb3Pgr2J8Atyoucr0Q+KMh8Q1+7gTggo0X+GbmVfRnH+oBO4FzMvMjQ+JcL+dpwLOLi3gvBI4Y\nEuewX+8uBZ4XERcBdwD+d2ZeRz+h/UVEnFfE8tAx2wF4BvA/i888YCDGZwH/KyLO3fD5JxcXMu+k\nP7TlnZts86PA+rS39wPOLtb/A/p/e4oLib+fmf82IjZJapLW5yzgbkCv+E5+FzfPnrdp/imGjX+9\nqNNf0h9KOK4MmD//DXoB/eF/5xWfX5+s4/fo58Kv0B/+t24N+EqRv54MvGGTbf4tN+epTf8mEbEV\nuAf9/SpNLPpDhqVmiohHAC/KzCM2ee/azNy7hrCmUkWcEbEN+Ehm3q/M7ZYpIvYH3pGZh49Y5/eA\n72TmSYuLTJKqsQw5q0xNr3P0Z3L8FP0Jnjb9D3FEPIH+xCbHLzQ4tZ49WWqztvxCUFWcja5/0bv3\n1hhxM2JgN/2JNiRp2TX6O7sija5zZv4X/Zl27zZitT2A1y4mIi0Te7IkSZIkqUT2ZEmSJElSiWxk\nSZIkSVKJbGRJkiRJUolsZEmSJElSiWxkSZIkSVKJ/j+uj6S9q4+kCAAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -349,7 +348,7 @@
"outputs": [],
"source": [
"# Import HJCFIT likelihood function\n",
- "from dcprogs.likelihood import Log10Likelihood\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
"\n",
"# Get bursts from the record\n",
"bursts = rec.bursts.intervals()\n",
@@ -398,12 +397,12 @@
"output_type": "stream",
"text": [
"\n",
- "ScyPy.minimize (Nelder-Mead) Fitting started: 2016/08/01 14:21:08\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting started: 2017/01/20 15:39:52\n",
"\n",
- "ScyPy.minimize (Nelder-Mead) Fitting finished: 2016/08/01 14:21:08\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting finished: 2017/01/20 15:39:53\n",
"\n",
- "CPU time in ScyPy.minimize (Nelder-Mead)= 0.6682880000000002\n",
- "Wall clock time in ScyPy.minimize (Nelder-Mead)= 0.3425431251525879\n",
+ "CPU time in ScyPy.minimize (Nelder-Mead)= 0.683340251399483\n",
+ "Wall clock time in ScyPy.minimize (Nelder-Mead)= 0.6840391159057617\n",
"\n",
"Result ==========================================\n",
" final_simplex: (array([[ 2.33189798, 9.48999371, 8.20461943, 6.05142787,\n",
@@ -421,7 +420,7 @@
" [ 2.33199047, 9.48997486, 8.20460338, 6.05139678,\n",
" 7.68245295, 19.98593748]]), array([-5268.59140924, -5268.59140923, -5268.59140923, -5268.59140921,\n",
" -5268.5914092 , -5268.59140918, -5268.59140918]))\n",
- " fun: -5268.5914092352732\n",
+ " fun: -5268.5914092352823\n",
" message: 'Optimization terminated successfully.'\n",
" nfev: 415\n",
" nit: 256\n",
@@ -461,7 +460,7 @@
"output_type": "stream",
"text": [
"\n",
- "Final likelihood = 5268.5914092352732041\n",
+ "Final likelihood = 5268.5914092352822991\n",
"\n",
"Final rate constants:\n",
"\n",
@@ -516,8 +515,9 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import QMatrix\n",
- "from dcprogs.likelihood import missed_events_pdf, ideal_pdf, IdealG, eig\n",
+ "from HJCFIT.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import missed_events_pdf, ideal_pdf, IdealG\n",
+ "from HJCFIT.likelihood import eig, inv\n",
"qmatrix = QMatrix(mec.Q, 2)\n",
"idealG = IdealG(qmatrix)"
]
@@ -553,16 +553,16 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAFiCAYAAADr4XlKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8zdcfx/HXSczYq8SOkdhiC7VVrVqtWRRt0Zai/VFt\nadFFq6raUrRmi7Rqqz2qVbVVCRJ7xR6Jkcg4vz8OSo3cJPfme8fn+Xjkobm5ud83Jed+vuecz1Fa\na4QQQgghhBBCJJ+X1QGEEEIIIYQQwl1IgSWEEEIIIYQQdiIFlhBCCCGEEELYiRRYQgghhBBCCGEn\nUmAJIYQQQgghhJ1IgSWEEEIIIYQQdiIFlhBCCCGEEELYiRRYQgghhBBCCGEnUmAJIYQQQgghhJ1I\ngSWEEEIIIYQQdpLK6gD3ypkzpy5cuLDVMYQQQjjA9u3bL2itc1mdwxFk/HIeBy4eACAgR4DFSYQQ\n7iKx45dTFViFCxdm27ZtVscQQgjhAEqpY1ZncBQZv5xH3Wl1AVjfbb2lOYQQ7iOx45csERRCCCGE\nEEIIO5ECSwghhBBCCCHsRAosIYQQQgghhLATKbCEEEIIIYQQwk6kwBJCCCGEEEIIO5ECSwghhBBC\nCCHsRAosIYQQQgghhLATKbCEEEIIIYSwk4wZMz708W7dujF37twkveawYcMYPXq0zdc+ffo0zz33\n3COfd+XKFcaPH//Y16pRowYA69evp3nz5olICwsWLCAkJOTu5++99x6rV69O1Gu4MimwhBBCCCGE\ncCN58+Z9bDH3uAIrNjYWgD///DPJ1/9vgTVixAgaNmyY5NdzNVJgCSGEEEIIYWdaa/r06UNAQAAN\nGzbk3Llzd7+2fft26tSpQ6VKlXj66acJDw8HYPLkyVSpUoXy5cvz7LPPcuPGjcde48iRIwQFBVG2\nbFmGDBly9/GjR49SpkwZAPbu3UvVqlUJDAykXLlyhIWFMXjwYA4dOkRgYCADBw5k/fr11KpVixYt\nWlCqVCng/pm4iIgImjVrRkBAAL179yY+Pv6B58ydO5du3brx559/smjRIgYOHEhgYCCHDh26b/Zu\nzZo1VKhQgbJly9KjRw+io6MBKFy4MO+//z4VK1akbNmy7N+/P8l/9lZLZXUAIUTKmrX5OAt3nUrW\na7QMzEenagXtlEgI13fmjNUJhBAPVbfug481bw7/+1/Svr5+vc2Xnj9/PgcOHCAkJISzZ89SqlQp\nevToQUxMDH379mXhwoXkypWL4OBg3n33XaZMmUKbNm14+eWXARgyZAjff/89ffv2feQ1+vXrxyuv\nvELXrl355ptvHvqcb7/9ln79+vH8889z69Yt4uLiGDlyJHv27GHXrl23f1vr2bFjB3v27MHPz++B\n19iyZQshISEUKlSIxo0bM2/evEcuQaxRowYtWrSgefPmDzwnKiqKbt26sWbNGvz9/enatSsTJkyg\nf//+AOTMmZMdO3Ywfvx4Ro8ezXfffZfwH7QTkhksITzMwl2nCAmPSPL3h4RHJLtAE8LdnDoFp4/H\nWh1DCOFENmzYQMeOHfH29iZv3rzUr18fgAMHDrBnzx6eeuopAgMD+fDDDzl58iQAe/bsoVatWpQt\nW5Yff/yRvXv3PvYaGzdupGPHjgB06dLloc8JCgri448/ZtSoURw7doz06dM/9HlVq1Z9aHF152tF\nihTB29ubjh078scff9j0Z/BfBw4cwM/PD39/fwBeeOEFNmzYcPfrbdq0AaBSpUocPXo0SddwBjKD\nJcSjxMfDvn2wcSPs2QOhoTB2LJQoAXPnwttvQ7ZsUKQIBARAjRpQqxb4+CT40smdRUruDFIp38wE\n9wpK0ve2n7gpydcVwp39NvM4Hd8tYnUMIcS9EppxSu7Xk0BrTenSpdm06cHxtFu3bixYsIDy5csz\nbdo01ttwfaXUY7/eqVMnqlWrxtKlS2natCkTJ06kSJEHf1ZlyJDB5mvc+fzex6OiohLMmpC0adMC\n4O3tfXcvmCuSGSwhHmbVKsiTB8qUgV69YNo0uHAB7vxjz5kTqlQxBda2bfDRR9C4MRw8aL4eHg6P\n+UGTnFkkmUESwvl4EcdvSyKtjiGEcCK1a9cmODiYuLg4wsPDWbduHQABAQGcP3/+boEVExNzd6Yq\nMjISX19fYmJi+PHHHxO8Rs2aNZkzZw7AI59/+PBhihQpwuuvv07Lli3ZvXs3mTJlIjLS9p9ZW7Zs\n4ciRI8THxxMcHMyTTz4JQO7cudm3bx/x8fHMnz//7vMf9foBAQEcPXqUg7ffL82cOZM6derYnMNV\nyAyWEADnz8PEiVC1KjRqBMWLQ/360KQJPPmkmaW69+5N3br3r8u+dg3++ssUZABDhsDSpdC3r/nI\nnPmBSyZ1FklmkIRwPhm9brD+nxxWxxBCOJHWrVuzdu1aSpUqRcGCBQkKMmN+mjRpmDt3Lq+//jpX\nr14lNjaW/v37U7p0aT744AOqVatGrly5qFatWoJF0JdffkmnTp0YNWoULVu2fOhzfvrpJ2bOnEnq\n1KnJkycP77zzDtmzZ6dmzZqUKVOGJk2a0KxZs8dep0qVKvTp04eDBw9Sr149WrduDcDIkSNp3rw5\nuXLlonLlyly7dg2ADh068PLLLzNu3Lj7uhmmS5eOqVOn0rZtW2JjY6lSpQq9e/e2+c/UVSittdUZ\n7qpcubLetm2b1TGEJzl9Gj78EKZMgehoeOstGDky+a/7228wahQsWwa5cplrvPgieHsD/xZJySmw\nkrvEz6rvF55LKbVda13Z6hyOkD9DUX3qxiHCT8aRJ5+31XE8Wt1pdQFY3229pTmEEO4jseOXLBEU\nnuvjj6FYMZg8Gbp2hZAQ+xRXAHXqwK+/muWDAQFmmeHbb9vntYUQTidTVlNU/TbzuMVJhBBCWE2W\nCArPcmfGVilIlQratIHhw6FoUcdcr1Il2LABZs/+d0mhHTaBCiGci09OHzJeiuG3sLy0tzqMEEII\nS8kMlvAcR45Aw4ZwezMoAwfCDz84rri6Qyno1Any5oWYGGjalBdnfYZ3bIxjryuESDEqdSpq1knN\n71vSWh1FCCGExaTAEu5Pa5g+HcqXN0v27nQCTKCtqUN4eUGVKjTaMJ93vhoAEUk/j0oI4VxqlLjE\n3r2aq1ecZ2+zEEKIlCcFlnBvFy9Cu3bQrRtUqAC7d8MjDuJLEd7eMGoUX3cbSomwv02nwvPnrcsj\nhLCbIP0nWiu2LAy3OooQQggLSYEl3NuCBbBwoenot3YtFCpkdSIAfq/ehNGvjIS9e6FVq3/3hgkh\nXFbVdoVRxPPXYrlpIoQQnkwKLOGejt/u5NWjB+zfD4MG3W2R7ix2lq0Jy5fD119bs1xRCGFXWaqX\npJTXfjZtlf5RQniyM2fO0KFDB4oWLUqlSpVo2rQpoaGhKXb9Xbt28euvvyb6++rWrUtCxyWtX7+e\n5s2bA7Bo0SJGPqb7ckI5tm3bxuuvvw7AsGHDGD16dKLyjh07lhs3btz9vGnTply5ciVRr+EoUmAJ\n93LrlmmJXro0HDpkCpciRaxO9Wh16pili2Aabty8aW0eIUTSeXsTlPsIf53KT3y81WGEEFbQWtO6\ndWvq1q3LoUOH2L59O5988glnz5616ftj7+wTv+f14hP5AyWpBVZitWjRgsGDBycpR2xsLJUrV2bc\nuHFJvv5/C6xff/2VrFmzJvn17EkKLOE+Ll+Gp5+GSZOgTx8oXNjqRLbbs8fsDeveHXlnJoTrql4h\nmstxWQjdLccxCOGJ1q1bR+rUqendu/fdx8qXL0+tWrXQWjNw4EDKlClD2bJlCQ4OBsysUK1atWjR\nogWlSpXi6NGjBAQE0LVrV8qUKcOJEydYuXIlQUFBVKxYkbZt23Lt2jUAtm7dSo0aNShfvjxVq1bl\n6tWrvPfeewQHBxMYGEhwcDDXr1+nR48eVK1alQoVKrBw4UIAbt68SYcOHShZsiStW7fm5iNu8i5f\nvpwSJUpQsWJF5s2bd/fxadOm0adPHwB+/vlnypQpQ/ny5alduza3bt16IMewYcPo0qULNWvWpEuX\nLvfNhgH8/fffBAUFUbx4cSZPnnz3z+be5/Tp04dp06Yxbtw4Tp8+Tb169ahXrx4AhQsX5sKFCwCM\nGTOGMmXKUKZMGcaOHQvA0aNHKVmyJC+//DKlS5emUaNGj/w9J5esYxDu4dgxaNIEDh6EmTOhc2er\nEyVOmTJmn9hbb4G/P4wY4dDLRUWmYulSs3ry8GG4dMk0NEyVCtKlA19fs12tfHmoUgUyZXJoHCHc\nRtCgWvAr/LUrHSUCrU4jhGfr3x927bLvawYGwu336w+1Z88eKlWq9NCvzZs3j127dvH3339z4cIF\nqlSpQu3atQHYsWMHe/bswc/Pj6NHjxIWFsb06dOpXr06Fy5c4MMPP2T16tVkyJCBUaNGMWbMGAYP\nHkz79u0JDg6mSpUqRERE4OPjw4gRI9i2bRtff/01AO+88w7169dnypQpXLlyhapVq9KwYUMmTpyI\nj48P+/btY/fu3VSsWPGBzFFRUbz88susXbuWYsWK0b79w0/6GzFiBCtWrCBfvnxcuXKFNGnSPJBj\n2LBhhISE8Mcff5A+fXrWr19/32vs3r2bv/76i+vXr1OhQgWaNWv2yD/n119/nTFjxrBu3Tpy5sx5\n39e2b9/O1KlT2bx5M1prqlWrRp06dciWLRthYWHMnj2byZMn065dO3755Rc6O+A9oxRYwj189BGc\nPg0rVsDtOxkuZ+BACA2FDz4wywZbt7bbS8fHw8aN8PPPsOKX8lw97cOi21/LmhVy5YLMmSEuzqxS\n/PVXuH1zDKWgWjVzJvMjfq4KIW4rUSsXWbLApk2meakQQtzxxx9/0LFjR7y9vcmdOzd16tRh69at\nZM6cmapVq+Ln53f3uYUKFaJ69eoA/PXXX4SEhFCzZk0Abt26RVBQEAcOHMDX15cqVaoAkDlz5ode\nd+XKlSxatOjuHqeoqCiOHz/Ohg0b7u6BKleuHOXKlXvge/fv34+fnx/FixcHoHPnzkyaNOmB59Ws\nWZNu3brRrl072rRp88g/gxYtWpA+ffqHfq1ly5akT5+e9OnTU69ePbZs2ZKkJX9//PEHrVu3JkOG\nDAC0adOG33//nRYtWuDn50dgoLn7ValSJY4ePZro17eFFFjCtcXFmeYVY8fCm29CQIDViZJOKfjm\nG9NKvls3ePJJU/kkw6lTMH682d51/DikTw+Z/W5RsOp5vnmjEKVKQY4cD36f1qbD/fbt8OefsGSJ\n6RMyeDD4lvPHv6G0oRbiYby8oGr+02xZ4g3ktjqOEB7tcTNNjlK6dGnmzp2b6O+7Uww87HOtNU89\n9RSzZ8++7zn//POPTa+tteaXX34hwIHvkb799ls2b97M0qVLqVSpEtu3b3/o8/77+7yX+k/DL6UU\nqVKlum8PWlRU8pZfp03772Hw3t7eDlsiKHuwhOv6+WcICjJ7r3x8XLu4uiNtWvP7mjAhWcVVSIip\n0fz8YORI0/Pjxx/NkVt1Xt9HycanqVXr4cUVmFovZ06zpW34cFNoHTpkiqzzYZlZN7oMzZqBjT/b\nhfAoleK3sud0dpL5PkAI4YLq169PdHT0fbM8u3fv5vfff6dWrVoEBwcTFxfH+fPn2bBhA1WrVk3w\nNatXr87GjRs5ePAgANevXyc0NJSAgADCw8PZunUrAJGRkcTGxpIpUyYiIyPvfv/TTz/NV199hb59\nJMzOnTsBqF27NrNmzQLM0sbdu3c/cO0SJUpw9OhRDh06BPBAkXfHoUOHqFatGiNGjCBXrlycOHHi\ngRwJWbhwIVFRUVy8eJH169dTpUoVChUqREhICNHR0Vy5coU1a9bcff6jXr9WrVosWLCAGzducP36\ndebPn0+tWrVszmEPMoMlXNPUqfDSS6bA8nKz+wSFCv17XteFC6bS+Y+Q8AjaT9z0wOM3Lqdhz+IC\nHN2UC+/U8fg9eQ7/BuFkzBnNwkhY+IP53lK+D19G8DhFisAnn0Bo3h0cXJeHP9cVokIF+N//4P33\nzeyYEAIqVVbE7kvNPxsuU6VRNqvjCCFSkFKK+fPn079/f0aNGkW6dOkoXLgwY8eO5cknn2TTpk2U\nL18epRSffvopefLkYf/+/Y99zVy5cjFt2jQ6duxIdHQ0AB9++CH+/v4EBwfTt29fbt68Sfr06Vm9\nejX16tVj5MiRBAYG8vbbbzN06FD69+9PuXLliI+Px8/PjyVLlvDKK6/QvXt3SpYsScmSJR+6dyxd\nunRMmjSJZs2a4ePjQ61atR5a1AwcOJCwsDC01jRo0IDy5ctTsGDB+3IkpFy5ctSrV48LFy4wdOhQ\n8ubNC0C7du0oU6YMfn5+VLjTeRno2bMnjRs3Jm/evKxbt+7u4xUrVqRbt253i9eXXnqJChUqOGw5\n4MMo7UQHnFauXFkn1H9fCMaNg379oFEjmDcPHjPd7KzuFEfBvYIe/aS1a+GZZ2DZMri9CRZg1ubj\nLNx16r6nxsUo9q/Ix/4VedFaUazuGUo2PkXajLH/fVUAWgbmo1O1gsnKPqFtEIMGwfffm74cwcFm\n868Qj6KU2q61rmx1Dke4d/w6MmsTRZ4PYkLfEHqPK2VxMs9Td1pdANZ3W29pDiGE+0js+CUzWMK1\nfPWVKa5at4bZs82SOndVrZpp5/fCC2Zf1u1Wfp2qFbyvOPr9d+jZ03QEbN/ezDL5+eUF8jo0Xvbs\n8N130LEjdO0K1aubM5NfesmhlxXC6RVuUpJsXGL7pltWRxFCCGEBKbCEa2nc2PRd/ewz01PcnWXI\nADNmQK1aMGCAqWbuERVlmk58+aU58mv5crNnKqU1aAA7d8Lzz8PLL5sjvT7/3PQeEcJTHD5//b5l\nu2VSx7Juf767jyVn1lgIIYRrcbPNK8JtrVtnWtsVLw5ffOH+xdUdNWqY9u3ffw/3nBexb5+Z4Pry\nS3j9dVPUWFFc3fHEE6bA69/fZGrbFtngLzzKzZi4+z6/WKcQR24WJi5GERIe8cCyXiGEEO5LCizh\n/L74AurXh+nTrU5ijfffNx0m1q5FazORVakShIfD0qWmoHGGbWje3uZ/1dixsGABtGxpztQSwhOk\nT+1NcK+gux/DexUkPs6LwdWrJ6mpjBBCCNclBZZwbl99BW+8Ac8+a9ageaL06WHnTm4NGUGvXmYZ\nXs2a8Pff0LSp1eEe1K+fmXBbtQpatJAiSzg3pdQUpdQ5pdSeex7LrpRapZQKu/1rolsBVnriBADb\ngw/aMa0QQghXIAWWcF7jx5v1b61amYYWqVNbncgyZ29mpn59mDwZ3n71CsuXm/4Xzqp7d5gyBdas\ngQ4dIPbhzQyFcAbTgMb/eWwwsEZrXRxYc/vzRClcysc0uthwPfkJhRBCuBQpsIRzCg2Fvn1Nm/Lg\nYI8urnbuhMqVYccOzRyfHnx8vItLNJDo1s101F+0CF57zWyhE8LZaK03AJf+83BL4M6a5OlAq8S+\nrsqZg0rpQtgelimZCYUQQrgaKbCEc/L3N2vMfv4Z0qSxOo1lVq369wisP/5QtH8vAJYsMVNDLqBP\nH3jnHZg0CUaOtDqNEDbLrbUOv/3fZ4DcSXmRCgUusOdKfuLjEn6uEEII9yEFlnAuq1ebdnRgGlu4\n8zlXCfjhB7PHys8P/voLKlbEbHAqVAj+9z+Ij7c6ok0+/NCclfXuu//+rxXCVWitNfDQ+VelVE+l\n1Dal1LaYmJgHvl6urOaWTkP0CRlqhRDCk8hPfeE8Nm82+62GDnWZ4sFRRo+GLl3gySdhwwbIl+/2\nF9KlMycJ79plKjAXoJTpfFiunCm0Dsqef+H8ziqlfAFu/3ruYU/SWk/SWlfWWldO/ZBlzOXrZQcg\n6pADkwohhHA6UmAJ57BnDzRpAnnywOLF4OWZfzW1hvfeM0dftWtnZnyyZv3Pk9q3N+djHTtmScak\n8PGB+fPN/9bWreG67PsXzm0R8MLt/34BWJiUFwnoWYfUqeFERH67BRNCCOH8PPNdrHAuR45Ao0am\nHfmqVabI8kBaw+DB8MEH0KMHzJr1iBWSXl7w229mps+F+PmZZpB798KAAVanEcJQSs0GNgEBSqmT\nSqkXgZHAU0qpMKDh7c8TLU0aKFkSrpz0sV9gIYQQTk8KLGG9r7+G6GhYudK8C/dAWpui49NP4ZVX\nTDv2x3YKTJXK/LpxI1y9miIZ7aFRIzM7N3myOYxYCKtprTtqrX211qm11vm11t9rrS9qrRtorYtr\nrRtqrf/bZdBm5aM2Excq5xQIIYQnkQJLWO/TT83+q9KlrU5iifh408b8yy9ND4tvvrFxhWRYmNmk\nNXaswzPa0wcfQGAgvPQShIcn/HwhXFm5bMc5H5OL6EgXOFtBCCGEXUiBJawRFQU9e8KJE2aqplgx\nqxNZQmtTVE2YYGZ2vvjCNIWwSfHiZkPTmDFw+bJDc9pTmjRm+eP162YppJyPJdxZ+Uqm+UVc6INd\nBoUQQrgnKbBEyouPNy3yJk+GLVusTmMZreHtt80KyTfegFGjElFc3TFsGEREmCLLhZQsCZ99Zpp4\nTJ+e8POFcFXlGj4BgN4vBZYQQngKKbBEyrqz2WjuXPj8c3j2WasTWWbfsnyMGgW9e5u27IkursD0\nPm/b1qwvvHjR7hkd6dVXTTPEN9+E8+etTiOEY+SuU4InOEvkcc89008IITyNFFgiZX3+OYwbZ4qs\nN96wOo1lDqz2Zc+ignTpYvZcJam4uuP9982vLjYb6OUFkyZBZKRH/1UQ7i57dgpnOs6RawWtTiKE\nECKFOLTAUkoNUErtVUrtUUrNVkqlc+T1hJO7ccO8o27XzkzZeKjvv4e/5xYmf4WLTJlihyO/Spc2\n3SKaNLFLvpRUurRpTf/DD6ZDvxDu6Eq1fJyO8CVWmgkKIYRHcFiBpZTKB7wOVNZalwG8gQ6Oup5w\nAT4+pq34jBkee5DwokWmt0eeUleo9mLY3W7ryZYhg1l+eeqUnV4w5bzzDvj7m/b00dFWpxHC/rLm\nv05cjBdhB+KtjiKEECIFOPpdbiogvVIqFeADnHbw9YQz+vtv04c8JgZy5XrE6bnu788/oX17qFgR\ngnoewDuVndvnvfYaVKsGt27Z93UdLF060+jj0CGzlUwId1P1xiYA9q50vRsgQgghEs9e988foLU+\npZQaDRwHbgIrtdYrHXU94aSOH4emTc0moyFDwNfX6kR2MWvzcRbusv3NUkR4etaOLk2aTLHkbbeH\nsMtXKOWb2b6hWrY0/d5//BG6d7fvazvYU0/BM8/Ahx/CCy9A7txWJxLCflIV9kIRz95NETw3wOo0\nQgghHM2RSwSzAS0BPyAvkEEp1fkhz+uplNqmlNp2XlqJuZdLl6BxY3Pg0bJlblNcASzcdYqQ8Aib\nnnvjcho2fFUS5aWp/fo+0mWOpZRvZloG5rNvqEaNzAm+o0aZVvguZvRoczzau+9anUQI+zqfPz9F\nOExIiBz6JoQQnsBhM1hAQ+CI1vo8gFJqHlAD+OHeJ2mtJwGTACpXriyjj7uIioJWrcy6rxUroGxZ\nqxPZXSnfzAT3Cnrsc65cgdq1wesW/P4bVKxY0XGBlIJBg6BTJ1i61EwJuRB/f+jb1xy2/NprUKGC\n1YmEsI+YNGkpmuYwe0+UtDqKEEKIFODIPVjHgepKKR+llAIaAPsceD3hTHbsgG3bTEOLunWtTmOJ\nmBhzRNX+/TBvntl75XDPPQf585tDnF3Q0KGQI4c5G0vL7RbhRvJmOUtoZB5i5LxhIYRwe47cg7VZ\nKTUX2AHEAju5PVMlPECNGnD4MOTJY3USS2htZmFWr4apU80eoxSROjUsWGCmgxwoJDyC9hM3Jel7\nWwbmo1O1h58JlDWrKbL69YM1a6Bhw+SkFMJ5xAekJ+Z8ag4ehJIykSWEEG7NoV0Etdbva61LaK3L\naK27aK2lCbO7GzMGpk83/+2hxRWYP4bJk00L8m7dUvjilSpBpkwOe/mWgfmS3KAjJDwiweYgvXpB\ngQLmz05msYS7CK9tbnrs3WtxECGEEA7nyD1YwtPMmWPWdrVvD127mj1BHmjhQhg40KzW++ADi0L8\n/rv5f/Hrr5Azp11fulO1go+cgUqILbNeadPCsGHw4ovmz7JVqyRdSginkinPTZTShOyIhufSWR1H\nCCGEA3nmaa/C/n77zfTXrl0bpk3z2OJqxw7TY6JKFYvPU86WDbZuddm9WF27mlWOQ4ZAXJzVaYRI\nvgzx1/DTh9m75LDVUYQQQjiYFFgi+UJCzDRDkSIwf745OdYDnTplGvflzGlmXtKntzBMmTJmA9M3\n30BsrIVBkiZVKjP7t3cvzJ5tdRohki86nQ+l0x1m73E7n38nhBDC6cgSQZF8v/xiiqplyyB7dqvT\nWOLaNVNcRUbCxo1Osv2sTx9T+C5Z4lTr7GxtkKHjIUu+crw6ULEw8u+7s4GPa5IhhDMrneciy4/l\nJibG9KMRQgjhnmQGSyTfkCGwaxcULmx1EkvEx0OXLvD33/DTT0505FezZpAvH0ycaHWSuxLTIEN5\nQakmp4g848OpnaZwt6VJhhDOqlTxGGJ0ag6Gut5B4EIIIWwnM1giaWJioHdv6N/fVBS5c1udyDLD\nh5vO6F9+CY0bW53mHqlSmW4RMTGmHZ8T7ItLbIOMuJeg9O9wfXMAcyZCh0lJaw0vhDMoXcUHVkHI\n7xcpWTqX1XGEEEI4iMxgicTTGl55BaZMMY0UPNgvv8CIEdCjB/Tta3Wah3jpJfP/ygmKq6Tw9jbt\n2nfvNisdhXBlJZ4tjVKavUes3KAphBDC0aTAEon34Yfw/fdmaWCPHlanscyVUz688AJUrw7jxztx\nDRMZaf5/3bpldZIk6dgR/Pzgo4/kXCzh2nwqlsDPT7H3aEarowghhHAgKbBE4kyfDu+9ZzYdjRhh\ndRrLRF9LxcYJAWTJAvPmmbObnNbvv5uZrEWLrE6SJKlTw1tvwebNcO6AdGATrq10sShCdkZZHUMI\nIYQDJVhgKaWeUUpJISZMN4fJk6FBA/juOyeesnGs2FjYNNmfm1fSMH8++PpanSgBTz8NBQs6VbOL\nxOrWzXR2v2LYAAAgAElEQVRmPLAqr9VRhJNylbGq1L5fOHDQ2xVPTxBCCGEjWwaj9kCYUupTpVQJ\nRwcSTszLC1asMBuP0qSxOo1l/vc/OHcgC5WfP0zVqlansYG3N7z8MqxeDQcPWp0mSdKmNV3nz+zN\nxtVTsn9FPJRLjFUBfqaT4NGjVicRQgjhKAl2EdRad1ZKZQY6AtOUUhqYCszWWkc6OqBwAidPmv1W\nX30FmTJZncYuZm0+nqR230f+zMXWGcXIUe0ohYPOA8XsH84RXnzRdBScPBlGjbI6TZL07g3vD4/j\nwJq84LmrU8UjuMpYVaJsatgA+7dGUqyYe/w8FUIIcT+bllNorSOAucAcwBdoDexQSjlj3zRhT1ev\nQpMmMH8+nDhhdRq7WbjrFCHhEYn6notHMrJ9VhGeKHGFel3DaRmYz0HpHMDXF5o2hW3brE6SZDly\nQOEa5zm+JSdnzlidRjgjZx6r7hywvfzmJQDGTtpL+4mb7n7M2nzc4oRCCCHsJcEZLKVUS6Ab5lb9\nDKCq1vqcUsoHCAG+cmhCYZ1bt6BNGzhwAJYtg1KlrE5kV6V8MxPcK8im554+DZUrQ6ECsPWPrOTI\nYdv3OZUffnD5GUj/BuEc2pCbr782zSyFuMOZx6p7b8ZcLZiLXJzj5qlUQAzA3Zs9iTkjTgghhPOy\n5aDhNsAXWusN9z6otb6hlHrRMbGE5bQ2y8rWroUZM0xjCw8VFWXqzIgIswUtRw6rEyVR5tsd+GJj\nzSHELijTE1HkK3eZCROy88474ONjdSLhRJx2rLrvgO2YyuyYeR6dpTTBvcx+wvYT5QBtIUTi2bLd\noWVgPrl5YwFblgie+e+ApZQaBaC1XuOQVMJ6R47A0qXwwQemJbuHunOm8ubNps4sW9bqRMk0Zw7k\nyweXL1udJMn8G57m0iWYNcvqJMLJuMZYlTo1JernZf9RadYihEiehLY7hIRHJGm/uUg+W25jPwW8\n9Z/HmjzkMeFOihSBPXtcoAe5Y331FUybZo7+atPG6jR24O8P585BcLDpGuGCchaLpGxZ+OYbM8nq\noacFiAe5zFgV8MQlLlzIzsWLLjwjLoRwCo/b7iCz49Z55AyWUuoVpdQ/QAml1O57Po4Au1MuokhR\nS5fCxx+bqZu8eT363evatfDGG9CyJbz/vtVp7KRCBTMNN22a1UmSTCl47TXYtQs2ydjh8VxxrCqx\ndx4AB/bFW5xECCGEIzxuieAs4Blg4e1f73xU0lp3ToFsIqVt2wbt2plzrqKirE5jqSNHoG1bCAiA\nmTPNEWBuQSlzau/mzbBvn9Vpkuz5582Wsq+/tjqJcAIuN1aVqJQBgP2bXHeprhBCiEd73NtGrbU+\nCrwGRN7zgVIqu+OjiRR15Ag0awZPPGFmsdJ77v6Aa9fMrFV8PCxc6PKN9x70/PPm8OHp061OkmQZ\nM5o6ce5cOHvW6jTCYi43VhUO8iUN0RzYlrijIoQQQriGhGawALYD227/uv2ez4W7uHjRnHUVE2Pa\nsefJY3Uiy2ht3rjv3Wu2KRVzkXOEEyV3bvjsM2jRwuokyfLqq+av7OTJVicRFnO5scq7pD/FCWO/\n604iCyGEeIxHNrnQWje//atfysURllixAo4fN7+WKGF1Gkt99JFZITl6NDRqZHUaBxowwOoEyRYQ\nAA0bwsSJMHiwy3aeF8nkkmOVry8lvLfwzwkXPE9PCCFEghLcWaKUqqmUynD7vzsrpcYopaShvjvp\n1AnCwqBWLauTWGrRIhg6FDp3Ns0t3N7ff5tpOhf22mtw8qT5fyc8m0uNVUpR4rkyHIp8glu3rA4j\nhBDC3mzZuj8BuKGUKg+8CRwCZjo0lXA8reHNN2H9evN5vnyWxrFaSIgprCpXhkmTPKR54tix0LOn\nSzc0ad4cChSACROsTiKcgEuNVQHNihEXpzh82OokQggh7M2WAitWa62BlsDXWutvAHfb9u95hg+H\nMWNg3Tqrk1ju8mXT1MLHB+bP96D+Hp06QUSEaWriolKlMmdhrV5t+rQIj+ZSY1WJrGcA2P9PjMVJ\nhBBC2JstBVakUuptoDOwVCnlBaR2bCzhUJMmmQKre3cYNszqNJaKjYUOHeDYMbP3Kn9+qxOloHr1\nTMOLWbMSfq4T697dzDhOnWp1EmExlxqrAs5uAGD/n5csTiKEEMLebCmw2gPRwIta6zNAfuAzh6YS\njrNwIbzyCjRtaroDeMRauEd7+21YuRK++QZq1rQ6TQpLlcpUl0uXwpUrVqdJsoIF4emnYcoUiIuz\nOo2wkN3HKqXUAKXUXqXUHqXUbKVUOnsEBcgcWARfTnPgb9ddoiuEEOLhEiywtNZntNZjtNa/3/78\nuNZ6huOjCYf44Qez0einnyC1097cTRHHNudk9GjT7vvll61OY5FOncyBX1u3Wp0kWV56CU6dMo0w\nhWey91illMoHvA5U1lqXAbyBDvZJC/j7U4L97D8k7S+FEMLd2NJFsI1SKkwpdVUpFaGUilRKyemI\nrmr2bFi+HDJksDqJpS4dy8C2H4pSu7bp9eCxqlQxJ/U+9ZTVSZLlmWcgVy74/nurkwirOGisSgWk\nV0qlAnyA08lPelvmzJRIf5z9Z7Kitd1eVQghhBOwZYngp0ALrXUWrXVmrXUmrXVmRwcTdnT6NLRq\nBWfOmGVh2bJZnchSZ87Axm8DSJsphrlzPXwiT6l//z648Lu8NGnghRdMu/azZ61OIyxi17FKa30K\nGA0cB8KBq1rrlXbKCkCAbwRXbmUgOlJmsYQQwp3YUmCd1VrLefOu6soVaNwY1qwxlYWHu3nTdAy8\ndT0VNV/ZT65cVidyAtevw5NPwrhxVidJlhdfNE1LZsgCZk9l17FKKZUN05HQD8gLZFBKdf7Pc3oq\npbYppbbFxCS+G2CJgc8AEHnWU1qXCiGEZ7ClwNqmlApWSnW8vQSjjVKqjcOTieSLjobWrWH/fpg3\nDwIDrU5kKa1Nx7mtW6F6jzCyFbhhdSTnkCGDKbLmzLE6SbKUKGEalXz3nUtPxomks/dY1RA4orU+\nr7WOAeYBNe59gtZ6kta6sta6cuokTIX7P+0HSIElhBDuxpYCKzNwA2gEPHP7o7kjQwk7iI+Hrl3N\nQcLTprn8Hht7GD4cgoNh5EjIF3jZ6jjOpW1b+OsvOHHC6iTJ8tJLEBoKf/5pdRJhAXuPVceB6kop\nH6WUAhoAdl3NUTB1OGm8Y4k9Fm/PlxVCCGGxBBd+a627p0QQYWdnzpg3zJ99ZjrFebjZs/89+mvg\nQOgwyepETqZtW3j3XZg7FwYMsDpNkj33HLz2Gsyc6YFt9z2cvccqrfVmpdRcYAcQC+wE7PqTw/v8\nGYrFXSLmuOzBEsJuDh6Eo0ehYUPzeffuZn/A00+bVT1Zs1oaT3gGW7oI+iul1iil9tz+vJxSaojj\no4lkyZsXdu+GN9+0Oonl/vrL/HytXRu+/dbjj/56uOLFzRLSn3+2OkmyZMwIbdqYmcooOV7Iozhi\nrNJav6+1LqG1LqO17qK1jrZP2tuKFiWAA1y+JH2jhEi2/fvh2WfB39+cvXJ7rXhU5C0iV2yEHj24\nld+Pm8M/hSTsmRQiMWxZIjgZeBuIAdBa78aeZ4EI+5oxwxwkHBcHWbJ4fDVx7JhpapEvH/zyi+k2\nJx5hwABo0cLlNzB17Wp6uyxZYnUSkcJcb6zKnBl/n1Ocu5aTeFklKETSxMfDxx9D+fKwZg36nXf5\n/aPf+HOTef9zatSPZL5ynCpsYcX1J0k/7C1mBX7KgQMW5xZuzZYCy0drveU/j8U6IoxIpiVLoEcP\nCAsz7dQ83JUr0Ly56fWxZAnkzGl1IifXtSsMHuzyRXn9+mYCV7oJehyXHKv8fSOJ1am5cTGt1VGE\ncE3Llpkl7q1acXJtKM12fEDt5wvy2Wfmy4ULw5kzisXhVcj2+2Kmt5rP/0704/x5S1MLN2fLwu8L\nSqmigAZQSj2HORNEOJM//jD7aCpUgPnzIa1nD9Z3GigeOGB+9pYsaXUiF3H9uukQ4cJNUby9oXNn\nGDMGzp2DJ56wOpFIIS45VvkXi4dDEHlOOgkKkShamxuCzZrB2rUsu1mXDvUUcXHwxRdmMQ+YMSF3\nbvPfefLAk0+2ok0kZIq5BG17sarFV9Rul8cp3zbN2nychbtOPfLrIeERlPKVJcbOyJYZrNeAiUAJ\npdQpoD/wikNTicTZvdtM1RQsCL/+CpkyWZ3IUvHx0K2baaA4dSo0aGB1Ihcybhw0auTy3QS7dDGT\nuC7eeV4kjkuOVf6jXgQg8mw6i5MI4ULOn4c6dWDbNgBW3KpH82cUfn7wzz/Qv//j7zNnygQcO0b8\nkqWk69qWtq1iiLbvDku7WLjrFCHhEY/8einfzLQMzJeCiYStbOkieBhoqJTKAHhprSMdH0skSlgY\nZM8OK1ciJ+eaVW5z5sAnn8Dzz1udxsU89xy8847ZsNa/v9VpkqxMGahY0SwTfP11q9OIlOCqY1Wu\ncr6kTh/LNTkLSwjbXLli7pyGhUGEKT7q1oUhQ2DQIHO0o00qVMBryvfU6tSJrcvf4rXXxjB5svOt\nki/lm5ngXkFWxxCJ9MgCSyn1xiMeB0BrPcZBmYSt4uPBy8t0zWne3OOXBQJ89ZXpTP/qq/DWW1an\ncUF3ugn+9JNLF1hgZrEGDIC9e6F0aavTCEdx9bFKXb5EwTRXiTkmHXiESFBMDLRrB/v2wa+/MvVY\nfVpeMveYhw9Pwut17AgbN/LGN19Q6/vWfFup1t2lhUIkx+OWCGa6/VEZs8wi3+2P3kBFx0cTj3X1\nKtSo8W9bbSmu+OUX6NfPdA0cN8757kK5jLZtYdMml18m2LGjWXs/c6bVSYSDufZYpRTVr27kmuzB\nEuLxtDZLElatgkmTmHryKXr0gC+/TObrjhqF9vNjYta3eGOA5uhRe4QVnu6RBZbWerjWejiQH6io\ntX5Ta/0mUAkomFIBxUNERZkqYvt2j99vdceqVeY85erVYdYs88ZaJFHbtubXRYuszZFMuXObcyVn\nzUJaYLsxlx+rsmWjUOpjXLyRnZs3rQ4jhBOLioLQUBg0iPV+3enZ05wlPCS5J7NmyICaN48cGxbw\n9TeKQoXsklZ4OFu6COYGbt3z+a3bjwkrxMaaW/O//QY//giNG1udyHIbN0KrVlCiBCxdCj4+Vidy\nccWLw5YtUKmS1UmSrWNH0/dl0yaoWdPqNMLBXHasypnlMlyAgwehbFmr0wjhpNKnh5UrOXoU2lQx\nQ9XPP0Pq1HZ47cBAcgMvlo6HGzeJS5dBbtSKZLGli+AMYItSaphSahiwGZjmyFDiEbSG3r1hwQKz\nBq5TJ6sTWW7nTtOhNV8+0+MjWzarE7mJKlXM/j4X17IlpEsHs2dbnUSkAJcdqzI/YaauQkMtDiKE\nM7p+HXr2hPBw8PbmlT7exMXB4sWQNasdrxMXB7Vrc6TVAEqWNL00hEgqW7oIfqSUWgbUuv1Qd631\nTsfGEg8VH282Fg0dCn37Wp3Gcvv3m47imTPD6tX/nnMh7CAqyrRjqlkT2re3Os19QsIjaD9xk83P\nz1mqON/NyMzZUtvx8oaWgfnoVM35V46JxHHlsSpNASAEQvfFYtvCEiE8yIAB8N13prmFry/ffmsa\nCBYtaufreHtDxYoUHj+BmLh3+OijwncPK3ZlCY2ZMiY6hk0/ybXWO4AdDs4iHufmTTM9PmmS1Umc\nQmioWXvt5WWKq4Lys8G+0qY1a+tCQ52qwErKeR8Fq1zk5I6cnDuQhUvZTOMOGUzck6uOVWsatyb9\npmhCD0mzIiHus3IlTJ4MAwdysHBDisRDoUI4bp/UoEGoiRP5vugomn09gTfeAF9fB10rBSQ0Zt45\nY0vGRPuTW2WuYMYMGDbMnJwrlQT790P9+nA9Ko7qffYwdN0NWJe415DTzxOgFLRubdozXb0KWbJY\nnQgwg0BiB4KoKMg9G4pElCJPqasOSiZE0t1Mn4GMeaIIDZUCS4i7IiPh5ZehRAkuvD6CmpXM8Ruj\nRzvwmvnzQ/fu1JsyhZyxQxg9Oh+ff+7A6zlYQmNmYlaDiMRx/U0W7m7pUujRA4oUkTVwQEiIOVAw\nLg6C+v7Daa8zSXodOf3cBq1bmzNHli61OkmypEtnfivz5kFcjPTuF87HOzaGSte2Eron2uooQjiP\n9983x4VMmULfgem4fBm6dk2B6771Fioulq9LT2DCBLhwIQWuKdxOgjNYSqm+wA9a68uJfXGlVFbg\nO6AMoIEeWmspl221YQM895w5+HX+fI8/62rPHnN4u5cXrFsHwzbcJAtywrnDVK8OefKYpiou3lCl\nY0eYPh3C92Qjf4VLVscRDpCcscpqcd6pqH1uOctjG3Lp9qGpQni8QYOgQgXmhQcxZw6MGAHlyqXA\ndf38YOFCyuSvwy/hkCNHClxTuB1b27RvVUrtAKYAK7TW2sbX/xJYrrV+TimVBpAG2rbasQOaN4fC\nhWHZMo8/72r7dtORPnVqU1wFBAAbrE7l5ry8TGF18aLVSZKtQQPIlQuOb80hBZb7Ss5YZS2lyJHV\ntGoPC4Nq1awOJISFYmPN+JMnDxebduGVUuY+8+DBKZiheXOKAkUDHX+pWZuPs3DXqYd+TbYzuK4E\nlwhqrYcAxYHvgW5AmFLqY6XUY/u3KKWyALVvfx9a61taa2l6aau8ec1auFWrzDtDD7Z6tfmjyJDB\nHP8VEGB1Ig/y+ecwbZrVKZItVSpzfnL4P9mJiZKV0e4oqWOVs8iUR1q1CwHAqFFQuzbcuMGBA+bn\n97RpdjrvKjEWLCCufScGDYKffnLcZRbuOnW32cR/yXYG12VrF0GtlDoDnAFigWzAXKXUKq31oEd8\nmx9wHpiqlCoPbAf6aa2v2yG3+woPNwVVnjywaJHVaSz300/QubM5RHj5clN3Cgtcvuzyh4x17Ajj\nx3tx+m9Zf+WukjhWOQWvfN5474kldJ8C5IRT4aGOHYOPPjIHXPr4UKMGHD5s0Q6JU6fw/mk2R4oO\nZPXqCrRrl7SXedwMFfw7SyXbHdxLgrdylVL9lFLbgU+BjUBZrfUrQCXg2cd8ayqgIjBBa10BuA48\nMMGrlOqplNqmlNp2/vz5pPwe3Ed4ONSqZbrmeDitzVnKHTqY5TIbNkhxZZnBg8Hf3yzbcGE1aoBP\ntmiOb81pdRThAMkYq5zCxdy++KmjHNgdZXUUIawzYAAoRcyoMUydaoYdy7afd+wIadIwtMA0du6E\nnUk8Ve9xM1Qgs1TuypYZrOxAG631sXsf1FrHK6WaP+b7TgIntdabb38+l4cUWFrrScAkgMqVK7vG\nenlHuHTJnJp75gz07p1il03ozkpCHHFAXUyMOUd54kRo1QpmzTJHgAmLVKpklmxs3Ah16lidJsm8\nvKBA5YuErc3jDhNy4kFJHaucwh/Vnsb/QlFCT0qnS+Ghli83Db0++YSxvxRg0CAoUMCceWmJ7Nmh\nVSvKrP6RjGk+Y8qUNHz1VdJeSmaoPI8tmxGWAXd3hSulMiulqgForfc96pu01meAE0qpOztmGgAh\nycjqviIjoUkTs7t50aIU3eGc0J2VxwkJj0hWcfYwly6ZZhYTJ5qJk19+keLKck2amFuI8+dbnSTZ\n8le8SHycl6y+dU9JGqucRZx3Kvz9FWFhEB9vdRohLPDxx+Dvz8l2bzB8OLRoYWFxdUf37nhdusiI\nqov58UdzrqIQtrBlBmsCZqnfHdce8tij9AV+vN1B8DDQPdEJ3Z3WZh3c9u2mmqhfP8UjJPXOir0P\nqPvnH2jTBo4fNy21U+S8C5GwjBnhqadMgfXFF+YQYheVvfA1fLJH8/PPaXnhBavTCDtLzljlFPx3\nzuHGjQ6cPm3OOxXCoyxeDCdP8ubbaYiPN+fcW+6pp6BxY+rXTMP67Kapbj5ZzSdsYEuBpe5tdXt7\nuYWtzTF2AZWTGs4jKAVvvgnPPw8tW1qdxjJTp8Jrr0GWLLB2LdSsaXUicZ/WrWHJEti1CypUsDpN\nkillZrFWrszL1avm75twG0keq5yF//E1QAdCQ6XAEh7k+nWzSiJLFv74Jws//QTDhplTaizn7Q3L\nllEeWGh1FuFSbFkieFgp9bpSKvXtj36Y2SiRHPHxpnMDmFkrFz/INalu3IDu3aFHDwgKMu/fpbhy\nQi1awNixbvGur0DFi8TESJNON+TyY5V/gJkdllbtwqO8+67Z6xsdza1bpkP7//5ndaj/iIyEI0c4\nehSuyIFDwga23N3rDYwDhgAaWAP0dGQot6e16eIwfjxs3QqVXXeSLyQ8IslLBS8eyci+OSUIP56a\noUPh/ffNzSLhhHLmhH79rE5hF9n9rlGgAMydC126WJ1G2JHLj1X5ymQj/fIbhO5Ph233P4VwcWFh\n8M035i5r2rTUr2/JTomEBQVxPUcB/DYsY/x4eOUVqwMJZ2fLQcPntNYdtNZPaK1za607aa3PpUQ4\ntzVkiCmuBg40d21cVMvAfEk6YTwuVvHPwgKs+bQ0lyPiWbkSRoyQ4srpRUTAjBlwyr6NTVKaUvDs\ns7BihfktCffgDmOVV/GiFCeM0H9kJ73wEG+/DWnTcnPwcEaPNqtanFKzZvj8uZrq/pcIDrY6jHAF\nCc5gKaVyAS8Dhe99vta6h+NiubHPPjOdcnr2NK2vXbhhQKdqBRPdon3zZujVC/b9DYWDzhHY9igN\nG1Z1UEJhV2fPwgsvwFdfQZ8+VqdJlrZtzYrHxYvN9kfh+txirCpWjIB0x9h1MCDh5wrh6jZuNM29\nRoxgzKw8DBkCVauaJYJOp1071KefMrjEAlov7kF4OPj6Wh1KODNb1iAsBLIAq4Gl93yIxPrzTxg0\nyHQNHD/epYurxLp40dSUQUFw7hwsXAhVXzhEGp84q6MJWxUvDiVKuMXmperVTSeouXOtTiLsyPXH\nqvr18X+zBYdPpSMmxuowQjjY2LGQNy9nn3+DTz4xvZScsrgCqFgR/PxocPEntDZ1oRCPY0uB5aO1\nfktr/ZPW+pc7Hw5P5o6CgmDmTLPMykPWw8XEwIQJEBAAU6aYQ9oPHDA9E4QLeuYZWL/e5dfWeXmZ\nZYLLlpm9y8ItuMVY5e8PcXFw5IjVSYRwsJkzYflyhnySgVu3zKIep6UUPPccGTevoVrJCFkmKBJk\nS4G1RCnV1OFJ3Nn8+bB3r/kH2rkzpE5tdSKHi4+H4GAoVQpefRVKl4adO+HzzyFTJqvTiSRr0cJU\nzStWWJ0k2Z57DqKjYalrzXGIR3OLscp/yRhAOgkKNxYXZ374pkvHgTRlmTLFNI0oXtzqYAno1Qs2\nbODL7zIwY4bVYYSzs6XA6ocZuKKUUhFKqUillGvfvk5JixZBu3YwdKjVSVJEXJyZOq9c2ayETJfO\n7HNZvx7KlrU6nUi2oCDIkePfIwZcWM2aZg39zz9bnUTYiUuPVXc6st7YswqAIdOP0n7iprsfszYf\ntzihEHYya5appo4d4/p1ePJJeOcdq0PZoGhRCAqiWg1v/PysDiOcXYJNLrTWMt+QVCtXmt30FSvC\ntGlWp3Go6Ggz2//ZZ+bOa9GiZiVkp04esxrSM3h7m8PK3OAoey8vaNMGvv8erl2DjBmtTiSSw5XH\nqpaB//57ivLNTI59F4g8m+7uYyHhpk5MbFMhIZxOTIw5RThnTihYkIqF4LffrA6VCLt3w8yZLAwa\nSdhhb+c7r0s4DVu6CCrgecBPa/2BUqoA4Ku13uLwdK7st9+gVSuzRm75csic+HbmriAsDCZPhqlT\n4cIF03X+p5/MG1dbCqvknKMVEh6RpDbxIplc/LDhe//OnUubmaio0jQaEEqByhcT/N6WgfnkTa6T\ncuWx6r6OrDHb8V8bStq4SgT3ygOQ5J+RQjidqVPh8GFYupQpUxUtW5pFES5j3z4YPZqw1q15f0UN\n+vQxK3WE+C9blgiOB4KATrc/vwZ847BE7kBrc7BT4cJmFitbNqsT2dWNGzBnDjRoYDZkjxljOv+s\nXm3OTW7b1rbiKqnnaN1RyjfzfXd+RQrR2mys+/hjq5Mk2n//zuUsFkG6zLc4sSPhET4kPIKFu1z7\nDDA35x5jVbFi+BMqe7CE+4mKgg8+gKAg/srWhBdfNDdoXcrTT0OqVLRJvZgbN2DdOqsDCWeV4AwW\nUE1rXVEptRNAa31ZKZXGwblcm1KmscX165Arl9Vp7CI62vQ1mDPHbCu7fh0KFYIPPzQHsCflPIik\nnKMlnIBScOgQrFnjIgvn//Wwv3Ov7IYZM3IwrWsQ6dM/+ntlFsHpucdYVbw4/rn2M/18Wlm6KtzL\nrFlw8iRMn867QxRPPOGCRypmzQq1alF4z2IyZPiERYugSROrQyVPQiuJZOVG0tgygxWjlPIGNNw9\nzDHeoalc1d69ZtPRjRtmSaCLn0J3/rzZR9W+PTzxBLRsaSbkOnc2d20OHYJ333X536ZIihYtzGa7\nAwesTpJsbdqYf7KrVlmdRCSTe4xVRYviP74/YJZgC+E2XngBli5lLfVZu9bcn3PJGwhNm+IVspeO\ntU6yeLFZ1OGqElpJJCs3ks6WGaxxwHzgCaXUR8BzwBCHpnJFoaFmzZyXlzlJt3BhqxMlWkyMWeK3\ndi38+iv89Zf5wZEnj2lp3bat+S16QJd5kZDmzc2tx8WLzSFnLqxuXXNTcv58OZ/NxbnNWOXvb34N\nDYUKFazNIoRdxMeDtze6SVPerWG28vbqZXWoJHrqKciYkTYl97EyJD9nz5r3Sa4ooZVEsnIj6Wzp\nIvijUmo70ABQQCut9T6HJ3MlR46YyiM+3kztuEhxFRsLF49k5FxoZhrPhz/+MEv/AKpUgfffN++j\nK1QwdaMQdxUqBOXLm/WiLt5GKXVq8/d80SLzbyKVLbedhNNxp7Gq2NR3gY9kH5ZwD1evQtWqMHIk\nV+u1JkMG8/7CZZtDlCsHFy/SyDsNRz83q+aF+C9buggWBG4Ai+99TGsth3KAWU/coIGpTNatg5Il\nrXBjZ8wAACAASURBVE70SHFxpsP2unXmXKoNGyAy0hxOFVcKunWDevWgTh3TQVWIx+rSxSyLjY93\n+Qq8dWv44Qfzb6J+favTiKRwp7HKJ/oyBdRJQkNdu2OnEACMHWumYwsWJGtW0xDLlZfVoRSkSYOc\nQCMex5Z7tUsxa9oVkA7wAw4ApR2Yy3WcPm0ql5UrzR19JxIXZ45sWL/+34LqyhXztYAAeP55+Ds2\nlFz+ESwcWNnKqMIVvfmm1Qns5umnIX16s0xQCiyX5T5jVbFiBOh9hIbkwbZhWggndfEifP45tGnD\nlrhK+J6AAgXcYNZn2zZ48UWWtJtBvynl2bvXhWfkhEPYskSw7L2fK6UqAq86LJGruHnTvCOrWtXs\nRE5jfbOq+PgHC6rLl83Xihc3e6jq1jUfefOax9tPTPjsHyEeSWtzk8HFDx7OkMEUWQsWwLhxbjD4\neyC3Gqtut2qfFVbPte/0C/HZZ3DtGrHvjaBLO9P/a+tWq0PZga8v7N5NkUqrOHy4PH/+KTfnxP0S\nva5Ha70DqOaALK7j7Flzou4XX5jPLSyuTp2CKVOgXTuzrK9CBRgwwKzcevZZs+zpxAkzOz9pkmly\neKe4EiLZ3n7bLIuNjrY6SbK1bm1W/G7bZnUSYQ/2GKuUUlmVUnOVUvuVUvuUUkF2ivd4twusK5Gp\nuHAhRa4ohP2dP2/uWHXqxIztpQkNhSEu2XbmIfLlg1Kl8D+2ilSpzCImIe5lyx6sN+751AuoCJx2\nWCJnd+6c2XN17BhUrJjil791yzSjWL7cfPzzj3k8b15o1crcQalTx0zBC+FwNWvCqFHw22/QqJHV\naZKleXNzQPb8+abJi3AtDhqrvgSWa62fu32mlk8yX882fn74l/CG/UijC+G6cuaEOXOILlaa4U3M\ngh9X7NQ6a/Pxh7YqfyFPGRr+voA8hc4xabYPR/z+eej3h4RHPLYVunBPtsxgZbrnIy1mnXtLR4Zy\nWhcuQMOGcPgwLFliKpkUcP06zJtnzp/KlcvUd2PHmv/+9FOzLPDkSTOT1bmzFFciBTVoYJbKLl6c\n8HOdXPbsZvnsvHlWJxFJZNexSimVBagNfA+gtb6ltb5ih5wJS58e/yVjACmwhAtTClq0YNKaohw/\nDh995JrLrxfuOkVIeMQDj+8uWYU0Mbdo/MRqLh/PSFTkw+csSvlmpmWgay+jF4lnyx6s4SkRxOlF\nRZniKizMFFf16jn0cteuwcKF5s3esmVmy1eOHOY8qpYtzUyVSx7QJ9yLj4/5d7FokVtsXmrTBl57\nDfbtc+qGoOIhHDBW+QHngalKqfLAdqCf1vq6na/zUIUKmSMEQkOBwilxRSHs6M03zQGDQ4eyf795\ny9SggdWhkq6Ub2aCe/1nhfC1snB0PYNa5SPGH4a3rUKhQtbkE87HliWCizGdmR5Ka+2CE75JkC6d\nabtXvrzDfkrExZlDfmfMMIXVjRtm6V+PHuaNX+3ackaPcEItWpgZrH/+MeeDuLCWLU2BNX++FFiu\nxgFjVSrMMsO+WuvNSqkvgcHA0Huu2RPoCZDRt2iiMz/24h8NpyidOXCgKKkL2/WlhXCsQ4fMDbfe\nvYH/s3ff4VEWXxvHv5NKKEECCCF0QksooYXeUaQTFRGkKsVCVxQBG4jii1h/qKhIUZAmHRFRKVIk\n9N6kEyJdQydl3j8mICrpu3myz57Pde2FSbbcSLKTeWbmHJgwwRzTdfHrb/+VMycsWUJpYEovq8OI\nrCY1v64fAQoC3yR+3Ak4AyxwVqjMltT+WoAcV2PId+kMxwuXBv96cBS4R2frdmFByXbDTu61p31/\nkWMb8nMiMj/X//LBO3scRaqdp1jN8+QreZlzHjDxkLndS3pfWwiHaNvWjJw22JsaFAQ1a5oJ1vDh\nVqcRaeToseoUcEprvTHx47mYCdYdWuvPgc8BAoqVd2y9P19fysTu5uD+4oQ2d+gzC+Fco0aBtzcx\n/YYTlbgbwNfX6lBOdOECOmcuDp/0ITjY6jAiq0jNBKuu1vruJkmLlVKbtdaDnRUqs93eX/vvQ4jZ\nr11mxEeDyHvxDAPenMtNX797Pv723ty0THJu3TKrVANfuY/zvxdFeSQQWOFPqtQ6R2DFS3h6p26s\nTs9rC+FQ998PTz1ldQqHiYiAYcPgxAkoKj9WrsShY5XW+g+l1EmlVFmt9QGgKbDXIUlTI7GS4PLD\nivKu38tbuIt9+0z54uef593pgbz1Fhw9aovrb/e2Zg00bMjCfj8R8b+mnDrl8l1LhIOkZoKVQylV\nUmt9BEApVQLI4dxYme8/+2v/+stURTt9GObNY1rrpBscdLzHilZSTpww5dK/+MIUJMyRz4dKDx/j\np8+Kkz9/ABCQptxpeW0hnObCBZg92/QGuP9+q9NkyO0J1oIFMGCA1WlEGjhjrOoPTE+sIHgE6JnB\n50u9UqUow3Ju3vLg+kVfcuRz/VYIwg289hpkz875J1/k/RrmeINtJ1cAYWHg4UHNG6uBpqxebdrh\nCJGaCdZgYJVS6giggGJAX6emslpMDDz0EGzdCnPnmvrNGbRpk6n4N2+e6c3aujU8+yx8dXQbygPy\n5y+e8dxCWOXkSfMNnS0b9My830GdoUwZCA012wRlguVSHD5Waa23A9VTvKMzlCpFWQ4AcPlsNplg\nCdfQrx+0asXbX+Tj2jWzW9DW/P2halUKHlhN7tywapVMsISR4qYDrfUPQGlgIDAAKKu1Xu7sYJZ6\n/XXTbXT2bHPqPZ20Nr2qmjQx/R9WrIChQ02V90WLzBxOybYPYQeVK0PhwrYo1w5mFWvNGqTJqwux\n3Vjl70+ZtqbSyuUz996eLkSW06ABp5p2Z8IE6NYNypWzOlAmaNgQFbmRJnVusHq11WFEVpHir/dK\nqezAUKCf1noHUFQplfElnaxs9GgzG4qISNfD4+Jg+nSzctyihSmz++675iL/2LFQvLhj4wphOaXM\nsuyPP5qWBi4uIgISEsyFEOEa7DhWFVgwkVy54PKZbFZHESJ5GzdC//5w6RKrVpkzg6+9ZnWoTNKw\nIdy8yWPFNnLwIERHWx1IZAWpWT+ZDNwCbh9QigLedFoii+S68if07m22B+bIYTqOplF8PHz7LVSo\nYBr+xsXBlClmxer55yFXLofHFiLraNPGdMVetcrqJBlWpYrpQzR/vtVJRBrYbqxSCsqUTuDyWVnB\nElncyJEwaxZ4e9Oli7mg7DYXk+vXh//7P2p1LsnUqeZXSCFSM8EqpbX+PyAWQGt9DbO/3Tb8Yy7y\nyvv94euvYefOND9eJ8DJLQFUqmT23vr4wHffmbZA3bubj4WwvSZNTOPh336zOkmGKWVWsVasgMuX\nrU4jUsl+Y9UHH1Bm2yyu/GHnGtfC5a1aBT/9BC+/zNFzOQHIm9faSJnqvvtg6FCK1y9Ct27mWJYQ\nqZlg3VJK+ZHYwFEpVQqwz2nbP/7g1ff7U/DsKViyBOrVS/VDtYaFC+HHMZXY8EVZtDYXcLZvN5Vz\npKyucCvZspnl2tdftzqJQ0REmOaYP/xgdRKRSvYbq+6/nzL6AFcvZiM+1rXnisKmtIZXXoFChdjb\n4GmCg83OHbdz6RJ89x3HDt5i+nSrw4isIDVTgNeAH4AiSqnpwM/Ai05NlVlOn4ZGjch/IZqx/cZD\ns2apfmhkpNl22749xMd6ULPnIXbtgscek4mVcGMFClidwGHq1oV8+WSboAux31gVHJxYSVBx5Zyc\nwxJZ0PLlsHYtjBzJK2/5kSOH2S3udn7+GR59lDUf76BLFzhzxupAwmrJTgWUUgrYDzwM9AC+Bapr\nrVc5PVlmuHQJbt3i7f7vsbds1VQ95OhR6NQJataEAwfgk0/godd2UKzmeTw9nZxXiKwuPt78gHzw\ngdVJMszTE9q2haVLTWNwkXXZdqwqVYoyHASkkqDIoooWhV692FrlKebNM+fN3Wp74G116gBQz2Md\nABukRanbS3aCpbXWwPda6wta66Va6yVaa9cvXHzpklnWDg2FAwfYXzosxYf8+Se88IIpObpwoTnP\n+fvv8Mwz4OGpMyG0EC7A09NsE/z2W6uTOEREhKl7s3Kl1UlEcmw7VgUEUDr3OUAqCYosKiQEvviC\nl1/zIW9eGDzY6kAWKVQIihWj2Kn1+PjAunVWBxJWS02j4a1KqRpa601OT5MZjh6Fxo2hTx8YPhy8\nvZO9e0ICTJ4ML79seuL07Gka5wUFZVLeVNgbHUPHiem7XLI3OoaQQDmRKRyoTRuzJ/+PP6BgQavT\nZEizZqYi1Pz5QBWr04gU2GusAlAK/+e64v/+ZakkKLKW+Hjzi1HfvhzzLMWaNfDmm25e4KFOHTxX\nr6Z6Nc369XJm0t2l5rRQTWCDUuqwUmqnUmqXUirtpfaygkOHzMGpy5dNl98UREZCrVrQqxeUKQNb\nt8KkSVlrctUuLChDE6SQQH/ahWWhv5Bwfbc34C9dam0OB8iWzfSyW7jQVAsVWZp9xqq7jRmDb2HN\nFVnBElnJjBkwbhxs3Urx4mZHz7PPWh3KYnXqwOnTtKx4ks2bTZEk4b6SXMFSSpXQWh8FmmdiHufZ\nuRMefNAsSf3yC1SunORdz541i1uTJkFgIHzzjSm/rrLgBYnONYvSuWZRq2MI8bdKlaBIEVi8GJ56\nyuo0GRYRAXPnwoVjOclX8orVccS/2G6suoc8ATEc33O/1TGEMG7dMl2Ew8K42PgR8uisdeHZMo8+\nCrVq0T1fIbqOAF/pruDWktsiOBeoBnyltW6aSXmc4+JFsy3Qz8/0aihX7p53i4+Hzz6DESNMv9Sh\nQ81OJ2kQLEQaKGUmVjZpINWqldlJHLUtQCZYWZN9xqp7+fprem/cwVDe5dIlyJPH6kDC7X31FRw9\nSsLipTRu6kG1auZTbq9gQShYkMJW5xBZQnITLA+l1HCgjFJqyL+/qLV+z3mxHCwgAMaPN9sDS5S4\n513+PJWdunVh40Zz7uLjj5OchwkhUvLaa1YncJjcuc31mfXbAqj08Amr44j/ss9YdS/Fi1OGOQAc\nPGgq2AphmevXYfRoqFOHWTEt2LkThg2zOlQWsmoVREYyo/CLREebqorCPSU3wXocaJ94H9dcw/n+\ne7Nq1bgx9Ohxz7tcuwY75xflwIpA8uXN2tsBhXApCQkQFWW2C7q4iAj48Uc/YqKl0EAW5PpjVXLu\nKtUuEyxhuatXoWlT4ro9yavPKCpVgo4drQ4FMzaeYOH2qGTv0y4syPlHKn7+Gd5+m9Udn2X+ipwM\nGSK/T7qrJCdYWusDwDtKqZ1a62WZmMkx5swxM6W6daFRo3t+h69YAU8/DUeOBFGizlk2L76fgIDM\njyqELT31lBlsjh93+RGmXTvTkiFqu7xBZDUuP1alJDCQIK8oPOISOHhQutgLi+XLB9Om8dXnprDF\n4sXgkQW+LRduj0q2KvLe6BgA50+w6tSB+HjaFNzE5+ca8/vvULq0c19SZE0plml3yQFr8mRT+q92\nbVP+61+/3J07B0OGmNWqMmWg0eA93F82hoAAOUQshMM0aABTpsCOHRCWcq+5rCwwEPKWuCwTrCzM\nJceq1FCKiwUKUOjcaQ4elNMdwkJz5kBwMDqsCh9/bOYSrVpZHepvIYH+zOpb+55fS28rmzSrVQuA\nGrHrgcasXy8TLHeVBa47ONhHH8GTT5qDVMuXmwMUibSGr782Z6tmzYJXXzW/+91fNsbCwELYVMuW\n5uLG4sVWJ3GIoLCLXDqRkxNyDEtksh8bPoJ//mscPGh1EuG2Ll6E3r3hjTdQCtasMdfPXHxzguPl\nyQMhIdz/+3ruu08aDruzJCdYSqkOiX/euypEVpSQYLYkRUTAokWmQ2ii06ehbVvo1g3KlzcTqzfe\nMH1uhBBOUKAAhIfbaoIFsGCBxUHEP7jkWJVGPzVoT2zZnBw8aC4UCpHpxo2DmBhuvTKahAQzj5CV\nmSTUqYPau4fatbRckHNjyW0RfBmYA3wHVM2cOOmUkAAxMXDffWZpysvL3DCD0bRpMGiQafr2wQfQ\nrx94elqcWQh30KYNjBwJ0dFmn50Ly1XgBr75rzDmk3jW+e5N13NkyiFr9+M6Y1U6qYR4CuU4w6Fr\nhYiKgsKyU1Bkpqgo+PBD6NSJtxZXZFFvWLsWsme3OpjjJFckI7mzXff07ruQMyfzYpVcxHdjyU2w\nLiilfgRKKKUW/fuLWuu2zouVBrGx5jD9jh2wYcM/fuKjoqBPH1NMsH5906chONjCrEK4m06doFQp\n8E/D4JRFtQsLYlf1P9m/PIibV7zwzRmXpsdn2iFr9+MaY1UGhB7cRu/FC1jNzxw8KBMskcleew3i\n47kw+E3GN4bmze01uYLki2SEBPrTLiwNnZQTj6Zkkwv5bi25CVYrzNXAr4HxmRMnja5ehcceMzOo\n0aNNSXbMqtWUKTB4sJl/ffQRPPdc1qh0I4RbKVnS3Gygc82ilB0N1ZdB+7w1kur8kKRMO2TtfrL+\nWJVBZ/IF/aNUe5MmFgcS7kNrM2EYNIjXp5bg+nV4802rQzlHckUy0mzoUBLy5eexTS/SsCH07++Y\npxWuI7ky7beA35RSdbTW55RSORM/fyXT0iXn4kVTviYyEiZONEtVwKlT5hzmDz+YImZffWUuoAsh\nLHLqFMycaa5y+Ll2H6mqVU1brwULkmytJzJZlh+rHOB8wP0U8DiDn8ctDh70sTqOcCdKwfjxHDoE\nn4WY36/KlbM6lAvYsgWPy5fZd+1Frl+XCZY7Ss2aTgGl1DZgD7BXKbVFKVUhtS+glPJUSm1TSi1J\nd8p76dYNtm0zZUP79LmzahUaaqrbfPwxrFwpkyshLLdnDwwdCr/8YnWSDFMK2rc3BUqvXrU6jfiX\nDI1VWZn28ORc/kBK5zgtlQRF5tmyBVatAkyNC19feP11SxO5jpo1YccO6la7wcaNUpzGHaVmgvU5\nMERrXUxrXRR4PvFzqTUQ2JeecMl6/33zW87DD3P2rCkc2LMnVKkCu3aZQhayJVCILKBRI1PRc4lj\nr7FYJSICbtwwbz8iS8noWJWlnckfRFl1UCZYInNobX6ReuIJuHmTDz6AZctMcViRCuHhEBtLi8Dt\nXLgAR45YHUhkttRMQXJorVfe/kBrvQrIkfTd/6aUKozZH/9lutL928aN8MIL5ge/dGlo2JDFi6Fi\nRfODP368uUhukyMfQtiDry88+KCZYNngMl79+hAQIOXas6B0j1WuYEWDCMo0COTIEbh1y+o0wvYW\nLIDffkO//ga3lC/Zs5v3PpFKNWsCUENvBMyvr8K9JFfk4rYjSqlXMAeIAboAqZ2LfwC8CORKR7Z/\nSlytIjAQhg3jsm8+hgyBL7+EoqVv0bjvXjbmuE6nL9L+1GkuwSmESJs2bWD+fNi+3SwzuzAvL/PX\nWbjQFNHx9rY6kUiUkbEqy9taqR6talYkfhEcPQply1qdSNhWXBy8/DKUK8fCPD14vjysWCEXr9Ok\nUCEICyMw4CZVqtji2qJIo9RMsJ4E3gDmARr4NfFzyVJKtQbOaq23KKUaJXO/PkAfgKJFkyhf/NVX\npohF4lLV2v356NYNjh837wEHg7Zy4Nxf5CZ9k6Q0l+AUQqRNq1Zmz25kpMtPsMBsE5w6FVavhmbN\nrE4jEqVrrHIVh06eZ8WppUAren20n0KVLt35mvRXEw41aRIcOEDc3AW8NNwLX19I6tczV7I3OibJ\naq5OudC+bRuewNZhjn3azJbc/zd570laihMsrfUlYEA6nrsu0FYp1RLIBvgrpb7RWnf51/N/TuI+\n+erVq/93jv/mm/DKK9C8Obemz+G1d3PxzjtQooQpZlG3LnScqB1bXlMI4Vj33w9nzkC+fFYncYgH\nHjAFERcskAlWVpGBsSrLaxcWROSZE7w69Rm+4SKXz/zdvVT6qwmHu3kTmjfn8z/acvAgLFpkVu5d\nWUoX0Z19of32CpZSTnsJp0ju/4m89yTPaT8yWuuXgZcBElewXvj35CpVypaFXr3Y/ewndGnqzY4d\n0KsXvPce5Mr4xkMhRGaxyeQKTJPNhx4yE6yPPpKCOsK5OtcsSucqBeGNzuT1vUrNvMWZ2Lc4IP3V\nhBMMGMDlHv15PVjRoAG0bm11oIzrXLNo5k8E9u+HiAh293qfRm8/xLJlUKNG5kbIqOT+v8l7T/Ky\n1DWJI+eu0nHiBvyuX6HMkd3sCK2FTijMwUsj2BXuibffLeo9e4SYSpfoNePvx8kZKiFcQEwMdO5s\nmoN362Z1mgyLiDDHyjZvNgWjhHAqHx8oVoyyl6M4cKCM1WmEHZ06ZbZxR0Tw5STFuXOmNpGrrbpk\nGUFBcOAARaI2cuHCQ2zc6HoTLJF+KV53VUrVTc3nkqO1XqW1TvEayPXYePJePMOocU8zZOJwOHGd\nVe+HsOO74gSG/knzV3f8Y9/5bXKGSggXkCsX7N4Nc+dancQhWrUCT0+pJphVOGKsyvJKlaIMUqpd\nOMnLL5uLYNHR9O9vqjPLxaMMyJULQkPx37+RwECpJOhuUrOC9TFQNRWfy7DcOpZP/vcc+vIVpg3a\nzA//C0VrmDwZuncPQKkAR7+kECKzKGXK702aBNevm0NMLiwgwLT4mj8f3nrL6jSCTByrLBMcTJl1\n25hyvTWXL8s2eeFAGzfCN9/A8OHcCChENi+zDVpkUHg4auFCatbTbNwoS4HuJMkVLKVUbaXU80B+\npdSQu26vA57OCFPozAnO67w8Gn6CHv8XSlgY7NwJPXrIErUQttCmjZlc/fKL1UkcIiLCbLPfv9/q\nJO7LirHKMj17UuY5U1Xl0CGLswj70BoGD4aCBVnfYBjFi8OWLVaHsomaNeHCBZqXPsKhQ3DxotWB\nRGZJbougD5ATs8qV665bDPCoM8Jc9AigQtw2lvyam3HjzO9gxYs745WEEJZo2BBy5oTFi61O4hDt\n2pk/ZZugpTJ9rLJMeDhluplqubJNUDjMrFmwYQMJo8fQf3guvL2hfHmrQ9lEvXrwyCPUC79F375w\n44bVgURmSXKLoNZ6NbBaKTVFa31cKZUz8fNXnBXmeHwxKgV68uNPUKmSs15FCGEZX1/T0y5/fquT\nOEThwubQ8vz5MMzFe524KivGKsvExhIctR6lGrB/v2zrEA4SFwcPPMBUurN1K8yYYSqlCgcICYG5\nc6kAfNbB6jAiM6XmDFYupdQ2IABAKXUe6K613u3oML7+sURGmt/BhBA2NX681QkcKiIChg+HqChT\nNEpYJtPGKsskJODXqgkl7jvHvn1yJlk4SJcuxLR5gmFlFHXqwOOPWx3Ihi5dIt4/D1FR9mjaLFKW\nmu4tnwNDtNbFtNbFgOcTP+dw2e+7JZMrIdxBbCycOGF1Codo3978uXChtTlE5o1VlvH1hZIlKZ/t\nKPv2WR1GuLzTp+HLLyE+nqnTFGfPwocfypl3hxs1CgoVYsAzsVSt+nfTYWFvqVnByqG1Xnn7A631\nKqVUDidmckl7o2PS1XRNengJt9S6NVy4YJpIubjy5U0/9Pnz4dlnrU7j1txjrCpblpDInaw4UI24\nOKvDCJf24oumbUazZvTrV5waNaB6datD2VC5cnDjBk3z7+STC9U4fBiCg60OJZwtNStYR5RSryil\niifeRgJHnB3MlbQLC0r3JEl6eAm31KiRKVN1+rTVSRwiIgJWrYJL/23TJzKPe4xV5cpR/tIGbt2C\no0etDiNc1urVMH06vPgiF/2LoxTUqmV1KJtKbCYWrjYBppezsL/UrGA9CbwBzEv8+NfEz4lEnWsW\npXNN2VQrRKq1aWMOLi1ZYopeuLj27WHsWFi6FLp0sTqN23KPsapcOULivgBg716LswjXFBsLzz0H\nxYvzfaVhPF4cVq6EatWsDmZTxYpB/vwUOhWJn9/TREaafs7C3lKcYGmtLwEDlFK5zIc2rMwkhMhc\noaGmB8PixbaYYNWoAYUKmW2CMsGyhjPGKqWUJ7AZiNJat87o8zlEixaUWxAM7THnsPJYHUi4nP/9\nD/bs4ebshTw3NDtFikjlZqdSCsLD8dgcSbVqsoLlLlKcYCmlKgLTsHNlJiFE5lLKrGJ98QVcu+by\nNYE9PMwq1pQppo+yn5/VidyPk8aqgcA+IOsclA0KIndQEEFBiROsOlYHEi6neHHo1YvR29tw7JjZ\n3uztbXEmu3vqKTh9mqGFNbFxUkXEHaRmi+BETGWmlQBKqUaYykzyti6ESL8+feDBB8ErNW9DWV/7\n9vDJJ7BiBbRta3Uat+TQsUopVRhoBYwBhjgoo2P88APl76/O3r35KCkjsUiriAgOhEQwrhJ07Wr6\nvwsni4gAQIYG9yFVBIUQ1qhQwdxsolEjuO8+s01QJliWcPRY9QHwIpArw8kcbdQoyp99nsl/PUIJ\nLWW1RSqtWQPr18OQIcye7YOfH4wbZ3UoN3L8OPr6DbZcKUu2bPYY/lKqoN0uLMhtaxRIFUEhhHUO\nH4a33oKEBKuTZJi3t6k+v3gxUj7bGg4bq5RSrYGzWustKdyvj1Jqs1Jqc2xsbHpeKn3KlSPkciRX\nrsD1Sz6Z97rCdd26ZfpIfPYZxMXxyiuwaxcUKGB1MDfSpAmMHEHLljB+vNVhMi6lCtp7o2NYuD0q\nExNlLWmtIqixa2UmIUTm27QJRowwyz91XH+vU/v28M03sHat+SuJTOXIsaou0FYp1RLIBvgrpb7R\nWv+jhInW+nMSmxkHFCufee1Dy5WjfMxSAGKi/cgecCvTXlq4qHHjYM8ers1cRFRUdkqXhiJFrA7l\nZsLDUevWER5uj0IXKVXQTk9vWDtJdgUrsYLSCK31AK11Va11Na31oMRqTUIIkTEtW4KPD8ybl/J9\nXcBDD0G2bPDdd1YncS+OHqu01i9rrQtrrYsDjwO//HtyZamyZQnB1GiP+UMqqogUHDwIo0dDhw68\ntLYNlSvDH39YHcoNhYfDyZM0DYlm3z6IibE6kHCmZCdYWut4oF4mZRFCuBt/f2jWzEywdOYt6X79\n9AAAIABJREFUADhLjhxmzvjdd7bY9egy3G6sKleO/Jwnb84bxPzh2hU4hZNpDU8/DX5+bOr6ERMm\nQO/eULCg1cHcUGLD4YbZN6E1bN5scR7hVKk5g7VNKbVIKdVVKfXw7ZvTkwkh3MPDD8PRo7Bjh9VJ\nHKJDB4iOhnXrrE7idpwyVmmtV2WZHli3lSoFmzYRUsmbmGhZwRLJUApGjCB2wud0f6kgRYvCmDFW\nh3JTVaqApyflr2wC7LFNUCQtNWewsgEXgCZ3fU5j9rkLIUTGtG1rtglu3QphYVanybDWrc02wTlz\noH59q9O4FfcZq7y8oHp1yleAjdP97LD4K5xBJ5aYbNqU0a+avmk//AA5c1odzE1lzw7ffotfWBg/\nPGDmW8K+Upxgaa17ZkYQIYSbyp8fzp+HXFmvGnZ65MxptgnOnQsffGCaEAvnc7uxauVKyv8Bt642\n5uZle/SSEw7WtSuULIl+YxTnzkG3btC8udWh3FyHDgA0L21xDuF0MvQLIaxnk8nVbbJNUDjd8uWE\nLDVNjOQclviPJUtg+nTw9kYp+PRT+Oorq0MJLl6EadM4vSWa8ePh7FmrAwlnkQmWEMJ6N29C06bw\n7rtWJ3GIu7cJCuEUoaGExO8EIOa0nMMSd7l4Efr0gdBQZpd4ia1bzac9Pa2NJYBTp6B7d64uWckL\nL8hFODuTCZYQwnq+vnDlim1mJHdvE5RqgsIpKlQgiCj8fK7z12lZwRJ3GTgQzp7lxOip9Ojjwxtv\nWB1I3BESAn5+lDgXiZeXFLqwsxQnWEqpAkqpSUqpZYkfhyilnnJ+NCGEW4mIMKPNyZNWJ3EI2SaY\nudxurCpXDuXhQfGcJ/grSiZYItG+fTBjBgkvj+DxcdXw9YVPPrE6lLjDywuqVcNraySVK8sEy85S\ns4I1BVgOFEr8+CAwyFmBhBBu6uHEitoLFlibw0Fkm2Cmm4I7jVV+fhAcTIjnPv6Kyi6VBIVRvjxE\nRjLOZwQbNpjJVVCQ1aHEP4SHw9at1KoWy6ZNssvBrlIzwcqntZ4NJABoreOAeKemEkK4nzJlIDTU\nNB22gZw5oUUL2SaYidxvrFq1iuNNQ4m94cWJE1aHEZbbtcv84VONV0b70KEDPP64xZnEf4WHw82b\nPBi4i8uX4fBhqwMJZ0jNBOuqUiovpp8ISqlawF9OTSWEcE/9+5tiFza5HP/YY7JNMBO531gVGIh/\n0RsA7NxpcRZhrdmzoVIlWL6c4GAYOtSsXilldTDxHw89BAcP0nhwGBcuQGkp2W5LqWmeMQRYBJRS\nSq0D8gOPOjWVEMI99e1rdQKH+sc2wVCr09ie+41Vhw/Tf+3b/MIMdu2CNm2sDiQscfo0PPsshIcT\n36gpfr4wZozVoUSScueG3LmxV3MS8W/JrmAppTyAbEBDoA7QFwjVWsu1MiGEc9y4YZsln7u3CWrZ\nJug0bjtW3bpF+/XfkjfnRVnBclcJCdC9O1y7xrZBUwmt7MW+fVaHEin64QcYOZIZM2DwYKvDCGdI\ndgVLa52glJqgta4C7MmkTEIIdzZqFIwbB3/8AXnzWp0mwx57DObPh/OHc5G/9GWr49iS245VwcHE\nenlT0u8ou3YFWJ1GWOG99+Cnn7j2wec8PLwckHWLWszYeIKF26OSvU+7sCA61yyaSYkstHEjvPUW\nBwe/xP/+l4u33za7HYR9pOYM1s9KqUeUkp28QohM8OijEBdnm2IXrVubgm8nNuezOordud9Y5e3N\n6QLFqMQuDhww/bqF+9EdO/Lk+l6cPAkzZoC/v9WJ7m3h9ij2Rsck+fW90TEpTsBsIzwctKZpnq3E\nxcH27VYHEo6WmjNYfTF72+OUUjcABWitdRb9ERZCuLQqVSA4GGbNgt69rU6TYTlzQtu2sGBpXqo8\ndszqOHbmlmPVyUIlqLl3PZPie7BvH4SFWZ1IZKoXXuCrLzWzeiveegtq17Y6UPJCAv2Z1ffeITtO\n3JDJaSxUowYAlW5GAg3ZuBFq1bI2knCsFCdYWms5hyeEyDxKmdrCb70FZ85AgQJWJ8qwzp1h1ixv\nzuzLbXUU23LXsepkoZJU2b0FMJUEZYLlJoYNg7p10a3bMGWqokkTePFFq0M5T0rbC/dGxxAS6ELX\nUvLlgxIlyL0/ksKFpeGwHaVmiyBKqTxKqXClVIPbN2cHE0K4sY4dzeHthQutTuIQDz0EPtnjOB4p\n2wSdyR3HqsUPPsE74z7E1/dOGyRhdzNnwjvvwPr1KAU//WSqtHt6Wh3MeVLaXhgS6E+7sCx6+Cwp\n4eFw/Di1a8NlOZ5rOymuYCmlegEDgcLAdqAWsAFo4txoQgi3VaEC/PqrbfZM+PhA4WoXOBGZj6tX\nIUcOqxPZj7uOVfGeXnhgenTLOQ43sH8/9OoFdevyVfFRPPKXqfrt62t1MOdLbnuhS5o8GbJlY6YG\nj1QtdwhXkpp/0oFADeC41roxUAX406mphBCiXj3wSs0xUddQtMZ54m56snix1Ulsy23Hqp7fjqeq\n2sbWrbbp0S3u5epVUwTIz495j83kqae9mTDB6lAi3fz8QCmZXNlUav5Zb2itbwAopXy11vuBss6N\nJYRwe3Fx8MILMG2a1UkcIn9wDH55bjJ9utVJbMttx6oi0UepdmE5Fy/C8eNWpxFO88UXsHcvR8fM\noMuwwtSvD0OHWh1KpJvW0LUrCR9+TPPmpuK+sI/UTLBOKaXuAxYAK5RSCwF5CxdCOJeXlzlc8Nln\nVidxCOUBRauf54cf4MIFq9PYktuOVUeLlqHa6SUAbNlicRjhPAMGcHXZGpq/+wC5c5tCq97eVocS\n6aYU7NyJx7KlREXBzz9bHUg4UooTLK11hNb6T63168ArwCSgvbODCSEEHTvChg1w4oTVSRyiaPh5\n4uJg7lyrk9iPO49VR4uUoeKtzXh5aZlg2dGOHeY90MOD576tx5EjZnIVGGh1MJFh4eEQGUl4DU1k\npGzxtZMUJ1hKqaK3b8BRzOHhgk5PJoQQHTuaP2fPtjaHg9xX+BohIcg2QSdw57HqaJGyZOMmFQpd\nkgmW3Zw5Y7qVP/IIaM0rr8CUKdDA9vUx3UR4OFy6RLMShzl/Ho4dszqQcJTUbBFcCixJ/PNn4Aiw\nzJmhhBACgJIloXp1U5bYBpQyPbF+/dU2i3JZiduOVacLFoVy5ahW7BxbtshVcNu4dctMrC5c4MTI\nz9EoSpWCLl2sDiYcJjwcgNpemwDph2UnqWk0XPHuj5VSVYFnnZZICCHu1r07rFgBN25AtmxWp8mw\nzp1h5Ej49lt46SWr09iHO49V2sMT9u2j2qcw6VkzeS9WzOpUIsMGDIB16zg1fiYVu1Vh4EAYNSpj\nT5lSw16AdmFBdK5ZNGMvJFInNBRCQylS4Bb16pmWHsIe0lwcUmu9FajphCxCCPFf/fqZhsM2mFwB\nlCgBdeqY4oiy0uA87jhWVatm/pRtgjYwdSpMnMj1gcNo9ElHsmUz7a8yKqWGvXujY1KcgAkH8vKC\n3bvxeqo7v/4KERFWBxKOkppGw0Pu+tADqAqcdloiIYS4l2PHoGhRW3Rk7NED+vSBzZuhRg2r09iD\n249VK1ZQqVc/vLz2s2WL4uGHrQ4kMqR1a+JHvEq7Da9y4gSsXGne/hwhuYa9HSducMyLiLTTmrh4\n0xfLBsOc20vNP2Guu26+mP3t7ZwZSggh/mH5crP08+uvVidxiMceMz0mJ0+2OomtuPdYlTcv2U4c\nJDToT1nBcmXHjsHNm5A3L4Nj3mDFL55MnAh161odTDjNr79CUBAbPtmGvz/s3Gl1IOEIqTmD9UZm\nBBFCiCTVrw85c8LXX0PDhlanybDcueHhh805rPfes83uR0u5/VhVsSL4+VE95wHmb6qF1qaoinAh\nZ85A48ZmWXv2bJo0AX9/6NnT6mDCqQoXhtOnKX3hN65fr8qGDRAWZnUokVGpKdO+WCm1KKlbZoQU\nQri57NlNNa05c+D6davTOESPHvDnn+Z4mcg4tx+rvL2henXqXP+Zixfh4EGrA4k0uXYN2rSBs2e5\n1PtFANq3hzfftDiXcL7ixSEwkLwH1lGwIKxbZ3Ug4Qip2SJ4BLgOfJF4uwIcBsYn3oQQwvm6dYOY\nGFi82OokDtG4MRQpYnraCIeQsapWLeqcnAXA+vUWZxGpFx8PTzwBmzezZ8QMikRUt8vbnEgNpaBu\nXdT69dStKxMsu0jNBKuu1rqj1npx4q0zUF9rvVprvdrZAYUQAoBGjcxWimnTrE7iEJ6epgL9jz9C\nlBTtcgQZqx58kDIdq5DnvgSZYLmSl16CBQv4Y9gH1BvXjiJF5MyV26lbF44d48EKpzl2DE67T3ke\n20rNBCuHUqrk7Q+UUiWAHCk9SClVRCm1Uim1Vym1Ryk1MCNBhRBuzsPDTK4mTLA6icN07w4JCeZo\nmciwdI1VttKsGR5fT6V2HQ+ZYLmSxx/nzyGjCP9mANmywbJlEBBgdSiRqZo0gR49aFT7JkOHWh1G\nOEKKRS6AwcAqpdQRQAHFgD6peFwc8LzWeqtSKhewRSm1Qmu9N/1xhRBurXFjqxM4VHCwqd8xebK5\niC1FCTIkvWOVvWhNncrX+P77HFy6BHnyWB1IJGn7dggL41Kp6tRaUp2YGFOOvXhxq4OJTFepEkye\nTBng/5pbHcZx9kbHJFv6385NrVNcwdJa/wCUBgYCA4CyWusfU/G46MRGj2itLwP7gKCMxRVCuL2V\nK+Hpp23TpbdHD1OQQPbdZ0x6xyrb6dOHOl8+CcDGjRZnEUmbNg2qVIFZs8idG9q1g6VLzaeEm9Ia\nTpzgxg0z93Z17cKCCAn0T/Lrdm9qneQKllKqBnBSa/2H1vqmUqoy8AhwXCn1utb6YmpfRClVHKgC\nyNu9ECJjfv8dJk40M5NataxOkyb3upoXe8MD72zV6PLCJWr2/D3Zx9v5al96OXKssoUKFajx5Qg8\nPTXr1ikeesjqQOI/FiyAJ58krlFToqq0p5gH/N//WR1KWG7UKBg9mrGD/2LMBzn46y9TQNdVda5Z\nNNnxyu5NrZNbwZoI3AJQSjUAxgLTgL+Az1P7AkqpnMB3wCCtdcw9vt5HKbVZKbU5NjY2LdmFEO7o\n8cchRw744gurk6RJUlfzvLMlUKzmeU5uycvNK0nv2rb71b4McMhYZRuNGpGTq1QteoFVq6wOI/5j\n0SLo0IH4qtWJ0PNp8ICvXTpPiIyqXh3i42kesIm4OIiMtDqQyIjkzmB53nXlryPwudb6O+A7pVSq\nFi+VUt6YydV0rfW8e91Ha/05iYNgQLHy9tjzI4Rwnly5zCTr22/h/fdNJ04XkNzVvF11zBb8BqoG\nQ/re+/F2v9qXARkeq2ylYkXIm5cmOTYy/rdWXLlienSLLODIEXj0UeLDqhLht5yla3IxZQr4+Vkd\nTGQJtWsDUPnKOqAR69aZ4rnCNSU7wVJKeWmt44Cm/POwcIrFMZRSCpgE7NNav5exmEIIcZfevWHS\nJJg5E/q4fh2DihWhTh347DMYPFiKXaRRhsYqO/j31tMhRStS7fdpxMW1ouXL+wis8Geyj5etp5mk\nZElufPoVHaa0ZumvuZk6Fbp2tTqU48zYeCLZVfa90THJnsm5fZ97XUxKzWNdXkAAlC9P9u3rCQmR\nc7muLrktgt8Cq5VSCzHNG38FUEoFY7ZepKQu0BVoopTannhrmdHAQghBeDg0t1GpJUzdjkOHTA0P\nkSYZHatc2r22nq5oEMHpNuXx8Erg7IHcyT5etp5mgmXL4LffABiypQvfr7+Pr7+21+QKYOH2KPZG\n/+ckyB0hgf60C0u61llyRRFSeqxt1K0L69dTr04CGzaYNh7CNSV5dU9rPUYp9TMQCPyo9Z2SXR5A\n/5SeWGu9FlMqVwghHEsp+OEHq1M41KOPwsCBpn5HkyZWp3EdGR2rXN29t56arUbzoyDmfCFm9S2U\n5ONl66mTzZoFXbpAvXrwyy+MGqVo0QLatLE6mHOEBPozq2/tdD02paIIbqFnT6hXj6fLxdEuwoeE\nBNMCUrieZP/ZtNa/aa3na62v3vW5g7fLrwshhKXi4mDPHqtTOISfnymMOG8enDljdRrX4oyxSilV\nRCm1Uim1Vym1Ryk10DFpM8mxYzQteojt2+HCBavDuKkvv4ROnYitVouRFRZwK1aRL599J1fCAerU\nge7dqVLTh5YtwcstNjnbk8yLhRCua+BAs6Xi6tWU7+sC+vY1c8avvrI6iQDigOe11iFALeA5pVSI\nxZlSb9Qoms7vh9bw889Wh3FD770HvXtzvUFzwi8tZ/yXuW3R20hkgoMHYcUKIiNhzhyrw4j0kgmW\nEMJ1de4Mf/0F06dbncQhypY12wM//dRMtIR1tNbRt1fAtNaXgX2A6xwCad2a8Cs/E+Afy+LFVodx\nM/Hx8OOPxDz4KKG/L+TIH9lZvtwcHRUiRW+8Ad268fFHmn79TP9h4XpkgiWEcF116kCVKvDxx7YZ\nhQYOhJMnYf58q5OI25RSxYEqwEZrk6TBgw/i5eNJ68I7WLpUJuyZIjYWLl4ET08iX55PqU0zuRbn\nw5o10KCB1eGEy2jUCP74g3YhBzl7FvbtszqQSA+ZYAkhXJdS0L8/7N4Nq1dbncYhWrWCUqXggw+s\nTiIAlFI5Mf0cB2mtY/71tT5Kqc1Kqc2xsbHWBExKzpzQuDFtL03l0iVYu9bqQDYXE2N+eFu0gLg4\nbnr4UaCQJ+vWQeXKVocTLiWx+VXDhFUA0jDcRckESwjh2h5/HPLmhWnTrE7iEJ6eMGAArF8PkZFW\np3FvSilvzORqutZ63r+/rrX+XGtdXWtd3dvbO/MDpqR1a5pHT8bHR7NokdVhbOzkSahXD71yJYea\n9AUvL+rXhx07zMUSIdIkOBiCgsi3ZxVFikjrDlclEywhhGvz84NffjFdem2iZ0/w94cPP7Q6iftS\nSilgErBPa/2e1XnSpXNnch7ZRdOmigULbLOLNmvZtg1q1UIfP877zb6nzNgn76w4eHpamky4KqWg\nUSPUypU0bqRZt05+dl2RTLCEEK6vUiXw8bHNKJQrFzz1FMyeDadPW53GbdUFugJNlFLbE28trQ6V\nJgEBUKIEHTvC0aOwQVpeOVZ8PDzxBAnKk15l1/L8Dw8wcqSctxIO8PrrsGkTb49VHDhg5lzCtcgE\nSwhhD4sWmcMOV65YncQh+veHhARTv0NkPq31Wq210lpX0lqHJd6+tzpXmh0/zsNzOuHnG8/XX1sd\nxibi4kxBC09P9o+eQy3PTXyzoyLTpsHo0dIYVjhAcDAUKUKhQuaCm3A98jYghLCH+++HXbtg0iSr\nkzhEiRLw6KPwySemEr0Q6ZInD7l+WUhE4c3MmgU3b1odyMVdvAgtW8LzzwOw4nQoUXEFWLUKuna1\nNpqwmRkz4IMPmDDBLGgJ1yI9ooUQ9lCrFtSvbxp8PvssZMWiA2k0bJjZJvjpp0Aeq9MIl+TvD127\n0m3ym8yIXcz8+aYuzN32RsfQcWLS+wfbhQXRuWbRNL/0jI0nWLg9Ktn7pPe5LbFlC3TogI6K4kTt\njhQD+vWDLl0gj41+PlP6fkjucSGB/k5I5KaWLYMff2RLiwEsXOzBK6/Y71yfs957sgJZwRJC2MeL\nL8KJEzBnjtVJHKJKFWjeHN5/H+Juydu1SKcBA3ggdinBeS/+p3BKu7CgZH8p3hsdk+IkKSkLt0ex\nNzomya9n5Lkzldbw0UdQuzZxN2LpU2Y1lT54ivPnzdkYO02uUvp+SE5IoD/twlynF3eW98ADcPYs\nHcrs4OJFM7+3E2e+92QFsoIlhLCPli2hfHn4v/+DTp1scTL45ZdNW5Rj6/MT3OiM1XGEKwoNxaNZ\nUwZGjqf/b2P47Tez4AvQuWbRZK8Qp2cl424hgf7M6lvbKc+daQ4dghde4HSl5tQ7NIXzV/Ly5ZeQ\nL5/VwRwvpe8HkYkeeACA+teXo1QVli+H8HCLMzmQs997rCaXRIUQ9uHhAePGwYgRtqko2KCB+WX4\nwIpCJMRbnUa4rFdfpUd3Te7cmnfesTqMizh6FIDYEmUY1fI3grYsIn+5vGzbBo89ZnE2YX+BgVCp\nEjnXLqdqVVi+3OpAIi1kgiWEsJdWraBDB9uU8lLKrGJdvZCNE5H5rY4jXFX9+uT86C2ef970xPrt\nN6sDZWE3b5ofuuBgWLwYLy/Y7VOV4cMVa9dK82CRiZo3h7NnadMiDg8P0xlAuAZ7/AYihBB3u3YN\nRo2C1autTuIQbdpAnqJX2LO0MLGxVqcRrmxwjbUUyH6ZF1+0zSKvY+3YYfZhjR3L1so9+T2oIUrB\nzJkwZowtaucIVzJmDOzZw6ujvFizxn5FLuxMJlhCCPvx8IDPP7fNVkGloEKbk1w9n43Jk61OI1xZ\nzi2rGXXteX79Fb74wuo0Wcz48VCjBrGnz9K/+GKqbfuSuT+aQ/g2WRAXriZxRn/7OLGsYLkOKXIh\nhLCfbNlg+HB47jn46ac7h4VdWcEKf5K35GVGj85Ft27mryhEmr30Er1WtmT2L78wZGADmjTxIjg4\nfU+VUhl2VyvbHYcX+0pH0OzAJ3h45WXhQmjb1upUaWO3fxOBKdo0bx6vPvgbM2fCgQO2qN9ke3JN\nRghhT089BUWKwGuv2WcVq+0JTp0yi3NCpIuXFx6zZ/JV8Fv43viL1o0uc/Fi+p4qpTLsWb5s9+XL\nMGgQTJ8OwBuXBlBp7yweeiIve/a43uQKbPBvIv4rZ07YuJEKXvs5dAh27bI6kEgNWcESQtiTr69Z\nxXrmGVN+6aGHrE6UYQXKxdC4Mbz1lpk/5shhdSLhkgICKLp+JgvqDaPZoU946CFYsgTuvz/tT5Vc\nGfYsS2tYtAj690efOsWFPsPJ9wQMHqKoV9/UFXBlLvlvIpLWpg089xwtYhehVDkWLoRKlawOJVIi\nK1hCCPvq2RMeecRWnUDHjIEzZ8yuESHSLV8+6m/7iLnf3GT3bqhd7Sa/PT0Z/vjD6mTOtW8ftGgB\n7dtzPi43D/ito92uNwEICHD9yZWwoSJFoGpVcv2ykFq1YOFCqwOJ1JAJlhDCvnx9Ye5cqFnT6iQO\nU7s2dOxo2n2dPGl1GuHS/Pxo0yknv/wCcZevU3diN54rNJ/TTbvCl1/C2bNWJ3Q4vWkzsWt/Y2zB\n9wmM3opX/dpMmWJ1KiFS0K4dbNhApyZn2LJF3vtdgUywhBD2d/58YjOpq1YncYh33oGEBPNXEiKj\natWCXSfu4+nOl/lc9aHkL1/So7cXvwb3/Lts2ZUr1oZMr5s34eOP75RMnBr3BAWvHmZSzkHMnufN\nsmVQurTFGYVIySOPQK9etHnwJsOHg5cc8MnyZIIlhLC/gwdh7FhThtkGihWDIUPM2fzISKvTCDvw\n94cJ0+/j4O+e9Ozrw7wcXWlweSnfv16dXQuLsKdSJ6hSBUaPht27s37hGK1hyhQoWxYGDODSjGUA\nPPqYB6MnmCIWERFSjU24iNBQ+PxzijcoypgxEBhodSCREplgCSHsr04dePRRc3ApKukSxq7k5Zeh\nQAFTBC0hweo0wi5KlIBPP1NEn/Fk8mTIkfcG+38IosLRxVQ8OJe3Xr3B4YrtoGJFam/+yeq4/5WQ\nABcuwObN0LMnx6/lo6XXjzQ49x1am4Jszz4LPj5WBxUijbSGzZuJvXSFZcvg0iWrA4nkyARLCOEe\n3nnHbHcaNMjqJA6RK5dZlNuwwRyXEcKRcuSAHj2g4aB9tHlnCx9/DLmrlGIEYwjmMDWPz2Ldtqpc\nu+RjtuDOmAHXrlkXODYWpk2DihW5cfwMt25pOnrNJfjiJoo8+QBLlipZrRKubdMmqFGDqP/Np2VL\nc7xYZF0ywRJCuIeSJWHkSDMqff+91Wkcont3aNQIXnzR/sXfhHWy+cfSrx+sXQvHj5uF4Lgyoczd\n0oolw6vSqO4tPntiDefvDzH9A9asybxl1ZgY+PBDCA5mb/ex9IoexcbL5fktrga5ez7Cod8VEyea\nbbVCuLQaNaBYMYqtn0HZsuaahsi6ZIIlhHAfQ4ea0u0lSlidxCGUgokT4cYN2yzMiSyuaFHzY7Rl\nC7R4YxuhrU9xxiOQZ/iMgtcO02JqR6Y2nMRfJauYrXrOkngGLOHFYfw4aCmtL39LKHuZceNhAgMV\nlSorPv8cihd3XgQhMpVS0KkTasUKnmp7jtWrbbPj3ZakDokQwn34+MBXX1mdwqHKlIERI+DVV6Fb\nN2jZ0upEwl3kKnCD0FanmNmnCDt3wsyZnsz8thk9jj+I76lYWvb2plMnaLXvXbL7e0GrVukv2ac1\n7N8Ps2fDnDmcfnsqk3dWY9LSDzmKN/m9YNQoeOYZxaNLHPv3zGwzNp5g4fakf3NuFxZE55pFMzGR\nyDI6dYKxY+nmN4cX9bPMmmUKHomsR1awhBDu58IFeOwxs6fdBl56CUJCoE8fuHjR6jTC3SgFlSvD\n22/DkaMebNgAT/fz5rffzI9ZgTeeocvgfCwpM5hbpUOhd29YsODvJ/h3RUKt/y4PHx1t9sIWL86J\nkOZ89PpFGp76hsLtqjJyJJQs683MmaYv0CuvQL58mff3dpaF26PYGx1zz6/tjY5JdvIlbK5iRQgN\npcCaOVSrBkuXWh1IJEVWsIQQ7sfDw1SH6NoVtm6F7NmtTpQhPj7w9demn1HfvuYivxzoF1ZQynwf\n1qpluiKsWQMzZ+Zg7uxOTP+zC/cdu0LdqeuoueMW0eH3kTPvNa7dV8j8CPr4QFwccef/5HzvlznQ\nYST7dwSwcU4LVnu8wxEKAlChCLz6CHTpAsHB1v59nSUk0J9ZfWv/5/MdJ26wII3IMpQy/TmKFWPO\nJQgKsjqQSIpMsIQQ7idPHtMjp1kzc6BkwgSrE2VY1aqmRdGwYTB1qqkAJ4SVPD2hcWNz+9//PPnp\nJ/juu5ysX/8g328GvclcBchBND5XYvH1jENrxZW4bDABc8OXPHk60qCBol9DaNECypUYT7NEAAAg\nAElEQVSz8m8lhMUqVwagxH0W5xDJkgmWEMI9NW0KgwfD++9D69bmNzcX98ILsGwZ9OsH9erZ9+q+\ncD3e3uZHzPyYKf76CyLe3M21C760DS5NTIw3N296A+b6R0CAOa5VrhwUKaLwkAMNQvztp59g7Fi+\nf3YJw17Pxvr1psebyDrkLSsVcibxXdujRw/mprMRweuvv867776b6tc+ffo0jz76aJL3+/PPP/nk\nk0+Sfa46deoAsGrVKlq3bp2GtLBgwQL27t175+NXX32Vn37Kgk0mhUiLt96CChXMKeHbZz5cmKen\n2Sro7W36KlvZlkiI5OTODfmDL1Os5nmGDzc93d5/39xefdVcJGje3JRXl8mVEPfw88+U3vkdu3bB\nzJlWhxH/Jm9bLqJQoULJTuaSm2DFxcUBsH79+nS//r8nWKNGjaJZs2bpfj4hsoRs2eC770xfLE9P\nq9M4RJEipj/Kzp2mJdG/6wcIIYRwcU2aQHAwwT9/RsWK8Omn8l6f1cgEKw201vTr14+yZcvSrFkz\nzp49e+drW7ZsoWHDhlSrVo3mzZsTHR0NwBdffEGNGjWoXLkyjzzyCNdSuKR89OhRateuTcWKFRk5\ncuSdzx87dowKFSoAsGfPHsLDwwkLC6NSpUocOnSIYcOGcfjwYcLCwhg6dCirVq2ifv36tG3blpCQ\nEOCfK3ExMTG0atWKsmXL8vTTT5OQ2BTy7vvMnTuXHj16sH79ehYtWsTQoUMJCwvj8OHD/1i9+/nn\nn6lSpQoVK1bkySef5ObNmwAUL16c1157japVq1KxYkX279+f7v/3QjhNmTKmL5bWsHixLUapFi3M\n4tzMmZCKhXIhhBCuxMMDnn4atXYtr7XazNat8OuvVocSd5MJVhrMnz+fAwcOsHfvXqZNm3ZnRSg2\nNpb+/fszd+5ctmzZwpNPPsmIESMAePjhh9m0aRM7duygfPnyTJo0KdnXGDhwIM888wy7du0iMDDw\nnvf57LPPGDhwINu3b2fz5s0ULlyYsWPHUqpUKbZv3864ceMA2Lp1Kx9++CEHDx78z3NERkby8ccf\ns3fvXg4fPsy8efOSzFSnTh3atm3LuHHj2L59O6VKlbrztRs3btCjRw9mzZrFrl27iIuL49NPP73z\n9Xz58rF161aeeeaZVG2JFMIys2dD27bw8cdWJ3GIl16CDh1M0YvFi61OI4QQwqF694bcuWl/4B3y\n5zfbbEXW4XpFLho1+u/nWrc2p7vT8/VVq1L90mvWrKFTp054enpSqFAhmjRpAsCBAwfYvXs3Dzzw\nAADx8fF3Jke7d+9m5MiR/Pnnn1y5coXmzZsn+xrr1q3ju+++A6Br16689NJL/7lP7dq1GTNmDKdO\nneLhhx+mdBKNG8PDwylRokSSXytZsiQAnTp1Yu3atcme8UrKgQMHKFGiBGXKlAGge/fuTJgwgUGD\nBgFmgglQrVq1ZCdxQliuQwez5DNoEBQqZA4xuTClYPJkOHrU9CJavhwaNLA6lRBCCIfw94c33sDT\nx4d324Ofn9WBxN1cb4KVBWmtCQ0NZcOG//an6NGjBwsWLKBy5cpMmTKFVamY0KkUGth07tyZmjVr\nsnTpUlq2bMnEiRPvTJbuliNHjlS/xu2P7/78jRs3UsyaEl9fXwA8PT3vnAUTIkvy8DCHlx54AJ54\nAvLmNfWlXViOHKaqYP360KaNuZ5UpYrVqYQQQjjEwIEAdLM4hvgv19siuGrVf2+3V6fS8/U0aNCg\nAbNmzSI+Pp7o6GhWrlwJQNmyZTl37tydCVZsbCx79uwB4PLlywQGBhIbG8v06dNTfI26desyM7Ec\nTFL3P3LkCCVLlmTAgAG0a9eOnTt3kitXLi5fvpzqv0tkZCRHjx4lISGBWbNmUa9ePQAKFCjAvn37\nSEhIYP78+Xfun9Tzly1blmPHjvH7778D8PXXX9OwYcNU5xAiS/Hzg0WLTH3o9u3h4kWrE2VYvnyw\nYgXcd5+pyrZ7t9WJhBBCOExsLHzyCdc37uSNN2DjRqsDCXDFCZaFIiIiKF26NCEhIXTr1o3atU2X\ndR8fH+bOnctLL71E5cqVCQsLu3M+a/To0dSsWZO6detSLhXdET/88EMmTJhAxYoViYqKuud9Zs+e\nTYUKFQgLC2P37t1069aNvHnzUrduXSpUqMDQoUNTfJ0aNWrQr18/ypcvT4kSJYiIiABg7NixtG7d\nmjp16vzjDNjjjz/OuHHjqFKlCocPH77z+WzZsjF58mQ6dOhAxYoV8fDw4Omnn07x9YXIsgICTI+R\nr782/20DhQubSZa3NzRsCJs2WZ1ICCGEQ1y5AiNG4P3KS3z6KQwdaotaTS5P6Sz0rxBQrLy+eHyf\n1TGEEOJv8+aZK4QdO1oao+NEs0I+q2/tdD/H0aOmv/K5c6amR2b3VlZKbdFaV8/cV80cdh2/kvu+\ny+j3pCO+p++l0ZRGAKzqscqhz5tZMvL/3Fn/T0UW9+67MHQoy55ZRMtP2zBjBnTqZHWojMlq38tp\nHb9kBUsIIZKiNUycCI8/Du+84/KXBUuUMKV8S5UytX/Gj3f5v5IQQogBAyA0lIeWPEejapcZNMgW\nO9xdmkywhBAiKUrBwoVmgjVsmKk0GBNjdaoMCQqCdesgIsIcT+3e3ewwEUII4aJ8fOCLL1CnTjGn\n5ItcuABDhlgdyr3JBEsIIZKTLZupLvjuu7BgAVSr5vKXBnPkMFsE3/j/9u48vKrq3OP49yVMIUWx\nylUckAgIgUgGIDFAIFBH4AFxYHAEp+rjUPtUW+AWS7l4xYnLRasCrcZq1VRERaRVUSJSByYBAUUG\no2hxoBaEGOQC6/6xd+CQnAwnOScnyf59nuc82Wfttdd+117svVh7Or+Hp56C9HTwHxsVEZGGKCcH\npkzhuHHDmDEDbrwx3gEFmwZYIiJVMYNf/QoWL4YhQw6//OLgwfjGVQtNmsCdd8Jbb8GBA96r3H/9\na4jgZaQiIlKf/Pa3cP753HwzZKcWA94zt1L3NMASEamu3FyYMcOb3rgRunb1fs33wIH4xlULubmw\ndi1cfTXcdx+cfrpXpQY8dhQRCbY//hFSUphz5za6d4dNm+IdUPBogCUiUhM//OD9uNTVV0OPHt49\ndw30x7Rbt4Y5c+C996BDB69KZ5wBTzwB+/bFOzoREYlIVhbs2sVVjw+gw/7N5OXpNxDrmgZY1fDV\nV18xevRoOnbsSM+ePRk8eDCffPJJna1/9erVLFy4MOLl8vLyWLFiRaV5CgsLGTp0KADz589n2rRp\nNY5jxYoV3HrrrQBMnjyZ+++/P6J4Z8yYwQ8//HDo++DBg9m5c2dEZYjUmYwM7xcdn3vOG1iNGgVd\nusDevfGOrMays71nsZ591ruFcOxY742D1fiNdBERqS969IBFi2i+dzfv0IfcHxeRmwsvvxzvwIIj\npgMsMzvPzDaa2WYzGx/LdcWKc44RI0aQl5fHli1bWLlyJXfffTdff/11tZbfX+aMtnOOgxHee1PT\nAVakhg0bxvjxFTdTZXHs37+fXr16MXPmzBqvv+wAa+HChbRp06bG5YnEnBlcfDFs2OC9AOOaa7yX\nYoD3CqfHH4dqHivqCzNvrLh2LbzyCpx2Gvz4Y7yjio/G0IeJSED17g1Ll9L0hON45rtzGNDuE4YP\nh48/jndgwRCzAZaZJQB/AM4HugFjzKxbrNYXK4sXL6ZZs2bccMMNh9LS0tLIzc3FOccdd9xBamoq\nZ5xxBgUFBYB3VSg3N5dhw4bRrVs3ioqK6NKlC1deeSWpqals27aN1157jZycHDIzM7nkkkvY478n\nefny5fTp04e0tDSysrLYtWsXd955JwUFBaSnp1NQUEBxcTFXX301WVlZZGRk8NJLLwFQUlLC6NGj\nSUlJYcSIEZSUlISt09///ne6du1KZmYm8+bNO5Sen5/PzTffDMBzzz1HamoqaWlp9O/fn3379pWL\nY/LkyVxxxRX07duXK6644oirYQBr1qwhJyeHzp07M2fOnEPbJjTPzTffTH5+PjNnzuSf//wnAwcO\nZODAgQB06NCBHTt2ADB9+nRSU1NJTU1lhv8MTFFRESkpKVx33XV0796dc845p8I6i8RUQgIMHw4T\nJ3rfi4th/nzvXrsTToC0NG/A1YBe1WcGgwd7L8EYNy7e0dS9xtKHiUiAdekCy5djjzxCwQen8+KL\n0HXdXNi+nfx8+PzzeAfYeDWNYdlZwGbn3FYAM3sWGA5siOE6o27dunX07Nkz7Lx58+axevVq1qxZ\nw44dO+jduzf9+/cHYNWqVaxbt47k5GSKiorYtGkTTzzxBGeeeSY7duxg6tSpLFq0iKSkJO655x6m\nT5/O+PHjGTVqFAUFBfTu3Zvvv/+eVq1aMWXKFFasWMFDDz0EwMSJExk0aBCPPfYYO3fuJCsri7PO\nOotZs2bRqlUrPvroI9auXUtmZma5mPfu3ct1113Hm2++SadOnRg1alTYuk2ZMoVXX32Vk046iZ07\nd9K8efNycUyePJkNGzawdOlSEhMTKSwsPKKMtWvX8t5771FcXExGRgZDhgypcDvfeuutTJ8+ncWL\nF3PccccdMW/lypU8/vjjvP/++zjnyM7OZsCAARxzzDFs2rSJZ555hjlz5jBy5Eief/55Lr/88grX\nI1InkpK8p4o/+ABeew1efx0eftgbbPXpA199BRdd5N1/V/pp3x5SUqBt23hHX45ZvCOIi0bRh4lI\nwCUlwc9/TgtgWP+dcPxluAMHSD7Qjz/YYIq7ZZE8Ip20AW3o2ROOOSbeATcOsRxgnQRsC/n+BZBd\nmwJvuw1Wr65VTOWkpx9+KVikli5dypgxY0hISOD4449nwIABLF++nKOOOoqsrCySk5MP5T311FM5\n88wzAXjvvffYsGEDffv2BWDfvn3k5OSwceNG2rVrR+/evQE46qijwq73tddeY/78+Yeecdq7dy+f\nf/45S5YsOfQMVI8ePejRo0e5ZT/++GOSk5Pp3LkzAJdffjmzZ88ul69v376MHTuWkSNHcuGFF1a4\nDYYNG0ZiYmLYecOHDycxMZHExEQGDhzIsmXLanTL39KlSxkxYgRJSUkAXHjhhbz99tsMGzaM5ORk\n0tPTAejZsydFRUURly8SE2aQmel9xo/33hZR+saIHTugWTPvte9PPnl4mTlz4NprYdUqOP987yUa\nrVpBUhITv9vHy2dfBuTA5s3e73IlJHifpk29v6NHe7/TtW0b5Od7D1KVjo7MYOhQ7+0V27YdfrAq\ndP6QIdC9O3zxBTzzjJd+8skwZkxdbLH6Jup9WEO1Yfv3jJr1btj0bu3C91O1LbtWZf7L+zHwaJdb\nV6rarpVts2i0iTRibdrA+vXY44+TM28BAz7+DayHievv4uypE/nj5C+45p1r2N38WJauSiQhKZGD\nLRJZf/oIvjqtD5ed9TXpy+ew83tj1SoDM6yJ8Wnnc/jm5EyG5XxLtxV/Ztcu7/xiqW2dB/HNSRkM\n7vUNKSuerNb8rBe/Y/fe/TzwhwUs+48+bGzTnS6nbmXoZy+wr6QpB749mtOPb11l+W0vzKX7uKw6\n3MieWA6wqsXMrgeuBzjmxNPiHE153bt3Z+7cuREvVzoYCPfdOcfZZ5/NM6X/gfF9+OGH1SrbOcfz\nzz9Ply5dIo6ruh599FHef/99XnnlFXr27MnKlSvD5itbz1BW5rS3mdG0adMjnkHbW8sXArRo0eLQ\ndEJCgm4RlPqreXPvA5CaCqVXfPfuhU8/9QY1KSleWuvWcMEFsGuX97bC4mJ+enAPyW385f/1L++Z\nr/37vVfEl/7NyPAGWEVF3o9clXXyyd4A67PPYMKE8vPbtfMGWEVF3o9iAfTtG9QBVpXqe/8VDcPT\nT6pwXrd2R1U6vzZlB1ll27WqbVbbNpEA6NQJ7rqL5nfd5T0jvHo1tx/TkUHfQ7cme+CVf9P8qy30\n/LaE5l+V0PJgCa9v7cgjrg8Djt5O+qRJtAEGhRQ597XWPEwm3X7/Jd1+dztHA3kh82/iIR4mg06/\n305KNef/qsz8vzKE7kM/5IoFD5WrUmXlF+6fBo1sgPUlcErI95P9tCM452YDswF69erlKiuwplea\namPQoEFMnDiR2bNnc/311wPerW+7du0iNzeXWbNmcdVVV/Hdd9+xZMkS7rvvPj6u4gnCM888k5tu\nuonNmzfTqVMniouL+fLLL+nSpQvbt29n+fLl9O7dm927d5OYmEjr1q3ZHfLrn+eeey4PPvggDz74\nIGbGBx98QEZGBv379+fpp59m0KBBrFu3jrVr15Zbd9euXSkqKmLLli107Nix3CCv1JYtW8jOziY7\nO5u//e1vbNu2rVwcVXnppZeYMGECxcXFFBYWMm3aNA4cOMCGDRv48ccfKSkp4Y033qBfv34Ah8ov\ne4tgbm4uY8eOZfz48TjneOGFF3gy9Ky/SEPWsqU3sCodXAF07gyzZh2R7RTgstIv2dnebYYV6dfv\n8KALwPmH1qb+Ib9PHygpOZxe+rd0AJiTA3v2eOlNAvuy2Sr7sEj6r4bq0uz2XJrdvkGVnZfvXcEp\nGJsT9bLjLZbtIQF0/PFw7rn8FDgLgK6wbBktgP8IyfaA/8GlwW/24Q46Dux3uIPe54GEZtyfAM2a\nnAG//J4DB7xzg6WmtWjBtObQsllqLecPhv+LbPmcnzSP6iarrlgOsJYDnc0sGa9TGg1cGsP1xYSZ\n8cILL3Dbbbdxzz330LJlSzp06MCMGTPo168f7777LmlpaZgZ9957LyeccEKVA6y2bduSn5/PmDFj\n+NF/PdfUqVM5/fTTKSgo4JZbbqGkpITExEQWLVrEwIEDmTZtGunp6UyYMIFJkyZx22230aNHDw4e\nPEhycjILFizgxhtvZNy4caSkpJCSkhL22bGWLVsye/ZshgwZQqtWrcjNzQ07aLrjjjvYtGkTzjl+\n9rOfkZaWRvv27Y+Ioyo9evRg4MCB7Nixg0mTJnHiiScCMHLkSFJTU0lOTiYjI+NQ/uuvv57zzjuP\nE088kcWLFx9Kz8zMZOzYsWRleWcgrr32WjIyMnQ7oEhFzA7fPhhOkyaH33YYTkKCd99+sDWKPkxE\nJGrMoFkzDGjaIlyGBGjRmgSgddgnQhKgZTzn1x1zLnYn3cxsMDADSAAec87dVVn+Xr16uap+t0lE\nRBomM1vpnOsV7ziqK5I+TP1X/ZGXnwdA4djCuMYhIo1HpP1XTJ/Bcs4tBGL/A04iIiJRpj5MRERq\nIrA314uIiIiIiESbBlgiIiIiIiJRogGWiIiIiIhIlGiAJSIiIiIiEiUaYImIiIiIiESJBlgiIiIi\nIiJRogGWiIiIiIhIlGiAJSIiIiIiEiUaYImIiIiIiESJOefiHcMhZrYb2BjvOMo4GthVD8uNdPnq\n5q8qX03nV5R+HLCjGnHVtfrY7vFq86ryqM1jW2593NdrMu84IMk517YasTU4Ue6/ImnzaB6Ty6aF\nfq9oOpr7c32vd+h31bv2VO/a541Wvct+j8U+3tDrfWpE/Zdzrt58gBXxjiFMTLPrY7mRLl/d/FXl\nq+n8StLrXZvX13aPV5tXlUdtHtty6+O+XsN/D/Wy3aPYzlGrXyRtHs1jctm00O+VTAem3qHfVW/V\nuzHVu7LtEK26B63eukWwai/X03IjXb66+avKV9P5sdqOsVIf2z1ebV5VHrV5bMutj/t6TedJ9USy\nDaN5TC6b9nI1pqOpvte7OuutCdW79nlV76rTq6pbrPfxQNW7vt0iuMI51yvecUjdUZsHj9o8mBp7\nuzf2+lVE9Q4W1Tt4glr32ta7vl3Bmh3vAKTOqc2DR20eTI293Rt7/SqiegeL6h08Qa17repdr65g\niYiIiIiINGT17QqWiIiIiIhIg6UBloiIiIiISJRogCUiIiIiIhIlDWaAZWZJZrbCzIbGOxapG2aW\nYmaPmtlcM7sx3vFI7JnZBWY2x8wKzOyceMcjsWdmp5nZn8xsbrxjiaUg9mFBPYYH9TgWlH0ZDu3P\nT/jtfFm846krQWrjUDXZp2M+wDKzx8zsGzNbVyb9PDPbaGabzWx8NYr6DfDX2EQp0RaNdnfOfeSc\nuwEYCfSNZbxSe1Fq8xedc9cBNwCjYhmv1F6U2nyrc+6a2EZac0Htw4J6DA/qcSwI+3JVItwGFwJz\n/XYeVufBRlEk9W7obRwqwnpHvE/H/C2CZtYf2AP82TmX6qclAJ8AZwNfAMuBMUACcHeZIq4G0oBj\ngZbADufcgpgGLbUWjXZ3zn1jZsOAG4EnnXNP11X8Erlotbm/3APAX5xzq+oofKmBKLf5XOfcxXUV\ne3UFtQ8L6jE8qMexIOzLVYlwGwwH/uacW21mTzvnLo1T2LUWSb2dcxv8+Q2yjUPVsN7V3qebxirw\nUs65JWbWoUxyFrDZObcVwMyeBYY75+4Gyt0+YWZ5QBLQDSgxs4XOuYOxjFtqJxrt7pczH5hvZq8A\n9b5zDrIo7esGTMPruOr9f0qCLlr7eX0W1D4sqMfwoB7HgrAvVyWSbYD3n++TgdU0oMdtwomw3hvq\nNrrYiaTeZvYREe7T8fpHcRKwLeT7F35aWM65/3TO3YZ3cJ5T3zsmqVBE7W5meWY208xmAQtjHZzE\nRERtDtwCnAVcbGY3xDIwiZlI9/NjzexRIMPMJsQ6uCgJah8W1GN4UI9jQdiXq1LRNpgHXGRmjwAv\nxyOwGAtb70baxqEqau+I9+mYX8GKJudcfrxjkLrjnCsECuMchtQh59xMYGa845C645z7F9597Y1e\n0PqwoB7Dg3ocC9i+XAyMi3ccdS1IbRyqJvt0vK5gfQmcEvL9ZD9NGje1e/CozYMnCG0ehDqGo3p7\nVO/gCOo2UL09Na53vAZYy4HOZpZsZs2B0cD8OMUidUftHjxq8+AJQpsHoY7hqN6qdxDqHSqo20D1\nrmW96+I17c8A7wJdzOwLM7vGObcfuBl4FfgI+Ktzbn2sY5G6o3YPHrV58AShzYNQx3BUb9U7CPUO\nFdRtoHrHpt4xf027iIiIiIhIUDToV0uKiIiIiIjUJxpgiYiIiIiIRIkGWCIiIiIiIlGiAZaIiIiI\niEiUaIAlIiIiIiISJRpgiYiIiIiIRIkGWBJXZnaBmTkz6xrvWCpiZhPjHUO0mNkNZnZlBPk7mNm6\nCPKbmb1pZkdVkudZM+tc3TJFROqzxtiPmVmhmfWK5ToiLHuYmY2PcJk9Eeafa2anVTL/fjMbFEmZ\nElwaYEm8jQGW+n9jysya1nDRRjHAMrOmzrlHnXN/juFqBgNrnHPfV5LnEeDXMYxBRKQuqR+L4Tr8\nvmu+c25aLMr319EdSHDOba0k24NARIM8CS4NsCRuzOwnQD/gGmB0SHqemS0xs1fMbKOZPWpmTfx5\ne8zsf8xsvZm9YWZt/fTrzGy5ma0xs+fNrJWfnu8v/z5wr5klmdljZrbMzD4ws+F+vrFmNs/M/m5m\nm8zsXj99GpBoZqvN7C9h6jDGzD40s3Vmdk9IekVxdvTXsdLM3i494+nHOdPM3jGzrWZ2cZh1dTCz\nj83sL2b2kX+2rbSePc3sLb/cV82snZ9eaGYzzGwF8Aszm2xmt/vz0s3sPTNba2YvmNkxIWWtMbM1\nwE0h6+/ub7fV/jLhrkJdBrzk50/y23CNv31G+XneBs6qxX8URETqhYbej5lZgl/+Or8v+2XI7Ev8\ndXxiZrkh63goZPkFfl2r6itr0ieG1vnQev2+8E2/H3rDzNr76clm9q5fj6kh627nt8Vqv565YZoy\ntO8Ku02cc58Bx5rZCZX+oxABcM7po09cPngHtD/50+8APf3pPGAvcBqQALwOXOzPc8Bl/vSdwEP+\n9LEh5U4FbvGn84EFeGemAP4buNyfbgN8AiQBY4GtwNFAS+Az4BQ/354K4j8R+BxoCzQF3gQuqCLO\nN4DO/nQ28GZInM/hnfToBmwOs74Ofrl9/e+PAbcDzfzt19ZPHwU85k8XAg+HlDEZuN2fXgsM8Ken\nADNC0vv70/cB6/zpB0Pq1BxIDBPjZ0Brf/oiYE7IvKNDpl8vbW999NFHn4b6aQT9WE/g9ZDvbfy/\nhcAD/vRgYJE/PbY0Xv/7AiCvsnVUUefK+sTQOo8NWeZl4Cp/+mrgRX96PnClP31TaTzAr4D/9KcT\nSvuoMvG9BZxR2Tbxp+cAF8X7350+9f+jK1gST2OAZ/3pZzny9oplzrmtzrkDwDN4ZwgBDgIF/vRT\nIemp/tmvD/E6vO4hZT3nlwNwDjDezFbjdSAtgfb+vDecc7ucc3uBDcCpVcTfGyh0zn3rnNsP/AXo\nX1Gc/pnOPsBz/vpnAe1CynvROXfQObcBOL6CdW5zzv2jTP27AKnA6365vwVODlmmgDLM7Gi8TuMt\nP+kJoL+ZtfHTl/jpT4Ys9i4w0cx+A5zqnCsJE99PnXO7/ekPgbPN7B4zy3XO7QrJ9w3eAFVEpCFr\n6P3YVuA0M3vQzM4DQm/vnuf/XYl3gq82atInhtY5VA7wtD/9JIe3X1+87VyaXmo5MM7MJuMNonZT\nXjvgW3+6sm2ivkuqRbfoSFyY2U+BQcAZZubwzio5M7vDz+LKLFL2e9n0fLyrR2vMbCze2cNSxaGr\nxjv7tLFMPNnAjyFJB4ju/uHwrk7tdM6lV5AndP1WSTllvxuw3jmXU8EyxRWkR8Q597R/u8YQYKGZ\n/dw592aZbPvNrIk/UPzEzDLxzn5ONbM3nHNT/HwtgXADNBGRBqEx9GPOuX+bWRpwLnADMBLvqhAh\nZYWWs58jHy9pWVn5la2aqvvEmvRd5baxc26JmfXH67vyzWy6K/8scgl+XarYJuq7pFp0BUvi5WLg\nSefcqc65Ds65U4BPgdJ7o7P8+6mb4N3yttRPb+IvC3BpSHprYLuZNcM781eRV4FbzMwAzCyjGrH+\nn19uWcuAAWZ2nJkl4J25LL0iVC5O57344VMzu8Rft/kH8Ui0N7PSgVRp/TcCbeyZl9MAAAJnSURB\nVEvTzayZeQ/sVsi/mvTvkHvRrwDecs7tBHaaWekZwUPb0ry3K211zs3Eu1e9R5iiN+LdEoOZnQj8\n4Jx7Cu9Ww8yQfKcD1X47oYhIPdTg+zEzOw5o4px7Hu/uh8xySx6pCEg3syZmdgqQVdU6fNHsE9/h\n8PNul+E91wvwjzLp+OWeCnztnJsD/JHwdfwI6OTnr2ybqO+SatEAS+JlDPBCmbTnOXx7xXLgIbyD\n3qcheYvxOq11eGcOS6+ITALexzvAflzJev8L75mltWa23v9eldl+/iMe3HXObcd7o9BiYA2w0jn3\nUhVxXgZcY94LJNYDw6ux/lAbgZvM7CPgGOAR59w+vI7rHr/c1Xi3XVTlKuA+M1sLpIfEOA74g3/L\nRuiVtJHAOj89FQj3NsJXOHzW9QxgmZ//d3jPFGBmxwMlzrmvqldlEZF6qcH3Y8BJQKF/nH4KmFBF\nOf/w67IBmAmsqsY6ILp94i14t/ytxTs5+As//Rd4/eOHfr1K5QFrzOwDvIHu/4YpM7TvCrtN/MFj\nJ2BFNWKUgDPnKrpiLRIfZpaH9yKGoWHm7XHO/aTuo4pMLOI0sw7AAudcajTLjSbz3l74Z+fc2ZXk\n+SXwvXPuT3UXmYhI3WkM/Vg01fc6m1ki3snSvhU894WZjQAynXOT6jQ4aZB0BUtEosa/qjfHKvmh\nYWAn3ks1RERE4s5/adPvOPLKV1lNgQfqJiJp6HQFS0REREREJEp0BUtERERERCRKNMASERERERGJ\nEg2wREREREREokQDLBERERERkSjRAEtERERERCRKNMASERERERGJkv8HGpfDEXI1IRkAAAAASUVO\nRK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAFgCAYAAABJ67N/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmczeX7+PHXPfbRDDO2GYx1DFJIlESNVMhWiaQkWX7t\naEObsbSpVOpLkbWiUj7ZScugEEqJZC3bIMwww1jGzP374x7TYJYzc5b7LNfz8TiPmXPO+7zf1zln\n5tznet/3fd1Ka40QQgghhBBCCNcIsh2AEEIIIYQQQvgTSbKEEEIIIYQQwoUkyRJCCCGEEEIIF5Ik\nSwghhBBCCCFcSJIsIYQQQgghhHAhSbKEEEIIIYQQwoXcmmQppSYrpQ4ppTZmuy1MKfWNUmqrUmqp\nUqqMO2MQQggh8pNLezVGKbVFKfWbUuorpVSozRiFEEL4Dnf3ZE0F2l5021DgW611XeB7YJibYxBC\nCCHyk1N79Q3QQGvdGNiOtFdCCCEc5NYkS2v9I5B00c1dgOmZv08HbndnDEIIIUR+cmqvtNbfaq0z\nMq+uAap6PDAhhBA+ycacrIpa60MAWuuDQEULMQghhBAF8SCw2HYQQgghfENR2wEAOrc7lFK53ieE\nEMJ3aa2V7RgcpZR6HkjTWs/M5X5pq4QQwg8501bZ6Mk6pJSqBKCUigD+zWtjrbXXXYYPH+51+y3o\nYx3d3pHt8tomt/sKervti7zn8p57w3795T33JUqpB4DbgJ55bWfj7yO/bQvyvlx8W17Xc/vdU887\nv+25Mef3wxuft7zngfe8A/m5+9rzdpYnkiyVeTlvHvBA5u+9gbkeiMGlYmNjvW6/BX2so9s7sl1e\n2+R2n7teQ3eR99zxbeQ9d99+5T13uwvaK6VUO+AZoLPW+ownAijIa5bftgV5Xy6+La/r7nhfXfq3\nXcPxx9h+3gXdb6C+5/70vAu6X3967oH2vJUrMrVcd67UTCAWKAccAoYDXwOzgShgN9Bda30sl8dr\nd8YnvE9cXBxxcXG2wxAeJO954FFKob1suGAu7dVzQHHgaOZma7TWj+Tw2IBtq7zx/1eNUOjh7n0/\nvPF5e0qgPvdAfd4QuM/d2bbKrXOytNa5Da+42Z3HFb7LB898CyfJey68QS7t1VSPB+JjAvX/N1Cf\nNwTucw/U5w2B/dyd4daeLGcF8tlBIYTwV97Yk+UMaau8iyd6soQQ/s+re7KEEEIIIYT/q1GjBrt3\n77YdhhAFVr16df755x+X71eSLCGEEEII4ZTdu3e7pCKbEJ6mlHsGVtgo4S6EEEIIIYQQfkuSLCGE\nEEIIIYRwIUmyhBBCCCGEEMKFJMkSQgghhBBCCBeSJEsIIYQQQgSk3bt3ExQUREZGhtP7qlmzJt9/\n/71D206fPp1WrVplXQ8JCXFZhbtXX32VAQMGAK59fgB79+4lNDRUipw4QJIsIYQQQgjht/JLftxV\nXS4/2Y+bkpJCjRo18tx++fLlREVF5bvfYcOGMXHixByPU1AXv3ZRUVEkJydbe818iSRZQgghhBBC\neDmtdb7JTXp6uoeiEfmRJEsIIYQQQgSEjIwMnn76aSpUqEB0dDQLFy684P7k5GT69etH5cqViYqK\n4sUXX8waGrdr1y7atGlD+fLlqVixIvfddx/JyckOHTcxMZHOnTtTpkwZmjdvzs6dOy+4PygoiF27\ndgGwaNEiGjRoQGhoKFFRUYwdO5bU1FRuu+02EhISCAkJITQ0lIMHDzJixAi6detGr169KFu2LNOn\nT2fEiBH06tUra99aayZPnkyVKlWoUqUKb731VtZ9ffr04aWXXsq6nr237P7772fPnj106tSJ0NBQ\n3nzzzUuGHx44cIAuXbpQrlw5YmJi+Oijj7L2NWLECO6++2569+5NaGgoV155Jb/++qtDr5c/kCRL\nCCGEEEIEhIkTJ7Jo0SJ+//131q9fz5dffnnB/b1796Z48eLs2rWLDRs2sGzZsqzEQWvNc889x8GD\nB9myZQv79u0jLi7OoeM+8sgjBAcHc+jQISZPnsyUKVMuuD97D1W/fv2YNGkSycnJbNq0iZtuuong\n4GAWL15M5cqVSUlJITk5mYiICADmzZtH9+7dOXbsGD179rxkfwDx8fHs3LmTpUuX8vrrrzs0fHLG\njBlUq1aNBQsWkJyczNNPP33Jvu+++26qVavGwYMHmT17Ns899xzx8fFZ98+fP5+ePXty/PhxOnXq\nxKOPPurQ6+UPJMkSQhAeDkoV7hIebjt6IYQQXi8uLudGJLckJaftHUxo8jJ79mwGDRpE5cqVKVu2\nLMOGDcu679ChQyxevJi3336bkiVLUr58eQYNGsSsWbMAqF27Nm3atKFo0aKUK1eOwYMHs3z58nyP\nmZGRwZw5cxg1ahQlS5akQYMG9O7d+4JtsheSKF68OJs3byYlJYUyZcrQuHHjPPd/3XXX0alTJwBK\nliyZ4zZxcXGULFmSK664gj59+mQ9J0fkVuRi7969rF69mtdff51ixYrRqFEj+vXrx4wZM7K2admy\nJW3btkUpRa9evdi4caPDx/V1RW0HIIRPSk+H776Dgwfh2DFzW/HiEBkJHTpAUd/610pKgsIWCpK5\nr0IIIfIVF1ewJKmg2zsoISHhguIR1atXz/p9z549pKWlERkZCZjkQmtNtWrVAPj3338ZOHAgK1eu\n5MSJE6SnpxPuwJnGw4cPk56eTtWqVS847sqVK3Pc/quvvmLUqFEMGTKERo0a8eqrr9K8efNc959f\nMQyl1CXH3rRpU75x5+fAgQOEh4cTHBx8wb5/+eWXrOvne9sAgoODOX36NBkZGQQF+X8/j/8/QyHc\nISgI3n8fvvkGtm83l19/hSlTzH0F5ExPkvQmCSGEEI6JjIxk7969Wdd3796d9XtUVBQlS5bk6NGj\nJCYmkpSUxLFjx7J6X5577jmCgoLYvHkzx44d45NPPnGolHmFChUoWrToBcfds2dPrttfffXVfP31\n1xw+fJguXbrQvXt3IPcqgY5U+rv42JUrVwagdOnSpKamZt134MABh/dduXJlEhMTOXny5AX7rlKl\nSr7xBAJJsoTITUoKTJwI2T6AsygF8+bBJ5/Ae++Zy8SJMHduzknWgQMwaxacO5fjoc73JBX2kpTk\n4ucuhBBC+KHu3bszbtw49u/fT1JSEq+//nrWfREREdx6660MHjyYlJQUtNbs2rWLFStWAKbM+mWX\nXUZISAj79+/njTfecOiYQUFB3HnnncTFxXHq1Cn+/PNPpk+fnuO2aWlpzJw5k+TkZIoUKUJISAhF\nihQBoFKlShw9etThYhvnaa0ZNWoUp06dYvPmzUydOpUePXoA0LhxYxYtWkRSUhIHDx7k3XffveCx\nERERWQU5su8PoGrVqrRo0YJhw4Zx5swZNm7cyOTJky8oupFTLIFCkiwhLnb0KAwfDrVqwZIlcOqU\n8/tMSoIJE+CKK0wiFkAfMkIIIYRN2Xtj+vfvT9u2bWnUqBFNmzala9euF2w7Y8YMzp49y+WXX054\neDjdunXj4MGDAAwfPpxffvmFsmXL0qlTp0sem1evz3vvvUdKSgqRkZE8+OCDPPjgg7k+9uOPP6Zm\nzZqULVuWiRMn8umnnwJQt25d7rnnHmrVqkV4eHhWXI48/xtvvJHo6GhuueUWnn32Wdq0aQNAr169\naNiwITVq1KBdu3ZZydd5Q4cOZdSoUYSHhzN27NhLYp01axZ///03lStXpmvXrowaNYrWrVvnGUug\nUN6cUSqltDfHJ/xMaiq88Qa8+y7cdRc8+yxER7tu/1qbpO2ZZyAqCiZNgswx0ko5l3fZfLyzxxaB\nRymF1tpvWlppq7yLGqHQw+X98LTM/2vbYQhRYLn97TrbVklPlhDnJSTAtm1mbtXEia5NsMBkI+3b\nw4YN0KIFNGv2X9EMIYRPO3HCdgRCCCG8ifRkCWHLv/9CxYqA9GSJwOKPPVlLpx/g1vsj8t9YuJ30\nZNkhPVnCV0lPlhD+JjPBEkL4vuWz/7UdghBCCC8iSZYIPMnJZt6VnHETQrjIinU5LwAqhBAiMEmS\nJQLLL79AkyawZUuu5dStWrECDh+2HYUQooA2/FvFJYVIhRBC+AdJskTgmDIF2rWDl1+GDz6AYsVs\nR3SpH36AW26Rha+E8DFXhu9nzYqztsMQQgjhJYraDkAIt0tPN+XY582DlSuhXj3bEeXupZfg+HG4\n7Tb4/nsoVcp2REIIB9zQN4YVa6B1W9uRCCGE8AbSkyX839mzJtH6+WfvTrDAlOp76y2zEHLv3pCR\nYTsiIYQDWrSANWtsRyGEEMJbSJIl/F+pUvDOOxAebjsSxygFkyfD/v2mZ0sI4fWuvdacx5HzIkII\nTwsKCmLXrl0ObTtixAh69eoFwN69ewkNDXVZ6f2HH36Yl19+GYDly5cTFRXlkv0C/Pjjj9SvX99l\n+/MESbKE8EYlS8LXX5v5WW52NnMaybhx8PDDZqRi8+Zw5ZVw9dVwww1w330m31uwAI4edXtIQvic\niAgoUwa2b7cdiRAiJzNnzqRZs2aEhIRQpUoVOnTowE8//WQ7LKZPn06rVq2c2odSBVvK6fz2UVFR\nJCcn5/t4R2OcMGECzz//fKHjyu7ixLFly5Zs2bKl0PuzQeZkCeGtKlSAG290y66Tk2HuXPjsM1PQ\nEOCvv+Dyy6FDByhXDkqXhrQ0SEmBPXtg2zZT+f7ee6FRI+jWzSRfQgijeXMzZLBuXduRCCGyGzt2\nLGPGjOHDDz/k1ltvpXjx4ixdupT58+dz/fXXF2hf6enpFClSJN/bHKW1dioZOb8Pd3IkxoyMDIKC\nXNd34+xr4g2kJ0v4lx9+gAcftB2F1/r9dzPVKyoKZs82CdPevea+8ePh8cehY0e47jpo2ND0ZMXG\nwv33w+jRsGwZ/PuvqSOyZg3Urm0eu2ePtackhNe4LvIfVn+x13YYQohskpOTGT58OOPHj6dLly6U\nKlWKIkWKcNttt/Haa68BcPbsWQYNGkSVKlWoWrUqgwcPJi0tDfhv2NuYMWOIjIzkwQcfzPE2gAUL\nFnDVVVcRFhZGy5Yt+eOPP7Li2LdvH127dqVixYpUqFCBJ554gr/++ouHH36Y1atXExISQnjmtIaz\nZ8/y9NNPU716dSIjI3nkkUc4c+ZM1r7eeOMNKleuTNWqVZk6dWqeCck///xDbGwsZcqUoW3bthw5\nciTrvt27dxMUFERG5jjnadOmUbt2bUJDQ6lduzazZs3KNcY+ffrwyCOP0KFDB0JCQoiPj6dPnz68\nlG2ag9aaV199lQoVKlCrVi1mzpyZdV/r1q2ZMmVK1vXsvWU33ngjWmsaNmxIaGgos2fPvmT44V9/\n/UXr1q0JCwvjyiuvZP78+Vn39enTh8cee4yOHTsSGhrKddddx99//533H4obSJIl/MfixXD33SYj\nEBdYtcqMPLztNqhfH3btMsUWe/aEsmULtq8SJUwi9umnsHmzue2qq2DIENNDJkSgah6+jTU/eeH6\ne0IEsNWrV3PmzBluv/32XLcZPXo0a9euZePGjfz++++sXbuW0aNHZ91/8OBBjh07xp49e5g4cWKO\nt23YsIG+ffsyadIkEhMT+X//7//RuXNn0tLSyMjIoGPHjtSsWZM9e/awf/9+evToQb169fjggw+4\n7rrrSElJITExEYAhQ4awY8cONm7cyI4dO9i/fz8jR44EYMmSJYwdO5bvvvuO7du38+233+b5/Hv2\n7EmzZs04cuQIL7zwAtOnT7/g/vMJWmpqKgMHDmTp0qUkJyezatUqGjdunGuMALNmzeLFF18kJSUl\nxx7BgwcPkpiYSEJCAtOmTWPAgAFsz2NM9flYli9fDsAff/xBcnIy3bp1u+D+c+fO0alTJ9q1a8fh\nw4cZN24c99577wX7/vzzzxkxYgTHjh2jdu3aFwxj9BRJsoR/WLjQdNHMm2e6XvxVamqBNt+2Dbp2\nhR49zOXvv2HoUDMc0BUiI83PP/4wPVxXXgnffOOafQvhaxp3j2F7ciVOpLh36I4Qvkgp11wK6ujR\no5QvXz7PoWwzZ85k+PDhlCtXjnLlyjF8+HA+/vjjrPuLFCnCiBEjKFasGCVKlMjxtkmTJvHQQw/R\ntGlTlFL06tWLEiVKsGbNGtauXcuBAwcYM2YMJUuWpHjx4rRo0SLXeCZNmsTbb79NmTJlKF26NEOH\nDmXWrFkAzJ49mz59+lC/fn1KlSpFXFxcrvvZu3cv69evZ+TIkRQrVoxWrVrRqVOnXLcvUqQIf/zx\nB6dPn6ZSpUr5Fpro0qULzZs3B8h6XbJTSjFq1CiKFSvGDTfcQIcOHfjiiy/y3Gd2uQ2DXL16NSdP\nnmTIkCEULVqU1q1b07Fjx6zXCOCOO+7g6quvJigoiHvvvZfffvvN4eO6iiRZwvfNnw99+pifmf/s\nfmnzZmjcGE6cuOSusLCcG6O6dWHOHDMksF8/0wuV03ZhYc6FVrkyTJ0KH30E/fubYYdnZV1WEWCK\n16lOo6KbWb/4sO1QhPA6WrvmUlDlypXjyJEjWUPicpKQkEC1atWyrlevXp2EhISs6xUqVKBYsWIX\nPObi23bv3s1bb71FeHg44eHhhIWFsW/fPhISEti7dy/Vq1d3aM7S4cOHSU1N5eqrr87aV/v27Tma\nWXUqISHhgmFz1atXzzUZSUhIICwsjFLZ1tysXr16jtsGBwfz+eefM2HCBCIjI+nUqRNbt27NM9b8\nqgeGhYVRsmTJC46d/XUtrAMHDlxy7OrVq7N///6s6xEREVm/BwcHcyKH707uJkmW8G1aw+efm7J3\n115rOxr3atDALMbz7LOX3JWY+F8DtHw5xMTAnXeaKvCONFrZev+dcsstZt7X7t3QujW44LNUCN+h\nFM2rJfDz3IO2IxFCZLruuusoUaIEX3/9da7bVKlShd27d2dd3717N5UrV866ntOcp4tvi4qK4vnn\nnycxMZHExESSkpI4ceIEd999N1FRUezZsyfHRO/i/ZQvX57g4GA2b96cta9jx45x/PhxACIjI9m7\n97+5n7t37851TlZkZCRJSUmcOnUq67Y9eUyivuWWW/jmm284ePAgdevWZcCAAbk+/7xuPy+nY59/\nXUuXLk1qttE5Bw86/rlZuXLlC16D8/uuUqWKw/vwBEmyhG9TCj75BK65xnYknvHuu6YsYA6rnp47\nBy+8YIYFvv46fPWV6WHytLJlTfX5du1MAY0///R8DELYcvVVml9+keGCQniL0NBQRowYwaOPPsrc\nuXM5deoU586dY/HixQwdOhSAHj16MHr0aI4cOcKRI0cYNWpU1lpSjurfvz8ffPABa9euBeDkyZMs\nWrSIkydPcs011xAZGcnQoUNJTU3lzJkzrFq1CoBKlSqxb9++rEIbSin69+/PoEGDOHzY9Irv37+f\nbzLH4nfv3p1p06axZcsWUlNTs+Zq5aRatWo0bdqU4cOHk5aWxo8//nhBgQj4b0jev//+y7x580hN\nTaVYsWJcdtllWT1vF8foKK111rFXrlzJwoUL6d69OwCNGzdmzpw5nDp1ih07djB58uQLHhsREZHr\n2l/XXnstwcHBjBkzhnPnzhEfH8+CBQu45557ChSfu0mSJYQvKVMG3nzTLGh17r8J9rt3m2rv69bB\nhg2Qx/xejwgKghdfNBUJW7eG1avtxiOEpzTp04hfT8TYDkMIkc2TTz7J2LFjGT16NBUrVqRatWqM\nHz8+qxjGCy+8QNOmTWnYsCGNGjWiadOmBS6UcPXVVzNp0iQee+wxwsPDiYmJySoyERQUxPz589m+\nfTvVqlUjKioqa27STTfdRIMGDYiIiKBixYoAvPbaa0RHR9O8eXPKli3LrbfeyrZt2wBo164dgwYN\n4qabbiImJoY2bdrkGdfMmTNZs2YN5cqVY9SoUfTu3fuC+8/3RmVkZDB27FiqVKlC+fLlWbFiBRMm\nTMg1RkdERkYSFhZG5cqV6dWrFx9++CF16tQBYPDgwRQrVoyIiAj69OnDfRetCRMXF8f9999PeHg4\nX3755QX3FStWjPnz57No0SLKly/PY489xscff5y1b28p/67cXVvfGUop7c3xCeEqShVgrLnWcPPN\ncMcd8NhjLFoEDzwAzzwDTz1lEhxPyi/2xYtNTZK5c03PlhBKKbTW3tEKukD2tio93fTm7t1b8Mqd\nwjXUCIUeLt8dPC3z/9p2GEIUWG5/u862VdKTJXzL9u2QbXxvQFIKpk5F392DN980hSa+/tokWZ5O\nsBzRvj1Mnw5dusD69bajEcK9ihQx9Wl+/dV2JEIIIWzywq9kQuRi+3YzJu7HH21HYt3pitV44Ony\nzJxppmflUQnWK7RvbyoPduxo3kYh/FmTJpJkCSFEoCtqOwAhHLJnjyldN2qU+RnAEhOhUydT1GLl\nSihd2nZEjuncGQ4dMgsir14N5cvbjkgI18lpCsAzz5ifYWGuq+AphBDCN0hPlvB+R46YxGrgQOjb\n13Y0Vu3bB61amZ6rzz/3nQTrvP79oVs3U5hD1tES/iT7kgibNkGdOv9dT0qyHZ0QQghPkyRLeLfU\nVNNtc+edMHiw7Wis2rIFrr/eFLl44w3vnH/liNGjoUKFgH87hZdRSk1WSh1SSm3MdluYUuobpdRW\npdRSpVQZR/ZVt3IKCbtOkXxcigAIIUSg8tGvaSJgBAVBr17wyiu2I7Fq/XpTCn3kyP+GIGVJSoL7\n7rugpLs3CwqCadNg2TKYMcN2NEJkmQq0vei2ocC3Wuu6wPfAMEd2VLTsZTRUm9iw7IiLQxRCCOEr\nZE6W8G4lS8Ijj9iOwqp160zBiIkTTYW+S5yvFz19us8MpyxTBubMMYljs2ZQv77tiESg01r/qJSq\nftHNXYAbM3+fDsRjEq+8KUWTyAP8uiSYG++q4NI4hfBW1atX95r1iYQoiOrVL/7odw1JsoTwYmvX\nmgRr8mQzajJHSsHLL5sev169oHhxj8ZYWFdcYYYO3nuvqZDoI2GLwFJRa30IQGt9UCnl8CqcTa5M\n44d1vtG7LIQr/PPPP7ZDEMKrSJIlhJf6+WdTkW/KFJNo5allS4iONuPv+vXzSHyuMGAALFgAcXEB\nPyJU+IZcJ1nFxcVl/R4bG0ujVqGMey3UEzEJIYRwgfj4eOLj4122P+XNq3MrpbQ3xyfc4KefoGFD\nCAmxHYlHKWWqkJ13vgdr6lTo0MHBnfz4o+nJ2rrVo91CF8deUIcOmcVbv/jCVE4U/k8phdba68YV\nZQ4XnK+1bph5fQsQq7U+pJSKAH7QWl8yuDWnturUhr8od3V1jp8pRfHizv2PiIJRIxR6uLzgQgjn\nONtWSeEL4T1+/tnU9g7w1Wr/+MMMDZwypQAJFpjerFatfO71q1TJzDfr3dsUkxTCIpV5OW8e8EDm\n772BuY7uqNSV0VSrEcTWra4LTgghhO+QJEt4h127TII1dSo0aWI7Gmt27oT27eHddx0YIpiTGTOg\nQQOXx+VunTrBtdeataaFsEEpNRNYBcQopfYopfoArwG3KKW2Am0yrzumaFEaNi3Bxo35byqEEML/\nyJwsYd+xY6bL5oUXCplZ+IeEBLPm8gsvQI8etqPxvLffNiNFe/aEK6+0HY0INFrrnrncdXNh99mw\nIfz+e2EfLYQQwpdJT5awKy0N7roL2raFRx+1HY1Vt94K/fvDQw/ZjsSOiAhTbXDAAMjIsB2NEM5r\n2BDpyRJCiABlLclSSg1WSm1SSm1USn2qlJICzoHq9tvhrbdsR2HN+XlI7dvD0PxX4PFr/fqZxYon\nTrQdiRDOkyRLCCECl5XqgkqpysCPQD2t9Vml1OfAQq31jIu2k+qCwq+lp0O3bvC//5neG5eu45iR\nYTIWN3O2uuDFNm40wyb/+gvCwly3X+E9vLW6YGHl1lZpDWXLapKTwY+erteT6oJCCFfw5eqCRYDS\nSqmiQDCQYDEWIax46ilISjK/uzTBAmjXzqzy62MaNjSdm1IEQ/g6peDKtF8JI8l2KEIIITzMSpKl\ntU4A3gL2APuBY1rrb23EIoQt77wDy5bBnDluOkCnTvDGG27auXuNHGkKJfpYNXohLtEwbC8V+Nd2\nGEIIITzMSnVBpVRZoAtQHTgOfKmU6qm1nnnxtnFxcVm/x8bGEhsb66EohVvs2wfBwRAebjsSlwsP\n/69XqqCPc8uwuAcfNNnKzp1Qu7YbDuA+lSrBM8+Yy9df245GOCs+Pp74+HjbYVjRMOYMKxLSbIch\nhBDCw2zNyboLaKu17p95vRdwrdb6sYu2kzlZ/iQ52SyY+/jjpoyen3F0btKaNaaTaelSDywJNmSI\nqeA4dqzbDuHqOVnnnT4Nl19uFmWWcyv+JVDmZAGsGjqXe1+/kr91LQ9HFbhkTpYQwhV8dU7WHqC5\nUqqkUkphFnncYikW4QnnzpnFn1q0MCXkAtSePXDnnTBtmofWXH7kEZg+HU6c8MDBXKtkSVPSfdgw\n9yRxQnjCFbdU5gCVSU+3HYkQQghPsjUnay3wJbAB+B1QgBRt9ldaw6BBJtF67z03VHjwDSdPQufO\npthFhw4eOmj16qbXcN8+Dx3QtXr0MPnhokW2IxGicEKvqUd5DrP7b1n8TQghAomV4YKOkuGCfmLc\nOPjwQ1i1CsqUsR2N2+Q1bC4jA7p3h5AQM/zNn/LMws5FOy8sDBITc7//f/8zlQbXr/dIRXrhAYE0\nXNDcn8G8eUF06uTBoAKYDBcUQriCrw4XFIEkMREWLPDrBCs/I0dCQgJ88IF/JVhg3l6tC3/JL0G7\n/XbzmrmtCqMQbhfEn3/ajkEIIYQnSZIl3C8uDmrWtB2FNbNnw9SppkemRAnb0fgepczcrJdeQua1\nCJ8lSZYQQgQWSbKEcKNffzW1J77+2pQlF4XTrp0ZVvjFF7YjEaJwJMkSQojAIkmWEG5y8KAZ6jZh\nAlx1le1oMvnoHEel4Pnn4dVXffYpiAC3ZYuZmymEECIwSJIlXCs9HY4csR2FdWfOmFLtffvCXXfZ\njibTwYNwzTU++02vfXtT+GLhQtuRCFFwZULS2bNbzhAIIUSgyDfJUkp1UkpJMiYcM3QoDB5sOwrr\nBg0ywwOqdt6QAAAgAElEQVRffNF2JNlERJgEa9ky25FcICzM9FTldwkKgt9/Nws5Z789PNz2MxDe\nwNvbqgZHV/LnT06U4RRCCOFTHGmQ7ga2K6XGKKXquTsg4cMmToR58+Ddd21HYtXUqfDDD2YNYK8r\nOd6/P0yaZDuKCxSkOuG5c1CnDsTHO16dUAQMr26rLq94mD9XHrUdhhBCCA/J9yug1vo+4CpgJzBN\nKbVaKTVAKRXi9uiE71i2zJR/W7gwoLsWfvkFnn3WVBIMDbUdTQ569oTvvoNDh2xHUihFisCQIfDK\nK7YjEd7G29uqy2ud4c+NabbDEEII4SEOnWfXWicDXwKfAZHAHcCvSqnH3Rib8BV//gn33mtqlUdH\n247Gqq5dzVpY9evbjiQXoaFmsti0abYjKbRevWDzZvjtN9uRCG/jzW3V5VeVYPOuYNthCCGE8BBH\n5mR1UUr9D4gHigHXaK3bA42Ap9wbnvAJy5bBW29Bq1a2I7Hm3Dnzs0cPk2h5tQED4O+/bUdRaMWL\nw6OPwjvv2I5EeBNvb6suv6E8fx6tKNUxhRAiQCidzye+Umo6MFlrvSKH+9porb9zW3BK6fziE8Ib\nDB0Kr78OaWlQtKjtaPxfYqLpNP3zT4iMlLLuvkYphdZauXifXttWKQV6334ia5Vk7Y5yREW5KxIB\noEYo9HD5UBBCOMfZtsqR4YIHL260lFKvA7iz0RLCV3z1FXz2mfldEizPCA83vYbjx9uORHgR726r\nqlTh8pblZFFiIYQIEI4kWbfkcFt7VwcihC/asgUeegi+/NJ2JIFn4ED48EPbUQgv4vVt1eWXm/mE\nQggh/F+u592VUg8DjwC1lVIbs90VAvzk7sCEFztzBkqUsB2Fy4WHF74ceLNmZr0n4Tl165rXXRYn\nDmy+1FY1aADr1tmOQgghhCfk1ZM1E+gEzM38ef5ydWapXBGIVqyAa66B9HTbkbhcUpLj6zVlZMAd\nd5herPO3JSbafgaB5/y61zInK6D5TFtVrx5s3Wo7CiGEEJ6QV5Kltdb/AI8CKdkuKKUCdyGkQLZ9\nO3TvDm++aRYsCmCvvw4JCX5Q4W7gQNi3z3YUhXbTTebnypV24xBW+UxbVa8e/PWX7SiEEEJ4Qn49\nWQC/AOszf/6S7boIJImJ0KEDjBoFt+Q09SFwfPstjBtn5mH5/KjJ1FSYOTP/7byUyqz5M2GC3TiE\nVT7TVlUKTyPt9DmOHrUdiRBCCHfLt4S7TVLC3UucPQu33momwLzxhu1o3Eap/Ied7dljRkt+9hnE\nxnokLPdaudKMedy06b+MxccoBWXLmh6CSpVsRyMc4Y4S7jY5VMJdA6dPc03wH7wTfxUtbpBSpO4i\nJdyFEK7g9hLuSqnrlVKlM3+/Tyk1VilVrbAHFD7o+++hXDl47TXbkVh15gzcdRc89ZSfJFgA118P\np07Bhg22I3HKnXfClCm2oxA2eXNbFRZmEi1VqiRV9V663Jhormdewr1qUKMQQghXcKSE+wQgVSnV\nCHgK2Al87NaohHdp186MjQvweVgDB0JUFDz9tO1IXCgoCHr1ghkzbEfilIcfNuXc/bAei3Cc17ZV\niYn/Fci5OjqZB7umXFBIp7BVTYUQQngvR5Ksc5njILoA72ut/w9TGlcEEh8dSuYq06ZBfDxMneqH\nL0WvXjBnjk+X6GvaFCpUgCVLbEciLPKJtqpe9Dn+kgqDQggXCg/ngt7xiy/SW26HI0lWilJqGHAf\nsFApFQQUc29YQniP336DZ56Br76C0FDb0bhBdLRZIdXHs8eHH5YCGAHOJ9qquo1LsXVfadthCCH8\nSH5L0EhvuR2OJFl3A2eAvlrrg0BVwH+rHwif7tFwtaQk6NoV3n/fLCTqt0K87oR/gfXoAatXwz//\n2I5EWOITbVV029r8c6I8aWm2IxFCCOFOUl1QXOj4cejSBT75BKpWtR2NR11cXTAjAzp1gpgYePtt\ne3GJvGV/3wYONJUGR4ywG5PIW6BVF7xY7dqwaBHUrXv+8XJuy5WkuqAINPl9hshnTOF4orrgnUqp\n7Uqp40qpZKVUilIqubAHFF7s3Dm4+27TZVOliu1orHv5ZUhOhjFjbEciHPXgg2benBTACDy+1FbV\nrQtbZV6WEEL4NUeGC44BOmuty2itQ7XWIVprf5yZEti0hieeMKc73n3X5+fnOGvJEvjgA/jiCyjm\ndbM6RG4aNYLy5c2qAyLg+ExbVbeuWddNCCGE/3IkyTqktd7i9kiEXWPHmoVpP/8cigb2Ipn//AO9\ne5sFhyMjbUfjYfPnQ2qq7Siccr43SwQcn2mr6tWTniwhhPB3jnybXq+U+hz4GjOpGACt9Ry3RSU8\na/duU9lhxQo/LZ/nuNOnzYLDQ4dCq1a2o7HgvffMi9Ctm+1ICq1nT3jhBVO0JCzMdjTCg3ymrapb\nFz72ihW8hBBCuIsjPVmhQCpwK9Ap89LRnUEJD6te3ZTwjoqyHYl1jz9uJqUPGmQ7Ekt69DBdeD4s\nPBzatvX5pyEKzmfaqrohCfz1x1nbYQghhHAjqS4oRCalzDCetWv9oqJ54SQlQY0asHevz/Rq5lQ1\naelS05u1bp2dmETeAr26oF75I2VbN2bXocsoV04qf7maVBcUgUaqC7qHJ6oLxiilvlNKbcq83lAp\n9UJhDyiEN1qzxvz83/8COMECM77uxhth7lzbkTjl5pvh4EH44w/bkQhP8aW2StWNoS7bZF6WEEL4\nMUeGC04ChgFpAFrrjUAPdwYlhCclJJh5WGB6sgLeXXfBV1/ZjsIpRYqY4iVSACOguKWtUkoNVkpt\nUkptVEp9qpQq7uw+qVCBukHb+Wv9Cad3JYQQwjs5kmQFa63XXnTbOXcEIzwgIwP69oVffrEdiVc4\ncwa6doWHHrIdiRfp3Bnuu892FE574AH49FNIS7MdifAQl7dVSqnKwONAE611Q0yxKOdPMipFvYqJ\nbF173OldCSGE8E6OJFlHlFK1AQ2glLoLOODWqIT7DB0K27aZBYcDnNbw6KNm3eXnn7cdjRcpW/a/\nrj0fFh0NtWrBt9/ajkR4iLvaqiJAaaVUUSAYSHDBPqlb6yx/bZZVs4UQwl85UsL9UWAiUE8ptR/4\nG/D909yBaMIEM9dm1SooWdJ2NNZNmAA//wyrVwf82st+67774JNPoH1725EID3B5W6W1TlBKvQXs\nwVQu/EZr7ZK0vd6dDdg6tpwrdiWEEMILOVxdUClVGgjSWqe4N6QLjinVBV1l4ULo1w9+/NHUKA9w\nK1aYpaBWrfrv5ZDqO74pr/ft8GGoUwf27YPLLvNsXCJ37qwu6Mq2SilVFvgK6AYcB74EZmutZ160\nnR4+fHjW9djYWGJjY/Pc9+nTptM4JQWKF5fPHleS6oIi0Eh1QdeIj48nPj4+6/qIESOcaqtyTbKU\nUk/m9UCt9djCHtRRkmS5SEoKXH45zJ4NzZvbjsa6PXvg2mth+nS49db/bpcPId+U3/vWsaNZ/ssP\nppn5DVcmWe5sqzKHHLbVWvfPvN4LuFZr/dhF2xWqrapZE775BmJi5LPHlSTJEoFGkiz3cLatymu4\n4PlC1nWBZsC8zOudgIsnFwtvFhJialmXLWs7EutOnoQ77oCnnrowwRK5SE83pfp82H33wbRpkmT5\nMXe2VXuA5kqpksAZoA3gstXXYmLMFFkhhBD+J9/hgkqpFUCH80MvlFIhwEKt9Q1uD056soQLZWSY\nSoJlypjS3hfPw5IzPRc5fhyuuAJ27jTjmbxUfu9baqopbrJlC0REeC4ukTt3DBd0V1ullBqOqSiY\nBmwA+mmt0y7aplBt1eOPm+HKgwfLZ48rSU+WQGv4+2/YuBFOnIDQULjmGr9tBKQnyz3cvhgxUAk4\nm+362czbhPApw4ZBYiJMnCiFLhxSpgxUqwbffWc7EqcEB5uq9J99ZjsS4WZuaau01iO01vW11g21\n1r0vTrCcUaeO9GQJ4TYPPACTJsHixTB+PNSvDy1bmjNvQniAI0nWDGCtUipOKRUH/AxMc2dQQrja\nRx/BnDnm4sWdMt6na1efX5gYzFDBTz+1HYVwM59rq2KOrWXbelkrSwiXU4rUJSuY0HEhHY59SqUN\nSyh18gi3bxpN74eDbUcnAoRD1QWVUk2AVplXV2itN7g1qv+OK8MFC2P0aNMtLpOOAPj+e7jnHlNR\nsG7d3LeT7vQc/PMPNGsGBw5AUUdWfPA8R9639HSIijJ/C/XqeSYukTt3VRf0tbZq1yNvEjuzP3uP\nl5HPHheS4YICICkJHn7YnCu87jooVw6OHTMj4f2tHZDhgu7hieGCaK1/1Vq/m3nxSKMlCmniRDPL\nv3Fj25F4ha1bTYL12Wd5J1giFzVqQPXqJkP1YUWKwN13y5BBf+drbVX1q8vzb0op22EI4btSU2HA\nAEi4dI3wsDDzmd+tG1StCqVKQWSk/yVYwns5lGQJHzF/PsTFwZIlULGi7WisO3QIOnSAV16B1q1t\nR+PDevUyxS98XPfu8PnncjZPeI8iMbWpVWK/7TCE8E0pKXDzzXDmDJQvX/j9bNjAuWMnOHs2/01t\nCQ83vVG5XcLCbEcociJJlr9Yswb69oW5cyE62nY01qWkwG23mbk4ffvajsbHDRwI/fvbjsJpzZub\nk56bNtmORIhM0dHUSd9qOwohfM/p09Cli6mAO20a364ozpkzhdzXpEnsaN2Pe3tq0tNdGqXLJCWZ\nE4S5XRITbUcocpJvkqWUelwpJTmyNzt79r/FgJo1sx2NdWfPwp13QtOmMHy47WiEt1Dqv94s4X98\nsq2KiCBG/0VxTtuORAjfkZ5uVpivWBEmTODTmYrevWHv3kLu7623iDm9kSs2fcYrr7g0UhHgHC3h\nvk4p9YVSqp1SUvza6xQvDuvWma6bAJeRAX36QOnS8H//J6XaxYVkyKBf8722Sili7m6CxvtDFcJr\nLFtmqlfMmMHSb4vw5JPwzTdODOIpVYqgTz7mhSMD+fK9A8THuzJYEcgcrS6ogFuBPkBT4Atgstba\nrRM1pLqgKAit4emn4eefzWdwqQLOJ5fqO76pIO+b1qYh/vJLuOoq98YlcufG6oI+11YtXw6xsfLZ\n40pSXTAAnD3Lr5uK07atmSXRooUL9jl0KPt+OUirHdPYtMmcrPUWzn4/ke83heOp6oIaOJh5OQeE\nAV8qpcYU9sBCuNrIkeZs1rx5BU+whO8KC8t7QnD2S1AQ7NoFTZqY6+HhtqMXruSLbVWdOrYjEML3\nHE0pTteuZo1hlyRYAM8/T9WDv3Dr1UeZNMlF+xQBLd+eLKXUQOB+4AjwEfC11jpNKRUEbNda13Zb\ncNKTJRw0ZgxMmWLOCleqVLh9yJmefKxaBcnJ0K6d7UicsmGDmbO3a5dJuuQ99zx39GT5alultfk7\nTEyUCmGuIj1Z/i81FRYsMEPAXSojg5STQQQHm6U/vIX0ZNnhiZ6scOBOrXVbrfVsrXUagNY6A+hY\n2AMLJwwfbsq1CwDGjTPLg333XeETLOGAQ4fgzTdtR+G0xo2hWDFYv952JMLFfLKtOj9zbPt2u3EI\n4UuCg92QYAEEBRES4l0JlvBdjiRZi4Gs4pBKqVCl1LUAWusthT2wUqqMUmq2UmqLUmrz+X2KfEyY\nALNmmXrUgokTYexYk2BVqZL/WhKyzoQTbr0V1q6FY8dsR+IUqTLot9zSVnmKJFlC5OKHH8xkayF8\njCNJ1gTgRLbrJzJvc9a7wCKtdX2gEeD1jaB1X38No0aZxYYrVLAdjXUffWRejm+/herVzW35rSUh\n60w4oXRpuOEGWLzYdiROu/tu+OIL21EIF3NXW+V27VjMts1ptsMQwvskJ0Pv3nDiRP7bilzlN3dZ\n5ie7hyNJ1gWDzTOHXhR15qBKqVCgldZ6auY+z2mtk53Zp99btQoGDDDDBGvVsh2Nde++C6NHmxNc\nsvayB3XpYko5+bgrroDLLrMdhXAxl7dVnhJLPNt+S7UdhhDeZ8gQaNsW2rTh7FkPH9uPJjElJuZ9\nkjkpyXaE/smRJGuXUuoJpVSxzMtAYJeTx60JHFFKTVVK/aqUmqiUknpwuTl3Dvr2hRkz4OqrbUdj\n3SuvwPvvmyIXkmB5WKdOsHQpnm/tXOv8kEHhV9zRVnlEUdLYttV/vtAJ4RLLl5sTy2+8wdy5cMcd\nHj5+u3Zs/nILfft6+LjCbzhylu8hYBzwAqCB74ABLjhuE+BRrfV6pdQ7wFBg+MUbxsXFZf0eGxtL\nbGysk4f2QUWLmsWGA/zUu9bw3HOmRPuKFRAZaTuiABQRYYat+sA6r/np2hVGjDB/V37wdLxafHw8\n8e5f4dMdbZVHnKYk2/eXkr9FIc47fRr69YPx40kOKsujj8LMmR6O4brrqLv4HRYu/JAtW6B+fQ8f\nX/g8hxYjdvlBlaoErNZa18q83hIYorXudNF2UsJdAKbjpG9fMzl8/vzcp6RJmVLhqPOls9evlw5i\nT3PXYsS2ONtWPabe5/OSvfnj7xAiIlwYWICSEu5+YONG+OADGD+exx+HU6fMPGyPOngQ6tfn5f+3\nh0OpIYwb5+HjZ+Pu7zby3SlnzrZV+fZkKaUqAP2BGtm311o/WNiDaq0PKaX2KqVitNbbgDbAn4Xd\nn/Bvx4+bXofLLoPvvzelW4Vw1vkegzlzJMnyB+5oqzxlB9HUKbGHbdsaSJIlBEDDhjB+PGvXwpdf\nwubNFmKIiIAbb+Thcl9QZ1JfXn3V1H9yl/Dw3OdGSfVj3+TInKy5QBngW2BhtouzngA+VUr9hqku\n+IoL9ukfLJ9OcKYMuqsr1OzZA61aQd268NVXkmAJ1/vqK+v/csI13NVWud06mhFzTRjbttmORAjv\nkZ5u6n299ZbF6nd9+xL+v8m0bAmffebeQ+VVHVmqH/smR+ZkBWuth7j6wFrr34Fmrt6vz9PafKp0\n6gSdO1sJ4fw/emG4cj5BfDzccw888wwMHixzFYR7nDwJW7bA5ZfbjkQ4yS1tlSckUo6YWFkrS4js\ngoJMJeEbbrAYRPv28PbbPHZ/MvOXhzq1q7x6qkB6q/yRIz1ZC5RSt7k9EmEMG2bGIt90k+1IrNHa\nfLD26AEffwxPPikJllc6edJ2BC5xxx1myKDweT7dVsXEID1ZQmSjFNx4o+X2v2hR+P57buka6vSc\nrPzW8ZTeKv/jSJI1ENN4nVZKJSulUpRSsqaVO7z9tlmDaOHCgK0kmJICvXrB1KmwejXcfLPtiESO\n0tOhZk0zMdjHde0qSZaf8Om2qk4dSbJEgPvlF0iTRbmF/8g3ydJah2itg7TWJbXWoZnXneszFZf6\n5BOTZC1dCuXL247GirVr4aqrzMTSVavMd3jhpYoUMacYFy+2HYnTWraEffvg779tRyKc4ettVXQ0\n7Nplzl8IEXAOHzaLDu/ebTsSIVwm3yRLGfcppV7MvB6llLrG/aEFkNRUGDMGliyBatVsR+OUsLDC\nF8249lrTMfLhh1Lgwid06GB6XX1ckSLQpQv873+2IxHO8PW2qnRpc35t717bkQhhwejRZhJ2dLTt\nSIRwGUeGC44HrgN6Zl4/Afyf2yIKRMHBsGGDX8y8T0zMe8zxxZeNG+GaayA21lQS9JNpPoGhfXv4\n9luziJmPu/NOGTLoB3y7rfr1V2KCdsiQQRF4duyATz+Fl17iq69gyhTbAQnhGo4kWddqrR8FTgNo\nrZOA4m6NKhAVKWI7Ao86fRpefNHU9+jXD777DqKibEclCqRSJVNb/8cfbUfitJtuMuuwHDhgOxLh\nBN9uq4oXJyZ5vSRZIvAMGwZPPsmpyyrw5JNe3Jn10UfoFSt5/HE5ISwc40iSlaaUKgJoyFrwMcOt\nUQm/pbWp7dGwoflS+/vv0L+/KdUqfNC99/pFZlKihBn9OHeu7UiEE3y7rapVizonNrBtqyzaJgLI\nb7/BmjUwaBDjx5uF4a2WbM9LSgpq6hS2b4f5820HI3yBI19txwH/AyoqpV4GfkQWDnZOgFbP+e03\naNMGnnsO3nvPDM+qXNl2VMIpTzxhEi0/cOedZmFi4bN8u60KDiYm9CDbN522HYkQntOoEfz0Eynp\nwYwZA6NG2Q4oD3fdBfPm0e2OczK8XDjEkeqCnwLPAq8CB4Dbtdaz3R2Y3zpxwlRl++EH25F4zJ9/\nmvmsbdtCt26m96ptW9tRCXGhtm1NhUtZq8Q3+UNbFVMzTYYLisCiFFSrxjvvwC23QIMGtgPKQ1QU\n1KjBnZV+4ptvzLQHIfLiSHXBakAqMB+YB5zMvE0U1Jkz5nR5/fqm0oOf27TJLCgcG2uGB+7YAQ8/\nbNb2E8LblC5telplGIhv8oe2qmaDYPb/W4wzZ2xHIoRn7dwJcXG2o3BAly6ErZxHw4ZmLrkQeXFk\nuOBCYEHmz++AXYDvL47jaefOQc+eEBoKEydaXsLcfTIyzJfUm282Z6Wuusqs/TJsGISE2I5OiLzd\nfrvMy/JhPt9WFXtxKFFR5jNTiEAybZoXF7zIrnNnmDuXO27XsuyHyFe+fQpa6yuzX1dKNQEecVtE\n/igjw1R3OHEC5s3zy0qC+/fDxx/DRx+ZtbIGDoTu3aF4AWt7nV9nq7DCwgr/WBF4cvt7c/RvMCxM\nhhd6C79oq6KjiakP27ebAQ9CCC/TqBEsWUKf8opz52wHI7xdgQduaa1/VUpd645g/NahQybBmjPH\nlDHzE6mp5qz/tGmwbp2Zb/XJJ2ZR4cImSvKF1UctWgRly0KLFrYjKZCc/t5iY+Hpp6Fjx/wf76cd\n0n7Bl9qqi5P9RYsuvV8+G4Xf+PRT8wffs2f+23obpSA6mrK24xA+Id8kSyn1ZLarQUATIMFtEfmj\nyEiY7VPzr3N17BgsXGjyxW+/heuugwcegK+/hlKlbEcnrNm+3aws7WNJVk4yR4M4lGQJ7+HLbVX2\nBGrCBLM2/cSJ/90mybzwG2fOmBLDs2bZjkQIt3NkTlZItksJzHj3Lu4MSngPrU11wHHjoH17qFYN\nvvgCOnUy8waWLDGVAyXBCnAdO5rT7xm+syxRbrp0MfMK/eCpBBq/aKtiYpAKg8J/TZ5sSgi2aEFS\nku1ghHAvR+ZkjfBEIMK7TJtmeqq+/96McGzTBh580CRYUsBCXKJ2bShTBn79FZo2tR2NU2rXhvLl\nTTn35s1tRyMc5S9tVZ06pmNYCL9z6hS88gp8/TXbt5uh2bt2+dUsCp+V33x4GbJcOI4MF5wP5LoE\nvda6s0sj8gc7d5pvaj4iMdEs2/XddyaxAli82CRWI0dCrVp24xM+omNHM5bUx5MsML1Zc+dKkuVL\n/KWtqvrBCyQdiePEiaJcdpntaIRwoQ8/NO1D06YM72mWdPHZBCsjAxISOFOhKomJZlaIL8svgZIh\ny4XjyHDBXcApYFLm5QSwE3gr8yKy++47M1EpwXunAqSmwrJlMGSI+byrUcNUBaxd2/RUAXz+OQwY\nIAmWKIAOHUyS5QfOz8sSPsUv2qqgIIgOOyq9WcL//PYbjBzJH3+Yr0oDB9oOyAnbtkGLFsz+QvOI\nb9UwFR7kSHXB67XW2U9Nz1dKrddaD3ZXUD7r55/NBKUvv4TKlW1HkyU93YziWrbM9FStXWuqkN58\nM4wda87WF7TUuhCXaNkSXnvNdhQu0ayZKfKyfbsZviV8gn+0VbVrE1NiN9u2VeKqq2wHI4QLTZsG\nwIu3m5O8Pj31oG5dAG6r9ReP/VCfs2fle5S4lCM9WaWVUln9GUqpmkBp94XkozZtMmOMpk6FG26w\nHQ27dpme+bvugooVTQXAf/+FJ5+EAwfgp59gxAgTqnwwCJcoVgxuusl2FC4RFGSKu8ybZzsSUQD+\n0VbVrk2d9K3SkyX80tq1sH69GSro05SCtm0JX7eUmBjznUqIizmSZA0G4pVS8Uqp5cAPwCD3huVj\nduyAdu3g7bfNkCkLzp41vVQDB5phf9dfDz/+aIY9bdwImzfDO++YaTM+ffZICA+RIYM+xz/aquho\nYpLXS4VB4ZciIuDjj/2kInHbtrB0Ke3amUrLQlxMaZ3rPOH/NlKqBFAv8+pfWuszbo3qv+NqR+Kz\n7u+/YdUquPdejx42MdFUzZ4/H5YuhXr1zNn3jh2hYcPCT1RUypRuFyKQnT4NlSqZOjbly+e8jfyv\nFI5SCq21y6dSu6utUkqVAT4CrgAygAe11j9nu991bZXW/FSyDU81XMaadUUy9y9/ZwWhRij0cHnB\nhJslJUG1aqyYc4SnnivBunV5b+7L/8e+HLsznG2rHKkuGAw8CVTXWvdXStVRStXVWi8o7EH9Ts2a\n5uIBycnm7Ppnn5meqthYc8b93XfNGSIhhGuULGnmLS5cCL17245G5MfNbdW7wCKtdTelVFEg2AX7\nzJlSxKz9hG2tHRloIoSXS02FYPf9u1gVFgb33MO1tQ5Tq1ZV0tOhSBHbQQlv4sin+FTgLHBd5vX9\nwGi3RSQucfq0qaXRtStUrWoqAPbsCfv2mYSrb19JsISXOeORzm63O1/KXfgEt7RVSqlQoJXWeiqA\n1vqc1jrZ2f3mpXzDymitOHrUnUcRws2OHDGVg44ftx2JS4SHmx6dCy6TJlIyuipffAFFi+Zwf7ZL\nWJjtZyA8zZEkq7bWegyQBqC1TgWkYr4H/PYbPP64SawmTIDbboN//jHDA++9V+ZWCS+1aZNfrJUF\n5n/uu+/MGprC67mrraoJHFFKTVVK/aqUmqiUcuuMEqXMd1OZlyV82pgxZqhNmTK2I3GJpCQzZK6w\nF1nMN/A4UsL9bGaDogGUUrUB/zhNnYfwcPMPdbEQkunBZ0yiP3m134VdHTslxfRKpaZeePv335tL\nv37570NW5hZWXX45HDpkzgjUqGE7GqeULw+NG5tEq2NH29GIfLirrSoKNAEe1VqvV0q9AwwFhmff\nKC4uLuv32NhYYmNjnTpoTAxs3WqWXRTC5xw8aBbg3LiRn36CsmWhQQPbQQmRt/j4eOLj4122v3wL\nXz4tSigAACAASURBVCilbgFeAC4HvgGuBx7QWrsuityPba3wRY6T/E6eNFUEr7gCxo/Ps7JEQScJ\n7twJ770HM2aY5G7JEjMfpDDje52doBioExyFC91/v1mAzQ9WaRw7Fv76CyZOvPQ++V8pHHcUvnBX\nW6WUqgSs1lrXyrzeEhiite6UbRuXt1UjR5pRty+/LH9nBSWFL7zAoEGgNelj36VhQ3jjDTMywJcF\n8v9hoD53Z9uqPIcLKqUU8BdwJ/AAMAto6okEy+ucPg23327qo//f/xW+dF82Wpsz5J07m++jJUua\nIYJgKoPKBErhszp0MKUv/UDnzmaIbkaG7UhEbtzZVmmtDwF7lVIxmTe1Af50dr/5iamjZbig8E37\n9pk67cOGMXOm6cVq3952UEJ4Xp5JVuapuUVa66Na64Va6wVa6yMeis17nD1rVvUtVw4mTzYrlToh\nIwPmzIFmzeCJJ0zZ9d274bXXoFo1F8UshE233gorVvjFZKboaDN8eO1a25GI3HigrXoC+FQp9RvQ\nCHjFhfu+VHo6MQ+3Yfs2yeyFjxo/nrRyEcTFwSuvuOS8tPf6918YN44tW8xXRCHOcyRb+FUp1czt\nkXizZ581ZWM+/tip7qW0NLOLK66AV1+FF16AP/6A/v39t8KpCFBhYaY3a9cu25G4hFQZ9Alua6u0\n1r9rrZtprRtrre/UWru3XFqRItQJP8r27dKDKnxQ1apw991MmWIG/9x4o+2A3KxUKXjuOfSp07z8\nsu1ghDdxpPDFtcC9SqndwElMtQettW7o1si8yZAh5lR2sWKFenhaGkydahKr6tXNmlY33+znZ3aE\nmDXLdgQu06UL9Olj/oeF1/KrtiqkTgShx86SkFDSdihCFJjW5rvOtGm2I/GAkBC44grqH1vNyZOt\n2b3bfNcTItckSylVU2v9N9DWg/F4p8jIQj0sIwM+/xxeeskUWfvkE7j+eteGJoRwv2bNTMXOHTvM\n8EHhPfy2rapdm5idR9m2rYrtSIQoMKVgzRoIDbUdiYe0bo1aHk/Llq358UdJsoSR13DBLzN/TtFa\n77744ongfNX5CixNmsA778AHH8CyZZJgCeGrgoLM3Mn5821HInLgn21VdDQxJXdL8QvhswImwQLz\nBe+nn2jVClautB2M8BZ5DRcMUko9B8QopZ68+E6t9Vj3hWVRRkbmOL7CjeVbswaeftr8Pny4KUgo\nwwKF8H2dO5ty7oMH245EXMQ/26ratYnR29i2rYXtSITI365dptBRoC6G1aIF9OxJq5fPMWmSIzNx\nRCDIqyerB5COScRCcrj4n4wMeOghmDChwA/duxfuvdcUITy/YPAdd0iCJYS/aNMGfvlFFvr2Qv7Z\nVnXsSMzo+6UnS/iGoUNhwQLbUdgTHg7TptHoinRee812MMJbOLIYcXut9WIPxXPxsT23GHFGhlk4\nddMmWLwYFRri0MJrJ0/CmDHw/vvw6KOmEOFllzm3cJvtxYQDddE54Sbvv28WJ/aDsSNdukD37uaE\nCsj/SmG5aTFiv2urtmwxf3Pbt8vfWUHIYsQe9vvvZnHPnTuhdGnb0bhNIH/eB+pzd+tixAC2Gi2P\n0hoeeww2bjQLqIbkf/JTa/j0U6hXD7Ztgw0bYORIk2AJIbKZPx++/dZ2FC7RuTPMm2c7CpETf2yr\natWCPXtsRyFEPoYPhyFDOHSiNJ06ybIDQpzn3Kq6/kBrsyLwhg2wZIlDZ9u3bIGbbjLzMz7/3FSq\nlkWEhchFhw6wcKHtKFyiY0dYutSsTy6Eu5UoAZUr245CiDysWwfr18NDD/Hqq1CzpikUJITII8lS\nSnXL/FnTc+FYcPw4JCU5lGClpsJzz8ENN0DXrrB2rZnr6G3CwkzXbmEvYWG2n4HwK7fdZnqI/WCs\nQaVKUL8+LF9uOxJxnr+3VTExtiMQIg+jR8MLL7D3SClmzDDfkYQQRl7nG4Zl/vzKE4FYU7asWcCq\nTJk8N1uwwBTN+ecfM6rwscegSBHPhFhQiYnm+2xhLzKxX7hUdLQZgrthg+1IXEKGDHod/22rMjKI\nqXHGdhRC5O7DD+HBBxk1CgYMgIgI2wEJ4T3yqjN5VCn1DVBTKXXJVwqtdWf3heU99u2Dxx+HzZth\n0iS4+WbbEQnhgzp0ML1ZTZrYjsRpnTubzrlx42xHIjL5b1v1xRfErDkB9LMdiRA5i4hgxw6YMwep\nhAnmhVi3jvFRr3L8OAwblv9DhP/KK8nqADQBPgbe8kw43mXSJNP1/eijZt5VyZK2IxLCRz3yiFlD\nxQ9cfjkULWp6tIVX8N+2KjqamJTJSJIlvNmuXab2RXi47Ui8QJUqMHIkUaNeZe5cSbICnSMl3Cto\nrQ8rpS4D0Fqf8EhkuKEsbnq6qVRxzz15LmC1axfUrg3NmsGUKXDFFQU/lM0S7kII9xo82HyheOkl\n+V8tDDeVcPeftuq8pCT+qdqSmqmbcPHL5dekhLtwB4e+m509C+HhHNmYQHSTUBIT/aMQSKB+L3V7\nCXegklJqA7AZ+FMp9YtSqhBph2XnzkGfPqZ76kzOY9zT0+Gdd+Caa8z1VasKl2AJIfybzMvySv7R\nVmUXFkZU8UOAKbwkhPByxf8/e/cdHkW5PXD8e1IogQQSagIhNAHFgnQQNIAUpalcEBDkoqBe5VpQ\nr4LyA8RrF9u1wVVQFFSw0RQVDVjggtKrIJgQihACJHRI3t8fs4kBUzbJ7s7u7Pk8zz7ZnZ2dOZPZ\n3XfPzDvnLQMtWlB1+3KqVrWqUavg5U6SNQUYbYxJMMbUAe53TQscZ87A0KGwd69VSjqffn+bN0OH\nDlZ32mXLrGlhhXWmVEoFrQ4drHE3lV8J/LYqH6EX1Kc8J9i+3e5IlMIaBOv227VCVmGuuAJ+/JF2\n7f78PamCkztJVgVjzHc5D4wxSUDgDOl9+jQMHGiVap83DyIiznn67Fl44gno2NHKw5KS4IIL7AlV\nKRUYwsPhmmvsjkKdJ7DbqoI0a0YUGVpUQPmHjz+GVat0rJfCtGsHK1fSrp1jiuqqEnLnXM0OERmH\ndVExwBBgh/dC8rAxY6xM6tNPrZEd89i6FW6+2Roe65dfICHBphiVCiZZWf47/kEx9OkDM2faHYXK\nI7DbqoJMmcIfU7Vym/IDWVnWhagvvsievUKNGv73VR4TYw19WpDoaB+chOveHbp1Y4RYB+RU8HLn\nTNYtQDXgE6xxSKq6pgWGsWNh9uxzEqzsbPjPf6wzujffDIsWaYKllE9Mnmw10g7Qo4f196jPyiuo\nIgR2W1UETbKU7WbOhKpVMV270bevNX6ovzl0qPBxQAtLwDymTBkoW5YyZQqtsaaCQJFnsowxh4C7\nfRCLd1Spcs7DXbvgllsgM9MqbNGokU1xKRWM2rSxxkT497/tjqTUKlWyrtuMjCzZ631yRDWIBHxb\nVQRNspStzpyBCRPg7bf59DPh7Fno3dvuoJTybw4oLOkeY+D996FFC0hMhB9+0ARLKZ9r08Y60rF7\nt92ReMTkyfD3vxd+5NTWI6rKMTTJUrbavBlatyarw1U8+qh1LbsTSpMr5U3O+oikp1t9Ac+TlgYD\nBlhfCl9+CY88opUDlbJFWBh06wYLF9odiUf07m11mcnKsjsS5XRnzuiZT2WjSy+FWbOYMcPqIJTT\nXdpJYmKs7n0F3bTWhyquIpMsEbnCnWklISIhIrJKREo/4kxysnWUfNGicyYvWGB9NyQkWMUtmjcv\n9ZqUUqXRs6djkqy6dSE2FpYvtzsS5c22ym7xpNCoQRbbttkdiQpmp05ZPQaffNKZ1xoVdT1XsQ9y\n/PEHnD7Ntm35Hv9XQcCdM1mvuDmtJO4BNpV6KVu3WjXYR43Krat8/Djcead1+cesWfDcc/kOj6WU\n8rUePWDPHscMH68DE/sNb7ZVtnqJe7ggYrd2GVS2CguD//7XGidQuaFXL1i5kmuu0UGJg1WBneZE\npB3QHqgmIqPzPBUFlLpop4jUBq4F/g2MLmL2gq1ZYyVWTzwBw4cDsG4dDBpkncFaswYqVy5ttEop\nj6laFf73P7uj8Jg+fWDYMHj6absjCU7ebqv8wXYa0qhcCr/+WsfuUFQQCw2Fq6+2O4oA0qYN/O9/\ntGt3BcuXQ9OmdgekfK2wM1llgIpYiVhknlsG8DcPrPsF4EGg5Iezf/nFur7jlVdg+HCMgZdfhi5d\n4KGHrGqjmmAppbypZUs4fFgLE9jI222V7X6jAY2yNut7TPlWZqb2cysNV5LVti0sW2Z3MMoOBZ7J\nMsYsAZaIyHRjTLKIVHRNL/WoMCLSE/jDGLNGRBKBAnv3TpgwIfd+YmIiiYmJfz5Zrx589BEkJrJ/\nv1XlKy3NejM3bFj0oHSF0QsclVLuCAmxCmDMmwf33293NP4pKSmJpKQkryzbm22Vv/iNBozI/Jhf\nD4+0OxQVTO66yyrJfM89dkcSmNq0gXHjaPsvePNNu4NRdhBTxHURInIxMAOIcU1KA4YZYzaUeKUi\nTwBDgLNAeayjjp8YY24+bz5TVHxgVQy85Rart+CECX+OsC1i32UfpVm3nXErpYpv/nx49llYssT9\n1wTz51xEMMZ49NJ5b7RVxVi3W21VSdWTnayp3ZtahzaQmenMogOeJBMFMz5IP1yesm4ddO0K27ZB\nVJTd0bitqO/Vwp73+HeyMVClCqfXbia6SQ3++AMqVvTg8n0oWNur0rZV7hS+mAKMNsYkGGMSgPtd\n00rMGDPWGFPHGFMfGAh8e36C5Y5Tp+C++2DkSKtr4L///WeCpZRSvtKlC6xeDQcP2h1JUPN4W+Uv\ndhFPpXoxVKxo2LPH7mhUUBgzBh55hM27o5g61e5gApQI3HgjZdL2cNNNsH+/3QEpX3MnyapgjPku\n54ExJgmo4LWICmIMnD2b+3DTJutMbEoKrF1rDTCslAoghw7BjBl2R+ER5ctD586OqUwfqPyjrfKC\nqOgw5Pul/PGHULv2uWP3xMQU/XqlimXJEutH1u2389BD1qVZThEd7eNxsF5/HS6/nClToH59Lyzf\nRwr7v+l3UMHc6S74KbAKqxsGWN38WhhjrvdybIiIAUMoZ3mT29lBfZ7gEbdfHx1t3+CN2l1QqSJk\nZECtWrBvH1QI/N/Cb78NX3wBs2e7N38wf8691F3Q1rbKm90Fc9x6q3Vw8bbb8q47eN9HBdHugqVg\nDLRrB6NGsSR+CH//O2zZAmXL2h2Ye/Tz4HtO/p/7orvgLUA14BPXrZprmk+YY8c52+t6bu2xh/t+\nv5e+feHyy60xBwobNK5EA8cppXwnKgpat4Zvv7U7Eo/o2RO++srqxqxsYWtb5QuNGmkVS+VlxsCD\nD5I9cDAPPGCNjhMoCZZS/qbIJMsYc8gYczdwFXClMeYeY0wJa/aVwNVXQ+XKLL53Hpd3qEDDhlb1\nwCZNfBaBUspbrr0WFiywOwqPqFHDGgfFS0X0VBFsb6t8QJMs5XUhIdCvHx/NsX4e3nijzfEoFcCK\nTLJE5BIRWQ1sADaKyC+uKk4+cbrtlTwc9y433xLG22/Dc8/pURWlHKNnT+tCJof0NejTB+bOtTuK\n4GR3W+ULmmQpX1mwwKqYGuJOfyelVL7c+fi8iY0Vm9ovfYqNm4Q1a6xqokopB2ncGMLCYIPXq2z7\nRE6S5ZCcMdDY2lZ53alTNEj+lt9/P6cGlFJe8e67WlDMY3btgm++YdMmx/SOV27y++qCw4dbP1qq\nVfPVGpVSPiNijdJYtardkXjEhRdaZ9rXrLE7kqDk2OqCABhDuRuuJTbW8PvvdgejnE7HYvOgXbtg\nzBi2bbN6Y6ng4U6StUNExolIXdftUWCHtwPLcddd+mFXytG6doXYWLuj8AgR7TJoI1vbKq8rVw5i\nY2lU+7h2GVSetW4dTJtmdxTO1awZbNxIq0tOsmKF9nQIJsWtLvgxUBWHVWxSSilP0STLNs5vqxo3\npnHl/WzZYncgyjGMgdGj4fhxuyNxrogIaNyYuANrKVcOdu60OyDlK2GFPSkiocAjropNqhhyBm4r\n6WuVUoHpiiusRjQ1FWrXtjua4BA0bVXjxlyY+hurNtezOxLlFAsWwJ49mNtuJ+2AXprhNa1bw4oV\ntG7dhhUrAntgYuW+Qs9kGWOygA4+isVR0tOLHsdLx/dSynnCw63K9PPn2x1J8AiatqpxYy48tYbN\nm+0ORDnC6dPwwAPw/PPM/jSMG26wOyAHcyVZrVrBypV2B6N8pdAzWS6rRWQuMBs4ljPRGPOJ16JS\nSgWfnI7qDrgIs08fmD4d7rjD7kiCivPbqjZtuHDvMja9an1cHPBRUXZ66SWoX58TV/XgwQutioLK\nSzp3BqBPW/jtN5tjUT4jpogr8EQkv6shjTHG633dRcQUFZ9SyiGuvRbGj4c2beyOpNSOHLG6Cu7d\nCxUr5j+PSPBeAC0iGGM8miIES1tlDFSpAps3WwNgB/P7qCAyUTDj9Z9SKGOgb194/nkmfXAB69bB\n7Nl2B1V6+nnwPSf/z0vbVhV5JssYM7ykC1dKKbddfLE1MLEDkqxKlaBdO/jqK7QLjo94s60SkRDg\nZyDVGNPHW+txLxZrqICcJEupEhGBuXNJTrZOaGkXNqU8T8fyVkr5h549rYuwHUKrDDrKPcAmu4PI\nkZNkKVVa998P99wD9bSWilIep0mWUso/tG9vdVbft8/uSDyid28rZ8zKsjsSVRoiUhu4Fviv3bHk\n0CRLecrEifDgg3ZHoZQzaZKllPIP4eHWwMRffGF3JB6RkAC1asGyZXZHokrpBeBBwG+uOtAkS3lK\n06bWONdKKc8r8posEakBPAHEGWOuEZGLgHbGmLe8Hp1SKrj07AkbNtgdhcfkdBns4Pzi4rbzRlsl\nIj2BP4wxa0QkESjwAugJEybk3k9MTCQxMbGkqy1caioXJm9g8+Ye3lm+cq60NOvUul7MZ58HH8Tc\nex9D/hXH1KnWOMWBrqhxYaOjA2dooqSkJJKSkjy2PHeqC34BTMMa6PEyEQkDVhtjLvFYFAWvW6sL\nKhVMHFaX+uefYcgQ2LLlr885uSJTUbxUXdDjbZWIPAEMAc4C5YFI4BNjzM3nzee7tmr1arKHDiNy\n5zr27rWKrATr+6ggWl2wADffbJU9feIJuyPxGr//Xu3ZE269lVZP3sALLwTHATi/3yeFKG1b5U53\nwarGmI+AbABjzFlArzJQSnmegxIsgObNITMTtm61O5Kg4PG2yhgz1hhTxxhTHxgIfHt+guVzjRoR\n8ts2GjUy+SbvSuXrm29g6VIYO9buSIKba1Di1q21omMwcCfJOiYiVXD1RxeRtsARr0allFIOEBJi\nFcD4/HO7IwkKwdFWVagAVatyYfwxvS5LuefECWtk9FdfZc6XFXnkEbsDCmKu7MqVaymHcyfJGg3M\nBRqIyI/Au8A/vRqVUko5xPXXwyef2B1FUPBqW2WMWWL3GFm5Gjfmwsp7NclS7pk0CVq04FD7ntxz\nD1xzjd0BBbFWreDnn2ndMluTrCBQaOEL1wCM5YCrgMZYF/1uNcac8UFsSikV8Dp1gkGDIDXVuhxC\neV7QtVVNmnDhsV+ZsfkCuyNR/m7/fpg2DVav5l//gr59g+M6IL9VtSpUrUpjtpKWdiEHD0KVKnYH\npbyl0DNZxphs4FVjzFljzEZjzAbHNlpKKf+xbRssXmx3FB5RpozVZVDPZnlP0LVV/fpx4RUxeiZL\nFa16ddiyhe821+TLL+Gpp+wOSPHhh4TUqc2SJRAZaXcwypvc6S64WET6iTjsinSllP9KSYExY+yO\nwmP69YOPP7Y7CscLnraqUycuuLkdKSl2B6ICwfHwSowcCa+9BlFRdkejaNkSIiNp1sw6CKecy50S\n7plABawStiexumEYY4zXP6pawl2pIHXmDNSsCWvXOqKP3cmT1uZs3frnEDWBXNa2tLxUwj3o2qrG\njeHXX4P3fVQQLeF+ruPHYc4cq4K70wXz96q/CuR94vUS7saYSGNMiDGmjDEmyvVYj4UopbwnPNwa\nT2TuXLsj8Yhy5aBHD/jsM7sjca5gbKuaNrU7AhUIIiKCI8FSyt+4010QEYkWkdYicmXOzduBKaWC\n3HXXOSor6ddPr8vytmBrqy4p8TDLytH277c7AqUUbiRZIjICWAosAia6/k7wblhKqaDXvTssXw6H\nD9sdiUdcc421OYcO2R2JMwVjW6VJlvqLXbvg4oth9267I1FuCtSudKpo7pzJugdoBSQbYzoBlwPO\n+NWjlPJfFSrAe+9ZI/o6QMWK0LmzY3pA+qPgaqt+/plLftVqKioPY2DkSPjnP6FWLbujUYX5/HO4\n/XZefx0eftjuYJS3uPPr5aQx5iSAiJQ1xmzBGodEKaW8q08fR5XD0iqDXhVcbVVGBg2/eAWAzEyb\nY1H+4e234cABTt77MH37Qlqa3QGpAtWrB0uX0qCB1cNBOZM7SVaqiFQGPgO+FpHPgWTvhqWUUs7T\nqxckJemPYi8JrraqaVNCN60HDBs22B2Msl1KinVKZPp0Hp0YTpkyOsitX7voIkhNpVWjI6xaBVlZ\ndgekvCGsqBmMMde77k4Qke+ASsCXXo1KKaUcqHJl6NABFiywOxLnCbq2qnp1EKEcJ1i/PoJ27ewO\nSNlq3Di4916WHrqEmTNh3TqrdLbyU2FhcPnlRP/2M7GxXdi82bqUTjlLkUmWiNTJ83Cn629NQIdB\nVEqpYtIug94RdG2VCDRtSvzSVNavb2R3NMpuL71EpqnI31vAm29C1ap2B6SK1Lo1rFhB69ZdWLlS\nkywnKjLJAhYABmtgx3JAPWAroCN0KKV8IyvL+lHpgCIYffvC6NF2R+FIwddWNW1K06UbNclSULky\no0dCYiL07m13MMotrVvDp5/Suh1s2WJ3MMobpLij1ItIc+BOY8wI74R0zrpMceNTSjnQNdfAv/4F\nnTrZHYlHdOkC334bvKV7RQRjjFc7MwVFW7V2LY2blSUtpglpado9LIdMFMz44PtwzZ1rJVn+XCso\nJqbwYSyioyE9veTLFwmg79WzZyEkhGxCnHD8sEABtU/OU9q2qti71RizCmhT0hUqpVSxJSbCRx/Z\nHYXHDBhgdwTOFxRt1WWX8StNCA2FvXvtDkbZLRCKsR46ZP3gLugWVOMIhoVBiLMTrGDnzjVZeTu2\nhADNgT1ei0gppc7Xvz+0awf/+Q+EhtodTan16wd33AHHjlnDganSC+a26pJLYP16iIuzOxLlMxs3\nwgUXQJkydkeilCqAO/lzZJ5bWax+7329GZRSSp2jfn2oXRuWLrU7Eo/IuSh93jx743CYoG2rcpIs\nFST27IGrr4ZVq+yOxOdiYqzuZwXdoqPtjlCpP7lTwn2iLwJRSqlC9e8Ps2c75rosgFmzYOBAu6Nw\nhmBuqy69FL77zu4olE+cPWt9adx1F6cub0tZu+PxsZzuhkoFAne6C87DqtiUL2NMH49GpJRS+fnb\n32DsWLuj8KikJOtHgx59Lb1gbquaN4fJk+2OQvnEuHFQvjx/3DqW9hdZ3yHx8XYHpUrlt9/ITqjH\nhk0hXHqp3cEoT3Knu+AO4AQw1XU7CvwGPO+6KaWU9zVs6KjiF2BVGfzsM7ujcIygbKta8z8umvYg\nO3bA8eN2R6O8auFCeO89zk5/j0E3hTB4sCZYjtC1K2brr1xxRZAV/ggC7iRZVxhjbjTGzHPdBgMd\njTFLjDFLvB2gUko51cCB8MEHdkfhGEHZVh0imjKfz+aii2DdOrujUV712WcwaxbjXq5GaChMmGB3\nQMojWrcmdNVKmjeHn3+2OxjlSe4kWRVEpH7OAxGpB2g9LKWUKqVeveB//4P9++2OxBGCsq3aTkM4\neJDmTU/xyy92R6O8asoUPj/Ygfffh5kzHVFoVYE1KPGKFTl/lIO4k2TdBySJSJKILAG+A+7xblhK\nKeV8ERHQsyd8/LHdkThCULZVhhC49FJaVPk9GIvNBZUzZ+DBB636P9Wq2R2N8hhNshzLneqCX4rI\nBUAT16QtxphT3g1LKaWCw8CB8Oyz8I9/2B1JYAvqturyy2lufuGNVY3tjkR5UXg4rF6tY+s5zuWX\nw4YNtL7sFP/8Z1mMscrRq8BX4JksEWklIjUBXA3VZcBjwLMiEuOj+JRS6lxnzsD990NWlt2ReES3\nbta4oqmpdkcSmLStApo145L9i9m6FU4FR1oZtDTBcqAKFeCGG6hTbj8dO1qD1CtnKKy74JvAaQAR\nuRJ4CngXOAJM8X5oSimVj/Bwq25xUpLdkXhE2bJw3XXw4Yd2RxKwtK3q359yz/+bCy7QQYkdY/du\n6NvXOqjkYUUN6BsTHIcm/MuMGUideGbPhooV7Q5GeUphSVaoMSbddf9GYIox5mNjzDigofdDU0qp\nAtx0E7z/vt1ReIzDNsfXtK2qVAlq1qR5c/S6LCc4cQJuuAHatbMOKnlYzoC+Bd20jLhSnlFokiUi\nOddsdQG+zfNckddyKaWU1wwcCJ9+av0YcYDEREhL07MQJaRtlUuLFloCOuBlZ8Pf/w7167O620O8\n8YbdASmlSqqwJGsWsEREPsca4PF7ABFpiNUNQyml7BEXZ/2inD/f7kg8IiQEhgyBd9+1O5KApG2V\nS9u2sHy53VGoUnn0UUhNZc+/p3Hd9aJVBJUKYGKMKfhJkbZALPCVMeaYa1ojoKIxxuudEkTEFBaf\nUiqITZsGn39uDdAZgESsrjk5tmyBzp0hJQXCHH7+RUQwxnisflYwt1V530enT1vX0+zZA1FRtoTj\nF2SiYMYH4G+HpCQYMYKjXy+j4w3V6N8fxo71/GrO/+4p7vN2rtubsSnvCOR9Vtq2qtAky26aZCml\nCnTsmHWrXt3uSEokv4anTRuYOBF69LAnJl/xdJJlN39Jsjhzho6dw5kwAbp0sSUcvxCwSZYxnNmb\nRq/h1ahXD15/3TulvDXJ8lMbN0J6OivKduToUeugmxME8j4rbVvlzmDEHicitUXkWxHZKCLrlIYA\nmQAAIABJREFUReRuO+JQSgWwChUCNsEqyM03a5dBVULGQEICbS89xrJldgejSkSEh56rRpky8J//\n6FhJQWf9enjxRX791UqwVeCzJckCzgKjjTFNgXbAXSLSpIjXKKWUow0cCAsXQkaG3ZGogCMCl1xC\nu6hNel1WALv7bvjgA+d3GVb5aN0aVqygfXv46afAPfuj/mRLkmWM2WeMWeO6fxTYDNSyIxallPIX\nVapYXURmz7Y7EhWQ2rSh7bHFLF+uP9ACVd26OuBw0KpXD06coF7ZPZw9C7t22R2QKi27zmTlEpG6\nQDPgf/ZGopRS9tMug6rE2rQhbuPXVKgA27bZHYwqVEYGDBoEhw/bHYnyFyLQqhWy8s+zWU4QHR28\ng1/bekJaRCoCc4B7XGe0/mLChAm59xMTE0lMTPRJbEqpAGEMLF5sXekfQBcx5DQ8BSlqU6KjIT29\n8Hn8RVJSEklJSXaH4Xzt28PAgbS/NpsffwyhUSO7A1L5OnkS+vSBpk2tgaSVytG2LSxbRvv21/HT\nT1YX8kBXVDsVQM12sdlWXdA1eOR84AtjzEsFzKPVBZVShTPG+rHy5pvQsaPd0XjE/fdD2bLwxBMF\nzxPMFZv8jd9UFwTo1Ik3rprFsp01eecdW0KynV9XFzx1Cq67DipVYvEt77NmfSj33+/bELS6oB/b\nsAF++43tTfuyYwd062Z3QN7nz/s0YEu4i8i7QJoxZnQh82iSpZQq2vPPW5WZpk+3OxKP2LIFOnWy\nxswKD89/Hn9umIqiSZYn1/3X98HWrdC1KyQnO/socUH8Nsk6fRr69YOyZVl29yz6/i2cOXPgyit9\nG4YmWcqf+PM+DdQS7lcANwGdRWS1iKwSEYePDKOU8pqhQ61BiR1Slq9JE7jgApg3z+5IVCBq1AjO\nnoUdO+yORJ3jww8hJIQf75pJ37+F8957vk+wlFK+Y1d1wR+NMaHGmGbGmMuNMc2NMV/aEYtSygGq\nV7euyfrwQ7sj8ZjbboOpU+2OQgUiEetM6Hff2R2JOseQIXx/78dcf2MZ3n8/OLqCKRXMbK8uqJRS\nHnHrrfDWW3ZH4TH9+sHKlfD773ZHovxZQZW7Zs6EkSMLr+rl9Mpe/iYrW7j/oTBmzrS6czpRTEzh\n77fo6MJfX1QluqJer5Q/0eHulFLO0K2bVcbIGEdciFK+PAwZYuWNkybZHU3wEpHawLtADSAbmGqM\nedneqP5UUOWu336z6sDs3l26KpbKc0JDrbLcTh5o+NCh0l1fEygVU5Vyh57JUko5Q1iYlZU46Ffj\nyJHw9tvW9TXKNmeB0caYpkA74C4RaWJzTIU7cYL6G+ZSpgxs3Gh3MEEqIyPf0WSdnGApD7r/fti4\nkX/8A1atsjsYVVKaZCmllJ9q2hTq1oWFC+2OJHgZY/YZY9a47h8FNgO17I2qCCEhyNAh9Ox8ggUL\n7A4mCKWnw9VXw7RpdkeiAtWRI/Ddd4SEwLff2h2MKilNspRSyo/dfju89prdUSgAEakLNAP+Z28k\nRShbFjp1one15cyfb3cwQSY1Fa66ChIT+a7DOL8tTa38XMeO8MMPXHUVLFlidzCqpPTEtVJK+bEB\nA+DBB62xjxo3tjua4CUiFYE5wD2uM1rnmDBhQu79xMREEhMTfRZbvnr2JPG7d7lxXScOHoQqVewN\nJyisWwe9epE96p+MSXuAeaOE5cshKsruwFTA6dABxo7lyhcMt98uZGVZ1/Qp70pKSiIpKcljy7Nt\nMGJ36GDESqkSOXECjh6FatXsjsQjxo2Dw4fhlVf+nObPAzgWJdAGIxaRMGA+8IUx5qV8nve/tio1\nFZo147r2+/nbgBCGDMl/tkB+HxXElsGId+2CFi04/fwr3LzgRlJSYO5cqFrVt2G4w5sD/jrx/WQL\nYyA+Hr77jia9L2DWLLj8cruD8g5/fs8E5GDESinlVS+/DGPG2B2Fx9xxB7z/vtVNX9nibWBTfgmW\n36pdGxo3pne9DXz+ud3BBIH4eA7OX0bi6zciYl1H448JlgoQItbYj4sXc9VVsHSp3QGpkgjIM1l1\n69YlOTnZhoiUKp2EhAR+14GPvG//fqtv3Y4djhlYZdAgaNsW7rnHeuzPR/+KEkhnskTkCmApsB4w\nrttYY8yXeebxvzNZAN9+y8GwGtTv3ZTUVIiM/Ossgfw+KogtZ7KAXr2geXOYMAFC/PgQtp7JChB7\n90JUFIdOVyAy0rmVKf35PVPatiogkyzXRtsQkVKlo+9dHxoyxPrFM3q03ZF4xLJlMHQo/Pqr9QPO\nnxumogRSkuUOv02yXHr3tq7tGzr0r88F8vuoIHYlWcePQ0SEz1dbbJpkKX/iz+8Z7S6olFL5GTUK\nXn0VsrLsjsQj2raFypW1nLsqvptugpkz7Y7CQbZty3cAskBIsJRSvqNJllLKmdq2hRo1cMoFKSLW\nSblnn7U7EhVoeveG5cth9267I3GARYusym9r19odiVLKz2mSpZRyrqeegpo17Y7CYwYMgJQUq+ug\nUu6qUAEGD4YpU/76XHS0lcAXdIuJKfl6Y2K8t2yfy8qCSZPg738n+fk5PLppsN92cSqtot4Thd0c\ncgms8iFvfgfZTZMsH0pOTiYkJITs7OxSL6tevXp86+Yw4O+88w4dO3bMfRwZGemx4gtPPvkkt912\nG+DZ7QPYtWsXUVFReg2TKrkrr4T27e2OwmPCwuD+++Hpp+2ORAWauwYfYsoUOH363Onp6db1EAXd\nDh0q+ToPHfLesn1q3z7o3h2++YbPx/1Mq9EdqVvX+gHoREW9Jwq7pafbHb0DHT4MZ8+SmgqnTtkd\njOd58zvIbppkeVhRyY/Y9K2cd72ZmZnUrVu30PmXLFlCfHx8kcsdM2YMU/IcHi3N9p3/v4uPjycj\nI8O2/5lS/uiWW/RMliqmEye46IYmXFTvBB9+aHcwAWjJEk63aMeIeot58MVafPkljBhhd1AqaHTu\nDD//zMCBWso90GiSpfJljCkyuclySEEBpQJJRATcdZfdUaiAUr483HEHYyq+wqRJcPas3QEFlh2t\nbuTSzyeRJWGsWmUVLVXKZxITYfFiunWDr76yOxhVHJpkeVF2djYPPPAA1apVo2HDhixYsOCc5zMy\nMhgxYgRxcXHEx8czbty43K5xO3bsoEuXLlStWpXq1aszZMgQMjIy3Fpveno6ffr0oVKlSrRt25bf\nfvvtnOdDQkLYsWMHAAsXLqRp06ZERUURHx/P5MmTOX78ONdeey179uwhMjKSqKgo9u3bx8SJE+nf\nvz9Dhw6lcuXKvPPOO0ycOJGheeoCG2N46623qFWrFrVq1eL555/PfW748OH83//9X+7jvGfLbr75\nZlJSUujduzdRUVE899xzf+l+uHfvXvr27UuVKlVo1KgR//3vf3OXNXHiRG688UaGDRtGVFQUl1xy\nCatWrXLr/6VUoMlJslJT7Y1DBZDRo+my/kXiKh5hxgy7gwkssbHW5Z3TpkHFinZHo4JOt27w5Zd0\n7apJVqDRJMuLpkyZwsKFC1m7di0///wzc+bMOef5YcOGUaZMGXbs2MHq1av5+uuvcxMHYwxjx45l\n3759bN68mdTUVCZMmODWeu+8804iIiL4448/eOutt3j77bfPeT7vGaoRI0YwdepUMjIy2LBhA507\ndyYiIoIvvviCuLg4MjMzycjIoKareMDcuXMZMGAAhw8fZvDgwX9ZHkBSUhK//fYbixYt4umnn3ar\n++S7775LnTp1mD9/PhkZGTzwwAN/WfaNN95InTp12LdvH7Nnz2bs2LEkJSXlPj9v3jwGDx7MkSNH\n6N27N3fp4X6V14ED1iDFDlClivX3ySftjUMFkEqVkBdf4Ikjd/F/4wxuHrMLLtnZ+VYNLF8errvO\nhniUArjqKli7llYND5GSYl0iqAKDM5OsCRPyL1FSUJKS3/xuJjSFmT17Nvfeey9xcXFUrlyZMWPG\n5D73xx9/8MUXX/DCCy9Qrlw5qlatyr333susWbMAaNCgAV26dCEsLIwqVapw3333sWTJkiLXmZ2d\nzSeffMKkSZMoV64cTZs2ZdiwYefMk7eQRJkyZdi4cSOZmZlUqlSJZs2aFbr8du3a0bt3bwDKlSuX\n7zwTJkygXLlyXHzxxQwfPjx3m9xRUJGLXbt2sWzZMp5++mnCw8O57LLLGDFiBO+++27uPB06dKB7\n9+6ICEOHDmXdunVur1cFgRdfhPHj7Y7Co2bNsqoNKuWWAQNo3+I03aNXkKc5UgDJydYZg9Gj/Xdk\nVBWcypeHK68k7Nuv6NwZvvnG7oCUu5ybZOVXoqSwJMvdeYthz5495xSPSEhIyL2fkpLCmTNniI2N\nJSYmhujoaO644w7S0tIA2L9/P4MGDaJ27dpUrlyZIUOG5D5XmAMHDpCVlUXt2rXzXe/5Pv74YxYs\nWEBCQgKdOnVi+fLlhS6/qGIYIvKXde/Zs6fIuIuyd+9eYmJiiMgz2mNCQgK78wz8UjNPqe6IiAhO\nnjzpsUqHygHuuw8+/NBRWcntt8O//213FCpgiMBbb/HsB/HMmweffGJ3QH4gK8s6ANOiBemXd2F4\n3CKOHtNiS8rPDBwIGRkMHGh3IKo4nJlk+YnY2Fh27dqV+zg5OTn3fnx8POXKlePgwYOkp6dz6NAh\nDh8+nHv2ZezYsYSEhLBx40YOHz7Me++951Yp82rVqhEWFnbOelMK+VHZokULPvvsMw4cOEDfvn0Z\nMGAAUHCVQHcq/Z2/7ri4OAAqVKjA8ePHc5/bu3ev28uOi4sjPT2dY8eOnbPsWrVqFRmPUgBUrQq3\n3WZdXOEQDzwAc+bAzp12R6ICRmQk0U3j+OQTK0lfs6Z0iytsLCy/HzNp82Zo25bsTz/ntSE/0Wja\nGJpeFkb58nYHVjpFjU/m9/tF/dWQITByJP37W3dVYNAky4sGDBjAyy+/zO7duzl06BBP5xncpmbN\nmnTr1o377ruPzMxMjDHs2LGDpa76nJmZmVSsWJHIyEh2797Ns88+69Y6Q0JCuOGGG5gwYQInTpxg\n06ZNvPPOO/nOe+bMGWbOnElGRgahoaFERkYSGhoKQI0aNTh48KDbxTZyGGOYNGkSJ06cYOPGjUyb\nNo2BrkMvzZo1Y+HChRw6dIh9+/bx0ksvnfPamjVr5hbkyLs8gNq1a9O+fXvGjBnDqVOnWLduHW+9\n9dY5RTfyi0Wpc9x/v3U2K8+BgEBWpQrceSc8/rjdkahA07IlvP469OgBP/9c8uUUNhaW34+ZFBbG\nlsQ7uGjftyza2YhffrEOXLiawYBV1Phkfr9flHIITbI8LO/ZmJEjR9K9e3cuu+wyWrZsSb9+/c6Z\n99133+X06dNcdNFFxMTE0L9/f/a5rmgcP348v/zyC5UrV6Z3795/eW1hZ31eeeUVMjMziY2N5ZZb\nbuGWW24p8LUzZsygXr16VK5cmSlTpvD+++8D0LhxYwYNGkT9+vWJiYnJjcud7b/qqqto2LAhXbt2\n5V//+hddunQBYOjQoVx66aXUrVuXHj165CZfOR5++GEmTZpETEwMkydP/kuss2bNYufOncTFxdGv\nXz8mTZpEp06dCo1FqXNUqwYjR8Jjj9kdiceMHg1z51oH5ZUqjr/9Dd58E665xjDl2s8wy5YH1fVI\na45dQPePbuXpZ4TPP4dCetYrpVSxiT8f7RcRk198IqJnKVRA0veuHzh0yLrIvYgiL/5O5M/fw5Mn\nw7ffwvz59sbkLtfnwDFHQQpqqwLFlo1Z3NQjjYi0FJ6p8gzthjWC/v3hssuQECk078r7Piyu0ry2\n0OVOFMz48xaclZXvKaqTJ6GAGk4By1v/V6XsYOf7ubRtlSZZSvmQvneVp+RteE6dgosuss5KXH21\nvXG5Q5Ms/5OVBdOnGR4ff5pY9nHnmRe57rLfifzm08BOslJS/ixkdd5wJk6lSZZykkBOsrS7oFJK\nBbiyZeGZZ6xLzrKy7I5GBaLQULh1hLA9pSwPvJLAB60nU3vFx4DVHfX0aZsDLK60NOsDcfnlJJ+J\nZdolk+2OSKnSW7oU5szh66/RQcUDgCZZSinlADfcAFFRMH263ZGoQBYaar2X5s8Xtv9m/UR47jmI\njYURI2DxYsh67gWrUufy5YCfnTLJzLT+NmnC3p0n6X/hBros+zcValW2Ny6lPOHUKXjuOcLC4IUX\n7A5GFUW7CyrlQ/reVZ6SXxeKlSuhTx/YtMm/yzRrd8HAkfM+27XLKsw5axbs2ZXFgIarGLTrGaJS\nN3DR08Nh6FArEyvBsj3iwAF4+WV44w1kVBrDvtnOktQGjBtnhRYe7qH1BADtLuhgZ85AbCxZP68m\nvn08330HjRvbHZR3aXdBpZQKRMbAqFFW1yIHaNUKrr8eHn7Y7kiU08THW+XNf/kFlvwQSkz3Vvy9\nwkc0ZzXjZl7Ir417Q2qq7wPbuRPuvhvTqDHfrIqhayNrPMp2QxqwdSvccktwJVjK4cLDoXdvQj//\nhAEDrIMeyn9pkqWUCl4iEBYGDz1kdyQe8+STVpXBH3+0OxLlVI0awfjxsHmzcIpyHOvcm6siVtKm\nX21eeQX27/dRIMePc+zKa5i69Uqaxf3B3Tvv46aREYA10HKZMj6KQylfcmVXgwZZSZaetfRfmmQp\npYLbY4/BokXwww92R+IRlSrBiy9aPzIDrliBCig5QxFOngy7UoXHHoMVK6wkrFcv+OADOP7zJisj\nW7kSsrM9sl5jYO1aGP1oBAknNjO/3N947sVwNmyAv//dI6uwXUyM9f/N7xYTY3d0ylZdu0JyMq0r\nbeXsWVi3zu6AVEH0miylfEjfu35qzhyrzPOqVQFz+LuwfurGWD9y27WDRx/1bVzu0GuyAkdR10Pk\n9/zRo/DZZ1b1sxXLs7gufhWDM97gylNfU7Z7IrRpA127Io0bFbzsw4etEbZXrYKkJMxNQ9h0QV/m\nzoX337fqW9x0k1V/o27d82LKb5ysAFPY/70k+0Q5zPbtUK8ef6SFUr36nwc8nCiQr8nSJEsVS0hI\nCNu3b6d+/fpFzjtx4kS2b9/OjBkz2LVrF02bNuXIkSOIB74N/vGPf1C7dm0eeeQRlixZwpAhQ9i1\na1eplwvwww8/MHLkSDZv3uyR5eWl710/ZQxcd5012NSTT9odjVuKanhSUqBlS/jyS2je3HdxuUOT\nrMBR2h/0e/daXZo++gg2bsimXZ09JFZYyWUdIun14tVkZUFI3j41zz2HeeJJjpwqx5Y63Vgd3ZmV\nYe34+rd6hJUJ5ZprYNAguOKK816XNyZNsjTJUo4RyEmWdhf0gpkzZ9KqVSsiIyOpVasWPXv25Ec/\nuEDinXfeoWPHjqVaRnETpJz54+PjycjIKPL17sb4+uuv88gjj5Q4rrxCQkLYsWNH7uMOHTp4JcFS\nfkwEpk616lc75NdJnTrw0ksweDAcP253NCpYxcbC6NFWtfddqSGMeqo26Vddz8ubrFGzy5aFGjWs\nLoYNG0Ldl++jwsk06oSmclfENH65aCgtBzbkm29D2bEDXnsNOnYsOMFSSil/EWZ3AE4zefJknnnm\nGd588026detGmTJlWLRoEfPmzeOKK64o1rKysrIIDQ0tcpq7jDGlPovk7aO17sSYnZ1NiAdbWE+c\nWVMOUL06PP643VF41KBBVhGMBx+EV1+1OxoV7CpXtoYY6NPHeixiHQBIS4MjR6xjHKGhoVSrBpGR\n9saqlFKlpceCPCgjI4Px48fz2muv0bdvX8qXL09oaCjXXnstTz31FACnT5/m3nvvpVatWtSuXZv7\n7ruPM2fOALBkyRLi4+N55plniI2N5ZZbbsl3GsD8+fO5/PLLiY6OpkOHDqxfvz43jtTUVPr160f1\n6tWpVq0ad999N1u2bOEf//gHy5YtIzIykhjXlbOnT5/mgQceICEhgdjYWO68805OnTqVu6xnn32W\nuLg4ateuzbRp0wpNSH7//XcSExOpVKkS3bt3Jy1PWezk5GRCQkLIdl34PH36dBo0aEBUVBQNGjRg\n1qxZBcY4fPhw7rzzTnr27ElkZCRJSUkMHz6c//u//8tdvjGGJ598kmrVqlG/fn1mzpyZ+1ynTp14\n++23cx/nPVt21VVXYYzh0ksvJSoqitmzZ+f+z3Ns2bKFTp06ER0dzSWXXMK8efNynxs+fDijRo2i\nV69eREVF0a5dO3bu3Fn4G0UpH3r1VViwAObOtTsSpf4qPNw629WkCVxwAdSvrwmWUsoZNMnyoGXL\nlnHq1Cmuu+66Aud5/PHHWbFiBevWrWPt2rWsWLGCx/McPd+3bx+HDx8mJSWFKVOm5Dtt9erV3Hrr\nrUydOpX09HRuv/12+vTpw5kzZ8jOzqZXr17Uq1ePlJQUdu/ezcCBA2nSpAlvvPEG7dq1IzMzk/T0\ndAAeeughtm/fzrp169i+fTu7d+/mscceA+DLL79k8uTJLF68mG3btvHNN98Uuv2DBw+mVatWpKWl\n8eijj/LOO++c83xOgnb8+HHuueceFi1aREZGBj/99BPNmjUrMEaAWbNmMW7cODIzM/M9I7hv3z7S\n09PZs2cP06dP57bbbmPbtm0FxpoTy5IlSwBYv349GRkZ9O/f/5znz549S+/evenRowcHDhzg5Zdf\n5qabbjpn2R9++CETJ07k8OHDNGjQ4JxujErZrXJl65qYESNg61a7o1FKKeUx6enw44/s22cVyVX+\nxZFJVkFlT4t7K66DBw9StWrVQruyzZw5k/Hjx1OlShWqVKnC+PHjmTFjRu7zoaGhTJw4kfDwcMqW\nLZvvtKlTp3LHHXfQsmVLRIShQ4dStmxZli9fzooVK9i7dy/PPPMM5cqVo0yZMrRv377AeKZOncoL\nL7xApUqVqFChAg8//DCzXKPbzZ49m+HDh3PhhRdSvnx5JkyYUOBydu3axc8//8xjjz1GeHg4HTt2\npHfv3gXOHxoayvr16zl58iQ1atTgwgsvLHBegL59+9K2bVuA3P9LXiLCpEmTCA8P58orr6Rnz558\n9NFHhS4zr4K6QS5btoxjx47x0EMPERYWRqdOnejVq1fu/wjg+uuvp0WLFoSEhHDTTTexZs0at9er\nlC+0awdPPAF9+1rdspRSSjnA7t0wYABHD51hyBCrsqfyH45MsozxzK24qlSpQlpaWm6XuPzs2bOH\nOnXq5D5OSEhgz549uY+rVatG+HnD058/LTk5meeff56YmBhiYmKIjo4mNTWVPXv2sGvXLhISEty6\nZunAgQMcP36cFi1a5C7rmmuu4eDBg7mx5u02l5CQUGAysmfPHqKjoylfvvw58+cnIiKCDz/8kNdf\nf53Y2Fh69+7N1iIOseeNIz/R0dGUK1funHXn/b+W1N69e/+y7oSEBHbv3p37uGbNmrn3IyIiOKrf\ncs6QmQmdOsG+fXZH4hEjRkDnzjB0qMeGK1JKKWWnSy6BJk1ouGImiYnw3//aHZDKy5FJll3atWtH\n2bJl+eyzzwqcp1atWiQnJ+c+Tk5OJi4uLvdxftc8nT8tPj6eRx55hPT0dNLT0zl06BBHjx7lxhtv\nJD4+npSUlHwTvfOXU7VqVSIiIti4cWPusg4fPswR16Hu2NjYc8qiJycnF3hNVmxsLIcOHeLEiRO5\n01JSUgr8P3Tt2pWvvvqKffv20bhxY2677bYCt7+w6TnyW3fO/7VChQocz1NebV8xfjTHxcX9pTR8\nSkoKtWrVcnsZKkBFRlpZSc+ejjk8+OKL1pms++93TBFFpZQKbmPHwhNP8NADWUyeDK7L/JUf0CTL\ng6Kiopg4cSJ33XUXn3/+OSdOnODs2bN88cUXPPzwwwAMHDiQxx9/nLS0NNLS0pg0aRJDhw4t1npG\njhzJG2+8wYoVKwA4duwYCxcu5NixY7Ru3ZrY2Fgefvhhjh8/zqlTp/jpp58AqFGjBqmpqbmFNkSE\nkSNHcu+993LgwAEAdu/ezVdffQXAgAEDmD59Ops3b+b48eO512rlp06dOrRs2ZLx48dz5swZfvjh\nh3MKRMCfXfL279/P3LlzOX78OOHh4VSsWDH3zNv5MbrLGJO77u+//54FCxYwYMAAAJo1a8Ynn3zC\niRMn2L59O2+99dY5r61Zs+Y5JdzzatOmDRERETzzzDOcPXuWpKQk5s+fz6BBg4oVnwpQjz4KzZrB\nwIGOaLnKlLEGif3mG3j6abujUUopVWqdO0OVKrT8fQ6NG8N5l8MrG2mS5WGjR49m8uTJPP7441Sv\nXp06derw2muv5RbDePTRR2nZsiWXXnopl112GS1btix2oYQWLVowdepURo0aRUxMDI0aNcotMhES\nEsK8efPYtm0bderUIT4+PvfapM6dO9O0aVNq1qxJ9erVAXjqqado2LAhbdu2pXLlynTr1o1ff/0V\ngB49enDvvffSuXNnGjVqRJcuXQqNa+bMmSxfvpwqVaowadIkhg0bds7zOWejsrOzmTx5MrVq1aJq\n1aosXbqU119/vcAY3REbG0t0dDRxcXEMHTqUN998kwsuuACA++67j/DwcGrWrMnw4cMZMmTIOa+d\nMGECN998MzExMcyZM+ec58LDw5k3bx4LFy6katWqjBo1ihkzZuQuW8u/O5wIvPGGdX/oUDh71t54\nPCA62rpA+s03wfWxU0opFahEYNw4eOwxHn8sm8cfd0RT5Qjiz6PUi4jJLz7XCMw2RKRU6eh7N0Cd\nPGlVjRg1Cgop6OJLIqXr8rdjh3UAdPRouPtuz8XlDtfnwDFHKApqq5ygqPdZad6HpX0PF7jciYIZ\nH9j7o7D/jTf3iQpQxsCmTdC0KampULu23QF5jp3v59K2VToYsVJKFaVcOWuwqTDnfGXWrw9LlliJ\n1tGjMGZMyaqqKqWUspkING0KOCvBCnTaXVAppdzhoAQrR0ICfP89zJ4Nt93miMvOlFJKKb+gSZZS\nSgWxuDhYuhT27IGuXa2/SimllCodTbKUUqqkNmyA6dMD/gKIyEiYO9caFqxFC3AVGFWt71ckAAAQ\nM0lEQVRKKRWoXF0T8oxuo3xMkyyllCqNF1+EPn1g7167IymV0FAYPx5mzoThw+GeeyAjw+6olFJK\nFduCBdCrFwvmZtG1K5w6ZXdAwUmTLKWUKqmLL4YVK6yxtJo1g9deC/gLmzp1gnXrrGIYF10Ec+YE\n/Ik6pZQKLt27w9mzXPvl3dSsYRg2DLKz7Q4q+ARkCfe6deuSnJxsQ0RKlU5CQgK///673WEob1i7\nFu6/38pOli3zeqk+X5S1/f57uPNOqFgRHnsMrr7aM5ulJdwDh5Zwt4eWcFelduQIdOnC2Ss703nl\n0zRuIrzxhtVrIZAEcgn3gEyylFLKLxkDKSlW2T4v81XDk5UFH30EEyZAtWrWmJfdu5dumZpkBQ5N\nsuyhSZbyiIMHoUcPzjS8kD5/TCUiuizvvGMdOAsUgZxk2dZdUER6iMgWEflVRB6yKw7lX5KSkuwO\nQfmYo/a5SMEJ1oEDAfnLJzQUBg2CjRvhrrsgNdXuiHxL26qiJNkdgC0c9b1VTMG67QG53VWqwJIl\nhFcsy2fvHKFePTh5sviLCcht9wO2JFkiEgL8B+gONAUGiUgTO2JR/kU/yMEnaPb5qFFWAnbbbfDJ\nJ5CWZndExRIWZiVbt95qdyS+o22VO5LsDsAWQfO9lY9g3faA3e6ICJg6lbLx1XnuOahatfiLCNht\nt5ldZ7JaA9uMMcnGmDPAB0Bfm2IpNm+92Uqz3OK+1t353ZmvsHkKei7QPrC6z92fR/d5AT74AL76\niqQyZWDKFGjQAOrVK9bAVLrPfc7nbVVx/mdFzVuc/XL+tMIee2O/evS9vdP919i93cVdbrDucydt\nd3GX69Vtf/ddOHiQDRtg/37d5+6stzjsSrJqAbvyPE51TQsI/vChK+1r9cdX8eg+d38e3ecFEIEm\nTUiqWhW+/BIOHYIvvoCaNfOfv0MH6NULRo6EMWPgySdJeuYZ6yKp/GzcCFu3ws6dVp++P/4gacGC\ngrsoHjli3TIySFq0yCrYcexYgfMnffONVQc4nxJVTtnn+fB5WxVsP0JKusxC5//d/dfYvd3FXW6w\n7nMnbXdxl+vVbf/vf6F+fap3bsqPtQbwdI/xvNF8Ck/fs4dnn0366zHAo0fh8GEydh0h/fcMDu/K\n5EhqJpmHszh6NJ/m6cwZOH2a00dPcyrzNN8sWsypzNOcOpGdf3OSZ/6cecPJf/6kpKTc+c8cs15z\n+uhpFn+1mNMnszl9+s/57drnthS+EJF+QHdjzG2ux0OA1saYu8+bL/AuYFBKKVWkQCh8oW2VUkoF\nt9K0VWGeDKQYdgN18jyu7Zp2jkBohJVSSjmWtlVKKaVKxK7ugiuBhiKSICJlgIHAXJtiUUoppfKj\nbZVSSqkSseVMljEmS0RGAV9hJXpvGWM22xGLUkoplR9tq5RSSpWUXw9GrJRSSimllFKBxrbBiJVS\nSimllFLKiTTJUkoppZRSSikPCsgkS0QiRGSliFxrdyzK+0SkiYi8LiIficgddsejvE9E+orIFBGZ\nJSJd7Y5HeZ+I1BOR/4rIR3bH4inB2lYF63d2MH9vOfHz6w7XZ3y6iLwpIoPtjsdXgnV/Q/E+5wF5\nTZaITAQygU3GmIV2x6N8Q0QEeMcYc7PdsSjfEJHKwLPGmJF2x6J8Q0Q+MsYMsDsOTwj2tipYv7OD\n+XvLSZ9fd7jGzjtkjFkgIh8YYwbaHZMvBdv+zsudz7ltZ7JE5C0R+UNE1p03vYeIbBGRX0XkoXxe\ndzWwCTgA6NgkAaSk+9w1T29gPhB0P1QCWWn2ucujwKvejVJ5kgf2uV8J5rYqWL+zg/l7y2mf3+Iq\nwfbXBna57mf5LFAPC+b9XoptL/pzboyx5QZ0AJoB6/JMCwG2AwlAOLAGaOJ6bijwAvAWMBlYBHxq\nV/x689k+nwzE5pl/vt3boTef7PM44Cmgs93boDef7fNY1+PZdm+DB7bHEW1VsH5nB/P3ltM+vz7Y\n/puAa133Z9odv6+2O888Ab2/S7rt7n7ObTuTZYz5ATh03uTWwDZjTLIx5gzwAdDXNf8MY8x9xphb\njTGjgfeBqT4NWpVKCff5aKCRiLwkIm8AC3watCqVUuzzfkAX4G8icpsvY1alU4p9fkpEXgea+dMR\n02Buq4L1OzuYv7ec9vktruJuP/Ap1v5+FZjnu0g9q7jbLSIxTtjfUKJt/ydufs5tGYy4ELX487Qr\nQCrWhv6FMeZdn0SkvK3IfW6MWQIs8WVQyqvc2eevAK/4MijlVe7s83TgH74MqhSCua0K1u/sYP7e\nctrnt7gK3H5jzHHgFjuC8oHCttvJ+xsK33a3P+cBWV1QKaWUUkoppfyVvyVZu4E6eR7Xdk1TzqX7\nPPjoPg8+TtvnTtue4gjWbQ/W7Ybg3nYI3u0P1u0GD2273UmWcG7VpZVAQxFJEJEywEBgri2RKW/R\nfR58dJ8HH6ftc6dtT3EE67YH63ZDcG87BO/2B+t2g5e23c4S7jOBn7AukE0RkeHGmCzgn8BXwEbg\nA2PMZrtiVJ6l+zz46D4PPk7b507bnuII1m0P1u2G4N52CN7tD9btBu9ue0AORqyUUkoppZRS/sru\n7oJKKaWUUkop5SiaZCmllFJKKaWUB2mSpZRSSimllFIepEmWUkoppZRSSnmQJllKKaWUUkop5UGa\nZCmllFJKKaWUB2mSpZRSSimllFIepEmW8hsicp2IZItII7tjKYiIjLE7Bk8RkdtFZEgx5k8QkfXF\nXMdiEalYyPOzRKRBcZaplFL+wIltloh8JyLNvbmOYi67t4j8q5ivySzm/LNFpG4hzz8rIp2Ks0yl\nQJMs5V8GAt8Dg7y9IhEJLeFLx3o0EJuISKgx5k1jzHvFfKnbo5eLyLXAGmPM0UJmex14qJgxKKWU\nP9A2y4vrcLVT84wxzxTzpcVppy4CQowxvxcy2yvAw8WMQSlNspR/EJEKwBXAreRpsETkKhFZIiLz\nRWSLiLyW57lMEZksIhtE5GsRqeKaPkJEVojIatcRqnKu6dNE5HURWQ48LSIRIvKWiCwXkV9EpLdr\nvmEi8rGIfCEiW0XkKdf0J4HyIrJKRGbksw2DRGSd6/aUG3HWd61jpWsbG+WJ8yUR+VFEtovIDfms\nK0FENovIeyKySUQ+yrOdzUUkybXcL0Skhmv6dyLygoisAO4WkfEiMtr1XDMRWSYia1zbXsk1vYVr\n2mrgrjzrv0hE/uf6X6wp4GzUTcDnrvkjXPtwtev/0981z/fA1SKi30VKqYAR6G2WiIS4lr9ORNaK\nyD15nh7g+n7fIiJX5FnHK3leP09ErnSjXSxJ+/e6iCxzbXPuel3t3mJXm/O1iNR2Ta8rIj+5tmNS\nnnXXdC17lWs7r8hnV+Ztp/L9nxhjUoAYEale4BtCqfwYY/SmN9tvwGBgquv+D8DlrvtXAceBBECA\nr4AbXM9lAwNd98cBr7juR+dZ7iTgLtf9acDcPM/9Gxjsul8J2AqUB4YB24GKQFngd6CWa76MAuKP\nBZKBGKyDF4uBPgXE+bLr/jdAA9f91sDiPHF+6Lp/IbAtn/UluJbb1vX4LWA0EAb8CFRxTR8AvOW6\n/x3wnzzLGA+Mdt1fC3Rw3Z8ITM4z/QrX/WeAda77LwODXPfDgLL5xPg7UMF1/wbgzTzPRea5vyhn\nf+tNb3rTWyDcHNBmNQe+yvM4yvX3O+BZ1/1rgK9d94fltF2ux/OAKwtbRwHb7E77l3ebh+V5zVxg\niOv+cOBT1/3PgZtc9+/MiQerTRzjui857dF58SUBTQv7n7juTwGut/t9p7fAuunRY+UvBgEfuO5/\niNWA5VhhjEk2xhhgFtDBNT0b+Mh1/z2so4oAl4rIUhFZ51pO0zzLmp3nfjfgYddZmiSgDFDH9dxi\nY8xRY8wpYBNWg1mYVsB3xph0Y0w28D5wZQFxdnAdBW0PzHat/02gRp7lfQZgjNkMFHT0LMUYszzv\ncoHGwMXA167lPgLE5XnNh+cvRESigErGmB9ck94BrnSdzapkjPnRNT3vUcplwCMi8iBQ1/V/Ol+0\nMeaY6/56oKuIPCkiHYwxefvMHzgvRqWU8neB3mbtAOqJ1WuiO5D3O/kT199f3FhOUbIofvs3m/y1\nw/p/gtUe5fz/ruDPfZG3nVoJDBeR/wMuzdMe5RWL1QZB4f+T/Wg7pYopzO4AlBKRaKAzcLGIGCAU\nq0/1g65Zzu9fXVB/65zp07DOIm0QkWFYRxZznP8l288Ys+28eNoCeZOGLP78rEhhm1LIc+fHGQIc\nMsYUdIFx3vUXZ7kCbDDG5NctAv66/UWtI9/pxphZri4svYCFInKbMSbpvNnO5pl/m1gXU18LPC4i\ni40xOd06ygEnCli/Ukr5FSe0WcaYwyJyGdAduAPoD4xwPZ2zrLzLOcu5l5iUyxtCfusogDvtX0Ht\nVGHXWuU8lxuLMeZ7EbkS6AlMF5HnzV+vQz6Oa1vO+5/cjtUT5FbXfNpOqWLTM1nKH/QH3jXG1DPG\n1DfGJAA7RSTn6F9rV1/sEOBGrOt4wHr//s11/6Y80ysC+0Qk3DW9IIuAu3MeiEgzN2I9LflfgLwC\n6+xPjOv5QVhHGvOL8wfXmZydIpIzHRG5tIB1FtSA1RGRNq77g7G2///bu3fQKoIojOP/Q2Ip2AhK\nUPGBXVBLbUxnF6y0UEG0FCRg6wPERlRQFBEfiAp2EotoKRHEIgSTkGhIIaaUFIYoPsDis5i5uUvY\ne6NkE+8N36/czM6e2cCc7O6ZyRSwPiddIqIz0sLehiR9Bb4U6tWPAa8lzQGzEbEvH5/fiTAitkr6\nJOkmqVSjLPapiNiW228Efkp6ClwB9hTa7QQmmsVoZtZC2j5n5bVRHZL6gbOkUrkytfwzDeyOZBOp\nxK/pNbIOlpb/it5SX/92lPr9e1M4Pn//ImIzMCPpAXCf8jFOAjty++I9OYfzlC2RH7KsFRwG+hcc\ne0Z90hwGbgHvgY+Snufj30nJbBzoIdWyQ5och0gT8GShz4VvwS4Ba/Ii1wngYoP4iufdBcYXLvCV\n9Jm0+9AgMAIMSxpoEGftOkeAk3kR7wTQ2yDORm/vpoBTEfEBWAfckfSblNAuR8RojmXvIv0AHAeu\n5nN2FWI8AdyOiHcLzj+UFzKPkEpbHpf0+QKobXvbDQzl9udJ9568kPiHpJkmsZmZtZK2z1lAFzCY\n5+Qn1HfPK80/uWx8Oo/pOqmUcLFrwNLzX9FpUvnfaD6/tllHHykXjpHK/2p6gLGcvw4BN0r6fEk9\nT5Xek4joBLaTfq9mfy1SybBZa4qI/cAZSb0lP/smae1/COufLEecEbEFGJDUXWW/VYqIDcAjSQea\ntOkD5iQ9XLnIzMyWx2rIWVVq9TFH2snxFWmDp9I/iCPiIGljkwsrGpy1PX/JsnbWLm8IlivOlh5/\n/rp3L5r8M2JglrTRhpnZatfSc/YyaekxS/pF2mm3q0mzDuDaykRkq4m/ZJmZmZmZmVXIX7LMzMzM\nzMwq5IcsMzMzMzOzCvkhy8zMzMzMrEJ+yDIzMzMzM6uQH7LMzMzMzMwq9Acnrs1eeJhvwgAAAABJ\nRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -574,13 +574,13 @@
"\n",
"# Plot apparent open period histogram\n",
"ipdf = ideal_pdf(qmatrix, shut=False) \n",
- "iscale = scalefac(tr, qmatrix.aa, idealG.initial_occupancies)\n",
+ "iscale = scalefac(tr, qmatrix.aa, idealG.initial_vectors)\n",
"epdf = missed_events_pdf(qmatrix, tr, nmax=2, shut=False)\n",
"dcplots.xlog_hist_HJC_fit(ax[0], rec.tres, rec.opint, epdf, ipdf, iscale, shut=False)\n",
"\n",
"# Plot apparent shut period histogram\n",
"ipdf = ideal_pdf(qmatrix, shut=True)\n",
- "iscale = scalefac(tr, qmatrix.ff, idealG.final_occupancies)\n",
+ "iscale = scalefac(tr, qmatrix.ff, idealG.final_vectors)\n",
"epdf = missed_events_pdf(qmatrix, tr, nmax=2, shut=True)\n",
"dcplots.xlog_hist_HJC_fit(ax[1], rec.tres, rec.shint, epdf, ipdf, iscale, tcrit=rec.tcrit)\n",
"\n",
@@ -596,10 +596,11 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -611,7 +612,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/Example_MLL_Fit_GlyR_4patches.ipynb b/exploration/Example_MLL_Fit_GlyR_4patches.ipynb
index 71d4aba..c86fb71 100644
--- a/exploration/Example_MLL_Fit_GlyR_4patches.ipynb
+++ b/exploration/Example_MLL_Fit_GlyR_4patches.ipynb
@@ -405,22 +405,22 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import QMatrix\n",
- "from dcprogs.likelihood import missed_events_pdf, ideal_pdf, IdealG, eig, inv"
+ "from HJCFIT.likelihood import QMatrix\n",
+ "from HJCFIT.likelihood import missed_events_pdf, ideal_pdf, IdealG, eig, inv"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAQwCAYAAABseVbjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VMXXwPHvCb0qTUSULqGFBAhdOioiXelFRKnS1BdF\nBEFEBUTEglKUoj/A0EEBRUqkSi/SESmCSFOkBgiZ94/ZYAibtnvTz+d57pPsLXMnIezsuTNzRowx\nKKWUUkoppZRKGD6JXQGllFJKKaWUSk00CFNKKaWUUkqpBKRBmFJKKaWUUkolIA3ClFJKKaWUUioB\naRCmlFJKKaWUUglIgzCllFJKKaWUSkAahCkVD0TkiogUSex6KKWUUu5oO6VU4tIgTKVqImJEpJiX\nZQSLyIsR9xljshpjfveuds4RkUIislpEronIARGpH825GURkiohcEpG/ROSVCMfSi8hcETnm+t3V\njnStiMgoEbng2kaJiEQ4HiAi21z12CYiAU5c68Dvx4jIWRFJG2FfOtc+XUxRKZVotJ1ye662U2g7\nldxpEKZUNCK+2SVzs4AdQC7gTWCuiOSJ4txhwKNAQaAO8JqINIhwfB3QAfjLzbXdgGaAP1AWaAx0\nB9swAouA/wE5gOnAItd+b691wj/AUxFeP+Xap5RSSZa2U9pOOVi+SkjGGN10c3QDHgHmA+eAC8Bn\nrv0+wGDgOHAW+Bq4z3WsEGCA54ATwHngzQhlpgEGAUeAy8A24BHXsRLAT8DfwEGgVYTrpgHjgSWu\n6zYBRV3H1rjueRW4ArQGagMngdexb97fYN9Mv3f9PP+4vn/YVca7wG0gxFVG+M9qgGKu7+9z/azn\nXD/7YMDHdawztrEY4yr7KPCUw/8exYEbQLYI+9YCPaI4/0/giQiv3wG+dXPeSaB2pH0bgG4RXr8A\n/OL6/gngFCARjp8AGnh7rZu6BQMjXGVeAb7DNuwzgEvAFqBQhPON699lToR9c7EfBExi/5/STTfd\nnN3Qdir8fU/bKW2ndEukTXvClKNEJA32zf84tsHKD3zrOtzZtdUBigBZgc8iFfEY4AvUA94SkZKu\n/a8AbYGGQHagC3BNRLJgG7aZwANAG+BzESkVocw2wNvYRuo3bIOEMaam67i/scMyglyvHwRyYp+w\ndcM2ylNdrwsA18PrbYx5E9tQ9HaV0dvNr+VTbANXBKgFdAKej3C8MrZRzg2MBr6KOLwhIhH5XkQu\nRrF97+4aoDTwuzHmcoR9u1z7I5efA8jnOh7tudHcK6prSwO7javlcNkd6bin17rTBuiI/RssCmzE\n/jvmBPYDQyOdvxCoKSL3u34PNbBPNZVSKYi2U9pORXOttlMqwWgQppxWCXgIGGCMuWqMCTHGrHMd\naw+MNcb8boy5ArwBtIk0lOJtY8x1Y8wu7Jubv2v/i8BgY8xBY+0yxlwAGgHHjDFTjTGhxpgdwDyg\nZYQyFxhjNhtjQrFPmGIaox0GDDXG3HDV5YIxZp4x5pqrgXgX20jFyNXYtwHeMMZcNsYcAz7EvumG\nO26MmWyMuY0dvpAPyOuuPGNMI2PM/VFsjaKoRlbg30j7/gWyRXFu+PGYzo3Nvf4Fsroa65jq4c21\n7kw1xhwxxvwLLAOOGGNWuP4O5gDlIp0fgn0S2dq1LXbtU0qlLNpORaDtlLZTKnGklHHEKul4BPtm\nHerm2EPYJ4/hjmP/BiO+kUccv32N/95sH8EO8YisIFBZRC5G2JcWOzwjpjKjcs4Yc+dNTUQyAx8B\nDbBPKQGyiUgaV4MUndxAOu79ufO7q58x5prr4WJMdYyLK9inshFlxw57cXdu+PGQGM6Nzb2yA1eM\nMUZEYqqHN9e6cybC99fdvHb3O/4aeB8Q7FAfpVTKo+3U3bSd0nZKJQLtCVNO+wMoEMVE4T+xjVG4\nAkAod7/pRFdu0Sj2/xzpSVtWY0zPuFY8gshZhl7FDj2pbIzJDoQPD5Eozo/oPHCLe3/uU55UTESW\niU0r7G5bFsVle4EiIhLxaZy/a/9djDH/AKf578lulOdGc6+ort0LlI00hKVspOOeXuuUtfz3hHdd\nDOcqpZInbafupu2UtlMqEWgQppy2GfvmOFJEsohIRhGp7jo2C3hZRAqLSFbgPSAoiqeRkX0JvCMi\nj7pSxJYVkVzYcf3FRaSjK1VrOhGpGGGMfkzOYMfARycb9onURRHJyb1jtKMsw/UEcjbwrohkE5GC\n2HkD/4tl/SKX95Sr8Xa3PRXFNYeAncBQ179Hc2zDMC+K23wNDBaRHCJSAuiKnTgO3EkNnNH1Mr2r\nTIlw7Ssikl9EHsJ+MAi/Nhg7Obyvq4zweQmrHLjWEcYYg8121cT1vVIq5dF2KgJtp7SdUolDgzDl\nKNebeWOgGDYr0EnsuGWAKdjhF2uw2ZVCgD6xLHostpFYjs0a9BWQyTX2/QnsePY/sUMmRgEZYlnu\nMGC62AnDraI4ZxyQCfu08Bfgh0jHPwaeFZF/ROQTN9f3wWa2+h371Gom9neRkNoAgdjMViOBZ40x\n5wBEpL2IRHxSNxQ7pOY48DPwgTEm4s98ENvY5wd+dH0f/gR1Ina8+q/AHmy2r4kAxpib2NS+nYCL\n2EnrzVz7vb3WMcaYvcYYp59cKqWSCG2ntJ1C2ymVBIgG0UoppZRSSimVcLQnTCmllFJKKaUSkAZh\nSimllFJKKZWAUlSK+ty5c5tChQoldjWUUkrFk23btp03xuRJ7Hp4Stsp5c7BCwcB8M3lm8g1UUp5\nK7btVIoKwgoVKsTWrVsTuxpKKaXiiYgcj/mspEvbKeVO7Wm1AQjuHJyo9VBKeS+27ZQOR1RKKaWU\nUkqpBKRBmFJKKaWUUkolIA3ClFJKKaWUUioBaRCmlFJKKaWUUglIgzCllFJKKaWUSkCJHoSJyCMi\nslpE9onIXhHp59qfU0R+EpHDrq85EruuSimllFJKKeWtRA/CgFDgVWNMKaAK8JKIlAIGAiuNMY8C\nK12vlVJKKaWUUipZS/R1wowxp4HTru8vi8h+ID/QFKjtOm06EAy8nghVVCr2jhyBzZvhwAE4ftxu\nadLAihX2eM+esHo1ZMkCDz8MhQpB0aLQpw+IJGrVlVLx7/dzV2k9ceNd+5oG5Kdd5QKJVCOllFKJ\nISn0hN0hIoWAcsAmIK8rQAP4C8gbxTXdRGSriGw9d+5cgtRTKQCMge3bYcKE//YNGgTt2sGIEbBy\nJdy8CXkj/OkWLw7+/nbf0aMwZQp88sl/AdjgwTBqFBw6lLA/i1IqQVy/dfuu1/tOX2LRzlOJVBul\nVGLLmjWr2/2dO3dm7ty5HpU5bNgwxowZE+t7//nnnzz77LNRnnfx4kU+//zzaMuqVq0aAMHBwTRq\n1CgOtYWFCxeyb9++O6/feustVoQ/vE7BEr0nLJyIZAXmAf2NMZckQq+AMcaIiHF3nTFmEjAJIDAw\n0O05SjnGGNiyBebMgdmz4cQJu79JE3joIRtEDRoEJUtC+vT3Xv/yy/eWd/nyf6+3b4dly2DgQAgI\ngF69bFCXJUv8/UxKqQSTKV0agrpXvfM6cq+YUkoltIceeijagC88COvVq9c9x0JDQ0mbNi0bNmzw\n+P4LFy6kUaNGlCpVCoDhw4d7XFZykiR6wkQkHTYAm2GMme/afUZE8rmO5wPOJlb9lLpjwgSoXBk+\n/hj8/GDqVPjzTxuAgd3n7+8+AHNHBLJn/+/10qU2sPv4YxugdesGr7zi/M+hlFJKqSTDGEPv3r3x\n9fWlfv36nD3738febdu2UatWLSpUqMCTTz7J6dN2oNjkyZOpWLEi/v7+PPPMM1y7di3aexw9epSq\nVavi5+fH4MGD7+w/duwYZcqUAWDv3r1UqlSJgIAAypYty+HDhxk4cCBHjhwhICCAAQMGEBwcTI0a\nNWjSpMmdwClij96lS5d4+umn8fX1pUePHoSFhd1zzty5c+ncuTMbNmxg8eLFDBgwgICAAI4cOXJX\nL+DKlSspV64cfn5+dOnShRs3bgBQqFAhhg4dSvny5fHz8+PAgQMe/+4TS6L3hInt8voK2G+MGRvh\n0GLgOWCk6+uiRKieSu327IEPP4QGDaB1a2jZkl/+vMqkHH5czZIdbgCLjwHH7rnU43kejzwCffva\neWIbNkDu3P/VZdEi25uWObMXP5RSSiml7lG79r37GjWC//s/z44HB8f61gsWLODgwYPs27ePM2fO\nUKpUKbp06cKtW7fo06cPixYtIk+ePAQFBfHmm28yZcoUWrRoQdeuXQEYPHgwX331FX369InyHv36\n9aNnz5506tSJ8ePHuz1nwoQJ9OvXj/bt23Pz5k1u377NyJEj2bNnDzt37nT9WMFs376dPXv2ULhw\n4XvK2Lx5M/v27aNgwYI0aNCA+fPnRzncsVq1ajRp0oRGjRrdc05ISAidO3dm5cqVFC9enE6dOvHF\nF1/Qv39/AHLnzs327dv5/PPPGTNmDF9++WXMv+gkJCn0hFUHOgJ1RWSna2uIDb4eF5HDQH3Xa6US\nxpYt0KyZ7dmaM8f2dgHkzs1HD1dny6XoL3dknocIVK8Ovr729fff2+GOfn7/JfpQSimlVLK3Zs0a\n2rZtS5o0aXjooYeoW7cuAAcPHmTPnj08/vjjBAQEMGLECE6ePAnAnj17qFGjBn5+fsyYMYO9e/dG\ne4/169fTtm1bADp27Oj2nKpVq/Lee+8xatQojh8/TqZMmdyeV6lSJbcBWPixIkWKkCZNGtq2bcu6\ndeti9TuI7ODBgxQuXJjixYsD8Nxzz7FmzZo7x1u0aAFAhQoVOHbsmEf3SEyJ3hNmjFkHRJUWrl5C\n1kUpADp3hunTIUcOGDbM9kjlzHnXKaXyZb9rXkdk8TLPY+BAqFIFuneHxx+HTp3ssMX773f+Xkop\npVRqE1PPlbfHPWCMoXTp0mzceO/nis6dO7Nw4UL8/f2ZNm0awbG4v8SQibldu3ZUrlyZJUuW0LBh\nQyZOnEiRIkXuOS9LNHPVI98j/HXE/SEhITHWNSYZMmQAIE2aNISGhnpdXkJL9CBMqYQwc9OJaHum\ncv19hn/uy0VYmrT0L+hP1VGjbDr5bNkSsJaxULs27Nplsy+OHGmDw48+SuxaKaWUUsoLNWvWZOLE\niTz33HOcPXuW1atX065dO3x9fTl37hwbN26katWq3Lp1i0OHDlG6dGkuX75Mvnz5uHXrFjNmzCB/\n/vzR3qN69ep8++23dOjQgRkzZrg95/fff6dIkSL07duXEydOsHv3bvz9/bkcMYlYDDZv3szRo0cp\nWLAgQUFBdOvWDYC8efOyf/9+fH19WbBgAdlcn7GyZcvmtnxfX1+OHTvGb7/9RrFixfjmm2+oVatW\nrOuR1CWF4YhKxbtFO0+x7/S9YwjT3bpBy+++ZNxbram7/jv2nb7EuIeqwGuvJb0ADJur42JIRn7v\nMoKDM7dxsOM7HDwIv22/xD//gGvuq1JKKaWSkebNm/Poo49SqlQpOnXqRNWqdrRN+vTpmTt3Lq+/\n/jr+/v4EBATcyUT4zjvvULlyZapXr06JEiVivMfHH3/M+PHj8fPz49Qp9w+mZ8+eTZkyZQgICGDP\nnj106tSJXLlyUb16dcqUKcOAAQNivE/FihXp3bs3JUuWpHDhwjRv3hyAkSNH0qhRI6pVq0a+fPnu\nnN+mTRs++OADypUrx5EjR+7sz5gxI1OnTqVly5b4+fnh4+NDjx49Yrx/ciHGpJys7oGBgWbr1q2J\nXQ2VwGLq5QI7R+ueIYQ//AC9e9sFltu2hZEjab3s1J1z41RWJOHDEaM7JyqhobB/v81Wf/Cgrd6R\nIzZp4t9/w+3bUV+bJo3hwQcFX187lSwgAGrUgBIldC1olTKIyDZjTGBi18NTOQuWNH8f33/ntTfv\nFSrlqD2tNgDBnYMTtR5KKe/Ftp3S4Ygq2Qvv5YoucCqVLztNAyJ00/frZxdJ9vW1iyq7JsA2DYj5\nfveU5aULF+ww8p9/tvlAdu2C69ftsbRpoVAhKFoUAgNtosScOe3mGgoNYWHc+uZbLvy4hQvFqvFH\nYHMO/paWmTPhiy/sKblywZNPQsuW9msU82yVUolg3+lL98wjjTa7qjHwxx9w/DhcugRZs8LDD0OR\nIvq0RSmlkgkNwlSKEFPPFGA/uISFgY8P1KsHDzxg08reiWagXeUCnqWVj4Nbt2DtWrsk2MqVNugy\nxmadr1DB5t0IDLTfFytmA7Ho+UD7dvDxOXi5NeSqCsuXYbJl57ff7L1+/tkmV5w5035e69DB5htx\nLe+hlEok7h7ohA+dvuu9yJj/Aqy33rLzQoFQ0nCLdGQiBI4etU9t/v3Xrj+oAZlSSiVZGoSp1OHM\nGRvdVKgAQ4ZAkyZ2SyBXrsCyZXaZryVL4OJFG/tVqwbDh9uOuIoVIV06L27Sr59dNLpdO3jxRWT2\nbB59FB59FLp0scFfcDDMmGHXmJ4wwSZZfPttqKojoZRKFO4e/NyTXXXJEpupdeJE9qQvz+w/u7O+\neHd2nM7LP5ftm0bm9LfwbZGWatWg5Z6x1Ph7ET4j34OGDRPoJ1FKKRUXGoSplG/ePBuAXbnifqHF\neBJ22047++YbWLgQrl2zwwKbNYOmTW0AFE2GV8+0bGmju9Kl7zmULp295+OPwwcfwJdf2gz31apB\n8+bw3nt27phSKok4eRL69CFs4SIW5u3O+22LsvUQ+Pg8TPny0LI25M9v/2+fP5+O3bvtA5bx197m\n0XSdGfL0W7Rr+Q1pxn8CefIk9k+jlFIqAseCMBFpDCwxxmh+NpU0XL8OL78MEyfa8X3TpyfI+Lvd\nu2HH7IL8sTU3cy/Z5cY6dYI2bezayzEPL/RSeA9fWBhMnmzXPYsw5BLs57E33rBDEseNg9Gj4bvv\n4M03YdAgSJ8+nuuoVCJITu1UwJ6NMKgRW6+WpOfDp9h6Mh/FssGnn9pnLXnzur/u6lX70OeD0QXp\ntPsbPpu7ma/WtKXMD2Nsph6llFJJgpMp6lsDh0VktIjo83SV+LZssUHIa6/Bhg3xGoCFhNger2rV\nwN8fjqx5kNxFL7NgAZw+bRNk1KqVAAFYROvWQY8edixiFFlQs2aFwYNt9sXWre3QxMBA2LYtAeup\nVMJJNu1Uqb1beSPtaCrdXMvJ0HxMnw4HDtiErlEFYGB719u3h+07fPjf/+D3+8pR/uwyPl9SMKq3\nAaWUUonAsSDMGNMBKAccAaaJyEYR6SYiSW+xJZVyGWMzXQDUrGlzvI8a5eVkq6gdO2ZjvIcftr1d\nFy7A2LHQeNQ2qnU/RLNm93RC3TFz0wlaT9wY4zZz0wnPKlezph1jOHOm7eKKRp488L//weLF9meo\nWtUGjvqhTaUkSb6dCg2FEye49k96up74gpFnX6BLF+HAAfv+kiZN7Ivy8bHB2P7D6XiiYVpeGpyD\nri8abq34Of7qr5SKs7/++os2bdpQtGhRKlSoQMOGDTl06FCC3X/nzp0sXbo0ztfVrl2bmJaFCg4O\nplGjRgAsXryYkSNHelyPrVu30rdvXwCGDRvGmDFj4lTfcePGce3atTuvGzZsyMWLF+NUhtMcXazZ\nGHMJmAt8C+QDmgPbRaSPk/dRyq3r1+H556F8eQh/YyhWLF5utX27XVqsWDEbdNWuDStW2CfVL78M\nGbKExlhGVAtIR7Tv9KUY10CL1sCBdj7c++/bSWAxaNwYfv0V6teHXr3sSMYI71lKJXtJtp26eRNa\ntWJPxedZNao0/5zMyowZ9r/tffd5Xmzu3LB4sTB4MHw1RXjm8X8JmfS1c/VWSnnMGEPz5s2pXbs2\nR44cYdu2bbz//vucOXMmVteHht79WcMYQ1hY3EZbexqExVWTJk0YOHCgR/UIDQ0lMDCQTz75xOP7\nRw7Cli5dyv333+9xeU5wLAgTkaYisgAIBtIBlYwxTwH+wKtO3Ucpd3L9/Rc89pid9zV4MJQr5/g9\njIHly21iiwoVbMKyl1+2vWFz59qs93HNCB2eWj+qLbq1z2JFBD77zC4O1revzRIZg5w5bTr7YcPs\nEMvateHcOe+qoVRS4Gk7JSKPiMhqEdknIntFpJ9rf04R+UlEDru+5vCoYqGh0KEDPy+4wGOXlxJm\nfKg7YA/t2nlU2j18fOCdd2D8x7f4jiY06Z6P60GLnSlcKeWx1atXky5dOnr06HFnn7+/PzVq1MAY\nw4ABAyhTpgx+fn4EBQUBtnepRo0aNGnShFKlSnHs2DF8fX3p1KkTZcqU4Y8//mD58uVUrVqV8uXL\n07JlS65cuQLAli1bqFatGv7+/lSqVIl///2Xt956i6CgIAICAggKCuLq1at06dKFSpUqUa5cORYt\nWgTA9evXadOmDSVLlqR58+ZcD1/QNJIffviBEiVKUL58eebPn39n/7Rp0+jduzcAc+bMoUyZMvj7\n+1OzZk1u3rx5Tz2GDRtGx44dqV69Oh07dryrVw1g165dVK1alUcffZTJkyff+d1EPKd3795MmzaN\nTz75hD///JM6depQp04dAAoVKsT58+cBGDt2LGXKlKFMmTKMGzcOgGPHjlGyZEm6du1K6dKleeKJ\nJ6L8mT3l5AyVFsBHxpg1EXcaY66JyAsO3kelIjM3nYixJyjzxrWMnPc++ITZ8XSNGztaB2Nsevmh\nQ20HW758doRj9+7ePaFOMGnT2iGJO3ZEP5kkAh8f+/MGBNiEIo89ZgPQggXjua5KxS9P26lQ4FVj\nzHbX0MVtIvIT0BlYaYwZKSIDgYHA63GqUVgYvPACq+ac5+m0KylcKC1FOmwjS66bcSomNnr1TUfm\n9CF06VmPNu2WMO/B9aStVd3x+yiVHPXvDzt3OltmQIBNfhWVPXv2UKFCBbfH5s+fz86dO9m1axfn\nz5+nYsWK1KxZE4Dt27ezZ88eChcuzLFjxzh8+DDTp0+nSpUqnD9/nhEjRrBixQqyZMnCqFGjGDt2\nLAMHDqR169YEBQVRsWJFLl26RObMmRk+fDhbt27ls88+A2DQoEHUrVuXKVOmcPHiRSpVqkT9+vWZ\nOHEimTNnZv/+/ezevZvy5cvfU+eQkBC6du3KqlWrKFasGK1bt3b7sw0fPpwff/yR/Pnzc/HiRdKn\nT39PPYYNG8a+fftYt24dmTJlIjg4+K4ydu/ezS+//MLVq1cpV64cTz/9dJS/5759+zJ27FhWr15N\n7ty57zq2bds2pk6dyqZNmzDGULlyZWrVqkWOHDk4fPgws2bNYvLkybRq1Yp58+bRoUOHKO8TV04O\nR/wrcsMmIqMAjDErHbyPSkViM2Sv8dl9mFy5YPNmRwMwY+DHH+38qKefhvPnbZ6Po0ftPLBkEYCF\ny5nTdtUB/PKLffIeC02b2uDr7FmbdGTfvniso1Lxz6N2yhhz2hiz3fX9ZWA/kB9oCkx3nTYdaBbn\nGn3wAeu+PkLjdD9Q1Dcta9YQLwFYuM49MvLZ6GssDmtMj6eOY67qeGOlkqJ169bRtm1b0qRJQ968\nealVqxZbtmwBoFKlShQuXPjOuQULFqRKlSoA/PLLL+zbt4/q1asTEBDA9OnTOX78OAcPHiRfvnxU\nrFgRgOzZs5PWTbaw5cuXM3LkSAICAqhduzYhISGcOHGCNWvW3AlAypYtS9myZe+59sCBAxQuXJhH\nH30UEYkyYKlevTqdO3dm8uTJ3L59O8rfQZMmTciUKZPbY02bNiVTpkzkzp2bOnXqsHnz5ijLic66\ndeto3rw5WbJkIWvWrLRo0YK1a9cCULhwYQJcWWUrVKjAsWPHPLpHVJzsCXuce58APuVmn1JxEj5k\n7y43bthxgL6+8GIlO3Epm3Nz69eutdOpNmyAAgVg0iR47rkUkLp9716bJ//NN+0q0bFQowasWQNP\nPGHjuDVr7ALQSiVDXrdTIlIIm9xjE5DXGHPadegvwG1Xs4h0A7oBZM1X9K5j2wK70TBDfx4plI6V\nK+0crvjWa0BWTv9+nhET2lHkY7sshVKpXXQ9VvGldOnSzJ07N87XZYm0yGjE18YYHn/8cWbNmnXX\nOb/++musyjbGMG/ePHx9feNcr9iaMGECmzZtYsmSJVSoUIFtUaRkjvxzRiSR5n+ICGnTpr1rTlxI\nSIhX9cwQIbNamjRpHB+O6HVPmIj0FJFfgRIisjvCdhTY7X0VlYrkwgUbEdSqBZcv25RhDgVghw7Z\nhYtr1oTjx22GwEOHoGvXuAdg+05fijbrYUw9fPGidGno2BHefRfWr4/1ZX5+sHKl7UCrV8/+bpRK\nLpxqp0QkKzAP6O9K8HGHMcYAbvOJGmMmGWMCjTGB6cIzte7dy4nfbtKoQw5yPpiBlSsltqOFHTH8\n89y0bWun0C6ddDLhbqyUuqNu3brcuHGDSZMm3dm3e/du1q5dS40aNQgKCuL27ducO3eONWvWUKlS\npRjLrFKlCuvXr+e3334D4OrVqxw6dAhfX19Onz59pzft8uXLhIaGki1bNi5fvnzn+ieffJJPP/0U\n40qPvGPHDgBq1qzJzJkzATuMcvfue986S5QowbFjxzhy5AjAPYFguCNHjlC5cmWGDx9Onjx5+OOP\nP+6pR0wWLVpESEgIFy5cIDg4mIoVK1KwYEH27dvHjRs3uHjxIitX/jfAIarya9SowcKFC7l27RpX\nr15lwYIF1KhRI9b18IYTPWEzgWXA+9jx8OEuG2P+dqB8lQzFZi4XQNOA/LSrXCD2BR86ZMcG/vEH\nTJ3qWPB1/rxdI2vCBMiY0cYo/ftD5syeldc0IH+M55TKlz1W5znuk09sV1+HDjadf/bYJf8oVcoO\nTaxb1wZi69bBgw/Gc12VcobX7ZSIpMMGYDOMMeGzzc+ISD5jzGkRyQecjVVtTpzgUo2nacQ6rt1+\nmBUrIH8CvxWI2MyL+7dcpl33rGz5dyGPDoj7aEqllOdEhAULFtC/f39GjRpFxowZKVSoEOPGjeOx\nxx5j48aN+Pv7IyKMHj2aBx98kAMHDkRbZp48eZg2bRpt27blxo0bAIwYMYLixYsTFBREnz59uH79\nOpkyZWLFihXUqVPnzvDDN954gyFDhtC/f3/Kli1LWFgYhQsX5vvvv6dnz548//zzlCxZkpIlS7qd\ny5YxY0aVppzYAAAgAElEQVQmTZrE008/TebMmalRo4bbwGfAgAEcPnwYYwz16tXD39+fAgUK3FWP\nmJQtW5Y6depw/vx5hgwZwkMPPQRAq1atKFOmDIULF6ZchCRt3bp1o0GDBjz00EOsXr36zv7y5cvT\nuXPnOwHuiy++SLly5RwfeuiOGC8XAhKR7MaYSyKS093xhAzEAgMDTUxrFqiEEd7TE112v/Dj9ww1\njFQOYM/5+Wdo0cJmjVi0yE5S8tLNm3YIwrvvwtWr0K2bTUiRkE+ko3PXz++kjRvtOMN27eDruKWr\n/uUXG4SVKQPBwRDFcG2l4oWIbDPGBMbxGq/aKbHjXqYDfxtj+kfY/wFwIUJijpzGmNeiKytXgRLm\nbL6cNNr2NiukPsuWCfXr331OvP2/d+P4kVACS1zhwdun2LwrA5n84mdZDxW92tNqAxDcOThR66GU\n8l5s2ymnesIaAduwQzEiDtI0QBEH7qGSodgGWLFijI2UHnjA5oYv4v2f1cqV8NJLdj3nRo1g9Ggo\nWdLrYpOHqlVt19+NGzY7m0/sRyZXqQIzZth4uHNnmDUrTpcrlRi8baeqAx2BX0UkPH/aIGAkMNuV\nWfE40CqmiuS8eJZhf7TnBx5nwgTuCcASWsGiaflmyi2e6lSaAfWC+OyPR6JeYV4ppZRjvA7CjDGN\nXF8Lx3SuUpGFz5uK8vif/+KfO6MdO/Ptt/ZrDs+W4gl36hS8+ioEBUHRojb9fIMGXhWZPL35pseX\nNmtm0/S/9hoUL27XIFIqqfK2nTLGrOPuwC2ienEq7PJtRjCELl3sMhdJQYOOeXhl3hHGLmrNEx2+\npsmcToldJaWUSvEcy44oItWBncaYqyLSASgPjDPGnHDqHipliWk+lITdZuzqifhf/hO6rbFp1r1w\n6xZ8+qkdbnjrll2M+PXX7RywVG3ZMpukY8SIOF32f/9nexFHjIDy5W1CE6WSsqTQTv1OUcoFhPHZ\nZ9F3H0f1gCrO82hj6b2goqzOf4LnlzzL7lMJP0dNKaVSGydT1H8B+IuIP/Aq8CXwDVDLwXuoFKRd\n5QJRf5gICbHzldYutLnivcwNv2MHdOliF2Js2NDmpihaNObrUoWff7bdWnXq/LeWWCyIwPjxNrfH\n88+Dv78jo0SVik+J3k4ZH2HuPJ9o51JG9YAqPKNqfARhGTLAt+sfoXwFoXNnm4RHour7U0op5TUn\ng7BQY4wRkabAZ8aYr1zj5JWKm4sXoUkTm8Fv3Djo18/jom7csEPlRo6EPHlg3jzbY5OcPlzENGQT\nvHw6PnQozJ9vs5Ls2ROnTBsZMsDs2bYnrFUr26Gm00lUEpbo7VSWXDdifFgR1QOqOM2j9UBxX2HM\nGOjZEyY9u5zu856I1/sppVRq5uR0+ssi8gbQAVgiIj5AOgfLV6nFs8/aFHyzZnkVgG3aBOXK2Xwe\nHTvCvn02mURyCsCaBuSPNsMk2CAtNssBRClTJpub//ffbXaSOCpc2K4WsG2bHaKoVBKW6O1Uuky3\nE/J2cda9O9TLv5//m1+VY/PcL6CqlFLKe072hLUG2gEvGGP+EpECwAcOlq9Si5EjbW+Yh2nDrl+H\nIUPgo4/svIbknHgj2iGbLo48Ha9b13ZljRxpUx4WLBiny5s1s+uqjRtnM00++aT3VVIqHmg7FQMR\n+OrHRyjjBy90uslPDW/gk0m7t5VSymmO9YQZY/4yxow1xqx1vT5hjInbAkQq9dqxw85LAggM9DgA\n27EDKlSADz/8b3Rdcg3AEtyYMTYIcy14GFfvvw+lS9u5d//843DdlHKAtlOxU7B0Vj7sc5xV16oy\n8dmfErs6SimVIjmZHbEFMAp4AJvKVwBjjIl+LJVKdmZuOhHj8LeYFmq+y4YNNltG9uw2cvIgBf3t\n2zaGGDLEzv1avhwefzzOxaRujzzy3/BPY+I8bjNjRpg+3a4j1rcvfPNNPNRRKS9oOxV7XceVZu7s\nXxmwtDYNVhyhcH3NZKSUUk5yck7YaKCJMeY+Y0x2Y0w2bdhSpkU7T93J0hWVUvmyx5iCHoAVK2y0\n9MADsG6dRwHY8eN2NN3AgdC0Kfz6qwZgXlm40GZKvHUrzpdWqACDB8P//mdzfSiVxGg7FUsi8OXS\nh5AM6ek+qjDGJHaNlFIqZXFyTtgZY8x+B8tTSVipfNkJ6l7Vu0IWLbLzkHx94aefIG/eOBcxcyb0\n6gVhYbYXpmPH5JV4I0kSsWnrv/oKevSI8+WDBsF339l/l7p14f7746GOSnlG26k4KFAuF6PGwksv\nwfSpYXTu4uRzW6WUSt2cfEfdKiJBItJWRFqEbw6Wr1Kakydt+sLg4DgHYNeuwQsvQPv2dh7Srl3Q\nqZMGYI5o0gRq1LCp6y9fjvPl6dLB5Mlw7hy88UY81E8pz2k7FUc9esBjfv/yStdLnNn1V2JXRyml\nUgwng7DswDXgCaCxa2vkYPkqpTh92n596SW7FljOnHG6fN8+qFTJpkUfPNh22hQuHA/1TK1E7AS7\ns2fhA88Sx5UrZ6eXTZwIG+N3aSOl4kLbqTjy8YHJH1zkalgm+jz9e2JXRymlUgzHhiMaY553qiyV\ngo0ZA8OG2U/mfn622yQOpk+3w9yyZIEff9S5X+EcX9C5UiVo3dqmmezVCx58MM51Gj4c5syx6w5t\n2xbnf2qlHJcS2il3/9e9Wqw9Fko8WZChT/zMm8trsfCNTTR7v3K83UsppVILx3rCRKS4iKwUkT2u\n12VFZLBT5asU4J13YMAAePppOw8sDq5etctXde5s44NduzQACxdvCzq/9x5MmmSTpngga1b49FOb\nKOXjjz0qQilHJfd2yt3/da8Xa4+lAQuq4Z/xAL1GF+TiiegTMymllIqZk4k5JgMDgIkAxpjdIjIT\nGOHgPVRyZIydX/TOO/DcczbhQ5o0sb58/3545hk4cMAWM2RInC5P8eJtQeciRezmhWbNbMw9fLhN\nmuJB7hWlnJSs2yl3/9cdWaw9FtJlTseXX4RS+fk8vNZqL5N+KZsg91VKqZTKyTlhmY0xmyPtC3Ww\nfJVc/e9/NgDr0gWmTIlTBDV/vu35unDBJlAcNkwDsAQ3bhy8+qrHl3/4IVy/boNnpRKZtlNeCOxc\nhlfbnmbyprKsXp3YtVFKqeTNySDsvIgUBQyAiDwLnHawfJVctWoFn31mU+b5xO5P7vZtm1nvmWds\n9sNt26BevXiup3LvxAk7nvDwYY8u9/WFPn3gyy9h506H66ZU3Gg75aVhXz5M0aLQtUso1/65kdjV\nUUqpZMvJIOwl7BCPEiJyCugP9HSwfJWcGGN7UC5cgAwZbCbEWAZgFy7AU0/ByJHQrZvNfvjww/Fc\nXxW111+3/4bDh3tcxJAhNglm//7ooq8qMWk75aXMmWHyyAscOZaWYY22JnZ1lFIq2XIsCDPG/G6M\nqQ/kAUoYYx4zxhxzqnyVjBgDr7wCL79s88jHwY4dEBhoA6/Jk22K8wwZ4qmeKnby5oXevWHGDDtB\nzwM5ctgRqT//DAsXOlw/pWJJ2yln1Hk2F12LruLDDVXYOudoYldHKaWSJa8Tc4jIK1HsB8AYMzaG\n66dg12k5a4wp49o3DOgKnHOdNsgYs9TbuqoEYAz07WuHH/brF6e5RN98Y3u+cue2y4dVqhSP9VRx\nM2AAfP45vP02fPutR0V07QqffAJvvmnXg9a5fSqheNtOqXuNXubH977neKHzbbY2CSNdBicH1iil\nVMrnRHbEbK6vvkBFYLHrdWMg8gRod6YBnwFfR9r/kTFmjAP1UwklLMz2mHzxhe0JGzPGLvwbg9u3\n7Wf8jz6CWrVg9myPs6KraHi1llju3DB2rFfjQtOmhXfftfP8vvnGLjegVALxtp1Skdz/aB6+6L2S\nZp/WY3TLTby5WNcOU0qpuPA6CDPGvA0gImuA8saYy67Xw4Alsbh+jYgU8rYeKgk4c8aONXvtNTuh\nKxYB2L//Qtu2sGyZjd/GjtVFfeND04D8MZ6z77Rd+yfKdPddu3pdj+bNoWJFu9RA27Y61FQlDG/b\nqZRs5qYTbtcZi80C0E0/rkvLoJ8ZvqQazxyAEiXiq5ZKKZXyOLlOWF7gZoTXN137PNVbRDoBW4FX\njTH/uDtJRLoB3QAKFIi+wVDxJCzMBlz58tn0d3nyxCoAO3IEGje2SfcmTIDu3ROgrqlUbNcSi6m3\nLMvVSzT+aSY+3brRtHn1ONdDxK4B/fjj9t+8X784F6GUN5xup5K9RTtPse/0pbsWgY7xgUw4ET7d\nGMiKwLS8+CKsWRPr/EtKKZXqOfl2+TWwWUSGuZ4ubsIONfTEF0BRIACbPvjDqE40xkwyxgQaYwLz\n5Mnj4e2Ux27fhhdesEk4jLHjCGMRgAUH2zlff/0Fy5drAJYUNA3If9cHMXcy3Ayh0fKZZPj4I4/v\nU78+1K0LI0bA5cseF6OUJ5xsp1KMUvmyE9S96p0tpveBiPIWycJHHwnr18MXr/4Wj7VUSqmUxbGe\nMGPMuyKyDKjh2vW8MWaHh2WdCf9eRCYD3ztQReW027fh+eftBJ+3345V8AU262GvXlCsGHz3nf2q\nEl9sessAVn3/FHU3fGeHn+b1rBPh/fehcmU7D/CttzwqQqk4c7KdUv/p1Alm9t/EwI9L07jLvxTw\nuy+xq6SUUkmeowMHjDHbjTEfuzaPGzYRyRfhZXNgj/e1U07yuR1qW95vvrFdGrH4JB0aateJ6tbN\n9ob88osGYMnR4ifakzb0ll3A2UOVKtn5YWPGwD9uBxorFT+caqfUf0Rg4teZMQZ6PH1C1wJUSqlY\ncHJOmEdEZBZQG8gtIieBoUBtEQkADHAM0MFqSYkxvDRtBGxZbrs0Bg6M8ZJ//4XWreHHH20g9sEH\nNlueSn5O5y3A5nK1qTJ+vF3I+T7PnnoPHQoLFti09UOHOlxJpVIRd3M5Y5NYI65lRlduocZ+vFtn\nIf1XN2PmWwdo/45m6VBKqegk+sdgY0xbN7u/SvCKqNgTYVfpyjzW6nH4v/+L8fRjx6BhQ5uAY9Ik\nR5LsqUS2sEEnqmxOAxcueByE+fvb9cLGjbNTCrPHfhqKUsrFXebTWCfWiEOZsSm398LHmfXADvq9\nV4gnuoWQ55GMHt1fKaVSA8eCMBHpA/wvqiyGKgW4edNmPwTWVHmKl7pXjfGSbdvg6afhxg346Seo\nXTue66gSxNECvvDuT16XM2SITVk/fjy88YYDFVMqGimxnXI3lzOm9QA9KTM25abJnoWvPrlGuZ7Z\n6P9KGDPmeFUNpZRK0ZxOUb9FRLYDU4AfjdGR4SnGjRvQqhX8+CO5hn7LhZwxJ2RYssRekicPrF4N\nJUsmQD1VwjpxAs6ehcBAjy4PDIQGDez6cH37QpYsDtdPqbul6nbK3ZpgkdPTxySmoY+lu1XnzdMw\nbBi0W2IfwimllLqXY4k5jDGDgUexQwk7A4dF5D0RKerUPVQiuXEDnnkGFi+GsWNjFYBNmGCHmpUs\naRNwaACWQjVpYseXevE59q234Px5+zejVHxK7e1U+JpgEZXKlz1Wi7mD+2Us9p2+dE9g98YbULpY\nCD1a/82lf257V2mllEqhHJ0TZowxIvIX8BcQCuQA5orIT8aY15y8l4ofkZ+Uprt1g1cnDKLc3o1M\nav8aK9OUi/bJaVgYDBoEo0ZBo0YwaxZkzZpQtVcJrndvG4QFB0OdOh4VUbUq1Ktnk7X06gWZMjlb\nRaUiSu3tVPiaYJ6I7dDH9Onhq+fWUHVIfQY2/pXP1/l7dD+llErJHOsJE5F+IrINGA2sB/yMMT2B\nCsAzTt1Hxa/IT0obrJ6L/75fmNhhICtrNAOifnJ64wa0b28DsJ49beY7DcBSuPbt7XjTjzxfvBns\n3LAzZ+ArTcmj4lFqaqfChw1G3CL3gsWnym8+Tr/Ci/livT9rZ59OsPsqpVRy4WRPWE6ghTHmeMSd\nxpgwEWnk4H1UPLvrSekLFeHn5nSvVy/adQL+/huaNYO1a20QNmBArNduVslZpkw24h4+HA4dguLF\nPSqmVi3bIzZ2LPToocsXqHiTKtqpqIYXxmXooddEGLG0AgtLHePF59Oyq7EhYyZtFJRSKpyTH3WW\nAX+HvxCR7EBJY8wmY8x+B++j4lmGG9ftELPhwyFfPjtWLBpHj8JTT9mv335r1wNTqUivXjB6NKxY\n4XEQBvDaa3YB53nz9G9IxRuP2ikRmQI0As4aY8q49g0DugLnXKcNMsYsja+Kx0VU2Q3jS3TJOib1\nWsQT45syvM1e3ltUOsHqpJRSSZ1jwxGBL4ArEV5fce1TyUiGkGsM/OxVmDIFNm2K8fwtW6BKFZsg\nb8UK/fCcKuXNa7Mk9urlVTFNmtgY7oMPvMrzoVR0PG2npgEN3Oz/yBgT4NqSRACW0GJK1vH4J43p\nHPgro5eUCl/hRCmlFM72hEnEVL+u4R06qCgJcZeeOKKMIVfp/2E/fE8dhJkz7fjCaCxeDG3b2s/g\nS5dCiRJO11glG3ny2K8hIZDRswVafXzg1Vehe3e7pEHdug7WTynLo3bKGLNGRArFZ8WSqxiTdfj4\n8OGPfiwrBS+8YNi0SXS4sVJK4WxP2O8i0ldE0rm2fsDvDpavvOQuPXG4TNevMuiTl/E/dZAN73wa\nY5fW+PF26Fjp0rBxowZgCptrvmxZuO15SupOneCBB2xvmFLxwOl2qreI7BaRKSKSI6qTRKSbiGwV\nka23bt3y4nbJU86c8NlbZ9m+XRjb7UBiV0cppZIEJ59H9QA+AQYDBlgJdHOwfOWAKNMTnzwJX9yE\nObOp0aJFlNeHhcHrr8OYMdC4sU1BrwvsKgDKlIHDh+GHHzxeoTVjRrto8+DBsHu3jemUcpCT7dQX\nwDuuct4BPgS6uDvRGDMJmASQs2DJVDnY9laZf3kyww6GTq3JxofWk/6R/54BR1zsWSmlUgsnF2s+\na4xpY4x5wBiT1xjTzhhz1qnyVTy5dMn2XDz8MPz6K0QTgIWEQJs2NgB76SWbgl4DMHVH8+Y2kcv4\n8V4V07On/bsaM8aheinl4mQ7ZYw5Y4y5bYwJAyYDlZytbcqycP95Mjc/TgZucGT8/Zgwu9/dYs9K\nKZUaOLlOWB4RGSQik1xDM6a4MkqppOrvv+0Cu71729fp00d56oULUL8+zJljPxx/+imkSZNA9VTJ\nQ7p0dkLXsmXw228eF5MzJ7zwgu1l/fNPB+unUj0n2ykRyRfhZXNgjzO1TLnS1fZjTJ2l/HqxNPWP\nPUBQ96r3JPVQSqnUwsk5YYuA+4AVwJIIm0qKzp+3qef37rXjCqNx5AhUqwZbt8Ls2TZ5gq4Bptzq\n1s0u8vWFd4lR+/a1HbReFqNUZB61UyIyC9gI+IrISRF5ARgtIr+KyG6gDvBy/FU7+Ym8WHT4fOQX\nFjamTob1DBj7IKe0A0wplYo5OScsszHmdQfLU8Sc0TAu9p2+ZJ86njtnA7DDh2HRInjyySiv2bTJ\nxmi3b8PKlVC9uiNVUcmcu3WBwtXo8AaHcvhRZdMJj+d5FC0KjRrBxInw5pseJ1xUKjKP2iljTFs3\nu79yoD4pkrsFocMXipbs2Zg0Pw9ln81Mr16Q4Sl9qKeUSp2cDMK+F5GGqXWtlPgSntHQiSEbpfJl\np5nfgzboOnwYvvvOjjGM6t6LbAr6fPnsCDMv1uFVKYi7D1gRra3yFPtOX+LMzlNeTbbv18/+iX77\nLXTu7HExSkWk7VQCiGmx6GINizN8OAwYALXuz8KFwqejXOxZKaVSKjEOrYoqIpeBLMBN1yaAMcYk\n2IDvwMBAs3Xr1oS6XYIIb5jcZjT01Pz5cP/90S7E9Omn9kNwpUp2PbAHHnDu9irlG/z6JKptXUnD\nFd96/JjbGJsdMW1a2L5dn5YrS0S2GWMCPbw20dupnAVLmr+P70+o2yVZoVdCqJr7EEcpyGPvHiJD\n1tA7x8IfPDra7iVxtafVBiC4c3Ci1kMp5b3YtlNOZkfMZozxMcZkNMZkd73WGbdJxdGjtmsLbAbE\nKAKwsDA756tvX2jaFFat0gBMxV2BU0douGo2rF/vcRki9u9w505Yu9bByqlUS9uppCNt1ox89ewP\n/HsjM/etLkJQ96p3Nk3WoZRKDZzMjigi0kFEhrhePyIimrI3KTh0CGrWtEkTrlyJ8rTr16FVKxg7\n1n74nTsXMmdOwHqqFGNdpSe5ljELTJjgVTnt29tsiR9/7FDFVKqm7VTSUnZ8d17LPJ6vl+Ri/dqw\nxK6OUkolKCezI34OVAXauV5fAbxbMEh5b88eG4DduAE//QRZs7o9LTxZ4vz58NFH9kOvpqBXnrqR\nIRNrKjewkfyFCx6XkzkzdO0KCxfCsWPO1U+lWtpOJSX33cegsbnJz0n6PfcPYRqHKaVSESeDsMrG\nmJeAEABjzD9A1AtPqfi3bRvUqmWjqTVr7AQbN377DapWhR077Dpg/fsncD1VirSiZjMb/H/9tVfl\n9OplhyZ+/rlDFVOpmbZTSUyWru0YWXAC247m8vatQimlkhUnsyPeEpE0gAG7KCagz7WiEZv0815l\nRpw5E7Jls7nlixZ1e8qGDdCkif2Qu2qVDcaUcsIf+V155r1M/lOgADRvDpMnw9ChkCWLQxVUqZG2\nU0mNjw/t1vbks2cNb7whPPNMYldIKaUShpM9YZ8AC4AHRORdYB3wnoPlpzjh6eejE762SpyEurJM\nffABbN4cZQA2Z47Nz5EjB2zcqAGYigfffQevvOJ1MX37wsWLMGuWA3VSqZm2U0mQzyP5+fgT4a+/\n4P2hIYldHaWUShCO9YQZY2aIyDagHjbtbzNjjObhjYHjaXiXLYOXX4bly20XgpvUhsbAhx/aNVqq\nV7fzbXLndq4KSt0lLAz274fSpT0u4rHHwM/PDkl84QVNV688o+1U0lW51GU6ZPiBsZ80o97bGcia\n+0ZiV0kppeKVk9kRCwDXgO+AxcBV1z6VUObPt3nlM2eOMq1haCj07m0DsJYtYcUKDcBUPBs2DCpU\n8CpBhwj07GnnLW7e7FzVVOqi7VQSli0bI5/dis/tW/w2Oxf7Tl+i9cSNd20zN51I7FoqpZRjnByO\nuAT43vV1JfA7sMzB8lV0pkyxUVWFCnZyl5vI6soVO7fm889tEPbtt5AxYyLUVaUuLVs6kqCjQweb\n3FMTdCgvaDuVhOUf8zL9043n0O6C5Lv14F3H9p2+FOMcaqWUSk6cXKzZzxhT1vX1UaASsNGp8lU0\nvv7ajtGqX992bd1//z2nnD5tEyUuXWo/xI4eDT5OhuBKRcXPz044nDTJqyQd2bJBp04QFORVp5pK\nxbSdSuIefJDX+t0kB3/jE1xYF3BWSqVo8fYx3BizHagcX+WrCBo0gFdftUkQ3KSO27sXqlSBgwdh\n8WI7rEupBNWtGxw4AGvXelVMz562U23qVIfqpVI1baeSnvvffIk3M47lxw3ZWbUqsWujlFLxx7HE\nHCISMQWaD1Ae+NOp8lUkt2/DhAn2w+0DD8CYMW5PW7UKWrSATJng55/taEWlEkL4nA6A9DcLMiFT\nVja98QETO6W7c07TgPy0qxz7KTllykCNGvZP/5VXtDdXxY22U8nA/ffz0o4X+fgJw8CBwqZNmohH\nKZUyOfkRJluELQN2zH1TB8tX4W7cgDZtbIaNRYuiPO3rr20nWf788MsvGoCphNM0IP9dw4dups/I\ne30/Ymqb/z4DezrHo1cvOHIEfvrJkaqq1EXbqWQgY4lCDB8ubNkC8+Yldm2UUip+OJmi/m2nylLR\nCM+usWIFjB0Lzz57zynGwDvv2IVt69a1jZibaWJKxZt2lQu46eG6eymG8F6yuGrRwnb+fv45PPmk\nhxVUqZK2U8lHxyLrGSM5GNS/EM2auc/2q5RSyZmTwxG/A6KcdW+MaeLUvZKDmZtOxPiUf9/pS3Gb\nbHzhAjRsCNu2wbRp8Nxz95wSEmJzdMycaZMYTJ4M6dPHsfJKxZegILvi8oIFHheRPj28+CKMHAkn\nTtjl8JSKDW2nko80lSrwXs5eND01hW++9jyhj1JKJVVODkf8HbgOTHZtV4AjwIeuLVVZtPMU+05f\nivacUvmy0zQgf+wLPXgQDh2y64G5CcDOnrU9XzNnwnvv2ThNAzCVpFy5YofQbtjgVTHdutmvkyY5\nUCeVmmg7lVxkzEjjd6sQyBaGD7rO7VCdGKaUSlkc6wkDqhtjAiO8/k5EthpjXnbwHslKqXzZCepe\nNeYTY3L+vF33q1o1OHYM7rvvnlP27IFGjWwgNmeO21GKSiW+1q2hf3/bRVu1u8fFFCwITz9ti3nr\nLX3YoGJN26lkRLo8z/Bh3Wn41xRybchD0ZpnE7tKSinlGCd7wrKISJHwFyJSGLg3X7qKm1WroFgx\nO4QL3AZgy5bZ+OzmTVizRgMwlYRlzQrt2sHs2WS+dtmronr1sg8dFi50qG4qNdB2KjlJl44G79ei\nChs5/N0D3L6lvWFKqZTDySDsZSBYRIJF5GdgNdDfwfJTn1mzbHrDhx+Gxx5ze8qnn9oesKJFYfNm\nCAx0e5pSSUfXrnD9Oo9tXu5VMU88AYUK2XT1SsWStlPJjHRoz/CP7+fS5WwcXf9AYldHKaUc42R2\nxB9E5FGghGvXAWPMDafKT1WMgQ8/hAEDoFYt+6g/UnrD0FDo189miGvaFP73P9vJoFSSV6ECdO7M\nhUzefaDy8YHu3eGNN+w60CVKxHyNSt20nUqG0qalfp+S5P70EvuX5ef6dbvupVJKJXeO9YSJSGZg\nANDbGLMLKCAijZwqP1VZtcoGYK1awY8/3hOAXbxo58N8/jm89prN06EBmEo2RGDqVLb51/C6qOef\nh3TpNEGHih1tp5InEeiR90uu/5uBSRPCErs6SinlCCeHI04FbvLfYkCngBExXSQiU0TkrIjsibAv\np4j8JCKHXV9zOFjPpK9uXRtZzZoFGTLcdei33+z8r1Wr4KuvYNQo2yOgVHKT5eolSh/Y6lUZefPa\nZUue6tYAACAASURBVPOmT4fr1x2qmErJPGqnVOLLWfIadVjF+2/f4Nq1xK6NUkp5z8mP70WNMaOB\nWwDGmGtAbGbRTgMaRNo3EFhpjHkUWOl6nbKdPw+NG9s0hyL2k2Wk6Gr5cqhY0SYj+Okn6NIlkeqq\nlAM6zPuMAV8MtGnrvdCjB/z9N8yd61DFVErmaTulEtmm8nV4KdcEzvybiS/G307s6iillNecTFF/\nU0Qy4VoIU0SKAjGOtTfGrBGRQpF2NwVqu76fDgQDrztUz6TnwAE7vvDUKbsKbZkydx02Bj76yI5Q\nLFPGThErXDiR6qqUQ4KrNaLuhu+Z0Os9VldvHOV5TQPy065y1Csy164NxYvbBB0dO8ZDRVVK4lE7\npRKf8fHh2LPleGLij4x8pxbde6bRYfhKqWTNyZ6wocAPwCMiMgPbg/Wah2XlNcacdn3/F5A3qhNF\npJuIbBWRrefOnfPwdolo5UqoWtX2BgQH2ywbEVy/btdlfvVV2zm2fr0GYCplKPFMA04+WIh66xZH\nec6+05dYtPNUtOWI2N6wDRtg926na6lSGCfbKZXANgfU4u3iMzl/OSOffqJzw5RSyZsjPWEiIsAB\noAVQBTu8o58x5ry3ZRtjjIiYaI5PAiYBBAYGRnlekrR8ue0B8/WF77+3+bYjOHXKBl5btsDw4TB4\nsP3AqVRK0K5KQXitL7zyCkHVsoKf3z3ntJ64MVZlPfeczZI4cSKMH+90TVVKEJ/tlEogIlT5uhdP\nv3aJD8Zkp9dLbpfOVEqpZMGRnjBjjAGWGmMuGGOWGGO+97JhOyMi+QBcX886Uc8kp3p16NPHdm9F\nCsA2brRrfu3fb4cfDhmiAZhKgTp2hPTp7UMIL+TMCa1bwzffeD3FTKVQ8dBOqQS27/QlWu8M4+Zj\nx/jnH6jW/g9aT9zIzE0nErtqSikVZ04OR9wuIhUdKmsx8Jzr++eARQ6Vm/iuXrV55S9fhixZYOzY\nex7lTZ1q57lkyQK//HLPCEWlUo7cueHgQduN5aUePex/q1mzHKiXSqmcbKdUAmoakJ9S+bID8GDe\n89S6fy2//5iH3UeuxzhkWSmlkiInE3NUBtqLyHHgKnaohzHGlI3uIhGZhU3CkVtETmLH7I8EZovI\nC8BxoJWD9Uw8J07Y8YU7d8Jjj0GTJncdvnkTXn7Zrv9Vvz4EBdkn/EqlaOG9wMZ41d1bpQqULQtf\nfGHz22jPsXLDo3ZKJb52lQv8l6DHGPZM6UjZXdXx2VkMimoQppRKfrwOwkSksDHmKPCkJ9cbY9pG\ncaie57VKgtauhWefhZAQ+O47aNjwrsMnT0LLlrbn69VXYeRISOtkiKxUUvbWW7BtGyxZ4nER4Qk6\nevWCrVvtcg5KgfftlEpiRCjz4fO0rT+LuauepdjjKXPGglIqZXNiOGL46jxTjDHHI28OlJ/8ffut\nXYD5/vth06Z7ArDVq6F8ebtE2Jw5MGaMBmAqlcmcGZYuhUOHvCqmfXs7jHfCBIfqpVIKbadSmrp1\nGRq4lNDbaTm0NMoEykoplWQ5EYT5iMggoLiIvBJ5c6D85C/g/9m77/Aoqq+B49+TBAiEFor0EorU\nQOi9gygqiAKCUiKIgFQRXrAgRUSwIAIqRRDwBxJFmg0VAQEpAhq69KKCIiJFakLu+8dsYkg2fZLd\nzZ7P8+yT3ZnZO2d2s3v3zr1zbgg88ojVAKtYMWaxMfDaa9bQwwIFrCyInTq5ME6lXCU0FHx94f33\n01RM7tzw2GPWdWEXL9oTmsoU0lRPich8ETknIvtiLcsnIt+KyBHH38B0PQJ1JxHufuMperGQoxsL\n89tvrg5IKaVSxo7+lq7AQ46yctlQnttbsv10khcC/3nkFH2Pb4Kn6lsNr6VL71h/+TI88QQsX24N\nQ5w3D3J5xaunlBOFC8ODD8KCBTBxopUxMZX69YO5c61MiYMH2xei8mhpracWADOBRbGWjQa+M8ZM\nFpHRjsej0hinSolmzQhu+x23v/Wh+eN/UOuxEzGrkprkXSmlXC3NjTBjzCFgiojsMcZ8ZUNMbm9V\n+O8cOHs5JlNTXEGnD/HO/NHkvXYRDg+x5gGLZf9+ePhhOHbMSo44bJgmEVCKvn2t+RhWr05Tl3Ct\nWtb1YLNmwaBB+tlSaa+njDEbRaR0nMUdsJJKASwENqCNsAxXaPyTlLn+Fyd+uIsK95whZ4GbHDh7\nGUAbYUopt2bblUfe0gCLVrlIbsL6NYi/4oMPYOrTULAgrN0SrwH24YcwYIDV67VuHTRtmkEBK+Xu\n2ra1zkjE+cykRv/+0KcPbN4MTZrYEJvKFGyupwoZY8467v8BJHhhkog8BTwFkLNIWRtDUI/VK0mz\nsYco2yYfhX4JZv6HWZI9ybtSSrmSpn+w09ChMH26lYTjo4/grrtiVl29ap2VX7AAmjWDJUugaFHX\nhaqU2/H1hbfeirf4wNnLSf6oijv06NFHYfhwmD1bG2Eq/RljjIiYRNbPAeYA5CtVKcHtVOoUy3mJ\np6Nm8vbiYQzXvkjlREKXkeiwVeVKaU7MISKdHX+D0h6Oh6tfH55/Hr755o4G2L591vCohQutTNxr\n12oDTKkE7dplDUnkzglaE3Lg7OV4lWtAAPTsaWUbPX8+3SJVHiKd6qk/RaSIo9wigOZJd5W6dXnh\nnp3k5jIjn4lwdTTKDUVfRhKbs7pDqYxkR0/Yc8AnwKdATRvK8yyffw5//w29ekG3O6c8M8ZKuDF4\nMOTJA99+C60y1+xnStlvzBjYvRvatbtzgtYEJNRL1q8fzJhh9T6PGJEOcSpPkh711GqgFzDZ8XeV\nTeWqVMj/6ghe/OZlRqx9k6aV81C48iVXh6TcTNzLSHTYqnI1O1LU/y0i3wBBIrI67s2G8t2SRN2G\nF16wMrrNng1RUXesv3IFune3cg00bmz9ptQGmFLJ0LcvnDljzRuWBlWqWEMRnXw8lfdJUz0lIh8B\nW4EKIvKbiPTBany1EZEjQGvHY+UqNWsy6MHTlJET7P2khH7mlVJuz46esPuxzix+CLxpQ3luL++l\n8wyaPx4O7bJ+ME6fDj7/tWfDw6FLFyv74cSJMHq0dbmLUioZHngAChWy5gxr3z5NRfXrZ50MWbfO\nmo9Pea001VPGmG4JrNJTa24k2ysvMTliPV3W9Obk1rtggKsjUkqphNmRov4WsE1EGhpj/hKRnI7l\n/6Y5Ond07hyvTeyJ/43rVibE0NCYVVFRMG0aPPecNfny+vWa/VCpFMuSxZpE77XX4PffoVixVBf1\nyCNWvpxZs7QR5s28rp7yVsHBdPoymPzlrrBvVQmuXNH5N1XaJTY3rCb2UGlhZ3bEQo7hHvkAEZG/\ngF7GmH027sN1jLEmHLrrLr5s+Sg7QpoxNfS/k6O//261x9auhQ4drJP4BQq4LlylPNqTT8Lbb8OO\nHWlqhPn7W+25t96yRjhqQhyvl7nrKYUIdGiwlg8Wd2DsS4apb+lEgSr5nDW4tp+4AEC9oHzxlm8/\ncSHe9towU8llZyNsDjDcGLMeQESaO5Y1tHEfrnH0qPVLbsYMCAlh5X297lj96afw1FNw4wbMmWP9\nftQJYpVKg7Jl4dw5yJkzzUU99RS88QbMnw8vvmhDbMqTZd56SsVoHLkJP84xfXpfeoUK1au7OiLl\nruJOgeKswVUvKJ/ThlVCDTZnDbOEaIPNu9nZCAuIrtgAjDEbRCTAxvJdY8kS68ISPz/48887Vv37\nrzXUaf58qF0bFi+Gu+92UZxKZTbRDbAbN6wurUQkNZdYoYqVmDYzJ88956fXZ3q3zFlPqTt807Qj\nz38/hBXnHmFAv0A2b/GNfdm2UoDVAIoroQaXM86y9yY2dDGu6JT52gjzXnY2wo6LyBisC58BugPH\nbSw/Y125AkOGWPmtGzWyGmMl//ug/H0iJyEhcPy4lSRx7FjrUhallI3uvx9y5LAm/EqAs4o0rqzB\nJ/nzkxC++srK+6G8Vuaqp5RTUb5+rOjWh9ffepbQ7QuZN8/KoaUyl7ROwJycKVBSKiVlaop8ZWcj\nrDcwHlgOGGCTY5nbSO4Zig4hxXjsi/dh0SJr/NLYsVZPGHDzJuxdWYJfvilGyRLw/fdWGmylVDqo\nUAFmzrSGJsaaAD225FR6nW9v46+vbzFrVlZthHk3t6+nlD32V6jFmN7hfDB/AyOHN+bee/0oUcLV\nUSk7RU/AXLlI7phl2rukPIltjTBjzD/AELvKSw/OPrCx+UXc4vS+ozx/4gJfFWtBqRElOFK8Kszb\nAcCFUwHsWFiOS2eKU7rhOcK/vIs8eTLyCJTyMn37Wlk1Fi6EkSNTXYyPryGo8Tm+/LI4p05BqVI2\nxqg8hifUU8o+8uYbzMu7hGqzmtGnD3z9tV6vndnoBMzKk9nZE+YR4n5gY+zZAz36c/mfK/QftYBb\nflk4UqYqALcjhYNfFufgmmL454qgycCD9O8RoA0wpdJbpUrWcOD334cRI9L0C6pM4z85tKY4c+da\n8/cppTKvA2cv82jYQbi7BhU7nODbj8rQZ/QF5k/Jl/STlVIqA3hdIyye27fhzTdhzBgIDCT3+++z\n5IH/JvcKD4deveDAHujZE6ZNy0pgYCUXBqyUl+nb15r/YeNGaNYs1cUE5LvFfffBvHl6DadSmVnc\n60RblPmBAL9f+d9bDXm+L5Qr56LAlFIqFtsaYSLSyBjzQ1LL3Mqff0LnzrBpE3TsCLNnQ8GCANy6\nBZMmwSuvWPN9rV4NDz7o4niV8kadO8OFC1C1apqL6t/f+hyvXm1N5Ky8i0fWUyrF4l0n+k9Fwme2\novnldXR5JBdbtvsmlXBVuRln1/QndnmJUp7AzqStM5K5zH0EBlqTMC9YYE325WiAbdkCNWrA+PHQ\npQvs368NMKVcJkcOeOYZyJ8/zUXddx+UKAGzZtkQl/JEnldPqbQLDGR5334sNL34eY8vw4YaV0ek\nUij6mv7YKhfJnazsuEq5qzT3hIlIA6yJLguKyPBYq3IDbjcjT/Ezx+Hh162GV+7c1hAnx3Umly7B\n88/De+9ZP9Q+/9zKkK2UcjFj4MMPIVcuq9c6lXx9rcmbx4yBI0egfHkbY1Ruy9PqKWW/Q+WqUeXB\nXYz6bDJT5oymUWPo0cPVUam4EspiHd3r5fSafifbxk3Qob1myh3ZMRwxK5DTUVauWMsvA51sKN8e\nt27xyBfzefjLBRCYFw4ehHr1YhpgK1fCwIHwxx/WBMwvv/zfXLFKKRcTgRkzrDkiHnooTQk6+vSB\nceNgzhx4/XX7QlRuzTPqKZWuVtzXk/9FvsbWLbvp168alSsLtWq5OioVW0JZrJPb65XQNu7aa+as\nwZjcec6U50tzI8wY8z3wvYgsMMacEpGcjuX/pjk6u+zcCb1702XvXjbXaUPjLxbHDD08cwYGDYIV\nK6BaNasxVqeOi+NVSsXXty/06wc//midQEmlIkWsdtwHH1gnW/TakMzPI+ople72/3mVPm2HkK/J\nNeSNmzRu5UPrUXvp1rKg/uh1I8nt8XImPSZgTi/OGoXbT1xg+4kL8XoDtWGWOdmZHTGXiPwM5AMQ\nkfNAL2PMPhv3kTrDh8P587w2YAq7qjehccGCREbCO+/ASy9ZSTgmT7Y204xpSrmpbt2sD+ncuWlq\nhIGVoOPTT63b44/bFJ/yBO5bT6l0Ff2D9waQ1R/aPrGTr6fVYN1bZcmS45D+wFUZzlmDMaEEJNHb\nq8zFzkbYHGC4MWY9gIg0dyxraOM+kscYWLYMmjaFQoWsiV4DA9kVdhCwkiEOHAh790LbtjBzpqas\nVcrt5coFXbvC0qXWBM65ciX9nAS0bGl95mfN0kaYl3GfekplqHg/eDdu5Ju3u9Dur1Vse688N/tD\ntmyui08pcN4we3T2VqfDFkF7yDydndkRA6IrNgBjzAYgwMbyk+foUSsFWpcuVusKICgI8ubl+qUs\nbP+gHE2bWkk4li+Hr77SBphSHqNvXyhcGI4dS1MxPj7WyMbNm2Gf9oF4E/eop5TrNW3KPUtCmUNf\nzh7KR9cuUUREuDoopeLrEFLMaVKRA2cvO01iojyHnT1hx0VkDPCh43F34LiN5Sft7FlrLqGsWeHt\nt+HppwGIjLTaY2vGhnA70ocXXrCyIObIkaHRKaXSqm5dOHzYakWlUWgovPCCNT3gDE1S7i1cX08p\n99G5M7cf28H0JYMZsnoGT4RGsehDHzu+XpSyTULXuTnrGVOexc6vmt5AQWC541bQsSzjnDkDHTrA\nL7/AkCHg58d330HNmo5phsr8S9sxu5k4URtgSnkkEasBduMG/P13mooqUAA6dYJFi+DqVZviU+7O\n9fWUcitrm3akwEORvBIwicVLfOjfH6KiXB2Vezp7Fi47pura+t01+lTdTp8Cq+id6xOe8P+InjmW\nse6DU4A1KGnKFNi61ToRrpSKz7aeMGPMP8AQEcllPXRB1qny5SEsDIBDh2DkSPjsMyhd2roAf+m5\ng2nJbK2UcgcREdZn/YEHrEn90qB/f1iyxLrMrE8fm+JTbsst6inldlbe25OwueW5+hZMmgSREVHM\nfd8HXy+fQe7WLfj+e9iw/AL/rlxLuT82UXHUQ7SZ3IrAPw4wb3/9eM85c3oO0JfDK/bTenRP1tOC\nKdnvIbBjcx5/IistWuD1r6tS0WxrhIlIMLAIV2adyp2bCxdg/Hh4913Int3Kejh0qJWGOmx2hkWi\nlEovWbJAq1bW5M2vvgp58ybrac4ubDYGchetzojxUXwdsZeHauhFzpmZW9RTyj0VKMDEiZDl+7WM\nX9CamzeiWPihD352XrThQX795Srza86kzfVVTGA7vkRxK2sAl/wrAq2o2KEirF5tzfnh7299L9+4\nQdGiRQFo1yaCW43zELJtBiOuv8n5jwrwvyWPU+q7ZynfsoRrD04pN2HncMTZWFmnShljSgHPYmWd\nyjDnzllJNmbOtM5qHzkCo0bpPEBKZTpDh1pjCOfPT9bmCV3YLALlW5zl4q852bnNVy9yzvxcXk8p\n9yUC4x4K51VGs2SpD107R3LrlqujyhhXr8Kct64yb9DPABQPysKz5nUqlY/k9ugXYcsWsl69SMFx\nA60n5MwJDz4ItWtb1+JXqADVq8fMwUpICFk3rcP30j+wejWBDzVnsP/7lC9rjfUc80IUn31mnQhT\nylvZeY4nXtYpEcnQrFO//gqFKl2k9aBT/FPsGkNW3rne2SzsSikPVKMGNGliZdQYOjTJ8S2JTeB5\nvSeUWAM3fy4HDQ6lR7TKfbi8nlJubsQIRueajX//Z3hm5Vs80j6Cj1dkIXt2VweWPn7/Hf73yimy\nz3+H7jff50b2QJhxFMmWlZxnjyZ7pEGCcuSABx/E98EHrZZeQADXrhpaTn+InyeVo8s943j7g9w4\nOtCU8iqZKjti1nzXaDok4eu+KhfJ7XSGcqWUBxo2DB55BNasgfvvT3Ux2bNbiVRfnhjIlT+12zyT\nc3k9pTxAv34MC/wY/24DefrrGdzbNorVn/mQJ4+rA7NX2At78Hv1ZUaY5SDCPy0fpsjYwf9tkNYG\nWFwB1vmOHFkiaNqtKM3fn0bXb8IYVHEhPRa2pmNHe3fnjZxN9gw6n5i7srMR1hsYj5VxygCbyOCs\nUwE5DR/3b5CRu1RKuUqHDlYDrE2bNBf19NPwyquGI+uKwEs2xKbclcvrKeUhunShf2AgeT9eT8+F\nrWjWzPq6KVzY1YGlze+/g48YihQV6mTdTeEsa7nyxEjyPv80BUqm34/0eI2DWr0om68Oz344meVn\n2jC18wh+PTwp3fafWcW91nn7iQsA1AvKd8c2gDbC3JAtjTAR8QVeMMYMsaM8pZRKkq8vtG1rS1GF\nC0PJuuc5sbUgFy5AvnxJP0d5Fq2nVIq1aUPXNpCvM3TscJvGdSP5ZkM2ypRxdWApd/48LBi0k0qf\njOdq7WZ02T6CMi90g2HtyZEBXXyrwn+Pd0nIZ/7F+XX0HBbs/ZjBnywgSxbroxl1O93DyRScjeyq\nF5QvXq+XzifmvmxphBljbotIYzvKUkqpFHn5ZfjnH5g6NU3F3N3qLCe33MWcOTB6tE2xKbeh9ZRK\nrXtaRrKuYDfa/TabRnXg6/XZqFbN1VElz82bsGjccfK9+TwjIsK4mjWQG+0cJ6/8/LB7jGVCw+Gi\nG2Bh/f4brfTo7K3cAnznvIfvKxOgYEFObrnBpXU+nO9izeWoEpbYtc7KM9iZHfFnEVktIj1E5OHo\nm43lK6VUfH/8Ae+8Y6VHTYO8xa5RqOJFZszAazKieSGtp1TK+flRb/ObbCoTit+FczRtcItNm1wd\nVPKsbjmNXpMrcv/t1fzV70UC/jpJ/rGD0m1/0T1ecSV5Tb4jq+KTh2by/W8N6VtvD2fOpFeUSrkH\nO68J8wf+BlrGWmawxt6nioicBK4At4FIY0zttASolMqEhgyxJgacPRvGjElTUXe3PsummXn55BN4\n/HGb4lPuxPZ6SnmJkiWpvGMhP9zXj3u2T+CelmUJW+ZH+w4JZAJzoe0bb5I/723KVctB4953cy5X\nD4rPm4B/MXsTkznr9XLW45WYuNc0XasdzEP7w5h3vDl96qxh5o91sTlspdyGbT1hxpgnnNzsuOC5\nhTEmRBtgSimnKlSAe++1esNu3EhTUYUrX6RSJXjzTZ2/JjNKx3pKeYPAQEp+/yGbO04lOPcpHuoI\n06a5z3fFyROGtxuFUbBZJQ48/goARfq0o/iaeaRHS8ZZr1dKslA7m78xR3AVtixaRo5igSw604rh\nTXZwOX7HmlKZgpfOBa+UylRGjIDWreHDD6Fv31QXIz7w7LPw5JOwdq0tiReVUm4ubm8MJJLSO1s2\nCiybxfpLkfToIzzzDBzeH8H097Lg56JfVJcvw+KBW6i5eDhDzXb+uKsabSa1yJB9p6TXK65Er2mq\nuxFTuzHz/2xHjttHAJvT5SvlBty9EWaAb0TEALONMXNcHZBSyg21bAmDB0OVKmkq5sDZy9wuuI3s\ngTV4fNANWgw/EG8bnW9FqczDWa9Nkim9fXwICMzKsqWRPFdsEa+935tjh67z8WfZXTKX2Ja24xmw\nbRz/ZC/ChQnzKPxMryQnsHd7xYqRffNa2L4dAvPy++9QqBAua+gqlR7c/d+5sTHmdxG5C/hWRH4x\nxmyMvYGIPAU8BZCzSFlXxKiUcjURmD49TUX892PMUKH1GcI/CeL8sZwUKPtvzDY634pSmYuz3pjk\npvT2yerHlIWFubvTYPpvmkrdqlf55IuADMmcuG75RfIHRlG9RT7qvngPv6+GYlNHxEyInCmULQtl\ny/LXX/Bk8HYqP1yRN9/PZDNmK69mWyNMRAoBk4Cixpj7RKQy0MAYMy+1ZRpjfnf8PSciK4C6wMY4\n28wB5gDkK1XJTUZmK6Vc4tdf4aOPYORIq2GWArF/jF3tDqXXQ/YDwYS99t82Ot+KZ0uPekoTSHm5\ndu3os7s85e95kq4nX6VerazMeMeXPn19UvoVlCy7f7zJltA5dD44nvCyneDoLPLd3wDuT92QQE9Q\nUM6z8t9WrJvXhHeCP2PgUHfvP3A/KRpyqzKMnSnqFwBfA0Udjw8Dw1JbmIgEiEiu6PvAPcC+NMao\nlMrMvvkGRo2yLuhKg4AAGDYMvvgCwsNtik25gwXYWE/FogmkvFn58jTd+w7hHcbROOuP9O3nQ4cO\n1jkhu+z7OYJ3a75P3np3M+DgEK6Wq07TJf3t20ESlmw/zaOzt95xc5aKPl0UKECWGW9xH2uIGDYy\nrV/vXsdZApQDZy87nc9NZSw7G2EFjDEfA1EAxphIrDODqVUI2Cwiu4EfgS+MMWvSHqZSKtPq3h2K\nFoXJk9Nc1MCBkCuXLUUp92F3PaWUJWdO7loxmzUnKvLGG7B2raFy+Vu8OSWS69dTV6Qx/2VevNpn\nCE//3BffYoW5uvxrSh1eS9a6IfbFn4S0ZkJMK59+fbk1cBjDmMYXHefy228ZsttM4bF6JQnr1+CO\nW9xGmXINOxthV0UkP1YyDUSkPnAptYUZY44bY6o7blWMMa/YFahSKpPKlg2eeQbWrYMdO9JUVN68\nVkPs44/h8GGb4lOuZms95RCdQGqX4xrleETkKRHZKSI7IyIi0rg75bZE8L0rP88+C/vGL6fxze8Y\nMdqPskWu8carEcmeT/6PP2Dh2OPMKzqGdTP2A1D5vcFcXvwZxX/dRkDHe1I83NoO0ZkQY98ycjhb\n1mmv82+Te3nt2iByHN2TYftVKr3YObB2OLAaKCsiPwAFgU42lq+UUknr1w8mTYKXX4bVq9NU1LBh\n1jxAEyfCokU2xadcKT3qqSQTSOm1y57P2cTEkPB1NWVGPsJXNdby/YAnGXu0OyOfb85zL96maTMf\nmjUXKle2pu7y9YXr1+Hs71FcO/cv77wwiZpnPqMX24hCOLD/LqAKuepVhnqVM+BI3ZifHzlX/A+m\nTydfw4pERYGPnV0JSmUwWxphIuID+APNgAqAAIeMMXrKTymVsXLlsib72rULbt2CrFlTXVShQjBo\nEEydCs89Z2OMKsOlVz2VnARSyvPETWSw/cQFAOoF5btjG0gkW2rr1jQ73IoN69ZxYPJQFh2uz9f/\ndGPcuPgTPEsoNCacgWd+5mzhEP7sNplCw7pRtaQ9PU0pbUS6rfz5Yfx4/v4buj94iT7P5KZT54zv\nFVTKDrY0wowxUSLyjjGmBrDfjjKVUirVnn/etuE6o0bBrFkwdixIK1uKVC6QHvWUI2mUjzHmSqwE\nUhPsKFu5jrPrnOoF5YvXYElWtlQRaNWKyq1aMdkYJgtcugQnnn6dMydvYaIM2fL480LRMxBYFf5a\nR5ECBew8HOC/a7piXwvkyVNu5Lr6B/N21ee9noOoV38EJUq4OiKlUs7O4YjficgjwHJj4p7jUUqp\nDBTdADt8GKKioGLFVBdVoIB1mdnLL0Ob8jkILHnNpiCVC9hdTxUCVoj1/+YHLNEEUp7P2dxh6Qoe\n4QAAIABJREFUtnB8L+XJAyGLRxI7rcbEBZ9bd9KhARYt+pquaJ485UbWEoXI3aI2Y78ezZAHGzJj\nV0OPn59aeR87G2H9sMbbR4rIDayhHsYYoylYlFIZLyICmjaFGjXgq6/SVNTw4TBzJuz7rCRNBv5i\nU4DKBWytp4wxx4HqNsanlMs5G7oYtxfN5UTIGTaPK+V2MXL347w1fjcjJrhRfEolg22XNBpjchlj\nfIwxWY0xuR2P9ROhlHKNLFmsLqw1a2DLljQVlTevNf/z2b2BnD+e06YAVUbTekqppLk6HX2y5clD\nzhX/o5ScpvTUwVzTQQrKw9g67biIBALlsS5+BiBuliillMowgwZZ6Q3/7/9g06Y0XSc2ZAiMf/UW\n+1aVhCk2xqgylNZTSiUt7tBFdyWNG3Fz5It0+PYrskT9C+hJMuU5bGuEiciTwFCgOBAO1Ae2Ai3t\n2odSSqVIQACMH2+lrV+1Ch56KE1FVbrvd8I/DqLp4IMUqXoxzeF5XGYyD6f1lFKZj/8rY2Dii0RK\nFr5YBR06uDoipZLHzp6woUAdYJsxpoWIVAQm2Vi+UkqlXO/eMH067NmTpkYYwDODfRm44Trhy0pR\nqNIlfHxTn9vBkzOTeTCtp1S6yzTp4D2Fn/VTduFrf3N61Exuf/wiD3fWLB1JiTsNQzT9P804djbC\nbhhjbogIIpLNGPOLiFSwsXyllEo5Pz/YuRP8/ZPeNgk9G5ck71zrTGuzqPoMejr1ZXlyZjIPpvWU\nSnfpkQ4+oYZdQpL7Q9rZD3G3S8KRTL0KrcGPcUzolY36jUZTtKirI3JfCV3fpycHM5adjbDfRCQv\nsBL4VkT+AU7ZWL5SSqVOdANsxw6oUAFyp/4HxoMPQsuW1rxhjz8OgYE2xagygtZTKkPYnQ7eWcMu\nIcn9IZ3QD3G3TMKRDH49H+Py0lWMXvMSwzvdw4wfato1XWSmk9A0DI/O3uq0Ya69Y+nDtkaYMaaj\n4+44EVkP5AF0vhSllHs4fhzq17cyJr7xRqqLEYE334SaNWHCBHjrLRtjVOlK6ynlyZKbLMPZD2ln\nDbh0mw/NVUTIvXgW/5b5gYFbH2f2W7voPzyHq6PyKM4a39o7ln7sTMwR+9054fhbGDht1z6UUirV\nypSxrg97+23rb+XKqS4qJASefBJmzIAnnoBq1WyMU6UbraeUN3D2Q9pTe7dSLF8+Aj5ZSKV72pBz\n64vAVFdH5FGcNcx16Hz6sXM44heAwZr80h8IAg4BVWzch1JKpd6rr8Knn1qp67/7Lk0p6199FVas\ngP79YfNm8LFt1kWVjrSeUrZKyTVVGTXMK9P1cKWQtGkN771HiXvvBcCYNH3VK5Vu7ByOGBz7sYjU\nBNJw2bpSStmsQAF45RV4+mkIC4OuXVNdVP781qjG0FB4/3146qmUl5FQdqrYdCy+fbSeUnZKyTVV\nKRnm5SwJh6cmy3CZ/v0xBp4bZfA31xn3mg5LVO5HjEl9iuUkCxfZG7fSS0/5SlUyF04dzKjdKaU8\n0e3b0KgRdOsGQ4emqShjrCQd4eFw6BDcdVfyn5ucbGfRP7w8YdLUjCIiu4wxtW0sT+sp5RLR125V\nLpKb9X8PBKBF/nfYfuICAPWC8t2xvZ6QSSFj2FWmM7+djCBww0qaNtPusNSI/X8am/4/Jiy59ZSd\n14QNj/XQB6gJnLGrfKWUsoWvrzV+0C/tX38i8N571jVhQ4fCRx8l/7nJGTKkY/HtpfWUcicJ9aTV\nC8qnP3DtIELVfo2o9dxwRj38PtWP9yVPHlcH5Xk0WUf6sfOasFyx7kdijb3/1MbylVLKHtENsC+/\nhGzZoFWrVBdVsSK89BKMGWPNBf3oozbFqNKD1lPKbcQ+EdN8gdXLEBaqvd52yvZ/Q7n06Re8tHMY\nY3s2541V5V0dksfRZB3px7ZLyY0x42PdXjHGLDbG3LCrfE+WM2dOp8tDQ0NZtmxZqsocN24cbyQj\nzXb0vs+cOUOnTp0S3O7ixYu8++67iZbVsGFDADZs2MADDzyQgmhh5cqVHDhwIObxSy+9xNq1a1NU\nhlK2ioyEkSOti7ouXUpTUaNHQ7161qVmZ7RfxW1pPaWUl/HxIc+KBfj4Z6PL6sfZHx7h6oiUimFb\nI0xEPhOR1Qnd7NqPSp2iRYsm2uBLrBEWGRkJwJYtW1K9/7iNsAkTJtC6detUl6dUmvn5wQcfWK2m\nZ55Jc1GLFsH161bq+nS81FalgdZTSnmh4sXJ+sFsauY+ShXfX1wdjVIx7EyqfBy4Dsx13P4FjgFv\nOm5ezxjDoEGDqFChAq1bt+bcuXMx63bt2kWzZs2oVasWbdu25ezZswDMnTuXOnXqUL16dR555BGu\nXbuW6D5OnDhBgwYNCA4O5sUXX4xZfvLkSapWrQrA/v37qVu3LiEhIVSrVo0jR44wevRojh07RkhI\nCCNHjmTDhg00adKE9u3bU9kxn1LsHr3Lly9z//33U6FCBfr3709UVFS8bZYtW0ZoaChbtmxh9erV\njBw5kpCQEI4dO3ZHL+B3331HjRo1CA4Opnfv3ty8eROA0qVLM3bsWGrWrElwcDC//KJfnspmdevC\nc89ZjbElS9JU1N13w+uvw1dfwTvv2BSfspvWU0p5Id+unfE7eQyCg9m2DRw/WZRyKTsbYY2MMY8a\nYz5z3B4DmhhjvjfGfG/jftKmefP4t9jD+lK6PgVWrFjBoUOHOHDgAIsWLYrpWYqIiGDw4MEsW7aM\nXbt20bt3b1544QUAHn74YXbs2MHu3bupVKkS8+bNS3QfQ4cOZcCAAezdu5ciRYo43WbWrFkMHTqU\n8PBwdu7cSfHixZk8eTJly5YlPDyc119/HYCffvqJt99+m8OHD8cr48cff2TGjBkcOHCAY8eOsXz5\n8gRjatiwIe3bt+f1118nPDycsmXLxqy7ceMGoaGhhIWFsXfvXiIjI3nvvfdi1hcoUICffvqJAQMG\nJGv4pVIpNm6clS2xXz84dSpNRQ0YAO3awfDh8OOP9oSnbOUZ9ZRSyn6BgWzdYvhfg5nMeuVvV0ej\nlK2NsAARKRP9QESCgAAby/d4GzdupFu3bvj6+lK0aFFatmwJwKFDh9i3bx9t2rQhJCSEiRMn8ttv\nvwGwb98+mjRpQnBwMIsXL2b//v2J7uOHH36gW7duAPTo0cPpNg0aNGDSpElMmTKFU6dOkT17dqfb\n1a1bl6CgoATXlSlTBl9fX7p168bmzZuT9RrEdejQIYKCgrj77rsB6NWrFxs3boxZ//DDDwNQq1Yt\nTp48map9KJUoPz8rreH48VCiRJqK8vGBDz+EYsWgUyc4f96mGJVdtJ5SyovVz3+Et3yepdzYx9n9\n021Xh+PRoue5jHtbsv20q0PzGHZmR3wG2CAixwEBSgGpmL40nW3YkL7rU8EYQ5UqVdi6NX62mdDQ\nUFauXEn16tVZsGABG5Kxf0liavjHHnuMevXq8cUXX9CuXTtmz55NmTJl4m0XEJDwb5O4+4h+HHv5\njRtpv949W7ZsAPj6+sZcm6aU7UqUsLqvAP74AwoVsvLPp0K+fLBsmdW59thj1vBEX18bY1Vp4Rn1\nlFIqXUiFu7nx2gzuGdGPt1tPpOSxsQQGujoqz5PQ9Aqauj5lbGuEGWPWiEh5oKJj0S/GmJt2lZ8Z\nNG3alNmzZ9OrVy/OnTvH+vXreeyxx6hQoQJ//fUXW7dupUGDBkRERHD48GGqVKnClStXKFKkCBER\nESxevJhixZz/40dr1KgRS5cupXv37ixevNjpNsePH6dMmTIMGTKE06dPs2fPHqpXr86VK1eSfSw/\n/vgjJ06coFSpUoSFhfHUU9bvmEKFCnHw4EEqVKjAihUryJXLygidK1cup+VXqFCBkydPcvToUcqV\nK8eHH35Is2bNkh2HUrY6fhzq1LHSHY4cmepiatWCmTOhb1949lmYNi31IUWfbUyMzimUPFpPKaVy\nDe/LubU/MHjNeMa2rc/4bW3xsXNcmBdIaJ5LTV2fMmn+txOROiJSGMBRmVUHJgCvi0i+RJ/sZTp2\n7Ej58uWpXLkyPXv2pEEDaz6QrFmzsmzZMkaNGkX16tUJCQmJuV7s5Zdfpl69ejRq1IiKFSsmVjwA\nb7/9Nu+88w7BwcH8/vvvTrf5+OOPqVq1KiEhIezbt4+ePXuSP39+GjVqRNWqVRmZjB+fderUYdCg\nQVSqVImgoCA6duwIwOTJk3nggQdo2LDhHdekde3alddff50aNWpw7NixmOX+/v588MEHdO7cmeDg\nYHx8fOjfv3+S+1cqXZQuDa1bw6hRsHJlmop68kkYNgzefhveeit1ZXQIKUblIrkT3ebA2cusCnf+\nWVcWraeUUjFEuOvT9/inWFVGH+iBXP3X1REpLyUmjbmUReQnoLUx5oKINAWWAoOBEKCSMSbhyals\nlq9UJXPh1MGM2p1SKjO6fh1atIC9e2H9eiuDYipFRVmTNy9bBh9/DJ072xinQ/SZx7B+3jHJq4js\nMsbUTuFztJ5Sbq35guYAbAjd4NI4vMrRo9b3fMeO3LgB/v6uDsjzPTp7KwfOXk7y5CFk7hEcya2n\n7BiO6GuMueC4/ygwxxjzKfCpiITbUL5SSmWc7Nlh1Spo0ADuvRc2bwbHNA0pFZ2o448/oHt3CAiw\nsifaTYcsJknrKaXUncqVg3Ll2LYNxj+wg/GrQqjbKIuro/JoCV0rFpdeO2axpREmIn7GmEigFXde\n5Gxn4g+llMoYhQrBunXw0ktQMm2VhL+/1aZr0wY6doRPPoH27W2Kk+RVelrhaT2llHKuHEdZ/XdD\nwlr3It+euZQrn7qkTCrha8Xi0mvHLHZUPh8B34vIeaxJMDcBiEg54JIN5SulVMYrXRoWLbLuX7pk\nJe2oUSNVReXLB2vXQtu28MgjsHSp9dcOyan0tMLTekop5VyB+uX4e8Bour83kfl1cpPz4JsULqIN\nMZX+0pyYwxjzCvAssABobP67yMwHa8y9Ukp5tsGDoUkT+PbbVBcRGGg9vU4d6NLFyp6oMobWU0qp\nxOR/ZwJnOg+h96W3WBH8EufOuToi5Q1sScppjNlmjFlhjLkaa9lhY8xPdpSvlFIuNXkylCkD991n\npTtMZUKjPHngm2/ggQesdt3gwRARYXOsyimtp5RSCRKhaNg0zt7/JAP+nkjezZ+7OiLlBXQsvFJK\nJaVoUfjhB+jRw8o7v2sXvPMOOObBS4mcOWH5cvi//4OpU62ili5N86VnSiml0kKEIqtmwfy6ZO1w\nH3/9ZY1EL1fO1YFlTslJKJWYzJBsSqenywB//PEHXbt2pWzZstSqVYt27dpx+PDhDNt/eHg4X375\nZYqf17x5c3bu3JnoNhs2bOCBBx4AYPXq1UyePDnVcezcuZMhQ4YAMG7cON54440UxTtt2jSuXbsW\n87hdu3ZcvHgxRWUolaBcuazW07hx8PXXkILJzePy9YU334SwMNi3D0JCYOHCVHewKaWUsoOvL/Tt\nC76+jOp2mi1Vn2Lb13rZqN2SMwdmYjLL/JjaE5bOjDF07NiRXr16sXTpUgB2797Nn3/+yd13353k\n8yMjI/Hz++9tMsZgjMEnBdO7h4eHs3PnTtqlR27sWNq3b0/7RNK+JRZHZGQktWvXpnbtFE3/c4dp\n06bRvXt3cuTIAZCqhqdSifLxgbFj4ZlnIHduuH0bpkyBfv0gf/4UF9elC9SsCb16QWiolc5+9mwo\nW9b+0JVSSiXfpHabKfDdfI7f+z0fjl5B90mVEc3XYYvkZlFMSGZJNqU9Yels/fr1ZMmShf79+8cs\nq169Ok2aNMEYw8iRI6latSrBwcGEhYUBVu9SkyZNaN++PZUrV+bkyZNUqFCBnj17UrVqVX799Ve+\n+eYbGjRoQM2aNencuTP//mvN+L5jxw4aNmxI9erVqVu3LpcuXeKll14iLCyMkJAQwsLCuHr1Kr17\n96Zu3brUqFGDVatWAXD9+nW6du1KpUqV6NixI9evX3d6TGvWrKFixYrUrFmT5cuXxyxfsGABgwYN\nAuCTTz6hatWqVK9enaZNm3Lr1q14cYwbN44ePXrQqFEjevTocUevGliN1QYNGlC+fHnmzp0b89rE\n3mbQoEEsWLCA6dOnc+bMGVq0aEGLFi0AKF26NOfPnwdg6tSpVK1alapVqzJt2jQATp48SaVKlejb\nty9VqlThnnvuSfCYlbpDbscZvB9/tNLYV6hgZdq4cSPFRZUrB5s2wbvvWsVVrgxDh8Kff9ocs1JK\nqWQrPPwxrn22jruyXqTT5FrMD36L83/ednVYKhPxqp6wYcMg3OZpOUNCwPGb3ql9+/ZRq1Ytp+uW\nL19OeHg4u3fv5vz589SpU4emTZsC8NNPP7Fv3z6CgoI4efIkR44cYeHChdSvX5/z588zceJE1q5d\nS0BAAFOmTGHq1KmMHj2aRx99lLCwMOrUqcPly5fJkSMHEyZMYOfOncx0pGN7/vnnadmyJfPnz+fi\nxYvUrVuX1q1bM3v2bHLkyMHBgwfZs2cPNWvWjBfzjRs36Nu3L+vWraNcuXI8+uijTo9twoQJfP31\n1xQrVoyLFy+SNWvWeHGMGzeOAwcOsHnzZrJnz86GDRvuKGPPnj1s27aNq1evUqNGDe6///4EX+ch\nQ4YwdepU1q9fT4ECBe5Yt2vXLj744AO2b9+OMYZ69erRrFkzAgMDOXLkCB999BFz586lS5cufPrp\np3Tv3j3B/Sh1hwYN4Oef/8uyMWkSjBwJAwdC1qzJLsbHBwYMsOYPGzfOutzs/fehf3+rqDJl0u8Q\nlFJKOZf7gaaYE+GcuOcp+uwfzvUZ12DiC64OS2US2hPmQps3b6Zbt274+vpSqFAhmjVrxo4dOwCo\nW7cuQUFBMduWKlWK+vXrA7Bt2zYOHDhAo0aNCAkJYeHChZw6dYpDhw5RpEgR6tSpA0Du3LnvGMoY\n7ZtvvmHy5MmEhITQvHlzbty4wenTp9m4cWNMA6RatWpUq1Yt3nN/+eUXgoKCKF++PCKSYIOlUaNG\nhIaGMnfuXG7fTvjMUfv27cmePbvTdR06dCB79uwUKFCAFi1a8OOPPyZYTmI2b95Mx44dCQgIIGfO\nnDz88MNs2rQJgKCgIEJCQgCoVasWJ0+eTNU+lBcLDob1663JnStWhDfesFpVAL/9BlFRyS6qWDGY\nOxcOHoSHHrISMZYrB/ffD59+CrEueVRKKZUBpGgRyuxdza15i8j+9BPcvg0DWx7ki0m7SeTnjVJJ\ncuueMBG5F3gb8AXeN8YknPUhGRLrsUovVapUYdmyZSl+XkBAQIKPjTG0adOGjz766I5t9u7dm6yy\njTF8+umnVKhQIcVxJdesWbPYvn07X3zxBbVq1WLXrl1Ot4t7nLFJnMHXIoKfnx9RsX7U3kjF8K/Y\nsmXLFnPf19dXhyOq1BGBFi2s29mz4OcHkZFQt661/sEHrZZUo0bJunasfHlYvBhee81qlM2ZA506\nQY4c0K4d3HsvNG9u9ZDpNQquZXc9pZRyQyJk7d0DgLO/Qdedz9Jk/Vf8MKEFf7TrQ63x7SkdnPJs\nucq7uW1PmIj4Au8A9wGVgW4iUtm1UaVcy5YtuXnzJnPmzIlZtmfPHjZt2kSTJk0ICwvj9u3b/PXX\nX2zcuJG60T/aElG/fn1++OEHjh49CsDVq1c5fPgwFSpU4OzZszG9aVeuXCEyMpJcuXJxJVYmt7Zt\n2zJjxgyi5yv9+eefAWjatClLliwBrGGUe/bsibfvihUrcvLkSY4dOwYQryEY7dixY9SrV48JEyZQ\nsGBBfv3113hxJGXVqlXcuHGDv//+mw0bNlCnTh1KlSrFgQMHuHnzJhcvXuS7776L2T6h8ps0acLK\nlSu5du0aV69eZcWKFTRp0iTZcSiVIkWKWH+joqz5xRo2hCVLoEMHKFAAXnAMZYmIgDVr4MQJEjqd\nWqyYNTzx9Gmroy001MqU/+STVg9ZyZJWsS+9ZPWUHTgAjstDVQbILPWUUir5iheHRicWs6/na5ST\nYzyyojuFqt3F6Yes7M7nzsHZkzddHKXyBO7cE1YXOGqMOQ4gIkuBDsABl0aVQiLCihUrGDZsGFOm\nTMHf35/SpUszbdo0GjduzNatW6levToiwmuvvUbhwoX55ZdfEi2zYMGCLFiwgG7dunHzpvVBnzhx\nInfffTdhYWEMHjyY69evkz17dtauXUuLFi1ihh8+99xzjBkzhmHDhlGtWjWioqIICgri888/Z8CA\nATzxxBNUqlSJSpUqOb2Wzd/fnzlz5nD//feTI0cOmjRp4rThM3LkSI4cOYIxhlatWlG9enVKlix5\nRxxJqVatGi1atOD8+fOMGTOGokWLAtClSxeqVq1KUFAQNWrUiNn+qaee4t5776Vo0aKsX78+ZnnN\nmjUJDQ2NaeA++eST1KhRQ4ceqvSVNSv07Gndbt6Ebdtg61aIzgB69Kg1+XP0toULWw24ESOsbq+/\n/rK6wHLlwi9XLlrkykWLB3Myc1QVfrlagvVrbrJpzb+E7w3g88+zERX1X5dYvnxQskQUxfLfIF+e\nKH75syDZ/G8x/Y8L5CmcA/+8/vj7RuB/8xLZshr8/SFbNoOvr+CTOyc+AdnxuR2Bz5VL+PhYoyt9\nxFh/HeslMgKcTQEREIAE5LAamdHrfX3JUTxfTD6TTCRT1FNKqZTxyR9I1YUj4YNnObt8K39M/5gq\nNa0TcLPfi+KZcfk57VOQ33NX4nr+4lC4MA1GNyX7A605dDCKa1+sxzdXDnxy5sAvR1ayZPOhdM18\n+BYuyD9/R3Ht0K/g44P4+mDEB/ERCpfJgU/e3Fz6J4rrp84B/42EEIECJa31Vy5FceP0uXgx5y+R\nSdZfNmT7/TIAf+378871eXJx5bJJ+PnJWJ+holOeu9sN6IQ1tCP6cQ9gZmLPCSxZ0SillEe4ds2Y\nTZuMmTvXmFGjjOnZ05g2bYxZudJav2OHMdbUYXfe3nvPWr9rV8yya/ibHdQyS+hqXn1oqxkwwJj7\nG180IfxkSnHC5Oai06Iy8jZsmD0vG7DTuEEdZbSeUjZq9kEz0+yDZq4OQ9lg/85rZst9E8zWMt3M\noZw1zDmfQiYSH3Nr8HBjjDGjBv3r9Evy5sBnrPUDryS+Pqnn6/o0rbdDcuspd+4JSxYReQp4CiCw\nqKYQU0p5iOzZoXFj6+ZM7dpWyvsrV/67Xb0K0Ql7ypSBzz6DiAiyR0RQOyKC2rdvQ71AqAD8HQmf\n7QZj2Hb8b3aeuMT1W/4cLBLM2cCSZLt8lQr7dxN525eIKD8iI/0wCL8WCuJC3kJku36VcscPYIwP\nUQjGWLeIcuVp2rSGFc9PP8UL25QrD0WL3rk+Z06COznPEusNtJ5SyntUrpUdvhxzxzITeRufW7cA\nGDAsGz+X34i5eg3z71Vu37jF7QhDncetuWMf7paNTdfmQ1QUYqJihqvX72IlS3uoS1Y2XXgPE1O4\n9aehY337Tln5/vx78eJqlInWv7N7EgDBxfLGrG/Y+b/1G8+/G+/5yV2fkcRqsLkfEWkAjDPGtHU8\nfg7AGPNqQs+pXbu22blzZwZFqJRSKqOJyC5jTOpndbeR1lPKLs0XNAdgQ+gGl8ahlEq75NZTbpuY\nA9gBlBeRIBHJCnQFVrs4JqWUUiqa1lNKKaVSxW2HIxpjIkVkEPA1Vurf+caY/S4OSymllAK0nlJK\nKZV6btsIAzDGfAl86eo4lFJKKWe0nlJKKZUa7jwcUSmllFJKKaUyHW2EKaWUUkoppVQG0kaYUkop\npZRSSmUgbYQppZRSSimlVAZy23nCUkNELgFHUvi0PMAlG7dNbJuE1qVkeQHgfBIxpLeUvGbpVVZy\nn5de71lC67zhPUtteXZ+1lK7Xj9r6fe8jPqslTLGFExGPG4pGfVUSv5H4y5L7HHs+3b+b2fU59qb\njz+5dU1Cx5tex55QHKndVv/3k7c8Je993MeZ8fjd8b1PXj1ljMk0N2BOej4nOdsmtk1C61KyHNjp\nia+z3WUl93np9Z4l8v5k+vcsteXZ+VlL7Xr9rKXf8zL6s+apNzv/d+MuS+xxnPu2/W9n1Ofam48/\nBXVNQsebLsfuTsev773z4/WG43f39z6xW2YbjvhZOj8nOdsmtk1C61K63NXsjCu1ZSX3een1niW0\nzhves9SWZ+dnLbXr9bOWfs/L6M+ap7LzfzfussQep9drmFGfa28+/uTWNQkdb3p+ftzl+PW9T3h9\nZj9+d3/vE5SphiN6AxHZaYyp7eo4VPLpe+aZ9H1TmZW3/2978/F787GDHr83H787Hntm6wnzBnNc\nHYBKMX3PPJO+byqz8vb/bW8+fm8+dtDj9+bjd7tj154wpZRSSimllMpA2hOmlFJKKaWUUhlIG2FK\nKaWUUkoplYG0EaaUUkoppZRSGUgbYUoppZRSSimVgbQRlomISICI7BSRB1wdi0oeEakkIrNEZJmI\nDHB1PCp5ROQhEZkrImEico+r41HKTt5al3j797G3f6+JSBkRmSciy1wdS0ZwfM4XOt7zx10dT0Zz\nh/dbG2FuQETmi8g5EdkXZ/m9InJIRI6KyOhkFDUK+Dh9olRx2fG+GWMOGmP6A12ARukZr7LY9L6t\nNMb0BfoDj6ZnvEollzfXJd7+fezt32s2Hf9xY0yf9I00faXwdXgYWOZ4z9tneLDpICXH7w7vt6ao\ndwMi0hT4F1hkjKnqWOYLHAbaAL8BO4BugC/wapwiegPVgfyAP3DeGPN5xkTvvex434wx50SkPTAA\n+NAYsySj4vdWdr1vjue9CSw2xvyUQeErlSBvrku8/fvY27/XbD7+ZcaYThkVu51S+Dp0AL4yxoSL\nyBJjzGMuCts2KTl+Y8wBx3qXvd9+rtipupMxZqOIlI6zuC5w1BhzHEBElgIdjDGvAvGGiIhIcyAA\nqAxcF5EvjTFR6Rm3t7PjfXOUsxpYLSJfAB5T6Xsqmz5vAkzGqsA85oeKyty8uS7x9u8LiytuAAAg\nAElEQVRjb/9es+v993QpeR2wGiTFgXAyyci4FB7/gYyNLj5thLmvYsCvsR7/BtRLaGNjzAsAIhKK\ndfbS7SvNTCpF75vjB8/DQDbgy3SNTCUmRe8bMBhoDeQRkXLGmFnpGZxSaeDNdYm3fx97+/daSt//\n/MArQA0Rec7RWMsMEnodpgMzReR+4DNXBJZBnB6/O7zf2gjLZIwxC1wdg0o+Y8wGYIOLw1ApZIyZ\njlWBKZUpeWNd4u3fx97+vWaM+RvrejivYIy5Cjzh6jhcxR3e70zR/ZhJ/Q6UiPW4uGOZcm/6vnkm\nfd9UZuXN/9vefOygx+/txx/N218Htz1+bYS5rx1AeREJEpGsQFdgtYtjUknT980z6fumMitv/t/2\n5mMHPX5vP/5o3v46uO3xayPMDYjIR8BWoIKI/CYifYwxkcAg4GvgIPCxMWa/K+NUd9L3zTPp+6Yy\nK2/+3/bmYwc9fm8//mje/jp42vFrinqllFJKKaWUykDaE6aUUkoppZRSGUgbYUoppZRSSimVgbQR\nppRSSimllFIZSBthSimllFJKKZWBtBGmlFJKKaWUUhlIG2FKKaWUUkoplYG0EaY8nog8JCJGRCq6\nOpaEiMjzro7BLiLSX0R6pmD70iKyLwXbi4isE5HciWyzVETKJ7dMpZRytcxYV4nIBhGpnZ77SGHZ\n7UVkdAqf828Kt18mImUSWf+GiLRMSZnKO2kjTGUG3YDNjr/pSkT8UvnUTNEIExE/Y8wsY8yidNxN\nO2C3MeZyItu8B/xfOsaglFJ207oqHffhqJ9WG2Mmp0f5jn1UAXyNMccT2WwGkKKGoPJO2ghTHk1E\ncgKNgT5A11jLm4vIRhH5QkQOicgsEfFxrPtXRN4Skf0i8p2IFHQs7ysiO0Rkt4h8KiI5HMsXOJ6/\nHXhNRAJEZL6I/CgiP4tIB8d2oSKyXETWiMgREXnNsXwykF1EwkVksZNj6CYie0Vkn4hMibU8oTjL\nOvaxS0Q2RZ9VdcQ5XUS2iMhxEenkZF+lReQXEVksIgcdZ/Sij7OWiHzvKPdrESniWL5BRKaJyE5g\nqIiME5ERjnUhIrJNRPaIyAoRCYxV1m4R2Q0MjLX/Ko7XLdzxHGe9WY8DqxzbBzjew92O1+dRxzab\ngNZp+KGhlFIZxtPrKhHxdZS/z1FfPRNrdWfHPg6LSJNY+5gZ6/mfO441qfowNfVe7GOO2a+jvlvn\nqGu+E5GSjuVBIrLVcRwTY+27iOO9CHccZxMnb2Xs+snpa2KMOQXkF5HCif5TKGWM0ZvePPaG9YU4\nz3F/C1DLcb85cAMoA/gC3wKdHOsM8Ljj/kvATMf9/LHKnQgMdtxfAHyOdfYLYBLQ3XE/L3AYCABC\ngeNAHsAfOAWUcGz3bwLxFwVOAwUBP2Ad8FAScX4HlHfcrwesixXnJ1gnVyoDR53sr7Sj3EaOx/OB\nEUAWx+tX0LH8UWC+4/4G4N1YZYwDRjju7wGaOe5PAKbFWt7Ucf91YJ/j/oxYx5QVyO4kxlNALsf9\nR4C5sdbliXX/2+j3W29605ve3PmWCeqqWsC3sR7ndfzdALzpuN8OWOu4Hxodr+Px50DzxPaRxDEn\nVu/FPubQWM/5DOjluN8bWOm4vxro6bg/MDoe4FngBcd93+h6KE583wPBib0mjvtzgUdc/X+nN/e+\naU+Y8nTdgKWO+0u5c5jHj8aY48aY28BHWGchAaKAMMf9/8VaXtVxhm0vVoVZJVZZnzjKAbgHGC0i\n4VgVkD9Q0rHuO2PMJWPMDeAAUCqJ+OsAG4wxfxljIoHFQNOE4nScTW0IfOLY/2ygSKzyVhpjoowx\nB4BCCezzV2PMD3GOvwJQFfjWUe6LQPFYzwkjDhHJg1XpfO9YtBBoKiJ5Hcs3OpZ/GOtpW4HnRWQU\nUMoYc91JfPmMMVcc9/cCbURkiog0McZcirXdOaxGrFJKuTtPr6uOA2VEZIaI3AvEHi6+3PF3F9aJ\nvrRITb0X+5hjawAscdz/kP9ev0ZYr3P08mg7gCdEZBxWQ+sK8RUB/nLcT+w10fpJJUmH8iiPJSL5\ngJZAsIgYrDNXRkRGOjYxcZ4S93Hc5QuweqF2i0go1hnKaFdj7xrrDNehOPHUA27GWnQbez9jBquX\n66IxJiSBbWLvXxIpJ+5jAfYbYxok8JyrCSxPEWPMEsewkfuBL0WknzFmXZzNIkXEx9GYPCwiNbHO\nsE4Uke+MMRMc2/kDzhpxSinlNjJDXWWM+UdEqgNtgf5AF6zeJWKVFbucSO685MU/sfIT2zVJ13up\nqZ/ivcbGmI0i0hSrflogIlNN/Oufr+M4liReE62fVJK0J0x5sk7Ah8aYUsaY0saYEsAJIHocd13H\n2G8frOF1mx3LfRzPBXgs1vJcwFkRyYJ1djEhXwODRUQARKRGMmKNcJQb149AMxEpICK+WGdHo3uW\n4sVprGQVJ0Sks2Pf4qgEUqKkiEQ3tqKP/xBQMHq5iGQR6wLkBDl6pf6JNW6+B/C9MeYicFFEos86\nxryWYmWUOm6MmY41rr6ak6IPYQ3NQUSKAteMMf/DGtZYM9Z2dwPJzrqolFIu4vF1lYgUAHyMMZ9i\njZSoGe+ZdzoJhIiIj4iUAOomtQ8HO+u9Lfx3/d3jWNcSA/wQZzmOcksBfxpj5gLv4/wYDwLlHNsn\n9ppo/aSSpI0w5cm6ASviLPuU/4Z57ABmYn1pnoi17VWsSm8f1tnJ6J6VMcB2rC/oXxLZ78tY11Dt\nEZH9jsdJmePY/o4LkY0xZ7GyKK0HdgO7jDGrkojzcaCPWEkv9gMdkrH/2A4BA0XkIBAIvGeMuYVV\n8U1xlBuONfwjKb2A1/+fvfsOj6r4Gjj+PQm9VzGgQOiEAKE36UUEBEG6EIrUV0CUH4oIiiAKFmxI\nFQFpRkGKYEciRYp0MYiIFEVQUELvmfeP2eASUndv+vk8zz5k7949dxIgs+fOzBkR2QsEubWxD/Cu\na+qI+4hcZ2Cf63ggEF2VxTX8d2e3IrDNdf7z2PUPiEgh4LIx5mT8vmWllEo2qb6vAooAoa7fxQuB\nZ+KIs8n1vYQBbwM743ENcLbfG4qdXrgXe5Pwcdfxx7F94I+u7ytSI2CPiOzCJsNvRRPTvX+K9mfi\nSjBLAdvj0UaVjokxMY16K5V6iUgjbPGINtG8dsEYkyPpW5UwidFOESkOrDbGBDoZ10liqzJ+YIxp\nHss5TwDnjDFzkq5lSinlrLTQVzkppX/PIpIVe9O0Xgzr0BCR9kBVY8zYJG2cSnV0JEwplaK4Rgdn\nSyybNQPh2EIgSimlVJJwFZN6nttH0KLKALyeNC1SqZmOhCmllFJKKaVUEtKRMKWUUkoppZRKQpqE\nKaWUUkoppVQS0iRMKaWUUkoppZKQJmFKKaWUUkoplYQ0CVNKKaWUUkqpJKRJmFJKKaWUUkolIU3C\nlFJKKaWUUioJaRKmlFJKKaWUUklIkzCllFJKKaWUSkKahCmVCETkgoiUSO52KKWUUtHRfkqp5KVJ\nmErXRMSISCkvY4SKSD/3Y8aYHMaY37xrnXNEpLiIrBORSyLys4g0i+XczCLyvoicE5GTIvKk22sB\nIrJdRM64Ht+ISIDb6yIik0XkH9djsoiI2+tBIrLD1Y4dIhLkxHsd+PkYEflbRDK4HcvoOmacuo5S\nSiWU9lPRnqv9FNpPpXaahCkVC/dfdqncEmAXkB94FlgqIgVjOHccUBooBjQGnhKRlq7X/gQ6AvmA\nAsAq4EO39w4AHgIqA5WAB4GBACKSCVgJLATyAvOBla7j3r7XCWeAB9yeP+A6ppRSKZb2U9pPORhf\nJSVjjD704egDuBf4BDgF/ANMdR33AcYAR4G/gQ+A3K7XigMG6AUcA04Dz7rF9AVGA4eA88AO4F7X\na+WAr4F/gQNAZ7f3zQPeBda43rcVKOl6bb3rmheBC0AXoBHwB/A0cBJYgP1lutr1/ZxxfX2PK8ZE\n4CZwxRUj8ns1QCnX17ld3+sp1/c+BvBxvdYb2Ai85op9GHjA4b+PMsBVIKfbsQ3AoBjO/xNo4fZ8\nAvBhNOdlAB4DLrkd+x4Y4Pb8UWCL6+sWwHFA3F4/BrT09r3RtC0UeNEV8wLwKbZjXwScA34Airud\nb1x/Lx+7HVuK/SBgkvv/lD70oQ9nH2g/Ffl7T/sp7af0kUwPHQlTjhIRX+wv/6PYDqsI/92B6u16\nNAZKADmAqVFC3AeUBZoCz4lIedfxJ4FuQCsgF9AXuCQi2bEd22LgLqArMM196oHr2AvYTupXbIeE\nMaaB6/XKxk7LCHE9vxt7B60Y9q6XDzDX9bwocDmy3caYZ7EdxRBXjCHR/FjewXZwJYCGQDDQx+31\nWthOuQDwCjDHfXqDOxFZLSLhMTxWR/ceoALwmzHmvNuxPa7jUePnBfxcr8d4roiEYzv0d4CXolwr\npvdWAPYaV8/hsjfK656+NzpdgZ7Yf4Mlgc3Yv8d8wH7g+SjnrwAaiEge18+hPvauplIqDdF+Svup\nWN6r/ZRKMpqEKafVBAoDI40xF40xV4wxG12vPQJMMcb8Zoy5ADwDdI0yleIFY8xlY8we7C+3yq7j\n/YAxxpgDxtpjjPkHaAMcMcbMNcbcMMbsApYBndxiLjfGbDPG3MDeYYprjnYE8Lwx5qqrLf8YY5YZ\nYy65OoiJ2E4qTq7OvivwjDHmvDHmCPA69pdupKPGmNnGmJvY6Qt+QKHo4hlj2hhj8sTwaBNDM3IA\nZ6McOwvkjOHcyNdjPNcYkwfbYQ/BTh+J6VpngRyuzjqudnjz3ujMNcYcMsacBT4HDhljvnH9O/gY\nqBLl/CvYO5FdXI9VrmNKqbRF+yk32k9pP6WSR1qZR6xSjnuxv6xvRPNaYeydx0hHsf8G3X+Rn3T7\n+hL//bK9FzvFI6piQC3XHa9IGbDTM+KKGZNTxphbv9REJBvwBtASe5cSIKeI+Lo6pNgUADJy5/dd\nJLr2GWMuuW4uxtXGhLiAvSvrLhd22kt050a+fiW2c40xF0VkBnBKRMobY/6O5lq5gAvGGCMicbXD\nm/dG5y+3ry9H8zy6n/EHwMuAYKf6KKXSHu2nbqf9lPZTKhnoSJhy2u9A0RgWCv+J7YwiFQVucPsv\nndjilozh+HdR7rTlMMYMTmjD3UStMjQCO/WkljEmFxA5PURiON/daeA6d37fxz1pmIh8LrascHSP\nz2N4209ACRFxvxtX2XX8NsaYM8AJ/ruzG+O5Lj5ANv7rrH+K5b0/AZWiTGGpFOV1T9/rlA38d4d3\nYxznKqVSJ+2nbqf9lPZTKhloEqactg37y3GSiGQXkSwiUs/12hLgCRHxF5Ec2DnaITHcjYzqPWCC\niJQWq5KI5MfO6y8jIj1dpVozikgNtzn6cfkLOwc+Njmxd6TCRSQfd87RjjGG6w7kR8BEEckpIsWw\n6wYWxrN9UeM94Oq8o3s8EMN7fgF2A8+7/j7aYzuGZTFc5gNgjIjkFZFyQH/swnFEpLmIVBERXxHJ\nBUzBLtTe7/beJ0WkiIgUxn4wmOd6LRS7OHyY2PLCkesSvnXgvY4wxhhstau2rq+VUmmP9lNutJ/S\nfkolD03ClKNcv8wfBEphqwL9gZ23DPA+dvrFemx1pSvA0HiGnoLtJL7CVg2aA2R1zX1vgZ3P/id2\nysRkIHM8444D5otdMNw5hnPeBLJi7xZuAb6I8vpbQEex+5G8Hc37h2IrW/2GvWu1GPuzSEpdgerY\njmgS0NEYcwpARB4REfc7dc9jp9QcBb4DXjXGRH7PebAfUs66zimJrfwUOSVkJna++o/APmy1r5kA\nxphr2NK+wUA4dtH6Q67j3r7XMcaYn4wxTt+5VEqlENpPaT+F9lMqBRBNopVSSimllFIq6ehImFJK\nKaWUUkolIU3ClFJKqVi41qhsE5E9IvKTiLzgOu4vIltF5FcRCRGRTMndVqWUUqmDJmFKKaVU7K4C\nTYwxlbH7N7UUkdrYdT1vGGNKYdexPJqMbVRKKZWKpKl9wgoUKGCKFy+e3M1QSimVSHbs2HHaGFMw\nKa/pqkAWuTdRRtfDAE2A7q7j87EFFKbHFkv7KaVSjgP/HACgbP6yydwSlZbEt59KU0lY8eLF2b59\ne3I3QymlVCIRkaNxn5Uo1/UFdmAr6r2LrboW7la6/A9u39zW/b0DgAEARYsW1X5KqRSi0bxGAIT2\nDk3Wdqi0Jb79lE5HVEoppeJgjLlpjAkC7gFqAuUS8N5ZxpjqxpjqBQsm6SCeUkqpFEqTMKWUUiqe\njDHhwDqgDpBHRCJnlNwDHE+2himllEpVNAlTSimlYiEiBUUkj+vrrEBzYD82GevoOq0XsDJ5WqiU\nUiq1SVNrwpRSSqlE4AfMd60L8wE+MsasFpEw4EMReRHYBcxJzkYqpRKmQsEK9K3SN7mbodIpTcKU\nUkqpWBhj9gJVojn+G3Z9mFIqFepbpS85MuVI7maodEqnIyqllFJKqXRHEzCVnHQkTKnk9vvvsGED\nHDsGp07B9ev2MWQIVKhgj//yC1SsCIUKJXdrlVJe+O3URbrM3HzrebugInSvVTQZW6SUUio56EiY\nUknp9GlYtAiCg2HPHnvs++/hkUfgmWdgxgxYsACWLYPLl+3r334LzZvD3XdDsWLQpw+EhMClS8n3\nfSilPHL5+s1bX4edOMfK3VpQUan0LEeO6EfjevfuzdKlSz2KOW7cOF577bV4X/vPP/+kY8eOMZ4X\nHh7OtGnTYo1Vt25dAEJDQ2nTpk0CWgsrVqwgLCzs1vPnnnuOb775JkExUiNNwpRKbOfP2+Tqvvvg\nrrugRw/44gv44w/7+v33Q1iYPe/iRThzBv7+G6pXt6+3bw/ffANTpkCNGrBqFXTtCidP2tcjkzWl\nVIqXNaMvIQPrEDKwDgF+uZK7OUopReHChWNN+GJLwm7csPvVf//99x5fP2oSNn78eJo1a+ZxvNRC\nkzClEsv58/bPixfhsccgPByefx5++MEmUK1b29fz5IHy5SGGu2Hkzg1Nm8ITT8DSpTZB27YNSpSw\nrz/yCDRoAN99hzE2t/vsM5v3jRkDAwbYwbOePe2fTz0Fr70GH38MP/8MN29Gf1mllFJKJQ1jDEOG\nDKFs2bI0a9aMv//++9ZrO3bsoGHDhlSrVo3777+fEydOADB79mxq1KhB5cqVefjhh7kUxwyZw4cP\nU6dOHSpWrMiYMWNuHT9y5AiBgYEA/PTTT9SsWZOgoCAqVarEwYMHGTVqFIcOHSIoKIiRI0cSGhpK\n/fr1adu2LQEBAcDtI3rnzp2jdevWlC1blkGDBhEREXHHOUuXLqV37958//33rFq1ipEjRxIUFMSh\nQ4duGwVcu3YtVapUoWLFivTt25erV68CULx4cZ5//nmqVq1KxYoV+fnnnz3+2ScXXROmlJOMgZUr\nYfJkyJrVTiW8+267pqtECRDx/hq+vnZEzHW5sHIP89W0g3zT6AI/ZArn1LU8t0718YGCBSFzZsiQ\nAa5ds8vOXL/DAMiZExo1ghYtoGNH21yllFIq3WnU6M5jbdrA//7n2euhofG+9PLlyzlw4ABhYWH8\n9ddfBAQE0LdvX65fv87QoUNZuXIlBQsWJCQkhGeffZb333+fDh060L9/fwDGjBnDnDlzGDp0aIzX\nePzxxxk8eDDBwcG8++670Z4zY8YMHn/8cR555BGuXbvGzZs3mTRpEvv27WP37t2ubyuUnTt3sm/f\nPvz9/e+IsW3bNsLCwihWrBgtW7bkk08+iXG6Y926dWnbti1t2rS545wrV67Qu3dv1q5dS5kyZQgO\nDmb69OkMHz4cgAIFCrBz506mTZvGa6+9xnvvvRf3DzoF0ZEwpZxgjJ1iWLOmnT546hR06GCPA5Qs\n6UwC5rrU7t3w9NPg7w+BLz/Ck2fHcahgbR40nzI1w+NsnBjKH3/YZOvkSTh6FA4dsjVALl+Gs2dh\n506YOxe6dbOzIYcOhSJFbDK2apWOkCmllFJJZf369XTr1g1fX18KFy5MkyZNADhw4AD79u2jefPm\nBAUF8eKLL/KHaznDvn37qF+/PhUrVmTRokX89NNPsV5j06ZNdOvWDYCePXtGe06dOnV46aWXmDx5\nMkePHiVr1qzRnlezZs1oE7DI10qUKIGvry/dunVj48aN8foZRHXgwAH8/f0pU6YMAL169WL9+vW3\nXu/QoQMA1apV48iRIx5dIzkl+0iYiNwLfAAUAgwwyxjzlojkA0KA4sARoLMx5kxytVOpWE2bZqsZ\nFi9uM5sePezQk4MuXoTFi2HqVNi714Zv0cJOOWzRAooWzQ8nmsHob6FPWbu9bDREIFcuqFLFPnr3\ntsfDwmDJEpg3D9q1g1Kl7OzJ7t3tiJpSSimVpsU1cuXt6x4wxlChQgU2b958x2u9e/dmxYoVVK5c\nmXnz5hEaj+tLHDeEu3fvTq1atVizZg2tWrVi5syZlIhc/uAme/bs8b5G5HP341euXImzrXHJnDkz\nAL6+vrfWpqUmKeGj1Q1ghDEmAKgNPCYiAcAoYK0xpjSw1vVcqZTj9GmbuYAdTpo+HQ4csFmNgwnY\n8eN2psM999j1XSL2UidOwJo10K8fFI2scO3nZ5NAPz87lNW2LXzySbyuExAAEybAb7/Z4os5cth1\nZFWrgtuNJ6WUUko5rEGDBoSEhHDz5k1OnDjBunXrAChbtiynTp26lYRdv3791ojX+fPn8fPz4/r1\n6yxatCjOa9SrV48PP/wQIMbzf/vtN0qUKMGwYcNo164de/fuJWfOnJyPXOceD9u2bePw4cNEREQQ\nEhLCfffdB0ChQoXYv38/ERERLF++/Nb5McUvW7YsR44c4ddffwVgwYIFNGzYMN7tSOmSPQkzxpww\nxux0fX0e2A8UAdoB812nzQceSp4WKhWFMTBrFpQpY7MUYyBfPhg0CDJlcuwyf/xhB9dKloQ337RF\nFDdsgF277KUKFIgjwNmztojHww/Diy/+NzUyDhkzQufOsGOHHXkLD4eGDaF/f/u1UkoppZzVvn17\nSpcuTUBAAMHBwdSpUweATJkysXTpUp5++mkqV65MUFDQrUqEEyZMoFatWtSrV49y5crFeY233nqL\nd999l4oVK3L8ePTbY3z00UcEBgYSFBTEvn37CA4OJn/+/NSrV4/AwEBGjhwZ53Vq1KjBkCFDKF++\nPP7+/rRv3x6ASZMm0aZNG+rWrYuf33/Tdbp27cqrr75KlSpVOHTo0K3jWbJkYe7cuXTq1ImKFSvi\n4+PDoEGD4rx+aiEmnh/MkoKIFAfWA4HAMWNMHtdxAc5EPo9J9erVzfbt2xO7mSo9O3zYDj19+61d\ngDt1qt1Q2UH//APjx9vqhhERtqLhM8/Y9V8JduWKzZ4WLrQjdLNnJ3iU7uJFGDcO3njDjsYtWQKu\nvkGpJCciO4wx1ZO7HZ7KV6y8+ffofoBbmzaHDNT/UEolhwOnDwBQtkDZZG6JSkvi208l+0hYJBHJ\nASwDhhtjzrm/ZmymGG22KCIDRGS7iGw/depUErRUpVvffw8VK9oS8zNn2kTMwQTs6lW7FVipUja3\n69ULfv3VDrp5lIABZMkCH3xgs6h582DgwASHyJ4dXn0VNm2yUyHr17ftTEH3b5RSSimlUpVkL8wB\nICIZsQnYImNM5AKWv0TEzxhzQkT8gL+je68xZhYwC+xIWJI0WKUvxtjso0oVuyfXs8+6LcJyxhdf\n2KmHhw5By5Z2Hy/H8jsRW2Ejb97/NoD2QK1adipk374wYoRdDjdtmqMzMJVSSiml0oVkHwlzTTWc\nA+w3xkxxe2kV0Mv1dS9gZVK3TSm+/tpuhHz+vN33a+ZMRxOwkydtTY8HHrCzBD//3D4cnuFoDRsG\ndevar1evBg8qCeXJY/eLHjMG5syBVq3sdEWllFJKKRV/yZ6EAfWAnkATEdnterQCJgHNReQg0Mz1\nXKmkcf263YirRQv491+775eDIiLsNMPy5W3xwnHjYM8eOwqW6LZvhwcftGvbXLvYJ4SPj62iOH8+\nrFtnC4acPZsI7VRKKaWUSqOSfTqiMWYjENOmBU2Tsi1KAXZ4qlMn2LjRrqGaMgWyZXMs/LFjtthG\nZG2PGTOgbFKuCa5eHV54wU5RzJ/fzn30YCPp4GD7Y+nWDZo1s1Mq8+dPhPYqpZRSSqUxjo2EiciD\nIpISRtaU8k6fPv/VZ58xw7EEzBhYsMDW9ti2zY6EffttEidgkcaOhaFDbYI5fbrHYTp2hBUr4Mcf\n7dTECxccbKNSDtN+SimlVErhZGfUBTgoIq+ISNybFSiV0kSukXrnHdi82Q7xOOT0aZuwBAdDpUp2\n6mH//h4NQDlDxNacb90aHn8cfvnF41CtW8NHH9lZjh07wrVrDrZTKWdpP6WUSlFOnjxJ165dKVmy\nJNWqVaNVq1b84kWfnFC7d+/ms88+S/D7GjVqRFzbQoWGhtKmTRsAVq1axaRJMa8siqsd27dvZ9iw\nYQCMGzeO1157LUHtffPNN7l06dKt561atSI8mTc/dSwJM8b0AKoAh4B5IrLZVT4+p1PXUCpRXL1q\npx326GGHq0qVgsqVHQv/9dcQGAiffgqTJ0NoKJQo4Vh4z/n6wqJFMHeu3XjaC23b2pG9L7+0A4ke\nLDVTKtFpP6WUSkmMMbRv355GjRpx6NAhduzYwcsvv8xff/0Vr/ffiFJgyxhDRAI7YE+TsIRq27Yt\no0aN8qgdN27coHr16rz99tseXz9qEvbZZ5+RJ0+s2w8nOkenZbj291oKfAj4Ae2BnSIy1MnrKOWY\nf/6xxTdmzbKZkYObX924YasI3n8/FChgtxd76imb+6QYuXPb5BPsaNiVKx6HevRRmDjRzuIcN86Z\n5inlNO2nlFIpxbp168iYMSODBg26daxy5crUr18fYwwjR44kMDCQihUrEhISAtjRpfr169O2bVsC\nAgI4cuQIZcuWJTg4mMDAQH7//Xe++uor6tSpQ9WqVenUqRMXXGsFfvjhB+rWrbv5RFYAACAASURB\nVEvlypWpWbMmZ8+e5bnnniMkJISgoCBCQkK4ePEiffv2pWbNmlSpUoWVK21x8suXL9O1a1fKly9P\n+/btuXz5crTf0xdffEG5cuWoWrUqn3zyya3j8+bNY8iQIQB8/PHHBAYGUrlyZRo0aMC1a9fuaMe4\ncePo2bMn9erVo2fPnreNqgHs2bOHOnXqULp0aWbPnn3rZ+N+zpAhQ5g3bx5vv/02f/75J40bN6Zx\n48YAFC9enNOnTwMwZcoUAgMDCQwM5M033wTgyJEjlC9fnv79+1OhQgVatGgR4/fsKccKc4hIO6A3\nUAr4AKhpjPlbRLIBYcA7Tl1LKUccPGjn0h07ZjMHB6cf/vmnDbd+vU1O3n7b0doezjtxAqpWtZuA\neXGn6Zln7AbTEybYbdXat3ewjUp5SfsppVRMhg+H3budjRkUBK7P9NHat28f1apVi/a1Tz75hN27\nd7Nnzx5Onz5NjRo1aNCgAQA7d+5k3759+Pv7c+TIEQ4ePMj8+fOpXbs2p0+f5sUXX+Sbb74he/bs\nTJ48mSlTpjBq1Ci6dOlCSEgINWrU4Ny5c2TLlo3x48ezfft2pk6dCsDo0aNp0qQJ77//PuHh4dSs\nWZNmzZoxc+ZMsmXLxv79+9m7dy9Vq1a9o81Xrlyhf//+fPvtt5QqVYouXbpE+72NHz+eL7/8kiJF\nihAeHk6mTJnuaMe4ceMICwtj48aNZM2aldDQ0Nti7N27ly1btnDx4kWqVKlC69atY/w5Dxs2jClT\nprBu3ToKFChw22s7duxg7ty5bN26FWMMtWrVomHDhuTNm5eDBw+yZMkSZs+eTefOnVm2bBk9Im9c\nO8DJkbAOwBvGmIrGmFeNMX8DGGMuAY86eB2lvHftGjRvbsvPr13raAL21Vf2F+/27baM+3vvpfAE\nDMDPDwYMsOvhVq3yOIyI3cC5Zk27/i0szME2KuU97aeUUqnCxo0b6datG76+vhQqVIiGDRvyww8/\nAFCzZk38/f1vnVusWDFq164NwJYtWwgLC6NevXoEBQUxf/58jh49yoEDB/Dz86NGjRoA5MqViwwZ\n7hyL+eqrr5g0aRJBQUE0atSIK1eucOzYMdavX38rAalUqRKVKlW6470///wz/v7+lC5dGhGJMWGp\nV68evXv3Zvbs2dy8eTPGn0Hbtm3JmjVrtK+1a9eOrFmzUqBAARo3bsy2bdtijBObjRs30r59e7Jn\nz06OHDno0KEDGzZsAMDf35+goCAAqlWrxpEjRzy6RkycLFF/0hiz3v2AiEw2xjxtjFnr4HWU8l6m\nTDB7Nvj72zVgDoiIsNPxnn8eAgLg44/tPmCpxssv2wVrffrA3r1QpIhHYbJksXufVasG7drZZDR3\nbmebqpSHtJ9SSkUrthGrxFKhQgWWLl2a4Pdlz549xufGGJo3b86SJUtuO+fHH3+MV2xjDMuWLaNs\nIpZunjFjBlu3bmXNmjVUq1aNHTt2RHte1O/TnUSpbCYiZMiQ4bY1cVe8WGIBkDlz5ltf+/r6Oj4d\n0cmRsObRHHvAwfhKeccYmDTJDtWAHQlzKAE7dw4efhieew4eecSWoE9oArZ46zG6zNwcr8firccc\nafdtMmeGDz+0hUp69vSqukaRIrBsGRw+DI895mAblfKO9lNKqRSjSZMmXL16lVmzZt06tnfvXjZs\n2ED9+vUJCQnh5s2bnDp1ivXr11OzZs04Y9auXZtNmzbx66+/AnDx4kV++eUXypYty4kTJ26Npp0/\nf54bN26QM2dOzp8/f+v9999/P++88w7GtUZ+165dADRo0IDFixcDdhrl3r1777h2uXLlOHLkCIcO\nHQK4IxGMdOjQIWrVqsX48eMpWLAgv//++x3tiMvKlSu5cuUK//zzD6GhodSoUYNixYoRFhbG1atX\nCQ8PZ+3a/+6txRS/fv36rFixgkuXLnHx4kWWL19O/fr1490Ob3g9EiYig4H/A0qKiPvfSE5gk7fx\nlXJERAQ8+SS89ZZNMAYPdqw+/C+/wEMP2T/ffBOGDbsz9OKtx1i5+3iscbYe/heAWv75Yj0v7MQ5\nALrXKup5o2NSpoz9JjZutMlYDNMA4qNePVugY+xYW5ykZ0/nmqlUQnjbT4nIvdg1ZIUAA8wyxrwl\nIuOA/sAp16mjjTEJKjMWduIcXWZuvvW8XVCRxPm/rZRKcUSE5cuXM3z4cCZPnkyWLFkoXrw4b775\nJvfddx+bN2+mcuXKiAivvPIKd999Nz///HOsMQsWLMi8efPo1q0bV69eBeDFF1+kTJkyhISEMHTo\nUC5fvkzWrFn55ptvaNy48a3ph8888wxjx45l+PDhVKpUiYiICPz9/Vm9ejWDBw+mT58+lC9fnvLl\ny0e7li1LlizMmjWL1q1bky1bNurXrx9t4jNy5EgOHjyIMYamTZtSuXJlihYtels74lKpUiUaN27M\n6dOnGTt2LIULFwagc+fOBAYG4u/vT5UqVW6dP2DAAFq2bEnhwoVZt27dreNVq1ald+/etxLcfv36\nUaVKFcenHkZHjJfV4EQkN5AXeBlwrz153hjzr1fBE6h69eomrj0LVDp07ZqdYrd4sd0Ta8oU8HFm\nEHjNGjvylTGj3SvLVXTnDl1mbibsxDkC/HLFGi8+H8CcjJXYbt60P5Ndu+yC55Ilk7U5Kg0QkR3G\nmOoJfI9X/ZSI+AF+xpidrnL2O4CHgM7ABWNMvDesyVesvPn36H7gzpszkf+vQwbWiW84pZQXDpw+\nAEDZAok39U6lP/Htp5xYE2aMMUdE5I5JRyKSL6kTMaVuc/263cTqyy/hpZdg1ChHRsCMsUuoxoyx\nRTiWL4dixWJ/j1MfrtoFxb1Wy5HRsj177B5ib7zh8c/M1xcWLrTbrnXvDps2QTTrgJVKbF71U8aY\nE8AJ19fnRWQ/4NmiSTfdaxW97f+o+4iYUkqptM2Jj0OLgTbYO4MGcP+0ZoCUsC2tSq8yZrQVIjp2\nhH79HAl59aoNtXChHQVr2v93nvrij1jfE5+Rq/iK+sEtOpGjZXF9qIt1tGzTJjt9s1IlW7reQ0WL\nwowZ0LWrzedGjvQ4lFKecqyfEpHi2A2ftwL1gCEiEgxsB0YYY85E854BwACAHH46HKyUUsqB6Ygp\niU5HVLccOwZnztghGA9Ft47ryvkMfD+jLKcP5SKw3THKtzzOtiPxW8uVlNMD47MGLc6pTxERdi7h\nvn1w4IDdcdpDxkCHDvDFF3aArUwZj0OpdM6T6YgOXjsH8B0w0RjziYgUAk5jE7kJ2CmLsd6xcJ+O\nGFXkTROdjqhU0tDpiCoxJOV0xMgL1gN2G2MuikgPoCrwpjEmEcq4KRWLX3+FJk1sUYmffvJ4/tvK\n3cdvG8E6dzILG6aW58rZTNTp9wv3Vv8HsMlXSlh/5S6+o2Wx8vGxlSQrV4bRo8GtelNCRe4fFhBg\nRxFDQx1blqdUvHnTT4lIRmAZsMgY8wmAMeYvt9dnA6sTp+VKqcRw4doFcmTKkdzNUOmUk6szpgOV\nRaQyMAJ4D1gANHTwGkrFLiwMmjWza8FWrowxAUvoSNHatfDw05AjC6zdALVqpZOhnAoVYPhwW8zk\n0UehVi2PQ/n52TB9+9rpif/3fw62U6n48aifErshzRxgvzFmittxP9d6MYD2wL5EabVSKlG8v+t9\n+lbxfLq9Ut5wMgm7YYwxItIOmGqMmSMijzoYX6nY7d5t9/7KkMEOtVSoEOOpUUe5ohPgl4t2QUWY\nPdsmDOXKwerVcRfgSGs+atUXn5/P8OmW81zZHfPoWXxGA3v3hiVL4Jln7PTEu+92uLFKxc7Tfqoe\n0BP4UUR2u46NBrqJSBB2OuIRYGBiNFoplTh+OvUTI74aQWjv0ORuikqHnEzCzovIM0APoIGI+AAZ\nHYyvVOyeew6yZuXT1xewcOM52BhzwhCfUtAREfD00/Daa9CyJYSEQC5namukGPEp3rH18L8Q2IFa\nWWLeuT6+1RhF4N13ITAQnnoKPvgg4W1Wygse9VPGmI3cXswjUoL2BFNKKaUiOZmEdQG6A48aY06K\nSFHgVQfjKxW7BQsgPJyFX/wZ71GumFy9Cr162cTrscfs/sVprbR6fErdg9uat4jj8OyzsGLFHdlo\nQkprly4N//uf3TFgwAC4774ENVspb2g/pZRSKkVw7GOlMeYkMMXt+TFA73Mrx0S3jqvi/h9otfZD\n3hgwkWuZsgDeb3gaHg7t29sZja+8YhMGB7YWS3HiU7zjNtv/hnXrYNIkm0F5YfRomzM/9hjs2JH2\nElyVMmk/pZRSKqVwrD6ZiHQQkYMiclZEzonIeRE551R8pSLXcUWq8uMmnnp3JPnP/E3mq5dvHY9r\nlCs2x49DgwZ2i6yFC+2eVmkxAfNI9erQo4fd7OuYd0VPs2e3YfbuhenTHWqfUnFIM/3UuXPw++9w\n+rTd/0EppVSq4+T951eAB40x0W+AopQDbo1wrVgBQ0dD5UoU+/JL3suf3+vYP/0EDzxgR8I++8wW\nWVRRTJwIS5faaYkLFngVqkMHaNoUxo2Dnj0hTx5nmqhULFJnP2WMrfiaKRNs3w41avz3Wq5c0KgR\nPPkkNNRixEoplVo4uVPPX6muY1Op06pV0KkTVKsGa9eCAwnYhg12bdL167B+vSZgMSpaFJ54wg4T\n7tzpVSgRW/TkzBl4+WWH2qdU7FJfP7VhA9SuDWPG8OOPMPajijTyP0rRfOfJl+0y/uYQbb4axpsf\n3s2JE8C1azo6ppRSqYCTI2HbRSQEWAFcjTwYuamlUo4pXNhmSR9+CLlzex1u2TJ45BEoXhy++ML+\nqWIxahQUKgTly3sdKijIjoK99ZbdBiC9lf9XSS719FOXLsGIETBjBpsLPcToT58g9FXw9c1M1apF\nadIAcuSAf//Nwq5dTVgzQ3hqDvQpu50JpT/grvmvQs6cyf1dKKWUioGTSVgu4BLQwu2YAVJe56ZS\npbv/+p2The61a5M+/9yRmFOnwrBh9kbzp586MqiW9uXKBY8/7li4F1+Ejz6yMxwXLnQsrFLRSR39\n1JEj0L494buP8HjANj4Iq0Eh4PXXITgYChSI+gbhwAF7M+O9WbVYuq8sM3eMo+PWkboZn1JKpVCO\nTUc0xvSJ5qHbkCtnrFjB6y90p8FmZ7blMQbGjIGhQ+HBB+GbbzQBS7ClS6FPH6/D3HsvDB8OixbZ\nSolKJZZU00+dPMmWo34E5j/BogM1GDMGDh2yy77uTMCssmVh2jTYvdeX0uV86XTsdcYGLCXi8NGk\nbbtSSql4cbI6YhkRWSsi+1zPK4nIGKfiq3RsxQro1InDxcrxQ1ADr8PdvGmnvk2cCP362emI2bI5\n0M705vhxmDcPvv3W61CjRkG+fDYxViqxpPR+KseFswAsOlSbRpfWkDl3FrZsgQkTbEXR+AgIgO92\n5+HRB//mxTND6FdlBxFXriViq5VSSnnCycIcs4FngOsAxpi9QFcH46v0aOXKW0U4Jg57g8tZc3gV\n7to1W2V9xgx4+mmYNUv3qPLYwIFQpAiMHet1IYDcueGpp+yavO+/d6h9St0p5fZTe/fy1nOdMXP/\noUcPqFNH2LbNzr5OqMyZYfbKu3i+91Hmnu3AoGGZtFaHUkqlME5+/MxmjNkmt2+qdMPB+CoNi24j\n5kKn/mDKuO4cLlqWiV0nsCM8goCsnl/j0iXo2NEuJ5s0ySZhygtZstihq8GDCaq6hd2Bnm2OHWnI\nEJgyxeZ0a9c61Ealbpcy+6njx6FVK94xQ/h4axvatrXrJDNn9jykCDz/fjGuF7Z7q9+T/QzPvZHX\nuTYrpZTyipMjYadFpCR2kTMi0hE44WB8lYZF3YgZ4K+C9zA9ePStETBvNmEOD4f777cjLbNmaQLm\nmL59oXhxOn862+vRsOzZ7bTEb7+F0FBnmqdUFCmvnzp/Hlq3Zs7pdoy+/BJFgv7h44+9S8AiidjC\nNz3v/4vn38zLJ09s8D6oUkopRzg5EvYYMAsoJyLHgcNADwfjqzTu1kbMn34Kd90FtWrBQO9GVwD+\n+ssmYGFhtqp9584ONFZZmTLBa6/x9codiInwOtygQXbvsLFj7X5ttw9YKOW1lNVPGQO9e/Plj4UZ\nyDvcHRBOnf4HyZTJuSpBIjDr43wcLLKP4DerULHtH5RufI9j8ZVSSnnGsSTMGPMb0ExEsgM+xpjz\nTsVW6ciqVXbOYKNG8NVXXoc7etRuKfbnnza3u/9+75uoonj4YdadLuxIqKxZYfRoOzXx66+hRYu4\n36NUfKW4fsoY9hZqTseMfalY3gf/3gf4+e+zdJm5+bbT2gUVoXutoh5fJkvOjCz9Og8Va1/jkYcu\nsOmUIWMmvcOhlFLJyeskTESejOE4AMaYKd5eQ6UPVfduhKHPQpUqdkGEl8LC7If4ixftB/q6dR1o\npIpWxutXabphJVTNADVqeBWrXz+YPBmeew6aN9fRMOW9FNlPGUP4OR/afzmI3AVg9Wr47g8/Vu6+\nfUQ5cpq2N0kYQJFa9zC7/5d0nH0/4zvsYsLqKl7FU0op5R0nRsJyuv4sC9QAVrmePwhscyC+Sgeq\n7t3IiJmjoVpV+PJLyJPHq3g//AAPPGArH373HVSq5FBDVbR8IiJ4eM1cuPSrHXL0QubMduPmQYPs\n+rCmTR1qpErPUlY/9e+/mBb30zvL5xw7VoD1622h0e5Fit6RbEUdFfPGwzOa02v1l0z6vBmdf4SK\nFR0LrZRSKoG8LsxhjHnBGPMCcA9Q1RgzwhgzAqgGeHfrTqUPxtBswwoO31vGkQRs3Tpo0gRy5oSN\nGzUBSwpXM2fl86ad7e38PXu8jterF/j52apuSnkrxfVTQ4fy6q6mrNxUgNdegzreL32NHx8fXt/d\njDz5fBkwACK8X8aplFLKQ04W5igEuO8Iec11TKmYGQMivNF/IhluXmeelwnYypXQpQuULGmXlBXx\nrJii8sDb5Vrw4FeL2N1vBG/1mxDjefFZ35IlCzz5JIwcCVu32hotSjkg2fup7JfOsXnxb4z2WUCn\nTjBsWFJeHfLf5cuUKRAcDLMnnGTg83cnbQOUUkoBziZhHwDbRGS56/lDwDwH46tUKro9wAAq/7SF\nh774gFcHT2bPWUOAXy6vrvPBB7ZierVq8NlnkN+5AmMqDu2CirAS+Krhw7T9aiEfPdifE4XuTLQS\nsr5l4EA7Evbyy7BihdMtVulUsvdT+f49Rc/MW7jnbuG995JnzWOP9hd5L8Nuxk4MoNtwQ67cuvBS\nKaWSmpPVESeKyOdAfdehPsaYXXG9T0TeB9oAfxtjAl3HxgH9gVOu00YbYz5zqq0qaUXuAeaeZFX+\naQv/mz6KPwr7I8Z4tQcYwFtvwfDhdv3QihWQI4cTLVfx1b2Way3LQyWg3S+82aIY1K59x3kJWd+S\nMycMHQrjx8NPP0GFCk62WKVHnvZTTvozojD/XLuH0A+EXN7dd/KY5MjO68OOUWNKPSYPPszExf7J\n0xCllErHnBwJwxizE9iZwLfNA6Zi71C6e8MY85oT7VLJ79YeYGBLFQ4fDYEBlFi7lvfz5fM4rjEw\nbpz9oN6hAyxe7Mwmp8pDhQrBli2OhRs2DF5/HSZNggULHAur0jEP+ynHnKYA/xshNGiQXC2wqk9s\nT/fpy5nyYSsGTzbcc6+OhimlVFLyujCHt4wx64F/k7sdKol8+y20bQtly8I334AXCVhEBDz+uE3A\n+vSBkBBNwFKM8HDY7H1Vt/z5YcAAWLIEDh92oF1KJTPfjBFMiHnJZNLJkoWJz14iwsDYR++cLq6U\nUipxOToS5rAhIhIMbAdGGGPOJHeDlAMKFYL77rOfqr1YtHX9ul3/tXChLeDw2mu6n1SK0rcvfP89\nHDliq2y4CTtxLs5pie7FO0aMgKlTYcoUeOedxGqwUkkje4GrUf9LJJviIzsx5I3FvPlNMM/+CqVK\nJXeLlFIq/XBsJExEhopIXofCTQdKAkHACeD1WK47QES2i8j2U6dOxXSaSmZ3nTpu5w5WqGCnIxYo\n4HGsy5ft1MOFC2HiRE3AUqT/+z/46y+bbLtpF1QkzgIsYSfO3VbIpUgR6NYN5s6FM3orRnnB4X7K\nI74ZU1Bd+EyZGLmnJ5ky+/Dyy8ndGKWUSl+cLlH/g4jsBN4HvjTGGE8CGWP+ivxaRGYDq2M5dxYw\nC6B69eoeXU8lrvK/7GLU1BGQ4w9bPcML587Z2Yzr18O0aTB4sEONVM5q2tRu0DZlCvTufStLvlXA\nIxbRjZI98YStfjl7Njz1VGI0WKUTHvVTInIvdt1yIcAAs4wxb4lIPiAEKA4cATqntlkbdxfxpX8/\nw/TphrFjfShePLlbpJRS6YNjI2HGmDFAaWAO0Bs4KCIviUjJhMYSET+3p+2BfY40UiW9DRsY9e7/\nOJ3vbjuc4YVTp6BxY9i0CRYt0gQsRROx8wj37bMbtnkpKMhuwP3223YqqlKe8KKfuoGdFh8A1AYe\nE5EAYBSw1hhTGljrep7qPFUsBJ+b15k0QmeTKKVUUnG0MIfrjuJJ1+MGkBdYKiKvxPQeEVkCbAbK\nisgfIvIo8IqI/Cgie4HGwBNOtlMlkU2b4IEH+CfvXYx/4h27HsxDv/8O9etDWJjdkNnLfE4lha5d\nwc8P1qxxJNwTT8Dx47B0qSPhVDrlST9ljDnhqqqIMeY8sB8oArQD5rtOm4/dd8xxkesoIx+Ltx5z\nNP49A1rRN+NC3l+Rlz//dDS0UkqpGDg2HVFEHgeCgdPAe8BIY8x1EfEBDgLRTiIyxkT3cXqOU+1S\niSemTZgBcp4/w9tjOxOeOz89ur/EXbk9L8Jx4AA0bw5nz9pBlfr1436PSgEyZYJdu+CuuxwJ16oV\nlCljZzh27arrAFXCedpPRYlRHKgCbAUKGWNOuF46iZ2uGN17BgADAHL4JWxySNT9ExOy4Xm85crF\n/3qdYuZ7Pkx/OZwJ7+RxLrZSSqloObkmLB/QwRhz1P2gMSZCRNo4eB2VQkS3CXOk8znz8l73kYSV\nrsJdeQt6vBHzzp1w//3g4wOhoVClipeNVkkrcvTz2jWblHnBx8eOhg0eDBs3ajKuPOJVPyUiOYBl\nwHBjzDlxuxNgjDEiEu36Mve1y/mKlU/Q2uWo6ygTsuF5QpR8vgdt53zKjDlNGf0KZM2aKJdRSinl\n4mQS9jlu+32JSC6gvDFmqzFmv4PXUSnIbZswA2zbBhcv2sVb7sc9sH49tGkDefPagoplynjZWJU8\n5s2DUaPgl18gV+yVEeMSHAzPPgtvvKFJmPKIx/2UiGTEJmCLjDGfuA7/JSJ+xpgTrrXMfydWwxPd\nPffwRMP3WBnajoUfRNB/YLJvI6qUUmmak79lpwMX3J5fcB1T6cUPP0CLFjBsGNy86VWo1avtCFiR\nInZpmSZgqVhAgC1Xv2CB16GyZYNBg2DFCjh0yIG2qfTGo35K7JDXHGC/MWaK20urgF6ur3sBKx1q\nZ7JosKA/QZVu8ubbPnhW21gppVR8OZmEiXupX2NMBCl7M2jlpG3b7MKtfPlsIQZfX49DLVoEDz0E\ngYGwYQPcc4+D7VRJr2ZN+5g6FSc+2T32GGTIAG+95UDbVHrjaT9VD+gJNBGR3a5HK2AS0FxEDgLN\nXM9TLbmnCE+M8CUsDL75Jrlbo5RSaZuTSdhvIjJMRDK6Ho8DvzkYX6VUW7bYBCx/fli3Dop6vmB8\n6lTo0cNONVu71qs9nVVKMmQI/Pyz/Uv1UuHC0KWLneV4/rz3TVPpikf9lDFmozFGjDGVjDFBrsdn\nxph/jDFNjTGljTHNjDH/xhUrpetSYR/5fc8wc1Kq/1aUUipFczIJGwTUBY4DfwC1cFWDUmnctGm2\nAl5oKBQr5lEIY2DCBBg61G7G/PnnXi8fUilJp05QsCC8844j4R57zCZgCxc6Ek6lH9pPxSFzqXvp\nLR+wcl0uTp5M7tYopVTa5eRmzX8bY7oaY+4yxhQyxnQ3xqTeRcoqbpGzet57z5aru/dej8JERNiq\nd889ZwsvLFsGWbI42E6V/LJkscn6s886Eq5WLahWzbEZjiqd0H4qHnLnZkD7U9wwGZg742pyt0Yp\npdIsx5IwESkoIqNFZJaIvB/5cCq+SmFCQ5nwygBynj9jS497uBHzjRvQt69d3/P44zB3rl3vo9Kg\njh3t2jAHiNjRsLAw+O47R0KqdED7qfgpM7wVjVjH7GnXiIhI7tYopVTa5OR0xJVAbuAbYI3bQ6U1\na9dCq1ZkvXoJHy+GIa5csZ/L58+H8eNt2XEfrYqcth08aNeHXb7sdaiuXW0dmKlTHWiXSi+0n4qP\nOnUYcPcqDp/KqQU6lFIqkTg55pDNGPO0g/FUSvTll7Z0YenSvBA8ifM583oU5vx5aNfO1vF45x37\nuVylA3/8Ae++a0fEgoO9CpU1Kzz6KEyZYsNqFU0VD2minwo7ce62TZvbBRW5bUNnr4nQ4aUa5B96\nmTlzstCihcT9HqWUUgni5LjDalfJXpVWff21zZzKlYNvv/U4ATt9Gpo0sZsxL1yoCVi60qiR3fRt\n5kxHwg0ebNcUzprlSDiV9qX6fqpdUBEC/P6rWhR24hwrdx93/DqZ+3Sna++srFwphIc7Hl4ppdI9\nJ5Owx7Ed3BUROSci50XknIPxVXIrUcLuoOxF7fijR6FePdi3D5Yvh0cecbiNKmUTgQED4Pvv7T8C\nL/n7Q+vWNgm7ds2B9qm0LtX3U91rFSVkYJ1bD/eEzGnBD53j6lVY+pEuDFNKKac5Nh3RGJPTqVgq\nhdm1C4KCoGRJWLnS4zA//ggtW8KlS3ZQ7b77HGyjSj169YLRo+1oWAwl66NOt4pO5BSsxx6DBx6w\nVTW7dUuMBqu0QvuphKnx9xrKUJUF795FvwGezXxQSikVPSerI4qI9BCRsa7n94qIM6XQVPJZsgRq\n1LBVM7ywfr3dgFkENmzQBCxdK1AAevaM8eWo062i4z4Fq0ULKFVKC3Soi/UP0AAAIABJREFUuGk/\nlTDS/iGCM4Wwfm9ejhxJ7tYopVTa4mRhjmlABNAEmABcAN4Fajh4DZVEFm89xvmp0+m/aDL7SwXx\nim8lrkQZmQg7cS5eU2GWL7cjFMWLw1dfQVEH14+rVGr2bJuRR6N7raJxFhlwHyXz8bFrw0aMsKOt\nFSs62lKVtqTJfirRCnVkzcojrcMZsxwWzr/BmOd1/xCllHKKk2vCahljHgOuABhjzgCZHIyvktD1\n16cwcOEk9gTUZtLQ17mSJfsd5wT45aJdUJFY48ycacvQBwXZ/Zw1AVPAfwnYgQOOhOvVCzJn1gId\nKk5prp9K7EIdxfs1oyGhfDDrim6MrpRSDnLyttZ1EfEFDNhNMbF3HFVq8/PP9Fz6DluqNKL2li9Z\nkCnhn1GMgQkT4PnnoVUr+OgjyH5nHqfSs0WLoEeP/9YceiF/fpvsL1gAkydDtmwOtVGlNWmun4o6\nchzXWsoEa9aMntn/R78/G/HDD47tt66UUumekyNhbwPLgbtEZCKwEXjJwfgqqZQrxwtPTuWtfuPB\ngwTs5k147DGbgPXqBStWaAKmotGqFWTJ4li5+gED4OxZCAlxJJxKm7SfSqhMmXj4h2fImNHw0UfJ\n3RillEo7nKyOuEhEdgBNAQEeMsbsdyq+csbirceinaoiEREEf/wW+8pVZ0fl+oTlKEGAb8L/eVy5\nYgc3li2Dp5+Gl1+OcemPSu/y5oUuXexmca+8Ajm9K1xXvz6UL2+nJPbp41AbVZqi/ZRn8pT34/77\n7YyGV1/V3+lKKeUEJ6sjFgUuAZ8Cq4CLrmMqBVm5+zhhJ27fFsfn5g0GfzCRVus+ptThn4D4rfeK\nKjz8v1Lhb7wBkyZpZ63iMHAgXLhgq3B6KXILsi1bYO9eB9qm0pz00k9FFuqIfCzeeszrmJ1ufsjv\nv8PWrQ40UCmllKNrwtZg59kLkAXwBw4AFRy8hnJAgF8uQgbWsU+uXbM7Jm/5HMaPp8OYMXTwIHM6\ndszOLvvlF7vUp3t3hxut0qbatW05w7lzbQblpeBgGDXKznB8910H2qfSmjTfT0W9eRZ5083baolt\n79lJJtrz0UKhdu1UXctEKaVSBCenI95WGFpEqgL/51R8FbeYphq6u62s/OXL0K6d3Tn59dfhySc9\nuu6uXdC6td2E+YsvoEkTj8Ko9EgE5s+He+91JFy+fNCp038zHHUtonKXHvqpxCrUkafng9w/+0uW\nftiU197OhI+TK8qVUiodSrRNP4wxO0WkVmLFV3eKnGoY295dt00zzJwZCheG99/3eBHN559D5852\nec+mTVAhzdxPVkmmShWP3hZ1b6RIp+7OyblzgTQa/Csl6p1ybs8kleZoP5UAdevSKecwPv2nLVu3\nQp06yd0gpZRK3RxLwkTEfRjFB6gK/OlUfBU/t001jMmxY3DkiN09ed48j681e7bdJLdSJVi92uZz\nSnlk/Xp46SX45JN41ZePbb1igZLnyXX3JX7bUIgrJQ4B3k/FUmmD9lNe8PWlbYcMZJp/lY+W+FKn\njm7crJRS3nDyt6h7abMb2Ln3yxyMr5wQFgYtWkCRIraCgQfrv4yBMWPsZ+aWLW3FLC8L26n0LiIC\nvvzSVnXp2TPO06NOuYrqraswfDhUu3E3tg6DUoD2U17J3eshWq4L4+OllZjylhZeUkopbzi5JuwF\np2KpRLJ5s128lSWLHcbyoAe9ehUefdQW3+jfH6ZNgwx6Q1R5q2FDKFUK5syJVxIWl8gCHb9tKES1\n7ocdaKBKC7Sfil5064mjncbbuDEdxsOq3rBjB1SvnnRtVEqptMbJ6YifYqtORcsY09apaykPfP45\nPPywHQH76ivw909wiPBwaN8eQkNh4kR45hm9E6ocImKz+2eesSU2y5TxKlzevHat4uKPClCpw1GH\nGqlSu/TaT0W3ftI9yYq6nnjr4X/Zevjf2xKzyPPbtDb4+MCKTwzVq2t1DqWU8pSTv0F/Ay4Ds12P\nC8Ah4HXXQyWXmzftzsnlysHGjR4lYEeOQL16tvjGwoUwerQmYMphvXqBr68tFOOAAQPgxpUM/L69\ngCPxVJqQ7vqpdkFF7ijWFHbi3B0jX5HriUMG1uGl9hWp5Z8v2vPzb1pF/YjvWPnh5cRvvFJKpWFO\nTiSrZ4xxn5zwqYhsN8Y84eA1VEIYAzduQMaMdiQsZ07IFXPlxJh8/z089BBcv26X7TRunAhtVcrP\nD/7v/2zBGAfUrQu5Cl/it413ORJPpQke9VMi8j7QBvjbGBPoOjYO6A+ccp022hjzWSK02SvRrZ+M\nq2x9rGXumzblId9xPHG4Eb/+amcRK6WUSjgnR8Kyi0iJyCci4g/oLj3J5cYN+4G2Rw9b9KBIEY8S\nsIULbdKVO7et46EJmEpUb78NgwY5EkoEStz3F/8eycmePY6EVKmfp/3UPKBlNMffMMYEuR4pLgFL\nFDly0K5hOAArV8Q4s1MppVQcnBwJewIIFZHfAAGKAQMdjJ+uJWgj5gsXoGtXWLPGTkP0QEQEjB1r\nKyA2agRLl0L+/B6FUiphrlyxGX+jRl6HKlbrNHs/Kcbs2T5Mnep901Sq51E/ZYxZLyLFE7dpqYf/\nI3Wp9O0eVi4uwYj/aWlcpZTyhJPVEb8QkdJAOdehn40xV52Kn97FdyPmLvdmtB9ed+2C6dM9GlW4\neNEuz1m2DPr1g3ffhUyZvGi8Ugnx8svw4ot2P7siMe8HFh+Zs98gZ8BJZs25ixNld5AhU0S05+mG\nzulDIvRTQ0QkGNgOjDDGnPG6kUnEvVhHXH3LHR58kIeYzou7x3DqFBQsmEiNVEqpNMzJ6ojZgCeB\nYsaY/iJSWkTKGmNWO3WN9C7OjZhv3oSgIPjtN1i5Etq0SfA1jh+Htm1tDvf66/DEE1qAQyWxnj1h\n/Hi7kfizz3oVql1QEU41/5d1ewvz+/b8+Nc9dcc5YSfOAbqhc3rgcD81HZiArbY4AVvYo28M1x0A\nDADI4VfSo7Y7Kepm5wF+uWLdAP0OBQvS7s3GjB/uw+rV0KePww1USql0wMnpiHOBHUBklnAc+BjQ\nJCyp+PrCq69CgQIebeCyY4dNwM6dg1WrPMrhlPJeqVJ28eH779uS9T6eL13tXqso3WpCwBrI+Gsp\nQubfWUUgriIFKk1xrJ8yxvwV+bWIzI4thjFmFjALIF+x8sm+kCquzc7jo8qw+tz7OqxYoUmYUkp5\nwsnCHCWNMa8A1wGMMZewc+5VYluyBGbOtF+3bOlRArZ0KdSvbzde3rRJEzCVzPr1syO6oaFehxKx\nG4t//z3s2+d901Sq5lg/JSJ+bk/bA+nqX5dcv0a7Yrv56oubXLqU3K1RSqnUx8kk7JqIZMW1EaaI\nlAR0TVhiioiA556D7t3ho4/scw9CjBkDnTpB5cqwbRtUqpQIbVUqIdq3hzx57MJEBwQH23WNs2c7\nEk6lXh71UyKyBNgMlBWRP0TkUeAVEflRRPYCjbFFP9KsyDVktx7vb6fFvklcuebLt98md+uUUir1\ncXI64vPAF8C9IrIIqAf0djC+cudePaNvX1uEI4HTtsLDbQX7NWtsiGnTIHPmRGqvUgmRNSts3gyl\nSzsSrkAB6NABFiyASZNseJUuedRPGWO6RXN4jrNNS7miWy8WdvI8PhVukn3TBdasykqbNr7J0DKl\nlEq9HEnCRESAn4EOQG3s9I7HjTGn4/He6DbBzAeEAMWBI0Dn1FR1KtFdvgwNGnhVPWP/fmjXDg4f\nttUPBw/WAhwqhSlXLu5zEmDAAPjwQ3vfosf/s3ff4VEVawCHf18KhNCbEJQSEBAIvURAECyAEGlK\nVaQo2AARCxZQxAYWroqNIkW8KEpX7AhSRYqAdKRZQJqXXpPM/WM2uISU3exJsrv53ufZJ7tnz5kz\nsyfZyZyZ+eZOR5NWAcCXeiqnS23B5y/LVOfmZd/x8cc3caTORtrX1iijSinlKUeGIxpjDPClMeaI\nMWa+MeYLLyq2yVy+COYTwAJjTEVggeu1SpInD9x6K3z+OQwe7HXrae5ciI2FY8fghx/sms7aAFN+\n6d13oUULML7HMmjWzMb80CGJOZOP9ZRKpl2tKznesAktQ7/h2Mn8/LI+Md21LJVSSv3LyTlha0Wk\nvrcHGWMWA/8k29wOmOJ6PgVo72PegkLD1d/DqlX2xfDh0KaNV8cnJtrD2reHypVh9WobjEMpvxUS\nAt99Z39ZfZQUoGPxYti61YG8qUCUoXpKXa57bBmmDmhO22Y2Kkeev6/K5hwppVRgcbIRFgusEJGd\nIrLBbcJyRpQwxux3Pf8bKJHajiLST0RWi8jqQ4cuXwMoKCQm0mneeAZNeAZeeSVDSRw/bmMdPPec\nnUq2ZAmULu1wPpVyWrdutuf3A2em3/TqBeHh2huWgzlZTymg1Pzx1K4N+zcWzu6sKKVUQPG5ESYi\n0a6nLYEKwA3Ardh5Xrf6mr5rCEmqY5GMMeOMMfWMMfWKFy/u6+n8z9Gj0K4dt385iUUNW8NHH3md\nxK+/Qv36NgDHW2/BpEkQEZEJeVXKaQULQufOMG2aDUbjoyuusHMhp0yBcxq7NcfI7HoqR8udmzZt\n4MjO/Jw75WSsL6WUCm5O9ITNcP2caIzZm/yRwTQPJK3B4vp50IF8Bp7ff4cGDeDrr/mg6yO8d9fT\nXocv/PBDO//r+HE7/2vAAJ3/pQLMPffAiRPw2WeOJNevHxw5ArNnO5KcCgyZUU8plzY738IY4cDm\ngtmdFaWUChhO3LYKEZGngEoiMjj5m8aY0RlIcx7QExjp+jnXtywGqJIloXp1mDiRbzd5F/737FkY\nONAOu2rWzK7nXLJk5mRTqUzVuDHcd5+NquGAG2+E6GgYNw66dnUkSeX/MqOeUi71yx2iGIc4+Eu+\n7M6KUkoFDCcaYV2xgTPCgPzeHuxaBLMZUExE/sSu4zIS+NS1IOZeoLMD+fRL01b+fklEKUlM4Nbv\npvFD47aczFcQWjwKm+xCmVWjCniU5q5dcPvtNoL9k0/CiBEQpqNEVKASsevgOSQkxHauPf007Njh\nWLLKv/lUT6m0hd7amlte/opZm24nIQFCdckwpZRKl8//mhtjtgGjRGSDMearDByf0iKYADf6lrPM\nlbzxlJp2tdJeN2Xuur8uNrDynjrOwA+epdbmlZzPFcHXzTtd3K9qVIEUF8xMbt48uOsu+3/r559D\nXJxn5VHK7+3ebRe4a93a56R694ZnnoEJE4DyvmdN+Tdf6ymVjgYNaJ57PFPP3cXKldCoUXZnSCml\n/J9j/SM5rWJzbzylZuXuf1i5+580G2tJaUyvGw6d7oN9+2DcOHr37UtvL/ITH2/v7L/yCtSta6fP\nREenf5xSAWPIEFiwAP76y+fIMlFRdqm9SZOg6bNCaJjv65Ap/5fT6qksExrKFTHHCF0Tz/zPQ2jU\nyMnAy0opFZx0kJoPqkYVYPq9DVN935PesqpRBej/z3po/JCdtLV4sY2k4YU9e6B7d1ixwk6d+c9/\nNPqhCkL33GPvLsyebUPX+6hfP5gzB/atL0zpusmXKlRKeWNDw8ZU3bmN+fOv4cWXszs3Sinl/3xu\nhIlIJ2PMZyISbYzZ7USmgkX32DJpDkW86PcrYdNSePNNKFrUq3PMmGH/NzXGBt/QQAMqaN10E5Qr\nZ8cQOtAIa9ECypSBXUtLaCMsyGk9lfnWxTTkYL0wDnwfyq0j1xBZ+Hy6w/GVUionc2LMwJOunzMd\nSCvnWLcO+veHxET7n+BHH3nVADt9Gu69Fzp1gsqVbRAObYCpoBYSAnffbdda2LnT5+RCQ21yB7YU\n4uRh75Z+UAFH66lM1q7WldRueBKA/RsLsXn/cY/mTSulVE7lxHDEIyLyLRAtIvOSv2mMaevAOYKH\nMTZu/MCBttH1+OO2EeaFX3+1Da7Nm+00meefh/DwTMqvUv6kd28b7nPRIqhQwefk+vSB4cMNq74u\nSJdiK9LcV+/qBzStpzJZ99gydFvyGeUpwpWHShHRJGcu76mUUp5yohHWBqgDTAVedyC94HXsGDzw\nAEybBi1bwtSpULy4x4cbA++/D4MHQ8GC8O23cPPNmZhfpfzNlVfa4DXFijmS3FVXQa1GZ9myoTSJ\nCYcICU05QMfm/ccBtBEWuLSeygLSqiVtHpvPpEX3csutQmi4BrxRSqnUOBGi/jzwk4g0MsYcEpF8\nru0nfc5dMDHGtpjWroUXXrALeIV4Phr0wAHo29eGnW/ZEqZMgRIlMjG/SvmrpAZYfLwjC+A9NyQP\nbdvCHaWupX37lPfpMjbtXjLl37SeyiLVqhFX/BXeOdSfg9sLElXtaHbnSCml/JaTcWRLiMgvwCZg\ns4isEZEYB9MPTPHxdt6XiB03uGSJjSXvRQNs7lyoXt32fI0eDV9+qQ0wlcP17UuqLSYv3XKL7WAb\nN86R5JR/03oqM4nQrH0hIjnF3+tSX75FKaWUs42wccBgY0xZY0wZ4BHXtpxrzx5o1gxed41+adkS\nGqYe0j65Eyds4ID27e0/iWvWwMMPe9V+Uyo4RUXZuxG//+5zUmFhdm7Y11/D3r0O5E35M62nMllE\nu5bcyAIOrc+H0dGISimVKif/nc9rjFmY9MIYswjI62D6gWXaNKhZ00bRuOoqrw9futQePnmyHbm4\nciVUq+Z8NpUKSH362J8TJzqS3N13O5qc8l9aT2W25s2Ju680R48X5Pj+PNmdG6WU8ltONsJ2icgw\nESnnegwFdjmYfmA4ehR69IA77oCYGBuK3os1jc6dgyeegKZN7esff4SXXoJcuTIpv0oFonLl7BzL\niRMhIcHn5MqWhVat4IMP7AhiFbS0nspskZG0fro2AOuW56HL2BUXH9NW+t5zrZRSwcLJRlgfoDgw\nC7sWSzHXtpxl1Sr45BMYPty2oKKjvTq0bl0YNcre6F+/Hq67LvOyqlRA69sX/vgDvvnGseT++gu+\n+sqR5JR/0noqC1wVfoBKRfcR+luRi9t03TCllLqUEyHqATDG/A8Y6FR6AeXECbtu0a232rvzO3d6\ntfbX2bPw7LPw2mtQsqSNgBgXl3nZVSootG1r/3BinImrEBdn//7Gj7d/yir45Oh6KiudOUOnIx8x\n8n9P8X7n4hQurBFGlVIqOQ3x4KsffrChC2+/Hfbvt9u8aIAtXw61asErr9h1aDdt0gaYUh7Jlcv2\nOHu52HlqwsPt3+D8+fDnn44kqVTOVK4cbcptJiExxKmOaqWUCjqO9YQFi2krf/doyMTuvQcZseIj\nWDQDKla0PWFRUR6f5/RpG6n+zTehdGk7oqpFCx8yrlRO9dVXcOYMdOzoc1L33AMvvwyTJsGwYQ7k\nTakcqsFtpSn2+iHmzylE167h2Z0dpZTyO471hIlIY0+2+bu56/5i8/7jae4Tfv4ccyYOpNWiGfDQ\nQzb4hheh5xcuhBo14I034L77YONGbYAplWGvvQaDBzsSoKN8eTuieMIER5JTfiaj9ZSITBSRgyKy\n0W1bERH5TkR2uH4Wdjq/gSz01tbcwld89WXixb+lzfuPa6AOpZRycbInbAxQx4Ntfq9qVAGm35tC\no+rMGcjjCrl75kGIjYXrr/c43UOH4NFH4cMP7T97P/wAzZs7lGmlcqoHHrDDgb/80pHJXH37QufO\ndnH0W25xIH/Kn2S0npoMvA186LbtCWCBMWakiDzhej3EoXwGvkaNaJP3Q6aeuIuVK6FdrSsveTvp\nZmf3WGeGEyulVKDxuREmIg2BRkBxERns9lYBINTX9P2CMTbi4cMPw2efQZMm8PjjXh0+ebJtgB0/\nDk89BUOH/tueU0r5oG1bKFUK3n3XkUZYu3ZQvLgN0KGNsODgaz1ljFksIuWSbW4HNHM9nwIsQhth\n/woPp+X2MYSWsfMsX3yxzCUNLg3UoZTK6ZwYjpgLyIdt0OV3exwHbncg/ey1dy+0aQPdu9sAAIUK\neXX4li3QrJkNOV+1qh25+OKL2gBTyjHh4dCvH3z9Nfz2m8/J5cplA3TMm/dvrB0V8DKjniphjEn6\nDfkbKJHajiLST0RWi8jqCxcuZPB0gadQqUiuuw6++CK7c6KUUv7H50aYMeZHY8xzwLWun68Drxtj\nRhtjdvicw+z03ntQrRosXmwncK1YYSMheuDsWXjmGahZE3791c4x+fFHm5xSymF9+9r48lu3OpLc\nPffYOWETJjiSnMpmmV1PGWMMYNJ4f5wxpp4xpl54eA4KUhEfT5t949mwwS7pp5RS6l9OzgnLLyK/\nAEUAROQw0NMYszHtw7KOJ5EPN+8/TtWoAvbF339D06a2MVa2rEfnMAbmzrVxAnbvhh49bNyAK67w\nNfdKqVSVKmXjyoc6MwK6YkVo2RLefx+eeMKRJJV/cLKeOiAiUcaY/SISBRx0MqNBISyMuIjveZy+\nfPkl3HtvdmdIKaX8h5PrhI0DBhtjyhpjygKPuLb5jfQiHxY8/g9vf/MmD5zYYjcMG2YHs3vYANu6\nFVq1gg4dIDLSBt748ENtgCmVJUJDITHRsTGEAwbAvn0wa5YjySn/4GQ9NQ/o6XreE5jrQP6CzjW3\nVSOaXXwx81x2Z0UppfyKkz1heY0xC5NeGGMWiUheB9NP165Dp9Kc7JvUy3VZ5MP4eDup/4VhNgJi\n15Z2e5hnH8/x4zBihF3zK29e+/OBBzw+XCnllHbtbA/2qlU+J3XLLVChAowZA1f2cCBvyh9kqJ4S\nkY+xQTiKicifwLPASOBTEbkb2At0zpwsBzaJa0Pc8C8Yv+gBTp2ydaRSSilne8J2icgwESnnegwF\ndjmYfrrOXEh7YZ+qUQUuC5PL8uVQt65d7+vaa+2iXQ895NH5EhNhyhSoVAlGj4ZevWD7dhg4UBtg\nSmWLVq1g9WpHGmEhIfDgg7BsGfzv90gHMqf8QIbqKWNMN2NMlDEm3BhzlTHmA2PMEWPMjcaYisaY\nm4wx/2RB/gNP7dp0KLaUsxfC+Prr7M6MUkr5DyebCn2A54CkwTtLXNuyTJ7w0JTX90rL6tVw9CjM\nnGnHEYp4dNjixTbk/KpVtu32+edQv34GMq2Uck6PHnYS1zvv2HUhfNS7t11OYseiKPLd/ItHYbXb\n1bpS1z7yX9leT+U4ISE0GVyfYi+cZtasSG67LbszpJRS/sGxRpgx5n/AQBHJb1+ak06l7ahjx+Dl\nl22Ywh494P774e67PR4jsW0bDBlig29cdZXtCbvzTnvXXCmVzQoUsH/XEyfC669D0aI+JVeoEPTs\nCRM+KM4tHYoA8WnurwvQ+reAqaeCTNiTj9Fup11m89w5yJ3bbt+8//hlNzb0JoZSKqdwrBEmItWB\nD/HX6Ijx8Tbe9DPPwKFDthsL7BpDHoQMPngQnnsOxo61QTdeegkGDdL1vpTyOw88YCOaTpliw5T6\nqH9/eO894doL9XkynehuugCtf/P7eiqI3db2Ah98EM6CBdC6NZdPDUBvYiilchYnhyOOxUadWggg\nIs2wUacaOXiOjFm0yP4ntWmTDTn/1Vd2HpgHTp+2S4SNHGmf33efbcdpxEOl/FRMjF0d9sYbHUmu\nalWb1HvvwWOP6XzPAOe/9VSQu+HLRynACGZ+mpfWrcPoHlvmssaW3sRQSuUkQRUd8TLG2Dlef/5p\nV0+eNQvat/do3tf587bj7IUXbMTr9u1tQ6xy5SzIt1LKN23aOJrcgAH2O2DuXHROS2Dzv3oqh8jd\n/hZuHfs5c2d1ZuwEvZnhD1JbO1WHhCqVNYIqOuJFmzbZIBuvv25fd+/+77Z0GmDx8TBpko14+OCD\ncPXVNgjH7NnaAFMqoHz0EXTubG/G+CguDqKj4T//cSBfKjv5Tz2V09xwAx0jv+HIiVwsXpzdmVGQ\n8tqpm/cfv6RhNm3l73QZu+KSx7SVv2d1VpUKSk42wvoAxbFRp2YCxcjiqFNh8RdsnPgaNexKyUlz\nvUJC/p0JnIrERJg+3Y5k6tMHihWDr7+GH3+EJk0yP+9KKYcdO2YjAazwfYhTaKidA7psGfz0kwN5\nU9kl2+upHCtXLlq1zUUkp5jxadrLyaisk7R2atKjalSBS95P3lBbufsfnpr9qzbKlHKAI40wEQkF\nnjbGDDTG1DHG1DXGDHJFosoypfftsi2pwYNh1y6P1vtKTLRDjOrUga5d7RCJWbNs6PmWLT2OWK+U\n8jc9e9rwhg51X/XpY5NL6mBXgcVf6qmcLLJrW27lcz79OIELF7I7N8pT7g21lzpUJza6yMX3kvec\nKaU850gjzBiTAFznRFq+OJGvAOzYAa++mm5o6oQE+PRTqFXLzvU4edKOXlq/3qvlwpRS/ipfPujX\nz95V2bPHkeTuv98mt3On79lTWctf6qkcrVUr7nz2ao4cz8U332R3ZlRGdI8tk2bPmVLKc05Ojf1F\nROYBnwGnkjYaY2alfoizDheJsot3pSE+Hj7+2IaY37rVzvP68EPo1k0nCisVdAYMgNGjYcwYR7qw\nBgyA116zEVPHjHEgfyqrZXs9laPlzk3Lp+tR9G170zMu7vJdkq8dpkEisp77Ndi8/7jXDa2UAn7o\ndVTqck42OyKAI8ANbtsMdux9tjt/3ja2Xn7ZjlSsUcP2hHXsaOd7KKWC0FVXwdNP28meDoiKsouz\nT5wIw4f7vBa0ynp+XU/lBOHxZ+ha9hc+mB3L8eOhFHD7/z752mG6bljWS34NqkYVSHFNN3fJG84r\nd/8DcHHYol5HpVLmWCPMGNPbqbScdOKE/Yfp9dfhjz+gXj07RSQuzsbrUEoFueHDHU1u8GAbQfW9\n92DoUEeTVpnMX+upHCUigjv3vco752cza5aNpZUk+dphum5Y1ktp/ba0pNRAi40ucknPV5exK7SH\nU6kU+PUAPBHZA5wAEoB4Y0w9T4/96y87XOj9922QtCZNYPx4aNFC53spleMcO2YX/nvgAciTx6ek\nYmKgVSv7/fLooxAR4VAelcoJRIi9O4YKL/7G1Aml6dUr7cjFKuOudffHAAAgAElEQVSyYligJ402\n7eFUKmWB0BfU3BhTy9MG2K+/2jtr0dE2PkfLlrBypV3rS6MdKpVD/fKLbTFNmuRIco8/DgcP2l52\npZR3pMed9GQKPyzLrUFuMlHy8PLZFclQg3kolTK/7gnz1omDEdSoAZGRNorZoEG2MaaUyuGuvx6u\nvdbemenXz+coPM2aQaNGMHIk3HMP5MrlTDaVyhEqV+buBht57ud4xr4fyiuv6t3RjPCkpyspvDxc\nPiwwI0E3MoMG8lA5lWM9YSJSQkQ+EJGvXK+risjdPiZrgG9FZI2I9EvlvP1EZLWIrE44H8JLL9m5\nX2++qQ0wpZSLCDz5pA1V/8knjiQ3dKj9rvnwQ9+zp7JGJtVTKgNKPdKNdiVWMnGi4dy57M5NYEpv\nIWX398A2bNwbXZ4E3cgK/tJjp1RWc7InbDIwCXja9Xo7MB34wIc0rzPG/CUiVwDfichWY8xi9x2M\nMeOAcQCFy1QxTz7pw9mUUsErLg6qVbPdV927+xyZp1UrG+jn5ZftEOikzrXkE9BTond5s81knK+n\nVEZ07sx9hWFWC5g50/5JKu+593Ql71FK3sjyNuhGVkreY6dUTuBkI6yYMeZTEXkSwBgTLyIJviRo\njPnL9fOgiMwGGgCLU9tf53sppVIVEgJPPAFvvw2HDkGJEj4ll9Qb1r69XXuwR4+UI4Ulp5PSs5Xj\n9ZTKuBtvhKvLXeDN16Bbt3Ctw33kz40spdTlnGyEnRKRotghhIjItcCxjCYmInmBEGPMCdfzFsAI\nR3KqlMqZuneHO+5w7I7NrbdC9erw4os2aU/+CdK7vNnK0XpK+Sbkf0d45M9nuX/P2/z4o51rmZyG\nNldKBSsnG2GDgXlABRFZBhQHbvchvRLAbLH/LIUB04wxX/ucS6VUzpU0BPHQIdi/367a7mNyQ4dC\nly4wY4b9qfya0/WU8kXRovTqeo7hHx1g5IjCNGt2aYQbDW3+r5SCV/hLYA2lVMY40ggTkRAgArge\nqAwIsM0YcyGjaRpjdgE1ncifUkpdZIxdryIhwYau93Fu2G23QZUq8NxzcPvtEBrqUD6VozKjnlK+\ni3j6EQZ99AZPLnyZX36B2rX/fU8Xb/5XUvAKfwyskRlSmlurvaAq2DjSCDPGJIrIO8aY2sAmJ9JU\nSqlMIQKPPAJ33mkjAnTq5FNyoaEwYoRN5qOPoGdPh/KpHKX1lJ+65hruv/VPRn5+jKFD8jD/W13v\nAS7v+UpqgCUFrwhmKTUsc3IvqApeTg5HXCAitwGzjDHGwXSVUspZXbvCCy/A8OHQsaPP3Ve33QZ1\n68Kzz9qkc+d2JpvKcVpP+aGCLz7O0Pkv8dh3o1iwwAbsyGmSN7pW7v4HgNjoIkDw9XqltV5ZSnNr\nc3IvqApeTjbC7sWOt48XkbPYoR7GGKMDlpVS/iU01DbAunaFadNsaEMfiMBLL9lRjuPGwYABzmRT\nOU7rKX9UvTr9dzzE2zfAo4/CmjU+jxIOOMmHG8ZGFwna4XfJG5PB1sBUylOONcKMMfmdSksppTJd\np07wyiuwZInPjTCAm2+G66+3HWx9+kDevKnvq2uJZY/MqKdEZA9wAkgA4o0x9Zw+R04QUb4UL79s\no4y++46h/4CcF68+pww31FD6SllO9oQhIoWBitjJzwAkX1xZKaX8QkgILFwIBZzpBBGxCzc3agSj\nR8OwYSnvp2uJZa9MqqeaG2MO+5hGjte1+AKmcIEhj97ELa3DqFAhu3OklFKZx7FGmIjcAzwEXAWs\nA64FVgA3OHUOpZRyVFIDbPduKFgQihTxKbmGDe38sJEj4e67oVSpy/fRtcSyj9ZT/k2aN2NCvduJ\nWd2Q3t0j+GFZbsIcvVWslFL+w8lR1w8B9YG9xpjmQG3gqIPpK6WU8w4fhmrV4PnnHUnulVcgPh6e\nesqR5JSzMqOeMsC3IrJGRPqltIOI9BOR1SKy+sIFjYifqtBQrvr4VcbkeoQlP+fm8UfisztHSimV\naZy8x3TWGHNWRBCR3MaYrSJS2cH0lVLKecWKwR13wDvvwAMPQMWKPiVXvjw8/DCMGgUPPgj16zuU\nT+WEzKinrjPG/CUiVwDficjW5MMbjTHjgHEARcpW0aiMabn6anpMbcGqLm/xn7cGUq264e57Amt+\nWEoLKyef45laCHqlVM7hZCPsTxEpBMzBVkT/A/Y6mL5SSmWO55+HTz+1YQ2/+spO8PLBU0/BpEkw\naBAsXepzcso5jtdTxpi/XD8PishsoAGgc6F90bkzo7e8yNb/7qbfveXIE2kDdgSK5JEOV+7+h5W7\n/8lRIeiVUulzMjpiB9fT4SKyECgIfO1U+koplWlKlrQrLg8aBHPmQIcO6R+ThgIF4MUXoW9f+O9/\n7brQKvs5XU+JSF4gxBhzwvW8BTDC95yqsGefZvajEBcHPXoYTp+0HYjJI4um18OU0j5ZwT3SYUp5\nCuYQ9EopzzgZmMP9m2S362dJ4HenzqGUUpnmwQdt99WqVT43wgB694YJE2DwYGjd2ueYH8oBmVBP\nlQBmi+3qDAOmGWP05qND8uaF+eP+omOVLfS99yZata3INS1/w07DSzmKaPJeKH+INKoh2ZVSKXFy\nOOJ87DejYEP/RgPbgGoOnkMppTJHWBgsXw6RkY4kFxoKY8dC3bowZAiMH+9Isso3jtZTxphdQE3H\ncqcuE3l1Kb4Y8yVP9P8Pr897mNqbcjFpZgFq1kw9iqh7L1SXsSvS7T1zl1KvlbfH6PwupZQnHIuO\naIypboyp4fpZETsuXuMsK6UCR1IDbM0a2LTJ5+Rq1rQ9YRMm2DWhVfbSeioAiRB2f19eW9GY2Vf2\nZ9/O09SrHc+QxxI5fzo03cPb1brykgbR5v3HU2xkJUnqSXPn7TE6v0sp5YlMW4HDGLNWRGIzK32l\nlMoU585B27Z2nthPP0F4uE/JPfssfPYZ9OsH69ZB7twO5VP5TOupANKgAe1/q0HTYf/hkU9jefX1\nGwjPU4eYFns43SP1DuzkQwE9WYPPvSct6ZjkvWnuknq+3I9RzvOmR1OpQOBYT5iIDHZ7PCoi04B9\nTqWvlFJZInduGDMG1q61i375KG9eeP992LoVhg51IH8qw7SeCnARERR59Ukm7WnO2rVQstRh1s65\nmtJFTvH0/f+wL5OuZPLetOS05yvzedujqVQgcLInLL/b83js2PuZDqYfsPLly8fJkycv296rVy/i\n4uK4/fbbvU5z+PDh5MuXj0cffdSjc+/bt4+BAwcyY8aMFPc7evQo06ZN44EHHkg1rUaNGrF8+XIW\nLVrEa6+9xhdffOFxfufMmUOlSpWoWrUqAM888wxNmzblpptu8jgNpbJMx47QpQs89xy0awcxMT4l\n17Il3HcfvP46tGkDzZo5k03lNa2ngoEItWpB255LqfTxShZuaczL77dl1NgEKpUsRuFmF/hfZyhc\n2JnTda1fhpvLl+H4cbsQ+4ULEBIC+fPbSKj58tk5oCrzZKRHUyl/52SI+uecSks5r1SpUqk2wMA2\nwt59990UG2Hx8fGEhYWxfPnyDJ9/zpw5xMXFXWyEjRihUZyVnxszBn74AXr0gBUrICLCp+Reew2+\n/x569oQNG6BgwbT3T2v4kzsdkuM5raeCy8HiV3JwYEdmtYtm58tv88HUcD7e34otH1ek6CdQu9Ip\nrqt8kGrXFqDytYW5omQIZ4+Hs/3Qcdq9uprEeOHcqTAaFC5CTEQeDuw+w19LcvNX2FW0ngt//3qQ\nA0fCOHC2IAkm9VZWKPGUyfcP5YufpEqlBOp3r0iDBlC5sq4RqJRKnZMh6j8nKW5sCowxbZ06V6Ay\nxjBgwAC+++47SpcuTa5cuS6+t2bNGgYPHszJkycpVqwYkydPJioqivHjxzNu3DjOnz/P1VdfzdSp\nU4lMI3rb7t276d69OydPnqRdu3YXt+/Zs4e4uDg2btzIpk2b6N27N+fPnycxMZGZM2cybNgwdu7c\nSa1atbj55ptp06YNw4YNo3DhwmzdupXt27df0qN3/Phx2rRpw2+//Ubz5s159913CQkJuWSfGTNm\n8MUXX9CvXz/mzZvHjz/+yAsvvMDMmTN5/vnnL/YCLliwgEcffZT4+Hjq16/Pe++9R+7cuSlXrhw9\ne/bk888/58KFC3z22Wdcc801mXR1lEqmeHGYONG2nEJ8H7mdNy989BE0bgz9+8PUqanv6+nQJn8I\nvx1ItJ4KPpv3H6fL3N1QtT68ZIjZ8D0VClxLkzzVWTRmFxO2lef0vLxuR9QDYKvblu/cnodRkvBC\niRStAKUS/6J22G+ULHWaEkUvUKhIKOGF8xHWrROJiXBi+pcc33GAw8fC2XMkPzt3l2TS3uq8/Y1N\nq1SBE7SuuY82fUpwS7dCOh9UKXUJJ4cj7sKut/KR63U34AAwx8Fz+C6lcUBxcZA0rM/b9xct8vjU\ns2fPZtu2bWzevJkDBw5QtWpV+vTpw4ULFxgwYABz586lePHiTJ8+naeffpqJEyfSsWNH+vbtC8DQ\noUP54IMPGDBgQKrneOihh7j//vu56667eOedd1Lc5/333+ehhx7ijjvu4Pz58yQkJDBy5Eg2btzI\nunXrXMVaxNq1a9m4cSPR0dGXpfHzzz+zefNmypYtS6tWrZg1a1aqwyobNWpE27ZtUxx6efbsWXr1\n6sWCBQuoVKkSd911F++99x6DBg0CoFixYqxdu5Z3332X1157jQkTJqT/QSvllLg4+wAwxufb2rGx\nMGwYDB8O118P99yT8n6eriukQ3K8Fhj1lPLIZTcrRIisGUO3WgXpHgvPPlSaxA2/8MeSPWzfeJ7D\nBxL450weErvfSWgohP+0mDN7NnHEnCakEJhiYZy/Ii8xHVu4/v5qux6p6NL60tdnz5Jw8AhbT0Sy\nYrnh20eX8emShkxYUpDCfY/T7fr93P1cGeo0zuP0R6GUCkBONsIaG2Pqub3+XERWG2MedvAcAW3x\n4sV069aN0NBQSpUqxQ033ADAtm3b2LhxIzfffDMACQkJREVFAbBx40aGDh3K0aNHOXnyJC1btkzz\nHMuWLWPmTDvFoUePHgwZMuSyfRo2bMiLL77In3/+SceOHalYsWKKaTVo0CDFBljSe+XLlwegW7du\nLF26NENz27Zt20Z0dDSVKlUCoGfPnrzzzjsXG2EdO3YEoG7dusyaNcvr9JVyxC+/2NWXZ8+GVP4m\nPDV0qF2O7MEHbQj7+vUdyqPyhNZTQSTdmxWFChHS9DrKNr2Osim9/0BToKlzGYqIILTMlVQDqlUT\n7rmnJRfWbGDhW78yZXZ+Ji5owbsL8tCsmb2ve8stjnSy51gaLVEFOicbYXlFpLxr8UpEJBrIm84x\nWS+9nitf388AYwzVqlVjxYrL72r36tWLOXPmULNmTSZPnswiD84v6dyt7969O7GxscyfP5/WrVsz\nduzYiw0qd3nzpn75kp8j6bX79rNnz6ab1/Tkdo3fCA0NJT4+3uf0lMqQQoVgzx7o0AGWLrUz8TMo\nNBSmTbOLON92mw3CWKxYxrPmydwx/efkosCop1RwECG8Xk1afFiTFsZwdP4yPlhamTf+W5y4OKhT\ndC8j38zDzXdckd05DTjJe0F1aLYKRE7eg3kYWCQii0TkR2Ah8JCD6Qe8pk2bMn36dBISEti/fz8L\nFy4EoHLlyhw6dOhiI+zChQtsci0Ue+LECaKiorhw4QL//e9/0z1H48aN+eSTTwBS3X/Xrl2UL1+e\ngQMH0q5dOzZs2ED+/Pk5ceKEx2X5+eef2b17N4mJiUyfPp3rrrsOgBIlSrBlyxYSExOZPXv2xf1T\nS79y5crs2bOH3377DYCpU6dy/fXXe5wPpbJEdDRMnw6//grdu0NCgk/JFS0KM2fCwYPQqZNdmiwj\n0gudDRrKORmtp1T2EKFQ3HU8MrI4u3bBpN6LOXLE0OLOK7ip3A5+Wex5/atsY2v6vQ0vPtL7HlTK\nHzkZHfFrEakIJEVO2GqMyeC/FsGpQ4cO/PDDD1StWpUyZcrQsKFd2DFXrlzMmDGDgQMHcuzYMeLj\n4xk0aBDVqlXj+eefJzY2luLFixMbG5tuQ+nNN9+ke/fujBo16pLAHO4+/fRTpk6dSnh4OCVLluSp\np56iSJEiNG7cmJiYGG655RbatGmT5nnq169P//79Lwbm6NChAwAjR44kLi6O4sWLU69evYtBOrp2\n7Urfvn156623LonSGBERwaRJk+jUqdPFwBz33Xefx5+pUlmmZUt46y0bVWPIEBvu0Ad168KECTb4\nYu/eNmiHt0OTPJk7pvPG/qX1lPIH4eHQa2JTug3Zw/t3fsQLq1tS7/pI+t+4iREzq6UbOVUpFRzE\nmFQDRXmWgEh94A9jzN+u13cBtwF7geHGmH98zqWHipStYv7ZuyWrTqeUyokGDIBVq+zQZB/D1gOM\nGgVPPGHniLz6qu/ZSy6pETb93obOJ54NRGRNsnldnhyj9ZTyW0eX/MrQrjt4d197SkaFMHq0XaZQ\nw9t7LqPfc80mNwNgUa9FDudI5WSe1lNODEccC5x3nbQpMBL4EDgGjHMgfaWU8h//+Q8sXGgbYImJ\nPif3+OO2c+211+CVVxzIn0qJ1lPKbxVqUp23/+zAz8viKVUKunWDdhU3s3/XmezOmlIqEznRCAt1\nu4vYBRhnjJlpjBkGXO1A+kop5T/CwiBPHjh1Clq0gClTfEpOBN54A7p2taMcX3zRoXwqd1pPKf8m\nQr1GuVi5Ekbf8h3f7YymWsVzTHtuBz4OWFJK+SlHGmEikjS37EbgB7f3nIy+qJRS/iM01Lag+vSB\ncb51poSG2sWbe/SwIeyHDUP/8XKW1lMqIISGwsNf3sy6D9ZSOWwndwyvyG2VN3Jgr+/RhpVS/sWJ\nyudj4EcROQycAZYAiMjV2KEeSikVfCIiYO5cG97w3nvh99/h+eczPJEjLAwmTYJcueCFF+DQIRgz\nxk7iVz7TekoFlMp9GrO0w3FGt/qMYT/fSrVqhnc+gM6dda5YanTdMBVofO4JM8a8CDwCTAauM/9G\n+ggBBviavlJK+a3ISNsQ69vXjiNMYXF0b4SG2k61IUNg7FgbkPHIEYfymoNpPaUCUWjhAjy2shNr\nJ66nfJXcdO0Kt7c4zoE9OlcsueTLdejSHCoQODIMwxjzUwrbtjuRtlJK+bWwMNtiKlsWbrrJ5+RC\nQmDkSKhWDe65Bxo0sEuU1fMqHqBKTuspFaiq9o5leQ94fVQ8zwzNzaIKp3l76F66Dr9Ge8Vcki/X\nkZGlOaat/P2yhpv2pqnM5ORizSoVf//9N127dqVChQrUrVuX1q1bs3171tX969at48svv/T6uGbN\nmrF69eo091m0aBFxcXEAzJs3j5EjR2Y4H6tXr2bgwIEADB8+nNe8XIfpjTfe4PTp0xdft27dmqNH\nj3qVhlIZIgJPPw2xsfb1U0/B5Mk+Tezq0cNGwT93Dho2tEMU4+Mdya1SKsCEhcGQp8NYN2ENFcP2\n0H3ENXSosJ79O05md9aCxtx1f7F5//GLr7U3TWU2nZCcyYwxdOjQgZ49e/LJJ58AsH79eg4cOECl\nSpXSPT4+Pp6wsH8vkzEGYwwhXqzqum7dOlavXk3r1q29L4AX2rZtS9u2bTOUj/j4eOrVq0c9H273\nv/HGG9x5551ERkYCZKjhqZTPzp+H5cvh5ZftCszvvgse/K2npGFD+PVXePBBG6zjiy/gnXfsQs9K\nqZynyt2NWHb7Sf4TN5dhS1tQ7ZpzvPLSEXo/WpTQ0OzOnX9JPkcsJQfPneOKArkvvq4aVeDiWmPB\ntNB9oPbypZRvuDTvgVo20J6wTLdw4ULCw8O57777Lm6rWbMmTZo0wRjDY489RkxMDNWrV2f69OmA\n7V1q0qQJbdu2pWrVquzZs4fKlStz1113ERMTwx9//MG3335Lw4YNqVOnDp06deLkSXs3bNWqVTRq\n1IiaNWvSoEEDjh07xjPPPMP06dOpVasW06dP59SpU/Tp04cGDRpQu3Zt5s6dC8CZM2fo2rUrVapU\noUOHDpw5k/K486+//pprrrmGOnXqMGvWrIvbJ0+eTP/+/QH47LPPiImJoWbNmjRt2pTz589flo/h\nw4fTo0cPGjduTI8ePS7pVQPbWG3YsCEVK1Zk/PjxFz8b93369+/P5MmTeeutt9i3bx/NmzenefPm\nAJQrV47Dhw8DMHr0aGJiYoiJieGNN94AYM+ePVSpUoW+fftSrVo1WrRokWqZlfJYrlywYIFtfK1e\nDdWrw5NPwv/+l6HkCheGadPsY/duqF/fBmTcv9/hfCulAkJowXw8uqQd66ZtIabofvo+UZTYWFj+\n/en0D84hks8RS8nm/cc5fPJcFuUoewVqL1/yfMPleQ/UskEO6wkbNAjWrXM2zVq17Bo/qdm4cSN1\nU7ltPWvWLNatW8f69es5fPgw9evXp2nTpgCsXbuWjRs3Eh0dzZ49e9ixYwdTpkzh2muv5fDhw7zw\nwgt8//335M2bl1GjRjF69GieeOIJunTpwvTp06lfvz7Hjx8nMjKSESNGsHr1at5++20AnnrqKW64\n4QYmTpzI0aNHadCgATfddBNjx44lMjKSLVu2sGHDBurUqXNZns+ePUvfvn354YcfuPrqq+nSpUuK\nZRsxYgTffPMNV155JUePHiVXrlyX5WP48OFs3ryZpUuXkidPHhYtWnRJGhs2bOCnn37i1KlT1K5d\nmzZt2qT6OQ8cOJDRo0ezcOFCihUrdsl7a9asYdKkSaxcuRJjDLGxsVx//fUULlyYHTt28PHHHzN+\n/Hg6d+7MzJkzufPOO1M9j1IeCQ2F+++HDh3gscfg9dftBK/Che0QxQxM5OjWDVq3tvE/3ngDPv7Y\nNsYeeQTKl8+EMiil/FrlbnX4sSt88gk89kgijW+OpHP51Tw7thRVbyqV3dnLVsnniKWky9gVHMhB\ngY8CtZfPPd+Qct4DtWzaE5aNli5dSrdu3QgNDaVEiRJcf/31rFq1CoAGDRoQHR19cd+yZcty7bXX\nAvDTTz+xefNmGjduTK1atZgyZQp79+5l27ZtREVFUb9+fQAKFChwyVDGJN9++y0jR46kVq1aNGvW\njLNnz/L777+zePHiiw2QGjVqUKNGjcuO3bp1K9HR0VSsWBERSbXB0rhxY3r16sX48eNJSEhI9TNo\n27YtefLkSfG9du3akSdPHooVK0bz5s35+eefU00nLUuXLqVDhw7kzZuXfPny0bFjR5YsWQJAdHQ0\ntWrVAqBu3brs2bMnQ+dQKkUlS9oFwPbuhQoV7LaOHeGOO2DJEq/njBUsCK+8Alu2wJ13wvjxULGi\nTXLePLhwIRPKoJTyWyL2Bs3WlccYWvcrvtxVmZibS9K94s+smbknu7OnlEpDjuoJS6vHKrNUq1aN\nGTNmeH1c3rx5U31tjOHmm2/m448/vmSfX3/91aO0jTHMnDmTypUre50vT73//vusXLmS+fPnU7du\nXdasWZPifsnL6U6S9RaICGFhYSQmJl7cdvasbwtY5s7971jw0NBQHY6oMkdUlP2ZmGijKE6aZMcX\nli4N7dtDz55eTfSqUME2wJ57Dt5808YAmT0biheHdu2gTRu48UbInz9ziqOU8i/5Shfm+dW38NC6\nP3m9z3LG/NKYj2/PR2z1U9w3OC/t20OhQtmdS6WUO7/uCRORViKyTUR+E5Ensjs/GXHDDTdw7tw5\nxo0bd3Hbhg0bWLJkCU2aNGH69OkkJCRw6NAhFi9eTIMGDdJN89prr2XZsmX89ttvAJw6dYrt27dT\nuXJl9u/ff7E37cSJE8THx5M/f35OnDhx8fiWLVsyZswYkpbK+eWXXwBo2rQp06ZNA+wwyg0bNlx2\n7muuuYY9e/awc+dOgMsagkl27txJbGwsI0aMoHjx4vzxxx+X5SM9c+fO5ezZsxw5coRFixZRv359\nypYty+bNmzl37hxHjx5lwYIFF/dPLf0mTZowZ84cTp8+zalTp5g9ezZNmjTxOB9KOSYkxN4N2rcP\npkyBOnVsa2rePPv+yZMwdCh89hls2wZp9CIDlCoFo0bBn3/C559D8+bw6ad2FGTRoja8/dpPyrF3\nZTE2b7aRFpWzgqGeUsGjWK2reHltS/7afpo3Oy3l6PlIeveGK4rGExe1mvd6LGfTV79jEjMeuVUp\n5Qy/7QkTkVDgHeBm4E9glYjMM8Zszt6ceUdEmD17NoMGDWLUqFFERERQrlw53njjDa677jpWrFhB\nzZo1ERFeeeUVSpYsydatW9NMs3jx4kyePJlu3bpxzvVf1QsvvEClSpWYPn06AwYM4MyZM+TJk4fv\nv/+e5s2bXxx++OSTTzJs2DAGDRpEjRo1SExMJDo6mi+++IL777+f3r17U6VKFapUqZLiXLaIiAjG\njRtHmzZtiIyMpEmTJik2fB577DF27NiBMYYbb7yRmjVrUqZMmUvykZ4aNWrQvHlzDh8+zLBhwyhV\nyo5x79y5MzExMURHR1O7du2L+/fr149WrVpRqlQpFi5ceHF7nTp16NWr18UG7j333EPt2rV16KHK\nPnnzwl132cfJk5DUo7thg10kLKnxFRFhJ3yNGgVxcXDggA2RWLjwJY/wEiWIi4sgro3hQrywbBl8\n/TX89BP8suIKflsURbVJtg1YrpwN1njVVXa0ZFSUfRQubHvO8ueHAgXsz8jIDE1fyzGCpZ5Swadg\nxSsY+OkVDDDw888wY9BPzFhVhvkflYGPoKj8Q82og1TteA1VqkCZE5soUSqUktcUonilwuTOnwsJ\n0T9+pTKTGB/WsclMItIQGG6Mael6/SSAMebl1I4pUraK+WfvlizKoVJKZYKzZ+2krw0b7GP3bhg8\nGK67DubPt42x5GbMgNtug2++sWMRIyIgd26IiGDfGWFgw2f5s0Qzcm85SqFf9rM7IZoDiSU4nFiU\nRFKPay0kEkY8Eg4mPIRwLpD/3HFCSSBMLhBGAoLheIHCnMEYxJwAACAASURBVMsdQe4LZyly7BAh\nArlCBcEgYpArr6T7vfl55BHfPx4RWWOM8Yulq7WeUoHEJBp2fbeTxdP+ZOlyYdOpaDafLENKA1RC\nSCAy7DyRRfIQGQnhB/4gJOECgiFEDCEYQvJFElL6SkJCQH7bjsRfANwabvnzQWlXcIzt2y9f6DCb\n3z8amptd3XpS4/xG3p4eQ0IihIZA3lxhHL0ujvdubczm/cd5/5XnL/t8fqrQlJ/73wrAwIcf8/v3\n3csGsKB0Iybfdj1Vowr4Rf5Sez/p80/KN8Cp8/F8f1UjNj/SAYAHH3rskrIlf9/T84eKcO2pJZft\nmxGe1lN+2xMGXAn84fb6TyA2+U4i0g/oB1C4lIYIU0oFuIgIqF3bPpK76SbYs8eGu3d/JEUyLVcO\nhgyx4w7PnoWzZzm7/xhX1wwjtOxhypbaTrv4jxBjEGNITIRj8QWZWa8HuwpXosjv+6m1chmnEyM5\nlRjJ6YS8xBPK1rI1OZK/OPmPHqXMnt+IN2EkmFASCMUAfxUTTuQtSOTpE0Sd+5vQ0BDy5grHIBjA\nFL+CAmlHiw5UWk+pgCEhQoWWV1Oh5dX0dm0zxo6O/uvbTfy94wQHfj/HoQOJnD4jnM5bjNPRMZw+\nDfHL95F4Pp5EIyQm2r/rxIJFSCxjp7omHjgN55NFBioQBle4nu87fXnkoGx+P08E/B4OuDaHhkB4\n6L+zdNrVujL5RxiwkpetZMGIdEP4+4OqUQUuyTfYcuTL/W/zJXnZkr/vz/y5J+x2oJUx5h7X6x5A\nrDGmf2rH1KtXz6xevTqrsqiUUiqL+VlPmNZTSgWwZpObAbCo16JszYcKLp7WU/4cmOMvoLTb66tc\n25RSSil/oPWUUkqpDPHnRtgqoKKIRItILqArMC+b86SUUkol0XpKKaVUhvjtoEljTLyI9Ae+AUKB\nicaYTdmcLaWUUgrQekoppVTG+W0jDMAY8yXwZXbnQymllEqJ1lNKKaUywp+HIyqllFJKKaVU0NFG\nmFJKKaWUUkplIW2EKaWUUkoppVQW8tt1wjJCRI4BOzJwaEHgmEP7pbdPau97s70YcDidfGQFTz+3\nzE7Pm+N8vYbevpfa/v5wDXPi9Uvrff0bzPxr6MT1K2uMKe5pxvxNGvWUJ98fqb1235703NffUV+u\nlbdlSe+5L2XJynIkf53S9QmUsmTmNUkrn568709l0d+v1LcH4jVJ7T1vy+JZPWWMCZoHMC4zj/Nk\nv/T2Se19b7YDq7P7s/bl886u6+fENfT2vTSua7Zfw5x4/dK5Jvo3GADfoYH+8PL3bJwnr923u23z\n6XfUl2vlbVnSe+5LWbKyHGnk331bQJQlM6+JJ2Xxta7V3y//Lou/XhMny+LJI9iGI36eycd5sl96\n+6T2vrfb/YHTecvs6+fpvmnt4+17ev2cPU7/Bi8VaNfQiesX6Lz5PUu+LbXXn6exT0b5cq28LYsn\nzzMqK8uR/HVK18cXwXJNPEnH17pWf7+8Fyy/X5nxf15GypKuoBqOmFOIyGpjTL3szofKOL2GgU2v\nn/J3wfQ7qmXxP8FSDtCy+KNgKUd6gq0nLKcYl90ZUD7TaxjY9PopfxdMv6NaFv8TLOUALYs/CpZy\npEl7wpRSSimllFIqC2lPmFJKKaWUUkplIW2EKaWUUkoppVQW0kaYUkoppZRSSmUhbYQppZRSSiml\nVBbSRlgQEpG8IrJaROKyOy/KOyJSRUTeF5EZInJ/dudHeU9E2ovIeBGZLiItsjs/SqUkWOqJYPnO\nDKbvDREpLyIfiMiM7M5LRrj+Nqa4rscd2Z2fjAr06+AumP4+3GkjzI+IyEQROSgiG5NtbyUi20Tk\nNxF5woOkhgCfZk4uVWqcuH7GmC3GmPuAzkDjzMyvupxD13COMaYvcB/QJTPzq3KeYKonguU7M5i+\nNxwqyy5jzN2Zm1PveFmujsAM1/Vom+WZTYM35fDH6+DOy7L4xd+H0zREvR8RkabASeBDY0yMa1so\nsB24GfgTWAV0A0KBl5Ml0QeoCRQFIoDDxpgvsib3yonrZ4w5KCJtgfuBqcaYaVmVf+XcNXQd9zrw\nX2PM2izKvsoBgqmeCJbvzGD63nC4LDOMMbdnVd7T4mW52gFfGWPWicg0Y0z3bMr2ZbwphzFms+t9\nv7kO7jJYlqCqV8OyOwPqX8aYxSJSLtnmBsBvxphdACLyCdDOGPMycNkwEhFpBuQFqgJnRORLY0xi\nZuZbWU5cP1c684B5IjIf0EZYFnLob1CAkdhKPCgqCuU/gqmeCJbvzGD63nDqmvgbb8qF/ef/KmAd\nfjZizMtybM7a3HnHm7KIyBb84O/DadoI839XAn+4vf4TiE1tZ2PM0wAi0gt7h1MbYNnLq+vn+ueo\nI5Ab+DJTc6Y85dU1BAYANwEFReRqY8z7mZk5pQiueiJYvjOD6XvD22tSFHgRqC0iT7oaa/4otXK9\nBbwtIm2Az7MjY15KsRwBdB3cpXZN/PnvI8O0ERakjDGTszsPynvGmEXAomzOhvKBMeYtbCWulF8L\nhnoiWL4zg+l7wxhzBDt3JyAZY04BvbM7H74K9OvgLpj+Ptz5VTerStFfQGm311e5tqnAoNcv8Ok1\nVP4umH5Hg6UswVIOCK6yuAuWcgVLOSC4ypIubYT5v1VARRGJFpFcQFdgXjbnSXlOr1/g02uo/F0w\n/Y4GS1mCpRwQXGVxFyzlCpZyQHCVJV3aCPMjIvIxsAKoLCJ/isjdxph4oD/wDbAF+NQYsyk786lS\nptcv8Ok1VP4umH5Hg6UswVIOCK6yuAuWcgVLOSC4ypJRGqJeKaWUUkoppbKQ9oQppZRSSimlVBbS\nRphSSimllFJKZSFthCmllFJKKaVUFtJGmFJKKaWUUkplIW2EKaWUUkoppVQW0kaYUkoppZRSSmUh\nbYSpgCci7UXEiMg12Z2X1IjIU9mdB6eIyH0icpcX+5cTkY1e7C8i8oOIFEhjn09EpKKnaSqlVHYL\nxrpKRBaJSL3MPIeXabcVkSe8POakl/vPEJHyabz/mojc4E2aKmfSRpgKBt2Apa6fmUpEwjJ4aFA0\nwkQkzBjzvjHmw0w8TWtgvTHmeBr7vAc8nol5UEopp2ldlYnncNVP84wxIzMjfdc5qgGhxphdaew2\nBvCqIahyJm2EqYAmIvmA64C7ga5u25uJyGIRmS8i20TkfREJcb13UkT+IyKbRGSBiBR3be8rIqtE\nZL2IzBSRSNf2ya7jVwKviEheEZkoIj+LyC8i0s61Xy8RmSUiX4vIDhF5xbV9JJBHRNaJyH9TKEM3\nEflVRDaKyCi37anls4LrHGtEZEnSXVVXPt8SkeUisktEbk/hXOVEZKuI/FdEtrju6CWVs66I/OhK\n9xsRiXJtXyQib4jIauAhERkuIo+63qslIj+JyAYRmS0ihd3SWi8i64EH3c5fzfW5rXMdk1Jv1h3A\nXNf+eV3XcL3r8+ni2mcJcJMP/2gopVSWCfS6SkRCXelvdNVXD7u93cl1ju0i0sTtHG+7Hf+Fq6zp\n1YcZqffcy3zxvK767gdXXbNARMq4tkeLyApXOV5wO3eU61qsc5WzSQqX0r1+SvEzMcbsBYqKSMk0\nfymUMsboQx8B+8B+IX7ger4cqOt63gw4C5QHQoHvgNtd7xngDtfzZ4C3Xc+LuqX7AjDA9Xwy8AX2\n7hfAS8CdrueFgO1AXqAXsAsoCEQAe4HSrv1OppL/UsDvQHEgDPgBaJ9OPhcAFV3PY4Ef3PL5Gfbm\nSlXgtxTOV86VbmPX64nAo0C46/Mr7treBZjoer4IeNctjeHAo67nG4DrXc9HAG+4bW/qev4qsNH1\nfIxbmXIBeVLI414gv+v5bcB4t/cKuj3/Lul660Mf+tCHPz+CoK6qC3zn9rqQ6+ci4HXX89bA967n\nvZLy63r9BdAsrXOkU+a06j33MvdyO+ZzoKfreR9gjuv5POAu1/MHk/IDPAI87XoemlQPJcvfj0D1\ntD4T1/PxwG3Z/XunD/9+aE+YCnTdgE9czz/h0mEePxtjdhljEoCPsXchARKB6a7nH7ltj3HdYfsV\nW2FWc0vrM1c6AC2AJ0RkHbYCigDKuN5bYIw5Zow5C2wGyqaT//rAImPMIWNMPPBfoGlq+XTdTW0E\nfOY6/1ggyi29OcaYRGPMZqBEKuf8wxizLFn5KwMxwHeudIcCV7kdM51kRKQgttL50bVpCtBURAq5\nti92bZ/qdtgK4CkRGQKUNcacSSF/RYwxJ1zPfwVuFpFRItLEGHPMbb+D2EasUkr5u0Cvq3YB5UVk\njIi0AtyHi89y/VyDvdHni4zUe+5ldtcQmOZ6PpV/P7/G2M85aXuSVUBvERmObWid4HJRwCHX87Q+\nE62fVLp0KI8KWCJSBLgBqC4iBnvnyojIY65dTLJDkr9Ovn0ythdqvYj0wt6hTHLK/dTYO1zbkuUn\nFjjntikBZ//GDLaX66gxplYq+7ifX9JIJ/lrATYZYxqmcsypVLZ7xRgzzTVspA3wpYjca4z5Idlu\n8SIS4mpMbheROtg7rC+IyAJjzAjXfhFASo04pZTyG8FQVxlj/iciNYGWwH1AZ2zvEm5puacTz6VT\nXiLSSj+tU5N+vZeR+umyz9gYs1hEmmLrp8kiMtpcPv/5DK6ypPOZaP2k0qU9YSqQ3Q5MNcaUNcaU\nM8aUBnYDSeO4G7jGfodgh9ctdW0PcR0L0N1te35gv4iEY+8upuYbYICICICI1PYgrxdc6Sb3M3C9\niBQTkVDs3dGknqXL8mlssIrdItLJdW5xVQLeKCMiSY2tpPJvA4onbReRcLETkFPl6pX6n9u4+R7A\nj8aYo8BREUm663jxsxQbUWqXMeYt7Lj6GikkvQ07NAcRKQWcNsZ8hB3WWMdtv0qAx1EXlVIqmwR8\nXSUixYAQY8xM7EiJOpcdeak9QC0RCRGR0kCD9M7h4mS9t5x/59/dgZ1LDLAs2XZc6ZYFDhhjxgMT\nSLmMW4CrXfun9Zlo/aTSpY0wFci6AbOTbZvJv8M8VgFvY780d7vtewpb6W3E3p1M6lkZBqzEfkFv\nTeO8z2PnUG0QkU2u1+kZ59r/konIxpj92ChKC4H1wBpjzNx08nkHcLfYoBebgHYenN/dNuBBEdkC\nFAbeM8acx1Z8o1zprsMO/0hPT+BVEdkA1HLLY2/gHdfQEfceuc7ARtf2GCClKIvz+ffObnXgZ9f+\nz2LnPyAiJYAzxpi/PSuyUkplm4Cvq4ArgUWu7+KPgCfTSWeZqyybgbeAtR6cA5yt9wZghxduwN4k\nfMi1/SFsHfirq1xJmgHrReQXbGP4zRTSdK+fUvxMXA3Mq4HVHuRR5WBiTGq93koFLhFphg0eEZfC\neyeNMfn+z959h0dVbQ0c/i16aEoTAQUC0lvoIiBdERAEC0WaKIgKivphV7hcvYLtYkVAEFCBCNJU\nUIpEQJF6aUaRiyKKqBSRXgLr+2NPuCGkzjlJJsl6n2eeZM6cWWdPCNmzZu+9dvq3KnXSop0iUh74\nRFVr+hnXT+KqMk5T1XZJnPMgcFhVJ6Vfy4wxxl9Zoa/yU6i/ZhEJw31o2jSRdWiISFegnqo+na6N\nM5mOjYQZY0JKYHRwoiSxWTNwCFcIxBhjjEkXgWJSI7hwBC2+XMDL6dMik5nZSJgxxhhjjDHGpCMb\nCTPGGGOMMcaYdGRJmDHGGGOMMcakI0vCjDHGGGOMMSYdWRJmjDHGGGOMMenIkjBjjDHGGGOMSUeW\nhBljjDHGGGNMOrIkzBhjjDHGGGPSkSVhxhhjjDHGGJOOLAkzxhhjjDHGmHRkSZgxxhhjjDHGpCNL\nwoxJAyJyVEQqZHQ7jDHGmIRYP2VMxrIkzGRrIqIicpXHGFEiclfcY6paUFV/9NY6/4hIeRFZLiLH\nReR7EWmbxLm3icjXgXOjEng8QkQ2BB7fICIRcR4TERkjIgcCtzEiImn9XK8Cvwd/ikiuOMdyB46p\nX9cxxpjUsn4qwXOtn8L6qczOkjBjkhD3j10mNwP4D1AMeBKYLSIlEjn3IDAWGB3/ARHJA8wH3geK\nAFOB+YHjAIOAm4A6QG3gRuDudHiuH/4Cbohz/4bAMWOMCVnWT13I+imTaaiq3ezm6w24EpgD7AMO\nAG8EjucAngJ+Bv4EpgGXBB4rDyjQD9gN7AeejBMzJ/AEsBM4AmwArgw8VhVYgvujvB24Lc7zpgBv\nAp8GnrcGqBh4bEXgmseAo0B3oCXwK/Ao8DvwHu6P6SeB1/NX4PsrAjGeA84CJwMxYl+rAlcFvr8k\n8Fr3BV77U0COwGP9gVXAS4HYPwE3+PzvURk4BRSKc2wlMDiZ590FRMU7dh2wB5A4x3YD7QPffw0M\nivPYncA3af3cBNoeBTwbiHkU+BjXsX8AHAbWAeXjnK+Bf5dZcY7Nxr0R0Iz+P2U3u9nN3xvWT8X+\n3bN+yvopu2XQzUbCjK9EJCfuj//PuA6rDDAz8HD/wK0VUAEoCLwRL0QzoArQBnhGRKoFjj8E9AQ6\nAIWBAcBxESmA69imA5cBPYC3RKR6nJg9gH/gOqn/4jokVPXawON11E3LiAzcvxwoCpTDfeqVA3g3\ncL8scCK23ar6JK6jGBKIMSSBH8vruA6uAtAC6AvcEefxxrhOuTjwAjAp7vSGuETkExE5lMjtk4Se\nA9QAflTVI3GObQ4cT60awBYN/PUP2BInVo1A7ISuk5bPTUgPoA/ud7AisBr371gU+A4YEe/8ecC1\nInKpiBQBmuM+1TTGZCHWT1k/hfVTJgRYEmb81ggoDQxX1WOqelJVVwUeux14RVV/VNWjwONAj3hT\nKf6hqidUdTPuj1udwPG7gKdUdbs6m1X1ANAJ2KWq76pqjKr+B/gIuDVOzLmqulZVY3CfMCU3R/sc\nMEJVTwXackBVP1LV44EO4jlcJ5WsQGffA3hcVY+o6i7gZdwf3Vg/q+pEVT2Lm75QCiiZUDxV7aSq\nlyZy65RIMwoCf8c79jdQKCWvIZWx4j/+N1Aw0Fmn5XMT8q6q7lTVv4FFwE5VXRr4PZgF1I13/knc\nJ5HdA7cFgWPGmKzF+qk4rJ+yfspkjKwyj9iEjitxf6xjEnisNO6Tx1g/434H4/4h/z3O98dxf9Ri\n4+5MIGY5oLGIHIpzLBduekZyMROzT1XP/1ETkfzAv4H2uE8pAQqJSM5Ah5SU4kBuLn7dZRJqn6oe\nD3y4mFwbU+Mo7lPZuArjpr34HSv+44WBo6qqIpKWz03IH3G+P5HA/YR+xtOA5wHBTfUxxmQ91k9d\nyPop66dMBrCRMOO3X4CyiSwU/g3XGcUqC8Rw4R+dpOJWTOT4l/E+aSuoqvektuFxxK8y9DBu6klj\nVS0MxE4PkUTOj2s/cIaLX/eeYBomIovElRVO6LYokad9C1QQkbifxtUJHE+tb4Ha8aah1I4T61v+\n96lw/Ouk5XP9spL/fcK7KplzjTGZk/VTF7J+yvopkwEsCTN+WwvsBUaLSAERySciTQOPzQAeFJFw\nESkI/AuITOTTyPjeAf4pIpXEqS0ixXDz+iuLSJ9AqdbcItIwzhz95PyBmwOflEK4T6QOiUhRLp6j\nnWiMwCeQHwLPiUghESmHWzfwfgrbFz/eDYHOO6HbDYk85wdgEzAi8O/RFdcxfJTQ+SKSU0Ty4T6p\nzRF4Tu7Aw1G4Bd73i0heEYldW/BF4Os04CERKSMipXFvDKakw3N9oaqKq3bVOfC9MSbrsX4qDuun\nrJ8yGcOSMOOrwB/zG4GrcFWBfsXNWwaYjJt+sQJXXekkMDSFoV/BdRKLcVWDJgFhgbnv1+Hms/+G\nmzIxBsibwrgjganiFgzflsg5Y4Ew3KeF3wCfxXv8VeAWEflLRF5L4PlDcZWtfsR9ajUd97NITz2A\nBrjKVqOBW1R1H4CI3C4icT+p64PrzMfhFv2eACYCqOppXHnevsAh3MLzmwLHAcbj5qtvBbbhqn2N\nT4fn+kZVv1VVvz+5NMaECOunrJ/C+ikTAsSSaGOMMcYYY4xJPxk+EiYiV4rbIT1aRL4VkQcCx4uK\nyBIR2RH4WiS5WMYYY4wxxhgT6jJ8JExESgGlVHVjYEHmBtxwbn/goKqOFpHHgCKqalVgjDHGGGOM\nMZlahidh8YnIfNwGg28ALVV1byBRi1LVKkk9t3jx4lq+fPl0aKUxxpiMsGHDhv2qWiKj2xEs66dM\nRtl+YDsAVYol+VbKGONRSvupkNonTETK4zamWwOUVNW9gYd+J5FNAeMqX74869evT7P2GWOMyVgi\n8nPyZ/l+zXy4Qg15cf3mbFUdISJTcBvixm7Q2l9VNyUVy/opk1FaTmkJQFT/qAxthzFZXUr7qZBJ\nwgKlYD8Chqnq4bjbLAQ2wUtwyE5EBgGDAMqWLZseTTXGGJO9nAJaq+rRQBnsVXH2OxquqrMzsG3G\nGGMyoQwvzAEQ6NQ+Aj5Q1TmBw38EpiHGrhv7M6HnquoEVW2gqg1KlMi0M1SMMcaEKHWOBu7mDtxC\nay6/McaYTCXDk7DAzuKTgO9U9ZU4Dy0A+gW+7wfMT++2GWOMMXB+c9hNuA8El6jqmsBDz4nIFhH5\nt4gkuO+TiAwSkfUisn7fvn3p1mZjjDGhK8OTMKApbtO91iKyKXDrgNuor52I7ADaBu4bY4wx6U5V\nz6pqBHAF0EhEagKPA1WBhkBRIMEKvjZjwxhjTHwZviZMVVcBksjDbdKzLcYYY0xSVPWQiCwH2qvq\nS4HDp0TkXeD/MrBpxhhjMpFQGAkzxhhjQpaIlBCRSwPfhwHtgO/jrFsW3P6W2zKulcYYYzKTDB8J\nMybLOX4cfv4Z9u2DI0cgRw6oVAmuuiqjW2aMCU4pYKqI5MR9ePmhqn4iIl+ISAncbI5NwODkAv24\n7xjdx68+f79LRBl6NbbKvsYYk91YEmaMVz//DKpQvjxs2wa1a7v7cb3yCjz4IOzeDR06wNVXQ8eO\ncP31kD9/kuEPHIA//oBDhyAmBsLC4NJLoVw5yJMn7V6WMcZR1S24PSzjH2+d2lgnzpw9/3303sMA\nloQZY0w2ZNMRjQnG/v3w+utwzTUu+Ro71h2vWBFGjoQPPoAlS2DNGli9Gm6/3T1+7JjLnj76CLp1\ngxIl4K67XCIHnDkDS5fCU09Bq1ZQvLi71agBTZtCixbQqBFUruySsauugn794N134eDBDPlJGGNS\nISx3TiLvbkLk3U2oXqpwRjfHGJPBChYsmODx/v37M3t2cFsQjhw5kpdeeinZ82Kv/dtvv3HLLbck\net6hQ4d46623kox1zTXXABAVFUWnTp1S0VqYN28e0dHR5+8/88wzLF26NFUxMiMbCTMmNVThgQdg\n4kQ4edKNeo0eDbF/vMLC4JlnEn9+tWrw6aduSOvLL2HmTHT6DL5oPpIZK2HuXOXgQSFnTqhXD26+\nGapUgTJl3OhXrlxw6pSb6fjTT7BlCyxaBNOmQe7c0L69a17r1iCJlbsxxhhjjAkoXbp0kglfbBJ2\n7733XvRYTEwMuXLl4uuvvw76+vPmzaNTp05Ur14dgFGjRgUdKzOxkTBjUuLPwF7hIi4L6tPHZUCb\nN8Ojj7oRsNTIlYvjTdowvsFEalx5mLb9r+DDD6FDwZXMv/EdDv12nLVrYfx4eOgh6N7dzVxs08bN\nZuzXzw24zZnjpiquX++Sr7VroW1baNDADcQZY4wxJvSpKkOGDKFKlSq0bduWP2PfdwAbNmygRYsW\n1K9fn+uvv569e/cCMHHiRBo2bEidOnW4+eabOX78eJLX+Omnn2jSpAm1atXiqaeeOn98165d1KxZ\nE4Bvv/2WRo0aERERQe3atdmxYwePPfYYO3fuJCIiguHDhxMVFUXz5s3p3Lnz+cQp7oje4cOH6dix\nI1WqVGHw4MGcO3fuonNmz55N//79+frrr1mwYAHDhw8nIiKCnTt3XjAKuGzZMurWrUutWrUYMGAA\np06dAqB8+fKMGDGCevXqUatWLb7//vugf/YZxZIwY5Jy4AAMHQpXXgnr1rljb78NEyZArVpBhTx1\nCl57DcLDYfBgCCuQg6lT4c+9Z3mv40w6fzyQgk3rQAo/VRKB+vXhxRfdrMZ33nHrx667Drp0OT/T\n0RhjjDFJadny4lvcaX2pfTwV5s6dy/bt24mOjmbatGnnR5bOnDnD0KFDmT17Nhs2bGDAgAE8+eST\nAHTr1o1169axefNmqlWrxqRJk5K8xgMPPMA999zD1q1bKVWqVILnvP322zzwwANs2rSJ9evXc8UV\nVzB69GgqVqzIpk2bePHFFwHYuHEjr776Kj/88MNFMdauXcvrr79OdHQ0O3fuZM6cOYm26ZprrqFz\n5868+OKLbNq0iYpxPtQ+efIk/fv3JzIykq1btxITE8O4cePOP168eHE2btzIPffck6Lpl6HGkjBj\nEqIK770HVavCuHFwxx0uEYOg5/mpwvTpbj3XAw9A9epuRuL69dC3L+QrkBPeeguWL3fTFVu0cOvO\n4hf5SELevHDnnRAdDWPGwBdfuBmT06alKowxxhhj0tGKFSvo2bMnOXPmpHTp0rRu7er+bN++nW3b\nttGuXTsiIiJ49tln+fXXXwHYtm0bzZs3p1atWnzwwQd8++23SV7jq6++omfPngD06dMnwXOaNGnC\nv/71L8aMGcPPP/9MWFhYguc1atSI8PDwRB+rUKECOXPmpGfPnqxatSpFP4P4tm/fTnh4OJUrVwag\nX79+rFix4vzj3bp1A6B+/frs2rUrqGtkJFsTZkx8Z8+6yoWff+6qGI4f7zIZD777Du67z+VX9eq5\n0aq2bRPJ51q2hE2b3JTHp55yC8NKl07V9fLmhUcegVtvdQlev36wbJl7KfnyeXopxhhjTNYUFZW2\njwdBValRowarV6++6LH+/fszb9486tSpw5QpU4hKwfUlmQ+Se/XqRePGjfn000/p0KED48ePp0KF\nChedV6BAgRRfI/Z+3OMnT55Mtq3JyZs3LwA5c+Yk5P36MQAAIABJREFUJibGc7z0ZiNhxsSXM6db\nfPXWW/DVV54SsJgY+Oc/oU4d+M9/3KDa2rXQrl0yA2qXXALz5rnqirEJ2OnTqb5+eLjrE0aMcKNh\nrVrB778H9VKMMcYYk0auvfZaIiMjOXv2LHv37mX58uUAVKlShX379p1Pws6cOXN+xOvIkSOUKlWK\nM2fO8MEHHyR7jaZNmzJz5kyARM//8ccfqVChAvfffz9dunRhy5YtFCpUiCNHjqT4taxdu5affvqJ\nc+fOERkZSbNmzQAoWbIk3333HefOnWPu3Lnnz08sfpUqVdi1axf//e9/AXjvvfdo0aJFitsR6iwJ\nMwbg77/dkNFnn7n7w4fDPfe4jZaD9MMP0KyZK5Z4882wfbtbA5YzZwoD5MjhpkOCm3PeurXb/DmV\ncuZ0RTxmz3a1RJo2dZUVjTHGGBMaunbtSqVKlahevTp9+/alSZMmAOTJk4fZs2fz6KOPUqdOHSIi\nIs6vF/vnP/9J48aNadq0KVVj3y8k4dVXX+XNN9+kVq1a7NmzJ8FzPvzwQ2rWrElERATbtm2jb9++\nFCtWjKZNm1KzZk2GDx+e7HUaNmzIkCFDqFatGuHh4XTt2hWA0aNH06lTJ6655poL1qT16NGDF198\nkbp167Jz587zx/Ply8e7777LrbfeSq1atciRIweDBw9O9vqZhWgWWijSoEEDXb9+fUY3w2Q227bB\nTTfBrl3w8stuwZYHqq5ux0MPuWmB48a56oaezJoFPXtC8+awcKErhR+EdetcGfuwMLcfWQr+ZhsT\nUkRkg6o2yOh2BKtouWp68OfvAOg+3n2yHXl3k4xskskmWk5pCUBU/6gMbYcxWV1K+ykbCTPZ24cf\nQuPGbhPlqCjPCdixY9C7txvxatoUtm71IQEDt7hr2jRXyaNbt6CmJgI0bOheZkyMm5r4448+tM0Y\nY4wxxqSKJWEm+1q82GVIERGwYYObO+jB9u0un5s5E557zs1sLFPGp7YC9OrlKmt89hnce2/Q5Q5r\n1XJVE0+fdmvTAtuNGGOMMcaYdGLVEU321bYtvPkm3HUX5MnjKdSCBW4ELG9eV1SxbVuf2hjfwIHw\nyy9QqJCnMNWrw6JFbpnZDTfAqlUQZw9FY4wxxhiThiwJM9nLH3/AoEFu/62yZd2IkgeqMHYsPPyw\n2zB5zpz/bSeWZkaNAmD6mt18vOFnzuVM/L9xl4gy9GpcNsHHGjWCIc/9yQsPlqBqs7+45u7tSAJj\n40nFMMYYY4wxqefbdEQRuVEkobdwxoSI775z+34tXepKF3p05ozL4R56yC3T+vLLdEjA4vhv5AJG\nP92D4gcSnk8Yvfcw8zclXP0o1k/5dlLyuu/Zs7ko2z65uPEpiWFMZmH9lDHGmFDh50hYd2CsiHwE\nTFbV732MbYw3K1dC585uvuCXX0IDb8XV/v4bbrvNLSt77DG3BsxDNfug7C9SkhLH/+bN+WPc64s3\npTK28lpymt90iMJXwKRJV/DivVfQseOFMaL3Hk42lo2WmUzC+iljjDEhwbe3jaraG6gL7ASmiMhq\nERkkIt4Wrxjj1YoVcP31ULIkfPON5wRs71649lpX3GLSJHj++fRPwAD+uOwKxvV70u3+/NRTCZ4T\nm0AldoveexgReOMNV5+kb1+35CxWl4gyVC9VOMl22GiZySysnzLGhJrff/+dHj16ULFiRerXr0+H\nDh34wYfZOim1adMmFi5cmOrntWzZkuS2hYqKiqJTp04ALFiwgNGjRwfdjvXr13P//fcDMHLkSF56\n6aVUtXfs2LEcP378/P0OHTpw6NChVMXwm69rwlT1sIjMBsKAYUBXYLiIvKaqr/t5LWNSrFo1Nwr2\n2mtw2WWeQv34o6so+Mcfbruudu18amOQ1tZt6Yp1vPSSe41xKjx2iUi+NGP1UoXpElGGfPlctf56\n9dx2ZFFRkCsX9GpcNtkRrpSOuBkTCqyfMsaEClWla9eu9OvXj5kzZwKwefNm/vjjDypXrpzs82Ni\nYsiV639v5VUVVSVHKj4Z3rRpE+vXr6dDhw6pfwGp0LlzZzp37hxUO2JiYmjQoAENPHyIPnbsWHr3\n7k3+/PkBgko8/ebnmrAuIjIXiAJyA41U9QagDvCwX9cxJsWWLnV12EuUcHXjPSZgW7a4vb8OHXKj\nYBmdgJ338stQvjy8//4Fh3s1Lkvk3U2SvcUmWZUquQr4X33lcjpjshrrp4wxoWT58uXkzp2bwYMH\nnz9Wp04dmjdvjqoyfPhwatasSa1atYiMjATc6FLz5s3p3Lkz1atXZ9euXVSpUoW+fftSs2ZNfvnl\nFxYvXkyTJk2oV68et956K0ePHgVg3bp1XHPNNdSpU4dGjRrx999/88wzzxAZGUlERASRkZEcO3aM\nAQMG0KhRI+rWrcv8+fMBOHHiBD169KBatWp07dqVEydOJPiaPvvsM6pWrUq9evWYM2fO+eNTpkxh\nyJAhAMyaNYuaNWtSp04drr32Wk6fPn1RO0aOHEmfPn1o2rQpffr0uWBUDVyy2qRJEypVqsTEiRPP\n/2zinjNkyBCmTJnCa6+9xm+//UarVq1o1aoVAOXLl2f//v0AvPLKK9SsWZOaNWsyduxYAHbt2kW1\natUYOHAgNWrU4Lrrrkv0NQfLz5GwbsC/VXVF3IOqelxE7vTxOsYkb9w4VzXjX/+Cxx/3HO6rr6Bj\nR1fGfdUqN7gWMgoVco0qVcpzqJ49XYXHESPgxhuhRg0f2mdM6AiqnxKRfMAKIC+u35ytqiNEJByY\nCRQDNgB9VDW4ndSNMRlq2DDYtMnfmBERroJyYrZt20b9+vUTfGzOnDls2rSJzZs3s3//fho2bMi1\n114LwMaNG9m2bRvh4eHs2rWLHTt2MHXqVK6++mr279/Ps88+y9KlSylQoABjxozhlVde4bHHHqN7\n9+5ERkbSsGFDDh8+TP78+Rk1ahTr16/njTfeAOCJJ56gdevWTJ48mUOHDtGoUSPatm3L+PHjyZ8/\nP9999x1btmyhXr16F7X55MmTDBw4kC+++IKrrrqK7t27J/jaRo0axeeff06ZMmU4dOgQefLkuagd\nI0eOJDo6mlWrVhEWFkZUVNQFMbZs2cI333zDsWPHqFu3Lh3jLmiP5/777+eVV15h+fLlFC9e/ILH\nNmzYwLvvvsuaNWtQVRo3bkyLFi0oUqQIO3bsYMaMGUycOJHbbruNjz76iN69eyd6ndTycyXL7/E7\nNhEZA6Cqy3y8jjFJe/VVl4DdeCM8+KDncLGjXiVLumQspBKwWKVLg4hb0OWhFxGBt96CwoWhf3+I\nifGvicaEgGD7qVNAa1WtA0QA7UXkamAMLqm7CvgLsA8cjTG+WLVqFT179iRnzpyULFmSFi1asG7d\nOgAaNWpEeHj4+XPLlSvH1VdfDcA333xDdHQ0TZs2JSIigqlTp/Lzzz+zfft2SpUqRcOGDQEoXLjw\nBVMZYy1evJjRo0cTERFBy5YtOXnyJLt372bFihXnE5DatWtTu3bti577/fffEx4eTqVKlRCRRBOW\npk2b0r9/fyZOnMjZs2cT/Rl07tyZsLCwBB/r0qULYWFhFC9enFatWrF27dpE4yRl1apVdO3alQIF\nClCwYEG6devGypUrAQgPDyciIgKA+vXrs2vXrqCukRg/R8LaAY/GO3ZDAseMSTtvvuk+zurWzU1B\nzJ3bU7glS9xSq4oVYdkyl4iFLFU3XBcT4xKxIDegvuwy92Ps3h1efDFlA4lWQdFkEkH1U6qqwNHA\n3dyBmwKtgV6B41OBkcA4n9pqjElHSY1YpZUaNWowe/bsVD+vQIECid5XVdq1a8eMGTMuOGfr1q0p\niq2qfPTRR1SpUiXV7Uqpt99+mzVr1vDpp59Sv359NmzYkOB58V9nXCJy0f1cuXJx7ty588dOnjzp\nqZ158+Y9/33OnDl9n47oeSRMRO4Rka1AVRHZEuf2E7DFexONSaHffoPhw6FLF5gxw3MC9tlnbjCt\ncmVYvty/BGz6mt1JViyMvU1fszt1gUVg9Gi3H9orr3hq4223wS23wMiR8N//Jn2uVVA0oc6PfkpE\ncorIJuBPYAmuwuIhVY0dL/4VSL4ajjHGBLRu3ZpTp04xYcKE88e2bNnCypUrad68OZGRkZw9e5Z9\n+/axYsUKGjVqlGzMq6++mq+++or/BjrvY8eO8cMPP1ClShX27t17fjTtyJEjxMTEUKhQIY4cOXL+\n+ddffz2vv/467rMn+M9//gPAtddey/Tp0wE3jXLLlov/dFatWpVdu3axc+dOgIsSwVg7d+6kcePG\njBo1ihIlSvDLL79c1I7kzJ8/n5MnT3LgwAGioqJo2LAh5cqVIzo6mlOnTnHo0CGWLfvfBIfE4jdv\n3px58+Zx/Phxjh07xty5c2nevHmK2+GFHyNh04FFwPPAY3GOH1HVgz7ENyZlSpd2+2XVqhX0KFCs\nhQuha1eoXt3V9yhWzKc2AvM37SF67+EkE5fovYcBUj9y1KGDa/ioUW6BV7lyQbfz1VddIvrAA/DJ\nJy7HS0hKKygmN1pmI2UmDXnup1T1LBAhIpcCc4GqKb24iAwCBgEULFUxpU8zxmRxIsLcuXMZNmwY\nY8aMIV++fJQvX56xY8fSrFkzVq9eTZ06dRARXnjhBS6//HK+/z7p7Q1LlCjBlClT6NmzJ6dOnQLg\n2WefpXLlykRGRjJ06FBOnDhBWFgYS5cupVWrVuenHz7++OM8/fTTDBs2jNq1a3Pu3DnCw8P55JNP\nuOeee7jjjjuoVq0a1apVS3AtW758+ZgwYQIdO3Ykf/78NG/ePMHEZ/jw4ezYsQNVpU2bNtSpU4ey\nZcte0I7k1K5dm1atWrF//36efvppSpcuDcBtt91GzZo1CQ8Pp27duufPHzRoEO3bt6d06dIsX778\n/PF69erRv3//8wnuXXfdRd26dX2fepgQic10gw4gUjhQ8rdoQo+nZyLWoEEDTW7PApMFTZ0KZ87A\nXXf5Eu7jj+Hmm6F2bbcZc9EEf7ODF5uIRN7dJG3O+eUXt3CtTRsIVDUK1iuvwMMPuzBJVJZN1vQ1\nu5McCYtNSpN6vcYAiMgGVU1VnWK/+ykReQY4gZvGeLmqxohIE2Ckql6f1HOLlqumB3/+DkjZ/3Nj\n/NJySksAovpHZWg7jMnqUtpP+TUS1glXGUqBuJ+XK1DBh2sYk7D334c77nCVMwYM8Lxr8mefuQQs\nIsIlYJde6lM7g5DcyFGio2lXXunKG65bBydPQr58Qbdh6FCYPNmNhrVrB4msj01WcqNltteYSWOe\n+ikRKQGcUdVDIhKGW1s2BlgO3IKrkNgP8PaphzHGmGzDcxKmqp0CX8OTO9cYX82dC/36QcuW7nuP\nCdjy5W4mX82aGZ+ApWaj5QT93/8lPn8wFXLnhjfegFatYMwYt0bMmMzGh36qFDBVRHLi1lJ/qKqf\niEg0MFNEngX+A0zypcHGGGOyPN+qI4pIU2CTqh4Tkd5APWCsqqayuoAxKbBsGfToAY0awYIFENgB\nPVhff+2KcFSokPEJGKRsnVWSYhOw6GjYu9dNTQxSy5auUuILL8CgQW7pnTGZUbD9lKpuAeomcPxH\nIPmV8sYYY0w8fu4TNg44LiJ1gIdxlaPe8zG+Mf8TFeXKFn76qdtB2YMNG+CGG1xysXQpxNvHL3Mb\nONCNFh4/7inM88+7yvc2EmYyOeunjDHGhAQ/k7CYwF4qXYA3VPVNoJCP8Y1xe2GBq/739deeq2Zs\n3QrXXQdFirjBtVKlfGhjKBk9GvbsgX//21OY8HC3//WkSa4CvjGZlPVTxhhjQoKfSdgREXkc6A18\nKiI5cBtaGuOPXbvc9MOtW910u0Le3jtt3w5t27q6FV984epZZDnNm7t90154AQ56K1T65JNQoAA8\n9ljy5xoToqyfMsYYExL8TMK6A6eAO1X1d+AK4EUf45vs7I8/XHm+nTt9KTixa9f/lkktW+bWgmVZ\no0bB4cOeN3AuUQIefdQtwVu50qe2GZO+rJ8yxhgTEnxLwlT1d1V9RVVXBu7vVtVpfsU32dihQ3D9\n9fDbb24NWM2ansLt2+fCHTsGS5ZA1RRvuZpJ1a4NvXp5XhcG8OCDbsrm00/70C5j0pn1U8YYY0KF\nn9URu+H2TbkMtweLAKqqCWxkZEwKnTjhyhZGR8Mnn0ATb5uaHj0KHTvC7t0uAatd26d2hrr33/dl\nBDF/fjcd8YEHXG2Uli09hzQm3YRiPxV/P8AuEWW8VUY1xhiTKfg5HfEFoLOqXqKqhVW1kCVgxrMT\nJ1wxjg8+cBU0PDh92m3EvHEjREZCs2Y+tTEziE3AvvnGDQV6MHCgGw2zSokmEwqpfqpLRJkLNlyP\n3nuY+Zv2ZFRzjDHGpCPfRsKAP1TV6qYZf6jC2bOu+uGKFZ43Yj53DgYMcHuATZoEnTv71M7M5Jdf\noGlTePhhV6gjSGFhbm3YsGE2GmYynZDqp+LvBxh3RMwYY0zW5udI2HoRiRSRniLSLfbmY3yTnYwe\n7RZuHT/uOQFThf/7PzeY9q9/uWQsW7rySrfr8rhx8NdfnkINGgSXXw7/+IdPbTMmfVg/ZYwxJiT4\nORJWGDgOxJ0zpsAcH69hsoOpU+GJJ+D22139eI9efNFtk3X//elTXn36mt1JTimK3nv4gilI6erR\nR2HGDHjrLVdzPkhhYe5nOWyYG6i89lof22hM2rF+yhhjTEjwLQlT1Tv8imWyscWL4a67XP34yZM9\nj4JNmeLyjh49XCLmQ22KZM3ftCfJRKt6qcJ0iSiT9g1JSJ06cMMN8OqrrtRh/vxBhxo0yI0sjh5t\nSZjJHKyfMsYYEyr8rI5YGRgHlFTVmiJSG7cA+tlknjcZ6AT8qao1A8dGAgOB2AoCT6jqQr/aakLU\nxo2uckaNGjBnDuTJ4yncp5+6fK5tWze45jGfS5XqpQoTebe3So5p5vHH3VTP9es9ZU9hYW508amn\nYMuWbFRp0mRawfZTxhhjjN/8fFs6EXgcOAOgqluAHil43hSgfQLH/62qEYGbJWDZwenTUKUKLFwI\nhb1N1/v6a7j1VoiI8CWfy1qaNYM9e3wZvrrnHihQwE35NCYTCLafMsYYY3zl55qw/Kq6Vi6c7xWT\n3JNUdYWIlPexHSazOX3aZUlXXw3r1nmeMxgdDZ06QZkyLp8rVMindmYVIlCkiKtYcuiQ+z5IRYu6\naYmvvQbPPgvlygXfrPj7JSXE9lAyHgXVTxljjDF+83MkbL+IVMQtckZEbgH2eog3RES2iMhkEUn0\nXaKIDBKR9SKyfp/H/Y9MBjh+HFq0cIuLwHMC9ssvbqZd3rxuedlll/nQxqyqd29o184lYx48+KD7\nZxs7NvgY8fdLSojtoWR84Hc/ZYwxxgTFz5Gw+4AJQFUR2QP8BPQOMtY44J+4jvKfwMtAgoXFVXVC\n4Lo0aNDA27tJk75iYqBnT1izBh55xHO4gwddAnb4sKvYFx7uQxvjSa7yIWRw9cPUaN4cpk93czeb\nNg06zJVXQq9eMHEiPP20Gx1Lrfj7JSXE9lAyPvCznzLGGGOC5ttImKr+qKptgRJAVVVtpqq7goz1\nh6qeVdVzuDn8jfxqpwkRqnDffbBgAbz+OnTt6inc8eNuCuKPP7qQder41M54YisfJiVDqx+mRp8+\ncOml3oawAv7v/+DYMXjnHR/aZUwa8bOfMsYYY7zwPBImIg8lchwAVX0liJilVDV2ikhXYFvQDTSh\n6bnnYMIEV6nvvvs8hTpzBm67Db75BmbPdrMb01JIVz5MjQIF3IKul1+G3buhbPBrrWrVgtat4c03\n4aGHIJefY+zGeJQW/ZQxxhjjhR8jYYUCtwbAPUCZwG0wUC+5J4vIDGA1UEVEfhWRO4EXRGSriGwB\nWgEP+tBOE0oKFoR+/Vwy5oEqDBzoytG/9RZ06+ZT+7KL2AR43DjPoe6/3+VyCxZ4DmWM3zz1U8YY\nY4zfPH9erar/ABCRFUA9VT0SuD8S+DQFz++ZwOFJXttlQtTJk5AvHwwb5jIoj4U4Hn/c7QE2ciQM\nHuxPE7OVsmVdDX8fytV36gTly7t9oC0ZNqHEaz8lIlcC04CSuLXKE1T1VdvT0hhjTLD8rI5YEjgd\n5/7pwDFjnA0boGJFWLXK3feYgP373zBmjNur6plnfGhfdtW5s1sb5lHOnDBkiCuKsmmTD+0yxn/B\n9lMxwMOqWh24GrhPRKoHHrM9LY0xxqSan0nYNGCtiIwMfDq4BrcRszHw00/QsSPkzu0SMY8++MCt\nPbr5ZlfXw2M+ZxYudAvrPJarHzAA8ud3/ybGhKCg+ilV3auqGwPfHwG+w01nNMYYY4Li2/J5VX1O\nRBYBzQOH7lDV//gV32RiBw7ADTe4TZmXL4dSpTyF+/xz6N8fWraE9993IzB+Sa4EfaYpP59a+/bB\nrFluWLFVq6DDFCkCffvCu+/C6NFQooSPbTTGIz/6KREpD9TFJXBNcXta9gXW40bL/krgOYOAQQAF\nS3n/EMoYY0zm5+dIGKq6UVVfDdwsATNw4oSb7rZrl6vYUK2ap3Br17rRrxo1YN48t7zMT8mVoM80\n5edT67bbXAb19tueQw0dCqdOueKXxoQaL/2UiBQEPgKGqeph3J6WFYEI3KbPLydyzQmq2kBVG+TO\nndvjKzDGGJMVWCFpk7ZUoWRJN3+wWTNPobZvdzMaL7sMPvsMLrnEpzbGk2VK0KdGWJgbXnz9dfjj\nD/dvFqTq1aFNGxg/Hh57zN+RSmMyiojkxiVgH6jqHHB7WsZ5fCLwSQY1zxhjTCbj60iYMeepulGw\n/Pnho4/c8JUHv/0G11/v1n4tXgyXX+5TO83/3H03xMTA5MmeQw0eDL/8AosW+dAuYzKYuA3FJgHf\nxd1TTETizq22PS2NMcakmG8jYSIyFHg/ofnwJht66SW3YGv5ciha1FOoQ4egfXu3tCwqCq66yp8m\nmniqVIG77oIy3qdbduniBtPGj3el6/0Svfcw3cevTvy6EWXo1Tj4TadN1uahn2oK9AG2ikhs7c8n\ngJ4iEoErW78LuNuvthpjjMna/JyOWBJYJyIbgcnA56oeS62ZzGn6dHjkEeje3XPp89glZd9/7wr4\n1a/voVnJFN2ALFx4I6UmTvQlTO7crlLimDFuROzKK73HTG4tXuxaPkvCTBKC6qdUdRWQUA1WK0lv\njDEmKH5WR3xKRJ4GrgPuAN4QkQ+BSaq606/rmBD3xRdubVGLFm4X5RzBz3iNiYFevdy2YjNnQtu2\n3poWW3QjqSQryxbeSI3jx+Grr6BdO09hBg50FRLfeQf+8Q/vzerVuGySCVZSI2TGgPVTxhhjQoev\nhTlUVUXkd+B33OaWRYDZIrJEVR/x81omBG3ZAl27QuXKrnRh3rxBh1J164rmzYPXXnPF+/yQLYtu\npNbo0fDcc/Dzz3DFFUGHCQ936/jeeQeefhpyWRkgEwKsnzLGGBMKfCvMISIPiMgG4AXgK6CWqt4D\n1Ae8VWUwmUO+fFC7tqvG4HEa4pNPwqRJ7s370KE+tc+kzB13uCx40iTPoe6+2xVV+fRTH9pljEfW\nTxljjAkVflZHLAp0U9XrVXWWqp4BUNVzgI9L803IOX7cvWmvXBlWrPC8AGjsWHj+efcG3o9pbCaV\nwsPd3M9334Vz5zyF6tQJSpd2BTqMCQHWTxljjAkJfiZhi4CDsXdEpLCINAZQ1e98vI4JJadOQYcO\ncN997r4ktHY95T74AB580FW0f/NNz+FMsAYMcNMRly/3FCZXLrjzTrev265d/jTNGA+yRj919Kjb\nOPG//3XVi4wxxmQ6fiZh44Cjce4fDRwzWdW5c9CvH3z5JTRt6jncokWupkerVq66vW3ym4FuugmK\nFIEFCzyHuusu93XKFM+hjPEq8/dT69ezr1A4X1S9h9mVHuOTgj34sf6t6LIvMrplxhhjUsHPpfIS\nt9Svqp4TEVuKn1WpwrBhEBnp6pDffruncKtXu9GvWrVcMY58+XxqpwlOvnywbp2bmuhR2bLQpo1L\nwp55xlPBTGO8Cvl+Kv5eeN2qFqX7kveIyZGH6Vc9w8QJ9fhK/kQ1ME3gHLARqt95lCGPug89cufO\nmLYbY4xJOT/fDv0oIveLSO7A7QHgRx/jm1AyejS8/rqbOzh8uKdQ0dHQsaPbI3jRIiicjbfpCikV\nK/qWMcXOboyK8iWcMcEK6X6qS0SZC7fQ2LCeFre0Zslza6j22mD69YMDB3MwYoSwdKkrSPv11/D6\na0qhywtw770QUeoPto6am3EvwhhjTIr4mYQNBq4B9gC/Ao2BQT7GN6GkYkX3zvqllzwt3Nq925Ux\nz5sXFi+GkiV9bKPx7t//hvbtPYe56Sa45BKYPNmHNhkTvJDup3o1Lkvk3U3cLcc2Jk5+kuGHx3Ad\nS8hR8jLmzYNvv4URI9zocq1a0KQJDBkqrF4tLJgTw8EjuWg84noW3mclSY0xJpT5uVnzn0APv+KZ\nEHXwIBQt6jbu8rh51/79LgE7csQVVfQy8236mt3M37QnyXOS26jZJCBnTvj8c/eRe+3aQYcJC4Oe\nPd2UxDffdAmZMekt0/RTW7eye9CztM+3lu9OVeGRR2DkSPf/KDEicGPXXGzaUZCOtXfT5a3rmFvk\nGzo9e3W6NdsYY0zK+blPWAkReUJEJojI5NibX/FNCFi50mVKixZ5DnX0qJuCuGsXfPyxp/f3AMzf\ntIfovYeTPKd6qcJ0iSjj7ULZze23Q548rly9RwMGwMmTbhmhMRkhs/RTW7QWjYr8wH+5imb3fs+Y\nMUknYHGVLJuXL7ZfQUT+HXR/rhbrZ/2Uto01xhgTFD8XJM8HVgJLgbM+xjWhYMsWuPFGKFUKGjb0\nFOrUKejWDTZsgDlzoHnz5J+T3EhX7ChX5N1NPLXNxFOsGHTpAu+95wqw5MkTdKgGDaBGDTclcVDI\nTAAz2Uxo91MjRrC2REfaP9OI/Pnz0ub+TRQZypTVAAAgAElEQVQulfoS9IVLhvHxV0Vp3OAvbruv\nOP+5zkafjTEm1Pi5Jiy/qj6qqh+q6kexNx/jm4yya5dbF1SwoFu4Vbx40KFiYqBHD1iyBN55Bzp3\nTtnzkhvpslGuNHTHHXDggBuy9EDEjYatWQPfZZ4dmUzWErr91AsvsH7Up7R9uDZFiriJB8EkYLEu\nj7icGZ8XY/fBQtx7rytoa4wxJnT4ORL2iYh0UNWFPsY0Ge3gQbdw68QJ966gbNmgQ507596Ez5sH\nr73m9gRLDRvpyiDXXQcDB3r6t4/Vuzc8+qib3fjCCz60zZjUCc1+aupUtj86iRvyrqNYqbysWOGq\nxXp1TZswRoxwW0Pc1nwvXQaX8h7UGGOML/wcCXsA18GdFJHDInJERJJepGNC3yWXuFGwTz6BmjWD\nDqMKQ4e6WW3PPuu+N5lEzpwwYYLnaagAl13m1gJOmwZnzvjQNmNSJ/T6qdWr2TNwJNflW0GOSwqx\neLH4koDFemzgAWrkiOaBh3Jy/Lh/cY0xxnjjZ3XEQn7FMiHgxAk3ClamDLz6qqdQ09fs5p8jc/D9\nZ1dQpd0eNhfbTffxF57TJaIMvRp7H2kxaej7793vxDXXeAozYADMnw+ffeaWGRqTXkKxnzo+/j1u\nlI/5K9dlRC0SKlXyN37uy4vx5oBFtHynN6MH72LUtPL+XsAYY0xQ/KyOKCLSW0SeDty/UkQa+RXf\npKMzZ1z5+WbN8OOj09Gjle8/u4KK1/5O7W67L9pWLHrv4WTLy5sQ0Ls33H+/5zA33OBGxKZO9aFN\nxqRCqPVTqjDgxBtsOlODmZFCvXppc50Wr99C97AFvPxBSf78wxaHGWNMKPBzTdhbwDmgNfBP4Cjw\nJuB9DpNJP2fPQt++bvrh229D/vyewr31FmydV46yDffxw/LLyZHj8ovO6T5+tadrmHTSpw8MGwbR\n0VC9etBhcud2xVnefhsOHYJLL/WxjcYkLXT6qVdf5fk9/Yj88FLGjIEOHdLwWvnyMer/DjPrn3kY\nM+QXXp5lsw6MMSaj+bkmrLGq3gecBFDVv4Dg61mb9KcK99wDM2e6cuR33+0p3HvvwX33QenaB2nU\nfyc5/PxtM+mvZ0+3Puy99zyH6tMHTp+GWbN8aJcxKRca/dRHH7Fw2Oc89WJhevWC4cPT/pKVn7iF\nvkU+4c35Zfjtt7S/njHGmKT5ORJ2RkRyAgpuU0zcJ44ms3jpJZg4EZ54Ah55xFOouXNdZfM2beDS\nm34gR86kp8BE7z2c5IhY7D5gJgNddpmrlPn++/Dcc3jJquvXh6pVXT43cKCPbTQmaUH1UyJyJTAN\nKBl47gRVfVVEigKRQHlgF3BbILFLVK6YM/w64Bn65vqK2tXdVh3xp2iniXz5eHpdZ6ZVFl591X3O\nZowxJuP4OTbxGjAXuExEngNWAf/yMb5Ja337urrhzz7rKcyiRW66WcOGrhx9ztxJJ2BdIsokm2DZ\nPmAhok8f+O032LzZUxgRF2rlSrcNnTHpJNh+KgZ4WFWrA1cD94lIdeAxYJmqVgKWBe4nqcT+3+h1\nbAIn8xTmw1k5CAsL9qWkXoWKws3dzjH+rRiOHEm/6xpjjLmYn9URPxCRDUAbQICbVNW2ZM0MPv8c\nWreGkiU9z4tZvBi6doUaNWDhQre/c3J6NS5rlREzi5tugj174PKL1/al1u23w5NPuoG1p57yoW3G\nJCPYfkpV9wJ7A98fEZHvgDJAF6Bl4LSpQBTwaFKx/jpdhGia8t54qFw52FcSvIcLTWTW0buZPPYw\nDzxtswuMMSaj+JaEiUhZ4Djwcdxjqrrbr2uYNDBlips3+MILnhOwZcugSxc3zWzJEihSxJ8mmhCS\nL58vCRhAuXLQooWbkvjkk/5MyUpuWivYdgjZmR/9lIiUB+oCa4CSgQQN4HfcdMWEnjMIGOTu1eeO\nO1yx0YzQ+LFWNH13Fa/+uwZDn/Q0q9gYY4wHfv75/RT4JPB1GfAjsMjH+MZv06fDnXdCu3aeS49/\n+aXb8+mqq2DpUihWzKc2mtCzb5/7nYmM9Byqd2/44QdYv957s1IyrdW2Q8j2PPVTIlIQ+AgYpqoX\nbPKsqkpgrVl8qjpBVRuoaoMcuc7x+uvBNt8HlStzX+1V/PRXEZYtPpuBDTHGmOzNz+mIteLeF5F6\nwL1+xTc+mzXLLcpp3twt3MqbN6gw09fs5p3Zh1n5ejXyFzlFhb7fct9HMRecY0U1sphixVzmNGUK\ndO/uKdQtt8CQIW40rKHHIuEpmdZq2yFkb176KRHJjUvAPlDVOYHDf4hIKVXdKyKlgD+Ti1OwxCkK\nFEhlw33W9fGqFOu5n4nPnaFd+1IZ2xhjjMmm0mwigqpuBBqnVXzjwYEDbgTsmmvcfmAe9gKbNOdv\nvnytKmGXnqbFg9HkKxxz0TlWVCOLyZHDLehavBh+/91TqEsvhc6d3a4IZ8741D5jUiil/ZSICDAJ\n+E5VX4nz0AKgX+D7fsD85GLlzJ3xRYPzdetAv3wfMu/rEvyZbNpojDEmLfi5JuyhOHdzAPUA240k\nFBUr5opx1KyZssoZiVi7Fla+Vo38l5zh+41hlC7dwMdGmpDWpw88/zzMmAEPPug51KxZ7leyUyef\n2mdMAjz0U02BPsBWEdkUOPYEMBr4UETuBH4GbvOxuWknTx7umtGGV7rmYurU9NmnzBhjzIX8HAkr\nFOeWFzfnvouP8Y1XCxfCu++675s0gUKFgg61caPbMipPwRhaPhhN6dI+tdFkDtWqQYMGvmzc3L49\nFC/uSyhjkhNUP6Wqq1RVVLW2qkYEbgtV9YCqtlHVSqraVlUPpnH7fVPtpio0a+a6BE16FxFjjDFp\nwM81Yf/wK5ZJA4sXQ7duUKuWG3rIFfw//bp1cN11cMklUHPQt+QvetrHhppMY9gw2LEDYmI8/T7l\nzu32lZs4Ef7+2/1eGZMWrJ+6UO/wrxi8qimbN0NEREa3xhhjshc/pyN+TCKVoQBUtbNf1zKpFLd2\n/Oefe3rDvHq1G7koVgy++AIe/dwSsGzr9tt9C9WnD7zxBsye7ZYrGpMWrJ+60C3l1zOERkwfd5yI\n8fbphzHGpCc/pyP+CJwAJgZuR4GdwMuBm8kIS5deWDu+aNGgQ61c6UbALrvMlaQvX96/ZppM6tQp\nV9zlnLdiAw0bQqVKbuNmY9JQpuunYve+i71NX+Pf1pvF+t/IDSxiRqR4/S9sjDEmlfxMwpqqandV\n/Thw6wU0V9UvVfVLH69jUmP5cpeALVvmFt54CNO+PVxxhUvArrzSxzaazGvOHJfkr1rlKYyIGw2L\nioLdtr27STuZqp+Kv/ed7/vcVahArwrf8OvfhVm50r+wxhhjkudnElZARCrE3hGRcCDZ3VBEZLKI\n/Cki2+IcKyoiS0RkR+BrER/bmT2cOOG+PvssfP21G74K0uLF0KEDhIe7N8lWhMOc17kzFCjgyxBW\n7OzG6dM9hzImMUH1UxmlV+OyRN7d5PwtLfZbvHHAZRTgKNPHH07+ZGOMMb7xMwl7EIgSkSgR+RJY\nDgxLwfOmAO3jHXsMWKaqlYBlgfsmpWbPhsqVXdEEEU9l6D/91A10VKniRsNKlvSxnSbzK1DAFXz5\n8EM4edJTqAoVoGlTVyXRqrWZNBJsP5VlFbj9JjqWXM+8z8M4ezajW2OMMdmHb0mYqn4GVAIeAO4H\nqqjq5yl43gogflnfLsDUwPdTgZv8ameWN326KzVXtqznjGn+fOja1RVU/OILKFHCpzaarKV3b1fW\ncOFCX0JFR8PmzT60y5h4gu2nsrTy5en2akv+PJib1aszujHGGJN9+JaEiUh+YDgwRFU3A2VFJNit\nV0uq6t7A978DiWYTIjJIRNaLyPp9+/YFebksYupUt7CmWTNXBbFw8FNX3n8fbr4Z6tXzXM/DZHWt\nW8Pll8O8eZ5D3XqrK1lvBTpMWvC5n8oybrgB8uRR5s48ldFNMcaYbMPP6YjvAqeBJoH7e4BnvQZV\nVSXpksITVLWBqjYokZ2HaubOhTvucG+IFy70NAXx9dddLteiBSxZApde6mM7TdaTK5dbLDh5sudQ\nxYq59YfTp2NTo0xaSJN+Kj2lRbXEwn/9TNvTC5kz85RNBTbGmHTi2z5hQEVV7S4iPQFU9biISJCx\n/hCRUqq6V0RKAX/618wsqlUrePBBeO45yJcvqBCqMGoUjBwJN90EM2bAnM27k6zGFb33cJosFjeZ\nTJUqvoXq3dtNhV2+HNq29S2sMeBvP5XuukSUueB+9F5XTKNX47LeApctS7fLxrPwz462cbMxxqQT\nP0fCTotIGIFRKxGpCAQ7t2EB0C/wfT9gvvfmZUGq8M47rhLipZfCyy8HnYCdOwfDhrkErH9/mDXL\nhZq/ac/5jj4h1UsVvuiNgcmm3nwTevXyHKZTJzeT1qYkmjTgZz+V7tKsWqIInW/OTQ7OMmdGpvlx\nGGNMpubnSNgI4DPgShH5AGgK9E/uSSIyA2gJFBeRXwNxRgMfisidwM/AbT62M2s4exaGDIG334Yz\nZ+Cee4IOFRMDd94J06a5wbSXXoIccdLz6qUKE3l3k8QDGANw+LAbPv3Xvzzt5J0vn1sbFhkJb70F\n+fP710ST7QXVT2UHJXq0odm4VcybGcGoMXkzujnGGJPl+TISFpjO8T3QDdehzQAaqGpUcs9V1Z6q\nWkpVc6vqFao6SVUPqGobVa2kqm1VNX71xOzt9Gm3qdLbb8Njj8HgwUGHOnnSFeCYNs1tKfbyyxcm\nYMakWOwomA8bffXuDUePwoIFnkMZA3jrp7KFa67hxrBlbN19Cb/8ktGNMcaYrM+Xt9uB4hkLA8nT\np6r6iaru9yO2ief4cejSxQ0TjBkDzz/v9gILwqFDrirWxx+7mWRPPhl0KGOgXDm49lpfNvq69lq4\n4gqbkmj8Y/1UMnLlouOLLQFfdpswxhiTDD/HPDaKSEMf45mE7NwJq1fDhAnwyCNBh/n1V2jeHL76\nyr3RvfdeH9tosq/eveH772HjRk9hcuRwg72ffQbZfecJ4yvrp5JQ9d7WlC9vSZgxxqQHP5OwxsBq\nEdkpIltEZKuIbPExfvZ26JD7WqsW/PgjDBwYdKht26BJE9i9GxYt8qWWgjHOLbfAjTf6Eqp3b7f0\nMTLSl3DGgPVTSRKBDlV3svTzGE5ZfQ5jjElTnpMwEQkPfHs9UBFoDdwIdAp8NV5t3gzVq7s5g+Bp\n5+Tly91ezufOwcqV0KaNT200BqBIEbeQq359z6Fq1oQ6dWxKovHO+qmU6/jTmxw/lYsvv8zolhhj\nTNbmx0jY7MDXyar6c/ybD/Gzt6VL3bzBHDncQhkPZs6E9u2hTBk3o7F2bZ/aaEx8v/zips561Ls3\nrFkDO3b40CaTnWXZfsrvzZtb3lyMfJxg4ZwTPrXQGGNMQvxIwnKIyBNAZRF5KP7Nh/jZ13vvucoZ\n5crBN9+4qYhBUHVl53v2hKuvhlWroKzHvT2NSVRMDNSt6zad86hnTzdF6oMPvDfLZGtZsp/qElHm\ngr3CovceZv6mPZ5i5r+xDa1YzsL5MV6bZ4wxJgl+7BPWA7gpEKuQD/EMuCmIfftCq1YwZ47bjDkI\nZ87A/fe7ava33QZTp/5vP+fpa3Yn22FH7z3s34agJnvIlcvte/D++zBuHBQsGHSoMmWgdWsXasQI\nq95pguapnxKRybipi3+qas3AsZHAQCC2dMwTqpquJS16NS5Lr8b/+0St+/jV3oM2bEiHsMcZ+nsH\nduyASpW8hzTGGHMxz0mYqm4HxojIFlVd5EObDLjFMLNmuSIHeYPbOPPQIbfp7dKlrpDi889fuAfY\n/E17kk2yqpcqTJeIMkFd32RjvXu7Cp7z57syhx5D3XGHm5Z49dU+tc9kKz70U1OAN4Bp8Y7/W1Vf\n8tq+kJIzJx1aHmfoIled1JIwY4xJG36MhAFgCZgP/vrLjX49/TQ0auQqzSUiuVGsI3/mY/Okmuz7\nLTfvvgv9+yd8XvVShYm8u4nHhhsTT9Ombhrt++97TsK6dYN77nGhLAkzXgTbT6nqChEp729rQleF\n90dRoaGyZIkwdGhGt8YYY7ImP0vUGy927HDvMD//3JWgT0bsKFZC/vyhMIufr8H+/W4ULLEEzJg0\nE7vR15IlcPCgp1CFC7v9yWfOdNNrjQkhQwKl7ieLSJHEThKRQSKyXkTWn8kMv8RFi9KunRAVZf/n\njDEmrfhRov7WwNfw5M41ifjiC2jcGA4cgGXLoEePFD0tdhQr7q19niZ89XoN8hc+S5tHt3ktqGhM\n8IYMge3bPW2pEKt3b/ff47PPfGiXyXbSqJ8ahyt3HwHsBV5O7ERVnaCqDVS1Qe7cuX1sQtppd3Qu\nR47A2rUZ3RJjjMma/BgJezzw9SMfYmU/UVFw/fVQqpTr7Zo3DypMTAwMHw4DBkCLFtDmka0Uuuyk\nv201JjVKlYKKFX0Jdf31ULy47RlmguZ7P6Wqf6jqWVU9B0wEGv0/e/cdHkXVNnD49yQhQBJ6kyIQ\neif0XgVR4RNBBVGkFwtNXuygiNh5ee0iKmIDEZAiWKiRIr0aAkhHitJEeklyvj9mAktI3Z0ku5vn\nvq69sjvlzDM7u3ty5jSn0vYGrfNuJIBYFv6oVWFKKZUenOgTdlJEFgDhIjI34UpjzN0OHMN/NW5s\nlZ6efhry5HEriZMnrcqzRYusvjPvvAPdJ8Vemz8mKTryoUp3u3ZZn+1XX4VKldxOJls26zP+6afw\n779uf1VU1uV4PiUiRY0xR+2XnYAoD2NMd4n1Je4YUfyGERbj5WvfmLofrGfh7IqMfsW90XmVUkol\nzYlCWHugNvAVyTTHUC5OnLAKXv/9r9VU69VX3U5qyxbo1AkOH7b+Qe3b11qemhENdeRDle5y5bJG\nSKxaFV5+2aOkuneH99+3Zmzo3duh+FRW4VE+JSJTgZZAQRE5BLwItBSRCMAA+4GBTgWbXhKOiBvf\nrzixQhjNmtFG3uON7XX1xodSSqUDJ4aovwKsFpHGxpjjIhJmLz/ncXT+aONGa7i3v/6ybu23a+d2\nUgfXFaDRE5AvHyxbZnUri5dw/hilMsUtt0DbtlY7wjFjPJroq359KFfOSkoLYSotPM2njDHdEln8\nmZMxZhTXEXGTnVcsLIy2VY/walQgkZHW4DhKKaWc4+ToiEVEZBOwDYgWkQ0iUs3B9H3fl19aQ3fH\nxcGKFW4XwGJiYMvMkqz+rAK1a8OGDTcWwJTyKt27w/798NtvHiUjYiW1dCkcOuRMaCrL0XwqDRo9\nXI6QwEssXBCX2aEopZTfcWyeMGAiMNwYsxRARFrayxo7eAzf9b//wfDh0LIlTJsGhQsnuWlyc4Bd\nOhvEms/K8/eO4pRt/hdLFt5CcHA6xayUE+65B0JCrCqsJk08Suqhh2D0aJg61WrR646U+kpC0v1k\nlM/LUvlUwrwkrf2Asz81lBaRsHBROgSnlFJZnJOFsND4jA3AGBMpIqEOpu/bOne2RtAYPRqCkn/b\nE7bbj3d8Vy5Wf1qBy+eDqPvwHp54PJsWwJT3CwuDgQMhr+ed+8uVs6bT+/pr9wphqekDmWw/GeXr\n/D6fcr3JsGafNUdfg3Brmgh3+gG3bQs//QQHD0JJ/UoopZRjnCyE7RWRUVgdnwG6AynPOuzPliyB\nKVPgk0+gVCkYOzbVu7q224+Lg7feguffhvBwmB4JERHODP2tVIYYP96xpLp3t6Yg27oVatRI276p\n6SuZUi2Z8ml+nU8lLGA1CM/vca1u2xUvAi+xaJE1BYpSSilnOFkI6wO8BHyPNVrUcntZ1hMbaxW4\nXnoJKlaE48eTbX6YnJMnoWdPmD8f7r/fGgExt44qr3xRbCxER0P16h4l06ULDBsG33yT9kKYyvL8\nOp9yZ0CmhM1zExbaqjbMRdHvj7Bwbl769AlxLFallMrqHCuEGWP+AYY4lZ7P+vtvq+PK4sXWLfuP\nPrKaY7lhzRrrH86jR+G99+Dxxz0aXE6pzPXCCzBunPUd8aBpYqFCcMcdViHstdcgwMnhhZRf03zq\nRglrzhJriittbqMNi/h5SRfi4vT7ppRSTtGfUyfFxUHr1rByJXz2mTUaohsFMBMHOxYUo1kzK8Nb\nudJqfqUFMOXTOnWCK1dgxgyPk+re3Zob79dfHYhLqSzqwQYlmTaw0bVHooN21KxJm7DVHD+bg99/\nz/gYlVLKXznZHDHriomxSksBAfDOO1CkiNtNrg4fhl/frcyxHXnp3Nlqfpgvn8PxKpUZ6tSxmud+\n/TX06+dRUv/3f9Y80F9/Da1aORSfUirR5om3tYiF+bBooaFmTb0bqJRSTnCsJkxEbhp7OrFlfmfv\nXmje3BqCHqBNG7cLYLNnW31cTu7NRd3ue5gxQwtgyo/ET/T166/WUGseCAmBe++1KtUuXnQoPuX3\nsmw+lUodI4rfUBsWffQMczYfpvjgzlQucopFi0wmRqeUUv7FyeaI76VymX8wBr74AiIirMEGSpRw\nO6nz560RvDt1gtKloe1zWynT9Jg2P1T+58EHrb9Tp3qcVPfucOYMzJvncVIq68ha+VQaJdk8sV07\nbrs/P8uWB3D5cubGqJRS/sLj5ogi0ghrostCIjLcZVVuINDT9L3SP/9Ypabp061asK++cnsClU2b\nrP9Ld+6Ep56Cl1+Ghz+/5HDASnmJMmVgwQJo2tTjpFq2hGLFrK/f/fd7HpqrlCZ01smcfUuWzKcc\n1qb2Kd5/Pz+rV0OLFpkdjVJK+T4n+oQFA2F2Wrlclp8B7nMgfe+zZo3VdvC116wZYwOv5+FT1hxk\nzubDKSYRFyts/6k40T8WJ0euGJoP3cX+Mmd4+HMSnahZKb/Rtq0jyQQGWrVh//0v/PUX3HKLI8mm\nOJmtTubsk7JePuWwlotGEsB7LFoYQIsW2kxDKaU85XEhzBjzK/CriEw2xhwQkTB7+TmPo/Mm58/D\nsmVw553W+Nh79sCtt9602ZzNh1MsRJ0+HMLayWU5/WcYpRocJ6LLfrKHxlxbX6Vo7hT/EVTKp40b\nZ5WinnjCo2R694Y337Rqw5580pnQUpprSSdz9j1ZJp9KR3nuakL9KWtZNLc6L491b9oVpZRS1zk5\nOmIuEdkE5AcQkRNAT2NMlIPHyBzLlkGfPtZgAvv2QfHiiRbA4lUpmptpAxvdtDwmBt56C1583Rpw\n4/vvoVOnQkChdAxeKS+0YgWsXQtDhtxQk5xWlSpBkybWjBAjRug0DipF/ptPpbfWrWnDp7y2rQH/\n/gt58mR2QEop5ducHJhjIjDcGFPKGFMK+I+9zHedPw9Dh1oN4I2BhQutApgbtm+3/ll87jm45x6I\nirIG4lAqS+re3ZqFfOFCj5Pq08fqU/nbbw7Epfyd/+VT6Sy+f2TXufupUWAbsXEBtH92h7XMfkxZ\n49lop0oplRU5WQgLNcYsjX9hjIkEQh1MP2NduAC1asG771ozJW/d6lZv5CtXYOxYK6k9e2DaNPju\nOyiklV8qK/u//4OCBa2J8DzUpQuEhsKkSQ7Epfydf+VT6SzhkPXB1QII4TzHo683R4wfxl4ppVTa\nONkcca+IjAK+sl93B/Y6mH7GuHwZsme3JiLq2xcaNnR7KKhVq6B/f9i2zfpH8Z13nBs8QCmflj07\n9Ohh3eQ4dgwKF3Y7qbAw6NrVusHx9tvWJM5KJcE/8qkMclP/yDaFad4zjgPHijNtoDUti/aRVEop\n9zhZE9YHq3PT9/ajkL3MNxhjzfxatiysXGkte/pptwpgVy8GMmiQ1fzwzBn44QfrH0QtgCnlon9/\n6ybHsWMeJ9W3r9V6ePp0B+JS/sy386nMVrYsbTrlYvt24bBWfimllEccqwkzxvwDDBGRXNZLHxp1\n6sABePxxmD/fajcY6n7rlMOb87Hx23Au/QuDB1tNEfXOvFKJqFQJli93JKlGjazkPvvM6iOmVGJ8\nOp/yEm3CVgMNWbzYqsyGm+fV03n0lFIqZY4VwkSkOvAlvjbq1LvvwrPPWsOqjR9vlZyCEn9bkpsD\n7Nzx7GyeXpojWyuRp/h5In/JTv366Rm4Un7i+HG4eNHtCc/B+vr26WNNeL59O1Su7GB8ym+4m0+J\nyCSgA3DMGFPNXpYfmAaUBvYDXexCnl+rfugnClKWRT/moUeP4JumU9F59JRSKnWcbI74Mb446tSJ\nE9C6tdVx64knkiyAwfU5wFzFXAkg6ocS/PxSBMd25qFG5wO8O+2kFsCUSo2YGKhaFUaO9DipHj2s\nr+/nnzsQl/JX7uZTk4E7Eix7BlhsjCkPLLZf+72ANq25jcUsWhCHMVZha9rARtceyc2RqZRS6jon\nB+a4adQpEfG+UacOH7Zul3frBh06wIsvQkBAqicYip8DzBiYOxeGDYP9++GBB6z5Z4sXL5W+8Svl\nT4KC4L77rJLTO+9YE+i5qUgR6yv9xRfwyiuQLZuDcSaQsPlVYrRJlldyK58yxiwTkdIJFncEWtrP\nvwAigacdidKbNWxIm+AnmPbPA2zfDlWqZHZASinlm5ysCdsrIqNEpLT9GIk3jTp1+TK8/jpUrAgz\nZ1oTL4M1UWwaZ3j94w9o396a7yskBJYsgalT3Z5CTKmsrV8/uHQJpkxxJKljx2D2bAfiSkLCYbsT\no8N2ey0n86kixpij9vO/gCJJbSgiA0RkvYisv3r1qpuH8xLZs9Om4XkAFi3K5FiUUsqHOVkT1gd4\nCWvEKQMsx1tGnVqwwBp4Y/duq+Q0fjyEh6c5mcvngoieX4KqgyBnTiuZQYPS9467Un6vdm1rQJxP\nPoHHHkvzTRFXd9wBpUvDhx/C/fc7F6Krm4btToQO2+210iWfMsYYETHJrJ+I3ewxf6nKSW7nK0r/\nX3XKrtjHop9LMGSIZoBKKeUORwphIhIIPG+MGeJEeo6LjrZqvH75BW6/Pc27X74MH3wAP75Qi5iL\ngfTrB2PG6JDzSjmmf3+rALZtG1Sr5r9afEQAACAASURBVHYygYEwcKA11o4O0KFcpUM+9beIFDXG\nHBWRooDncy34isGDabMrmClThZiYZLtSK6WUSoIjzRGNMbFAUyfSciUi+0XkdxHZLCLrU73jwYPQ\ns6fVOQSsWrCtW9NcAIufOqxKFfjPf6BA6XPcPnILEydqAUwpRz30EGze7FEBLF6fPhAcDBMmOBCX\n8hvpkE/NBXraz3sCcxxM27tlz06btsLZs7BuXWYHo5RSvsnJ+1ebRGQuMB04H7/QGPO9h+m2Msac\nSNWWsbHwzDPw9tvW6+rVrb+pbC/oOgT98V252DqrJCf35iZPsQs0H7yfU/n/JI+O/KSU83Lnhpo1\nHUmqcGGrKeLkyfDqqx5N+6f8j1v5lIhMxRqEo6CIHAJeBF4HvhORvsABoEt6Be2NWv35JUJ3Fi0U\nGjVyvwmxUkplVU4WwnIAJ4HWLssMVtv7jPH779bd9IcftmZJTuO8Q3M2H2bDBji3sjJ/R+clR54r\n1HloD+GNjxEQCLeQ+6Y5UZRSDrl6Ffr2hTp1YOhQj5J69FH45htrwJx+/RyKT/kDt/IpY0y3JFbd\n5lBcPqdA2GVqs5FFP1Rh1AshmR2OUkr5HMcKYcaY3k6l5ZossMDu8Pyx3bn5BiIyABgAUD1HDqtt\nRK1aaT7Qtm2wckIFDm8uQIEC8NZb8PjjweTMWRYo6+FpKKVSlC0b/PknLF9ujXgTGOh2Uo0bQ40a\n1gAdfft6NNaH8iPplE9lTbfdxm1M53+banHuHISFXV+VcAoHna5BKaVu5uQQ9emhqTGmNnAn8LiI\nNE+4gTFmojGmrjGmbnDVqmkugO3ZY1WcVa8Of+/IQ9UOf7J3L4wYYY2AqJTKQIMGWRPvzZ/vUTIi\nVm3Ypk2wdq0zoSmlXJQpQ5tbtnE1NpDly68vTjiFw5p9p3hu1u90/XjVtceUNQczIWCllPIuXj2m\nkTHmsP33mIjMAuoDy5xIe+dOeO01+Ppr6wb8iBHwR5FNZA+LIXfuW504hFIqrTp2hBIl4P334e67\nPUrqoYesednfew8aNHAoPqXUNU3vCCP75EssWhDMnXda93QTTuHg2tcarFqy+O2UUior89pCmIiE\nAgHGmLP289uBMe6mF58RnD4cwvafivPnhgIEBsVRpsUxKt1+mAN5r7Ln6BmqhOnAG0plmqAgeOQR\nGDkSduyASpXcTipXLqs/2HvvwRtv6GTqSjkt57130eTHXSxaWJmkGtYkLJTpHHpKKWVxrDmiiBQR\nkc9E5Cf7dRV71Ch3FQFWiMgWYC0w3xjzs7uJfT7nND/9rwwLXq7J0d/zUen2I7R/ZRO1uuwnZ96r\nAFQpqgNvKJXp+veHAQMgRw6PkxoyBOLirIKYUumQT2VtHTrQZlh1tm4L4u+/MzsYpZTyLU7WhE0G\nPgeet1//AUwDPnMnMWPMXsCjMauNgSVLrEE2Fv1Sg2whMYweDYMHB5I/f3FAC1xKeZ3CheHjjx1J\nqnRpuPdeK7mRI28cPEBlSZNxMJ9S0KYNPPccLFwI3btndjRKKeU7nByYo6Ax5jsgDsAYEwPEOph+\nql29avX1ql3byiA2bYLqnQ7Q4ZWNvPgi5M+fGVEppdJk7VqYO9fjZIYPh9OnrXnDVJbnNfmUv6iz\n9iMK8zfzZ1zI7FCUUsqnOFkIOy8iBbCGlUdEGgL/Oph+imJj4c03ITzcGvHw8mX49FM4cAAqtztC\ntpya1yrlM55/3hri8MoVj5Jp2BAaNYL//c/6jVBZWqbnU/4moFkT2jOfnxcGcvVq6vaJH8JeR0tU\nSmVlThbChgNzgbIishL4EhjsYPop2roVnn4aKla0RriOirLmCHKga4lSKqONGAFHjsCUKR4nNXw4\n7N3rSMWa8m2Znk/5nerV6ZB/FacvZOe331LePOEQ9tFHz9wweqJSSmUVjvQJE5EAIAfQAqgICLDT\nGJPK+2LOyJsXFi1ya65mpZS3uf12a8blceOgRw8IcP+e0T33WP3Dxo+HTp2cC1H5Dm/Jp/yOCG3/\nLwfZvrjCD3MCadEi+UnWdbREpZSyOFITZoyJAz4wxsQYY7YZY6IyI2MLD9cCmFJ+Q8SqDdu2DX76\nyaOkgoJg2DBYsYJU3a1X/sdb8il/lOue22hJJPNmXPY4rSlrDt7QVFGbKyql/JWTzREXi8i9IiIO\npqmUysoeeAAqVICDnv8T1q8fFCwIL7/sQFzKV2k+lR5uu40O94ew888Qdu3yLKk5mw9fm9AZtLmi\nUsp/OVkIGwhMBy6LyBkROSsiZ1LaSSmlkpQtm9W589FHPU4qNBT+8x/4+WdYt86B2JQv0nwqPeTK\nRYfXmwJWf2xPVSmam2kDGzFtYKMb+o8ppZQ/cawQZozJZYwJMMYEG2Ny26/111Mp5Zls2axJ/xwo\nOT32GOTLB6+84kBcyudoPpV+yhQ+R5Vi//DDNB2qXimlUsPJmjBEJJ+I1BeR5vEPJ9NXSmVR334L\n9evDsmUeJZM7NwwdCnPmWKOpqqxH86l0cv48HY9M4Nc1OTh+PG27ug5Z79oUUSml/JljhTAR6Qcs\nA34BXrL/jnYqfaVUFnbPPVCkCIwZ43FSQ4ZArlwwdqwDcSmfovlUOipShC61dxNrApg1K/W7JRyy\nvkrR3HSMKJ4OASqllHdxZIh621CgHrDaGNNKRCoBrzqYfor2Hj+f5HC30UfPaNtypXxVzpzw1FNW\np66VK6FJE7eTypfPqg0bOxY2bdIRVbOYTM+n/FnNh2tQbuMupn9RnAEDQlK1T8Ih69NqypqDNw3c\n0TGiuEdpKqVURnCyOeIlY8wlABHJbozZgTUXS4a5eDU2yXV6d00pH/fII1Zt2PPPW33EPDBiBOTP\nD88+61Bsyldkej7lz6RzJ7rwHUtWpb1Jort0NEWllK9ysibskIjkBWYDC0XkH+CAg+mnKGe2QKYN\nbJSRh1RKZZSQEHjhBXjuOdi/35oY0E158ljJjBgBS5dCq1bOham8muP5lIjsB84CsUCMMaaux1H6\nqpIl6VI1mle3BfD99zBwoDPJxvcZi5ewpit+NEXQyZ+VUr7DydEROxljThtjRgOjgM+Ae5xKXyml\n6N8f9uzxqAAW7/HH4dZb4ZlnPK5YUz4iHfOpVsaYiCxdALPVWPoO5csbpk93Jr2Efca0pksp5S8c\nqwkTEdcG2Pvsv7cAOtW9UsoZ2bJBgQIQFwcHDnhUGMuRA156Cfr0gVmzoHNnB+NUXknzqfQnhQrS\npQu89prhyBGhWDHP0kvYZyx+BMX4Gi/t762U8lVONkecDxhAgBxAOLATqOrgMZRSymrn9OOPsGuX\n1UzRTT16wLhx8PTT0L49ZM/uYIzKG6VHPmWABSJigI+NMRMTbiAiA4ABAGFFy3pwKN/QI+BrXonr\nzpdfxPHMs47OhHNT3+6U+nvrwB1KKW/lWCHMGFPd9bWI1AYecyp9pZS6plcv+PRTePNNGD3a7WQC\nA+F//4N27WD8eGcH6kjYjyUh/Ucw46VTPtXUGHNYRApj9TPbYYy5YUI7u2A2ESB/qcp+3/i1QpUg\nmrGMSR/W5elnQhBxLu20jqYYP3BHfG1Z/CAe+t1TSmU2Z29RuTDGbAQapFf6SqksrEkT6NYNXn8d\ndu/2KKnbb7eaIo4dCwcdapSWsB9LQtqvxTs4kU8ZYw7bf48Bs4D6DoTm2zp2pE+OKew6FMKKFZkd\nzPWBO6YNbKRNF5VSXsPJPmHDXV4GALWBI06lr5RSN/jvf2HePBg0CH76CU9ut48fbyUxYgR8953n\noaV0t15HcMscTudTIhIKBBhjztrPbwc8n1Hc1+XMyf0PZWfwZ2eZ9GE2mjXLkdkRJUmbKyqlMouT\nNWG5XB7Zsdred3QwfaWUuq5oUXj5Zfj9dzh61KOkSpWyhqyfPh0WLXIoPuWNnM6nigArRGQLsBaY\nb4z52eMo/UDosP50YyrTZgZy8mRmR5O0tM4zNmXNQbp+vOqGx5Q1Oq6LUirtnOwT9pJTafmbsLAw\nzp07d9PyXr160aFDB+677740pzl69GjCwsIYMWJEqo595MgRhgwZwowZMxLd7vTp00yZMoXHHku6\ne0Tjxo357bffiIyMZNy4ccybNy/V8c6ePZsKFSpQpUoVAF544QWaN29OmzZtUp2GUjd5/HHo3Rty\ne97EaMQI+OILa8yPLVsgLMyB+JRXcTqfMsbsBWo6mabfqFaNIY8t55MPszFhgjXHurdKOM9Ycv05\n1+w7BUCD8PyA9jFTSrnPyeaIP2CNEpUoY8zdTh1LpV2xYsWSLICBVQj78MMPEy2ExcTEEBQUxG+/\n/eb28WfPnk2HDh2uFcLGjNEWO8oBQUFWAezKFfj5Z7jb/Z+ZHDlg0iRo0cKaO+z99x2MU3kFzacy\nVrUPHqXdHuu7NGKEb4w+mtxIi2AVvlybK2rTYqWUu5wcon4v1nwrX9uvuwF/A7MdPIbnWra8eVmH\nDlYO4c76yMhUH9oYw+DBg1m4cCG33norwcHB19Zt2LCB4cOHc+7cOQoWLMjkyZMpWrQon3zyCRMn\nTuTKlSuUK1eOr776ipBkhuTet28fDz74IOfOnaNjx+utbPbv30+HDh2Iiopi27Zt9O7dmytXrhAX\nF8fMmTMZNWoUe/bsISIigrZt29K+fXtGjRpFvnz52LFjB3/88ccNNXpnzpyhffv27N69m1atWvHh\nhx8SEBBwwzYzZsxg3rx5DBgwgLlz5/Lrr78yduxYZs6cycsvv3ytFnDx4sWMGDGCmJgY6tWrx0cf\nfUT27NkpXbo0PXv25IcffuDq1atMnz6dSpUqpfr9VlnI++/Df/5jFcTatXM7mWbNYOhQePtta7CO\n1q0djFF5A9/Ip/zI8K6HafdLcb752tCnr4PDJCYjpXnEkluf1tEXlVLKXU4WwpoYY+q6vP5BRNYb\nY55w8Bg+bdasWezcuZPo6Gj+/vtvqlSpQp8+fbh69SqDBw9mzpw5FCpUiGnTpvH8888zadIkOnfu\nTP/+/QEYOXIkn332GYMHD07yGEOHDuXRRx+lR48efPDBB4luM2HCBIYOHcpDDz3ElStXiI2N5fXX\nXycqKorNmzcDEBkZycaNG4mKiiI8kQlx165dS3R0NKVKleKOO+7g+++/T7JZZePGjbn77rsTbXp5\n6dIlevXqxeLFi6lQoQI9evTgo48+YtiwYQAULFiQjRs38uGHHzJu3Dg+/fTTlN9olfU89hh89hn0\n7Wv1EcuXz+2kXnkF5s+3JnH+/XfIlcvBOF2kNIR9aukgAmmi+VQGayuLqENVxjxXhYe6h6R7bVhK\n84ildZ4xT+nAH0qppDhZCAsVkTJ2G3lEJBwIdTB9Z6RUc+Xp+mQsW7aMbt26ERgYSLFixWht32bf\nuXMnUVFRtG3bFoDY2FiKFi0KQFRUFCNHjuT06dOcO3eOdinc5V+5ciUzZ84E4OGHH+bpp5++aZtG\njRrxyiuvcOjQITp37kz58uUTTat+/fqJFsDi15UpUwaAbt26sWLFCrf6tu3cuZPw8HAqVKgAQM+e\nPfnggw+uFcI6d+4MQJ06dfj+++/TnL7KInLkgC+/hIYNoV8/mDHD7dESQ0Jg8mSrVuyxx6xknZzn\nCFJu8pRa2h8lzXwjn/Ij8tCDvPZsX27/60smTohj8NB0mxkHSLkmK71ruhIWurQPmVIqKU4Wwp4A\nIkVkLyBAKWCAg+n7LWMMVatWZdWqm++K9+rVi9mzZ1OzZk0mT55MZCoKgZLCf4wPPvggDRo0YP78\n+dx11118/PHH1wpUrkJDk/7fJOEx4l+7Lr906VKKsaYku33bNDAwkJiYGI/TU36sTh144w2rWeJ7\n78GQIW4n1bgxvPii9WjRwirXOcmpfwS1P0qaaT6V0bJlo834u2j14BJeHtWIh3vmJG/ezA7KWa61\n2gkLXdqHTCmVFMduSdnD8pYHhgJDgIrGmAVOpe8PmjdvzrRp04iNjeXo0aMsXboUgIoVK3L8+PFr\nhbCrV6+ybds2AM6ePUvRokW5evUq33zzTYrHaNKkCd9++y1Aktvv3buXMmXKMGTIEDp27MjWrVvJ\nlSsXZ8+eTfW5rF27ln379hEXF8e0adNo2rQpAEWKFGH79u3ExcUxa9asa9snlX7FihXZv38/u+0J\nd7/66itatGiR6jiUusETT8Cjj0K9eh4n9fzz0LatNQ2Z3UpX+TjNpzKHPNCVcbWncvJsME8P9fzm\nnDdJODF7g/D8vNqp+rXJoacNbKS1XkqpRHlcCBOReiJyC4Ax5jLWcL1jgLdEJL+n6fuTTp06Ub58\neapUqUKPHj1o1MgaEjc4OJgZM2bw9NNPU7NmTSIiIq6NRPjyyy/ToEEDmjRpkqpBKd555x0++OAD\nqlevzuHDic918t1331GtWjUiIiKIioqiR48eFChQgCZNmlCtWjWefPLJFI9Tr149Bg0aROXKlQkP\nD6dTp04AvP7663To0IHGjRtfa1IJ8MADD/DWW29Rq1Yt9uzZc215jhw5+Pzzz7n//vupXr06AQEB\nPPLIIykeX6lEicCHH4L93eLiRbeTCgyEr7+GggWhY0f46y+HYlQZTvOpTCZC7clDeKLCj0z8Modf\nzcX3YIOSNxS4tNCllEotMSbJ0XpTl4DIRqCNMeaUiDQHvgUGAxFAZWNM2jsKuSl/qcrm1IHtGXU4\npZQ3GzMGZs2CFSsgmaa1Kdm40eofVr06LF0KOXM6GKOH4ps2xc9xlBWIyIYEg2ukZh/Np7zAhQtW\nJfXx44aNG4USJTI7oowXPw9ZwhEbM2KwjpaTWwIQ2SsyXY+jVFaX2nzKieaIgcaYU/bzrsBEY8xM\nY8wooJwD6SulVNrVqwdbt0KXLtY8Ym6qXRu++QbWroUHHwTtmuiTNJ/yAiEhMGPCCS6evMBdzc5w\n6lTK+/ibhM0XwepH9tys3+n68aprjylrDmZShEqpjOJIIUxE4gf4uA1Y4rLOyYE/lFIq9e68EyZM\ngB9/hO7dPSo93XOPNXfY7NnQuzfExTkYp8oImk95icoR2ZlVZgR/7A+mde3THMxiZY3Emi++2qn6\ntYE8wBroI+Gw9kop/+NE5jMV+FVETgAXgeUAIlIO+NeB9JVSyj39+8PZs9aIiTlzWmPPuzne/JAh\nVlIjR0L27PDxx1a/MeUTNJ/yFrly0Wb1WOY0f44u0S9Sp+JZ3nk/kG59QhyfCsJXJBwtVUdQVCpr\n8LgQZox5RUQWA0WBBeZ6J7MArDb3SimVeYYPh0uXIE8ejyf8eu45uHwZXn4ZTp+2mimm9+SzynOa\nT3mZAgVot+FV1gz8Hz2+vI2H+tXnTXtWiY4doUCBzA5QKaXSnyPNMIwxqxNZ9ocTaSullMeee+76\n819/hUqVoEiRNCcjYo33kTevVbl28iRMn26NoKi8m+ZTXiZHDip98SyrBm3kq1/+5K2pt9K3Lwzo\nG0O9QgeoX/0CdRsFU6lpQcrVz0++/Fm0moybJ4CGjBnIQymVvrQtfAb466+/GDZsGOvWrSNv3rwU\nKVKEt99+mwoVKmTI8Tdv3syRI0e466670rRfy5YtGTduHHXrJj3AS2RkJOPGjWPevHnMnTuX6Oho\nnnnmGbfiWL9+PV9++SXvvvsuo0ePJiwsjBEjRqQ63rfffpsBAwYQEhICwF133cWUKVPI628zgyr3\nXbwIXbtCtmzWyInJfLaTM3w4FC5sTeJct67VVywiwuFYlcoCAuvVplc96Pk8bPgiilljt7HsQEk+\nXVKDd5dcH9U0f34oU+QcxS/spniRqxQvEUDxMtkpXikXxeoUpXh4MLlze1zZ7TWSmwB6zb5TrNl3\nKtl+Y+lZSNNCoVLO0EJYOjPG0KlTJ3r27HltEuUtW7bw999/p6oQFhMTQ1DQ9ctkjMEYQ0BA6sdU\n2bx5M+vXr09zISyt7r77bu6++2634oiJiaFu3brJFvhS8vbbb9O9e/drhbAff/zR7bSUn8qZE376\nyRppo3Fjq13hiBFude7q3h0qVoROnaBhQ3jtNRg6FNLw1VRK2USgbq9q1O1VDYwhZs8B/liyiV3r\nTrO7aDN2H8/DvlXn2PNHMMsOlOSftTdP7xaWM4aSAYcomfcMJQtfpuSthpLlgil5W3kq1Arlllt8\no5DWMaL4Da8bhOe/oZCTWCHIVfTRMwDpViias/nwDcPsp/fxlPJXWghLZ0uXLiVbtmw3TEBcs2ZN\nwCpQPfXUU/z000+ICCNHjqRr165ERkYyatQo8uXLx44dO1iwYAHt2rWjQYMGbNiwgR9//JGdO3fy\n4osvcvnyZcqWLcvnn39OWFgY69atY+jQoZw/f57s2bOzcOFCXnjhBS5evMiKFSt49tln6dChA4MH\nDyYqKoqrV68yevRoOnbsyMWLF+nduzdbtmyhUqVKXExiotuff/6ZYcOGERISQtOmTa8tnzx5MuvX\nr+f9999n+vTpvPTSSwQGBpInTx4WLVp0Uxzbt29nz5497N27l5IlSzJw4MBrtWpgFVYbNWrEiRMn\neOqpp+jfv/8NNW8AgwYNom7dupw5c4YjR47QqlUrChYsyNKlSyldujTr16+nYMGCjB8/nkmTJgHQ\nr18/hg0bxv79+7nzzjtp2rQpv/32G8WLF2fOnDnk9KaJoJTzatWCDRvgkUfgmWdg7lxYsMCtucTq\n1bPmEevf36odmz3bmiu6atV0iFuprEKEoHKlqVKuNFUGuK64xXpcvszFvfs5suU4h6P/5XDJhhz5\nN4w/Iw/w58qDHDyWjw2HS3F8U2Frt/HWn7yhV6iSbTdVSpyhShWIuK0Ade4tTe4C2TL4BJOXcKCO\ntK7PiIE9qhTNfW1+Qh1IRCn3ZKlC2LBhsHmzs2lGRFhDVyclKiqKOnXqJLru+++/Z/PmzWzZsoUT\nJ05Qr149mjdvDsDGjRuJiooiPDyc/fv3s2vXLr744gsaNmzIiRMnGDt2LIsWLSI0NJQ33niD8ePH\n88wzz9C1a1emTZtGvXr1OHPmDCEhIYwZM+Za4Qjgueeeo3Xr1kyaNInTp09Tv3592rRpw8cff0xI\nSAjbt29n69at1K5d+6aYL126RP/+/VmyZAnlypWja9euiZ7bmDFj+OWXXyhevDinT58mODj4pjhG\njx5NdHQ0K1asIGfOnERGRt6QxtatW1m9ejXnz5+nVq1atG/fPsn3eciQIYwfP56lS5dSMEEHnQ0b\nNvD555+zZs0ajDE0aNCAFi1akC9fPnbt2sXUqVP55JNP6NKlCzNnzqR79+5JHkf5iYIFrc5cX38N\nS5ZcL4CdOQO5cye/bwKFC1uFr8mTrX5iNWvC44/Ds8/CLbc4H7pSWV727OSsXJqylUtT1nX5f8pC\n/JKYGC7uO8Sfm05wILQKO/cFEz1rH9FrLjA3KpxPo4rAdyAD46hY7ir1GmWjfqm/qF/1AhH3lCY4\nh/9UacfXnEWftGqsun68Kk3NBxPWvCU22bRr88nEON1cMas3ifTG808pprTG7I3n6DT/+ZXxQStW\nrKBbt24EBgZSpEgRWrRowbp16wCoX78+4eHh17YtVaoUDRs2BGD16tVER0fTpEkTIiIi+OKLLzhw\n4AA7d+6kaNGi1KtXD4DcuXPf0JQx3oIFC3j99deJiIigZcuWXLp0iYMHD7Js2bJrBZAaNWpQo0aN\nm/bdsWMH4eHhlC9fHhFJssDSpEkTevXqxSeffEJsbGyS78Hdd9+dZM1Tx44dyZkzJwULFqRVq1as\nXbs2yXSSs2LFCjp16kRoaChhYWF07tyZ5cuXAxAeHk6E3ZmnTp067N+/361jKB8kAg8/DJ9/br3e\nuxeKFYNHH7WepzGp3r3hjz9gwAB4/30ID4dBg0A/UkplgqAgcpYvQYUuEbRtH8ygQfDh4opEnqvL\n3zEFObZ6Lz8/E8lLzRZTvnIQCxbA4LG30KBbGXLnvEKTvNv4T8MVTH9mA4f+NCkfz4vFNx+Ml9Z5\nyBLuX6Vo7huaTCY2AbWr9Jj3zNNz8nXeeP4pxZTWmL3xHJ2WpWrCkquxSi9Vq1ZlxowZad4vNEHT\nKNfXxhjatm3L1KlTb9jm999/T1XaxhhmzpxJxYoV0xxXak2YMIE1a9Ywf/586tSpw4YNGxLdLuF5\nupIEjfdFhKCgIOJcZsq9dOmSR3FmdxlfPDAwMMkmmCoLyJHD6ug1aZI1CVirVtCjB3TpYvUlS4WC\nBa3miMOHw5tvwsSJ1uvbbrOS6tQJwsLS+TyUUskLDKRQgzK0a1CGdvYiY+DQiv2s+XYfq1fGsGp3\nIT5YU5fxa3LAG1C8ODQqtIuGpf+m4V35qdO1HDlyB2fqaaRFlaK5KZDdKigVuZy22v74/eObHyaU\nWc0js3qTSG88/5RiSmvM3niOTvLqmjARuUNEdorIbhFJfMg9L9e6dWsuX77MxIkTry3bunUry5cv\np1mzZkybNo3Y2FiOHz/OsmXLqF+/foppNmzYkJUrV7J7924Azp8/zx9//EHFihU5evTotdq0s2fP\nEhMTQ65cuTh79uy1/du1a8d7771H/FQ5mzZtAqB58+ZMmTIFsJpRbt269aZjV6pUif3797Nnzx6A\nmwqC8fbs2UODBg0YM2YMhQoV4s8//7wpjpTMmTOHS5cucfLkSSIjI6lXrx6lSpUiOjqay5cvc/r0\naRYvXnxt+6TSb9asGbNnz+bChQucP3+eWbNm0axZs1THobKIYsVgwgSrFmz0aDhwAHr1glPWyGRs\n3gxr11oThaWgXDmrALZ3L7zwAuzZYxXCChSANm1g3DhYty5VSSkv5w/5lLJqs29tVpr7PmjFuM1t\nWXkugjOnYlk7bR/vvAPNm8OG7SGMmN2UpgOqkDsP1A+LZkiT9UydCvv2WQU5pZRKLa+tCRORQOAD\noC1wCFgnInONMdGZG1naiAizZs1i2LBhvPHGG+TIkYPSpUvz9ttv07RpU1atWkXNmjUREd58801u\nueUWduzYkWyahQoVYvLkyXTr0ln4WAAAIABJREFU1o3L9n9xY8eOpUKFCkybNo3Bgwdz8eJFcubM\nyaJFi2jVqtW15ofPPvsso0aNYtiwYdSoUYO4uDjCw8OZN28ejz76KL1796Zy5cpUrlw50b5sOXLk\nYOLEibRv356QkBCaNWuWaMHnySefZNeuXRhjuO2226hZsyYlS5a8IY6U1KhRg1atWnHixAlGjRpF\nsWLFAOjSpQvVqlUjPDycWrVqXdt+wIAB3HHHHRQrVoylS5deW167dm169ep1rYDbr18/atWqpU0P\nVeKKF7dKTqNGwaZN1muAF1+0BvHIls3q+FWlivV4+mlr/YkTEBJiPWwlSljluRdegJUrYc4c+Pln\nePJJa31wMNSoYSVTvrxVeCtTxprCrHDhVFfAqUziL/mUSlxwvlDqdQmnHtZE0lCcvzYeYc20/ayO\nvMSqnfn4bG113nvQ2r5I0Amq5zlIuVvOU65sHOWq5qB00xIUqV2cggUhkd4BSqksTIyX3roRkUbA\naGNMO/v1swDGmNeS2id/qcrm1IHtGRShUipLOXwYVq+2qrDWr4edOyFXLoi2/99u3RqWLrUG+ShU\nyGp3WKmSNQAIwNixsHs3BAVx6GIBVp8ox7oLVVkf3Jg//oBDh24+ZFj2KxQqFkxYGIScP0Zo3DlC\ng68Qmu0q2YNi2HvmClH5ipE/LBsl/t5H6JWzBGAIkDgCJZar2bNzpnpNWlQoDJs3wb9nbjxAaAhi\n9yFNdH1ICFLfXr9pkzVwSXLr//33htUSGgL2zY8GDaBdOzwmIhuMMe7PZeEgzadUTAxERcGqX6+w\n+r217Diah90Xi3PK3DiEvoihICcpHPwPuYIvE5rtCqHBVwktVYjQ6mXIHhRLwKqVBAYYAgMMAYEQ\nGACBpUoQUKEcASYWWbH85gBuLQFly0FsDCxfAUDUkTNcuBJDSHAQp/IVIipHIQqHBnG2wj3k/3c/\n702tTqwxBNptoVaXbc7aQf8HwJAnnrzpEItKNCb6P52YNrARm/O2vGn96aYdaDnPmtMzsfWLb23M\n5HtbUKVo7kTTT+n4ia2PjbPen9DgIE437cBH/9eE6KNnmPDmy46k7+3rvfH8448fGmzdbTh/JYbY\nOFhXPnXrE6Yff45XW99Dy3kj6PrxKh4f+uS1z21i8T0x/ClyZLtxypmUPp+u652S2nzKm+/LFAf+\ndHl9CGiQcCMRGQAMAMhXrEzGRKaUynqKF4d777Ue8a5evf588GC4/XY4dgyOH4fz5632h/G2bLGa\nM8bGUiImhvtiY7mvfHlY/BsAF5rfwd7f/mJ/7K0co7D1CKvE8SY9OXcOLkTu4/zpq5wilPOEcok8\nxARm5+LJfByKE05cyElcnBBL4A0Ps11YDmBq3nRKhgD4Kf5VrZvWAymv/zGF9fOtP8OGOVMI8zKa\nT2VxQUHWKMkREcE8OtSessUYTu05xZ6Vf3HgVC7+Dr6VY4eu8vecaI6dDubc5SDOXw3mxIVQzl/N\nx/mDcOWyEHuqBrEEEEfA9e/wmiDiDEAg0DK5SJJdfwygcF7yAkGBgp1oqoRlD7pp7rK0uCVPjmQH\n7nBHYABkc/lv3JP4fJE3nn+VorlviMl6Hpfq9QnFn2N8LtsxovhNBTBf5801YfcBdxhj+tmvHwYa\nGGMGJbVP3bp1zfr16zMqRKWU8m7GXJ+dNrHfemOuzy4dl0RmmMx6Y5Jef+1wLrNXOzGRtZfVhGk+\npTKESa7QJGJ94ZL6fy4gAIyh1RetQGBpz0ifmLRaKV/lDzVhh4FbXV6XsJcppZRKDdf/tBL7r8t1\nWUolpETW35BigluUWeR/PM2nVIaQgBS+USIk+60TubZaC2BKeQdvrthbB5QXkXARCQYeAOZmckxK\nKaVUPM2nlFJKucVra8KMMTEiMgj4Basx9CRjzLZMDksppZQCNJ9SSinlPq8thAEYY37Epdu3Ukop\n5U00n1JKKeUOb26OqJRSSimllFJ+RwthSimllFJKKZWBtBCmlFJKKaWUUhlIC2FKKaWUUkoplYG8\ndrJmd4jIv8CuNOySB/jXoe2S2yapdYktT7isIHAiFTGml9S+R+mRjlPXJ72uDWTu9dFrk/wyvTae\nbeet16aUMaaQm/tmOhE5DhxIZJUn+YyT+YYnn113P1NOf0bcPQcnrwG4fw56DdzbxleuQXLb6Hc5\nbXF4sl96nkPq8iljjN88gInpsX1qtktum6TWJbY84TJgvS+9p06m49T1Sa9rk9nXR6+NXhu9Nv7z\n8CSfcTLf8OSz6+5nyunPiLvn4OQ18OQc9Br49zVIyznod9m3P0cpPfytOeIP6bR9arZLbpuk1iW2\nPK3nkN6ciseddJy6PnptnE9Hr03y9Nqk/jjK4kk+4+R77Ela7n6mnP6MuJueXgPn6DVwbxtfOQf9\nHDnAr5oj+iMRWW+MqZvZcajE6fXxXnptvJdem/TlD++vnkPm8/X4wffPwdfjBz2H5PhbTZg/mpjZ\nAahk6fXxXnptvJdem/TlD++vnkPm8/X4wffPwdfjBz2HJGlNmFJKKaWUUkplIK0JU0oppZRSSqkM\npIUwpZRSSimllMpAWghTSimllFJKqQykhTAfJyKhIrJeRDpkdizqOhGpLCITRGSGiDya2fGoG4nI\nPSLyiYhME5HbMzsedZ2IlBGRz0RkRmbH4q98Pd/w9d9Xf/j98cXvqf25/8J+7x/K7Hjc4Yvve0K+\n/vl38vdHC2GZREQmicgxEYlKsPwOEdkpIrtF5JlUJPU08F36RJk1OXFtjDHbjTGPAF2AJukZb1bj\n0PWZbYzpDzwCdE3PeLMSh67NXmNM3/SN1Df5Q77h67+v/vD740/f0zSeS2dghv3e353hwSYhLefg\nLe97Qmk8B6/Lf9MYv2O/P1oIyzyTgTtcF4hIIPABcCdQBegmIlVEpLqIzEvwKCwibYFo4FhGB+/n\nJuPhtbH3uRuYD/yYseH7vck4cH1sI+39lDMm49y1UTebjO/nG5Px7d/Xyfj+789k/Od7OplUngtQ\nAvjT3iw2A2NMyWRSfw7eajJpPwdvyn8nk4b4nfr9CfJkZ+U+Y8wyESmdYHF9YLcxZi+AiHwLdDTG\nvAbc1GxERFoCoVgfjosi8qMxJi49484KnLg2djpzgbkiMh+Ykn4RZy0OfXcEeB34yRizMX0jzjqc\n+u6oxPlDvuHrv6/+8PvjT9/TtJwLcAirILYZL6qESOM5RGdsdKmTlnMQke14Wf6b1mvg1O+PFsK8\nS3Gu36UB6wejQVIbG2OeBxCRXsAJLYClqzRdG/sfnc5AdrQmLCOk6foAg4E2QB4RKWeMmZCewWVx\naf3uFABeAWqJyLP2P4Eqaf6Qb/j676s//P740/c0qXN5F3hfRNoDP2RGYGmQ6Dl4+fueUFLXwRs/\n/4lJ6hq0xKHfHy2E+QFjzOTMjkHdyBgTCURmchgqCcaYd7EyZOVljDEnsfoKqHTky/mGr/+++sPv\njy9+T40x54HemR2HJ3zxfU/I1z//Tv7+eE11rALgMHCry+sS9jKV+fTaeDe9Pt5Lr0368of319fP\nwdfjB/84h3j+cC56Dpkv3ePXQph3WQeUF5FwEQkGHgDmZnJMyqLXxrvp9fFeem3Slz+8v75+Dr4e\nP/jHOcTzh3PRc8h86R6/FsIyiYhMBVYBFUXkkIj0NcbEAIOAX4DtwHfGmG2ZGWdWpNfGu+n18V56\nbdKXP7y/vn4Ovh4/+Mc5xPOHc9FzyHyZFb8YY5xMTymllFJKKaVUMrQmTCmllFJKKaUykBbClFJK\nKaWUUioDaSFMKaWUUkoppTKQFsKUUkoppZRSKgNpIUwppZRSSimlMpAWwpRSSimllFIqA2khTPk8\nEblHRIyIVMrsWJIiIs9ldgxOEZFHRKRHGrYvLSJRadheRGSJiOROZptvRaR8atNUSqnM5o95lYhE\nikjd9DxGGtO+W0SeSeM+59K4/QwRKZPM+nEi0jotaaqsSQthyh90A1bYf9OViAS5uatfFMJEJMgY\nM8EY82U6HuYuYIsx5kwy23wEPJWOMSillNM0r0rHY9j501xjzOvpkb59jKpAoDFmbzKbvQekqSCo\nsiYthCmfJiJhQFOgL/CAy/KWIrJMROaLyE4RmSAiAfa6cyLyPxHZJiKLRaSQvby/iKwTkS0iMlNE\nQuzlk+391wBvikioiEwSkbUisklEOtrb9RKR70XkZxHZJSJv2stfB3KKyGYR+SaRc+gmIr+LSJSI\nvOGyPKk4y9rH2CAiy+Pvqtpxvisiv4nIXhG5L5FjlRaRHSLyjYhst+/oxZ9nHRH51U73FxEpai+P\nFJG3RWQ9MFRERovICHtdhIisFpGtIjJLRPK5pLVFRLYAj7scv6r9vm2290msNushYI69fah9DbfY\n709Xe5vlQBsP/tFQSqkM4+t5lYgE2ulH2fnVEy6r77eP8YeINHM5xvsu+8+zzzWl/NCdfM/1nK8d\n187vlth5zWIRKWkvDxeRVfZ5jHU5dlH7Wmy2z7NZIpfSNX9K9D0xxhwACojILcl+KJQyxuhDHz77\nwPpB/Mx+/htQx37eErgElAECgYXAffY6AzxkP38BeN9+XsAl3bHAYPv5ZGAe1t0vgFeB7vbzvMAf\nQCjQC9gL5AFyAAeAW+3tziURfzHgIFAICAKWAPekEOdioLz9vAGwxCXO6Vg3V6oAuxM5Xmk73Sb2\n60nACCCb/f4Vspd3BSbZzyOBD13SGA2MsJ9vBVrYz8cAb7ssb24/fwuIsp+/53JOwUDORGI8AOSy\nn98LfOKyLo/L84Xx11sf+tCHPrz54Qd5VR1gocvrvPbfSOC/9vO7gEX2817x8dqv5wEtkztGCuec\nXL7nes69XPb5AehpP+8DzLafzwV62M8fj48H+A/wvP08MD4fShDfr0D15N4T+/knwL2Z/bnTh3c/\ntCZM+bpuwLf282+5sZnHWmPMXmNMLDAV6y4kQBwwzX7+tcvyavYdtt+xMsyqLmlNt9MBuB14RkQ2\nY2VAOYCS9rrFxph/jTGXgGigVArx1wMijTHHjTExwDdA86TitO+mNgam28f/GCjqkt5sY0ycMSYa\nKJLEMf80xqxMcP4VgWrAQjvdkUAJl32mkYCI5MHKdH61F30BNBeRvPbyZfbyr1x2WwU8JyJPA6WM\nMRcTiS+/Meas/fx3oK2IvCEizYwx/7psdwyrEKuUUt7O1/OqvUAZEXlPRO4AXJuLf2//3YB1o88T\n7uR7rufsqhEwxX7+FdffvyZY73P88njrgN4iMhqroHWWmxUFjtvPk3tPNH9SKdKmPMpniUh+oDVQ\nXUQM1p0rIyJP2puYBLskfJ1w+WSsWqgtItIL6w5lvPOuh8a6w7UzQTwNgMsui2Jx9jtmsGq5Thtj\nIpLYxvX4kkw6CV8LsM0Y0yiJfc4nsTxNjDFT7GYj7YEfRWSgMWZJgs1iRCTALkz+ISK1se6wjhWR\nxcaYMfZ2OYDECnFKKeU1/CGvMsb8IyI1gXbAI0AXrNolXNJyTSeGG7u85Egu/eQOTcr5njv5003v\nsTFmmYg0x8qfJovIeHNz/+eL2OeSwnui+ZNKkdaEKV92H/CVMaaUMaa0MeZWYB8Q3467vt32OwCr\ned0Ke3mAvS/Agy7LcwFHRSQb1t3FpPwCDBYRARCRWqmI9aqdbkJrgRYiUlBEArHujsbXLN0Up7EG\nq9gnIvfbxxY7E0iLkiISX9iKP/+dQKH45SKSTawOyEmya6X+cWk3/zDwqzHmNHBaROLvOl57L8Ua\nUWqvMeZdrHb1NRJJeidW0xxEpBhwwRjzNVazxtou21UAUj3qolJKZRKfz6tEpCAQYIyZidVSovZN\ne95oPxAhIgEicitQP6Vj2JzM937jev+7h7D6EgOsTLAcO91SwN/GmE+AT0n8HLcD5eztk3tPNH9S\nKdJCmPJl3YBZCZbN5Hozj3XA+1g/mvtctj2PlelFYd2djK9ZGQWswfqB3pHMcV/G6kO1VUS22a9T\nMtHe/oaOyMaYo1ijKC0FtgAbjDFzUojzIaCvWINebAM6puL4rnYCj4vIdiAf8JEx5gpWxveGne5m\nrOYfKekJvCUiW4EIlxh7Ax/YTUdca+S6AFH28mpAYqMszuf6nd3qwFp7+xex+j8gIkWAi8aYv1J3\nykoplWl8Pq8CigOR9m/x18CzKaSz0j6XaOBdYGMqjgHO5nuDsZoXbsW6STjUXj4UKw/83T6veC2B\nLSKyCasw/E4iabrmT4m+J3YBsxywPhUxqixMjEmq1lsp3yUiLbEGj+iQyLpzxpiwjI8qbdIjThEp\nDcwzxlRzMl0niTUq45fGmLbJbPMEcMYY81nGRaaUUs7yh7zKSd5+ziKSE+umaZMk+qEhIp2A2saY\nURkanPI5WhOmlPIqdu3gJ5LMZM3AaayBQJRSSqkMYQ8m9SI31qAlFAT8N2MiUr5Ma8KUUkoppZRS\nKgNpTZhSSimllFJKZSAthCmllFJKKaVUBtJCmFJKKaWUUkplIC2EKaWUUkoppVQG0kKYUkoppZRS\nSmUgLYQppZRSSimlVAbSQphSSimllFJKZSAthCmllFJKKaVUBtJCmFJKKaWUUkplIC2EKaWUUkop\npVQG0kKYUulARM6JSJnMjkMppZRKjOZTSmUuLYSpLE1EjIiU8zCNSBHp57rMGBNmjNnrWXTOEZGX\nReR3EYkRkdEpbCsi8oaInLQfb4iIuKyPEJENInLB/huR2fs68P4YETkmIkEuy7LZy4xTx1FKqbTS\nfCrRbTWfQvMpX6eFMKWS4fpj5+N2A08B81Ox7QDgHqAmUAP4P2AggIgEA3OAr4F8wBfAHHt5Zu7r\nhH+AO11e32kvU0opr6X5lOZTDqavMpIxRh/6cPQB3Ap8DxwHTgLv28sDgJHAAeAY8CWQx15XGjBA\nT+AgcAJ43iXNQOA5YA9wFtgA3GqvqwQsBE4BO4EuLvtNBj7A+lE/C6wBytrrltnHPA+cA7oCLYFD\nwNPAX8BXWD+m8+zz+cd+XsJO4xUgFrhkpxF/rgYoZz/PY5/rcfvcRwIB9rpewApgnJ32PuDOdLw2\nXwOjU9jmN2CAy+u+wGr7+e3AYUBc1h8E7sjMfRM5h0hgrJ3mOeAHoADwDXAGWAeUdtne2Ndlusuy\nGcDzgMns75Q+9KEPZx9oPhX/u6f5lOZT+sikh9aEKUeJSCDWj/8BrAyrOPCtvbqX/WgFlAHCgPcT\nJNEUqAjcBrwgIpXt5cOBbsBdQG6gD3BBREKxMrYpQGHgAeBDEanikuYDwEtYmdRurAwJY0xze31N\nYzXLmGa/vgXID5TCuusVAHxuvy4JXIyP2xjzPLAcGGSnMSiRt+U9rAyuDNAC6AH0dlnfACtTLgi8\nCXzm2rzBlYjME5HTSTzmJbaPG6oCW1xeb7GXxa/bauxff9vWBOszY9/EPAA8jPUZLAuswrqO+YHt\nwIsJtp8NNBeRvCKSD2iGdVdTKeVHNJ/SfCqT9k2M5lNZmBbClNPqA8WAJ40x540xl4wxK+x1DwHj\njTF7jTHngGeBBxI0pXjJGHPRGLMF68etpr28HzDSGLPTWLYYY04CHYD9xpjPjTExxphNwEzgfpc0\nZxlj1hpjYrDuMKXURjsOeNEYc9mO5aQxZqYx5oIx5ixW5tgiNW+Gndk/ADxrjDlrjNkP/BfrRzfe\nAWPMJ8aYWKzmC0WBIomlZ4zpYIzJm8SjQ2piSoUw4F+X1/8CYXaGm3Bd/PpcmbxvYj43xuwxxvwL\n/8/efYdHVW0NHP4tev8EQQkoVQWpoYuIAoJIkQgqTUpERb0ievVaryhiudgbFkAQRMUoSlEEpYpY\nQODSjCBFVCAUUXoNrO+PPeHGkEkmc84kk7De55knmTNn9lmhZM86e++1mQFsUNXZgX8HHwEN0px/\nGHcnskfgMS1wzBiTt1g/lYr1U9ZPmZyRV+YRm+hxLu6XdXI6r1XA3XlM8Svu32DqX+TbUn1/EPdL\nLaXdDem0WRloJiK7Ux0rgJuekVmbwexU1ZO/1ESkGPAicCXuLiVASRHJH+iQMlIWKMipP3fF9OJT\n1YOBm4uZxRhJ+3F3cVOUAvarqopI2tdSXt+Xw+9Nz/ZU3x9K53l6f8bvAP8BBDfVxxiT91g/9XfW\nT1k/ZXKAjYQZv/0OVAqyUHgrrjNKUQlI5u+/dDJqt3qQ41+ludNWQlVvy2rgqaStMnQPbupJM1Ut\nBaRMD5Eg56f2B3CMU3/uLeEEJiIzxJUVTu8xI5w20/Ej/7uzS+D7H1O9Vi/NNJR6aV7Piff65Wv+\nd4d3YSbnGmNyJ+un/s76KeunTA6wJMz4bTGQBAwXkeIiUkREWgRemwj8U0SqikgJ4CkgIcjdyLTe\nAh4XkfPFqSciZ+Lm9V8gIn0DpVoLikiTVHP0M7MdNwc+IyVxd6R2i0gZTp2jHbSNwB3ID4EnRaSk\niFTGrRt4N8T40rbXIdB5p/foEOx9gT+XIrj/8wUCfy/5g5z+DnC3iFQUkQq4zn1c4LX5uAXeg0Wk\nsIikrC2Ym8Pv9YWqKq7aVZfA98aYvMf6qVSsn7J+yuQMS8KMrwK/zK8CzsNVBdqMm7cMMBY3/WIB\nrrrSYeCOEJt+AddJfImrGjQGKBqY+34Fbj77VtyUiaeBwiG2OxQYL27BcPcg57wEFMXdLfwemJnm\n9ZeBa0XkLxF5JZ3334GrbLURd9fqfdyfRXYajeuge+EqKR0iMN9fRFoGplGkGImbc74KWI2r2DUS\nQFWP4srz9gN24xaeXx04npPv9Y2q/qiqft+5NMZECeunrJ/Koff6xvqpvEEsiTbGGGOMMcaY7GMj\nYcYYY4wxxhiTjSwJM8YYY4wxxphslKdK1JctW1arVKmS02EYY4yJkKVLl/6hquVyOo5wWT9lQrF2\n11oAapxZI4cjMcZkVaj9VJ5KwqpUqcKSJUtyOgxjjDERIiK/Zn5W9LJ+yoSi1bhWAMyPn5+jcRhj\nsi7UfsqmIxpjjDHGGGNMNrIkzBhjjDHGGGOykSVhxhhjjDHGGJONLAkzxhhjjDHGmGxkSZgxxhhj\njDHGZCNLwowxxhhjjDEmG0WsRL2IjAU6AztUtU7gWAKQsunFGcBuVY1N572bgH3AcSBZVRtHKk5j\njDHGGGOMyU6R3CdsHDACeCflgKr2SPleRJ4H9mTw/taq+kfEojPG/M37i35j6vItGZ4TF1uR3s0q\nZVNExuQ9G3ceoMfI704+t/9TxhhzeorYdERVXQD8md5rIiJAd2BipK5vjMmaqcu3kJi0N+jriUl7\nM03SjDEZO3Ts+Mnv7f+UMaZEiRLpHo+Pj2fSpElhtTl06FCee+65kK+9detWrr322qDn7d69m9df\nfz3Dti6++GIA5s+fT+fOnbMQLUyZMoXExMSTzx955BFmz56dpTZyo0iOhGWkJbBdVdcFeV2BL0VE\ngZGqOipYQyIyEBgIUKmS3U00xotaMaVIuKV5uq+lvntvjAlP0YL5T/4fs/9TxphoUKFChQwTvpQk\n7B//+McpryUnJ1OgQAG+/fbbsK8/ZcoUOnfuTK1atQAYNmxY2G3lJjlVmKMXGY+CXaKqDYEOwO0i\ncmmwE1V1lKo2VtXG5cqV8ztOY4wxxhhjIkpVGTRoEDVq1KBt27bs2LHj5GtLly7lsssuo1GjRrRv\n356kpCQARo8eTZMmTahfvz7XXHMNBw8ezPAav/zyC82bN6du3bo8/PDDJ49v2rSJOnXqAPDjjz/S\ntGlTYmNjqVevHuvWreOBBx5gw4YNxMbGcu+99zJ//nxatmxJly5dTiZOqUf09u7dS6dOnahRowa3\n3norJ06cOOWcSZMmER8fz7fffsu0adO49957iY2NZcOGDX8bBZwzZw4NGjSgbt26DBgwgCNHjgBQ\npUoVHn30URo2bEjdunVZs2ZN2H/2OSXbkzARKQB0AxKCnaOqWwJfdwCTgabZE50xxhhjjDkttWp1\n6iP1tL6svp4FkydPZu3atSQmJvLOO++cHFk6duwYd9xxB5MmTWLp0qUMGDCAf//73wB069aNH374\ngRUrVnDhhRcyZsyYDK9x5513ctttt7Fq1SpiYmLSPefNN9/kzjvvZPny5SxZsoRzzjmH4cOHU716\ndZYvX86zzz4LwLJly3j55Zf5+eefT2lj8eLFvPrqqyQmJrJhwwY++eSToDFdfPHFdOnShWeffZbl\ny5dTvXr1k68dPnyY+Ph4EhISWLVqFcnJybzxxhsnXy9btizLli3jtttuC2n6ZbTJiZGwtsAaVd2c\n3osiUlxESqZ8D1wBrM7G+IwxxhhjjMk2CxYsoFevXuTPn58KFSrQpk0bANauXcvq1atp164dsbGx\nPPHEE2ze7D5Cr169mpYtW1K3bl3ee+89fvzxxwyv8c0339CrVy8A+vbtm+45zZs356mnnuLpp5/m\n119/pWjRoume17RpU6pWrRr0tWrVqpE/f3569erFwoULQ/ozSGvt2rVUrVqVCy64AID+/fuzYMGC\nk69369YNgEaNGrFp06awrpGTIlmifiLQCigrIpuBR1V1DNCTNFMRRaQC8JaqdgTOBia72h0UAN5X\n1ZmRitMYY4wxxhjmz4/s62FQVWrXrs133526hjQ+Pp4pU6ZQv359xo0bx/wQrh/4fB1U7969adas\nGdOnT6djx46MHDmSatWqnXJe8eLFQ75GyvPUxw8fPpxprJkpXLgwAPnz5yc5Odlze9ktktURe6lq\njKoWVNVzAgkYqhqvqm+mOXdrIAFDVTeqav3Ao7aqPhmpGI3xhSokJcHSpbAuVa2Zn36CTOZnG2Oi\nn4gUEZHFIrJCRH4UkccCx6uKyCIRWS8iCSJSKKdjNcbkTpdeeikJCQkcP36cpKQk5s2bB0CNGjXY\nuXPnySTs2LFjJ0e89u3bR0xMDMeOHeO9997L9BotWrTggw8+AAh6/saNG6lWrRqDBw8mLi6OlStX\nUrJkSfbt2xfyz7J48WL2mc9uAAAgAElEQVR++eUXTpw4QUJCApdccgkAZ599Nj/99BMnTpxg8uTJ\nJ88P1n6NGjXYtGkT69evB2DChAlcdtllIccR7XKqOqIxudvx4zBkCHz9NaxcCXsDpd379oV3Alvj\nxcbC0aNQuTK0bAlt2kBcHJQpE7TZ7dtd7rZuHeza5ZotUACKF4eYGLjgAqhdG0qWzIafMQy215jJ\no44AbVR1v4gUBBaKyAzgbuBFVf1ARN4EbgTeyKghY4xJT9euXZk7dy61atWiUqVKNG/uqqgWKlSI\nSZMmMXjwYPbs2UNycjJ33XUXtWvX5vHHH6dZs2aUK1eOZs2aZZoovfzyy/Tu3Zunn36auLi4dM/5\n8MMPmTBhAgULFqR8+fI89NBDlClThhYtWlCnTh06dOhAp06dMrxOkyZNGDRoEOvXr6d169Z07doV\ngOHDh9O5c2fKlStH48aN2b9/PwA9e/bk5ptv5pVXXvlblcYiRYrw9ttvc91115GcnEyTJk249dZb\nQ/4zjXaiqjkdg28aN26sS5YsyekwTF61aBGsXQv9+rnntWpBqVLQuDHUqAGVKkG1alC3rns9IQHW\nr3dJ2vz5sGMHDB4ML798ssnDh2HmTJgyBRYsgF9++fsl8+eHEyfcYFvqY02awJVXQp8+kGoNqycp\n5bIzK1Ef7PWUcxKT9lIrplS6r6e8llEbxmRERJaqauMcvH4xYCFwGzAdKK+qySLSHBiqqu0zen+Z\nyhfqn7/+BIT2f8qcnlqNawXA/Pj5ORqHMSbrQu2nbCTMmIwkJ8PkyfDii/Ddd2446vrrXSa0cqUb\npgqmR4//fa8Ky5adHAVbPHoFrw3ZxuR9bdl3MD9lysBll8GgQS6HO/98OOssSFkPe/Ag/P47/Pyz\nywXnzoXHHoOhQ937HngA2reHTKZ6Zwvba8zkRSKSH1gKnAe8BmwAdqtqykKEzUDFIO89uZ9liRif\n7poYY4zJ1SwJMyaYBQvg1lvd/MDq1eHVVyE+3iVgkHEClpYI2rARU6bAc33g22/rU1Kq0V3fpseV\ne2n1dn8Klj8z6NuLF4eaNd2jSxd3bPNmePddeP116NABmjZ1g2wXXRT+j5wdEpP2ZpqM2ZRFE21U\n9TgQKyJn4LZOqZmF944CRoEbCYtMhMYYY3KTnNqs2ZjolTL3r1Ah9/1HH7lpiIMGQaqNBrNi3jxo\n1gy6dXM1PF56CTb/Dm/ds4Z2s+6jYOP68NVXWWrznHPcCNj69fDWW7BlCzRvDgMH/m+JWrSJi60Y\ndKpiisSkvZmuKzMmp6jqbmAe0Bw4I7D3JcA5gP3DNcYYExIbCTMmxb59rtjGsWPw2mtuSOnHHyFf\n+Pcqfv0V7rgDPv3UJU1jxrglZW4QraTb5LF3b+jZ0y0OC6PqT6FCcOON0L27m6L44oswZw5MnOhG\nx6JJ72aVMh3hsimLJtqISDngmKruFpGiQDvgaVwydi3wAdAfmJpzURpjjMlNMv10KSJXiYiNmJm8\nbe5cV2jjlVfcwqqU0bAwE7Bjx+DZZ12Tc+fC00+79VwDBqQzi7FhQ7debNgw93zdOjhyJMvXLBnI\n6RYscEvZWrSA0aPDCt+YPMlDfxYDzBORlcAPwCxV/Qy4H7hbRNYDZwJj/IvWGGNMXhZKZ9QDWCci\nz4hIyHPgjckVjh6F++6Dtm3dwqtvv4URIzxVuFi3Di65xDXbrh0kJrrvg2w675QoAQULwv790KoV\ndOoEBw6Edf0WLWD5crj8cjc18f77XYVFY0x4/ZmqrlTVBqpaT1XrqOqwwPGNqtpUVc9T1etUNet3\nT4wxxpyWMk3CVLUP0ABXCWqciHwnIgNFJEp3KjImC9avd6NfAwe60SgPVS1U3XTDBg1cIvbhh670\nfKWs1JcoUQL+8x+3iKxzZ5eUhaF0afjsM1dX5Jln3HTF48fDasqYPMP6M2NMtNm2bRs9e/akevXq\nNGrUiI4dO/Lzzz9n2/WXL1/O559/nuX3tWrVisy2hZo/fz6dO3cGYNq0aQwfPjzsOJYsWcLgwYMB\nGDp0KM8991yW4n3ppZc4ePDgyecdO3Zk9+7dWWrDbyGtCVPVvSIyCSgK3AV0Be4VkVdU9dVIBmhM\nRKxeDXXquPmCa9ZAlSqemtuzxyU6H3/s9mQeP96tAQtLv35uVKxPH5eIzZwJRYpkuZkCBVzlxPLl\nXSn79dsPUP6qlUFnWGa0v5cxeYX1Z8aYaKGqdO3alf79+/PBBx8AsGLFCrZv384FF1yQ6fuTk5Mp\nkGqNg6qiquTLwlKK5cuXs2TJEjp27Jj1HyALunTpQpeU8s5ZjCM5OZnGjRvTuHH4W0S+9NJL9OnT\nh2LFigGElXj6LZQ1YXEiMhmYDxQEmqpqB6A+cE9kwzPGZydOwKOPus24pgbW0HtMwH76yRXAmDrV\nrQObNctDApaiVy9Xf/6rr+CRR8JuRsT9uI8/DgtnFGfO6HMJtj97rZhSxMWmu82RMXlCNPZnKVs2\npDzeX/RbToRhjMkB8+bNo2DBgtx6660nj9WvX5+WLVuiqtx7773UqVOHunXrkpCQALjRpZYtW9Kl\nSxdq1arFpk2bqFGjBv369aNOnTr8/vvvfPnllzRv3pyGDRty3XXXsT8wq+aHH37g4osvpn79+jRt\n2pQ9e/bwyCOPkJCQQGxsLAkJCRw4cIABAwbQtGlTGjRowNTAZ6VDhw7Rs2dPLrzwQrp27cqhQ4fS\n/ZlmzpxJzZo1adiwIZ988snJ4+PGjWPQoEEAfPTRR9SpU4f69etz6aWXcvTo0VPiGDp0KH379qVF\nixb07dv3b6Nq4JLV5s2bc/755zM6sAA+7TmDBg1i3LhxvPLKK2zdupXWrVvTunVrAKpUqcIff/wB\nwAsvvECdOnWoU6cOL730EgCbNm3iwgsv5Oabb6Z27dpcccUVQX/mcIUyEtYNeFFVF6Q+qKoHReRG\nX6MxJpL27XOVCD/7zO331b695yY/+QT694dixVxFwksv9R7mSb16ueGsdu08N/Xww/D+d5v56fNz\nqLn1nJM1QLIqsz2+bDTNRLmo6s/S3vRITHJ7S9geecZkv7vucuup/RQb67akCWb16tU0atQo3dc+\n+eQTli9fzooVK/jjjz9o0qQJlwY+ZCxbtozVq1dTtWpVNm3axLp16xg/fjwXXXQRf/zxB0888QSz\nZ8+mePHiPP3007zwwgs88MAD9OjRg4SEBJo0acLevXspVqwYw4YNY8mSJYwYMQKAhx56iDZt2jB2\n7Fh2795N06ZNadu2LSNHjqRYsWL89NNPrFy5koYNG54S8+HDh7n55puZO3cu5513Hj169Ej3Zxs2\nbBhffPEFFStWZPfu3RQqVOiUOIYOHUpiYiILFy6kaNGizJ8//29trFy5ku+//54DBw7QoEEDOnXq\nFPTPefDgwbzwwgvMmzePsmXL/u21pUuX8vbbb7No0SJUlWbNmnHZZZdRunRp1q1bx8SJExk9ejTd\nu3fn448/pk+fPkGvk1WhjFduS9thicjTAKo6x7dIjImkrVtdhjRjhiu8MXZsWFP8Uqi6cvDXXAO1\na8PSpT4nYCmuuw7OOAMOH3brxDyoc9XvVL14B48/Hl7VxFD2+LLRNBPloqo/692sEgm3ND/5sBsY\nxpgUCxcupFevXuTPn5+zzz6byy67jB9++AGApk2bUrVq1ZPnVq5cmYsCa9q///57EhMTadGiBbGx\nsYwfP55ff/2VtWvXEhMTQ5MmTQAoVarU36Yypvjyyy8ZPnw4sbGxtGrVisOHD/Pbb7+xYMGCkwlI\nvXr1qFev3invXbNmDVWrVuX8889HRIImLC1atCA+Pp7Ro0dzPIMF6126dKFokKpmcXFxFC1alLJl\ny9K6dWsWL14ctJ2MLFy4kK5du1K8eHFKlChBt27d+PrrrwGoWrUqsbGxADRq1IhNmzaFdY1gQhkJ\na4crw5tah3SOGRO9Pv/cFeH47DO48kpPTR09CrfcAuPGuVGwkSOhcGF/wgzq3/+GV1910xObNw+r\nCRFodP0GLih5Frff7pLHiy8O/f2h7PFlTJSz/swYk66MRqwipXbt2kyaNCnL7ytevHjQ56pKu3bt\nmDhx4t/OWbVqVUhtqyoff/wxNWrUyHJcoXrzzTdZtGgR06dPp1GjRixdujTd89L+nKlJmirWIkKB\nAgU4kaoc9OHDhz3FWTjVh7v8+fP7Ph0x6EiYiNwmIquAmiKyMtXjF2Clr1EYEyn79rmvN93kCnB4\nTMD27HHV48eNc8Uu3n47GxIwcEnYuee6obcdO8JuJl9+t4lzpUquqa1bfYzRmChl/ZkxJhq1adOG\nI0eOMGrUqJPHVq5cyddff03Lli1JSEjg+PHj7Ny5kwULFtC0adNM27zooov45ptvWL9+PQAHDhzg\n559/pkaNGiQlJZ0cTdu3bx/JycmULFmSfSmflYD27dvz6quvooEF5P/9738BuPTSS3n//fcBN41y\n5cpTf3XWrFmTTZs2sWHDBoBTEsEUGzZsoFmzZgwbNoxy5crx+++/nxJHZqZOncrhw4fZtWsX8+fP\np0mTJlSuXJnExESOHDnC7t27mTPnfxMcgrXfsmVLpkyZwsGDBzlw4ACTJ0+mZcuWIcfhRUbTEd8H\nrgKmBr6mPBoFyvwaE90mTYKqVSHlF0VFb9PkNm+Gli1h/nyXfD36qKftxLKmTBmYPBn+/BNuuIGg\n1TVCULq0K52/bx/06OE2djYmj7P+zBgTdUSEyZMnM3v2bKpXr07t2rV58MEHKV++PF27dqVevXrU\nr1+fNm3a8Mwzz1C+fPlM2yxXrhzjxo2jV69e1KtXj+bNm7NmzRoKFSpEQkICd9xxB/Xr16ddu3Yc\nPnyY1q1bk5iYeLIgxpAhQzh27Bj16tWjdu3aDBkyBIDbbruN/fv3c+GFF/LII4+ku5atSJEijBo1\nik6dOtGwYUPOOuusdGO89957qVu3LnXq1DlZKCRtHJmpV68erVu35qKLLmLIkCFUqFCBc889l+7d\nu1OnTh26d+9OgwYNTp4/cOBArrzyypOFOVI0bNiQ+Ph4mjZtSrNmzbjpppv+9r5IEg3yYU5ESgVK\n+ZZJ73VV/TOikYWhcePGmtmeBeY0MX48DBjgpu59+qnLPDz4+We3n/Pu3a4YR9u2PsWZVSNGwB13\nuHkTd96ZpbemFNRIuMVNZ3zvPVcFf+hQl1BGi7RxGpOaiCxV1SzVKY6m/qxM5Qv1z19/Svc1+7dv\nUrQa1wqA+fHzczQOY0zWhdpPZbQm7H2gM7AUUCD1PX8FqnmK0JhIee01GDTIVRWcPBkymFMcipUr\n4Yor3GbHX33lNmPOMbff7naCvuQSz01dfz188QUMGwaXX+5Lk8ZEK+vPjDHGRJWgSZiqdg58rRrs\nnIyIyFhcp7dDVesEjg0FbgZ2Bk57SFVP2S1NRK4EXgbyA2+pavAtto1JbdIkl4B16QIJCZ4qIAIs\nWgQdOrgS9PPnQ82a/oQZNhF4+eVTDr+/6DemLt+S4VvTKx//2mvw7bfQty+sWgUlSvgarTFRwWt/\nZowxxvgtlM2aW4hI8cD3fUTkBREJpUTaOCC9Kggvqmps4JFeApYfeA1XsaoW0EtEaoVwPWNc1Yyn\nnnLJmMcEbP58N+2wdGn4+usoSMBSO3oUbr31ZDmnqcu3nNxjKJj0yseXLOmKjGza5Gp/GJOXeejP\njDHGGF+FUqL+DaC+iNQH7gHeAiYAl2X0JlVdICJVwoipKbBeVTcCiMgHQByQGEZb5nQxdix06+b2\n1HrwQc/NzZ0LnTu7uh6zZkGFCj7E6KeCBWHLFnjnHbjqKsAlWeGsJbnkEjfL8dVXXaGOrJStNyaX\nCas/M8YYY/wWymbNyeqqd8QBI1T1NaCkh2sOCpQGHisi6VVLqAj8nur55sCxdInIQBFZIiJLdu7c\nGew0k5c99RTceKPLInwwf75LwKpXd99HXQIGblriG2+4ZOzmmz1VSwT4z39cBfwbb3T7QhuTR/nd\nnxljjDFhCSUJ2yciDwJ9gOkikg8oGOb13gCqA7FAEvB8mO2cpKqjVLWxqjYuV66c1+ZMbvP0024e\n3fXXw0MPeW7uq6/cjMaqVWHOHIjqf1LnnAPDh8O8eVy0dK6npkqWhFGj3FZqTz3lU3zGRB8/+zNj\njDEmbKEkYT2AI8CNqroNOAd4NpyLqep2VT2uqieA0biph2ltAc5N9fycwDFj/u755+GBB6BnT7ew\nKX9+T80tWAAdO0Llym46YpDtLaLLwIEQG0uvKW8gJ457aqp9e+jdG555BjZu9Ck+Y6KLb/2ZMcYY\n40WmSZiqblPVF1T168Dz31T1nXAuJiIxqZ52BVanc9oPwPkiUlVECgE9gWnhXM/kYbt2uWyhe3eY\nMAEKhLK8MbiFC10CVqmSS8DOPtunOCMtf34YO5Znbn8OzectCQX3R1qgAPzrXz7EZkyU8bM/M8YY\nY7zI9JOriHQDngbOwu2tIoCqaqlM3jcRaAWUFZHNwKNAKxGJxe3Lsgm4JXBuBVwp+o6qmiwig4Av\ncCXqx6rqj+H9eCbPOvNMWLzYLdjymIAtWeISsIoVXQIWwob00aVBA7YsDizkOnoUChUKu6mKFd2s\nzn//2xUkadfOpxizKDFp78mNa9MTF1uR3s2sqJ3JmnD7M2OMMcZvoXx6fQa4SlV/ykrDqtorncNj\ngpy7FeiY6vnnwCnl641hyhT44Qd44gk3b9CjxES48kooU8atAYuJyfw9OSGzfcASk/by6hevwJzi\n8OGHnq51990wZgzceSesWOFqf2SntGX001r0y58s+uXPDP88LEkzQYTVnxljjDF+CyUJ224dlokK\nc+a4GuoNGsDDD0PRop6a++UXN9JTsCDMnu3qXESrlH3A0m62nKJWTCnOrH0BjHnJJalNmoR9rSJF\n4IUX4OqrYeRIt/d1durdrFKGCVQoCWlKO8akYf2ZMcaYqBBKErZERBKAKbgFzQCo6icRi8qYtL7/\nHuLioEYN+PxzzwnY1q1uI+ZDh1xFxPPO8ynOCMp0H7DedWDqu24+4axZnq7VpQtcdhk8/jjEx0OJ\nEp6a81VmSVpG0xjNac/6M2OMMVEhlOqIpYCDwBXAVYFH50gGZczfrFrlFm2VLw9ffunmDnqwa5cb\nAduxA2bOhLp1fYozp5Us6UYIZ892Dw9E3N5hO3bASy/5FJ8xOS+s/kxEzhWReSKSKCI/isidgeND\nRWSLiCwPPDpm1pYxxhgDIYyEqeoN2RGIMUEtW+aGYmbP9lw1Y+9etwZswwaYMQOaprdJQm52661u\nLuGwYW6oz4Pmzd3g47PPumbLlvUpRmNyiIf+LBm4R1WXiUhJYKmIpAw3v6iqz/kToTHGmNNFpiNh\nInKBiMwRkdWB5/VE5OHIh2ZOe6rua//+8NNPUKWKp+YOH3bT7JYvh48+gtatvYcYdQoXhvffdw8f\nPPkk7N/v9oQ2JrcLtz9T1SRVXRb4fh/wE5BxBRljjDEmA6FMRxwNPAgcA1DVlbi9u4yJnH37oFUr\nN18QoHhxT80dPw7XX+/Wf40fD1dd5T3EqNWixf+qjKQksmGqXRv69YMRI2DzZh9iMyZnee7PRKQK\n0ABYFDg0SERWishYESkd5D0DRWSJiCw5duxYuLEbY4zJQ0JJwoqp6uI0x5IjEYwxgNvr6tpr4Ztv\nXPbkkSoMHgyffOLWN/Xu7UOM0W7bNmjTBqZO9dzUo4+6v4ZnnvEhLmNylqf+TERKAB8Dd6nqXuAN\noDoQCyQBz6f3PlUdpaqNVbVxweze88EYY0xUCiUJ+0NEquM2WEZErsV1Nsb4TxVuuskV4Bg1Cjp1\n8tzkU0/B66/Dffe5va9OC2XLwm+/ufKGHkfDqlRxo2GjR0OS/c83uVvY/ZmIFMQlYO+lVFNU1e2q\nelxVT+BG2fLaKlNjjDEREkoSdjswEqgpIluAu4DbIhqVOX099BBMmOAKSwwY4Lm5sWNdwcC+fV21\nv9NGgQLuz3LZMlfS36OHHoJjx+A5Kz9gcrew+jMREWAM8JOqvpDqeOrt3bsCq/0N1xhjTF6VaRKm\nqhtVtS1QDqipqpeo6qaIR2ZOP8ePw/r1cMstLnPy6LPPYOBAaN8exoyBfKHccshL+vaFypV9GQ2r\nXt1N43zzTdi506f4jMlmHvqzFkBfoE2acvTPiMgqEVkJtAb+GbHgjTHG5ClBS9SLyN1BjgOQ+m6g\nMZ6dOAH588MHH7iEIfDvLFzffw/du0ODBjBpEpyWyzAKFoQHHoDbboM5czyXrH/oIXj3XVcB/7Qa\nVTS5ntf+TFUXAun9UvI+zGyMMea0lNHYQMnAozFuukbFwONWoGHkQzOnjQULoEkTV34vf343lc6D\nNWvcUrIKFWD6dLfF2Gnrhhtcnfl69Tw3VbMm9OjhKiXu3u1DbMZkH+vPjDHGRJWgn3ZV9TEAEVkA\nNAzsjYKIDAWmZ0t0Ju/78Ue3I3D58lC0qOfmtm51mzEXKABffAFnneVDjLlZ4cJuCMsn99/vBitH\njXKFTozJDaw/M8YYE21CGXI4Gzia6vnRwDFjvPn9d5cxFS3q9gM780xPze3ZAx06wK5dMH++W8dk\nAqZPdwmvx8wpNhYuvxxefhnuugsKFfIpPp8lJu2lx8jvMjwnLrYivZtVyqaITJSw/swYY0xUCKVU\nwTvAYhEZGrhruAgYF8mgzGlg926XMe3dCzNmuAISHhw5AldfDYmJbj+wRo18ijOvmDnTFTvZutVz\nU//6l2smIcGHuCIgLrYitWJKZXhOYtJepi7fkk0RmShi/ZkxxpiokOlImKo+KSIzgJaBQzeo6n8j\nG5bJ8/bscV8nT4b69T01deKEKwQ4f74rHNGunffw/PT+ot9C+sAf0ZGZu+5ym6WNGOE2TvOgfXuo\nXduVq+/Tx3MNFd/1blYp0z/HzEbJTN5k/ZkxxphoEVLRblVdpqovBx7WYZnwnTjhqh9WrgwrVkCb\nNp6aU3X5xUcfuaTg+ut9itNHU5dvITFpb4bnRHxkpnp16NoV3ngD9u/31JQI3HMPrFzpii4ak5tY\nf2aMMSYaeCtDZ0xWqMKdd7pRsLffdpUQPXrmGXj1VfjnP11iEK1qxZQi4ZbmQV/PlpGZe+6Bjz92\nf/Z33OGpqd69Xb2P557zXPneGGOMMea0E7Hta0VkrIjsEJHVqY49KyJrRGSliEwWkTOCvHdTYAPM\n5SKyJFIxmmz27LNuOly5cr4kYBMmuG2wevZ0yYDJRPPmcO21vlTTKFzY5XFffAGrVvkQmzHGGGPM\naSTTJExE7hCR0mG0PQ64Ms2xWUAdVa0H/Aw8mMH7W6tqrKo2DuPaJtq8+66rb96zp0vGPPrySxgw\nwM1mHDcO8kXsdkIe89FHcMstvjR1661QrJirlGhMbuChPzPGGGN8FWqJ+h9EZBkwFvhCVTWzN6nq\nAhGpkubYl6mefg9cG3qoJteaNcttGty6tS8Z07JlcM01rjjE5MluVCYnZVZ4IzFpb6bV+rLVsWPw\n3Xdw6aWemilTxq3Be/ddl1eXto+2JvqF1Z9lp7TbK9hWCsYYkzeFUh3xYREZAlwB3ACMEJEPgTGq\nusHDtQcAwYpcK/CliCgwUlVHBWtERAYCAwEqVbKOKiodPAgNG/qSMW3c6Crbn3kmfP45lIqC3Cal\n8EawRKtWTCniYitm2k5Ge1v5msg9/7xb0LV+PVSr5qmp22+H0aPdMrO77/YnPGMiJYL9mS/S/p5I\nKehjSZgxxuQ9IRXmUFUVkW3ANiAZKA1MEpFZqprl3V9F5N+Bdt4LcsolqrpFRM4CZonIGlVdECS2\nUcAogMaNG0fVHc3T3rFjULAgxMXBVVd5HgHbudPt7Zyc7La9qlDBpzh9kFnhjcxklqSFmsiFpG9f\nt2fYG294nhpavz5ccomrfn/XXTYt1EQ/v/szP6XdXsG2UjDGmLwr0yRMRO4E+gF/AG8B96rqMRHJ\nB6wDstRpiUg80Bm4PNg0EFXdEvi6Q0QmA02BdJMwE6V27YJWrdw6sD59PH86P3AAOneG3393ZdFr\n1vQnzGgRyt5WvqlY0ZWrHzMGHnvMLezy4PbboVcvV6SjQwefYjQmAvzuz4wxxphwhfLJuAzQTVXb\nq+pHqnoMQFVP4JKpkInIlbhOrouqHgxyTnERKZnyPW7ayOr0zjVR6tAh6NIF1q1z+4F5lJwMPXrA\nkiXwwQdw8cU+xHi6GzQI/vrL/YF61K0bnH02vPaaD3EZE1m+9WfGGGOMF6EkYTOAP1OeiEgpEWkG\noKo/BXuTiEwEvgNqiMhmEbkRGAGUxE0xXC4ibwbOrSAinwfeejawUERWAIuB6ao6M4yfzeSE48fd\nJlLffQfvvQctW3pqTtVV4Zs+3U15i4vzKc7T3aWXusomH3/sualChVzBxc8/d2v2jIliYfVnxhhj\njN9CWRP2BtAw1fP96Rw7har2SufwmCDnbgU6Br7fCNQPIS4TbVRh8GCYMgVeecWVMPToscfcrLmH\nH/atsroBEIFPP4Vzz/WluYED4cknfVlmZkwkhdWfGWOMMX4LZSRMUq/dCkzbCKmghznNqLpCHPfd\n53by9WjUKJeE3XADDBvmQ3zm76pWhQIF3N+bR6mXmR065ENsxkSG9WfGGGOiQihJ2EYRGSwiBQOP\nOwGbdGT+7sgRV3zjxRdh+HDPzX36Kdx2myv0MHKkG7gxETBtGlx4Iezd67mpW291y8w++cSHuIyJ\njLzRnx06ZHc7jDEmlwslCbsVuBjYAmwGmhHYl8sYwJXFq1kT1q512ZLHjOn7710hjkaN4KOP3OCa\niZDy5d3fmw8FOlq3dtuOvfWWD3EZExm5rz9ThdmzoWdPdGsSv/0G3w6ZwaJirdhWt5276eXDTRRj\njDHZK5TNmncAPbMhFpMbLV3q1n6ddx7ExHhubu1aV4q+YkX47DMoXtyHGE1wTZpA3boucxro7bNo\nvnxw001uH+h167owOEcAACAASURBVOD8832K0Rif5Lb+rNqvPxGf8CK/b9zNiCL38sH8Mvy2HaCb\ne6yG2g+uZuDj/+GmUU0pdn3XHI7YGGNMqELZJ6wccDNQJfX5qjogcmGZXGHjRujYEc4805XGK1XK\nU3NJSW4z5nz53GbMZ53lU5wmOBGXOd15J6xY4XZf9iA+HoYMcTnd00/7E6Ixfsk1/dmJE/Dkkzzw\nn+d4uOATvJnvdk4cFTo1Fe5rD9Wru0K0a9bAx+OrcOeq//DSgM1MOPc4LS7Nn9PRG2OMCUEo0xGn\nAv8HzAamp3qY09nOnS5jOnbMZUwVKnhqbvdut/5r506Xz1Wv7lOcJnN9+kDhwr7MI4yJcSOZ48a5\nfxrGRJmw+jMROVdE5olIooj8GFhLhoiUEZFZIrIu8LW0L1GqsvjT7dQstJYRx+6g/w352LhRmDbN\nbY5+5ZXQqRPccw98u7IEc75IhvLluaxNfsa/fcKXYjvGGGMiK5SqUMVU9f6IR2JyFxE3Z/Dtt11h\nBw9S9nZOTHRTEBs39ilGE5oyZeDxx926Ph/cfDNMneqKq3Tr5kuTxvgl3P4sGbhHVZeJSElgqYjM\nAuKBOao6XEQeAB4Awu8vd+yAfPkY9UlZBi1/lYIlj9DmxlW89UzdDN/W5ooCLF8F13Q9TvyA/Byd\nOp2bp3QKOwxjjDGRF8pI2Gci0jHikZjc4cgROHoUypaFuXOhRQtPzSUnQ8+esHAhTJgAV1zhU5wm\na+69F666ypem2rd3+fno0b40Z4yfwurPVDVJVZcFvt8H/ARUBOKA8YHTxgNXhx3Zjh1oy0t5tPFn\n3HILtG0rtPv3KspW3x/S20uVgs+m56NDhRXcNrU9M4YuCjsUY4wxkRdKEnYnruM6LCJ7RWSfiFgp\nptPR8eNw/fXuw/rx456rIKq6UZNp02DECFcR0eSgLVvcyKZHBQrAgAGuaOZvv/kQlzH+8dyfiUgV\noAGwCDhbVZMCL20Dzg7ynoEiskRElhxLb57unj3oFe3554ZBDPs1ngED3O/FwsWTsxIahYsIH66s\nSb2i6+g1rCa/LtmZpfcbY4zJPpkmYapaUlXzqWoRVS0VeO6tAoPJfVTdYoSPP3YLEvJ7X/x9331u\n7dDQofCPf3huzng1YYLLnn7+2XNTAwJlDsaO9dyUMb7x2p+JSAngY+AuVf1b8hbYBDrdxViqOkpV\nG6tq44Jp99w4fBiuuoohq7rz8vFB3HWXW55ZIMwtpEucWZhJkwtwQoXrr/yD5KzlccYYY7JJKNUR\nBbgeqKqqj4vIuUCMqi6OeHQmejzyiNs1+YEH4J//9NzcM8/Ac8/BoEGu6Wj1/qLfmLp8S4bnJCbt\npVZMHrgv0b8/PPwwjBnjubRhlSrQrp1LwoYM8SVnN8YzL/2ZiBTEJWDvqWrKluTbRSRGVZNEJAbY\nkeWg7rmHZ79uxpM8yM03wwsveN+cvlr783n9uqn0/SiON4bv4Y6H/89bg8YYY3wXynTE14HmQO/A\n8/3AaxGLyESfESPgiSfgxhvhqac8Nzd2LNx/v1sL9vLL3j9wRNLU5VtITMp4tlKtmFLExVbMpogi\nKCbGbTkwYYKbburRzTfD77/DrFk+xGaMP8LqzwLJ2xjgJ1V9IdVL04D+ge/746ovZsknNR/iPp6l\ne3d4441Tfx8mJu2lx8jvTj7eXxTaHN/r37mSdq2OMuS5/2P79qxGZYwxJtJCmfDQTFUbish/AVT1\nLxEpFOG4TDRp2BBuuAHefNNzxjRlivtw3r49jB/v9gSLdrViSpFwS/OcDiN79O/vyhrOnu3+kjy4\n6iooXdr9PV95pU/xGeNNuP1ZC6AvsEpElgeOPQQMBz4UkRuBX4HuIUeyaRPL/6pM3wcq0qyZ+3+S\ndsQ47c2dlBtCvZtVyrR5KVKYV9+EunWV+/+xn3Eflww5NGOMMZEXShJ2TETyE5jrHtjs8kREozLR\nYcsWV+bu4ovdw6P5893oV5MmbmlZIUvlo0/nzm7z7e+/95yEFS4MvXu72Y27d8MZZ/gUozHhC6s/\nU9WFQLA7UJdnOYrff2d7bHu66GLKlPk/pkyBIkVOPa13s0p/S7h6jPwuS5epUQPuqjGT5z5pz73L\njlC7YeEsh2qMMSYyQknCXgEmA2eJyJPAtcDDEY3K5LzvvoO2beHVV/9XZcGDJUsgLg6qVYPp06F4\ncR9iNP4rXBjWr/ctY+rfH157DT78EAYO9KVJ36RM8womLrZiSCMOJleJgv5MSe7djx773uKPQiVZ\nOBXKl4/c1e5/rBhvXrOfoTfu4KP/nhe5CxljjMmSUKojvgfcB/wHSAKuVtWPIh2YyUHLlkGHDm4U\nrJP3DT9Xr3aDKmXKwJdfuoEWE8VSEjAf1oU1buz28h4/PvNzs1NcbMUMi6kkJu3NtCCLyX2ioT8r\nvecPHl/Yiq9OtOTNkflo2DCy1zuz66Xcde4nTFp+Hst/SKc8vjHGmBwRSnXESsBB4NPUx1TVdgDK\nixITXcZ0xhkwZw6cne62NyFbt84NqBUp4po75xyf4jSRdffdsHy525DbAxGIj3eFWH7+GS64wJ/w\nvEo7zSutrE77MrlDNPRn+fcc5XGGEB8P/fplwwVFuPv5irzcfQ9PD/6Lid9VyYaLGmOMyUwoZRGm\nA58Fvs4BNgIzQmlcRMaKyA4RWZ3qWBkRmSUi6wJfSwd5b//AOetEpH965xif/fmny5gKFnSFGc49\n11Nzv/4Kl18OJ064BKxaNZ/iNJF31lkwb56bmuhRnz6uAMs77/gQlzHehN2f+eUXqlHjAld0Nruc\ncc3lDCw9iY8WnWsbqBtjTJQIZTpiXVWtF/h6PtAUCPU28TggbV20B4A5gbbmBJ7/jYiUAR4FmgWu\n92iwZM34qEwZtw/Y7Nlwnre1A0lJLgHbt89NQaxZ06cYTfbo08cNY/mQOVWoAFdc4Zo6YSV9TA7y\n2J/5IlkK8OGkfNm7LjZfPu6YdBnky8err2bjdY0xxgSV5QLhqroMlxyFcu4C4M80h+OAlBUi44Gr\n03lre2CWqv6pqn8Bszg1mTN+2bbNTT0DGDwYatXy1NzOnW5Abft2mDEDYmN9iNFkr3POcbst+5Q5\n9e/v9gybN8+H2IzxSVb6M78UK32EunWz84pOpTbncd11wqhR7uaYMcaYnBXKmrC7Uz3NBzQEtnq4\n5tmqmhT4fhuQ3qKjisDvqZ5vDhwzftu1y33Y/usvN/UsvTrJWbB7t1tStnGjS8AuusinOE32698f\nrr8evvoKWrf21FRcHPzf/7kCHZdnvaC3Mb6IQH+WZYVLJGfn5f7mjqaL+OCDZiSMPcBNd1qJWmOM\nyUmhjISVTPUojJtLH+fHxVVVCezXEi4RGSgiS0Rkyc6dO/0I6/SxZ4/LmNatcyMeHhOw/fuhY0dX\nDfGTT6BVK3/CNDnk6qvhvvugcmXPTRUtCj16uP3h7C68yUER689yg+atClOLH3nrRftPaIwxOS3T\nkTBVfczna24XkRhVTRKRGGBHOudsAVqlen4OMD9IfKOAUQCNGzf2lNCdVg4ccBvzrlgBkydDmzae\nmjt4ELp0gcWL3Z5QHTr4FKfJOcWKwdNP+9Zc//4wahRMmgQ33OBbs8aELAL9Wa4iDWK5qeLz3P3r\nPaxaRY5MizTGGOOEMh3xUzIYrVLVLlm85jSgPzA88HVqOud8ATyVqhjHFcCDWbyOychjj8G338LE\niS4Z8+DgQdfEV1+5AbVu3XyK0eQ8VVfaskgRuOQST001bw7nnw/jxlkSZnJGBPqzXKfv4NI8cP8R\n3npqDy9PPCunwzHGmNNWKNMRNwKHgNGBx35gA/B84BGUiEzEVZ6qISKbReRGXPLVTkTWAW0DzxGR\nxiLyFoCq/gk8DvwQeAwLHDN+GToUZs6E7t09NXPwIFx1lUvAxo93S4hMHnPLLS5p90jEjYYtWODW\nDBqTA8Luz/KKsjd3pWu+qUyYXJwjR3I6GmOMOX1lOhIGtFDVxqmefyoiS1T1n5m9UVV7BXnplKX5\nqroEuCnV87HA2BDiM6E6cACGDHEJWKlSriCHB4cOuYIL8+a5BKxPH3/C9NP7i35j6vItYb8/MWkv\ntWJK+RhRLiMCffvCsGGwebPn3bb79oWHH4Z334VHHvEpRmNCF3Z/lmeULk3/3skkvFucmTPd73Bj\njDHZL5QkrLiIVFPVjQAiUhWwskq5Teohq3btPC/aOnTIrQGbM8dNL+vb158w/TZ1+RZPiVStmFLE\nxZ7mhTn79HEjYe+9B/ff76mpSpVcocUJE9z9ABGfYoyAxKS99BgZfAupuNiK9G5WKRsjMj6w/gxo\nO7Y3Z85ws9EtCTPGmJwRShL2T2C+iGwEBKgM3BLRqIy/Ui/amjDBlwQsLs4lYG+/Df36+RRnhNSK\nKUXCLc1zOozc67zz4OKL3YK/++7znDn17QsDBsD337t1YtEos8Q7MWkvgCVhuU+u78/S3hwI52ZA\nwYLQvfNBxn1QmP3781OihN9RGmOMyUwo1RFnisj5QM3AoTWqajPJc4u0i7Z69/bU3KFDrnL57Nkw\ndqxb42NOA337wgMPwJYtnqckXnMN3H67y+miNQnr3axShh9sMxohM9Ert/dnaW8OeLkZ0GvLc7xx\n5BGmfpzM9f1DuR9rjDHGT5kW5hCRYsC9wCBVXQFUEhFv5fRM9vn9d/jxR18WbR086BKwWbNgzBiI\nj/cnRJML9O8P27Z5TsDALUfs2hU++AArDGCyVW7vz3o3q0TCLc1PPrysV20xqAHn8hsTX7OaV8YY\nkxNCqY74NnAUSLlnvQV4ImIRGX8cPuzKi9eo4TZj9piA7dvnZjGmJGBWYvw0U7SoK1OvCidOeG6u\nXz/YvRs++8yH2IwJnfVnAfk6tKdHoSl8ubQMu3fndDTGGHP6CSUJq66qzwDHAFT1IG4uvYlWf/0F\nl132v7LiJUt6bq5dO/jmG1ebwRKw09T69VCzJsyY4bmpyy+HmBg3JdGYbGT9WYpChejWcifHThTg\n88+831gxxhiTNaEkYUdFpCiBDS5FpDpgk4ii1Y4drvzc8uXQoIHn5nbuhDZt4L//hUmToFewTQdM\n3lepEuza5UvmVKCA21Pu88/hjz98iM2Y0Fh/lkqzAbUpTxJTxtlQmDHGZLdQkrBHgZnAuSLyHjAH\nuC+iUZnwbN3qRsDWroVp0zzXHk5KglatYM0a19zVV/sTpsmlChVyWfjUqfgxf6lvX0hOdmvDjMkm\n1p+lkq9LZ+J6FGHGojIcPpzT0RhjzOklwyRMRARYA3QD4oGJQGNVnR/xyEzWHDrkErDNm2HmTGjf\n3lNzv/0Gl14Kv/7qZp95bM7kFf36uWoakyZ5bqpePahf36Ykmuxh/Vk6SpTg6vjS7N/vthwxxhiT\nfTJMwlRVgc9VdZeqTlfVz1TVJg9Fo6JF4V//cpUzLrvMU1M//wwtW7qpiLNnu9EwYwBo3NgVe/Ep\nc+rXD374AX76yZfmjAnKS38mImNFZIeIrE51bKiIbBGR5YFHx4gFH0FtKq2nVMGDTH7bpiQaY0x2\nCmU64jIRaRLxSEx4li2DuXPd97fcAhdd5Km5JUugRQs3sDZ3rufmTF4jAo884vYnUPXcXO/ekC+f\n20PcmGwQbn82DrgyneMvqmps4PG5t9ByRqFSReh4bCrTZhbk+PGcjsYYY04foSRhzYDvRGSDiKwU\nkVUisjLSgZkQzJ3rhqnuvBM/es85c1xNj+LFYeFCaNjQe4gmD+rdGwYMcAmZR+XLu6mu777rS+V7\nYzITVn+mqguAvLmh1jnncHWVFew8UJxFi3I6GGOMOX0UCPaCiFRV1V8AWw0UjT7+2H0YPv98twYs\nf35PzU2a5KrVXXABfPEFVKjgU5wmb/rjD1egw4dkrF8/V+/jq6/cTQBj/BbB/myQiPQDlgD3qOpf\nQa4/EBgIUCKmuq8BJCbtpcfI7/52LC62Ir2bVQq5jSu6lSDfC8eZMfkYF19cxNf4jDHGpC9oEgZM\nAhoBY1X18myKx4Ri5Ei47TZo3hw+/RTKlPGtuc8+g9KlfYozwt5f9BtTl2/J8JzEpL3UiimVTRGd\nRj79FG66CWrVcv9wPIiLg1Kl3DIzS8JMhESiP3sDeBxX7v5x4HlgQHonquooYBRAmcoXep/HGxAX\nW/GUY4lJewGylISV7tqKi1/4ls8/rsPjz1oSZowx2SGjJCyfiDwEXCAid6d9UVVfiFxYJihVN/LV\noQN89BEUK+apqSefhCFDoFMn+PBDT81lu6nLt2SaZNWKKZXuBxXj0TXXwO23u8zJYxJWtChce637\n9zdihJsOa4zPfO/PVHV7yvciMhr4zFuIWde7WaVTkq20o2IhuegiOp41god+acm2bW6asDHGmMjK\nKAnrCVwdOKdk9oRjgjp+HP76C8qWhYkT3fTDggXDbi45GQYPhjfecPs1jRnjqbkcUyumFAm3eEsC\nTBhKlYKuXSEhAV56CQoX9tRcv34wdixMmeKmxRrjM9/7MxGJUdWkwNOuwOqMzo9qBQrQ4Yu7eKiB\nu8cXH5/TARljTN4XNAlT1bXA0yKyUlVnZGNMJq0DB9yimU2bYPFiKOJtusj+/dCzJ0yfDvfeC8OH\nuwp10Saz6YY21TCH9e0L77/v/iF16+apqZYtoXJlN7BmSZjxm9f+TEQmAq2AsiKyGbfpcysRicVN\nR9wE3OJfxNmvfn2IiVE+/+wE8fHe1hgbY4zJXKYfvS0By2HbtrkKiNOnuxL0HhOwpCS3jdiMGfD6\n6/DMM9GZgMH/phsGY1MNc1jbtm7e0tdfe24qXz6X082eDVu3+hCbMekItz9T1V6qGqOqBVX1HFUd\no6p9VbWuqtZT1S6pRsVyJTmwn457PuDL6cc4diynozHGmLwvo+mIESEiNYCEVIeqAY+o6kupzmkF\nTAV+CRz6RFWHZVuQ0SIxETp2dLsmT5kCV13lqbkff3TN7doF06a5dWDRzqYbRrECBWDlSihXzpfm\n+vaFJ55wg2v/+pcvTRpjQlWiBB3L/cCYX3vx3Xdw6aU5HZAxxuRtQcdAROS6wNeqfl5QVdembG6J\nq1Z1EJiczqlfp9oE8/RLwFShf384cgQWLPCcgM2d6zZhPnrUNZcbEjCTC6QkYD5s3HzBBW5z8PHj\nfWnOmJMi1Z/lNW27laIAx5gx5UhOh2KMMXleRhPRHgx8/TiC178c2KCqv0bwGrnPiRNu76X334fv\nv4dGjTw1N348XHklnHMOLFpkmzAbnz36KFzuT9Xvfv1g9WpYscKX5oxJkR39Wa5XKq41zfmOWdMO\n5nQoxhiT52U0HXGXiHwJVBWRaWlfVNUuPly/JzAxyGvNRWQFsBX4l6r+mN5JqTfBrFQp9H1RotKJ\nE/Dvf8P27a5c4fnne2ru+HG4/354/nn3GXnSJDjjDJ9i9cj2+MpDSpWCefNg7VqoUcNTU927w513\nugIdsbE+xRch6W2Sm1ZWN801EZMd/Vnu17w57QoO59ENl7BrF5x5Zk4HZIwxeVdGSVgnoCEwAbcJ\npa9EpBDQhf/doUxtGVBZVfeLSEdgCpBuRpJ6E8zGjRvn3klMe/dCnz5uE9ybb3YJWf7wK1Tt2eMK\nKs6Y4bZzevHF7C1Bn1mSteiXPwFoVjX4RtNWeCOX6N0b7rsPJkxwi7o8OPNM6NzZDQI/84xbdhaN\nQvl3Gc6muSZiItqf5RmFCtF2YHUeeS0fc+fCddfldEDGGJN3ZVSi/ijwvYhcrKo7RaRE4Ph+n67d\nAViWesPLVNfem+r7z0XkdREpq6p/+HTt6LJxI3TpAmvWwKuvuqxJJOzm1q1zza1f7/YBu/VWH2MN\nUWYbKTerWsZGCfKKmBho1w7efReGDfNcbrNfP5g8GWbNcnuSR6P0NslNK6xNc01EZEN/lmc0eel6\nSk1w//8sCTPGmMgJ5T7z2YFpHGUAEZGdQH9V9boxZS+CTEUUkfLAdlVVEWmKW7u2y+P1otPhw65m\n/IED8MUXntfWzJnjOs58+Vwn2qqVP2GGwyobnkb69XMbfH39tfv37EHHjlCmjJuSGK1JmMm1ItWf\n5RkF8iutmxxg9oxCQKGcDscYY/KsUG5ZjwLuVtXKqloJuCdwLGwiUhxoB3yS6titIpIyZnMtsDqw\nJuwVoKdqHq2XVqSI27Br8WJPCZiqG0Rr3x4qVHDN5WQCZk4zV18N//gHnH2256YKFXJTaadMcdNq\njfGR7/1ZnqNKu+8f55fNhdiwIaeDMcaYvCuUkbDiqjov5Ymqzg8kUWFT1QPAmWmOvZnq+xHACC/X\niGqHD8OgQXDJJRAf77n8/MGDbsrhhAmuqXffdbUSjMk2xYrBa6/51ly/fq65SZPgxht9a9YY3/uz\naJS2aEyWpn7ny0fblkdgJsyepVSvHv7UeGOMMcGFMhK2UUSGiEiVwONhYGOkA8uzfvnFbdg1Zgz8\n6r0y//r10Ly5S7wee8yNHlgCZnKEqtsDYckSz001aeIKLb7zjg9xGfM/eb4/i4ut+Le1uIlJezOt\nRJvWBV1rcy6/MWvyPr/DM8YYExDKSNgA4DHc1EEFvg4cM1k1Y4ZbN3PiBEyb5nkEbNo0N2KQPz98\n/rnbC8yYHKPqFiTWrQvTp3tqSgT69oWHH4ZNm6BKFV8iNCbP92dpi8aEUyBG2l5OW2YzZWFvjh/3\nVKjXGGNMEJmOhKnqX6o6WFUbqmojVb1LVf/KjuDylP/+Fzp1gkqVYOlSTwnY8ePuw2lcHFSv7pqz\nBMzkuHz53DYLX3wB27Z5bq5PH/f13Xc9N2UMYP1ZyKpVo125Ffx1sAjLluV0MMYYkzd5qyVtMnfi\nhPvaoAGMHQvffusypzDt3Okqxj35pFsr8803Nkpgokjfvu4uwcRge7CHrnJlV1zmnXfcIJsxJjwp\na8RSHu8v+i3T91w+9noAZs+OdHTGGHN6siQskhYuhNq1YdUq9zw+3hUwCNPcuVC/PixYAG+95R5F\nivgTqjG+uPBCt6DLp8Vc/fq5fe8WLfKlOWNOO+GuETurc1Pq13dbnRhjjPFfpmvCRKSFqn6T2TGT\nyvHj8J//wKOPQtWqkJzsqbnkZFd048kn4YIL3NKy+vV9ijVM7y/6LcOOPKONmk0e168f3Hsv/H97\n9x0eVbU1cPi3EkIvIh0UiApID9KkV68NaSLFAtgArzQLCoqKWD5U7A3wqlEExCtV5KJSIqJIlRID\nSBVFFFHpLYH9/bFPYEibnilZ7/PMk5lT9llnTmb27LPbnj1QqZJfSd14o527/MMP4corAxSfyrPy\nYn7mcx8xY+hYdgOvL6nDsWOx/tw/VEoplQVPasJe93CZAvjtN+jYER57DHr3hrVrbVNEH+3eDe3a\nwdNP24q0NWtCXwADmLNuDyl7D2W7vlaF4nRJ8O8HuIpQ/fvDH3/4XQADO9Jnt27w8cdw8qT/oak8\nT/MzT4nQcdtETqXF8m3UFlGVUip0sq0JE5FmQHOgjIjc77KqOKBjJWXnuefsTMnvvw/9+tlh3nw0\nezbccQekptrBCW65JYBxBkCtCsWZPrBZqMNQ4aZo0XPPjfHrMwC2m9nUqXYE0G7d/IxN5Uman/mm\nVacSxL1+ioULhKuuigt1OEopFVVyqgnLDxTFFtSKuTwOAT2CH1oEOXHCjqMN8OyzdiTE/v19/vF5\n9KhtgtWtm23NuHZt+BXAlMrR9u3QqFFAevV37Ajly+ucYcovmp/5oMg1rWjGchZ9djzUoSilVNTJ\ntibMGPM18LWIJBpjfhaRos7yI7kWXST44Qd7q94YWL8eihSxHbd8tGKFTW7rVrj/flumK1AggPHi\nvj8X2M7crv0IlPLKRRfZgtiHH8JVV/mVVL589ibEa6/B/v1QunSAYlR5huZn50sfLTFdtt/3rVvT\nIWY8Y7a24u+/4cILczFIpZSKcp70CSsmIj8APwI/isgaEakT5LjCX1qaHSmjSRP4+2948UX7a9FH\nqanw+OPQooWtWFu82CYZ6AIYuO/P5enoWUplq0AB6NULZs6Ew4f9Tq5vX/sZmT49ALGpvCzP52de\njZZYtCgda/+OIYYlS3IpQKWUyiM8KTVMAu43xiwBEJG2zrLmQYwrvP32mx227fvv7Q/Nt97y6xbh\npk229mvNGvtj87XXoESJAMabhZz6c3k8epZSObntNpg40RbE+vXzK6l69eyANB9+aJvqKuWjPJ+f\neTtaYuOvx1O0sm1ZfOONwY5OKaXyDk9qwoqkZ1gAxpgkoEjQIooEJUtCTIydkPbjj30ugJ0+Da+8\nAldcYbuUzZgBH3wQ/AKYUrmieXO45BKYPDkgyfXta8e82bIlIMmpvMmn/ExE3hORfSKS7LLsQhH5\nSkS2On9LBifk0IorWZS2bWHRolBHopRS0cWTmrAdIvIYkP5L6lZgR/BCClPbttnJut5+247+tmyZ\nX6O+bdoEd90F330H119vJ14uXz6A8SoVaiLwyCN2pJkAjJJ48812+rHJk+2UDZEgY9+bjLTvZa7z\nNT9LBN4AXIeHGQksMsaME5GRzuuHAxhr2Ojw5zTmbe3D7t1QWf9dlVIqIDypCbsDKAPMdB5lnGV5\nQ1qa7ZxVrx7MnWsH3wCff1CmptquZAkJsHmzbV712WdaAFNR6s47YehQvwtgYD8j//qXLYSdOROA\n2IIsY9+bjLTvZUj4lJ8ZY5YCf2dY3AX4wHn+AdA1cGGGl44xtvJQa8OUUipw3NaEGWP+AYaKSDH7\nMg+NJrVxo/0RuWoVdO5s+375MQHt2rU2uXXr4Kab4PXXoVy5AMarVDg6fBgWLIAePfwujPXta2vE\nliyBDh0CFF+QZOx7k5H2vcx9Ac7Pyhlj9jrPfwey/TYXkQHAAICiFS7145ChUbvLZZRb/jsLPyvB\n7bcXCnU4SikVFdwWwkSkLrYJxoXO6/1AP2NMco47RjpjYMAA21lr+nRbavLxB+Tx4zB2LLzwApQp\nY8cpCOakvpLFDwAAIABJREFUs+6GoE/ZeyjHO/RKBdS0aTBwoL2Z0aiRX0l162a7YE6aFP6FMBV+\ngpWfGWOMiJgc1k/CDgDChVVqZrtduJIO7enAIhYt7h6IlsVKKaXwrDniROxoUlWMMVWAB3Ayk6i0\naJGdjEjEtnvatAl69vQ51/n8c6hdG8aNswPEpaQEtwAG7oegr1WhOF0SfK/RU8orPXtCoULwzjt+\nJ1WwoP0czZoF+/YFIDaV1wQyP/tDRCoAOH+j9z+yQQM6FFrOHwcL8eOPoQ5GKaWigycDc2QaTUpE\n/B4dUUR2AYeB00CaMaZRhvUCvApcBxwD+htj1vp73Gz99pudHXn6dHj4YVtquuwyn5PbvRuGDYPZ\ns6FmTdt8qm3bwIXrTk5D0CuVqy64AHr3hilTbHVwcf9qYe++G15+GRIT4aGHAhOiyjMCmZ/NBfoB\n45y/cwIQX0i4nbw5NpaOPS+ED+x9yjp5amY1pZQKDk9qwnaIyGMiUtV5jCZwoyO2M8YkZCyAOa4F\nqjmPAcDbATrm+dLS7C+6yy+3JaYxY+zDR6dOwfPP24LXl1/asty6dblbAFMq7AwcaEdJnDrV76Rq\n1oTWrW3FWiQM0KHCik/5mYhMA5YDNUTkVxG5E1v4ukpEtgIdndcRx9PJmysnjuWyy+x8YUoppfzn\nSU3YHcCT2JGkDPANuTM6YhfgQ2OMAb4XkQtEpIJLR+jAGDbMDrhxzTXwxhtwqe+dppcsgcGDbZPD\nrl3tHGBVqgQw1lzkbmht7VemvNKkiZ1teeFCGDTI7+QGDIBbb4WkJGjf3v/wVJ7hU35mjOmTzaqI\n75nozeTNHTsYpkyF1FQhLi43olNKqeiVYyFMRGKBR40xQ4NwbAN86XRmnuh0XHZVCfjF5fWvzrLz\nCmGuo05V9nQCk59/hthYuOgiWwjr0MF21PKx39e2bXb+otmzIT7eDjnfqZNPSYUFT/qLab8y5RUR\n+OILKFs2IMndeKMd+X7iRC2EKc8EOT+LKtk1T+zw5cNMOPw8q1bZudiVUkr5LsdCmDHmtIi0DNKx\nWxpj9ohIWeArEdnszMXiFddRpxo1apTzqFNHjtj2gS++aAtdU6dC9er24YODB+2ksa++CgUKwLPP\nwn332cEDIpm7obWV8kn6fAynT9ubIH5IH6DjjTfsAB0BKtupKBbk/CxqZLy5lj7I081NK9Ou8RFk\n5xkWfgXNm3vSm0EppVR2PPkW/UFE5orIbSLSPf3h74GNMXucv/uAWUCTDJvsAS52eX2Rs8x7Z87Y\nXvzVq9uZkrt3t4UxH50+be/AV6tmy3O33QY//QSjRkV+AUypoJo+3bbRPXjQ76TuvttOfp6Y6H9Y\nKs8ISn4WTW5uWpnpA5udfbg2Oy91XVMa8AOLPjsWwgiVUio6eFIIKwj8BbQHbnAefjW2E5EizmSZ\nOCNT/QvIOE/LXKCvWFcCB33uD/bEE3D77VC5Mnz3nR2lzdOmiy6MgXnzICHBdmupUcNOffTuu1Ch\ngk+RKZW3XHYZ7NkDH33kd1I1a0KbNjBhgr0xopQHAp6f5SkdOtCRhSxfV4ijR0MdjFJKRTa3A3MY\nY24PwnHLAbPsKPTkA6YaYxaIyCDnmBOA+djh6bdhh6j3Lo7Vq+3cRLVr25HZLr8c+vSBGN+aUCxb\nBiNHwrff2t+Rn3wCPXropJVKeaVhQ/t4+23497/9/gANHmznUf/8c+jcOUAxqqgVpPws77joIjpU\n2sLze2L55hs7npVSSinfhKRRtzFmhzGmvvOobYx5xlk+wSmAYax7jTGXGmPqGmNWe5T4li32V1nj\nxvDkk3bZRRfBLbf4VADbuBFuuAFatYLt2+1vx5QUewgtgCnlg8GD4ccfYfFiv5Pq2tV+vF9/PQBx\nKaXcajmmI/nzndah6pVSyk+eDFEfOX7+2dZ8FSpkmyDef7/PSW3bBmPH2lZTxYvbQTeGDoUifkxT\nPXXF7iznX8ko00SZSkWT3r3tLMuvvmpHJvVDvnxw7722P2ZKCtSqFaAYlVJZKnzXzTSfYidtVkop\n5bvoKoT99Zcdcv6RR6BMGZ+S2LrVjng4ZQrExcGDD8LDD0OpUv6HN2fdHrfza7mORKVUVCpYEF57\nDcqXD0hyd91lK71ff93WVEcSd/Pxgd6UUeGnY719jH6tLH/+6XNWq5RSeZ7bQpiIlAOeBSoaY64V\nkVpAM2PMu0GPzlt16sDLL/u065YttvA1daodbn7oUDv3V6AH3KhVoTjTBzbLdr27H2RKRYXevQOW\nVOnStrXxhx/aGuuSJQOWdFB5Ms+e3pQJrIjKz8JYhwUjGM0HLFkCPXuGOhqllIpMntSEJQLvA486\nr38CpgPhl2nlz+/1Lps3w1NPwccf2xv0991nC1/pUxoppYJk927bJPGJJ2ybXz8MGWJHKX3/fb9a\nIecqT+bj05syAZdIpORnYaxRp/IUf+kgCxcUoWfP6GpQo5RSucWTb8/SxphPRGQUgDEmTUQifkDo\n77+H55+H2bOhcGHb7PCBB8Jj0ld3TZS0eZKKCn/8AS+9ZOcNGzrUr6Tq14fWre3kzcOG+T0XtIpe\nUZmf5bZ8HdvS9qUkFi24imjr1aCUUrnFk2/PoyJSCjAA6XN2BTWqIDlzxg5l/fzzdsj5kiVt97Fh\nwzxr1+7JwBr+FpDcNVHS5kkqajRuDM2a2c5cgwf7PH1EuqFD7bQRc+bY+diVykLU5Gch1aoVHWNG\nM3dvF3buhPj4UAeklFKRx5NC2P3YiZMvFZFvgTJAj6BGFWAnT9qBNsaPh02b7DzNr74Kd9wBRYt6\nno67gTUCUUBy10RJmyepqDJsmO0fNm+e3xN9de0Kl14Kzz0H3brpFBIqSxGfn4WFokXp0OBvWGNH\nSbzrrlAHpJRSkSfHQpiIxAAFgTZADUCALcaY1FyIzW9//AGTJtkR0/buhYQEWxi76SY78qEvchpY\nI7cKSO6aK7obgVGpsHHjjVC1KowbZyfk86PkFBtrmxXfcw8sXQpt2gQuTBX5Ij0/Czc13xtBhX+d\n5quvYrUQppRSPsix/Y8x5gzwpjEmzRjzozEmORIyrJUr4bbbbI3X449DvXrw5Zewdi3cfLPvBbBw\n0CWhktsCVq0KxT0aeU2pkMuXz84ZVqkSHD/ud3L9+tl+nc89F4DYVFSJ1Pws3ExdsZteE5fTe/kR\nCsT/xex5aUz+dneow1JKqYjjSXPERSJyIzDTGGOCHZA//v4bmja1hbBixWDgQDuRa40aoY4scDwZ\nUU2piHLPPfYRAIUK2b5ho0fDhg32BoxSLiImPwtXrs3y2xb+msRjN/H+7EPc1iLUkSmlVGTxpBA2\nENuOPk1ETmCbcBhjTNi1d9u509ZyvfaavSPu56jXPsmpqaA2E1QqB5s22WkmLr3Ur2T+/W/buvGF\nF2Dy5ADFpqJFxORn4cQ1X0vPx6YPbMbB74fzEV35fb2+fUop5S23w5EZY4oZY2KMMfmNMcWd12H5\njVutmv0dN2RIaApg7poKajNBpbJx/LgdKXH0aL+TKlkSBgyAadNg+/YAxKaiRiTlZ+EiY77mmo+V\n6NaeVnzDX2sLhyo8pZSKWB5N8CEiJYFq2E7NABhjlgYrKF8VL+73KNd+0aaCSvmoUCFbcnrxRXjy\nSahe3a/kHnwQ3noLnn7aTuCsVLpIyc/CRY75Wvv2XBvzJEv+as/PP9sp/5RSSnnGbZFFRO4ClgJf\nAE86f8cENyylVJ7zwANQsKAthPmpQgXbzWzyZNi6NQCxqaig+VmAFS1K9ao7ATsHp1JKKc95Um80\nDGgM/GyMaQc0AA4ENSqlVN5TrpxtSzxtGiQn+53cww/bLmZPPRWA2FS0CHh+JiK7RGSjiKwTkdWB\nCDKS/HPFRVSN3cm82TrQpFJKecOTQtgJY8wJABEpYIzZjJ1jRSmlAmvECNup69tv/U6qXDk7SMeU\nKbBlSwBiU9EgWPlZO2NMgjGmUQDSiigL2vcgrk0BFi+N4+jRUEejlFKRw5M+Yb+KyAXAbOArEfkH\n+Dm4YQXe1BW7mbNuj19p6OiGSgVZqVKwa5edYyIAHnrITtY+dqwtjKk8Lyrys3BiYmKpWO8fti6u\nyJdfQrduoY5IKaUigyejI3YzxhwwxowBHgPeBboGO7BAS5/bxB86uqFSuSC9ALZ5s99JlS1rWzhO\nnWona1d5W5DyMwN8KSJrRGSAvzFGousPz6WU/MWMKSdCHYpSSkUMtzVhIuI6LNJO5295YLcvBxSR\ni4EPgXLYzGuSMebVDNu0Bea4HG+mMWasL8dzlT63iVIqzH3yCfTqBYsXQ7t2fiU1ahT85z923I/F\ni0EkQDGqiBPo/MzR0hizR0TKYmvXNmccbdEpnA0AKFrBv3nwwtGf5SvS1czik8/7cvIkFCgQ6oiU\nUir8edIc8XNsYUmwQ/rGA1uA2j4eMw14wBizVkSKAWtE5CtjTEqG7b4xxnTy8RiZPNu9bqCSUkoF\n2w032PGu77sP1qyB2FifkypRAsaMsTVi8+bZpFWeFej8DGPMHufvPhGZBTTBjsDous0kYBLAhVVq\nGl+PFa7+F1uOUcUn8+6hu+h4/2Yq1vsn0zZdEirpFC5KKeXCbSHMGHNe6UVErgD+7esBjTF7gb3O\n88MisgmoBGQshCml8qpCheC556B3b0hMhDvv9Cu5gQPh9dftuB/XXANxcYEJMzek7D1Er4nLs12v\nP249F+j8TESKADFOXlYE+Bfgd6uNSJLeRL9A43xcsOgf9q4snqkQlt4VQP9PlVLqHI8ma3bl1GA1\nDcTBRaQqdojgFVmsbiYi64HfgAeNMT9mk8bZZh6VK+sXvFJRo2dPeO01ePRR+9yPwTri4uD556Fr\nV5g0Ce69N4BxBpG7Pqj649Y/AcjPygGzxLZxzQdMNcYsCEhwEeLsZM71hc8WzWF2ys1Mvr0i+fOf\n2yanmwhKKZVXedIn7H6XlzHAFdiCkV9EpCgwAxhujMk4YsZaoIox5oiIXIcdyapaVum4NvNo1KhR\n1DXzUCrPEoGXX7Z9wlasgI4d/Uquc2eb1OjR0KOHHcI+3J39gZsN/XHrnUDnZ8aYHUB9f+OKCk2a\ncFOXjXwwJz8LF8J114U6IKWUCm+ezBNWzOVRANumvos/BxWROGwBbIoxZmbG9caYQ8aYI87z+UCc\niJT255hKqQjUpAn8+qvfBTCwZbq33oJjx+D++91vr6JSwPMz5YiJoeP0uylZEj76KNTBKKVU+PNk\niPonXR7PGGOmpE926Qux7TbeBTYZY17KZpvyznaISBMnzr98PWaoFS1aNMvl/fv359NPP/UpzTFj\nxjB+/HiPj/3bb7/Ro0ePbLc7cOAAb731Vo5pNW/eHICkpCQ6dfJuzJTZs2eTknKu29/jjz/OwoUL\nvUpD5VElS4IxsGABnD7tV1KXXw4jR9oh67/6KkDxqYgR6PxMna9AAejT8U9mzTjNwYOhjkYppcKb\nJ80RP8OOJpUlY0xnL4/ZArgN2Cgi65xljwCVnfQmAD2Ae0QkDTgO9DbGuG1quOPPo5ma56SPingi\n9TQF43wfYS3SVaxYMccCX3oh7N//ztxHPS0tjXz58vHdd9/5fPzZs2fTqVMnatWqBcDYsXmq77ry\n1+LFcO21dnSNwYP9SmrUKJg2De65BzZutGOAqLwhCPmZyqDfxgd569QHfPIJ3H13qKNRSqnw5Ulz\nxB3YgtA7zuMIsB140Xl4xRizzBgjxph6xpgE5zHfGDPBKYBhjHnDGFPbGFPfGHOlMcajX//HU7O/\nS14wLpYLCoV2SDRjDIMHD6ZGjRp07NiRffv2nV23Zs0a2rRpQ8OGDbn66qvZu3cvAO+88w6NGzem\nfv363HjjjRw7dizHY+zcuZNmzZpRt25dRo8efXb5rl27qFOnDgA//vgjTZo0ISEhgXr16rF161ZG\njhzJ9u3bSUhIYMSIESQlJdGqVSs6d+58tuDkWqN36NAhrr/+emrUqMGgQYM4c+ZMpm0+/fRT+vfv\nz3fffcfcuXMZMWIECQkJbN++/bxawEWLFtGgQQPq1q3LHXfcwcmTJwGoWrUqTzzxBFdccQV169Zl\ncwAm71URqn17uPpqW4L65Re/kipYECZMgO3b4YknAhSfihQBzc9UZo0HNaQmKXzw9tHzlqeP8pn+\nmLrCn6nZlFIq8nkyOmILY0wjl9efichqY8x9wQrKV4XiYt1Pxty2beZlnTrBgw/6tj4pyeP4Zs2a\nxZYtW0hJSeGPP/6gVq1a3HHHHaSmpjJkyBDmzJlDmTJlmD59Oo8++ijvvfce3bt3527nduLo0aN5\n9913GTJkSLbHGDZsGPfccw99+/blzTffzHKbCRMmMGzYMG655RZOnTrF6dOnGTduHMnJyaxbt845\nrSTWrl1LcnIy8fHxmdJYuXIlKSkpVKlShWuuuYaZM2dm29yxefPmdO7cmU6dOmXa5sSJE/Tv359F\nixZRvXp1+vbty9tvv83w4cMBKF26NGvXruWtt95i/Pjx/Oc//3H/RqvoIwJvvw116sAdd8AXX0CM\nJ/eQsta+PQwYAOPH249369YBjFWFs4jJzyKV9OlNv/tfZuQP/8fWrVCtWuZRPnVUT6WU8qwQVkRE\nLnFGgUJE4oEiwQ0rOi1dupQ+ffoQGxtLxYoVad++PQBbtmwhOTmZq666CoDTp09ToUIFAJKTkxk9\nejQHDhzgyJEjXH311Tke49tvv2XGjBkA3HbbbTz88MOZtmnWrBnPPPMMv/76K927d6datSwHnqRJ\nkyZZFsDS111yySUA9OnTh2XLluXY5yw7W7ZsIT4+nurVqwPQr18/3nzzzbOFsO7duwPQsGFDZs7M\nNIaLykvi4+Gll2DQIHjlFb9H13jxRVi0CPr2hQ0boHjxAMWZy3QeMa9ofhZsZcty23V/M3peKhPf\ngPGvxmUa5VNH9VRKKc8KYfcBSSKyAxCgCs68XBHJXc2Vv+t9YIyhdu3aLF+eOWPq378/s2fPpn79\n+iQmJpLkwfGdMU2ydfPNN9O0aVM+//xzrrvuOiZOnHi2QOWqSJHsf5tkPEb6a9flJ07439+9QIEC\nAMTGxpKWluZ3eirCDRgAy5ZBmTJ+J1W0KEyeDC1b2nLdlCm2wi2S6DxiXouu/CxMVXzwZrrPn827\n73XlyWchh6xEKaXyLLeFMGPMAhGpBlzuLNpsjDkZ3LCiU+vWrZk4cSL9+vVj3759LFmyhJtvvpka\nNWrw559/snz5cpo1a0Zqaio//fQTtWvX5vDhw1SoUIHU1FSmTJlCpUo5/+hq0aIFH3/8MbfeeitT\npkzJcpsdO3ZwySWXMHToUHbv3s2GDRuoX78+hw8f9vhcVq5cyc6dO6lSpQrTp09nwAD7O6ZcuXJs\n2rSJGjVqMGvWLIo5E+wWK1Ysy/Rr1KjBrl272LZtG5dddhmTJ0+mTZs2Hseh8hgRW3JKZ4xfJadm\nzWDsWDt3WIsWkTOJczqdR8w7mp/lktatGTLnIJ/cEMdHH8HAgTlvPnXFbuas25PjNlqjq5SKNtl2\nqhCRxiJSHsDJpOoDY4EXROTCXIovqnTr1o1q1apRq1Yt+vbtS7Nmtv9a/vz5+fTTT3n44YepX78+\nCQkJZ0cifOqpp2jatCktWrTg8ssvzyl5AF599VXefPNN6taty549WWdqn3zyCXXq1CEhIYHk5GT6\n9u1LqVKlaNGiBXXq1GHEiBFuj9O4cWMGDx5MzZo1iY+Pp1u3bgCMGzeOTp060bx587NNKgF69+7N\nCy+8QIMGDdi+ffvZ5QULFuT999/npptuom7dusTExDBo0CC3x1eKDz6Am24CZ1AYX40aBddfD/fd\nB99/H6DYVFjR/CyXidDi+gtISIDXXjnt9iM6Z92es7W2WUnZe8htIU0ppSKNZDfyu4isBToaY/4W\nkdbAx8AQIAGoaYzxvgNQkF1Ypab5++dNoQ5DKZUb3n4b/v1veOQReOYZv5L65x9o2NBO5LxiBVSp\nEqAYQyy9JsztgEURRETWZBhcw5N9wiY/y0v51OSmr9N35RBmzYKuXc8t7zVxOSl7D1Grgu2Imf48\nu//TjP/HntScZSWSatPaJrYFIKl/UkjjUEp5z9N8KqfmiLHGmL+d572AScaYGcAMl/m9lFIqNAYN\ngh9+gGeftaWmAb537SlZEubNg+bNba3Yt99CiRIBjFWFmuZnIdCn6wmeXLmNsSMr0KVLkbMthzP2\nZaxVobjb/o2u0mvO0gtxnnDXPzKrgl0kFdqUUpEnx0KYiOQzxqQBHTi/87InA3oopVTwiMCbb8Ke\nPXbm5fLlobPvc+3WqgUzZ9rpyLp2hc8/h8KFAxivCiXNz0Ig3+BBPPr0KO7Y8gbz5sENN9jl7voy\neiKnmrOsuOsfmbFgp4PaKKWCLaeJdqYBX4vIHOzklt8AiMhlwMFciE0ppXIWFweffGLbEn7zjd/J\ntW9vu5p9/bUtiAVggE8VHjQ/C4Vixbj1kcpcyjZGDT1CamqoA8pZesFu+sBm1KpQXCeYVkoFVbZ3\nAI0xz4jIIqAC8KU513ksBtuWXimlQq9IEVi8+Nw42CdPgjO1gS9uvhlSU+H226FLF5gxww5nH6nc\nzSMG0d/sSvOz0Il7YCjjXx1Kt12TePttGDo0dLHk9FnI2LzR2wmmtTmjUspbOTbDMMZkGivMGPNT\n8MJRSikfpJeStm+31VmjR8Pdd/ucXL9+dvT7O++Edu1s08SyZQMUay7ypJ9NXml2pflZiBQsSJf/\nDeKqB1N54ok4evcOzWfJ3WchY780byeY1uaMSilvaVt4pVT0KFsWate2g3Rs3WoH7cjn29dc//5Q\nqhT06gVXXmn7iyUkBDbcYPOk743OJaaCTRpewatvQYMGhrtuO8WcBQW8nt7PtRbL20E5IDD90DLW\npGWs6XLtp5Y+AmTGz5fWjiml0uXUJ0wFyO+//07v3r259NJLadiwIddddx0//ZR7N2DXrVvH/Pnz\nvd6vbdu2rF69OsdtkpKS6NSpEwBz585l3LhxPsexevVqhjptVcaMGcP48eO9iveVV17h2LFjZ19f\nd911HDhwwKs0VIQrVgzmzrVD17/wAnToYAfu8NENN8CSJXDqlJ3Y+b33bA2ZUso7NS83PFd1Ap99\nWYAJb6R5tW+XhErnFbq8HU0xEDLG4G7usozbe7KPUipv0ZqwIDPG0K1bN/r168fHH38MwPr16/nj\njz+oXr262/3T0tLI53In3xiDMYaYGM/Lz+vWrWP16tVcd9113p+AFzp37kznHEanyymOtLQ0GjVq\nRKNGXk3/c55XXnmFW2+9lcLOkHa+FDxVFMiXz46aeOWVdtTEUaPgww99Tq5pU1i7Fvr0sc0T58yB\nCRPAZS5ypZQ7IgwZU4r/9VnA8OEdqJtgaNnKs+qwQNRi+cvb5olZxay1zkopV1oIC7IlS5YQFxfH\noEGDzi6rX78+YAtUDz30EP/73/8QEUaPHk2vXr1ISkriscceo2TJkmzevJkvv/ySq6++mqZNm7Jm\nzRrmz5/Pli1beOKJJzh58iSXXnop77//PkWLFmXVqlUMGzaMo0ePUqBAAb766isef/xxjh8/zrJl\nyxg1ahSdOnViyJAhJCcnk5qaypgxY+jSpQvHjx/n9ttvZ/369Vx++eUcP348y3NasGABw4cPp3Dh\nwrRs2fLs8sTERFavXs0bb7zBf//7X5588kliY2MpUaIECxcuzBTHpk2b2L59Ozt27KBy5coMHDiQ\n8ePHM2/ePMAWVps1a8b+/ft56KGHuPvuu0lKSjpvm8GDB9OoUSMOHTrEb7/9Rrt27ShdujRLliyh\natWqrF69mtKlS/PSSy/x3nvvAXDXXXcxfPhwdu3axbXXXkvLli357rvvqFSpEnPmzKFQoUJB+V9Q\nuey226BJk3MDdvz0kx20o25dr5MqWxa+/BJefRUefRRq1oTHH4d77/VrDBCl8pSY3j2ZsuJpmr1y\nCV2uvoivVxSiTl0v2yWGEV+aSLobKMe1ueK+QydzbM7objAQTye19nYfb2KIVL5MCJ7TeQfifQrE\n9Q70tfP2mMEQyf+DeaoQNnw4rAvwtJwJCfDKK9mvT05OpmHDhlmumzlzJuvWrWP9+vXs37+fxo0b\n07p1awDWrl1LcnIy8fHx7Nq1i61bt/LBBx9w5ZVXsn//fp5++mkWLlxIkSJFeO6553jppZcYOXIk\nvXr1Yvr06TRu3JhDhw5RuHBhxo4de7ZwBPDII4/Qvn173nvvPQ4cOECTJk3o2LEjEydOpHDhwmza\ntIkNGzZwxRVXZIr5xIkT3H333SxevJjLLruMXr16ZXluY8eO5YsvvqBSpUocOHCA/PnzZ4pjzJgx\npKSksGzZMgoVKkRSUtJ5aWzYsIHvv/+eo0eP0qBBA66//vps3+ehQ4fy0ksvsWTJEkqXLn3eujVr\n1vD++++zYsUKjDE0bdqUNm3aULJkSbZu3cq0adN455136NmzJzNmzODWW2/N9jgqwtSoce75Y4/B\nf/8Lt94KI0faicG8EBsL999vmygOHQoPPABvvAEPPwx9+4KW3ZVyr9SLjzB/9yjazBxKmyuFzxcV\n4sorQx2V93yZcNrd+oyDeew/cpKUv7Mf7MPdYCCeTGrt7T7exhCpvJ0Q3N15B+J98vd6B+PaeXvM\nYIjk/8E8VQgLN8uWLaNPnz7ExsZSrlw52rRpw6pVqyhevDhNmjQhPj7+7LZVqlThSien+v7770lJ\nSaFFixYAnDp1imbNmrFlyxYqVKhA48aNAShePOsPxZdffsncuXPP9rk6ceIEu3fvZunSpWf7ZNWr\nV4969epl2nfz5s3Ex8dTrVo1AG699VYmTZqUabsWLVrQv39/evbsSffu3bN9Dzp37pxtzVOXLl0o\nVKgQhQoVol27dqxcuZILLrgg27Sys2zZMrp160YRp0ake/fufPPNN3Tu3Jn4+HgSnNEWGjZsyK5d\nu7x6V+ltAAAW2UlEQVROX0WIt96CKlXg9ddh8mTo2BEeegiuusqrZKpVg//9z9aMPfIIDBpkB2O8\n5x5b+eZ8NJRSWYmJ4bL//h/f3PkMVy18iNatYdw4e5PUi1b2IedLE0l3+2RVQ5ZxsA9/1vtyzEDE\nGKm8mRDck/MOxPvkz/UO1rXz9pjBEKn/gyEphInINcCrQCzwH2PMuAzrCwAfAg2Bv4Bexphd/h43\npxqrYKlduzaffvqp1/ulFxiyem2M4aqrrmLatGnnbbNx40aP0jbGMGPGDGq41hIE2IQJE1ixYgWf\nf/45DRs2ZM2aNVlul/E8XUmG4bNEhHz58nHmzJmzy074OZtuAZe2ZLGxsdk2wVRRoFQpeP55GDEC\n3nnHFsrmz7eFsNOn4bPPoGVLyFCTmp1//cvuunQpjB8PTz1lHw0bQo8etozXoIGtQVPRy11+prIQ\nE8Ml7z/Gqr9tP8sHHoCPxu/l2ZcL86+bSkRUYUwppXyV6191IhILvAlcC9QC+ohIxnZBdwL/GGMu\nA14GnsvdKAOnffv2nDx58rzaog0bNvDNN9/QqlUrpk+fzunTp/nzzz9ZunQpTZo0cZvmlVdeybff\nfsu2bdsAOHr0KD/99BM1atRg7969rFq1CoDDhw+TlpZGsWLFOHz48Nn9r776al5//XXS5yv94Ycf\nAGjdujVTp04FbDPKDRs2ZDr25Zdfzq5du9i+fTtApoJguu3bt9O0aVPGjh1LmTJl+OWXXzLF4c6c\nOXM4ceIEf/31F0lJSTRu3JgqVaqQkpLCyZMnOXDgAIsWLTq7fXbpt2rVitmzZ3Ps2DGOHj3KrFmz\naNWqlcdxqChTpoytwtq50zZRBFi2DLp1s+vq1IG77rJ3bXbuzDEpEWjTxpbffvnFFsbAjgXSuLEt\nz11zjW2yOHUqbNwIR44E+fxUrvEwP1PZuPBCmDk9lSmNXubvvSe5tncJqhX/nZHXb2TJx39w6FCo\nI1RKqeAJRU1YE2CbMWYHgIh8DHQBUly26QKMcZ5/CrwhImJM5A0OLSLMmjWL4cOH89xzz1GwYEGq\nVq3KK6+8QsuWLVm+fDn169dHRHj++ecpX748mzdvzjHNMmXKkJiYSJ8+fTh58iQATz/9NNWrV2f6\n9OkMGTKE48ePU6hQIRYuXEi7du0YN24cCQkJjBo1iscee4zhw4dTr149zpw5Q3x8PPPmzeOee+7h\n9ttvp2bNmtSsWTPLvmwFCxZk0qRJXH/99RQuXJhWrVplWfAZMWIEW7duxRhDhw4dqF+/PpUrVz4v\nDnfq1atHu3bt2L9/P4899hgVK1YEoGfPntSpU4f4+HgaNGhwdvsBAwZwzTXXULFiRZYsWXJ2+RVX\nXEH//v3PFnDvuusuGjRooE0P87q4OPsrEKB5c1sQW7oUvv7aDnP/7rtQvTrEx8OCBXbusUqVoGJF\nu1+xYrYtYvXqsHMnF33zDQ9UjOOBkXH8fqQoS1LKsXhvTVYnF+Tllw2pqedqdksWS6Ny+ZOUu7gA\nJcvk44KCJyhp/qZk8TQKFzQUyH+GAvmhQJXyFLigEAVOHSb/378jGCRGiInBPr/4ImKKFkYOH0J+\n32uXi33EiEEqX2wHJjl4EPbuzfweXHwx/+wuQsHjR1g7NYvvnYvd7+9u/UU1ikTkRNce8iQ/UzmQ\n/HHcvOo+bvwhhRkPJ/Lu0st4cX5TnpsfB8DFlU5T7cRGyl1wknIlUylTMo2ixYVCtS6hcI2LKSzH\nKfjTBmLzxxIbF0NMXCyx+WOJqVSB2LKliDl1gthd2+3nReDsBGXly9va8RMnYOeOzIGVLXdufVZ5\nRdmy9nsggOsLrvwTgLXFNnPknzTSTsZyOjVyBy5RSuVMcrtcIyI9gGuMMXc5r28DmhpjBrtsk+xs\n86vzeruzzf6c0r6wSk3z98+bghe8Uirv2LfPFrQKFYKVK+2w93v2wG+/wYEDcOiQ7RzWqhVMmWIH\n/MhoyRJo25bUD6exud+zJFOH3VRmN5X5mSr8eXlr/jldnAN/nOCfQ7GkEZf75xlkCTftpHqH36lV\nsThP3FDb7/REZI0xxve5LALIk/wsI82n3DCGwytSWLqpDBt+L8uP3x9mx6Id/HGiBPtOl+IIxUId\nYe7o35b6rOONaXUpWtC2aT56Ko2FFzUn5YFuANw7bASxMVAkfz6P1gMcaNmJtvMeBGDdBW05eiqN\n02cg1mkXlb7/9IHNWHdB20xhLbq4OYk3tqFWheIMvW/E2X3Tj5FxfUbfX9qalYNvAAjr9Sl7DzHh\n+afOe+8g8/uXLv19XFUt6/TT36fU9l1pO+9Bek1cfvb6eBpfevoPbHwWgG8Ltzzv2mVcn/H6efv/\n48n7l/H6u/v/Csb1c43hQMtOvH1Di7PXL12sCAXjYrO9fukSDiRlWuYLT/OpiB+YQ0QGAAMASla8\nJMTRKKWihmv1TZMm9pGdLl1g2zZITT3/UbMmAHFXtaXuF6Wom37TK/1v41QoBez5C7NuPUePx3Ds\nZCwnTwknU2M4WasBJwuX5OQv+0hN+Qlzxu5qEM6cAVO7DqZ4Cc788Sdm6zaMgTNGzv6lZk0oXhz2\n7wenCfF5atbk670nSdm4g3J//ppp9Z4KVTlesAjFjhz0eX3+S/ROvuZTXhCh2JW1uf5KsOPhFgPq\nn1194uBJju07wrEzBTkmRTj+zwmO/7iD06lnOHMqzf5NO8Pp8pU4U64Cpw8f40xyCrYrsctN54su\ntrVhx4/BxuTMcVSufG79hiz6W1eubCcLDOD65D0H+ekP27Lks7IHkT8hf75zn5+42BiKFjj3sy02\nxi7zdH1W7Ppz/ayLFsiX4yiO5UsUPG8kvIzHyLg+UtWqUNzte+cq4/uYUfr7lOq87pJQKVMBzJ3Y\nGPv+ZnfMjOuzitGb/x9PY8rpfXL3vgRCxhhyeyJ3f4SiJqwZMMYYc7XzehSAMeb/XLb5wtlmuYjk\nA34HyrhrjtioUSOzevXq4AWvlFIqpMKsJsxtfpaR5lPKE20T2wKQ1D8ppHEopbznaT4VijGIVgHV\nRCReRPIDvYG5GbaZC/RznvcAFkdifzCllFJRzZP8TCmllMok15sjGmPSRGQw8AV2SN/3jDE/ishY\nYLUxZi7wLjBZRLYBf2MzNqWUUipsZJefhTgspZRSESAkfcKMMfOB+RmWPe7y/ARwU27HpZRSSnkj\nq/xMKaWUckenRFRKKaWUUkqpXKSFMKWUUkoppZTKRVoIU0oppZRSSqlcpIUwpZRSSimllMpFuT5P\nWDCJyEFgqxe7lAAOBmC7nNZntS677TMuLw3s9yC+QPP0fQlGOp7sE+jrkd3yrJbltWuin5Gs6Wck\n+2XBviZVjDFlgph+UInIn8DPWazy57oG+jr4+v8dDefg6b65cR7RcA6exuLrvt58l4XrOeS0Tbhc\ni2g4B0/3DcR5eJZPGWOi5gFMCsb27rbLaX1W67LbPuNy7JD9Yf8+BjIdT/YJ9PXw5jrltWuin5Hw\nuh6e7pMXPyOR/vDnugb6Ovj6/x0N5xBO5xEN5xDs8/DmuyxczyESrkU0nEO4nYcxJuqaI34WpO3d\nbZfT+qzWZbe9t/EHS6Di8CUdT/YJ9PXIbnm4XA8I3TXRz0jW9DPieSzKM/5c10BfB1/Ti4Zz8HTf\n3DiPaDgHf9MLxndZMOLwd99wvxbRcA6e7ptrvz+iqjlitBGR1caYRqGOQ52j1yS86PUIP3pNwkM0\nXIdoOAeIjvPQcwgf0XAe0XAO4P95RFtNWLSZFOoAVCZ6TcKLXo/wo9ckPETDdYiGc4DoOA89h/AR\nDecRDecAfp6H1oQppZRSSimlVC7SmjCllFJKKaWUykVaCFNKKaWUUkqpXKSFMKWUUkoppZTKRVoI\nU0oppZRSSqlcpIWwCCYiRURktYh0CnUseZ2I1BSRCSLyqYjcE+p4FIhIVxF5R0Smi8i/Qh1PXici\nl4jIuyLyaahjyeuiIe+Ihu/caPmOitTPtvM5+MC5BreEOh5fROp7n1E0fBZ8+U7SQlgIiMh7IrJP\nRJIzLL9GRLaIyDYRGelBUg8DnwQnyrwjENfDGLPJGDMI6Am0CGa8eUGArslsY8zdwCCgVzDjjXYB\nuh47jDF3BjfS6BYteUc0fOdGy3dUtH22vTyf7sCnzjXonOvBZsObcwin9z4jL88j5J+FrHh5Dl5/\nJ2khLDQSgWtcF4hILPAmcC1QC+gjIrVEpK6IzMvwKCsiVwEpwL7cDj4KJeLn9XD26Qx8DszP3fCj\nUiIBuCaO0c5+yneJBO56KN8lEh15RyKR/52bSHR8RyUSXZ/tRDw8H+Ai4Bdns9O5GKM7iXh+DuEs\nEe/PI9zy60S8OAdvv5PyBTJS5RljzFIRqZphcRNgmzFmB4CIfAx0Mcb8H5CpyYiItAWKYP8BjovI\nfGPMmWDGHa0CcT2cdOYCc0Xkc2Bq8CKOfgH6jAgwDvifMWZtcCOOboH6jCj/REveEQ3fudHyHRVt\nn21vzgf4FVsQW0cYVUp4eQ4puRud57w5DxHZRBjm195eC2+/k7QQFj4qce6ODNgvh6bZbWyMeRRA\nRPoD+7UAFnBeXQ/nh013oABaExYsXl0TYAjQESghIpcZYyYEM7g8yNvPSCngGaCBiIxyftAp/0VL\n3hEN37nR8h0VbZ/t7M7nNeANEbke+CwUgXkhy3OIgPc+o+yuRbh+FrKS3bVoi5ffSVoIi3DGmMRQ\nx6DAGJMEJIU4DOXCGPMaNpNVYcAY8xe2vb8KA5Ged0TDd260fEdF6mfbGHMUuD3UcfgjUt/7jKLh\ns+DLd1LYVL8q9gAXu7y+yFmmQkOvR/jRaxJe9HqEh2i5DtFwHtFwDhA955EuGs4nGs4BouM8AnYO\nWggLH6uAaiISLyL5gd7A3BDHlJfp9Qg/ek3Ci16P8BAt1yEaziMazgGi5zzSRcP5RMM5QHScR8DO\nQQthISAi04DlQA0R+VVE7jTGpAGDgS+ATcAnxpgfQxlnXqHXI/zoNQkvej3CQ7Rch2g4j2g4B4ie\n80gXDecTDecA0XEewT4HMcYELlqllFJKKaWUUjnSmjCllFJKKaWUykVaCFNKKaWUUkqpXKSFMKWU\nUkoppZTKRVoIU0oppZRSSqlcpIUwpZRSSimllMpFWghTSimllFJKqVykhTAV8USkq4gYEbk81LFk\nR0QeCXUMgSIig0SkrxfbVxWRZC+2FxFZLCLFc9jmYxGp5mmaSikVatGYV4lIkog0CuYxvEy7s4iM\n9HKfI15u/6mIXJLD+vEi0t6bNFXepIUwFQ36AMucv0ElIvl83DUqCmEiks8YM8EY82EQD3MdsN4Y\ncyiHbd4GHgpiDEopFWiaVwXxGE7+NNcYMy4Y6TvHqA3EGmN25LDZ64BXBUGVN2khTEU0ESkKtATu\nBHq7LG8rIktF5HMR2SIiE0Qkxll3REReFpEfRWSRiJRxlt8tIqtEZL2IzBCRws7yRGf/FcDzIlJE\nRN4TkZUi8oOIdHG26y8iM0VkgYhsFZHnneXjgEIisk5EpmRxDn1EZKOIJIvIcy7Ls4vzUucYa0Tk\nm/S7qk6cr4nIdyKyQ0R6ZHGsqiKyWUSmiMgm545e+nk2FJGvnXS/EJEKzvIkEXlFRFYDw0RkjIg8\n6KxLEJHvRWSDiMwSkZIuaa0XkfXAvS7Hr+28b+ucfbKqzboFmONsX8S5huud96eXs803QEc/fmgo\npVSuifS8SkRinfSTnfzqPpfVNznH+ElEWrkc4w2X/ec55+ouP/Ql33M957PHdfK7xU5es0hEKjvL\n40VkuXMeT7scu4JzLdY559kqi0vpmj9l+Z4YY34GSolI+Rz/KZQyxuhDHxH7wH4hvus8/w5o6Dxv\nC5wALgFiga+AHs46A9ziPH8ceMN5Xsol3aeBIc7zRGAe9u4XwLPArc7zC4CfgCJAf2AHUAIoCPwM\nXOxsdySb+CsCu4EyQD5gMdDVTZyLgGrO86bAYpc4/4u9uVIL2JbF8ao66bZwXr8HPAjEOe9fGWd5\nL+A953kS8JZLGmOAB53nG4A2zvOxwCsuy1s7z18Akp3nr7ucU36gUBYx/gwUc57fCLzjsq6Ey/Ov\n0q+3PvShD32E8yMK8qqGwFcury9w/iYBLzrPrwMWOs/7p8frvJ4HtM3pGG7OOad8z/Wc+7vs8xnQ\nz3l+BzDbeT4X6Os8vzc9HuAB4FHneWx6PpQhvq+Bujm9J87zd4AbQ/1/p4/wfmhNmIp0fYCPnecf\nc34zj5XGmB3GmNPANOxdSIAzwHTn+Ucuy+s4d9g2YjPM2i5p/ddJB+BfwEgRWYfNgAoClZ11i4wx\nB40xJ4AUoIqb+BsDScaYP40xacAUoHV2cTp3U5sD/3WOPxGo4JLebGPMGWNMClAum2P+Yoz5NsP5\n1wDqAF856Y4GLnLZZzoZiEgJbKbztbPoA6C1iFzgLF/qLJ/sstty4BEReRioYow5nkV8FxpjDjvP\nNwJXichzItLKGHPQZbt92EKsUkqFu0jPq3YAl4jI6yJyDeDaXHym83cN9kafP3zJ91zP2VUzYKrz\nfDLn3r8W2Pc5fXm6VcDtIjIGW9A6TGYVgD+d5zm9J5o/Kbe0KY+KWCJyIdAeqCsiBnvnyojICGcT\nk2GXjK8zLk/E1kKtF5H+2DuU6Y66Hhp7h2tLhniaAiddFp0msJ8xg63lOmCMSchmG9fjSw7pZHwt\nwI/GmGbZ7HM0m+VeMcZMdZqNXA/MF5GBxpjFGTZLE5EYpzD5k4hcgb3D+rSILDLGjHW2KwhkVYhT\nSqmwEQ15lTHmHxGpD1wNDAJ6YmuXcEnLNZ00zu/yUjCn9HM6NO7zPV/yp0zvsTFmqYi0xuZPiSLy\nksnc//k4zrm4eU80f1JuaU2YimQ9gMnGmCrGmKrGmIuBnUB6O+4mTtvvGGzzumXO8hhnX4CbXZYX\nA/aKSBz27mJ2vgCGiIgAiEgDD2JNddLNaCXQRkRKi0gs9u5oes1SpjiNHaxip4jc5BxbnEzAG5VF\nJL2wlX7+W4Ay6ctFJE5sB+RsObVS/7i0m78N+NoYcwA4ICLpdx3PvpdiR5TaYYx5Dduuvl4WSW/B\nNs1BRCoCx4wxH2GbNV7hsl11wONRF5VSKkQiPq8SkdJAjDFmBralxBWZ9jzfLiBBRGJE5GKgibtj\nOAKZ733Huf53t2D7EgN8m2E5TrpVgD+MMe8A/yHrc9wEXOZsn9N7ovmTcksLYSqS9QFmZVg2g3PN\nPFYBb2C/NHe6bHsUm+klY+9OptesPAaswH5Bb87huE9h+1BtEJEfndfuTHK2P68jsjFmL3YUpSXA\nemCNMWaOmzhvAe4UO+jFj0AXD47vagtwr4hsAkoCbxtjTmEzvuecdNdhm3+40w94QUQ2AAkuMd4O\nvOk0HXGtkesJJDvL6wBZjbL4Oefu7NYFVjrbP4Ht/4CIlAOOG2N+9+yUlVIqZCI+rwIqAUnOd/FH\nwCg36XzrnEsK8Bqw1oNjQGDzvSHY5oUbsDcJhznLh2HzwI3OeaVrC6wXkR+wheFXs0jTNX/K8j1x\nCpiXAas9iFHlYWJMdrXeSkUuEWmLHTyiUxbrjhhjiuZ+VN4JRpwiUhWYZ4ypE8h0A0nsqIwfGmOu\nymGb+4BDxph3cy8ypZQKrGjIqwIp3M9ZRAphb5q2yKYfGiLSDbjCGPNYrganIo7WhCmlwopTO/iO\n5DBZM3AAOxCIUkoplSucwaSe4PwatIzyAS/mTkQqkmlNmFJKKaWUUkrlIq0JU0oppZRSSqlcpIUw\npZRSSimllMpFWghTSimllFJKqVykhTCllFJKKaWUykVaCFNKKaWUUkqpXPT/0f9n8gcrocMAAAAA\nSUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAQxCAYAAADcAUeKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VNXWwOHfCoQSSCChB0IodqWoWEC8gnyKBcSrUkRA\nKWIBFdSriCUgqCBXrBdUihSF68WCIiBWsCBiBQRUlF5CSyBAEALZ3x97EidhJpmZTJ/1Ps88SU7Z\nZ80wzJp9zj5rizEGpZRSSimllFL+ERfqAJRSSimllFIqmmgnSymllFJKKaX8SDtZSimllFJKKeVH\n2slSSimllFJKKT/STpZSSimllFJK+ZF2spRSSimllFLKj7STpVQJROSAiDQKdRxKKaVUSTRfKRVe\ntJOlooKI5ItIkzK28bmI9HNeZoxJNMZsLFNwfiQi6SLymYgcEpE1ItKhlO3HisgeEdktImOKrXtc\nRFaKSJ6IPOZi354istGRuN8RkepO6yqIyFQR2S8i20VkaLF9W4rI9444vxORFsXWDxWRHSKyT0Qm\ni0i8b6/ICTFf4ngvvF1seXPH8s/8cRyllPKV5iu322u+QvNVNNFOlooWJc6qLSLlghVIgM0GfgBS\ngEeAt0SkhqsNReQ24BqgGdAc6CwiA502WQf8C/jAxb5nAi8DNwF1gMPARKdNRgJNgTTgUuABEbnc\nsW88MBeYAVR3/HxPRMo71ncEHgDaA+mOdkZ6+TqUZDfQWkSSnZbdDPzmx2MopZSvNF8Vo/lK81VU\nMsboQx8uH0AD4G1gF/aD4AXHcsF+YG4EMoFpQJJjXTqQD/QBNjn2He7UZhwwHPgD2A98B9R3rDsN\n+AjYC6wFujrt9xrwEvYDNgf4BmjsWLfEccyDjnVdgUuALdgPxx3AdOwH6DxHTHsdv6c62hgNHANy\nHW0UPNd8oInj9yTsB/AuYAPwsFN8NwNfAuOALOBP4Ao//3ucjE0eVZyWLQEGutn+a2CA0999gaUu\ntpsJPFZs2RPA605/NwGOFBwb2AZ0cFo/Epjl+P1yYEux9jYBlzt+fwMY7bSuPbCjhOedD9wB/O54\nzzzuiOdrYB/wX6C8Y9uCf/cJwJ1O77mt2PfsZ6H+f6UPfejD/w80XxV8Vmq+0nyljzB56JUs5ZKI\nxGETxAagIVAf++EA9sOvD/YDogmQiE0ozi7Cfsj+H/CYiJzqWH4f0B37gV4N6AfkikgCNmG9DtQE\negATROQ0pza7AxnY5PMn9oMVY8wljvXNjDFJxpg5jr/rOrZtCAzEfnhNxZ7NaohNUP9xtPEINukM\ndrRxt6MN5zOOLzmeayOgHdBHRPo6rT8fm2xrYJPXFNwQkXkiki0iWS5+vu9mtzOB9caYQ07LVjiW\nu9t+hYfblrivMWY9Nmmd4hiGUQ9Y6abtM4qtK77eVVy1i53JK+5y4GzgQuwXkVeAnth/y2bAjU7b\nGuyXiz6OvzsCq7BfXpRSUUbzleYrNF+pMKSdLOXO+dgPpgeMMX8ZY44aY5Y61vUExhtjNhljcoGH\ngB6ORAf2Q2OEY5+V2A+lgjHO/bFn1P4AMMasMsZkA52ADcaYGcZagT0r2dUppneNMT8YY/KxZ5da\nFotZiv19HMgwxuQZY44YY7KMMe86fj8EPAX8o5TXQaAwiXcHhhljco0xm4BngN5O224yxkw1xhjs\nmci6IlLbVaPGmM7GmGRjTIqLn9e4iaUq9syYsxxsIvVk+xzHMk+UdKyq2H/j4m0XxFFanK7iEtw/\nD4CxxphDxpi1wC/AR4733wFgITahFTLGLAOSReQUbPKaUULbSqnIpvnKqU3NV0WOpflKhYx2spQ7\nadgP4XwX61Kxl9MLbALKY8dCF9jp9Hsuf39YpgHrXbSZDlzoODOWJSLZ2OTo3Gammzbd2W2MySv4\nQ0Qqi8grjptj92GHLlQXkeLJzpWa2Oe42WnZJuwZ0xPiM8Ycxn4Qe5okPHEQOwTEWTXggIfbV3Ms\nK+uxCtoo3nZBHKXF6Soug/vnAXbIS4HDFH1/Hcb16zwTGIw9i/tuCW0rpSKb5quiNF9pvlJhQDtZ\nyp0tQEOns33OtmOTTIF0II+iHyQltdvUzfLFjjNjBWfJkowxg70N3Enxm4vvww4JOc8YU52/zwqK\nm+2d7cE+x+LPe5svgYnIAkcVpBwXj/ludlsNNBGRKk7LWjiWu9veuUpSyxK2LXFfEWkKxAO/G2P2\nYYcyOLftHMdq7I3Lzppjz+i5i2un4wyxP70O3AnMN8b85ee2lVLhQ/NVUZqvNF+pMKCdLOXOcuwH\n0xgRSRCRiiLSxrFuNjBURBqJSFXsWPP/Op1FLOlM22RglIicBCAizRxjmz/Ajp/uJSLlRSReRFo5\njY0vTSZ2vH1JErFnkXJEJAUYUWz9TndtOJ7b/4AnRKSqiKQDQ7Fnn7xmjLnK2HK7SS4eV7vZZx3w\nM5Dh+Pe4DjgLO0zFlRnAvSKSKiL1gXuxN2QD4HidK2E/B+IdbRZ8JryBre50kSNJPg687TS+fibw\niIhUF5HTgVud2l4MHBeRu8SWzr0bezPw505x9ReR0x3/9o84x+UvxpYy/oejfaVU9NJ85UTzleYr\nFR60k6VccnxId8aeSduMPXPXzbF6KvZD6wvsDb25wN3Ouxdvzun38dgP/49EZD82iVU2xhzE3iza\nA3vmcTswBqjoYcgjgBmOoRs3uNnmOSABe5ZvKbCg2Prnga4isldEnnMR+93Y57oe+9xfN8aU9GFb\nYpleH/UAzgOysV8WrjfG7AUQkbYiklN4cGNewVakWoW9z+B9Y8wkp7YmYZ9PD2wFrVygl2PfNcDt\nwCzsF4LKwCCnfTOwr8Mm4DNgjDHmY8e+ecC12ApW2dgx5l2MMccc6xcBT2OT2Abse2hECc+5pPdT\niYwxS40xmaVvqZSKVJqvNF+h+UqFIbH3PAaocZEG2LMAdbBnBl41xrwoIhnYMwkF41aHG2M+DFgg\nSimllBuaq5RSSvlboDtZdYG6xpifHZfpfwC6YKveHDDGjA/YwZVSSikPaK5SSinlb+UD2bjjsmem\n4/eDIrKWv6vbeFIhRymllAoozVVKKaX8LWj3ZIlII2xVlm8diwaLyM8iMllEqgUrDqWUUsodzVVK\nKaX8ISidLMfwi7eAexw3jE4AmhhjWmLPHupQDKWUUiGluUoppZS/BPSeLLBlN7HlThcaY553sT4d\nmGeMKT5PASIS2OCUUkqFhDEmrIbhaa5SSilVXFlyVTCuZE0F1jgnLcdNxgWu4+9J305gjAnaIyMj\nI6hteLJtadu4W+/pclfb+eN1CObr7u3+wX7dPVkW7Nc8El93b9eF4+se7M+YQL7uZfk/EKZClquC\n9X/RH/+Hwu15RdpzMsbAJaW/XyLteZX1PRio7yL6HgzOv1WkPC9v/63KKqCFL0TkIuAmYJWI/ISd\nL2A40FNEWmJL5W4EbgtkHJ5q165dUNvwZNvStnG33tPl/njOZVXWGLzdP9ivu6fLgi3SXndv14Xj\n6x7szxhPt/fldS/r/4FwEupcFaz/i77+//JVMJ5XpD0nABqV7Tjh+LzK+h4M1GeEvgd931//rfyg\nLL3GQD9seCrYMjIyQh1CzNHXPDT0dQ8Nx2d7yHOMvx7Rmqui8f9HODwnRvj//RIOz8vfovE5GaPP\nK5KUNVcFrbqgihzhftY5GulrHhr6uivlXjT+/4jG5wTR+byi8TmBPq9YEvDCF2UhIiac41NKKeU9\nEcGEWeGLstBcpbwhIwWToe8XpcJdWXNVQO/JUkoppZRS0a9Ro0Zs2rQp1GEo5bX09HQ2btzo93a1\nk6WUUkoppcpk06ZNfqnIplSwiQRmYIXek6WUUkoppZRSfqSdLKWUUkoppZTyI+1kKaWUUkoppZQf\naSdLKaWUUkrFpE2bNhEXF0d+fn6Z22rcuDGfffaZR9tOnz6diy++uPDvxMREvxVfeOqppxg4cCDg\n3+cHsGXLFpKSkvT+Ow9oJ0sppZRSSkWt0jo/gSp8UBrn4x44cIBGjRqVuP2SJUtIS0srtd2HHnqI\nV1991eVxvFX8tUtLSyMnJydkr1kk0U6WUkoppZRSYc4YU2rn5vjx40GKRpVGO1lKKaWUUiom5Ofn\nc//991OrVi1OOukk5s+fX2R9Tk4OAwYMIDU1lbS0NB599NHCoXHr16+nQ4cO1KxZk9q1a9OrVy9y\ncnI8Om5WVhbXXHMN1apV48ILL+TPP/8ssj4uLo7169cDsGDBAs4880ySkpJIS0tj/Pjx5ObmctVV\nV7F9+3YSExNJSkoiMzOTkSNH0rVrV3r37k316tWZPn06I0eOpHfv3oVtG2OYMmUK9evXp379+jzz\nzDOF6/r27ctjjz1W+Lfz1bI+ffqwefNmOnfuTFJSEv/+979PGH64Y8cOunTpQo0aNTjllFOYPHly\nYVsjR46ke/fu3HzzzSQlJdGsWTN+/PFHj16vaKCdLKWUUkopFRNeffVVFixYwIoVK/j+++956623\niqy/+eabqVChAuvXr+enn37i448/Luw4GGMYPnw4mZmZrF27lq1btzJixAiPjnvnnXeSkJDAzp07\nmTJlClOnTi2y3vkK1YABA5g0aRI5OTn88ssvXHrppSQkJLBw4UJSU1M5cOAAOTk51K1bF4D333+f\nbt26sW/fPnr27HlCewCLFy/mzz//ZNGiRYwdO9aj4ZMzZsygYcOGfPDBB+Tk5HD//fef0Hb37t1p\n2LAhmZmZzJkzh+HDh7N48eLC9fPmzaNnz57s37+fzp07M2jQII9er2ignSyllFJKKRUT5syZw5Ah\nQ0hNTaV69eo89NBDhet27tzJwoULefbZZ6lUqRI1a9ZkyJAhzJ49G4CmTZvSoUMHypcvT40aNRg6\ndChLliwp9Zj5+fm88847jBo1ikqVKnHmmWdy8803F9nGuZBEhQoVWL16NQcOHKBatWq0bNmyxPZb\nt25N586dAahUqZLLbUaMGEGlSpU466yz6Nu3b+Fz8oS7Ihdbtmzhm2++YezYscTHx9OiRQsGDBjA\njBkzCrdp27YtHTt2RETo3bs3K1eu9Pi4kU47WUoppZRSKrBGjACREx/urgS52t7Dq0Yl2b59e5Hi\nEenp6YW/b968mby8POrVq0dKSgrJycncfvvt7NmzB4Bdu3Zx44030qBBA6pXr06vXr0K15Vk9+7d\nHD9+nAYNGrg8bnFvv/028+fPJz09nfbt27Ns2bIS2y+tGIaInHDs7du3lxp3aXbs2EFKSgoJCQlF\n2t62bVvh3wVX2wASEhL466+//FbpMNxpJ0sppZRSSgXWiBFgzImPkjpZnm7rhXr16rFly5bCvzdt\n2lT4e1paGpUqVWLv3r1kZWWRnZ3Nvn37Cq++DB8+nLi4OFavXs2+fft4/fXXPSplXqtWLcqXL1/k\nuJs3b3a7/bnnnsvcuXPZvXs3Xbp0oVu3boD7KoGeVPorfuzU1FQAqlSpQm5ubuG6HTt2eNx2amoq\nWVlZHDp0qEjb9evXLzWeWKCdLKWUUkopFRO6devGCy+8wLZt28jOzmbs2LGF6+rWrcvll1/O0KFD\nOXDgAMYY1q9fzxdffAHYMutVq1YlMTGRbdu2MW7cOI+OGRcXx3XXXceIESM4fPgwa9asYfr06S63\nzcvLY9asWeTk5FCuXDkSExMpV64cAHXq1GHv3r0eF9soYIxh1KhRHD58mNWrV/Paa6/Ro0cPAFq2\nbMmCBQvIzs4mMzOT559/vsi+devWLSzI4dweQIMGDWjTpg0PPfQQR44cYeXKlUyZMqVI0Q1XscQK\n7WQppZRSSqmo5Xw15tZbb6Vjx460aNGCVq1acf311xfZdsaMGRw9epQzzjiDlJQUunbtSmZmJgAZ\nGRn88MMPVK9enc6dO5+wb0lXfV588UUOHDhAvXr16NevH/369XO778yZM2ncuDHVq1fn1Vdf5Y03\n3gDg1FNP5cYbb6RJkyakpKQUxuXJ87/kkks46aSTuOyyy3jggQfo0KEDAL1796Z58+Y0atSIK664\norDzVWDYsGGMGjWKlJQUxo8ff0Kss2fPZsOGDaSmpnL99dczatQo2rdvX2IssULCuUcpIiac41NK\nKeU9EcEYEzWZVnOV8oaMFExG9L1fHP+vQx2GUl5z994ta67SK1lKKaVUBEhJKVoDICUl1BEppZRy\np9ROloh0FhHtjCmllApbsZCrsrOL1gDIzg51REoppdzxJCF1B9aJyNMiclqgA1JKKaV8oLlKKaVU\n2Ci1k2WM6QWcDfwJTBORb0RkoIgkBjw6pZRSygOaq5RSSoUTj4ZWGGNygLeA/wL1gH8CP4rIXQGM\nTSmllPKY5iqllFLhwpN7srqIyLvAYiAeON8YcyXQArgvsOEppZRSpdNcpZRSKpyU92Cb64BnjTFf\nOC80xuSKSP/AhKWUUkp5RXOVUkqpsOHJcMHM4klLRMYCGGM+DUhUSimllHc0VymllAobnnSyLnOx\n7Ep/B6KUUkqVgeYqpVRMiouLY/369R5tO3LkSHr37g3Ali1bSEpK8tsk0nfccQdPPPEEAEuWLCEt\nLc0v7QJ89dVXnH766X5rLxjcdrJE5A4RWQWcJiIrnR4bgJXBC1EppZRyTXOVF/bvh59+gl277ERb\nSsWQWbNmcd5555GYmEj9+vW5+uqr+frrr0MdFtOnT+fiiy8uUxsi4tP2aWlp5OTklLq/pzFOnDiR\nhx9+2Oe4nBXvOLZt25a1a9f63F4olHRP1ixgIfAUMMxp+QFjTFZAo1JKKaU8E7O5KjkZin+HSU6G\nLHfPetUqGDQItmyBxETo2hXuvhsaNgx4rEqF0vjx43n66ad55ZVXuPzyy6lQoQKLFi1i3rx5XHTR\nRV61dfz4ccqVK1fqMk8ZY8rUGSloI5A8iTE/P5+4OP/NB1/W1yQclPRqGGPMRmAQcMDpgYikBD40\npZRSqlQxm6uysuwFKedHdnbRbbKzYdIk6NwZGvZsS+L6FdQuv5d/1FzDE992YHPzTjB7dmiegFJB\nkJOTQ0ZGBhMmTKBLly5UrlyZcuXKcdVVVzFmzBgAjh49ypAhQ6hfvz4NGjRg6NCh5OXlAX8Pe3v6\n6aepV68e/fr1c7kM4IMPPuDss88mOTmZtm3bsmrVqsI4tm7dyvXXX0/t2rWpVasWd999N7/++it3\n3HEH33zzDYmJiaSkpBTGc//995Oenk69evW48847OXLkSGFb48aNIzU1lQYNGvDaa6+V2CHZuHEj\n7dq1o1q1anTs2JE9e/YUrtu0aRNxcXHk5+cDMG3aNJo2bUpSUhJNmzZl9uzZbmPs27cvd955J1df\nfTWJiYksXryYvn378thjjxW2b4zhqaeeolatWjRp0oRZs2YVrmvfvj1Tp04t/Nv5atkll1yCMYbm\nzZuTlJTEnDlzThh++Ouvv9K+fXuSk5Np1qwZ8+bNK1zXt29fBg8eTKdOnUhKSqJ169Zs2LCh5DdK\nAJTUySp4JX4Avnf8/MHpb6WUUirUNFc5SSYLrrqKg59/xyOPwEknwUcfwU03weLFsH07rFghPDqm\nCjtaXElL+Zk7FnVh375QR65UYHzzzTccOXKEa6+91u02o0ePZvny5axcuZIVK1awfPlyRo8eXbg+\nMzOTffv2sXnzZl599VWXy3766Sf69+/PpEmTyMrK4rbbbuOaa64hLy+P/Px8OnXqROPGjdm8eTPb\ntm2jR48enHbaabz88su0bt2aAwcOkOW4DP3ggw/yxx9/sHLlSv744w+2bdvG448/DsCHH37I+PHj\n+fTTT1m3bh2ffPJJic+/Z8+enHfeeezZs4dHHnmE6dOnF1lf0EHLzc3lnnvuYdGiReTk5LB06VJa\ntmzpNkaA2bNn8+ijj3LgwAGXVwQzMzPJyspi+/btTJs2jYEDB7Ju3Tq3sRbEsmTJEgBWrVpFTk4O\nXbt2LbL+2LFjdO7cmSuuuILdu3fzwgsvcNNNNxVp+80332TkyJHs27ePpk2bFhnGGCxuO1nGmE6O\nn42NMU0cPwseTYIXolJKKeWa5ionv/3GMi5kcWJnmvVrxcaN8MMPMGcO9OgBTZrYUYL16sFll8FL\nL8Eff8YhCQmcdRY4vtcoFVX27t1LzZo1SxzKNmvWLDIyMqhRowY1atQgIyODmTNnFq4vV64cI0eO\nJD4+nooVK7pcNmnSJG6//XZatWqFiNC7d28qVqzIsmXLWL58OTt27ODpp5+mUqVKVKhQgTZt2riN\nZ9KkSTz77LNUq1aNKlWqMGzYMGY7rjjPmTOHvn37cvrpp1O5cmVGjBjhtp0tW7bw/fff8/jjjxMf\nH8/FF19M586d3W5frlw5Vq1axV9//UWdOnVKLTTRpUsXLrzwQoDC18WZiDBq1Cji4+P5xz/+wdVX\nX83//ve/Ett05m4Y5DfffMOhQ4d48MEHKV++PO3bt6dTp06FrxHAP//5T84991zi4uK46aab+Pnn\nnz0+rr94MhnxRSJSxfF7LxEZLyI6gFsppVTYiPlctWYNpl17+jCdG7+4gwkThNdfh0aNSt4tJQUm\nTIApU6BbN3AavaOUX4n45+GtGjVqsGfPnsIhca5s376dhk73Jqanp7N9+/bCv2vVqkV8fHyRfYov\n27RpE8888wwpKSmkpKSQnJzM1q1b2b59O1u2bCE9Pd2je5Z2795Nbm4u5557bmFbV155JXv37i2M\n1XnYXHp6utvOyPbt20lOTqZy5cpFtnclISGBN998k4kTJ1KvXj06d+7Mb7/9VmKspVUPTE5OplKl\nSkWO7fy6+mrHjh0nHDs9PZ1t27YV/l23bt3C3xMSEjh48GCZj+stT+5QmwjkikgL4D7gT2BmybtY\nItJARD4TkdUiskpE7nYsTxaRj0TkNxFZJCLVfH4GSimlVCznqt9+w/zfZdzT7DO+pTXffANXelm8\nvmNH+OILePxxePk/xyEzMzCxqphV/P5BXx/eat26NRUrVmTu3Llut6lfvz6bNm0q/HvTpk2kpqYW\n/u3qnqfiy9LS0nj44YfJysoiKyuL7OxsDh48SPfu3UlLS2Pz5s0uO3rF26lZsyYJCQmsXr26sK19\n+/axf/9+AOrVq8eWLVuKxOrunqx69eqRnZ3N4cOHC5dt3rzZ7etw2WWX8dFHH5GZmcmpp57KwIED\n3T7/kpYXcHXsgte1SpUq5ObmFq7L9OIzJzU1tchrUNB2/fr1PW4jGDzpZB0ztovcBXjJGPMfINHD\n9o8B9xpjzgRaA4NE5DRsBahPjDGnAp8BD3kfulJKKVUoZnNVfuYuBp3+GctzTgNKv3rlzqmnwmef\nwVMj/mJGqxcgJ8d/QSoVIklJSYwcOZJBgwbx3nvvcfjwYY4dO8bChQsZNswWJO3RowejR49mz549\n7Nmzh1GjRhXOJeWpW2+9lZdffpnly5cDcOjQIRYsWMChQ4c4//zzqVevHsOGDSM3N5cjR46wdOlS\nAOrUqcPWrVsLC22ICLfeeitDhgxh9+7dAGzbto2PPvoIgG7dujFt2jTWrl1Lbm5u4b1arjRs2JBW\nrVqRkZFBXl4eX331VZECEfD3kLxdu3bx/vvvk5ubS3x8PFWrVi288lY8Rk8ZYwqP/eWXXzJ//ny6\ndesGQMuWLXnnnXc4fPgwf/zxB1OmTCmyb926dd3O/XXBBReQkJDA008/zbFjx1i8eDEffPABN954\no1fxBZonnawDIvIQ0AuYLyJxQHwp+wBgjMk0xvzs+P0gsBZogE2CBXfeTQfc342olFJKlS5mc9UD\n8y7mp9xTcXwHK5MmTeDDJQncv3cYX149RufTUlHh3nvvZfz48YwePZratWvTsGFDJkyYUFgM45FH\nHqFVq1Y0b96cFi1a0KpVK68LJZx77rlMmjSJwYMHk5KSwimnnFJYZCIuLo558+axbt06GjZsSFpa\nWuG9SZdeeilnnnkmdevWpXbt2gCMGTOGk046iQsvvJDq1atz+eWX8/vvvwNwxRVXMGTIEC699FJO\nOeUUOnToUGJcs2bNYtmyZdSoUYNRo0Zx8803F1lfcDUqPz+f8ePHU79+fWrWrMkXX3zBxIkT3cbo\niXr16pGcnExqaiq9e/fmlVde4eSTTwZg6NChxMfHU7duXfr27UuvXr2K7DtixAj69OlDSkoKb731\nVpF18fHxzJs3jwULFlCzZk0GDx7MzJkzC9sOl/LvUlptfRGpC/QEvjPGfOkY497OGDPDqwOJNAIW\nA2cBW4wxyU7rsowxJ5TaFRET6Nr/SoUFY+DIEXAau6xUtBIRjDF+zYKxkKtETuzzTJwIzz8PS5fa\n+6tcbeOLj+bn0efa/Xz72ALSH+1T9gZVIRkpmIzo+27j+H8d6jCU8pq7925Zc1WpnSx/EJGq2KQ1\nyhjzXvFEJSJ7jTE1XOynnSwVfbZutfPSrF4Na9bYv/fssRODvvHGiduvWGFrL7dvD82a+Xbnr1Jh\nJBCdLH8I91xVvAO1aBHcfDN8/TU0bep6m7IY9+Bu5o7fwJLllSl/djP/NKq0k6VUmAlUJ6u8Bwe+\nDhgL1AbE8TDGmCRPDiAi5YG3gJnGmPcci3eKSB1jzE7H2cdd7vZ3Lk3Zrl072rVr58lhlQpf+/bZ\njlXbtnDrrfYGilq1oEIF19sbA2vX2nrLBw/CtdfCLbfA+edrh0tFhMWLF7N48eKAHiOmclVeHpt3\nxNOnD7z11t8dLH+776lafDL/KCNu+4XRy7WTpZSKbv7OVZ4MF/wD6GyMWevTAURmAHuMMfc6LRsL\nZBljxorIg0CyMWaYi331SpaKTIcPw4cf2g6RPztCf/4Jb74Jr70GDz9sO1tKRZgADReM+lwlAubI\nUfIuake7I4u45qZEHnzQxTZ+DGVnpuHsc+DNN4WLL/Zfu7FMr2QpFV5CNlxQRL42xpw4jbMnjYtc\nBHwBrAKM4zEcWA78D0gDNgHdjDEnzDevnSwVcbZsgeeegxkz4LzzbIco0dMCZ14wBo4dg3iP7utX\nKqwEqJMV9blKBMzIx3lo+mmsOLUrH3wgFJ92x9+dLIB334UHH7Qjl52m21E+0k6WUuEllJ2s54G6\nwFzgSMFrSZPLAAAgAElEQVRyY8w7vh7UU9rJUhFj/Xp46il4+23o1w/uvBOaNCElBbKz3e+WnAxZ\nWcELU6lwEKBOVtTnqjNlNROqDeemym/z08ry1KrlKpbAFATs2hVOOsl+zKmy0U6WUuElZPdkAUlA\nLnC50zIDBDxxKRUxPvkE6tWDdeugxt/3xWdnl/yFx++3VL35JuzdC3fcofdrqVgT3bnq+HFeYhD9\n4t/jlcmuO1iB9NJL0Ly57Wydc05wj62UUpEoKNUFfaVXslSkK+2sst/POv/2G/TsCWlpMG0aVK/u\nx8aV8o9wrS7oq6Dkqhdf5Pq761Gl1/XMmOn+pQvUlSyAqVPh1RePsHTxUeKqBWAYdIzQK1lKhZdQ\nDhc8BZgI1DHGnCUizYFrjDGjfT2ox8FpJ0uFgbIM+QtGJysnx94Klp0N+/fDgaw8ys2aQfyqn6j4\n+MPUaVmP1FSoXZsT7t9QKhQCNFwwqnPVl+9n075LIrv2liflhJm6nGMJXCcrPx9a1/mTO87/kVvm\ndw3MQWJAtHayGjVqxKZNm0IdhlJeS09PZ+PGjScsD0YnawnwL+AVY8zZjmW/GGPO8vWgHgennSwV\nBB53onbtgnvvhSuvhJtu8mj/0u658uYL0eHDsHIl/PijfaxYYW8FO3wYGja0x6peHapWtV+G8n7f\nwF+/bWRnw/PZtq8KR47YabbOOQc6dLDTblWr5tmxlfKnAHWyojpXXX45fPxx6Z8XxT+P/H3f53cL\ndtOl03HW/niYai0b+6/hGBKtnSylok0w7slKMMYsl6L3dxzz9YBKhZvS7psC7OTBQ4ZAnz62LLuT\nQBWuyMuDb7+Fzz6DTz+FH36AU06xnaRzzrHV2086yV6hcn37VWNY9DukrodmzcjKglWrbJsTJ9qn\n0rat/dmli1YNUxEvqnPV++979n+0+OeRv2/NPO+qWlx17gpG3rCR8X9oJ0sppdzx5ErWQmAwMMcY\nc46I3AD0N8ZcGfDg9EqWCoISrybt2weDBtlLR6+/DueeG9Bj5+bCokW2ZPL8+Xae4g4d4NJLbYeo\nalX/HfvQIZg7F6ZPt1fF7rrLPtXkZP8dQylXAnQlK+pzlS9DAQMxfHDXliOc2eggS17bwBl9Wvm3\n8RigV7KUigzBGC7YBHgVaANkAxuAXsaYjb4e1OPgtJOlgqDELyFdutgiEk8/DQkJATl2Xp7tWE2f\nbn+2agXXXWcP3aCB3w/p0tq19inOmwfDhsHdd0OFCsE5too9AepkRX2uCpdOFsCzvX7g0wVH+CCr\njf8bj3LayVIqMgS8k+V0oCpAnDHmgK8H85Z2slQwlPglJDc3IJ0rgF9+sfdI1akDjRvb4X833FCk\nAnzQrVtnR0X++Se8/DK0axe6WFT0CmR1wWjOVeHUyTpyOJ/TTz3OlOnxtG/v//ajmXaylIoMAbsn\nS0TudXdAAGPMeF8PqlTE8HMH69gxe2/Fiy/C77/bZUuWwKmn+vUwJZs0CTp2tNUyijn5ZDtMcd48\nW9ujVy8YNUqvaqnwpbkqNCpWjuOpcXHcfz98951WLlVKqeJK+lhMdDxaAXcA9R2P2wGdilBFnwCe\nic7KssPxmjaFZ56B22+HgmqhQe1gga3zfu219iqdG507w88/22GEbdrA1q1BjE8p72iuCpFu3aB8\neVsXSCmlVFGe3JP1BXB1wdALEUkE5htj/hHw4HS4oAoCEYN5aQKsWQP/+Y9f287MhPHjYcoU6NTJ\n3uvkXDujtKE8ZZmjyy1joHdv+/vMmSWWHzPGdg5ffNEW4zjvPC+PpZQLAbonK+pzVTgNFyzw5Zf2\nivdvv0GlSoE7TjTR4YJKRYay5ipPLvDXAY46/X3UsUypyJeXx0TusDXN73U56sgnW7fCPffAGWfA\nX3/Zq0LTp3tfnLCgvLy7R0kdMLdE4NVXbafy2WdL3fTBB+Gll+Cqq+xQQqXClOaqELj4Yjj7bHjh\nhVBHopRS4cWTebJmAMtF5F3H39cC0wIWkVJ+5u5qUHWymUNXmpSvCEuXQlJSmY+1c6e9h2n2bOjX\nz/Zj6tYtc7P+l5BgL02df76tDX/++SVufu21kJpqhxG+/DL8859BilMpz2muCpGxYwwXtTxI/065\n1DhD+7VKKQUeVhcUkXOAix1/fmGM+SmgUf19XB0uqMrM5XCZzZvhssvs5Zl//xvKlSvTMQ4csPda\nvfSSndx3+HCoWdPH2Py4vlSffGJLGzZt6tHmP/5oX7IXX4SuXctwXBXTAlVdMNpzVTgOFyxwZ4uv\nqWCO8NzKSwN/sAinwwWVigxBK+EeCtrJUv7g8kvG4cN27NsNN5Sp7bw8O/Ju9GjbZ3v8cTuBcJli\n8+P6QFixAi6/HN54A/7v/4J7bBUdAlnCPRTCuZPl6kq+T/dylmLXr1mccYbh20X7aXpZE/82HmW0\nk6VUZAjGPVlKRZ/Klcvcwfr0U2jRwpZk//BDmDHDuw4W2C87Iu4fycllCjEgWrSAOXOgZ0/4KSjX\nCZRSvsrK8tO9nKWofVoKQy/7hYf6Zvq/caWUikDayVIRISXFfUckJSW4sWzebIfK3XorjBljO1gt\nWvjWlqsvQM4Pf59t9pd//MPWCunUCbZsCXU0SqlwMHTW+SzNbMw3k34JdShKKRVypXayROQuEQnD\n8+kqlpRUZa+0s7JCvh0eWEZHjsATT8A558BZZ8Hq1XDNNSVWQI9q119vKyhed52toKhUKGmuCr2E\nGpUZ1W8j9z9dO+jDmJVSKtx4WsL9OxH5n4hcIRKrXylVRDp6lOncDCNGlKmZZcts5+rbb+G77yAj\nw444jDp33+1VnfZ//cvWzRg0KPj3hilVjOaqMNBnYmsOVK7Nu++Wvq1SSkWzUjtZxphHgJOBKcAt\nwDoReVJEPCtHplSAubuvqYocYlHFztSM3297RT44eBCGDLElyzMy4L33bKcial1zDQweDLm5Hm0u\nAlOn2s7n5MkBjk2pEmiuCg/lysG4cTBsmC0MpJRSscqje7IcZZMyHY9jQDLwlog8HcDYlPKIy/ua\n9u3nUJvL6XhLKlfmvmPnhfLSxx9Ds2Z2OOIvv0C3bjEwNPD//s/OmTVmjMe7VK0Kb71ly9avXRvA\n2JQqheaq8NCxoz0Z9coroY5EKaVCp9QS7iJyD9AH2ANMBuYaY/JEJA5YZ4wJ2FlCLeGuCnhVujg7\n23YWLroInnsO4ryr75Kba4fBzZtny7NfcYX38QaLu4mWC/hUqnnrVmjZ0o6RPOkkj3d75RU7UfGy\nZVCxopfHVDElECXcYyFX+WvKhmBM/bBypZ3q4bffoFq1wB4r0mgJd6UiQzBKuKcA1xljOhpj5hhj\n8gCMMflAJ18PrFTAVKli7y16/nmvO1jff2/vvdq3z35JCOcOFpRendCnUs0NGsADD9iqFl4YOBDS\n0+GRR3w4plJlp7kqgIpXeC2tqmvz5nDllYaxD+0LToBKKRVmPLmSdSGw2hhzwPF3EnC6MebbgAen\nV7KUQ6DPvB47BmPH2n7ZCy9Ajx6BO1Yw+fy6HT0K//mP7ayWK+fxbnv22CGW77wDrVv7cFwVEwJ0\nJSvqc1Uor2QV38eTNrYu20qLNgn8/LOQ1lwLPxbQK1lKRYay5ipPOlk/AecUZBDH0IvvjTHn+HpQ\nj4PTTpZyCGQna8MG6NULKlWCadMgLS0wxwmFYAwLKu7NN+Hxx+HHH3XYoHItQJ2sqM9VkdbJAnj4\n3A/ZergG09ec590Bo5h2spSKDMEYLlgkeziGXpT39YBKuVLSZMMi9t6iQHj3XbjgAjvX08cfR1cH\nK1S6dYOmTb2qnaGUP2iuCkMP/vdsFv3akJ8XbA91KEopFVSedLLWi8jdIhLveNwDrA90YCq2lDTZ\nsDElFG9YvRq6d4f8fK+Od/SoLc0+dKgtcHHffV7fvqXcEIEJE+Cll2DNmlBHo2KI5qowlHRyHR67\n4jv+1T9L59JTSsUUT75W3g60AbYBW4ELgIGBDEopj6xdC5ddBl26eNVD2rgR2ra1wwR//NFeyVL+\n1aABPPYY3HWXTlKsgkZzVZi69fVL2LK7Eh9O0D6vUip2eDIZ8S5jTA9jTG1jTB1jTE9jzK5gBKeU\nW7/9Zsu0jx0LPXt6vNv779tpoHr0gLlzS6+QpRw++MDrWvB33AG7d8PbbwcoJqWcaK7yXPEJ3H35\nHHQ1Cby7duJTEhk7Lo5/TWjEsWNli10ppSKFJ4UvagG3Ao1wGt9ujOkX0MjQwhexxKsbsdetg0sv\nhVGj4JZbPNolPx8yMmD6dFuYIVYq35U0j5ZXc2gNGACpqbaihReWLIE+fexFRx/mg1ZRKkCFL6I+\nVwWqkI0n7ZZ1G2OgfXt7TmxgjF9f1MIXSkWGYFQXXAp8CfwAHC9YbowJ+Plp7WTFDq++PNx9t52E\nZcAAjzbft89WD8zJgTlzoE4d3+OMJl695uvX20uAv//u9WnvHj3glFO87p+pKBagTlbU56pgdrKK\nn6Dx5KRMaft8/z107mw/RhITyx53pNJOllKRIRidrJ+NMS19PUBZaCcrdnj15cEYu4MH1qyBa6+F\njh1h/HiIj/c9xmjj9Rc2H69mbdkCLVvCqlV2d6UC1MmK+lwVzE6WP47lqo3evaFRIzsQIVZpJ0up\nyBCMEu4fiMhVvh5AKb/zsIM1dy5ccgkMHw4vvqgdrDIbPtyWDfTy3qy0NOjfH0aODFBcSlmaqyLA\nE0/Yj5GtW0MdiVJKBZYnnax7sMnrLxHJEZEDIpLjSeMiMkVEdorISqdlGSKyVUR+dDyu8DV4pVwp\nuP/q7rthwQKPb9tSpWnSxF4WfPVVr3d96CF45x349dcAxKWU5XOugtjOV66KWARqbsKGDeG2Kzbx\nSI8/AnMApZQKE6UOFyxT4yJtgYPADGNMc8eyDOCAMWa8B/vrcMEY4XZoyvbtUKUKVKvmUTuHD8PN\nN9uzpO++q/dflcSn4UDZ2fbfo0IFr483bhwsW6bVBlVghguWVVnyVaQPFwwUd/HmLP+VU1sns+Cz\nypx9SVLwAwsxHS6oVGQI+HBBsXqJyKOOv9NE5HxPGjfGfAW4qm0WVslVhakdO2w5qrlzPdo8MxPa\ntbPf/z/7TDtYAZGc7FMHC2DwYPjuO9vRUsrfypKrQPNVILgr8550/mlktP6Y+/rsiqhOo1JKecOT\n4YITgNZAwWREB4H/lPG4g0XkZxGZLCKeXaJQsWXnTlumvU8fe2mqFCtX2kmFO3WCmTOhUqUgxKi8\nUrmyvS9r2LBQR6KiVCByFWi+8llWlr2S5fwoqD44YNalZG49zvxpOpWZUio6lS99Ey4wxpwjIj8B\nGGOyRcS3U9nWBOBxY4wRkdHAeKC/u41HjBhR+Hu7du1o165dGQ6tIsLu3dChg639/fDDpW4+fz70\n7QsvvGB3UZ4pOMtc0nova1yUqndvePJJO3/WJZf4t20VvhYvXszixYsDfRh/5yrwIl9prvJO+Yap\njOs6k/uHdqBjLy1MpJQKPX/nKk9KuH8LtAG+cySwWsBHxpizPTqASDowr2CMu6frHOv1nqwYUTh2\nf98++Mc/oEsXWyq8hF6AMfD88/D007aowoUXBi/eWFDSRMbgeyds2jR7tfHTT30OTUW4AJVwL1Ou\ncrThU77Se7I85/wczP4cLmu8jusea8adQ8raH44cek+WUpEhGCXcXwDeBWqLyBPAV8CTXhxDcBrT\nLiJ1ndZdB/ziRVsq2lWtCo88UmoH69gxuPNOmDIFli7VDlYguBrq4/y4OPs9WLTI63Zvugk2bICv\nvgpA0CqWlTVXgearoJJqSfz7s3N5fEwF9u8PdTRKKeVfHlUXFJHTgA7Y5POpMWatR42LzALaATWA\nnUAG0B5oCeQDG4HbjDE73eyvV7JihDdnaHNzoXt3OHoU5syBpNgrThUWrpW5zD3vSfj2W4/nLisw\nZQr897/w8ccBCk6FtUBVF/Q1Vzn29Tlf6ZUszxV/Dq6umAdiqHI40StZSkWGsuYqT4YLNnS13Biz\n2deDeko7WbHD0y8Pe/dC585w0kn2i7qO4w+dOMkn/5TTYfJkuPhir/Y9ehROOQVmzYI2bQIUoApb\nARouGPW5Kho7WSJ2yo3mzeHHHyE9PTqeZ0m0k6VUZAjGcMH5wAeOn58C64GFvh5QKV9t2gRt29rH\ntGnawQo1Q5yd8fn5573et0IFGD4cRo0KQGAqVmmuigDFy7onJ0P9+jBoEDz6aKijU0op/ym1k2WM\naWaMae74eTJwPvBN4ENTUe/gQbjjDjhwoNRNV62ynauBA22hizhPTg+owLv5Zvj8c9sD9mHXlSvt\nQ6my0lwVGYrf61kwLPC++2DhAsOva/UKj1IqOnj9VdUY8yNwQQBiUbHk0CG4+mo4fhyqVClx0y++\nsBXdx42DoUODFJ/yTNWqtrf03/96vWvFinDPPfbfVSl/01wVWapVg3urT2XkbdtCHYpSSvlFqfNk\nici9Tn/GAecA2wMWkYp+ubn2xqqmTeHll0u8LPXOO3D77fbenf/7vyDGqDz3xBM+z/58223QpIm9\nEJae7ue4VEzRXBX57hpVm6Z9KpOUaBCnYjrRXghDKRWdPLmSlej0qIgd794lkEGp6JOSYsffV5bD\nfFylCzM+b0C51yYh5eIKx+UXN3EiDB4MH36oHaywVrmy19UFC1SrBv37w3PP+TkmFYs0V0W4qj06\n8a/a07nsrO1FhhSWNF+fUkqFK49KuIeKVheMHoXVop5/HpYvhxkzoFw5l9saAxkZMHu27WA1bRrc\nWJVn/FUBbNs2aNYM/vzTdWdbRZ9AlXAPFa0u6D+5//uAk246nwXLa9HybPsWibbnrdUFlYoMwSjh\nPg9wu5Ex5hpfD14a7WRFj8IkmZ9vH+Vdj1Q9dszWwvjpJ1iwAGrXDm6cynP+/OLTty+cfLKtOKii\nX4BKuEd9roq2zoZLxvBCg6f5pMEtvP9tHSD6nrd2spSKDGXNVaXek4Utg1sXeN3x943YiRrn+npQ\nFcPi4tzeg5WbCzfeCH/9BYsX25oKKjbcf78dEnr//ba8u1I+0FwVDUQYOPVCxvRKZsUKaNEi1AEp\npZRvPLmS9b0xplVpywJBr2RFjpSUksfNl3bjclaWrYXRuDFMnapftCOBy7PL//43dO8OaWlet3fZ\nZbZQYa9e/olPha8AXcmK+lwVbVd0SjJunJ2cePbs6HveeiVLqcgQjMmIq4hIE6cDNgZKrrmtYk52\ndtG5T4wBczQPk5VdZC4UV7ZssXNgtWljb9XSDlYE27ABJk/2add77rG37EXTlykVVJqrosjtt8PH\nH8Mff4Q6EqWU8o0nnayhwGIRWSwiS4DPgSGBDUtFvLw86NkTRo0qcbNffoGLLoIBA+yZS51kOMLd\ndhtMmWJvrvPSVVfZzvqyZQGIS8UCzVVRJDHR3p+r8+gppSKVR9UFRaQicJrjz1+NMUcCGtXfx9Xh\nghGiyHCOY8fgppvg4EE70VXFii73+fJLuOEGePZZ2x9TkcXtEJ6LLoIHHoAu3lfPfu45+PZbO0RI\nRa9AVReM9lwVbcPmSrN7N5x6qq2VtH9/0XWRPHeWDhdUKjIEfLigiCQA/wIGG2NWAA1FpJOvB1RR\n7tgx6N0bcnLg7bfddrDmzoXrr4fXX9cOVtS57TY7ybQP+vaFRYtsWXelvKG5KvrUqgW9r8/l1l65\nJwxH17mzlFLhzpPBWa8BR4HWjr+3AaMDFpEKmYIJg109UlI8aOD4cVu5ICsL3n0XKlVyudkrr8Cd\nd8LChbbYgYoyXbvC99/Djh1e71qtmu10T5wYgLhUtNNcFYXuN+OYMkU7VUqpyONJJ6upMeZpIA/A\nGJMLRM0kkupvLotXmL+Hp7jrgIk4JpEVsdUr5s512cEyBkaMsGPsv/wSzj03qE9P+Vlyspv3Q0Jl\nau5ZS8qZ9Xxq9667YNIkW8pfKS9oropCaQ/14qr8+UyecDTUoSillFc86WQdFZHKOCZ5FJGmQFDG\nuavwkZXlvgNWWD0wLg4GDYLKlU/Y/9gxWy1q3jz4+mto2jT4z0H5V0nviT2mps9nnk89Fc45B/77\nX//Gq6Ke5qpo1LQpQ1sv48VnjpCXF+pglFLKc550sjKAD4E0EXkD+BR4IKBRqahy+LAtcLFhg51k\nuE6dUEekwt2dd+qQQeU1zVVR6tyMTjT+61fenpMf6lCUUspjJVYXFBEBGgC5wIXYoRfLjDF7ghKc\nVhcMqkBUrsrKgmuugfR0eO01nQMrlpTl/XT8uJ2Yeu5ce1VLRRd/VxeMlVwVa9UFCxnD3MZDearS\nCJatrV44NDlSXwutLqhUZAhodUFH1lhgjNlrjJlvjPkgWElLhbnjxyEjA3btcrvJli1w8cVwwQUw\nc6Z2sJTnypWDgQNtkRSlSqO5KsqJ0Hna9ezJTeCbb0IdjFJKecaT4YI/ish5AY9ERY5jx+CWW+CL\nLyAhweUma9ZA27bQrx8884xOMhyzNm6E+fN92rV/f/jf/+xsAEp5QHNVFCvX7mLuub8Czz4b6kiU\nUsoznnz1vQD4RkT+FJGVIrJKRFYGOjDlfyWVaC+sEFiavDzo1Qt27rRfnqtWPWGTr7+G9u3hySfh\nvvv8/zxUBDlwwFY8OX7c613r1YMOHeCNNwIQl4pGmquiXN++8Pnn9tyNUkqFu/LuVohIY2PMBqBj\nEONRAVRQot1nR4/CjTfa2trvv++yTPvcuXaY1+uvw+WXl+FYKjo0awZ168LHH8MVV3i9++23w733\n2p+ixbiVC5qrYkdiou1ovfhiqCNRSqnSlXQl6y3Hz6nGmE3FH8EIToWZ11+3VyTeecdlB2vixL8n\nGdYOlirUvz9MnerTrpdeaqtTLlvm55hUNNFcFUPuugumTQt1FEopVTq31QVF5CdgDnAHcMIoaGPM\n+MCGptUF/a3M1ZiMsZ2s8uVPWPzoo/b+mQ8/hCZNyhanig6F77d9+6BRI/jjD6hZ0+t2/v1vWLUK\npk/3e4gqRPxZXTCWclUkV9Tzp+5X5TBnYVXyTWTe7KvVBZWKDIGsLtgDOI4dUpjo4qFijcgJHay8\nPHuh4qOP7L1Y2sFSJ6heHTp18vnmqltugffeg717/RuWihqaq2LMkK33k0CuL7d6KqVU0JQ4TxaA\niFxpjFkYpHiKH1uvZPmRv8+CHjoEXbvadv/3P6hSxX9tq8hX5P22fr0dYpqa6lNbvXtDy5ZaSCVa\n+HueLEebUZ+r9EqWZWb/lzN6tmDse6dzzTWhjsZ7eiVLqcgQ0HmyAEKVtFSIZWXBtm1uV+/ebSsI\n1qtni11oB0sVl5zsVL2yaROkfmqRapYpKZ63ddttMHmyfsFU7mmuih1yw/UM4iWeG30w1KEopZRb\nkTmgWQXWjh1wySUwe7bL1X/+CW3aQMeO9otvfHyQ41MRISvLdorcPbKzPW/roovsPkuXBi5epVSE\niI9nKw34ffVRVqwIdTBKKeWa206WiHR1/GwcvHBUWfhlHqyNG+Hii6FHD5djs374wa6+7z4YNUrL\naqvgELH3/k2eHOpIVLjRXBWbpjCAQfkv8fzYv0IdilJKuVTSlayHHD/fDkYgquwK5sFy98jKKqWB\nNWtsD2roUHj44RN6UIsWwZVXwoQJdt4ipYKpTx94913IyQl1JCrMaK6KQXuoxcAJLXl3QQV27Qp1\nNEopdaKSSrh/DBjgPODL4uuNMQG/3VQLX3inTDdFb98O55wD48bZKgPFTJpky7S//bYduqWUT/Lz\nYcUKOPtsn96v119vh6kOHBiY8FRw+LmEe8zkKi188beUlKJDjpOTPTiRGCa08IVSkaGsuaqkTlYF\n4BxgJjCg+HpjzBJfD+op7WR5p0wJ2Bj45Rdo1qzI4vx8GD7cdq4WLICTTy57nCqG/fUXNGgA33+P\nNG7k9ft14ULIyIDlywMRnAoWP3eyYiZXaSfrRGvWQIcOkJkZOa+NdrKUigwB62Q5HaCWMWa3iFQF\nMMZ4XM5HRKYAnYCdxpjmjmXJwJtAOrAR6GaM2e9mf+1kecHfCfjwYbj5ZnuRa+5cn+aRVepEgwdD\nrVrIiAyv36/Hj9t5jefPh+bNAxKdCoIAlXD3OVc59vc5X2knK7Q6drRzNUbKa6OdLKUiQ8BLuAN1\nROQnYDWwRkR+EJGzPGz/NaBjsWXDgE+MMacCn/H3eHoVRnbvtmcHy5WDTz7RDpbyo759Ydo0hHyv\ndy1Xzu4+ZUoA4lKRriy5CjRfRawhQ+zPSOlkKaVigyedrFeBe40x6caYhsB9jmWlMsZ8BRQv1NwF\nmO74fTpwrYexKn8xBvbudbv611/hwgvtPFhvvGHnkFXKb845B5KSuATfRnH162ffl39pUTFVlM+5\nCjRfRbKOlxviOcqXJ9yRp5RSoeNJJ6uKMebzgj+MMYuBskw9W9sYs9PRViZQuwxtKW8dPw6DBsGt\nt7pcvWSJnSLr4YfhiScgTmdSU/4mAn370o+pPu3eqJHtp737rn/DUhHP37kKNF9FhLicfYxhGJdd\n8pfPE54rpZS/efIVer2IPCoijRyPR4D1foxBL/AHy+HD0K0b/P47TJt2wuqZM6FrV3uVoF+/4Ien\nYshNN/EZl/q8+4ABOmRQnSDQuQo0X4Wn5GRuu+UoSQnH+fNP3yY8V0opfyvvwTb9gJHAO9gE86Vj\nma92ikgdY8xOEakLlDjDxYgRIwp/b9euHe3atSvDoWNYdjZccw2kpdkygRUqFK7Kz4fHHoPXX4fP\nP4czzwxhnCo21KrFe8l9S5zMuqSSzF262PoZ69dDkyaBCVH5z+LFi1m8eHGgD+PvXAVe5CvNVaFV\n5b7b6T/nNV587g6efaFcqMNRSkUgf+eqUqsLlvkAIo2AecaYZo6/xwJZxpixIvIgkGyMGeZmX60u\n6AW3ladyc+G88+CKK+w8WE5jAA8etNNi7dljy7TX1sEwKkyUVklt6FCoUgVGjw5eTMo/AlFd0B98\nzcGrvbEAACAASURBVFdaXTA8bLmoBy1XTmfDtookJYXv66XVBZWKDMGoLugzEZkFLAVOEZHNItIX\nGANcJiK/AR0cf6tASkiAV16BZ54p0sHatMlOLJySYisIagdLRZL+/eG11+DYsVBHoqKB5qvIl/Zg\nTy6r8AVTfbvdU4WRlBSK3F+n99ipSBTwK1lloVeyvOPNWbuvvrL3Xz34INxzDyUO21IqFDx5P7du\nDY88AldfHZyYlH+E65UsX+mVrDBx/DjfPfo+179+LevWCZUqhefrpVeySufqva7vfxVsAb+SJSIX\nebJMRY6pU+G662ztiyFDtIOlQuzoUVv10gcDBsCkSX6OR0UkzVWKcuU478l/cuaZwvTppW+ulFKB\n5MlwwRc9XKbCwdGjthqAC8eOwb33wpgx8OWX0LH4tJtKhcI//wkffujTrt2722kHMjP9HJOKRJqr\nFACPPgpPPRXqKJRSsc5tdUERaQ20AWqJyL1Oq5IALd0ThqqTDVfeACedZO/BcrJnD/TsaS+1f/ut\nrdymVFjo0sXeXOXDmL+qVeGGG2D6dDv0VcUezVWquDZtbNXRjRtDHYlSKpaVdCWrAlAV2xFLdHrk\nADcEPjTlld9+4xtaQ/PmMGFCkVU//miLC559NixcqB0sFWa6d7eVV/bs8Wn3AQNg8mQdqx/DNFep\nEzz2mP2phXFiS/GCGVosQ4VSqYUvRCTdGLNJRKoCGGMOBiUytPBFcSkpridXvJIFTOMWnkx4gucO\n3Vpk3bRp8K9/wcSJ9oy/UmGpd29o1cpWYXHw9CZnY+y5hZdegksuCWCMym8CUfgiFnKV3vjvhePH\nqVb+IM+/Vo1bbgl1MEVp4YvSuXqvu/sO5Kz4/IrF9ylp/kWligtGCfdEEfkJWA2sFpEfROQsXw+o\nfJed/fdM9oWP39exoP5Aan89t0gH6+hRuPNOe//VkiXawVJhrm9fO2TQByJ/X81SMU1zlfrb4cPM\noDePPXSUw4dDHYzyh6wsF9+Bij2Kd6CK7wMnlobXUvEqUDzpZL0K3GuMSTfGpAP3OZapcHDyyfDr\nr3YQusO2bfaM/vbtsHw5nHFGCONTyhPt2tnLUQcOFC5KTvY8CfbqBfPmlX6WU0U1zVXqb1Wr8iFX\ncl7+t7yo5U+UgycdNc0jyl886WRVMcZ8XvCHMWYxUCVgESnvVa1a+OsXX9j7rzp3hnfegaSkEMal\nlKfi4mDGDEhMLFxUUjIsngRr1IArr4RZs4IctwonmqtUEZMZwJOVRjHuyaPs3RvqaFQBnWhYxQpP\nOlnrReRREWnkeDwCuK4RrkImPx+efBK6dbOjroYPt99blYoV/fvbObP0npWYpblKFXGMeE799610\njZ/LE6P1gyFcuLr1Qa8eqWjkydfwfkAt4B3Ho5ZjmQqm/HweZjQsXXrCql277Fn8hQvh++91/isV\nmy69FPbvt9U0VUzSXKVOdMMNjEifxutTj/DLL6EORikVS9zOk1XAGJMN3C0iifbP4FVsUg579kDv\n3lzOIWhU9DvDkiVw003Qpw88/jiUL/VfVKnoFBdnr2ZNngznnhvqaFSwaa5SxSUng8QJtXmNPVTg\n7LPhyBEd5aGUCo5SP2pEpJmjYtMvaMWm4Fu2zH5jbN6cS/kMUlMBOH4cRo+GHj1gyhQ7VFA7WCrW\n3XILvPkmHDoU6khUsGmuUsUV3Ne509Qh71gcx47ZictVcBW/B0vn6lSxwpPzOa+gFZtC49VXoUsX\nePFFGDuW444Ljzt32uGBH3+swwNVFJoxA55/3qddGzSwhTbfesvPMalIoLlKuVWunP05bJjNoSp4\nit+DpfNUqVih1QXD2ckn2ytZ11xTuGjePGjZEi64AD79FOrXD2F8SgXCKafAf/5TYgWLksq7z59v\n581SMUdzlSrVgAFw661aICfcFP9M16tdKhpodcFw1r49NG4M/D386e67Yc4cGDVKhweqKHXBBfa0\n89dfu92kpPLuR4/CsWN2+jgVUzRXqVJlZMDmjcd9nftclcJVeXZPOkzFP9NDebXL1Uk8LTGvfOFt\ndcG3gZpoxSafuPrw8eQ/8Q8//H0j/88/Q9u2wYtZqaATgb598fVbUHy8/Tllih9jUpFAc5UqUXIy\nVKxoGLaqJ7f3P6pfngPAVXn2SBse6OokHminS3lPTAnXzEWkHDDWGHN/8EIqcnxTUnyRRsTNEIXN\nm2HpUuTGHkXWHz8O48bB+PHwwgtw4406xEHFiB074IwzYOtWqOL9iC8RqF0btmyBChUCEJ8qExHB\nmP9n777jo6jWx49/noRACCSEUJMQQhMLCijgBUURuAoWROHS2w8ELKAXuH4VsJAYC+gVFRUURJqC\niqKCgMrVCza42BAFGy0gECkJJBBqcn5/zCRuwm6ySXazJc/79ZpXdqeceWayO8+emTNnjHiwvAqR\nq1zmEFUy//0vz/f8D682nMKmLZXLfZ9KsmCmBOc/sqJ8RivKdlZ0Zc1VRV7JMsbkAHrdxJuWLoW2\nbWHv3nMuUVeqBJMmwcGDVgVL2yirCiM2Fv7+d/j661IXceGF1j2MKvhprlIl0rkzYydW54K0dQg5\nvo5GBSBtUqjcUeSVLAARmQXEA0uB/I6RjTHLvBtakF/JysiwbrD63//g9dehXTsAcnNh5kxISrJ6\nQRo//q9ekZSqUIyxvjSlIAKLFllfrdWrPRyXKjNPX8myywz6XKVnzz0oN5djN/Wn6eoZPP5KfW67\nrfxWrVeyglNF3vZgVdZc5U7XCeHAYaCLwziD1e5dlcb69dC3L9x6K3z/fX5zqO3brYepnj5t3fN/\n/vk+jlMpXyplBStP797wz39arXEbNvRQTMqfaa5S7gsJofrrL/NqzCCG37ec886rxNVX+zoopVQw\nKfZKli8F7ZWs1FTYtg26dgWsq1cvvgjJyVbzwHHj9OqVUmWR910bOxbq1LF6FFP+wxtXsnxJr2QF\nrnA5yfKPwhk6FL74Apo18/46fX0l6/RpWLcOvvj0NGkfb6bVxTncteBv58y3dN4xlr2dS/vroujd\n23oOYXEq8me0Im97sCprrtJKVjly9gXMu3p15gy8+qpevVLKE/K+a5s2Wc/z3rFDT1z4E61klXY9\n+iPO0/L26UsvwbPPWg1NvH3/s68qWbt2wQv/2km11W/TM2wlLU58w+n4Jkif3lR/8twzURmLPqD6\nqP7srHEp8479g9/bD+XOyTXp0sV1Q4OK/BmtyNserLSSFUAcv4CnT8PTT1vD5MlWsyb9EaiUZzh+\n19q1s+5xvPFGn4akHGglq7Tr0R9xnua4TydMsFrwr14N4eFeXKePKllHftxD5SvaYHreSrVBt8CV\nV0JUVNELnToFn3xCzqLFnF2+ijeqDKXF4gdp272209kr8me0Im97sNJKlj977z1Yvty6RMVfX8Av\nv4Tbb7fuE5k5Exo18m2YSvm1HTvg/fetXmDc5Jjs5s2Dd96BDz7wUnyqxLSSVdr16I84T3Pcpzk5\n0L+/9f7NN7134tOnzQVzckq/YXv3kvvEVEKGDc3vrKuwivwZrcjbHqy8XskSkXrA40CcMeZ6EbkI\n6GCM8fqjPgO2krVvH9x9N/z0E8yeDZ06AdYXcPRo68fes8/CP/5R5nv7lQp+6enQpIlV2XKzj1zH\nZJedbZ3Q+PpraNzYi3Eqt3mpd8Ggz1X6I87zCu/TU1u2cUOnYzS/tQUzZ4d5JUd7s5J19iwsnHGE\nZnHZXN0/zivrKEpF/oxW5G0PVl59TpZtPvARkPdt/Q0YV9oVBrXcXKtS1bq19SDVH36ATp0wBt54\nw5olNBS2bIE+fbSCpZRbYmKgRw+YP79Ui0dEwLBh1j0XKqjNR3OVKqMqFzbh3b/PZONbu0h+OLCe\nofX5p2eY3vBZek08jyZbyvchgdnZ5bq6gBATo8/SqujcqWTVNsa8BeQCGGPOgj69z6kFC6y2SZ9+\nCikpEB7OTz9ZnQg+/rg1y8yZEB3t2zCVCjh33mnVknJzS734vHlw8qSH41L+RHOVKruQEKIWvciq\nvz3C688eZNaLpTvmlKc//oDHO6+hfrdWDK2zmhqbPqNByu3ltv60NOjWdBs//VRuq/RLhR9QDNaV\nLcchI8O3Mary5U4l67iI1MJ63ggi0h446tWoAtXgwVYfsBdfnP+s4S5drOf1fPedr4NTKoB16ABV\nq8Inn5Rq8WbN4LLLYOlSD8el/InmKuUZYWHUe382H13wTx69P5Olb/lvGzCTa9jasj93bLqDhNen\nUn/Th8hFF3plXa6uzNQPOcDH2Vcy/ep3vbLeQJGeXrBClZ7u64iUr7lTyZoALAeaisiXwELgbq9G\nFajCwsghlDlz4MILrW7Zt26FMWOgkjuPfVZKOSdiXY5ys8lg4TOKIvDRRzB0qDbZCGKaq5TnVK1K\nkzUvs6rxWMbeeZYPP/R1QM5JiND57THE7N9CeN+bPXofQuFKFbi4MlO3LlXXfsiLuXdyK8vYscNj\nISgV0Irs+EJEQoD2wEbgfECAX40xZ8oluADr+OLLL62rVxERMGMGXHppwel6U6RSZXDihPUFiogo\n1eI5OVb/GcuWQdu2+l30JU93fFFRcpXmEM8rdp/m5LB+Yyg9e1r3Vnfp4oF1+vhhxO5y5/NWYJ5N\nmzhw6XX8q+HbzNh0tdefNxaI9DscWLza8YUxJhd40Rhz1hizxRjzU3klrUBjjFWx+vVXq8XgZZed\neyZdDzhKlUHVqqWuYIHV6cztt8OsWR6MSfkFzVXKa0JD6dAB3nrL6t79yy99F8ovW3K8dl+ps6aA\n7vxmKdBq4NLW3F59MbMO92HPxz97J1ClAog7zQU/EZHeItoXXlFErOdqHD9+7uV0bZ+rlH+47Tbr\nmVkqKGmuUl5zzTWwaBHceit88035rvvMGZg79nvOtGrLjnnrvLKOjIzS/WYpfB/Su1l/p/qCmbRs\nE+aVOJUKJO48JysLqAacBU5iNcMwxphiHhPugeBcNMFo1KgRqamp3l69Uh6XmJjIrl27fB1GhTZo\nECxerE02fMlLz8nyu1zl+fXo59bTYmIK9vhWs2bRlYvly2H0yBxWfxR6zi0B7ipJc8EfvznF/3qk\n8I/Ds8l54klqTRjmlee/6GerfOh+Dixefxixt4jILqyen3KBM8aYy53M4zRx2Rvt9RiV8jT97Pre\nN99Au3bW2WHtkMY3vFHJ8qbi8pVWsoJHsfv47FmWNf4Xd2Q8zrIPq9GxYynW4UYlKzcX5t25kSvn\nDqfqJefRcOUsJC625CtzNyb9bJUL3c+BpVwqWSJSEzgPCM8bZ4z5rLQrtcvcAbQxxrh8aoBWslSw\n0c+uh7z/Ppx3nvXQ71IQsW5i79fPw3Ept3irkuWNXGWXW2S+0kpW8HBrH//xB2uumMKgw88x/61q\n3HBjyT7K7lSyzNkc/mh2DVX/bwy17+rnlatXBWLSz1a50P0cWLza8YW9gpHAZ8BHQLL9N6m0K3Qs\n2p31K6XUObZuhaeeKlMRTz+tyS6YeDFXgeYr5ahBA679bhrLE+9hxD+O8vz0Mx4/lkilUBJ2fkbt\nMf29XsHytjeWGB6bctrXYfiFwo8X0ceJBDd3ksY/gXZAqjGmM3ApcMQD6zbAGhH5WkRGeaA8pVRF\nMXo0vPcepKWVuoiMDPjqKw/GpHzNW7kKNF+pwmrXpv3GGXzV5SFeeTiVYcMMWVkeXocXK1eFexP0\nZu/H3ffOpfm029i40XvrCBSFOwrJcNmWSwUDdypZJ40xJwFEpIox5hes55CU1ZXGmMuAG4AxIlKK\nls2BJTU1lZCQEHJzc8tcVuPGjfn000/dmnfBggVcddVV+e8jIyM91vnCE088wejRowHPbh/Anj17\niIqK0uZ16ly1allt/V56qdRFjBsH06d7MCbla97KVVAB85VyQ/XqNPlgBl+tPUPlysLFF8PKle5f\nITcGPn4zg9kNU9j9S7Z3Yy2kcG+C3uz9OPqugXSr9TWLb3mTEye8tx6l/I07t33/ISLRwHtYZ/Iy\ngDJ37WeM2W//PSgi7wKXA18Uni8pKSn/9TXXXMM111xT1lV7VePGjZk7dy5dXDyx0Fe9CzuuN8uN\n023r1q1j8ODB7Nmzp8j5Jk2a5HI9JVV43yUkJJCZmVnq8lSQGzfO6ld54kQIDy92dkc1a8LYsdZr\nZx/Z4noYUyWzdu1a1q5d6+3VeCVXgXv5KtBylfIQEaq1vZBXXoE1a+Duu2HqVOvwdOONrg9N8x/a\nTs7Ml+l19FXOu+YWGtQ6AZT+OYB+LSKCqPcWkXR1D6ZP6sIDz9bxdURKOeXpXFVsJcsYc6v9MklE\n/gvUAD4sy0pFJAIIMcYcE5FqwHVYbejP4Zi4VPkxxhRbYcrJySE0NLScIlKqkAsusJ76/c47Vr/s\nJZBXgZo0yXq23YwZBacH+C0QfqdwpSM52enhvky8kavA/XyluUpdey1s2WI9M3PmTMPwgadp1SST\nxg1zCa9iOJiWQ81fvoJ/Qe+n/saRW4YT/ej/qNmsqa9D97527Qj7f4M5/6Xx/Hjba1xyia8DUupc\nns5V7nR80TBvAHYCm4D6ZVor1AO+EJHvgQ3ACmPMx2Us0+/k5uZy7733UqdOHZo1a8bKlSsLTM/M\nzGTkyJHExcWRkJDAQw89lN80bseOHXTt2pXatWtTt25dBg8e7PZVnfT0dG6++WZq1KhB+/bt2b59\ne4HpISEh7NixA4BVq1bRokULoqKiSEhIYPr06WRnZ3PDDTewb98+IiMjiYqKIi0tjeTkZPr06cOQ\nIUOIjo5mwYIFJCcnM2TIkPyyjTHMnTuX+Ph44uPjefrpp/OnDR8+nIcffjj//bp160hISABg6NCh\n7N69mx49ehAVFcW///3vc5of7t+/n549e1KrVi2aN2/OK6+8kl9WcnIy/fr1Y9iwYURFRXHJJZfw\n3XffubW/VABbsAD69y/14mPHwmuvweHDHoxJ+YSXchVUkHylLIU7JnA2FNVZQWgoDBwIn7x/nNTx\nz5JU63m67nyFNlsWMERe456h1m2CkVn7SXjjKcQDFazC91f5a2cK1f6dzA01vyJ2y398HYpS5cKd\n5oIrsW76FaxucRsDvwItSrtSY8xOoHVplw8Us2fPZtWqVfzwww9ERETQq1evAtOHDRtGbGwsO3bs\n4NixY9x00000bNiQUaNGYYxh8uTJdOrUiaNHj9K7d2+SkpKY7sZNJHfddRcRERH8+eefbN++nW7d\nutGkSZP86Y5XqEaOHMnbb7/NFVdcwdGjR9m5cycRERGsXr2aIUOGsHv37gJlL1++nLfffptFixZx\n8uRJpk2bds4Vr7Vr17J9+3a2bdtGly5duPTSS4ttPrlw4UI+//xzXn31VTp37gxY93g5lt2vXz9a\ntWpFWloaW7du5dprr6VZs2b5Zx1WrFjBu+++y/z583nggQcYM2YM69evL3Z/qQBWp2zNTuLjoXdv\neO45eOQRD8WkfMXjuQoqTr5SFneaCbt1pbt6dWpOvZ+uzqYlj4awsBJG5lre/VV5/PZKfLVqRKxd\nTURioq8jUapcFHslyxhziTGmpf33PKy26PrL1Q1Lly5l3LhxxMXFER0dXeD+pT///JPVq1fzzDPP\nEB4eTu3atRk3bhxLliwBoGnTpnTt2pVKlSpRq1Ytxo8fz7p164pdZ25uLsuWLSMlJYXw8HBatGjB\nsGHDCszj2JFE5cqV2bJlC1lZWdSoUYPWrYv+LdGhQwd69OgBQLiLxuZJSUmEh4dz8cUXM3z48Pxt\ncoerTi727NnD+vXrmTZtGmFhYbRq1YqRI0eycOHC/Hk6duxIt27dEBGGDBnC5s2b3V6vqrgmToSZ\nM+HoUV9HospCc5VSAeD880t8D61SgarEz/0wxnwH/M0LsXhOUpLza/yu2sw7m98D7ev37duX3xwO\nINHh7M3u3bs5c+YMsbGxxMTEULNmTe644w4OHToEwIEDBxgwYAANGjQgOjqawYMH508rysGDB8nJ\nyaFBgwZO11vYO++8w8qVK0lMTKRz585s2LChyPIdt8cZETln3fv27Ss27uLs37+fmJgYIiL+ujE4\nMTGRvXv35r+vX/+vlkERERGcPHnSYz0dquDVtClcf71V0VLBIyBylVLlpDy7bFdKWYptLigiExze\nhgCXAWX/1exNSUklqySVdH43xcbGFuidLzX1r46uEhISCA8P5/Dhw047mJg8eTIhISFs2bKFGjVq\n8P7773P33XcXu846depQqVIl9uzZQ/PmzQHOafLnqE2bNrz33nvk5OTw/PPP07dvX3bv3u2y0wt3\neg8svO64uDgAqlWrRnb2X93U7t+/3+2y4+LiSE9P5/jx41SrVi2/7Pj4+GLjUao4kyZB585wzz1g\nf7xUgAnIXKVUOSncpFAp5X3uXMmKdBiqYLV77+nNoIJF3759mTFjBnv37iUjI4Np06blT6tfvz7X\nXXcd48ePJysrC2MMO3bs4LPPPgOsbtarV69OZGQke/fu5amnnnJrnSEhIfTq1YukpCROnDjB1q1b\nWbBggdN5z5w5w+LFi8nMzCQ0NJTIyMj83gLr1avH4cOHS9yFujGGlJQUTpw4wZYtW5g3bx797Y4J\nWrduzapVq8jIyCAtLY3nnnuuwLL169fP75DDsTyABg0acMUVVzBp0iROnTrF5s2bmTt3boFON5zF\noiqQ+fPhm29KtehFF8FVV8Hs2Z4NSZUrzVVKBZCjR2HMXYacHF9HopR3uHNPVrLD8Jgx5vW8Bz6q\nczlejRk1ahTdunWjVatWtG3blt69exeYd+HChZw+fZqLLrqImJgY+vTpQ1paGgBTpkzh22+/JTo6\nmh49epyzbFFXfZ5//nmysrKIjY1lxIgRjBgxwuWyixYtonHjxkRHRzN79mxef/11AM4//3wGDBhA\nkyZNiImJyY/Lne3v1KkTzZo149prr+W+++6ja1fr1t8hQ4bQsmVLGjVqRPfu3fMrX3kmTpxISkoK\nMTEx+R18OMa6ZMkSdu7cSVxcHL179yYlJSW/kwxXsagK5NgxKEN3qw88AE89hT4sM0BprlIqsESF\nHOPO169k3rN6Q6wKTlLc2X4RWYHVY5NTxpibPR2Uw7qNs/hERK9SqICkn10vOnkSmjeHt96C9u1L\nVUSvXtChA9x3nzat8Sb7e+DRsyD+mKs8vx79XPqDwv+HmBirOZ6joh5oLsmCmeK5f2TheJx9Tvz1\ns5PeayRvfRjJP3Y/Q+3avo6m/JX0s6PKV1lzlTtduO/AetbIa/b7AcCfwHulXalSSnlceDg8/LB1\nSeqTT0pVxKOPQqdOHo5LlRfNVconnN3vVJqGFM5+cBfmzg/wvGd9FR7nj2JefoJBiS2YfucIpiyt\neE8odva/1EY4wcOdK1nfGGPaFjfOG/RKlgo2+tn1sjNnrBusXnoJujp9Qk2xRoyAJUusC2OloWch\ni+elK1l+l6s8vx7/vBpR0ZT1ypGrK1nu/H8D6SqVu7KfnsXmSUuo9OU62rbTGkbhyrbmFN8pa65y\np+OLaiKS/yRbEWkMaP9bSin/ExZmPVV42bJSF5GUBBERsH+/9cOlpENxZ6KV12iuUioARYwbzXnx\nxzk9f7GvQ/EL6emaU4KFO1eyugOzsZpiCJAIjDbGfOz14PRKlgoy+tktB3n7twxtLiZMgNOn4YUX\nSr5soJ9VLg9eupLld7nK8+vRz5Y/8OWVrKC9h+ebb+DIEfj7330did/R773vlDVXFVvJsldSBbjA\nfvuLMeZUaVdYElrJUsFGP7uB4eBBuPBC+OILuOCC4ud3pAmxeN6oZNnl+lWu8vx69LPlD9xpzlXU\nPGWpZKmKRz8XvuO15oIi0k5E6gPYiaoV8AjwlIjElHaFSinl7+rUsR5QPH68Jjd/p7lKlbfCzbmc\nXUVyp8lXTIz1Azpv8NfOKZRSpVPUPVkvA6cBRORqYCqwEDiK1SRDKaWC1t13w86dsHKlryNRxdBc\npQJSXq+ERVXWlFKBq6hKVqgxJu8r3w+YbYx5xxjzENDM+6EppZQHHDtWqsUqV4Znn4Vx4+BUuTQ6\nU6WkuUr5vbxu1fNuFdUrV64ZAx9+qK0I8jh+dvKGGL1GHxCKrGSJSN5ztLoCnzpMc+f5WioIhYSE\nsGPHDrfmTU5OZsiQIQDs2bOHqKgoj92PdOedd/LYY48BsG7dOhISEjxSLsAXX3zBhRde6LHylA+d\nPQutW8P335dq8e7doUULePJJ95dxlhA1OXqV5irl9xybD4JeuSpKbo5hx22P8daco74OxS8Ubnqq\nPQ4GjqIqWUuAdSLyPnAC+BxARJphNcNQLixevJh27doRGRlJfHw8N954I19++aWvw2LBggVcddVV\nZSpDSthjW978CQkJZGZmFru8uzHOmjWLBx54oNRxOSpccezYsSM///xzqctTfqRSJXjwQRg50qpw\nlcLzz8Nzz8HWre7N7ywhanL0Ks1VSgWR0EpC73apZE2YQmamr6NRqvRcVrKMMY8B/wLmAx0duk4K\nAe72fmiBafr06UyYMIEHH3yQAwcOsHv3bsaMGcOKFStKXFZOTo5b49xljClTZSSvDG9yJ8bc3FyP\nrrOs+0T5uWHDrMtHzz5bqsUbNrQevTVyJJTh66e8RHOVUsGn3iuP0zdnMS+P2ezrUJQqtSIfRmyM\n2WCMedcYc9xh3G/GmO+8H1rgyczMZMqUKcycOZOePXtStWpVQkNDueGGG5g6dSoAp0+fZty4ccTH\nx9OgQQPGjx/PmTNngL+avT355JPExsYyYsQIp+MAPvjgAy699FJq1qxJx44d+fHHH/Pj+OOPP+jd\nuzd169alTp063HPPPfzyyy/ceeedrF+/nsjISGLsNkunT5/m3nvvJTExkdjYWO666y5OOdyA8tRT\nTxEXF0eDBg2YN29ekRWSXbt2cc0111CjRg26devGoUOH8qelpqYSEhKSX0GaP38+TZs2JSoqo0XT\n5AAAIABJREFUiqZNm7JkyRKXMQ4fPpy77rqLG2+8kcjISNauXcvw4cN5+OGH88s3xvDEE09Qp04d\nmjRpwuLFfz3UsHPnzrz66qv57x2vlnXq1AljDC1btiQqKoqlS5ee0/zwl19+oXPnztSsWZNLLrmk\nQIV5+PDhjB07lptuuomoqCg6dOjAzp07i/6gqPIlAi+/DFOnwvbtpSrijjsgNBRefNHDsSmP0Fyl\nVJCpXRtSUrjmjTvY9K2e3VKBqchKliqZ9evXc+rUKW655RaX8zz66KNs3LiRzZs388MPP7Bx40Ye\nffTR/OlpaWkcOXKE3bt3M3v2bKfjvv/+e2677TbmzJlDeno6t99+OzfffDNnzpwhNzeXm266icaN\nG7N792727t1L//79ueCCC3jppZfo0KEDWVlZpNuNwe+//362bdvG5s2b2bZtG3v37uWRRx4B4MMP\nP2T69Ol88skn/P777/znP/8pcvsHDhxIu3btOHToEA8++CALFiwoMD2vgpadnc0///lPPvroIzIz\nM/nqq69o3bq1yxgBlixZwkMPPURWVhZXXnnlOetOS0sjPT2dffv2MX/+fEaPHs3vv//uMta8WNat\nWwfAjz/+SGZmJn369Ckw/ezZs/To0YPu3btz8OBBZsyYwaBBgwqU/eabb5KcnMyRI0do2rRpgWaM\nyk80aQKTJ1u1pVIICYG5cyElBbQlqVJKeV/UhFEkNAlj8+hSPBVeKT+glSwPOnz4MLVr1yYkxPVu\nXbx4MVOmTKFWrVrUqlWLKVOmsGjRovzpoaGhJCcnExYWRpUqVZyOmzNnDnfccQdt27ZFRBgyZAhV\nqlRhw4YNbNy4kf379/Pkk08SHh5O5cqVueKKK1zGM2fOHJ555hlq1KhBtWrVmDhxIkuWLAFg6dKl\nDB8+nAsvvJCqVauSlJTkspw9e/bwzTff8MgjjxAWFsZVV11Fjx49XM4fGhrKjz/+yMmTJ6lXr16x\nHU307NmT9u3bA+TvF0ciQkpKCmFhYVx99dXceOONvPXWW0WW6chVM8j169dz/Phx7r//fipVqkTn\nzp256aab8vcRwK233kqbNm0ICQlh0KBBbNq0ye31qnI0blyZLkU1bw6PPw79+8PJkx6MSyml1LlC\nQqi34hUGtfqx+HkrmMIdLGmHSv4pKCtZRfXsVZKhpGrVqsWhQ4eKvGdo3759NGzYMP99YmIi+/bt\ny39fp04dwsLCCixTeFxqaipPP/00MTExxMTEULNmTf744w/27dvHnj17SExMLLKil+fgwYNkZ2fT\npk2b/LKuv/56Dh8+nB+rY7O5xMREl5WRffv2UbNmTapWrVpgfmciIiJ48803mTVrFrGxsfTo0YNf\nf/21yFiL6z2wZs2ahIeHF1i3434trf3795+z7sTERPbu3Zv/vn79+vmvIyIiOFbKLsOVl4WEWDWl\nMhg50irivvs8FJNSSimXpPl5hL76iq/D8DvuPOxa+V5QVrKK6tmrJENJdejQgSpVqvDee++5nCc+\nPp7U1NT896mpqcTFxeW/d3bPU+FxCQkJPPDAA6Snp5Oenk5GRgbHjh2jX79+JCQksHv3bqcVvcLl\n1K5dm4iICLZs2ZJf1pEjRzh61OqQKzY2lj179hSI1dU9WbGxsWRkZHDixIn8cbt373a5H6699lo+\n/vhj0tLSOP/88xk9erTL7S9qfB5n687br9WqVSM7Ozt/WlpaWpFlOYqLiyuwD/LKjo+Pd7sMFTxE\nYPZsWL4c3nnH19EopZRSyl8FZSXLV6KiokhOTmbMmDG8//77nDhxgrNnz7J69WomTpwIQP/+/Xn0\n0Uc5dOgQhw4dIiUlJf9ZUu4aNWoUL730Ehs3bgTg+PHjrFq1iuPHj3P55ZcTGxvLxIkTyc7O5tSp\nU3z11VcA1KtXjz/++CO/ow0RYdSoUYwbN46DBw8CsHfvXj7++GMA+vbty/z58/n555/Jzs7Ov1fL\nmYYNG9K2bVumTJnCmTNn+OKLL87pUTHvKtiBAwdYvnw52dnZhIWFUb169fwrb4VjdJcxJn/dn3/+\nOStXrqRv374AtG7dmmXLlnHixAm2bdvG3LlzCyxbv359l8/++tvf/kZERARPPvkkZ8+eZe3atXzw\nwQcMGDCgRPGp4FGzplXBuuMO0JahSimllHJGK1keNmHCBKZPn86jjz5K3bp1adiwITNnzszvDOPB\nBx+kbdu2tGzZklatWtG2bdsSd5TQpk0b5syZw9ixY4mJiaF58+b5nUyEhISwYsUKfv/9dxo2bEhC\nQkL+vUldunShRYsW1K9fn7p16wIwdepUmjVrRvv27YmOjua6667jt99+A6B79+6MGzeOLl260Lx5\nc7p27VpkXIsXL2bDhg3UqlWLlJQUhg0bVmB63tWo3Nxcpk+fTnx8PLVr1+azzz5j1qxZLmN0R2xs\nLDVr1iQuLo4hQ4bw8ssvc9555wEwfvx4wsLCqF+/PsOHD2fw4MEFlk1KSmLo0KHExMTw9ttvF5gW\nFhbGihUrWLVqFbVr12bs2LEsWrQov2zt/j3ArV9fqsXatIEXXoBbboEDB0q2rD6sWCmlSufoUdiy\nxddR+J/i8ormFt8Qbz/3qCxExDiLT0S8/rwmpbxBP7t+5NQpuPRSGDUKxo8vVREPPwwffwxr1kBk\npGfCEildc+VAYn8PguYMhatc5fn1BP9noyKQZMFM0X9kafx34R6+GLeUu3dMIDra19EEFj1+lFxZ\nc5VeyVJKVUxVqsDq1fDMM1b/7KWQnAwtW8LNN4PDLYFKKaW8oHPPKO7MeZFXui6hiD7GlPILWslS\nSlVciYnwn//AQw/Bm2+WeHERmDUL4uLgH//wTNfu2pxQKaVcqFGDGp++y8jN9/DS8P/5OhqliqSV\nLKVUxda8OXz4odVk8PXXS7x4aCjMnw/Vq0P37tY9A2VRuGvewoN21auUqsjC2rREXp1Lr9d7sey5\nPcUvoJSPaCVLKaVatoTPPoPLLivV4mFhsHgxXHIJXH01eOARbUoppVyoMeRmzPgJdEy5DvTZlMpP\naSVLKaUAmjWDCy8s9eKhoTBjBgwcCO3awaefejA2pZRSBcQ+9S/qvvOS1YxAFcudHgi1ebpnaSVL\nKaU8RATuvx8WLIBBg6yOMUr4yDellFLu6tTJ1xEEjOKaomvzdM/TSpZSShVlwYISN0f5+9/h22+t\nx3C1aQMbNngpNqWUUkr5pYCsZCUmJiIiOugQcENiYqKvvz6qJM6csdr9XXQRvPJKiS5LxcVZPcRP\nngy9esGQIbBtmxdjVUqpCu7wYZg0dC9HMvSBUMr3fFbJEpHuIvKLiPwmIveXZNldu3ZhjPHLAXwf\ngw7+O+zatcs7XyjlHWFh1pWsN96wung//3x48UW3uxAUgf794ZdfrE4M27eHoUPhf//Th0IGirLk\nKqVU+apWDfqsH8/P9TuzatqPepxVPuWTSpaIhAAvAN2AFsAAEbnAF7Goc61du9bXIVQ4us99w+39\nfsUVsGYNLFxo9UL48sslWk9UlPUorm3b4OKLrfu1Lr0Upk2D334redyqfFT0XBWMx6Vg3CYIzu0q\nzTaFh8Nlvyyh7t39aP9gV1bXHconz/3kVw8uDsb/FQTvdpWFr65kXQ78boxJNcacAd4AevooFlWI\nflHKn+5z3yjxfu/Y0bqidd99zqf//DMcOODyMlV0tLXob7/B009Daipcc43VseHw4TB3Lvz0E5w6\nVbKwlNdU6FwVjMelYNwmCM7tKvU2hYbS9N93UiPtNxKuu5BW/3ct6b1HejS2sgjG/xUE73aVha8q\nWfGA4xPk/rDH+ZRnPiDul+HO+oqbx9V0d8f7w5eirDGUdPny3u/ujitvgbbfSzrNJ/t96lSrSWHt\n2laFbNAg+L//g7S0AusPCYGuXWFmymH++OEw7712jL9deppP/5NLnz6GGjWsYm68EUaPhqQkmD0b\n3n4bYC0bNsDWrbBnj1Wny8iw+uY4dYpzzth6a7+X9TsQIMolV5XXd7G036/SKo/tCrRtAmBn2dbj\nj9tV1s+gN7YptFY0h0d1oHb2Hmo9+/A5042B1x76lfUPrmTT7I1sX7ODA1sPcfSPLDh71u249H/l\nGcF4vAjIji+8RStZvhFoP/aLmu43P/bdEGj7PSAqWQsWWP3kbt0Kjz0G118PdepY93Y5W3+PHoSc\nfx4XXxvLHfdF8frSyvz8SwiZX//KsmVw++1W74S5ubBxI7wx6j80Yh7/vPJrel/yK+0T99Gi/iEa\nJ+ZQrx5ERlrP6woNtZrNRISe5NrOa6gmx6kmx6kux6gux4isnktkpNWMMSoKunVbS3Q0RFfKombI\nEWqGHCEmJIN778qu6JWscuHrH02eiMEbZfrjjyaPlLmrbOvxx+3y6x/ulSohiQ3PmXbqFJzcuJnK\nc16kyoQxVLmhC5UuPp9KDWOt43ehuLKzYUqVqWRKFJkSxVGpwVGpwYedu8Pjj59TfnY2TLn2MdJD\nahUYTiRPgyeecD5/xFPnzJ8RUqvA/HkxuTt/4fJXd77erfnXrFnLvZxb/urO1zud/8yZIuLJyTln\n/sKC8Xghxgd3BYpIeyDJGNPdfj8RMMaYaYXm01sWlVIqCBljxNcxFEdzlVJKVWxlyVW+qmSFAr8C\nXYH9wEZggDHm53IPRimllHJCc5VSSqnSquSLlRpjckRkLPAxVpPFuZq0lFJK+RPNVUoppUrLJ1ey\nlFJKKaWUUipYaccXSimllFJKKeVBAVfJEpFOIvKZiMwSkat9HU9FIiIRIvK1iNzg61gqChG5wP6s\nvyUid/g6nopARHqKyGwRWSIi1/o6nopCRBqLyCsi8pavY/GEYM5VwZYLgvU4G6zHsiA8VkSIyHwR\neVlEBvo6Hk8Jtv9TnpJ8rwKukgUYIAuogvXMElV+7gfe9HUQFYkx5hdjzJ1AP+AKX8dTERhj3jfG\njAbuBPr6Op6Kwhiz0xjjP08MLbtgzlVBlQuC9TgbrMeyIDxW9AKWGmNuB272dTCeEoT/J6Bk3yuf\nVbJEZK6I/CkimwuN7y4iv4jIbyJyf+HljDGfGWNuBCYCj5RXvMGitPtdRP4ObAUOAn7f9bK/Ke1+\nt+fpAXwArCqPWINFWfa57UHgRe9GGXw8sN/9SrDmqmDMBcF6nA3WY1mwHSvylGK7GvDXQ8+Lf6CU\nj+j/6xzFf6+MMT4ZgI5Aa2Czw7gQYBuQCIQBm4AL7GlDgOlArP2+MvCWr+IP1KGU+/0ZYK69/z8C\n3vX1dgTaUNbPuz3uA19vRyANZdjnccBUoIuvtyEQBw8c25f6ehs8vD1+mauCMRcE63E2WI9lwXas\nKMN2DQJusF8v9nX8ntouh3n88v9Ulu1y93vlky7cAYwxX4hIYqHRlwO/G2NSAUTkDaAn8IsxZhGw\nSERuFZFuQA3ghXINOgiUdr/nzSgiQ4FD5RVvsCjD572TWA9ArQKsLNegA1wZ9vndWM9FihKRZsaY\n2eUaeIArw36PEZFZQGsRud8UeuCvrwRrrgrGXBCsx9lgPZYF27EiT0m3C3gXeEFEbgRWlGuwJVDS\n7RKRGOAx/PT/lKcU2+X298pnlSwX4vnrkilY7dgvd5zBGPMu1gdSeU6x+z2PMWZhuURUMbjzeV8H\nrCvPoIKcO/v8eeD58gyqAnBnv6djtXEPBMGaq4IxFwTrcTZYj2XBdqzI43K7jDHZwAhfBOUBRW1X\nIP6f8hS1XW5/rwKx4wullFJKKaWU8lv+VsnaCzR0eN/AHqe8S/e7b+h+L3+6z30j2PZ7sG1PnmDc\nrmDcJtDtCjS6XYHFI9vl60qWULB3oq+BZiKSKCKVgf7Acp9EFtx0v/uG7vfyp/vcN4Jtvwfb9uQJ\nxu0Kxm0C3a5Ao9sVWLyyXb7swn0x8BXQXER2i8hwY0wOcDfwMbAFeMMY87OvYgxGut99Q/d7+dN9\n7hvBtt+DbXvyBON2BeM2gW6Xbpd/0O0q+XaJ3RWhUkoppZRSSikP8HVzQaWUUkoppZQKKlrJUkop\npZRSSikP0kqWUkoppZRSSnmQVrKUUkoppZRSyoO0kqWUUkoppZRSHqSVLKWUUkoppZTyIK1kKaWU\nUkoppZQHaSVL+Q0RuUVEckWkua9jcUVEJvk6Bk8RkdtFZHAJ5k8UkR9LuI5PRKR6EdOXiEjTkpSp\nlFL+IBhzloj8V0Qu8+Y6Slh2DxG5r4TLZJVw/qUi0qiI6U+JSOeSlKkUaCVL+Zf+wOfAAG+vSERC\nS7noZI8G4iMiEmqMedkY81oJF3X76eUicgOwyRhzrIjZZgH3lzAGpZTyB5qzvLgOO0+tMMY8WcJF\nS5KnLgJCjDG7ipjteWBiCWNQSitZyj+ISDXgSuA2HBKWiHQSkXUi8oGI/CIiMx2mZYnIdBH5SUTW\niEgte/xIEdkoIt/bZ6jC7fHzRGSWiGwApolIhIjMFZENIvKtiPSw5xsmIu+IyGoR+VVEptrjnwCq\nish3IrLIyTYMEJHN9jDVjTib2Ov42t7G5g5xPiciX4rINhHp5WRdiSLys4i8JiJbReQth+28TETW\n2uWuFpF69vj/isgzIrIRuEdEpojIBHtaaxFZLyKb7G2vYY9vY4/7HhjjsP6LROR/9r7Y5OJq1CDg\nfXv+CPt/+L29f/rY83wO/F1E9FiklAoYgZ6zRCTELn+ziPwgIv90mNzXPr7/IiJXOqzjeYflV4jI\n1W7kxdLkv1kist7e5vz12nnvEzvnrBGRBvb4RiLylb0dKQ7rrm+X/Z29nVc6+Vc65imn+8QYsxuI\nEZG6Lj8QSjljjNFBB58PwEBgjv36C+BS+3UnIBtIBAT4GOhlT8sF+tuvHwKet1/XdCg3BRhjv54H\nLHeY9hgw0H5dA/gVqAoMA7YB1YEqwC4g3p4v00X8sUAqEIN18uIT4GYXcc6wX/8HaGq/vhz4xCHO\nN+3XFwK/O1lfol1ue/v9XGACUAn4Eqhlj+8LzLVf/xd4waGMKcAE+/UPQEf7dTIw3WH8lfbrJ4HN\n9usZwAD7dSWgipMYdwHV7Ne9gJcdpkU6vP4o7/+tgw466BAIQxDkrMuAjx3eR9l//ws8Zb++Hlhj\nvx6Wl7vs9yuAq4tah4ttdif/OW7zMIdllgOD7dfDgXft1+8Dg+zXd+XFg5UTJ9mvJS8fFYpvLdCi\nqH1iv54N3Orrz50OgTXo2WPlLwYAb9iv38RKYHk2GmNSjTEGWAJ0tMfnAm/Zr1/DOqsI0FJEPhOR\nzXY5LRzKWurw+jpgon2VZi1QGWhoT/vEGHPMGHMK2IqVMIvSDvivMSbdGJMLvA5c7SLOjvZZ0CuA\npfb6XwbqOZT3HoAx5mfA1dmz3caYDY7lAucDFwNr7HIfAOIclnmzcCEiEgXUMMZ8YY9aAFxtX82q\nYYz50h7veJZyPfCAiPwf0MjeT4XVNMYct1//CFwrIk+ISEdjjGOb+YOFYlRKKX8X6DlrB9BYrFYT\n3QDHY/Iy+++3bpRTnBxKnv+W4lwHrP0JVj7K239X8tf/wjFPfQ0MF5GHgZYO+chRLFYOgqL3yQE0\nT6kSquTrAJQSkZpAF+BiETFAKFab6v+zZyncvtpVe+u88fOwriL9JCLDsM4s5il8kO1tjPm9UDzt\nAcdKQw5/fVekqE0pYlrhOEOADGOMqxuMHddfknIF+MkY46xZBJy7/cWtw+l4Y8wSuwnLTcAqERlt\njFlbaLazDvP/LtbN1DcAj4rIJ8aYvGYd4cAJF+tXSim/Egw5yxhzRERaAd2AO4A+wEh7cl5ZjuWc\npeAtJuGOIThbhwvu5D9Xeaqoe63ypuXHYoz5XESuBm4E5ovI0+bc+5Czsbel0D65HaslyG32fJqn\nVInplSzlD/oAC40xjY0xTYwxicBOEck7+3e53RY7BOiHdR8PWJ/ff9ivBzmMrw6kiUiYPd6Vj4B7\n8t6ISGs3Yj0tzm9A3oh19SfGnj4A60yjszi/sK/k7BSRvPGISEsX63SVwBqKyN/s1wOxtv9XoI6d\ndBGRSmLd2OuSMSYTSHdorz4EWGeMOQpkiMgV9vj8nghFpLExZqcx5nmsphrOYv9VRJrY88cCJ4wx\ni4GngEsd5msO/FRUjEop5UcCPmfZ90aFGmPeBR7EairnTF7+2QW0FksCVhO/ItdhC6Vs+c/RV/x1\n/9tg/tp/XziMz99/ItIQOGCMmQu8gvNt/BloZs/vuE8eQvOUKiOtZCl/0A94t9C4d/jroPkN8AKw\nBdhujHnPHn8cK5n9CFyD1ZYdrIPjRqwD8M8OZRY+C/YoEGbf5PoT8IiL+ByXmw38WPgGX2NMGlbv\nQ2uB74FvjDEfuIgzbz2DgNvsm3h/Am52Eaers3e/AmNEZCsQDbxkjDmDldCmicgmO5YOxZQD8P+A\nf9vLtHKIcQQwU0S+K7R8X/tG5u+xmrYsdFLmSiCv29tLgI32/A9j7XvsG4mzjTEHiohNKaX8ScDn\nLCAeWGsfkxfxV+95TvOP3Wx8l71Nz2I1JSxuHVD2/OfoHqzmf5vs5fM66xiHlQt/wGr+l+ca4Ac7\nf/UFnnNS5ir+ylNO94mIVAKaYv1flXKbWE2GlfJPItIJ+Jcx5mYn07KMMZE+CKtEvBGniCQCHxhj\nLvFkuZ4kIvWBBcaYbkXMMw44aoyZV36RKaWUdwRDzvIkf99msXpy/BSrgyenP4hF5Basjk2mlGtw\nKuDplSwVyALlDIG34vTr7bev7s2RIh5GDGRgdbShlFLBzq+P2V7i19tsjDmJ1dNufBGzhQJPl09E\nKpjolSyllFJKKaWU8iC9kqWUUkoppZRSHqSVLKWUUkoppZTyIK1kKaWUUkoppZQHaSVLKaWUUkop\npTxIK1lKKaWUUkop5UFayVJKKaWUUkopD9JKllJKKaWUUkp5kFaylFJKKaWUUsqDtJKllFJKKaWU\nUh6klSyliiAiWSLSyNdxKKWUUkXRfKWUf9FKlgoKIpIrIk3KWMZ/RWSE4zhjTKQxZleZgvMgEUkU\nkU9F5LiIbBWRrsXMP01EDonIQRGZWmjapyJyQESOiMj3InJzoekDRWSXnbiXiUi0w7TKIvKqiBwV\nkX0iMr7Qsq1F5Bs7zq9FpFWh6eNFZL+97ldEJKz0e6VAuZ3sz8I7hca3tMd/6on1KKVUaWm+cjm/\n5is0XwUTrWSpYGGKmigioeUViJctAb4FYoAHgbdFpJazGUXkduBm4BKgJdBDREY7zPJPIN4YEw3c\nDrwmIvXsZVsALwGDgHrACWCWw7LJQFMgAegC3Cci19nLhgHvAQuBaPvv+yJSyZ7eDbgP6Awk2uUk\nl36XnOMg0EFEajqMGwb86sF1KKVUaWm+KkTzlearoGSM0UEHpwPQAHgHOIB1IJhhjxesA+YuIA2Y\nD0TZ0xKBXGAokGovO9mhzBBgMrANOAp8jXXgBLgA+Bg4DPwM9HFYbh7wAvABkAmsBxrb09bZ6zxm\nT+sDdAL2YB0c9wMLsA6gK+yYDtuv4+wyHgXOAtl2GXnbmgs0sV9HYR2ADwA7gQcc4hsGfA48BaQD\n24HuHv5/nIeVPKo5jFsHjHYx/5fASIf3w4GvXMx7ub3tbe33jwGvOUxvApzKWzewF+jqMD0ZWGy/\nvg7YU6j8VOA6+/XrwKMO0zoD+4vY7lzgTuA3+zPziB3Pl8AR4A2gkj1v3v99JnCXw2fuD6zP7Ke+\n/l7poIMOnh/QfJV3rNR8pflKBz8Z9EqWckpEQrASxE6gIRCPdXAA6+A3FOsA0QSIxEoojq7EOsj+\nHXhYRM63x/8L6Id1QK8BjACyRSQCK2G9BtQG+gMzReQChzL7AVOwks92rAMrxphO9vRLjDFRxpil\n9vv69rwNgdFYB69Xsc5mNcQ6SL9ol/EgVtIZa5dxj12G4xnHF+xtbQRcAwwVkeEO0y/HSra1sJLX\nXFwQkRUikiEi6U7+LnexWAtghzHmuMO4H+zxrub/oah57ThOABuAtcaYb5wta4zZgZW0mtvNMGKB\nzS7KvqjQtMLTncVVt9CZvMKuAy4F2mP9EHkZGIj1v7wEGOAwr8H6cTHUft8N+BHrx4tSKshovtJ8\nheYr5Ye0kqVcuRzrwHSfMeakMea0MeYre9pAYLoxJtUYkw1MAvrbiQ6sg0aSvcxmrINSXhvn27DO\nqG0DMMb8aIzJAG4CdhpjFhrLD1hnJfs4xPSuMeZbY0wu1tml1oVilkLvc4ApxpgzxphTxph0Y8y7\n9uvjwBPA1cXsB4H8JN4PmGiMyTbGpAJPA0Mc5k01xrxqjDFYZyLri0hdZ4UaY3oYY2oaY2Kc/L3Z\n2TJAdawzY44ysRKpO/Nn2uMKxGGPux7rR4M766qO9T8uXHZeHMXF6SwuKWI7AKYZY44bY34GfgI+\ntj9/WcBqrITmuF0bgJoi0hwreS0somylVGDTfOVQpuarAuvSfKV8RitZypUErINwrpNpcViX0/Ok\nApWw2kLn+dPhdTZ/HSwTgB1OykwE2ttnxtJFJAMrOTqWmeaiTFcOGmPO5L0Rkaoi8rJ9c+wRrKYL\n0SJSONk5UxtrG3c7jEvFOmN6TnzGmBNYB+LiYiyJY1hNQBzVALLcnL+GPa4AY0yOMeYjoJuI3OTG\nuvLKKFx2XhzFxeksLlPEdoDV5CXPCQp+vk7gfD8vAsZincV9t4iylVKBTfNVQZqvNF8pP6CVLOXK\nHqChw9k+R/uwkkyeROAMBQ8kRZXb1MX4tfaZsbyzZFHGmLElDdxB4ZuL/4XVJKSdsW6ezTsrKC7m\nd3QIaxsLb/fe0gQmIqvsXpAynQwrXSy2BWgiItUcxrWyx7ua37GXpNZFzAtWUs773xRYVkSaAmHA\nb8aYI1hNGRzLdoxjC9aNy45aYp3RcxXXn/YZYk96DbgLWGmMOenhspVS/kPzVUGarzRfKT+glSzl\nykasA9NUEYkQkSoicoU9bQkwXkQaiUh1rLbmbzicRSzqTNsrQIqINAMQkUvsts0fYLWF+0IVAAAg\nAElEQVSfHiwilUQkTETaOrSNL04aVnv7okRinUXKFJEYIKnQ9D9dlWFv21vAYyJSXUQSgfFYZ59K\nzBhzg7G6241yMtzoYpnfgU3AFPv/0Qu4GKuZijMLgQkiEici8cAErBuyEZHzRaS7iITb+3swcBXW\n2VKwmrf0EJEr7ST5CPCO+at9/SLgQRGJFpELgVF5ZQNrgRwRuVusrnPvwboZ+L8Ocd0mIhfa//sH\nHZb1GGN1ZXy1Xb5SKnhpvnKg+UrzlfIPWslSTtkH6R5YZ9J2Y52562tPfhXroPUZ1g292cA9josX\nLs7h9XSsg//HInIUK4lVNcYcw7pZtD/Wmcd9wFSgipshJwEL7aYb/3Axz7NABNZZvq+AVYWmPwf0\nEZHDIvKsk9jvwdrWHVjb/poxpqiDbZHd9JZSf6AdkIH1Y6G3MeYwgIh0FJHM/JUb8zJWj1Q/Yt1n\nsNwYM8eeLFj77E+spg13A32NMZvsZbcCdwCLsX4QVAXGOMQxBWs/pAKfAlONMWvsZc8At2D1YJWB\n1ca8pzHmrD39I+BJrCS2E+szlFTENhf1eSqSMeYrY0xa8XMqpQKV5ivNV2i+Un5IrHsevVS4SAOs\nswD1sM4MzDbGPC8iU7DOJOS1W51sjPnQa4EopZRSLohIFawfopWxmiG9bYxJts9cv4nV1GoX1g+7\nwjfJK6WUUufwdiWrPlDfGLPJvkz/LdATq9ebLGPMdK+tXCmllHKTiEQYY7LFehDsl1hXAnoDh40x\nT4rI/UBNY8xEnwaqlFIqIHi1uaAxJs3hcu4xrGcy5PVu404POUoppZTXGat7b7CafFXCaubTE6t7\na+y/t/ggNKWUUgGo3O7JEpFGWL2y/M8eNVZENonIKyJSo7ziUEoppQoTkRAR+R7rno41xpivgXrG\nmD/BOmkIOH2OkFJKKVVYuVSy7KaCbwP/tK9ozQSaGGNaYyU0bTaolFLKZ4wxucaYS4EGwOUi0oIy\n3MSulFKqYqvk7RWISCWsCtYiY8z7AMaYgw6zzMHqUcbZsprQlFIqCBlj/LLJuDEmU0TWAt2BP0Wk\nnjHmT/se4wPOltFcpZRSwaksuao8rmS9Cmw1xjyXN8JOVnl68ddD385hjCm3YcqUKeVahjvzFjeP\nq+nujnc2nyf2Q3nu95IuX9773Z1x5b3PA3G/l3SaP+738j7GeHO/l+U74G9EpHZes3URqQpci3UP\n8XLg/9mzDQPed1VGeX4eSvs/9eTxXmP37HdCY/d+7HQq/W9KX8de3vs8kGMvS87zdK7y6pUsEbkS\nGAT8aLd1N8BkYKCItMbq1n0XcLs343DXNddcU65luDNvcfO4mu7ueE9sc1mVNYaSLl/e+93dceUt\n0PZ7Saf5434v72OMu/OXZr+X9TvgZ2KBBSISgnXy8U1jzCoR2QC8JSIjsJ6x07eoQkqqtPultP9T\nT/4fNHb3p2vsZStLYy+9spQTqLGXJed5PFeVtoZbHoMVnipvU6ZM8XUIFY7uc9/Q/e4b9rHd5znG\nU0Mg56pA/g5o7L4RqLHTSb+nvhDIsZc1V5Vb74IqcATAWeego/vcN3S/q4oukL8DGrtvBGzsjXwd\nQOkF7D4nsGMvK68+jLisRMT4c3xKKaVKTkQwftrxRWlorlLK/0myYKbo91S5r6y5SitZSimlypVW\nspQKPo0aNSI1NdXXYShVYomJiezateuc8VrJUkopFVC0kqVU8LG/174OQ6kSc/XZLWuu0nuylFJK\nKaWUUsqDtJKllFJK+amYGBCxhpgYX0ejlFLKXV59TpZSSimlSi8jA/JasUjQNLBUSqngp1eylFJK\nKaVUhZSamkpISAi5ubllLqtx48Z8+umnbs27YMECrrrqqvz3kZGRTjtfKI0nnniC0aNHA57dPoA9\ne/YQFRWl99+5QStZSimllFIqaBVX+REfXSZ2XG9WVhaNGjUqcv5169aRkJBQbLmTJk1i9uzZTtdT\nUoX3XUJCApmZmT7bZ4FEK1lKKaWUUkr5OWNMsZWbnJyccopGFUcrWUoppZRSqkLIzc3l3nvvpU6d\nOjRr1oyVK1cWmJ6ZmcnIkSOJi4sjISGBhx56KL9p3I4dO+jatSu1a9embt26DB48mMzMTLfWm56e\nzs0330yNGjVo374927dvLzA9JCSEHTt2ALBq1SpatGhBVFQUCQkJTJ8+nezsbG644Qb27dtHZGQk\nUVFRpKWlkZycTJ8+fRgyZAjR0dEsWLCA5ORkhgwZkl+2MYa5c+cSHx9PfHw8Tz/9dP604cOH8/DD\nD+e/d7xaNnToUHbv3k2PHj2Iiori3//+9znND/fv30/Pnj2pVasWzZs355VXXskvKzk5mX79+jFs\n2DCioqK45JJL+O6779zaX8FAK1lKKaWUUqpCmD17NqtWreKHH37gm2++4e233y4wfdiwYVSuXJkd\nO3bw/fffs2bNmvyKgzGGyZMnk5aWxs8//8wff/xBUlKSW+u96667iIiI4M8//2Tu3Lm8+uqrBaY7\nXqEaOXIkc+bMITMzk59++okuXboQERHB6tWriYuLIysri8zMTOrXrw/A8uXL6du3L0eOHGHgwIHn\nlAewdu1atm/fzkcffcS0adPcaj65cOFCGjZsyAcffEBmZib33nvvOWX369ePhg0bkpaWxtKlS5k8\neTJr167Nn75ixQoGDhzI0aNH6dGjB2PGjHFrfwUDrWQppZRSSqkKYenSpYwbN464uDiio6OZNGlS\n/rQ///yT1atX88wzzxAeHk7t2rUZN24cS5YsAaBp06Z07dqVSpUqUatWLcaPH8+6deuKXWdubi7L\nli0jJSWF8PBwWrRowbBhwwrM49iRROXKldmyZQtZWVnUqFGD1q1bF1l+hw4d6NGjBwDh4eFO50lK\nSiI8PJyLL76Y4cOH52+TO1x1crFnzx7Wr1/PtGnTCAsLo1WrVowcOZKFCxfmz9OxY0e6deuGiDBk\nyBA2b97s9noDnVaylFJKKaWUdyUl/fXQN8fB1ZUgZ/O7edWoKPv27SvQeURiYmL+6927d3PmzBli\nY2OJiYmhZs2a3HHHHRw6dAiAAwcOMGDAABo0aEB0dDSDBw/On1aUgwcPkpOTQ4MGDZyut7B33nmH\nlStXkpiYSOfOndmwYUOR5RfXGYaInLPuffv2FRt3cfbv309MTAwREREFyt67d2/++7yrbQARERGc\nPHnSYz0d+jutZCmllFJKKe9KSrIe+lZ4KKqS5e68JRAbG8uePXvy36empua/TkhIIDw8nMOHD5Oe\nnk5GRgZHjhzJv/oyefJkQkJC2LJlC0eOHOG1115zqyvzOnXqUKlSpQLr3b17t8v527Rpw3vvvcfB\ngwfp2bMnffv2BVz3EuhOT3+F1x0XFwdAtWrVyM7Ozp+2f/9+t8uOi4sjPT2d48ePFyg7Pj6+2Hgq\nAq1kKaWUUkqpCqFv377MmDGDvXv3kpGRwbRp0/Kn1a9fn+uuu47x48eTlZWFMYYdO3bw2WefAVY3\n69WrVycyMpK9e/fy1FNPubXOkJAQevXqRVJSEidOnGDr1q0sWLDA6bxnzpxh8eLFZGZmEhoaSmRk\nJKGhoQDUq1ePw4cPu93ZRh5jDCkpKZw4cYItW7Ywb948+vfvD0Dr1q1ZtWoVGRkZpKWl8dxzzxVY\ntn79+vkdcjiWB9CgQQOuuOIKJk2axKlTp9i8eTNz584t0OmGs1gqCq1kKaWUUkqpoOV4NWbUqFF0\n69aNVq1a0bZtW3r37l1g3oULF3L69GkuuugiYmJi6NOnD2lpaQBMmTKFb7/9lujoaHr06HHOskVd\n9Xn++efJysoiNjaWESNGMGLECJfLLlq0iMaNGxMdHc3s2bN5/fXXATj//PMZMGAATZo0ISYmJj8u\nd7a/U6dONGvWjGuvvZb77ruPrl27AjBkyBBatmxJo0aN6N69e37lK8/EiRNJSUkhJiaG6dOnnxPr\nkiVL2LlzJ3FxcfTu3ZuUlBQ6d+5cZCwVhfhzjVJEjD/Hp5RSquRE5P+zd+dxNlf/A8df77GGGWbs\n64SixZYoigwKhWiTNVEUqWij7Wt8VaJSUlokS6WFFvvOaPXzTUKiFNlHNBiMfc7vj3NnGmOWu33m\n3rn3/Xw87mPmLp/zebtm5tz355zzPhhjQqandbKvErGzpDJ/r1Swcf1eBzoMpTyW3c+ur32VjmQp\npZRSSimllB/lmmSJSEcR0WRMKaVU0NK+SimlVDBxp0O6E9giImNE5BKnA1JKKaW8oH2VUkqpoOHW\nmiwRiQK6AX0AA0wGPjbGHHE0OF2TpZRSIcepNVmh2FfpmiyVX+iaLJVfBXRNljEmGZgJfAJUBG4B\nfhKRB709sVJKKeVP2lcppZQKFu6syeokIl8CCUAh4CpjzI1AfeBRZ8NTSimlcqd9lVJKqWBS0I3X\n3Aq8aoz5OuODxpgUEbnHmbCUUkopj2hfpZRSKmi4M10wMXOnJSKjAYwxyxyJSimllPKM9lVKKaWC\nhjtJ1g1ZPHajvwNRSimlfOB1XyUiVURkuYhsFJENaWu4RGS4iOwSkZ9ct3Z+jVgppfwgIiKCrVu3\nuvXaESNG0KtXLwB27txJVFSU3wqWDBgwgOeffx6AlStXUrVqVb+0C/Dtt99y6aWX+q29vJBtkiUi\nA0RkA3CJiKzPcNsGrM+7EJVSSqms+amvOgM8Yoy5HGgKDMpQBn6sMaah67bQgX+CUioPTJ8+ncaN\nGxMZGUnlypVp37493333XaDDYurUqTRv3tynNkQ8K4CX9vqqVauSnJyc6/HuxvjWW2/x9NNPex1X\nRpkTx2bNmrFp0yav2wuEnNZkTQcWAKOAYRkeP2KMSXI0KqWUUso9PvdVxphEINH1/VER2QRUdj3t\n91LzSqm8NXbsWMaMGcM777xDmzZtKFy4MIsWLWLOnDlce+21HrV19uxZChQokOtj7jLG+JSMpLXh\nJHdiTE1NJSLCf/vB+/qeBIOc3g1jjPkLeAA4kuGGiMQ4H5pSYSo1FXbvhu++g++/D3Q0SgU7v/ZV\nInIh0AD4P9dDg0TkZxF5T0RK+iNgb0VH272y0m4x2hMrlavk5GSGDx/OhAkT6NSpExdccAEFChTg\npptu4sUXXwTg1KlTDB48mMqVK1OlShWGDBnC6dOngX+nvY0ZM4aKFSvSt2/fLB8DmDt3LldccQXR\n0dE0a9aMDRs2pMexa9cubrvtNsqVK0fZsmV56KGH2Lx5MwMGDOCHH34gMjKSGNcv9alTp3jssceI\njY2lYsWKDBw4kJMnT6a39dJLL1GpUiWqVKnC5MmTc0xI/vrrL+Li4ihZsiRt27blwIED6c9t376d\niIgIUlNTAZgyZQo1a9YkKiqKmjVr8vHHH2cbY58+fRg4cCDt27cnMjKShIQE+vTpw3/+85/09o0x\njBo1irJly1KjRg2mT5+e/lzLli15//330+9nHC1r0aIFxhjq1atHVFQUM2bMOG/64ebNm2nZsiXR\n0dHUrVuXOXPmpD/Xp08fBg0aRIcOHYiKiqJp06Zs27Yt5x8UB+SUZKW9E2uAH11f12S4r5Tyl7//\nhiefhBYtIDISrrwSHn0UZszI+vWbN8OYMfDXX3kaplJByG99lYiUwO6z9bAx5igwAahhjGmAHeka\n66+gvZGUZDcjTrsdPBjIaJTKH3744QdOnjxJ586ds33Nc889x+rVq1m/fj3r1q1j9erVPPfcc+nP\nJyYmcujQIXbs2MG7776b5WNr167lnnvuYeLEiSQlJXHfffdx8803c/r0aVJTU+nQoQPVq1dnx44d\n7N69m65du3LJJZfw9ttv07RpU44cOUJSkh18Hzp0KH/88Qfr16/njz/+YPfu3fz3v/8FYOHChYwd\nO5Zly5axZcsWli5dmuO/v3v37jRu3JgDBw7wzDPPMHXq1HOeT0vQUlJSePjhh1m0aBHJycl8//33\nNGjQINsYAT7++GOeffZZjhw5kuWIYGJiIklJSezZs4cpU6bQv39/tmzZkm2sabGsXLkSgA0bNpCc\nnMwdd9xxzvNnzpyhY8eOtGvXjv379/P666/To0ePc9r+9NNPGTFiBIcOHaJmzZrnTGPMK9lOFzTG\ndHB9rZ534SgVpi64AAoVgqefhquvhpK5XDAvXBj+/BMaN4ZatWxC1rkz+HGoXqn8wF99lYgUxCZY\nHxhjZrna3J/hJROBOVkdCxAfH5/+fVxcHHFxcb6Eo5Tyk3/++YcyZcrkOJVt+vTpvPnmm5QuXRqA\n4cOHc//99zNixAgAChQowIgRIyhUqFD6MZkfmzhxIvfffz+NGjUCoFevXjz//POsWrWKQoUKsXfv\nXsaMGZMexzXXXJNtPBMnTmTDhg2UdH0WGDZsGD169OD5559nxowZ9OnTJ70IRHx8PJ988kmW7ezc\nuZMff/yRZcuWUahQIZo3b07Hjh2zPW+BAgXYsGEDVapUoXz58pQvXz7b1wJ06tSJJk2aAFCkSJHz\nnhcRRo4cSaFChbjuuuto3749n332mdsJT3bTIH/44QeOHTvG0KFDATsq1qFDBz7++OP0kbRbbrmF\nK6+8EoAePXrw6KO5b5eYkJBAQkKCW7G5I9d9skTkWuBnY8wxEekJNAReM8bs8FsUSoWLtEvQmf/Y\nR0aC6yqVW2rUgHfegTffhFmzYNQom6B9+CGm4ZVs2QKbNsEff9hBsmPH4MwZm7vFxEDt2lC/Plx4\noZ12pFR+54e+6n3gV2PMuAxtVnCt1wK7D9cv2R2cMclSSp3PX32Np8uPSpcuzYEDB3JcM7Rnzx6q\nVauWfj82NpY9e/ak3y9btuw5CVZWj23fvp1p06Yxfvx4V5yG06dPs2fPHiIiIoiNjXVrzdL+/ftJ\nSUlJTxDArndKSzj27NmTnsilxZpdMrJnzx6io6O54IILznn9rl27znttsWLF+PTTT3nppZfo27cv\nzZo14+WXX6Z27drZxppb9cDo6GiKFi16zrkzvq/e2rt373nnjo2NZffu3en3K1SokP59sWLFOHr0\naK7tZr5AlpZke8udy95vASkiUh94FPgT+MCdxrMoi/uQ6/FoEVksIr+JyKJAz3NXynHGwKJFcNVV\n8Pnn/mu3YEG47Tb2z1vNe20+45ZnL6dcObjhBpuD7dgBpUr9m1RFR8P+/fDee3DddVC5Mtx3nw3N\nNSVbqfzKl77qWqAH0EpE1mYo1z7GVanwZ6AFMMSh2JUKeRmnuvpy81TTpk0pUqQIX331VbavqVy5\nMtu3b0+/v337dipVqpR+P6s1T5kfq1q1Kk8//TRJSUkkJSVx8OBBjh49yp133knVqlXZsWNH+tqn\nnNopU6YMxYoVY+PGjeltHTp0iMOHDwNQsWJFdu7ceU6s2a3JqlixIgcPHuT48ePpj+3Ykf11pxtu\nuIHFixeTmJhI7dq16d+/f7b//pweT5PVudPe1+LFi5OSkpL+XGJi4nnHZ6dSpUrnvAdpbVeuXDmb\nIwLDnSTrjLEpcifgDWPMm0Ckm+1nLov7gKss7jBgqTGmNrAceNLz0JXKJzZvtlnP4MHwxBNw221+\nafbMGfjqK2jXDi66WFi8ty639yjK2rWwfTvMnw/jxtmlXg8+CAMGwLBh8PLLMHcu7NwJK1fa2YZP\nPQWXXAJvvAEZ/h4qlZ943VcZY74zxhQwxjQwxlyRVq7dGHOXMaae6/HOxph9jv4LlFJ+FxUVxYgR\nI3jggQeYNWsWx48f58yZMyxYsIBhw2xB0q5du/Lcc89x4MABDhw4wMiRI9P3knJXv379ePvtt1m9\nejUAx44dY/78+Rw7doyrrrqKihUrMmzYMFJSUjh58iTfuwpblS9fnl27dqUX2hAR+vXrx+DBg9m/\n385Y3r17N4sXLwagS5cuTJkyhU2bNpGSkpK+Visr1apVo1GjRgwfPpzTp0/z7bffnlMgAv6dkvf3\n338ze/ZsUlJSKFSoECVKlEgfecsco7uMMenn/uabb5g3bx5dunQBoEGDBnzxxRccP36cP/74g0mT\nJp1zbIUKFbLd++vqq6+mWLFijBkzhjNnzpCQkMDcuXPp1q2bR/E5zZ0k64iIPAn0BOaJSARQKJdj\nAFsW1xjzs+v7o8AmoAq2E0xbeTcVyH41olL51cmTNntp3hw6doQNG+COO3xeN3X0qK15Ub26/dqz\nJyQmwmefQY8eUKWK+21dfLFdzvXjjzB5MixdCpdeauttOFwRVil/87qvUkqFtkceeYSxY8fy3HPP\nUa5cOapVq8aECRPSi2E888wzNGrUiHr16lG/fn0aNWrkcaGEK6+8kokTJzJo0CBiYmKoVatWepGJ\niIgI5syZw5YtW6hWrRpVq1bls88+A6BVq1ZcfvnlVKhQgXLlygHw4osvctFFF9GkSRNKlSpFmzZt\n+P333wFo164dgwcPplWrVtSqVYvWrVvnGNf06dNZtWoVpUuXZuTIkfTu3fuc59NGo1JTUxk7diyV\nK1emTJkyfP3117z11lvZxuiOihUrEh0dTaVKlejVqxfvvPMOF198MQBDhgyhUKFCVKhQgT59+tCz\nZ89zjo2Pj+euu+4iJiaGmTNnnvNcoUKFmDNnDvPnz6dMmTIMGjSIDz74IL3tYCn/LrnV1heRCkB3\n4H/GmG9EpBoQZ4yZ5tGJbFncBKAOsNMYE53huSRjzHnFaEXEOF37XynHnD0Lw4fDAw9AxYo+N3fs\nGEyYAK+8AnFxMHQoXHFFLgedOGGHrh5/HLJYlJqVhAQ76FauHEyd6pfQlTqHiGCM8Wsv6K++ystz\nO9ZXiWR/wSOn55TKa67f60CHoZTHsvvZ9bWvyjXJ8gdXWdwEYKQxZlbmpEpE/jHGlM7iOE2yVNgz\nBqZPt1P9mjSxeVudOm4efOIE9OoFBw7YAhlRUW4dduYMPP88vPWWXb/VoYP38SuVmRNJViBpkqWU\nJlkq/3IqyXKnuuCtwGigHCCumzHGuPVpLauyuMA+ESlvjNnnuvr4d3bHa1lcFc7WrYOBA+3Mw08+\nAQ83poeiRe2BAwfaKYsLFkCxYrkeVrCgTeZat4bu3WHjRrucLEhG4FU+4++yuFnxta9SSiml/Mmd\n6YJ/AB2NMZu8OoHINOCAMeaRDI+NBpKMMaNFZCgQbYwZlsWxOpKl8oclS2z5Pg/mKufk5Ek7kvT2\n2/brPff4uJQrNRXuvtvWc581y+2pgwC7d0P79nYU7Y03bAKmlC8cmi7oU1/l47l1JEuFPR3JUvmV\nUyNZ7nxs2+dDgpVdWdzRwA0i8hvQGnjRm/aVCrjUVBg50iYwmcqJemv1arjySjuK9fPP0K+fH/YY\njoiA99+H4sXh1Vc9OrRyZfj6a9i61c48PHvWx1iUcobXfVXIWrcOPvrIjmb/+KP+8iqlVB5yZyRr\nHFAB+Ao4mfa4MeYLZ0PTkSwV5I4ds6X99u+35fh8rBBx9iy8+CK8/jq89hp07erA9LyTJ6FAAa+G\no06cgJtvhgoVbCXCAgX8HJsKGw6NZIVkX+XTSNa4caR8+xMHTxQl6o+1RCZth3vvtSVFY86rNaWU\nT3QkS+VXASt8ISKTs3jYGGP6entSd2mSpYLW3r12jVPdunbX38KFfW6uVy84dcoWufCkDHteSkmx\nUwdr17ZFMXSNlvKGQ0lWSPZV3iRZe/bYP0uffw5//mk3JD98GMrFnObmmG95cNzFXNwySP/IqHxL\nkyyVX+Xr6oLe0iRLBa0xY2xG9PTTPmcaCxdCnz5w333wzDPBv+bpyBG79VevXvaCuFKe0uqCnrTt\nRpL1zz8QHc3J0xGMGgXjx0O3bvZ3tGFDKFTIvm7TJvj4Y5uA9ewJzz3nVh0cpdyiSZbKrwI5klUL\neAsob4ypIyL1gJuNMc95e1K3g9MkS4Ww1FT7Iefdd+HDD+3eV/nFzp22EMaECdCpU6CjUfmNQyNZ\nIdlX5ZpkbfkD2rTh9+Ef0XVcU6pVg3HjIDY2+zYPHICHHrJVQ7/6ym5srpSvLrzwQrZv3x7oMJTy\nWGxsLH/99dd5j+dFkrUSeBx4xxhzheuxX4wx7u7U4zVNslSoOnoUeve203q++CKAG/7+/bcN4P77\nPT70f/+Dm26yRTEuvdSB2FTIcijJCsm+KqckK1a2s71KM77p+ia3Tb2Z+HgYMMC9wXVjbDI2diws\nXw4XXeTXsJUKOjJCMMP1M6VyX15UFyxmjFmd6bEz3p5QqXC3dSs0bQrR0ZCQEMAEC+xastGjYd48\njw9t3BheeAG6dLFrtZQKsPDqq5KSWEg7Ftw0ntum3sxHH9nt8NydvSwCgwfbKcqtGh1mx7QER8NV\nSqlw406SdUBEagIGQERuB/Y6GpVSweTtt2HHDr80tWyZTbDuuw8mTvRouypnlCplS7vff79dGe+h\ne++FevXshzWlAix8+qpTp6BTJ95gEHd90ZlZs+CGG7xrqn9/eKj7P3S+J4aUzf75O6eUUsq9JOsB\n4B3gEhHZDQwGBjgalVLBwBh7mfe11/xSRm/SJOjRAz79FAYNCqLKfC1bQocO8NhjHh8qYnPQlSvh\ns88ciE0p94VPX5WczC+X3sEEBvLhh/bCjS8efbMGdepGcG+LLZhUnU6llFL+4HZ1QREpDkQYY444\nG9I559Q1WSowjLGl8xISYNEiKFvWp6aGD7d7gs6fb8ufB53kZKhTx2aCXlwSX73a7qG1fj2UK+dA\nfCqkOFldMNT6qqzWZB08CI0a2anH/jrt8SNnaFx+O8O6bqfn+63806hSQUTXZClPOVb4QkQeyelA\nY8xYb0/qLk2yVEAYY0d1Vq6EJUvs4ikvnTplp9Rt3gxz5wZ5ArJggd1UZ9Agrw4fNgz++MPuyxw0\no3QqKPkzyQr1vipzkpWaai9oXHSRLVzhz9OunfknbbtEseb/zlK1cQX/NaxUENAkS3nKycIXka5b\nI+yUi8qu2/1AQ29PqFTQW7LELwnW4cO2+t7hw7BihXcJVkyM/ZCV3S0mxuvwzlBetyMAACAASURB\nVHfjjV4nWADx8fDrrzptUOW5sOqrXnzR/k156SX/t33F7TV5qOt+HnjW+797SimlLHdKuH8NtE+b\neiEikcA8Y8x1jgenI1kqUI4fhwsu8PrwffugbVu49lp4/XUoUCDr18XE2Kk/2YmOhqSk7J/39Xh/\n+7//g1tusclWqVJ5d16VvzhUwj0k+6qMI1lr1thrIT/9BFWqnP/774/f95MnoW5dePVVaN/et7aU\nCiY6kqU8lRcl3MsDpzLcP+V6TKnQ5UOCtX07NG9uk4033sg+wQL7AcmY7G+5fWBKSsr5+JwSMCdc\nfTV07GjXoCmVx0K3r9qzhxPd+3LXXYZXX7UJFpz/+++P3/ciRWD8eLtZ8YkTvrenlFLhyp0kaxqw\nWkTiRSQe+D9gipNBKZVfbd5sE6wHHrCJRunSOU/382E2oluio/NoqmEGL7wAn3wC69Y5075S2Qjd\nvmrwYJ7d1pdLLxW6d3f+dG3bwmWXwTvvOH8upZQKVW5VFxSRhkBz192vjTFrHY3q3/PqdEHlvORk\niIry+vCcpuzl9XQ9T2RVtSydMfDtt9CsmVdVLN57DyZPhm++gQh3LuWosOJUdcFQ7KtayzJGVRxP\np9QvWb9Bcix0muPvtIfWr4c2bWwxmxIl/NOmUoGk0wWVp/JiuiDGmJ+MMeNctzzptJTKE+PH21Jd\nPjh40FZ6L1sWvvzSs+l+QSs1FQYOhDlzvDq8b19bWXHGDD/HpVQOQq6vOn2a13iYARdMYcxLOSdY\n/lavHrSs/w+vP7Er706qlFIhRK8xq/A1daot0TVlSo4vy63CX4kScMcddopc5855E7rjChSwZcye\nfBLOnPH48IgI+9Y++aRdSK+U8sL48bzD/ZSoUpKePfP+9CPa/sDYiSXyfG2nUkqFAk2yVHj64gu7\nsdPixXDhhTm+NKfiFLNn2xoZs2dDqxDbvzOm502s/LUMfQtN82pNV1wcXH45TJiQJ+EqFXL2JV/A\n29zPm29KQPaeq/VQOzoUWcqEJ3fm/cmVUiqfyzXJEpEHRUQ3zVChY9EiGDAA5s+HSy7JdaQqu+IU\nX35pNxqePx+aNMnbf4I/5FQUQwQQocUPo3m/ajzmxEmvKheOHg2jRuV9lUMVfkKxr3pi2wDOUpA6\ndQIUQMGCPDYwhTemltBKg0op5SF3S7j/T0Q+E5F2IoG4nqaUH23ebEeyrrgC8K6M+owZNk9bsAAa\nNcrj+P0kt/LvSUnY7LFuXfjgA6/OcdlldgrlmDH+jV2pLIRUX3XypF3XGGh1nunMFWd/5INx/wQ6\nFKWUylfcrS4oQBugD9AI+AyYZIz509HgtLqg8gN/b9j7yScwZAgsXAj16/seX9Dbs8e+iUWLnvOw\nu5XMduyw+exvv0GZMg7FqPIVB6sLetVXiUgVbAn48kAqMNEY87prZOxTIBb4C+hijDmcxfF5shmx\nP1/riRV3TGDA8tv5dX85rRaq8i2tLqg8lVfVBQ2Q6LqdAaKBmSKi16dV0PN1w9+MPvwQHnnELuUK\niwQLoFKl8xIsT1SrBl26wMsv+zEmpbLgQ191BnjEGHM50BR4QEQuAYYBS40xtYHlwJOOBR/E4t7u\nSmRsaebNC3QkSimVf+Q6kiUiDwN3AQeA94CvjDGnRSQC2GKMqelYcDqSpfzAX1d3p06Fp56CJUvs\nNLhw58n7unMnNGhgZ2rmZRlqFZycGMnyZ18lIl8Bb7huLYwx+0SkApBgjLkki9eH9EgW2L9/n35q\n16AqlR/pSJbyVF6MZMUAtxpj2hpjZhhjTgMYY1KBDt6eWKk8cewYNfB9VuukSfD007BsmSZY3qha\nFbp2tWXdlXKIX/oqEbkQaACsAsobY/a52kkEyvk76PyiSxdYvRq2bQt0JEoplT+4k2QtANInVIlI\nlIhcDWCM2eRUYEr57PRp6NKFh3jdp2YmT4b4eFixAi457xq2cteTT8J778Hffwc6EhWifO6rRKQE\nMBN42BhzFMh82TtsL4NfcAHcdRe8+26gI1FKqfzBnemCa4GGaXMhXFMvfjTGNHQ8OJ0uqLxlDNxz\nDyQmUmjBLE6bQl41M306PP44LF8OtWv7Ocb8aO5cu/tyXJxXU5MGDoRSpeCFF5wJT+UPDk0X9Kmv\nEpGCwFxggTFmnOuxTUBchumCK4wxl2ZxrBk+fHj6/bi4OOLi4nz9J7nadv/3LHORH0+L+uTmt9/g\nuuvs9N/Chf3XrlJ5QacLqtwkJCSQkJCQfn/EiBE+9VXuJFk/G2MaZHpsvTGmnrcndZcmWcprzzxj\nq1OsWIGUKO7VOoWZM+HBB2HpUruprgI+/hjeeQcSErxKsrZuhauuslOOIiOdCVEFP4eSLJ/6KhGZ\nBhwwxjyS4bHRQJIxZrSIDAWijTHDsjg2KNZk+fPY7LSu+zf9h0ZzZ0/vLlwpFSiaZClP5cWarK0i\n8pCIFHLdHga2entCpRz35pvw2Wcwbx4UL+5VE7NnwwMP2DLtmmBlcPvtNlNas8arw2vUgOuvh4kT\n/RyXUj70VSJyLdADaCUia0XkJxFpB4wGbhCR34DWwIuORZ9P9Dn9LlNf1T2zlFIqN+4kWfcD1wC7\ngV3A1UB/J4NSyhMxMfaKbdqt76ALqLFlIVKuLCJ2yownFi6Ee++1OVrYlGl3V6FC8PDD8MorXjfx\n+OPw6qvBsdGqCile91XGmO+MMQWMMQ2MMVcYYxoaYxYaY5KMMdcbY2obY9oYYw45GH++cMugyvyw\noQSJiYGORCmlgptbmxEHik4XVO7w55SYZcugWzeYNQuaNvVPmyHn8GGoUYNqSWvZYap51cT119tF\n9Hfd5efYVL7g1GbEgRJO0wU5dIg+5eZS5z+38egzF/i5caWco9MFlaccny4oImVF5CkReVdE3k+7\neXtCpYLVN9/YBGvmTE2wclSyJNx9N734wOsmnngCxoxxbk8fFX60r8ojpUrRu+kWpr2TEuhIlFIq\nqLkzXXAWUBJYCszLcFMqZKxaBbfdZqsJXnddoKPJB0aOZBRPen34DTdAwYJ2aqZSfqJ9VR657uEr\nOLz/ND//HOhIlFIqeBV04zXFjDFDHY9EKW8kJVGH3UBdr5tYswY6dYIpU+w0NuWGYsV82jBIBAYP\nhtdfhxtv9FtUKrxpX5VHItrfSM+Of/HRRxVo0CD31yulVDhyZyRrrojc5HgkSnkqJQU6dKALn3nd\nxPr10L69rUp+k/6U56muXW2C+/vvgY5EhQjtq/JKkSJ0ebY2M2bolF+llMqOO0nWw9jO64SIJIvI\nERFJdqdxEZkkIvtEZH2Gx4aLyC5Xidy0MrlKeebMGbuAqmZNhjPCqyY2bYJ27exoSufOfo4vDERH\nn1vVMfMtJibn44sWhX794I038iZeFfK87quU5+rWtb/D//tfoCNRSqnglGuSZYyJNMZEGGOKGmOi\nXPej3Gx/MtA2i8fHukrkNjTG6KoM5RljYOBAOHECJk3CuHWt4Fxbtth1QWPGQJcuDsQYBpKS7H9F\ndreDB3NvY8AA+PBDSNaPwspHPvZVykMicMcdMGNGoCNRSqng5E51QRGRniLyrOt+VRG5yp3GjTHf\nAll91AqZ0r0qb2TcCys+YgQ/TvyJyMUzkSKFPd4Ha9s2aN0aRoyAnj2diTesvPYa3m6aU6WKXQc3\ndaqfY1Jhx5e+KlRlHm3ObXTZU1262H3fdcqgUkqdz50hgAlAU6C76/5R4E0fzztIRH4WkfdEpKSP\nbakwcPDgvyMk8TPq0ChxHkdMJMbYERV37dhhE6xhw+Cee5yLN6xs3AiTJnl9+IMPwvjxkJrqx5hU\nOHKir8rXMo82uzO67Ik6deCCoqmsXu3fdpVSKhS4k2RdbYx5ADgBYIw5CBT24ZwTgBrGmAZAIjDW\nh7ZUOLr9dihf3uPD9uyxCdaDD9rZhspPBg6Et9+26+S80KwZFCsGS5b4OS4VbvzdV6lcyNkzdNn1\nKjOm6p5ZSimVmTsl3E+LSAGwFZtFpCzg9TVnY8z+DHcnAnNyen18fHz693FxccTFxXl7ahXG/v7b\nJlj33ANDhgQ6mhBzxRVQtSrMnXtOBZG0qUrZiY62V9pF4P774d13oW1WKzhVvpeQkEBCQoLTp/Fr\nX6XcULAgdzTbS4dPz/LSmzn/viulVLgRk8tkahHpAdwJNASmArcDzxhj3FruKiIXAnOMMXVd9ysY\nYxJd3w8BGhtjumdzrMktPhUeRLyf9//PP9CyJdx6K2TI2ZU/TZkCM2faRMtNGf9Pk5MhNhZ+/RUq\nVnQmRBU8RARjjF8/kvvaV/l4bsf6Kl/+9jnZVhoz/WMu7teCmd9V0j2zVFCTEYIZrp8plft87aty\nTbJcJ7kEaI0tWLHMGLPJzeCmA3FAaWAfMBxoCTTAXmH8C7jPGLMvm+M1yQp3u3bB7t1Ik6u9+nBw\n6BC0amVHSF54Qa+0OubYMTuatWmT21M5M3/g69cPqleHp55yKEYVNJxIslztetVX+eG8YZtkcfAg\nj5T/iFJD+/OfkTo7UwUvTbKUpxxPskSkWlaPG2N2eHtSd2mSFeYOHoTrroPevZHHH/P4w0FyMrRp\nA02bwtixmmA5bs8eqFTJ7Zdn/sD344+2JPSff0KE51X5VT7i0EhWSPZV/kyMYmLOLX6RNmXXVwkN\nBvPYsXh+3FLK98aUcogmWcpTvvZV7qzJmoed4y5AUaA68BtwubcnVSqzzJ1/EU6wiM6spTVDHn/U\n4zLtx45B+/bQsKEmWHnGgwQrK40a2Z+DJUt0bZbyivZVucicUPnr7+K199Vh2+NF2bXLbsuglFLK\nvc2I6xpj6rm+XgxcBfzgfGgqnGQs0W7OnOXEbT1p0aUCg8+OxRjx6GprSgp07Ai1asEbb2iClZ/0\n7w/vvBPoKFR+pH1V4BQacC83di7qyZJMpZQKeR5PyjHG/ARc7UAsSllDhthLrtOmeTxv7MQJuOUW\nezX13Xd12ll+0707rFhhZx4q5Qvtq/LWzTfD7NmBjkIppYKHO2uyHslwNwJbuam0McbxCT26Jit8\nnLPuYPFiuPpqKOnZPtWnTtkKgsWLw0cfQUF3JsOqgMlurUn//rbS4NNP531MKm84tCYrJPsqR4pV\nOND24cP24tbevVCihH/aVMqfdE2W8pSvfZU71/kjM9yKYOe9d/L2hErlqk0bjxOs06eha1coXBg+\n/FATrID66y/49luvD+/fH957D1J1hyPlGe2rPJS2l13aLSbG+7ZKlrRFhhYv9l98SimVn+X6UdQY\nMyIvAlHKW2fOQK9ediTriy+gUKFARxTm/vwTHn0Ufv7Zq8OvvNJeCf/mG2jRws+xqZClfZXn/F0I\no317WLDAzihQSqlwl2uSJSJzsBWbsmSMudmvESnlgbNnoW9f+2Fh9mw7kqUCrGVLW8lk3TqoX9/j\nw0WgTx+YPFmTLOU+7asCr22J73h51pWYd4tqwSGlVNhzZ7rgVuA4MNF1Owr8CbziuinlvV9+geXL\nvTo0NRXuuw927oSvvoKiRf0cm/JORIQdWpw2zesmevSw/6dHj/oxLhXqtK8KsNpnNlIg5Qib8mQL\naKWUCm7uJFnXGmPuNMbMcd26A82NMSuNMSudDlCFsG3boF072LfP40ONgUGDYPNmmDMHihVzID7l\nvV69YPp0O5fTC+XL232oZ8zwc1wqlGlfFWDSri3tzs5n4QJdUKmUUu4kWcVFpEbaHRGpDhR3LiQV\nFhIT4YYb4KmnoFs3jw41xlZ5X7MG5s/XSlZBqXZtWyJwyRKvm+jTB6ZM8V9IKuRpXxVosbG0jfkf\nC2foELRSSrlTg20IkCAiWwEBYoH7HI1KhbZDh+wI1l13wcCBHh1qDAwbBl9/DcuWQVSUQzEq373x\nBlSo4PXh7dvb6aB//gk1a/oxLhWqtK8KAq06FOOuKUVISdEZBkqp8JbrPlkAIlIEuMR1d7Mx5qSj\nUf17Xt0nK9QYY0ewLrsMxo1LL2fl7n4t//mPXauzYgWULu1wrMpR7vyfDx5sE+n//jdvYlJ5w4l9\nslzthlxf5eQ+WZ6eKybG1rTJSnS0q1rhvHm06FGZYR834MYbHQlTKa/oPlnKU47vkyUixYDHgUHG\nmHVANRHp4O0JVZgTgVdegdde87hecHw8zJwJS5dqghUu7r4bpk7VPbNU7nztq0RkkojsE5H1GR4b\nLiK7ROQn162dA6EHjdz2zTp40CZhWd3Sk6+WLWl3eyQLF+Z5+EopFVTcWZM1GTgFNHXd3w0851hE\nKvTVr28r0HkgPh4++8yOYJUr50xYKm9l/kCX+RYTAw0a2K8JCYGOVuUDvvZVk4G2WTw+1hjT0HUL\n6dQhKSmbxMkTxYrRdmBNFi3ye3hKKZWvuPNJt6YxZgxwGsAYk4Kd765UnoiPt1XmVqywVedUaMj8\ngS67K+N33233zFIqFz71VcaYb4Gs0grt7zzUoIH9/d22LdCRKKVU4LiTZJ0SkQtwbfIoIjWBPJnn\nrkJHTEzOoxbR0Vkfl5ZgLV+uCVa+ZQzs3ev14d272zL9R474MSYVipzqqwaJyM8i8p6IlPRDeyEv\nIgLatPGpuKhSSuV77iRZw4GFQFUR+QhYBjzhaFQqdIwZA0uW5DiX3xjXgukMjIHhwzXBCgnr1kGz\nZl6v3i9bFpo3twVPlMqBE33VBKCGMaYBkAiM9bG9sNG6ta0Aq5RS4SrHEu4iIsBm4FagCXbaxMPG\nmAN5EJvK7157DSZOtPXWPWCMHcH6/HNdgxUS6teHwoVh1Spo2jT312ehZ094/327x7FSmTnVVxlj\n9me4OxGYk91r4+Pj07+Pi4sjLi7Ol1MHhbR1kxnvu6tVK3jiCUNqqni6BFcppQIiISGBBD8uAs+1\nhLuIbDDG1PXbGT2gJdzzj8ylffvxLk/xAtfxNTup9m9531ykjWB98YUdwdIEK0SMHAl//w3jx7t9\nSMZy0ikpULky/PorVKzoUIwqzzhRwt0ffZWIXAjMSWtHRCoYYxJd3w8BGhtjumdxXEiUcPfFeXHO\nmMHF91zH59+Wp169gIWlVDot4a485XgJd+AnEWns7QlUeDhnOuC0D3i38n+5cMtSdphqWU4HzEpa\ngvXll5pghZzu3W15yDNnvDq8WDHo3Bk++cTPcalQ4lNfJSLTge+BWiKyQ0T6AGNEZL2I/Ay0wG54\nrNzRoAGtzi5h2VL9UKuUCk/ujGRtBi4CtgPHsNMwjDHG8WtTOpKVf6RfxTxwAJo0sZUKLr3U7eON\n+Xej4WXLNMEKSU2awIgR0DarKtnny3xlfPlyePxxWLPGofhUnnFoJCsk+6p8O5JlDJ+VGcgH9V9i\nzvISAYtLqTQ6kqU85Wtfle2aLBGpbozZRtb7hqgwk3k6YGbpc/XLlLFzugoXdrttY+CJJ2DxYk2w\nQtqjj/r0abFFC9i3z/54XXaZH+NS+Zr2VcHh/PVbwm83FKDf7EKcOQMFc1wBrpRSoSenP3szgSuB\n940xrfMoHhWk0qYDusWDBCs1FR58EFavtkUuYmK8i0/lA3fc4dHLM39oS3P55bi9xk+FBe2rgkDm\n30cRKHtTYy5ctJf//e9Cb2veKKVUvpVTkhUhIk9h56c/kvlJY4yWslU+OXsW+vWD33+HpUuhpO5A\nozLIKolavx46doQdO/I+HhW0tK8KVi1b0rrQSpYv1yRLKRV+cip80RU4i03EIrO4KWXXYHnh9Glb\nlnv7dli0SBMs5Z569fRnRZ1H+6ogFB0NEluNVw/05JlndJaCUir8ZDuSZYz5DRgtIuuNMQvyMCaV\nXyxcCPfcA5s2QVSU24edPAldu8KpUzB3LlxwgYMxqpDTsycMHRroKFSw0L4qOKWNRCcnC5Uq5bym\nVymlQlGuJdy101JZWrAA7roLZs70KMFKSbGluAsUsKXaNcFSnurWzX49cSKwcajgon1VcIqKQvfJ\nUkqFJd2HXXlu/nzo3RtmzcKTifZHj0L79lC6tN3vyIP6GCqUbNz4b6bkhapV7df58/0Uj1LKUa21\nHIlSKgxlm2SJyB2ur9XzLhwV9ObPh7vvhtmzPUqw/vkHrr8eLroIpk7Vcr5h7aKLbL3+nTt9aubD\nD/0Uj8rXtK8Kfq1aBToCpZTKezmNZD3p+vp5XgSiAi8mxpbdzeqWvg9WZKRNsJo0cbvdXbugeXO7\nz9G779qpgiqMFSkCt95qhzN9sGyZlnFXgPZVQa9plZ1EcJbDhwMdiVJK5Z2cxhP+EZHFQHURmZ35\nSWPMzc6FpQLBrb2wmjf3qM3ff4c2beCBB+Dxx72PTYWY7t1hyBCvfyiio+3Pa+nS2T+vCVjY0L4q\nyBXd/DP12c/XXzekY8dAR6OUUnkjpySrPdAQ+AB4JW/CUaFkzRro0AGefx769g10NCqoXHedLf+/\ncaPdXdhDSUl2SeDYsbBy5fnPZ7WJsQpZ2lcFu+uuoyOvsWJpPTp21LniSqnwkFMJ91PAKhG5xhiz\nX0RKuB4/mmfRqXxrxQq48047PbBz50BHo4JOgQK2+MW333qVZAHceKPdQWD7doiN9XN8Kt/Qviof\nKFmSauxg/LwTMK5EoKNRSqk84U51wfIishbYCPwqImtEpI47jYvIJBHZJyLrMzwWLSKLReQ3EVkk\nIrq1aDAyxg5BzZrl8aFffmkTrE8/1QRL5WD0aLjvPq8PL1wYbr8dpk/3Y0wqP/O6r1LO20c5tu0q\n6O3+9Uople+4k2S9CzxijIk1xlQDHnU95o7JQNtMjw0DlhpjagPL+XfRsgoWxsCwYbYwwVVXeXTo\ne+/BwIF2n+KWLR2KT4WGCN93kOjZ01YZzHUtoQoHvvRVymEriePaYj9nOb1XKaVCkTufcoobY1ak\n3THGJADF3WncGPMtkHmf907AVNf3UwEd6wgmZ8/aKhXLl0NCAlSs6NZhxsB//gOjRtk1Mg0bOhum\nUgDXXAPHjsG6dYGORAUBr/sq5byNpZpx6uBRbr/drpmMiQl0REop5Sx3kqytIvKsiFzouj0DbPXh\nnOWMMfsAjDGJQDkf2lJ+VIQT0LUrbNoES5dmX7otk1On7NZZCxfCDz9ArVrOxqlUmogI6NEDPvoo\n0JGoIODvvkr50a6DxRmz5nouvdRelDuY+fKrUkqFGHfK/PQFRgBfAAb4xvWYv+Q40Sc+Pj79+7i4\nOOLi4vx4apVRTf6EEiXs/KsiRdw65vBhuy7mggtssYviet1Y5bEePeCGG+DFF3UPtmCVkJBAQkKC\n06dxuq9SPqpfHxITYe/eQEeilFLOE+PwYgYRiQXmGGPque5vAuKMMftEpAKwwhhzaTbHGqfjU/8S\n8Wxty65dcNNNduus11/XD7jKS7t2wZIl0KeP1000bAgvvwytWtn7nv4sq7wlIhhjQqbQvpN9Vaj9\nLN9yC9xxh704Ekr/LhX8ZIRghusPnXKfr32V7yvPcyeuW5rZwN2u73sDnpevUwG3fr1dD9OrF7zx\nhiZYygeFCtmNiY8d87qJtAIYSqng1qqVnfWglFKhztEkS0SmA98DtURkh4j0AV4EbhCR34DWrvsq\nH1m6FK6/HsaMgccf141flY/Kl4cmTWD2bK+b6NoVvvoKjh/3Y1xKKb9r2dLWVVJKqVCXa5IlIte6\n81hWjDHdjTGVjDFFjDHVjDGTjTEHjTHXG2NqG2PaGGMOeRO48tG8eTB1au6vy+Stt+yowYwZ9oOt\nUn7hY/WKSpXgyith7lw/xqTyFV/6KpV3Lt+zhKN/pwQ6DKWUcpw7I1nj3XxMBbmYGDvq9KCMZ0+H\nfjS5uzYipN+io7M/9swZePBBu/bq22+hRYu8i1uFgc6d4Ztv8GWnUq0yGPa0r8oHpHgxWhb8JtBh\nKKWU47KtLigiTYFrgLIi8kiGp6IAXYETADExOZe9jY6GpKTsn08+eAYzaIidqzH3O1ZVr+7WeQ8d\ngjvvtInYqlVQsqSHgSuVm8hIuPFGO0Q6YIBXTdx6Kzz8cM6/Ayr0aF+VzzRuTMvjj/MlcYB7VWyV\nUio/ymkkqzBQApuIRWa4JQO3Ox+ayuzgQVuNKbsbcM7IVMZblCSzoODN8Ntv8N134GaC9ccfdrnM\npZfaqViaYCnHvPAC3Hab14dHRUG7djZPU2FF+6r8pHBhWl11lIKSek4fpZsTK6VCTbYjWcaYlcBK\nEZlijNkuIiVcjx/Ns+iUR3K8gv97Irx9CYwebau5uWHFCujWDf77X+jf3z8xKpWtGjV8bqJnT1uQ\nRYUP7avyn4va1yZm7Ql+/ukCLr7YPqYFlJRSocadNVmRIrIW2AhsFJE1IlLH4biUv9WqBWPHupVg\nGQPjx9sE6+OPNcFS+UfbtrB5c6CjUAGifVU+Ia1b0bLAN1plUCkV0txJst4FHjHGxBpjYoFHXY+p\nEJSSAr17w6RJ8MMPttyuUvlF4cJ2o1MVlnzqq0RkkojsE5H1GR6LFpHFIvKbiCwSEZ0w7Q9XXEGr\np5tqkqWUCmnuJFnFjTHpWwcaYxKA4o5FpHx39uy/i7Q8sG0bXHstpKbC99+7vWxLqaDSsydERGS/\nPlHXf4QsX/uqyUDbTI8NA5YaY2oDy4EnfQ1SAQUK0LJLWVas8KqrUkqpfMGdJGuriDwrIhe6bs8A\nW50OTHkpKclWafv8c48OW7zYFri4+2744AMoVsyZ8JTK1ZkztuKKl5o2hdhY+Omn7IvE5FSlU+Vb\nPvVVxphvgcw/GZ2AtA0FpwKd/ROqio21RUU3brT3o6P1QohSKrS4k2T1BcoCX7huZV2PqWCzYQM0\nbgz16tl9h9xgDLz4ok2uPvvMlsDWBcgqoDZvhlat7JCqF0TsnlkffujnuFSwc6KvKmeM2QdgjEkE\nyvnYnsqgVSvSpwwmJemFEKVUaMm2umAaY8xB4CERibR3tWJTUJo50+4v9Npr9hOmGw4ehL59Yc8e\nWL0aqlRxOEal3FGnDpQqZXe9vu46r5ro0cN+gBszBgroTklhIY/6qmwnXgq7SgAAIABJREFUt8XH\nx6d/HxcXR1xcnAOnDy2tWtmLew89FOhIlFIKEhISSEhI8Ft7YnKZEC0idYFpQNrg/QGgtzHmF79F\nkf25TW7xhRORbOavjxtnk6uZM+HKK91qa/Vqu8HwzTfbD6JFdE9IFUxefNEuEnznHa+baNTINnP9\n9ec/l+3vksoTIoIxxq9j5v7oq0QkFphjjKnnur8JiDPG7BORCsAKY8ylWRznWF8Vyj+re3encnkd\n2H8g4ryLIaH871aBISMEM1x/qJT7fO2r3Jku+A5aXTC4de5sF6C4kWAZA6++Ch06wCuv2PxMEywV\ndLp1s+sKT53yuokePeCjj/wYkwp2/uirxHVLMxu42/V9b2CWr0Gqf1WcO5EKZi/r1gU6EqWU8j+t\nLhgKYmPtquFcJCXZfOzjj+H//g9uvTUPYlPKG7GxcNllsHCh10107QpffQXHj/sxLhXMfOqrRGQ6\n8D1QS0R2iEgf4EXgBhH5DWjtuq/8pUULWp1dyvJlOrqglAo9Wl0wTKxaBQ0bQo0adqmLlmdXQW/o\nUFt+zEsVK9o6MHPm+DEmFcx8rS7Y3RhTyRhTxBhTzRgz2Rhz0BhzvTGmtjGmjTHmkIPxh5/atWlZ\n8BuWz9MrIUqp0ONpdcHPgTJodcGAqMwuGDnSo4nqZ8/CCy/YtVevvWanChYu7GCQSvlL+/Y+74bd\ns6dWGQwj2lflNyLEtS7Ad6sLcvp0oINRSin/yrG6oIgUAJ42xmjtnzwQE5N92dpb+IKfZABEPGST\nLDfqrG/bBr162aRqzRqoWtXPASsV5G65xVYuO3AAypQJdDTKKdpX5V+lb7yKi5bvZtWq6jRvHuho\nlFLKf3IcyTLGnAWa5VEsYe/gwSw2Tj16DNP/Pr6o/hjlvp8FTz8NETkPQBpjNxS+6iq7BmvpUk2w\nVHiKjLR7c8+YEehIlJO0r8rHbriBduV+YsGCQAeilFL+5c50wbUiMltEeonIrWk3xyNT8Ndftg51\nSgr8/DM0aZLrIUlJdsH/iy/a5Oqxx3LNyZQKaT172osOKuRpX5UfVavGje/dxvz55z4cHW0nbKTd\nYmKyPlwppYKVOx+/iwL/AK2Ajq5bByeDUi4VK8KoUfYTYlRUri9fuhQaNIAKFeDHH6F+/TyIUam8\n4MOGOW3b2qmzmzf7MR4VjLSvyqeaNIEdO2DPnn8fS0o6d1ZHdlPplVIqWOW6GXEghdtmxN5uvpic\nDI8/DgsWwMSJ9kOlUiFjzx5bBGPNGq+HZYcOtV9Hj7ZfdaPTwHJiM+JA0s2IfXfnnbbv6ptNqZJw\neR+Uc3QzYuWpvNiMWAWxxYuhbl1ITYUNGzTBUiGoUiX76WrlSq+b6NMHpk1DK5gpFaRuvBFdlxUA\nMTE6LVMpp2iSlYcy/zFLu1WXbXwkPahWKtnttg4fhnvvhf794b337AhWyZIOBq9UIN19N0yZ4vXh\nl1xi94jzYW9jpZSD2rWzU97PnAl0JOElc8EtnZaplP9okuVn2SVSaRXXz6kceDYV8/Y7bCtzFT3G\nNGD7geJunWP+fKhTBwoVsqNXN9zg4D9IqWDQvTvMmgVHjnjdRN++8P77foxJKeU3FU5up3rUAX74\nIdCRqIxy+kyjo15K5SzXJEtEyovIJBFZ4Lp/mYjc43xo+VOWZdhdt6SkDC/ctAni4uynvoQEu6iq\nQIEc296711YOHDQIpk6Ft96yJaqVCnnlytnfl5kzvW6iSxf7q7Zvn9+iUkFE+6p8rkABbtw/jflz\nUwMdicogp880OuqlVM7cGcmaAiwCKrnu/w4MdiqgsLB9O1x3nf3U9/33cPnlOb787Fl44w2oVw9q\n1oRffoFWrfIoVqWCxT33wJ9/en14ZKTdN+7DD88vD61XaEPCFLSvyr+qVOHmSmv46tMTgY5EKaX8\noqAbryljjPlMRJ4EMMacEZGzDscV2mJj4fff7Se9XPz0E9x3HxQrZtf9X3ZZHsSnVDDq2NHefNC3\nL9x/P/zzz79TeLOS03MqaGlflc817n4xR189xaZNxbj00nOfS7swkvH+ObNDlF9k9T4rpbzjzkjW\nMREpDRgAEWkCHHY0qnCQy1+u5GR4+GG46SY7PTAhQRMspXzVrBmcOgWrVwc6EuUA7avyuYjbb+UW\n+ZIvPj+/zLbum5U3Mr/PniSyWqlQqXO5k2Q9AswGaorId8A04EFHowoVZ8/i6Sre1FS7TOuSS+Do\nUdi4EXr31ivrSvmDiBbACGHaV+V3detya+RSPv/weKAjUW7IPO0aNBFWKqMcpwuKSARQFGgB1AYE\n+M0Yo7vN5Oa77+DBB+2lnEWLci1qkXbIww9D4cK2kFrjxnkQp1Jh5q677N5yL7+shWNChfZVIUKE\n5l8MYVeHomzbBtWrBzoglZPcRrl0iqcKdzmOZBljUoE3jTFnjDEbjTG/aKeVs0rshp49bRnAJ56A\nJUtyTbB27IBu3ewhjzxiky1NsJRyRuXKtlDh9OmBjkT5i/ZVoaPA1Y3o1DmCL78MdCShIZBT+HSK\npwp37kwXXCYit4nohLVczZ3LOupDtWq2RHvXrjnO8zt6FOLj4Yor4OKLYfNmux2QvtNK5WLQINi6\n1evDBwyACRNsx69ChvZVIeL22+GTTwIdRWjQzYaVChwxuXzKEJEjQHHgDHACOw3DGGOiHA9OxGQV\n34UXXsj27dudPr1SfhcbG8tff/0V6DDyv0cftfNqR43y6vDUVKhd2+43d8015z8vogmYk0QEY4xf\nk6Fg7Kv803b4/SyeOQNVq8KKFXZ9clbC8X3JSkzMuYlT5il5md+n3F7vpEDHIiMEM1x/aJT7fO2r\nck2ynCIif2ErP6UCp40xV2Xxmiw7Ltc/2vEYlfI3/dn1k99+gxYt7FzbwoW9amLsWFi7Fj744Pzn\n9AOcs5xIsgJJkyz/e+wxKFIEnn8+6+fD9X3JLNCJiycyx5rbfb+fX5Ms5aE8SbJEJBq4GLuwGABj\nzNfentTV5lbgSmNMtoPXmmSpUKM/u34UF2enDd5+u1eHJyVBjRqwZQuULXvuc/oBzllOJVlO9FVu\nnleTLD9b9+NpOnaO4K8dBYjIYmFDuL4vmeWn90GTLJXf+NpX5bomS0TuBb4GFgEjXF/jvT1hxqbd\nOb9SSmXpvvvg7be9PjwmBjp3hsmT/RiTChgH+yoVAPVXvUP0sd2sWBHoSJRSyjvuJDkPA42B7caY\nlsAVwCE/nNsAS0TkfyLSzw/tKaXCya23wl9/wd9/e93EwIE2T0tN9V9YKmCc6qtUINx5J/1OvsFb\n405l+XTmPZp041ulVLBxJ8k6YYw5ASAiRYwxm7H7kPjqWmNMQ+Am4AERaeaHNoPa9u3biYiIINUP\nn+iqV6/O8uXL3Xrt1KlTad68efr9yMhIvxVfGDVqFP379wf8++8D2LlzJ1FRUTq9TmWtSBFbkrNc\nOa+baNzYflhbuNCPcalAcaqvUoFQtiy9Ox1i+dKz7Nx5/tNaHlwpFexy3IzYZZeIlAK+wo48HQR8\nLu1njNnr+rpfRL4ErgK+zfy6+Pj49O/j4uKIi4vz9dSOql69OpMmTaJVq1ZZPh+o6sIZz3vkyJFc\nX79y5Up69uzJzqx6twyefPLJbM/jqczvXdWqVUlOTva6PRUGCrrzJyx7InbP8HHj4Kab/BSTOk9C\nQgIJCQlOn8aRvkoFTuQj/eg57xPentCb50fp6gLIurCFUio45foJxRhzi+vbeBFZAZQEfLruKyLF\ngAhjzFERKQ60wc6hP0/GJEvlHWNMrgnT2bNnKZDLRstKBbtu3eCpp2DDBqhbN9DRhKbMF8hGjMjy\nz71PnOirVIA1bsygmi/T/K1uPP1sUYoVC3RAeS+rpCpUJ3ekTQHNeD9YKiMq5Q13Cl9US7sB24Cf\ngQo+nrc88K2IrAVWAXOMMYt9bDPopKam8thjj1G2bFkuuugi5s2bd87zycnJ3HvvvVSqVImqVavy\n7LPPpk+N27p1K61bt6ZMmTKUK1eOnj17uj2qk5SUxM0330zJkiVp0qQJf/755znPR0REsNW1kev8\n+fO5/PLLiYqKomrVqowdO5aUlBRuuukm9uzZQ2RkJFFRUSQmJjJixAjuuOMOevXqRalSpZg6dSoj\nRoygV69e6W0bY5g0aRKVK1emcuXKvPLKK+nP9enTh//85z/p91euXEnVqlUBuOuuu9ixYwcdO3Yk\nKiqKl19++bzph3v37qVTp06ULl2aWrVq8d5776W3NWLECO6880569+5NVFQUdevW5aeffnLr/VLh\nrUgReOABePXVfx/LvN4j803XfwQfh/qqtLb/EpF1IrJWRFb7o03lnlov96d5g6O89VagIwmMzJsJ\nh3LSoVNAVahxZ/x9HjDX9XUZsBVY4MtJjTHbjDENjDFXGGPqGmNe9KW9YPXuu+8yf/581q1bx48/\n/sjMmTPPeb53794ULlyYrVu3snbtWpYsWZKeOBhjeOqpp0hMTGTTpk3s2rXL7VG9gQMHUqxYMfbt\n28ekSZN4//33z3k+4wjVvffey8SJE0lOTuaXX36hVatWFCtWjAULFlCpUiWOHDlCcnIyFSrYzyqz\nZ8+mS5cuHDp0iO7du5/XHtipQX/++SeLFi1i9OjROa4dSzt22rRpVKtWjblz55KcnMxjjz12Xtt3\n3nkn1apVIzExkRkzZvDUU0+dMwVpzpw5dO/encOHD9OxY0ceeOABt94vpe67D778EhIT7f3MnX3m\nm3b+QcnvfVUGqUCcq886b09H5aDWrRk+vgwvvQTHjgU6GOfFxJx7QSeUpgNmvngVSv82pbKSa5Ll\nSoLqub5ejF079YPzoeV/M2bMYPDgwVSqVIlSpUqds35p3759LFiwgFdffZWiRYtSpkwZBg8ezMcf\nfwxAzZo1ad26NQULFqR06dIMGTKElStX5nrO1NRUvvjiC0aOHEnRokW5/PLL6d279zmvyVhIonDh\nwmzcuJEjR45QsmRJGjRokGP7TZs2pWPHjgAULVo0y9fEx8dTtGhR6tSpQ58+fdL/Te7IrsjFzp07\n+eGHHxg9ejSFChWifv363HvvvUybNi39Nc2aNaNt27aICL169WL9+vVun1flc3v3wkMPeT2PpkwZ\n6NoVJkzwc1wqzzjcV+mWIwFUt67de3z8+EBH4rxQHrnKfPEqlP5tSmXF407DGPMTcLUDsfhPfHzW\nc3yyGwnK6vV+WAu2Z8+e9OlwALGxsenf79ixg9OnT1OxYkViYmKIjo7m/vvv58CBAwD8/fffdOvW\njSpVqlCqVCl69uyZ/lxO9u/fz9mzZ6lSpUqW583s888/Z968ecTGxtKyZUtWrVqVY/sZ/z1ZEZHz\nzr1nz55c487N3r17iYmJoViGSfmxsbHs3r07/X7aaBtAsWLFOHHihN8qHaogV66cLRH4zTdeNzFk\niC3nnpLix7hUwPi5r9ItRwJs5Eh4+WXI8CdfKaWCmjtrsh7JcHtMRKYDvn9qdlJ8fNZzfHJKstx9\nrQcqVqx4TnW+7dv/LXRVtWpVihYtyj///ENSUhIHDx7k0KFD6aMvTz31FBEREWzcuJFDhw7x4Ycf\nulXKvGzZshQsWPCc8+7YsSPb11955ZV89dVX7N+/n06dOtGlSxcg+yqB7lQPzHzuSpUqAVC8eHFS\nMnyC3bt3r9ttV6pUiaSkJI5lmC+yY8cOKleunGs8KgwUKABPPAGjRnndRK1a0KSJbk6cXzncV4Xd\nliPBplYtGDDAXgxRSqn8wJ2RrMgMtyLY+e6dnAwqVHTp0oXXX3+d3bt3c/DgQUaPHp3+XIUKFWjT\npg1DhgzhyJEjGGPYunUrX3/9NWDLrJcoUYLIyEh2797NSy+95NY5IyIiuPXWW4mPj+f48eP8+uuv\nTJ06NcvXnj59munTp5OcnEyBAgWIjIxMrxZYvnx5/vnnH49LqBtjGDlyJMePH2fjxo1MnjyZrl27\nAtCgQQPmz5/PwYMHSUxMZNy4ceccW6FChfSCHBnbA6hSpQrXXHMNTz75JCdPnmT9+vVMmjTpnKIb\nWcWiwkivXrB+Paxd63UTTz8NY8bAqaz3P1XBzbG+KuOWI0DaliPniI+PT7/lQbn6sPTUw8dYs/II\ns2YFOhKlVChKSEg452+5r9wp4e7/WrshLONoTL9+/diyZQv169enZMmSPPbYY6xYsSL9+WnTpjF0\n6FAuu+wyjh49So0aNRg6dCjA/7N33/FRlPkDxz/fFEowgYSaQAgCp3IcggcqqDQ5RQXECoKgYuEU\ny4HnKSIaED0Vf2I9OUWUonCIHcWzgw0OG4o0QSSUEFqAAKEm398fM4lL2N3sbjbZbPi+X6+B2SnP\nfOfJ7Dz7zDzzDJmZmVx11VXUqVOHli1bMnjwYB736P7M312fp59+miFDhpCamspJJ53Etddee8R2\nPdedPn06t956KwUFBZx44om88sorAJx44okMGDCA5s2bU1hYyLJlywLe/65du9KyZUtUlTvvvJMe\nPXoAMHjwYD7++GOaNWvG8ccfz5AhQ47ofXDkyJHceuut3HnnnYwePZpLL730iFhnzpzJX//6V9LS\n0khJSWHcuHF0797dbyzmGFK9Otx+Ozz8MMyaFVISp58OJ54I06bB9deHOT5TrsqrrAr0lSP2upHy\nV7NaAdPjruPiq6bT9scaNGsW6YiMMVVJuF83IqVd7ReROTjt0b1S1QvLFIH/bau3+ETE7lKYqGTH\nbjnbvRvOOAMWLIDjjgspiS++gGuugZUrfb/rWKTqvqumIrjfg7BeBSmvskpEjse5e6U4FyZfKdkj\nrq+yKhzsWCth8WIeO/MNZjUfybz/JRS/O6sy55O3d115dvrgOd/eDfW7cP9NZaygmZX0IDGVUlnL\nqlLvZOF0g9sIeNn9PADYDLwV6kaNMaZcJCY6TQbLcBezc2dIT4cZM+Cqq7wvU/KlmSXn2Y+kiCiX\nskpVfwP8d7tqKk67dtw+cQk/DZvLpRf04u0Pa1KtWqSD8q+ox8AiRd20F6nKLxg25lgWyJ2sb1W1\nQ2nTyoPdyTJVjR270eHTT52H7Jctc/rUCEZlvqJeWZTTnaxKV1aFJ207nrw5/PjTXH7viehZXZj5\nZg0SEipvPtnfMDR2J8tEWlnLqkA6vqglIs09Nng8UCvUDRpjTGXXvTvUrw9BvOLNRJ6VVceQuBG3\nMuv5PI5Ljufss6F27SPfwpKScuTyni/5LTnPGGPKQyCVrBHAPBGZJyLzgc+Av5VvWMYYEzki8OCD\ncO+9cOBApKMxAbKy6hhTbeBlTHsllnPOgYQE+PDD39/C4vkMFBz5kl/wXyErybOCFsryycmh76Mx\nJnqV2lwQQESqAye5H1eoaoX87LDmgqaqsWO3ghUWQkzQ71wv1rs3nHMO/C2In+rWNKh05dFc0E23\nUpVV4UnbjqdAfPKJ8wzlRRfBAw84FR3PfPOXj6Xlccn5wS5vQmPNBU2klVtzQRE5VUQaAbgFVVvg\nfuBREbGb7caYyu/88+Hrr0Ne/aGH4J//hF27whiTCSsrqwxAjx6wZAnovv20St9DNfZz+HD5bKuo\n4xtrfmiM8cffJd7ngIMAItIFeBiYBuwCni//0IwxpowGD4bhw507WiFo08appwX4LnATGVZWGcCp\n7Dz7cB7vdX6YDnzLCQ128MLT+WFv8pub+3vTQ2/ND615YHhYZdZEO5/NBUXkR1Vt647/C9iqqmPc\nz4tVtdy7tLXmgqaqsWO3ghUWQseOcOutToUrBBs2QLt2sGgRNG9e+vLWVKh04WwuWJnLqvCkbcdT\nKFrJcp4/93Ue/LQT38aezuEDh/hoUTLt2x/dgjjQ5n/5+bBxI2xcV8CODXvZv7eA/XsLiI+H45om\nk1g7lsaN4fjjnXejm/Aq63fBmguaYJXne7JiRSROVQ8DPYChAa5nqrCYmBhWr15N8wB+bY4dO5bV\nq1czffp01q9fT+vWrdm1axdShncYFbnpppto0qQJ99xzD/Pnz2fQoEGsX7++zOkCfPnll9xwww0s\nX748LOmZCIqJgSeegP794ZJLoFbwnc01aQJ33OHcEHvnnXKI0ZSVlVXmKCtoRecPRvPf7Gx+e2I6\nnR69iMGDYft26NYNTj4ZTjgB6tVVQPjf/+DgAWXnxr1kr9zNpoIGZG+OZcMGJ726dWHvXkjTDTQ5\n9BvJcbupGXuQ6jGHOUwsu8+6gLwDzvLr1zvv2jv9dDjjD1vpObAuLU8I/dlQY0x08ncn6x7gAmAb\n0BT4s6qqiLQEpqrqmeUeXJTeyZoxYwaPP/44K1asICkpiXbt2jFq1CjOPLPcs8yvqVOn8sILL/DF\nF1+EnEZsbCyrVq0KuJL166+/Mm3atHKNcf78+QwePJh169YFvI6nYCqOZVXZj90qa+BAyMhwHrIK\nwYEDTtPBxx+HXr38L2t3HkoX5jtZlbasCk/adjyFwldnFevWweefO+/A++UX2P7+InbkVyOOw9Rg\nPwnspQ67OOnWc0n7Yx2aNIE+fWDLFqhXD2RTtlPj8nOr6vBhWLUKFnx5mK/ueIu5ezpTr85hLr/w\nINfdn0HjdKtwhcLuZJmKVm53slT1QRH5BEgFPvQoQWKAW0PdYFU3YcIExo8fz3PPPce5555LtWrV\n+OCDD5gzZ07QlayCggJiS7wJ1du0QKlqme8ilXcFIZAYCwsLiSlDj3ElhePOmqnkJkyAMlxcqF4d\nnnoKbrkFzj4batYMY2ymTKysMt4UPc/j+RmgaVMYNMhjwYPtYN8+iI8vHlJSYPbTR65bv777IS2t\n1G3HxUGrVtCqVRzX3nAZhStXsfDxBbz8WnXaTEume9sd3DnxeE4/vcy7aYypxPz+UlXVhar6pqru\n9Zj2i6p+X/6hRZ+8vDwyMzN59tln6du3LzVr1iQ2NpYLLriAhx9+GICDBw8yfPhwGjduTJMmTRgx\nYgSHDh0CnDsy6enpjB8/ntTUVK699lqv0wDeffddTjnlFJKTkznrrLNYsmRJcRwbNmzg0ksvpUGD\nBtSvX5/bbruNFStWcNNNN7FgwQISExNJcZ8gPXjwIHfccQcZGRmkpqYybNgwDng8Jfzoo4+SlpZG\nkyZNeOmll/xWSNauXUu3bt2oXbs2PXv2ZNu2bcXzsrKyiImJodDtgGDKlCm0aNGCpKQkWrRowcyZ\nM33GOGTIEIYNG0avXr1ITExk3rx5DBkyhPvuu684fVXloYceon79+jRv3pwZM2YUz+vevTsvvvhi\n8eepU6fSuXNnALp27YqqcvLJJ5OUlMTs2bOL87zIihUr6N69O8nJybRp04Y5c+YUzxsyZAi33HIL\nvXv3JikpiU6dOvHbb7/5P1BMxWvUCC6/vExJnHcedOgAHoedVyUf1i452MPb4WdllSmpZOcUubk+\nFqxWzXmTcUKCU8kKZt0AxZz4B87491U8u7UfWf9dwdlttnD55c5d8e/tCDWmyrJ71mG0YMECDhw4\nwEUXXeRzmQceeIBFixbx008/8eOPP7Jo0SIeeOCB4vk5OTns3LmTdevW8fzzz3ud9sMPP3Ddddcx\nadIkcnNz+etf/8qFF17IoUOHKCwspHfv3hx//PGsW7eOjRs3csUVV3DSSSfx73//m06dOrF7925y\n3VLjrrvuYvXq1fz000+sXr2ajRs3cv/99wPw3//+lwkTJvDJJ5+watUqPv74Y7/7P3DgQE499VS2\nbdvG6NGjmTp16hHziypo+fn5/O1vf+ODDz4gLy+Pr7/+mnbt2vmMEWDmzJnce++97N692+sdwZyc\nHHJzc8nOzmbKlCkMHTqUVatW+Yy1KJb58+cDsGTJEvLy8rjc/SFeNP/w4cP06dOH8847j61bt/LU\nU09x5ZVXHpH2rFmzGDt2LDt37qRFixbcc889fvPJRK+nn4aXX4YFC3wvU/IHWsmh5EtSjTHHCBES\nz+nIzVNPZ9UquOACp6I1dCh4XJM0PlhvgybaWCUrjLZv3069evX8NmWbMWMGmZmZ1K1bl7p165KZ\nmcn06dOL58fGxjJ27Fji4+Op7rb5Ljlt0qRJ3HjjjXTo0AERYfDgwVSvXp2FCxeyaNEiNm3axPjx\n46lRowbVqlXjjDPO8BnPpEmTePzxx6lduza1atVi5MiRzJw5E4DZs2czZMgQWrVqRc2aNRkzZozP\ndNavX8+3337L/fffT3x8PJ07d6ZPnz4+l4+NjWXJkiXs37+fhg0b0qpVK5/LAvTt25eOHTsCFOeL\nJxFh3LhxxMfH06VLF3r16sWrr77qN01PvppBLliwgL1793LXXXcRFxdH9+7d6d27d3EeAVx88cW0\nb9+emJgYrrzyShYvXhzwdk10qV/fqWgNGeK0MDLGmFBUrw433wzLlzvNj1u3Vib/c7M9f+dHyQtY\ndsHKVHZVspLlr6lOMEOw6taty7Zt24qbxHmTnZ1N06ZNiz9nZGSQnZ1d/Ll+/frEu00WfE3Lysri\nscceIyUlhZSUFJKTk9mwYQPZ2dmsX7+ejIyMgJ5Z2rp1K/n5+bRv3744rfPPP5/t27cXx+rZbC4j\nI8NnZSQ7O5vk5GRqejyskpGR4XXZhIQEZs2axcSJE0lNTaVPnz6sXLnSb6yecXiTnJxMjRo1jti2\nZ76GatOmTUdtOyMjg40bNxZ/btSoUfF4QkICe/bsKfN2TeV12WXQti3ceWekIzHGRLs6deDJJ+HD\naZv5V+ZmLjxxJZs3HIp0WMaYMKiSlSx/TXWCGYLVqVMnqlevzltvveVzmcaNG5OVlVX8OSsrizSP\nB2m9PfNUclp6ejr33HMPubm55ObmsmPHDvbs2UP//v1JT09n3bp1Xit6JdOpV68eCQkJLF26tDit\nnTt3smvXLgBSU1OP6BY9KyvL5zNZqamp7Nixg30el/f99fZ3zjnn8OGHH5KTk8OJJ57I0KFDfe6/\nv+lFvG27KF9r1apFfn5+8bycnBy/aXlKS0s7qmv4devW0bhx44BF4xieAAAgAElEQVTTMJXQu+/C\n6NEhr/7cczB3LsyeHfy69syWMaaktj0bsfDXBpxcuJi2x+/izac3RDokY0wZVclKVqQkJSUxduxY\nbr75Zt5++2327dvH4cOHef/99xk5ciQAV1xxBQ888ADbtm1j27ZtjBs3jsFBviT1hhtu4N///jeL\nFi0CYO/evcydO5e9e/dy2mmnkZqaysiRI8nPz+fAgQN8/fXXADRs2JANGzYUd7QhItxwww0MHz6c\nrVu3ArBx40Y+/PBDAPr168eUKVNYvnw5+fn5xc9qedO0aVM6dOhAZmYmhw4d4ssvvzyigwj4vUne\nli1beOedd8jPzyc+Pp7jjjuu+M5byRgDparF2/7iiy9477336NevHwDt2rXjjTfeYN++faxevZrJ\nkycfsW6jRo1Ys2aN13RPP/10EhISGD9+PIcPH2bevHm8++67DBgwIKj4TCXTsSNMmwZvvx3S6nXq\nwKxZMGwYrF4d3Lr2zJYxxptqTRvx4Kp+vDHiS/4+/DC3nb2Egwes/aAx0coqWWF2++23M2HCBB54\n4AEaNGhA06ZNefbZZ4s7wxg9ejQdOnTg5JNPpm3btnTo0CHojhLat2/PpEmTuOWWW0hJSeGEE04o\n7mQiJiaGOXPmsGrVKpo2bUp6enrxs0lnn302rVu3plGjRjRo0ACAhx9+mJYtW9KxY0fq1KnDueee\nyy+//ALAeeedx/Dhwzn77LM54YQT6NGjh9+4ZsyYwcKFC6lbty7jxo3j6quvPmJ+0d2owsJCJkyY\nQOPGjalXrx6ff/45EydO9BljIFJTU0lOTiYtLY3Bgwfz3HPP8Yc//AGAESNGEB8fT6NGjRgyZAiD\njui/F8aMGcNVV11FSkoKr7322hHz4uPjmTNnDnPnzqVevXrccsstTJ8+vTht6/49StWrB6+/Djfc\nAD//HFISHTpAZqbzjuO8vDDHZ4w5NolwxviL+G7BIbJWHqBLZyXEV0AaYyLM58uIK4NofRmxMb7Y\nsVvJvPyyU1NatMh5wWiQVOHGG50XnM6Z47wfp6yOhZfPhvNlxJWBvYzYlAdV+L//g8cegylTnNdI\nmN8F+92wlxGbYJW1rLI7WcaYY9egQc77s665JqTVReBf/3IK+ltusR/DxpjwEYF//ANefRWuvx7u\nvRcKCiIdlTEmUHYny5gKZMduJaQKGzdCkyYhJ5GXB926wV/+Ao88ElrvpEWOhTsXdicrmLSr/vFg\nSrd5MwwYADFawCtTDtEwo0bpK1VxKSlHPsOanOz/xdF2J8sEy+5kGWNMWYiUqYIFkJQEH3/sDHfe\naT+KjTHh1bAhfPQRdKzxA+3/sIsvZlrvg/beLFPZWSXLGGPCICXFqWR9+incdBME2UGmMcb4FRsL\nD8xtz/PXf8NlV1bn0UE/2gWdEKWk2KszTPmzSpYxxnizZUvQq6SkwGefOR1h9OoFO3eWQ1zGmGOX\nCBc825tv5uTw2mvKxS1+ZGfO/khHFXV27LC7YKb8WSXLGGNKWrMG/vQn52VYQUpKgnfegT/+EU49\n1em40BhjwqlprzZ8sf54MmI30q7Vfj75JNIRGWNKskqWMcaU1Lw5fPAB3HOP0/Pgtm1BrR4XB088\nAf/8J/TpA+PGwcGD5ROqMebYVK1+bZ785XwmTq3FNdfAzTfDnj2RjipykpOPbAJ4rDQHjKamj6XF\nGk37EoiorGRlZGQgIjbYEHVDRkZGpL8+JlCnnAI//OCU3K1bwwsvwOHDQSVx+eXw/fewcCG0aQNz\n55ZTrMaYY5MI518Yz5IlsHevcwf9P/85NjvfKdkRxrHSHDCamj6WFms07UsgItaFu4icBzyBU9Gb\nrKqPeFmm3LrFLS9i3e0aU/V8/z2MHw/TpkG1aiElMXcu3H6700vYXXfB+ed77+r9WDiHiERPF+6R\nLquOhePBhM/nn8Pf/gbHyR4eHJZNl+tPiHRIlYIIMOb3LtxLfq+i+XsWTftSWqyVbV/KWlZF5E6W\niMQAzwA9gdbAABE5KRKxmKPNmzcv0iEccyzPIyPgfP/zn53LwyFWsAAuuACWLIGhQ+Huu51Hvh59\nFLKzQ07SlLNjoayK5nOPxX60Ll3g22/h2o7Lue7GeDon/8w79y/m0IHCsG0javP9t0gHELqozXOi\nO/ayilRzwdOAVaqapaqHgP8AfSMUiynhWP5CRIrleWSEJd+nTIE77nB6uyjl2a34eLjySli8GJ59\nFlaudFoinnYajB4N8+eXPRwTVlW+rIrmc4/F7l1sLAx59lSW70pj2GVbeGQ8pCds4++nf8nn7+8t\n8+slojbf10Y6gNBFbZ4T3bGXVaQqWY2B9R6fN7jTIio8B0LgaQSyvdKW8TU/0OmV4eAvawzBrl/R\n+R7otIoWbfke7LwKy/dTT4XERHjmGWjRAlq2dHq7+Pprn9sXga5dnce8cnKcloiFhfCPfzjLtWoF\nAwbAvffC5MnwySewYoXTq/wnnwS3D+WV72X9DkSJci2rQs2XUP+m4fw7WOyBz49U7HG1qjNg0tl8\ntacd4+//LwmxB7h9dE3q13furI8eDa+/Dot/UN55ZQ5aeHS7LMv3sqUV6djLkk60xl6WMi/cZVVc\nWFOLcvPmzaNbt25lTQUILI1AtlfaMr7mBzo9PPtcNmWNIdj1KzrfA51W0aIt34OdV2H53rq1MwAU\nFDi3p1auhNRU73FOmuS8sTghAWrVonqtWnSrWZNu48bxz3+eiYjTMvHHH52e5L+Y+DPT18WQvT+Z\n3IPHkXvgUxLjT6N2Shw1a1ejRg2Kh5o1IX79GmLydiIoMaIs3/UKf6qTQMyJf0BSkomJgZgYp6LX\nqhWMGhVavpf1O2BCz5dQv0vh/DtY7IHPrwyxrzm0hnFfX8U4YPNmWLDAedR02jT4bXUhvyz7ithB\nZ1Mndje14/ZSOz6f42oWsLb2PFq16kZcHMXDzz8VsGbqF24XcOD+48w8/fSjN374EPxvET/mTqNt\nSjwAIuou3/Ho5Q8dgkX/K/64OHca7VLiipcv+Szr4u8+od2+o3/OLt75Mu16B59X3kTrMVOWdCpD\n7IH+ng52+xXxXYUIdXwhIh2BMap6nvt5JKAlHygWkUr66J4xxpiyiIaOL6ysMsaYY1tZyqpIVbJi\ngZVAD2ATsAgYoKrLKzwYY4wxxgsrq4wxxoQqIs0FVbVARG4BPuT3bnGt0DLGGFNpWFlljDEmVBF7\nT5YxxhhjjDHGVEWR6l3QGGOMMcYYY6qkqKtkiUhXEflcRCaKSJdIx3MsEZEEEflGRC6IdCzHChE5\nyT3WXxWRGyMdz7FARPqKyPMiMlNEzol0PMcKETleRF4QkVcjHUs4RHtZFa3n+2g+Z0bzuSdav7/u\ncT5FRJ4TkYGRjicY0ZrnEL3HerDnl6irZAEK7Aaq47yzxFScu4BZkQ7iWKKqK1T1JqA/cEak4zkW\nqOrbqjoUuAnoF+l4jhWq+puqXh/pOMIo2suqqDzfR/M5M5rPPVH8/b0EmK2qfwUujHQwwYjiPI/a\nYz3Y80vEKlkiMllENovITyWmnyciK0TkFxG5q+R6qvq5qvYCRgL3V1S8VUWo+S4ifwGWAVspfimG\nCVSo+e4u0wd4F5hbEbFWFWXJc9do4F/lG2XVE4Z8r1SiuayK5vN9NJ8zo/ncE+3f3xDib8LvLxwv\nqLBAvYjmvC9D7BEtZ0OJO6jzi6pGZADOAtoBP3lMiwFWAxlAPLAYOMmdNxiYAKS6n6sBr0Yq/mgd\nQsz3x4HJbv5/ALwZ6f2ItqGsx7s77d1I70c0DWXI8zTgYeDsSO9DNA5hOLfPjvQ+hHl/IlZWRfP5\nPprPmdF87on2728I8V8JXOCOz4im2D2Wifg5M5TYI32slyXP3eVKPb9EpAt3AFX9UkQySkw+DVil\nqlkAIvIfoC+wQlWnA9NF5GIR6QnUBp6p0KCrgFDzvWhBEbkK2FZR8VYVZTjeu4rzAtTqwHsVGnSU\nK0Oe34rzXqQkEWmpqs9XaOBRrgz5niIiE4F2InKXlnjhb6REc1kVzef7aD5nRvO5J9q/v8HGD7wJ\nPCMivYA5FRpsCcHGLiIpwINUgnNmCLFH/FiHkOLuitPENKDzS8QqWT405vfbtuC0Yz/NcwFVfRPn\nS2HCp9R8L6Kq0yokomNDIMf7fGB+RQZVxQWS508DT1dkUMeAQPI9F6d9fjSI5rIqms/30XzOjOZz\nT7R/f33Gr6r5wLWRCCpA/mKvzHkO/mOvrMc6+I87qPNLNHZ8YYwxxhhjjDGVVmWrZG0Emnp8buJO\nM+XL8j0yLN8rnuV5ZFS1fI/m/bHYI8Nij5xojt9ir3hhizvSlSzhyJ6LvgFaikiGiFQDrgDeiUhk\nVZvle2RYvlc8y/PIqGr5Hs37Y7FHhsUeOdEcv8Ve8cov7gj26DEDyAYOAOuAIe7084GVwCpgZKTi\nq6qD5bvl+7EyWJ5bvh/r+2OxW+zHUuzRHr/FXvXiFjcxY4wxxhhjjDFhEOnmgsYYY4wxxhhTpVgl\nyxhjjDHGGGPCyCpZxhhjjDHGGBNGVskyxhhjjDHGmDCySpYxxhhjjDHGhJFVsowxxhhjjDEmjKyS\nZYwxxhhjjDFhZJUsU2mIyEUiUigiJ0Q6Fl9E5O5IxxAuIvJXERkUxPIZIrIkyG18IiLH+Zk/U0Ra\nBJOmMcZUBlWxzBKRz0Tkz+W5jSDT7iMidwa5zu4gl58tIs38zH9URLoHk6YxYJUsU7lcAXwBDCjv\nDYlIbIirjgprIBEiIrGq+pyqvhzkqgG/vVxELgAWq+oeP4tNBO4KMgZjjKkMrMwqx2245dQcVR0f\n5KrBlFN/BGJUda2fxZ4GRgYZgzFWyTKVg4jUAs4ErsOjwBKRriIyX0TeFZEVIvKsx7zdIjJBRH4W\nkY9EpK47/XoRWSQiP7hXqGq4018SkYkishB4REQSRGSyiCwUke9EpI+73NUi8rqIvC8iK0XkYXf6\nQ0BNEfleRKZ72YcBIvKTOzwcQJzN3W184+7jCR5xPikiX4nIahG5xMu2MkRkuYi8LCLLRORVj/38\ns4jMc9N9X0QautM/E5HHRWQRcJuIZIrI7e68diKyQEQWu/te253e3p32A3Czx/b/KCL/c/NisY+7\nUVcCb7vLJ7h/wx/c/LncXeYL4C8iYuciY0zUiPYyS0Ri3PR/EpEfReRvHrP7uef3FSJypsc2nvZY\nf46IdAmgXAyl/JsoIgvcfS7erlvufeKWOR+JSBN3ejMR+drdj3Ee227kpv29u59nevlTepZTXvNE\nVdcBKSLSwOcBYYw3qmqDDREfgIHAJHf8S+AUd7wrkA9kAAJ8CFzizisErnDH7wWedseTPdIdB9zs\njr8EvOMx70FgoDteG1gJ1ASuBlYDxwHVgbVAY3e5PB/xpwJZQArOxYtPgAt9xPmUO/4x0MIdPw34\nxCPOWe54K2CVl+1luOl2dD9PBm4H4oCvgLru9H7AZHf8M+AZjzQygdvd8R+Bs9zxscAEj+lnuuPj\ngZ/c8aeAAe54HFDdS4xrgVru+CXAcx7zEj3GPyj6e9tggw02RMNQBcqsPwMfenxOcv//DHjUHT8f\n+Mgdv7qo7HI/zwG6+NuGj30OpPzz3OerPdZ5Bxjkjg8B3nTH3waudMeHFcWDUybe7Y5LUXlUIr55\nQGt/eeKOPw9cHOnjzoboGuzqsaksBgD/ccdn4RRgRRapapaqKjATOMudXgi86o6/jHNVEeBkEflc\nRH5y02ntkdZsj/FzgZHuXZp5QDWgqTvvE1Xdo6oHgGU4BaY/pwKfqWquqhYCrwBdfMR5lnsV9Axg\ntrv954CGHum9BaCqywFfV8/WqepCz3SBE4E/AR+56d4DpHmsM6tkIiKSBNRW1S/dSVOBLu7drNqq\n+pU73fMq5QLgHhH5B9DMzaeSklV1rzu+BDhHRB4SkbNU1bPN/NYSMRpjTGUX7WXWGuB4cVpN9AQ8\nz8lvuP9/F0A6pSkg+PJvNt51wslPcMqjovw7k9//Fp7l1DfAEBG5DzjZozzylIpTBoH/PNmClVMm\nSHGRDsAYEUkGzgb+JCIKxOK0qf6Hu0jJ9tW+2lsXTX8J5y7SzyJyNc6VxSIlT7KXquqqEvF0BDwr\nDQX8/l0Rf7viZ17JOGOAHarq6wFjz+0Hk64AP6uqt2YRcPT+l7YNr9NVdabbhKU3MFdEhqrqvBKL\nHfZYfpU4D1NfADwgIp+oalGzjhrAPh/bN8aYSqUqlFmqulNE2gI9gRuBy4Hr3dlFaXmmc5gjHzGp\n4RmCt234EEj556uc8vesVdG84lhU9QsR6QL0AqaIyGN69HPI+bj7UiJP/orTEuQ6dzkrp0zQ7E6W\nqQwuB6ap6vGq2lxVM4DfRKTo6t9pblvsGKA/znM84By/l7njV3pMPw7IEZF4d7ovHwC3FX0QkXYB\nxHpQvD+AvAjn7k+KO38AzpVGb3F+6d7J+U1EiqYjIif72KavAqypiJzujg/E2f+VQH230EVE4sR5\nsNcnVc0Dcj3aqw8G5qvqLmCHiJzhTi/uiVBEjlfV31T1aZymGt5iXykizd3lU4F9qjoDeBQ4xWO5\nE4Cf/cVojDGVSNSXWe6zUbGq+iYwGqepnDdF5c9aoJ040nGa+PndhiuWspV/nr7m9+ffBvF7/n3p\nMb04/0SkKbBFVScDL+B9H5cDLd3lPfPkXqycMmVklSxTGfQH3iwx7XV+P2l+CzwDLAV+VdW33Ol7\ncQqzJUA3nLbs4JwcF+GcgJd7pFnyKtgDQLz7kOvPwP0+4vNc73lgSckHfFU1B6f3oXnAD8C3qvqu\njziLtnMlcJ37EO/PwIU+4vR19W4lcLOILAPqAP9W1UM4BdojIrLYjaVTKekAXAP8n7tOW48YrwWe\nFZHvS6zfz32Q+Qecpi3TvKT5HlDU7W0bYJG7/H04eY/7IHG+qm7xE5sxxlQmUV9mAY2Bee45eTq/\n957ntfxxm42vdffpCZymhKVtA8pe/nm6Daf532J3/aLOOobjlIU/4jT/K9IN+NEtv/oBT3pJcy6/\nl1Ne80RE4oAWOH9XYwImTpNhYyonEekK/F1VL/Qyb7eqJkYgrKCUR5wikgG8q6ptwpluOIlII2Cq\nqvb0s8xwYJeqvlRxkRljTPmoCmVWOFX2fRanJ8dPcTp48vqDWEQuwunYJLNCgzNRz+5kmWgWLVcI\nyivOSr3/7t29SeLnZcTADpyONowxpqqr1OfsclKp91lV9+P0tNvYz2KxwGMVE5GpSuxOljHGGGOM\nMcaEkd3JMsYYY4wxxpgwskqWMcYYY4wxxoSRVbKMMcYYY4wxJoyskmWMMcYYY4wxYWSVLGOMMcYY\nY4wJI6tkGWOMMcYYY0wYWSXLGGOMMcYYY8LIKlnGGGOMMcYYE0ZWyTLGGGOMMcaYMLJKljHGGGOM\nMcaEkVWyjPFDRHaLSLNIx2GMMcb4Y+WVMZWLVbJMlSAihSLSvIxpfCYi13pOU9VEVV1bpuDCSEQy\nRORTEdkrIstEpIefZbu5y+4UkTXBpiUiA0VkrVtwvyEidTzmVRORF0Vkl4hki8iIEuu2E5Fv3bS/\nEZG2JeaPEJFNbmwviEh86LlyRLpd3WPh9RLTT3anfxqO7RhjTKisvPK6rJVXv0+38qqKsEqWqSrU\n30wRia2oQMrZTOA7IAUYDbwmInV9LLsXmAzcEWxaItIa+DdwJdAQ2AdM9Fh3LNACSAfOBu4UkXPd\ndeOBt4BpQB33/7dFJM6d3xO4E+gOZLjpjA0mE0qxFegkIske064GVoZxG8YYEyorr45m5dXvrLyq\nKlTVBhu8DkAT4HVgC86J4Cl3uuCc5NYCOcAUIMmdlwEUAlcBWe66ozzSjAFGAauBXcA3QGN33knA\nh8B2YDlwucd6LwHPAO8CecAC4Hh33nx3m3vceZcDXYH1OCfHTcBUnBPoHDem7e54mpvGA8BhIN9N\no2hfC4Hm7ngSzgl4C/AbcI9HfFcDXwCPArnAr8B5Yf57/AGn8KjlMW0+MLSU9XoAa4JJC3gQeNlj\nXnPgQNHywEagh8f8scAMd/xcYH2J7WUB57rjrwAPeMzrDmzyE38hcBPwi3vM3O/G8xWwE/gPEOcu\nW/R3fxYY5nHMbcA5Zj+N9PfKBhtsCP+AlVdF50orr6y8sqGSDHYny3glIjE4BcRvQFOgMc7JAWAI\nTqHUFefkkYhToHg6E+fE+BfgPhE50Z3+d6A/zgm9NnAtkC8iCTgF1stAPeAK4FkROckjzf5AJk7h\n8yvOiRVV7erOb6OqSao62/3cyF22KTAU5+T1Is7VrKY4BdS/3DRG4xQ6t7hp3Oam4XnF8Rl3X5sB\n3YCrRGSIx/zTcArbujiF12R8EJE5IrJDRHK9/P+Oj9Va4xQ+ez2m/ehOD1ZpabV2PwOgqmtwCq0T\n3GYYqcBPPtb9Y4l5ftN2xxuUuJJX0rnAKUBHnB8izwEDcf6WbYABHssqzo+Lq9zPPYElOD9ejDFV\njJVXVl5h5ZWphKySZXw5DefEdKeq7lfVg6r6tTtvIDBBVbNUNR+4G7jCLejAOWmMcdf5CeekVNTG\n+TqcK2qrAVR1iaruAHoDv6nqNHX8iHNV8nKPmN5U1e9UtRDn6lK7EjFLic8FQKaqHlLVA6qaq6pv\nuuN7gYeALqXkg0BxId4fGKmq+aqaBTwGDPZYNktVX1RVxbkS2UhEGnhLVFX7qGqyqqZ4+f9CH7Ec\nh3NlzFMeTkEarNLS8jf/OJy/8S4v80JJOw8nn/3txyOquldVlwM/Ax+6x99u4H2cAq2Yqi4EkkXk\nBJzCa5qftI0x0c3KK480rbw6Yr6VVyZirJJlfEnHOQkXepmXhnM7vUgWEIfTFrrIZo/xfJwTVVG6\nRz3UitNso6N7ZSxXRHbgFI6eaeb4SNOXrap6qOiDiNQUkefch2N34jQ3qCMiJQs7b+rh7OM6j2lZ\nOFdMj4pPVffhnIhLizEYe3CagHiqDewuh7T8zd/jfk7yMi+UtGvjFIL+9mOLx/g+jjy+9uE9n6cD\nt+BcxX3TT9rGmOhm5dWRrLyy8spUAlbJMr6sB5p6XO3zlI1TyBTJAA5x5InEX7otfEyf514ZK7pK\nlqSqtwQbuIeSDxf/HadJyKmqWoffrwqKj+U9bcPZx5L7vTGUwERkrtsLUp6X4T0fqy0FmotILY9p\nbd3pwSotraX8fjUXEWkBxAO/qOpOnKYMbf2se3KJ7Z2Mc0XvqLRxrvBudq8Qh9PLwDDgPVXdH+a0\njTGVh5VXR7LyysorUwlYJcv4sgjnxPSwiCSISHUROcOdNxMYISLNROQ4nLbm//G4iujvStsLwDgR\naQkgIm3cts3v4rSfHiQicSISLyIdPNrGlyYHp729P4k4V5HyRCQFGFNi/mZfabj79irwoIgcJyIZ\nwAicq09BU9UL1OluN8nL0MvHOquAxUCm+/e4BPgTTjOVo4ijOlANiHHXiQ8wrVeAPiJypluw3Q+8\n7tEmfjowWkTqiEgr4Aach70B5gEFInKrOF3n3obzMPBn7vxpwHUi0sr924/2WDds1OnKuIubvjGm\n6rLyyoOVV1ZemcrBKlnGK/ck3QfnSto6nCt3/dzZL+KctD7HeaA3H7jNc/WSyXmMT8A5+X8oIrtw\nCrGaqroH52HRK3CuPGYDDwPVAwx5DDDNbbpxmY9lngAScK7yfQ3MLTH/SeByEdkuIk94if02nH1d\ng7PvL6uqv5Ot3256Q3QFcCqwA+fHwqWquh1ARM4SkTyPZbvgFNLv4jR7yQc+CCQtVV0G3AjMwPlB\nUBO42WPdTJx8yAI+BR5W1Y/cdQ8BF+H0YLUDp415X1U97M7/ABiPU4j9hnMMjfGzz/6OJ79U9WtV\nzSl9SWNMtLLyysorrLwylZA4zzyWU+IiTXCuAjTEuTIwSVWfcq8GzMK5fb0W6KeqJR88NMYYY8qd\newX9c5yr6HHAa6o6VkQyca56Fz1jMUpV/xuhMI0xxkSR8q5kNQIaqepi9zb9d0BfnC5Vt6vqeBG5\nC0hW1ZHlFogxxhjjh4gkqGq+OC+C/QrnTsD5wG5VnRDZ6IwxxkSbcm0uqKo5qrrYHd+D806GJjgV\nranuYlNxbtUaY4wxEaFO997gNPmK4/dmPoH05maMMcYcocKeyRKRZji9siwEGqrqZnAqYoDXdzMY\nY4wxFUFEYkTkB5xnOj5S1W/cWbeIyGIReUFEakcwRGOMMVGkQipZblPB14C/uXe0Qn4w0BhjjAk3\nVS1U1VNwWlucJiJ/BJ4FmqtqO5zKlzUbNMYYE5C48t6AiMThVLCmq+rb7uTNItJQVTe7z21t8bGu\nVb6MMaYKUtVK2QxPVfNEZB5wXolnsSYBc7ytY2WVMcZUTWUpqyriTtaLwDJVfdJj2jvANe741cDb\nJVcqoqoVNmRmZlZoGoEsW9oyvuYHOt3bcuHIh4rM92DXr+h8D2RaRed5NOZ7sPMqY75X9DmmPPO9\nLN+BykZE6hU1BRSRmsA5wAr3ImCRS/j9BaVHqcjjIdS/aTjP9xZ7eL8TkY6drt6P4WiIvSy/d6p6\n7OW5z5U19rKUeeEuq8r1TpaInAlcCSxx27orMAp4BHhVRK7FeW9BP9+pVJxu3bpVaBqBLFvaMr7m\nBzo9HPtcVmWNIdj1KzrfA51W0aIt34OdVxnzvaLPMYEuH0q+l/U7UMmkAlNFJAbn4uMsVZ0rItNE\npB3OK0jWAn8N50ZDzZdQ/6bh/DtY7IHPj4bYaRbe7YUzraqc7+Ude1nSidbYy1Lmhb2sCrWGWxGD\nE56paJmZmZEO4ZhjeR4Zlu+R4Z7bI17GhGuI5rIqmr8DFnv4MCbwY7iyxR6oaI1b1WKPlLKWVRXW\nu6CJHlFw1bnKsTyPDMt3c6yL5u+AxR4Z0Rp7tMYNFnu0KteXEZeViGhljs8YY0zwRAStpB1fhMLK\nKhPtZKygmXYMG+OprGVVufcuaIwxxpjQpKTAjh3OeHIy5PofBTEAACAASURBVOZGNh5jfGnWrBlZ\nWVmRDsOYoGVkZLB27dqwp2uVLGOiyX/+A3Fx0KYNnHACSJW5GWCM8WLHDii6SWZfd1OZZWVlhaVH\nNmMqmpTTydUqWcZUFtu3O5Wod96B+++H008/epnffoNFi+D77+HgQejdG665Bs44w+svsEOHYPVq\nWLXKST4/HxISoF49aNUKmjeHGHsy0xhjjDEmrKySZUykff89PPkkvP029OoFQ4dC69bel737bud/\nVafCNXs2/OMf8MEHkJgIQE6OU1d77z1YuBAaNXJuejVoADVqOBWtrVth6VLYtQt69oRLL4W+faF6\n9QraZ2OMMcaYKsw6vjAmkt54A269FYYPhyFDnFtMIVCFTz6Bxx5zKlZ9+8Ill0Dnzs5zHL7k5MC7\n7zqVsmXLnFBuuw1q1Qpxf4wJgHV8EUzaRzYXtCLRlIdwdHzhfq/DFJExFcfXsVvWssoaChkTSeef\n77Tl+8c/Qq5g/fe/0LGjU0Hq3x82boQpU+DCC/1XsMC5y3X99fDxx87NsB9/dJoRvvqq/ZgzxhhT\n9WVlZRETE0NhYWGZ0zr++OP59NNPA1p26tSpdO7cufhzYmJi2DpfeOihhxg6dCgQ3v0DWL9+PUlJ\nSVahDoBVsoyJpJo1nYekQrB6NfTp49x5+sc/nOZ/11zjJnfgAIwf7zyUFaA2bZw7Wq+8AmPGwKBB\nTnNCY4wxJpqVVvkpr44PSuO53d27d9OsWTO/y8+fP5/09PRS07377rt5/vnnvW4nWCXzLj09nby8\nvIjlWTSxSpYxFWH/fqcWFAYFBfDII87dq86d4eef4bLLSnRgcfAgfP45XHyx8xBWEDp3hm+/hdq1\noX17WLkyLGEbY4wxpgxUtdTKTUFBQQVFY0pjlSxjytuqVU5Pgc8+W+akVq+GLl2cpn3ffQd33gnV\nqnlZMDER3nzTaS/Ysyfs3h3UdhISnHBHjXK29/nnZQ7dGGOMibjCwkLuuOMO6tevT8uWLXnvvfeO\nmJ+Xl8f1119PWloa6enp3HvvvcVN49asWUOPHj2oV68eDRo0YNCgQeTl5QW03dzcXC688EJq165N\nx44d+fXXX4+YHxMTw5o1awCYO3curVu3JikpifT0dCZMmEB+fj4XXHAB2dnZJCYmkpSURE5ODmPH\njuXyyy9n8ODB1KlTh6lTpzJ27FgGDx5cnLaqMnnyZBo3bkzjxo157LHHiucNGTKE++67r/iz592y\nq666inXr1tGnTx+SkpL4v//7v6OaH27atIm+fftSt25dTjjhBF544YXitMaOHUv//v25+uqrSUpK\nok2bNnz//fcB5VdVYJUsY8rTRx/BWWfBX/8KzzxTpqTefNPpqf3yy51nqDIySlkhPh6mTnUesrro\nIuduWpCuvdZpPnjZZU7HGsYYY0w0e/7555k7dy4//vgj3377La+99toR86+++mqqVavGmjVr+OGH\nH/joo4+KKw6qyqhRo8jJyWH58uVs2LCBMWPGBLTdYcOGkZCQwObNm5k8eTIvvvjiEfM971Bdf/31\nTJo0iby8PH7++WfOPvtsEhISeP/990lLS2P37t3k5eXRqFEjAN555x369evHzp07GThw4FHpAcyb\nN49ff/2VDz74gEceeSSg5pPTpk2jadOmvPvuu+Tl5XHHHXcclXb//v1p2rQpOTk5zJ49m1GjRjFv\n3rzi+XPmzGHgwIHs2rWLPn36cPPNNweUX1WBVbKMKQ+qTqVq8GCYNQuGDQv5TaIFBc4dpeHDnZ4A\nhw8P4t1WMTEwcaLTqcZTT4W0/b/8BV57Da64Aj77LKQkjDHGHOvGjHHKwZKDr0qKt+UDrND4M3v2\nbIYPH05aWhp16tTh7qJXowCbN2/m/fff5/HHH6dGjRrUq1eP4cOHM3PmTABatGhBjx49iIuLo27d\nuowYMYL58+eXus3CwkLeeOMNxo0bR40aNWjdujVXX331Ect4diRRrVo1li5dyu7du6lduzbt2rXz\nm36nTp3o06cPADVq1PC6zJgxY6hRowZ/+tOfGDJkSPE+BcJXJxfr169nwYIFPPLII8THx9O2bVuu\nv/56pk2bVrzMWWedRc+ePRERBg8ezE8//RTwdqOdVbKMKQ9Ll8ILL8DXX0O3biEns2uX8+qshQvh\nm2/gtNNCSCQ2FqZPhxEjQo6jSxenx8H+/WHJkpCTMcYYc6waM8a5AFly8FfJCnTZIGRnZx/ReUSG\nR7OQdevWcejQIVJTU0lJSSE5OZkbb7yRbdu2AbBlyxYGDBhAkyZNqFOnDoMGDSqe58/WrVspKCig\nSZMmXrdb0uuvv857771HRkYG3bt3Z+HChX7TL60zDBE5atvZ2dmlxl2aTZs2kZKSQoJHB14ZGRls\n3Lix+HPR3TaAhIQE9u/fH7aeDis7q2QZUx7+9CfnJcPNm4ecxMaNTuWmeXP48EPnZcIhq1bNaT5Y\nBt27O+9M7t0bwnBuNsYYYypcamoq69evL/6clZVVPJ6enk6NGjXYvn07ubm57Nixg507dxbffRk1\nahQxMTEsXbqUnTt38vLLLwfUlXn9+vWJi4s7Yrvr1q3zuXz79u1566232Lp1K3379qVfv36A714C\nA+npr+S209LSAKhVqxb5Hh1kbdq0KeC009LSyM3NZe/evUek3bhx41LjORZYJcuY8hJwm76jLV3q\nPH81cCD8618QFxfGuMpgwAC44QbnRccHD0Y6GmOMMSY4/fr146mnnmLjxo3s2LGDRx55pHheo0aN\nOPfccxkxYgS7d+9GVVmzZg2fu70/7d69m+OOO47ExEQ2btzIo48+GtA2Y2JiuOSSSxgzZgz79u1j\n2bJlTJ061euyhw4dYsaMGeTl5REbG0tiYiKxsbEANGzYkO3btwfc2UYRVWXcuHHs27ePpUuX8tJL\nL3HFFVcA0K5dO+bOncuOHTvIycnhySefPGLdRo0aFXfI4ZkeQJMmTTjjjDO4++67OXDgAD/99BOT\nJ08+otMNb7EcK6ySZUwls2ABnH02PPgg3HVXyI9ylZtRo5y7anfeGelIjDHGmNJ53o254YYb6Nmz\nJ23btqVDhw5ceumlRyw7bdo0Dh48yB//+EdSUlK4/PLLycnJASAzM5PvvvuOOnXq0KdPn6PW9XfX\n5+mnn2b37t2kpqZy7bXXcu211/pcd/r06Rx//PHUqVOH559/nldeeQWAE088kQEDBtC8eXNSUlKK\n4wpk/7t27UrLli0555xzuPPOO+nRowcAgwcP5uSTT6ZZs2acd955xZWvIiNHjmTcuHGkpKQwYcKE\no2KdOXMmv/32G2lpaVx66aWMGzeO7t27+43lWCGVuUYpIlqZ4zMGgL17nZdVnX56mZP68kvnLtGU\nKXDBBWUPzaecHJg9G269NaTVd+xw3qH16KNQoowxplQigqpWmZK2PMsqEedRlJLjxoSTjBU0s2wH\nl/u9DlNExlQcX8duWcuqUu9kiUgfEbE7XsZ4k58PffrASy+VOal585x3B7/8cjlXsABq1mTD3x6l\nh3zitbMnEUhJ8b16cjL85z9Op4klmm8bExFWVhljjKlMAimQ+gOrRGS8iJxU3gEZEzX27YO+faFx\nY+fBqTL4+GPn/VezZsG554YpPn9q1+ZGfZZPmg9F9+Z77fBpxw7/SZx3HmzZAmlpwVfSjCkHVlYZ\nY4ypNEqtZKnqIOAU4FdgiogsEJGhIpJY7tEZU1kdOuTUiurXd9r2uQ+lhmL+fKdDiddfd57Fqijv\n0dvpEz4zM6T1d+yAAwfglFPgxRePrqSB98qXVcJMebCyyhhjTGUSUNMKVc0DXgP+A6QCFwPfi0ho\nD3QYE+2GDXP+nzq1TBWsb775/Q5Wly5hii0YTz4J06bBd98dNSs52X8lKTnZ6Rl+8mQYORK2bz9y\n/dxc769ECfROmTHBCrWsEpHqIvI/EflBRJaISKY7PVlEPhSRlSLygYjULvedMMYYUyWU2vGFiPQF\nrgFaAtOAqaq6RUQSgGWq2qzcgrOOL0xl9eWX8Oc/g8cL+IK1dCn06AHPPw8XXhjG2AJU/BD9yy/D\n4cNwzTUhp3Xbbc5dreeeC2H75phTHh1flLWsEpEEVc0XkVjgK+A24FJgu6qOF5G7gGRVHellXev4\nwkQ16/jCHMvKq+OLQCpZU4HJqvq5l3k9VPWTUDdeanBWyTJV1Jo1zp2r8eOdd2FFQjh/sO3aBa1a\nwRtvQMeOFb99E13KqZIVlrLKrZR9DtwETAe6qupmEWkEzFPVo573skqWiXZWyTLHsoj1LgjklCy0\nROQRgPKsYBlTVW3ZAuecA6NHR66CFW61azvduQ8bBgUFkY7GHKPKVFaJSIyI/ADkAB+p6jdAQ1Xd\n7KaRAzQIf9jGGGOqorgAljkHuKvEtPO9TDPGlGLvXujdGwYNghtvjHQ04TVwIEyc6LQ+vPrqSEdj\njkFlKqtUtRA4RUSSgDdFpDVQ8tKmz8v0Y8aMKR7v1q0b3bp1C2SzxhhjKol58+Yxb968sKXns7mg\niNwEDANaAKs9ZiUCX7k9OZUray5oKoVff4WVK8v88qqCAudFw3XqOB0SRvql5+XR9Oirr5yeEn/5\nBWrUqPjtm+gQzuaC5VFWici9QD5wPdDNo7ngZ6raysvy1lzQRDVrLhjdYmJiWL16Nc2bNy912bFj\nx7J69WqmT5/O+vXrad26Nbt27ULC8KPkpptuokmTJtxzzz3Mnz+fQYMGsX79+jKnC/Dll19yww03\nsHz58rCk5ykSzQVnAH2At93/i4b2FVHBMqZS2LnTufW0dm2ZklGFv/3NuZM1aVLkK1g+qToVyhCd\neabTH8gzz5S+bGm9F1oX7yZAZS6rRKReUc+BIlIT567YcuAdnM40AK52t2GMiUIzZszg1FNPJTEx\nkcaNG9OrVy+++uqrSIfF1KlT6dy5c5nSCLaCVLR8eno6eXl5pa4faIwTJ07knnvuCTkuTzExMaxZ\ns6b481lnnVUuFazy5K+Spaq6FrgZ2O0xICL288dUfYcOwWWXOW8HLuqyPUQTJjjvw3r9dafb83BJ\nSQlzRWXLFujUCTZtCjmmhx6CRx4pvYt26+LdhEk4yqpU4DMRWQz8D/hAVecCjwDniMhKoAfwcJhj\nN8ZUgAkTJnD77bczevRotmzZwrp167j55puZM2dO0GkVeHnw2Nu0QKlqme8ilfcdxEBiLCwsDOs2\nw3FnLdJKu5MF8B3wrfv/dx6fjam6VOHmm502bxMmlCmp2bPhiSdg7lyng4hw2rEjzBWVhg2dB6oe\nDv23ZKtWcNFFTkWrLPzd6bK7XMZDmcsqVV2iqn9W1XaqerKqPuhOz1XVv6jqiap6rqruLI8dMMaU\nn7y8PDIzM3n22Wfp27cvNWvWJDY2lgsuuICH3bLu4MGDDB8+nMaNG9OkSRNGjBjBoUOHAJg/fz7p\n6emMHz+e1NRUrr32Wq/TAN59911OOeUUkpOTOeuss1iyZElxHBs2bODSSy+lQYMG1K9fn9tuu40V\nK1Zw0003sWDBAhITE0lxC7eDBw9yxx13kJGRQWpqKsOGDePAgQPFaT366KOkpaXRpEkTXnrpJb8V\nkrVr19KtWzdq165Nz5492bZtW/G8rKwsYmJiiitIU6ZMoUWLFiQlJdGiRQtmzpzpM8YhQ4YwbNgw\nevXqRWJiIvPmzWPIkCHcd999xemrKg899BD169enefPmzJgxo3he9+7defHFF4s/e94t69q1K6rK\nySefTFJSErNnzy7O8yIrVqyge/fuJCcn06ZNmyMqzEOGDOGWW26hd+/eJCUl0alTJ3777Tf/B0p5\nUNVKOzjhGRMBjz+uevLJqnl5ZUrmf/9TrVdP9YcfwhRXCaV9RfzN9zkvJ0c1JUV1/fqQ48rKcpLY\nti3kJPyyU0N0c8/tES9jwjWUZ1nlmbQd96a8MKbsB1dl/c323//+V+Pj47WgoMDnMvfee6926tRJ\nt23bptu2bdMzzjhD77vvPlVVnTdvnsbFxendd9+tBw8e1P3793ud9v3332uDBg30m2++0cLCQp02\nbZo2a9ZMDx48qAUFBdq2bVv9+9//rvv27dMDBw7oV199paqqU6ZM0c6dOx8Rz/Dhw7Vv3766c+dO\n3bNnj1544YU6atQoVVV9//33tVGjRrps2TLNz8/XgQMHakxMjP76669e961Tp056xx136MGDB/Xz\nzz/XxMREHTx4sKqqrl27VmNiYrSgoED37t2rSUlJumrVKlVVzcnJ0WXLlvmM8ZprrtE6deroggUL\nVFV1//79es011+i99957RL4VbXv+/Plaq1Yt/eWXX1RVtVu3bjp58uTi9EpuQ0R0zZo1xZ/nzZun\n6enpqqp66NAhbdmypT788MN66NAh/fTTTzUxMbE47WuuuUbr1aun3377rRYUFOiVV16pAwYM8Pn3\n93XslrWsKrULdxE5U0RqueODRGSCiDQtv2qfMZXA6afDO+9AYmLISWzc6HR0MXkytGsXxtiC4O9u\nUHKyj5UaNoTrr3fa/YWoaVNn3594IuQkjAmKlVXGVG7+mrYHMwRr+/bt1KtXj5gY3z95Z8yYQWZm\nJnXr1qVu3bpkZmYyffr04vmxsbGMHTuW+Ph4qlev7nXapEmTuPHGG+nQoQMiwuDBg6levToLFy5k\n0aJFbNq0ifHjx1OjRg2qVavGGWec4TOeSZMm8fjjj1O7dm1q1arFyJEjmTlzJgCzZ89myJAhtGrV\nipo1ax7Rs2lJ69ev59tvv+X+++8nPj6ezp0706dPH5/Lx8bGsmTJEvbv30/Dhg1p1eqofn6O0Ldv\nXzq6L8csyhdPIsK4ceOIj4+nS5cu9OrVi1dffdVvmp7URzPIBQsWsHfvXu666y7i4uLo3r07vXv3\nLs4jgIsvvpj27dsTExPDlVdeyeLFiwPebrgE8p6siUC+iLQF/g78ivOCRmOqrk6dICMj5NX37XOa\nzA0bBhdeGMa4guTvuafcXD8rjhgBM2fC1q0hb/vuu50u3XdaAytTMaysMqYS81UWBTsEq27dumzb\nts3vM0PZ2dk0bfr7NZmMjAyys7OLP9evX5/4+Pgj1ik5LSsri8cee4yUlBRSUlJITk5mw4YNZGdn\ns379ejIyMvxW9Ips3bqV/Px82rdvX5zW+eefz/bt24tj9Ww2l5GR4bMykp2dTXJyMjVr1jxieW8S\nEhKYNWsWEydOJDU1lT59+rCylI6wPOPwJjk5mRoeXQ2XzNdQbdq06ahtZ2RksHHjxuLPjRo1Kh5P\nSEhgz549Zd5usAKpZB12b5n1BZ5R1X/hdI1rjPFCFa67Dv7wB6eiEZUaNYI33oDjjgs5iebNoVev\nwHoaNCYMrKwyxhylU6dOVK9enbfeesvnMo0bNyYrK6v4c1ZWFmlpacWfvT3zVHJaeno699xzD7m5\nueTm5rJjxw727NlD//79SU9PZ926dV4reiXTqVevHgkJCSxdurQ4rZ07d7Jr1y4AUlNTj+gWPSsr\ny+czWampqezYsYN9+/YVT1u3bp3PfDjnnHP48MMPycnJ4cQTT2To0KE+99/f9CLetl2Ur7Vq1SI/\nP794Xk5Ojt+0PKWlpR3VNfy6deto3LhxwGlUhEAqWbtF5G5gEPDe/7N373E6VfsDxz/fYdxnMmMw\nM2LIpatLUVHUIFGIiCSXVPSrVKgTlUKcQufonDonRXKpOEVyv1RqREhKiS7I/TJug5E7s35/7Jlp\n7vPMs/dz/75fr/2aeZ5n77W/88wzs/baa63vEpEwILyQY5QKWaNHw5Yt1jDBgE6Ok5gIWe5+ueO5\n5+CNN8AHN5BU6NG6SimVS2RkJCNGjODxxx9n7ty5nD59mgsXLrB48WKGDBkCQLdu3Rg1ahSHDx/m\n8OHDjBw5kp49exbpPH379uXtt99m7dq1AJw8eZJFixZx8uRJbrjhBuLi4hgyZAinTp3i7NmzrFq1\nCoDKlSuzZ8+ezEQbIkLfvn0ZMGAAh9JHk+zdu5fPPvsMgK5duzJlyhR+/fVXTp06xcsvv5xvTNWq\nVaNRo0YMGzaM8+fPs3LlylwZFTN6wQ4ePMi8efM4deoU4eHhlCtXLrPnLWeMrjLGZJ57xYoVLFy4\nkK5duwLQoEEDZs+ezenTp9m6dSuTJk3KdmxsbGy2FO5Z3XjjjZQpU4axY8dy4cIFkpKSWLBgAffd\nd1+R4vM0VxpZ9wJngYeMMcnApcBrHo1KKW/74w9Hipk3D/77X5gzx3b7JChccQXceitMnuzrSFQI\n0LpKKZWnQYMGMW7cOEaNGkWlSpWoVq0ab731Fh07dgRg6NChNGrUiHr16lG/fn0aNWqUbb0nVzRs\n2JCJEyfSv39/oqOjqVOnDlOnTgWsNZ/mz5/Pli1bqFatGlWrVs2cm9SiRQuuvvpqYmNjqVSpEgCj\nR4+mVq1aNG7cmPLly3P77bezefNmANq0acOAAQNo0aIFderUoWXLlgXGNX36dNasWUOFChUYOXIk\nvXv3zvZ6Rm9UWloa48aNo0qVKsTExPD1118zfvz4fGN0RVxcHFFRUcTHx9OzZ0/eeecdateuDcDA\ngQMJDw8nNjaWPn360KNH9mUNhw8fTq9evYiOjmbWrFnZXgsPD2f+/PksWrSImJgY+vfvz/vvv59Z\ntr+kf5f8xnH6AxEx/hyfChLLlkGPHtYivJGRbhezcSM0bw4LFlh5M7xBxL0x6t60erX19m7eDMWK\nOVNmIPzcKn8igjHGP2pBB3iyrsr6WdfPvfIUGSGYYfY+XOl/1w5FpJT35PfZtVtXuZJdsJOIbBGR\n4yKSKiInRCTV3RMq5Vd27ID774fp0201sI4dsxJdjBvnvQZWoGjSBCpVgrlzfR2JCmZaVymllPIn\nrgwXHAvcZYy5xBgTaYyJMMa4fzWqlL84fdrKMz5kiNUF5aa0NOjVC+68E4o4hDswXLhgraRsw6BB\nttd0VqowQV9X5VySQRflVkop/+VKI+uAMeZXj0eilLc98QRcfjk89ZStYkaPhsOH4R//cCguf/TI\nI2BjjYm777bWDfv2WwdjUiq7oK+rci7JcPSoryNSSimVn+Iu7LNORD4C5mBNKgbAGDPbY1Ep5WlH\njsDu3TBrlq0UgF98YaUo/+47KFHCwfj8SfHi8Oij8OabVspEN4t46ilrceIsawUq5SStq5RSSvmN\nQhNfiEheecGMMeZBz4SU7dya+EL5rd274YYbrOlcNkYb2uK1ifCHDkGdOrB1K1So4FYRx49D9erw\n66/WMlx2aAKAwOaJxBfBWlcV9FnXvwPlFE18oUKZpxJfaHZBpdxw9izccgt07gzPPuu7OLx6kfXA\nA3DllTB4sNtF9O1rNbSKmBk3F724DGyaXbAoZWsjS3meNrJUKPNldsE6IrJMRDamP64nIkNdKVxE\nJonIARHZkOW5YSKyR0R+SN/auBu8Ur4ycCBUqQJ/+5uvI/Gixx+HCROsTB9uevRRq4iLFx2MSyns\n1VVKKfsSEhIQEd10C7gtISHBI38TrszJmgj8DXgHwBizQUSmA6NcOHYy8CYwLcfz44wxmmtMBaRp\n06y5WN99Z2s6l0uiowue3B4V5dnzZ9OoEbz9tq0irrvOGiq4aBG0b+9QXEpZ7NRVSimbduzY4esQ\nlPIrrmQXLGOMWZvjuQuuFG6MWQnkdYkYNMNEVID49lsYPtx2MT/9BE8/DbNnwyWX2A+rMEePZs8m\nlnNLSfF8DJlEoFUrCHPl30b+HnsM0heRV8pJbtdVSimllNNcuVo6LCI1AQMgIvcA+22et7+I/Cgi\n74qIFy5VVUg7cgS6doX69W0Vc+yYNQfr3/+Ga65xKLYQ1LWr1Qu4fbuvI1FBxhN1lVJKKeUWVxpZ\nj2MNv7hCRPYCA4BHbZzzLeAyY0wDIBnQYYPKc9LSrBWCu3SxFmuyUUyvXnDHHdC9u4PxhaDSpeH+\n+2FyXrnglHKf03WVUkop5bZC52QZY7YBt4lIWSDMGHPCzgmNMYeyPJwIzC9o/+FZhnglJiaSmJho\n5/Qq1Lz6KqSmWl9tyFhweNYsh+IKcX36WHOyhg2DYsWKfnxUVMHz4aKivDyUUhUoKSmJpKQkj57D\n6bpKKaWUsiPfFO4iMqigA11NXCEi1YH5xpi66Y9jjTHJ6d8PBK43xuTZNyCawl3ZsXw5dOsG69ZZ\nqQDd9MUXVi/W2rVw6aUOxucC8dcUzSkpcPq0rfe1YUOr8dqqlYNxpfPb900BzqZwd6qushmDpnBX\nAc2JFO5KBRu7dVVBwwUj0rdGWEMuqqRv/wdc52Jw04FVQB0R2SUifYCxIrJBRH4EbgUGuhu8UgWq\nWxfmz7fVENi92xpt+OGHnmlgRUdbF0r5bV7NHlgUEyda3VA29OkD773nUDwqlDlRV10qIl+KyCYR\n+VlEnkh/XpccUUop5ZZCFyMWka+BthlDL0QkAlhojLnF48FpT5byIW8sOBywd6KTk+GKK2DvXihb\n1q0iUlLgssusBBhONyYD9n0NEU72ZGUp0+26SkRigVhjzI8iUg74HugA3AucKKw3THuyVKDTniyl\ncvNkT1aGysC5LI/PpT+nVFALyQWHXRUbC02awNy5bhcRHQ2tW8P//udgXCqUuV1XGWOSjTE/pn//\nJ/ArVm8Y6JIjSiml3OBKI2sasFZEhovIcOBbYIong1LK195/35qLNXmy5xccDlg9e1pvlA06ZFA5\nyJG6Kn0ecYP040GXHFFKKeWGQocLAojIdUCz9IdfG2PWezSqv86rwwWV6w4csMadlShhq5gNG6Bl\nS/jqK8+vhxXQw31OnrS6+n77zerZcsPFi5CQAIsXW1PonBLQ72sI8MRwwfRybdVV6UMFk4CRxpi5\nIlIROGyMMSIyCogzxjyUx3E6XFAFNB0uqFRuduuqQlO4AxhjfgB+cPckSnnc2bPQrh08+aTVw+Km\nY8egUyddcNglZcvCuHHWe++mYsWszI1Tp8I//uFglMqohgAAIABJREFUbCok2amrRKQ4MAt43xgz\nN708l5cc0eVGlFIqsDm93IhLPVm+oj1ZymVPPGElYfjkE7fH96WlWesVV6sGb77pcHz50DvRsGmT\nNTdr50731szKi76v/s1TPVl2iMg0rF6rQVmec2nJEe3JUoFOe7KUys0rPVlK+bWPPoJFi+D7721N\noBozBg4dgpkzHYxNFerqqyEmBr7+Gpo393U0KhSJyM3A/cDPIrIeMMDzQHcRaQCkATuAR3wWpFJK\nqYBSaCMrfb2QD4wxR70Qj1JFs3kz9O8PS5dC+fJuF7NsmdV7tXat7Sld2URHw9EC/nL8dh0sL+ve\nHaZP10aWcp+dusoY8w2QVz/qEtuBKaWUCkmupnD/TkQ+FpE2IpprTfmRiRNh1Ci4zqU1R/O0ezf0\n6AEffOD8gsNHj1rDefLbUlKcPV+guu8+mD3b1vQupbSuUkop5TdczS4owO1AH6AR8DEwyRjzh0eD\n0zlZqjAZnw83r6fOnoVbb7XmYg0e7GBc6UJqzoQxtoZr3nqrtTZZx472Qwmp9z0AeTC7YNDVVTon\nS3mDzslSKjdvLEZMeu2RnL5dAKKAWSIy1t0TK+UIEVsX9oMGQVwcPPusgzGFomnTrBaSDfffDx9+\n6FA8KiRpXaWUUspfFNqTJSJPAb2Aw8C7wBxjzHkRCQO2GGNqeiw47clSHvTBB/Dyy/Ddd3CJh5YY\nDZk7zZs3W11Re/a4nSIwJQVq1LCGb0ZG2gvHlblwOlTTdzzRkxWsdZX2ZClv0J4spXLzRnbBaKCT\nMWZn1ieNMWki0s7dEyvlSz/9ZHW8fPml/QZWQRf0IZPYok4da0HiFSvAzfWBoqOtQ2fPhgcesBdO\nYQ0ona0TlLSuUkop5TdcGS64GMi8ZBGRSBG5EcAY86unAlMqF2Osrqf9+20Vc/QodO4Mb7wBdeva\nD6ug5BYh1Vty773w8ce2iujeHWbMcCgeFWq0rlJKKeU3XGlkjQf+zPL4z/TnlPKud96xujlspGpP\nS4NevaBtWyujnXJQ167WYtAXLrhdRLt2sGYNHDniYFwqVGhdpZRSym+40sjKNtjcGJOGLmKsvO37\n7+Gll6yVgkuXdruYV16xep7+8Q8HY1OWyy6D66+HbdvcLqJsWWjVCubMcTAuFSq0rsopLc2aL7l0\nKXz+OezapZO4lFLKS1ypgLaJyJP8dUfwMcD9qyiliurYMauX5K23oHZtt4tZsgTGj4d16yA83MH4\n1F8WLLBdRJcuMHkyPPSQA/GoUKJ1VU4vv8yed5ewtsIdHD5bjnL7PqFh/H4uf/dv0LSpr6NTSqmg\n5kp2wUrAG0ALwADLgAHGmIMeD06zCypjoFMnqFYN/v1vt4vZvh0aN4ZZs6BZMwfjQzN8Oe3PP6FK\nFet3Fh3tmXPo78y3PJRdMCjrKneyCxoDixfDmNFpbPoljJtugsqV4dhRw+rlZ4mND2PUmBK0aeOR\nkFUA0uyCSuXm8eyC6RVUN3dPoJRtd98N3dz/CJ4+DffcA88953wDSzmvXDm47TZryOCDD/o6GhUo\nQrGuiorKnikzKgo2brT+bnbuhJdfDqNDByhRImMP4eLFUsyfD/37W9k8//tfKFnSB8ErpVSQc6Un\nqyLQF6hOlkaZMcbjlz/ak6XsMsYadnbqlJW1zhOpu7VXxHn/+x9MnWrdjfcE/Z35lod6soKyrnLp\ns3rwIOzZgzS8jsqV4bHH4PnnoXgBt1FPnIDevSE1FebPtzXVVQUB7clSKjdvrJM1F1gBfAFcdPdE\nSvnCu+/C2rVWxjpdGylwtGsHjzxipcD31JBBFXRCs646fBhatGDKlWMAaxWFW24p/LCICCuPUI8e\n0O1ew6efpBEW7t5C4koppXJzpSfrR2NMAy/Fk/Pc2pOl3Pbdd1aq9pUrrbVyPUV7RfIwcyZUr25l\nG3RT585WY6tPH+fCyqC/M9/yUE9WUNZVBX5Wjx6FFi34d8xI/rW1LTt2SJE/1+fPQ8ua22lRZy/D\nv9BkGKFKe7KUys1uXeVKCvcFInKnuydQqsgcWCTp0CFrHtY779hvYEVHWxc6+W1RUbbDDT7btlkp\nAm3o0sVqqynlotCqq86dg7vv5t0Kg3l9S1uWL3fvOiA8HD7+pDjvfFmbVR/tdjhIpZQKXa70ZJ0A\nygLn0jcBjDEm0uPBaU9W6PnwQyuL4Lffuj2+7+JFaNMGGjWCV1+1H5L2erhh82ZrVv2ePRDmyr2c\n3DKyDO7Y4XxDVn+nvuWhnqygrKvy/aw++iizvkvgqf2DSUoSate297me+cBCXpp5DesPV6NUaR1b\nHWq0J0up3Dzek2WMiTDGhBljShljItMfe7zSUiHo559hwACYONHWBKrnnrO+jhzpUFyq6OrUsboA\nv/3W7SLKlYOWLWHuXAfjUkEr1Oqq76+4n0d3PMuiRWJn+cBM97zbhiuLbWHsw7/bL0wppVThjSyx\n9BCRF9MfVxWRGzwfmgopx49b62G9/jrUr+92MdOnwyefWNnpCsqslZUOB/SQu++G2bNtFdG5s+0i\nVIgIpbpq/364+59NeWdCmJ1/l9lI8WL885/wxkeVObAvdPKGKKWUp7gyXHA8kAa0MMZcKSJRwGfG\nGPdntLsanA4XDA1paVYD69JL4T//cbuYH36whgkuWwZ167p+nA4d85D1662JVVu2uN0zeeyYtQ71\nvn1Wz5ZT9HfuWx4aLhiUdVXOz+q5c3DrrXDHHfDSSwXvW2TGMLDtZs5Xr81/3nJvmK8KTDpcUKnc\nvJH44kZjzOPAGQBjzFGgRMGHKFUEP/xgZckaN87tIg4etDpOxo8vWgNLeVCDBvDBB7aKKF8emjSB\npUsdikkFs5Coq4YOhQoV4MUXPVC4CC9Mu5wZH4Wxa5cHyldKqRDiSiPrvIgUAwxkLviY5tGoVGhp\n1Ai++gpKuHc9dP681WHSs6c1vEz5CRFo3Nj2AmUdO8KnnzoUkwpmwV1XnTjBkiXWkOgpUzy37l9M\njLVswuuve6Z8pZQKFa4MF7wfuBe4DpgK3AMMNcZ4PLmyDhdUrihVCs6ezf/1qChrUdv86NAx/7Zv\nH1xzDSQnu90Oz0V/577loeGCbtdVInIpMA2ojNUwm2iMeSN9yOFHQAKwA+hqjDmex/GeHS64azf7\nG7XnOvmBGf8LIzGxgH0dCGPPHqhXD7Zu1cXAQ4UOF1QqN29kF/wQeBZ4FdgPdPRGA0spV7z7rtXA\nOnbMurjIazt61NdRKjvi4+HyyyEpydeRKH9ms666AAwyxlwNNAEeF5ErgCHAF8aYy4Evgeecj7ww\nBtPvER68ZBZ9++XfwHLSpZfCXXfB2297/lxKKRWsXOnJqpbX88YYj4/Y1p4sVZBVq6yhZIcOFXz3\ntrC7u9qr4f/GjIGdO+Gtt5wpT3/nvuWhnizH6ioRmQP8J3271RhzQERigSRjzBV57O+xuqqXTOPW\nqtt5K+Yl1nwrhIcXFLdzn+vvV52l8z2wbU9Jd5e6UwFEe7KUys0biS8WAgvSvy4DtgGL3T2hUowd\na7tbYu9eax7WlCmORKQ87cABW4fffTfMmWMlolQqH47UVSJSHWgArAEqG2MOABhjkoFKDsXqmv37\nGcDrDDnxApOnFNzAclrDynuocPA3Plt4znsnVUqpIOLKcMG6xph66V9rAzcAqz0fmgpKc+bAm2/C\nFbluBrvs9Gnrort/f7jzzsL3j4rSdbB86sIFuOoqa3EfN9WpY2UaXLvWwbhUUHGirhKRcsAs4Clj\nzJ+kJ9HIehpnonWNeeZv3MvHPDmoOPXqefPMQM2a9Kv1JRNG2rtBopRSocrF5Vr/Yoz5QURu9EQw\nKsht2gR9+8KiRRAb61YRxliZr2rVgiFDXDumoKQXyguKF7cWMJszBx591O1iMnqzGjd2MDYVtIpa\nV4lIcawG1vvGmLnpTx8QkcpZhgsezO/44cOHZ36fmJhIogOTpyZf+wZ/TC/v8v86p3UfUo0hfcuz\nfz/ExfkmBqWU8pakpCSSHJwA7sqcrEFZHoZhZW6qYIxp7VgU+Z9b52QFi5QUuOEGGDbMyrXupuHD\nrTWTvvrKyioIOr8mIMycCe+9B4vdH2m8bh3cfz/89pv99NX6mfEtD83JslVXicg04LAxZlCW58YA\nKcaYMSIyGIgyxuRq8niirjp71urB3bXL9c+q45/r06d5uPxMLh/ckb+9HOlgwcrf6JwspXLzxpys\niCxbSazx7h3cPaEKUQ88YKWrstHAmjHDmoM1Z85fDSwVIFq3hm++gRMn3C6iYUM4dQp+/dXBuFQw\ncbuuEpGbgfuBFiKyXkR+EJE2wBiglYj8DrQERnsk8jyULAk//+yts+WjdGm637KXGZPP+DgQpZQK\nPIX2ZPmS9mQFkZ9/hiuvtIaOuWHNGquNtmwZ1K2b/TXtlQgQrVvDI49Ap05uF/HEE9awpeeftxdK\ndHTBqf0LW1tN2eOJnixf8vg6Wb7qyQIurv2eqndew5crS9qZSqv8nPZkKZWb3brKleGC8ylgsq8x\n5i53T14YbWQpsFJ316iR/8WDXhAHiP/9z/ol3nef20V8+SUMHgzffedgXHnQhrtneWi4YFDWVb5u\nZAEMHAiRkTBihPNlK/+gjSylcrNbV7nSrbANiAU+SH98H3AAmOPuSZVy1YkT0L79XwsLqwDWrZvt\nIpo1g23bYPduqFrVgZhUMNG6ykPuuw969LDmxNqdD6mUUqHClUbWzcaYRlkezxeRdcaYgZ4KSimA\nixehe3crm5zP5yYovxAebqXtnzcPHn/c19EoP6N1lYdcf731/3j9erjuOl9Ho5RSgcGVxBdlReSy\njAciUgMo67mQVMA7fNjKTmHT4MFw8iT8978OxKSCRseOMHdu4fupkKN1lYeI6N+dUkoVlSuNrIFA\nkogkichy4CtggGfDUgHr7FkrscGaNbaK+e9/Yf58mDXL6r1QKkPr1tbH69gxX0ei/IzWVR7UoQPM\nm6djtpVSylWFDhc0xiwRkdpARl6h34wxZz0blgpIxljZ42Ji4JVX3C5m7lz4+9+tjN/R0Q7Gp4JC\nuXLW3KzFi23l0FBBRusqKwlQ1jlTTiYFuun8cvb8ci07d0aSkOBMmUopFcwK7ckSkTLA34D+xpif\ngGoi0s6VwkVkkogcEJENWZ6LEpHPROR3EVkqIpe4Hb3yL6NHW5On3n8fwlzpJM3t22/h4YetOTc1\najgcn/IPS5bA9Om2itChSyonO3VVsEhJ+StJkDEFL1NQVMUb1qdd2jzmzQypdqtSSrnNlSvhycA5\noEn6473AKBfLnwy0zvHcEOALY8zlwJfAcy6WpfzZjBnw9ttW66ise9Mgtm61Lp4nT4ZGjQrfXwWw\nt96ydXj79rB0qTU6Val0duoqVZjy5elw1Wbmvn/c15EopVRAcKWRVdMYMxY4D2CMOQW4lMTVGLMS\nyHkvrQMwNf37qUBH10JVfu3KK2HhQqhSxa3DDx2CO+6wUgS3C6l7zyGoeXOrx/PQIbeLiI21PnJJ\nSc6FpQKe23WVck2rHrGs/TVC50MqpZQLXGlknROR0qQv8igiNQE7948rGWMOABhjkoFKNspS/qJB\nA7jmGrcOPXUK7roLunSxpnSpIFeyJLRqZTXKbejQQYcMqmycrqtUDmXvvp1bw1ayZLEmwFBKqcK4\n0sgaBiwBqorIh8Ay4FkHY9D/1iHs4kW4/36oWdNKdqFCxF13WUNLbbCynUFamkMxqUDn6bpK1apF\nm4rfs/TTk76ORCml/F6B2QVFRIDfgE5AY6yhF08ZYw7bOOcBEalsjDkgIrHAwYJ2Hj58eOb3iYmJ\nJCYm2ji18ifGwBNPwPHj8NFH2bNiqSB3553WL//0aShd2q0irrjCyjT4/ffWYqnKfyUlJZHkwbGd\nHqqrVB5afzmYVxIFY/R/tlJKFUSMKbgjSUR+NsbUdfsEItWB+RlliMgYIMUYM0ZEBgNRxpgh+Rxr\nCotP+cDZs1aGuA4dbBXz0kvWiLGvvoLIyIL3FbEaZSqIbNkCtWrZulIbPNhaR22Uw+kN9PPmWSKC\nMcbRS3S7dZXNc3usrrLzWYyOzp5h0KmU7jVrWuvN1/XJu608QUYIZpj+01MqK7t1lSvDBX8QEbfu\nE4vIdGAVUEdEdolIH2A00EpEfgdapj9WgSItDfr0sdK027ioeOMNq/dq8eLCG1gqSNWubftWuKZy\nV1m4XVcFK0+ldG/d2rrPppRSKn+u9GT9BtQCdgInsYZhGGNMPY8Hpz1Z/sUYGDgQ1q2Dzz93e5jX\nhx/Cc8/BihVkLmqZ845rTk4uqqmCR1oaxMdbC1fXrOlcudqT5Vke6skKyrrKyc+iU2XNnQtvvglf\nfGG/LOUftCdLqdzs1lX5zskSkRrGmO3kXudKhapRo6yc2UlJbjewFi6Ep5+GL7/8q4EFVgNLL2pV\nUYWFWWtmzZ0Lgwb5OhrlC1pXeV/z5tCjB5w86fayiEopFfQKGi44K/3re8aYnTk3bwSn/MiECTBt\nmjVGpHx5t4pYudIaaTh3Llx1lcPxqZDVsaM1P0SFLK2rvCyy5FkaJhzSdeqUUqoABWUXDBOR57Hm\nU+W6R2yMGee5sJTfueUWa22j2Fi3Dt+wATp3toYK3nijw7GpwLZtG1x2mduHt2wJ3bvD4cMQE+Ng\nXCpQaF3lbcWKcdvWd1g2fxBt25bxdTRKKeWXCurJ6gZcxGqIReSxqVByxRVQo4Zbh/7+O9xxhzWG\nv1Urh+NSge3iRWjcGHbscLuIUqXgtttgwQLnwlIBResqbytenOYNU/lqqa71rJRS+cm3J8sY8zsw\nRkQ2GGMWezEmFUT++MO6AH7lFeja1dfRKL9TrBi0bWutKvzkk24X07EjfPIJPPCAc6GpwKB1lW9c\nf1ccW18sTUqKlbhIKaVUdoWmcNdKS7lr506rgfXii9C7t6+jUX6rQwerkWVD27ZWMpVTpxyKSQUc\nrau8q0SrW7m5xHcsX+7rSJRSyj+5sk6WCjXr11tj+2zYu9eaKzNwIPTr51BcKji1agVr18KxY24X\nER0NjRppSmnlPhGZJCIHRGRDlueGicgeEfkhfWvjyxj9Sv36NL+4jK8WnvR1JEop5ZfybWSJSJf0\nr+5NxFGBacMGawJVlSpuF3HggNXA6tfP1ggwFSrKloXERFi0yFYxHTpolsFQ5GBdNZm808CPM8Zc\nl74F9BK8UVHWWlkZm61hfsWK0XxgA75aWcKx+JRSKpgU1JP1XPrXT7wRiPIDv/wCrVvDv/4FnTq5\nVcSRI1bHRPfu8OyzDsengtdDD0HxgpKdFq5DByv5xcWLDsWkAoUjdZUxZiWQ15Loji6a7EspKdZ6\nhBlbQQvAu+K6lzuyOzmcgwediU8ppYJJQVc1R0TkM6CGiOSaMGGMuctzYSmv27zZah2NHQvdurlV\nxKFD1hysdu2seVhZRUcXXKFHRbl1ShUsOnSwXUT16hAfD6tXQ9Om9kNSAcPTdVV/EekJrAOeNsYc\nt1le0Che3PpbS0rSxEZKKZVTQY2stsB1wPvAP70TjvIJY6y0bC+/DD17ulXEwYPWEMEOHWDkSGso\nSlZHj1qnUcqTMoYMaiMrpHiyrnoLeNkYY0RkFDAOeMjhcwS05s3hq6+0kaWUUjkVlML9HLBGRG4y\nxhwSkXLpz//pteiUd4jA559bc2PckJwMLVpYleywYbkbWEp5S4cOcO+98Npr+jkMFZ6sq4wxh7I8\nnAjMz2/f4cOHZ36fmJhIYmKi3dMHhBYtYOJEX0ehlFL2JSUlkZSU5Fh5YgrpXhCRa7DuEEZjjU0/\nBPQ2xmx0LIr8z20Ki095R2HD/UqVgtOn839dRHuylOcZAwkJsGQJXHWV++Xo59WzRARjjKPNYCfq\nKhGpDsw3xtRNfxxrjElO/34gcL0xpnsex3msrvLkZ9GJstPSICYGNm2CuDhn4lLeJyMEM0z/6SmV\nld26ypUU7hOAQcaYBGNMNeDp9OdUCMkY7pd1270bateGV1+FM2d8HaFS1kWjZhkMWbbqKhGZDqwC\n6ojILhHpA4wVkQ0i8iNwKzDQE4EHsrBDB2hadj0rVvg6EqWU8i+uNLLKGmO+ynhgjEkC3BtXpvxD\ncrLtInbutLJu9+sHQ4bYD0kpwOqCevttW0V07Ahz5zoUjwoktuoqY0x3Y0y8MaakMaaaMWayMaaX\nMaaeMaaBMaajMeaAJwIPaBUq0PTQp6z4rIChDEopFYJcaWRtE5EXRaR6+jYU2ObpwJSHrFsHDRrA\nb7+5XcRvv0GzZtYaWM8842BsSkVEwPjxtoq45RbYsgX27XMoJhUotK5yWHS0C+tqFS9Os/qprPzy\nrNfjU0opf+ZKI+tBoCIwG2sdkpj051SgWb0a2raFCRPgiivcKuL7761sUqNGZV9oOOcilzk3TdGu\nXNK4MezfD9u3u11EeLi1nva8XMm8VZDTusphOYeJ5zcvt2GbimzZU5rjmtxeKaUyFdrIMsYcNcY8\nmb7afUNjzABjjM0lDJXXLV1qTVaZOhXucm/ZmOXLrYvX8eOhV6/sr+Vc5DLnlpLiwM+ggl+xYtZC\nazZbSDpkMPRoXeU7JZrfzPWlN7Jqla8jUUop/+FKT5YKdPPmWa2iOXOgTRu3i+nSBf73P+sCVimP\n6dDBdgupTRv45htITXUoJqVU/m64gWanPmPFl+d9HYlSSvkNbWSFgnr1rHWwbrrJrcOnT7e+Llhg\nrYmilEe1amXNHTx2zO0iIiLg5putPBpKKdfknIPl8jDvMmVoOqEXK7/Nd+lNpZQKOYU2skTkZlee\nU36senWroeWG11+HwYOt72+4wbmQlMpXmTKweTOUL2+rGB0yGFq0riq6nHNpwf1h3k3uqcIPPwhn\nNf+FUkoBrvVkvenicyrA5byLKQKDBsGePZq4QnlZbKztItq3h8WL4bwbI5gKS+SSZ5Y15WtaVxVR\nzrm0dubORkRY+ZS++865+JRSKpDl27cvIk2Am4CKIjIoy0uRQDFPB6bcdPYslCjx123JIsjIJHXm\nDPTsCYcOwaefagNLBab4eKhTx0rYctttRTu2sItNN/68lIdoXeU/mjWDFSugaVNfR6KUUr5XUE9W\nCaAcVkMsIsuWCtzj+dBUkR0+bE2amjXL7SJSUqwpMcWLWwkJtYGlApkDOTSU/9O6ykty9vDm7NFt\n2hRWrvRNbEop5W/EGFPwDiIJxpidIlIOwBjzp1cis85tCotPpdu6Fe68Ezp1gldegbCi5zQRsYZ7\ntGsHY8a4VYRSfuWXX6xMgzt3Otv7JGL1+ir3iAjGGEf7A4O1rvLnz1rO2A4kG664Eg4fFoppH2JA\nkRGCGeanHzSlfMRuXeXKZXSEiKwHNgGbROR7EbnG3RMqD1i92hqn8fTTMHq0W62jNWusr48+Cq+9\npg0s5QeMgfXrIS3N7SKuvBJKlbKKUUFP6yofq7z8Yypd2M/Gjb6ORCmlfM+VS+kJwCBjTIIxJgF4\nOv055Q+WLrUWF540CR55xK0ipk//a33iJ590MDal7BCB++6D77+3VYQOGQwZWld5Wdbhg9HRwI03\n0uziV6z4WntElFLKlUZWWWPMVxkPjDFJQFmPRaSKpm5dq6F1551FPjQtDYYOhRdegC+/9EBsStl1\n113WIto2dOxouwgVGLSu8rKs2QmPHgUSEmhach0rl3ptpKZSSvktVxpZ20TkRRGpnr4NBbZ5OjDl\novh4uO66Ih928iR06QJJSfDtt3CNDqpR/qhzZ/jkE1uTUho3huRk2L7dwbiUP9K6ytdEaHZzGiu+\nCfPbeWRKKeUtrjSyHgQqArPTt4rpz6kAtWePNYUrIgKWLYNKlXwdkVL5uP56647AL7+4XUSxYlYy\nFx0yGPS0rvIDl7Wpgzl3Xm9qKKVCXqGNLGPMUWPMk8CtwC3GmKeMMUc9H5rKZeNGuHjRVhFJSXDD\nDdCtG0yeDCVLOhOaUh4RFmZlzPzkE1vFdOzobCOroMWKdaFi39C6yj/ILc1oFrWJFSt8HYlSSvlW\noY0sEambnrFpI5qxyXcmT7bWwPr993x3iY7O/8IvY2veHPbvh8GDrevXrK/pmljKL/XuDdWr2yri\nttvghx/gyBFnQso6FyXndlQv631C6yo/Ua8ezYbcrI0spVTIc2W44DtoxibfOXPGyho4erTVDXXV\nVfnuevRo3hd9J07AvfdCw4awY0f+F4cpKV77qZRy3XXXQa9etoooXdq6R7FwoUMxKX+kdZWfaNYM\nbWQppUKeZhf0Zzt2QNOmVuvnu+8KbGDlZ/Nma+J/mTKwciUkJDgfplKBwOkhg8rvaF3lQ1mH0DZo\nAFu2wIEDvo5KKaV8R7ML+rPBg+H+++HjjyEyssiHz55ttdGeeMJaRqtUKQ/EqFSAaNsWvvgCTp/2\ndSTKQ7Su8qGcQ2iLFYPYWJ2rqJQKXcVd2OdBYARWtiYDrEAzNnnHjBnWxKkiOnMG/vY3a2jUggVW\nogulQl1MDFx7rdXQat/e19EoD9C6yo+MHGktnfCvf1mPRXwbj1JKeVuBjSwRKQa8kJ6xSXmbGw2s\nzZut+Ve1alkT/cuX90BcSgWozp1h5kxtZAUbJ+oqEZkEtAMOGGPqpT8XBXwEJAA7gK7GmOP2Iw5+\nzSr+xpMfVAd0CIVSKjQVeBVvjLkINPVSLKHt/HlHirn5ZujXzxphqA0sFVR+/926g2BDly4wf77V\n26uCh0N11WSgdY7nhgBfGGMuB74EnrN5jpDR6PcP+X2zkJrq60iUUso3XOkqWS8i80Skp4h0ytg8\nHlmoOHsWBgyAhx92u4g//4SHHrK+//xzePRRHZqhglCNGtYHfO9et4uIjbWGDC5e7GBcyl/YqquM\nMSuBnAn4OwBT07+fCnR0KNagVzKxCQ3L/Mbq1dbjnGvL6RwtpVSwc6WRVQo4ArQA2qdv7TwZVMj4\n/Xcr9d+uXfD664Xunt86WBER8N57Vs9VgwaL2bJsAAAgAElEQVReiFspXyhRwhrnZ3Nh4m7d4KOP\nHIpJ+RNP1FWVjDEHAIwxyUAlm+WFjptuotmppaxIugjkToyh68kppYJdoY0sY0yfPDadTGyHMTBh\ngpX67//+z7podOG2XtZ1sM6dgxdfhEqVYNYsrbRUiOjWzUoIY0OnTlZP1smTDsWk/IKX6irjcHnB\nq3x5ml26nRVL9A9NKRWaXMkuqJz24YdWI2v5crfWvvr9d+jRAypWhB9/hLg4D8SolD+67TZrYeLt\n263hg26IiYGbbrIyb9qc4pWnjGFRBb2uC38HjAMiUtkYc0BEYoGD+e04fPjwzO8TExNJTEz0fHR+\nrsltZfl+ainOnoWSJX0djVJKFSwpKYmkpCTHyhNj/PfGnIgYf47PbRcuWF1P4eFFOkwE3nwThg+3\n0uP+3//p3CsVgh57zFqX4IEH3C5iyhRrYeJPP3UsKpeJWH/+oUxEMMb43X8vEakOzDfG1E1/PAZI\nMcaMEZHBQJQxZkgex3msrgroz8uqVTTsdTVvTL2Em2/O/lJA/1xBSEYIZpj+QpTKym5d5bNGlojs\nAI4DacB5Y0yu1ZyCtpHlhi1boE4dawrXlClw+eW+jkgpH7l40Vrp1IZjxyAhwZoOecklDsXlIr24\n9M9GlohMBxKBCsABYBgwB5gJVAV2YqVwP5bHsdrIyseAAVbCmSE5mqaB/nMFG21kKZWb3bqq0DlZ\nIlJZRCaJyOL0x1eJyEPunjCLNCDRGHNtXg2soGAM7Ntnq4gLF+C116BJE+vxypXawFIhzmYDC6wk\nMYmJVm+WCg526ypjTHdjTLwxpqQxppoxZrIx5qgx5jZjzOXGmNvzamCpgjVrBitW+DoKpZTyPley\nC04BlgLx6Y83AwMcOLe4eP7AtGcPdOhgzR9x088/W42rJUtg7VrrOQeuL5VSaJbBIDQFz9RVyoam\nTWHVKqsDWimlQokrjZwYY8zHWD1PGGMuAE78uzTA5yLynYj0daA8/5CWBm+9ZS3G06gRLFxY5CJO\nn4aXXoIWLeCRR+CLL+CyyzwQq1IhrH17q2f4yBFfR6Ic4qm6StlQubKVBXfjRl9HopRS3uVKdsGT\nIlKB9NS1ItIYay6VXTcbY/aLSEWsxtav6YtBBq7ffvtrVWA3MgdGR+dOw963r7WBlZVMKeWMcuXg\njjvg44+tBbxVwPNUXaVsyhgyWL++ryNRSinvcaWRNQiYB9QUkW+AisA9dk9sjNmf/vWQiHwK3ADk\namQFVFrcgwet3OqPPAJhRRsJuWuX1cCqVQv+8x9o3dpDMSoVLLZvh/XrrYWv3NSrl5WpUxtZnuV0\nWtx8eKSuUvY12/kBiw50on//Mr4ORSmlvKbA7IIiEgY0BtYCl2PNo/rdGHPe1klFygBhxpg/RaQs\n8BkwwhjzWY79gj674Llz8K9/wdix1rCl06ehVClfR6VUANiyxbpFvnt3kZdDyHDhAlStCklJ3kso\no1nVnM8u6Km6qgjn1+yCBdjW+lFuXjuOfSmlM5cdyWvkRla6npx3aXZBpXLzaHZBY0wa8F9jzAVj\nzCZjzEaHKq3KwEoRWQ+swVqX5LNCjgk6S5daU7eSkuDbb63ntIGllItq17a6fpcscbuI4sWhe3eY\nNs3BuJTXebCuUg6o0boOYefO8scffz2XkmI1HvPbCmqAKaVUIHBlTNsyEeks4tyyt8aY7caYBunp\n2+saY0Y7VXYg+OUXuPNO6N8fXnnFyo1Rs6avo1IqAPXubS0cZ7OI99+3ctaogOZ4XaWcIS2ak1hs\nBV995etIlFLKewpdjFhETgBlgQvAGaxhGMYYE+nx4IJsuGD58nC8gGnYOjxCqSI6ftxaVXjrVoiJ\ncbuYBg1g3Dgro6enBcPwL7s8sRhxsNZVQfF5SUvjvcgBfNZiNP+b59q8rKD4uQOIDhdUKje7dVWh\niS+MMRHuFu4p1atXZ+fOnb4Ow3FHj4Legw1uCQkJ7Nixw9dhBI9LLoG2bWHGDHjiCbeL6d0bpk71\nTiNLeYY/1lUqXVgYLW85z5AkIS2tyHmhlFIqIBXakwUgIlFAbSBzxpAx5msPxpVx3jzvDqa3LD19\neqUcp59dD9i+HUqXhthYt4s4cMBKfLFnj5Xa3ZP0Dr1nerLSy/WrusqZsoPk87JrF7USL+XTuWHU\nrVv47kHzcwcI7clSKjePJr5IP8HDwNfAUmBE+tfh7p5QKaUcVaOGrQYWWAumNm0Kn3ziUEzK67Su\n8nPVqtHitjCWLfN1IEop5R2udNo/BVwP7DTGNAeuBY55NCqllPKyhx+GiRN9HYWyQesqP9eyJS43\nsqKirN6sjC062rOxKaWU01xpZJ0xxpwBEJGSxpjfsNYhUUqpoNG2LWzbBps2+ToS5Satq/xcixbw\n9dfW+nSFyZniXVO6K6UCjSuNrD0iUh6YA3wuInOB4Ms64QU7d+4kLCyMNAdyRdeoUYMvv/zSpX2n\nTp1Ks2bNMh9HREQ4lnzh1VdfpV+/foCzPx/A7t27iYyM1DlMyivCw+Ghh+Cdd3wdiXKT1lV+rmJF\nqF4d1q3zdSRKKeV5hTayjDF3G2OOGWOGAy8Ck4COng4sUBXW+PHVEi5Zz3vixAmqV69e4P7Lly+n\natWqhZb73HPPMWHChDzPU1Q537uqVauSmprqs/dMBZi0NFizxlYRDz8MH34Ip045FJPyGq2rAkPL\nZudY9oX9G3HR0TqcUCnl31xJfFEtYwO2Az8C9maZK79njCm0cXPx4kUvRaOUCy5ehE6drNW+3ZSQ\nAI0bw8yZDsalvELrqsDQauEAls4+abuco0d1OKFSyr+5MlxwIbAg/esyYBuw2JNBBYu0tDSeeeYZ\nKlasSK1atVi4cGG211NTU3n44YeJj4+natWqvPjii5lD47Zt20bLli2JiYmhUqVK9OjRg9TUVJfO\nm5KSwl133cUll1xC48aN+eOPP7K9HhYWxrZt2wBYtGgRV199NZGRkVStWpVx48Zx6tQp7rzzTvbt\n20dERASRkZEkJyczYsQIunTpQs+ePSlfvjxTp05lxIgR9OzZM7NsYwyTJk2iSpUqVKlShX/+85+Z\nr/Xp04eXXnop83HW3rJevXqxa9cu2rdvT2RkJP/4xz9yDT/cv38/HTp0oEKFCtSpU4d33303s6wR\nI0Zw77330rt3byIjI6lbty4//PCDS++XChIOjffr10+HDAYorasCQGL7CNZvKqGNIqVU0HNluGBd\nY0y99K+1gRuA1Z4PLfBNmDCBRYsW8dNPP7Fu3TpmzZqV7fXevXtTokQJtm3bxvr16/n8888zGw7G\nGJ5//nmSk5P59ddf2bNnD8OHD3fpvI899hhlypThwIEDTJo0iffeey/b61l7qB5++GEmTpxIamoq\nGzdupEWLFpQpU4bFixcTHx/PiRMnSE1NJTY9Rfa8efPo2rUrx44do3v37rnKA0hKSuKPP/5g6dKl\njBkzxqXhk9OmTaNatWosWLCA1NRUnnnmmVxl33vvvVSrVo3k5GRmzpzJ888/T1JSUubr8+fPp3v3\n7hw/fpz27dvz+OOPu/R+qSDSty988AGcdP9Oedu21npZ2kYPLFpXBYbSHW7nljLr+PxzX0eilFKe\nVeR1140xPwA3eiAW5wwfnn2wdsaWXyMlr/1dbNAUZObMmQwYMID4+HjKly/Pc889l/nagQMHWLx4\nMa+//jqlSpUiJiaGAQMGMGPGDABq1qxJy5YtKV68OBUqVGDgwIEsX7680HOmpaUxe/ZsRo4cSalS\npbj66qvp3bt3tn2yJpIoUaIEmzZt4sSJE1xyySU0aNCgwPKbNGlC+/btAShVqlSe+wwfPpxSpUpx\nzTXX0KdPn8yfyRX5JbnYvXs3q1evZsyYMYSHh1O/fn0efvhhpk2blrlP06ZNad26NSJCz5492bBh\ng8vnVUGiWjW4+WaYPt3tIooXh/794d//djAu5XUBUVeFoqZNaXtmNotmnynSYTlTukdFeSg+pZRy\nSPHCdhCRQVkehgHXAfs8FpEThg8vWiOpqPu7aN++fdmSRyQkJGR+v2vXLs6fP09cXBxgNS6MMVSr\nVg2AgwcP8tRTT7FixQr+/PNPLl68SLQLM3sPHTrExYsXufTSS7Odd8WKFXnu/8knnzBy5EgGDx5M\n/fr1efXVV2ncuHG+5ReWDENEcp1748aNhcZdmP379xMdHU2ZMmWylf39999nPo7NsiBtmTJlOHPm\nDGlpaYSFFfleggpkAwZYraSHHgI3f/cPPwy1akFysu11jpWXBGRdFYpKluSOZn8yYrEhLc31P9GU\nFM+GpZRSTnPl31tElq0k1nj3Dp4MKljExcWxe/fuzMc7d/6VTbhq1aqUKlWKI0eOkJKSwtGjRzl2\n7Fhm78vzzz9PWFgYmzZt4tixY3zwwQcupTKvWLEixYsXz3beXbt25bt/w4YNmTNnDocOHaJDhw50\n7doVyD9LoCuZ/nKeOz4+HoCyZctyKkvatv3797tcdnx8PCkpKZzMMgxs165dVKlSpdB4VIhp3hyG\nDbOyDbopOhq6dYPx4x2MS3ma1lUBokafRCqUOU2We2RKKRV0XJmTNSLL9ndjzIcZCz6qgnXt2pU3\n3niDvXv3cvToUcaMGZP5WmxsLLfffjsDBw7kxIkTGGPYtm0bX3/9NWClWS9XrhwRERHs3buX1157\nzaVzhoWF0alTJ4YPH87p06f55ZdfmDp1ap77nj9/nunTp5OamkqxYsWIiIigWLFiAFSuXJkjR464\nnGwjgzGGkSNHcvr0aTZt2sTkyZPp1q0bAA0aNGDRokUcPXqU5ORk/p1jPFZsbGxmQo6s5QFceuml\n3HTTTTz33HOcPXuWDRs2MGnSpGxJN/KKRYUgEbj3Xmvcnw1PPglvvw1n9L9dQPBkXSUiO0TkJxFZ\nLyJrnSgzpN13H217RLNokfdOmTXlu6Z7V0p5gysp3OeLyLz8Nm8EGUiy9sb07duX1q1bU79+fRo1\nakTnzp2z7Ttt2jTOnTvHVVddRXR0NF26dCE5ORmAYcOG8f3331O+fHnat2+f69iCen3efPNNTpw4\nQVxcHA8++CAPPvhgvse+//771KhRg/LlyzNhwgQ+/PBDAC6//HLuu+8+LrvsMqKjozPjcuXnv/XW\nW6lVqxatWrXi2WefpWXLlgD07NmTevXqUb16ddq0aZPZ+MowZMgQRo4cSXR0NOPGjcsV64wZM9i+\nfTvx8fF07tyZkSNH0rx58wJjUcpdV1wBDRvamt6lvMjDdVUakGiMudYYc4MT8Ya6tm1hnhevILKm\nfNfMhkopb5DC7vaLyL+x1hr5IP2p+4ADwBwAY0zh2RjcDU7E5BWfiGgvhQpI+tkNLMuWWdO7Nm6E\n9E5e20SsC71Qlv534OhdEE/WVSKyHWhkjDmSz+t51lVOCNbPy4ULEB8P334LNWrYLy86OnvjKSoq\n+zyurO9jsL6ndsgIwQzTN0WprOzWVa40stYZYxoV9pwnaCNLBRv97AYWY+Cmm2DQIOjSxZky9QLP\nY40sj9VVIrINOAZcBCYYYybmeF0bWW545BGoXRvSV+xwVM73TRtZBdNGllK52a2rXJm0UFZELjPG\nbEs/YQ2grLsnVEoprzl3Dr77zkrr7gYReOEFGDoU7rnHeqz8lifrqpuNMftFpCLwuYj8aoxZmXWH\nrOsYJiYmkpiY6NCpg9c991h/W55oZGWkfM/6WCmlCpKUlJRt/VW7XOnJagNMALYBAiQA/YwxnzkW\nRf7n1p4sFVT0s+tlBw9ak6s2bIAsSwsUhTFw7bUwahS0a2c/JL2L7rGeLK/UVSIyDDhhjBmX5Tnt\nyXLD+W9/IP62K1m3sTRZVjjxuJzvaWFDDUOB9mQplZvdusqV7IJLgNrAU8CTwOXeaGAppZRtlSrB\ngw/C2LFuF5HRmzVqVPBe7AYDT9VVIlJGRMqlf18WuB2wv/ifIrxMOB3MXGbNdH+5BSdkTYqhiTGU\nUk7Jt5ElIteLSCyAMeYsUB94GXhNRDQBqlIqMDzzDHzwAeRYl60oOnWC1FRYvNh+OBnDmPLbNL10\n0XihrqoMrBSR9cAaYL7eaHTINddwX6VlvP/2qcL3VUqpAFNQT9Y7wDkAEbkFGA1MA45jDclQSin/\nFxsLDzxgdUW5qVgxePVVGDIELl60F05KSva75jk3vYteZB6tq4wx240xDdLTt9c1xoy2W6ZKJ0Lz\nx67kWPJp1q/3dTD5y7rGlt4IUUq5qqBGVjFjTMao5HuxMip9Yox5Eajl+dCUUsohzz8PH38Mf/zh\ndhF33QUREZC+lJzyH1pXBbCwXj144MIkJr9zzteh5EuHEyql3FFgI0tEMrIPtgS+zPKaK1kJlVLK\nP8TEwDffwGWXuV2ECIwZAy++CGfOOBibskvrqkBWqRK9m/7B9A/TAubvqrAhvzoEWCkFBTeyZgDL\nRWQucBpYASAitbCGYagQFBYWxrZt21zad8SIEfTs2ROA3bt3ExkZ6VhmvUcffZS///3vACxfvpyq\nVas6Ui7AypUrufLKKx0rT/mJOnVs52Bv2hQaNID//MehmJQTtK4KcDU+GMn1N5dg+nRfR+Kawob8\n6hBgpRQU0MgyxvwdeBqYAjTNkp82DHjC86EFrunTp3P99dcTERFBlSpVaNu2Ld98842vw2Lq1Kk0\na9bMVhlSxIvUjP2rVq1Kampqoce7GuP48eN54YUX3I4rq5wNx6ZNm/Lrr7+6XZ4KbmPGWNu+fb6O\nRIHWVUEhNpZBT4fx+uuawVMpFTwKTOFujFljjPnUGHMyy3ObjTE/eD60wDRu3DgGDRrE0KFDOXjw\nILt27eLxxx9n/vz5RS7rYh4z7PN6zlXGGFuNkYwyPMmVGNPSnE33a/c9UaHliiugXz8YNMgz5Rd1\nKJIOTdK6Khjcdpv19YsvPH+unH9jORcqLux1pZRyRaHrZCnXpaamMmzYMN566y06dOhA6dKlKVas\nGHfeeSejR1sJqc6dO8eAAQOoUqUKl156KQMHDuT8+fPAX8Pexo4dS1xcHA8++GCezwEsWLCAa6+9\nlqioKJo2bcrPP/+cGceePXvo3LkzlSpVomLFijz55JP89ttvPProo6xevZqIiAii06/Ezp07xzPP\nPENCQgJxcXE89thjnD17NrOs1157jfj4eC699FImT55cYINkx44dJCYmcskll9C6dWsOHz6c+drO\nnTsJCwvLbCBNmTKFmjVrEhkZSc2aNZkxY0a+Mfbp04fHHnuMtm3bEhERQVJSEn369OGll17KLN8Y\nw6uvvkrFihW57LLLmJ5l3Enz5s157733Mh9n7S279dZbMcZQr149IiMjmTlzZq7hh7/99hvNmzcn\nKiqKunXrZmsw9+nTh/79+9OuXTsiIyNp0qQJ27dvL/iDogLeCy/A2rXwmQcSeRd1KJIOTVLBQASe\nfhr+/nfP92bl/BvLufBwYa/blTNbYajfJFEqWGkjy0GrV6/m7NmzdOzYMd99Ro0axdq1a9mwYQM/\n/fQTa9euZVSW1NLJyckcO3aMXbt2MWHChDyfW79+PQ899BATJ04kJSWFRx55hLvuuovz58+TlpZG\nu3btqFGjBrt27WLv3r1069aNK664grfffpsmTZpw4sQJUtJrjcGDB7N161Y2bNjA1q1b2bt3Ly+/\n/DIAS5YsYdy4cSxbtowtW7bwRSG3GLt3787111/P4cOHGTp0KFOnTs32ekYD7dSpUzz11FMsXbqU\n1NRUVq1aRYMGDfKNEWDGjBm8+OKLnDhxgptvvjnXuZOTk0lJSWHfvn1MmTKFfv36sWXLlnxjzYhl\n+fLlAPz888+kpqbSpUuXbK9fuHCB9u3b06ZNGw4dOsQbb7zB/fffn63sjz76iBEjRnDs2DFq1qyZ\nbRij8lOrVkGvXm4fXqaMNS/r8cc1CYZSTunRAw4cgCVLfB2Js3L2jIHeJFEqFARlI8vOUJuc/wiL\n4siRI8TExBAWlv/bOn36dIYNG0aFChWoUKECw4YN4/333898vVixYowYMYLw8HBKliyZ53MTJ07k\n//7v/2jUqBEiQs+ePSlZsiRr1qxh7dq17N+/n7Fjx1KqVClKlCjBTTfdlG88EydO5PXXX+eSSy6h\nbNmyDBkyhBkzZgAwc+ZM+vTpw5VXXknp0qUZPnx4vuXs3r2bdevW8fLLLxMeHk6zZs1o3759vvsX\nK1aMn3/+mTNnzlC5cuVCE0106NCBxo0bA2S+L1mJCCNHjiQ8PJxbbrmFtm3b8vHHHxdYZlb5DYNc\nvXo1J0+eZPDgwRQvXpzmzZvTrl27zPcI4O6776Zhw4aEhYVx//338+OPP7p8XuUj110H334Lc+a4\nXcSdd8K118LQoQ7GpVQIK14cXmm9nCFPnLS9Hp0/8XTPmFLKPwVlI8vOUJusW1FVqFCBw4cPFzhn\naN++fVSrVi3zcUJCAvuyzKCvWLEi4eHh2Y7J+dzOnTv55z//SXR0NNHR0URFRbFnzx727dvH7t27\nSUhIKLChl+HQoUOcOnWKhg0bZpZ1xx13cOTIkcxYsw6bS0hIyLcxsm/fPqKioihdunS2/fNSpkwZ\nPvroI8aPH09cXBzt27fn999/LzDWwrIHRkVFUapUqWzn3udAZoL9+/fnOndCQgJ79+7NfBwbG5v5\nfZkyZfjzzz9tn1d5WKlSMGkSPPoo7N/vdjFvvQUzZsBXXzkYm1IhrGOTA5Tf/wv/+dcFX4eilFK2\nBGUjy1eaNGlCyZIlmVPA3fEqVaqwc+fOzMc7d+4kPj4+83Fec55yPle1alVeeOEFUlJSSElJ4ejR\no/z555/ce++9VK1alV27duXZ0MtZTkxMDGXKlGHTpk2ZZR07dozjx62sx3FxcezevTtbrPnNyYqL\ni+Po0aOcPn0687ldu3bl+z60atWKzz77jOTkZC6//HL69euX789f0PMZ8jp3xvtatmxZTp06lfla\ncnJygWVlFR8fn+09yCi7SpUqLpeh/FTTptC3LzzwALiZTCUmxmqrPfCADvNRygnStQvvNp7EyBfP\nsnmzr6PxvpxDC3WOllKBSxtZDoqMjGTEiBE8/vjjzJ07l9OnT3PhwgUWL17MkCFDAOjWrRujRo3i\n8OHDHD58mJEjR2auJeWqvn378vbbb7N27VoATp48yaJFizh58iQ33HADcXFxDBkyhFOnTnH27FlW\nrVoFQOXKldmzZ09mog0RoW/fvgwYMIBDhw4BsHfvXj5Ln83ftWtXpkyZwq+//sqpU6cy52rlpVq1\najRq1Ihhw4Zx/vx5Vq5cmSujYkYv2MGDB5k3bx6nTp0iPDyccuXKZfa85YzRVcaYzHOvWLGChQsX\n0rVrVwAaNGjA7NmzOX36NFu3bmXSpEnZjo2Njc137a8bb7yRMmXKMHbsWC5cuEBSUhILFizgvvvu\nK1J8yk+99BKcOAGvv+52EW3aQKdO0LOn2201pVQGEWp/MIxRJUdyd6sTnDjh64C8K+fQQr15o1Tg\n0kaWwwYNGsS4ceMYNWoUlSpVolq1arz11luZyTCGDh1Ko0aNqFevHvXr16dRo0ZFTpTQsGFDJk6c\nSP/+/YmOjqZOnTqZSSbCwsKYP38+W7ZsoVq1alStWjVzblKLFi24+uqriY2NpVKlSgCMHj2aWrVq\n0bhxY8qXL8/tt9/O5vTbh23atGHAgAG0aNGCOnXq0LJlywLjmj59OmvWrKFChQqMHDmS3r17Z3s9\nozcqLS2NcePGUaVKFWJiYvj6668ZP358vjG6Ii4ujqioKOLj4+nZsyfvvPMOtWvXBmDgwIGEh4cT\nGxtLnz596NGjR7Zjhw8fTq9evYiOjmbWrFnZXgsPD2f+/PksWrSImJgY+vfvz/vvv59ZtqZ/D3DF\ni8NHH0HbtraKGTsWjh+HLDlslFLuiovjkYUdaHZwNh2bH+PkycIPCVbas6VU4BJPr3tkh4iYvOIT\nEY+v16SUJ+hnN3jt3w833GB1it1zj+/iEPl/9u47vIoqfeD4901oUgIJICSUgCgWBGJdxELQFbAA\nq66ACCqKqFhxbdgCoqviiqtrR0TQHyjYKS7YAqK4WFAQRUEg1NB7EIG8vz9mEm7CvTe35t6bvJ/n\nmSdzZ+aceWdyMydn5sw58T+gq/t3UGHuUPgqqyKTd/z/PqPlwMxPGfjyKSxek8KkSVDGq7mVQrS+\nDzJc0JxK+kUzxodwyyp7kmWMMRGQng5TpsDgwTB7dqyjMSbxJXc5hzGTUrjoIqdD0CeftCETjDGJ\nwypZxhgTIVlZMGECXHopfPttrKMxJvElJcFddzk3Lr74Apo2hcGXb2Pqa5sq3ftaxpjEYpUsY4wp\n7ZVXQu7a/a9/hdGjnde8/ve/CMdlTCV17LHOsHbffgvNti/iqWt/pnHdAo6tvYpexy5kxCXzmfjc\nFubOhfz8ytPEMi3N3tkyJl5ViXUAxhgTd9avhzPPhP/+F448MujkPXo4fWp07w5jx4bdr4YxxtWi\nBQydejpDCwvZu3g5v85YwcI52/lpcRXe39aM5eNgxQrYtQsyM53tMw/8Tou622hxTA0y29ejxSkN\nadSsGgEMJxn3tm4tWaG0vpiMiR/W8YUx5ci+uwnkpZecLt5ffx26dAkpi6+/drp3v+MOGDKkfP4B\nSoSOEqzji2Dyjv/fZzzatcupbOXlwYo35pC3YDsrNhzGih1p5P2Zzg7q0qwZtDimBi1awFFHQbt2\nztS4cfxWVtLSSnbrnprqdPvua31ppbcvEomOL8qKzZhEE25ZZZUsY8qRfXcTzOzZ0Ls3XH015ORA\ntWpBZ5GXB5dcAhkZ8OqrzgDG0ZQI/5RbJSuYvOP/95lw9u+nYOlaVu5pyIr1h7FiBfz6KyxYAD/+\nCLJzO+3r5vGXtrs5/by6dOh7BGkZNWIddUT4+j5FopJVOm/77ppEVyl7F8zMzEREbLIp4abMzMxY\n//mYYJx1FsyfD2vXwo4dIWWRmQlffaz6UrYAACAASURBVAXHHANt28L48faPhzExVaUKNY9pzjEn\nHEa3bnD99c7QC59+Chs3wo8zN3D7VVtI3rmdJx/aRWaTfRxXczkDr/yT8eOdGycVRdE7XRD8O12l\n3wdLTS25vvQYX6WnSL8/VlnfT4un4y4rlmBjjadjC0XMnmSJSDfg3zgVvTGq+riXbaJ2dzBaxO7c\nGGN8+OYbuOEGqFoVhg1zWiFKyPfIvEuEa5BI4jzJinVZlQi/z4pu//bdLHz7V+bsPoEv5gizZ0P1\n6s49mLPOKOSso9fTulN6xP+Wo6H096noc9GTrGC+b+F+NyP93fZ1bBVdPB13WbEEG2usjy3csiom\nT7JEJAl4FugKtAEuE5FjYhGLOVRubm6sQ6h07JzHRtjnPT8fCgsD3vyUU5weB2+9FW6/HTp0gDfe\ngIKC8MIw0VEZyqpEvvaUV+xV6tbihGtO5OZbhEmTnI5HP/7YqWTN/m8B555zgPQqG+nVYh7P9v2K\nBR+uoPCA//8E7byXv0SNGyz2RBWr5oKnAktUNU9V9wFvAj1jFIsppTL/QcSKnfPYCPu833OP0x7w\njjvg888DGik1ORn69IGFC53kEyZAkyZw1VUweTJs2xZeSCaiKnxZlcjXnljFLgKtW8O118Lr79Vm\n5f4m/G/GNrp33sWP8/Zy6SUHaHDYLnr0cAZQ/uYb2L8/PmKPhESNPVHjBos9UcWqktUEWOXxebW7\nLKYi80UIPI9A9lfWNr7WB7o8Hr784cYQbPryPu+BLitviXbeg11XLuf9tdecbt5r1oShQ6FhQ+jc\nGTZv9rq55/6TkuCii2D6dFi0CE480enuvXlzZ1Dja66B556DWbNg5Uo4cCC0Y4jWeQ/3byBBRLWs\nCvW8hPo7jeTvwWL3IELmX4+i2ZVJjF7amV/3tWLRz0n06wfLl0Pv3rmkpUHXrnDXFfmMGTCHvG/W\ns/6njWhhcG2fonbel0d2f5HMK9TyOJj/x8KNIdR0wV5fI73/cNLGa+zhlHmRLqtsnCwPubm5ZGdn\nh5sLEFgegeyvrG18rQ90eWSOOTzhxhBs+vI+74EuK2+Jdt6DXVdu571NG3joIWfats1pD1iv3qHb\nqZI7YADZbdpA3bqQkuL8rFGDjAcf5JZbkrjlFudh2IIF8P338N2bS5j4dF2Wb6rNpp3VSa+3h737\nPuL4UzqRliakpTn1uxo1nHdEqv+6gCwO8OK1hVSt4rxf8eG3E8gb3AlJkkNfPv/mfwjw9tdvsLFj\njYPvlPzlL8Uvi02alMumTe45+/rr4sOZ9NUbbOpYI6DtJ331BmnPnkG7E63I8RTq9zHUv6VIfv8t\ndv/r04+sRa8joVcvGDYsl5tvzubLL2HRlN188Zny6Spo81ESO/VPGiVvonGTKqRnNSI1FWrXPjjV\n2pxHtTUrSK4iJFeBqQvGkXdKFZJbNiO5ZSbJyaXe61y1ClavPiS2yYs+KP67fPvtg8ubsIq371gD\nK0I75mCUx3kvtYZA/x8LN4ZQ0wX7P1yk9x9O2vKIPZTfXzj/a0T6f4SYdHwhIh2AYarazf18D6Cl\nXygWkUrwyqIxxlQ+idDxhZVVxhhTuSXcOFkikgz8CpwDrAPmAZep6i/lHowxxhjjhZVVxhhjQhWT\nthuqekBEbgJmcrBbXCu0jDHGxA0rq4wxxoQqZuNkGWOMMcYYY0xFFKveBY0xxhhjjDGmQrJKljHG\nGGOMMcZEUMJVskSkk4jMFpEXROSsWMdTmYhITRH5RkTOj3UslYWIHON+1yeJyPWxjqcyEJGeIvKy\niEwUkXNjHU9lISItReQVEZkU61giIdHLqkS93ifyNTORrz2J+vfrfs9fE5GXRKRvrOMJRqKec0jc\n73qw15eEq2QBCuwEquMMDGnKz93AW7EOojJR1cWqegPQG+gY63gqA1X9QFUHATcAvWIdT2WhqstV\ndWCs44igRC+rEvJ6n8jXzES+9iTw3+/FwGRVvQ7oEetggpHA5zxhv+vBXl9iVskSkTEisl5EFpRa\n3k1EFovIbyJyd+l0qjpbVS8A7gEeKq94K4pQz7uI/BX4GdgIxP34NvEm1PPubtMdmApML49YK4pw\nzrnrfuC56EZZ8UTgvMeVRC6rEvl6n8jXzES+9iT6328I8TcFVrnzB8otUC8S+dyHEXtMy9lQ4g7q\n+qKqMZmAM4AsYIHHsiRgKZAJVAV+AI5x1/UHRgHp7udqwKRYxZ+oU4jn/SlgjHv+ZwDvxfo4Em0K\n9/vuLpsa6+NIpCmMc54BPAacHetjSMQpAtf2ybE+hggfT8zKqkS+3ifyNTORrz2J/vcbQvyXA+e7\n8xMSKXaPbWJ+zQwl9lh/18M55+52ZV5fYjJOFoCqzhGRzFKLTwWWqGoegIi8CfQEFqvq68DrInKR\niHQF6gLPlmvQFUCo571oQxG5AthUXvFWFGF83zuJyD04TY6mlWvQCS6Mc34zzuCzKSJypKq+XK6B\nJ7gwznuaiLwAZInI3ar6ePlG7l0il1WJfL1P5GtmIl97Ev3vN9j4gfeAZ0XkAmBKuQZbSrCxi0ga\n8AhxcM0MIfaYf9chpLg74TQxDej6ErNKlg9NOPjYFpx27Kd6bqCq7+H8UZjIKfO8F1HV8eUSUeUQ\nyPd9FjCrPIOq4AI55/8B/lOeQVUCgZz3LTjt8xNBIpdViXy9T+RrZiJfexL979dn/KpaAFwdi6AC\n5C/2eD7n4D/2eP2ug/+4g7q+JGLHF8YYY4wxxhgTt+KtkrUGaO7xuam7zESXnffYsPNe/uycx0ZF\nO++JfDwWe2xY7LGTyPFb7OUvYnHHupIllOy56BvgSBHJFJFqQB/gw5hEVrHZeY8NO+/lz855bFS0\n857Ix2Oxx4bFHjuJHL/FXv6iF3cMe/SYAKwF9gIrgQHu8vOAX4ElwD2xiq+iTnbe7bxXlsnOuZ33\nyn48FrvFXpliT/T4LfaKF7e4mRljjDHGGGOMiYBYNxc0xhhjjDHGmArFKlnGGGOMMcYYE0FWyTLG\nGGOMMcaYCLJKljHGGGOMMcZEkFWyjDHGGGOMMSaCrJJljDHGGGOMMRFklSxjjDHGGGOMiSCrZJm4\nISJ/E5FCEWkd61h8EZGhsY4hUkTkOhHpF8T2mSKyMMh9fCoitf2snygirYLJ0xhj4kFFLLNE5HMR\nOTGa+wgy7+4icleQaXYGuf1kEWnhZ/0TItI5mDyNAatkmfjSB/gCuCzaOxKR5BCT3hvRQGJERJJV\n9SVVfSPIpAGPXi4i5wM/qOouP5u9ANwdZAzGGBMPrMyK4j7ccmqKqo4MMmkw5dRxQJKqrvCz2X+A\ne4KMwRirZJn4ICK1gNOBa/AosESkk4jMEpGpIrJYRJ73WLdTREaJyE8i8rGI1HeXDxSReSIy371D\nVcNdPlZEXhCRr4HHRaSmiIwRka9F5DsR6e5ud6WIvCMiH4nIryLymLv8UeAwEfleRF73cgyXicgC\nd3osgDiPcPfxjXuMrT3ifFpEvhSRpSJysZd9ZYrILyLyhoj8LCKTPI7zRBHJdfP9SEQaucs/F5Gn\nRGQecIuI5IjI7e66LBGZKyI/uMde111+krtsPnCjx/6PE5H/uefiBx9Poy4HPnC3r+n+Due75+dS\nd5svgL+KiF2LjDEJI9HLLBFJcvNfICI/isitHqt7udf3xSJyusc+/uORfoqInBVAuRhK+feCiMx1\nj7l4v26596lb5nwsIk3d5S1E5Cv3OEZ47Luxm/f37nGe7uVX6VlOeT0nqroSSBORw31+IYzxRlVt\nsinmE9AXGO3OzwFOcOc7AQVAJiDATOBid10h0MedfwD4jzuf6pHvCOBGd34s8KHHukeAvu58XeBX\n4DDgSmApUBuoDqwAmrjb7fARfzqQB6Th3Lz4FOjhI85n3PlPgFbu/KnApx5xvuXOHwss8bK/TDff\nDu7nMcDtQBXgS6C+u7wXMMad/xx41iOPHOB2d/5H4Ax3fjgwymP56e78SGCBO/8McJk7XwWo7iXG\nFUAtd/5i4CWPdXU85mcU/b5tsskmmxJhqgBl1onATI/PKe7Pz4En3PnzgI/d+SuLyi738xTgLH/7\n8HHMgZR/nsd8pUeaD4F+7vwA4D13/gPgcnd+cFE8OGXiUHdeisqjUvHlAm38nRN3/mXgolh/72xK\nrMnuHpt4cRnwpjv/Fk4BVmSequapqgITgTPc5YXAJHf+DZy7igDtRGS2iCxw82njkddkj/kuwD3u\nU5pcoBrQ3F33qaruUtW9wM84BaY/pwCfq+oWVS0E/g84y0ecZ7h3QTsCk939vwQ08sjvfQBV/QXw\ndfdspap+7ZkvcDRwPPCxm+99QIZHmrdKZyIiKUBdVZ3jLhoHnOU+zaqrql+6yz3vUs4F7hORO4EW\n7nkqLVVVd7vzC4FzReRRETlDVT3bzG8sFaMxxsS7RC+zlgEtxWk10RXwvCa/6/78LoB8ynKA4Mu/\nyXh3Gs75BKc8Kjp/p3Pwd+FZTn0DDBCRB4F2HuWRp3ScMgj8n5MNWDllglQl1gEYIyKpwNnA8SKi\nQDJOm+o73U1Kt6/21d66aPlYnKdIP4nIlTh3FouUvsheoqpLSsXTAfCsNBzg4N+K+DsUP+tKx5kE\nbFVVXy8Ye+4/mHwF+ElVvTWLgEOPv6x9eF2uqhPdJiwXAtNFZJCq5pbabL/H9kvEeZn6fOBhEflU\nVYuaddQA9vjYvzHGxJWKUGap6jYRaQ90Ba4HLgUGuquL8vLMZz8lXzGp4RmCt334EEj556uc8veu\nVdG64lhU9QsROQu4AHhNRJ7UQ99DLsA9llLn5DqcliDXuNtZOWWCZk+yTDy4FBivqi1V9QhVzQSW\ni0jR3b9T3bbYSUBvnPd4wPn+/t2dv9xjeW0gX0Squst9mQHcUvRBRLICiPVP8f4C8jycpz9p7vrL\ncO40eotzjvskZ7mIFC1HRNr52KevAqy5iPzFne+Lc/y/Ag3dQhcRqSLOi70+qeoOYItHe/X+wCxV\n3Q5sFZGO7vLinghFpKWqLlfV/+A01fAW+68icoS7fTqwR1UnAE8AJ3hs1xr4yV+MxhgTRxK+zHLf\njUpW1feA+3GaynlTVP6sALLE0QyniZ/ffbiSCa/88/QVB99/68fB8zfHY3nx+ROR5sAGVR0DvIL3\nY/wFONLd3vOcPICVUyZMVsky8aA38F6pZe9w8KL5LfAssAj4XVXfd5fvxinMFgLZOG3Zwbk4zsO5\nAP/ikWfpu2APA1Xdl1x/Ah7yEZ9nupeBhaVf8FXVfJzeh3KB+cC3qjrVR5xF+7kcuMZ9ifcnoIeP\nOH3dvfsVuFFEfgbqAS+q6j6cAu1xEfnBjeW0MvIBuAr4l5umvUeMVwPPi8j3pdL3cl9kno/TtGW8\nlzynAUXd3rYF5rnbP4hz7nFfJC5Q1Q1+YjPGmHiS8GUW0ATIda/Jr3Ow9zyv5Y/bbHyFe0z/xmlK\nWNY+IPzyz9MtOM3/fnDTF3XWcRtOWfgjTvO/ItnAj2751Qt42kue0zlYTnk9JyJSBWiF83s1JmDi\nNBk2Jj6JSCfgH6raw8u6napaJwZhBSUacYpIJjBVVdtGMt9IEpHGwDhV7epnm9uA7ao6tvwiM8aY\n6KgIZVYkxfsxi9OT42c4HTx5/YdYRP6G07FJTrkGZxKePckyiSxR7hBEK864Pn736d5o8TMYMbAV\np6MNY4yp6OL6mh0lcX3MqvoHTk+7Tfxslgw8WT4RmYrEnmQZY4wxxhhjTATZkyxjjDHGGGOMiSCr\nZBljjDHGGGNMBFklyxhjjDHGGGMiyCpZxhhjjDHGGBNBVskyxhhjjDHGmAiySpYxxhhjjDHGRJBV\nsowxxhhjjDEmgqySZYwxxhhjjDERZJUsY4wxxhhjjIkgq2QZ44eI7BSRFrGOwxhjjPHHyitj4otV\nskyFICKFInJEmHl8LiJXey5T1TqquiKs4CJIRB4SkQUisk9EHgxg+8dFZJOIbBSRx0qtyxSRz0Rk\nt4j8LCLnlFrfV0RWuAX3uyJSz2NdNRF5VUS2i8haERlSKm2WiHzr5v2NiLQvtX6IiKwTkW0i8oqI\nVA3tjBxyvJ3c78I7pZa3c5d/Fon9GGNMqKy88rm9lVdYeVWRWCXLVBTqb6WIJJdXIFG2BLgTmFrW\nhiJyHdADaAu0A7qLyCCPTSYC3wFpwP3A2yJS303bBngRuBxoBOwBXvBIOxxoBTQDzgbuEpEubtqq\nwPvAeKCe+/MDEaniru8K3AV0BjLdfIYHeR782QicJiKpHsuuBH6N4D6MMSZUVl6VYuWVlVcVkqra\nZJPXCWgKvANswLkQPOMuF5yL3AogH3gNSHHXZQKFwBVAnpv2Xo88k4B7gaXAduAboIm77hhgJrAZ\n+AW41CPdWOBZnIv1DmAu0NJdN8vd5y533aVAJ2AVzsVxHTAO5wI6xY1pszuf4ebxMLAfKHDzKDrW\nQuAIdz4F5wK8AVgO3OcR35XAF8ATwBbgd6BbFH83rwMPlrHNl8BAj88DgK/c+dY4BVEtj/WzgEHu\n/CPAGx7rjgD2Fm0PrAHO8Vg/HJjgzncBVpWKJQ/o4s7/H/Cwx7rOwDo/x1EI3AD85n5nHnLj+RLY\nBrwJVHG3Lfq9Pw8M9vjOrcb5zn4W678rm2yyKfITVl4VXSutvLLyyqY4mexJlvFKRJJwCojlQHOg\nCc7FAZyL3xU4F4gjgDo4BYqn04GjgL8CD4rI0e7yfwC9cS7odYGrgQIRqYlTYL0BNAD6AM+LyDEe\nefYGcnAKn99xLqyoaid3fVtVTVHVye7nxu62zYFBOBevV3HuZjXHKaCec/O4H6fQucnN4xY3D887\njs+6x9oCyAauEJEBHutPxSls6+MUXmPwQUSmiMhWEdni5eeHvtIFqQ3wo8fnH91lAMcBy1R1t4/1\nJdKq6jKcQqu12wwjHVjgJ2/PdX7zducPL3Unr7QuwAlAB5x/RF4C+uL8LtsCl3lsqzj/XFzhfu4K\nLMT558UYU8FYeWXlFVZemThklSzjy6k4F6a7VPUPVf1TVb9y1/UFRqlqnqoWAEOBPm5BB85FY5ib\nZgHORamojfM1OHfUlgKo6kJV3QpcCCxX1fHq+BHnruSlHjG9p6rfqWohzt2lrFIxS6nPB4AcVd2n\nqntVdYuqvufO7wYeBc4q4zwIFBfivYF7VLVAVfOAJ4H+Htvmqeqrqqo4dyIbi8jh3jJV1e6qmqqq\naV5+9igjpkDVxrmTVmSHu8zbuqL1dQJYXxvnd1w670DS+opLPNZ787iq7lbVX4CfgJnu928n8BFO\ngVZMVb8GUkWkNU7hNd5P3saYxGbllUeeVl6VWG/llYkZq2QZX5rhXIQLvazLwHmcXiQPqILTFrrI\neo/5Ag5eLJsBy7zkmQl0cO+MbRGRrTiFo2ee+T7y9GWjqu4r+iAih4nIS+7LsdtwmhvUE5HShZ03\nDXCOcaXHsjycO6aHxKeqe3AuxGXFGE27cJqMFKnrLvO2rmj9zgDWF+VROu9A0vqKSz3We7PBY34P\nJb9fe/B+nl8HbsK5i/uen7yNMYnNyquSrLyy8srEAatkGV9WAc097vZ5WotTyBTJBPZR8kLiL99W\nPpbnunfGiu6SpajqTcEG7qH0y8X/wGkScoqq1uPgXUHxsb2nTTjHWPq414QSmIhMd3tB2uFlmhZK\nnl4s4uAdWXDupC7yWHeEiNTyWN++1PritCLSCqgK/Kaq23CaMrT3k7ZdqVja4dzR8xXXevcOcSS9\nAQwGpqnqHxHO2xgTP6y8KsnKKyuvTBywSpbxZR7OhekxEakpItVFpKO7biIwRERaiEhtnLbmb3rc\nRfR3p+0VYISIHAkgIm3dts1TcdpP9xORKiJSVURO9mgbX5Z8nPb2/tTBuYu0Q0TSgGGl1q/3lYd7\nbJOAR0SktohkAkNw7j4FTVXPV6e73RQv0wW+0rnnpgbO325V9/fi6+94PHC7iGSISBPgdpwXslHV\nJcAPQI6bx8XA8ThNXsBp3tJdRE53C7aHgHc82sS/DtwvIvVE5Fjg2qK8gVzggIjcLE7XubfgvAz8\nuUdc14jIse7v/n6PtBGjTlfGZ7n5G2MqLiuvPFh5ZeWViQ9WyTJeuRfp7jh30lbi3Lnr5a5+Feei\nNRvnhd4C4BbP5KWz85gfhXPxnyki23EKscNUdRfOy6J9cO48rgUeA6oHGPIwYLzbdOPvPrb5N1AT\n5y7fV8D0UuufBi4Vkc0i8m8vsd+Cc6zLcI79DVX1d7H1201viEa7MfTB6fWqAOgHICJniMiO4p2r\nvoTTI9VCnPcMPlTV0R559QFOAbbi/ONxiapudtP+DFwPTMD5h+Aw4EaPtDk45yEP+Ax4TFU/dtPu\nA/6G04PVVpw25j1Vdb+7fgYwEqcQW47zHRrm55j9fZ/8UtWvVDW/7C2NMYnKyisrr7DyysQhcd55\njFLmImNwXhBdr6rt3GXtccYzqIHzOHuwqn4btSCMMcYYP0SkOs4/otVw3mV5W1WHi0gOzl3voncs\n7lXV/8YoTGOMMQkk2pWsM3BeGhzvUcmaATypqjNF5Dyc3oA6Ry0IY4wxpgwiUlNVC8QZCPZLnCcB\n5wE7VXVUbKMzxhiTaKLaXFBV5+A8fvVUiNM7CzhjQoT0IqYxxhgTKW733uA0+arCwWY+gfTmZowx\nxpQQi3eyhgD/EpGVOO1ch8YgBmOMMaaYiCSJyHycdzo+VtVv3FU3icgPIvKKiNT1k4UxxhhTLBaV\nrBuAW1W1OU6F69UYxGCMMcYUU9VCVT0BaAqcKiLHAc8DR6hqFk7ly5oNGmOMCUhU38kCcLsOneLx\nTtY2d8yHovXbVdXr3UERiW5wxhhjYkJV47YZnog8AOz2fBerdFlWansrq4wxpgIKp6wqjydZQsk2\n7WtEpBOAiJwD/OYvsapGZcrJyYlKGn/b+FrnbXlZy0qvD+V4onWe7FzZubJzZefK37mKNyLSoKgp\noIgcBpwLLBaRxh6bXczBAUoPkQi/20CXWeyhpQv3byaQiU7R+a6VR+yxPu/hXKMTNfZoHnO8xh5O\n2RfpsqpK2Dn4ISITgGygvvsOVlF3uM+4PTj9AQyKZgy+ZGdnRyWNv218rfO2vKxlocQfilD3Y+cq\nsunsXAWezs5V4Okq2rkKQzowzh0oNQl4S1Wni8h4EcnC6bBpBXBdJHda3r/bSP4eLPbA10f0+98i\ntGTxEHsin/dEjT2cfBI19nDKvoiXVaHWcMtjcsIzgcjJyYl1CAnDzlXg7FwFzs5V4Nxre8zLmEhN\niVxWJfL3tjLGzrDYf9cS9bwnatyqFnushFtWxaLjCxMFCXCnOG4kyrlKSwORQ6e0tPKLIVHOVTyw\nc2USUSJ/by322EjU2BM1brDYE1XUO74Ih4hoPMdnTDSJgLevv6/lxiQKEUHjuOOLYFlZZcqLDBc0\nx75rxpSHcMuqqL6TZYwxxhhjKr4WLVqQl5cX6zCMCVpmZiYrVqyIeL5WyTLGGGOMMWHJy8uLSI9s\nxpQ3keg0rLB3sowxxhhjjDEmgqySZYwxxhhjjDERZJUsY4wxxhhjjIkgq2QZU2TyZHjzTfj4Y1i7\nNtbRGGOMMSbK8vLySEpKorCwMOy8WrZsyWeffRbQtuPGjePMM88s/lynTp2Idb7w6KOPMmjQICCy\nxwewatUqUlJS7P27AFjHF8YU+eQT2LYNNmyAhQuhcWPo2xfuvBOqVj1k8/XrYc4cWLoUtm51NmnR\nAk48EbKynK7WjTHGGBNbLVu2ZMyYMZx99tle10er44OyeO53586dZW4/a9Ys+vXrx6pVq/xuN3To\nUJ/7CVbpc9esWTN27NgRcn6ViT3JMpXL9u2wbp33dS+9BG+9BZ9/7lS0Ro+GP/+EKgfvRfzxB7zy\nCnToAEcfDWPHwsaNULeus9ns2dCrl1PZeuQRp85WXnwNXlzeAxgbY4wxJvJUtcwK04EDB8opGlMW\nq2SZyuPdd+GYY+DDD8veNikJTjsNhg0DEQ4ccCpURx8N770HDzwAmzbB1Knwr3/B0KGQkwPjxsFv\nv8GUKc7P1q3htdfKZ/DgrVud/Xibtm6N/v6NMcaYeFdYWMgdd9xBw4YNOfLII5k2bVqJ9Tt27GDg\nwIFkZGTQrFkzHnjggeKmccuWLeOcc86hQYMGHH744fTr1y/gpzpbtmyhR48e1K1blw4dOvD777+X\nWJ+UlMSyZcsAmD59Om3atCElJYVmzZoxatQoCgoKOP/881m7di116tQhJSWF/Px8hg8fzqWXXkr/\n/v2pV68e48aNY/jw4fTv3784b1VlzJgxNGnShCZNmvDkk08WrxswYAAPPvhg8edZs2bRrFkzAK64\n4gpWrlxJ9+7dSUlJ4V//+tchzQ/XrVtHz549qV+/Pq1bt+aVV14pzmv48OH07t2bK6+8kpSUFNq2\nbcv3338f0PmqCKySZSq+3bvhiivg7rvhnXfguuuCSr50KXTq5DzBmjgRpk2DCy4o8YCrBBFo186p\ncM2YAc88A3//O+zaFYFjMcYYY0zIXn75ZaZPn86PP/7It99+y9tvv11i/ZVXXkm1atVYtmwZ8+fP\n5+OPPy6uOKgq9957L/n5+fzyyy+sXr2aYcOGBbTfwYMHU7NmTdavX8+YMWN49dVXS6z3fEI1cOBA\nRo8ezY4dO/jpp584++yzqVmzJh999BEZGRns3LmTHTt20LhxYwA+/PBDevXqxbZt2+jbt+8h+QHk\n5uby+++/M2PGDB5//HG/744VpR0/fjzNmzdn6tSp7NixgzvuuOOQvHv37k3z5s3Jz89n8uTJ3Hvv\nveTm5havnzJlCn379mX79u10796dG2+8MaDzVRFYJctUbCtWwOmnOzWfH36Ajh2DSj5+vNM08O9/\nhy++cJOvWAHz5weU/oQTYO5cqFfPCWP9+qCPICJSU60ZoTHGmBhyW4YcMvmqpHjbPsAKjT+TJ0/m\ntttuIyMjg3r16pV4f2n9+vV8r+gGxQAAIABJREFU9NFHPPXUU9SoUYMGDRpw2223MXHiRABatWrF\nOeecQ5UqVahfvz5Dhgxh1qxZZe6zsLCQd999lxEjRlCjRg3atGnDlVdeWWIbz44kqlWrxqJFi9i5\ncyd169YlKyvLb/6nnXYa3bt3B6BGjRpetxk2bBg1atTg+OOPZ8CAAcXHFAhfnVysWrWKuXPn8vjj\nj1O1alXat2/PwIEDGT9+fPE2Z5xxBl27dkVE6N+/PwsWLAh4v4nOKlmmYnvnHbjqKqfNXq1aASfb\nvx9uvx0eeghyc+G225wWhAAsWgTnnee0BwxA9erOU7CLL4bOnWNT0dqyxZoRGmOMiaFhw7wXRP4q\nWYFuG4S1a9cWN4cDyMzMLJ5fuXIl+/btIz09nbS0NFJTU7n++uvZtGkTABs2bOCyyy6jadOm1KtX\nj379+hWv82fjxo0cOHCApk2bet1vae+88w7Tpk0jMzOTzp078/XXX/vN3/N4vBGRQ/a9NgK9KK9b\nt460tDRq1qxZIu81a9YUfy562gZQs2ZN/vjjj4j1dBjvolrJEpExIrJeRBaUWn6ziPwiIgtF5LFo\nxmAquX/8w6khBdGzzh9/OE+uFi6EefPg+ONLbXDBBfDww87PzZsDylPEeWerVy+nfmZNB40xxpjy\nl56eXqJ3vry8vOL5Zs2aUaNGDTZv3syWLVvYunUr27ZtK376cu+995KUlMSiRYvYtm0bb7zxRkBd\nmTds2JAqVaqU2O/KlSt9bn/SSSfx/vvvs3HjRnr27EmvXr0A370EBtJ7YOl9Z2RkAFCrVi0KCgqK\n160r1TmYv7wzMjLYsmULu3fvLpF3kyZNyoynMoj2k6yxQFfPBSKSDXQH2qpqW+BfUY7BmIDt3g3d\nuzvdsU+b5qc53cCB0KMH9OsHQdyRyclxuncPMpkxxhhjIqBXr14888wzrFmzhq1bt/L4448Xr2vc\nuDFdunRhyJAh7Ny5E1Vl2bJlzJ49G3C6Wa9duzZ16tRhzZo1PPHEEwHtMykpiYsvvphhw4axZ88e\nfv75Z8aNG+d123379jFhwgR27NhBcnIyderUITk5GYBGjRqxefPmoLtQV1VGjBjBnj17WLRoEWPH\njqVPnz4AZGVlMX36dLZu3Up+fj5PP/10ibSNGzcu7pDDMz+Apk2b0rFjR4YOHcrevXtZsGABY8aM\nKdHphrdYKouoVrJUdQ5QukHSDcBjqrrf3abs56zGlINdu6BrV2ja1Ongolq1MhI89pjTR/tTTwW8\nDxF48UWnZ8KRI8OL1xhT8XkOzWDvUBoTGs+nMddeey1du3alffv2nHzyyVxyySUlth0/fjx//vkn\nxx13HGlpaVx66aXk5+cDkJOTw3fffUe9evXo3r37IWn9PfX5z3/+w86dO0lPT+fqq6/m6quv9pn2\n9ddfp2XLltSrV4+XX36Z//u//wPg6KOP5rLLLuOII44gLS2tOK5Ajr9Tp04ceeSRnHvuudx1112c\nc845APTv35927drRokULunXrVlz5KnLPPfcwYsQI0tLSGDVq1CGxTpw4keXLl5ORkcEll1zCiBEj\n6Ny5s99YKguJdo1SRDKBKarazv08H/gA6AbsAe5U1W99pNXKVOM1Yfr5Z6hRA444Iuike/fChRdC\nZia8/LLH+1dlWb7c6ULw+uuD2t+qVXDyyfDBB07HGt6IeO/6Pdjl/oSSxphwiQiqWmFK2miWVZ5/\no/b3amS4oDnx+SVw/65jHYYxQfP13Q23rIpFxxdVgFRV7QDcBUyKQQymolm1ynkM9c03QSc9cMBp\nvpeS4jxlCriCBdCyZdAVLIBmzZx99evnu+e/1NSgszXGGGOMMXHAx0g/B4lId2CaqkbqDZJVwLsA\nqvqNiBSKSH1V9dqDgOf4A9nZ2WRnZ0coDFNh7N7tvB91663Qu3fQyW+5xellb9o032NfRcNFF8Fb\nbzmT3fwzFVlubm6JcVOiIQpllTHGGBOyMpsLisgbwGnAO8Crqro4qB2ItMBpLtjW/TwIaKKqOSLS\nGvhYVb32Y2nNBU2ZVJ0u+2rVgrFjg+pFEOD55+G555yxrFJSohSjH+vXQ+PGzhBe7dsHliYtzXvX\n66mpTlftwbDmRyYWotFcMNyyKsx9W3NBUy6suaAxkRez5oKq2g84AfgdeE1E5orIIBGpU1ZaEZkA\nfAW0FpGVIjIAeBU4QkQWAhOAK0IN3hhGjIDVq522d0FWsD791BkHa8qU2FSwABo1cn7efnvg/zz5\nGvMq2AqWMRVJmGVVdRH5n4jMd4cWyXGXp4rITBH5VURmiEjdKB+GMcaYCiKgt09UdQfwNvAmkA5c\nBHwvIjeXka6vqmaoanVVba6qY1V1v6r2V9W2qnqyqpY9VLYxvmRkwHvvOR1eBGHpUujb1+lFMIR+\nMnybOBF+/TXoZOvWwdSpEYzDmEoojLJqL9BZVU8AsoDzRORU4B7gE1U9GvgMGBrN+I0xxlQcZVay\nRKSniLwH5AJVgVNV9TygPfCP6IZnTBkGDnTa2wVh927o2ROGDwc/vYyGZu1auPvuoJM9+STccQfs\n2xfheIypJMItq1S1aDTO6jjvKyvQEygazGYc8LcIh22MMaaCCuRJ1sXAU+6TpydUdQMUF0jXRDU6\nYyJMFQYPdrpPv+66KOzgxhudHg5/+CGoZN26Od3HjxkThZiMqRzCKqtEJMkdYiQf513hb4BGqrre\nzScfODx64RtjjKlIAqlk5avqbM8FIvI4gKp+GpWojImSsWPh22+dDi+iMh5ejRrOI6mHHw4qmYjz\nftijj8Kff0YhLmMqvrDKKlUtdJsLNgVOFZE2OE+zSmwWqWCNMcZUbIFUss71suy8SAdiTEDCaE+3\ncKHTkm/yZKczwqi57jqYMwd++imoZB06wNFHw/jxUYrLmIotImWV+15XLtANWC8ijQBEpDGwwVe6\nYcOGFU/R7q7eGGM8JSUlsWzZsoC2HT58OP379wdg1apVpKSkRKxXyBtuuIFHHnkEgFmzZtGsWbOI\n5AswZ84cjj322Ijl501ubm6Ja3m4fHbhLiI3AIOBVsBSj1V1gC/dnpyiyrpwNyWsWwedOsG8eVCv\nXlBJCwrgpJNg6FC4ojz6s3z8cdi8GUaOLHNTz26Zv/gCrrrK6TujPMbssi6hTSxEsgv3SJRVItIA\n2Keq20XkMGAG8BjQCdiiqo+LyN1Aqqre4yW9deFuyoV14R66CRMm8NRTT7F48WJSUlLIysri3nvv\n5fTTT49pXOPGjeOVV17hiy++CDmP5ORklixZwhEB9OQ1fPhwfv/9d8YHcUc3lBhnzZpF//79Wbly\nZcBpPCUlJbF06dKAjilc0erC3d+/cROAj4BHcXpYKrJTVa2zaFO+VOHqq+Gyy4KuYAHceadTySqX\nChbAkCEh1ZLOPBOaN4cJE8oxVmMSWyTKqnRgnIgk4bTweEtVp4vI18AkEbkayAN6RTBuY0w5GTVq\nFCNHjuSll16iS5cuVKtWjRkzZjBlypSgK1kHDhwgOTm5zGWBUlUkzPcXol25DSTGwsJCkpIC6rQ8\nIOGek3jg72yoqq4AbgR2ekyISFr0QzPGw/PPO0+G7r8/6KTTpzvdoz/7bBTi8qVaNfC42KSlOXeh\nvU2pqSWT3nUXPPWU3bE2JkBhl1WqulBVT1TVLFVtp6qPuMu3qOpfVfVoVe2iqtuidAzGmCjZsWMH\nOTk5PP/88/Ts2ZPDDjuM5ORkzj//fB577DEA/vzzT2677TaaNGlC06ZNGTJkCPvc1xOKmr2NHDmS\n9PR0rr76aq/LAKZOncoJJ5xAamoqZ5xxBgsXLiyOY/Xq1VxyySUcfvjhNGzYkFtuuYXFixdzww03\nMHfuXOrUqUNaWlpxPHfccQeZmZmkp6czePBg9u7dW5zXE088QUZGBk2bNmXs2LF+KyQrVqwgOzub\nunXr0rVrVzZt2lS8Li8vj6SkJAoLCwF47bXXaNWqFSkpKbRq1YqJEyf6jHHAgAEMHjyYCy64gDp1\n6pCbm8uAAQN48MEHi/NXVR599FEaNmzIEUccwYQJE4rXde7cmVdffbX487hx4zjzzDMB6NSpE6pK\nu3btSElJYfLkyYc0P1y8eDGdO3cmNTWVtm3bMmXKlOJ1AwYM4KabbuLCCy8kJSWF0047jeXLl/v/\nokSBv0pW0Zn4DvjW/fmdx2djysfixZCTA6+/DlWrBpV040anl/dx40J6ABYxW7d6H0DY2yDCXbvC\nnj1O00FjTJmsrDLG+DR37lz27t3L3/7mewSGhx9+mHnz5rFgwQJ+/PFH5s2bx8MeHVjl5+ezbds2\nVq5cycsvv+x12fz587nmmmsYPXo0W7Zs4brrrqNHjx7s27ePwsJCLrzwQlq2bMnKlStZs2YNffr0\n4ZhjjuHFF1/ktNNOY+fOnWxx/yG4++67Wbp0KQsWLGDp0qWsWbOGhx56CID//ve/jBo1ik8//ZQl\nS5bwySef+D3+vn37csopp7Bp0ybuv/9+xo0bV2J9UQWtoKCAW2+9lRkzZrBjxw6++uorsrKyfMYI\nMHHiRB544AF27tzp9Ylgfn4+W7ZsYe3atbz22msMGjSIJUuW+Iy1KJZZs5whdBcuXMiOHTu49NJL\nS6zfv38/3bt3p1u3bmzcuJFnnnmGyy+/vETeb731FsOHD2fbtm20atWK++67z+95igaflSxVvdD9\n2VJVj3B/Fk3RbyBpDDi1kIEDYcQIp1eIIJMOGgT9+kF2dnTCi4akJLjlFvj3v2MdiTHxz8oqYxKD\nr9YcwU7B2rx5Mw0aNPDblG3ChAnk5ORQv3596tevT05ODq+//nrx+uTkZIYPH07VqlWpXr2612Wj\nR4/m+uuv5+STT0ZE6N+/P9WrV+frr79m3rx5rFu3jpEjR1KjRg2qVatGx44dfcYzevRonnrqKerW\nrUutWrW45557mDhxIgCTJ09mwIABHHvssRx22GF+O2hYtWoV3377LQ899BBVq1blzDPPpHv37j63\nT05OZuHChfzxxx80atSozI4mevbsSYcOHQCKz4snEWHEiBFUrVqVs846iwsuuIBJkyb5zdOTr2aQ\nc+fOZffu3dx9991UqVKFzp07c+GFFxafI4CLLrqIk046iaSkJC6//HJ+CHJonUgIZDDi00Wkljvf\nT0RGiUjz6IdmDM4VdexYuP76oJOOHQvLlzv1s0RzxRUwe7YTvzGmbFZWGRPffLXmCHYKVv369dm0\naVNxkzhv1q5dS/PmBy8XmZmZrF27tvhzw4YNqVqqJU3pZXl5eTz55JOkpaWRlpZGamoqq1evZu3a\ntaxatYrMzMyA3lnauHEjBQUFnHTSScV5nXfeeWzevLk4Vs9mc5mZmT4rI2vXriU1NZXDDjusxPbe\n1KxZk7feeosXXniB9PR0unfvzq+//uo31rJ6D0xNTaVGjRol9u15XkO1bt26Q/admZnJmjVrij83\nbty4eL5mzZrs2rUr7P0GK5A31F4ACkSkPfAP4Hfgdf9JjImgo44K+vbV6tVOd+3jx4OXmyvl68UX\nOYV5QSWpXRsGDHBeRTPGBMTKKmPMIU477TSqV6/O+++/73ObJk2akJeXV/w5Ly+PjIyM4s/e3nkq\nvaxZs2bcd999bNmyhS1btrB161Z27dpF7969adasGStXrvRa0SudT4MGDahZsyaLFi0qzmvbtm1s\n374dgPT0dFatWlUiVl/vZKWnp7N161b27NlTvMxfb3/nnnsuM2fOJD8/n6OPPppBgwb5PH5/y4t4\n23fRea1VqxYFBQXF6/Lz8/3m5SkjI6PEOSjKu0mTJgHnUR4CqWTtd/um7Qk8q6rP4XSNa0xcUnWG\nqrrpJmjXLtbRALt3cyPPBZ1s0CDnXTIbnNiYgFhZZYw5REpKCsOHD+fGG2/kgw8+YM+ePezfv5+P\nPvqIe+5xOiTt06cPDz/8MJs2bWLTpk2MGDGieCypQF177bW8+OKLzJvn3FTdvXs306dPZ/fu3Zx6\n6qmkp6dzzz33UFBQwN69e/nqq68AaNSoEatXry7uaENEuPbaa7ntttvYuHEjAGvWrGHmzJkA9OrV\ni9dee41ffvmFgoKC4ne1vGnevDknn3wyOTk57Nu3jzlz5pToIAIONsnbsGEDH374IQUFBVStWpXa\ntWsXP3krHWOgVLV431988QXTpk2jVy+nk9asrCzeffdd9uzZw9KlSxkzZkyJtI0bN/Y59tdf/vIX\natasyciRI9m/fz+5ublMnTqVyy67LKj4oi2QStZOERkK9AOmuV3cBtf7gDHl6I03nCdZQ4fGOhLX\nFVfQkw9gW3Adkx11FLRpAx98EKW4jKlYKnxZlZpa8t2UNOvn15iA3H777YwaNYqHH36Yww8/nObN\nm/P8888Xd4Zx//33c/LJJ9OuXTvat2/PySefHHRHCSeddBKjR4/mpptuIi0tjdatWxd3MpGUlMSU\nKVNYsmQJzZs3p1mzZsXvJp199tm0adOGxo0bc/jhhwPw2GOPceSRR9KhQwfq1atHly5d+O233wDo\n1q0bt912G2effTatW7fmnHPO8RvXhAkT+Prrr6lfvz4jRozgyiuvLLG+6GlUYWEho0aNokmTJjRo\n0IDZs2fzwgsv+IwxEOnp6aSmppKRkUH//v156aWXOOqoowAYMmQIVatWpXHjxgwYMIB+/UoOaThs\n2DCuuOIK0tLSePvtt0usq1q1KlOmTGH69Ok0aNCAm266iddff70473jp/t3nYMTFGzij3PcFvlHV\nL9w27tmqGvgoZqEGZ4MRV0579oBH++Fg5Oc7T68++sgZFyteTJJe9HouGwYPDirdhAnO06wZM6IT\nV1qa0/Nhaamph/Z6aEykRHIwYo88K2RZ5W8AYhucuPKxwYiNibxoDUZc5pMsVc1X1VGq+oX7eWWg\nhZaIjBGR9SKywMu6f4hIoY25ZUooLIRu3ZzBrYKk6tRhBg6MXQXL13hYb9a+FkaPDjq/iy+G776D\nFSsiHys4FSlfLxZ7Ow67c27iVThllTHGGBNpgfQueLGILBGR7SKyQ0R2isiOAPMfC3T1kmdT4Fwg\n75AUpnJ78UXYt88ZLCpIkyc7Q2p5jINX7nyNh/Xu9nOcwZT9jA/hTY0acPnl4DFeX7nwVfny9tTL\nmHgQZllljDHGRFQgzQWXAt1V9ZeQdiCSCUxR1XYeyyYDDwEfAiepqteGSdZcsJJZswbat3dG4S1j\nbIbSNm2C44+H998Hd8iGmPDbfGfbtpBGRJ4/33mitWxZaGOERJI1TzKREKXmgmGVVWHu25oLmnJh\nzQWNibyYNRcE1key0BKRHsAqVV0YqTxNBXHbbU57vyArWAB33gl9+sS2glWmECpYAFlZzitqc+dG\nOB5jKpaIllXGGGNMOKoEsM23IvIW8D6wt2ihqr4b7M5E5DDgXpymgsWLg83HVEAzZ8L33zsDWwVp\n1iz45BP4+ecoxBUHRKBvX6cTDD8DxBtT2UWsrDLGGGPCFUglKwUoALp4LFMglIKrFdAC+FGc/hWb\nAt+JyKmqusFbgmHDhhXPZ2dnk52dHcJuTdzr2BE+/DDoXgX//BNuuAGefhrqVOARcfr2dZ7SPfUU\nVK1QnVKbyiA3N5fc3Nxo7yaSZZUxxhgTljLfyQp7ByItcN7Jautl3XLgRFX1+jq9vZNlyvLoo/Dl\nlzBlSuzfV4LoviPRsSPcfz+cf3508g+EvQNiIiEa72TFkr2TZcpLPL+T1aJFC/LyrD8zk3gyMzNZ\n4aUb53DLqjKfZIlIa+AFoJGqHi8i7YAeqvpwAGknANlAfRFZCeSo6liPTRRrLmhCtGwZPPkkfPNN\nfFSwArZokdNVfdtD7jv4dfnlTpPBWFayjIlX4ZRVxpjwefsn1ZjKLJCOL0YDQ4F9AKq6AOgTSOaq\n2ldVM1S1uqo2L1XBQlWP8NWzoDH+qMJNN8Edd0DLlrGOJkizZsFjjwWd7NJLYepU2L07CjEZk/hC\nLquMMcaYSAukklVTVeeVWrY/GsEYE6h334W8PLj99lhHEoKLLnIGW967t+xtPRx+OJx2mlPRMsYc\nwsoqY4wxcSOQStYmEWmF07QPEfk7sC6qUZmKb9s2yM6GgoKgk+7Y4fT2/uKLUK1a5EOLuvR0aNMG\nPvss6KSXXOJUMI0xh7CyyhhjTNwIpJJ1I/AScIyIrAFuA26IalSm4rv3Xmc8rJo1g0764IPQpQuc\neWYU4iovF18cUm2pZ0+YMQP++CMKMRmT2KysMsYYEzcC7l1QRGoBSaq6M7ohldin9S5YEc2b59QW\nfv4ZUlODSvr993DeeU7fEQ0aRCm+MATc29eKFXDqqbBuHSQnB7WPzp1hyBDo0SOkEMNivZmZSIhm\n74IVrayy3gWNp3juXdCYiiZqvQuKiNe3XcTtxk1VR4W6U1OJ7d8P118PTzwRdAXrwAEn6WOPxWcF\nKygtWsDIkc5AX0GODVb0ECwWlSxj4o2VVcYYY+KRv+aCddzpZJwmF03c6XrgxOiHZiqk556DevWc\n/siD9NJLUKMGXHVV5MOKiauuCrqCBU6/GVOmwL59kQ/JmAQUdlklIk1F5DMRWSQiC0XkZnd5jois\nFpHv3alblI7BGGNMBePzSZaqDgcQkdk4AwbvdD8PA6aVS3Sm4mnZEp5/PuiBrfLzISfH6f08ocbE\nioKmTeGooyA3F849t3z3nZrq+/ynpsIWG5DBlLMIlVX7gdtV9QcRqQ18JyIfu+tG2dMwY4wxwSpz\nMGKgEfCnx+c/3WXGBC/ENm633w7XXgvHHRfheBJUUZPB8q5k+atEVfbKr4m5kMsqVc0H8t35XSLy\nC87TMAD7ZhtjjAlaIL0Ljgfmicgw987g/4DXohmUMZ5mzoS5c+H++8t/32lpTuWh9JSWVv6xeLr4\nYnj/fSgsjG0cxsSRiJRVItICyHLTA9wkIj+IyCsiUjcyoRpjjKnoynySpaqPiMhHQFGH2QNUdX50\nwzLGsWcPDB7svMoVQm/vYdu61XvvXRF9aqMadIZHHum82vb993DyyRGMxZgEFYmyym0q+DZwq/tE\n63ngIVVVEXkYGAVc4y3tsGHDiuezs7PJzs4O/iCMMcbETG5uLrm5uRHLL+Au3GPBunA3OTlOd+1v\nvx2b/fvqIjnY5T6pQlYWTJ8OTZqUvb2HO++EWrXA43+7mLLupE2gotmFe6hEpAowFfhIVZ/2sj4T\nmKKq7byssy7cTbmwLtyNKT/hllWBNBc0JnS//gr//nfISZ9/Hp4+5N+dCkQE2rRxKllBuvBCmDo1\nCjEZUzm9CvzsWcESkcYe6y8Gfir3qIwxxiQkq2SZ6FF12vqFcKu1KOn99wf9gCfxhFhb6tgRli2D\ntWujEJMxlYiInA5cDpwtIvM9umsfKSILROQHoBMwJKaBGmOMSRhlVrJE5GYRCW7UWGMAJk6EzZvh\n5puDTjphgvM+1I03RiGueNOtG3z+OfzxR1DJqlaFrl1DeghmTIUTTlmlql+qarKqZqnqCap6oqr+\nV1WvUNV27vK/qer6SMdtjDGmYgrkSVYj4BsRmSQi3USso2YTgG3b4I474MUXoUogIwUctHVryElD\n4qsHQRFn7KdyCSAryxn4KkgXXgjTbNQ6Y8DKKmOMMXGkzEqWqt4PHAWMAa4ClojIP0WkVVlpRWSM\niKwXkQUey0aKyC9ul7jviEhKGPGbeHXffc6YWB06BJ303nudLspPPTUKcXlR1IOgt8nXuFBFg/JG\nrFLWowcsXBh0sm7d4LPPgn4IZkyFE05ZZYwxxkRaQO9kud0mFQ3WuB9IBd4WkZFlJB0LdC21bCbQ\nRlWzgCXA0KAiNvHvwAHYvh0efTTopF9/DR9+CI88EoW4ImjLluAqZWX6xz+c7gKDVL8+tGsHs2aF\nuF9jKpAwyipjjDEmogJ5J+tWEfkOGAl8CbRV1RuAk4BL/KVV1TnA1lLLPlHVoiFUvwaahhK4iWPJ\nyfDGG0E/1tm/H667Dp580hkDqlIJo2XT+edbk0FjwimrjDHGmEgL5I2XNOBiVc3zXKiqhSJyYZj7\nvxp4M8w8TAXxzDPQqBH07h3rSBJL167Qt2+sozAm5qJZVhljjDFBCaSS9RFQ3AjKfYfqWFX9n6r+\nEuqOReQ+YJ+qTvC33TCPkVazs7PJzs4OdZcmjq1cCf/8p9Nc0F5XD05WlvNeWV4eZGbGOhpjDpWb\nm0tuCB27BCkqZZUxxhgTCilrlHoRmQ+cWDScvYgkAd+q6okB7UAkE5iiqu08ll0FXAucrap7/aTV\nsuIzFcPf/gYnnQQPPFD++xYJaSivuNKvH5x1FgwaFLsYKsJ5NOVDRFDViN5OCbesCnPfUSur/P1d\n2d9c5SPDBc2xX7ox5SHcsiqQji9KlB7u+1TBdKwt7uR8cAZ4vBPo4a+CZRLMvHnOo5QQfPABLF4M\nd90V4ZgS0f/+B7/9FnSyLl1gxowoxGNM4gi3rDLGGGMiJpBK1jIRuUVEqrrTrcCyQDIXkQnAV0Br\nEVkpIgOA/wC1gY9F5HsReT7k6E18KCiAPn2cmlKQdu1yxip+8UWoXj0KsSWaqVNh7Nigk3Xp4nTl\nvn9/FGIyJjGEXFYZY4wxkRZIJet6oCOwBlgN/AUIqFGSqvZV1QxVra6qzVV1rKoepaqZqnqiOw0O\nPXwTFx55xBnUqmvp3vrLlpMDnTuDvWrn6tIFZs4MOlnjxs77WPPmRSEmYxJDyGWVMcYYE2llNqVQ\n1Q1An3KIxSSin3+Gl1+GBQvK3raUH35wenr/6acoxJWoOnSA33+HDRvg8MODStq1q9NksGPHKMVm\nTByzssoYY0w8KbOSJSINcTqpaOG5vapeHb2wTEJQheuvh2HDID09qKQHDjhjYv3zn9CwYXTCS0hV\nqzqP9T75JOh+2bt0gfvug+HDoxOaMfGsMpZVqakle2NNTQ1jQHRjjDERFchLwR8AXwCfAAeiG45J\nKD/+eLCiFaSXXoJq1WAa5Z05AAAgAElEQVTAgCjEleiKHkkFWck64wznweKWLZCWFqXYjIlfla6s\nKl2hsuEvjDEmfgRSyaqpqndHPRKTeLKyIDcXkpODSrZunfMuVm4uJAXyVmBl07071KsXdLLq1eHM\nM52HYL16RSEuY+KblVXGGGPiRiD/4k4VkfOjHolJTEFWsACGDIFrr4U2baIQT0XQtClcdllISUPs\nN8OYisDKKmOMMXEjkMGIdwK1gD/dSQBV1ZSoB2eDEVc4M2bADTc4nV3UrBnraBwVaUDPRYvgwgth\n+fLy33dFOo8muqI0GHGFLKuC+buyv8GKzwYjNqb8hFtWBdK7YJ1QMzfG0549MHgwPPdc/FSwKprj\njnPO8/Ll8P/s3XucTPX/wPHXe1nWYtl1X5cl/ahvJSFFZJGUyLeUyvWr6KIb6hu6semmi27fbxcS\nUlRKSiglq5S+EiWKSKzburPui/38/jiz2+zay5zZOXNmZt/Px+M8zJw5n3Pec8yez3zm8znvT4MG\nbkejVPBoXaWUUiqUFDlcUCx9ROQRz/O6ItLS+dBUSPrzT7+LpqRAixZw5ZUBjEflIgIdOsCCBW5H\nolRwaV2llFIqlPhyT9arQCsgO9XZIeC/jkWkQtfatXDRRbBrl+2iy5fDW2/Byy87EJePEhKsRkje\nJT7evZic0LEjfP2121EoFXRaVymllAoZvjSyLjLG3AkcAzDG7APKOBqVCj1ZWTBwoJUW0ObEVidP\nWkWfeQZq1HAoPh/s22fdr5B3Cdl5ZSZPtnLd29Shg9XI0nszVAmjdVVB3nkH0tLcjkIppUoUXxpZ\nJ0SkFGAgZ8LHLEejUqFn/HirtTR4sO2i48ZBlSrQv78DcUWyypXh449tF2vQwLrnbfVqB2JSKnRp\nXeVx6BBMnw533w09expuTknixbPfYHPngcUa8q2UUsp3vjSyXgY+BqqLyBPAYuBJR6NSoWXLFnjk\nEXjzTdsp29evt3qw3nhDJ8q0rV07+P57yMy0XTS7N0upEsTvukpE6ojI1yKyWkR+FZF7POvjRWS+\niKwVkS9EpJJz4RfDiRPwwAPcwHRGjoSkJHj3XahfH3r0EFo90JZfr0/hgsUvc9u537F3ymy3I1ZK\nqYhXZAp3ABE5C+iIlRJ3gTHmd6cD8xxXU7iHgjvusMb5jR5tq5gx1v1BXbvCsGHOhGZHWKY3vvBC\nqyuwbVtbxaZPh/feg08+cSiufITl+VWucCKFu2e/ftVVIlITqGmM+VlEKgA/Ad2BAcAeY8wzIjIc\niDfGjMinvHsp3Ldvh+uvZ/7xdly57DH69CtFSorVwMpr3z545LadzJl5jI/f2EXTW5o7ErNyjqZw\nVyp4iltX+TJPVr381htjHB/grY2sEHHkiNWDVbasrWITJ8Lrr8OSJVC6yMkCnBeWjYDhw6FcOdsN\n3PR0OOss2L07eOc+IcH6EpdXfHwI3/emXOHQPFkBq6tEZBbwH8/Szhizw9MQSzXGnJXP9u40sjZu\nxHS8jCfqvcGrazuwfbv4dI1777W93Ds6nnnzhGbNAhqucpg2spQKHsfnyQLmYI1xFyAGaACsBc7x\nIbiJQFdghzGmiWddPPA+kARsBHoaYw74E7wKEj8mtdq+HUaOhK++Co0GVtjq0AGeesp2sZo1oU4d\nK6tjyyAlsS6oIaXDRFWQ+F1XeROR+kBT4AeghjFmB4AxJl1Eqgcw3uLZsIFT7Tpwa505rDpyDsuW\nQe3avhW98Y4EytaEq66CH36whhcqpZQKLF8mIz7P+7mINAN8zX4wCXgFeNtr3QjgK6/hFyM961QE\nuesuuPVWaNLE7UjCXPv2cMklfhXNvi8rWI0spdxUzLoqu0wF4EPgXmPMIRHJ22VQYBfCaK/e5uTk\nZJKTk+0c2raTh4/TO3Ehe8o3YMEsqFDBXvlrroENG6BHD1i8GGJinIlTKaXCRWpqKqmpqQHbn0/3\nZJ1WSOTXvBVaIdsmAbO9erLW4MPwC8+2OlwwDM2cCQ8+CD//HFoVd1gOFyyGTz6B//wHvvzS3ThK\n2nlXRXPqnqx8jmOnrioNfAbMM8a85Fn3O5DsVV8tNMacnU/ZoA4XNMb6EWvjRpg9++/rrN2/NWPg\n2mutocV+dJgrF+hwQaWCx/HhgiLinbIgCmgGbPP3gED1kB1+oSyHD1u1tR/DBHfvtnqxZswIrQZW\nSdSuHfTpA8eP276dTqmwE4C66i3gt+wGlsenwL+AsUB/IIipZAo2ahSsWAELFxbvOisCr70G5597\niuuS99G8c9XABamUUiWcLyncK3otZbHGvXcPYAz6k0youf9+eOwxv4redRf06uX3CDcVQJUrw9ln\nW4lHlCoB/K6rROQSoDfQQURWiMhyEbkCq3HVSUTWYmUtfNqRyG2YPBmmTYO5c6FixeLvr2ZNePqi\nj7m7337tcVZKqQDy5Z6slAAfc4eI1PAafrGzsI2DPc69xPvyS5gzB1autF10xgxriOCkSQ7EpfzS\nvj2kpoL+2Sg3BXqce36KU1cZY74DCpoE8DJ/9xtQ27fz07Za/PvfsGgRVM9nDEh8fO5EM75m9uz3\n9mW8XHMzH72QxnXD8k3SqJRSyiZfUrjPppDeJmPM1UWUr491T9Z5nudjgb3GmLGFzTvi2VbvyQqm\njAw47zwYPx46d7ZVdOdOK8nFrFlw8cUOxVdMYX1v0IED1qTE1arZKjZ3Ljz7rDWsyC1hfd6VIxxK\n4V6suqqYx3b2nqwdO9ndpAMtSi3nuZfKcN11Nsr6GNaC22dw6zttWbOvJtHR/sernKX3ZCkVPMWt\nq3wZLrgBOApM8CyHgD+B5z1LYcFNA74HGolImogMwBpuEVLDL5THffdZjSubDSxjYPBg6N8/dBtY\nYe+FF+C552wXa9MGfvwRjh1zICalQovfdVVoM2TdMohe5T7mhj6+N7Ds6vjcldTP/INp49KdOYBS\nSpUwvvRkLTPGtChqnRO0JyuIfv4Z/vlPa5hgXJytou+9Z93CtXx5aCe7COselYULrYnHfvjBdtGW\nLa3erHbtHIjLB2F93pUjHOrJisi6apBMoHHiIWbVv5fURVG25h20+7e3oO9k7vqsM6v31CLKl59g\nVdBpT5ZSwROMnqzyInKG1wEbAOX9PaAKUU2bwrJlthtY6elw770wZUpoN7DC3sUXw6pVcPCg7aLJ\nydZ9WUpFuMirq9atoxfvMvbo3Ux9x14Dyx8dXryaikkJzJrl7HGUUqok8KWRNRRIFZFUEVkELASG\nOBuWckVVe+l7jYHbb4eBA+HCCx2KyQ8JCdYvuHmX+Hi3IyuGcuWgWTP4/nvbRZOTrRvllYpwEVdX\nHX30KXowk3EvlaZBA+ePJ1USeODhsrz4ovPHUkqpSOfTZMQiUhbInjB4jTHmuKNR/X1cHS4Ywt5+\n2xqGtmyZO/MwJSTAvn2nr/c1o1bYefRROHHC9qyhGRmQmGjNYeZGb6MOF1R5OTUZcaTVVXffcZL/\nvF6KrCzJlTXQ97js/+2dOAH168MXX8C559o/pnKWDhdUKngcHy4oIrHAv4G7jDG/APVEpKu/B1SR\n4a+/rDwZ77zj3kS3+/ZZXyDyLhHZwAK44gqrR8umuDhrvqylSx2IyQfZaaXzLgkJ7sSjIlOk1VXH\njsH2XaUB/xpY/oqOtkYnvP568I6plFKRyJfhgpOATKCV5/lW4HHHIlLBYQxs2OBX0ZMnoW9fGDEC\nzj8/wHGpgrVubfVm+cHNIYN79+bfGM6vF1KpYoiouiomBj780J1jDxpkTXh86JA7x1dKqUjgSyOr\noTHmGeAEgDHmCBDE39WUI954A/r08Wsc19ixVu/V0KEOxKUcockvVAmgdVWA1KkD7c7by3sTD7sd\nilJKhS1fGlmZIlIOzySPItIQCMo4d+WQtWvh4YfhrbewOw7lxx/hpZesbIKa4jd8tGkD//sfHNe/\nXBW5tK4KoP6nJvLOfw+4HYZSSoUtX74mjwI+B+qKyLvAAuABR6NSzjlxAnr3tia2Ouusorf3cviw\nVfQ//7F+6VTho1Il67/brfuylAoCrasC6MqhZ7Pqr1jS0tyORCmlwlOhjSwREWANcC3wL2A60MIY\nk+p4ZMoZKSlQowbccYftosOGQatW0LOnA3Epx2kqdxWptK4KvLLdLue6UrOY9l+9eVIppfxRaCPL\nk5N2rjFmjzFmjjHmM2PM7iDFpgJt716YMcOvYYKffgrz58MrrzgUm/LdzJnwyy+2i+l9WSpSaV3l\ngDJl6NN5J1Mnn9QpGJRSyg++DBdcLiIhNNWs8ltCAqxaZfVk2bB5s5Vt6p13rHTgymXLlvmVdiz7\nvqzMTAdiUsp9WlcFWOt7W3JkfyYrV7odiVJKhR9fGlkXAUtE5E8RWSkiv4qIXnLDVXS0rc1PnoSb\nbrIyCV5yiUMxKXv8HPdXuTI0amQlL1EqAmldFWBRl7ahx6W7mPmRdmUppZRdpQt6QUQaGGP+AjoH\nMR4VYkaNgvLl4QG9fTx0tG4Ny5fDkSMQG2uraPaQQW0wq0ihdVXBsicC935ua7L20qW5NqUpt90G\nKY8FPDyllIpohfVkZY9HessYsynvEozglLvmz4fJk+HttzVde0ipUAHOOw9++MF2Ub0vS0UgrasK\nkHcicH8mAL/4Yti9G/74I/DxKaVUJCuwJwuIEpEHgUYiMizvi8aYccU5sIgMBW4BsoBfgQHGGL1b\nJJAyMmDWLOjXz3bR9HT417+s+7Bs3sKlgqFdO2vIYIcOtoq1bQu9eln3ZZUp41BsSgWXo3VVSRcV\nBddcAx9/DMOHux2NUkqFj8L6J24ETmE1xCrms/hNRBKBu4FmxpgmnmPcWJx9qjyMsbJV+NHbceqU\nNR/WoEG2v8OrYBkwALp1s12scmX4v/+zcmcoFSEcq6uU5dprraSmSimlfFdgT5YxZi0wVkRWGmPm\nOXDsUkB5EckCYoFtDhyj5JowAdassdLJ2fTkk1bCi0cecSAuFRiNG/tdNHvIYOvWAYtGKdcEoa4q\n8dq1g/XrDZs3C3Xruh2NUkqFhyLvtHGi0jLGbAOeB9KArcB+Y8xXgT5OifXTT/DQQ/DBBxATY6vo\n/Pnw2mswbRqULmwwaZAkJFg3bue3xMe7HV140vuyVCQqbl0lIhNFZId3RkIRGSUiW0RkuWe5oviR\nhp/oU8focuIT5sw64XYoSikVNlxJZyAilYHuQBKQCFQQkV5uxBJxdu+GHj2slpLN3o6NG63bt6ZP\nh9q1nQnPrn37ct+47b3YypKlcrRtC0uWwAn9vqSUt0nkn6FwnDGmmWf5PNhBhYSYGLrUXMG86X5k\nzlBKqRKqsBTu1xtjZnilxw2ky4ANxpi9nmPNBFoD0/JuOHr06JzHycnJJCcnBziUCHPwIAwbBtdd\nZ6vYsWNW2+yBB6yhISpyxcfDmWda92W1auV2NKokSE1NJdWh7tNA1VXGmMUikpTfIYoRXsS4vEdF\nbhsXx/HjULas29EopVToE2Pyn2RQRJYbY5pl/xvQg4q0BCYCFwLHsX5B/NEY898825mC4lOBYwwM\nHAiHDsF77+WeVyVYEhLyTy9se14X5ZOhQ6F6dRg50r0YRKzPnip5RARjTECuNIGsqzyNrNmehEyI\nyCjgX8ABYBlwnzHmQD7lHKurAvl3Uqx9LVtG60tLkfLJBXTqFJh4lH2SIphReuFUKhiKW1cVNlxw\nj4jMBxqIyKd5F38PCGCMWYo1t8kK4BesXwrHF2efyn8TJlhJCCdOdKeBBQUPC9QGVhH694dvv7Vd\nTO/LUhHEsboKeBU4wxjTFEgHSm46+GbN6CKfM/e909qYSiml8lFYaoOrgGbAVKwkFQFljEkBUgK9\nX2XP0qXw8MPW9/QKFdyORtlWowZ8/bV1o5UNbdtC377WfVnR0Q7FplRwOFZXGWN2eT2dAMwuaNuI\nH9oeFUWXjsfp9XkUL7gdi1JKOSDQQ9sLHC6Ys4FINWPMLhGpAGCMORSwoxdBhwv64Phxa1ZZP7qg\n0tPhoovgxRetySbdpEPH/DRvHjzzDCxcaLvoBRfAq6+6d1+W/p+XXIEcLui1z2LXVSJSH2u44Hme\n5zWNMemex0OBC40xpyVpCpfhgnmHZdsdjp11ypBYW/juO2jYMDAxKXt0uKBSwePkcMFsNURkBbAa\n+E1EfhKRc/09oAqgrCzo2RMmT7Zd9Ngxq2E1YID7DSxVDJdcAj/+aP2H2tS+vV9tM6VCVbHqKhGZ\nBnwPNBKRNBEZADwjIitF5GegHTDUkciDZO/e3MOx87sPtjBRpYQrr7R+21FKKVU4XxpZ44Fhxpgk\nY0w94D70/qnQ8OCDcOAA9O5tq5gxcNttUKcOPPqoQ7EVoKB5r3TOKz/FxcE551g31dnkdiMrPj7/\nz0JCgnsxqbBWrLrKGNPLGJNojClrjKlnjJlkjOlnjGlijGlqjPmnMWaHY9GHiSuugC++cDsKpZQK\nfb40ssobY3K+ihljUoHyjkWkfDN1KsyYAR9+aA0XtOHZZ2HVKpgyBaIcmimtoMYUaIKLgGvf3rq5\nzqZLL7XaZsePOxCTD/L+qu7vr+tKeWhdFQQdOsA33+g8e0opVZTCEl9k2yAij2DdVAzQB9jgXEiq\nSEuWwH33Wd0QVavaKjp7Nrz0EvzvfxAb61B8/J0tUAXBY4/5lb2iUiU46yzrs3DppQ7EpVRwaV0V\nBNWqQYMG1ijl1q3djkYppUKXL/0YNwPVgJnAR0BVzzrlliefhEmTrGFiNqxaBbfcAjNnWkMFVYTw\nM/EJuD9kUKkA0roqSC478y8WzMt0OwyllAppRWYXdJNmFyxAVpbtcX7bt1tZ5J54wvYtXH7RzHHh\nYd48GDs2tObM0s9O5HMiu6CbwiW7YKD2Pa/JcMbyAKkrqwQ+KFUozS6oVPAEI7ugCjU2G1gHD8JV\nV8HAgcFpYKnw0aYNLFsGR4+6HYlSKly0vTqeZWsqcPiw25EopVTo0kZWhDt50sry3rw5PPSQ29Go\nUFOxIpx3nnWbn1JK+aJCl0tpVmY1ixe7HYlSSoWuIhtZInKJL+uUg/wcK2IM3HGH9fjVV/2+bUeF\ni5Urdb4sVWJpXRVEF15Ix5Of89XsI25HopRSIcuXnqxXfFynnDBxIgz1b/7LJ5+En36CDz7wK/mc\nCjd33AHffWe7mDayVITQuipYoqO57IK9LJjr0vwPSikVBgpM4S4irYDWQDURGeb1UhxQyunAFFZW\ngocegkWLbBedPBkmTLCGgVWsGPjQVAhKTrYyWHTsaKtY69bw889w+DCU11mFVJjRusodLR+8jD9v\nqsju3bZnElFKqRKhsJ6sMkAFrIZYRa8lA7jO+dBKuO++g379rHzrjRvbKjprFowcCZ9/DrVqORSf\nCj3JyX51SZUvD02b+tUJplQo0LrKBdHdrqBtcmntBVdKqQIUmcJdRJKMMZtEpAKAMeZQUCKjBKdw\n/+UX6NQJpk6Fzp1tFV2wAG66yeoEa97cofh8oGm4XXD4MNSoATt22O6SeuQRK0nKU085FJsN+tmJ\nfE6kcI/UuioUU7hne/55+PNP655fFRyawl2p4AlGCveKIrICWA2sFpGfRORcfw+YTUQqicgMEfld\nRFaLyEXF3WfEeOop+O9/bTewli6FG2+EGTOC08BKSLAq6fyW+Hjnj6/yyO6S+v5720X1viwVARyp\nqyJZfHzu63ZCgr3yycl+jWZXSqkSocB7sryMB4YZYxYCiEiyZ13rYh77JWCuMeZ6ESkNxBZzf5Fj\n2jTbc2H99htcfTW89Ra0a+dQXHns26c9DiHnlltsf3bAmqh61SprTjW9h0+FKafqqoi1d2/u53Yz\n0DZtClu3ws6dUL164OJSSqlI4Mu3sfLZlRaAMSYVKNbt8SISB7Q1xkzy7POkMSajOPuMKDa/JP/5\np9Xp9dxz0K2bQzGp8DBggO3EFwDlykGLFvDttw7EpFRwBLyuUoUrVcqa0Pybb9yORCmlQo8v3+Y3\niMgjIlLfszwMbCjmcRsAu0VkkogsF5HxIlKumPsskTZsgA4d4OGHoU8ft6NR4UyHDKow50RdpYrQ\nbscHLJqn82UppVRevjSybgaqATM9SzXPuuIoDTQD/muMaQYcAUYUc5/had8+yMz0q+jGjVYDa/hw\nuO22wIalSh5tZKkw50RdVaL4c49Wu7I/kPrlCeeDU0qpMFPkPVnGmH3APSJS0XoakIxNW4DNxphl\nnucfAsPz23D06NE5j5OTk0lOTg7A4UPE3r3W0K4hQ6B/f1tFN22yvhTfdx8MHhyYcBISrDZfXvHx\np4/dV5Hnootg7VrYvx8qV3Y7GhVJUlNTSU1NdfQYDtVVJYo/92g165pI2qgyOl+WUkrl4UsK9/OA\nt4Hs37R2A/2NMauKdWCRRcAgY8wfIjIKiDXGDM+zTeSmcN+3z2pgdewIzzxj647jzZutrE533221\nzwKloHS+dter8NWpE9x1F3Tv7l4M+rmKfA6lcHekrvLx2GGZwj0gx166lCs7ZnLr22245pqghFWi\naQp3pYInGCnc38DK2JRkjEkC7sPK2FRc9wDvisjPwPnAkwHYZ3jYs8f6Ntu+ve0G1saNVgNr8ODA\nNrBUhHnkEUhPt13sssvgq68ciEcp5zlVV6nCNGtG8okvSf38qNuRKKVUSHElu6BnP78YYy40xjQ1\nxlxrjDlQ3H2GhZ07rRzrHTta6QBtNLDWroVLL7UaV/fd52CMKvytWmXNTG3T5ZfD/PkOxKOU8zS7\noBtKl6Zd0wMsmu/fvcVKKRWp3MouWHJVrGhlqnj6aVsNrJUrrY6vlBRrmKBSherUCb780nax88+3\nRrKmpTkQk4/y3nxfnMlSVYmidZVLmr87jA174vTeXaWU8mI3u+BHQFU0Y5P/ypWDvn1tNbCWLrW+\nM7/4ojUNklJF6tTJGvdn82aOqCirk9WP9lnA7N1rhZ3fkl9iFqU8ilVXichEEdkhIiu91sWLyHwR\nWSsiX4hIpYBHHQGiG9ajVSvRefaUUspLoY0sESkFPGSMuccY08wY09wYM8STxUkFQWoqdO0KEydC\nz55uR6PCxplnWjOFrllju6gOGVThJkB11SSgc551I4CvjDGNga+BkQEKOSzYSenerh0sWhS82JRS\nKtQV2sgyxpwC2gQplshUjLRQM2ZYDav33rMaWoGSkJD/UKz4+MAdQ7lM5O/eLJs6dbJu58rKciAu\npRwQiLrKGLMYyNso6w5M8TyeAvyzOMcIN3l7lQvrSW7XzvpRUCmllKXIebKAFSLyKTADOJy90hgz\n07GoIsUHH8Ds2TB1qu2iL79sJR788kvrPplA2rdPU2SXCA89BDExtovVqQPVqsGKFdC8uQNxKeUM\nJ+qq6saYHZ79pItI9WLGGLEuvBDWrdN59pRSKpsvjawYYA/QwWudwRr3rgry4ovw/PPw2We2imVl\nwYgRVtvsu+8gKcmh+FTka9DA76KXX2418LWRpcJIMOoq/XmqAGXKwEUtTrJ4cemAjrxQSqlwVWQj\nyxijqRbsyMqCBx6AuXNh8WJbraTjx+GWW+Cvv6yiVao4GKdShejUCcaNsxr8SoUDh+qqHSJSwxiz\nQ0RqAjsL2nD06NE5j5OTk0lOTnYgnBCWmUny92NJPW84XbuWcTsapZSyLTU1ldQAjnsWp2apDwQR\nMaEc32mOHrUyB+7YAZ98Yivf9K5d0KMHVK0K775rJSF0ioi94YIFbW93Pyp8HDwIiYnWRzk21u1o\n/qafucggIhhjfE+xGiQiUh+YbYw5z/N8LLDXGDNWRIYD8caY0356cLKuCqXPfFGxfNv0boYdeZwf\n/9AkjE6RFMGMCpEPhFIRrrh1lS8p3JWvoqOhVSsr2YCNBtbq1XDRRdC2LXz4obMNLH8UNG+RJsqI\nXBUrQrNmmi1MlRwiMg34HmgkImkiMgB4GugkImuBjp7nqgAtu1RlzaYYDhxwOxKllHKfNrICqXRp\nuO8+KFvW5yLz5v09yfATT1jzFIWaguYt0oknw8TJk5CZabtY587w+ecOxKNUCDLG9DLGJBpjyhpj\n6hljJhlj9hljLjPGNDbGXG6M2e92nKGsbIdLaBnzK4sXux2JUkq5r8iv9CJSwzNJ4zzP83+IyC3O\nhxbZjLFyY9xyC8yaZY0yVMoRffvCRx/ZLtalC8yZEzpDlZQqjNZVzity3qzWrUk+Oo+F80+4Ep9S\nSoUSX/pNJgNfAIme538AQ5wKKGycPGnlqvXD4cPQuzdMngzffw+tWwc2NKVySU62Wks2nX8+HDsG\nf/wR+JCUcsBktK5yVJHzZsXG0v7SU6R+ddKV+JRSKpT40siqaoz5AMgCMMacBE45GlWoS0+30q+N\nHWu76B9/WPdflSkDS5ZA/fqBD0+pXLp0scb9nbL3Zyvyd2+WUmFA66oQ0HLuaP7YXM7f3yCVUipi\n+NLIOiwiVfDMDyIiFwMl97bWxYuhRQsrS8Xjj9sq+vHH0KYN3H03TJoUegkuVISqW9dKFbh0qe2i\nV12ljSwVNrSuCgFlysDFF8M337gdiVJKucuXRtYw4FOgoYh8B7wN3B2Ig4tIlIgsF5FPA7E/RxkD\nL7xg5VkfPx4eewxKlfKp6MmT1nxDQ4ZYcxPfdpvVS6BU0PjZWurY0WqbZWQ4EJNSgeVYXaXy532P\nlvf9WcnJsHCha2EppVRIKHQyYhGJAmKAdkBjQIC1xphA3dV6L/AbEBeg/Tnn/fetCaz+9z9bY/z+\n+su6/6piRfjpJ2seLH8kJOQz/h2rktMsf6pI3brB9Om2i1WoYN0z+OWX1u8LSoWiINRVKh/edY/3\nD4ft28PgwcGPRymlQkmhPVnGmCzgv8aYk8aY1caYVYGqtESkDtAFeDMQ+3Pc9ddbQwVtNLCmT7fu\nv7ruOitVu78NLLAaWPmlUc+v4aXUaVq3hlde8atoKA0ZLGjONhvT0qkI5GRdpexr0QI2bNAfAJVS\nJZsvwwUXiEgPkcNIIBIAACAASURBVIAPcHsB+Dee8fMhr1QpiInxadODB+Ff/4LRo618A8OGheb8\nV0r54qqrrB8JsrLcjqTgOdv0xwaFc3WVsin6+CFa19+mk5krpUq0QocLetyGNdb9pIgcwxqGYYwx\nfg/xE5GrgB3GmJ9FJNmzT5/Vr1+fTZs2+Xv4oGrePHD7Kuirgz9fKfRriDuSkpLYuHGj22HY0rAh\nVKoEK1YE9vOsVIAFvK5SfipdmuTfX2PhFw9zzTVl3Y5GKaVcUWQjyxhT0YHjXgJcLSJdgHJARRF5\n2xjTL++Go0ePznmcnJxMcnIymzZtwugMqSoMheuP7FddZSVt0UaW8kdqaiqpqamOHsOhukr5IyaG\n9uftZuAXxwFtZCmlSibxpbEiIvHA/2HdWAyAMSYgCVpFpB1wnzHm6nxeM/nFJyLayFJhKVw/u998\nA/fea/VmhSIRa9igCg+ev4OA/+LgZF1VxHHzrasCs+/w+GznjfPkqDFUHXs/6zaXo1o19+KKNJIi\nmFFh8IFQKgIUt64q8k4hERkIfAN8AaR4/h3t7wGVUi7680946y3bxS65BLZts25mVyoUaV0VWkp3\nbEebmGV6X5ZSqsTyJR3DvcCFwCZjTHvgAiBgc7kbYxbl14ullHJAdDQMH25N3mZDqVLwz3/CRx85\nFJdSxedoXaVsuugi2h+dx8IvjrsdiVJKucKXRtYxY8wxABEpa4xZgzUPibJp06ZNREVFkRWANG0N\nGjTg66+/9mnbKVOm0LZt25znFStWDFjyhaeeeopbb70VCOz7A9i8eTNxcXFhObwuZNWrZ01D8O23\ntoteey3MnBn4kJQKEK2rQknZsiSPbEXqt6XcjkQppVzhSyNri4hUBmYBX4rIJ0B4pPZzQVGNH7cS\nH3gf9+DBg9QvYr6vRYsWUbdu3SL3O3LkSMaPH5/vcezKe+7q1q1LRkZG2CaLCFl+tpbat4e1a2HL\nFgdiUqr4tK4KMU0f6Ub6rtJs2+Z2JEopFXxFNrKMMdcYY/YbY0YDjwATgX86HZhylzGmyMbNqVOn\nghSNCqjsRpbNHscyZaBrV5g1y6G4lCoGratCT6lS0LEjzJ/vdiRKKRV8viS+qJe9AH8BPwM1HY8s\nAmRlZXH//fdTrVo1zjzzTObMmZPr9YyMDAYOHEhiYiJ169blkUceyRkat2HDBjp27EjVqlWpXr06\nffr0ISMjw6fj7t27l6uvvppKlSpx8cUX8+eff+Z6PSoqig2eDAZz587lnHPOIS4ujrp16zJu3DiO\nHDlCly5d2LZtGxUrViQuLo709HRSUlK4/vrr6du3L5UrV2bKlCmkpKTQt2/fnH0bY5g4cSK1a9em\ndu3aPP/88zmvDRgwgEcffTTnuXdvWb9+/UhLS6Nbt27ExcXx3HPPnTb8cPv27XTv3p0qVarQqFEj\n3nzzzZx9paSkcMMNN9C/f3/i4uI477zzWL58uU/nq8Rp3BgqV4alS20X7dFD78tSoUnrqtDUuTN8\n8YXbUSilVPD5MlxwDvCZ598FwAZgnpNBRYrx48czd+5cfvnlF5YtW8aHH36Y6/X+/ftTpkwZNmzY\nwIoVK/jyyy9zGg7GGB588EHS09P5/fff2bJlS645wwozePBgYmNj2bFjBxMnTuStPNnkvHuoBg4c\nyIQJE8jIyGDVqlV06NCB2NhY5s2bR2JiIgcPHiQjI4OaNa3vKp9++ik9e/Zk//799OrV67T9gTUn\nzp9//skXX3zB2LFjfRo++fbbb1OvXj0+++wzMjIyuP/++0/b9w033EC9evVIT09nxowZPPjgg7nm\n3pk9eza9evXiwIEDdOvWjTvvvNOn81UiTZsG//iH7WKXXw7Ll8POnQ7EpFTxaF0VQhISrLTuAwfC\ne+9BfLzbESmlVHD5MlzwPGNME8+//we0BJY4H1oxjB5tXd3zLgU1UvLb3scGTWFmzJjBkCFDSExM\npHLlyowcOTLntR07djBv3jxeeOEFYmJiqFq1KkOGDGH69OkANGzYkI4dO1K6dGmqVKnC0KFDWeRD\nLtysrCxmzpzJmDFjiImJ4ZxzzqF///65tvFOJFGmTBlWr17NwYMHqVSpEk2bNi10/61ataJbt24A\nxMTE5LvN6NGjiYmJ4dxzz2XAgAE578kXBSW52Lx5M0uWLGHs2LFER0dz/vnnM3DgQN5+++2cbdq0\naUPnzp0REfr27cvKlSt9Pm6Jc/75EBdnu1i5ctClC+T5vUAp14VlXRXB9u2z5s0yBs4+G/Zrnkel\nVAnjS09WLsaY5cBFDsQSOKNH/311914Ka2T5uq0N27Zty5U8IikpKedxWloaJ06coFatWiQkJBAf\nH8/tt9/O7t27Adi5cyc33XQTderUoXLlyvTp0yfntcLs2rWLU6dOUadOnXyPm9dHH33EnDlzSEpK\non379vzwww+F7r+oZBgictqxtwXgruft27eTkJBAbGxsrn1v3bo153l2bxtAbGwsx44dC1imQ/W3\n3r3h3XfdjkKpwoVFXRVB4uNz/06Z03N15Aid97+PoNdipVTJUrqoDURkmNfTKKAZoLmCfFCrVi02\nb96c83zTpr8TXdWtW5eYmBj27NmTb4KJBx98kKioKFavXk2lSpX45JNPuPvuu4s8ZrVq1ShdujSb\nN2+mUaNGgNWgK0jz5s2ZNWsWp06d4pVXXqFnz56kpaUVmPTCl0x/eY+dmJgIQPny5Tly5EjOdtu3\nb/d534mJiezdu5fDhw9Tvnz5nH3Xrl27yHhUYHXuDAMGwF9/QYMGbkejlEXrKnft3VvAC7GxdI7+\nmolcCdjvPVdKqXDlS09WRa+lLNZ49+5OBhUpevbsycsvv8zWrVvZt28fY8eOzXmtZs2aXH755Qwd\nOpSDBw9ijGHDhg188803gJVmvUKFClSsWJGtW7fy7LPP+nTMqKgorr32WkaPHs3Ro0f57bffmDJl\nSr7bnjhxgmnTppGRkUGpUqWoWLEipUpZc5rUqFGDPXv2+JxsI5sxhjFjxnD06FFWr17NpEmTuPHG\nGwFo2rQpc+fOZd++faSnp/PSSy/lKluzZs2chBze+wOoU6cOrVu3ZuTIkRw/fpyVK1cyceLEXEk3\n8otFBV50NFx/vXVbl1IhxLG6SkQ2isgvIrJCROxnjCnhLu0ez3HKYrM6UUqpsObLPVkpXssTxph3\nsyd8VKfz7o0ZNGgQnTt35vzzz6dFixb06NEj17Zvv/02mZmZ/OMf/yAhIYHrr7+e9PR0AEaNGsVP\nP/1E5cqV6dat22llC+v1eeWVVzh48CC1atXi5ptv5uabby6w7NSpU2nQoAGVK1dm/PjxvOsZB9a4\ncWNuuukmzjjjDBISEnLi8uX9t2vXjjPPPJNOnTrxwAMP0LFjRwD69u1LkyZNqF+/PldccUVO4yvb\niBEjGDNmDAkJCYwbN+60WKdPn85ff/1FYmIiPXr0YMyYMbRv377QWFQRjh2DPD2KvsgeMqjtWBUq\nHK6rsoBkY8wFxpiWAdpniRHbtQNNWEkhOZCUUiriSFG/9ovIbKDAjYwxVwc6KK9jm/ziExHtpVBh\nKeQ+u+PHw1dfwQcf2CpmDJxxhpXOvVkzh2KzQUQbfOHE83cQ0F9BnKyrROQvoIUxZk8Br+dbVwVC\nRHy2jx7lydgxbOo/ijcml3U7mrAmKYIZFe4fCKXCQ3HrKl+GC24AjgITPMsh4E/gec+ilApXPXta\nM4X6kFTFmwj07w95ZgdQyk1O1lUG+FJEfhSRQcXcV8lTrhwJ7GH2p8buHOhKKRW2fOnJWmaMaVHU\nOidoT5aKNCH52e3XDy64AIYOtVUsLc0qtnkzeCV9dEVE/NpfgjjUk+VYXSUitYwx20WkGvAlcJcx\nZrHX69qTVYRycpT6Z5VjyhRoqQMu/aY9WUoFT3HrqiKzCwLlReQMY8wGzwEbAOX9PaBSKsQMHAh3\n3AFDhljf6HxUr571Zemjj6CQ/CNKBYtjdZUxZrvn310i8jHWHFyLvbfxniw+OTmZ5OTkQBw6Yhyj\nHN27wyefaCNLKRWaUlNTSU1NDdj+fOnJugIYjzUUQ4Ak4FZjzPyARVHwsbUnS0WUkPzsGgONG8OU\nKdCqla2iM2fCiy+CJymmaxISrMlP84qPLyS1tHKNQz1ZjtRVIhILRBljDolIeWA+kOK9X+3JKpoI\nfP893Hor/Pqr29GEL+3JUip4iltXFdnI8hykLHCW5+kaY8xxfw/o2V8d4G2gBlbWpgnGmJfz2U4b\nWSqihOxnd+ZMq2uqhb2RVSdOQN26kJoKZ51V5OZBFylfUCONE40sz34DWld59tkA+BjrvqzSwLvG\nmKfzbKONrCIU9ENINv1BxDfayFIqeBxrZInIhcBmY0y653k/oAewCRhtjPH7cigiNYGaxpifRaQC\n8BPQ3RizJs922shSESUSP7sPPgiHDsHLp/1M4r5I+YIaaQLZyHKyrrIRgzayfDRoEPzjH6ffAhpp\n79Mp2shSKniczC74BpDpOcilwNNYvU8HsIZk+M0Yk26M+dnz+BDwO1C7OPtUSrnjzjvhnXdg/363\nI1EllGN1lQq8a5pt4sN3dapNpVTkK6yRVcrrF8AbgPHGmI+MMY8AZwYqABGpDzQF/heofSqlgqd2\nbbjySnjzTbcjUSVUUOoqFRiXbXubtatPsmmT25EopZSzCm1kiUh29sGOgPdc7b5kJSySZ6jgh8C9\nnh6t04wePTpnCWTGD+WfqKgoNmzY4NO2KSkp9PWkndu8eTNxcXEBGyp3xx138MQTTwCwaNEi6tat\nG5D9AixevJizzz47YPsrCYYOhVdegZMn3Y5EhaLU1NRc1/IAc7yuUoFTpk9ProuayXvTdMIspVRk\nK6wCmg4sEpHdWBM8fgsgImdiDcMoFk+l+CEw1RjzSUHbOVAhO27atGm88MILrFmzhri4OJo2bcqD\nDz7IJZdc4mpcU6ZM4c033+Tbb7/1ex9iI8W39/Z169YlIyOjyO19jfG1114rVlzeoqKiWL9+PWec\ncQYAbdq04ffff/d7f2Fvzx7rLnUb57RFCytvxkcfwQ03OBibCkt5U5qnpKQEcveO1lUqwBo35qbE\nZ7nnzWsYPrKi29EopZRjCuzJMsY8AdwHTAbaeN3VGwXcHYBjvwX8Zox5KQD7Chnjxo1j2LBhPPzw\nw+zcuZO0tDTuvPNOZs+ebXtfp06d8mmdr4wxxWqMZO/DSb7EmJUV2F9Ai3tOIk63bjBnju1iI0bA\n449DgP97lCpUEOoqFWBtBzZmT/pJVq92OxKllHJOYcMFMcb8YIz52Bhz2GvdH8aY5cU5qIhcAvQG\nOojIChFZ7pnjJKxlZGQwatQoXn31Vbp37065cuUoVaoUXbp04emnrYy/mZmZDBkyhNq1a1OnTh2G\nDh3KiRMngL+HvT3zzDPUqlWLm2++Od91AJ999hkXXHAB8fHxtGnThl+9Jh7ZsmULPXr0oHr16lSr\nVo177rmHNWvWcMcdd7BkyRIqVqxIQkJCTjz3338/SUlJ1KpVi8GDB3P8+N9Zj5999lkSExOpU6cO\nkyZNKrRBsnHjRpKTk6lUqRKdO3dm9+7dOa9t2rSJqKionAbS5MmTadiwIXFxcTRs2JDp06cXGOOA\nAQMYPHgwV111FRUrViQ1NZUBAwbw6KOP5uzfGMNTTz1FtWrVOOOMM5g2bVrOa+3bt+ett97KeT5l\nyhTatm0LQLt27TDG0KRJE+Li4pgxY8Zpww/XrFlD+/btiY+P57zzzsvVYB4wYAB33XUXXbt2JS4u\njlatWvHXX38V/kEJdffdB6NH20711aULlCtn9WaFivh4q0Mu7+L5aKkI4VRdpZwR1etGbsp6h6mT\nTuSsy/u3qn+jSqlwV2gjyynGmO+MMaWMMU2NMRcYY5oZYz53I5ZAWrJkCcePH+ef//xngds8/vjj\nLF26lJUrV/LLL7+wdOlSHn/88ZzX09PT2b9/P2lpaYwfPz7fdStWrOCWW25hwoQJ7N27l9tuu42r\nr76aEydOkJWVRdeuXWnQoAFpaWls3bqVG2+8kbPOOovXX3+dVq1acfDgQfZ6JiQZPnw469evZ+XK\nlaxfv56tW7fy2GOPAfD5558zbtw4FixYwLp16/jqq68Kff+9evXiwgsvZPfu3Tz88MNMmTIl1+vZ\nDbQjR45w77338sUXX5CRkcH3339P06ZNC4wRYPr06TzyyCMcPHgw32GX6enp7N27l23btjF58mRu\nvfVW1q1bV2Cs2bEsWrQIgF9//ZWMjAyuv/76XK+fPHmSbt26ccUVV7Br1y5efvllevfunWvf77//\nPikpKezfv5+GDRvy0EMPFXqeQt4110Bmpu3eLBGrbZaSEjq9WXv3Wm3FvEth8/UopRxWty63PFaf\nyVNLkZlprcr7t6p/o0qpcOdKI8tp+f1y7c9i1549e6hatSpRUQWf1mnTpjFq1CiqVKlClSpVGDVq\nFFOnTs15vVSpUqSkpBAdHU3ZsmXzXTdhwgRuv/12WrRogYjQt29fypYtyw8//MDSpUvZvn07zzzz\nDDExMZQpU4bWrVsXGM+ECRN44YUXqFSpEuXLl2fEiBFMnz4dgBkzZjBgwADOPvtsypUrV+j9cZs3\nb2bZsmU89thjREdH07ZtW7p161bg9qVKleLXX3/l2LFj1KhRo8hEE927d+fiiy8GyDkv3kSEMWPG\nEB0dzaWXXspVV13FBx98UOg+vRU0DHLJkiUcPnyY4cOHU7p0adq3b0/Xrl1zzhHANddcQ/PmzYmK\niqJ37978/PPPPh83JEVFwahR1mKztXTllVChAtg49UqpEuisf3ej8VlRfPqp25EopZQzIrKRld8v\n1/4sdlWpUoXdu3cXes/Qtm3bqFevXs7zpKQktm3blvO8WrVqREdH5yqTd92mTZt4/vnnSUhIICEh\ngfj4eLZs2cK2bdvYvHkzSUlJhTb0su3atYsjR47QvHnznH1deeWV7NmzJydW72FzSUlJBTZGtm3b\nRnx8POXKlcu1fX5iY2N5//33ee2116hVqxbdunVj7dq1hcZaVPbA+Ph4YmJich3b+7z6a/v27acd\nOykpia1bt+Y8r1mzZs7j2NhYDh3KN1FmeLnmGihd2poAywYRePJJa4Lio0cdik0pFRFuuw3eeMPt\nKJRSyhkR2chyS6tWrShbtiyzZs0qcJvatWuzyWuCkE2bNpGYmJjzPL97nvKuq1u3Lg899BB79+5l\n79697Nu3j0OHDnHDDTdQt25d0tLS8m3o5d1P1apViY2NZfXq1Tn72r9/PwcOWAm5atWqxebNm3PF\nWtA9WbVq1WLfvn0c9fpmnZaWVuB56NSpE/Pnzyc9PZ3GjRtz6623Fvj+C1ufLb9jZ5/X8uXLc+TI\nkZzX0tPTC92Xt8TExFznIHvftWtH+NzZUVEwYQI0b267aIcOcMEF8PzzDsSllIoY114LP/8M69cX\nvW12wtOCFr2HSykVarSRFUBxcXGkpKRw55138sknn3D06FFOnjzJvHnzGDFiBAA33ngjjz/+OLt3\n72b37t2MGTMmZy4pXw0aNIjXX3+dpUuXAnD48GHmzp3L4cOHadmyJbVq1WLEiBEcOXKE48eP8/33\n3wNQo0YNtmzZkpNoQ0QYNGgQQ4YMYdeuXQBs3bqV+fPnA9CzZ08mT57M77//zpEjR3Lu1cpPvXr1\naNGiBaNGjeLEiRMsXrz4tIyK2b1gO3fu5NNPP+XIkSNER0dToUKFnJ63vDH6yhiTc+xvv/2WOXPm\n0LNnTwCaNm3KzJkzOXr0KOvXr2fixIm5ytasWbPAub8uuugiYmNjeeaZZzh58iSpqal89tln3HTT\nTbbiC0tNmsA55/hV9Lnn4IUXYMuWAMeklIoYMTEwaJB1rSjKvn2FjzzRe7iUUqFGG1kBNmzYMMaN\nG8fjjz9O9erVqVevHq+++mpOMoyHH36YFi1a0KRJE84//3xatGhhO1FC8+bNmTBhAnfddRcJCQk0\natQoJ8lEVFQUs2fPZt26ddSrV4+6devm3JvUoUMHzjnnHGrWrEn16tUBePrppznzzDO5+OKLqVy5\nMpdffjl//PEHAFdccQVDhgyhQ4cONGrUiI4dOxYa17Rp0/jhhx+oUqUKY8aMoX///rlez+6NysrK\nYty4cdSuXZuqVavyzTff5Mx7lV+MvqhVqxbx8fEkJibSt29f3njjDf7v//4PgKFDhxIdHU3NmjUZ\nMGAAffr0yVV29OjR9OvXj4SEBD788MNcr0VHRzN79mzmzp1L1apVueuuu5g6dWrOvjX9e/4aNIA7\n74R77/Vv6K1SqmS49x7D9HdPsWNH7vV5sw3Gx9vbb1E9X9oLppRymjg971FxiIjJLz4RcXy+JqWc\nUJI+u8eOWaMNH3wQevd2O5rcRLTx5ybP30HE/EJRUF0VmH1H+Gd1/XoGN/mW+Dt788SzZfzeTd7z\nZOe8FbVtQkLunrL4eCsbohskRTCjIvkDoVToKG5dpT1ZSilHxMTA1KkwdCjkua1NKaUsZ57Jv5OX\n8carJ0/rzQoVeYcq6tBEpZQvtJGllPLN4MHw7be2ijRrBvfcA/36wcmTDsXlh4ImKdahQ0oFX4MX\n76Vf1hRSRhwpeuMQoBMnK6V8oY0spZRvrr4abrjBdjaLkSOhbFn4978dissPBU1SrL9SK+WCRo14\nuF8aM947xW+/Bf/whf3okt/9YHYnTs57f5g2ypQqGbSRpZTyzRVXWJksunUDT5p/X5QqBdOnw2ef\nweuvOxifUipsJTx5PyllnmDgjYc4dSq4xy7sRxdjin//lQ43VKpk0kaWUsp3DzwAbdpYDa0jvg/t\niY+Hzz+Hxx+3GlxKKZVLlSrc/l0/YqrEMm6c/eLFzUZYHHaHD+pwQ6VKBs0uqFQQRcRnNysLbr4Z\nqlWDZ5+1VXTVKujUCcaMgYEDHYqvmCI+m1sI0OyCdvZdsj6PGzdCy5bw0UfQtq3b0fjHbqZDW5kQ\nNbugUkFT3LqqdCCDCZakpCSdn0iFpaSkJLdDKL6oKHjrLTh+3HbRc8+FRYugc2f480+rsVU6LK9C\nSikn1K8P77wD118P330HDRu6HZFSSvknLIcLbty4EWNM0BcI/jF1iaxl48aNbv/5BEZUFJQr51fR\nRo3gf/+D5cuhfXtISwtwbEqpsHb55ZCSAh06wJo1bkdjn92hi3aznRb2elFJNoqapNnO9naPHU7s\nTGbty3stzrlx+v+0OLEEOztvuH3GXGtkicgVIrJGRP4QkeFuxREpUlNT3Q4hbOi58p3tc3XihE+b\nVa8O8+ZB165WmvfHHoOjR+3HF0r0cxWZIr2uCtXP7W23QcoDh0lufpB5Hx/Ld5tQjT1vIo38Emd4\nx24322lhrxeVZCPv60UdL7/tFy5M9evYbrPzeSnqPPny/1TY/uycm337/j7nTvyf2o3F7nkI5N9p\nqH/G8nKlkSUiUcB/gM7AOcBNInKWG7FEilCtbEKRnivf2T5X11xjJcX4+mvr3q1CREXB8OGwbJl1\nr1aDBtav1+np/sfrJv1cRZ6SUFeF8uf2X/2yeP+Sl7m95x5uuWwjm9Ny34sUyrEXRWMPvnCNGzT2\ncOVWT1ZLYJ0xZpMx5gTwHtA9mAH4959edJnC9lvQa/mtL2pdsD60/h7Hl3J6rnwvFzbnasYMq5E1\nZAjUrQt33w2zZpE3J7P3cerXhw8+sNpl27bBWWdBcjKMGwdLl0JmZuHx5xU258pH+rlylaN1VbD/\nbwP5/xCU2CtWpN38h/hl+u8c/em/nN/gADecv4ZPJ++xM4uEXzH4U87O34zf/vKvmL+x+/K9J1Ax\n+FsuGOc9XGMvzn7CNfbi1H2BrqvcamTVBjZ7Pd/iWRc0/p3IostE2pcW/YLnOz1XWPdp3XorrFwJ\nX30FiYlWzvao3Jea1NRUa3zgzJmQmgrLl/OPrFW8cf860pdt4b77YN06GDTIGnN9wQVwXQ/DQyO+\n4pVnj/HuxGPM+/gYPyw8yi//O8aaNbBhgzVP8pw5qezfDwf2Gw7syiRjdyYH91jL/HkLOLwvk8OH\nrQz0R49ay1dfpXL8mOH4wUxKk0nmoUwWzF9A5iHrcWam1dhbsCD178dfLfz79UOZnMo8ZT0+fKKo\nTjxb9HPlKkfrKm1k+bZN5esuo9E9saz75HeS437ixf9GU7s2vPoqXHed1SP+yivwzsNrmDNmOd+/\n9gsr3v2N1Z/+ybqFW0hbn0l6ujUsb/9++PzzVA4cgIz0IxxMP8zBnUc5tPsYh/ce58i+4xw5lMXR\no3DsmJXf5/hxz9/8/AVkHjx++nIs67TrQ2Ym1vXg4HEWfPHVadufOkXubb22916i+Xv/mZnARr9O\nuzayiilcY9dGlr1tAl1XuZLCXUR6AJ2NMbd6nvcBWhpj7smzneYpVUqpCGTCIIW71lVKKVWyFaeu\ncit58lagntfzOp51uYRDJayUUipiaV2llFLKL24NF/wROFNEkkSkDHAj8KlLsSillFL50bpKKaWU\nX1zpyTLGnBKRu4D5WA29icaY392IRSmllMqP1lVKKaX85co9WUoppZRSSikVqVybjFgppZRSSiml\nIlHYNbJEpJ2IfCMir4nIpW7HE+pEJFZEfhSRLm7HEspE5CzPZ+oDEbnd7XhCmYh0F5HxIjJdRDq5\nHU8oE5EGIvKmiHzgdiyhzHOdmiwib4hIL7fjCYRwr6vCte4I52t5OF9bw/VaF87XnnA95xC+n3W7\n15ewa2QBBjgIlMWas0QVbjjwvttBhDpjzBpjzB3ADUBrt+MJZcaYTzwpre8AerodTygzxvxljBno\ndhxh4FpghjHmNuBqt4MJkHCvq8Ky7gjna3k4X1vD+FoXtteeMD7nYftZt3t9ca2RJSITRWSHiKzM\ns/4KEVkjIn+IyPC85Ywx3xhjrgJGAI8FK143+XuuROQy4DdgF1AiUgz7e64823QDPgPmBiNWtxXn\nXHk8DPzX51Vb1gAAC0dJREFU2ShDQwDOVYnix/mqw9+T/p4KWqA+COe6KpzrjnC+lofztTXcr3Xh\nfO0J53NfjNhd/R7hT9y2ri/GGFcWoA3QFFjptS4KWA8kAdHAz8BZntf6AuOAWp7nZYAP3Io/DM7V\nC8BEzzn7AvjY7fcRwucq53PlWfeZ2+8jxM9VIvA00MHt9xAG5yr7ejXD7fcQ4uerN9DF83ia2/EH\n+P/etboqnOuOcL6Wh/O1NdyvdeF87bEbu9c2rtcv/sTu9me9OOfcs12R1xe3JiPGGLNYRJLyrG4J\nrDPGbAIQkfeA7sAaY8xUYKqIXCMinYFKwH+CGrRL/D1X2RuKSD9gd7DidVMxPlftRGQE1tCeOUEN\n2iXFOFd3Ax2BOBE50xgzPqiBu6AY5ypBRF4DmorIcGPM2OBG7g675wv4GPiPiFwFzA5qsEUI57oq\nnOuOcL6Wh/O1NdyvdeF87bEbu4gkAE8QAvWLH7G7/lkHv+JuhzXE1Kfri2uNrALU5u9uW7DGsbf0\n3sAY8zHWH0VJV+S5ymaMeTsoEYUuXz5Xi4BFwQwqRPlyrl4BXglmUCHKl3O1F2vMuSrkfBljjgA3\nuxGUn8K5rgrnuiOcr+XhfG0N92tdOF97Cos9lM85FB57qH7WofC4bV1fwjHxhVJKKaWUUkqFrFBr\nZG0F6nk9r+NZp06n58p3eq58p+fKd3qu7Imk8xXO70Vjd4fG7p5wjl9jD76Axe12I0vInbnoR+BM\nEUkSkTLAjcCnrkQWevRc+U7Ple/0XPlOz5U9kXS+wvm9aOzu0NjdE87xa+zB51zcLmb0mAZsA44D\nacAAz/orgbXAOmCEW/GF0qLnSs+Vnis9V+G0RNL5Cuf3orFr7CUp9nCPX2OPvLjFszOllFJKKaWU\nUgHg9nBBpZRSSimllIoo2shSSimllFJKqQDSRpZSSimllFJKBZA2spRSSimllFIqgLSRpZRSSiml\nlFIBpI0spZRSSimllAogbWQppZRSSimlVABpI0uFDBH5p4hkiUgjt2MpiIiMdDuGQBGR20Skj43t\nk0TkV5vHWCAiFQp5fbqINLSzT6WUCgWRWGeJyEIRaebkMWzuu5uIPGCzzEGb288QkfqFvP6siLS3\ns0+lQBtZKrTcCHwL3OT0gUSklJ9FHwxoIC4RkVLGmDeMMe/YLOrz7OUi0gX42RhzqJDNXgOG24xB\nKaVCgdZZDh7DU0/NNsY8Y7OonXrqH0CUMWZjIZu9AoywGYNS2shSoUFEygOXALfgVWGJSDsRWSQi\nn4nIGhF51eu1gyIyTkRWiciXIlLFs36giCwVkRWeX6hiPOsnichrIvIDMFZEYkVkooj8ICI/iUg3\nz3b9ReQjEZknImtF5GnP+qeAciKyXESm5vMebhKRlZ7laR/iPMNzjB8977GRV5wvich3IrJeRK7N\n51hJIvK7iLwjIr+JyAde77OZiKR69jtPRGp41i8UkRdEZClwj4iMEpFhnteaisgSEfnZ894redY3\n96xbAdzpdfx/iMj/POfi5wJ6o3oDn3i2j/X8H67wnJ/rPdt8C1wmInotUkqFjXCvs0QkyrP/lSLy\ni4jc6/VyT8/1fY2IXOJ1jFe8ys8WkUt9qBf9qf9eE5Elnvecc1xPvbfAU+d8KSJ1POvri8j3nvcx\nxuvYNT37Xu55n5fk81/pXU/le06MMWlAgohUL/ADoVR+jDG66OL6AvQCJngeLwYu8DxuBxwBkgAB\n5gPXel7LAm70PH4EeMXzON5rv2OAOz2PJwGfer32BNDL87gSsBYoB/QH1gMVgLLARqC2Z7uMAuKv\nBWwCErB+vFgAXF1AnC97Hn8FNPQ8bgks8Irzfc/js4F1+RwvybPfiz3PJwLDgNLAd0AVz/qewETP\n44XAf7z2MQoY5nn8C9DG8zgFGOe1/hLP42eAlZ7HLwM3eR6XBsrmE+NGoLzn8bXAG16vVfR6/EX2\n/7cuuuiiSzgsEVBnNQPmez2P8/y7EHjW8/hK4EvP4/7ZdZfn+Wzg0sKOUcB79qX+837P/b3KfAr0\n8TweAHzsefwJ0NvzeHB2PFh14kjPY8muj/LElwqcU9g58TweD1zj9udOl/Ba9NdjFSpuAt7zPH4f\nqwLLttQYs8kYY4DpQBvP+izgA8/jd7B+VQRoIiLfiMhKz37O8drXDK/HlwMjPL00qUAZoJ7ntQXG\nmEPGmOPAb1gVZmEuBBYaY/YaY7KAd4FLC4izjedX0NbADM/x3wBqeO1vFoAx5negoF/P0owxP3jv\nF2gMnAt86dnvQ0CiV5n38+5EROKASsaYxZ5VU4BLPb1ZlYwx33nWe/9KuQR4SET+DdT3nKe84o0x\nhz2PfwU6ichTItLGGOM9Zn5XnhiVUirUhXudtQFoINaoic6A9zV5puffn3zYT1FOYb/+m0H+WmGd\nT7Dqo+zzdwl//19411M/AgNE5FGgiVd95K0WVh0EhZ+TnWg9pWwq7XYASolIPNABOFdEDFAKa0z1\nvz2b5B1fXdB46+z1k7B6kVaJSH+sXxaz5b3I9jDGrMsTz8WAd6PhFH//rUhhb6WQ1/LGGQXsM8YU\ndIOx9/Ht7FeAVcaY/2/vfkK0quIwjn+fRsFFQQRBISlatDNtU9Si3AkV0iKVsiAyKghEaNsfCDdR\nQlFE9IfKoFZhCxNaFBNJi0FScUqGiHEpLjKLNEp4WpxzZ26v931nZN6xd4bns5o597z3/s6d4f7m\n3vs7Z7rKIuDS8c91jM5225/VEpYHgEOSnrI93tPtYqv/zyqTqe8D9kr62nZT1rEKuNDn+BERI2U5\n5Czbv0naCGwBngG2AU/Wzc2+2vu5yH+nmKxqh9B1jD7mk//65alBc62abTOx2P5O0j3A/cBHkvb5\n0nnI56lj6TknT1MqQXbVfslTcdnyJitGwTZgv+11ttfbXgtMS2qe/t1Ra7GvAnZQ5vFA+f19qH69\ns9V+NXBa0sra3s9XwO7mG0mb5hHr3+qegDxBeftzXd3+MOVJY1ech+ubnGlJTTuSbutzzH4JbI2k\nO+vXj1DGPwVcX5MuklaoTOzty/bvwK+tevXHgG9tnwPOSrq7ts+sRChpne1p229SSjW6Yp+StL72\nvxG4YPtT4FXg9la/W4HJQTFGRIyQJZ+z6tyoMdsHgOcppXJdmvxzCtik4iZKid/AY1RjLCz/tX3P\n7Py3R5k9f4db7TPnT9Ia4IztD4D36R7jSeCW2r99Tl4geSoWKDdZMQp2AAd62j5n9qJ5BHgL+BH4\nxfYXtf1PSjI7AWym1LJDuThOUC7AJ1v77H0KthdYWSe5TgIv94mv/bl3gRO9E3xtn6asPjQOHAWO\n2D7YJ87mODuBXXUS7ySwtU+c/Z7eTQHPSvoJuBZ4x/Y/lIT2iqRjNZa75tgPwOPAa/UzG1sxPgG8\nLemHns9vrxOZj1JKW/Z37PNLoFn2dgMwUfu/SDn31InE522fGRBbRMQoWfI5C1gNjNdr8ifMrp7X\nmX9q2fipOqbXKaWEcx0DFp7/2nZTyv+O1c83i3XsoeTC45Tyv8Zm4HjNX9uBNzr2eYjZPNV5TiSt\nAG6m/Fwj5k2lZDhiNEm6F3jO9taObX/YvuZ/COuyLEacktYCB21vGOZ+h0nSDcDHtrcM6LMHOGf7\nwysXWUTE4lgOOWuYRn3MKis5fkNZ4KnzD2JJD1IWNnnpigYXS17eZMVStlSeECxWnCM9/vp27z0N\n+GfEwFnKQhsREcvdSF+zF8lIj9n2X5SVdlcP6DYG7LsyEcVykjdZERERERERQ5Q3WREREREREUOU\nm6yIiIiIiIghyk1WRERERETEEOUmKyIiIiIiYohykxURERERETFEucmKiIiIiIgYon8BzXNwaHns\nKtsAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -436,7 +436,7 @@
" \n",
" # Plot apparent open period histogram\n",
" ipdf = ideal_pdf(qmatrix, shut=False) \n",
- " iscale = scalefac(recs[i].tres, qmatrix.aa, idealG.initial_occupancies)\n",
+ " iscale = scalefac(recs[i].tres, qmatrix.aa, idealG.initial_vectors)\n",
" epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=False)\n",
" dcplots.xlog_hist_HJC_fit(axes[i,0], recs[i].tres, recs[i].opint,\n",
" epdf, ipdf, iscale, shut=False)\n",
@@ -444,7 +444,7 @@
"\n",
" # Plot apparent shut period histogram\n",
" ipdf = ideal_pdf(qmatrix, shut=True)\n",
- " iscale = scalefac(recs[i].tres, qmatrix.ff, idealG.final_occupancies)\n",
+ " iscale = scalefac(recs[i].tres, qmatrix.ff, idealG.final_vectors)\n",
" epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=True)\n",
" dcplots.xlog_hist_HJC_fit(axes[i,1], recs[i].tres, recs[i].shint,\n",
" epdf, ipdf, iscale, tcrit=math.fabs(recs[i].tcrit))\n",
@@ -462,7 +462,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 13,
"metadata": {
"collapsed": false
},
@@ -479,7 +479,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 14,
"metadata": {
"collapsed": true
},
@@ -496,14 +496,14 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Import HJCFIT likelihood function\n",
- "from dcprogs.likelihood import Log10Likelihood\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
"\n",
"kwargs = {'nmax': 2, 'xtol': 1e-12, 'rtol': 1e-12, 'itermax': 100,\n",
" 'lower_bound': -1e6, 'upper_bound': 0}\n",
@@ -516,7 +516,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 16,
"metadata": {
"collapsed": false
},
@@ -543,7 +543,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 17,
"metadata": {
"collapsed": false
},
@@ -578,7 +578,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 18,
"metadata": {
"collapsed": false
},
@@ -588,7 +588,7 @@
"output_type": "stream",
"text": [
"\n",
- "ScyPy.minimize (Nelder-Mead) Fitting started: 2016/09/05 10:51:33\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting started: 2017/01/20 15:41:23\n",
"iteration # 100; log-lik = 263117.756238\n",
"[ 5.29171999e+03 3.67684624e+02 1.41434237e+03 8.42349605e+03\n",
" 8.62838471e+02 5.14562348e+04 3.05197111e+02 5.19871117e+07\n",
@@ -596,10 +596,10 @@
" 5.01742534e+05 8.94263677e+02]\n",
"Warning: Maximum number of iterations has been exceeded.\n",
"\n",
- "ScyPy.minimize (Nelder-Mead) Fitting finished: 2016/09/05 10:51:38\n",
+ "ScyPy.minimize (Nelder-Mead) Fitting finished: 2017/01/20 15:41:29\n",
"\n",
- "CPU time in ScyPy.minimize (Nelder-Mead)= 12.988304999999999\n",
- "Wall clock time in ScyPy.minimize (Nelder-Mead)= 4.555490016937256\n",
+ "CPU time in ScyPy.minimize (Nelder-Mead)= 6.081180560386165\n",
+ "Wall clock time in ScyPy.minimize (Nelder-Mead)= 6.081347703933716\n",
"\n",
"Result ==========================================\n",
" final_simplex: (array([[ 8.17854356, 6.03708337, 7.10706279, 9.07985218,\n",
@@ -666,7 +666,7 @@
" -263302.2583715 , -263298.52765242, -263298.30026063,\n",
" -263297.42510587, -263292.18626348, -263291.93074637,\n",
" -263291.13476093, -263287.65737164, -263287.20390461]))\n",
- " fun: -263352.60977116873\n",
+ " fun: -263352.60977116867\n",
" message: 'Maximum number of iterations has been exceeded.'\n",
" nfev: 281\n",
" nit: 200\n",
@@ -701,7 +701,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {
"collapsed": false
},
@@ -711,7 +711,7 @@
"output_type": "stream",
"text": [
"\n",
- "Final likelihood = 263352.6097711687325500\n",
+ "Final likelihood = 263352.6097711686743423\n",
"\n",
"Final rate constants:\n",
"\n",
@@ -777,16 +777,16 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAQwCAYAAABseVbjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcldUfwPHPAXFrao7QRHEhioKK4sJRVuZMy1kqLUe5\nsiwtc2WOzG2aWjnKwc9tZlauzL0npqaiuVEzXCjI+f1xLoTKEh64F/i+X6/7gmed53ux7rnnOed8\nj9JaI4QQQgghhBAidTjZOwAhhBBCCCGEyEikESaEEEIIIYQQqUgaYUIIIYQQQgiRiqQRJoQQQggh\nhBCpSBphQgghhBBCCJGKpBEmhBBCCCGEEKlIGmFCpACl1E2lVAl7xyGEEELERuopIexLGmEiQ1NK\naaVUqWSWsUEp9VbMfVrrnFrrk8mLzjpKqeJKqfVKqdtKqT+VUg3iOTeLUuo7pVSoUuqiUqpPjGOZ\nlVKLlFLBtr9dvYeuVUqpUUqpq7bXKKWUinHcRym12xbHbqWUjxXXWvD30Uqpy0qpTDH2udj2yWKK\nQgi7kXoq1nOlnkLqqbROGmFCxCPmh10aNx/YCzwJfAIsUkoViOPcwUBpoBhQH/hQKdUwxvFNwGvA\nxViu7Qy8BHgDFYGmQBcwFSOwHPgByAvMBpbb9if3Wiv8A7wYY/tF2z4hhHBYUk9JPWVh+SI1aa3l\nJS9LX0BRYAkQAlwFJtv2OwEDgNPAZWAO8ITtWHFAA52AM8AV4JMYZToDHwMngBvAbqCo7VhZ4Dfg\nGnAUaB3julnAV8BPtuu2AyVtxzba7nkLuAm0AeoBZ4GPMB/e32M+TFfa3s8/tt+ftpXxOXAfCLOV\nEfVeNVDK9vsTtvcaYnvvAwAn27EATGXxpa3sU8CLFv97lAHuArli7PsD6BrH+eeB52NsfwYsiOW8\ns0C9h/ZtATrH2H4T2Gb7/XngHKBiHD8DNEzutbHEtgEYZivzJvAjpmKfC4QCO4HiMc7Xtn+XhTH2\nLcJ8EdD2/n9KXvKSl7UvpJ6K+tyTekrqKXnZ6SU9YcJSSilnzIf/aUyFVQRYYDscYHvVB0oAOYHJ\nDxVRG/AAngUGKqU8bfv7AO2ARkBu4A3gtlIqB6ZimwcUBNoCU5RS5WKU2RYYgqmk/sJUSGit69iO\ne2szLCPQtv0UkA/zhK0zplKeadt2A+5Exa21/gRTUXS3ldE9lj/LJEwFVwKoC3QEXo9x3A9TKecH\nvgC+jTm8ISal1Eql1PU4XitjuwYoD5zUWt+IsW+/bf/D5ecFXG3H4z03nnvFdW154IC21Rw2Bx46\nntRrY9MW6ID5b7AksBXz75gPOAIMeuj8ZUAdpVQe29/BH/NUUwiRjkg9JfVUPNdKPSVSjTTChNWq\nAYWBvlrrW1rrMK31JtuxV4GxWuuTWuubQH+g7UNDKYZore9orfdjPty8bfvfAgZorY9qY7/W+irQ\nBAjWWs/UWkdorfcCi4FWMcpcqrXeobWOwDxhSmiMdiQwSGt91xbLVa31Yq31bVsF8TmmkkqQrbJv\nC/TXWt/QWgcDYzAfulFOa61naK3vY4YvuAKFYitPa91Ea50njleTOMLICfz70L5/gVxxnBt1PKFz\nE3Ovf4Gctso6oTiSc21sZmqtT2it/wV+Bk5ordfY/jtYCFR66PwwzJPINrbXCts+IUT6IvVUDFJP\nST0l7CO9jCMWjqMo5sM6IpZjhTFPHqOcxvw3GPODPOb47dv892FbFDPE42HFAD+l1PUY+zJhhmck\nVGZcQrTW0R9qSqnswDigIeYpJUAupZSzrUKKT37AhUffd5HY4tNa37Y9XEwoxsdxE/NUNqbcmGEv\nsZ0bdTwsgXMTc6/cwE2ttVZKJRRHcq6NzaUYv9+JZTu2v/EcYASgMEN9hBDpj9RTD5J6SuopYQfS\nEyas9jfgFsdE4fOYyiiKGxDBgx868ZVbMo79vz/0pC2n1rrb4wYew8NZht7HDD3x01rnBqKGh6g4\nzo/pChDOo+/7XFICU0r9rExa4dheP8dx2WGghFIq5tM4b9v+B2it/wEu8N+T3TjPjedecV17GKj4\n0BCWig8dT+q1VvmD/57wbkrgXCFE2iT11IOknpJ6StiBNMKE1XZgPhxHKqVyKKWyKqVq2Y7NB95T\nSrkrpXICw4HAOJ5GPuwb4DOlVGlbitiKSqknMeP6yyilOthStbooparGGKOfkEuYMfDxyYV5InVd\nKZWPR8dox1mG7Qnk/4DPlVK5lFLFMPMGfkhkfA+X96Kt8o7t9WIc1xwD9gGDbP8eLTAVw+I4bjMH\nGKCUyquUKgu8jZk4DkSnBs5q28xsK1PFuLaPUqqIUqow5otB1LUbMJPDe9rKiJqXsM6Cay2htdaY\nbFfNbL8LIdIfqadikHpK6ilhH9IIE5ayfZg3BUphsgKdxYxbBvgOM/xiIya7UhjQI5FFj8VUEr9i\nsgZ9C2SzjX1/HjOe/TxmyMQoIEsiyx0MzFZmwnDrOM4ZD2TDPC3cBqx+6PgE4BWl1D9KqYmxXN8D\nk9nqJOap1TzM3yI1tQV8MZmtRgKvaK1DAJRSryqlYj6pG4QZUnMa+B0YrbWO+Z6PYir7IsAvtt+j\nnqBOw4xXPwgcwmT7mgagtb6HSe3bEbiOmbT+km1/cq+1jNb6sNba6ieXQggHIfWU1FNIPSUcgJJG\ntBBCCCGEEEKkHukJE0IIIYQQQohUJI0wIYQQQgghhEhF6SpFff78+XXx4sXtHYYQQogUsnv37ita\n6wL2jiOppJ4SsTl69SgAHk962DkSIURyJbaeSleNsOLFi7Nr1y57hyGEECKFKKVOJ3yW45J6SsSm\n3qx6AGwI2GDXOIQQyZfYekqGIwohhBBCCCFEKpJGmBBCCCGEEEKkImmECSGEEEIIIUQqkkaYEEII\nIYQQQqQiaYQJIYQQQgghRCqSRpgQQgghhBBCpCJphAkhhBBCCCFEKkpX64QJ8di0hhMnYPduKFQI\n6tWD8HCoVg2uX4d79yBzZnBxgXbtYMgQc11gIJQvD56e4Oxs17cghEg7Tobcos20rQ/sa+5ThPZ+\nbnaKSAghhD3YvSdMKVVUKbVeKRWklDqslOpl259PKfWbUuq47Wdee8cq0onISJg6FZo3h4IFoXRp\naNsWvv7aHHdxAXd3qFMHXnzR/KxcGYoWNcevXjXnV6gAefJAixbw3Xdw+bL93pMQIk24E37/ge2g\nC6Es33fOTtEIIewtZ86cse4PCAhg0aJFSSpz8ODBfPnll4m+9/nz53nllVfiPO/69etMmTIl3rJq\n1qwJwIYNG2jSpMljRAvLli0jKCgoenvgwIGsWbPmscpIixyhJywCeF9rvUcplQvYrZT6DQgA1mqt\nRyql+gH9gI/sGKdIy86fhwMHoGFDcHKCyZMhLAyaNIEaNUzPV5ky/52/ZEncZeXNC0eOwM6dsGUL\nrFwJy5bBqFHw4YcQEQFKSQ+ZEOIR2VycCexSI3r74V4xIYRIbYULF463wRfVCHvnnXceORYREUGm\nTJnYsmVLku+/bNkymjRpQrly5QAYOnRokstKS+zeE6a1vqC13mP7/QZwBCgCNAdm206bDbxknwhF\nmqU1/PorNG5serFatzYNL4A//oC//oKZM6FzZ/DxgezZE1eukxOULQsdOpgetTNnYO9eeOstc3zB\nAnN8zhzTIBNCCCGEiIfWmu7du+Ph4UGDBg24HGN0ze7du6lbty5VqlThhRde4MKFCwDMmDGDqlWr\n4u3tzcsvv8zt27fjvcepU6eoUaMGFSpUYMCAAdH7g4OD8fLyAuDw4cNUq1YNHx8fKlasyPHjx+nX\nrx8nTpzAx8eHvn37smHDBvz9/WnWrFl0wylmj15oaCiNGzfGw8ODrl27EhkZ+cg5ixYtIiAggC1b\ntrBixQr69u2Lj48PJ06ceKAXcO3atVSqVIkKFSrwxhtvcPfuXQCKFy/OoEGDqFy5MhUqVODPP/9M\n8t/eXuzeCItJKVUcqARsBwpprS/YDl0ECsVxTWel1C6l1K6QkJBUiVOkAWvXmuGCL7xg5nv17w+7\ndkHWrOZ4vnymt8oKSplGXL58ZrtwYciVCzp1gnLlYOFC0yAUQgghhOOqV+/RV8xhfY97/DEsXbqU\no0ePEhQUxJw5c6J7lsLDw+nRoweLFi1i9+7dvPHGG3zyyScAtGzZkp07d7J//348PT359ttv471H\nr1696NatGwcPHsTV1TXWc77++mt69erFvn372LVrF08//TQjR46kZMmS7Nu3j9GjRwOwZ88eJkyY\nwLFjxx4pY8eOHUyaNImgoCBOnDjBknhGF9WsWZNmzZoxevRo9u3bR8mSJaOPhYWFERAQQGBgIAcP\nHiQiIoKpU6dGH8+fPz979uyhW7duiRp+6WgcphGmlMoJLAZ6a61DYx7TWmsg1m+xWuvpWmtfrbVv\ngQIFUiFS4bDCwyHU9p9OliyQKRPMmgWnT8OwYQ8ON0xJzzxjGn5Ll5pGX+vW0LFj6txbCCGEEGnO\nxo0badeuHc7OzhQuXJhnnnkGgKNHj3Lo0CGee+45fHx8GDZsGGfPngXg0KFD+Pv7U6FCBebOncvh\nw4fjvcfmzZtp164dAB06dIj1nBo1ajB8+HBGjRrF6dOnyZYtW6znVatWDXd39ziPlShRAmdnZ9q1\na8emTZsS9Td42NGjR3F3d6eM7ftbp06d2LhxY/Txli1bAlClShWCg4OTdA97coQ5YSilXDANsLla\n66jm8iWllKvW+oJSyhWQrAcidlqbbIWffmoaQNOmQa1aZoigVb1dj0speOklaNoUpkyBqAcEWpuX\nk8M8/xBCCCEEwIYNKXs8CbTWlC9fnq1bH50/GhAQwLJly/D29mbWrFlsSMT9VQLfi9q3b4+fnx8/\n/fQTjRo1Ytq0aZQoUeKR83LkyJHoe0Rtx9wfFjU9JBmyZMkCgLOzMxFpcPqH3RthyvyLfAsc0VqP\njXFoBdAJGGn7udwO4QlHt3cv9OgBmzdDxYqm0QMp2viat/1MorKZRaed7tHjv52TJsGqVTB7tkmJ\nL4QQQogMr06dOkybNo1OnTpx+fJl1q9fT/v27fHw8CAkJIStW7dSo0YNwsPDOXbsGOXLl+fGjRu4\nuroSHh7O3LlzKVKkSLz3qFWrFgsWLOC1115j7ty5sZ5z8uRJSpQoQc+ePTlz5gwHDhzA29ubGzdu\nJPq97Nixg1OnTlGsWDECAwPp3LkzAIUKFeLIkSN4eHiwdOlScuXKBUCuXLliLd/Dw4Pg4GD++usv\nSpUqxffff0/dunUTHYejc4TH8bWADsAzSql9tlcjTOPrOaXUcaCBbVuI/3z9Nfj6wtGjMGMG7Nlj\nsh2msOX7zhF0ITTec+JMO509O/z+u2kwxuhSF0IIIUTG1aJFC0qXLk25cuXo2LEjNWqYLKqZM2dm\n0aJFfPTRR3h7e+Pj4xM9X+yzzz7Dz8+PWrVqUbZs2QTvMWHCBL766isqVKjAuXOxP0z+3//+h5eX\nFz4+Phw6dIiOHTvy5JNPUqtWLby8vOjbt2+C96latSrdu3fH09MTd3d3WrRoAcDIkSNp0qQJNWvW\nfGBOWtu2bRk9ejSVKlXixIkT0fuzZs3KzJkzadWqFRUqVMDJyYmuXbsmeP+0Qul0lDDA19dX79q1\ny95hiJQWtYDy0aNmqN/gwSZtfCqJSikdM830Y51z+DC8/DKcPAnTp0NAQEqEKUS6pJTarbX2tXcc\nSZWvmKe+dvpI9HZiPk9E+ldvVj0ANgRssGscQojkS2w9ZffhiEIk2tWr0LMn3LkDixeDhwdMmJCo\nSxM7hBBiDCNMKeXLw9atJmHH66+DtzdUqpRy9xNCOLSgC6GPrBeW4p9DQggh7EoaYSJtWL7crOd1\n7RoMGGCSW9jmfSWmgbX91DUA/NzzxXvetuPX2bQnjG8WhnL7nyzcu5WJ+/eciLjnxP1wJ5ycNFfD\nClAorwtTI+Gpp8DV1WSlf/rpx8i3kTevmRu2erU0wITIwJr7PDqHI2q4szTChBAi/ZJGmHBsd+7A\nBx+YYYeVKsFvv5n5VDFEzdEq55o7zmL83PM98mT50iWTz2PPHjh4EA4dgjMnzbHzsZThlCkSHanQ\nkYrLwDtLHzyePTt4epqOrqO3XSlQOpSICJMpP1YuLv8lEtm82STrmDIlnguEEOlNez+3RxpbD/eK\nCSGESH/k255wbCEhMH8+9OkDI0aYuWCxKOeaO8E5FTdumFGMP/8Mf/wBUesLOjubJcSqVDHLeRUr\nZnq1ihSB/PkhRw6z3JeTrZvr/n24exeuX4eLF+HCBTh3Do4cMdO91qyB8+eLA5BvssmW37gxtGhh\nyozV9u0mucg//5j3Kw0xIYQQQoh0y7JvekqppsBPWutIq8oUGdgvv8Dzz4Obm0nAkcSFuK9dg4UL\nzbrJ69ebnB558oC/P7z5pvlZubJZ2zmxnJ1Nr1f27GYYYmyajdpFyPHcVMpchnXrTJb6Hj2genVo\n1co09vLnj3FBnz5meGWfPpArF3z7rf3WOBMinZJ6SgghhKOwMkV9G+C4UuoLpVTCeTKFiM3du9C1\nKzRsaFpP8NgNsPBwWLYMWrY087W6djWJCHv0MNnhQ0JgxQr48EOoUePxGmCJlS1POG5VrzJlCvz5\nJwQFweefm0bg+++bHrF27UyPXHSC0vfeg0GDYOZM+Ogj64MSQkg9JYQQwiFY1gjTWr8GVAJOALOU\nUluVUp2VUrmsuodI586fh/r1Ydo06NfPpHF/DJcuwWefQfHiZujfli3w7rtmztfRo/Dll1Cnjn1G\n+nl6wscfw+7dZu5Zt24mJ0edOlC7Nvz4I0RGYhph775rJqmFh6d+oEKkY1JPCSEczcWLF2nbti0l\nS5akSpUqNGrUiGNR8yVSwb59+1i1atVjX1evXj0SWhZqw4YNNLGt37pixQpGjox7yd+E4ti1axc9\ne/YEYPDgwXz55ZePFe/48eO5fft29HajRo24fv36Y5VhNUsXa9ZahwKLgAWAK9AC2KOU6mHlfUQ6\ntGWLmZR14AD8739m/pezc6IuDb2YlR2zSuLmBgMHQoUKpqfr7FkYO9bk83CkkX3ly8P48WYe2eTJ\npu3ZrJlZd3rtOgUTJ5o34OJi71CFSHeknhJCOAqtNS1atKBevXqcOHGC3bt3M2LECC5dupSo6yMi\nIh4pLzLy8UZbJ7UR9riaNWtGv379khRHREQEvr6+TJw4Mcn3f7gRtmrVKvLkyZPk8qxgWSNMKdVc\nKbUU2AC4ANW01i8C3sD7Vt1HpFOXLpm5UNu2mUlTiXDoELRtC6uH+PD3nifp3NkM/Vu92iQddPTc\nFtmzm06v48dNYsRr16BBA2jYyIkjf7mYjB8NGpheMSFEsiW1nlJKFVVKrVdKBSmlDiuletn251NK\n/aaUOm77mXqrxgsh0rz169fj4uJC165do/d5e3vj7++P1pq+ffvi5eVFhQoVCAwMBEzvkr+/P82a\nNaNcuXIEBwfj4eFBx44d8fLy4u+//+bXX3+lRo0aVK5cmVatWnHz5k0Adu7cSc2aNfH29qZatWr8\n+++/DBw4kMDAQHx8fAgMDOTWrVu88cYbVKtWjUqVKrF8+XIA7ty5Q9u2bfH09KRFixbcuXMn1ve0\nevVqypYtS+XKlVmyZEn0/lmzZtG9e3cAFi5ciJeXF97e3tSpU4d79+49EsfgwYPp0KEDtWrVokOH\nDg/0qgHs37+fGjVqULp0aWbMmBH9t4l5Tvfu3Zk1axYTJ07k/Pnz1K9fn/r16wNQvHhxrly5AsDY\nsWPx8vLCy8uL8ePHAxAcHIynpydvv/025cuX5/nnn4/zPSeVlV9TWwLjtNYbY+7UWt9WSr1p4X1E\nehEZCTt3gp+fGT/YqFGiJmgdPQqffGIyHebMCWWfP0+ZZ88zqW/VVAjaOg+vb+b7gSLP70+xbtXT\neFVwwqduKD/u+pPcLzQi5/49SU5OIoSIltR6KgJ4X2u9xzZ0cbdS6jcgAFirtR6plOoH9ANkQqcQ\naVDv3rBvn7Vl+viYkS9xOXToEFWqVIn12JIlS9i3bx/79+/nypUrVK1alTp16gCwZ88eDh06hLu7\nO8HBwRw/fpzZs2dTvXp1rly5wrBhw1izZg05cuRg1KhRjB07ln79+tGmTRsCAwOpWrUqoaGhZM+e\nnaFDh7Jr1y4mT54MwMcff8wzzzzDd999x/Xr16lWrRoNGjRg2rRpZM+enSNHjnDgwAEqV678SMxh\nYWG8/fbbrFu3jlKlStGmTZtY39vQoUP55ZdfKFKkCNevXydz5syPxDF48GCCgoLYtGkT2bJlY8OG\nDQ+UceDAAbZt28atW7eoVKkSjRs3jvPv3LNnT8aOHcv69evJ/0BWNNi9ezczZ85k+/btaK3x8/Oj\nbt265M2bl+PHjzN//nxmzJhB69atWbx4Ma+99lqc93lcVg5HvPhwxaaUGgWgtV5r4X1EenD7tunx\nql3bdF9Bgg2wkBCTXMPLyyRPHDAAgoOhYoszZM0dEe+1jihqfbMozi4ajwYXeHHwXor6XmXPOg88\nOMSey+6my+/+fTtGK0S6kKR6Smt9QWu9x/b7DeAIUARoDsy2nTYbeCklghZCZDybNm2iXbt2ODs7\nU6hQIerWrcvOnTsBqFatGu7u7tHnFitWjOrVqwOwbds2goKCqFWrFj4+PsyePZvTp09z9OhRXF1d\nqVrVPLDOnTs3mWIZMvTrr78ycuRIfHx8qFevHmFhYZw5c4aNGzdGN0AqVqxIxYfWbAX4888/cXd3\np3Tp0iil4myw1KpVi4CAAGbMmMH9eL7bNGvWjGzZssV6rHnz5mTLlo38+fNTv359duzYEWc58dm0\naRMtWrQgR44c5MyZk5YtW/LHH38A4O7ujo+PDwBVqlQhODg4SfeIi5U9Yc/x6BPAF2PZJzK6ixfN\nJKhdu2DcOPDwiPPUedvPsGTneY6vc+XIz0WIuOdMidqXKN/kLMdyh/POIhJcqNmRxbm+WV+z3thL\nbbNSP3I9g9YN4eOhw8k05NPUD1KI9CPZ9ZRSqjgmucd2oJDW+oLt0EWgUBzXdAY6A+R0LflYAQsh\nUkd8PVYppXz58ixatOixr8uRI0ec21prnnvuOebPn//AOQcTObVBa83ixYvxiOe7WXJ9/fXXbN++\nnZ9++okqVaqwe/fuWM97+H3GpB6a7K+UIlOmTA/MiQsLC0tWnFlidA44OztbPhwx2T1hSqluSqmD\nQFml1IEYr1PAgeSHKNKVw4fN8MPDh00e+V694s2aMSPwBj8O9uLA0mLkLx3K8wP2U6X9KbLm/i9z\nYDnX3DT3iWsV5LSrQQN4bsABila7yiCGUm9UQ87/dTvhC4UQD7CqnlJK5QQWA71tCT6iaa01oGO7\nTms9XWvtq7X2dZGEO0IIm2eeeYa7d+8yffr06H0HDhzgjz/+wN/fn8DAQO7fv09ISAgbN26kWrVq\nCZZZvXp1Nm/ezF9//QXArVu3OHbsGB4eHly4cCG6N+3GjRtERESQK1cubty4EX39Cy+8wKRJk9C2\n9XP27t0LQJ06dZg3bx5ghlEeOPDoR2fZsmUJDg7mxIkTAI80BKOcOHECPz8/hg4dSoECBfj7778f\niSMhy5cvJywsjKtXr7JhwwaqVq1KsWLFCAoK4u7du1y/fp21a/8b4BBX+f7+/ixbtozbt29z69Yt\nli5dir+/f6LjSA4resLmAT8DIzDj4aPc0Fpfs6B8kZ7Mnm0Wy9q40WRDjENICHzwAWyYU54c+cNY\n/jM0bJgPyJd6sTqAzNnu4/f6CUZ0yc3bPXyp4q9YvBhq1rR3ZEKkKcmup5RSLpgG2FytddRs80tK\nKVet9QWllCtw2cqghRDpm1KKpUuX0rt3b0aNGkXWrFkpXrw448ePp3bt2mzduhVvb2+UUnzxxRc8\n9dRT/Bk1hSMOBQoUYNasWbRr1467d+8CMGzYMMqUKUNgYCA9evTgzp07ZMuWjTVr1lC/fv3o4Yf9\n+/fn008/pXfv3lSsWJHIyEjc3d1ZuXIl3bp14/XXX8fT0xNPT89Y57JlzZqV6dOn07hxY7Jnz46/\nv3+sDZ++ffty/PhxtNY8++yzeHt74+bm9kAcCalYsSL169fnypUrfPrppxQuXBiA1q1b4+Xlhbu7\nO5UqVYo+v3PnzjRs2JDChQuzfv366P2VK1cmICAguoH71ltvUalSJcuHHsZGaR3rg7vEF6BUbq11\nqFIq1m/HqdkQ8/X11QmtWSDsJCwMsmY185pCQuCpp2I9TWuYMwf69IEbN6BUg7N4vniOxT38Ujng\n5GkzbStA7EMNk3jO4cPwUnPN6eBIvprixNudHSjvvhCpRCm1W2vt+5jXJKueUmbcy2zgmta6d4z9\no4GrMRJz5NNafxhfWfmKeeprp4/EG29iPhtE+lJvVj0ANgRssGscQojkS2w9ZVVPWBNgN2YoRsxv\nhhooYcE9RFo2ezYMHmx6v4oWjbMBdvEidO5sFi6uXdus2Tzkj79TN1YLBV0Ijf4yFdfxx5nLVr48\n7Og9j/Y98tG5y4sEn4ZhwxxrDTQhHFRy66laQAfgoFIqKn/ax8BI4H+2zIqngdZWBi2EECL9SnYj\nTGvdxPbTPaFzRcYRlX69ya/z6LBkMgfKVmXMkqOEZT37wHnNfYrQ3s+NwEB45x2TNHHsWDNVzMkJ\n+MM+8SdXYuaoJWUuW95ubfkxsAHdtl9m+PBOXLhgGqsyzUSIuCW3ntJab+LBhltMzyY1LiGEEBmX\nZdkRlVK1gH1a61tKqdeAysB4rfUZq+4h0o7le8/ywvfj6LBlEVuqPMtXAZ8S4ZL5gXOCLoRy744z\nP453Y8ECqFbNdJqVLWunoC3U3s+N9n5u1hfs7Eym2d8yvUJFijytGDKzI1euwMKFiVpiTYgMLS3V\nU3H1pEc9uBJCCJG2WZmifirgrZTyBt4HvgG+B+paeA+RRry0eg7ttiyCd96h5sSJ1HR2fuScBv0O\n8tvnpQn7xwyr++gjiGXJCvGwEiVQY8cwuGsnCrQrSff5tXj5ZbN4tTTEhIhXmqin4uohj1pXUBph\nQgiR9llYwqZ8AAAgAElEQVT5lTdCa62VUs2ByVrrb23j5EUGtLZ2M+5mzkrA5HGPTFqKjIQxY2Dd\n6PJkynWXuu8f5ED+m7z67aPlpOU1wFJU586wcyfvdryPcx3o1g1atjQNsaxZ7R2cEA4rTdRTcfWk\nxzfHVAghRNpiZSPshlKqP/AaUEcp5QTITJWM5N49mDABevXiRq68/PxsGwIeaoBdvgydOsHq1VC1\nfhhFmh4ic/a4V0tPr2uAJZtS8M03AHStY+bPdekCbdvCokXSoyhEHKSeEkII4RCs/KrWBmgPvKm1\nvqiUcgNGW1i+cGRhYdCqFaxcCZ6ewJOPnLJ1K7zyCly9ClOnQpcu2VEq4YUHM7r4sixmvhdGmxXT\nKdW0MRMnvkbPntC1K8yYIVkThYiF1FNCCCEcgmWNMK31RWBsjO0zwByryhcO7NYteOklWLMGvv4a\nmjSBGI0GrWH6dOjRA55+GrZvB29vO8abhiTUC6iVovzeP8i2byPP/P0Kly9nZdgwKFgQhg9PpSCF\nSCOknhJCCOEorMyO2BIYBRTEpPJVgNZay4Se9OzGDWjcGDZvhlmzzFjDGMLCoHt3+PZbaNgQ5s6F\nfLEulypik5gsi0NPfMTA8T1h7FiGDv2Yy5dhxAizJFu3bqkUqBBpgNRTQgghHIWThWV9ATTTWj+h\ntc6ttc4lFVsGEBQE+/fD/PmPNMBuXcuMv79pgH3yiRmpKA0w6x0u68v2SvVg+HDU+XNMmWLaxT16\nmM5JIUQ0qaeEEEI4BCsbYZe01kcsLE84sogI89PPD06dgtatHzgccjwXa4ZX5OhRWLrUpKCPJUu9\nsMj3L3c3/yb9+uHsDPPmmfXWWrWCY8fsHZ0QDkPqKSGEEA7BysQcu5RSgcAy4G7UTq31EgvvIRzA\n/9YdxvvttvxeoxFr/V965PipLQXY9UM5cha4y44NLuli8WVHF5K/sMl2UrEiALlzw48/mgWwmzaF\nHTvgiSfsHKQQ9if1lBBCCIdgZU9YbuA28DzQ1PZqYmH5whHcvEnFzu0pEXyE0Jx5HzikI+HAUjd2\nzilFgTKhjPn+ijTAUtPrr0OVKtGb7u6wZAmcPAkBASZBihAZnNRTQgghHIKV2RFft6os4aBu3YLG\njSl96jAT3hzCB1/3e+BQx47w5y9mHeHJk/Pg4pLHjsFmUDduQK9e0KgRvPIK/v7wxRfQpw+MHQvv\nv2/vAIWwn/RQT8W2ZEVznyIJJvARQgjhWCzrCVNKlVFKrVVKHbJtV1RKDbCqfGFn9+5Bs2awaROT\nXx/I9irPRB86fx7q1jVzv8aONVnqXWT5U/vInh127oT+/SE8HIDeveHll+Gjj+CPP+wcnxB2lNbr\nqeY+RSjn+mAekaALoSzfd85OEQkhhEgqK+eEzQD6AtMAtNYHlFLzgGEW3kPYi4uLScLx+utsuVUy\nevfevWbO0b//wooVZokwkfpiPh2vVLcT/b7qyzedPua3ui0BiKztTIEdlWjb1oUDB+DJR9fSFiIj\nSNP1VGxLVsS1kLsQQgjHZuWcsOxa6x0P7YuwsHxhD3fvwokToJRZ/fe116IP/fIL1KkDTk5mmTBp\ngNnHw0/H93rV5Egpb1756TuyhN0G4Pj1f6jQMYiQEDNcVOaHiQxK6ikhhBAOwcqesCtKqZKABlBK\nvQJcsLB8kdru3TPj2HbtgqNHH0ivF7wtP026Q/nysGoVFC5sxzgzuFgXdPaeCjVrMufGVug1wPa0\n/DbDh0PfvjBzJrzxhl3CFcKeHLueCguDM2fMw6+ICPO6fx9KlYL8+c3xkBDIksWkQM2a1d4RCyGE\nSCIrG2HvAtOBskqpc8Ap4LX4LxEOKzzcrP31008m9bmtAaY1BP1chEPL3Xj2WZN9L7csdep4atSA\n0aPNPL4Y+vQxjeaePU0vZqlSdopPCPuwez3lFHkffvsNtm83D7eOHYNBg4hs2Iiba3dyvcmr3CAX\nEWT67zVgCBENGnJ/7zHUe71QaJyIRGXOTMfM2fj52dZsrViDbP+cp9CqmRQoV4BMJYuBlxcUKZKa\nb08IIUQiKW3xuCSlVA7ASWt9w9KCE8HX11fv2rUrtW+b/oSHQ7t2sHgxTJoE3bsD5oFsz54wZQq4\nVQ3h+KYCZM5s51hFokTNGwnsUoO//zbLiXl4mEQdkkRFpCVKqd1aa99klmG3eqq8yqY/ohX78OFU\ntnKczlSS0xTjn5uZLRsmrIikIJfx5AjlswdTsXN16nXzpHTJSJSzlbMQhFXqzaoHwIaADXaNQwiR\nfImtp5LdE6aU6hPHfgC01mOTew+RyoYNMw2wceOiG2B37kD79rBsGXg8d46KLc6QOXMBOwcqEvTX\nX/Dpp+Su/BqhufMBULSoyWDZti2MHAmffmrnGIVIYY5UTwVRnk7MIVs2TYkSimLFoHoxM9rwiSfM\nK1cuyJwZMmV68OVkaz9FRppRCZGR8NmPQQD0f7Ect2/DpQuRXDpxk7+PQlBQWb4/50fo+OwwHgrn\nuUMT9ROvvqqoPfAZnApIhh4hhLAXK4Yj5rL99ACqAits202BhydAi7SgTx8oXTo6CcfVq2ZU29at\nMGECbM5yxs4BikSLiIDAQJpcc2Zey3ejd7dpY5YU+OwzM+2vXDk7xihEynOYeir7k3fZuRE8PBTO\nzskvb8aJfwFo2DBqjxNmTWozTlxrOH4c1q+HtT+E8sOWpkyfnA33yad4r8563viuNjlKPpX8QIQQ\nQjyWZDfCtNZDAJRSG4HKUcM7lFKDgZ8Sul4p9R3QBListfaKce3bQIjttI+11quSG6uIx/37poXV\nrZt5FGtrgJ07B889BydPwv/+B6+8Apun2TlWkXhly0LbtrywZAk/Pv/qA4cmToQ1a0yCjs2bseQL\noRCOKLn1lJWy5IhI1YceSkGZMubVpYsrN2/C8klnmDohgp4bX2FImasUb/0X7v4hOMX4DJAFoIUQ\nImVZmZijEHAvxvY9276EzAImA3Me2j9Oa/2lNaGJeEVGmrzl330HBQtGN8D++ss0wK5ehdWroV49\n+4YpkujTT8m8YAHVl86iTc48Dxwq1Sw/22eWxrfdKco8e1G+eIn0Lqn1VLqRMye82t+NV/vD5v+d\no/0Hit0LSvHXxqdo/sJ6wvzyE3QhFEA+C4QQIgVZ2QibA+xQSi21bb+EaWDFS2u9USlV3MI4xOOI\njDS9X999BwMHRjfADh6E5583OTrWrQPfZE2DF3bl6cmZBk15deNKtrUI4EaMhphbtSuc2ZWfg8vd\nuO36N3BOvniJ9CxJ9VR6Vat1EfyubeXpvTc4HViYeTMbMvjSDiIb50r4YiGEEMliWSNMa/25Uupn\nwN+263Wt9d5kFNldKdUR2AW8r7X+J7aTlFKdgc4Abm7y5fGxaA09esD06dC/PwweDJjMyS++CNmy\nwcaNMl8oPSg+fgRMKsw3HaqY3s4Y/m5s1nu7/os3h/Nsi86kGB/pMRNpUQrUU2meUvB05Wus7P8U\n79TexoBV/lTftIOiA+4lfLEQQogkszRXrdZ6j9Z6gu2VnIptKlAS8MEspDkmnntO11r7aq19CxSQ\nbH2P5dQp+OEH+OAD+PxzUIp16+DZZyFvXti0SRpg6Ua5cma9t4caYGCyJY4aBZePPkHOv0skWFTQ\nhVCW7zuXElEKkeIsrKfSlbzFn2D+37X5usVqdoVWYu+Apwg+EGrvsIQQIt2ycjiiZbTWl6J+V0rN\nAFbaMZz0q0QJ2L8fihUDpVi+3GTNK1XKrCXq6mrvAIXl/vgDLl6EVq0e2N25M8ycCcGrSvPLuNJR\na3PHKjE9ZUKI1BN0IfSR/y+T1FutFF2WNORQw9n88EszfGopan64l1wFw5JXrhBCiEc45KqNSqmY\nX/9bAIfsFUu6ozX06wdf2nKeFC8OSvHDDyZVubc3/P67NMDSrREj4N13zcJvMTg7m0W4L182UwOF\nEGlDc58ilHPN/cC+5PZW1xhSn7rvHyGMrKwfU57QC1ktKVcIIcR/LGuEKaV6KKXyJuG6+cBWwEMp\ndVYp9SbwhVLqoFLqAFAfeM+qODM0rc3KvKNGwYkTZhvz5btDB6hTx6Qsf1LW70y/PvoIQkJg1qxH\nDvn6QteuMHky7NuX+qEJkdKSWk85svZ+bgR2qfHA6+FGWVLKXPZlTXZvcyG3juTQyCKMaVA52eUK\nIYT4j9Up6ncqpfYA3wG/aG37lh8PrXW7WHZ/a2FcIsrQoWbu11tvwVdfoVGMHAEffwxNm5p1wLJm\ntXeQIkXVqQN+fqYn9O23IdODHwGffw4LF8I775g5gU4O2VcuRJIlqZ5KL+ZtP/NIT1bQhdA4G1fl\ny8Mv/dZT5+NaNKwSQulPnfjrxnVrhj4KIUQGZ9lXLK31AKA0pgEVABxXSg1XSpW06h4iGYYNM9kP\nAwJg2jS0cqJfP9MAe/VVWLxYGmAZglKmN+zkSfOP/pC8eeGLL2DrVpg92w7xCZGCMno9tXzfueg1\nwKKUc81Nc58icV7j0/9FlgUs59i/BTk79knKFrR26KMQQmRUlibm0FprpdRF4CIQAeQFFimlftNa\nf2jlvcRjcnY2Yw6/+Yb72ol3upnM9N26meFn0uORgTRvDlWrwpUrsR7u1AlmzDAN9FdegVyyZJBI\nRzJ6PVXONTeBXWo81jXPfPca3xybRqctXfH/BcYuLxV9TBL1CCFE0ljWCFNK9QI6AleAb4C+Wutw\npZQTcBxI95WbQwoJgQIFzDpgWhMeoejYERYsMLtsmelFRuLkZBaDi+Mf3skJxo2D6tVh5Ejz34gQ\n6UFGqqdiy5gY39DDeClFx3Wvs6voAsataIvvPGjf3qJAhRAig7KyJywf0FJrfTrmTq11pFKqiYX3\nEYk1cSIMGgRbtoCnJ3fCFK1awU8/mdwcH8bydSO2OQMPS3JFLhyHUiYxy549UKXKI4f9/OC112DM\nGDN1rHjx1A9RiBSQIeqpuIYXJjT0MF5ZsjDmaBP2NTfTiitVAk/PZAQphBAZnJWNsJ+Ba1EbSqnc\ngKfWervW+oiF9xGJ8dVX0KsXtGwJpUoRGmqSb/zxB0ybZtaFik3UnIH4GlnJqsiF45g61aSrP3w4\n1lW5R4ww08b69TM9p0KkA0mqp5RS3wFNgMtaay/bvsHA20CI7bSPtdarUirwx9Hezy1FEmW45M1J\nYCBULB9B+wbX2HbSLP5u2TplQgiRgVjZCJsKVI6xfTOWfSI1TJ0K3bubuT/z53PlXxcaNjTrMs+b\nB23bxn95UuYMiDSoVSt4/32YMMG0zB/y9NOmt3TIEOjRA2rVskOMQlgrqfXULGAyMOeh/eO01l9a\nFl0a4OoK39aaSfOVb/NpwN807/3oA7mo5B/SCBNCiLhZmY5BxUz1q7WOxOLEHyIRli83+cVtOefP\nhWSmTh3T2bFsWcINMJGBFChgxhzOmQNXr8Z6St++UKQI9O4NkZGpHJ8Q1ktSPaW13kiMHrSMrtmC\n9nTNPZfRC4ry1JUClq9TJoQQGYGVjbCTSqmeSikX26sXcNLC8kViNGgAAwfCwoX8dSYztWvD2bOw\nejU0bmzv4ITD6d0bwsJi7QkDyJHDDEvctQvmzk3l2ISwntX1VHel1AGl1HfxLQKtlOqslNqllNoV\nHh6ejNs5iBw5GLOkBKU5xlvtbnHrlr0DEkKItMfKnqquwERgAKCBtUAcM4+E5X78EerWhdy5YcgQ\nDh6E55+H8HBYtw58fSXphohF+fLw3HNmnGr//rFmTHz1VZg06b+U9UKkYVbWU1OBz2zlfAaMAd6I\n7USt9XRgOkC+Yp7pYnHo7M/W4Js2U6gb+A4DA84wZmH8Qw/jq39k/pgQIiOycrHmy1rrtlrrglrr\nQlrr9lrry1aVL+IxZ46Z//XZZ4DJPl63rkk1vnGjaYBB7At1PkySbmRA06cnmLJ+9GjTozp5cirH\nJoSFrKyntNaXtNb3bUMaZwDVrI3W8dWZ9QZdq+1m/JKibN8e/7lx1T+y2LMQIqOycp2wAphMUcVj\nlqu1jvXJoLDI3LkQEADPPANDh7JuHTRrBoUKwZo14O7+4OmSdEM8Iir/fGSkaYjF0hirWxcaNYLh\nw6Hup5nIkiMidWMUwgJW1lNKKVet9QXbZgvgkBUxpilZszLqtyqsLA9vvqnZs0eROXPcp8dW/8hi\nz0KIjMrKOWHLgSeANcBPMV4ipcyfDx07Qr16sGIFy3/NRqNG5jv1pk2PNsCEiFNUmvotW+I8ZcQI\n+Pdf+HN14VQMTAhLJameUkrNB7YCHkqps0qpN4EvlFIHlVIHgPrAeykXtuPKnRum9D3F4cOKiQP+\n61SMSlsf9UpoFIYQQmQ0Vs4Jy661/sjC8kR8bt6EPn3A3x9+/JG5S7PTqZNZd3fVKnjySXsHKNKU\n4sXh8mUYPz7OXPQVK5o2//dzXSld/2LqxieENZJUT2mt28Wy+1sL4kkXmrbJTpP3VzNkbB1e7a1j\nHdIuQ92FEOJBVjbCViqlGjnKYpXpRXyTmQt3HcvVPAU59NYl9i4oQf36JkN9rlypHKRI+3LkgDff\nhHHj4Px5KBx7b9fQofD9XDi0sij0T+UYhUg+qadSQqFCjB/0D+U+debD1sF8v8n9sRJtyGLPQoiM\nyMpGWC/gY6XUPeAeoACttZZUe8kQNZk5KmNh9d3rePr8SRY1fYtzhYpz5OciHFrhRrZSF8nXMpi3\n5sWdeEsyH4p4de0KY8aYRB2DB8d6ipsblKp3kWNrXWk4cB9PFLkTZ3HyJUo4IKmnUkjJ/q358KuZ\nDNv8Fp1/vYP/89kSdV1svWOy2LMQIiOwMjtiLq21k9Y6q9Y6t21bKjYLRE1mDswdzHvfDaLVv8dY\n0KkyRY/X4NAKN2q/eIvG753C2SX+zMcyHETEq2RJaNjQNMLiWcuoT99IXLLe58CyuL8gScYz4Yik\nnkpBzs70/74cbpyme8ANIhKZu6e9n5ss9iyEyJCszI6ogFcBd631Z0qpooCr1nqHVffI0L7/3mRB\n9PcnYtlKOr+ThZkzoUcPGD8+B05OkvFQWKB/f/jzT9BxN+i7PP80/wyE/v3z8a5nDerUefQcyXgm\nHJHUUykre4OajPloF61G+fLNN6ZzXQghROyszI44BagBtLdt3wS+srD8DKvelpXQqRPUq8fdJT/R\n5s2czJwJgwbBhAlmHSchLOHvD2+/Tbx5poGePc20sY8+ire9JoSjkXoqhb08whd/fxg0SBMqCRGF\nECJOVn5999NavwuEAWit/wHi/yYnEiXzvbvw/PPcXLCSpm1zsGSJSWI3eHCc6+sKkXS3bsGkSXDk\nSJynZM9u/vvbtg1+/DH1QhMimaSeSmFKwZiux7l8WfFF9zP2DkcIIRyWlY2wcKWUM6AhelHMSAvL\nz3gumjTgv9Z7mWs/rOK5ZtlYuxZmzoRevewcm0i/7tyBvn1NQywer78OZcrAxx/D/fupFJsQySP1\nVCqo+lIR2mdfypgfCnL2tHw4CCFEbKxshE0ElgIFlVKfA5uA4RaWn7FMmgSlSlHs7HHu/OtC3fpO\n7NkDixebqWFCpJj8+aFNGzMPMZ7xRJkywbBhZp3nuXNTMT4hkk7qqdSQPTufj8yE1jCg/Ul7RyOE\nEA7JssQcWuu5SqndwLOYtL8vaa3jHs8k4lwDrNGaBXRaNJEdPnVZ+U8R/p7mhb5tFmF+9lk7BCoy\nnnffhTlzTEPs3XfjPO3ll80C4QMHmnZbliypGKMQj0nqqdRTvHsTeo2cy+gt7em16RaVauewd0hC\nCOFQLOsJU0q5AbeBH4EVwC3bPhGHqDXAYmq+eg6dFk1ka+VnGNJ4DKd+8EffdWHtWmmAiVRUtapp\nXU2ZEm/mDScnGDECTp+GadNSMT4hkkDqqVSkFP1nlyUf13j/jWuPncAnagHnmK9522WOmRAi/bBy\nseafMOPsFZAVcAeOAuUtvEe6E7UGGADz5sGyr+HVV3HqNottzTKRNzv8+it4edk3TpHBKGV6wCZO\nhJAQKFgwzlMbNIBnnjFDE19/HXLlSsU4hXg8Uk+lojwNfBnc8zg9Jpbmp5+gSZPEXScLOAshMgIr\nhyNWiLmtlKoMvGNV+RnCyy/DtWusKv4OrZ53wtXVNMBKlLB3YCJD6tTJTEBMIAWnUqY3zM8Pxo0z\nQxOFcERST6W+Ll+WZtJq+PCDSBo2dCJTIr51tPdze6SxJWsPCiHSmxRbYUprvQfwS6ny0wun+xFm\nwa8rVyBLFmbl7E6zl5woWxY2b5YGmLAjJyfTwgoNjTdBB0C1atCyJXz5pek4EyItkHoq5bm4wMjX\nj3LkqBPffiJJOoQQIoplPWFKqT4xNp2AysB5q8pPj5wjwun57SDYuwFd1I0vrr5Jv35meNeSJTKs\nSziAy5fNk4CBA+HDD+M9ddgwWLbM9IrhkTrhCfE4pJ6yj5feLULtgdsZNK4U7T/R5MotC1wKIYSV\nc8JiNhkiMGPvF1tYfvpy+zZ9p35EpcPbiBwzjj6H3mTCBGjXDmbNgsyyfKhwBAULQuXKMGMGfPCB\n6R2Lg6enGb341Vfw3ODMnL57JcEhRM19isgcD5GapJ6yA5UrJ19+eJnqn/sxOuAQQ5fIJGchhLBy\nTtgQq8pK90JDoWlTvIO2M7ndJ2za0ZvAQOjdG8aMifd7rhCpr0sXeO01WL8+wRSdgwaZNcNubvGg\nXJN78Z4rE+1FapN6yn78hjam9Ve/MmZZbbqeuEPhktnsHZIQQtiVlcMRf8RknYqV1rqZVfdK865d\ng9On+aLDCMbt6MLlP+GLL0xHQwI5EIRIfS+/DD17wvTpCTbC3NxMUsXx43NycFQNypWL+1yZaC9S\nm9RTduTkxIgpT7C0fSYGvhHMN7+XsXdEQghhV1YORzwJPAX8YNtuB1wClll4jzQjtoWYnwi9RmjO\nPGgnJyI6z2PVJC/uXs7F7NnQsaOdAhUiIVmzmkyJkyebrBsFCsR7ev/+ZvTigAFmbqMQDkTqKTsq\n0c6P7isuMD6wNL0OQoUKCV8jRHpz7Rps3AiXLkFkJOTIAU8/DZUqQd689o5OpCYrG2G1tNa+MbZ/\nVErt0lq/Z+E90oyohZjLueYGoOi5E3w88T021GjENzV7s3GiJ+GhLnzwZQgdO8a9BpMQDqFXL3jl\nFcifP8FT8+eHvn1NLo/t203qeiEchNRTdjbgK1dmroYP+4Tz828u9g5HiBR3NSSS9V/uplyRfynX\nswF//gluLSpTlUvcIRtncOMgFbjf8zmem9CEf/+F69ehWDF7Ry5SmpWzj3IopaITqiul3IEcFpaf\n5kQtxBxY/j5fTupBvhyZear9QHZMqERWnZXNG5354j1pgIk0oFgxqFkz0eNle/c2HWb9+oGOc/CX\nEKlO6ik7y5cPBrQ6yuo1Lvw25bi9wxEixQQtP84Kzw+5XbAYr3xRjfzDzbMeb2946u2m5GnXiKeb\n+1LT5w7ds8zAP3gOAN9/D34lQnjrLThzxp7vQKQ0Kxth7wEblFIblFK/A+uB3haWnzatWAHPPQeF\nCrHwk30883ZJ8uWDbdukh0CkMVevQteu8PvvCZ6aK5cZjrhhA/z2W8qHJkQiST3lALp/VojiTqf5\n4EPF/Qh5SiPSl8hIWOgxgLIvefDin+MIdffh9Oc/UHDvr4AZflh4+hByzJtB1mULyLp3K86h18k6\n82sAXi5zkLPqaXxnvoufZyhffWXKFOmPZY0wrfVqoDTQC+gJeGitf7Gq/LQo7z8h0KoVukJFRrfd\nTet3C+DrC1u3QqlS9o5OiMeUIwcsXAhTpiTq9C5dTAda//5SgQjHIPWUY8hSKA8jAo5x4FYpvn9v\nj73DEcISd0+dhxs3cHKCsErV2Vq3P7ePnqX8yR8p9vGr4Ooa98WZM5tuYsDVuyCZurxFF75mf6QX\ni7uv4623UulNiFRlWSNMKZUd6At011rvB9yUUk2sKj8t+idvASIWL+edipv4cEgO2rSBNWvgySft\nHZkQSRCVoGPpUrOIcwKyZIGhQ2HPHli0KBXiEyIBUk85jjZf16dqtoMMmFqE2//ctXc4QiTd/fsc\n6TKO+yVLE9xtJAAdFjSh1obPeaJMoccvr1Ah+Oor1ObNFCiWnTXqOQbmmWBx0MIRWDkccSZwD6hh\n2z4HDLOw/LTh/n147z18920kPMyJ5lMb8vW3LvTrB/Pmme+xQqRZb78N4eFmRfFEePVVKF/eDE0M\nD0/Z0IRIBKmnHIRyycSXQ+9w7v5TjOtx0t7hCJEkt/cf568idfGc3ocdOepzs/Wb1hVevTpq506c\nmjaheCaTbXvsWDh61LpbCPuyshFWUmv9BRAOoLW+DWSsVa9u3zYZ5MaP58kj51g/pjy//ALTpsGI\nEbIIs0gHPD3B39+sGZaIMYbOzjB8OBw/DjNnpkJ8QsRP6ikHUueDajSv/y8jl3ty8aK9oxHi8Zyb\nuBgq+fDkpcMENppN9cs/4tWsRMIXPo5cuczokxEjCAmBOcPPUq9OJCdOWHsbYR9WNgvuKaWyYVsI\nUylVEkhwjIFS6jul1GWl1KEY+/IppX5TSh23/XT8lRMuXYJ69WD5cvZ/OJceB0Zz83I2Vq6Ezp3t\nHZwQFureHapXhxs3EnV606ZQowYMGQJ37qRwbELEL0n1lEg5X3z9BHfvwoc9w+wdihCPZdWR4mzL\n5M/BeYdo81NHsmZLoec5Tk7g7EwBQtiFL/1D+9OwoVm2U6RtVq4TNghYDRRVSs0FagEBibhuFjAZ\nmBNjXz9grdZ6pFKqn237IwtjtdbFi+Zb5uXLLP1oG69NrIbOfJf6HxyiYUNve0cnhLVatzavRFIK\nRo6EunXNes99+/53LOhCKG2mbY33+uY+RWjv55bUaIWIKan1lEghZcrAB03+ZMTCsrw1/U/qdC5r\n75CEiFPkyWCuf7uYfJ+/zxuTqxAyaDVPPZVKN8+fn0ytW9Jz6hecCi5Ks2bd+f13k9NDpE2W9IQp\npZ6S+lgAACAASURBVBTwJ9ASU6HNB3y11hsSulZrvRG49tDu5sBs2++zgZesiDPFFCqEbtqM4QFH\naTmyGl5e0KD/QfIWvW3vyIRIOQcPmrT1iVCnDrz4ohmWe/262dfcp0j0YuZxCboQyvJ955IbqRDJ\nqqdEyvpksituzmd5t5cz4bdl8qhwTGHrtxJazg+nEcO4EnQZZ2dSrwEG5onmpEnQrBlj7/ciy7YN\n/CK5XdM0S3rCtNZaKbVKa10B+MmCIgtprS/Yfr8IxJleRinVGegM4OaWyk/L588HPz/uuJbgrasT\n/s/efcfXeP0BHP+cRAQhaosdao/EjBV7U6uILUaN1urQKjWq1Gx/StWqlrZo1K4OasQqatSMvWrW\n3kTG+f3xJBqSyHpu7s293/frdV/cZ36fPMk99zznnO9h0SLo2BG+/hr8v5OCRNixs2ehTBmjieuD\n+DVSf/oplC0LkyfDuHHQ0SdfnC1ccbWSCRFfFiinhEnccmXkiyHHaDXBh+lt1/POL/Vi3C62lnNp\nLReWdmfmYtK+1Z0bOg9b31+Df/Hs1gnE2Rl++AFVqRJ/XG+PS4W/gZekvhc2zcwxYfuUUhVNPB5g\nFJxE9N+PZf0crXUFrXWFbNmymX362E5qDHDp2JGrI7+idm0j8+G4cfDDD5A2bfKEIYTVeHoazVtz\n58Z7EjBvb+jQAaZOhStX4t5eCAuwSDklkq7Fpz40ybmPUb/6cGlL9KwDsbWcS2u5sLTrg8byypsd\n2a0qcWLBTrpPLIayZjqfDBlg6VJcqvmAszM7dxrPRUXKY+aYMB+gk1LqPPAQI+OU1lqXScSx/lVK\neWitryilPIC4JyVKLo8eQY8eEBDA381G0Hzzx9y6BcuXQ6tW1g5OiGTUp4+Rg37TJqhbN167jBlj\nzPc8dizMmGHh+ISIzsxySphIKZi+Mi8lK6eib39nVh/guS+6sbWcS2u5sLRlW7KSKU1XXt0wh+pV\nXa0djqFkSVi1ivv3ja7+Zcsa89BKFu6UJcm3SynlGfHfhkAhoA7wGtAs4t/EWA10i/h/N2BVUmI0\nzZUrxtP/JUtY1nkF1Td+jFKK7dulAiYcUOvWxszjs2fHe5dXXzWmGpszB0mxK5KNhcopYbKCPtn4\ndBysOVSAH36wdjTCoT19it67D4AOgX0pf3A+5W2lAhZFhrsXOZCnCf9uOpKQoljYCDPqzEsj/v1G\na33+xVdcOyulFgM7gKJKqYtKqZ7ABKC+UuokUC/ivfWlTUuYSsXwNsdp80NLvLwUu3cb3ayEcDhp\n0kC3bvDrr/DgQbx3GzECXFxg5EgLxibE85JUTonkM/CDtFSrBgPfDOHy7wetHY5wRA8fcq1Kc574\n1ODx2atkzAivFrbR6QRTpybv1d0sd+/O0PdCOS+fZimKGZUwJ6XUMKCIUuqdF19x7ay17qC19tBa\nu2it82it52mtb2qt62qtC2ut62mtX8yemLzWrIHHj7kV/gpNM+/g058K06sXbNwIOWJNGSKEA3j/\nfThzBtKnj/cuHh4weLAxjnLfPgvGJsR/klRO2c18limAszN8O/spTx6G0afNDfT9+D/gESLJbt/m\netn6ZNn3B5PzTOORe3KmP0yE7NlRM2ZQ9N5u+oVM4504P82ELTGjEtYeCMMYX5YhhlfKFRYGQ4fC\na69xYOhiKlSATYGKOXOMfARp0lg7QCGsLEcOyJ7wLFEffADZssHAgUaeGyEsLKnl1Hyg0QvLIuez\nLAxsiHgvTFC4ZGomvHmBNQ/rMKPusjg/JCKzJkZ9Ldr1TzJFK+zGtWvcKlMT95N7GV1yKYMP9iBL\nFmsHFQ9t20KTJnzsNJryua7EN1eWsAFJTsyhtT4OTFRKHdRa/2ZCTLbhzh3o0gXWrGFRna/pNbc7\nmTPD5s1wRv2D3+yXZ2MKunIvzjmQhLAL585B165G/8J6MaeWflHGjEY20d69ISAA2re3bIjCsSW1\nnNJab1FKFXhhcQugVsT/FwCBQPzmaxBxGjCtMH/8cYJ3d7en6pDFlJvSMcbtWnjnjrYs6Mo9AElb\nLxIkyH8iBS6eYmS5Xxi9rV7KyXStFEydimupUgwL+RicZlk7IhFPpuVRsasK2JEjULEiIb+tZ3Ct\n/XTa2JMKFRR790LlyrBq/6VnH/KxKeHhHmPhIITdyZkTgoISlKADjCSjZcvCkCHw8KGFYhMiCpPL\nqQTNZ6mU2qOU2hMSInNIxoeTEyzY9irZ096n3WeVuLf57xi36+iTj4A+VZ57yQNQkRiPR4zn4/rb\nU1YFLFLhwsYTzU8+Ye1aJLFNCmFminr7ERLCladZ6FB6D5sDMzJokDHBrIvLf5uU8HAnoE8V68Uo\nhK2ITNAxbRpcvWpUyuLB2dnYxdcXJk0ypt4TIiWKmAj6pfNZAnMAMucvLh1w4ylLNid+XJmWmo0z\n4z9VsdRXUnCLxFm0658Y55Pzy5OKOlMn8sqimZSvko3y68paITqTtGwJwOefafbsgddeU2TMaOWY\nxEuZkaK+bcS/nnFta9NCQmCpkUBrw01vvJ/s4K/jGfn+e2Ny2agVMCHEC3r3htBQmD8/QbtVr250\nRZw0iVizOsU03kPGf4iEsFA59W/EPJbY3HyWdqRaAzemfObEipWKEQPvwjX5MYuEi6kH0/UTZynf\n0Y9U63/nj1l2MmfKpUssv1KZ6rdXM3mytYMRcTHjmdKHEf8uM+FY1nH1KtStS1hbP0a/cYn69SFL\nFiP9fOfO1g5OiBSgaFGoWdPIWJPAUcGTJhld2mPK6tTCO3ecXYuCrtyL8QmnEFFYopyyzfks7dCg\nQfBGz3A+nZGR7yt/maApMYSIFNmDKaBPFQKa5ePbucPJfO86IyutxXdIZWuHZ44cOXALucsM92F8\n8XkYV67EvYuwHjO6I95USq0DPJVSq19cqbVubsI5LGf7dmjbln/vuNKp5CU2fJ2Trl3hq6/Azc3a\nwQmRggwZAgcPwtOnCUodmjcvfPQRDB9uzAbRrNl/6zr65ItzcL3f7B2JjVg4jiSVUxHzWdYCsiql\nLgKjMOavXBIxt+V5oJ3pUQvAeEgzY6YTp3bfoOfBj8he7SMabh+ZoKkxhHjmwgXuVahNpvs36Vhg\nKT9trmY/2a5TpYKxY8nTti1tnX5g7NhuzJhh7aBEbMyohDUFygHfA5+ZcLzkM20avPsugdnb0cFt\nPndOuzBvHnTvbnzoCyESoGlT45UI770HCxfCW29B7dryAESYLknllNa6Qyyr6iYlKBF/Li6wLDAr\ntcveptXB0ayt9j6+28ZDhpQ9E45IficOP+XptTR8UGAZad/NYD8VsEivvw7ly/PZyZF8l7894Grt\niEQszEhR/xTYqZSqqrW+rpRKH7Hc5vsLhLmmY3yR7xh1rD2FCyvWbYTSpa0dlRApWHAwrFhh1KQS\nMJN56tRGckVfXxg9GunLLkyVkssp8Z9MmWDdX5moUfYeTQ9+yh+dp+Ozapi1wxIpRIb7t0FrijQu\nxNIfD5D2+m6cXeLOkxNbUg8wuszb3FQISsH48WRq0IBBGecDfawdkYiFmdkRc0R098gMKKXUdaCb\n1vqwiedIui1b4No1Lvi0ocvinmwOUnTqBLNmSc8GIZLs/Hno0AE+/RQ+/DDu7aOoXh169YL//c8Y\ni+nlZaEYhSNLGeWUiFX27LB+lzs1Kz6i3oahrNoIdepYOyph67LduMKw8QO5tL8TuX+YSBs/Z36a\nHb0CFlOFa9fZWwD4eGaOtnzX2VvRtreJilm9ejBvHmGt2hCwyPgbiWfiYpGMzKyEzQHe0VpvAlBK\n1YpYVtXEcyReWBiMHw+jRvFTvnfpfed1QkMVCxYYczJL90MhTFCkCNSqZSTo+OCDBOeTnjgRVq2C\nPn2M4ZrOzpYJUzgs2y6nRLzkyQPb9qWjQQNo3FgTUOULWk6pDhUqWDs0YYvOnWPY+IGkefiISf+2\nY0KUVZHZdyPFVOHy8cwcY8UqtgpbTBWz2FiswqYU9OjB2VPGd9x33zWSYAnbYmYlzC2yYAPQWgcq\npWxjZMfVq9C5Mw827GRgwY18e6YmPj7GGJRChawdnBB2pk8fozVs/Xpo0CBBu2bO/F9L2LRp8Pbb\nFopROCrbLadEgnh4wObN0KTeU17fPIDPqw5l4PyTqI6xDd8TDuncOe5XqEWah49oX3A5q38u/2xV\nC+/c0TaPrcIVk5gSR72s6+KLIlPmW7LV7NXTa9mZaxZ1Zyzl/fedyZrVYqcSiWBmJeyMUmoExsBn\ngM7AGROPnzhXroC3N7vvFqFj9sucPpuB4cNh1CiZ+0sIi2jVCrJmNQZ5JbASBtCxI/z4IwwbBk2a\nGNnv4/Li08yY2EQXEWFttllOiUTJnBnWb3Gla7snDP5tMoc6fc1Xf76Dc/GWhKWSAt7exVbhefZZ\nHxzM3Ur1CLt5j/YFl+P+dprnknDEJ/tuQiXkmMmS2ffePSpeXEkjlvHVV+0YOdLypxTxZ+bc8z2A\nbMByjLlYskYssw5t9PUNy5aT8SW+p2rYFoJd3QkMVIwdKxUwISzG1RX8/eHAASNRRwIpBXPmQLp0\n0K2bMQf0y8hcYiIBbKucEkmWPj0sXZOGjz4MYx69qDOjNR1mTrd2WCIZxDQBc9TP+nAXV2Z4jGNk\nlfW4v50mXkk47E7r1lC0KOPdxzPjS82TJ9YOSERlWkuY1vo2MNCs4yXJ7t3QuzcnPl2K/yeF2LGj\nAe3aQb1eF5hx9CIzjr58d3liLkQSjRoFEyYkelCXhwfMmGH0apwyBYYOjX1bmUtMxJdNlVPCNE5O\n8MmnzpTygp7dfPA7/R3lD50zHsbKgG+7FjkBcyS/2TvIduMyYb/8jnPTRry90w+loNsCBy0DnJ3h\n/fcp1LMntbNt4uTJOpIF3IaY2RJmfVrDJ58QXrkqX5xrgXerAhw7Zoz9+vFHWH/mYrSnJi+SJ+ZC\nmCB9euPDPyQEwsMTdQg/P2jTBkaOhL17TY5PCGF3/Pxg7wEXUmcJZ9uM4rQo9Du/VW9D12kb8Zu9\ng0W7/rF2iMLCst24zPDxA7ndqjt3rzwibVrsbx6whOrYEZ09O4sqfi4VMBtj5pgw6zt+nLMjv6F7\n9gNsvlaCJk2MJG25cv23yYtPTV7kN3tHnONLgq7ci7P7kxAO79AhqF8fFiyAhg0TvLtSxtQRO3ZA\n+/awb5/MyyqEeLmiRWHqopuMHXmf1Zsbc+lsNiYfG8rM11uyCssmQRBWduYMw8cPxPXhY0ZV28Dk\nTOmsHZFtSJMG9fHHqNBQngZrrt9Q5I6ek0RYgWmVMKVUNa319riWWdL1R26Udj2B02MX5s2D7t0T\n3hMhpmw5Lyrh4R6v7YRwaEWKGFNDzJ6dqEoYQJYssHixkfW+Xz/4/nvpXSQSzxbKKWF5/jXy4R8I\ny5dD7+5laHxzDZ/MHUHOFkehVyWZ+yIFiikJx3MPxM+c4X7F2rg+fEz7QitYvb6stIBF1bcvANUr\nQcaM8McfVo5HAOa2hE0HysVjmcX8o/NSz9eogOVL5MMuS2TLEcIhubpCjx7w2Wdw4QLkzZuow/j6\nwujRRrfEevWMnB9CJJLVyymRfFq3hmrVUtPb/ynv/z6ZGis3U+2XoxRsXsraoYkEikzCEbUXUtQH\n4kfe+gqPW/dpX2gF7oNdpQIWk8ePGZP3Bzovb8WBA1nx8rJ2QCLJlTClVBWMiS6zKaXeibLKHUjW\nx0358sG6dfKkXAib0a8fTJ5stIaNHZvowwwbBps2wZtvgpcXlC1rYozC7tlSOSWSV44csPLX1FT2\nP8nOgCqU6Ziazz6D3uX3osqXky8MNia2tPORFbBow0kiMmGrSRMZn7Yf7nWuc/zG3WhDSmQYCXD2\nLI2W92aAy79Mn/4RX39t7YCEGYk5UgPpMSp0GaK87gFtTDh+vGXLJp+nQtiUAgXgtdeMnPNJyI3r\n7Gx0S8yaFVq2hGvXzAtROASbKadE8lMKClS9Qf1Rh6hc2eiZ1aTiNS417wu3blk7PBFFTGnnIZZh\nIAcPcreML/rSZUqUdmby8kK0rpgrxsqWrQ4jicxBEPVlsQQyJUpAo0YMTjWDnxY+5fZty5xGxF+S\nW8K01puBzUqp+Vrr80qp9BHLHyQ5OiFEyjdiBFy+nOTJ+XLkgBUroHp1aNsW1q+X+f5E/Eg5JQDO\nB9+g+Os7KJc1O5uW1qHUmsqMzzOMVyf4Um9gR2uHJyLElUANQO/ew5OaDbj/OB3bljyg6dvG8pQ0\npCSmSuGus7fYdfZWtNZA06ZOGjiQjL83oRErWLzYjzffTPohReKZOSYsg1LqbyAzgFLqBtBNa33Y\nxHMIIVKaChVMO1T58jBvHnTqBP37G9kTpfVbJICUUw4q6hfeV2tfI0eJexycm4t+F2fSetAyyhwb\nTfavRlsvQBFvett2gus14WpwZqa33MikAZ7WDilRYqowxpaAJHL7JGvYEAoWZHb6GWTo45f044kk\nMbMSNgd4R2u9CUApVStiWVUTzyGESInu3DESdLRqBeWSlgOhY0c4fBjGj4c8eYyGNiHiScopBxXT\nF96w4VDx9dOsXt2crd81YnZ94yNK2C69ZStP6zbifGgevu20gSnf5cHJjma8jen39GVTJyW4hczJ\nCfr145Wvv4YHd41UicJqzPzVdYss2AC01oGAm4nHF0KkVE5OMHUqfPGFKYcbNw66djUyJsrgYpEA\nUk6JZ5ydoXDja9T96Ah5i6ajdWvoUucSt0d/YUyvIWzOnlsF+S20Pgt7b2H89/ZVAYtNC+/cMY5z\nC7pyL8YkJnEaOBCOHuV/32SkVy8TAhSJZmZL2Bml1Ajg+4j3nYEzJh5fCJFSubtDt27G7OlTphhZ\ndJJAKaPyde0a9OljzCcmT7BFPEg5JaLJmPsxP+9UjBsHY8fkZNOm15m3fCgNf+4P+fNbOzwBEBgI\n1atTsWVuwneu5ONKjtMVPbZxbjG1jMVL6tQA3Lv6iMXz4KOP0lGgQBICFIlm5jOEHkA2YHnEK1vE\nMiGEgLfegqdPjYqYCVxc4KefoFIlaNcOVq0y5bDCvkk5JWLk4mLMR7jrLycy5kpPo0OTeafIzzxd\ntNTaoTm8JxO/gNq1Odnf6Enh4+M4FTCLuXyZEbNy00N9w6xZ1g7GcZlWCdNa39ZaDwRqAjW01oO0\n1pIAUwhhKF4c6taFmTMhNNSUQ6ZPD7//biTsaNNGKmLi5aScEnEpX0Gx9/Qr9O96l/897Y9vp7yc\n+26LtcNyTFrzaPAw0gwdzHJas6vCW9aOyH7kyoVT0cK8n/4rvp6rkzKDjEgC07ojKqVKA98hWaeE\nELEZMAC++gpu3ICcOU05ZMaMsHatkfSpTRtYuNBoGXtRbAObozItDbCwSVJOifhIkwamL8hIzcYh\n9OzuTdlBqZmfEVo019IEk1xCQ7nfqS8Zlszja+fe5Fj6FZ1byrzqpnrrLfL6+1OGTfz0Ux26dLF2\nQI7HzO6IszGyTuXXWucH3sXIOiWEEIYWLYwak0kVsEiRFbHKlaF9e5g+/YXTxjKwOapED3IWKYmU\nUyLe2rR3Yd9hVwoVUrRsCSPzzCP8wCFrh+UQrqw9iOuS75jkOoJim2bxmlTAzOfnh86cmcn5Z8jQ\nRysxMzFHtKxTSinJOiWEiO7CBaNLoqd587tkzAjr1kGHDkbyp8uXjSyKTk7xm8Az0YOcRUoi5ZRI\nkEKFYPt26Od3i09W9SKowioWrLyJW9Na1g7NLqUKeUqoS2qyNSzHqPZHaT+sEKVLWzsqO5UmDapn\nT8p//jm8ehnIZe2IHI5dZUc8c/3hS79IBV25F+fTcCGEhQUHg5cXNG5s9B00Udq0sHSpkQNkwgQ4\nfhwWLIAMGUw9jUi5rF5OiZTH1RXmrchMyRG3GTLuNc40O8CqqcvJO6i1tUOzLydOMH64PwFN3yBV\nnyqMW1zI2hGlODFN9gwv6Wrfvz80aMCFkJz8vRqaN0+GIMUzZlbCegAfY2Sc0sBWkjnr1OOQl8/r\nUcLDnRbeuZMpGiFEjFxdjXT106cbNaW8eU09fKpUMGsWFC0KQ4ZAlSpGwo5CUp4LGyinRMqkFLw7\nNhPFyzygfcciVB2clXWPVlL8w5bWDi1FiKtyoDdv4XHjVqR97MRfx6TpK75eHOu86+wtAHw8Mz+3\nDRBzJSxfPsiXj1E9YMkSoweJu7RVJBtTKmFKKWdgeETWKatJ6+JMQJ8q1gxBCBEfgwbBtGnGa/Jk\n0w+vFLzzDpQpA35+ULEiLF5sJO8QjslWyimRsjVpl56tnk9pWPsVfKc059e6xjQZ4uVW7b8UrTdS\nZOWg7ZHNqDd6cj68EH3KLSB7j3BrhZmixNSo4OOZOVqrV5xd7e/f59Mno7jysD4//NCYN980O1IR\nG1MqYVrrMKVUdTOOJYRwAAUKGKkM58yBESMs9uitXj3YvRtatoRGjYyWsbFjn81VKRyIlFPCLF4V\nU7P9QGrq14c6dTQr31pPvQn1JHMisbd4RVbAoj4o95u9g4KHDuMyozcbqc3+j5aRM/cx+THGU3zG\nOsdL2rTk2PoTozIc5o2ZjenXT36Vk4uZ2RH/VkqtVkp1UUq1jnyZeHwhhD159124dw82bLDoaQoW\nhJ07oW9fo9GtWjU4edKipxS2S8opYYrIhB2FXrlJs0m+rGv3NWht7bCsLrLF60XRhoNE/KyC8nsx\nNMe33Pzhd975JJN8+beGVKlQvXtT+f4fPDl8ku3brR2Q4zBzTFga4CZQJ8oyjdH3XgghnlepEpw9\na7SKWVi6dMYc0Q0aQM+eUK4cfPkldO0qT/wcjJRTwjQeHrDx78zULX6JFks783P3hdSb39naYSWb\nmFq9Ymrxiub0ae606EbO1wewUb2Cy4hinH2wl6WzJYGa1fTqhR4zhoHOs9m2bQrVpc9AsjCtEqa1\n7m7WsSIppc4B94EwIFRrXcHscwghrCiyAhYcbCTssLBWraBCBejcGfz9YflyI4mHh4fFTy1sgCXK\nKeHYsmRzYn1QbuoUvUTzBa1Zk345db50jMbVmMZ5xZUALey3dQS3bk/4E8hezI0S9d0xnoPEb39h\nIR4eqJYteWvDtzgN+gRIa+2IHIKZLWGWUltrfcPaQQghLGToUGOm5X37kqVZKm9e2LgRvvgChg+H\nkiWNRI1aS6uYEI7oxQxz8JKU3jHImt2JDUEe1C56mddmNGRjk5v4NMliiVBtTpytXpG05vHYz0g9\n8gNOUZKA9isZtaCgjM+1JW+9hVNYGNy+TbBT2uR4LurwUkIlTAhhz0qUgIkTYc0aeO21ZDmls7OR\nPbFpU6NFrHNnyO1VlAz1DsSZSSohX86EELYtplaXl6b0jkU2j1SsP5idar6Kpl2zsG0bFCtmWpgp\n3qWh08k9aQjLVBvu/O9bxg1Kb+2QxItq1YJatRg92pjC89gxo6wUlmNmYg5L0MA6pdRepVTvmDZQ\nSvVWSu1RSu0JCQlJ5vCEEEnWoYPRLXHcuGQf2F60KGzbZiTsuHY0E2dmVeef3VliDSPoyr0YM38J\nIVKmjj75COhT5blXYsck5SyQhnWBrjg7Q8NqD7j42yGTo02Bwoz5Wy/V92d45pnk3LKEnlIBs2kV\nXzlJyKlzrFtn7Ujsn2ktYUqpHMCnQC6tdWOlVAmgitZ6XhIOW11rfUkplR34Qyl1TGu9JeoGWus5\nwByAzPmLS2oiIVIaFxf44APo18/oJ1i3brKe3tkZ3nsPmjVT+Pu7sHNeEXLdhq++ghw5nt82zvlW\nhE2zRDklY5dFVIUKwe/LH1HTV9OouQtb910gU2lzJ6RPEbTm8eczeThzAVkPBVKpnjtlr/bFxcXa\ngTmmeHe5ffiQJsO9+SRtJ2bOnEPjxskYpAMysyVsPrAWyBXx/gQwOCkH1Fpfivj3GrACkCkRhbBH\n/v5GdowJE6wWQrFiRsrpiRPhl1+MsWJLllgtHGEZ8zG5nIpQW2vtLRUwAVC2WjpWfn2Tk6GeNK98\njSf/3rV2SEm2aNc/+M3e8dwrplT0ANy7x+2GfqR97y3+OpOVs0efAEgFzEpaeOeO1roba68ONzeU\nnx9+oQvZuuYu//yTTEE6KDMrYVm11kuAcACtdSjGk8FEUUq5KaUyRP4faAAcNiNQIYSNSZMGvv/e\nmLzZipyd4f33jRwhhQqBnx+0bQvXrlk1LGEeU8spIWJTp0cBvv/oBNselaeb19+EB6fs4RIxzf8V\nUybD8M1buevpRYY/ljPOfSLugT/jWS5TcoYqXpDgLrf9+pE65BGd9ffWLpLtnpmJOR4qpbIQkWtU\nKVUZSMrjnxzACmWkK0sFLNJa/57kKIUQtimZuyG+TIkSRqvYlCkwahQEBhrdE0WKZ3Y5Bf+NXdbA\n7Igu8s+JGNPcGyC9R6Eknk6kFO0+Kc0/J3YzZEkt8rY5zpSfi1o7pCSJKxOiDg3jYtM+hDx04tPq\nW3hveVWyZUvGAIU5KlaEChUYc2km17u8BUjaYEsxsxL2DrAaKKSU2g5kA9ok9mBa6zOAl0mxCSFS\nggsXoHdvo+ZTubJVQ0mVysie/9prRm/Jdu0gT7nClOtw1qpxiSQxtZyKIGOXHUBMExND3NlS3/2x\nIuf1v3z2U1HyT4cBAywZpZUcPQr58qHc3AgcvBI8PJjwZgaZ8iMl69ePTG+8QabQIKCktaOxW6ZU\nwpRSTkAaoCZQFKPafFxrnbLb34UQyStTJti715jAa8MGa0cDGGPDduyASZNgxMjMXD+ZkaUFoE1S\nv7qLZGWpcirq2GWlVOTY5S0v30vYuhcTGew6ewsAH8/Mz20DL09lrxRMXZyDC09h0CBN3st/0XK8\nj4Wijl1iK5EvFRbGw0lf4jJiKOeb9afwysl0HVskiZEKm9ChA9Svz/Z/8rJuFHz8sbUDsk+mjAnT\nWocDM7TWoVrrI1rrw1IBE0IkWPr0RgVs40bjZSNSpYJhw6D+sIOkyxRM27bG3GJ3U/54e4dh5Q/I\npAAAIABJREFUiXJKxi7bp5gSGfh4ZubTVqUTlcre2RkWLYJK7sfoMKEMO79O/l+RmMZ0JWXKDX0k\niBslfHEbNpg/wuuypeK7ZoQpbEXatJA3L1u3wpgxmqAgawdkn8zsjrhBKfU6sFzrZJ7sRwhhP/r0\nMQZjDR8Of/6JLfVpyZj7MXU/OEyp65UZM8YYN7ZwIVStau3IRDyZXU7J2GU71NEnn+kTsqdLBz/v\nyEaVMtd4rXdOdhS6wKu1kzd1/YtjuhI75catz+eTYUgfVHh6Rnp+x+vLO9PU23Y+p4VJgoN5e21z\n7jnVYdasD5g2zdoB2R8zsyP2AX4CgpVS95RS95VSseQvFUKIWKRJY4wJ27kT1qyxdjTRODlrRo2C\nrVuN9zVqGF01QkOtG5eIF1PLKa31Ga21V8SrpNZ6nHmhCnuTrXhWfvs5FI2iccNwrp+yzab0WNPR\nRzy32HCrLMtUG5aMPsrIE13wkgqYfXJ1xVWF8HbamXw/P4yHD60dkP0xrRKmtc6gtXbSWqfWWrtH\nvE/ctPNCCMfWrZtRs/FJ/rET8VW1Kuzfb3SdHz0aataEc+esHZV4GSmnhLUVblSIn6ef52JIdprX\nuM3jx9aOKLoXuy66PbzHuDXf8O68LwF4fYwXVc8spN+o7KQysz+VsD39+pHt4Xmq3v+dxYutHYz9\nMbMlDKVUJqVUJaVUjciXmccXQjgIFxcYORKyZ7d2JC+VMaMxvdnChXD4MHh5IQWVjZNySlhblbfK\nsfDj0+y6mp9OnSDMBmeqK+HhTkCvSnzz+DDThneiyd5lHDudjfCQMJycIJ+5vTWFrWrZEp0zJ8Mz\nz+TRI2sHY39Me4ahlOoFDALyAPuBysAOoI5Z5xBCOJg9e2DsWGNUe7p01o4GiJ41LVL1913Z9c2r\ndOzozkcz/8W77TlSpQ5/6bGSlJlMJJiUU8JWtB5Ziv9lhMGD4Z3XTkA7a0f0vFwXz3C90ECynd/D\nZmqwo8N0+swog5OLtSMTycrFBdWrF1XGjaPqa2cBT2tHZFfMbEgeBFQEdmqtayuligGfmnh8IYSj\nefgQVq2Czz6DESOsHQ0tvHPHui591mBqv3uEw6vzcWxtbm6dTU+VN06QIceTGLePT3prYTopp4TF\nxTcd/KBBcP6HrfzvN18Klb5PnuIZkjPMmEWM+7ryT1bun7/JrGILafFjB4Z6ybgvexPbA8VoDwf7\n9kWFh6PTZ+D4MShWLBmDtHNmVsKeaK2fKKVQSrlqrY8ppVL29PBCCOuqWRNefx0mTICePSFXLquG\nE6+saW/Cr79Cly5ubJ1clq+/Bj+/6JslNjOZSBIpp4TFRY6piprCPraHLlM2V+SfAltYdi0DqV1i\nzxETW8UuNvFtZY/8Iu728B6Nly4i2+UrBPm/S/Eq7pxqf5KPGjnbUoJaYZLYHijG+HuaOzeMG8fI\nEUbi4vPnbX6kQIphZiXsolLqFWAl8IdS6jZw3sTjCyEc0aRJ8PPPxkRd8+dbO5p4adLESNrh5wft\n20NgIPzvf0biR2FVUk6JZBHfdPBO6dLw/ZFybP7wNpkuBbF9YADVpkV/ahNTxS428W1lb+GdG5eQ\nYGqvWsLr6+bjHnaXhak7UTJTOpqXzU0DH+c4zyVSptgeKEZmwnzx97WFd2765DrAqScPmTGjvUze\nbBLTKmFa61YR/x2tlNoEZARkvhQhRNIULAhvvw0TJ8Kbb0KlStaOKF7y5oXNm43pziZPhl27YMkS\nePVVa0fmuKScErYobbb0FCrrTvDfblSe3pEtDx5T4xv/aNu9WLGLTUxfpGOqwDX49yKNP+xCpgcX\nWasacbjrRLr/rwxdMif5kkQKFVML2bNK/fJpzHA9QonprXn//dS4uSV3dPbHzMQcUavUZyP+zQn8\nY9Y5hBAOavhwyJABSpe2diQJ4uJiNOTVqAFdu0K5cjBvHrRta+3IHJOUU8JWpXFzJtynNPtXpqXG\nt93ZduYUVdePwSlVwpNYx/RFuoSHu7H8yRO4ehUKFOC0epX7D4rxd8P5tJtdl4b5zbgSkZLF1EL2\nrDL/3ntkXt+IhsGL+eabbgwYYIUA7YyZ3RF/ATSggDQYKVSOAyVNPIcQwhFlyGBUxMAYOJ7CBik0\na/Zf98R27aB/fwgrqnB20dYOzdFIOSVMFVPXrdi6DcbWzSvyS6+TizOlzvxMYLm3qLV5HJtfz0zN\nVe8kOKYYu5pdv86/n8zmTu0Z3MlYgAKX/8TntexcuvgH9WLPNyTEfxo0gFKlGHHmMzos6MqAASmr\nHLZFZnZHfO4RtVKqHPCmWccXQgh27zYSdKxeDQUKWDuaBMmXz+ie+OGH8PnnkCl/KbK12Bdngg5J\nY28eKaeEmWJLbvCs1SmObWMau+Xq7sql70cw8v3inKpejq9m78D15n2CgsMpkStjgmMM23+Iy+9P\nJceGheQID2adU0NOVBtK/4gHWbmlAibiSyl4911e7d6drcN/BxpbO6IUT2ltuSexSqlDLxZ6lpQ5\nf3F96/zR5DqdECK5XbgAxYsbWRPXrElxLWKRVq6ETl3CCQkPp1LXU+T2vh3jdpFP1OMzDsRRKKX2\naq0rmHg8KaeEVUSO3Srh4c6mm28BUDvLDHadvQWAj2dmnB49ZfSQPtxP7c7JXgNoP6U9KvVLJuvS\nGh10FPLmRbln4OdqE6jz5ycsc+tKcO+BtB5enCxZkuPqhL2I+nvqHBrCJ5P68Eu99mTq0Z3OVfOl\n1GLYouJbTpk5Jixqm7kTUA64bNbxhRCCvHmNyZvffhsWLAB/f2tHlCgtW8KhA060a+fE9lnFeOcd\nIwu/ywvfrSSNvbmknBK2JLaWNB/PzM9awIMfhLBh67t4rRpDheldufHVe1wqWpcMg3pQsHc9Hl28\nxa0FP/P05HlC9x8my8mdZHl0gZNjAyg8vB0FJvRl49k+dOiQKdrnixDxEfX3NCyVC8M+nMffQaFc\naZWNTN8Y3e1F4pjWEqaUGhXlbShwDlimtY55plILkCeMQjiA8HCoUwf27YODB1Nct8SogoPhvffg\nyy+hcmUICDC6LUaKrIRJS9h/ktISJuWUsFW15tcCINA/MMb1928+ZdtHv+OybDFFr2/jUs9RVP66\nF7u/OUTFnmUIR3GGggS5luVq6QZUHf8aperlTL4LEA7F78vthAy/zrmCLdi7T0lr2AviW04lPO1O\nLLTWH0d5jdNaL0zOgs2WpU+fPsbl/v7+LF26NFHHHD16NFOmTIn3uS9fvkybNm1i3e7OnTt89dVX\nLz1W1apVAQgMDKRZAh99rFy5kqCgoGfvR44cyfr16xN0DCEAcHIyWsHAmDkyBXN1henTjdT1R45A\n2bLwyy/Wjsp+STklUqoMWVLTeGZz6l1bTJaHF/D6ogcAng2L8Ou0U2xZc58MV0/R/MlP9N79hlTA\nhEXV2PM7y++1IvP+DaxaZe1oUi4zuyP+jJF1KkZa6+ZmnUskXK5cuV5a4YushL35ZvQx6qGhoaRK\nlYo///wz0edfuXIlzZo1o0SJEgCMGTMm0ccSgvz5jSwXpUpZOxJTtG0L3t5G5sRmzWDoUPjkE2tH\nZX+knBL2IF06iHyGnjW3K00GFLJqPMLx/FmhHu1XzWbik9F0H1GX5s0VTqY16zgOM39kZ4DHwNyI\n1wPgNPBZxMvhaa3p378/RYsWpV69ely7du3Zur1791KzZk3Kly9Pw4YNuXLlCgBz586lYsWKeHl5\n8frrr/Po0aOXnuPs2bNUqVKF0qVL89FHHz1bfu7cOUpFfGE9cuQIlSpVwtvbmzJlynDy5EmGDh3K\n6dOn8fb2ZsiQIQQGBuLr60vz5s2fVZyitujdu3ePpk2bUrRoUfr27Ut4eHi0bZYuXYq/vz9//vkn\nq1evZsiQIXh7e3P69OnnWgE3bNhA2bJlKV26ND169CA4OBiAAgUKMGrUKMqVK0fp0qU5duxYon/2\nwg6VLWsMorpxAw4csHY0SVa4MPz5J/TubYwPq1MHHt1Obe2w7I2UU0IIkUShLqlZ3qQ75Z9sx/Pw\namkNSyQzK2HVtNZ+WuufI14dAV+t9Wat9WYTz5M0tWpFf0Xt0pTQ9QmwYsUKjh8/TlBQEN99992z\nlqWQkBAGDBjA0qVL2bt3Lz169GB4xJxIrVu3Zvfu3Rw4cIDixYszb968l55j0KBB9OvXj0OHDuHh\n4RHjNrNmzWLQoEHs37+fPXv2kCdPHiZMmEChQoXYv38/kydPBmDfvn188cUXnDhxItox/vrrL6ZP\nn05QUBCnT59m+fLlscZUtWpVmjdvzuTJk9m/fz+FCv331O7Jkyf4+/sTEBDAoUOHCA0NZebMmc/W\nZ82alX379tGvX794db8UDqhdO2jaFKI81Eip0qaF2bPhhx+MIW9/fFqGq0EJT0stYpUyyikhhLBx\nG6s1QxcrxnceH9C0QYi1w0mRzKyEuSmlCka+UUp5Am4mHj/F27JlCx06dMDZ2ZlcuXJRp04dAI4f\nP87hw4epX78+3t7ejB07losXLwJw+PBhfH19KV26NAsXLuTIkSMvPcf27dvp0KEDAF26dIlxmypV\nqvDpp58yceJEzp8/T9q0aWPcrlKlSnh6esa6rmDBgjg7O9OhQwe2bdsWr5/Bi44fP46npydFihQB\noFu3bmzZsuXZ+tatWwNQvnx5zp07l6hzCDv3+edw8ya0bw+hodaOxhSdOsGePeCaIYQt04szZIiR\nxEMkmZRTQghhgsPXHjG5dndCntzm/SnLaDdzB36zd7Bo1z/WDi3FMG1MGPA2EKiUOgMoID/Q28Tj\nmyMw0LLrE0FrTcmSJdmxI3o6an9/f1auXImXlxfz588nMB7nV3GkqenYsSM+Pj788ssvNGnShNmz\nZ1OwYMFo27m5xf7d5MVzRL6PuvzJk6SPd3d1dQXA2dmZUDv5gi1M5u0Ns2YZ6eqHDk3xyToiFSsG\n9YYe4sDS/EyZkpO1a2HhQiidbDNa2aWUUU4JIYQNi0xbvzdndQ6WqMSFk9n5e6YnubvsAC49NwG5\niJ2Z2RF/BwoDg4CBQFGt9Tqzjm8PatSoQUBAAGFhYVy5coVNmzYBULRoUa5fv/6sEhYSEvKsxev+\n/ft4eHgQEhLCwoUL4zxHtWrV+PHHHwFi3f7MmTMULFiQgQMH0qJFCw4ePEiGDBm4f/9+vK/lr7/+\n4uzZs4SHhxMQEED16tUByJEjB0ePHiU8PJwVK1Y82z624xctWpRz585x6tQpAL7//ntq1qwZ7ziE\nAKBbN3jrLfjsM/jmG2tHY5pUqcMp3/Esa9bAv/9ChQrGJUYMwRQJJOWUEEIkXUeffAT0qUJA36r8\n0L8Ws3sUosb1QJ7uKmHt0FKUJFfClFIVlVI5AbTWwYAXMAaYrJTKnNTj25NWrVpRuHBhSpQoQdeu\nXalSxZj7J3Xq1CxdupQPPvgALy8vvL29n40X++STT/Dx8aFatWoUK1YsznN88cUXzJgxg9KlS3Pp\n0qUYt1myZAmlSpXC29ubw4cP07VrV7JkyUK1atUoVaoUQ4YMifM8FStWpH///hQvXhxPT09atWoF\nwIQJE2jWrBlVq1Z9bkxa+/btmTx5MmXLluX06dPPlqdJk4Zvv/2Wtm3bUrp0aZycnOjbt2+c5xci\nmi++gCFDoFEja0diqqAr9/ju4g4qD9lN1uK3eO89yFn8Ls3G78VvtnT/iA8pp4QQwnKKrZ7E6vCm\nZNl6nhunMlg7nBQjyZM1K6X2AfW01reUUjWAH4EBgDdQXGsd++RUJpNJMIUQAISEwIkTULKktSNJ\nkkW7/mHV/v8epmgNZ//Mzv4lBUBpyrT8h+AiJymZy91hJnROzGTNUk4JWxfXZM1C2LR79wgvVpxD\n17JR9ZVAGo8+hrPLy+sXLbxz2223xfiWU2aMCXPWWt+K+L8fMEdrvQxYppTab8LxhRAiYYYNM8aJ\n/fYbRHSVTYk6+uSLXkj1hTOjoU8fWP9jQbIUzEqezmesEl8KIuWUEEJYirs7TtO+wKttW96++SVr\n/+pAwWqxZywOunIPwG4rYfFlSiVMKZVKax0K1OX5Qc5mJv4QQoj4eftt+Plno2viL7+AnY0zLFgQ\n1q2DBQugz1vpWDe2DCX3XqBYw8ukSh3zgDF7fuoYD1JOCSGEJb3+OrRvzydLRvPJm/VRlWPvneE3\nO3oiOkdkRmKOxcBmpdQqjEkwtwIopV4F7ppwfCGESJhcuYxMpvnyQePGsGaNtSMynVJGQsipS6+S\np9wtgn7Jy9qPvbi4LzMv9jIPunLvuW6NDkjKKSGEsCSlYOZMVO1aqFTOnD4Nt27FvZsjS/ITQK31\nOKXUBsADWKf/G2TmhNHnXgghkl/OnEZFrHFj6NABzp6FrFmtHZXp+jXOQ7/GsHEjDBqUhj/nFKVW\nLSNPSZkyxjaO/tRRyikhhEgGr7wC69fz4AFUKQiVfTSrVivimDnJYZmSol5rvVNrvUJr/TDKshNa\n631mHF8IIRIle3bYssUYG5Y1q5HZ4ulTa0dlEXXqwN9/w1dfwaFDULaskbk/SjJShybllBBCJI/0\nacP4o1h/yq4Zw8iR1o7GdklfeCGEfXNz+y85x7ffGk1Eixal+MyJMUmVCvr1g/btYdw4mDHDmOA5\nX+WClGjs0N0RhRBCJBcnJ8oUfIDX1hn4j83P1/n96dXr+U2CrtxLUi8NexjnbNpkzSJ2V69epX37\n9hQqVIjy5cvTpEkTTpw4kWzn379/P7/++muC96tVqxZ79ux56TaBgYE0a9YMgNWrVzNhwoREx7Fn\nzx4GDhwIwOjRo5kyZUqC4p06dSqPHj169r5JkybcuXMnQccQds7DA65eNWY9/uILCAuzdkQWkSkT\nTJkCZ84Yc1if35WN30Z506OH0UomhBBCWIxSqNmzCa9Xn3n0ZEPvANau/W91C+/clPBwT/Th7WWc\ns7SEWZjWmlatWtGtWzd+/PFHAA4cOMC///5LkSJF4tw/NDSUVKn+u01aa7TWODnFv/68f/9+9uzZ\nQ5MmTRJ+AQnQvHlzmjdvnqg4QkNDqVChAhUqJGj6n+dMnTqVzp07ky5dOoBEVTyFnWvcGA4ehJ49\nYfBgo2Vs5kyoYp9zbHl4GHXNMx5/c+z33Pz4Y06+/Rbq1TMSSDZsCM7O1o5SCCGE3XF1xWnlCsIa\nNOaHHZ0IPfMQ6AHEMv1KAtjLOGdpCbOwTZs24eLiQt++fZ8t8/LywtfXF601Q4YMoVSpUpQuXZqA\ngADAaF3y9fWlefPmlChRgnPnzlG0aFG6du1KqVKluHDhAuvWraNKlSqUK1eOtm3b8uDBAwB2795N\n1apV8fLyolKlSty9e5eRI0cSEBCAt7c3AQEBPHz4kB49elCpUiXKli3LqlWrAHj8+DHt27enePHi\ntGrVisePH8d4Tb///jvFihWjXLlyLF++/Nny+fPn079/fwB++uknSpUqhZeXFzVq1ODp06fR4hg9\nejRdunShWrVqdOnS5blWNTAqq1WqVKFw4cLMnTv32c8m6jb9+/dn/vz5TJs2jcuXL1O7dm1q164N\nQIECBbhx4wYAn3/+OaVKlaJUqVJMnToVgHPnzlG8eHHeeOMNSpYsSYMGDWK9ZmFHcuQw0tf/9JOR\nuun8eWN5Eieut2XpMj2lXIezXLwI48dDUBA0bQoFCsBHH8GpU9aOUAghhN1xc8N57a84N26Ia5b0\n3L0LkybZbSeUBHOolrDBg2G/ydNyentDxHf6GB0+fJjy5cvHuG758uXs37+fAwcOcOPGDSpWrEiN\nGjUA2LdvH4cPH8bT05Nz585x8uRJFixYQOXKlblx4wZjx45l/fr1uLm5MXHiRD7//HOGDh2Kn58f\nAQEBVKxYkXv37pEuXTrGjBnDnj17+PLLLwEYNmwYderU4ZtvvuHOnTtUqlSJevXqMXv2bNKlS8fR\no0c5ePAg5cqVixbzkydPeOONN9i4cSOvvvoqfn5+MV7bmDFjWLt2Lblz5+bOnTukTp06WhyjR48m\nKCiIbdu2kTZtWgIDA587xsGDB9m5cycPHz6kbNmyNG3aNNaf88CBA/n888/ZtGkTWV/IgLd3716+\n/fZbdu3ahdYaHx8fatasSaZMmTh58iSLFy9m7ty5tGvXjmXLltG5c+dYzyPshFLQpg00aQJp0xrL\nxo+HnTvh3XehRg3sMZ1T5swwdCi88w6sXm00BI4fb4wfq1zZmOaldWtjHjIhhBAiydKnN6aJUYol\nc2HXB8tov6wiExfnc/iyRlrCrGjbtm106NABZ2dncuTIQc2aNdm9ezcAlSpVwtPT89m2+fPnp3Ll\nygDs3LmToKAgqlWrhre3NwsWLOD8+fMcP34cDw8PKlasCIC7u/tzXRkjrVu3jgkTJuDt7U2tWrV4\n8uQJ//zzD1u2bHlWASlTpgxlIvNbR3Hs2DE8PT0pXLgwSqlYKyzVqlXD39+fuXPnEvaSRx7Nmzcn\nbeSX4Be0aNGCtGnTkjVrVmrXrs1ff/0V63FeZtu2bbRq1Qo3NzfSp09P69at2bp1KwCenp54e3sD\nUL58ec6dO5eoc4gUKl26/ypbbm6wbRvUqgVFihi1kzNnrBqepaRObdRBf/kF/vnHuNSnT2HIEChU\nyHi49P77xoTQUYZZCiGEEAkXUc6+0f4+i9x6M/+v4iwoNp5Jox85dBlj0y1hSqlGwBeAM/C11jr2\nrA/x8LIWK0spWbIkS5cuTfB+bm5usb7XWlO/fn0WL1783DaH4jniXmvNsmXLKFq0aILjiq9Zs2ax\na9cufvnlF8qXL8/evXtj3O7F64xKvdASoZQiVapUhIeHP1v25MmTJMXp6ur67P/Ozs7SHdGRDRoE\nb7wBS5fCvHkwbBhs3QqRYwsDA4287xkzWjVMs+XObbSODR0K587B8uVGK9nUqTB5slFhq1jxv1el\nSkZFzQ4bChPF7HJKCCHsVoYMuB7ZR1jft/n492Fc+/h/rP15IK3+eNPoquFgbLYlTCnlDMwAGgMl\ngA5KqRLWjSrh6tSpQ3BwMHPmzHm27ODBg2zduhVfX18CAgIICwvj+vXrbNmyhUqVKsV5zMqVK7N9\n+3ZORQzkePjwISdOnKBo0aJcuXLlWWva/fv3CQ0NJUOGDNy/f//Z/g0bNmT69OlEzlf6999/A1Cj\nRg0WLVoEGN0oDx48GO3cxYoV49y5c5yOmHzoxYpgpNOnT+Pj48OYMWPIli0bFy5ciBZHXFatWsWT\nJ0+4efMmgYGBVKxYkfz58xMUFERwcDB37txhw4YNz7aP7fi+vr6sXLmSR48e8fDhQ1asWIGvr2+8\n4xAOJF066NoVNm82WsEis31evw61axtpB8uUgR49jBpKDH8jKVmBAkZXxcBAuH0bfv8dBgwwhsvN\nng2dOkHhwkY9tFIl6NLF6Mq4ZAns2GG0qoWEWPsqko+9lFNCCJFs8ucn3W/LYcsWUlWuSKt9I+Di\nRfbvhx5VjrLogwMc2BfmEGWJLbeEVQJOaa3PACilfgRaAEFWjSqBlFKsWLGCwYMHM3HiRNKkSUOB\nAgWYOnUq1atXZ8eOHXh5eaGUYtKkSeTMmZNjx4699JjZsmVj/vz5dOjQgeDgYADGjh1LkSJFCAgI\nYMCAATx+/Ji0adOyfv16ateu/az74YcffsiIESMYPHgwZcqUITw8HE9PT9asWUO/fv3o3r07xYsX\np3jx4jGOZUuTJg1z5syhadOmpEuXDl9f3xgrPkOGDOHkyZNoralbty5eXl7ky5fvuTjiUqZMGWrX\nrs2NGzcYMWIEuXLlAqBdu3aUKlUKT09PypYt+2z73r1706hRI3LlysWmTZueLS9Xrhz+/v7PKri9\nevWibNmy0vVQvFyU7sC4u8P69bB9u/H69VdjQJWLi1EpO3HCmIssd27jlTWrUVPx84OqVY0EIGvX\ngqvr868iRYxEIY8fG5U+JyfjpZTxb/bsxrmDg+Hff/9bF/nKmNGoOD59CjdvRr+GiPXOYaGkf3DX\nSM8flbu7sX9ISLT93YCGvu40bGisD/33JkeOp+Kvv104eDQVx0+lYnOgCz/88PyzPKU02bOG45Ej\nnCxZnciS3ZnMmTQNGipatTLp3tgOuyinhBAi2fn6knmHr1F+Fi7MjQ3Q5OhntNk5j4eT0nFYFeVa\npmJUeD0fWWaP5/ARxZmVB8nCTbIevkxY2lQczfYKBUukwbWYJ3fuwN2T13AJfYyT83/lZNYczqTK\n68GDB/Dg4h3U0+DnwsiSVZEqV3YePoQ0aZI3Y7DSNpoRTCnVBmikte4V8b4L4KO17h/bPpnzF9e3\nzh9NrhCFEI7s9m3jQ/6VV4wMi+PHw8WLcOmSUem6exf+9z/o3h127zaajl40ezb07h37+jlzjC6S\nca3fs8foKxjL+g+HfcP48T2jn77TB2z0bUHB80cTtZ45c3jY8Q1Orz7CpY7vcYncXCQPl8jNFTy4\nVbAit1xycOuWplcvxaefxvSDTBil1F6tdeLnsjCRlFPCLLXm1wIg0D/QqnEIYVUXLnDtp83c/mMP\n4ceO88rVY2TPGIzz1ctMmgQFPmhHO356bpewDBlxvneHyZOhwPttacvSWNfnf//l+3fsaDxHTar4\nllO23BIWL0qp3kBvgEy5HDzNihAi+WTK9N//8+eHWbNi37Z0aTh61GjRivoqVsxYX6gQBAQY/f7C\nw42X1uDjY6wvUAC+/vq/9ZEPz6pXf/n5I9ZX8PVm7vkh0VYfL2Qk37mRKQdzO8ZvvUfGNDQrY7RK\nU60abm5Qpm42ysxsEWXPMOAi1CgIJXJAuAYnxx1EJuWUEELEQ968ZH+nM9nfiZL0LaK8e/NNuFVu\nLCfO9efn7Wfh0VNq5HWndCmNM8Y0oJduvsmWf5ugw8IBjdKaClVcSAfUrw+XBvZi6/Xaz52yfJXU\nz9Yn95BvW24JqwKM1lo3jHj/IYDWenxs+1SoUEHv2bMnmSIUQgiR3GysJUzKKWEKaQlG1elUAAAg\nAElEQVQTwn7Et5yy2cQcwG6gsFLKUymVGmgPrLZyTEIIIUQkKaeEEEIkis12R9Rahyql+gNrMVL/\nfqO1PmLlsIQQQghAyikhhBCJZ7OVMACt9a/Ar9aOQwghhIiJlFNCCCESw5a7IwohhBBCCCGE3ZFK\nmBBCCCGEEEIkI6mECSGEEEIIIUQykkqYEEIIIYQQQiQjm50nLDGUUneBkwncLSNw18RtX7ZNbOsS\nsjwrcCOOGCwtIT8zSx0rvvtZ6p7Fts4R7llij2fm31pi18vfmuX2S66/tfxa62zxiMcmxaOcSsjv\n6IvLXvY+6v/N/N1Orr9rR77++JY1sV2vpa49tjgSu6387sdveULu/Yvv7fH6bfHex6+c0lrbzQuY\nY8l94rPty7aJbV1ClgN7UuLP2exjxXc/S92zl9wfu79niT2emX9riV0vf2uW2y+5/9ZS6svM390X\nl73s/Qv/N+13O7n+rh35+hNQ1sR2vRa5dlu6frn3MV+vI1y/rd/7l73srTvizxbeJz7bvmyb2NYl\ndLm1mRlXYo8V3/0sdc9iW+cI9yyxxzPzby2x6+VvzXL7JfffWkpl5u/ui8te9t5SP8Pk+rt25OuP\nb1kT2/Va8u/HVq5f7n3s6+39+m393sfKrrojOgKl1B6tdQVrxyHiT+5ZyiT3TdgrR//dduTrd+Rr\nB7l+R75+W7x2e2sJcwRzrB2ASDC5ZymT3Ddhrxz9d9uRr9+Rrx3k+h35+m3u2qUlTAghhBBCCCGS\nkbSECSGEEEIIIUQykkqYEEIIIYQQQiQjqYQJIYQQQgghRDKSSpgQQgghhBBCJCOphNkRpZSbUmqP\nUqqZtWMR8aOUKq6UmqWUWqqU6mfteET8KKVaKqXmKqUClFINrB2PEGZy1LLE0T+PHf1zTSlVUCk1\nTym11NqxJIeIv/MFEfe8k7XjSW62cL+lEmYDlFLfKKWuKaUOv7C8kVLquFLqlFJqaDwO9QGwxDJR\niheZcd+01ke11n2BdkA1S8YrDCbdt5Va6zeAvoCfJeMVIr4cuSxx9M9jR/9cM+n6z2ite1o2UstK\n4M+hNbA04p43T/ZgLSAh128L91tS1NsApVQN4AHwnda6VMQyZ+AEUB+4COwGOgDOwPgXDtED8AKy\nAGmAG1rrNckTveMy475pra8ppZoD/YDvtdaLkit+R2XWfYvY7zNgodZ6XzKFL0SsHLkscfTPY0f/\nXDP5+pdqrdskV+xmSuDPoQXwm9Z6v1Jqkda6o5XCNk1Crl9rHRSx3mr3O5U1Tiqep7XeopQq8MLi\nSsAprfUZAKXUj0ALrfV4IFoXEaVULcANKAE8Vkr9qrUOt2Tcjs6M+xZxnNXAaqXUL0CKKfRTKpP+\n3hQwAaMASzFfVIR9c+SyxNE/jx39c82s+5/SJeTngFEhyQPsx056xiXw+oOSN7ropBJmu3IDF6K8\nvwj4xLax1no4gFLKH+Pppc0XmnYqQfct4gtPa8AV+NWikYmXSdB9AwYA9YCMSqlXtdazLBmcEEng\nyGWJo38eO/rnWkLvfxZgHFBWKfVhRGXNHsT2c5gGfKmUagr8bI3AkkmM128L91sqYXZGaz3f2jGI\n+NNaBwKBVg5DJJDWehpGASaEXXLEssTRP48d/XNNa30TYzycQ9Ba/5+9O4/zqfofOP56j33Nmq3s\nhSwz9n2NFolItlKWSn5flW87JZIKSfVtkSTa1BRZSrsMKdlqiEEiiiTKzsiY9++Pc4ePMbs785nl\n/Xw87sPnc++55577mTHnc+45532OAgODXY5gyQw/72zR/ZhN7QIuDnh/kbfPZG72c8ua7Odmsquc\n/Ludk+8d7P5z+v3HyemfQ6a9f2uEZV6rgEtEpIqI5AX6AAuCXCaTPPu5ZU32czPZVU7+3c7J9w52\n/zn9/uPk9M8h096/NcIyARF5F1gO1BCRnSIyWFVjgGHA58BG4H1V3RDMcpqz2c8ta7Kfm8mucvLv\ndk6+d7D7z+n3Hyenfw5Z7f4tRL0xxhhjjDHGZCDrCTPGGGOMMcaYDGSNMGOMMcYYY4zJQNYIM8YY\nY4wxxpgMZI0wY4wxxhhjjMlA1ggzxhhjjDHGmAxkjTBjjDHGGGOMyUDWCDNZnohcJyIqIjWDXZbE\niMjIYJfBLyJyh4jcnIr0lUVkfSrSi4h8LSJFk0jznohcktI8jTEm2LJjXSUiESLSKD2vkcq8u4rI\nQ6k850gq088WkapJHJ8kIh1Sk6fJmawRZrKDvsAy7990JSK503hqtmiEiUhuVX1FVd9Mx8t0Btaq\n6qEk0kwBHkjHMhhjjN+srkrHa3j10wJVHZ8e+XvXqA3kUtVtSSR7AUhVQ9DkTNYIM1maiBQGWgGD\ngT4B+9uJyFIRWSgim0XkFREJ8Y4dEZFnRWSDiCwSkdLe/ttEZJWIrBWROSJS0Ns/0zt/BTBRRAqJ\nyOsislJEfhSRbl66ASLyoYh8JiJbRGSit388UEBEIkXknQTuoa+I/CQi60VkQsD+xMpZzbvGGhH5\nJu6pqlfO/4nIdyKyTUR6JnCtyiKySUTeEZGN3hO9uPtsKCJLvHw/F5Fy3v4IEXlORFYDd4vIGBG5\nzzsWJiLfi8g6EZkrIsUD8lorImuB/wRcv7b3uUV65yTUm3UjMN9LX8j7Ga71Pp/eXppvgI7n8UXD\nGGMyTFavq0Qkl5f/eq+++m/A4Ru8a/wsIq0DrvFiwPkfe/eaXH2Ylnov8J5PX9er77726ppFIlLR\n219FRJZ79zEu4NrlvJ9FpHefrRP4UQbWTwl+Jqq6AygpImWT/KUwRlVtsy3Lbrg/iNO9198BDb3X\n7YBooCqQC/gS6OkdU+BG7/WjwIve65IB+Y4D7vRezwQ+xj39AngSuMl7XQz4GSgEDAC2ARcA+YEd\nwMVeuiOJlL888BtQGsgNfA1cl0w5FwGXeK+bAl8HlPMD3MOVy4BfErheZS/flt7714H7gDze51fa\n298beN17HQG8HJDHGOA+7/U6oK33eizwXMD+Nt7rp4H13usXAu4pL1AggTLuAIp4r68HpgUcuyDg\n9ZdxP2/bbLPNtsy8ZYO6qiHwZcD7Yt6/EcAz3uvOwFfe6wFx5fXefwy0S+oaydxzUvVe4D0PCDjn\nI+AW7/UgYJ73egFws/f6P3HlAe4FHvZe54qrh+KVbwlQN6nPxHs9Dbg+2L93tmXuzXrCTFbXF3jP\ne/0eZw/zWKmq21T1FPAu7ikkQCwQ7r1+O2B/He8J20+4CrN2QF4fePkAXAE8JCKRuAooP1DRO7ZI\nVQ+qajQQBVRKpvyNgQhV3auqMcA7QJvEyuk9TW0BfOBdfypQLiC/eaoaq6pRQJlErvm7qn4b7/5r\nAHWAL718HwEuCjgnnHhE5AJcpbPE2/UG0EZEinn7l3r73wo4bTkwUkQeBCqp6vEEyldCVQ97r38C\nOonIBBFpraoHA9L9hWvEGmNMZpfV66ptQFUReUFErgICh4t/6P27Bveg73ykpd4LvOdAzYFZ3uu3\nOPP5tcR9znH746wCBorIGFxD6zDnKgfs9V4n9ZlY/WSSZUN5TJYlIiWADkBdEVHckysVkfu9JBrv\nlPjv4++fieuFWisiA3BPKOMcDbw07gnX5njlaQqcCNh1Cn//jymul+uAqoYlkibw+pJEPvHfC7BB\nVZsncs7RRPaniqrO8oaNXAN8IiJDVPXreMliRCTEa0z+LCINcE9Yx4nIIlUd66XLDyTUiDPGmEwj\nO9RVqrpfREKBK4E7gF643iUC8grMJ4azp7zkTyr/pC5N8vVeWuqncz5jVV0qIm1w9dNMEZms585/\nPo53L8l8JlY/mWRZT5jJynoCb6lqJVWtrKoXA78CceO4m3hjv0Nww+uWeftDvHMB+gXsLwLsFpE8\nuKeLifkcuFNEBEBE6qegrCe9fONbCbQVkVIikgv3dDSuZ+mccqoLVvGriNzgXVu8SiA1KopIXGMr\n7v43A6Xj9otIHnETkBPl9UrtDxg33x9YoqoHgAMiEvfU8fRnKS6i1DZV/R9uXH29BLLejBuag4iU\nB46p6tu4YY0NAtJdCqQ46qIxxgRJlq+rRKQUEKKqc3AjJRqcc+bZtgNhIhIiIhcDTZK7hsfPeu87\nzsy/uxE3lxjg23j78fKtBOxR1WnAayR8jxuB6l76pD4Tq59MsqwRZrKyvsDcePvmcGaYxyrgRdwf\nzV8D0h7FVXrrcU8n43pWRgErcH+gNyVx3cdxc6jWicgG731yXvXSnzURWVV346IoLQbWAmtUdX4y\n5bwRGCwu6MUGoFsKrh9oM/AfEdkIFAemqOq/uIpvgpdvJG74R3JuAZ4WkXVAWEAZBwIveUNHAnvk\negHrvf11gISiLC7kzJPdusBKL/1o3PwHRKQMcFxV/0zZLRtjTNBk+boKqABEeH+L3wZGJJPPt969\nRAH/A35IwTXA33rvTtzwwnW4h4R3e/vvxtWBP3n3FacdsFZEfsQ1hp9PIM/A+inBz8RrYFYHVqeg\njCYHE9XEer2NybpEpB0ueESXBI4dUdXCGV+q1EmPcopIZeBjVa3jZ75+EheV8U1V7ZREmv8Ch1R1\nesaVzBhj/JUd6io/ZfZ7FpECuIemLROZh4aIdAcaqOqoDC2cyXKsJ8wYk6l4vYPTJInFmoEDuEAg\nxhhjTIbwgkmN5uwetPhyA89kTIlMVmY9YcYYY4wxxhiTgawnzBhjjDHGGGMykDXCjDHGGGOMMSYD\nWSPMGGOMMcYYYzKQNcKMMcYYY4wxJgNZI8wYY4wxxhhjMpA1wowxxhhjjDEmA1kjzBhjjDHGGGMy\nkDXCjDHGGGOMMSYDWSPMGGOMMcYYYzKQNcKMSQcickREqga7HMYYY0xCrJ4yJrisEWZyNBFREal+\nnnlEiMitgftUtbCqbju/0vlHRCqLyGIROSYim0SkYxJp84nI6yJySET+FJF7Ao5dJiKrRWS/t30l\nIpcFHBcRmSAif3vbBBGRgONhIrLGK8caEQnz41wfPh8Vkb9EJHfAvjzePvXrOsYYk1pWTyWY1uop\nrJ7K6qwRZkwSAv/YZXHvAj8CJYGHgdkiUjqRtGOAS4BKQHvgARG5yjv2B9ATKAGUAhYA7wWceztw\nHRAK1AOuBYYAiEheYD7wNlAceAOY7+0/33P9sB+4OuD91d4+Y4zJtKyesnrKx/xNRlJV22zzdQMu\nBj4E9gJ/Ay96+0OAR4AdwF/Am8AF3rHKgAK3AL8B+4CHA/LMBYwEtgKHgTXAxd6xmsCXwD/AZqBX\nwHkzgZeAhd55K4Bq3rGl3jWPAkeA3kA7YCfwIPAn8Bbuj+nH3v3s915f5OXxBHAKiPbyiLtXBap7\nry/w7nWvd++PACHesQHAMmCSl/evwNU+/zwuBU4ARQL2fQPckUj6P4ArAt4/DryXQLrcwH+AYwH7\nvgNuD3g/GPjee30FsAuQgOO/AVed77kJlC0CGOfleQT4CFexvwMcAlYBlQPSq/dz+SBg32zcFwEN\n9v8p22yzzd8Nq6fi/u5ZPWX1lG1B2qwnzPhKRHLh/vjvwFVYFTjzBGqAt7UHqgKFgRfjZdEKqAFc\nDjwqIrW8/fcAfYHOQFFgEHBMRArhKrZZwIVAH+DlwKEH3r7HcJXUL7gKCVVt4x0PVTcsI9x7Xxb3\nBK0S7qlXCDDDe18ROB5XblV9GFdRDPPyGJbAx/ICroKrCrQFbgYGBhxviquUSwETgemBwxsCicjH\nInIgke3jhM4BagPbVPVwwL613v74+RcHynnHE00rIgdwFfoLwJPxrpXYubWBderVHJ518Y6n9dyE\n9AH6434HqwHLcT/HEsBGYHS89POANiJSzPscWuOeahpjshGrp6yeSuJcq6dMhrFGmPFbE6A8cL+q\nHlXVaFVd5h27EZisqttU9QgwAugTbyjFY6p6XFXX4v64hXr7bwUeUdXN6qxV1b+BLsB2VZ2hqjGq\n+iMwB7ghIM+5qrpSVWNwT5iSG6MdC4xW1RNeWf5W1TmqesyrIJ7AVVLJ8ir7PsAIVT2sqtuBZ3B/\ndOPsUNVpqnoKN3yhHFAmofxUtYuqFktk65JIMQoDB+PtOwgUSSRt3PFE06pqMVyFPQw3fCSxax0E\nCnuVdXLlOJ9zEzJDVbeq6kHgU2Crqn7l/R58ANSPlz4a9ySyt7ct8PYZY7IXq6cCWD1l9ZQJjuwy\njthkHhfj/ljHJHCsPO7JY5wduN/BwD/kfwa8PsaZP7YX44Z4xFcJaOo98YqTGzc8I7k8E7NXVU//\nURORgsCzwFW4p5QARUQkl1chJaUUkIdz77tCQuVT1WPew8XkypgaR3BPZQMVxQ17SSht3PHopNKq\n6lEReQXYKyK1VPWvBK5VFDiiqioiyZXjfM5NyJ6A18cTeJ/QZ/wm8BQguKE+xpjsx+qps1k9ZfWU\nCQLrCTN++x2omMhE4T9wlVGcikAMZ//RSSrfaonsXxLvSVthVR2a2oIHiB9l6F7c0JOmqloUiBse\nIomkD7QPOMm5970rLQUTkU/FhRVOaPs0kdM2AFVFJPBpXKi3/yyquh/YzZknu4mm9YQABTlTWW9I\n4twNQL14Q1jqxTue1nP98g1nnvAuSyatMSZrsnrqbFZPWT1lgsAaYcZvK3F/HMeLSCERyS8iLb1j\n7wL/FZEqIlIYN0Y7PJGnkfG9BjwuIpeIU09ESuLG9V8qIv29UK15RKRxwBj95OzBjYFPShHcE6kD\nIlKCc8doJ5qH9wTyfeAJESkiIpVw8wbeTmH54ud3tVd5J7Rdncg5PwORwGjv59EdVzHMSeQybwKP\niEhxEakJ3IabOI6IdBKR+iKSS0SKApNxE7U3Bpx7j4hUEJHyuC8GM71jEbjJ4XeJCy8cNy/hax/O\n9YWqKi7aVVfvtTEm+7F6KoDVU1ZPmeCwRpjxlffH/FqgOi4q0E7cuGWA13HDL5bioitFA3emMOvJ\nuEriC1zUoOlAAW/s+xW48ex/4IZMTADypTDfMcAb4iYM90okzXNAAdzTwu+Bz+Idfx7oKW49kv8l\ncP6duMhW23BPrWbhPouM1AdohKuIxgM9VXUvgIjcKCKBT+pG44bU7ACWAE+ratw9F8N9STnopamG\ni/wUNyRkKm68+k/Aely0r6kAqvovLrTvzcAB3KT167z953uub1R1g6r6/eTSGJNJWD1l9RRWT5lM\nQKwRbYwxxhhjjDEZx3rCjDHGGGOMMSYDWSPMGGOMSYI3R2WliKwVkQ0i8pi3v4qIrBCRX0QkXETy\nBrusxhhjsgZrhBljjDFJOwF0UNVQ3PpNV4lIM9y8nmdVtTpuHsvgIJbRGGNMFpKt1gkrVaqUVq5c\nOdjFMMYYk07WrFmzT1VLZ+Q1vQhkcWsT5fE2BToA/bz9b+ACKExJKi+rp4zJPDb/vRmAGiVrBLkk\nJjtJaT2VrRphlStXZvXq1cEuhjHGmHQiIjuST5Uu180FrMFF1HsJF3XtQEDo8p2cvbht4Lm3A7cD\nVKxY0eopYzKJdjPbARAxICKo5TDZS0rrKRuOaIwxxiRDVU+pahhwEdAEqJmKc19V1Uaq2qh06Qzt\nxDPGGJNJWSPMGGOMSSFVPQAsBpoDxUQkbkTJRcCuoBXMGGNMlmKNMGOMMSYJIlJaRIp5rwsAnYCN\nuMZYTy/ZLcD84JTQGGNMVpOt5oQZY4wx6aAc8IY3LywEeF9VPxaRKOA9ERkH/AhMD2YhjTGpU7t0\nbQbVHxTsYpgcyhphxhhjTBJUdR1QP4H923Dzw4wxWdCg+oMonLdwsIthcigbjmiMMcYYY3Ica4CZ\nYLKeMGP88uqrsG0bHD8OMTGgCqGhMGSIO/7HH1C2LITYsw9jcqpte4/Se+ry0++7hVWgX9OKQSyR\nMcaYYLBvg8akxqlT8O23MHIktGoF119/5tikSTB5Mrz5JoSHw/vvw6efnjnepAmULg3XXQevvAJ/\n/ZXx5TfGBNXxk6dOv47afYj5kRZQ0ZicrHDhhHvjBgwYwOzZs9OU55gxY5g0aVKKr/3HH3/Qs2fP\nRNMdOHCAl19+Ocm8WrRoAUBERARdunRJRWlh3rx5REVFnX7/6KOP8tVXX6Uqj6zIGmHGpNSoUXDh\nha7xNXEixMZCnTpnjq9aBSdOwP79sG+f2+bNc8dUYexY1wBbtw6GDoVy5Vyexpgco0CeXIQPaU74\nkOZcVq5osItjjDGUL18+yQZfUo2wmBi3Xv13332X5uvHb4SNHTuWjh07pjm/rMIaYcYk5vBhmDbN\n9X4B5MsHnTu7Hq59++C77+Cxx86kv+ACEEk4LxEYNAimT4etW2HtWhgxAtq2dcf37HG9Z7Gx6XtP\nxhhjjMl0VJVhw4ZRo0YNOnbsyF8Bo2XWrFlD27ZtadiwIVdeeSW7d+8GYNq0aTRu3JjQ0FCuv/56\njh07luQ1fv31V5o3b07dunV55JFHTu/fvn07dbyHyhs2bKBJkyaEhYVRr149tmzZwkMPPcTWrVsJ\nCwvj/vvvJyIigtatW9O1a1cuu+wy4OwevUOHDnHNNddQo0YN7rjjDmK97zaBaWbPns2AAQP47rvv\nWLBgAffffz9hYWFs3br1rF7ARYsWUb9+ferWrcugQYM4ceIEAJUrV2b06NE0aNCAunXrsmnTpjR/\n9sFijTBj4tu3zzWQKlaE22+HJUvc/kcegbfeghtugGLF0p6/CNSrB+PGQdyTnunToU8faNQIli9P\n+nxjjDHG+K9du3O3wGF9qT2eCnPnzmXz5s1ERUXx5ptvnu5ZOnnyJHfeeSezZ89mzZo1DBo0iIcf\nfhiAHj16sGrVKtauXUutWrWYPj3pVTLuvvtuhg4dyk8//US5cuUSTPPKK69w9913ExkZyerVq7no\noosYP3481apVIzIykqeffhqAH374geeff56ff/75nDxWrlzJCy+8QFRUFFu3buXDDz9MtEwtWrSg\na9euPP3000RGRlKtWrXTx6KjoxkwYADh4eH89NNPxMTEMGXKlNPHS5UqxQ8//MDQoUNTNPwys7FG\nmDFxjh1zPVtVq7rhhp06wfffQ4cO6X/tBx+Ed96BvXuhRQsXzOPw4fS/rjHGGGOCbunSpfTt25dc\nuXJRvnx5OnjfPTZv3sz69evp1KkTYWFhjBs3jp07dwKwfv16WrduTd26dXnnnXfYsGFDktf49ttv\n6du3LwD9+/dPME3z5s158sknmTBhAjt27KBAgQIJpmvSpAlVqlRJ9FjVqlXJlSsXffv2ZdmyZSn6\nDOLbvHkzVapU4dJLLwXglltuYenSpaeP9+jRA4CGDRuyffv2NF0jmCw6ojFxRNzww06d4PHHweti\nzxC5ckG/ftC1K4wZA88+C0ePwttvZ1wZjDHGmJwsIiJ9j6eBqlK7dm2WJzBKZsCAAcybN4/Q0FBm\nzpxJRAquL4lNm/D069ePpk2bsnDhQjp37szUqVOpWrXqOekKFSqU4mvEvQ/cHx0dnWxZk5MvXz4A\ncuXKdXpuWlZiPWEmZ/v+e+jVywXUKFAA1q+HOXMytgEWqHBhN7RhyRLXEARXNtXglMcYY4wx6a5N\nmzaEh4dz6tQpdu/ezeLFiwGoUaMGe/fuPd0IO3ny5Oker8OHD1OuXDlOnjzJO++8k+w1WrZsyXvv\nvQeQaPpt27ZRtWpV7rrrLrp168a6desoUqQIh1MxOmflypX8+uuvxMbGEh4eTqtWrQAoU6YMGzdu\nJDY2lrlz555On1j+NWrUYPv27fzyyy8AvPXWW7SNm0ufDQS9ESYiF4vIYhGJEpENInK3t7+EiHwp\nIlu8f4sHu6wmGzlwwM33at7chZz3/oOf11wvP7VqBVWquKAg118Pt90G//4b7FIZY4wxJh10796d\nSy65hMsuu4ybb76Z5s2bA5A3b15mz57Ngw8+SGhoKGFhYafniz3++OM0bdqUli1bUrNmzWSv8fzz\nz/PSSy9Rt25ddu1KeHmM999/nzp16hAWFsb69eu5+eabKVmyJC1btqROnTrcf//9yV6ncePGDBs2\njFq1alGlShW6d+8OwPjx4+nSpQstWrQ4a05anz59ePrpp6lfvz5bt249vT9//vzMmDGDG264gbp1\n6xISEsIdd9yR7PWzCtEgP2EXkXJAOVX9QUSKAGuA64ABwD+qOl5EHgKKq+qDSeXVqFEjXb16dbqX\n2WRxX3wBgwfD7t1w991u+F+RIsEuVcJiY+HRR+GJJ+Cqq1wvXcGCwS6VMUEjImtUtVGwy5FWJSrV\n0n92bAQ4vWhz+JDmwSySMTnW5n2bAahRqkaQS2Kyk5TWU0GfE6aqu4Hd3uvDIrIRqAB0A9p5yd4A\nIoAkG2HGJCsmBoYPd8P+li+Hxo2DXaKkhYS4KIqVK7ueuyuugI8/zjw9dsYYY4wxJtWC3ggLJCKV\ngfrACqCM10AD+BMok8g5twO3A1SsWDH9C2mypnXroHp114v08cduoeREIv5kSrfe6tYhu/FG6NIF\nvvkm8TXJjDHGGGNMphb0OWFxRKQwMAcYrqqHAo+pGzOZ4LhJVX1VVRupaqPSpUtnQElNlqIKU6ZA\nkyZuWB+4EPRZqQEW54YbYMECFz7fGmDGGGOMMVlWpmiEiUgeXAPsHVWNW9FtjzdfLG7e2F+JnW9M\ngg4ehN694f/+D9q3d2txZXVXXeXWEQPXIPNWjjfGGGOMMVlH0Bth4hYNmA5sVNXJAYcWALd4r28B\n5md02UwWFhUFDRvChx/C+PGwcCFkp57S9euhWze46SYXvMMYY4wxxmQZvs0JE5FrgYWqmtpvhC2B\n/sBPIhLp7RsJjAfeF5HBwA6gl19lNTlAXDj3JUugZcvgliUBR4/Cnj1w5AgcO+Yi0efP77YSJaBM\nGReTI1F16rj1xO67D0aPPrOmmDEmUedRTxljjDG+8rMnrDewRUQmikjyixV4VHWZqoqq1lPVMG/7\nRFX/VtXLVfUSVe2oqv/4WFaTHcXGwiefuNdhYbBpU9AbYEeOwJdfwtNPu06r+n3SOBYAACAASURB\nVPWhZEkXnLFaNQgNdUuVtWoFjRq5tlX58pAvnwuI2LkzPPywi0y/b1+8zO+5xwXsGDcOwsODcXvG\nZDVpqqeMMSa9/Pnnn/Tp04dq1arRsGFDOnfuzM8//5xh14+MjOSTuO9OqdCuXTuSWxYqIiKCLl26\nALBgwQLGjx+f5nKsXr2au+66C4AxY8YwadKkVJX3ueee49ixY6ffd+7cmQMHDqQqD7/51hOmqjeJ\nSFGgLzBTRBSYAbyrqilfZtuYtDh6FG6+2Q0/XLQIOnSA3Bkf/PPUKfjuO/j0U4iIgFWrXFR8gIsu\ngrp1XaPr4ouhbFm3PFmhQpArl5vedfy4a2zt3Ak7drhRh1984fIVcQ21q6+Gfv2gRg2Bl15yjc2B\nA6FZM6hUKcPv2ZiswuopY0xmoqp0796dW265hffeew+AtWvXsmfPHi699NJkz4+JiSF3wHcdVUVV\nCUlyKM3ZIiMjWb16NZ07d079DaRC165d6dq1a5rKERMTQ6NGjWjUKO1LRD733HPcdNNNFPTWWk1L\nw9Nvvn5LVdVDIjIbKAAMB7oD94vI/1T1BT+vZcxpf/7pwrb/+CNMnuyCcGSg2FhYvBhmz4a5c90w\nw9y53RJk998Pbdu6xlPJkmnLPzoaIiNdj9pnn7mOr7FjXcDHgQPzcvNbcyj49cdgSzQYkyyrp4wx\nmcXixYvJkycPd9xxx+l9oaGhgGtQPfDAA3z66aeICI888gi9e/cmIiKCUaNGUbx4cTZt2sQXX3zB\nlVdeSdOmTVmzZg2ffPIJmzdvZvTo0Zw4cYJq1aoxY8YMChcuzKpVq7j77rs5evQo+fLl48svv+TR\nRx/l+PHjLFu2jBEjRtClSxfuvPNO1q9fz8mTJxkzZgzdunXj+PHjDBw4kLVr11KzZk2OHz+e4D19\n9tlnDB8+nIIFC9KqVavT+2fOnMnq1at58cUX+eCDD3jsscfIlSsXF1xwAV999dU55di4cSNbt25l\n27ZtVKxYkSFDhjBp0iQ+/vhjwDVWmzdvzr59+3jggQe47bbbiIiIOCvNsGHDaNSoEYcOHeKPP/6g\nffv2lCpVisWLF1O5cmVWr15NqVKlmDx5Mq+//joAt956K8OHD2f79u1cffXVtGrViu+++44KFSow\nf/58CvgYXdvPOWHdgAFAdeBNoImq/iUiBYEowCo347+oKDdmb+9emD/fNcYyyM6dMGMGTJ/ueq0K\nFnRF6dnT/VukiD/XyZ/fdXI1awajRrk256xZ8MYbMHQoPFLyQoYNG8Swv6FU9E6oUMFC2BuTAKun\njDGJGT7cPfD0U1gYPPdc4sfXr19Pw4YNEzz24YcfEhkZydq1a9m3bx+NGzemTZs2APzwww+sX7+e\nKlWqsH37drZs2cIbb7xBs2bN2LdvH+PGjeOrr76iUKFCTJgwgcmTJ/PQQw/Ru3dvwsPDady4MYcO\nHaJgwYKMHTv2dOMIYOTIkXTo0IHXX3+dAwcO0KRJEzp27MjUqVMpWLAgGzduZN26dTRo0OCcMkdH\nR3Pbbbfx9ddfU716dXr37p3gvY0dO5bPP/+cChUqcODAAfLmzXtOOcaMGUNUVBTLli2jQIECRERE\nnJXHunXr+P777zl69Cj169fnmmuuSfRzvuuuu5g8eTKLFy+mVKlSZx1bs2YNM2bMYMWKFagqTZs2\npW3bthQvXpwtW7bw7rvvMm3aNHr16sWcOXO46aabEr1Oavk5J6wH8Kyq1lXVp1X1LwBVPQYM9vE6\nxpyxYoUbx7d0aYY0wFTh22+he3c38u/RR+GSS+Ddd1078IMPXFR8vxpgCSlb1k0Hi4x0t92iBTz2\nGFStfIonq77Gseenpd/FjcnarJ4yxmQJy5Yto2/fvuTKlYsyZcrQtm1bVq1aBUCTJk2oUqXK6bSV\nKlWiWbNmAHz//fdERUXRsmVLwsLCeOONN9ixYwebN2+mXLlyNG7cGICiRYueNZQxzhdffMH48eMJ\nCwujXbt2REdH89tvv7F06dLTDZB69epRr169c87dtGkTVapU4ZJLLkFEEm2wtGzZkgEDBjBt2jRO\nnTqV6GfQtWvXRHueunXrRoECBShVqhTt27dn5cqVieaTlGXLltG9e3cKFSpE4cKF6dGjB9988w0A\nVapUISwsDICGDRuyffv2NF0jMX4OR/xTVZcG7hCRCar6oKou8vE6xsAff7gIFgMHQo8ecMEF6Xq5\n2Fg31HDSJPj+exfB8MEHXVyMqlXT9dKJEoHWrd22YQM8PDKEhxeMYcp/d/J09HZ6P1jZOsSMOZvV\nU8aYBCXVY5VeateuzezZs1N9XqFChRJ9r6p06tSJd99996w0P/30U4ryVlXmzJlDjRo1Ul2ulHrl\nlVdYsWIFCxcupGHDhqxZsybBdPHvM5DE+4IjIuTOnZvYgGV7oqOjz6uc+fLlO/06V65ciQ7BTCs/\ne8I6JbDvah/zN8aZNMl1P8X9QUnHBpiqG+UYFuaGGe7d62Jh/PYbPPlk8Bpg8dWuDfPmC0vmH6BM\nnr/pO6IyXbuc4vffg10yYzIVq6eMMZlGhw4dOHHiBK+++urpfevWreObb76hdevWhIeHc+rUKfbu\n3cvSpUtp0qRJsnk2a9aMb7/9ll9++QWAo0eP8vPPP1OjRg127959ujft8OHDxMTEUKRIEQ4fPhOX\n6Morr+SFF15AVQH48ccfAWjTpg2zZs0C3DDKdevWnXPtmjVrsn37drZu3QpwTkMwztatW2natClj\nx46ldOnS/P777+eUIznz588nOjqav//+m4iICBo3bkylSpWIiorixIkTHDhwgEWLzjxbSyz/1q1b\nM2/ePI4dO8bRo0eZO3curVu3TnE5zsd5N8JEZKiI/ATUFJF1AduvwLk/IWPSShUeeshFu+jSBdLx\nKY0qfP65C35x3XVuxOOsWbB5M/zf/7mIhplRm67FWDF7J5P5L4u+OEXt2m7umDE52fnWUyJysYgs\nFpEoEdkgInd7+8eIyC4RifS2VIcXi9p9iN5Tl5/eZq34LfU3aIzJkkSEuXPn8tVXX1GtWjVq167N\niBEjKFu2LN27d6devXqEhobSoUMHJk6cSNmyZZPNs3Tp0sycOZO+fftSr149mjdvzqZNm8ibNy/h\n4eHceeedhIaG0qlTJ6Kjo2nfvj1RUVGEhYURHh7OqFGjOHnyJPXq1aN27dqMGjUKgKFDh3LkyBFq\n1arFo48+muBctvz58/Pqq69yzTXX0KBBAy688MIEy3j//fdTt25d6tSpQ4sWLQgNDT2nHMmpV68e\n7du3p1mzZowaNYry5ctz8cUX06tXL+rUqUOvXr2oX7/+6fS33347V111Fe3jBW9r0KABAwYMoEmT\nJjRt2pRbb731rPPSk8S1dNOcgcgFQHHgKeChgEOHM3ptr0aNGmlyaxaYLOrUKbjjDnjtNRgyxHVH\n5cqVLpdav95N0F20yM37Gj0a+vdP/4j3s1b8xvzIXSlK2y2sAv2aJhENccAAth0syaD9k1iyROjf\nH15+2a1PZkxWJiJrVDVVcYrPt54SkXJAOVX9QUSKAGuA64BewBFVTfGCNSUq1dJ/dmwEzv0/H7X7\nEJeVK0r4kOYpzc4Ycx4279sMQI1S6fdQ1+Q8Ka2n/Phaqaq6XUT+k0AhStgiy8YXL77oGmAPPwyP\nP54u0f/+/ts1uKZMcSMcn3/etfvy5j3/vFPSwFrxq/uv0rRKiWTTrfj1nyTzy9VkMF0aVmJRIzkd\n0n7lSjevrVat1JffmCzuvOopVd0N7PZeHxaRjUCF8y1Uv6YVz3qY0nvq8vPN0hhjTBbhRyNsFtAF\n92RQgcBvxwpkklkzJksbOtSFXu/Z0/esY2Ph1Vdh5Eg4eNBd6rHH0r6uV0LmR+46/ZQ7MU2rlEi+\nh4uUNeh++usYpyJ30a/wYUZX/YG2i/rTp48Lcx8eDlddlabbMCar8q2eEpHKQH1gBdASGCYiNwOr\ngXtVdX8C59wO3A5QuFy1NN2AMcaY7OW8hyNmJjYcMZs5cADuvhueeQbirevgl6gouP12F3a+fXvX\n+1W3burySEmjKKOHGcU9UQ//5iW3ivT69fyWtzpdu7p4JpMnu4/WmKwmLcMRfbx2YWAJ8ISqfigi\nZYB9uIbc47ghi4OSyiNwOGJ8p//f2nBEYzKEDUc06SGl9ZRv0RFFpKWIFPJe3yQik0Uk6Uf6xiTm\nn3+gY0e3AJffqyfiAm2MGeOiHm7c6BZdXrQo9Q0wONPLlZTLyhWlW9h5j15KlajdhxhSrzfHJBeR\n3W7i/k++o+rAFZSr+w/Dh0PNK3bxzvcWBMDkHOdTT4lIHmAO8I6qfgigqntU9ZSqxgLTgORDlxlj\nMo0j/x4JdhFMDuZnqIEpQKiIhAL3Aq8BbwFtfbyGyQn27oVOnWDTJjeJqWNHX7NfvhwGD3aNr379\n4NlnIaEAPikNlJEZJ9PHNfgOAOFdb2fg+8/R9IfFrGjYgeZDNvPje1XY/GUFRh39i95L0j/oiDGZ\nRJrqKXEL0kwHNqrq5ID95bz5YgDdgfXpUmpjTLp4/cfXGVQ/yc5rY9KNn1+9YlRVRaQb8KKqTheR\nwT7mb3KCP/90ja6tW2HBArjiCt+y/vdfN9dr/HgofmEMrYdtIabOAe6cm3D6lAbKCEYvV3LOmvA/\nuDFsWcI9n0yBZ+6CIkXQO6DOtb8TtfBievWC997zJwCJMZlcWuuplkB/4CcRieuaHwn0FZEw3HDE\n7cCQ9Ci0MSZ9bNi7gXu/uJeIARHBLorJgfxshB0WkRHATUAbEQkB8viYv8kJjh2DmBj45BM3Scsn\nGza4MPM//giDBsH+uj+w5cB+ynH+gTIyvdy5XXz6t992of5xwSXrXLuTvAVjmPtBFfr1cyM/8yTw\nPzalPYLZ4rMy2V2a6ilVXcbZwTzifOJz+YwxxuQQfjbCegP9gMGq+qc3zv5pH/M32dm+fVCiBFSt\n6hbq8ml8XGwsPPeci3xYtCjMmwfdukHvqae4rEDmGkKYrpo1c1s8MZf9TGhPYc7sylRrsY+mA7cQ\nEm/5tZT0CMbNibNGmMnkrJ4yxhiTKfjWCFPVP4HJAe9/A970K3+Tjf36K3ToAL16wYQJ590Ai+u5\niT6UhxUzqrNnYzHK1/uHRjdtZdafMcyaSrLh4rOtZcvg66/h0UfPDKEstxuNFdZ9WAkJUZoM+IWQ\ngJA9KekRtPWNTFZg9ZQxxpjMwrdGmIj0ACYAF+KGbQhugcwc+E3XpNgvv7gG2JEjcMMNvmQ5P3IX\nK7/NzZ/z63HyeG4a3riVqq3+Omt958w4jytDfP45jBsHV1xBv2bNzjSshsBTT8HIkaXp3KA0L7+c\nLuthGxNUVk8ZY4zJLPwcjjgRuFZVE14AxZj4tm1z876OH3e9M2FhSSZPydyk2FOwJPxC9n5TlVo1\nhfffhzp1qgG2QCoADz4Ir70G99zjFkcLaGmNGAGHDrnAJRUqwCOPBLGcxqQPq6eMMcZkCr6tEwbs\nsYrNpFh0tIuCeOyYW6ArmQYYJL8e17H9eVnyXG32Lq1G22uOsmoV1KnjZ6GzgcKF4fHHXZz++fPP\nOfzkk3DzzTBqFEyfHoTyGZO+MkE9pcG9vDHGmEzBz56w1SISDswDTsTtjFvU0piz5M/vulyqV4fQ\n0BSflth6XF99BX37uk61N9+E/v0L+1na7GXAAHj6adfSuvZayHUmEoeI6yjbsweGDIGyZeGaa4JX\nVGN8FvR6qvye39x/sDJlMuqSxhhjMiE/G2FFgWNA4MJOClgjzJyxaxdERbnFmHv1Ou/sVF17YsQI\nqFULZs+GmjV9KGd2lju3awBHRsLJk2c1wsCFqZ89240U7dXLjVpMQUelMVlB0OupfSdKoO3aI0si\nEl4l3hhjTI7gZ3TEgX7lZbKp3btdEI6//3YREYsUOa/sDh92a37Nnu0aC9Onu9F2JgW6d3dbIgoX\nho8+gsaNoWtXWLXKHtybrC8z1FN7KMuYX3rwWNeusHgxFCgQ7CIZY4wJAt/mhInIpSKySETWe+/r\niYhN7TfOnj1w+eWuJ2z+/PNugP38s1v26sMPXU/Ye+9ZAyzVVGHuXPchJqBsWfej2rcPevSAEycS\nTGZMlpEZ6qm8hU4yNmYkk1e0hFtucYsZGmOMyXH8DMwxDRgBnARQ1XVAHx/zN1nVvn0uCMf27bBw\nIbRseV7ZLVjgemj27IEvvoD77rNw6mn29NNw110uUEoCGjSAmTPhu+9g6FDXbjMmCwt6PVWo5L/0\n7An3ySQWbLrUBScyxhiT4/jZCCuoqivj7YvxMX+TVf3vf249sI8/hrZt05yNKmxYeBHdusEll8Ca\nNa5zzaSRCDzxhOudfOWVRJP16gWPPgozZsCzz2Zg+YzxX6aop954Axo2hH7bHifyF+vCN8aYnMjP\nwBz7RKQaXvxdEekJ7PYxf5NVjR4N11+fZBTE5NYAi/k3hEVTK3NwQzn694epU20qhS/at3fbxIlw\nxx0uamUCRo+GDRvg/vuhXj3XsWlMFpQp6qmCBWHBAqFJE+jRLYYf6t9KsZefzOhiGGOMCSI/e8L+\nA0wFaorILmA4MNTH/E1WcvAg9OsHO3e66HvJhKFPag2w4wfysPiZ2hyMKkuf/+znjTesAearUaNc\n0JQZMxJNEhLihiXWrOmWAti5M+OKZ4yPMk09Va4cfPAB/P5HLgZ93B3t24+QUzZ4xBhjcgo/oyNu\nAzqKSCEgRFUP+5W3yWIOH4arr3Yh9W6+GS66KEWnJbQG2OrV0K0bnDwE8+dB167F06PEOVu7di5S\nYiK9YHEKF4Y5c9x8vF69ICIC8ubNkBIa44vMVk81awYTJwr33NON55cupvsFb/J4g570nrr8rHTd\nwirQr2nFIJXSGGNMejjvRpiI3JPIfgBUdfL5XsNkIUeOQOfOsHKle8x71VVpzur99926wqVLu7Wq\n6tXzr5gmgEiiERLjq1nTLQXQu7cbmvj88+lcNmN8kJnrqeHDYelSuH/+JJYubEO3Wo3ZQt3Tx+NG\nCFgjzBhjshc/esLiYo3XABoDC7z31wLxJ0Cb7OzoUejSBZYvh3ffTXIdqqSowtixMGYMtGjhoqjb\nmqYZ4ORJ92Fff/05CzgH6tXLRUt8/nn38+ndOwPLaEzaZNp6SgRefx3qh4bQb3c4P349iGLjbzsd\n8jV+r5gxxpjs4bwbYar6GICILAUaxA3vEJExwMLzzd9kIQcPwp9/wltvwQ03pCmL48dh4EAID3cj\nGV99FfLl87mcJmGffupaVO++C32Sjto9caLr7Lz11mSn+xkTdJm9nipeHN57P4TWrS/i9nIfEY5g\nq24YY0z25mdgjjLAvwHv//X2mezuxAk4dQrKl4d161zkhrRkcyQ3l1/uhiFOmOACQVgDLAN16QK1\nasG4cckuIJs3r/s55c/vOs5iTvj5p8SYdJNp66lmzeCJJ4QPPsrPq6/Ewk8/BbtIxhhj0pGfIerf\nBFaKyFzv/XXATB/zN5nRiRPQoweULOkWv0ljpIYje/Ox9IVanDzovtz37OlzOU3yQkJg5Ejo3x8+\n+cQ1ypJw0UWu0+yKK+D4+5Up1DEyRUOnLMiACaJMXU/ddx98/TUMvzOGFvluo+5Ps4JdJGOMMenE\nt8fXqvoEMBDY720DVfUpv/I3mdC//7oJQp98Aq1anZ7DkFqrVsGiiXX492huvvrKGmBB1bs3XHwx\nTJqUouQdO7p226/flqHwzirJpo/afSjJ9eCMSU+ZvZ4KCYE334RiJULoFf0GR/veamHrjTEmm/Kz\nJwxV/QH4wc88TSZ18qQbdrhgAbz4Itx+e6JJk1qI+Y91xVj+2qWEFIzh8ns306pV/fQqsUmJPHlc\nuLYXXoB//oESJZI9ZcwYF65+3fuX8tZDUL164mktyIAJtsxeT114Ibz9bm46dbqUu1beyPWlZ/LB\ntbcGu1jGGGN8FvSJHCLyuoj8JSLrA/aNEZFdIhLpbZ2DWUaTgMGDXVjzZ5+F//wnyaSJLcS8demF\nfDulJkXLHueqEVH0v6pkepXWpMZ//gNbtqSoAQaQOzfMmuUCKvbp4zpIjTFpd/nlMHKk8DqDiV54\ngppbIoNdJGOMMT7ztScsjWYCL+LG6gd6VlVTNibKZLwbbnBh8YYPT1HywIWYVeGRR+D9WW5JsfDw\nwhQu3Cg9S2tSIy4aSnS024oVS/aUihVdmO0ePWDECHjmmXQuozHZ3JgxsOTrGIZ8P5VB/8wLdnGM\nMcb4zLdGmIjcCbytqvtTc56qLhWRyn6Vw6Sj2FgXl7xZM7j22jRl8e+/rhPt7bfhttvg5ZddT4rJ\nZKKj4dJL3VpvKVyRuXt314k2eTJ06ADXXJNwuqjdh5IdlmjBO0x6SGs9FQy5c8Os8NxUr6m8s6gb\nk05YtFhjjMlO/A5Rv0pE3heRq0TSGKXhjGEiss4brlg8sUQicruIrBaR1Xv37j3PS5pExcbCkCHQ\nsqULQ58GBw+6nq+334bHH4epU60Blmnlzw/t28P06W5uWApNmgT16sGAAbArgWmA3cIqcFm5oknm\nYcE7TDpKUz0lIheLyGIRiRKRDSJyt7e/hIh8KSJbvH8TravS4uKLofEtW9n/W2GGNV+NvhF/wIgx\nxpisyrevwKr6iIiMAq7ARZ96UUTeB6ar6tZUZjcFeBxQ799ngEGJXPdV4FWARo0aaRqLb5KiCsOG\nwWuvuVB4deumOotj+/PSujVs3Ogi2d98czqU0/jr3ntdqLapU90YwxTIn98ttN2wIdx0E3z1lZsr\nFqdf04rJ9nBZ8A6TXs6jnooB7lXVH0SkCLBGRL4EBgCLVHW8iDwEPAQ86GeZK4Tup9aVv/Pa542o\nfvsCHmz5S9LRb4wxxmQJvgbmUFUF/vS2GKA4MFtEJqYynz2qekpVY4FpQBM/y2lSQdXN+5oyBe6/\n3y3km8pOzgO7CrJoQh22b3fR7K0BlkXUq+di0L/0kouGmUI1a7phphER8OST6Vc8Y9IiLfWUqu72\noiqiqoeBjUAFoBvwhpfsDdy6Y74LaRpF9Xq/89C/Y3muxRTe/Ta1zzWNMcZkNr41wkTkbhFZA0wE\nvgXqqupQoCFwfSrzKhfwtjuwPrG0Jp19+CH873+uITZhQqobYF9/DYufrg0qfPMNdOqUTuU06eOu\nu9y4wo8/TtVpN9/sesLGjIGlS9OnaMaklh/1lDeHuT6wAiijqru9Q3/ihjsmdM7pYfMnU/FAA9wQ\n3trlixJ62y6qlv2NB/Y+xe+3v+EekBljjMmy/JyRUwLooao7AneqaqyIdEnsJBF5F2gHlBKRncBo\noJ2IhOGGI24HhvhYTpMaPXrABx/A9def0wBLav0vgB0rSrHqzWrkKXGcy//7M6GhDdO7tMZvnTu7\n7ssrrkjVaSKuN2zFCujXDyIjoVSpdCqjMSmXpnoqjogUBuYAw1X1UOCUMlVVEUmwZRQ4bL5EpVqp\naj0FDuE9cBOEVfqNx6IepPWMTTQfVCs1WRljjMlE/ByO+Clwega/iBQVkaYAqroxsZNUta+qllPV\nPKp6kapOV9X+qlpXVeupateAJ40mozz7LGzd6r5N9+yZYA9YYut/qcLGz8qzYsYllKx2mKtHbKRv\nh9IZUWrjt1y54Oqrz57YlUJFirj5YXv3ukAd9uDeZAJpqqe8tHlwDbB3VPVDb/eeuJEb3r9/pUup\nPcWKQejDe8hX/BSd762V1hhJxhhjMgE/G2FTgCMB7494+0xW88QTcM898OqrySaNW/8rbntncHNK\nrm3OT/Mq0bcv/L7uAub+t4mFG8/qnnwS7rsv1afVr+8iJi5c6Nr1xgRZmuopL4ridGCjqk4OOLQA\nuMV7fQsw36dyJir/BTG0uG8LhQpBxzYnWPfUwvS+pDHGmHTgZyNMvAnPgBveQeZYDNqkxsSJbiXl\n/v1THVXh6FE3evGVV+DBB10oelvXJpvYtQtefNF1a6XSsGFw3XXw0EOwalU6lM2YlEtrPdUS6A90\nEJFIb+sMjAc6icgWoKP3Pt0VKvkvXy9S8p04RLuRzVk59rOMuKwxxhgf+dkI2yYid4lIHm+7G9jm\nY/4mvT3zjGs99ekDM2akagjaX3+5ZaUWLnTB9MaPhxBfY2+aoBo2DE6cgGnTUn2qCLz+OpQrB717\nu/XijAmSNNVTqrpMVcUbIh/mbZ+o6t+qermqXqKqHVU15YvqnadLawjfrClE8fzH6Ti6BRH/+SCj\nLm2MMcYHfn5NvgNoAewCdgJNgdt9zN+kp+hot4DXDTfAW2+lqgG2ZQs0bw7r17tgiv/3f+lYThMc\ntWq54Bwvv5yqcPVxiheHd9+F336D226z+WEmaLJVPVX5soIsXV+Si4oc5IqXu/FW51kQGxvsYhlj\njEkB3xphqvqXqvZR1QtVtYyq9lPVdJ2kbHwSG+tW2Y2IgFmzIHfKR5Hu21aY5s3h0CFYvBi6dUu/\nYpogiwtXP3dumk5v0cItM/fBBymabmiM77JjPVWhWn6+3Vae1hV+5eZP+zF6jNhDDmOMyQJ8m7Ml\nIqWB24DKgfmq6iC/rmHSwVNPuTji778PJUqk6tRdkcX5fvqlVK4In30G1aunUxlN5nD11TBwIFx0\nUZqzeOAB11gfPtw1yurW9bF8xiQju9ZTxUvl4tOtlzJ0aCxjHw9hy4+Hmf6/oxSoUjbYRTPGGJMI\nPwNnzAe+Ab4CTvmYr0kvTz4JDz/sFnJK5QSuF1+Eb6fWoETlIyxfXoTSFoE++wsJcZO7zjOLN9+E\nsDDo1QtWr4ZChXwqnzHJy7b1VN58wmvThUsuiWXEyCJs/eIX5n3yD+UuvyzYRTPGGJMAPxthBVX1\nQR/zM+lp3DgYNQpuvBFmzkzxEMTYWBe7Y9IkKB+6n2aDt1C6dNP0LavJXHbsgLVroWvXNJ1epoyL\nnNmpk4v3MWOGz+UzJnHZop6K2n2I3lOXn37fLawC/ZpWRAQeGhFCjTxb3OaJ+gAAIABJREFUuemB\nGjTp9A8Lnl9G/TtbBbG0xhhjEuJnYI6PvZC9JrMbP941wPr3d8E4UtgAO3HCdZpNmuSCb7QYspnc\neW0SeI7z6KOu8X74cJqzuPxy1wk7c6aLA2NMBsny9VS3sApcVq7o6fdRuw8xP3LXWWm631eNbz87\nguTORau76jNn0EKLhmOMMZmMn42wu3EVXLSIHBKRwyJyyMf8jV+aNIEhQ1IVhn7/fhccLzwcJkxw\nwxEtBH0ONXQoHDnigrich9GjoU0b96u4dq1PZTMmaVm+nurXtCLhQ5qf3gIbZIHCrriQlZsuoF7x\nnfSccQ3jHouxdpgxxmQifkZHLKKqIaqaX1WLeu8Trh1McKxZ4/7t0MGtqJzCBtiOHdCqFSxf7r53\nP/CAW/vJ5FBNm0JoKEyZcl5P13Pndo364sXdIt/79/tYRmMSkNPqqbJVC7J45yXcdEM0ox7LQ79e\nMRz/0xbqM8aYzMDP6IgC3AhUUdXHReRioJyqrvTrGiaNVN0QsnHjXGi6du1SfOoPP8A118Dx4/D5\n525BZpPDicAdd7gese+/d4vEpVHZsjB7NrRtCzfdBB995PbHn/OSkLh5MMakVE6sp/IXDOHN8Pxc\nVh9GjszNnk838dGaChSqkfYop8YYY86fnwPKXgaaA/2890eAl3zM36SFKtx7r2uADR7sxn+l0Kef\nuuR588K331oDzAS48UYoWtT9Ypyn5s3huefgk09g7Nhz57wkJKF5MMakQLasp+IeWsRts1b8dtZx\nERgxAt56aANLjjbi6rDdHP5lT5BKa4wxBvyNjthUVRuIyI8AqrpfRPL6mL9JrdhYF0Fj6lS48073\nTTeFE7luHfE3r08swQUVjhL6f5sYu+wkLDs7TdTuQ8l+WTbZVJEisH27G0vog6FDYeVKeOwx+Lhx\nRcKHJN3DlVwvmTGJyHb1VLewCme9j9rtprgl1Et801O1yVNgMzeOrs+V9dbzxcbcFK5UMkPKaYwx\n5mx+NsJOikguQOH0opgWOi+Y5s1zDbCHHnJrgqVgIpeqC5w4fXxJClffS/th28iTP+Ef42Xlip7z\nBcDkIHENsBMnIF++88pKxE0xW7fODUtctcoW/zbpItvVU/2aVjyrwZXcA4rej9YgT+w6ej1Wh+sb\n/MhHf5Qgbz6b5GuMMRnNz0bY/4C5wIUi8gTQE3jEx/xNanXvDl9+CR07pij5v/+6EYtvvw1VWu6h\nYb9f+eD/mqVzIU2W9vDDMHcubNhw3tFaChSAOXOgUSO3BNl330GxYj6V0xjH6imgx5h6vLrvBwa/\n1JjBt7qVSizarTHGZCw/oyO+AzwAPAXsBq5T1Q/8yt+kUHQ03HLLmS/FKWyAHTgAV13lGmBPPAGN\nbtpGSC6LZ2ySUasWbNwIX3/tS3ZVqsCHH8Ivv0CvXhAT40u2xgBWTwUa9GIDxo1zf/MfG7Y32MUx\nxpgcx8/oiBWBY8BHgftU9bfEzzK+OnoUunVzX4g7dIDatc9JMmvFb+cENDj2T16WvliLI3vy03Tg\nVtaW3MdGm+9lUqJnTxg+3I0lvPxyX7Js29aNoh00CO66C156yZZEMP7IKfVU/OiiiUUSHTkSflm0\ng7FTKtGg7Fq6PRqakcU0xpgczc/hiAtx4+wFyA9UATYD57YEjP8OHnSx5Jcvd2NL+vdPMNn8yF1n\nBdTY/3tBlr1Yi5gTIbS+cyNlarpJ3Tbfy6RI/vwwYAA8/zzs2QNlyviS7cCBsGkTTJwINWu6xpgx\nPsj29VRqAnWIwJQPSrH+op/oP6YqK9rtpVab0hlSTmOMyel8a4Spat3A9yLSAPg/v/I3Sfj7bzeW\nMDLSrX7bs2eSyS8rV5TwIc35/HPoeR+ULAafLoM6dbLN9xCTkW69FZ55BmbOhAcf9C3bp56Cn3+G\n//4XqlVzzxiMOR85oZ5KbaCO/CUL8eFHeWnYKZpenQ+zak8J8hfKld7FNMaYHM/PnrCzqOoPItI0\nvfI3AfLmhQIFiJjwKlP+rgBJVLpxvWDTprmw4HXqwMKFUME6vUxa1azpxgxecYWv2YaEuPkqbdq4\n+WFffw1N7S+K8ZHVU87FHWvw5n+/4Opnr+Chq9fw3NKGwS6SMcZke37OCbsn4G0I0AD4w6/8TQK2\nbIFy5dyaTUuWMOXV75Ndu+v/2bvvuKqrN4DjnwMoinugoqViKoooOBBxz9yz3DPLkbnLNHPlKG1o\nWWpqOfLnwNxZ2TC35kzNmbn3DLcocH5/HEBkKMIXLnCf9+t1X3Dvdz2X8p57vuec5ymWOzN3N5Wg\n+3wzeLZ4sTlciATplTiDCRkymJsElStDgwawaRN4epptUde9xCa29TDC/kg7Fbt6n9Wh7+qf+WJT\nfeqtMe2DEEKIxGPlSFjkr/LBmLn3Sy08v4hsxw7zrbR+fZg3LyJzQfhUw5jcvQvt28OPK6F3b5g0\nCZwSbSxU2J0//oC//4Z+/Sw9bZ488OuvUKkS1K0LW7ZEX/cSm6ethxF2Sdqp2CjFhH31+KO8Web5\n99/gKsvDhBAi0Vi5JuwDq84lnuG330wNsNy5YdSoOB1y/jw0bgz79sHkydCnT+KGKOzQ8uUwY4ap\ntpwjh6WnLlQIfvnFTE18+WXYtCl/nDpWcRkpE/ZD2qmYRc6am7e5C4fHlaBD1SP8ctjLxpEJIUTq\nZeV0xB8wWadipLVuYtW17Nr335vhrOLFYc0aMx3xGfbsMR2wW7fghx/MAJoQluvWDb76yozM9u9v\n+elLlTL//778svl/+LffpJizeD722k7FNHU38jTdyFlzs+a7R5tsc5h/5A0ad9iMSxXHaPsLIYRI\nOCsno50A8gD/C3veFrgMrLDwGvbt5k3o2dNkJ/jhhzh9A125Etq1MwMTW7aYL7JCJIpSpaB8eZg5\n00xJTITiXlWqmPsQLVqYqYm//CIdMfFc7K6dimnqbkzTdCNPZV+cKw1/vXKQnQFFqFj2FMduBkbb\nXwghRMJY2QmrpLUuF+n5D0qpXVrrARZewz7psBu3WbLAunVQuDC4uDzzkIkTYdAg8PU1nbE8eZIg\nVmHfunUzj23boGLFRLlEo0amI9aypXTExHOLVzullJoFNAKuaK29wl4bBXQDrobtNlRr/VMixJwg\nUVPWw7On6bZqXo4C/QPwn9QStzW3SdMiNDFDFEIIu+Rg4bkyKKUKhT9RSrkDGSw8v30KDobu3WH8\nePO8VKlndsAePYIePeCdd0zJsPXrpQMmkkibNlCwIJw5k6iXadrUdMT++st0xAIDE/VyIvWIbzs1\nB4gpX+AkrbVP2CPZdcASwu/jV+jruohpvxbizhGpGyaEEFazshM2AFivlFqvlNoArAOsXxhiT+7c\ngSZN4Jtv4N69OB0SdMeJunXNjLChQ2HRIkifPpHjFCJcxoxw/LjpjCWyqB2x//5L9EuKlC9e7ZTW\neiNwI7GDS1acnBgd4EHuzPf5c3lxtAyGCSGEpazMjrhGKVUEKBb20hGtdZBV57c7ly5Bw4YmneH0\n6SzwrsfKZ0wh2bM3lItLShJ8G777Djp2TKJYhYjMwQFCQ+Hy5TgljkmIpk1hyRIzNbFaNTM1Meol\n41JPTJIO2IdEaKd6K6U6AbuAt7XWKeZWQOR/F7HVl8xcoyyfTDFtycltueDNpI5SCCFSL8tGwpRS\nLsAgoLfWeh+QXynVyKrz25U7d8x6miNHYNUq6N49IntVbM7vzcap2RVIgxMbNkgHTNhYixbmJkIS\naNLEFHQ+ccIUdT5+/PG2pj75nlq8HMwX0PD03CJ1s7idmga8BPgAF4HPnnLd7kqpXUqpXY8ePYrn\n5awT9d+Fp1vmWGvvtW8PhXKd5tjCHPx3I9bEkkIIIZ6TlYk5ZgO7gfBKweeB74HVFl7DPmTMCAMH\nQoUKUO7xGvKYCjFrDePGweKvTQKOFSsgb96kDliIKOrUMRXBd++GsmUT/XK1a5ta0Q0amI7YL7+Y\n5ZMxJSWISmqJ2RXL2imt9eXw35VSM592Dq31DGAGQPYCxW3ek4nLv4twSkFn78V88NtARnQ+xZc/\nuCdydEIIYR+sXBP2ktb6Y+ARgNb6HmB9jurUbPFi2LDB/N679xMdsJjcvQutW8Pw4aY+7oYN0gET\nyUT79mYx4syZSXbJ8uVh0yZwcjJFnTduTLJLi5TDsnZKKRV54mtz4EDCw0uejjSrQMf0/2Pq6vzs\n22X7kTwhhEgNrOyEPVRKpSesEKZS6iVA1oTFhdYwdqzpUX36aZwOOXPG3PFfuhQ++cSsAZMEHCLZ\nyJrVLNRasMBMr00ixYubenhubmYwbv78JLu0SBni1U4ppRYC2wAPpdQ5pdTrwMdKqb+VUvuBGpik\nH6lSiKMTjg2vkJ0btKp/mlZfb6P19G0s2J64WVCFECI1s7ITNhJYA7yolJoPrAXetfD8qdODB2YY\na/hws5BryZJnHrJ5sxkkO3kSVq82qegToS6uEAnTrRvcvm1GeJNQ/vywdatZVtmhA4wZ87jUnrB7\n8WqntNZttdZuWus0WusXtNbfaq07aq1Laq1Laa2baK0vJnbwttLUJx93alWip9s3/HOtMNe2ppO1\nlEIIkUCWrAlTSingCNACqICZ3tFPa30tDsfGVAQzOxAAFAROAa1SUtapOPvvP5O8YNs2s7Drvfee\n2pvSGr76CgYMgEKFTM4OD48kjFeI51Gpkskh36BBkl86WzazLqxbNxgxwiTrmDED0qZN8lBEMpGQ\ndsreha8hC6mcjR8aBXJ8gw/lfHdw6GLgE2sqJcuoEELEnSUjYVprDfyktb6utf5Ra736ORq2OUQv\ngjkEWKu1LoK5UznEijiTnUyZzLypJUtMUa+ndMCCHzqwY05h+vSBevVg+3bpgIlkTilTLfwZxcUT\nS9q0MGcOjB4Nc+dKLTF7l8B2SgCOXsX5Ym5WzpxRqP0eT2RYlJExIYR4PlZmR9yjlPLVWu98noO0\n1huVUgWjvNwUqB72+1xgPTA4gfElH2vWgLe36YAtXfrM3Y8fh7UTvLh5wYUxY0x/zcHKiaRCJKav\nvoL792HQoCS/tFJmpm+hQtC1K/j7m3T2L72U5KGI5CFe7ZR4rFo1aOlzjNWz83N0eAVezG9uHkqW\nUSGEeD5WfpX3A7YppY4rpfZHWrAcH7kjza+/BOS2JkQb0xomTjTTs4YPj9MhP/5o1n/d/8+ZKr2P\nMGyYdMBECrN5M3z0kVn/aCPt28Nvv8HVq+DnZ0ISdsnKdspufdJ0MzoklMEdZeRLCCHiK8Ff55VS\n4UVD6mIKV9YEGmPWeTVO6PnDppDEuqw+chHMq1evJvRyiefePZN44+23TSHbyZOfuntoKIwaBY0a\ngbs71B66H7cSgUkTqxBW6tbNzAOMQ9KZxFS1Kvz5J+TIAbVqwf/+Z9NwRBJK7HbK3hR4vwPv5pjF\nwo0vsHmdpKwXQoj4sGJMJfyb1Syt9emoj3ie83J4DZawn1di21FrPUNrXU5rXc7V1TWel0tkZ86Y\nJAULFphU9IsXP3WdzI0b0LgxfPABdOliUm5nzCnZ/kUKVaOGmf+XhDXDYlOkiMmDU7GiuScycqRk\nTrQTidFO2a80aXh3RmFe4Cz9Ot0gJMTWAQkhRMpjxZowB6XUUKCoUmpg1I1a64nxOOcqoDMwPuzn\nyoSFaGPOzhAcDD/8YLIhPsWOHaZc2PnzMG0a9Ogh6edFCufgYEbDhgyBI0egWDGbhpM9u8mc+Oab\nJmlHft8i+Hb616YxiUSXGO2UXcvQ/GU+LjWBdvuHMGfafUhj64iEECJlsWIkrA0QgunQZYrh8VSx\nFMEcD9RRSh0Daoc9T1m0hkWLTOcrd27Yt++pHTCt4fPPTQFmrWHTJujZUzpgIpXo0sUMPwUmjym1\nadPCN9/A+PFwZmdO1k8qwZVYx9tFKpCgdkrEQCnaLGpGpRKBDB2Tnof3HW0dkRBCpCgJHgnTWh8F\nJiil9mutf47H8W1j2VQrYZHZ0L175s7/ggUmK9xrr8WaTWPB9jN8v+USO74rzIV92cnrfYPSnf5l\n4t4Q2Pt4v0MXbz2RDliIFCV3bjOvNhlRCgYPhlUnjrJ9dmH8/EwiHE9PW0cmrJbQdkrETBUvxhdz\nwdcXDv+YD+9Xz9g6JCGESDEsS1Fvbw3bgu1nYqyJkvvKOQbMfJ8C5/4loGkPdPGatHvKeWYtv8nG\nr0sSfNsZn5YnKVLzUoyjX55umWnqk8+6NyCELfz3H1y5kqyK3L1Q5gYu2Q9yYE4p/P1N/pA6dWwd\nlUgM9tZOJYWyZaFr6b+Yu9aLQpUv2zocIYRIMaysE2ZXVu49H210qsz+LfSZNYpQBwcm9PqE6RmL\nwYoDrNx3IdrxWsM/a93Yt6wELlkfsmmrA35+7oB7tH2FSDWqVoWcOWHdOltH8oTsBe+yfbtJiFO/\nPkyZYtZjCiGebVzzXSze8xInZmeBkbaORgghUoYEd8KUUi211t8rpdy11ietCCql8HTLTEAP/8cv\nbAqGfT4wfz7vFShAgVhGy4LuOrFz7ktc2G+mH4765C5+fi8mYeRC2Ej79vDee/DPP1C0qK2jeUL+\n/KZ+WNu2Zj3m0aPwySfgKEtdUjx7bqeSQu7BXeg34WPGnn6f6m8dIHep2wA09clHO7/8No5OCCGS\nJysSc7wX9nOpBedKeU6fhunTze9VqpiMGgUKANDOLz8BPfyfePQs6s+uib5cPZydSZPg3F/Z6VZH\nOmDCTnTpAk5OySJdfUwyZYKVK6FfP5g0Cdq0gSCpDpEa2Hc7ldjSpKHq8Bcowj8cnedKaIji0MVb\nMd6EFEIIYVjRCbuulPoVcFdKrYr6sOD8yVaZ/VugdGmzuj+8UHQs6QwfPjQZumvVMiXCtm6F/v0l\n+6GwM3nyQNOmMGdOsu3dODqaTKUTJ5r1YY0bw507to5KJJDdtlNJpc6gTkwqPY9Lt3NT6W4ZSSQl\nhBDPYMWasIZAGWAe8JkF50v+Hj2i3bIpNP11vumEff89PKVQ9NGj0K4d7NljkiZOmgQZMiRhvEIk\nJ927w9Kl8Pvvz6ybl1QOXbxF6+nbnnzRBcp3duX3eS9RoOQdPpx+kx4vv2CbAEVC2V87ldSUosGC\nDtTrepNR47JQbZgT6TIF2zoqIYRItqxIUf8Q+FMpVVFrfVUplTHs9dR57zgkBKpXp+nWrfxWpRl1\nfl0I6dLFuKvWphZR//5ml2XLoHnzJI5XiOSmdm3YvRvKlLF1JABPzTpa0P8qaVyC2TqjCO92dqTh\nTnhB+mEpjt21Uzaiinkw8VsoVQoOLc9LmU6Ssl4IIWJjZXbE3GHTPbIDSil1FeistT5g4TVsz9ER\nWrfmM6+G7ChTgzqxdMCuXTOjXitWmO+cc+dC3rxJHKsQyZGDQ7LpgIFZu/ms5AE10h9ky1QPKlUy\nA3hFiiRRcMJq9tFO2VDx4tC7zFa+2FqBwlUv2TocIYRItqxYExZuBjBQa11Aa50feDvstZQvMNCk\nTPvpJ/O8b192lKkR6+4//2zuBP70E3z2Gfzyi3TAhHiC1iYH/KhRto4kTnIVvUX1gQe5dw+qVzfJ\nHUWKlHrbqWRkZP+b5OA6J2ZkITTU1tEIIUTyZGUnLIPWOqL4j9Z6PZDyVz5t3gze3maF/okTT931\n1i144w1o0ACyZ4ft22HgQHPjXwgRiVImmc2UKck2QUdU2fLfY906ePTIdMSOHrV1RCIeUmc7lcxk\nbVufXi/O5J8bhfl63HVbhyOEEMmSld2DE0qp4UqpgmGPYcDTey3J2aNHMGIEVKsGadLAli3Qu3es\nu69dCyVLwuzZJgvi7t3g45OE8QqR0nTvbubtrlxp60jizMvL1JkOWxrKkSO2jkg8p9TVTiVjV3oW\np6b6nUGj0tHow120nr6NBdtljZgQQoSzshPWFXAFlmFqseQMey1lWrgQxoyBjh3hr7+gfPkYd7tz\nB3r1Muu+0qc3fbWPPgJn5ySOV4iUpk4dU1NvRsqaDVaihOmIaW06YocP2zoi8RxSVzuVjFWpVZb6\n9beiQjWHZrtx8ILUDRNCiMgsS8yhtf4P6GvV+WwiONgs9vD0hA4dTBq0mjVj3f3qsUx4e8PJkzBg\nAIwbZzpiQog4cHQ083eHD4d//4XChW0dUZx5epqOWI0a5gbM5s3g7m7rqMSzpIp2KoVo55cffhhG\n2pHX6Dc2H35n70Hea7YOSwghkg1ZrRTu6FGoXBmqVIEbN8xCrlg6YLduwZ6F7qybWAKADRtMYVfp\ngAnxnLp2hS5dUuTCyeLF4bff4P590xG7cMHWEQmRzDg48NaoXFSsCPsXvsiDm1YmZBZCiJRNPhFD\nQ2HyZHjvPUifni0DPmDy4iMmcUAMzu/Lxp6F7twPzE2RGpfYs8qNjBmTOGYhUou8ec1CyhSqZElY\nswZq1TKzKzdsgJw5bR2VEMmHoyN803EDpbf6cfLLjOhBsTavQghhVyy7/ayUqhSX15KVW7fMfKIB\nA8yt7IMHmZyrHIcu3Y626/2badg6owhbphUjbYZgag0+wKiPHkkHTAgr7NkDmzbZOop4KV8efvgB\njh+HevXMx4pInuLbTimlZimlriilDkR6LbtS6jel1LGwn9msjje1KN69CgNyfsnf54pTvfleWk/f\nJok6hBB2z8o5QF/G8bXkI1MmcHODWbNg1SrzO+DplpmAHv4E9PBnUXd/6qbxZ9NH5bh6MCfjxsHV\nkxn4fXzJZxZ4FULEgdbQuTP0729+T4GqVzdVLPbtg6ZNU0zWfXsU33ZqDlAvymtDgLVa6yLA2rDn\nIiYODvhN8aOW+p0dqzy4fTEthy5Kog4hhH1L8HREpZQ/UBFwVUoNjLQpM+CY0PNbbscOM/K1YIHJ\nzLZoUay7Hj0Kb75pFuBXrWqSuHl4JGGsQtgDpUyK0V69THG9ChVsHVG8NGoEc+dC+/Zmmdv8+Sly\nqVuqlNB2Smu9USlVMMrLTYHqYb/PBdYDgxMYaqrVrFVVyl9YTKkBd7ky0w2PoY+AlHnTRQghrGDF\nV4S0QEZMhy5TpMct4FULzm+NO3fMnXZ/fzh9Gs6di3XX4CAHhg416z327DGdr3XrpAMmRKLp0MGM\nTE+ZYutIEqRdOxg/3tzbee89W0cjIkmMdiq31vpi2O+XgNyx7aiU6q6U2qWU2vXo0aN4Xi7ly9uv\nJTNrL2b3hbwc/OFFW4cjhBA2leCRMK31BmCDUmqO1vq0Uipj2Ot3EhydVX7+GXr2hDNnzN32jz6C\nzJmj7aY1nPsrO3u/L8iyG2aG1IQJkDvWplUIYYlMmczw0fTp8NlnkCuXrSOKt3ffNR81H38M+fPD\nW2/ZOiKR2O2U1lorpWId1tFazwBmAGQvUNx+h3+UovlvvXijG3zzbV5yFb1p64iEEMJmrJwsk0kp\n9RdwEDiolNqtlPKy8Pzx9913kCGDKeYzZUqMHbBjx6BBA9g63YM06YPZtAnmzJEOmBBJplcvM39v\n+3ZbR5IgSpmEq02aQJ8+sGKFrSMSkVjZTl1WSrkBhP28YlWQqd0XX4Bb1ivsnZaPM6ftt08qhLBv\nVqaonwEM1FqvA1BKVQ97raKF14iboCBTuKtxY/DygqlTwcWFBXsvs3L6tid2DX7owJE1+Tjya14c\nnELJU/cYlZsEUrmyf5KHLYRdK1YMLl+O8SZJSuPoCAsXmlKDbdua6cwpdKlbamNlO7UK6AyMD/u5\n0qIYUz0XFxhQbjpjfutPq6qX2HjMjbRpbR2VEEIkLSs7YRnCGzYArfV6pVQGC8//TCeu3uXDvpPo\nEjCJvFfOErDtJMsavhaxffvJGwD4uWdHh8KZnTnZvyI/9/9zJn/5q3i/cpr0WR7R1CdfUoYthAgX\n3gG7e9eMXqdgLi4mdb2/v8mYuGOHyQUkbCpe7ZRSaiEmCUdOpdQ5YCSm87VYKfU6cBpolTghp067\nWtTmvX8/Y+jJD3i7zTm+XPaCrUMSQogkZWUn7IRSajgwL+x5B+CEhed/ppxXzjH0y4FcyJ2fcX0n\nsd/T74ntfu7ZaeqTj0I6P/37m1lPZcrA5yuhShVXwDUpwxVCxKRlSwgMhN9+s3UkCebqCqtXm1Gw\nJk1gyxaktqBtxaud0lq3jWVTLasCsztKcbRvFQaMnsOk5V3w//I67frksHVUQgiRZKzshHUFPgCW\nhT3fFPZakskUdBc+/JC8AwfyvrNztO1nzsCQIWaakJubWfPVsaOkkRYiWSldGt5/Hw4fhuLFbR1N\nhEMXb9E6ynTmmDT1yfdEDcFixWDxYqhf33zeLF0qnzk2ZPN2Sjx2P30GJqz3Y1fpLbw+sDxFKoCv\nr62jsm+3bsGG9Zp92+5xeM89Ll6EO/ccSesM2fK54FEqHaVLw8svm5tMQoj4s6wTprX+D+irlMpk\nniZ9dsSzeQvFmBf6zh2TqeyTT8zzYcNg8GC5Iy1EstStG4webVbvf/21raMBiPMU5UMXbwFEK+T+\n8sswaRL06wfDh8O4cZaHKOIgObRT4rFDF2/RYRt4vHuNPTNDqFpH88m8q/RuLEsCktKNG7Boxi0W\nrUzP1p1pCAlRQAYKcJUXOUsO7hCEM2fulOb3Tel48AAUoVTzvUefIRlp2tSsgxVCPB/LOmFKqZLA\nd0D2sOfXgM5a6wNWXeNZgh3TPPH84UNT42vMGLhyxSyQHz/epI0WQiRTrq7QqZOpfDx2LOTMaeuI\naOeXP1rHKiZPGynr0wcOHIAPPwRPT1PUWSSt5NBOCSPyjY1bBXNRudcRfh/vySddNF3PmjWVInEd\n2BfCJ/3Ps2hDHh7qzHjluszgwbmp4xtIuaPzyViiAOTJA85Zzd3swsEEZ4P9E35m1bAdzN3ZiVde\nyUix/Pf4fIYLdeva+h0JkbJYOR1xOskkO2JoqJlyOHw4nDwJ1avDqlXg5/fMQ4UQyUH//jBzphkJ\nGzbM1tFYQin46iv45x94/XUoXFg+k2wg2bRT9i6mGxtjl45lxKF4/pxwAAAgAElEQVShvFb7LAs3\nvyjTdhPJ3j2hDOt0hh8PFsSFHHTLuJA3Wt/G553aUCw3kBWIucChE1Dm/fqU6V6O4TNnseyTfxl6\n5l3q1StCm1YhTJvuSNasSfluhEi5rPyIi5Z1Ckjy9GY//2ySbXToAFmymOd//CFfdoRIUTw9zZ2U\nXr1sHYml0qY1a8Ly5TMZE8+ds3VEdidZtFMiZkferMw72SeyeNuLDO500dbhpDpnTms6d4Yy5RzY\nejQ7g3NNY0jH6VyfUIiPfMvSesN/tJ6+jQXbzzz7ZK6uOA4dTMvzX3DgvQWMLvk93y91xMcH/vor\n8d+LEKmBlZ2wE0qp4UqpgmGPYSRxdsTbl9PRoAHcvg0LFsDu3VCvnrkDLYRIYdq0gezZbR2F5XLk\nMKnr792DFi3gwQNbR2RXbN5Oidg9SuPM9SGe9M48l0/nu/HpkGu2DilVePgQxnY9gYd7EAEBmkGD\n4PhJR06O9mFxoRKEOj6eFHXo4i1W7j0f8XzB9jO0nr7ticcTnTQXF5w/HMnwfa+yeTOEPnxElQqP\n+OmnpHyHQqRMVnbCumJyvC8DlgI5SeKsUyGPHJgyxSRVa9tWMpAJkeKtWWMWT2lt60gs5ekJ330H\nO3fCW2+lureXnNm8nRJPdydzNj7f6kertCsYNCEn8+Y9+xgRu82rbuCT6zzDZxeiicta/gnYy4QJ\nkO0FMwDs6ZaZgB7+EQ9Pt8xPHL9y7/mIhENg6q0OXf539E6ZUlSoAH82/hCPh/tp0iiExYtCk/S9\nCpHSWLImTCnlCLyvte5rxfniK0u+e6lt9pIQ9u3SJTOs3bmzSTGYijRrZpa7jR1r0nL37GnriFK3\n5NJOiWdzLFGM77YGc21gMF27OpEzpynxIOLuZqBmUOPDzNzsSQFO8WObeTSY9SqkT//c5wrvqIEZ\nGYs8UhY1I2zeacNZ7/geDabdo127ijg6aV55VaYjCRETS8aKtNYhQGUrzpUQMu1QiFSmbVuTnWvi\nRFtHkihGjTJfLvv2ha1bbR1N6pZc2ikRN85lvVj+gxOlvEJp0eQRv6+6Z+uQUoytW8GnNMza4sE7\nLwZwcHcQDRZ2jFcHLKp2fvmfOnKGgwOZpoznp76/4Kf/pF2bEDZtSvBlhUiVrJyw95dSapVSqqNS\nqkX4w8LzCyHsjbMz9O4Nv/xi8runMo6OMH++KZvxyitw4YKtI0r1pJ1K5sKLoreevo1uC7cxtO1K\nigYfonFzR9b+IB2xpwkOhg/aHKJKFY1Sis3rgvnkdCsylPF4rvNE/m8QeSpiXC3YcZY3ijegf6WZ\nvKhOU7veQyYukQ83IaKyMkV9OuA6UDPSaxoz914IIeKnZ09T3fiTT0ztsFQmWzZYsQIqVIBXX4X1\n600WRZEopJ1KxqIWRT908RaL3fKwdvpxavZQNG5WlNUr7lKzsSS0jOrUwbt0qHWBLZc96fjSVr7a\nU5HMmZ2f+zxR/xt4umV+ZrH68E5buO0nbwCg2r9ByRqXOfXZi4zqnY2utZH09UJEYlknTGv9mlXn\nEkKICDlymMVTmTM/e98UyssLZs2C1q2hXz+YNs3WEaVO0k4lb1Frh4V/sc/ZvQVrHVdR8w0HGjUr\nzMold6jTPKOtwkx2Fo49Ts+RudChuflfk8W0X9Ic0sTvXHEtTB8upg6an3t2mvrkizhP3dt7+P0L\nb3wrn6V073MoxRPbhbBXVo6EWU4pdQq4DYQAwVrrcraNSAhhE0OH2jqCRNeqlSmr8fHHUK6cKegs\nhDBcX2/CWqefqfM6NGzlyYKFZuTYnt2+Db2bnuW7dS/hn3YX8+eG4N6mVcT2qEk0wPrOT1w6bW/W\nCKLy1FGMODiGrH884IHniYhjhbBnKSGJew2ttY90wISwcw8fmuGii6m3iOu4cVC7tqlRvWOHraMR\nInnJ1bk+G04VpLyfA61bw8wv7HeN2PY/NT4+8L8NLzDSbw0bzxfGvY3fE/tETS8ftQZYUmnW1J/3\nA8pRn5/Yv8wdt+A8SR6DEMlRsh4JE0KICOfOQbduMGAAfPqpraNJFE5OsGiRGQlr0cKMjOXObeuo\nhEg+sr6QkV9/hVd9T9G9f0FunLrE4En286U+JATGt9vHyMUlyJZHU23gUQ4XzkL7pYeB6CNdkdPL\nhyfaCJ/meejirejZDROJQ/OmfNdtKCVnlubA125U/OBxjfSkGLETIjmybCRMKZVbKfWtUurnsOee\nSqmETqjRwK9Kqd1Kqe6xXLe7UmqXUmrXo0ePEng5IUSyVaiQSVn/9ddw/bqto0k0OXLA8uVw4wa0\nbGkGAIU1EqmdEknMxQVWzLtDm3QrGPJ5Ht5td84uCp6fPXiLmnmPMGyxNy1zrqNBz7VczfC48xK1\nkHLUzIZNffI90emKS9INK+X8ciTTC3zExeu5OPKzW8TryWXEToikZuVI2BxgNvB+2PN/gADg2wSc\ns7LW+rxSKhfwm1LqiNZ6Y+QdtNYzgBkA2QsUt4OPYSHs2HvvmZzuX3wBo0fbOpoYRc0UFpNn3eX1\n8YFvvoH27WHgQPjqK6ujtFtzsL6dEjaQtowX/zuQkWxlF/DJwnZcu3KGGWvy45RK5/d8P+YI3Ue5\nERyaj7nNV9AxoBFtZu3EE2ItpBy1k/W8STcs5+xMk9Xd8Wh/mkM/v8i+feDtbTZFHbETwh5Y+XGV\nU2u9WCn1HoDWOlgpFZKQE2qtz4f9vKKUWg6UBzY+/SghRKpVogQ0awaTJ5veSTLLdxyXu8rhd3yf\n9WWoXTszHXHiRChbFl6TvH5WsLydErbj+FJBphzLiKvPN4xe+wY36t1m4Q+ZrKhJnGzcuQP9+oYy\na3YxyjvvZf48TeGWzWLc1+adrLjw8qJYp52cHu1Glw6KHXvimcZRiFTAyk7YXaVUDswUQpRSFYCb\n8T2ZUioD4KC1vh32+8tA8rz1LYRIOiNHwt9/w8mTULq0raN5Qly+BD3PXd4JE2DfPlMqrUQJKF8+\noRHaPUvbKZH4oo4sRx1FVq45+eBoG1x776Lvd+WoVw9WrYIsWWwRrbV2rThHu0F5+fe4A+/3vM7I\nsYVIkyPll+pwzhhM/4JTGL9/AFMmBkHyupcmRJKxshM2EFgFvKSU2gK4AglJIJsbWK6UAhPnAq31\nmgRHKYRI2Xx84J9/wCElJHdNmPBEHb6+JlHHrl2Qx35yECQGq9spkYhiKt4MMYwiZ8xI7znlyFEX\nOnUMpXrRS6zZm4fcbinzMyIkWDOh9R5GLitFnow3WbcuG+fT3aXDkifXSSVlYg2rOb6cgfr7f2LE\niJpUH5OG9FlkTb+wP5Z0wpRSDkA6oBrgASjgqNY63v+qtNYnAG8r4hNCpDIODnDvHmzfDjVq2Dqa\nRJUzJ6xYAf7+pi7SH39A2rS2jirlSYx2SiSu2Io3x6ZtW8i+6jtaLGpJJY+r/LozO4U8UtZ0t1O7\nr9Op7iU2XS9La9c/mLa2KNlKZqP19PPROl1JnVjDSscKl2Tyq6sosaQWx+bnoFSvS09sj2ltrWRM\nFKmNJZ0wrXWoUmqK1ro0cNCKcwohxFMNHWoyJf77L7zwgq2jSVTe3qZEWtu20L8/TJ1q64hSHmmn\n7EPdBZ1Zm3kODWc0oZL3bX7ZkJ5Sfiljkdj89w/R66MX0PpFRtdZwoFmbvTceha2no3ogIUnr0gN\nCk8dyLs/TGbs/kG4/XM34vWYOpZxXUsrREpi5Vj9WqXUKyps/qAQQiSqAQMgNBTGjLF1JEmiTRsY\nNAimTYNvJZdffEk7ldopRYXpr7FpxO84Bt2jaqVgNv9829ZRPVVgIFSse5cOH3pSJO0xWvdey7dl\n0rP9TGDEPil51Csmhy7eovWyf3FrfIP8nGbf/14kvMpQO7/8BPTwf+KRUqddCvE0Vq4J64GZbx+s\nlHqAmeqhtdbyL0cIYb0CBUzGimnTTO+kcGFbR5ToPvoI9u6FXr1Moo4KFWwdUYoj7ZSd8PygNVvz\n/MjLg0pRp8ULLFkCDRvaOqro1k45Qtf383D2dhZy1TiG+ytB3HLKgx+pd/pd5M7kxpoN8XC5ym/f\nFWDGDHjrLRsGJkQSs6wTprXOZNW5hBAiToYONcNCQ4fC4sW2jibO4ltLzNHxcaKOV14xiTrc3GI5\ngYgmMdoppdQp4DYQAgRrrctZfQ0RP/nfbMimVzQNGiqaNdPM/fgK7QbktnVYANy++oBBdfcx/S8/\nijidoFHvw6T3hIAeFW0dWqKLutZP94RaZzUjh4XQvr1Tcqs8IkSisTR1kFIqm1KqvFKqavjDyvML\nIcQT8uSBd9+FY8fg7t1n758MNPXJ98ypNYcu3nqi6Gpk2bObRB2BgSZRR1BQYkSZeiVSO1VDa+0j\nHbDkxzWXYu1aqJz5bzoMdGXKe+dsHRK/Tz6EV94bzPjLl7dLrGHfmeyk97R1VLajFHz20jRuBDow\nbvAtW4cjRJKxbCRMKfUG0A94AdgLVAC2ATWtuoYQQkQzZAgMG2aGiVIAK2qJlSwJc+ZAq1bQowfM\nnm2+yIink3bKPmXODD//4UzrCr/Te/zL3Lh6imEzCyb5v5lbt2BQ3yBmzPWkqNNxNk/cScUB9ZI2\niGSq9PBGdJk9j8nftOPNwVCokK0jEiLxWTkS1g/wBU5rrWsApYHApx8ihBAJ5OxsOmD//Qc7dtg6\nmiTTsiWMGgVz58L48baOJsVIjHZKA78qpXYrpbrHtINSqrtSapdSatejR5IR3xbSeXuw9GAxOmVe\nwYhvCzKw+QlCQ5Pm2lrD0o//xdNT8808Z95peZq953NRcYBf0gSQEuTPz9heF3EKfciQ7tdtHY0Q\nScLKxBwPtNYPlFIopZy11keUUh4Wnl8IIWLXrh3s328KOWfIYOtoksSIEebtDh1q8pK0bGnriJK9\nxGinKmutzyulcgG/KaWOaK03Rt5Baz0DmAGQvUBxncDriXhyKpSf2f+kJ1upBXy+sh3/dQ7hm9mO\nOFn5TQhYsP1MxHRip+N3ODE9M3/e8sO74E2Wbs2Cn18Bs8/yAxHHpOTCy1bJO+4t3p01lVFrB7Fl\ns6ZSZRneF6mblSNh55RSWYEVmIZoJXDawvMLIUTshg+HCxfsJmU9mCmI334LFStCp052NRAYX5a3\nU1rr82E/rwDLgfIJjlIkGofcrkz6pxGj+15j7v8cadxI898Na/vFK/ee58ipQEInX2PZJ5U5cMuT\nJu7z8Oy/l4l7t9F6+jaGLv+b7SdvRByT2lLQx0umTLwzwZW8DhcZ2Pthko1UCmErVmZHbB726yil\n1DogC7DGqvMLIcRTVawIXbvCZ59B+/Zm4ZQdSJfOJOrw84MmTWD7dpO9X0RndTullMoAOGitb4f9\n/jIwOuGRithEzSwaNYto5FGo2PZRWTIz/AvI4wVv9QzBt8B1Vq7LTIlyCS/qHBoKp3fk5Np3Bdgf\nnJdX8myh/ug0/BpamJBI+/m5Z0+1KegTIkPPjnzo+JAubzqzaJGZ4CBEamVlYo7InyQnw37mAc5Y\ndQ0hhHiqjz+GVatMtorNm8HB0gSwyZarK6xeDf7+0LgxbNoEWbLYOqrkJxHaqdzA8rDaz07AAq21\n3HxMJFFHig5dNJn0IndkVu49/8TUvpj2CdftDY3nzvm8OvNl/Pw0nw8/x+sjX4hXwg6t4Y9pRxky\nqyi7dhchX/aL/N5/K7WGVwLg9ec/pX1ydKRj9/RMnqEZ8vYjmjdPS/qE942FSJasnAn9I2aBsgLS\nAe7AUaCEhdcQQojY5cgBn35q0gUGBpp87nbC0xOWLIEGDaBZM/j5ZzNKJp5gaTultT4BeFsWnXiq\nqJlFY8si6umWmYAe/hH7xDp6phSVZnRmd9U/aN/VmW4fVGLWzCPk6BCIS6EnpyjGNmoVEqwZ12MD\n3y/IyYEHXmR1uUm+Zqep+PJdar2Z+mt+JQYHB5iY/3Oq/zWAiWPu8v6H9rHGV9gfy24Ta61Laq1L\nhf0sgpkX//Q8y0IIYbVOnWDdOrvqgIWrU8ekrl+/3szIDAl51hH2Rdop+xO1Ll9MNfjydqjJ2nMe\nfFV2Nocu5GH1x35snVGUS39nJjRERTsmOBi2b3rIu1W2kT/9FUbOqs6dIBdeK72QBh/soVK9uzQr\nY+fruxKo2kf1aM5yPvrEkYsXbR2NEInD4pxAj2mt9yilJP+qECJphc8lunjRZK14/327KqLVvj1c\nuQIDB8Jbb8G0aXb19p+LtFOpX1xHzxxy5eStXa/x1/s/sGV3Ga7szMfGPTlwVkEUSn+Sf9Lcxn/o\nDq4E5+JM0IsEB6XFEV+qumymQuk1pOngzqy+bZPqbaV+xYvzccfvWT2vIcPeugF1n70eUIiUxso1\nYQMjPXUAygAXrDq/EEI8l+XLTcbE3LmhWzdbR5OkBgyAy5dhwgTIk8fUExPSTolnu50/J6Xyn2He\nyrz83GMFmzdrdp9z5b8HGbmDE7kyXMbB3xnXwrd5wf0yKoczUJQm9p7ZMBEU/rw3fb+fwcTlvRjb\ntAC4PU5k+rS1fkKkFFaOhGWK9HswZu79UgvPn2JlzJiRO3fuRHu9S5cuNGrUiFdfffW5zzlq1Cgy\nZszIO++8E6drX7hwgb59+7JkyZIY9wsMDGTBggX06tUr1nNVrFiRrVu3sn79ej799FNWr14d53hX\nrFhB0aJF8fT0BGDEiBFUrVqV2rVrx/kcQjyXnj1h2TLTI6lVCwoVsnVESeqjj8yI2AcfQLZs0K+f\nrSNKFqSdEnGS1lnRdE5zmsa6hxtQNOkCskfZszNstDNzhwTy24yc/LE5b8SofmwjmkKkJFamqP/A\nqnMJ6+XNmzfWDhiYTtjUqVNj7IQFBwfj5OTE1q1b4339FStW0KhRo4hO2OjRksVZJDIHB5Ogo2RJ\ns05s/Xosr8qaiKJOvYlNbFNylIIZM0x+kv79IU0aeMo9Frsg7ZQAmdaWkmQd8BofOGve6peGlStN\n0iEhUgvLEnMopX5QSq2K7WHVdVIyrTW9e/fGw8OD2rVrc+XKlYhtu3fvplq1apQtW5a6detyMWwl\n6syZM/H19cXb25tXXnmFe/fuPfUaJ0+exN/fn5IlSzJs2LCI10+dOoWXlxcABw8epHz58vj4+FCq\nVCmOHTvGkCFDOH78OD4+PgwaNIj169dTpUoVmjRpEtFxypgxY8T5bt26RcOGDfHw8KBnz56EhlVV\njLzPkiVL6NKlC1u3bmXVqlUMGjQIHx8fjh8/TpcuXSI6hWvXrqV06dKULFmSrl27EhQUBEDBggUZ\nOXIkZcqUoWTJkhw5ciTef3thp158EaZOhS1bYNw4W0cTZ1GTCcQmpiQDkTk5waJFpn7YW2+ZTpk9\nk3Yq9QnvUIU/wqepxSbqv63tJ28wdPnfcT5eJDEnJ7r3SoNnsVAG9b7Pw4e2DkgI61h5W/gEpt7K\n/8KetwUuAyssvEbCVa8e/bVGjSB8Wt/zbl+/Ps6XXr58OUePHuXQoUNcvnwZT09PunbtyqNHj+jT\npw8rV67E1dWVgIAA3n//fWbNmkWLFi3oFraeZdiwYXz77bf06dMn1mv069ePN998k06dOjFlypQY\n9/n666/p168f7du35+HDh4SEhDB+/HgOHDjA3r17w97Wevbs2cOBAwdwd3ePdo4dO3Zw6NAhChQo\nQL169Vi2bFms0yorVqxIkyZNYpx6+eDBA7p06cLatWspWrQonTp1Ytq0afTv3x+AnDlzsmfPHqZO\nncqnn37KN9988+w/tBCRtWsH165By5a2jiTOoiYTiE1cRsrSpoXFi6FFC1M+zdERXrffokUpo50S\ncRK1bhiY9PQxvR4u6r+tqMWdn3W8SHpOTvBZgcnU/6U/X469ydujpQiiSB2s7IRV0lqXi/T8B6XU\nLq31AAuvkaJt3LiRtm3b4ujoSN68ealZsyYAR48e5cCBA9SpUweAkJAQ3NzcADhw4ADDhg0jMDCQ\nO3fuULdu3adeY8uWLSxdapY4dOzYkcGDB0fbx9/fn3HjxnHu3DlatGhBkSJFYjxX+fLlY+yAhW8r\nFLbGpm3btmzevDlea9uOHj2Ku7s7RYuaufWdO3dmypQpEZ2wFi1aAFC2bFmWLVv23OcXAoC+fc3P\nkBC4fh1y5bJtPEnM2RmWLoXmzeGNN+Du3cd/Ejsj7VQqEtebFYl9DpH46k1pTMMiPzHqoxq07m5e\nk2mlIqWzshOWQSlVKKx4JUopdyD5Vdh71shVQrfHg9aaEiVKsG1b9LvaXbp0YcWKFXh7ezNnzhzW\nx+H66hn5qNu1a4efnx8//vgjDRo0YPr06REdqsgyZIj9P1/Ua4Q/j/z6gwcPnhnrszg7OwPg6OhI\ncHBwgs8n7FzbtnD4MGzeDFlSx93UuKwdC/9ysny5+RP06wf//QcjRthd+vqU0U4JIZ700kt8+dZK\nSnxVnX5tL/PKp0+OVkq2RJESWbYmDBgArFdKrVdKbQDWAZKPK5KqVasSEBBASEgIFy9eZN26dQB4\neHhw9erViE7Yo0ePOHjwIAC3b9/Gzc2NR48eMX/+/Gdeo1KlSixatAgg1v1PnDhBoUKF6Nu3L02b\nNmX//v1kypSJ27dvx/m97Nixg5MnTxIaGkpAQACVK1cGIHfu3Bw+fJjQ0FCWL18esX9s5/fw8ODU\nqVP8+++/AMybN49q1arFOQ4hnkv37nDkCLz6Kjx6ZOtoEiwua8cirxtLlw6+/x66dDFp6/v3h7Dl\nnPZC2ikhUij3T3oxIudUlm3OTeZzuQjo4R/xiMsaWiGSGyuzI65RShUBioW9dERrHWTV+VOD5s2b\n88cff+Dp6Un+/Pnx9/cHIG3atCxZsoS+ffty8+ZNgoOD6d+/PyVKlGDMmDH4+fnh6uqKn5/fMztK\nX3zxBe3atWPChAk0bRpzct3Fixczb9480qRJQ548eRg6dCjZs2enUqVKeHl5Ub9+fRo2bPjU6/j6\n+tK7d2/+/fdfatSoQfPmzQEYP348jRo1wtXVlXLlykWk5m/Tpg3dunVj8uTJT2RpTJcuHbNnz6Zl\ny5YEBwfj6+tLz5494/w3FeK51K5tslN07Wo6ZLNmpeihoLhMpYo6SubkZGpYZ8sGkybBpUsmiaSL\nS2JGmjxIOyVECpYuHQMX+DKvyXF69ytAjXrwlAk7QiR7SmudsBMo5Quc1VpfCnveCXgFOA2M0lrf\nSHCUcZS9QHF94/ThpLqcECKlGjkSRo82RbRGjLB1NIkqvBMW0MP/ide1hk8/hcGDoVw5WLkSwpai\nJmtKqd1R1nXF5Rhpp4RIJTZvDKVKNQf69IHJk81rsX3OPUv1OdUBWN9lvYURCnsX13bKiumI04GH\nYRetCowHvgNuAnaeEFkIkSyNGmUyU4Qlx7FHSsGgQbB8ORw6BL6+8Ndfto4q0Ug7JUQqUbmqA317\nBPHll7D2Z8lZL1IuKzphjpHuIrYGZmitl2qthwOFLTi/EEJYSyn44gsIW8vI9u1maMgONW1qyqg5\nOEClSvDNN6nyTyHtlBCpyEcNN+PBEbq0uktgoK2jESJ+LOmEKaXC15bVAv6ItM3K7ItCCGG9tWuh\nQgV4+22Twt4OeXvDzp1QsSJ06wbt28Ot1FWzVtopIVIRl8a1+K7lai7eyUSPppdS440jYQes6IQt\nBDYopVYC94FNAEqpwpipHkIIkXzVqAF9+pgsFa++aopo2aHcueGXX2DsWAgIgLJlYccOW0dlGWmn\nhEhlys99i7G5vmTxxjxc/MElolxH+GPB9jO2DlGIp0pwJ0xrPQ54G5gDVNaPM304AH0Sen4hhEhU\nDg5mdfcXX8CqVVC9Opw9a+uobMLREd5/HzZsgKAg8PeHd96Be/dsHVnCSDslRCqUPj2DNzWiqdOP\n/PlTCVzvPq4dFrk0hxDJlSXTMLTWf8bw2j9WnFsIIZJE377g7g7t2sFPP0GPHraOyGYqV4a//zaZ\nEz/7DFasgC+/hPr1bR1Z/Ek7JUTqo4oWYe7SC5TrG8qBuV5s3QqFC0cvzREXC7afidZxCy90L0Ri\nsLJYs4jFpUuXaNOmDS+99BJly5alQYMG/PNP0rX9e/fu5aeffnru46pXr86uXbueus/69etp1KgR\nAKtWrWL8+PHxjmPXrl307dsXgFGjRvHpp58+V7yff/459yLdsm/QoAGBsmJXPI/GjU0x5+7dzfM/\n/0x1i6PiKksW+Ppr+OMPM1jYoIF5HDli68iEEOKxLE2qsfqXtISGaupVvcvlS/FbILZy73kOXXz8\neS+jaSKxyYLkRKa1pnnz5nTu3JlFixYBsG/fPi5fvkzRokWfeXxwcDBOTo//M2mt0Vrj4BD3/vPe\nvXvZtWsXDRo0eP438ByaNGlCkyZN4hVHcHAw5cqVo1y55yr/84TPP/+cDh064BJWdTY+HU8hyBc2\npSUwEOrVM1WMJ06E1q1TdGHn+KpRAw4cgK++MqXVvLygY0czbbGw5BUUQiQDHh7w46AN1BziS62S\nlyn0jhMn79945ojYlaAgcmV2jnju6ZY5otZYfEbTkquUOsoXU9zwZOwp9b2BjIQlunXr1pEmTRp6\n9uwZ8Zq3tzdVqlRBa82gQYPw8vKiZMmSBAQEAGZ0qUqVKjRp0gRPT09OnTqFh4cHnTp1wsvLi7Nn\nz/Lrr7/i7+9PmTJlaNmyJXfu3AFg586dVKxYEW9vb8qXL8/NmzcZMWIEAQEB+Pj4EBAQwN27d+na\ntSvly5endOnSrFy5EoD79+/Tpk0bihcvTvPmzbl//36M72nNmjUUK1aMMmXKsGzZsojX58yZQ+/e\nvQH4/vvv8fLywtvbm6pVq/Lw4cNocYwaNYqOHTtSqVIlOnbs+MSoGpjOqr+/P0WKFGHmzJkRf5vI\n+/Tu3Zs5c+YwefJkLly4QI0aNahRowYABQsW5Nq1awBMnDgRLy8vvLy8+PzzzwE4deoUxYsXp1u3\nbpQoUYKXX3451vcs7FDWrPDrr6aCcdu2pqbY5s22jsom0pDMaSYAACAASURBVKaFgQPh2DGTw2TR\nIihWDDp1gj17bB2dEEKA37vVWN10JqeuZWT/mBco6JD9qfsfuniLa3eCkig620qpo3xR44bosafU\n9wZ2NhLWvz/s3WvtOX18IOw7fYwOHDhA2bJlY9y2bNky9u7dy759+7h27Rq+vr5UrVoVgD179nDg\nwAHc3d05deoUx44dY+7cuVSoUIFr164xduxYfv/9dzJkyMCECROYOHEiQ4YMoXXr1gQEBODr68ut\nW7dwcXFh9OjR7Nq1i6+++gqAoUOHUrNmTWbNmkVgYCDly5endu3aTJ8+HRcXFw4fPsz+/fspU6ZM\ntJgfPHhAt27d+OOPPyhcuDCtW7eO8b2NHj2aX375hXz58hEYGEjatGmjxTFq1CgOHTrE5s2bSZ8+\nPevXr3/iHPv37+fPP//k7t27lC5dmoYNG8b6d+7bty8TJ05k3bp15MyZ84ltu3fvZvbs2Wzfvh2t\nNX5+flSrVo1s2bJx7NgxFi5cyMyZM2nVqhVLly6lQ4cOsV5H2Jny5U2KwOnTzTBQlSqwa5dJHWiH\nXF1NEsl334VPPoEZM2DePJPa/s03oVkzyJjR1lEKIeySUtRY3o/fXv+GhrNfYesYDxbND6FOq2wx\n7t56+jYuX0/iGG0opY7yRY4bYo49pb43GQmzoc2bN9O2bVscHR3JnTs31apVY+fOnQCUL18ed3f3\niH0LFChAhQoVAPjzzz85dOgQlSpVwsfHh7lz53L69GmOHj2Km5sbvr6+AGTOnPmJqYzhfv31V8aP\nH4+Pjw/Vq1fnwYMHnDlzho0bN0Z0QEqVKkWpUqWiHXvkyBHc3d0pUqQISqlYOyyVKlWiS5cuzJw5\nk5Cn1F5q0qQJ6dOnj3Fb06ZNSZ8+PTlz5qRGjRrsiGe+7M2bN9O8eXMyZMhAxowZadGiBZs2bQLA\n3d0dHx8fAMqWLcupU6fidQ2Rijk6Qq9ecOIEzJ8P4TcnxoyBTz+FS5dsG58NuLmZGZrnzplO2eXL\nZopirlzQpg2sXJnyMyoKIVIgpfCf1Y2dE9aRL+QMddtkZeBAu608IpI5uxoJe9qIVWIpUaIES5Ys\nee7jMmTIEOtzrTV16tRh4cKFT+zz999/x+ncWmuWLl2Kh4fHc8cVV19//TXbt2/nxx9/pGzZsuze\nvTvG/aK+z8hUlPU3SimcnJwIDQ2NeO3BgwcJitPZ+fFccEdHR5mOKGLn4mIyJwJoDVu3wpo1Zlio\nYkVo0QIaNjSLE+xE1qxmhkHfvubPsWABLF5s6ow5O5uBw7p1oU4ds5bM0dHWEQsh7MFL777Ctlcv\nM+hTxaRJsPS7O4zoeZVOI91Jk8bW0QlhJOuRMKVUPaXUUaXUv0qpIbaOJz5q1qxJUFAQM2bMiHht\n//79bNq0iSpVqhAQEEBISAhXr15l48aNlC9f/pnnrFChAlu2bOHff/8F4O7du/zzzz94eHhw8eLF\niNG027dvExwcTKZMmbh9+3bE8XXr1uXLL78kvFTOX3/9BUDVqlVZsGABYKZR7t+/P9q1ixUrxqlT\npzh+/DhAtI5guOPHj+Pn58fo0aNxdXXl7Nmz0eJ4lpUrV/LgwQOuX7/O+vXr8fX1pUCBAhw6dIig\noCACAwNZu3ZtxP6xnb9KlSqsWLGCe/fucffuXZYvX06VKlXiHIcQ0SgFP/8MBw/CqFFw5w68/bYZ\nFgIICTHz9X78EU6fNp22VMzBwaS1nzoVLl40RZ979YILF2DQIDNt+623bB1l4kgN7ZQQqVGGQrmZ\nOhU2/HSXXDeP8cY4d17KdJlRzfZy+M+bqf1jWaQAyXYkTCnlCEwB6gDngJ1KqVVa60O2jez5KKVY\nvnw5/fv3Z8KECaRLl46CBQvy+eefU7lyZbZt24a3tzdKKT7++GPy5MnDkWfkgHZ1dWXOnDm0bduW\noCCzqHTs2LEULVqUgIAA+vTpw/3790mfPj2///47NWrUiJh++N577zF8+HD69+9PqVKlCA0Nxd3d\nndWrV/Pmm2/y2muvUbx4cYoXLx7jWrZ06dIxY8YMGjZsiIuLC1WqVImx4zNo0CCOHTuG1ppatWrh\n7e1N/vz5n4jjWUqVKkWNGjW4du0aw4cPJ2/evAC0atUKLy8v3N3dKV26dMT+3bt3p169euTNm5d1\n69ZFvF6mTBm6dOkS0cF94403KF26tEw9FAnn6QkjRpjH6dOm8wVw9KgZIQuXMaOpQTZkiBlNu3XL\nDBlly/bkI1cuM+IW/u0gBWZjTJMGXn7ZPMBMWdywwbz91Ca1tFNCpGZV62dgx/XCrO67lCmLXRm9\nsjIfrHQgu0sx7r6ejouXL7Hl7B+kv3KPINcMPAoKJY1zsh6jEKmE0sn0VoBSyh8YpbWuG/b8PQCt\n9UexHZO9QHF94/ThJIpQCCGeIjDQjJQdOGAep09Dt26mFtmOHeDnF/2YadOgZ0+TctDXF9KlMw9n\nZ3Bygo8+gvbtzflatDCdNAeHx48RI6BlSzh8GMLWa564dpcHj0JIl8aR5fU7s6N0dfJdOMlbc8ZE\nu/yK+p3itv3iKd6aMzra9uX1OrOzdDWqhlzlrdmRjvfwgP/9L95/ysiUUru11vGvZWEhaaeESGG0\n5uzKPfz87QU+O1aSk5XaUjH0T9bPebxLKIoNlYfxdYf6nDlwiXlTBxGinAhWjoQqR0Jx4OdSLfir\nWx3SXLnL22Mi3XALu2/2S6lm/PVG2Pax7xLVGu/m7H29dtj2wTFsbxZtu+bxTblfvJtGbB84NvoA\nfNTtoVrjoBTOaUzncpVnYxY0KI+3o2OcjrfV9tMHLjN1xtiIuAGCHoXyfdH6nOjdgDRX7tJ/zOAn\n3lvU7XG9vlLwwu6fcC2RK9r+zyuu7VSyHQkD8gFnIz0/B0T71qKU6g50B8iWt1DSRCaEEM+SNStU\nqmQeUZUubTpl//335MM/LANUrlwwdCg8eABBQeZncPDjGmYuLlCuHISGmlGz0FDzyJLFbHdygrCR\nY+f09/nv1gPuA0Fp0wEQ4uhEYJbo6ZvjvN3BkZuZomcce5QmLQChjk7mPYTLFnN2slRA2ikhUhKl\neLFZWbo3K0vG7Wfov/YBRx948U6bfmQ9f5WXHELIx0Oy1q9MU598/HjtHgeyeeMYGmIeOhgHrXng\nYhKKaUfF9XSu5vdIl3kQlnBMOyiuObs+GYOGoLD16NpBcT1tjmhhRt2u0LFu/y9t9M/XmLY7OzkQ\nksYszHXLmwNPt8zoa/fifLwttr+UJxP3XHJExA0Q9CgE56yZIo6/6Zz9ifcWdXtcr+/ooMjvlLQj\noMl5JOxVoJ7W+o2w5x0BP61179iOKVeunN61a1dShSiEECKJJbORMGmnhEjBqs+pDsD6LuttGodI\nXeLaTiXnSa/ngRcjPX8h7DUhhBAiOZB2SgghRLwk507YTqCIUspdKZUWaAOssnFMQgghRDhpp4QQ\nQsRLsl0TprUOVkr1Bn4BHIFZWuuDNg5LCCGE+D979x0eRdU9cPx7CL2j8CK9iUgPvUkVLIggqCAo\nELEA9ldFsYD8sIEVxUKxAL6AURRRsSuIWJAizQAiTUVUUJGOBM7vjzuBJaRtMtnG+TzPPtmdmb1z\nZifZmzv3zrmA1VPGGGOyL2IbYQCq+h7wXrjjMMYYY9Ji9ZQxxpjsiOThiMYYY4wxxhgTc6wRZowx\nxhhjjDEhZI0wY4wxxhhjjAmhiJ0nLDtE5B9gfTbeWgL4x6ftMtsmvfXBLC8N7MgkjlDI6ueW2+UF\n876cnsNg16W3fSScw5Px/GW03v4Gc/8c+nH+qqhqmQzWR7QM6qmsfH+k9zpwecrznP6O5uRcBXss\nmT3PybGE8jhSv07r/ETLseTmOckozqysj6Rjsd+v9JdH4zlJb12wx5K1ekpVY+YBTMrN92Vlu8y2\nSW99MMuBJeH+rHPyeYfr/PlxDoNdl8F5Dfs5PBnPXybnxP4Go+A7NNofQf6eTcrK68DlActy9Dua\nk3MV7LFk9jwnxxLK48gg/sBlUXEsuXlOsnIsOa1r7fcrso8lUs+Jn8eSlUesDUd8J5ffl5XtMtsm\nvfXBLo8EfseW2+cvq9tmtE2w6+z8+fs++xs8XrSdQz/OX7QL5vcs9bL0Xr+TwTbZlZNzFeyxZOV5\ndoXyOFK/Tuv85ESsnJOslJPTutZ+v4IXK79fufF/XnaOJVMxNRzxZCEiS1S1abjjMNln5zC62fkz\nkS6WfkftWCJPrBwH2LFEolg5jszEWk/YyWJSuAMwOWbnMLrZ+TORLpZ+R+1YIk+sHAfYsUSiWDmO\nDFlPmDHGGGOMMcaEkPWEGWOMMcYYY0wIWSPMGGOMMcYYY0LIGmHGGGOMMcYYE0LWCDPGGGOMMcaY\nELJGWAwSkSIiskREuoU7FhMcEaktIhNEZJaIDA13PCZ4InKRiEwWkUQROSfc8RiTllipJ2LlOzOW\nvjdEpLqIvCgis8IdS3Z4fxtTvfNxebjjya5oPw+BYunvI5A1wiKIiLwkIn+IyOpUy88TkXUi8qOI\nDM9CUXcCr+VOlCY9fpw/VV2jqkOA3kCb3IzXnMinc/iWql4DDAH65Ga85uQTS/VErHxnxtL3hk/H\nslFVr8rdSIMT5HH1AmZ556N7yIPNQDDHEYnnIVCQxxIRfx9+sxT1EURE2gF7gGmqWs9bFgf8AHQB\nfgEWA32BOODhVEUMAhoCpwIFgR2q+m5oojd+nD9V/UNEugNDgVdUdUao4jf+nUPvfY8D01V1WYjC\nNyeBWKonYuU7M5a+N3w+llmqekmoYs9IkMfVA3hfVZeLyAxV7RemsE8QzHGoapK3PmLOQ6BsHktM\n1at5wx2AOUZVF4hI1VSLmwM/qupGABF5Feihqg8DJwwjEZEOQBGgDrBfRN5T1SO5Gbdx/Dh/Xjlv\nA2+LyFzAGmEh5NPfoABjcJV4TFQUJnLEUj0RK9+ZsfS94dc5iTTBHBfun/+KwHIibMRYkMeRFNro\nghPMsYjIGiLg78Nv1giLfBWAnwNe/wK0SG9jVb0HQEQScFc4rQEWXkGdP++fo15AAeC9XI3MZFVQ\n5xC4EegMlBCR01V1Qm4GZwyxVU/EyndmLH1vBHtOTgUeBBqJyF1eYy0SpXdcTwPPiMgFwDvhCCxI\naR5HFJ2HQOmdk0j++8g2a4TFKFWdEu4YTPBUdT4wP8xhmBxQ1adxlbgxES0W6olY+c6Mpe8NVf0T\nd+9OVFLVvcCV4Y4jp6L9PASKpb+PQBHVzWrStBWoFPC6orfMRAc7f9HPzqGJdLH0OxorxxIrxwGx\ndSyBYuW4YuU4ILaOJVPWCIt8i4GaIlJNRPIDlwFvhzkmk3V2/qKfnUMT6WLpdzRWjiVWjgNi61gC\nxcpxxcpxQGwdS6asERZBRGQm8DVQS0R+EZGrVDUZuAH4EFgDvKaq34czTpM2O3/Rz86hiXSx9Dsa\nK8cSK8cBsXUsgWLluGLlOCC2jiW7LEW9McYYY4wxxoSQ9YQZY4wxxhhjTAhZI8wYY4wxxhhjQsga\nYcYYY4wxxhgTQtYIM8YYY4wxxpgQskaYMcYYY4wxxoSQNcKMMcYYY4wxJoSsEWainohcJCIqImeG\nO5b0iMjd4Y7BLyIyREQGBLF9VRFZHcT2IiKfiUjxDLZ5VURqZrVMY4wJt1isq0Rkvog0zc19BFl2\ndxEZHuR79gS5/SwRqZ7B+sdEpFMwZZqTkzXCTCzoCyz0fuYqEcmbzbfGRCNMRPKq6gRVnZaLu+kK\nrFDVXRls8zxwRy7GYIwxfrO6Khf34dVPb6vqmNwo39tHXSBOVTdmsNl4IKiGoDk5WSPMRDURKQqc\nBVwFXBawvIOILBCRuSKyTkQmiEgeb90eEXlSRL4XkU9FpIy3/BoRWSwiK0TkDREp7C2f4r1/EfCI\niBQRkZdE5FsR+U5EenjbJYjImyLygYisF5FHvOVjgEIislxEpqdxDH1FZJWIrBaRsQHL04uzhreP\npSLyRcpVVS/Op0XkKxHZKCKXpLGvqiKyVkSmi8ga74peynE2EZHPvXI/FJFy3vL5IjJORJYAN4vI\nKBG53VsXLyLfiMhKEZktIqUCylohIiuA6wP2X9f73JZ770mrN+tyYI63fRHvHK7wPp8+3jZfAJ1z\n8I+GMcaETLTXVSIS55W/2quv/huw+lJvHz+ISNuAfTwT8P53vWPNrD7MTr0XeMxH9+vVd595dc2n\nIlLZW15NRL72juOBgH2X887Fcu8426ZxKgPrpzQ/E1XdApwqIqdl+EthjKrawx5R+8B9Ib7oPf8K\naOI97wAcAKoDccDHwCXeOgUu956PBJ7xnp8aUO4DwI3e8ynAu7irXwAPAVd4z0sCPwBFgARgI1AC\nKAhsASp52+1JJ/7ywE9AGSAv8BlwUSZxfgrU9J63AD4LiPN13MWVOsCPaeyvqlduG+/1S8DtQD7v\n8yvjLe8DvOQ9nw88F1DGKOB27/lKoL33fDQwLmB5O+/5o8Bq7/n4gGPKDxRKI8YtQDHv+cXA5IB1\nJQKef5xyvu1hD3vYI5IfMVBXNQE+Dnhd0vs5H3jce94V+MR7npASr/f6XaBDRvvI5JgzqvcCjzkh\n4D3vAAO954OAt7znbwMDvOfXp8QD3Abc4z2PS6mHUsX3OVA/o8/Eez4ZuDjcv3f2iOyH9YSZaNcX\neNV7/irHD/P4VlU3quphYCbuKiTAESDRe/6/gOX1vCtsq3AVZt2Asl73ygE4BxguIstxFVBBoLK3\n7lNV/UdVDwBJQJVM4m8GzFfV7aqaDEwH2qUXp3c1tTXwurf/iUC5gPLeUtUjqpoElE1nnz+r6pep\njr8WUA/42Cv3XqBiwHsSSUVESuAqnc+9RVOBdiJS0lu+wFv+SsDbvgbuFpE7gSqquj+N+E5R1d3e\n81VAFxEZKyJtVfWfgO3+wDVijTEm0kV7XbURqC4i40XkPCBwuPib3s+luAt9OZGdei/wmAO1AmZ4\nz1/h2OfXBvc5pyxPsRi4UkRG4RpauzlROWC79zyjz8TqJ5MpG8pjopaInAJ0AuqLiOKuXKmIDPM2\n0VRvSf069fIpuF6oFSKSgLtCmWJv4K5xV7jWpYqnBXAwYNFh/P0bU1wv105VjU9nm8D9SwblpH4t\nwPeq2iqd9+xNZ3lQVHWGN2zkAuA9ERmsqp+l2ixZRPJ4jckfRKQx7grrAyLyqaqO9rYrCKTViDPG\nmIgRC3WVqv4tIg2Bc4EhQG9c7xIBZQWWk8zxt7wUzKj8jHZN5vVeduqnEz5jVV0gIu1w9dMUEXlC\nT7z/eT/esWTymVj9ZDJlPWEmml0CvKKqVVS1qqpWAjYBKeO4m3tjv/Pghtct9Jbn8d4L0C9geTFg\nm4jkw11dTM+HwI0iIgAi0igLsR7yyk3tW6C9iJQWkTjc1dGUnqUT4lSXrGKTiFzq7Vu8SiAYlUUk\npbGVcvzrgDIpy0Ukn7gbkNPl9Ur9HTBuvj/wuaruBHaKSMpVx6OfpbiMUhtV9WncuPoGaRS9Djc0\nBxEpD+xT1f/hhjU2DtjuDCDLWReNMSZMor6uEpHSQB5VfQM3UqLxCe883mYgXkTyiEgloHlm+/D4\nWe99xbH77y7H3UsM8GWq5XjlVgF+V9XJwAukfYxrgNO97TP6TKx+MpmyRpiJZn2B2amWvcGxYR6L\ngWdwX5qbArbdi6v0VuOuTqb0rIwAFuG+oNdmsN/7cfdQrRSR773XmZnkbX/cjciqug2XRWkesAJY\nqqpzMonzcuAqcUkvvgd6ZGH/gdYB14vIGqAU8Lyq/our+MZ65S7HDf/IzEDgURFZCcQHxHgl8Kw3\ndCSwR643sNpbXg9IK8viXI5d2a0PfOttfx/u/gdEpCywX1V/y9ohG2NM2ER9XQVUAOZ738X/A+7K\npJwvvWNJAp4GlmVhH+BvvXcjbnjhStxFwpu95Tfj6sBV3nGl6ACsEJHvcI3hp9IoM7B+SvMz8RqY\npwNLshCjOYmJanq93sZELxHpgEse0S2NdXtUtWjoowpObsQpIlWBd1W1np/l+klcVsZpqtolg23+\nC+xS1RdDF5kxxvgrFuoqP0X6MYtIIdxF0zbp3IeGiPQEGqvqiJAGZ6KO9YQZYyKK1zs4WTKYrBnY\niUsEYowxxoSEl0zqPo7vQUstL/B4aCIy0cx6wowxxhhjjDEmhKwnzBhjjDHGGGNCyBphxhhjjDHG\nGBNC1ggzxhhjjDHGmBCyRpgxxhhjjDHGhJA1wowxxhhjjDEmhKwRZowxxhhjjDEhZI0wY4wxxhhj\njAkha4QZY4wxxhhjTAhZI8wYY4wxxhhjQsgaYcYYY4wxxhgTQtYIMyYXiMgeEake7jiMMcaYtFg9\nZUx4WSPMnNREREXk9ByWMV9Erg5cpqpFVXVjzqLzj4hUFZF5IrJPRNaKSOcMtu0tIl95285PY328\niCz11i8VkfiAdSIiY0XkT+8xVkQkt9+bU97vwR8ikjdgWT5vmfq1H2OMCZbVU2lua/UUVk9FO2uE\nGZOBwC+7KDcT+A44FbgHmCUiZdLZ9i9gHDAm9QoRyQ/MAf4HlAKmAnO85QDXAhcBDYEGwIXA4BC8\n1w9/A+cHvD7fW2aMMRHL6qnjWT1looaq2sMevj6ASsCbwHbgT+AZb3ke4F5gC/AHMA0o4a2rCigw\nEPgJ2AHcE1BmHHA3sAHYDSwFKnnrzgQ+xn0prwN6B7xvCvAsMNd73yKghrdugbfPvcAeoA/QAfgF\nuBP4DXgF92X6rnc8f3vPK3plPAgcBg54ZaQcqwKne89LeMe63Tv2e4E83roEYCHwmFf2JuB8n8/H\nGcBBoFjAsi+AIZm872pgfqpl5wBbAQlY9hNwnvf8K+DagHVXAd/k9nvTiH0+8IBX5h7gHVzFPh3Y\nBSwGqgZsr955eT1g2SzcPwIa7r8pe9jDHv4+sHoq5XvP6imrp+wRpof1hBlfiUgc7st/C67CqgC8\n6q1O8B4dgepAUeCZVEWcBdQCzgZGikhtb/mtQF+gK1AcGATsE5EiuIptBvAf4DLgORGpE1DmZcD/\n4SqpH3EVEqrazlvfUN2wjETv9WnAKUAV3FWvPMDL3uvKwP6UuFX1HlxFcYNXxg1pfCzjcRVcdaA9\nMAC4MmB9C1ylXBp4BHgxcHhDIBF5V0R2pvN4N633AHWBjaq6O2DZCm95sOoCK9X79vesDCirrld2\nWvvJzfem5TKgP+53sAbwNe48ngKsAe5Ltf1bQDsRKSkipYC2uKuaxpgYYvWU1VNYPWUigDXCjN+a\nA+WBYaq6V1UPqOpCb93lwBOqulFV9wB3AZelGkrxf6q6X1VX4L7cGnrLrwbuVdV16qxQ1T+BbsBm\nVX1ZVZNV9TvgDeDSgDJnq+q3qpqMu8KU2RjtI8B9qnrQi+VPVX1DVfd5FcSDuEoqU15lfxlwl6ru\nVtXNwOO4L90UW1R1sqoexg1fKAeUTas8Ve2mqiXTeXRLJ4yiwD+plv0DFMvKMQRZVur1/wBFvco6\nN9+blpdVdYOq/gO8D2xQ1U+834PXgUaptj+AuxLZx3u87S0zxsQWq6cCWD1l9ZQJj1gZR2wiRyXc\nl3VyGuvK4648ptiC+x0M/CL/LeD5PtyXWkq5G9IoswrQQkR2BizLixuekVmZ6dmuqke/1ESkMPAk\ncB7uKiVAMRGJ8yqkjJQG8nHicVdIKz5V3eddXMwsxmDswV2VDVQcN+zF77JSry8O7FFVFZHcfG9a\nfg94vj+N12l9xtOAhwHBDfUxxsQeq6eOZ/WU1VMmDKwnzPjtZ6ByOjcK/4qrjFJUBpI5/ksno3Jr\npLP881RX2oqq6tBgAw+QOsvQbbihJy1UtTiQMjxE0tk+0A7gECce99bsBCYi74tLK5zW4/103vY9\nUF1EAq/GNfSWB+t7oEGqYSgNAsr6nmNXhVPvJzff65cvOHaFd2Em2xpjopPVU8ezesrqKRMG1ggz\nfvsW2AaMEZEiIlJQRNp462YC/xWRaiJSFHgISEznamRqLwD3i0hNcRqIyKm4cf1niEh/L1VrPhFp\nFjBGPzO/48bAZ6QY7orUThE5hRPHaKdbhncF8jXgQREpJiJVcPcN/C+L8aUu73yv8k7rcX467/kB\nWA7c552PnriK4Y20theROBEpiLtSm8d7Tz5v9XzcDd43iUgBEUm5t+Az7+c04FYRqSAi5XH/GEwJ\nwXt9oaqKy3bV3XtujIk9Vk8FsHrK6ikTHtYIM77yvswvBE7HZQX6BTduGeAl3PCLBbjsSgeAG7NY\n9BO4SuIjXNagF4FC3tj3c3Dj2X/FDZkYCxTIYrmjgKnibhjunc4244BCuKuF3wAfpFr/FHCJiPwt\nIk+n8f4bcZmtNuKuWs3AfRahdBnQFJfZagxwiapuBxCRy0Uk8Epdf1xl/jzupt/9wGQAVf0Xl553\nALATd+P5Rd5ygIm48eqrgNW4bF8TQ/Be36jq96rq95VLY0yEsHrK6imsnjIRQKwRbYwxxhhjjDGh\nYz1hxhhjjDHGGBNC1ggzxhhjjDHGmBAKe4p6EamEu9GxLC57zyRVfcq7sTQRN5HiZtzs8n9nVFbp\n0qW1atWquRqvMcaY8Fm6dOkOVS0T7jiyy+opEy7r/lwHQK1Ta4U5EmNiW1brqbA3wnCpX29T1WVe\natKlIvIxbsb6T1V1jIgMB4aTyXwIVatWZcmSJbkesDHGmPAQkS2Zb+X7PgviEjUUwNWbs1T1PhGZ\ngpsQN2WC1gRVXZ5RWVZPmXDpMKUDAPMT5oc1DmNiXVbrqbA3wlR1Gy5VLKq6W0TW4CYI7AF08Dab\nikv9aZPSGWOMCbWDQCdV3eOlwV4YMN/RMFWdFcbYjDHGRKGIuidMRKoCjYBFQFmvgQYunWvZdN5z\nrYgsEZEl27dvD0mcxhhjTh7q7PFe5vMellrYGGNMtkVMI8ybFPEN4BZV3RW4zpuMLs0KT1UnqWpT\nVW1apkzU3iZgjDEmgnmTwy4H/gA+VtVF3qoHRWSlEJPkZwAAIABJREFUiDwpImnO+2QXC40xxqQW\nEY0wb3jHG8B0VX3TW/y7iJTz1pfDVXzGGGNMyKnqYVWNByoCzUWkHnAXcCbQDDiFdIbM28VCY4wx\nqYW9ESYigptVfo2qPhGw6m1goPd8IDAn1LEZY4wxgVR1JzAPOE9Vt3lDFQ8CLwPNwxudMcaYaBH2\nRhjQBugPdBKR5d6jKzAG6CIi64HO3mtjjDEmpESkjIiU9J4XAroAawNGawhwEbA6fFEaY4yJJpGQ\nHXEhIOmsPjuUsRhzAlX480/YvBkOHYJWrdzyH3+EggWhQgWQ9H59jTExohwwVUTicBcvX1PVd0Xk\nMxEpg6vDlgNDMito4/a99Jn49dHXPeIr0K9F5VwK2xhjTKQKeyPMmIg0fjy8+y4sXgx/e3OEV60K\nmza550OGwKefQvHiEB8PXbpA167QuHHYQjbG5A5VXYnL3Jt6eadgy9p/6PDR50nbXA4qa4QZY8zJ\nJxKGIxoTfuvWwciRrucLYM0a+P13uPRSePJJePNNmDnz2PajRsFzz0H//rBnD4wYAYMHH1t/5EhI\nwzfGRIdC+eJIHNyKxMGtqFOueLjDMcaEWdGiRdNcnpCQwKxZ2ZuCcNSoUTz22GNZ3vevv/7KJZdc\nku52O3fu5LnnnsuwrNatWwMwf/58unXrFkS08NZbb5GUlHT09ciRI/nkk0+CKiMaWU+YOXmpwgcf\nuEbWxx9DvnwwYACcfjo8+2zGwwzPOss9UmzfDjt2uOd//QXNm7tG2Y03umGLxhhjjDERqHz58hk2\n+FIaYdddd90J65KTk8mbNy9fffVVtvf/1ltv0a1bN+rUqQPA6NGjs11WNLGeMHNy2rABWrd2QwjX\nrIEHHoCff3YNMAj+Pq8yZaB2bff8n3+gRg244w5o0MANWzTGGGOMSYeqcsMNN1CrVi06d+7MH38c\nm5lp6dKltG/fniZNmnDuueeybds2ACZPnkyzZs1o2LAhF198Mfv27ctwH5s2baJVq1bUr1+fe++9\n9+jyzZs3U69ePQC+//57mjdvTnx8PA0aNGD9+vUMHz6cDRs2EB8fz7Bhw5g/fz5t27ale/fuRxtO\ngT16u3bt4oILLqBWrVoMGTKEI97ooMBtZs2aRUJCAl999RVvv/02w4YNIz4+ng0bNhzXC/jpp5/S\nqFEj6tevz6BBgzh48CAAVatW5b777qNx48bUr1+ftWvXZvuzDxdrhJmTS3Ky+1m2rEu0MWkSbNwI\n99zjlvmhWjX48EP46CPX29a5M1x3Hfz7rz/lG2OMMcZ/HTqc+Agc1hfs+iDMnj2bdevWkZSUxLRp\n0472LB06dIgbb7yRWbNmsXTpUgYNGsQ999wDQK9evVi8eDErVqygdu3avPjiixnu4+abb2bo0KGs\nWrWKcuXKpbnNhAkTuPnmm1m+fDlLliyhYsWKjBkzhho1arB8+XIeffRRAJYtW8ZTTz3FDz/8cEIZ\n3377LePHjycpKYkNGzbw5ptvnrBNitatW9O9e3ceffRRli9fTo0aNY6uO3DgAAkJCSQmJrJq1SqS\nk5N5/vnnj64vXbo0y5YtY+jQoVkafhlprBFmTg7798O990KzZq4xVLSoS7pxzTVuGGJu6NIFVq6E\n226DLVsgr43+NcYYY8yJFixYQN++fYmLi6N8+fJ06uTy/qxbt47Vq1fTpUsX4uPjeeCBB/jll18A\nWL16NW3btqV+/fpMnz6d77//PsN9fPnll/Tt2xeA/v37p7lNq1ateOihhxg7dixbtmyhUKFCaW7X\nvHlzqlWrlu666tWrExcXR9++fVm4cGGWPoPU1q1bR7Vq1TjjjDMAGDhwIAsWLDi6vlevXgA0adKE\nzZs3Z2sf4WT/FZrYt2SJS6Cxdi1ccYVrkOXPH5rU8oUKuatkycmQJw9s2+bS3aekujfGGGNMZJg/\nP3fXZ4OqUrduXb7++usT1iUkJPDWW2/RsGFDpkyZwvws7F8y+d+nX79+tGjRgrlz59K1a1cmTpxI\n9erVT9iuSJEiWd5HyuvA5QcOHMg01swUKFAAgLi4OJJTRjpFEesJM7ErORlGj3YNnt273fDAV16B\nEiVCH0tKL9gtt0DHji7bojHGGGMM0K5dOxITEzl8+DDbtm1j3rx5ANSqVYvt27cfbYQdOnToaI/X\n7t27KVeuHIcOHWL69OmZ7qNNmza8+uqrAOluv3HjRqpXr85NN91Ejx49WLlyJcWKFWP37t1ZPpZv\nv/2WTZs2ceTIERITEznLS2RWtmxZ1qxZw5EjR5g9e/bR7dMrv1atWmzevJkff/wRgFdeeYX27dtn\nOY5IZ40wE7sOHXJp5Xv3hlWr3PDAcHv2WTeXWO/e8Prr4Y7GGGOMMRGgZ8+e1KxZkzp16jBgwABa\neSNm8ufPz6xZs7jzzjtp2LAh8fHxR+8Xu//++2nRogVt2rThzDPPzHQfTz31FM8++yz169dn69at\naW7z2muvUa9ePeLj41m9ejUDBgzg1FNPpU2bNtSrV49hw4Zlup9mzZpxww03ULt2bapVq0bPnj0B\nGDNmDN26daN169bH3ZN22WWX8eijj9KoUSM2bNhwdHnBggV5+eWXufTSS6lfvz558uRhyJAhme4/\nWoimzIsUA5o2bapLliwJdxgm3BYudA2dwoVh504oWTLcER1v9244/3z45hvXSLz00nBHZEzUEJGl\nqto03HFk1ylVautfW9YA0Geiu7KdONiGJ5vc12FKBwDmJ8wPaxzGxLqs1lPWE2ZihyqMGQPt27uU\n8xB5DTCAYsXg/fehZUu46y7LmmiMMcYYc5KxxBwmNhw4AAkJkJgIffrA3XeHO6KMFSsG77wDe/e6\nJCHGGGOMMeakYT1hJvrt2AFnn+0aYGPHuiF+ARMCRqxSpaBixWMJRAImZjTGGGOMMbHLGmEm+m3d\nCj/84BJd3HFHaFLP+2n9enj4YZes49ChcEdjjDHGGGNymW/DEUXkQmCuqh7xq0xjMrRpE1SrBg0b\nuufR0PuVltq1YdIkGDDANSKffDJLb5ux6CfmLE87u1GKHvEV6Neish9RGhP1rJ4yxhgTKfy8J6wP\nME5E3gBeUtW1PpZtzPHeew8uvhgmTICBA6O3AZaif383qfS4cdCpE1x4YaZvmbN8K0nbdlGnXPE0\n1ydt2wWQYSPMGnLmJGP1lDHGmIjgWyNMVa8QkeJAX2CKiCjwMjBTVbM+w5sxmUlMhCuucD1gF1wQ\n7mj888gjsGABXHstbNwIhQpl+pY65Yqnm946Jf11RjJryC3a9BeLNv1lDTUTE6yeMsZEmt9++41b\nbrmFxYsXU7JkScqWLcu4ceM444wzQrL/5cuX8+uvv9K1a9eg3tehQwcee+wxmjZNPxP7/Pnzeeyx\nx3j33Xd5++23SUpKYvjw4dmKY8mSJUybNo2nn36aUaNGUbRoUW6//fYsxztu3DiuvfZaChcuDEDX\nrl2ZMWMGJcOYRdvX7IiquktEZgGFgFuAnsAwEXlaVcf7uS9zknrhBddIOessl12wRIlwR+SfAgVg\nxgz4668sNcCyImnbrgwbYykNsPQaclnpKctKj5sxkcLqKWNMpFBVevbsycCBA3n11VcBWLFiBb//\n/nuWGmHJycnkzXvsX3lVRVXJkyfrKR+WL1/OkiVLgm6EBat79+507949W3EkJyfTtGnTDBt8mRk3\nbhxXXHHF0UbYe++9l+2y/OJbYg4R6SEis4H5QD6guaqeDzQEbvNrP+Yktnw5XHMNnHsufPBBbDXA\nUtSuDW3auOfbtuWoqB7xFdLt4UpRp1xxesRXSHd9vxaVSRzcKsNHZvswJlJYPWWMiSTz5s0jX758\nDBky5Oiyhg0b0rZtW1SVYcOGUa9ePerXr09iYiLgepfatm1L9+7dqVOnDps3b6ZWrVoMGDCAevXq\n8fPPP/PRRx/RqlUrGjduzKWXXsqePXsAWLx4Ma1bt6Zhw4Y0b96cf/75h5EjR5KYmEh8fDyJiYns\n3buXQYMG0bx5cxo1asScOXMA2L9/P5dddhm1a9emZ8+e7N+/P81j+uCDDzjzzDNp3Lgxb7755tHl\nU6ZM4YYbbgDg9ddfp169ejRs2JB27drx77//nhDHqFGj6N+/P23atKF///7Mnz+fbt26HS1vxYoV\ntGrVipo1azJ58uSjn03gNjfccANTpkzh6aef5tdff6Vjx4507NgRgKpVq7Jjxw4AnnjiCerVq0e9\nevUYN24cAJs3b6Z27dpcc8011K1bl3POOSfdY84uP3vCegFPquqCwIWquk9ErvJxP+ZkFR8Pb7wB\n3brF/txaL70EN90Eq1a55CPZ0K9FZeudMuZ42aqnRKQgsAAogKs3Z6nqfSJSDXgVOBVYCvRXVZt9\n3ZgodMst7lqvn+Lj3a3e6Vm9ejVNmjRJc92bb77J8uXLWbFiBTt27KBZs2a0a9cOgGXLlrF69Wqq\nVavG5s2bWb9+PVOnTqVly5bs2LGDBx54gE8++YQiRYowduxYnnjiCYYPH06fPn1ITEykWbNm7Nq1\ni8KFCzN69GiWLFnCM888A8Ddd99Np06deOmll9i5cyfNmzenc+fOTJw4kcKFC7NmzRpWrlxJ48aN\nT4j5wIEDXHPNNXz22Wecfvrp9OnTJ81jGz16NB9++CEVKlRg586d5M+f/4Q4Ro0aRVJSEgsXLqRQ\noULMnz//uDJWrlzJN998w969e2nUqBEXZHB7yk033cQTTzzBvHnzKF269HHrli5dyssvv8yiRYtQ\nVVq0aEH79u0pVaoU69evZ+bMmUyePJnevXvzxhtvcMUVV6S7n2D5maL+t9QVm4iMBVDVT33cjznZ\njB8P337rnvfqFfsNMIAuXVyq/euuA9VwR2NMrMhuPXUQ6KSqDYF44DwRaQmMxTXqTgf+BuyCozHG\nFwsXLqRv377ExcVRtmxZ2rdvz+LFiwFo3rw51QIu0FapUoWWLVsC8M0335CUlESbNm2Ij49n6tSp\nbNmyhXXr1lGuXDmaNWsGQPHixY8bypjio48+YsyYMcTHx9OhQwcOHDjATz/9xIIFC442QBo0aECD\nBg1OeO/atWupVq0aNWvWRETSbbC0adOGhIQEJk+ezOHDh9P9DLp3706hdG7P6NGjB4UKFaJ06dJ0\n7NiRb1P+TwzSwoUL6dmzJ0WKFKFo0aL06tWLL774AoBq1aoRHx8PQJMmTdi8eXO29pEeP3vCugB3\nplp2fhrLjMm6J5+EW2+Fq66C5s3DHU3oVKoEDz4IN98Mr74KffuGOyJjYkG26ilVVWCP9zKf91Cg\nE9DPWz4VGAU871OsxpgQyqjHKrfUrVuXWbNmBf2+IkWKpPtaVenSpQszZ848bptVq1ZlqWxV5Y03\n3qBWrVpBx5VVEyZMYNGiRcydO5cmTZqwdOnSNLdLfZyBJNWcsCJC3rx5OXLk2AwkBw4cyFGcBQoU\nOPo8Li7O9+GIOe4JE5GhIrIKOFNEVgY8NgErcx6iOWmNG+caYJdcAs+fhP/XXH89NGvmxkj89Ve4\no8lQSgKQjB4zFv0U7jDNScqPekpE4kRkOfAH8DGwAdipqsneJr8A6d9gaYwxqXTq1ImDBw8yadKk\no8tWrlzJF198Qdu2bUlMTOTw4cNs376dBQsW0DwLF6NbtmzJl19+yY8//gjA3r17+eGHH6hVqxbb\ntm072pu2e/dukpOTKVasGLt3H0sOe+655zJ+/HjUG4Xz3XffAdCuXTtmzJgBuGGUK1ee+NV55pln\nsnnzZjZs2ABwQkMwxYYNG2jRogWjR4+mTJky/PzzzyfEkZk5c+Zw4MAB/vzzT+bPn0+zZs2oUqUK\nSUlJHDx4kJ07d/Lpp8cGOKRXftu2bXnrrbfYt28fe/fuZfbs2bRt2zbLceSEH8MRZwAXAnO8nymP\nJqrq38BJc3IZPx7++183F9iMGZAvX7gjCr24OJg8GfbsgVRjoSNJVhKAJG3blWmWRWNyUY7rKVU9\nrKrxQEWgOXBmVncuIteKyBIRWXLo0KGggzfGxCYRYfbs2XzyySfUqFGDunXrctddd3HaaafRs2dP\nGjRoQMOGDenUqROPPPIIp512WqZllilThilTptC3b18aNGhAq1atWLt2Lfnz5ycxMZEbb7yRhg0b\n0qVLFw4cOEDHjh1JSko6mhBjxIgRHDp0iAYNGlC3bl1GjBgBwNChQ9mzZw+1a9dm5MiRad7LVrBg\nQSZNmsQFF1xA48aN+c9//pNmjMOGDaN+/frUq1fvaKKQ1HFkpkGDBnTs2JGWLVsyYsQIypcvT6VK\nlejduzf16tWjd+/eNGrU6Oj21157Leedd97RxBwpGjduTEJCAs2bN6dFixZcffXVx70vN4nm8H4T\nESnupfw9Ja31qhqyS/hNmzbVJUuWhGp3JrccPuwyIBYv7uYEi7EG2IxFP5G44A92/16Q3X8UYu+O\nAhzck49/9+Tl0IE4dwuYCmVL5qd2lUKULHSQ8tUKUK2ay9FRvz6ULHlsHrD00stHkj4Tv85wPjKw\nucZM1ojIUlUNKk+x3/WUiIwE9uOGMZ6mqski0goYparnZvTeU6rU1r+2rAGi62/YRL8OUzoAMD9h\nfljjMCbWZbWe8uOesBlAN1xmKAUCB2kqUN2HfZiTharrAXr3XZeYIgYaYKqwdi28/z589RW891lZ\n9v99rLEheZQCRQ+Rv0gy+QodRkTZd+gwyQcOc/Bv2LmzANu3H5+fo0YN+LdUTU6puofvz4I6ddzH\nFakySoMPNteYyXU5qqdEpAxwSFV3ikgh3L1lY4F5wCW4DIkDcT1txhhjTKZy3AhT1W7ez+zl0TYm\nxYcfwsMPw+zZUKpUuKPJkSNH4PPPYdYseO89SEmoU60alK6xm1OqbmPs1VWpWRMqVxby5s0PHMv6\nmLrnqMF3X3PpxAmM7foAi/O34K8tRfljfRF+XlKaerOgQgXXeXjRRe5npCWQzCxdfkYTShuTUz7U\nU+WAqSIShxvG/5qqvisiScCrIvIA8B3woi8BG2OMiXm+ZUcUkTbAclXdKyJXAI2Bcapqd+ObzH35\nJfTsCbVqRXaXTibWr4epU+GVV+Cnn6BwYejcGYYPh/PPh8qVoc/E9QCce27VdMtJ3XO0ukEzBpR7\nhgcX38ptI6eTnM+1stqcVpnC2yvw4Yfw5ptuerGSJd2tdP36QYcOkMfPiSiMiWLZradUdSVwwk0C\nqroRd3+YMcYYExQ/U9Q/DzQUkYbAbcALwCtAex/3YWLR8uVwwQUuLfuHH7pWRBRRhc8+gyeecL1e\nefLAOefAmDHQo4driAUrzZ6jGs/Deecx/dAyuOG/x626+mr491/45BOX0f611+DFF6FmTRg8GBIS\n4NRTs3+MxsQIq6eMMcZEBD+vkSd7c6n0AJ5R1WeBYj6Wb2LRDz+4Fkvx4vDxx5BOJp1IdPiwS9wY\nH+96u5Ysgf/7P/j5Z3f/V9++2WuApevcc92OHn7YZUxMJX9+6NoVpk2D33+H//3PfZy33+6GKw4Y\nACtW+BiPMdHH6iljjDERwc9G2G4RuQu4ApgrInlwE1oak76DB6FcOdeFUzk6kjKouqF/DRvC5ZdD\ncrIbBrhlC4wcCeXL5+LOH3wQDhyAZcsy3KxQIRfbwoWwcqWb63r2bNdgPP98d79aDhOjGhONrJ4y\nxhgTEfxshPUBDgJXqepvuLlUHvWxfBNLDh50P+vXh+++gzPOCG88WfTFF9C0qbvnKjnZDf1btQqu\nvBIKFgxBAM2bw9at0K5dlt9Svz48+6y7R+3BB137rUMHaNUK5s61xpg5qVg9ZYwxJiL41ghT1d9U\n9QlV/cJ7/ZOqTvOrfBND/v3XdccMH+5eR0HmiF9+cYku2rWD7dthyhRYvRr69AlD+MWKHct7H4RS\npeDuu12mxuefhz/+gG7doHVr1xFpjTET66yeMsYYEyl8+/dRRHqJyHoR+UdEdonIbhHZ5Vf5JkYc\nOQKDBsG8eVC3brijydTBg/DQQy5p4+zZbrjh2rUwcCDk9TOtTbBGjIAmTdzNX0EqVAiGDIF162DS\nJNex1qULdOzohi8aE6sioZ4q8+evx71O2raLPhO/PvqYscgSChtjzMnAz2v4jwDdVbWEqhZX1WKq\nWtzH8k0suOcemD7dtWz69w93NBlatAgaN3Yhn38+rFnjEm/4mmwjuwYMcPeGPfFEtovIlw+uucal\n1R8/3jXK2raF886zBB4mZoW9njq8V2DxYsBNRZEyFyC4Btmc5VtDGY4xxpgw8bMR9ruqrvGxPBNr\nnnvO5W0fMuTYUMQItG8f3HabG6a3a5dLOz9rFlStGu7IApxxBvTu7T7Tv/7KUVEFCsANN8CGDfDY\nY+7/w0aNXIflVvt/0MSWsNdTW6mAjhkLuKkoEge3OvoIbJAZY4yJbX42wpaISKKI9PWGfPQSkV4+\nlm+iXf78bkLm8eMjdkLmhQuhQQPXwXTNNfD9964XLCLdfbdLVT9+vC/FFS7sGp8bNri09tOnu3nG\nRoyA3bt92YUx4Rb2euoAhXj/zf2uC9oYY8xJy89GWHFgH3AOcKH36OZj+SZapWRCvPpqeOONMN9M\nlbbkZLjvPmjf3t229tlnMGGCm74sYtWv72aDnj7dBe2TkiXhkUfcvW89esADD8Dpp8PEie5zMiaK\nhb2eyhN3hDFyF4wbF8rdGmOMiTC+/Tesqlf6VZaJIT/+6CYYnjjRTTYcgT1gmze7ObW++srdavXM\nMy4BYXbNWPRThvd1JG3b5d+wo2efhRIlciVFY7VqMHMm3HKL6xkbMgSeeso9unTxfXfG5LpIqKcK\nFD/EF3+fxdflDtIq3MEYY4wJGz+zI54hIp+KyGrvdQMRuTcL73tJRP5IeZ+3bJSIbBWR5d6jq19x\nmhDavt1ledi7F6pXD3c0aXr1VTfp8urVrkNp6tScNcAA5izfStK29BOu1SlXnB7xFXK2kxQVKkDR\noq4nLJe6qVq0gAUL3ATV//4L55wDvXrBpk25sjtjck126yk/FSiaTKlSMG7V2aHcrTHGmAjj57iw\nycAwYCKAqq4UkRnAA5m8bwrwDJB6rpYnVfUxH+MzobR3r5uEautWl46+Zs1wR3ScAwfgpptg8mQ3\nafH06a7nxy91yhUncXCIrnP//rtLa3jnnXDVVbmyCxF3O9/557v75R58EN5/H+64w+02IjJGGpO5\n7NZTvhFxk7s//bTy2xMzOe2/fSNyhIAxxpjc5ecYpsKq+m2qZZlemlfVBUDO0ruZyJKcDJddBkuW\nuK6mli3DHdFxtmyBs85yDbC77nK9PH42wELuP/+BIkVc6yiXZ1wuWNDlA1m3Di66CEaPhtq1XfZI\nm+zZRIFs1VN+GzIEkpOFF25Lgm++CfXujTHGRAA/e8J2iEgNQAFE5BJgWw7Ku0FEBgBLgNtU9W8f\nYjShcOSIy2jx9NMus0ME+fBD6NfPtRPnzIHu3cMdkQ9E4NZb3Q1tH33k7r3LZRUruvvFhgyBG2+E\nSy+FTp1cxvxatbJXZsqktRnpEV+Bfi0qZ28HxvhfT2VLzZrQpVMyE+cNYfgL95O3ld0dZowxJxs/\ne8Kuxw3xOFNEtgK3AEOzWdbzQA0gHldBPp7ehiJyrYgsEZEl27dvz+bujG8OHnSp6P/3P7j++nBH\nc9SRI3D//W44XYUKsHRpjDTAUvTpA+XK5Wjy5uxo3x6WLXPJTJYtc+n977/f3TsWjNST1qbFJrI1\nPvCznsqRoTfk5RetyNyZu2D//nCEYIwxJoz8zI64EegsIkWAPKqa7ZmFVPX3lOciMhl4N4NtJwGT\nAJo2bWoDosLplVfgoYfg00+hfPlwR3PUnj3Qvz+89RZccYVL1Jjde5gyy3wIPmc/zKr8+d2My/fc\n47KM1KsXsl3nzeva2xdf7DIpjhzpRqFOmgRt2mStjH4tKmfaw5VZL5kxmfGznsqpCy+ECqUPMGHH\nAHrMmeOGcBtjjDlp5LgRJiK3prMcAFUN+tK8iJRT1ZQhIj2B1RltbyLAp5/CoEEuQUTp0uGO5qgt\nW1yP1+rVblqem27K2T3wKZkPM2pk+Zr9MBiDB0PZsm5SrzA47TTX+BowAK67zt13N3gwjBnj5h4z\nJlxyo57Kqbx5IeHaAjz80Dls/WgUFawNZowxJxU/esJSEnrXApoBb3uvLwRS3wB9AhGZCXQASovI\nL8B9QAcRiceN298MDPYhTpNbVq50OcvPPNPlMc+fP9wRAW7er5493QjJ9993qdX9ENLMh8E49dRc\ny44YjK5dXaP3vvtcw/edd+Cll0Jyq5ox6clRPZVbBiYIDz4Ux/9q3c+d4QrCGGNMWOT4njBV/T9V\n/T+gItBYVW9T1duAJkCmd9Cral9VLaeq+VS1oqq+qKr9VbW+qjZQ1e4BvWIm0vz8s/uvu1gxeO+9\niOnymDoVOnZ0+UG++ca/BljEU4Xx412GjDAqWhQefxy+/db9Spx3nhuyuHdvWMMyJ6mc1lMiUklE\n5olIkoh8LyI3e8tzNKdlzZpuyO6UKaCHj2TjyIwxxkQrPxNzlAUCb8f/11tmYtmRI1CpkutqqlQp\n3NFw5IibtyohwQ2HW7TIddCdNETggw9cdoxDh8IdDU2auCQot94Kzz8PjRpZRm4TVtmtp5JxWXrr\nAC2B60WkjrfuSVWN9x7vBRtQQgKsXQuLG14d7FuNMcZEMT8bYdOAb70rg6OARbiJmE0sOnTItXiq\nVHHj/urXD3dEHDjgkgQ+8ggMHeraIqecEu6owuD66+G331wmkghQsKDrFfvsMzc09Kyz3Dk6Yhf+\nTehlq55S1W2qusx7vhtYA/hy4+ell0KhfIeY8n1TKv660Y8ijTHGRAHfGmGq+iBwJfC397hSVR/2\nq3wTQY4cgYEDXapB1ZxluvDJn39C585u0uDHH4dnn4V8+cIdVZicey5UrRr2IYmpdehw7PbBO+90\nCVP+/DPcUZmTiR/1lIhUBRrhGnDg5rRcKSLj05+rAAAgAElEQVQviUipdN5zdCqVQ6l6qEuUgF4X\nJjOTvjRZ9HlwB2SMMSZq+TlZM96VwmV+lmki0N13u5l6H344IhpgGze629I2b4bXXnNXlrMrsxT0\nYUk/H6y4ODeL8vDhkJQEdepk/p4QKVECEhOhXTs3RLFxY3j9dWjePNyRmZNFTuopESkKvAHcoqq7\nROR54H5cEqn7cXNaDkpjn0enUjmlSu0TplJJGFqI6W8WYtc3eeEim2nFGGNOBn4ORzQng2efhbFj\n3Xi/O8Ofz2vxYmjVCrZvh08+yVkDDI6loE9P2NLPB2vQIGjdGv75J9yRnEDETWn25Zfuebt2rk1v\nTCQTkXy4Bth0VX0T3JyWqnpYVY8Ak4FsXU7o2BHKl9zL3H/Op+rPP/gXtDHGmIjla0+YiXFvvQU3\n3ujGkY0fH/ZesHffdfeA/ec/7v6vWrX8KTdiU9AHo0wZ18qJYM2auUZ0r17Qr59LTnDffZDHLg2Z\nCCNuQrEXgTWBc4r5NadlXBxc0V94/JnzOe3w3JwHbIwxJuL59u+OiNyY3nh4EyPy5XOXbGfOdP81\nhNGECdCjhxtp9803/jXAYs7ff7sbsSJUmTKuB/PKK2H0aLjsMpdgxZjckIN6qg3QH+iUKh39IyKy\nSkRWAh2B/2Y3tv7XFuaw5mXp5gbZLcIYY0wU8bMnrCywWESWAS8BH6qqDW6PBQcPQoECcMEF7uar\nMPaAqcKoUe4f9m7d4NVXoUiRsIUT+bp1gz17YPnysPdcpqdAAXjxRahdG+64A3bsgDlz3NRzqSVt\n20WfiV+nW1aP+Ar0a5HptE/m5JWtekpVFwJp/QEFnZI+PfXqQcmKe/htfhHYsAFq1PCraGOMMRHI\nt0aYqt4rIiOAc3DZp54RkdeAF1V1g1/7MSH222/Qti3cc4+b0CaM/8gfPuxGQz7/vLvlaeJEyBvE\nb3BmSTcgShJvBCMhAa69Fr7+2t0jFqFEYNgwKF/eJd48+2w39dyppx7bJrN78VLu5bNGmElPpNdT\npzfZypI5tVh7/0ucOWV4uMMxxhiTi/zOjqgi8hvwG25yy1LALBH5WFXv8HNfJgT27HE9Kb/+GvYM\newcPwoABLvvhHXfAmDHBtwdTkm5k1MiKmsQbWXXZZfDf/7qupghuhKW4/HIoXtwlWGnXDj76CCp4\np6Nfi8oZNrAy6iEzJkUk11PlWu8mz5zDvPJGYR586YjdIGmMMTHMt0aYiNwMDAB2AC8Aw1T1kIjk\nAdYD1giLJocOuf+Ev/vOjQ0LYw7xPXugZ09379Cjj8Ltt2e/rJhIuhGMYsVcQ+zVV2HcuLTH+EWY\nCy90iVa6d3dziy1YAOXKhTsqEwsivZ4qVOIQtSpu5H+/9OD+L74kT/u24QzHGGNMLvLzMtspQC9V\nPVdVX1fVQwBe6t5uPu7H5DZVGDzY/Sc8YYLrDQuTHTugUyeYNw+mTMlZA+ykddVVsHcvvOfb7Su5\nrkMH+PBDNxr27LPhjz/CHZGJERFfT5XueICfqMKCcTblpjHGxDI/G2HvA3+lvBCR4iLSAkBV1/i4\nH5PbVF3aupEj4ZprwhbGTz/BWWfBqlUwe7a7V8hkQ8uWrkezd+9wRxKUVq1g7lw3CXfnzvDnn+GO\nyMSAiK+nyjTbR7G8+5j2STn3XWyMMSYm+dkIex7YE/B6j7fMRJP9+919CGPHujSEYbJmDbRp43pC\nPvrIDVEz2SQC8fERmx0xI+3awTvvwA8/uN+BffvCHZGJchFfT+XNf4RLeh1hllzKvv3R9zdrjDEm\na/xshElgql9veIdNBh1N5s6FM85wLSAI2z/tixa5HrDkZPj8c5ec0eSQKgwdCiNGhDuSoJ19NsyY\n4eaDu/xylyXTmGyK+HoqadsuNlXYwu7dwtk3/cCMRT+FOyRjjDG5wM9G2EYRuUlE8nmPm4GNPpZv\nctO337rhamXLQqVKYQvjo4/cP92lSsGXX0LDhmELJbaIuPF8Eya4VJNRplcveOopeOstuOkmG6Vl\nsi2i66ke8RWoU644ZWruokTRXciMP3h36ZZwh2WMMSYX+NkIGwK0BrYCvwAtgGt9LN/klh9/dBMx\nly3resOKFg1LGImJLgfI6afDwoVQvXpYwohdV13lMp28/Xa4I8mWG290c4k995xL9GhMNkR0PdWv\nRWUSB7fitaGtuO683/l2f0uqLvk+3GEZY4zJBb41wlT1D1W9TFX/o6plVbWfqlpOs0j3xx9w3nmu\na+GDD1xDLAwmTIC+fV0yhs8/h9NOC0sYsa1zZ6hcGV54IdyRZNuYMW66gttvd1MWGBOMaKqn+t9b\nhcPkZddnNleYMcbEIj/nCSsDXANUDSxXVQf5tQ+TC/LmhWrV4P773f1gIabq/rG++27XC/baa1Co\nUPDlzFj0E3OWb81wm8wmao55cXFw5ZUwejRs2QJVqoQ7oqDlyQNTp7p5p3v3hsWLoUaNcEdlokU0\n1VO1G+anVpEfWPhTczhwAAoWDHdIxhhjfOTnJbY5QAngE2BuwMNEooMHXcV+yinuRqyWLUMegirc\neadrgF1+Obz5ZvYaYABzlm8laduuDLepU644PeIrZG8HseLKKyEhIaqzWxQr5uYPF4EePdwUaMZk\nUVTVU6c32coKjWf1pK/CHYoxxhif+ZkVqrCq3uljeSa3HD4M/frBzp2uARYXF5YQhgxxI+Ouvx6e\nftr1cqQns56ulF6uxMGtciHaGFKlCrz0UrijyLHq1d09hOec435/pkwJd0QmSkRVPZW/ayHiFiTz\nyhdVGXtTuKMxxhjjJz97wt4Vka4+lmdygypcd53rdrrwwrA0wA4edPd/vfAC3HsvjB+fcQMMMu/p\nsl6uIKjC0qWwfn24I8mRzp1dxv2pU60RZrIsquqpfCWV/9TfxfSvq0dz57Uxxpg0+NkTdjNwt4j8\nC/wLCKCqehLfhBOBRoyASZPgrrvglltCvvu9e1268Y8+gscfh1tvzfp7rafLJ/v2uVmQr7gCJk4M\ndzQ5MnIkLFjgesPa3l6IEuX3hzskE9mirp6q2mIHX79wCvNm/kbnKyxjkTHGxAo/syMWU9U8qlpQ\nVYt7ryO2YjspPfMMPPggXH21+xlif/8NXbq4rHYvvhhcA8z4qEgRuPhiN55vf3Q3WuLiYPp0d0hf\nv3AGhw+FZ4JxEx2isZ4qV/8vissuXrl7TbhDMcYY4yPfGmHiXCEiI7zXlUSkuV/lGx80b+7minr+\neZfVIERmLPqJ7o8soVr9vSxafISW16zjw0Nf02fisceMRT+FLB4DDBwI//wD77wT7khyrHx5mDYN\ndv1amNVvVw53OCaCRWM9lbeA0rv2at74uRl7f/0n3OEYY4zxiZ/3hD0HtAL6ea/3AM/6WL7Jrp9/\ndj+bN3c3YuX1cxRq5mZ8soMPx9Rh746CtL1+LRUb/XXc+qRtuzJNL2981qEDVKzoWi8x4LzzoHrb\n31j3STm++CLc0ZgIFpX1VP+bSrGXosy6Z1m4QzHGGOMTP/8bb6GqjUXkOwBV/VtE8vtYvsmOhQvh\n3HPhiSdg8OCQ7z4pCT57tB4cysPCz+No0aLOCdv0mfh1yOM66cXFuXvCxo+H3btd3vco1/DiLfy+\npiQJCQVZsQKKFg13RCYCRWU91faaM6l100aen1WGgS+HOxpjjDF+8LMn7JCIxAEKRyfFPOJj+SZY\nS5bABRdApUpw0UUh3/3ixdC2rfuF6Hjbalq0CHkIJiO33eZ6SWOgAQaQr+ARmg/8kU2b4Pbbwx2N\niVDZqqe8YYvzRCRJRL4XkZu95aeIyMcist77WSo3gpY8wnXnbWLRnnosnW1Dt40xJhb42RP2NDAb\n+I+IPAhcAtzrY/kmGKtXux6wU05xmTDKlg3p7ufNg+7doUwZaDloNUXLHMxw+6RtuzLsEUuZB8z4\nqHTpcEfguzI1d3PrrS7zZs+e7k/AmADZraeSgdtUdZmIFAOWisjHQALwqaqOEZHhwHAgV+YhG/hk\nPHd/fJhn367ESz1zYw/GGGNCyc/siNOBO4CHgW3ARar6ul/lmyCkpCEsWNA1wCpWDOnu58yB88+H\nqlXdaMjMGmA94itk2sCyecByyerV0Lo1rFgR7kh888ADcOaZMHSoy8ZvTIrs1lOquk1Vl3nPdwNr\ngApAD2Cqt9lUINeGHJSofipXDIhj5qvCn3/m1l6MMcaEim89YSJSGdgHvBO4TFVt7ESolSrlJlDq\n0AFq1AjprqdNg0GDoGlTeO891xGXmX4tKtOvhWW1C4ty5dyw1WnTXPdRDChY0E1/1r49jB4NY8aE\nOyITKfyop0SkKtAIWASUVdVt3qrfgDSHHIjItcC1AEXLZf87+bp+O5k4sSQv3/0Dt088I9vlGGOM\nCT8/hyPOxY2zF6AgUA1YB9T1cR8mI7/9Br/84lpAQ4eGfPdPPeXmf/5/9u47vubrf+D46yQRJBFi\nryK2CGIn1KxRtNQopdZPjWpRHZSWGl2oKm21RalW0aj9rS6U2tSuvfdWKkYikvP74yQakRDJ547c\n+34+HveR3Pv53PN535Cc+77nnPdp0AAWLJDCCOlCjhzw1FNms63Ro+1eOdNqCae1BtYoxpiPcrLN\n+2+yFfhvSKxFSAFJ+t1XmvoppZQfMA/or7W+phJs9aG11kopndTztNaTgckA2QuXSfKclCgf6sPj\nXhv48vsivPYleFi5qlsIIYRdWTkdsZzWunzc1xJANUDK3tnL5ctmCuLTT9t9A16tYdgwk4C1agU/\n/SQJWLrSpQucPw+//+7oSNIk8bTW8q2P4+0bw5bvi6LjSi/IdgjuLS39lFIqAyYBm6m1nh/38Hml\nVL644/mAC7aI+y5vb/o0O8qRm3n5aZptLyWEEMK2bPaxd9wCZqmHZw///ms2Sjp4EJYsgcyZ7Xbp\n79edYNggb46szktgjQt4PHGYztPvPUeKaji5Jk3MiNiMGdC0qaOjSbWkprV+nxs6dcpAPcLo3Uu2\nQxD3Smk/pcyQ11Rgr9Z6XIJDi4EuwKi4r4tsEmgCrT95nMKLjjFmODTvbuurCSGEsBUr14S9luCu\nB1AJOGNV+yIZ//5rSsDt2AHz5sETT9jt0pGRMKiPL6e35aD0k6co1+IkCWbn3CVFNZyctzcMHGjX\n5N1enn8evv0WBg2C1q0dHY1wtDT0UzWBTsDfSqntcY+9hUm+5iilXgCOA20tDDdJXoGP8XqFr+m3\noztr/4iiZv2Mtr6kEEIIG7ByJCzhZkN3MHPv51nYvkjKe+/Bli0wd66Zimgn//4LLVrA6W05CHn2\nKNvmBAL2rcIoLDRwoKMjsAmlYOJEKFsW3n4bqOLoiISDpaqf0lqvwawjS4r9PvmK0210aUa0iGDM\nGG8W1bf31YUQQljBsiRMaz3CqrbEIxg50iRftWvb7ZJnz5oZbHv2QOgLByhU9TJmfbtI127cgLVr\noVEjR0diqZIl4ZVXYNw4eCKXL9kL33B0SMJBXKWf8m38OH0GwYgR5u9wUJCjIxJCCPGoLCvMoZT6\nn1JqcXI3q64jgIgIePlluHrVTCGzYwJ28CDUrAmHDpkCHCYBEy5h3DiztvDkSUdHYrmhQ83G4dvn\nFEGnujadSO9cqZ/q0wd8M8cwsu9FR4cihBAiFawscHsEuAVMibtdBw4DH8fdhBWuX4dmzcxGSBs3\n2vXSW7aYBCwiAlascLkBE/H886bU5cyZjo7EclmzwgcfwKXD/pzcnMPR4QjHSXf9VPy2C/G3WRvN\nlmY5c2j6+35N+B+52LEt1sFRCiGEeFRWJmE1tdbttNb/i7t1AGpprf/UWv9p4XXcV3wCtm4dzJpl\nCnLYybJlZu9nHx8zY61qVbtdWthL0aImy54xA1ccLvq//4OAQtfZMa8wN2RGortKV/1U4m0X7tli\nQSneeDcr2bjCkB7nHRShEEKI1LIyCfNVShWNv6OUCgR8H/YkpdQ0pdQFpdSuBI9lV0otVUodjPsa\nYGGc6dP162ZT3TVr4Pvvoa3Ni3DdFR5uKpcHBpr8r2RJu11a2FunTmaRybZtjo7Ech4eULHtMW5d\nzciYMY6ORjhIqvopR+lQvRDhvcLu3hJv9ZGtexsG5p7OT1vysWZFtIOiFEIIkRpWJmGvAiuVUiuV\nUn8CK4D+KXjedODJRI8NApbHbaa5PO6+ezt3zizImjEDnnvObpedMAHat4fQUFi1CvLnt9ulhSO0\nbWtK1i9c6OhIbCJn8QgKVrrExx+bXynhdlLbTzknLy/6fRlEQU7Sr/MVYmIcHZAQQoiUsiwJ01r/\nCpQAXgH6AaW01r+l4HmrgH8SPdwC+Dbu+2+BZ6yKM925ft1MDSteHA4cgA4d7HLZmBh49VXo3x+e\neQZ++w2yZbPLpYUjBQSYUbDhwx0dic2Ue+YkUVGmspxwL6ntp5yZb8tGjA2ZybZTuZkyxdHRCCGE\nSCkrqyP6AAOAPlrrHUAhpdRTqWwuj9b6bNz354A8VsSY7ly4YNboDB1q7vvaZ9bMrVtmQGT8eFPa\n+8cfXXIfX5GcoCAzd89FZckdSa9eMGWK+VxDuA+L+ynnoBRtNw+kbl2zF95FKZYohBDpgpXvtL4B\nbgNhcfdPA++ltVGttQaSrRKglOqplNqslNp80ZV6nzNnTCWMgwehTh27XfbiRahfHxYsgE8+MYmY\np6fdLi+cxbBh0Levo6OwmXfeMR8svPWWoyMRdmaTfsqekqqWqDw9+PxziLgWS+82F12xro4QQrgc\nyzZrBopprdsppdoDaK1vKqVUKts6r5TKp7U+q5TKB1xI7kSt9WRgMkCVKlVco+s5fhyeeALOn4df\nfrFbEnbokNmE+dQpM/rVujXM2njiv2pcSdhz9tp9i8WFC7h4Eb75Bt5/H/xd7983d2544w0z63LD\nBrPmUbgFK/spu2sRUuCe+3vOXgNMAY+ypWMYGTCBwate44dpN2n/go8jQhRCCJFCVo6E3VZKZSZu\n1EopVQyISmVbi4Eucd93ARalPbx04uZNMwJ26RIsXWq3BGz9evNG9MoV+OMPk4ABLNp++m5Hn5Sg\nfP73vTEQLqBTJ4iMhHnzHB2Jzbz+OuTJAwMHumRFfpE0K/spu3tgtURPT96YX4NQNvBS71iOHZX/\n1EII4cysHAkbBvwKPKaUmgnUBLo+7ElKqdlAXSCnUupUXDujgDlKqReA44D96rE7mo+PmQpWvjxU\nqmSXS86fb/bpLVgQfv4ZSpS493hQPn/Ce4Ul/WThmkJDTTGYGTPMBlsuyM/P/Kq99BIsWWJ2gBAu\nL1X9VHrh9XgoMwZNpcqo0rSufYE1B/LIel4hhHBSloyExU3n2Ae0wnRos4EqWuuVD3uu1rq91jqf\n1jqD1rqg1nqq1vqy1voJrXUJrXUDrXXi6omuZ9UqU4IQoGtXuyRgWps1X23aQEiI2QMscQIm3JRS\nZjRs5Uo4edLR0dhM9+7m//zgwRAb6+hohC2lpZ9KT4p/0I0Z1Sey9VQeXn7usozyCiGEk7IkCYsr\nnvFzXPK0RGv9k9b6khVtu4XFi6FxY1Payk7vBKOjoXdvU4b+mWfMFMRcuexyaZFedOxo5qXeuuXo\nSGwmQwZTqn7XLpg719HRCFtym35KKZ7+vS9DG27gm8U5GDfO0QEJIYRIipVrwrYqpapa2J57mD4d\nWrWCcuXg11/tUhr8yhVTgGPSJHjzTfPmU6asiPsULWoqtJQs6ehIbKptW1OVf/hwZLNb1+ce/ZS/\nP8N/DeXZZ00BmlmfulDlYCGEcBFWvuOvDqxXSh1WSu1USv2tlNppYfuuZ+xYs96mXj1Yvhxy5rT5\nJQ8cMMt9Vq0yxe9GjXLpLaGEFQ4cgBMnHB2FzXh6mtGwvXvhhx8cHY2wMbfppzw84LvpsdT13UTX\nV7KydLbrDfoJIUR6lubCHEqpQK31UaCxBfG4j9hY2LgRnn3WFD/ImNHml/zjD7P+y9PTfP/44za/\npEjvIiLMKG3v3mYBoYtq1crUwhkxAtq1Ay8rSxYJh3PXfiqTjwcLF3tSu+F+Wj5flGX+lwltlsPR\nYQkhhMCakbD4lRTTtNbHE98saN+1REXB2bPmY8qZM2H2bLskYJMnm2Vn+fKZ3E8SMJEiWbKYsoGz\nZ8OdO46OxmY8PGDkSLM3+vffOzoaYQMu208ltXlzQlnrV+bX+bfIyzmaNPdi50rXr3MlhBDpgRVJ\nmIdS6i2gpFLqtcQ3C9p3Hf/8A40aQcOGcPs2eHubYSkbiomB/v2hVy9o0MBUQCxa1KaXFK6mUye4\ncAF+/93RkdhU8+ZQubJJxqKjHR2NsJhL9lMtQgrcs1fYnrPXWLT99H3n5WtRjWUzL+Abe51GTTw4\ndMieUQohhEiKFZNungOeiWsriwXtuaajR001jKNHTTEOb2+bX/LKFejQwdT76N8fPvro3mlWszae\nSLLDTmjP2Wv3bggq3E/TppA9u5k227Spo6OxGaVMAtasmfkV7dHD0REJC6Wpn1JKTQOeAi5orYPj\nHhsO9ADiq168pbX+2ZJoU6hD9UJ0qF7o7v12k9Yne26R9mEsjf6LWq9WpkEDWLPG7A0phBDCMdKc\nhGmt9wOjlVI7tda/WBCT6/nrLzOl6/ZtWLoUate2+SV37TKl50+cMFUQe/a8/5xF208/NMkKyudP\ni5ACNoxUOD1vb7NQasYMU67ehUtpNmliCte8+y507myXmcLCDizop6YDnwPfJXr8E6312LTGZy9l\nOlflt7JQv76mYcVLrPrLh1xFfB0dlhBCuCXLlp9LApaM2FiTAfn4mI1vy5Sx+SXnzjX7PWfJYi5Z\no0by5wbl8ye8V5jNYxLp3ODBMGSISydg8N9oWKNG8PXX8PLLjo5IWCm1/ZTWepVSqoi10ThG5crw\n07vbafRKaRqXP8WKAwXJmte1f6+FEMIZSQ0wW9HaLMjy8oJ580wSljevZc0nNZUwNhZ2LX6Mfb8W\nJEdgBEM+vUaNGjKKJSzw2GOOjsBuGjQwhWtGjYLu3WU0TDxQH6VUZ2Az8LrW+kpSJymlegI9Afzy\nFbNjeEmr1a8i808sp/nHtXkqaD+/HS2FT9YMjg5LCCHcSpoLcyilno37Gpj2cFxEVJR59/Z//2eS\nsaJFLU3A4L+phPFu3/BkzcTS7Pu1IIE1z5Onw3pWnXbdvZ2EA+zcaUpsnjzp6EhsSikYOhROnYJv\nv3V0NMIKNuqnvgSKASHAWeDj5E7UWk/WWlfRWlfJkME5kp0mY59gZveVrLtShtbB+7gdpR0dkhBC\nuBUrqiMOjvs6z4K20r8LF8xH6dOmQWCgScJsJH4q4TuPh7Hry2pcPhDAl1/C4dV5CH5MaqQIi/n5\nmQqJM2c6OhKba9gQqlWDDz+USokuwvJ+Smt9Xmsdo7WOBaYA1axq217aTmnI5GaL+fVUOTo+c52Y\nGEdHJIQQ7sOK6YiXlVK/A4FKqcWJD2qtm1twjfRh505T5/r8efjhB1PMwMa+/96Un8+SBVasgJo1\n/zsWv39McqTyoXgkRYua/2AzZsCbb5ohIxcVPxr29NMm5+za1dERiTSyvJ9SSuXTWp+Nu9sS2JXG\nGG0uqWnsLYZU4uPyl3j9w5z494IpU1z6V1sIIZyGFUlYM6ASMIMHTMdweTdvmo/Pvbxg9WqoUsWm\nl4uJVmybU4Q5q6FWLZPz5c//3/GUVDSUyofikXXqBC++CNu2QaVKjo7Gppo1g5AQ+OAD87JtvKWf\nsK009VNKqdlAXSCnUuoUMAyoq5QKATRwDOhlVbC2krgibvyU9vAPwrjqZaqCBtw6w0cz8z+oGSGE\nEBawokT9bWCDUqqG1vqiUsov7vHraY4uPdDafGzo42NGCMqWhQK2TWyOHIE/Pgrmygk/Bg6E99+/\nd/8vuH//GCEs0bYt9Otn/q+7eBKmlCkI2aYNzJkD7ds7OiKRWmntp7TWSf3rT7UyRntJWBE34UyJ\nEYNucXnCPMbO6kiFsKt07JPNUSEKIYRbsGJNWLw8SqltwG5gj1Jqi1Iq2ML2nc/Vq2b64ddfm/uN\nGtk8AVu0yLz3vX4pEzV772P06PsTMCFsJiDAjIQVco8Ev2VL87nK+++b6qMi3XO/fiqFlE9mxv9R\nnjoeq+jxSma2bZLFkEIIYUtWvn2fDLymtV4BoJSqG/fYA3apSsd27oRWreD4cTNvycaio+Gtt2Ds\nWLPPS56WO/HLGWXz6wpxnwkTHB2B3Xh4wNtvQ4cOsGABtG7t6IhEGrlVP5V4DdjD1gFnqFyeOZ/N\npfLLF2jV0IfNR3KQI4c9IhVCCPdjZRLmG9+xAWitVyqlfC1s33l8/73ZgDlbNvjzzwfvhpwKiTvO\nG5e92TitBJcO+1OszjmKtDnG/kv/EoQU1RAOcvs2/P23+UQgnXlYwRowayrjp/O2bQvDhsF775nP\nXaRoQbrm8v1Uwv/fG4/+A0D1wOxAytYB536pDfP+/Jhac/rQsfm/LFmdFQ8r58wIIYQArE3Cjiil\nhmIWPgN0BI5Y2L5z2LjRrNKvXRvCwy3f/wvuXTx9cnMONs8sitYQ+sIBClW9DEhRDeFggwbBV1+Z\nSqBZ0s92CCn5nYkvVhCfhHl6mlHo//s/WLIEnnrKpiEK23Lpfirx/+/qgdnv+UAhpap914dPsu/n\n5a/K8+mn0L+/lVEKIYQAUNqifayUUgHACOBxTLWo1cAIrfUVSy6QAlWqVNGbN2+2TeNRUZAxo/l+\n7lxo0QJstOlmu0nruRPlQcDO6kydCtWrw6xZpkK4EE5h/XozAvzNNy5Xvz1+FCG+eAGY6cAlS0Lu\n3LBhg4yGOZJSaovWOlXlZ52hn8peuIz+5/hee13ugdpNWn/fFMX4pE1rsybyl581G9ZrKlaW4bD0\nru70ugCs7LrSoXEI4epS2k9Z9ldVa31Fa91Pa11Ja11Za93fnh2bTS1caDZe3rnT3G/TxmYJGMCV\nEz4s/aA806aZT+BXr5YETDiZ0FAoXgckRiYAACAASURBVNxUSXQDGTLA4MGwaRMsXeroaERquXQ/\nlQotQgrck4DtOXvt7lR4peDrAfvJGX2W9k2ucuOGo6IUQgjXJB9tPUhUlCnH3bKl2YTL17ZLB7SG\n8eNh+Zhy3In0ZNkyU5XNhvmeEKmjFHTsaHYIP3nS0dHYRZcuULCg2UvJogkEQjhUh+qFCO8VdveW\nuGhHzhol+b7mlxy4mI2BPdw2VxVCCJuQJCw5Bw9CWBh89pmZEL92LRQrZrPLnTkDTZvCq69C3qCr\nNBq6g/r1bXY5IdKuY0eTjcyZ4+hI7CJjRhg4ENasMfV4hHBF8YU92k1aT7vJG7jyVgteyTiJL2YH\n8OcfMY4OTwghXIZlSZhSqmZKHks3Pv3UlJ9fvBg++eS/9WA28MMPEBxs3th9/jnU7L2fjH53bHY9\nISxRrBisWmVGi91E9+6mFs+77zo6EpEaLtdPWSyp6YnhJ6N5f2I2inGIF9pFcPOmAwMUQggXYuVI\n2GcpfMx5Xb0K+/eb70ePhu3b4emnbXa5S5egXTto3x5KlTKXe/llWfQv0pFatdxqvmzmzPDGG/DH\nH6Y2iUh30n8/ZUPJTU/06fYcX4dO5fClbAwZ4uAghRDCRaS5RL1SKgyz0WUupdRrCQ75A55pbd9u\nVqwwiz6yZoUdO8DHx9xs5KefzKfq//wDH3wAAwaAl5UbBghhLyNHgre3KVvvBl58EUaNMqNhP//s\n6GhESrhMP+UoSlF31Uh6v2LWLbdpY/n2mEII4XaseNvvDfjFtZVww6BrQBsL2retyEh4+20YN87U\noJ42jbTsTJl4o+XEom95sv3HIhxdl5usBW5Q781DbM9+k+en/ndO4pLBQji17dth3TozROQinyQ8\nbEPn+s+WYc6X2di8Gaqkqli6sLP03U85gwwZGD0aliyIomeH22w7mMWdBsGFEMJyaX7HpLX+E/hT\nKTVda31cKeUX9/j1NEdna8ePm51Xd+2Cl16Cjz5K8+hXwo2WEzu7OxtbZhbl1hVvSjc+TdmnTuKZ\n4f4ya7IRs0hXOnWCBQtM7fYmTRwdTZo97Hdvz9lrlCh5gICAarz3ntnBQji3dN1POZEsfppPs73D\nM/tG8+noW7w+JLOjQxJCiHTLyo+tsyiltgHZAZRSl4AuWutdFl7DWnnymFX2Y8ZY+uYxKJ//PRu9\nXrpkCiyungllysDUnyAsrAAgiZZwAU2bQvbsZs8wF0jCOlQvRIfqhZI9bkbIYnjlFRg+3GwfWL68\n3cITaZP++ilnohTNZ7SlWdWfGD6yAe26mm0bhBBCPDorC3NMBl7TWhfWWhcGXo97zLls3w7PPAMR\nEZApk00/vdcaZs0yidecOfDOO7Btm6l8L4TLyJjRVJhZuND8XrmJfv0gSxZ47z1HRyIeQfrop5zI\nPSXrJ63nuS23ebbqEu5Eaxo0Oka7SeuZtfGEo8MUQoh0x8okzFdrvSL+jtZ6JWDb3Y0fRVSUyYKq\nVoUNG8w+YDZ04oSZ6fj881C0KGzdCiNG2LTSvRCO07kz1KkDFy86OhK7CQiAvn1h7lzYu9fR0YgU\ncu5+yskkLlkf78/nnuF173Hs31uETau9HrgOWgghRNKsnI54RCk1FJgRd78jcMTC9lNv40bo1g32\n7DFvFj/5xEyfsoHYWDj8Z17KvmG+/+QT80bNU+pvCVcWGgq//OLoKOzu1VdhwgR4/334/ntHRyNS\nwHn7KSf0oKm5kf4XCR9wkQtLyxJbY6edIxNCiPTPypGwbkAuYH7cLVfcY46lNbzyCly7ZupJf/ut\nzRKwjRth+ahybAsPpEYNU++jf39JwIQbOXkSzp93dBR2kzMn9O4Ns2fbfHBdWMM5+6l0KFP3jnwy\nIxfXLvhw6M88jg5HCCHSHctGwrTWV4B+Sqks5q4Dq05pDYsXQ82a5l3S7NmQIwf426bs++XLMHgw\nfP01ZPL3JrT7AX6dXFI2XRbu5coVKF4cXnsNPvzQ0dHYzeuvw+efm5c8bZqjoxEP4lT9lAto1gyK\nFjrBvgW5eWbcX2T0vQOYaYwPKm4jhBDCwpEwpVS5uKpTu4DdSqktSqlgq9pPsWPHoHlzU3xj/Hjz\nWGCgJQnYrI0n7lmg3PbL9VTtdJj8haP5eqqmxBNnKNJ7FYWqXJYETLifgAB48kmTidy+7eho7CZv\nXujZ0xSHPHbM0dGIB0ltP6WUmqaUuqCU2pXgsexKqaVKqYNxXwNsGbszUgq+yDeG29GZODwvB2AK\necgaMSGEeDgrpyNOwtFVp86dg6AgWLECxo6FYcMsbT5+DzCAKyd8+OOjYDZ/Xwz/fLdo+PZOQtoc\np1wRX9njS7ivXr3gwgUzEu1GBg40e7yPGuXoSMRDpLafmg48meixQcByrXUJYHncfbfTePbr9PCY\nxr71hRhRJyzJQh5CCCHuZ2VhjvuqTiml7Ft16vRpMwI2YQIUss1UiECfHPhtqsKP30CuXGaJWadO\n/ihVwSbXEyJdadzY/O5Nngxt2jg6GpuJL9ud0GOhgUyZmpvTRbbhE3BbpmQ5p1T1U1rrVUqpIoke\nbgHUjfv+W2Al8KYlUaYngYGMfOkcsz+/wRs9NL4dHR2QEEKkD1aOhB1RSg1VShWJuw3B3lWniheH\nBQtskoDdugV7fi7AL+9UZMYMUxVt/35TbFGmHgoRx9MTuneH5cvhzBlHR2MTyZXtLt34NDoW9v2e\nX6ZkOS8r+6k8Wuuzcd+fA5KtTqGU6qmU2qyU2hwdHZ3Kyzmv3O+/whDf8SxZk41zu2UkTAghUsLK\nkbBuwAhMxSkNrMbeVaeyZrW8Sa1NXY9Bg+DkyUIUCLnMijk5KFHC8ksJ4Rp694b27SF/fkdHYhMP\nKtv9wmGYNSsfDZ88Dbjem20XYJN+SmutlVL6AccnEzftMXvhMsmel275+9NvfFG+GniFHXOLkLu0\nlKwXQoiHsSQJU0p5Am9rrftZ0Z6zWL/ejHht3AgVK0KxNrvJXeoaJUqEOTo0IZxXzpzm5oYGD4bp\n02H/0vyEtDnu6HBEAjbop84rpfJprc8qpfIBFyxqN13K2L0TH2WH1q3h6Nrc8JKjIxJCCOdmyXRE\nrXUM8LgVbSWklDqmlPpbKbVdKbXZ6vaTs3u3WVpWowacOAHffAN//QW5S12zVwhCpG+XL0OrVjB/\nvqMjsavixaFDBzi8Kg+R16ycaCDSygb91GKgS9z3XYBFFradLrV8RlM073H2z8/Dv/86OhohhHBu\nVq4J26aUWqyU6qSUahV/s6DdelrrEK11FQvaeqDxC05TJPQiweU0P/92h+DmJwh9cyO/RK2nw9fr\n71ZGFEI8RLZssH27KZLjZoYMgdhoD/b9LlVSnVCq+iml1GxgPVBKKXVKKfUCMApoqJQ6CDSIu+/W\nlIdipM8wbkT68MHQm44ORwghnJqVH9VmAi4D9RM8pjFz753auXPw3nvw5Vf50EpTqsEZSjc+Q0a/\nO/ecF5TPX8rPC5ESnp7Qp4/ZyXj7dggJcXREdlOqFBSufpHDf+blzBmXXRqXXqWqn9Jat0/m0BMW\nxeUytnZsSKeRMxg/8XlefNVs0ymEEOJ+liVhWuv/s6qthM0Cv8cteJ4Ut7j5HkqpnkBPgEKPWBXx\n8mX4+GPzYX1UFBSpcYGgpqf536DKgCRbQqRJt24wdCh89hlMneroaOwqqNkpjm/KyYcfmpcvnION\n+imRwKn8RalX7kvm/t2Gxk+doWK/07JdgxBCJMHK6Yi28LjWuhLQBHhZKVU78Qla68la6ypa6yq5\ncuVKUaMXL5pqh0WKmM1VmzeHffugyvNH8Qm4be0rEMJdZctm9nCYORMuXXJ0NHbllyuKwJoXmTQJ\njkt9DuFGWoQUYGundrzq9QkH9xTiz9Watxb8TbtJ6+/eZm084egwhRDC4Zw6CdNan477egFYAFRL\nS3vnzsEbb5jka8wYePpp+PtvU4K+eHELAhZC3KtvX3jpJYiNdXQkdhfU5BRKmanOQriLDtULMXlA\nMwaPyU2BbNfx3VqZaoWz3z0ue+gJIYThtOW7lFK+gIfWOiLu+0bAyNS0deYMvPDaNZbO9yP2jqJQ\ntUuUaXKKmLyRjFwDrDHn7Tl7LclNWIUQqRQUBOPGOToKh/DJfpsXX4SJE+HNN+WDHuFefF/tyQc5\noEsXGJEljI4dzePtJq13bGBCCOEkLBsJU0rlUUpNVUr9Enc/KK6CVGrlAdYopXYAm4AlWutfH6WB\nffuge3ezMPi3H7OQpewZnhyxner/dwj/vJH3nS+FN4SwAa1h2TJYvdrRkdjd4MHg7Q0jRjg6EgE2\n6afEA3RsH0OVwhcY/MpNbkqxRCGEuIeVI2HTgW+At+PuHwDCgVStyNdaHwEqPPrzYO1a+OgjWLwY\nMmWCF16A4wW24ZczivBestGyEHalNbz4IuTJY3453UjevKZI5NixJiELCnJ0RG5vOhb2U+LBPLw8\nGOf7DrWPf8XHH0Yx9N2Mjg5JCCGchpVrwnJqrecAsQBa6ztAjIXtP9TVq2aD5Vq1zHu9YcPMZstf\nfAF+OaPsGYoQIp6Hh1kbtm4dbNjg6GjsbuBA8PODt95ydCQCJ+in3IpS1Pq6C62Zy6jRijNnHB2Q\nEEI4DyuTsBtKqRyYsvIopUKBfy1s/6EOH4YLF+Dzz03yNXw4pLBgohDCll54AQICYPRoR0didzlz\nmmqsixa55YxMZ+PwfsrthIUxutlq7kRr3u5/HTDrr6VaohDC3VmZhL0GLAaKKaXWAt8BfS1s/6GK\nFoUDB+Dll8HHx55XFkI8kJ+fmZe3aJFZrOlm+vc3mzYPHGhmZwqHcXg/5Y6KTXyNV7y+4NsffQjy\nDLynAJZUSxRCuCtL1oQppTyATEAdoBSggP1a62gr2k+pgADw9LTnFYUQKda3r9m0ee9eKF3a0dHY\nlY8PvPuuGRCcPx9at3Z0RO7HWfopt1S4MEM/yc7s4ZHMnZCHrVvzkiGDOSTVEoUQ7sqSJExrHauU\nmqi1rgjstqJNIYSLyZXL7Fzs5bQ7Y9hUly6mWv+gQWaD+Pg3ocI+pJ9yrCx9ujCxELRo8V+hmqTM\n2njivpGxFiEF6FC9kB2iFEII+7FyOuJypVRrpZSysE0hhCvx8jIbN7vhlERPT7NJ/KFDMHmyo6Nx\nW9JPOVDz5tA6eD8j34nm8OGkz1m0/TR7zl67e1+mKwohXJWVSVgv4EcgSil1TSkVoZS69rAnCSHc\nzKBBUKUKXLzo6EjsrkkTqFfPFA26csXR0bgl6acc7NOQaXjfucn/tf6XmGTqUgbl8ye8VxjhvcLu\nWT8mhBCuxLIkTGudRWvtobX21lr7x92Xv55CiHt16wa3bpnN/NyMUmZK4j//mERM2Jf0U46X/4sh\nfJ5zBKt3ZGXMu7J1jBDCfVk5EoZSKkApVU0pVTv+ZmX7QggXULo0tG8PEyeaPSXcTEgI9OplXv6u\nXY6Oxv1IP+VgWbLQcUFr2jKHd0Z68s9x33tK1ieciiiEEK7MsiRMKdUdWAX8BoyI+zrcqvaFEC7k\nnXcgMtIsknJD774LWbNCv35Sst6epJ9yDurxmnzVfx959Vl2Ty1Ocf+Au8eC8vnTIqSAA6MTQgj7\nsLJM2StAVWCD1rqeUqo08IGF7T/UkYs3ki13u+fsNZlbLoSzKFkSOnY09do//NDtSgXmyAHvvQcv\nvQRz58Kzzzo6Irfh8H5KGAFjBjOn2E7qvPYYN3+rxtyfU7fFjFRTFEKkV1ZOR4zUWkcCKKUyaq33\nYfZisZtb0cms8kU+XRPC6Ywda+bjuVkCFq9nT6hQAV5/HW7edHQ0bsPh/ZSIkyEDYX0q88UX8Pvv\n8Hqv66kaFZZqikKI9MrKkbBTSqlswEJgqVLqCnDcwvYfKnMGT8J7hdnzkkKI1MqVy3y9fRsiIszw\nkBvx9ITPPoPatc2o2AcyHmMPlvdTSqljQAQQA9zRWldJc5RupHu7CHb1mcmEqS+SM88thryf+b5z\n4teMxUs80hVfTRFk82chRPphWRKmtW4Z9+1wpdQKICvwq1XtCyFcUGwshIZC0aJmXp6bqVULunY1\nhSKfew7Kl3d0RK7Nhv1UPa31JQvacT9ZsjBucXGuNJnB0A86kdH7JgOG+dw9nHgGS/yol0w3FEKk\nd5YlYUqphH8Rj8Z9zQucsOoaQggX4+EBLVuaQh1r10LNmo6OyO7GjoUlS6B7d1i/PnXrYkTKSD/l\nnDwaNWDqnEVEtZ3DwOFtOXcmgo++zIKHh0m2EiZc8RUU40e8ZL23ECK9snI64hJAAwrIBAQC+4Gy\nFl5DCOFqXnsNvvrKLI5av95spuVGcuSACROgQwczPbF/f0dH5NJs0U9p4HellAYmaa0nJz5BKdUT\n6Angl69YGi7lurxat2DWb3+Qu+mXjJvcmwNn4NtvIXv2e89LPDL2sPXezla4IzbW7Mxx/mwsN65G\nczMiBh19h8w5fPDN6kXBgpAzp9v9GRTCLVk5HbFcwvtKqUrAS1a1L4RwUb6+ZlFUt24we7bJRlxA\n4nUsiSV8I/jcc/D99zBkCLRoAYGB9orSvdion3pca31aKZUbs85sn9Z6VaLrTgYmA2QvXEY2JUiG\nR4P6TNiWl5JLo3ltYAYqlotm6tfQoMl/xXsSj4w9THzhjvjRMntNZ9Qajh6KYevP59i+6hrbLhfi\nwGlfTp6IJeq2B6YuWsYkn5vZI5JSAReoVvYG1Rtno3HnvBQoKFmZEK7GypGwe2ittyqlqtuqfSGE\nC+ncGb74Ar7+2iWSsIdVYk38RlAp+PJLCA6GLl1gxQqZlmgPVvRTWuvTcV8vKKUWANUwe5GJVFBl\ng+hTFkKr3aZDndM0bBpIx8YX+Gh6bvLmTV2b9ijcoTUcOQIrl1xnxTfHWLkvL6cjcwIF8CQPZfJe\npVJtX1rWv0bhHf8jbz6FXzYvfHxAeXlyq3x1IgIKcWrtcY7PXsvfF/MRvqoik1dlg7ehSukI2nbL\nQteu/9U0EkKkb1auCXstwV0PoBJwxqr2hRAuzNMTFiyA3LkdHYklHvZpfVJvBAsVMtMRu3aFceNg\nwAAbBuimrO6nlFK+gIfWOiLu+0bAyLRFKQCq1PBm5w97+KDbIkb99hLzC0bSr8s1Bo7NTUDAw5+f\nUmmZrhgbCxuWRrDw81Ms3FqIg2d8AT9yk4u6Wf6ibpV/qFrfn+AnC5IppDRkBsgGdEq+0VaF4ePC\noDWxe/ezZ84y/vdjJAsztmXgQBjyVizPVjzEwM8KUr66T/LtCCGcnpX7hGVJcMuImXvfwsL2hRCu\nrGBB8PY25eoPHXJ0NA7RuTO0agVvvw07djg6GpdkdT+VB1ijlNoBbAKWaK2lKrBFMrVuxsgzPdjz\n+jRaeixm9LScFC54h9dfh+MWbYDzqPuMfbv6BM26rqNOsfXk9r5MzSez8MlPxQm8c4DPPoPdu+Hc\nZW/CrzWh9+rnqTLiaTKFVYTM95fefyCl8AgqTfDwNgze3ZGNW73ZvRt6lVzB4r/yUiHUh3Yh+9m3\nIyq1L10I4WBWrgkbYVVbrsbPz4/r16/f93jXrl156qmnaNOmzSO3OXz4cPz8/HjjjTdSdO0zZ87Q\nr18/5iZTBvzq1avMmjWLl15KfnlEjRo1WLduHStXrmTs2LH89NNPKY534cKFlCxZkqCgIADeeecd\nateuTYMGDVLchnADWkOjRnDrFmzeDF42mzHtlJSCSZNg3Tro2BE2bXr0924ieVb3U1rrI0AFK9sU\nifj6Unzsi3z/9hUGjpjO6PNdmTABJoyPpXXlY7w0Mi+1G/ukqZBF4umKiddz3r7pwY31in1HinLq\n7/zo24XwI4J6mf4kb7HDZG2clY8+6QR3pxBbOFSXMM4g+HRXfUb8upGPXz7ChB1PMz/Eg/7NDzBs\nZkn8/GxyWSGEjVg2EqaU+p9SanFyN6uuI1Inf/78ySZgYJKwL774Isljd+7cAWDdunWpvv7ChQvZ\ns2fP3fsjR46UBEzcTykYONAMA40a5ehoHCJnTvjmG9i1C/r2dXQ0rkX6qXQsIIDy47sxc7YHR4/C\n64Xm8ttf2anbxIcSWc/zfs/jnDyR9ponLUIKEJTPn6jzipuzbnFwsA9LXqvI0h+rcfGAP4HVLvNe\n3zVc+vsci289xb+vVeNE2VL2W8SpFAFNQnnvSAeOzNtOlxxLGLu4JKVLw88/2ycEIYQ1rJyOeAS4\nBUyJu10HDgMfx92cQ92699/Gjk398UegtaZPnz6UKlWKBg0acOHChbvHtmzZQp06dahcuTKNGzfm\n7NmzAEyZMoWqVatSoUIFWrduzc2bNx94jaNHjxIWFka5cuUYMmTI3cePHTtGcHAwALt376ZatWqE\nhIRQvnx5Dh48yKBBgzh8+DAhISEMGDCAlStXUqtWLZo3b3539Movwcds165do1mzZpQqVYoXX3yR\n2NjY+86ZO3cuXbt2Zd26dSxevJgBAwYQEhLC4cOH6dq1692kcPny5VSsWJFy5crRrVs3oqLM9Ioi\nRYowbNgwKlWqRLly5di3b98j/bxFOtWypSnOMXy4GQpyQ08+aaYkTp1qEjJhmfTRT4kHeuwxGH3k\nWc4s38eMOl9T6OY+hkwpTOHCmuWjg/nzxxw0GbqVtl+uv2eqYbz4ka74US+AiGuaX3/R/L2wEAfe\nL8miYaH8tKo+N69m4pViS1g7+Ceun4nh8Oo8vP3p42QMLmHvl32fXK1q8fW5p1i3OoaAAGjWDHrX\n3cuN61KAU4j0wMq5PjW11lUS3P+fUmqz1vpVC6+Rri1YsID9+/ezZ88ezp8/T1BQEN26dSM6Opq+\nffuyaNEicuXKRXh4OG+//TbTpk2jVatW9OjRA4AhQ4YwdepU+j7g4/FXXnmF3r1707lzZyZOnJjk\nOV999RWvvPIKzz//PLdv3yYmJoZRo0axa9cutm/fDsDKlSvZunUru3btIjCJetmbNm1iz549FC5c\nmCeffJL58+cnO62yRo0aNG/ePMmpl5GRkXTt2pXly5dTsmRJOnfuzJdffkn/uM2ScubMydatW/ni\niy8YO3YsX3/99cN/0CL9mzgRVq82c/K2bTNl7F3Mw0rYxxaA3KWC6NErC7MP/03AY0l/AOPIPY/S\nIemnXIVS+NQPpWP9UDpev86RL+cxc1cFvtn0GEeXl+TX5eDvcY1iAcfwLH6bz3YfJFdwHvJfKc75\nY2e4ufYKMZc1Wc9l4+9rucj2YiyxeOLlBaFBGRhTYD7N/y8HpTpVg8ylUh2mzfcp8/Ii7HH46y8Y\nWvF/fPxnM5bnO8uPP/tRoZZsYi2EM7MyCfNVShWNmyOPUioQcL53TitX2vb4A6xatYr27dvj6elJ\n/vz5qV+/PgD79+9n165dNGzYEICYmBjy5csHwK5duxgyZAhXr17l+vXrNG7c+IHXWLt2LfPmzQOg\nU6dOvPnmm/edExYWxvvvv8+pU6do1aoVJUok/YletWrVkkzA4o8VLVoUgPbt27NmzZpUrW3bv38/\ngYGBlCxZEoAuXbowceLEu0lYq1atAKhcuTLz589/5PZFOpUtG3z3HQwaBFeuuFwS9rAS9gAeHhD6\nwgGWvl+BdZNK8cSbf5Mpy517zrHXnkcuJH30U+LR+PlRdEBrhgJDgVNrj/P7sLVs2JGZjZeKsfBy\nELM3Jqwk+F+N9yIcpYzPcVoH76RO7yDCupTE19cfaJWqUBInXRuP/gNA9UCz67StfmczZYKPdjej\naa8f6Ph1HcLqZGDysMN0HCabgwvhrKxMwl4FViqljgAKKAz0tLB9l6W1pmzZsqxff/+n4l27dmXh\nwoVUqFCB6dOnszIFSaB6yArlDh06UL16dZYsWULTpk2ZNGnS3YQqId8HvPFNfI34+wkfj4yMfGis\nD5Mxo9nM0tPT8+7aNOEm6taF9etJ04p7J/UoG85uqAX16sGlBVVZvty82Ypnqz2PXJj0U26gYM3C\ndFtWmG4A0dHoEye5sO00V3KW4Hb2vBARQfZTO8lZMjuZgopCxrTtjp5wVDtx0lU9MPs9I182/Z31\n8KDelA5sabmVdq1O0Wl4dTbuu8TH3+bE29t2lxVCpI5la8LiyvKWAF4B+gGltNa/W9W+K6hduzbh\n4eHExMRw9uxZVqxYAUCpUqW4ePHi3SQsOjqa3bt3AxAREUG+fPmIjo5m5syZD71GzZo1+eGHHwCS\nPf/IkSMULVqUfv360aJFC3bu3EmWLFmIiIhI8WvZtGkTR48eJTY2lvDwcB5//HEA8uTJw969e4mN\njWXBggV3z0+u/VKlSnHs2DEOxZUknzFjBnXq1ElxHMLFKQX//gvPPQc7dzo6GocIDTWDguvWmT3E\n4pZfilSQfsoNZciAKlaUPG1qUbpuXsqXh/I1s1CwXU0yVSwDcR/0pVZ8IY941QOz80HLcoT3Crt7\ns/dIdd6mlVh2rDivPb6Jz3/ISYMGcOmSXUMQQqRAmpMwpVRVpVReAK11FKZc70jgI6VU9rS270pa\ntmxJiRIlCAoKonPnzoSFmZK43t7ezJ07lzfffJMKFSoQEhJytxLhu+++S/Xq1alZsyalS5d+6DUm\nTJjAxIkTKVeuHKdPJ73XyZw5cwgODiYkJIRdu3bRuXNncuTIQc2aNQkODmZACnaJrVq1Kn369KFM\nmTIEBgbSsmVLAEaNGsVTTz1FjRo17k6pBHjuuef46KOPqFixIocPH777eKZMmfjmm2949tlnKVeu\nHB4eHrz44osPvb5wI7dumfVhLVu67TuJZ5+F0aMhPNzM0NSy7v6RSD8lbKVD9UL3JFyOSLqSkiFv\nDj5eXY2ZM2HTxliqFznHzWsym0QIZ6J0GntzpdRWoIHW+h+lVG3gB6AvEAKU0Vo/+kKhVMpeuIz+\n5/hee11OCGEvGzaY6YmVKsGyZeDj89CnuBqt4eWX4csvYdgwUzwyfmpT/B5H7kAptSVRcY2UPEf6\nKeEU4isyJhw9A9sW2NkwZhUtFXtOcwAAIABJREFU3izF5a5tKFvyDjsGyzRmIWwppf2UFWvCPLXW\n/8R93w6YrLWeB8xTSm23oH0hhLsLDYVZs6BNG3j+eZg713778jgJpeDzzyEyEkaMgAwZgJyOjird\nkH5KOIWkivJsPPoPG4/+c09BDyuTstCBtdlUfAtB/4vi8oF/mN7hd7rMbOSKy22FSFcsScKUUl5a\n6zvAE9y7yNnKwh9CCHfWqhVMmABDh8KRI5BMVU9X5uEBU6bAnTswZAiUfbogQU1POTqs9ED6KeEU\nkirKk7iioi0qKBZuVZmQMx5EbztHp9lN+PH4OFqu6EcGb8nEhHAUKzqf2cCfSqlLmE0wVwMopYoD\n/1rQvhBCGH37mtGw+PWGWrtk9cQH8fQ0GzgrBd999xi3rnhzpzt4SSrxINJPCaeVODGzVQXFDH6Z\n8AqryL7VOWi7rj9LivxN6OaJ5MiftuIkQojUSXNhDq31+8DrwHTgcf3fIjMPzJx7IYSwTnwC9uGH\npljHzaQ3MXZlnp4wfTqUefIUR9bkoUULuH7d0VE5L+mnhDCUlydl981n59Nv0+zsVI6VaMidW9GO\nDksIt2TJZ6da6w1JPHbAiraFECJJfn6weLHZRGvxYsiTx9ER2ZVSUO6Zk/hkj+LXH4pRpQr8+COU\nK+foyJyT9FMivUo8XRHSuGbMw4Pyi99j/8hyZNh7BK/MGSyIUgjxqGQCix2cO3eO/v3789dff5Et\nWzby5MnD+PHjKVmypF2uv337ds6cOUPTpk0f6Xl169Zl7NixVKmSfIGXlStXMnbsWH766ScWL17M\nnj17GDRoUKri2Lx5M9999x2ffvopw4cPx8/PjzfeeCPF8Y4fP56ePXviE1c5r2nTpsyaNYts2bKl\nuA2RjvTtC4UKQfv2ULGiqd9eq5ajo7K7YrUvMLZHMdq3h2rV4LPP4IUX3G6WphAu5UEbQCdVyCOx\nlCRppd5pd/f7pUNXcXP/SZ6a/fxDax5ZnhQK4aYs26xZJE1rTcuWLalbty6HDx9my5YtfPjhh5w/\nfz5Fz79z5959PbTWxD7ibq3bt2/n559/fqTnpEbz5s2TTcAeFsedO3eoUqUKn376aaqvP378eG4m\nmJr2888/SwLm6lq0gPXrwdcXnngCktkbz9XVrQvbt8Pjj0OPHtC0KRw96uiohBCp8bANoD9oWe5u\nQpaUPWevPTBBS0rAd+Np8WNHlhfswvlDEQ88d9H203eLh6T2ekIIScJsbsWKFWTIkOGeDYgrVKhA\nrVq10FozYMAAgoODKVeuHOHh4YAZXapVqxbNmzcnKCiIY8eOUapUKTp37kxwcDAnT57k999/Jyws\njEqVKvHss89yPW5ByF9//UWNGjWoUKEC1apV499//+Wdd94hPDyckJAQwsPDuXHjBt26daNatWpU\nrFiRRYsWAXDr1i2ee+45ypQpQ8uWLbl161aSr+nXX3+ldOnSVKpUifnz5999fPr06fTp0weAH3/8\nkeDgYCpUqEDt2rW5ffv2fXEMHz6cTp06UbNmTTp16sTKlSt56qmn7ra3Y8cOwsLCKFGiBFOmTLn7\ns0l4Tp8+fZg+fTqffvopZ86coV69etSrVw+AIkWKcCluc99x48YRHBxMcHAw48ePB+DYsWOUKVOG\nHj16ULZsWRo1apTsaxZOrEIF2LIFpk2DAnHln0+5X8XAPHng119NAck1a6BsWRg1yux1LYRIPx62\nAXRSxxPeEu9BlhKVD81h69PDeOLc99woXYlVox9cHCQon3+arieEcLPpiP37m0+LrRQSAnHv6ZO0\na9cuKleunOSx+fPns337dnbs2MGlS5eoWrUqtWvXBmDr1q3s2rWLwMBAjh07xsGDB/n2228JDQ3l\n0qVLvPfeeyxbtgxfX19Gjx7NuHHjGDRoEO3atSM8PJyqVaty7do1fHx8GDlyJJs3b+bzzz8H4K23\n3qJ+/fpMmzaNq1evUq1aNRo0aMCkSZPw8fFh79697Ny5k0qVKt0Xc2RkJD169OCPP/6gePHitGvX\n7r5zAEaOHMlvv/1GgQIFuHr1Kt7e3vfFMXz4cPbs2cOaNWvInDkzK1euvKeNnTt3smHDBm7cuEHF\nihVp1qxZsj/nfv36MW7cOFasWEHOnPdunrRlyxa++eYbNm7ciNaa6tWrU6dOHQICAjh48CCzZ89m\nypQptG3blnnz5tGxY8dkryOclL8/xP+7rV9vpiW2awfvvw9Fijg0NHvy9IR+/Uy9kr59YfBgMz3x\n7bfNFMWMUgRNCLcTP31wz2UzetVu0vr7pg+qDF5UWjycYzOeIPMLz/P4oJrszryUsv2eSLKEfuLE\nK+H0yaRYPV3R3adEOuPrf1hMjxqzM75Gq8lImAOtWbOG9u3b4+npSZ48eahTpw5//fUXANWqVSMw\nMPDuuYULFyY0NBSADRs2sGfPHmrWrElISAjffvstx48fZ//+/eTLl4+qVasC4O/vj1cSdat///13\nRo0aRUhICHXr1iUyMpITJ06watWquwlI+fLlKV++/H3P3bdvH4GBgZQoUQKlVLIJS82aNenatStT\npkwhJiYm2Z9B8+bNyZw5c5LHWrRoQebMmcmZMyf16tVj06ZNybbzIGvWrKFly5b4+vri5+dHq1at\nWL16NQCBgYGEhIQAULlyZY4dO5aqawgnUrYsvPkmzJ8PxYtDhw5mpMyNPPYYLFwIK1dC0aLw8svm\n64gRcOaMo6MTQtjTo0wfLNKpFjnP7ebvjqMJeqkuAMsmbGbfoSt3zwnK53/PptOJp08mZovpiu4+\nJdIZX//DYnrUmJ3xNVrNrUbCHjRiZStly5Zl7ty5j/w8X1/fZO9rrWnYsCGzZ8++55y///47RW1r\nrZk3bx6lSpV65LhS6quvvmLjxo0sWbKEypUrsyWZN8GJX2dCKlFlAaUUXl5e96yJi4yMTFOcGRMM\nDXh6esp0RFfg729GwHr3hk8+Mbsbz58PZ89CQABER0MG96gGVqcOrFoFS5eaH8Xw4fDuu9Ckidlu\nrXlz8yMRQri2oHz+5MhoEqU8UQ+ePpghexYqzBgAwD8nbzB6di9uKl/2Nn2dyhO6kKvYvc9PagPq\nhGy171n8lEhbXsOZOePrf1hMjxqzM75GKzn1SJhS6kml1H6l1CGlVPIVH5xY/fr1iYqKYvLkyXcf\n27lzJ6tXr6ZWrVqEh4cTExPDxYsXWbVqFdWqVXtom6Ghoaxdu5ZDhw4BcOPGDQ4cOECpUqU4e/bs\n3dG0iIgI7ty5Q5YsWYiI+G+hbePGjfnss8+I3ypn27ZtANSuXZtZs2YBZhrlzp0777t26dKlOXbs\nGIcPHwa4LxGMd/jwYapXr87IkSPJlSsXJ0+evC+Oh1m0aBGRkZFcvnyZlStXUrVqVQoXLsyePXuI\niori6tWrLF++/O75ybVfq1YtFi5cyM2bN7lx4wYLFiyglhtW0XM7BQvCxx/DyZOmhH18tlG7NoSF\nwZAhsGIFXLv24HbSOaWgUSP45Rc4eBBeew127ICuXSF3bjNzc+hQWLYMrlx5aHMiEVfop4RITvaC\nPoxt+x4XM+XmySX9yFw8P38U687B+Sn70FcIkTynTcKUUp7ARKAJEAS0V0oFOTaqR6eUYsGCBSxb\ntoxixYpRtmxZBg8eTN68eWnZsiXly5enQoUK1K9fnzFjxpA3b96HtpkrVy6mT59O+/btKV++PGFh\nYezbtw9vb2/Cw8Pp27cvFSpUoGHDhkRGRlKvXj327NlztyDG0KFDiY6Opnz58pQtW5ahQ4cC0Lt3\nb65fv06ZMmV45513klzLlilTJiZPnkyzZs2oVKkSuXPnTjLGAQMGUK5cOYKDg+8WCkkcx8OUL1+e\nevXqERoaytChQ8mfPz+PPfYYbdu2JTg4mLZt21KxYsW75/fs2ZMnn3zybmGOeJUqVaJr165Uq1aN\n6tWr071793ueJ1xc1qwmCwGIjYUnnzSZyahRUL++Od6jx3/nz5gBy5fDoUPw779wd1/f9K94cRgz\nBo4fh02b4I034PZt+OADaNgQsmc3Vf+fegoGDIDPPzf56/btcPEiJCrW6vZcpZ8SIllKcax+eT76\nZALH5mxid+k2VDsSbj7cAjZ/vZ1ltUeyYdgvHFl6mNs35Y+EECmltJO+wVBKhQHDtdaN4+4PBtBa\nf5jcc7IXLqP/Ob7XThEKIdK1a9dMGcFt26BECWjbFq5fhyxZ7j3P09MMH40ZA5GRpv57pkzmljGj\n+dqkiXl+ZKSphuHhYRI9Dw9zq13bPC8qymQ8St27kVdYmEkUo6JMcphYMsd/3HySCxFRXK1QmZ1B\n1fGKvs0zv82456m5smSkbtcW/z1/9Oj7fxTlH2d95vrs2HKHHT/sZcf5PBy8nJ3bMffPWM+SMYqA\nTLcIyBxJ1oxRZPS6Q8ac/mQsmIuMXjFkPLCTjJ4xeHvG4Omh8VSxeD6Wj1qdAnlAbZ0UU0pt0Von\nv3mhHUk/JZxRu0nr7ymeEf/9+YyDAcgT9WGSxTWSE39u/LSwO9cj8fT2RHlnYGnrr3hi/kt4YN5L\nRuPFBc98ZF67nOzVS7B68BIufP0d17UXKmMm7nh5ccczA2t7NicyIAu5fz9E0M7NcVcyfxO1gk0v\nNOFWNn9yLjtM0M6tcY//9zdzVrMaPFYyP2/ciuXG4uXsOvMvN6Lu4JvR/M3a/H+NuJXNn1zLD1N6\n57b7XlN6P+6Mrz/++sH5sxL6fR+6/G8/MQt2U/fY3hQdT9z+lltQZ89F2lw6AnDPa0wuPl9vLwJz\n+hL6fR8y5c/OX+PXcmPx8vvaT+54pe/6418w7dU+U9pPOfOasALAyQT3TwHVE5+klOoJ9AQIyF/U\nPpEJIdI/f3+TGCXcPNzHB44cgWPH4MQJuHQJ/vkH4oriEB1tbhERJqGJjDS3onF/e27fhqlTzehZ\nbOx/X8FcJzISRo68P5bXXzdJ0u3bZuFWCo8/G/f1fxliTBIWE82zP029//n5M//3/GHD7v9RvP46\njcfWp3GNW/C2KcgTi+IiuThBIY4/3ZfTT3Tm6vkornz4JVeiArjybwDX8CeCjFyKyEhUBETdUkQd\nzUkkmbiNN7F4EIMnMZ7e3CmIJUmYk5F+SjidhEUz4L9CGpP3Jn38YRIX4vDyy3T3+4bzXuTGmfYc\nXbSTf7cc4s7eg3hdOEOVgmb6d8SeU1S9spEMsbfx1lFkJApvbrPten0iA7JQ6O999Dz0OSouiYtP\n5v6OqM2tbP4Ebt/Dy4c+uS+m3a1rUiukABcG/kCzVcOom+h472s1uZXNn8Lb99Ln4Lj7np/ejzv1\n698P184/T4uQApz++KdHPx7XflChfFRetJG6202fVTfR8QfFd+3882TKn50LC9bSbNX9fV5yx8+e\ne8GSJCylnHkkrA3wpNa6e9z9TkB1rXWf5J5TpUoVvXnz5uQOCyGEc0jq765SD576aNXx5M7x8LD9\ncQs42UiY9FMi3ag7vS4AK7uudGgcj0LH6nu+xlMeCuWhiI1J+m+OHJfjqTke/3haucJI2GngsQT3\nC8Y9JoQQ6ZtK5o98co9befxB59j6uOuRfkoIG4p/Q5zcG2MPT0X8NEY5LsetPm5rTluYA/gLKKGU\nClRKeQPPAYsdHJMQQggRT/opIYQQqeK0I2Fa6ztKqT7Ab4AnME1rvdvBYQkhhBCA9FNCCCFSz2mT\nMACt9c/Az46OQwghhEiK9FNCCCFSw5mnIwohhBBCCCGEy5EkTAghhBBCCCHsSJIwIYQQQoj/Z+++\nw6uo0geOf19C7yJFqjSlQ+hNqqKgCIJKWwvqgrgCuq6sXVl1fwvqunYFRFEEjaIIih1FRDpIMxQB\n6YigQggQIPD+/jgTvISUm+TezL3h/TzPPJk75cw7d5I5OXPOnGOMMbnICmHGGGOMMcYYk4sidrDm\n7BCRA8BPWdilFHAgRNtltE1669JannpZWWBfEDGGS7DfUTjSCdX1Cde1AX+vj12bjJfZtcnZdpF6\nbc5X1XLZ3Nd3IrIX2JrGqpzkM6HMN3Lyu5vd36lQ/45k9xxCeQ0g++dg1yB720TLNchoG/tbzloc\nOdkvnOcQXD6lqnlmAsaHY/tgtstom/TWpbU89TJgaTR9p6FMJ1TXJ1zXxu/rY9fGro1dm7wz5SSf\nCWW+kZPf3ez+ToX6dyS75xDKa5CTc7BrkLevQVbOwf6Wo/v3KLMprzVH/ChM2wezXUbbpLcureVZ\nPYdwC1U82UknVNfHrk3o07FrkzG7NsEfxzg5yWdC+R3nJK3s/k6F+ncku+nZNQgduwbZ2yZazsF+\nj0IgTzVHzItEZKmqtvA7DpM2uz6Ry65N5LJrE1554fu1c/BftMcP0X8O0R4/2DlkJK/VhOVF4/0O\nwGTIrk/ksmsTuezahFde+H7tHPwX7fFD9J9DtMcPdg7pspowY4wxxhhjjMlFVhNmjDHGGGOMMbnI\nCmHGGGOMMcYYk4usEGaMMcYYY4wxucgKYVFORIqJyFIR6el3LOZPIlJPRF4RkWkicpvf8ZjTichV\nIjJBROJE5FK/4zF/EpGaIjJRRKb5HUteFe35RrTfX/PC/Sca/0693/s3vO/+L37Hkx3R+L2nFu2/\n/6G8/1ghzCci8pqI/Coia1It7y4i60Vko4jcG0RS9wDvhifKs1Moro2qrlXVYUA/oH044z3bhOj6\nfKiqQ4BhQP9wxns2CdG12ayqt4Q30uiUF/KNaL+/5oX7T176O83iufQFpnnffa9cDzYdWTmHSPne\nU8viOURc/pvF+EN2/7FCmH8mAd0DF4hIDPAi0AOoDwwUkfoi0khEPk41lReRbkA88GtuB5/HTSKH\n18bbpxcwC/gkd8PP8yYRguvjedDbz4TGJEJ3bcyZJhH9+cYkovv+Oonov/9MIu/8nU4iyHMBqgDb\nvc1O5GKMmZlE8OcQqSaR9XOIpPx3ElmIP1T3n/w52dlkn6rOFZHqqRa3Ajaq6mYAEXkH6K2q/wHO\naDYiIp2BYrhfjiMi8omqngxn3GeDUFwbL52ZwEwRmQVMDV/EZ5cQ/e0IMAb4VFWXhzfis0eo/nZM\n2vJCvhHt99e8cP/JS3+nWTkXYAeuILaCCKqEyOI5xOdudMHJyjmIyFoiLP/N6jUI1f3HCmGRpTJ/\nPqUBd8Nond7GqvoAgIgMBvZZASyssnRtvH90+gKFsJqw3JCl6wOMAC4BSolIbVV9JZzBneWy+rdz\nLvBvoKmI3Of9E2jSlxfyjWi/v+aF+09e+jtN71yeA14QkSuAj/wILAvSPIcI/95TS+86ROLvf1rS\nuwadCdH9xwpheYCqTvI7BnM6VZ0DzPE5DJMOVX0OlyGbCKOqv+HeFTBhFM35RrTfX/PC/Sca/05V\n9RBwk99x5EQ0fu+pRfvvfyjvPxFTHWsA2AlUDfhcxVtm/GfXJrLZ9Ylcdm3CKy98v9F+DtEeP+SN\nc0iRF87FzsF/YY/fCmGRZQlwgYjUEJGCwABgps8xGceuTWSz6xO57NqEV174fqP9HKI9fsgb55Ai\nL5yLnYP/wh6/FcJ8IiJvAwuAOiKyQ0RuUdVkYDjwObAWeFdVf/QzzrORXZvIZtcnctm1Ca+88P1G\n+zlEe/yQN84hRV44FzsH//kVv6hqKNMzxhhjjDHGGJMBqwkzxhhjjDHGmFxkhTBjjDHGGGOMyUVW\nCDPGGGOMMcaYXGSFMGOMMcYYY4zJRVYIM8YYY4wxxphcZIUwY4wxxhhjjMlFVggzUU9ErhIRFZG6\nfseSHhG53+8YQkVEhonIDVnYvrqIrMnC9iIiX4tIyQy2eUdELgg2TWOM8VtezKtEZI6ItAjnMbKY\ndi8RuTeL+yRmcftpIlIzg/VPiUjXrKRpzk5WCDN5wUBgnvczrEQkfzZ3zROFMBHJr6qvqOqbYTzM\n5cBKVU3IYJuXgX+GMQZjjAk1y6vCeAwvf5qpqmPCkb53jAZAjKpuzmCz54EsFQTN2ckKYSaqiUhx\n4CLgFmBAwPLOIjJXRGaJyHoReUVE8nnrEkXkfyLyo4jMFpFy3vIhIrJERFaKyPsiUtRbPsnbfxHw\nhIgUE5HXRGSxiPwgIr297QaLyAci8pmI/CQiT3jLxwBFRGSFiExJ4xwGishqEVkjImMDlqcXZy3v\nGMtE5LuUp6penM+JyHwR2Swi16RxrOoisk5EpojIWu+JXsp5NheRb710PxeRit7yOSLyjIgsBe4Q\nkdEicre3LlZEForIKhGZLiLnBKS1UkRWArcHHL+B972t8PZJqzbrL8AMb/ti3jVc6X0//b1tvgMu\nycE/GsYYk2uiPa8SkRgv/TVefvX3gNXXesfYICIdAo7xQsD+H3vnmll+mJ18L/CcTx3Xy+++9vKa\n2SJSzVteQ0QWeOfxeMCxK3rXYoV3nh3SuJSB+VOa34mqbgXOFZHzMvylMEZVbbIpaifcDXGiNz8f\naO7NdwaSgJpADPAlcI23ToG/ePMPAy948+cGpPs4MMKbnwR8jHv6BfB/wHXefGlgA1AMGAxsBkoB\nhYGtQFVvu8R04q8EbAPKAfmBr4GrMolzNnCBN98a+DogzvdwD1fqAxvTOF51L9323ufXgLuBAt73\nV85b3h94zZufA7wUkMZo4G5vfhXQyZt/FHgmYHlHb/5JYI03/3zAORUEiqQR41aghDd/NTAhYF2p\ngPkvU663TTbZZFMkT3kgr2oOfBnwubT3cw7wX2/+cuArb35wSrze54+BzhkdI5NzzijfCzznwQH7\nfATc6M3fDHzozc8EbvDmb0+JB/gH8IA3H5OSD6WK71ugUUbfiTc/Abja7987myJ7spowE+0GAu94\n8+9wejOPxaq6WVVPAG/jnkICnATivPm3ApY39J6wrcZlmA0C0nrPSwfgUuBeEVmBy4AKA9W8dbNV\n9YCqJgHxwPmZxN8SmKOqe1U1GZgCdEwvTu9pajvgPe/444CKAel9qKonVTUeqJDOMber6vepzr8O\n0BD40kv3QaBKwD5xpCIipXCZzrfeojeAjiJS2ls+11s+OWC3BcD9InIPcL6qHkkjvjKqetCbXw10\nE5GxItJBVQ8EbPcrrhBrjDGRLtrzqs1ATRF5XkS6A4HNxT/wfi7DPejLiezke4HnHKgtMNWbn8yf\n31973PecsjzFEuAmERmNK2gd5EwVgb3efEbfieVPJlPWlMdELREpA3QFGomI4p5cqYiM8jbRVLuk\n/px6+SRcLdRKERmMe0KZ4lDgoXFPuNaniqc1cDRg0QlC+zemuFqu/aoam842gceXDNJJ/VmAH1W1\nbTr7HEpneZao6lSv2cgVwCcicquqfp1qs2QRyecVJjeISDPcE9bHRWS2qj7qbVcYSKsQZ4wxESMv\n5FWq+oeINAEuA4YB/XC1SwSkFZhOMqe/8lI4o/QzOjSZ53vZyZ/O+I5Vda6IdMTlT5NE5Gk98/3n\nI3jnksl3YvmTyZTVhJlodg0wWVXPV9XqqloV+BlIacfdymv7nQ/XvG6etzyfty/AoIDlJYDdIlIA\n93QxPZ8DI0REAESkaRCxHvfSTW0x0ElEyopIDO7paErN0hlxquus4mcRudY7tniZQFZUE5GUwlbK\n+a8HyqUsF5EC4l5ATpdXK/VHQLv564FvVXU/sF9EUp46nvouxfUotVlVn8O1q2+cRtLrcU1zEJFK\nwGFVfQvXrLFZwHYXAkH3umiMMT6J+rxKRMoC+VT1fVxLiWZn7Hm6LUCsiOQTkapAq8yO4Qllvjef\nP9+/+wvuXWKA71Mtx0v3fGCPqk4AXiXtc1wL1Pa2z+g7sfzJZMoKYSaaDQSmp1r2Pn8281gCvIC7\naf4csO0hXKa3Bvd0MqVm5SFgEe4GvS6D4z6Ge4dqlYj86H3OzHhv+9NeRFbV3bhelL4BVgLLVHVG\nJnH+BbhFXKcXPwK9gzh+oPXA7SKyFjgHeFlVj+EyvrFeuitwzT8ycyPwpIisAmIDYrwJeNFrOhJY\nI9cPWOMtbwik1cviLP58stsIWOxt/wju/QdEpAJwRFV/Ce6UjTHGN1GfVwGVgTnevfgt4L5M0vne\nO5d44DlgeRDHgNDmeyNwzQtX4R4S3uEtvwOXB672zitFZ2CliPyAKww/m0aagflTmt+JV8CsDSwN\nIkZzFhPV9Gq9jYleItIZ13lEzzTWJapq8dyPKmvCEaeIVAc+VtWGoUw3lMT1yvimqnbLYJu/Awmq\nOjH3IjPGmNDKC3lVKEX6OYtIEdxD0/bpvIeGiPQBmqnqQ7kanIk6VhNmjIkoXu3gBMlgsGZgP64j\nEGOMMSZXeJ1JPcLpNWip5Qf+mzsRmWhmNWHGGGOMMcYYk4usJswYY4wxxhhjcpEVwowxxhhjjDEm\nF1khzBhjjDHGGGNykRXCjDHGGGOMMSYXWSHMGGOMMcYYY3KRFcKMMcYYY4wxJhdZIcwYY4wxxhhj\ncpEVwowxxhhjjDEmF1khzBhjjDHGGGNykRXCjDHGGGOMMSYXWSHMmDAQkUQRqel3HMYYY0xaLJ8y\nxl9WCDNnNRFREamdwzTmiMhfA5epanFV3Zyz6EJHRB4TkdUikiwiozPZVkRkrIj85k1jRUQC1seK\nyDIROez9jPV73xB8Pyoiv4pI/oBlBbxlGqrjGGNMVlk+lea2lk9h+VS0s0KYMRkIvNlFuY3AP4FZ\nQWw7FLgKaAI0Bq4EbgUQkYLADOAt4BzgDWCGt9zPfUPhD6BHwOce3jJjjIlYlk9ZPhXC9E1uUlWb\nbArpBFQFPgD2Ar8BL3jL8wEPAluBX4E3gVLeuuqAAjcC24B9wAMBacYA9wObgIPAMqCqt64u8CXw\nO7Ae6Bew3yTgRdxN/SCwCKjlrZvrHfMQkAj0BzoDO4B7gF+Aybib6cfe+fzhzVfx0vg3cAJI8tJI\nOVcFanvzpbxz3eud+4NAPm/dYGAe8JSX9s9AjzBem7eA0ZlsMx8YGvD5FmChN38psBOQgPXbgO5+\n7pvGOcwBHvfSTAQ+As7B1tynAAAgAElEQVQFpgAJwBKgesD26l2X9wKWTQMeANTvvymbbLIptBOW\nT6Xc9yyfsnzKJp8mqwkzISUiMbib/1ZchlUZeMdbPdibugA1geLAC6mSuAioA1wMPCwi9bzldwED\ngcuBksDNwGERKYbL2KYC5YEBwEsiUj8gzQHAv3CZ1EZchoSqdvTWN1HXLCPO+3weUAY4H/fUKx/w\nuve5GnAkJW5VfQD4DhjupTE8ja/leVwGVxPoBNwA3BSwvjUuUy4LPAFMDGzeEEhEPhaR/elMH6e1\nTzY0AFYGfF7pLUtZt0q9u79nVar1fuyblgHA9bjfwVrAAtx1LAOsBR5Jtf2HQEcRKS0i5wAdcE81\njTF5iOVTlk/5tG9aLJ86i1khzIRaK6ASMEpVD6lqkqrO89b9BXhaVTeraiJwHzAgVVOKf6nqEVVd\nibu5NfGW/xV4UFXXq7NSVX8DegJbVPV1VU1W1R+A94FrA9KcrqqLVTUZ94QpszbaJ4FHVPWoF8tv\nqvq+qh5W1YO4zLFTMF+Gl9kPAO5T1YOqugX4L+6mm2Krqk5Q1RO45gsVgQpppaeqPVW1dDpTz2Bi\nCkJx4EDA5wNAcS/DTb0uZX0Jn/dNy+uquklVDwCfAptU9Svv9+A9oGmq7ZNwTyL7e9NMb5kxJm+x\nfCqA5VOWTxl/5JV2xCZyVMXdrJPTWFcJ9+QxxVbc72DgjfyXgPnDuJtaSrqb0kjzfKC1iOwPWJYf\n1zwjszTTs1dVT93URKQo8D+gO+4pJUAJEYnxMqSMlAUKcOZ5V04rPlU97D1czCzGcErEPcVNURJI\nVFUVkdTrUtYf9HnftOwJmD+Sxue0vuM3gf8AgmvqY4zJeyyfOp3lU5ZPGR9YTZgJte1AtXReFN6F\ny4xSVAOSOf2mk1G6tdJZ/m2qJ23FVfW2rAYeIHUvQ//ANT1praolgZTmIZLO9oH2Acc587x3Zicw\nEflUXLfCaU2fZifNNPzIn0928eZ/DFjXOFUzlMap1vuxb6h8x59PeOdlsq0xJjpZPnU6y6csnzI+\nsEKYCbXFwG5gjIgUE5HCItLeW/c28HcRqSEixYH/A+LSeRqZ2qvAYyJygTiNReRcXLv+C0Xkeq+r\n1gIi0jKgjX5m9uDawGekBO6J1H4RKcOZbbTTTcN7Avku8G8RKSEi5+PeG3gryPhSp9fDy7zTmnqk\nt5/3vRTG/c3n965LTDqbvwncJSKVRaQSLnOf5K2bg3vBe6SIFBKRlHcLvvZ535BQVcX1dtXLmzfG\n5D2WTwWwfMryKeMPK4SZkPJu5lcCtXG9Au3AtVsGeA3X/GIurnelJGBEkEk/jcskvsD1GjQRKOK1\nfb8U1559F67JxFigUJDpjgbeEPfCcL90tnkGKIJ7WrgQ+CzV+meBa0TkDxF5Lo39R+B6ttqMe2o1\nFfdd5KYJuAx6IK4npSN47f1FpIPXjCLFOFyb89XAGlyPXeMAVPUYrnveG4D9uBfPr/KW+7lvyKjq\nj6oa6ieXxpgIYfmU5VM+7Rsylk/lDWKFaGOMMcYYY4zJPVYTZowxxhhjjDG5yAphxhhjjDHGGJOL\n8lQX9WXLltXq1av7HYYxxpgwWbZs2T5VLed3HNll+ZQJxvrf1gNQ59w6PkdijMmqYPOpPFUIq169\nOkuXLvU7DGOMMWEiIlsz3ypyWT5lgtF5UmcA5gye42scxpisCzafsuaIxhhjjDHGGJOLrBBmjDHG\nGGOMMbnICmHGGGOMMcYYk4usEGaMMcYYY4wxucgKYcYYY4wxxhiTi6wQZowxxhhjjDG5KGxd1IvI\na0BP4FdVbegtiwNSBr0oDexX1dg09t0CHAROAMmq2iJccRpjjDHGGGNMbgrnOGGTgBeAN1MWqGr/\nlHkR+S9wIIP9u6jqvrBFZ4w5zdRF25ixYmeG2/SOrcyg1tVyKSJj8qCEBL8jMMYYEwHC1hxRVecC\nv6e1TkQE6Ae8Ha7jG2OyZsaKncTvTv8fxPjdCZkW0owxmfj5Zzhxwu8ojDERonjx4mkuHzx4MNOm\nTctWmqNHj+app54K+ti7du3immuuSXe7/fv389JLL2WYVrt27QCYM2cOPXv2zEK08OGHHxIfH3/q\n88MPP8xXX32VpTSiUThrwjLSAdijqj+ls16BL0REgXGqOj69hERkKDAUoFo1e0JvTE7Ur1iSuFvb\nprmu/7gFuRyNMXnPseR8MG8edOrkdyjGGANApUqVMizwpRTC/va3v52xLjk5mfz58zN//vxsH//D\nDz+kZ8+e1K9fH4BHH30022lFE7865hhIxrVgF6lqM6AHcLuIdExvQ1Udr6otVLVFuXLlQh2nMcYY\nEzK7qAzvved3GMaYCKOqDB8+nDp16nDJJZfw66+/nlq3bNkyOnXqRPPmzbnsssvYvXs3ABMmTKBl\ny5Y0adKEq6++msOHD2d4jJ9//pm2bdvSqFEjHnzwwVPLt2zZQsOGDQH48ccfadWqFbGxsTRu3Jif\nfvqJe++9l02bNhEbG8uoUaOYM2cOHTp0oFevXqcKToE1egkJCVxxxRXUqVOHYcOGcfLkyTO2mTZt\nGoMHD2b+/PnMnDmTUaNGERsby6ZNm06rBZw9ezZNmzalUaNG3HzzzRw9ehSA6tWr88gjj9CsWTMa\nNWrEunXrsv3d+yXXC2Eikh/oC8Slt42q7vR+/gpMB1rlTnTGGGNM+PxBaZKmfWxNEo2JRJ07nzkF\nNuvL6vosmD59OuvXryc+Pp4333zzVM3S8ePHGTFiBNOmTWPZsmXcfPPNPPDAAwD07duXJUuWsHLl\nSurVq8fEiRMzPMYdd9zBbbfdxurVq6lYsWKa27zyyivccccdrFixgqVLl1KlShXGjBlDrVq1WLFi\nBU8++SQAy5cv59lnn2XDhg1npLF48WKef/554uPj2bRpEx988EG6MbVr145evXrx5JNPsmLFCmrV\nqnVqXVJSEoMHDyYuLo7Vq1eTnJzMyy+/fGp92bJlWb58ObfddltQzS8jjR81YZcA61R1R1orRaSY\niJRImQcuBdbkYnzGGGNMWJwkH1/saQwrVvgdijEmgsydO5eBAwcSExNDpUqV6Nq1KwDr169nzZo1\ndOvWjdjYWB5//HF27HD/Qq9Zs4YOHTrQqFEjpkyZwo8//pjhMb7//nsGDhwIwPXXX5/mNm3btuX/\n/u//GDt2LFu3bqVIkSJpbteqVStq1KiR7rqaNWsSExPDwIEDmTdvXlDfQWrr16+nRo0aXHjhhQDc\neOONzJ0799T6vn37AtC8eXO2bNmSrWP4KZxd1L8NdAbKisgO4BFVnQgMIFVTRBGpBLyqqpcDFYDp\nru8O8gNTVfWzcMVpjDHG5JaYGHi39zv0al7U71CMManNmRPe9dmgqjRo0IAFC858L3vw4MF8+OGH\nNGnShEmTJjEniON7/1+na9CgQbRu3ZpZs2Zx+eWXM27cOGrWrHnGdsWKFQv6GCmfA5cnJSVlGmtm\nChUqBEBMTAzJyck5Ti+3hbN3xIGqWlFVC6hqFa8AhqoOVtVXUm27yyuAoaqbVbWJNzVQ1X+HK0Zj\nTqMKq1fD7Nl/LmvfHkqVghIloHRpqFMHbr75z/UhuIkYY84eMYWPEzerEFc/v4j+4xYwddE2v0My\nxkSAjh07EhcXx4kTJ9i9ezfffPMNAHXq1GHv3r2nCmHHjx8/VeN18OBBKlasyPHjx5kyZUqmx2jf\nvj3vvPMOQLrbb968mZo1azJy5Eh69+7NqlWrKFGiBAcPHgz6XBYvXszPP//MyZMniYuL46KLLgKg\nQoUKrF27lpMnTzJ9+vRT26eXfp06ddiyZQsbN24EYPLkyXTKQ50a+dU7ojGRQRXmz4e334aPPoJt\n26BBA1jjtYDt2hVatID8+eH4cfj1V0jphfPkSbjwQqheHW66CQYOhMKFfTuVSGBjjRmTiULHST4U\nQ7v/Tufzq+ozA+zvwRhDnz59+Prrr6lfvz7VqlWjbVvXU3HBggWZNm0aI0eO5MCBAyQnJ3PnnXfS\noEEDHnvsMVq3bk25cuVo3bp1pgWlZ599lkGDBjF27Fh69+6d5jbvvvsukydPpkCBApx33nncf//9\nlClThvbt29OwYUN69OjBFVdckeFxWrZsyfDhw9m4cSNdunShT58+AIwZM4aePXtSrlw5WrRoQWJi\nIgADBgxgyJAhPPfcc6f10li4cGFef/11rr32WpKTk2nZsiXDhg0L+juNdKKqfscQMi1atNClS5f6\nHYaJJkOGwKuvQtGi0K0b9OwJl1ziClaZOXIExo6Fd9+FtWuhbFm46y64805Ipw11JEvpgj6zLurT\nW5+yTfzuBOpXLJnm+pR1GaVhTEZEZJmqtvA7juw6p1o9PfnHGq5NfJ02A9fzZae+9vdgztB5UmcA\n5gye42scxpisCzafspowc3Y5fBjGjYPrroNy5WDAAGjd2v1MZ8DEdBUpAqNHwyOPuHbgTz0F99/v\nCnDei69nIxtrzJj0iUD3y/Px8fu9uXV1H77s1NfvkIwxxvjACmHm7KAKU6bAP/8Ju3e7AtSwYXDx\nxTlPWwS6dHHTwoXQyhtR4auvoHFjKF8+58eIIMnJrlVmUpKbL1kSzj0XChQIbv/43QmZFsasyaLJ\ny668Unj33XIcW6sUPGbvlRpjzNnICmEm71u1Cm6/HebNcwWkuDjo0CE8x2rTxv08cgQGDXIlk/ff\n/3N5lDl61H1tX38Nc2fU5cDOohT6m3sdLrUqVeBE6bqUqXGQxU2heXPXE1yg3rGVMz1m/O4EwN6T\nMXlXjx6QL5/y2Ynu1N24Eujid0jGGGNymRXCTN7397/DunUwcSIMHgz5cmF4vCJF4MsvoW9f6NQJ\nXn759F4VI9jRozBzJrz1lqvMO3zY9UtSrEJBytc9wA3dylOpknuNLiYGEhJg717YsAE+nlOQ3T9W\npfVHUKmS66/kr3/98xW7Qa2rZVq4siaLJq8791xo1/ok7y+9hpuOzfQ7HGOMMT7ItBAmIlcCs1Q1\njWffxkSodetcl/LnnQdvvOFKDGXK5G4MTZrAkiXu/bBbboE9e+Dee13zxQh06LeCbJhdkUr3w++/\nu5qtm26C7t1dS8ub31oFwKO3pt+8sv+4VRxNzE+/ii2ZMgX+8x8YMwZuvBEeeADSGGrEmFyT3fxM\nRAoDc4FCuHxzmqo+IiI1gHeAc4FlwPWqeiyYNK+8KoZ7FtRjbrXDjMrSWRhjjMkLgqkS6A/8JCJP\niEjdcAdkTI6out4OmzaFUd6/NlWq5H4BLEWZMvDxx65p4qpVLr4Is3Yt3HADfPJQMzbOOY9u3eDz\nz2HLFnjhBddhZAZjMp6hUPFkBg2CWbNcGiNGwNSpUK8ePPywa6lpjE+ym58dBbqqahMgFuguIm2A\nscD/VLU28AdwS7AJ9ujhfu6JL+mGvzDGGHNWybQQpqrXAU2BTcAkEVkgIkNFpETYozMmK44ccTVO\nQ4a4d76eeMLviJwCBWDyZHjzTdcU8tAhvyMCXP8kQ4dCw4bwwQdwQZfdXPH4D7zzDlx66Znvc2VH\n1arwv//Bpk3Qrx889pjrq2TJkpynbUxWZTc/UyfR+1jAmxToCqQMavMGcFWwsTRsCEWLH+H8t1e4\nBzXGmLPSL7/8woABA6hVqxbNmzfn8ssvZ8OGDbl2/BUrVvDJJ59keb/OnTuT2bBQc+bMoWfPngDM\nnDmTMWPGZDuOpUuXMnLkSABGjx7NU089laV4n3nmGQ4fPnzq8+WXX87+/fuzlEaoBfVyjKom4DKa\nd4CKQB9guYiMCGNsxgRvyxZo1w5ef91Vt3z6KVSs6HdUf8qXzxXG9u6FZs18KSBOXbSN/uMWcM2L\nC2l01TaqVj/BxNdOUqvzbi751xIKXrSaomWCakmVZZUquXLoV1/BsWPuUv33vxFZMWjyuOzmZyIS\nIyIrgF+BL3EFuf2qmuxtsgNIs+cZr6C3VESWHvdqvUSgfL0E5pzozMnZ34Ti1IwxUUZV6dOnD507\nd2bTpk0sW7aM//znP+zZsyeo/ZOTk0/7rKqcTKvnrAxktxCWVb169eLee+/NVhzJycm0aNGC5557\nLtvHT10I++STTyhdunS20wuFTAthItJbRKYDc3BP/1qpag+gCfCP8IZnTJBiYlwPErNmwb/+FZpq\nnHAoU8YVwu65B955J1cPPWPFTpYuzseX/9eYNTOqcV6D/XQfvYKm/bZQqHgy9SuWDKr3wpy4+GL4\n4QfXxPHuu927YkePhvWQxpySk/xMVU+oaixQBWgFBN2cUVXHq2oLVW1RIGAsh/INEthHOVZ+sjPr\nJ2OMiXrffPMNBQoUYNiwYaeWNWnShA4dOqCqjBo1ioYNG9KoUSPi4uIAV7vUoUMHevXqRf369dmy\nZQt16tThhhtuoGHDhmzfvp0vvviCtm3b0qxZM6699loSE11F/pIlS2jXrh1NmjShVatWHDhwgIcf\nfpi4uDhiY2OJi4vj0KFD3HzzzbRq1YqmTZsyY8YMAI4cOcKAAQOoV68effr04Ug67xZ89tln1K1b\nl2bNmvHBBx+cWj5p0iSGDx8OwHvvvUfDhg1p0qQJHTt25NixY2fEMXr0aK6//nrat2/P9ddff1qt\nGsDKlStp27YtF1xwARMmTDj13QRuM3z4cCZNmsRzzz3Hrl276NKlC126uN5oq1evzr59+wB4+umn\nadiwIQ0bNuSZZ54BYMuWLdSrV48hQ4bQoEEDLr300nTPObuC6R2xL67N+9zAhap6WESCbv9uTFh8\n843rfbBqVYiPj9zCV4qYGNdRyM6drqfGGjXcYNFhlpgIy6bWYPPc86haFd6aCVdeeS6uP4HgZTbG\nV/zuBOpXLJlhGmXKuOaP//43PPQQbNsGH37o+lExJsxynJ+p6n4R+QZoC5QWkfxebVgVIEulqQp1\nDwDw5c+1aLp7d2TV3htzlrnzTlixIrRpxsaC9z99mtasWUPz5s3TXPfBBx+wYsUKVq5cyb59+2jZ\nsiUdO3YEYPny5axZs4YaNWqwZcsWfvrpJ9544w3atGnDvn37ePzxx/nqq68oVqwYY8eO5emnn+be\ne++lf//+xMXF0bJlSxISEihatCiPPvooS5cu5YUXXgDg/vvvp2vXrrz22mvs37+fVq1acckllzBu\n3DiKFi3K2rVrWbVqFc2aNTsj5qSkJIYMGcLXX39N7dq16d+/f5rn9uijj/L5559TuXJl9u/fT8GC\nBc+IY/To0cTHxzNv3jyKFCnCnDlzTktj1apVLFy4kEOHDtG0aVOuuOKKdL/nkSNH8vTTT/PNN99Q\ntmzZ09YtW7aM119/nUWLFqGqtG7dmk6dOnHOOefw008/8fbbbzNhwgT69evH+++/z3XXXZfucbIq\nmOaIv6TOsERkLICqzg5ZJMZkxcmT8OCD0LUrvPaaWxbpBbAUBQu6UkilStC7N+zaFdbDLVniKt82\nfVeBC7ruIj4errwy6+n0jq2caQEr2No0EXf5pkyB+fOhWzf444+sx2RMFmUrPxORciJS2psvAnQD\n1gLfANd4m90IzMhKMEVKH6ds2T/4km7ugZIxxnjmzZvHwIEDiYmJoUKFCnTq1Ikl3gvVrVq1okaN\nGqe2Pf/882njjUe6cOFC4uPjad++PbGxsbzxxhts3bqV9evXU7FiRVq2bAlAyZIlyZ//zLqYL774\ngjFjxhAbG0vnzp1JSkpi27ZtzJ0791QBpHHjxjRu3PiMfdetW0eNGjW44IILEJF0Cyzt27dn8ODB\nTJgwgRMnTqT7HfTq1YsiRYqkua53794UKVKEsmXL0qVLFxYvXpxuOhmZN28effr0oVixYhQvXpy+\nffvy3XffAVCjRg1iY2MBaN68OVu2bMnWMdITTE1YN+CeVMt6pLHMmNxx/LgbfOrNN11HHDfe6HdE\nWVe2LHz0kesZI0zdBZ44AWPHwiOPuAfsnf8eT/kLEyhevFK20gtmjK8spzkISpVyw6ldfLF7Z8yY\nMMpuflYReENEYnAPL99V1Y9FJB54R0QeB34AJmY1oDKND/Pdt505Um0Vaf+rYYzJDRnVWIVLgwYN\nmDZtWuYbplIsVZfFgZ9VlW7duvH222+fts3q1auDSltVef/996lTp06W4wrWK6+8wqJFi5g1axbN\nmzdn2bJlaW6X+jwDSarhfkSE/Pnzn/ZOXFJSUo7iLFSo0Kn5mJiYkDdHTLcmTERuE5HVQF0RWRUw\n/QysCmkUxgTryBG4+mpXAPvXv2DCBNfhRTRq0ADmzYNatUKe9N69cNllbmyuq6+GlSuh/IUJIT9O\nKFxxhWuO+OOP7l2x5GO5MJi2OavkND9T1VWq2lRVG6tqQ1V91Fu+WVVbqWptVb1WVbP8hmOFegkc\nPVGA75PSbpJkjMm7unbtytGjRxk/fvypZatWreK7776jQ4cOxMXFceLECfbu3cvcuXNp1apVpmm2\nadOG77//no0bNwJw6NAhNmzYQJ06ddi9e/ep2rSDBw+SnJxMiRIlOHjw4Kn9L7vsMp5//nnU6znr\nhx9+AKBjx45MnToVcM0oV60689ZZt25dtmzZwqZNmwDOKAim2LRpE61bt+bRRx+lXLlybN++/Yw4\nMjNjxgySkpL47bffmDNnDi1btuT8888nPj6eo0ePsn//fmbP/rOBQ3rpd+jQgQ8//JDDhw9z6NAh\npk+fTocOHYKOIycy+m9nKnAlrnnFlQFTc6+bX2Ny36JF8Nln8OKLrhfECB34OGgi7oWtv/wlZNVA\nixe75ofz5sHEifD223DOOSFJOmx69HBjiS1cCAtfvYCT6bdOMCY7IjY/K3tBAjExyjdTd7t7gTHm\nrCEiTJ8+na+++opatWrRoEED7rvvPs477zz69OlD48aNadKkCV27duWJJ57gvPPOyzTNcuXKMWnS\nJAYOHEjjxo1p27Yt69ato2DBgsTFxTFixAiaNGlCt27dSEpKokuXLsTHx5/qEOOhhx7i+PHjNG7c\nmAYNGvDQQw8BcNttt5GYmEi9evV4+OGH03yXrXDhwowfP54rrriCZs2aUb58+TRjHDVqFI0aNaJh\nw4anOgpJHUdmGjduTJcuXWjTpg0PPfQQlSpVomrVqvTr14+GDRvSr18/mjZtemr7oUOH0r1791Md\nc6Ro1qwZgwcPplWrVrRu3Zq//vWvp+0XTqLp9BEtIiVVNUFE0hzlVlV/D2tk2dCiRQvNbMwCE6WS\nkyGl7fKWLVC9up/RhNbhw25w6aQkWL0aSmb83lV6VF3F4IgRrvnhBx+4wliKlA414m5tG4qow+KF\nF1z8tbvs5qevrZMCcyYRWaaqLbK4T8TkZ2XOr6e/b10L/Pk3ueWZBhRct5LvPk5wVcPmrNd5UmcA\n5gye42scxpisCzafyqwmDGAZsNT7uSzgszG5Y88eaN4cZs50n/NSAQygaFHXY+KOHXDXXdlK4vhx\nuPVWN3XpAsuWnV4AixbDh8OFF+9i4zcVef11v6MxeUjE5mfxuxNIrLyfxbQi7pkPmLpom5/hGGOM\nySXpdsyhqj29nzXS2yYjIvIa0BP4VVUbestGA0OAvd5m96vqGSOziUh34FkgBnhVVdMfYtvkbb/8\n4npA3LrV9eCQV7VpA6NGuZ40+vaFyy8Petf9++Gibkn8uLQwdbvvoESv7fwtjfd8g+k+PhI07ruV\n/TuLMmxYaRo0gCCawBuToZzmZ+GS0pPorrqHODa7EPtXneTrFTtD3gGOMcaYyBPMYM3tRaSYN3+d\niDwtIsHkEJOA7mks/5+qxnpTWgWwGOBFXI9V9YGBIlI/iOOZvOaXX1y1zrZt8OmnbjywvOxf/3Kd\ndYwc6bo2DMLPP0O7drD2h4JU7r2axldtJ186f9W5MRhzKOSLgbZ//YlKlaB/fzhwwO+ITF6Rg/ws\nLAa1rkbcrW356PF6CCfZsbcmBY7b6OXGGHM2CKaL+peBJiLSBPgH8CowGcjwP2JVnSsi1bMRUytg\no6puBhCRd4DeQHw20jLR6rffXAFs+3ZXAMulnmp8VagQxMVBkSJBjXm2cCH06uWaInYcuZbydRIj\n+n2vrChUPJmpU91lv/12eOstvyMyeUS28rNwK10aYmsmMG/zRXTYuh7o7Gc4xhhjckEwfUEnq+u9\nozfwgqq+CJTIwTGHe10DvyYiafXZVhnYHvB5h7csTSIyVESWisjSvXv3preZiTalS7tC2NlSAEvR\noAHUrOl62cigq9b333dfT4kSrjBWvk5kdj+fE23bujHOpkyxQpgJmVDnZyHT6bLCzIu5iJ8rhH7I\nCmOMMZEnmELYQRG5D7gOmCUi+YDsDsz0MlALiAV2A//NZjqnqOp4VW2hqi3KlSuX0+SM3/btg507\nXU3QSy+dXQWwQDfd5N4LS6P30vHj4dprXYeKCxdCGMdT9N3998NFF8Hf/gabN/sdjckDQpmfhVSn\nSwuTfKIAO/dk3gW1McaY6BdMIaw/cBS4RVV/AaoAT2bnYKq6R1VPqOpJYAKu6WFqO4GqAZ+reMtM\nXnfggBthuFs31yX92axDBzfQ1+TJpxapwn/+43pA7N7dDSuW1587xMS4WjARGDo0zTKpMVkRsvws\n1FKeN5X+bKv9ohtjzFkg00KYqv6iqk+r6nfe522q+mZ2DiYigQP/9AHWpLHZEuACEakhIgWBAcDM\n7BzPRJFDh9z4OKtXw1NP/Tkm2Nnqpptcj4n//CckJqLqOk+8/34YNAhmzHA9258Nzj8fxoyB2bNd\nT/7GZFco87NQO/dcqFTqFxLXFIBNm/wOxxhjTJhl+p+uiPQFxgLlAfEmVdUM+7oWkbdxbxeXFZEd\nwCNAZxGJBRTYAtzqbVsJ1xX95aqaLCLDgc9xXdS/pqo/Zu/0TFQ4ehT69IEFC+Cdd7LUPXuelS8f\n/O9/0LYtyU88zZDtDzNpkhtH69lnSbcHxLwifnfCqYFswd0wytZqwK3DizB97wr6d6xg3XibLMtu\nfpZbytc+wIJlbYnF3yAAACAASURBVDmx4CNiatf2OxxjjDFhFEx1wxPAlaq6NisJq+rANBZPTGfb\nXcDlAZ8/Ac7ovt7kUf/8J3z5Jbz+unvZyTht2pDUZyADn2jJh0ehQc/t7Gmwg4ETztw0WsYAC0Za\n3ehLPmhx3Wa++Hdjvnq9Eit/W8GMFem3Uu4dW9kKaSYt2crPckuhRpC4rASrP9lO7PV+R2OMMSac\ngimE7YnUDMvkEffeCy1bwnXX+R1JRDlyBK76/TW+OFqYpv1/5njdDYikXdCKljHAgjGodbV0C1CP\n5oNHHqnM+d0OAGkPIBa/O+FUOsakEtH5WdnahwCYv0CI9TkWY4wx4RVMIWypiMQBH+JeaAZAVT8I\nW1Tm7DBtGlx1FVSsaAWwVA4dcmOAfTO3MBMnwufHdlMkKYZJeWQcsOy65x54803Y91V9Zv837VcH\nA5sxGpNKROdnRc89yjmF/uD77VX527FjULCg3yEZY4wJk2AKYSWBw8ClAcsUiIhMy0Sp//0P7roL\nxo1z3d6ZUxITXR8l8+a5jiiuv05pUf9ODhcpBnde4nd4vipUCP77X1d2f+UV946cMVkQ0fmZCJS+\nMIn5B/pBwcwHbDfGGBO9Mi2EqepNuRGIOYvExbkC2DXXwC23+B1NRElIcP2SLFzoumYfOBBA2FCz\nIdd88jqsWgWNG/sdpq969YKLL4aHH3bfz7nn+h2RiRbRkJ+VrHOUldNi2LULKlXyOxpjjDHhkmkf\nayJyoYjMFpE13ufGIvJg+EMzedKcOXDDDW5QnMmT3UBQBoD9++HSS2HRItdJ5MCArm0+ubg/hwsX\ng0cf9S/ACCECzzzjhpUbPdrvaEw0iYb8rGytgwDMv9dGZjHGmLwsmI6uJwD3AccBVHUVbuwuY7Lm\n8GHo3x9q13YDXRUu7HdEEeP3390Y1cuXw3vvuUrCQIeKleSTi/vD+++72rCzXMOGMGwYvPwyrF/v\ndzQmikR8fla66iEK5zvG9zP2+R2KMcaYMAqmEFZUVRenWpYcjmBMHle0KLz7Lnz6KZxzjt/RRIwD\nB1wN2KpV8MEH7n2ntHzStR+ULOleijI88ogrxz/8sN+RmCgS8flZTH6lVfU9zE9oAHv3+h2OMcaY\nMAmmELZPRGrhXl5GRK4Bdoc1KpO37N/var4AOnWCatZ1eIrERPcOWEoBrGfP9Lc9VKwkfPwxvPBC\n7gUYwcqXh7//3ZXrf/jB72hMlMhWfiYiVUXkGxGJF5EfReQOb/loEdkpIiu8KSQjzbdrC8tpxpG5\nS0KRnDHGmAgUTCHsdmAcUFdEdgJ3AreFNSqTdyQluaqd/v1hxw6/o4kohw/DlVf++Q7YFVcEsVOH\nDlCiBKiGPb5o8I9/uErVBx7wOxITJbKbnyUD/1DV+kAb4HYRqe+t+5+qxnrTJ6EIsn2fciRTgCUz\ndoUiOWOMMREo00KYqm5W1UuAckBdVb1IVbeEPTIT/U6edJ1wfPstvP46VKnid0QR4+hR6NPHfTVv\nvgl9+2Zh5yVLXA+JmzaFLb5oUbq0G+v700/hu+/8jsZEuuzmZ6q6W1WXe/MHgbVA2EZHb9vZvS87\nf32ZcB3CGGOMz9Ltol5E7kpnOQCq+nSYYjJ5garrhv699+Cpp07v6u8sd/w49OsHX3wBEyfCoEFZ\nTKByZdiwwb0b9tJLYYkxmgwf7npLfOABV6g1JrVQ5mciUh1oCiwC2gPDReQGYCmutuyPHIbLuedC\n3brK9+Wz8nTGGGNMNMmoJqyEN7XANdeo7E3DgGbhD81Eta++gmefhTvvdIUxA0ByMlx3Hcyc6V7t\nuvnmbCRSqRJcf72rXfz115DHGG2KFoX773c1YXPn+h2NiVAhyc9EpDjwPnCnqiYALwO1gFjcu2Vp\n9pojIkNFZKmILD1+/HhQx2rXTpg/31oeG2NMXpVuIUxV/6Wq/wKqAM1U9R+q+g+gOWA9K5iMXXIJ\nTJvmamu8p81nu5MnXaHr3Xdd5eDtt+cgsVGjXJvG554LWXzR7JZb4Lzz4LHH/I7ERKJQ5GciUgBX\nAJuiqh946e5R1ROqehLX/X2rdI4/XlVbqGqLAgUKBBVz+wZ/8PvvsGH8nKC2N8YYE13SbY4YoAJw\nLODzMW+ZMWeaOxfKlYN69eDqq/2OJmKowm23ufGpH3vMdSiRI3XquA5PXnwR7rnHddZxFitSBO6+\n201dmxfn1yK76D9uQYb79I6tzKDW9jzpLJOt/Excu8WJwNrAposiUlFVU3pX7AOsCVWgbboWA2Dh\nR3upc2uoUjXGGBMpgimEvQksFpHp3uergElhi8hEr1WrXHd/TZq4l3OsBgxwBbA774Tx4+G++0LY\nk9+DD7oBxvIH82ec9w0bBv/5D/z2XW3q35iY4bbxuxMArBB29sluftYeuB5YLSIrvGX3AwNFJBbX\n5f0WIGTFpbqNC1Iq5iALVxTmxlAlaowxJmJk+t+bqv5bRD4FOniLblJVG5XHnG7bNujRw9XITJli\nBTCPKvS+8QAfTS7FBV13sbHaVgaMT3vbLNfMNGvmJgNAsWLu9cMHHijCxOfb0rx5+ttmVktm8qbs\n5meqOg9I66YWki7p05IvH7SuuI0Fu6q7G4ndU40xJk8JZpwwVHW5qj7rTVYAM6f74w9XAEtMdH2F\nV63qd0QR47HH4KPJpSjTfBux125N9/+o+N0JzFixM+sHOHrU9ZBoPVIArqfE0qXh//7P70hMpIqm\n/KxNbBKrT9YncdVmv0MxxhgTYtaOyeTcAw/Axo3w2WfQqJHf0USMJ5+ERx6B6m1/peX1O3l3WNt0\nt812zYwIPP64GzesY8dsRpp3lCzp3r0bM8YNo1arlt8RGZN9bbqfw8mPY1i6MJnOTfyOxhhjTCgF\nVROWHSLymoj8KiJrApY9KSLrRGSViEwXkdLp7LtFRFaLyAoRWRquGE2IjB3rasC6dPE7kojx/PPw\nz39C//7Q4vpNSLj+0goWhL/9DT7/HNatC9NBosvw4e41uWee8TsSY3Km9cCaACz8o47PkRhjjAm1\nTP81FJERInJONtKeBHRPtexLoKGqNgY2APdlsH8XVY1V1RbZOLYJN1V49VU4dMi9B9a1q98RRYxX\nX4WRI13nhZMnu3c7wmroUFcYe/75MB8oOlSqBH/5C7z2Gvz+u9/RmEiSg/zMF2XKuI5QFyywwcKM\nMSavCebfwwrAEhF5V0S6e131ZkpV5wK/p1r2haomex8X4sZsMdHoqadgyBBX4jjLTV20jf7jFtB/\n3ALa3PwTQ4Yq5zX4g5iLF3LdawtO9cQXNuXLw6BB8MYbsH9/eI8VJe66Cw4fhlde8TsSE2GylZ/5\nqU3xNSz8eB964qTfoRhjjAmhYHpHfFBEHgIuBW4CXhCRd4GJqropB8e+GYhL77DAFyKiwDhVTac/\nORCRocBQgGrVrLvpXDFlyp9t7UaM8Dsa381YsZP43QmU2FWdxZNqU/7CBNrduoGYAu7pdf2KJekd\nWznTdOJ3J6T7blj87gTqVyyZ/s4jR8KyZbB9u+uZ4izXqJHrvf/5592YbIUK+R2RiQRhzM/Cpk39\nBN5Y1pAtczZT4+KafodjjDEmRILqmENVVUR+AX4BkoFzgGki8qWq/jOrBxWRB7x0pqSzyUWqulNE\nygNfisg6r2YtrdjGA+MBWrRoYW02wm32bLjpJujc2dW8hL2tXXQovfd8Fr5eh3bt4LPPSlG8eOss\n7Z9ZIS3TglzTprBypXVjHeDuu11BbOpU9ytrDIQ+Pwu3tr3KwWRY8MFuK4QZY0wekmkhTETuAG4A\n9gGvAqNU9biI5AN+ArKUaYnIYKAncLGqplloUtWd3s9fvUE1WwHWB7ffjh1z/83WqQPTp1v1gueX\n+FLMH38hzWJh1iwoXjzraQxqXS3nAweLwMGDrkmiDRPAJZe4TiOffhoGD7byqQl9fpYbGvSsQTES\nWTj/BIP8DsYYY0zIBFMTVgboq6pbAxeq6kkR6ZmVg4lId1wm10lVD6ezTTEgn6oe9OYvBR7NynFM\nmBQs6EoZ55xjTd48334L379ch5LnHeHzz4tRqpSPwZw86UodzZvDtGk+BhIZRNy7YYMHuwrcSy7x\nOyITAUKWn+WW/IXz07LkBhZuLOt3KMYYY0IomLZknxLQwYaIlBSR1gCquja9nUTkbWABUEdEdojI\nLcALQAlcE8MVIvKKt20lEfnE27UCME9EVgKLgVmq+lk2zs2Eyu+/w4QJrkfERo2givWnArBgAfTs\nCcXOPUrHO+IpU8bngPLlg2uugRkz4JdffA4mMvTvD2XLwosv+h2JiRDZys9yU8q7oSnT1EXbaNNa\n+eFwHY4c8Ts6Y4wxoRJMIexlIDHgc6K3LEOqOlBVK6pqAVWtoqoTVbW2qlb1up6PVdVh3ra7VPVy\nb36zqjbxpgaq+u/snJgJkSNH4Mor3eBLmyLyvXVfLF8OPXrAeedBp7/HU7hEcuY75YahQyE52fXP\nbihc2HXiOXMmbNvmdzQmAmQrP8stvWMrn9YBT/zuBGas2Enb4c1JPhnD8uU+BmeMMSakgimESeC7\nW6p6kiA79DBRLjkZBg50VT5TpkDt2n5HFBFWr4Zu3VyLzNmzoUip436H9KcLLnBjto0fDydO+B1N\nRBg2zP207uoNEZ6fDWpdjbhb256aUgpkrb1+fhZ+nWYrfmOMMVEomELYZhEZKSIFvOkOYHO4AzM+\nU3W1XzNmwHPPuWZuhnXr3LtFhQu7AlhEjopw662wdat7Yc1QrRr06uVa1CYl+R2N8VlU5mcVyis1\n8m1h4Rvr/A7FGGNMiARTCBsGtAN2AjuA1njjcpk87PvvYdw4uPdeVxgzbN4MF1/s5mfPhlq1/I0n\nXVddBfPmQZcufkcSMW6/Hfbtg/fe8zsS47PozM9EaHPuTyzYbu/jGmNMXhHMYM2/AgNyIRYTSS66\nCObMgY4d/Y4kImzd6lr5JSW5r6VuXb8jykDBgtC+vd9RRJSLL3YjK7zwAlx/vd/RGL9Ec37WtmEi\nb39Tnh0/H6dKjQJ+h2OMMSaHghknrBwwBKgeuL2q3hy+sIxvPvkESpZ0hbBOnfyOJiLs3On+id+/\nH77+2nUQGfFOnIARI1xpceRIv6PxnYirDRs5EpYs8Tsa45dozs/adC0K38DC93dyzd3V/Q7HGGNM\nDgXTHHEGUAr4CpgVMJm8ZuFC9+7X/fe7d8IMe/a4AtiePfD559Csmd8RBSkmBtaude/z2bUE4MYb\n3UDaL73kdyTGR1GbnzXpU5PCHGHhlwf9DsUYY0wIBNMrVFFVvSfskRh/rV/vBr2qVMkN9Cvid0S+\n27fPdcKxfbsrgKX0UBY1br4ZbrgBvvvOmpXiKngHDYLJk+GyxjEULGq9R56FojY/K1ivFs2r7WDB\nnpp+h2KMMSYEgqkJ+1hELg97JMY/u3bBZZe52pPPP4fy5f2OyHd//OG6od+4ET76yLXOjDpXXw0l\nStiYYQGGDHFD321bXNbvUIw/ojc/y5ePNtdWY9m6Yhw75ncwxhhjciqYQtgduIwrSUQSROSgiCSE\nOzCTi8aOddU+s2ZFcJd/uSchwZVJ4+Nh+nTXIUdUKloUBgxwXQIetCZMAM2bQ2wsbJ5XwVppnp2i\nOj9rE3uEo0dh5dIIGpvQGGNMtmRaCFPVEqqaT1ULq2pJ73PJ3AjO5JKnnnJdmrdo4XckvktMhB49\n4IcfXKvM7t39jiiH/vpX12X9gQN+RxIRRGDoUNi/oxh/bC3mdzgml2U3PxORqiLyjYjEi8iP3vhi\niEgZEflSRH7yfp4TzvjbHPwKgAXTfwnnYYwxxuSCYHpHFOAvQA1VfUxEqgIVVXVx2KMz4ZOcDA89\nBHfdBeXKueqBs9zhw3DllbBoEcTFufmpi7YxY8XODPeL351A/YoR+lyiVSuYMsXvKCLKoEEw4s4T\nbJ5Xwe9QTC7LQX6WDPxDVZeLSAlgmYh8CQwGZqvqGBG5F7gXCNs7Z1Uua0AVtrPw26NYn6fGGBPd\ngmmO+BLQFhjkfU4EXgxbRCb8Tp50L8eMGeO6pDckJUGfPvDtt/Dmm+51KoAZK3YSvzvj1kr1K5ak\nd2zlXIgyB9ascX3tG0qVgqrNf2PbkrIkJvodjcll2crPVHW3qi735g8Ca4HKQG/gDW+zN4CrQh3w\naWrUoE2B5SxcVyqshzHGGBN+wfSO2FpVm4nIDwCq+oeIFAxzXCZcVGHUKJg0CR55xPXbfZY7dsz1\nzP/FF64Pi0GDTl9fv2JJ4m5t609wobBvn6vpvPtuV/A21Oywhy0LyvPOO67Fpjlr5Dg/E5HqQFNg\nEVBBVXd7q34B0qxeFZH/Z+++46MqtgCO/yYJkA6EZgCBSO+hJzQpKghIBJEm0kTApyAWFAuIiAUf\nKhYU0EdTKUoXEKVK7zWE3kvo0lsS5v0xGwghZVM2d5M9389nP8nuvbv3EAKzZ2fmnJ5ATwDfwDTs\nu1WKkGKnmLYvH6dPQwGZzBVCiEzLnpmwKKWUO6DhbrPLOw6NSjjOp5/Cl1+aRr4ffGB1NJaLioIO\nHUxNklGjoFs3qyNygLx5oVkzmDDBLEMV5Am6in/B64wZY3UkIoOlaTxTSvkC04F+Wuv7psi11jr2\ndePTWo/RWlfXWlfPli1bqoMHCAkxl1i7XEokCiFEZmbPTNg3wEwgv1LqY6AN8L5DoxKOcekS/PAD\ndOoEI0a4fC+wqCgz6zVjhvlx9OpldUQO1L27qbW/YIHpB+filALvikfY8FdZmgzcRq7C1x84Jyy4\nEB1rFbEgOuFAqR7PlFLZMAnYr1rrGbaHTyulArXWkUqpQOCMI4KOq+objcg2+Q5rN7gT9qyjryaE\nEMJRkk3CtNa/KqU2AY0BBTyttd7l8MhE+suZ01SdyJcP3OyZBM26YmfApk83E4Ovvmp1RA7WvLmZ\nEZs4UZIwTIJ169pp/lh8h4MrClC1w6H7jsfuA5QkLGtJ7XhmK+jxP2CX1vrLOIfmAF2Az2xfZ6d3\nzBGRl2k3es3d+2HBhQiu4sbaDel9JSGEEBnJnuqIRYDrwB9xH9NaH3VkYCIdLVhgbl9+CQULWh2N\n5eInYK+9ZnVEGSBbNvOHHjfOdCv28rI6Ikt1rFWEjrWK0GkzzJ37EBMWPISn573jcd/0iqwjDeNZ\nHeB5YIdSaqvtsXcxyddvSqkXgCNA2/SMN37Bn9gPB0IKK/43P5DoaA887FnPIoQQwunY89/3PMw6\ndwV4AkHAHqB8ck9USo0FWgBntNYVbI8FAFOBYsBhoK3W+t8EntuFe8tEhmqtJ8Q/R9hh1Spo3RpK\nl4Zr18DPz+qILBU3AfvqK+jXz+qIMtCAAfD++y6fgMXVrZup4D97NrRrZ3U0IgOkajzTWq+0PSch\njdMzwLhiPyyIFfvhQMjByXx76y3Cw6W7iBBCZFb2NGuuqLWuZPtaEqgJ2Psx8XggfrvbAZi+KiWB\nxbb797Elah8AtWzX+8DRTTCzpA0bTOfhwoXNTJgkYK6bgIGZBc2f3+oonErDhlCkiCkWKrK+NI5n\nTiO0nvn8VIpzCCFE5pXijUG2Xim17Dx3OXAh3sP29FVpAizUWl+wzZIt5MFkTiRl2zZo0sTsA1qy\nxOVrGUdFQfv2JgEbMcIFE7BY27aZzOPQoeTPdQFubqZLw99/Sxs1V5SS8cyZFHusBPk5zdoFF60O\nRQghRColm4QppV6Pc3tTKTUJOJmGa9rTV6UQcCzO/eO2x4S99u6FXLlMAla4sNXRWCo2AZsxA77+\n2gWKcCQlVy5Ytgx++cXqSJxGly6mf/nPP1sdiXA0B4xnllA1qhPCWtZsSlu5eyGEENaxZybML84t\nB2ZNfVh6XDypvir2Ukr1VEptVEptPHv2bHqElbndti1PefZZiIiAYsUsDcdqUVFmr09sAta3r9UR\nWaxoUWjQwGQcOk3/9LKM4sWhXj1Ts0R+JFmew8azDFWwICF+O9l7Jjfnz1sdjBBCiNSwZ0/Yh3Fu\nH2utf9Va30zDNU/b+qmQRF+VE8DDce4Xtj2WUHx3m2Dmy5cvDWFlAUeOQPnyMGeOuR+33JsLunXL\n5KIzZ8I330gCdtfzz8O+fbB+vdWROI1u3czk8dq1VkciHMkB45llQr/rBMg/YyGEyKzsWY74h1Jq\nTmK3VFwztq8KJN5X5S/gCaVUbltBjidsj4nEnDgBjRrBuXOm0oCLu34dwsJM1bvvvoM+fayOyIm0\naWMSdFl/d1ebNuDtLQU6sjoHjGeWqd66CG5usCbTlRURQggB9pWoPwg8BMRuIukAnAZmJfdEpdRk\noAGQVyl1HFPxMMG+Kkqp6kBvrXUPrfUFpdRHQGw7yiFa6/gFPkSs06ehcWM4exYWLXL5msVXrsBT\nT8Hy5fC//0H37lZH5GT8/c20YCHZZhnLz88kYlOmmMqZIstK9XjmbHyvnqJS3hjWLvSHIa5d+VYI\nITIje5KwOlrr6nHu/6GU2qi1TrbFrda6QyKHHuirorXeCPSIc38sMNaO+FzbhQum2t2xY6YMfc2a\nVkdkqYsXTVX+DRtM/yf9yFHajU592buIyMuUC/RPxwidxLBhVkfgdLp1g4kTYVamezsuUiDV45nT\nUYqQM3OYdLk7d+6YSp9CCCEyD3uSMB+l1CNa64MASqkgwMexYQm75cwJ9eubBlj16lkdjaXOnYMn\nnoDwcJg2DZ5+GtqNPpGmRKpcoD9hwVl0xujmTdiyBUJDrY7EKdSvb+rYjB8PuZ8xCXhsc9yEhAUX\nuq+RrsgUss54VqAAIQH7GHUhB7t2me3AQgghMg97krDXgGVKqYOAAooCvRwalUjeyZMQEwMPPwyj\nRlkdjeUiI+Hxx+HAAVOXpGmcrnLlAv2Z2ksSjQcMHGgqlpw6BbmlF3psz7AhQ2DEy0WAo4meGxF5\nGUCSsMwnS41noVVvwSJTUEaSMCGEyFySTcK01guUUiWBMraHdmutbzk2LJGkEyfMEkRfX9i40eXX\noRw7ZrbEnTwJf/5pKrALO7RvD8OHw2+/Qa9M+z40XXXpAh9+CFfCCzH1vcRnQJOaIRPOK6uNZyUb\nFCJg0XnW/OPHCy9ktzocIYQQKWBPdURvoD/witZ6G1BEKdXC4ZGJhB0/brKMU6dM2T8XT8D27zer\nME+fhoULJQFLkapVoVw5qZIYR1CQ+R0aP156hmVFWW08UzWqE+K2nrWrYqwORQghRArZ8w5+HHAb\niF3PdQIY6rCIROKOHTPvEE+fhr/+gtq1rY7IUlu3Qt26cPUqLFkiW5tSTCnTM2zVKjh40OponEa3\nbia5X7XK6kiEA2St8axhQ0IGPkHEIS8uXbI6GCGEEClhTxJWXGv9ORAFoLW+jllLLzJaz56mDP3f\nf7t8xrF8OTz6KGTLBitXQrVqVkeUST33nPn6++/WxuFEnnnGrPSVnmFZUqYfz2ILxrQbvYZ2Yzdy\nPeA8WkvTZiGEyGzsScJuK6W8AA2glCoOZNo19JnaTz/B4sUQEmJ1JJaaMweaNIGCBWH1aihTJvnn\niEQ8/DCsWwdvvml1JE7Dx8f0DPvtN9P0W2QpmXo8CwsudF+l14jIy+RbMwrFHdautTAwIYQQKWZP\nEvYBsAB4WCn1K7AYeMuhUYl7tm+HV14xlRALFYLq1ZN/ThY2fjy0bg0VK8KKFSaHEGlUsya4u1sd\nhVPp0sU0/ZaeYVlOph7POtYqwtReoXdv5QL9KXDrFOWIYM3y21aHJ4QQIgWSTMKUUgrYDbQGugKT\ngepa62UOj0yYGYoGDcw7wchIq6Ox3PDhZr9Ow4ZmQjBvXqsjykIGDTK12QVgeoYVLQoTJlgdiUgv\nWXU8O1C0LKGsYe1aKSYjhBCZSZJJmNZaA/O11ue11vO01nO11ucyKDbXtmwZPPaY6d+0YgUULmx1\nRJbRGgYMgP794dlnYe5c8POzOqosZs8e+PZbiIqyOhKnENszbOFCU5BUZH5ZdTw7UKwsIazj36vZ\n2bfP6miEEELYy57liJuVUjUcHom4Z/58ePJJKFLEJGBBQVZHZJnbt83s17Bh0Ls3TJ4MOXJYHVUW\n1KkTnDtnqm4KADp3Nh8A/PKL1ZGIdJTlxrObnj6ElDwPwBppXyeEEJmGPUlYLWCNUuqAUmq7UmqH\nUmq7owNzaUpBlSrwzz+m+oSLunQJmjc3S8IGD4bvv5etSw7TtKlZ3yk9w+4qXty0QJgwQZZ5ZSFZ\ncjwr26I4/h7XpTiHEEJkIh6JHVBKBWmtDwFNMjAe17Zjh6k48eSTpvyfCzdiPn7cJGARETBuHHTt\nanVEWVy2bNC+Pfz4o8l+c+a0OiKn0KULvPgibNhg6peIzCmt45lSaizQAjijta5ge2ww8CJw1nba\nu1rr+ekQboq5fTmcWuEyEyaEEJlJokkYMA2oBozVWjfOoHhck9bw3nvw2Wdm9qtePZdOwLZvh2bN\n4PJlmDcPnngi4fMmrTvK7K0nknytiMjL95V0Fkno3BmOHoULFyQJs3n2Wejb11TllCQsU0vreDYe\n+A6YGO/xr7TWw9MYW7oIDYWhQzVXryp8fa2ORgghRHKSSsLclFLvAqWUUq/HP6i1/tJxYbmQqCjz\nUfuECaYZs4s3YV682JSg9/U12+EqV0783NlbTySbZJUL9CcsuJADIs2CatSA2bOtjsKp5MwJrVrB\nlCnw1VeyHzETS9N4prVerpQq5qDY0kXIjLe4c+dzNm40RXWFEEI4t6SSsPbA07ZzpBadI1y7Zj5q\n//NPs+lp0CCzH8xFTZwIL7xgmi/Pn29fD7Bygf5M7eXaiWu6O3zYZMHSAwAwSxInTYI//jBNnEWm\n5Kjx7BWlVGdgI/CG1vrfhE5SSvUEegL4BhZPx8ub2f52o9fwctQWAPp+fYQBXoqOtYqk63WEEEKk\nr0STMK31HmCYUmq71vrPDIzJdUyYYKrRjR5tZsFc1J07pkXVhx9Co0YwfTrkypX8ckNZaugAJ0/C\nI4/AJ5+YOxI0/QAAIABJREFUvgCCxo1Nn/QJEyQJy6wcNJ79AHwEaNvXL4DuiVx/DDAGIKBo2XQr\n8xJ3lv9MiSKU3rObYztzMnvrYUnChBDCySW78UgSMAeIiTFfX3rJNGR24QTs+nVTD+LDD82Mw59/\nmgQM7i03TIwsNXSAggWhdm1TJVFKAgKmIufzz5vfzdOnrY5GpEV6jmda69Na6xit9R3gRyDDdw12\nrFWEqb1CmdorlDYvtyGEtdw+nlP+6QohRCaQ1HJEh1BKlQamxnnoEWCQ1npEnHMaALOBQ7aHZmit\nh2RYkI60cqVJuubONTMO1atbHZFlTpyAsDDYvBk+/xzefPPB1Ziy3NACnTqZDwi2bjWtEgRdupi6\nOb/+Cq8/sKNIuCKlVKDWOtJ2txUQbmU81KpFKO8w4UZXrp2TzYtCCOHsEp0JU0o9a/uarp2CtdZ7\ntNbBWutgTLWq68DMBE5dEXtelknAfv3VrG2KiTFr8FzYxo2mDsSePaYWRP/+Lr0dzrm0bWtK1kuX\n4rvKlDHVEcePlwnCzCit45lSajKwBiitlDqulHoB+DxOn7GGwGvpFnBqBARQ+xnTV/LcAdnGLYQQ\nzi6p5Yjv2L5Od+D1GwMHtNZHHHgN62ltCm906mSWeq1ZAyVKWB2VZX77zVThz5EDVq+Gp56yOiJx\nn4AA06RtyhSX/7Agri5dTCu/rVutjkSkQprGM611B611oNY6m9a6sNb6f1rr57XWFbXWlbTWLePM\nilmm/G8fkM07mnP7Za+sEEI4u6SWI55XSv0NBCml5sQ/qLVumQ7Xbw9MTuRYqFJqG3ASeFNrvTOh\nk+JWnSpSxEk3Ig8ffm/T05gxkD271RFZQmtTgGPwYChV6SZlOu1g6OpoWJ3w+VJ4w0KffALe3i7d\nry6+9u3htddMgQ7K3qtKl5Sw4EJSIME5ZMR4Zjk3NyhQ9ALn9kmjMCGEcHZJJWHNgarAz5iqT+lK\nKZUdaMm9Tyjj2gwU1VpfVUo1A2YBJRN6nbhVp6pXr+6cC4V69DAlv3v3dpk1d/ErG0bdcGf9hOKc\n2JqHYqFnuFl7E9vO36GWf0CiryGFNyxUtqzVETidgABo2dKUqx8+M/nfy9iiMpKEOQWHjmdOIyKC\nV3ZNYADDOHsW8uWzOiAhhBCJSapE/W1grVKqttb6rFLK1/b41XS69pPAZq31A/XGtNaX43w/Xyn1\nvVIqr9b6XDpd2/G2boVPPzXNr3LnNoUOXEjcRsqXT3myalRprp7xonKbw5RqHIlSuWSWwNlt2GCq\nUUyYYD5EEHTpAtOmQa7zRZjaK+nf3eRmyUTGyYDxzDmUKkWNbBshClatgqeftjogIYQQibFnrVEB\npdQWYCcQoZTapJSqkA7X7kAiSxGVUg8pZaaMlFI1bXGeT4drZowpU8zer9Wr4dgxq6OxTLlAfzoU\nCGXVF1XwjPFmyWLF1t+L8VtvU1JZEjAnd/MmzJgBs2ZZHYnTaNIE8uc3BTpEpuSo8cw5eHjg98hN\nsnOLFSusDkYIIURS7EnCxgCva62Laq2LAG/YHks1pZQP8DgwI85jvZVSvW132wDhtj1h3wDttc4E\nNcliYuDtt6FDB6hWzZQAdNECHHfuwI5ZD9Oqlakst2kTNGhgdVQiRerUgWLFpEpiHNmymfo6c+fC\n+czzsZC4J93HM2dzsFR5arGOlcuirQ5FCCFEEuxJwny01ktj72itlwE+abmo1vqa1jqP1vpSnMdG\naa1H2b7/TmtdXmtdWWsdorVOpHSDk+nVyzS86t0bFi+GAgWsjsgSFy7Ayu/KsmtBYXr0gOXL4eGH\nrY5KpJibGzz3HCxcCJGWF35zGl26QFQUTE6spJBwZuk+njmb3SUqU48VbN7mxrVrVkcjhBAiMfYk\nYQeVUgOVUsVst/eBg44OLFN66SUYPRp++MFlKyCuWwdVq8KZvf5Ue+4AP/4Inp5WRyVSrVMnM605\nZYrVkTiNSpUgONhWJVFkNll+PNsXVJ6o2rmIjnFj3TqroxFCCJEYe5Kw7kA+zNLB6UBe22MCTAPm\nAQPM99WqQc+e1sZjEa1hxAjT/wug4Rs7KV7vjLVBibQrUwbCwkxTN3FXly5mtfHOBBtnCCeW5cez\nqOw5mFuvDChN36+O0W70GiatO2p1WEIIIeJJNgnTWv+rte6rta6qta6mte6ntf43I4JzajdvmmWH\nnTqZAhy3blkdkWX+/RdatTI9lJo1gy1bIE9Q1io65tJmzYL//MfqKJxKx47g4SGzYZmNK4xnYcGF\nqFUghoIBZzi/15eIyMv3tQsRQgjhHKQTa2ocPGiKFowebQpxLFnisjMF69eb5Yfz5sFXX8HMmaYi\nv8hioqNh/36ro3Aa+fObDxx++cX8aIRwFh1rFWFcyds8c34qV476UyZ/TqtDEkIIkQBJwlLq2jUI\nDTWJ2OzZpo+SR1I9r7MmreHrr6FuXfP9ypXQr5/L9KJ2PV26QKNGZn+YAMyPJDISFi2yOhIh4qlT\nh7qs4tpNdy4e87Y6GiGEEAlINntQStXRWq9K7rEsLyYG3N3Bxwe+/RZq1ICgIKujssSpU9Ck1Q22\nr/WiYKULBHc5wJdbo2HrvXNiGzWLLKJFC5g0yZS6lF4DADRvDgEBpmdY06ZWRyPs4TLjWe7c1Ctz\nFnbD2X3+nMoReV/z8LDgQtKnUQghLGbPTNi3dj6Wde3dC7VqwfTp5n7bti6bgM2da6rD7dyUg8Bm\nEdR5aQ85fB5cj1Uu0J+w4EIWRCgcIiwMfH3h55+tjsRp5MhhWgLOmgUXL1odjbCTy4xngY3KUkrt\nwy0y330fiMkeMSGEcA6JzoQppUKB2kA+pdTrcQ75A+6ODswpaA3jxkGfPqbOuouWnQe4fh3efNNU\n3w8OhqovbSdnwRtM7RVqdWgiI3h7wzPPwLRp8N134OVldUROoWtXGDkSfvvNZQujZgouOZ7Vq0ej\n7xfx67aerH8h9O6q+bgzYkIIIayT1ExYdsAXk6j5xbldBto4PjSL/fsvtG8PL7xgZsG2b4ennrI6\nKkts2WKq7//wg0nE1q6FnAVvWB2WyGjPPw+XL8OcOVZH4jSqVYNy5aRKYibgeuNZ06Y0/Phxrlxz\nZ/Nmq4MRQggRX6IzYVrrf4B/lFLjtdZHlFK+tsddo/b49OkwY4YpvPHmm2Y/WBYxad3RZJejhAUX\nom21Inz+OQweDPnywcKF8NhjGROjcEING5q1d08+aXUkTkMpU6Dj7bfNquVSpayOSCTEJcezXLlo\n0CMXvGcK+NasaXVAQggh4rJnT5ifUmoLsBPYqZTapJSq4OC4rHHzpunACmYGbMcO8+4qCyVgALO3\nniAi8nKixyMiLzNx/gVCQ+G99+Dpp81EoCRgLs7NzewNc+FluQnp1Mn8aCZOtDoSYQfXGc+A/Ce3\nUjHPSZYskqqmQgjhbOyprT4GeF1rvRRAKdXA9lhtB8aV8TZuNB9pnzgBhw9DrlxQpozVUTlMuUD/\nBPdzxcRA1WePsPCPh8mdE6ZONXVIhADMPslPPjFlAV96yeponELBgvDEEyYJGzLEJGTCabnGeBbr\n8GEanV/GmJV9uHXLZdtZCiGEU7Ln7YJP7IAFoLVeBvg4LKKMdvs2DBwIISFw6RJMmWISMBe0e7fp\n+7V9ZlECK/zLzp2SgIl4lIJly2DYMOkZFkfXrnDsmFmyK5xa1h7P4mvQgEZqGTduubNu3b2HIyIv\n0270mru3SeuOWhejEEK4KHtmwg4qpQYCsbWpOwEHHRdSBvr3X7PPZds26NzZdB92wQQsOhq++goG\nDTJF70Je2MvD1c9ToIBUPhQJeOEFU5t9yRJZo2rz9NOQNy+MGQNNmtx7PPbNbmKkX1OGy7rjWUJy\n5aJ+5Uu4bY1h6VJ36tfngdYhsUvT5fdQCCEylj0zYd2BfMAM2y2f7bHMS2vzNVcuU/lw9mxT3swF\nE7ANG0zf6bfeMm8ed+6EIjXOo5TVkQmn9fTTkDs3jB1rdSROI0cO6NbNFI6MjDSPhQUXSrJhufRr\nskSqxjOl1Fil1BmlVHicxwKUUguVUvtsX3M7LOo0yNWkFlXZwpKFMYBJtqb2Cr17S+p3VAghhOMk\nOxOmtf4X6KuU8jN3M3k1qZUr4dVXzWanEiVg9GirI7JE1E03XnsNvvkGChQwxSBbtUKSL5E8T094\n7jn48Uczm5zbKd97ZrgePeC//4Xx4+Gdd8yb3aRmF6RfU8ZLw3g2HvgOiFt+ZQCwWGv9mVJqgO3+\n2+kZb7po1IhGX63kq3VVuX7dtPwTQghhvWSTMKVURczAE2C7fw7oorUOT/KJzubiRfPOaNQoKFIE\nzpwxSVgWlFwJ+nX/ZOfsXxW48a+prfDJJ5AzZwYGKDK/7t0hPNz8O5IkDDDl6Rs2NLnp229LgQ5n\nlNrxTGu9XClVLN7DYUAD2/cTgGU4axI2szGfN3dj+XJo2tTqgIQQQoB9yxFHY6pJFdVaFwXewFST\nyjymTzcdVceMgddeM2vuamfNYliQeAn66/9mZ/WYkhyZXI2AXIqVK2HkSEnARCpUqQJLl0Lp0lZH\n4lR69oRDh2DRIqsjEYlIz/GsgNbatviUU0CBxE5USvVUSm1USm2MiopK5eVSycOD+g3d8fSEv/7K\n2EsLIYRInD2FOR6oJqWUSnM1KaXUYeAKEANEa62rxzuugK+BZsB1oKvWenOqLjZnjllzN2cOVK+e\n/PlZQNwS9LduwZdfwtChpqDd0KHQv392afck0u70adPXoGBBqyNxCq1aQZ485vOeJ56wOhqRAIeM\nZ1prrZTSSRwfgy3ZCyhaNtHzHMVr7VIauHuwYG4IX32VLaMvL4QQIgH2zIQdVEoNVEoVs93eJ/2q\nSTXUWgfHT8BsngRK2m49gR/sftUbN2DwYNhsy9m++85UoHCRBCyu+fOhQgV4912zDGXXLtOAWRIw\nkWbXr5slvUOHWh2J08iRw5Srnz0bTp2yOhqRgPQcz04rpQIBbF/PpFuU6S1vXppem8bu/dk4fNjq\nYIQQQoB9M2HdgQ8xlaQ0sIKMqY4YBkzUWmtgrVIql1IqMM7yj4TNng39+pmGyx4eULUq+PllQLjO\n5erZHLRsCX/8YVaM/fVXyj6ZT660dkTkZamq5eq8vc3Uzy+/wOefg6+v1RE5hZ494YsvTIGOAQOs\njkbEk57j2RygC/CZ7evs9AjQISpUoGn+LXAGFiyA3r3vPxz//3tpnSCEEI6X5EyYUsodeE9r3Vdr\nXVVrXU1r3c9WYSqtNPC3UmqTUqpnAscLAcfi3D9ueyx+jHfX2t/eudOUz/bxMftV3n8/HcLMXK5c\ngR1zHmbBh8EsXWreG2/fnrIELLnS2mCWO8bvNyNc0EsvmV+6X3+1OhKnUaoUNGhgCnRIP2vnkZbx\nTCk1GVgDlFZKHVdKvYBJvh5XSu0DHrPdd05KUaplGYqpIyyYf/8vZfz/76V1ghBCZIwkZ8K01jFK\nqboOunZdrfUJpVR+YKFSarfWenlKXyTuWvvq7u6ar76Cl1+GbK617j062rRtGjQITp8uTJEaZ1kz\nK1+qtuokV1pbiLtCQqByZfjhBzMFJD0OAPOj6NgRFi68v3mzsE5axjOtdYdEDjVOQ0gZSjV7kqY/\nzeeXRS9y+7bb3SXp8f+/l9YJQgiRMexZjrhFKTUH+B24Fvug1npGWi6stT5h+3pGKTUTqAnETcJO\nAA/HuV/Y9ljiKlQwSxFdiNZm31f//ma/V926UKHrDvIEXaVgwXxWhyeyOqXMbFjv3qZkfcWKVkfk\nFFq3hvz5zXZUScKcikPGs0yhcWOa1viWURs8WL3azNYmRpYnCiGE49lTmMMTOA80Ap6y3Vqk5aJK\nKR9bs0xslameAOL3aZkDdFZGCHAp2f1gLjb7tXkzNG4MLVqYmbCZM2H5csgTlLn7aYtM5rnnJAGL\nJ0cOk5fOmwcHDlgdjYgj3cezTMPfn0aL38PDA/78M/HTZHmiEEJkjGRnwrTW3Rxw3QLATFOFHg9g\nktZ6gVKqt+2ao4D5mPL0+zEl6h0RR6Z04AB88IHZhpM3L3z7LfTq5XI5qHAWvr5QvrzVUTidXr1M\nI/SRI02LCGE9B41nmYafH9QPucXcOR4MG+ae4DmyPFEIITKGPTNh6U5rfVBrXdl2K6+1/tj2+Chb\nAoY2XtZaF9daV9Rab7QiVmdy9KjZa1K6NMyYAW+/Dfv3wyuvSAImLHb7NrRvD19/bXUkTqNgQWjT\nxuzVvCqT08IZHDlC2Mq3iNjtzt69VgcjhBCuzZ49YSKdTFp31K5lHfHX30dGwqefwujR5v5//gPv\nvAOBgY6KVIgUyp4dTp4007J9+oCbJZ/vOJ2+fWHKFPj5Z7N1TghLFS1KWPFwXj1gurn07291QEII\n4bokCctAs7eeSLa/VkTkZcAsCTl3zpSY/+47M9HQvbupul9E9kcLZ/Tyy2Y2bN48eOopq6NxCiEh\nUK2ayU17936weGRy/fhAiiKI9FW0bS2qfLqZ2dMr0r+/LKEQQgirJJuEKaUKAJ8ABbXWTyqlygGh\nWuv/OTy6LKhcoD9Te4Umerzd6DXcuJSN/v1N1e/r16FTJ1N6vkSJDAxUiJR65hnzCcGXX0oSZqOU\nmRjs2hUWL4bHHrt3zJ4+e3E/lBFpJ+MZ0KoVYZ/O5sP1VTh9GgoUsDogIYRwTfbMhI0HxgHv2e7v\nBaYCrjNoZZDDh2HTpCAOrc7PvDtmUuG996BcOasjE8IOHh4m4+jfH7ZsgSpVrI7IKbRrZ34k33xz\nfxJmTz8+KYqQ7sbj6uNZ9eo8nf89Bp9RzJ0LL7xgdUBCCOGa7EnC8mqtf1NKvQOgtY5WSsU4OC6X\nsns3fPaZqXZ4R+cnZ+UThDx9juj8N/lwBbDi/vNleZJwWj16wJEjEBBgdSROw9PT7AcbMsT8Wy9T\nxuqIXJqMZ0pR6ef+FO0WxcyZ2SQJE0IIi9iThF1TSuUBNEBszy6HRuWk7CmskZIEae1aGD7cVDr0\n9DRbaoo3jmTlyeOJPkeWJwmnliuX2QAl7vPKK2Z/5/Dh8NNPVkfj0mQ8A9QTj9O6nWmfcPGi+Wcr\nhBAiY9mThL2OaZxcXCm1CsgHtHFoVE4qucIa9iRId2Jg2jSzbWbNGjP4DRgA/fpB/vwAhehD4ntF\nZHmSyBRWrTI9FTp0sDoSp5Avnyms89NP8NFHUtnUQjKe2bQvtpavbocwcyZ0c+nuaUIIYY0kkzCl\nlBvgCTwKlAYUsEdrHZUBsTmlpAprJJUgXb4Mexc/xL4lgUw7D488YiYMunY1vW5TIrmKaslVYBTC\n4b74Av75B1q2BB8fq6NxCq+/DqNGmb1hn35qdTSuR8az+9U4OJVHyM/kiQ/TrZtUSRRCiIyWZDMf\nrfUdYKTWOlprvVNrHe6qA1Zq7d8Pb7wBDz8MW38Pwiv3bWbMgL17zRKllCZgYcGFkk2wygX621V5\nTQiHef11uHABxo+3OhKnUby4KSD5ww/mQxmRsWQ8u5/q9Bztmczif9w5c8bqaIQQwvXYsxxxsVLq\nGWCG1lo7OqCsIDoa5s41b7b+/tsUjXvmGThXbAd5gq7SqlXiJeqTY09FNSEsV6eOaZL13/9Cz56Q\nTT5pB1Ml8fffYcwYePNNq6NxSTKexapWjfZFBvPJUTd+/93sSRZCCJFx7EnCemHW0UcrpW5ilnBo\nrbWsd4vnxqVsrFuQE/93bnHj3xx45bpF+adO80jdM+icUZyOvEwe5McmXIBSprN4ixam7GfXrlZH\n5BRq1IDGjU2Bjv/8B7y9rY7I5ch4FkspKnavQfnB4UyZWJKXX85h19MSKlAlFXuFECLlklyOCKC1\n9tNau2mts2ut/W33XW/ASsSdO6YJa7t2MP/dapxZWhL/h25Qu9cemn+8mfLNT+CV06x4kWWCwqU0\nawZ165plieKuDz6A06dh9GirI3E9Mp7F07EjHXz+YOX6HBw8aN9TYgtUxYqIvJxs1WAhhBAPsmcm\nDKVUbqAkZlMzAFrr5Y4KKjM4dMhsd5kwwbRFyp0bXn1V0bs3lCyZC5Cav8LFKQXLl5uv4q569aBh\nQ1Oyvndv8PKyOiLXIuNZHCVL0nlHfwaVgLFjYejQhE+LWwwqtvBTbIEqqdgrhBCpk+xMmFKqB7Ac\n+Av40PZ1sGPDck7Rt9w4vDYvDRua6oYffQSlSsGkSXDihCkIV7Kk1VEK4USUAq1NpcQ7d6yOxml8\n8AGcOmX2homMI+PZgx4O8qBpE824sXeIjn7wePxiULKiQwgh0oc9M2GvAjWAtVrrhkqpMsAnjg3L\necTEwIoV8MsvMOfXakTf9KB4cfOJYefOpuqhECIJ8+bBU0+ZBnnPPGN1NE7h0UehQQP47DNTt0Rm\nwzKMS49nCdKaHrtep3XkVyxYYLZxxiXFoIQQwjGSnQkDbmqtbwIopXJorXdjeqxkWVrDunXw2msm\nyWrYEKZMgcJVL9DwjXD27YP33pMETAi7PPkklC1rCnUk9FG7i4qdDfvhB6sjcSkuN54lSylaNI0h\nP6f56fvbVkcjhBAuw56ZsONKqVzALGChUupf4Ihjw0p/CVV0iktruHTSm6Mb8nBsY16unfPEzeMO\ngeUvEtr8HIGV/mXv+YvkC/SXLS5CpIS7O3z8MbRuDRMnQvfuVkfkFBo0gCeeMLPq3bqZfaXC4dJ9\nPFNKHQauADFAtNa6epqjzGDZXupB11Hj+eKv/pw8CQULWh2REEJkfckmYVrrVrZvByullgI5gQUO\njcoBYis6xV3brjVcPObD8a0BnNgSwOVIb5SbJn+ZS5RrdpxCVS6Q3Svm7vmyFl6IVHr6aahZ00z/\ndOwInp7JP8cFDBsGVauaZYnDhlkdTdbnwPGsodb6XDq8jjUqVeLFmsP473r4/rs7DP3EnkUyQggh\n0iLZJEwpFXcx+CHb14eAo6m5oFLqYWAiUADQwBit9dfxzmkAzI5zvRla6yGpuV5c5QL9mdQjlJUr\nYeZMmDXLVDZ0czMVy9q+D23aKPLnl+qGQqQrpeDTT82esO3bTUImCA6GTp3g66/hlVdkibOjpfd4\nlpWUeK8dYWGz+eHbZrz7fg7pYSeEEA5mz3LEeZhkSWFK+gYBe4DyqbxmNPCG1nqzUsoP2KSUWqi1\njoh33gqtdYsEnp9iMTHwYdNgom54sGMH+PjA88/Dyy+bJUA5c0K2bOlxJSFEoho1gqNHwc/P6kic\nykcfwW+/waBBMG6c1dFkeek9nmF7vb+VUhoYrbV+oOalUqon0BPAN7B4Gi7lQC1a8PqQ5cwalIOf\nf4ZevawOSAghsjZ7liNWjHtfKVUV+E9qL6i1jgQibd9fUUrtAgoB8ZOwVNMa9u2D+fNNFbI7d0Br\nL5TS5M4NuXKZxMvdPb2uKISwi5+f+Qe5fj2EhFgdjVMoWhT69oXhw6FPH7M8Ma64PZoSEhZcSKrX\n2Sm9xzObulrrE0qp/Jh9Zrvj9x2zJWZjAAKKltVpvJ5juLlR9/0GVJ8DX30FL75oVonYI7nfUZDf\nUyGEiC/FC7+11puBWulxcaVUMaAKsC6Bw6FKqW1KqT+VUol+SqmU6qmU2qiU2njs2CX69jW9ukqX\nNtUNs2WD/PnBr8ANcj18jUcegYAAScCEsMywYVC3LoSHWx2J03j3XfP/1H/+c387tfg9muKLiLyc\nZMEhkbT0GM+01idsX88AM4FMu9ZWKXij2jL27IHp0+17TnK/oyC/p0IIkRClddIfyimlXo9z1w2o\nCuTRWjdJ04WV8gX+AT7WWs+Id8wfuKO1vqqUagZ8rbVOtg2yUtW1l9dGGjWCZs1MZeygIHPswNmr\nABTP55uWsIUQaXX+vOlyXrkyLF6MlBs1fv7Z9B788Ufo0cO+58TOPkztFerAyJyLUmpTaisQpvd4\nppTyAdxsqzp8gIXAEK11osU+AoqW1ReO7ErN5TJEzIhvqfhaY1TRImw/4JsuH1i64u9pWjUY3wCA\nZV2XWRqHECLl7B2n7JkJ84tzy4FZUx+WxuCyAdOBX+MnYABa68ta66u27+cD2ZRSeZN73ZIlzfu7\nuXPNJ8qxCZgQwonkyWPqsi9daho4C8AU6KhfH95+G85l3jp7zi69x7MCwEql1DZgPTAvqQQsM3Dv\n/SKDc39DxBFfpk5xzpWTQgiRFSSbhGmtP4xz+1hr/Wtss8vUUEop4H/ALq31l4mc85DtPJRSNW1x\nnk/utf39wcsrtZE5jq9vwrNvXbt2ZVoq34QOHjyY4cOH233tkydP0qZNm0TPu3jxIt9//32Sr1W7\ndm0Ali1bRosWKauZMmvWLCIi7m37GzRoEIsWLUrRa4gspGdPMxP22mtw6ZLV0TgFpWDkSPPjeOcd\nq6PJmtJ7PNNaH9RaV7bdymutP07PeC3h6UmbjypTke0MfusaUVFWBySEEFmTPSXq/8BUf0qQ1rpl\nCq9ZB3ge2KGU2mp77F2giO31RgFtgJeUUtHADaC9Tm7dJHDw7LUHNgd/0trsw74ZFYNnNtfdCFaw\nYMEkE77YJOw//3lwj3p0dDQeHh6sXr061defNWsWLVq0oFy5cgAMGZLmjgMiM3N3hzFjTMn6/fuh\nWjWrI3IKFSqYvHT4cGjfHho3tjqirMUB41mW5NazBx9/9iotj3/PyK+j6femPYWUhRBCpIQ9yxEP\nYhKhH223q8AB4AvbLUW01iu11kprXUlrHWy7zddaj7IlYGitv7N9qlhZax2itbbr3f+NqJhEj3lm\ncyeXl7V16LXWvPLKK5QuXZrHHnuMM2fO3D22adMmHn30UapVq0aTJk2IjIwE4Mcff6RGjRpUrlyZ\nZ555huvXryd5jUOHDhEaGkrFihV5//337z5++PBhKlSoAMDOnTupWbMmwcHBVKpUiX379jFgwAAO\nHDhAcHAw/fv3Z9myZdSrV4+WLVveTZzizuhdvnyZ5s2bU7p0aXr37s0dWzWBuOdMmzaNrl27snr1\nauZ1i+2aAAAgAElEQVTMmUP//v0JDg7mwIED980CLl68mCpVqlCxYkW6d+/OrVu3AChWrBgffPAB\nVatWpWLFiuzevTvVP3vhhGrWhAMHJAGL58MPTWGhbt1kktAB0nU8y7KyZaPFrx1oEnyaDz5yJ85Q\nJYQQIp3Y8/FWnXiby/5QSm3UWr/mqKBSyyube/Ibfxs0ePCxFi3gzTdTd3zZMrvjmzlzJnv27CEi\nIoLTp09Trlw5unfvTlRUFH369GH27Nnky5ePqVOn8t577zF27Fhat27Niy++CMD777/P//73P/r0\n6ZPoNV599VVeeuklOnfuzMiRIxM8Z9SoUbz66qs899xz3L59m5iYGD777DPCw8PZunWr7Y+1jM2b\nNxMeHk5QApvr1q9fT0REBEWLFqVp06bMmDEj0eWOtWvXpmXLlrRo0eKBc27evEnXrl1ZvHgxpUqV\nonPnzvzwww/069cPgLx587J582a+//57hg8fzk8//ZT8D1pkHtmzQ1QUfPONqUaRM6fVEVnO2xsm\nToTateHVV2H8eKsjylIyzXhmNVW/Hl9PgYoVYcDbmrHj0lZAJ34ZeylZL4RwdfYkYT5KqUe01gcB\nlFJBgI9jw8qali9fTocOHXB3d6dgwYI0atQIgD179hAeHs7jjz8OQExMDIGBgQCEh4fz/vvvc/Hi\nRa5evUqTJkkX8Vq1ahXTbbWFn3/+ed5+++0HzgkNDeXjjz/m+PHjtG7dmpIlEy48WbNmzQQTsNhj\njzzyCAAdOnRg5cqVSe45S8yePXsICgqiVKlSAHTp0oWRI0feTcJat24NQLVq1Zgx44EaLiIrCA+H\nt96CHTsk47CpWdPsCxs6FMLCoFWrxM+VPmIpIuNZCpQuDa8/uolh46vRvm0MTzyZuiX9YcGF7rsf\nEXkZQH4vhRAuzZ4k7DVgmVLqIKCAokBPh0blSMnNXKX1eCporSlfvjxr1jz4Rqpr167MmjWLypUr\nM378eJbZcX2VTMnvjh07UqtWLebNm0ezZs0YPXr03YQqLh+fxN+bxL9G7P24j9+8mer97nflyJED\nAHd3d6Kjo9P8esIJValiGmUNHWo2QT3/vNUROYWBA2HePDNBWLWqaeocX/w3t/HJm90HZK3xLAMM\nbhvBH4s86da+CDsO+REQkPLX6FiryH2/g8k1dhZCCFeQbBKmtV6glCoJlLE9tFtrfcuxYWVN9evX\nZ/To0XTp0oUzZ86wdOlSOnbsSOnSpTl79ixr1qwhNDSUqKgo9u7dS/ny5bly5QqBgYFERUXx66+/\nUqhQ0m+66tSpw5QpU+jUqRO//vprguccPHiQRx55hL59+3L06FG2b99O5cqVuXLlit1/lvXr13Po\n0CGKFi3K1KlT6dnTvI8pUKAAu3btonTp0sycORM/Pz8A/Pz8Enz90qVLc/jwYfbv30+JEiX4+eef\nefTRR+2OQ2QRH3wAK1ZA795QvTqULWt1RJbLnh2mTjU/jmefNT8e22cSd8V/cxufvNm9n4xnKefZ\noxO/THqDmsuG0avNeX5bnCfdW/tNWnc02WbOMqMrhMhqEi3MoZSqoZR6CMA2SFUGhgD/VUql4rMw\n0apVK0qWLEm5cuXo3LkzoaFm/1r27NmZNm0ab7/9NpUrVyY4OPhuJcKPPvqIWrVqUadOHcqUKZPU\nywPw9ddfM3LkSCpWrMiJEwkPar/99hsVKlQgODiY8PBwOnfuTJ48eahTpw4VKlSgf//+yV6nRo0a\nvPLKK5QtW5agoCBa2dZLffbZZ7Ro0YLatWvfXVIJ0L59e/773/9SpUoVDhw4cPdxT09Pxo0bx7PP\nPkvFihVxc3Ojd+/eyV5fZDEeHjBpEvj4mLKAMYkX2XElJUuaFZobNoBtha5IBRnP0kApqkx7j48D\nvmTa0jz8d+DldL/E7K0n7s7aJiQi8nKySZoQQmQ2KrHK70qpzcBjWusLSqn6wBSgDxAMlNVap3wD\nkIMFFC2rLxzZZXUYQojUWrYM7twB235JYQwYAMOGwddfQ9++9j8vdiYs2YJFmYhSalO84hr2PMdp\nxrPMOk7pHeF0qLqb32KeYdYsRcs0FPNvN3oNEZGXKRfoD3D3+8R+T+P/Htszc5aQzDSb1mB8AwCW\ndV1maRxCiJSzd5xKqkS9u9b6gu37dsAYrfV0rfVAoER6BCmEEPdp0OBeArZ1KyTfHtAlfPKJKc7R\nrx/MmWN1NJmSjGdppCpW4H+761KtmuLZZ2HhwtS/VlhwobsJGEC5QP9k9zfGldzMWUJkNk0I4WyS\n2hPmrpTy0FpHA425f/OydG4UQjjOkiWmSMeHH8KgQVZHYzk3N/jlF5Ojtm8Pf/4JsnUyRWQ8Swc+\nxR9iwQJoFHKNsKbuTB53i7DOKW8rkdxeRnskNXOWkOT2RyY0u5aZZs6EEJlPUoPPZOAfpdQ5THPL\nFQBKqRKAtBAVQjhOgwbQtasp2OHrC6+/bnVElvP2hrlzzY+meXP46y+oU8fqqDINGc/SSZ48sOjd\npbR4oQCtulTjs00nePOrQrglta4mE4idXYudoVt36ALrDl24LzGTpEwIkZ4STcK01h8rpRYDgcDf\n+t7mMTfMWnohhHAMNzf48Ue4ehXeeANu3jSNs9K7LFsmkz8/LF5sZsGefBJmz4aGDZN+TnJ9xCDr\nv7mU8Sx95evWgqVB6+n65Dze/uYp/pxzmNGzH6JUJU+rQ0uTuLNr8WfGpN2DECK9JbkMQ2u9NoHH\n9jouHCGEsImtmOjpCe+9B9WqQTLNyl1BYCAsXWp+FE2bws8/Q9u2CZ9rzz4bV3lzKeNZ+vJuUJOp\nxy/Q9MlR9NvQkXJVstOtO7z8MgQHWx1dwpL6QCLuLBikvLeZLGcUQqSUrIUXQjivbNlgwgRTleKJ\nJ8xjWrv8jFihQqZvWFiY2SMWEWG2zsVfEmbP3hvpJSZSS+UJoPv63jSfuZqhf9Xgx/Fu/PQTVPI7\nxBM1LlDnMW/KPV6IR4L98Ujju424CVT8hMkeyX0gYU9xkPhJXNwky57ljPGfI4RwbZKEZYBTp07R\nr18/NmzYQK5cuShQoAAjRoygVKlSGXL9rVu3cvLkSZo1a5ai5zVo0IDhw4dTvXriVTaXLVvG8OHD\nmTt3LnPmzCEiIoIBAwakKo6NGzcyceJEvvnmGwYPHoyvry9vvvmm3fGOGDGCnj174u3tDUCzZs2Y\nNGkSuXLlsvs1hBNyc4PWrc33u3fD88/D6NFQtaq1cVksd26zL+yll0z9knXrTL6aP7/VkQlXU6BV\nbb5tBR9+Ar/2XMaM+Z58s6QKw5fkgHfBgyjyBXqQL58i361j5Lweia9XDL5ed/DxMds+fZ+ojY+v\nwvfCUXxjLuEbkB2/fJ7kfMiLxnnzEBOlALOKNKXVFCHtxUDiXy+hGeSkljMm9hwhhOuSJMzBtNa0\natWKLl26MGXKFAC2bdvG6dOn7UrCoqOj8YjzEaLWGq01binYBb1161Y2btyY4iQspVq2bEnLJJrH\nJBVHdHQ01atXTzLhS86IESPo1KnT3SRs/vz5qX4t4aQuXoQTJ6BWLVO04+23zWyZi/LygnHjIDTU\n9A8rXx6+/x6efdbqyIQrCgiAPtMa0Ae4vvc4O+YeYfe6i+w96sXp8o04exbObrzDqbO5uBbjydU7\nXlzFl5t4wd+xr5JQgmI+WcieHXJ5XCFn1DkOZr/KOK8t5PKNpkBANIGtQwkMhMCoowTmjaJgtUDy\nFfVOt0nzlC5PTCjpk1lnIURckoQ52NKlS8mWLRu9e/e++1jlypUBk1C99dZb/PnnnyileP/992nX\nrh3Lli1j4MCB5M6dm927d/P333/TpEkTatWqxaZNm5g/fz579uzhgw8+4NatWxQvXpxx48bh6+vL\nhg0bePXVV7l27Ro5cuRg4cKFDBo0iBs3brBy5UreeecdWrRoQZ8+fQgPDycqKorBgwcTFhbGjRs3\n6NatG9u2baNMmTLcuHEjwT/TggUL6NevH97e3tStW/fu4+PHj2fjxo189913/P7773z44Ye4u7uT\nM2dOFi1a9EAcu3bt4sCBAxw8eJAiRYrQq1evu7NqYJLV0NBQzp07x1tvvcWLL75438wbwCuvvEL1\n6tW5fPkyJ0+epGHDhuTNm5elS5dSrFgxNm7cSN68efnyyy8ZO3YsAD169KBfv34cPnyYJ598krp1\n67J69WoKFSrE7Nmz8fLycsjvgkgHISEQHm42ngwcaPaMff01PP641ZFZRino1Qvq1jUFJdu2NXvF\nvvgCypWzOjrhqrxLFabW64Wp9cCRovffjYkh5soVrrn5cfUqXNt5mKuHznL1/C0un4/i0oUYLl71\n4FKVBly6BBdXHeXSkYtcvJ6NS9dzcPxiLhYdycfFzbEveC/x8VHXKOF1ghJ5L1GiQw1KlIBy+c5S\nMdQXv/xp/38+NUskkyuUE3e54pnLtx44N+7x5Pah2dvUOqXPSUkMmVVqGoIn9edOj59Tevx9p/ff\nXUqv6QiZ+XfQpZKwfv1M/9f0FBwMI0Ykfjw8PJxq1aoleGzGjBls3bqVbdu2ce7cOWrUqEH9+vUB\n2Lx5M+Hh4QQFBXH48GH27dvHhAkTCAkJ4dy5cwwdOpRFixbh4+PDsGHD+PLLLxkwYADt2rVj6tSp\n1KhRg8uXL+Pt7c2QIUPuJkcA7777Lo0aNWLs2LFcvHiRmjVr8thjjzF69Gi8vb3ZtWsX27dvp2oC\ny71u3rzJiy++yJIlSyhRogTt2rVL8M82ZMgQ/vrrLwoVKsTFixfJnj37A3EMHjyYiIgIVq5ciZeX\nF8uWLbvvNbZv387atWu5du0aVapUoXnz5on+nPv27cuXX37J0qVLyZs3733HNm3axLhx41i3bh1a\na2rVqsWjjz5K7ty52bdvH5MnT+bHH3+kbdu2TJ8+nU6dOiV6HeEEAgJg8mTo0MGUrp869V4S5sL7\nxcqXhzVr4JtvYMgQqFQJOnWCN9+EChWsjk6IRLi7457LD3/A3x8oWAwolsQTyj/4kNbcuAmnTkHk\niv1Ebo7kxP4bHDzixv5TvoSfL8QfX8Ht2wD5AHjE4yiV8p2kUqlbVKqfi+AulQkKenBfZWLiL0+0\nZ4mkPXvO4N5yxXNXbxFx4V5yF/94/H1oyR2355rJPSelMWRW9vzs4kruz50eP6e0/n074u8updd0\nhMz8O+hSSZizWblyJR06dMDd3Z0CBQrw6KOPsmHDBvz9/alZsyZBQUF3zy1atCghISEArF27loiI\nCOrYmgTdvn2b0NBQ9uzZQ2BgIDVq1ADA3z/hfxR///03c+bMYfjw4YBJrI4ePcry5cvp27cvAJUq\nVaJSpUoPPHf37t0EBQVRsmRJADp16sSYMWMeOK9OnTp07dqVtm3b0jp2P08CWrZsmejMU1hYGF5e\nXnh5edGwYUPWr1+fqv1dK1eupFWrVvj4+ADQunVrVqxYQcuWLQkKCiLYVsqrWrVqHD58OMWvLyzS\nsqUpEXjzprm/ejW8+iq8+KJZj5c7t7XxWcDDw+SlnTvD0KGmyv+ECdCsGfToYcrae2buKuJCPEgp\nvLwgKAiCgkpA5xIPnBITA0ePQvi49WxfeYXt+7zYfqYAc/4pxp1/3OEjkwRW9j9IlUJnCQ7xpEqL\nQpSrn5fs2R+8ZGr2mCX3nIRmyOLuM0vr8dRcMz1izKxS0hDcnj93evyc0vL37ai/u5Re0xEy6++g\nJUmYUqop8DXgDvyktf4s3vEcwESgGnAeaKe1PpzW6yY1Y+Uo5cuXZ9q0aSl+XmzCkNB9rTWPP/44\nkydPvu+cHTt22PXaWmumT59O6dKlUxyXvUaNGsW6deuYN28e1apVY9OmTQmeF//PGZeKN6OhlMLD\nw4M7d+7cfexm7BvwVMqRI8fd793d3RNdgimcVI4c5gZw5Qpcu2bW5vXtazKPJ58000EutsQ0b17z\n/93AgWaP2MiRMH8+5Mxpapw0bQqNGpnzRNokN54J5+DubkvShtTkqTiP3zhzhfBVl9h6rjBbt2i2\nTLzCT8crcH2dD3wN2bhN+QLnqdIskOBgqFLgJJWbPIR/rkzenVoIYbkM/19EKeUOjASeBMoBHZRS\n8XcuvAD8q7UuAXwFDMvYKNNPo0aNuHXr1n2zRdu3b2fFihXUq1ePqVOnEhMTw9mzZ1m+fDk1a9ZM\n9jVDQkJYtWoV+/fvB+DatWvs3buX0qVLExkZyYYNGwC4cuUK0dHR+Pn5ceXKlbvPb9KkCd9++y2x\n/Uq3bNkCQP369Zk0aRJgllFu3779gWuXKVOGw4cPc+DAAYAHEsFYBw4coFatWgwZMoR8+fJx7Nix\nB+JIzuzZs7l58ybnz59n2bJl1KhRg6JFixIREcGtW7e4ePEiixcvvnt+Yq9fr149Zs2axfXr17l2\n7RozZ86kXr16dschMokmTWDnTtiwwSRi69fDa6/dW180bhx8/rnJRvbsiV2blKXlyWMSsePHYcEC\nU9J+xgxo1w7y5YOKFWHduBLsWRTIkiVmpiA62uqoMw87xzPhxLzy+1GjVWFefBFGfq9YfbUyl/+9\nw+6fNzD5+Xm8Xv5v8ue6zdy5ZqK9fvuC5MztRgnP47QJ2sjHTf5h5uf72LwZzp83K6KFEMIeVsyE\n1QT2a60PAiilpgBhQEScc8KAwbbvpwHfKaWU1pnvvzelFDNnzqRfv34MGzYMT09PihUrxogRI6hb\nty5r1qyhcuXKKKX4/PPPeeihh9i9e3eSr5kvXz7Gjx9Phw4duHXrFgBDhw6lVKlSTJ06lT59+nDj\nxg28vLxYtGgRDRs25LPPPiM4OJh33nmHgQMH0q9fPypVqsSdO3cICgpi7ty5vPTSS3Tr1o2yZctS\ntmzZBPeyeXp6MmbMGJo3b463tzf16tVLMPHp378/+/btQ2tN48aNqVy5MkWKFLkvjuRUqlSJhg0b\ncu7cOQYOHEjBggUBaNu2LRUqVCAoKIgqVarcPb9nz540bdqUggULsnTp0ruPV61ala5du95NcHv0\n6EGVKlVk6WFWpBRUr25uI0aY7CN2pmzOHJg16965bm6m0MeqVeb+F19AZKSpl+3tDT4+8NBD8Mwz\n5vjq1XDpkvlI3c3NfPXzM9cC2LULrl69Px4vr3sbsnbtMjN18Y+Xt+1x2b074eOx1TX27En4eNmy\n5vu9ex887ukJZcvi4QFNgvbSpN81ol+BTbu8WbjOjzXh/izdlpMj6/LR2DZh7+6uKZz/NoULRBGQ\nW5P7YT8CAiDgzjn8st0kR3aNZ/Y75MiuyeHjgWeJwmTPDu4nj+F2+yZuSpsfkdK4+ftSrE4hChRI\n/K8sk7NnPBOZjHsuP0p3qkHpTtDe9pjWEHnwBlu/W8mWdbfYss+XrceKMv1w9TiVHcGHqxTNHkl+\nr6vk8b1FQM4Y8lQuRECVYvi438QzfCNefh54ervh6Qk5PBXuRQvjViiQf/fkIPDscdZlj+DK6euo\ni1Hk3nOUXb7m/7A864+ai9iWXXnvP4/XhWt2H49V9jmz3/v4qiN3nxP3Nc7XNEsmT6w5ypXD5+97\nbsD6o1yIczzA9vzd/p4JHo//fIAyHapkiuPeBy+we/IWu54f9+dg7/GUvH7c17j793vwAp7nrt73\ns497PL2fn1B88f/+U3o8Pf7+ErpGal//kafKk903gfXHjhJb8jyjbkAbzJKN2PvPA9/FOyccKBzn\n/gEgb3KvnbtIGS2EEIk6d07rVau0njBB60GDzC1W8+Zae3trbd5vmVvFiveOh4Tcfwy0rlAh8xwP\nDU3weNtRq3WZN5fosQ/10KN5Ub/LUP0cP+sGLNHlPHZq74Cb2iNH9ANPtfcW3PagbjtqtR48Jzzt\nf39aa2CjzuBxK7GbPeNZ/JuMU1nLxWOX9f/bu/eou+Y7j+PvTxK3RgSRuksYUUPcDYMiq6tabS1U\nXao6xFg6ZrCsrjFTekGNmbq100GnGSbW07oXrQYpyyDuRWhCIoIVoy5VOiURCW2S7/yxf0d2Ts45\nzznPc677+bzWOiv72fu3f/v73b9n719+e++zn5kzFsWtt0b84LuL4oxd748vbv547D96Vuyw5gux\nsd6MEcMGcPxMPjC2m7xpxYVHT3k0jp7yaPSNOXZAy0se2P7kquvXWj7x3Lvi6CmPxg0bf3VAy0vx\ndfPyiefeVXV5PfuvVv0RUVf79bf9wcY30O3XG99A908n2++NJ19rynmh3n6q51/MIelrwNcANths\nmw5HY2ZdbcwY2Hff7FMu/dkDVqyApUthyZJVn82bOhUWLcqWL1+effLfNbv00uzvmOWtu+7K6Usu\n6X/5O++sunzUqJXTF19ce/lFF9VefuGFFZcfNnJz4HVeOW43Rr7/HusD6/M6u/A6S9f+GHO3XwjA\nds/PZsS7H7Js+fDss2IE7w8fyQtb7MSK5WLcqy+y1pKlrIhhRIhAvLfOeize2X892v1UcY3eYhR7\nbJF9gZ0jRsE5k1YrE5HdJF+66M8sfflNPvjjEpYuCT5YsoIPPwhWbPRxVowZy/1P/5bXH3oCrRDT\nN3ybhcvX58qvXMQu40cDMPf1hcz//conT359xOEs/9Pn2HHz+paXlP5swMbfPZWrp++/yjqw8i2O\nG5/3Dzw+e9W3Es95Y+FHb6GbccghzHrtr5mwySgmbja66vJqunn5Dpuux+LTjufxJUeutuyj/Zfb\nP3PeWMiLb666H8vrL+2nvcn28YOHH8a81/ZrKL4Jm4zipDS9+LTjOevh6svL2688xscOP4xlyw5e\npe3yy+vdf/n2h1X3z9RffXK1/dJo/fUsz8dQ+v3NL99o1FrsP2HsavGV/37vvM2GVbfXCsoGbG3c\noLQPcF5EfDb9fDZARHwvV+buVOYxSSOAN4Gx0U+we+65Z8ycObN1wZuZWUdJeioiBv5X3Zuonv6s\nnPspq8ekvkkAzJg8o6NxmFnj6u2nOvF6nyeBCZK2lrQm2SPX08rKTANOSNNHAvf1NwAzMzNrs3r6\nMzMzs9W0/XHEiFgm6TTgbrJX+l4dEXMlnU/2DOU0YCpwjaSXgD+y8ruxZmZmXaFaf9bhsMzMrAd0\n5DthETEdmF4275zc9AfAUe2Oy8zMrBGV+jMzM7P++K8NmpmZmZmZtZEHYWZmZmZmZm3kQZiZmZmZ\nmVkbeRBmZmZmZmbWRm3/O2GtJGkh8GIDq4wGFjahXK3llZZVK18+fyPgD3XE12z17pdW1FPPOs1u\nj2rzK80bam3iY6QyHyPV57W6TcZFxNgW1t9Skt4GXqmwaDDt2ux2GOjvdxFyqHfdduRRhBzqjWWg\n6zZyLuvWHGqV6Za2KEIO9a7bjDzq66ciojAf4MpWlO+vXK3llZZVK18+n+yV/V2/H5tZTz3rNLs9\nGmmnodYmPka6qz3qXWcoHiO9/hlMuza7HQb6+12EHLopjyLk0Oo8GjmXdWsOvdAWRcih2/KIiMI9\njnh7i8r3V67W8krLqpVvNP5WaVYcA6mnnnWa3R7V5ndLe0Dn2sTHSGU+RuqPxeozmHZtdjsMtL4i\n5FDvuu3Iowg5DLa+VpzLWhHHYNft9rYoQg71rtu2/38U6nHEopE0MyL27HQctpLbpLu4PbqP26Q7\nFKEdipADFCMP59A9ipBHEXKAwedRtDthRXNlpwOw1bhNuovbo/u4TbpDEdqhCDlAMfJwDt2jCHkU\nIQcYZB6+E2ZmZmZmZtZGvhNmZmZmZmbWRh6EmZmZmZmZtZEHYWZmZmZmZm3kQZiZmZmZmVkbeRDW\nwySNlDRT0iGdjmWok/SXkqZIukXS33c6HgNJh0u6StJNkj7T6XiGOknbSJoq6ZZOxzLUFaHvKMI5\ntyjnqF49ttNx8JPUBsd1Op6B6NV9X64Ix8JAzkkehHWApKslvSVpTtn8gyXNl/SSpLPqqOobwM9a\nE+XQ0Yz2iIh5EXEKcDSwXyvjHQqa1Ca3RcTJwCnAMa2Mt+ia1B4LIuKk1kZabEXpO4pwzi3KOapo\nx3aD+RwB3JLa4NC2B1tFIzl0074v12AeHT8WKmkwh4bPSR6EdUYfcHB+hqThwI+AzwE7AMdK2kHS\nTpLuKPt8XNJBwHPAW+0OvoD6GGR7pHUOBe4Eprc3/ELqowltknw7rWcD10fz2sMGro9i9B199P45\nt49inKP6KNax3Ued+QBbAK+mYsvbGGN/+qg/h27WR+N5dFt/3UcDOTR6ThrRzEitPhHxoKTxZbP3\nAl6KiAUAkm4EDouI7wGrPTIiaRIwkuwXYKmk6RGxopVxF1Uz2iPVMw2YJulO4PrWRVx8TTpGBFwI\n/Coinm5txMXWrGPEBqcofUcRzrlFOUcV7dhuJB/gNbKB2Cy66KZEgzk8197o6tdIHpLm0YX9daNt\n0eg5yYOw7rE5K6/IQHZy2Lta4Yj4FoCkycAfPABruobaI/3H5ghgLXwnrFUaahPgdODTwGhJ20bE\nlFYGNwQ1eoyMAf4V2E3S2ek/dDZ4Rek7inDOLco5qmjHdrV8LgOukPQF4PZOBNaAijn0wL4vV60t\nuvVYqKRaW0yiwXOSB2E9LiL6Oh2DQUTMAGZ0OAzLiYjLyDpZ6wIR8X9kz/tbF+j1vqMI59yinKN6\n9diOiPeBEzsdx2D06r4vV4RjYSDnpK65/Wq8DmyZ+3mLNM86w+3Rfdwm3cXt0R2K0g5FyKMIOUBx\n8igpQj5FyAGKkUfTcvAgrHs8CUyQtLWkNYEvA9M6HNNQ5vboPm6T7uL26A5FaYci5FGEHKA4eZQU\nIZ8i5ADFyKNpOXgQ1gGSbgAeAz4h6TVJJ0XEMuA04G5gHvCziJjbyTiHCrdH93GbdBe3R3coSjsU\nIY8i5ADFyaOkCPkUIQcoRh6tzkER0bxozczMzMzMrCbfCTMzMzMzM2sjD8LMzMzMzMzayIMwMzMz\nMzOzNvIgzMzMzMzMrI08CDMzMzMzM2sjD8LMzMzMzMzayIMw63mSDpcUkrbvdCzVSPpmp2NoFmNo\nIXUAAAeASURBVEmnSDq+gfLjJc1poLwk3SdpvRplbpQ0od46zcw6rYh9laQZkvZs5TYarPtQSWc1\nuM7iBsvfImmbGssvlfSpRuq0ocmDMCuCY4GH078tJWnEAFctxCBM0oiImBIRP23hZj4PzI6IRTXK\n/Bj45xbGYGbWbO6rWriN1D9Ni4gLW1F/2saOwPCIWFCj2OVAQwNBG5o8CLOeJmld4JPAScCXc/Mn\nSXpQ0p2S5kuaImlYWrZY0r9LmivpXklj0/yTJT0pabakWyV9LM3vS+s/DlwsaaSkqyU9Iek3kg5L\n5SZL+rmkuyS9KOniNP9CYB1JsyRdVyGHYyU9K2mOpIty86vF+RdpG09Jeqh0VTXFeZmkRyUtkHRk\nhW2Nl/S8pOskzUtX9Ep57iHpgVTv3ZI2TfNnSPqhpJnAGZLOk3RmWrarpF9LekbSLyRtkKtrtqTZ\nwKm57e+Y9tustE6lu1nHAb9M5UemNpyd9s8xqcxDwKcH8R8NM7O26fW+StLwVP+c1F99Pbf4qLSN\nFyTtn9vGFbn170i59tcfDqTfy+f80XZTf3df6mvulbRVmr+1pMdSHhfktr1paotZKc/9KzRlvn+q\nuE8i4hVgjKRNav5SmEWEP/707IfshDg1TT8K7JGmJwEfANsAw4F7gCPTsgCOS9PnAFek6TG5ei8A\nTk/TfcAdZFe/AP4N+GqaXh94ARgJTAYWAKOBtYFXgC1TucVV4t8M+C0wFhgB3Acc3k+c9wIT0vTe\nwH25OG8mu7iyA/BShe2NT/Xul36+GjgTWCPtv7Fp/jHA1Wl6BvCfuTrOA85M088AB6bp84Ef5uYf\nkKYvAeak6ctzOa0JrFMhxleAUWn6S8BVuWWjc9P3lNrbH3/88aebPwXoq/YA7sn9vH76dwbw/TT9\neeB/0vTkUrzp5zuASbW20U/Otfq9fM6Tc+vcDpyQpv8WuC1NTwOOT9OnluIB/hH4VpoeXuqHyuJ7\nANip1j5J01cBX+r0750/3f3xnTDrdccCN6bpG1n1MY8nImJBRCwHbiC7CgmwArgpTV+bmz8xXWF7\nlqzD3DFX182pHoDPAGdJmkXWAa0NbJWW3RsRCyPiA+A5YFw/8f8VMCMi3o6IZcB1wAHV4kxXU/cF\nbk7b/y9g01x9t0XEioh4Dti4yjZfjYhHyvL/BDARuCfV+21gi9w6N1FG0miyTueBNOsnwAGS1k/z\nH0zzr8mt9hjwTUnfAMZFxNIK8W0YEe+l6WeBgyRdJGn/iFiYK/cW2SDWzKzb9XpftQDYRtLlkg4G\n8o+L/zz9+xTZhb7BGEi/l885bx/g+jR9DSv3335k+7k0v+RJ4ERJ55ENtN5jdZsCb6fpWvvE/ZP1\ny4/yWM+StCHwKWAnSUF25Sok/VMqEmWrlP9cPr+P7C7UbEmTya5Qlryf3zTZFa75ZfHsDXyYm7Wc\n5h5jQXaX692I2LVKmfz2VaOe8p8FzI2Ifaqs836V+Q2JiOvTYyNfAKZL+ruIuK+s2DJJw9Jg8gVJ\nu5NdYb1A0r0RcX4qtzZQaRBnZtY1itBXRcQ7knYBPgucAhxNdneJXF35epax6lde1q5Vf61N03+/\nN5D+abV9HBEPSjqArH/qk/SDWP37z0tJufSzT9w/Wb98J8x62ZHANRExLiLGR8SWwMtA6TnuvdKz\n38PIHq97OM0fltYF+Epu/ijgd5LWILu6WM3dwOmSBCBptzpi/XOqt9wTwIGSNpI0nOzqaOnO0mpx\nRvayipclHZW2rdQJNGIrSaXBVin/+cDY0nxJayj7AnJV6a7UO7nn5v8GeCAi3gXelVS66vjRvlT2\nRqkFEXEZ2XP1O1eoej7ZozlI2gxYEhHXkj3WuHuu3HZA3W9dNDPrkJ7vqyRtBAyLiFvJnpTYfbU1\nV/W/wK6ShknaEtirv20kzez3HmXl9++OI/suMcAjZfNJ9Y4Dfh8RVwH/TeUc5wHbpvK19on7J+uX\nB2HWy44FflE271ZWPubxJHAF2Unz5VzZ98k6vTlkVydLd1a+AzxOdoJ+vsZ2/4XsO1TPSJqbfu7P\nlan8Kl9Ejojfkb1F6X5gNvBURPyynziPA05S9tKLucBhdWw/bz5wqqR5wAbAjyPiT2Qd30Wp3llk\nj3/05wTgEknPALvmYjwR+FF6dCR/R+5oYE6aPxGo9JbFO1l5ZXcn4IlU/lyy7z8gaWNgaUS8WV/K\nZmYd0/N9FbA5MCOdi68Fzu6nnkdSLs8BlwFP17ENaG6/dzrZ44XPkF0kPCPNP4OsD3w25VUyCZgt\n6Tdkg+H/qFBnvn+quE/SAHNbYGYdMdoQpohqd73NepekSWQvjzikwrLFEbFu+6NqTCvilDQeuCMi\nJjaz3mZS9lbGn0bEQTXKfB1YFBFT2xeZmVlzFaGvaqZuz1nSOmQXTfer8j00JH0R2D0ivtPW4Kzn\n+E6YmXWVdHfwKtX4Y83Au2QvAjEzM2uL9DKpc1n1Dlq5EcD32xOR9TLfCTMzMzMzM2sj3wkzMzMz\nMzNrIw/CzMzMzMzM2siDMDMzMzMzszbyIMzMzMzMzKyNPAgzMzMzMzNro/8HEBFLIMEBmyEAAAAA\nSUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAQxCAYAAADcAUeKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNXXwPHvSQg9IQm9hiIgIkXBgg0QBVSK4k9ABHmx\nYMOGDVCaWMCCXRREpasoFjq2gIqIHURQBAk1CCQxgVACue8fdxM3YTfZJNtzPs+zT7IzszNnN7t7\ncufee0aMMSillFJKKaWU8o6IQAeglFJKKaWUUuFEG1lKKaWUUkop5UXayFJKKaWUUkopL9JGllJK\nKaWUUkp5kTaylFJKKaWUUsqLtJGllFJKKaWUUl6kjSylCiAiGSLSMNBxKKWUUgXRfKVUcNFGlgoL\nIpItIo1LuI8vReQG52XGmGhjzLYSBedFIpIgIl+IyCER+V1EuhSy/SQR2S8i+0RkYr51j4rIOhHJ\nEpExLh47QES2ORL3AhGJdVpXVkTeFJF/RWS3iNyb77FtReQHR5zfi0ibfOvvFZE9IpImIm+ISFTx\nXpGTYu7oeC98kG95a8fyL7xxHKWUKi7NV26313yF5qtwoo0sFS4KvKq2iET6KxAfmwf8CMQDjwDv\ni0hVVxuKyC1AL6AV0BroKSJDnTbZDDwALHLx2JbAa8B1QE3gMDDFaZPxQBOgPnAx8KCIdHU8Ngr4\nCJgJxDp+fiwiZRzruwEPAp2BBMd+xhfxdSjIPqCDiMQ5LRsM/OHFYyilVHFpvspH85Xmq7BkjNGb\n3lzegHrAB8A/2C+CFx3LBfuFuQ1IBt4GYhzrEoBs4HogyfHYUU77jABGAX8B/wLfA3Ud604FVgAH\ngI3ANU6Pewt4GfsFmw58CzRyrFvpOOZBx7prgI7ADuyX4x5gBvYLdKEjpgOO3+s49vEYcBzIdOwj\n57lmA40dv8dgv4D/Af4GHnaKbzDwFfA0kAJsAbp7+e/RFJs8KjktWwkMdbP9N8BNTveHAKtdbDcL\nGJNv2ePAbKf7jYGjOccGdgFdnNaPB+Y6fu8K7Mi3vySgq+P3OcBjTus6A3sKeN7ZwG3An473zKOO\neL4B0oB3gDKObXP+7q8Ctzu953Zi37NfBPpzpTe96c37NzRf5XxXar7SfKW3ILlpT5ZySUQisAni\nb6ABUBf75QD2y+967BdEYyAam1CcnY/9kr0EGCMizR3L7wP6Yb/QqwA3AJkiUhGbsGYD1YD+wKsi\ncqrTPvsBY7HJZwv2ixVjTEfH+lbGmBhjzHzH/VqObRsAQ7FfXm9iz2Y1wCaoVxz7eASbdIY59nGX\nYx/OZxxfdjzXhkAn4HoRGeK0/mxssq2KTV7TcUNEFopIqoikuPj5iZuHtQS2GmMOOS371bHc3fa/\nerhtgY81xmzFJq1mjmEYtYF1bvZ9Wr51+de7iqtGvjN5+XUFzgDOxf4j8jowAPu3bAVc67Stwf5z\ncb3jfjdgPfafF6VUmNF8pfkKzVcqCGkjS7lzNvaL6UFjzBFjzDFjzGrHugHAZGNMkjEmExgJ9Hck\nOrBfGuMcj1mH/VLKGeN8I/aM2l8Axpj1xphUoAfwtzFmprF+xZ6VvMYppg+NMT8aY7KxZ5fa5otZ\n8t0/AYw1xmQZY44aY1KMMR86fj8EPAlcVMjrIJCbxPsBI4wxmcaYJOBZYJDTtknGmDeNMQZ7JrKW\niNRwtVNjTE9jTJwxJt7Fz15uYqmMPTPmLB2bSD3ZPt2xzBMFHasy9m+cf985cRQWp6u4BPfPA2CS\nMeaQMWYj8BuwwvH+ywCWYhNaLmPMGiBORJphk9fMAvatlAptmq+c9qn5Ks+xNF+pgNFGlnKnPvZL\nONvFujrY7vQcSUAZ7FjoHHudfs/kvy/L+sBWF/tMAM51nBlLEZFUbHJ03meym326s88Yk5VzR0Qq\niMjrjsmxadihC7Eikj/ZuVIN+xy3Oy1Lwp4xPSk+Y8xh7Bexp0nCEwexQ0CcVQEyPNy+imNZSY+V\ns4/8+86Jo7A4XcVlcP88wA55yXGYvO+vw7h+nWcBw7BncT8sYN9KqdCm+SovzVear1QQ0EaWcmcH\n0MDpbJ+z3dgkkyMByCLvF0lB+23iZnmi48xYzlmyGGPMsKIG7iT/5OL7sENCzjLGxPLfWUFxs72z\n/djnmP957ypOYCKyxFEFKd3FbbGbh20AGotIJadlbRzL3W3vXCWpbQHbFvhYEWkCRAF/GmPSsEMZ\nnPftHMcG7MRlZ62xZ/TcxbXXcYbYm2YDtwOLjTFHvLxvpVTw0HyVl+YrzVcqCGgjS7mzFvvFNFFE\nKopIORE5z7FuHnCviDQUkcrYsebvOJ1FLOhM2xvABBE5BUBEWjnGNi/Cjp8eKCJlRCRKRNo7jY0v\nTDJ2vH1BorFnkdJFJB4Yl2/9Xnf7cDy394DHRaSyiCQA92LPPhWZMeZyY8vtxri4XeHmMZuBX4Cx\njr9HH+B07DAVV2YCw0WkjojUBYZjJ2QD4Hidy2O/B6Ic+8z5TpiDre50viNJPgp84DS+fhbwiIjE\nikgL4GanfScCJ0TkTrGlc+/CTgb+0imuG0WkheNv/4hzXN5ibCnjixz7V0qFL81XTjRfab5SwUEb\nWcolx5d0T+yZtO3YM3d9HavfxH5prcJO6M0E7nJ+eP7dOf0+Gfvlv0JE/sUmsQrGmIPYyaL9sWce\ndwMTgXIehjwOmOkYuvE/N9s8D1TEnuVbDSzJt/4F4BoROSAiz7uI/S7sc92Kfe6zjTEFfdkWWKa3\nmPoDZwGp2H8WrjbGHAAQkQtEJD334Ma8jq1ItR47z+ATY8w0p31Nwz6f/tgKWpnAQMdjfwduBeZi\n/yGoANzh9Nix2NchCfgCmGiM+dTx2CzgSmwFq1TsGPPexpjjjvXLgaewSexv7HtoXAHPuaD3U4GM\nMauNMcmFb6mUClWarzRfoflKBSGxcx59tHORetizADWxZwamGmNeEpGx2DMJOeNWRxljlvksEKWU\nUsoNzVVKKaW8zdeNrFpALWPML45u+h+B3tiqNxnGmMk+O7hSSinlAc1VSimlvK2ML3fu6PZMdvx+\nUEQ28l91G08q5CillFI+pblKKaWUt/ltTpaINMRWZfnOsWiYiPwiIm+ISBV/xaGUUkq5o7lKKaWU\nN/ilkeUYfvE+cLdjwuirQGNjTFvs2UMdiqGUUiqgNFcppZTyFp/OyQJbdhNb7nSpMeYFF+sTgIXG\nmPzXKUBEfBucUkqpgDDGBNUwPM1VSiml8itJrvJHT9abwO/OScsxyThHH/676NtJjDF+u40dO9av\n+/Bk28K2cbfe0+WutvPG6+DP172oj/f36+7JMn+/5qH4uhd1XTC+7v7+jvHl616Sz0CQCliu8tdn\n0RufoWB7XqH2nIwx0LHw90uoPa+Svgd99b+Ivgf987cKledV1L9VSfm08IWInA9cB6wXkZ+x1wsY\nBQwQkbbYUrnbgFt8GYenOnXq5Nd9eLJtYdu4W+/pcm8855IqaQxFfby/X3dPl/lbqL3uRV0XjK+7\nv79jPN2+OK97ST8DwSTQucpfn8Xifr6Kyx/PK9SeEwANS3acYHxeJX0P+uo7Qt+DxX+8/q28oCSt\nRl/fbHjK38aOHRvoEEodfc0DQ1/3wHB8twc8x3jrFq65Khw/H8HwnBjn/fdLMDwvbwvH52SMPq9Q\nUtJc5bfqgip0BPtZ53Ckr3lg6OuulHvh+PkIx+cE4fm8wvE5gT6v0sTnhS9KQkRMMMenlFKq6EQE\nE2SFL0pCc5UqChkvmLH6flEq2JU0V/l0TpZSSimllAp/DRs2JCkpKdBhKFVkCQkJbNu2zev71UaW\nUkoppZQqkaSkJK9UZFPK30R8M7BC52QppZRSSimllBdpI0sppZRSSimlvEgbWUoppZRSSinlRdrI\nUkoppZRSpVJSUhIRERFkZ2eXeF+NGjXiiy++8GjbGTNmcOGFF+bej46O9lrxhSeffJKhQ4cC3n1+\nADt27CAmJkbn33lAG1lKKaWUUipsFdb48VXhg8I4HzcjI4OGDRsWuP3KlSupX79+ofsdOXIkU6dO\ndXmcosr/2tWvX5/09PSAvWahRBtZSimllFJKBTljTKGNmxMnTvgpGlUYbWQppZRSSqlSITs7m/vv\nv5/q1atzyimnsHjx4jzr09PTuemmm6hTpw7169dn9OjRuUPjtm7dSpcuXahWrRo1atRg4MCBpKen\ne3TclJQUevXqRZUqVTj33HPZsmVLnvURERFs3boVgCVLltCyZUtiYmKoX78+kydPJjMzk8svv5zd\nu3cTHR1NTEwMycnJjB8/nmuuuYZBgwYRGxvLjBkzGD9+PIMGDcrdtzGG6dOnU7duXerWrcuzzz6b\nu27IkCGMGTMm975zb9n111/P9u3b6dmzJzExMTzzzDMnDT/cs2cPvXv3pmrVqjRr1ow33ngjd1/j\nx4+nX79+DB48mJiYGFq1asVPP/3k0esVDrSRpZRSSimlSoWpU6eyZMkSfv31V3744Qfef//9POsH\nDx5M2bJl2bp1Kz///DOffvppbsPBGMOoUaNITk5m48aN7Ny5k3Hjxnl03Ntvv52KFSuyd+9epk+f\nzptvvplnvXMP1U033cS0adNIT0/nt99+4+KLL6ZixYosXbqUOnXqkJGRQXp6OrVq1QLgk08+oW/f\nvqSlpTFgwICT9geQmJjIli1bWL58OZMmTfJo+OTMmTNp0KABixYtIj09nfvvv/+kfffr148GDRqQ\nnJzM/PnzGTVqFImJibnrFy5cyIABA/j333/p2bMnd9xxh0evVzjQRpZSSimllCoV5s+fzz333EOd\nOnWIjY1l5MiRuev27t3L0qVLee655yhfvjzVqlXjnnvuYd68eQA0adKELl26UKZMGapWrcq9997L\nypUrCz1mdnY2CxYsYMKECZQvX56WLVsyePDgPNs4F5IoW7YsGzZsICMjgypVqtC2bdsC99+hQwd6\n9uwJQPny5V1uM27cOMqXL8/pp5/OkCFDcp+TJ9wVudixYwfffvstkyZNIioqijZt2nDTTTcxc+bM\n3G0uuOACunXrhogwaNAg1q1b5/FxQ502spRSSimllG+NGwciJ9/c9QS52t7DXqOC7N69O0/xiISE\nhNzft2/fTlZWFrVr1yY+Pp64uDhuvfVW9u/fD8A///zDtddeS7169YiNjWXgwIG56wqyb98+Tpw4\nQb169VweN78PPviAxYsXk5CQQOfOnVmzZk2B+y+sGIaInHTs3bt3Fxp3Yfbs2UN8fDwVK1bMs+9d\nu3bl3s/pbQOoWLEiR44c8Vqlw2CnjSyllFJKKeVb48aBMSffCmpkebptEdSuXZsdO3bk3k9KSsr9\nvX79+pQvX54DBw6QkpJCamoqaWlpub0vo0aNIiIigg0bNpCWlsbs2bM9KmVevXp1ypQpk+e427dv\nd7t9u3bt+Oijj9i3bx+9e/emb9++gPsqgZ5U+st/7Dp16gBQqVIlMjMzc9ft2bPH433XqVOHlJQU\nDh06lGffdevWLTSe0kAbWUoppZRSqlTo27cvL774Irt27SI1NZVJkyblrqtVqxZdu3bl3nvvJSMj\nA2MMW7duZdWqVYAts165cmWio6PZtWsXTz/9tEfHjIiIoE+fPowbN47Dhw/z+++/M2PGDJfbZmVl\nMXfuXNLT04mMjCQ6OprIyEgAatasyYEDBzwutpHDGMOECRM4fPgwGzZs4K233qJ///4AtG3bliVL\nlpCamkpycjIvvPBCnsfWqlUrtyCH8/4A6tWrx3nnncfIkSM5evQo69atY/r06XmKbriKpbTQRpZS\nSimllApbzr0xN998M926daNNmza0b9+eq6++Os+2M2fO5NixY5x22mnEx8dzzTXXkJycDMDYsWP5\n8ccfiY2NpWfPnic9tqBen5deeomMjAxq167NDTfcwA033OD2sbNmzaJRo0bExsYydepU5syZA0Dz\n5s259tprady4MfHx8blxefL8O3bsyCmnnMKll17Kgw8+SJcuXQAYNGgQrVu3pmHDhnTv3j238ZVj\nxIgRTJgwgfj4eCZPnnxSrPPmzePvv/+mTp06XH311UyYMIHOnTsXGEtpIcHcohQRE8zxKaWUKjoR\nwRgTNplWc5UqChkvmLHh935xfK4DHYZSRebuvVvSXKU9WUoppVQIiI/PWwMgPj7QESmllHKn0EaW\niPQUEW2MKaWUClqlIVelpuatAZCaGuiIlFJKueNJQuoHbBaRp0TkVF8HpJRSShWD5iqllFJBo9BG\nljFmIHAGsAV4W0S+FZGhIhLt8+iUUkopD2iuUkopFUw8GlphjEkH3gfeAWoDVwE/icidPoxNKaWU\n8pjmKqWUUsHCkzlZvUXkQyARiALONsZcBrQB7vNteEoppVThNFcppZQKJmU82KYP8JwxZpXzQmNM\npojc6JuwlFJKqSLRXKWUUipoeDJcMDl/0hKRSQDGmM99EpVSSilVNJqrlFJKBQ1PGlmXulh2mbcD\nUUoppUpAc5VSqlSKiIhg69atHm07fvx4Bg0aBMCOHTuIiYnx2kWkb7vtNh5//HEAVq5cSf369b2y\nX4Cvv/6aFi1aeG1//uC2kSUit4nIeuBUEVnndPsbWOe/EJVSSinXNFcppTwxd+5czjrrLKKjo6lb\nty5XXHEF33zzTaDDYsaMGVx44YUl2oeIFGv7+vXrk56eXujjPY1xypQpPPzww8WOy1n+huMFF1zA\nxo0bi72/QChoTtZcYCnwJDDCaXmGMSbFp1EppZRSnim1uSouDvL/DxMXBylh/ayVKrrJkyfz1FNP\n8frrr9O1a1fKli3L8uXLWbhwIeeff36R9nXixAkiIyMLXeYpY0yJGiM5+/AlT2LMzs4mIsJ714Mv\n6WsSDAp6NYwxZhtwB5DhdENE4n0fmlJKKVWoUpurUlLAmLy31NRAR6VUcElPT2fs2LG8+uqr9O7d\nmwoVKhAZGcnll1/OxIkTATh27Bj33HMPdevWpV69etx7771kZWUB/w17e+qpp6hduzY33HCDy2UA\nixYt4owzziAuLo4LLriA9evX58axc+dOrr76amrUqEH16tW566672LRpE7fddhvffvst0dHRxMfH\n58Zz//33k5CQQO3atbn99ts5evRo7r6efvpp6tSpQ7169XjrrbcKbJBs27aNTp06UaVKFbp168b+\n/ftz1yUlJREREUF2djYAb7/9Nk2aNCEmJoYmTZowb948tzEOGTKE22+/nSuuuILo6GgSExMZMmQI\nY8aMyd2/MYYnn3yS6tWr07hxY+bOnZu7rnPnzrz55pu59517yzp27IgxhtatWxMTE8P8+fNPGn64\nadMmOnfuTFxcHK1atWLhwoW564YMGcKwYcPo0aMHMTExdOjQgb///rvgN4oPFNTIynklfgR+cPz8\n0em+UkopFWiaq5RSbn377bccPXqUK6+80u02jz32GGvXrmXdunX8+uuvrF27lsceeyx3fXJyMmlp\naWzfvp2pU6e6XPbzzz9z4403Mm3aNFJSUrjlllvo1asXWVlZZGdn06NHDxo1asT27dvZtWsX/fv3\n59RTT+W1116jQ4cOZGRkkOLohn7ooYf466+/WLduHX/99Re7du3i0UcfBWDZsmVMnjyZzz//nM2b\nN/PZZ58V+PwHDBjAWWedxf79+3nkkUeYMWNGnvU5DbTMzEzuvvtuli9fTnp6OqtXr6Zt27ZuYwSY\nN28eo0ePJiMjw2WPYHJyMikpKezevZu3336boUOHsnnzZrex5sSycuVKANavX096ejrXXHNNnvXH\njx+nZ8+edO/enX379vHiiy9y3XXX5dn3u+++y/jx40lLS6NJkyZ5hjH6i9tGljGmh+NnI2NMY8fP\nnFtj/4WolFJKuaa5SilVkAMHDlCtWrUCh7LNnTuXsWPHUrVqVapWrcrYsWOZNWtW7vrIyEjGjx9P\nVFQU5cqVc7ls2rRp3HrrrbRv3x4RYdCgQZQrV441a9awdu1a9uzZw1NPPUX58uUpW7Ys5513ntt4\npk2bxnPPPUeVKlWoVKkSI0aMYN68eQDMnz+fIUOG0KJFCypUqMC4cePc7mfHjh388MMPPProo0RF\nRXHhhRfSs2dPt9tHRkayfv16jhw5Qs2aNQstNNG7d2/OPfdcgNzXxZmIMGHCBKKiorjooou44oor\neO+99wrcpzN3wyC//fZbDh06xEMPPUSZMmXo3LkzPXr0yH2NAK666iratWtHREQE1113Hb/88ovH\nx/UWTy5GfL6IVHL8PlBEJotIA9+HppRSSnlGc5VSwU3EO7eiqlq1Kvv3788dEufK7t27adDgv6+L\nhIQEdu/enXu/evXqREVF5XlM/mVJSUk8++yzxMfHEx8fT1xcHDt37mT37t3s2LGDhIQEj+Ys7du3\nj8zMTNq1a5e7r8suu4wDBw7kxuo8bC4hIcFtY2T37t3ExcVRoUKFPNu7UrFiRd59912mTJlC7dq1\n6dmzJ3/88UeBsRZWPTAuLo7y5cvnObbz61pce/bsOenYCQkJ7Nq1K/d+rVq1cn+vWLEiBw8eLPFx\ni8qTGWpTgEwRaQPcB2wBZhX8EEtE6onIFyKyQUTWi8hdjuVxIrJCRP4QkeUiUqXYz0AppZTSXKVU\nUMs/f7C4t6Lq0KED5cqV46OPPnK7Td26dUlKSsq9n5SURJ06dXLvu5rzlH9Z/fr1efjhh0lJSSEl\nJYXU1FQOHjxIv379qF+/Ptu3b3fZ0Mu/n2rVqlGxYkU2bNiQu6+0tDT+/fdfAGrXrs2OHTvyxOpu\nTlbt2rVJTU3l8OHDucu2b9/u9nW49NJLWbFiBcnJyTRv3pyhQ4e6ff4FLc/h6tg5r2ulSpXIzMzM\nXZecnFzgvpzVqVMnz2uQs++6det6vA9/8KSRddzYJnJv4GVjzCtAtIf7Pw4MN8a0BDoAd4jIqdgK\nUJ8ZY5oDXwAjix66UkHk2WfhgQfg7rth5Eh4+mmYORMcX4pKKZ/TXKWUOklMTAzjx4/njjvu4OOP\nP+bw4cMcP36cpUuXMmKELUjav39/HnvsMfbv38/+/fuZMGFC7rWkPHXzzTfz2muvsXbtWgAOHTrE\nkiVLOHToEGeffTa1a9dmxIgRZGZmcvToUVavXg1AzZo12blzZ26hDRHh5ptv5p577mHfvn0A7Nq1\nixUrVgDQt29f3n77bTZu3EhmZmbuXC1XGjRoQPv27Rk7dixZWVl8/fXXeQpEwH9D8v755x8++eQT\nMjMziYqKonLlyrk9b/lj9JQxJvfYX331FYsXL6Zv374AtG3blgULFnD48GH++usvpk+fnuextWrV\ncnvtr3POOYeKFSvy1FNPcfz4cRITE1m0aBHXXnttkeLzNU8aWRkiMhIYCCwWkQggqpDHAGCMSTbG\n/OL4/SCwEaiHTYI5M+9mAO5nIyoVDI4fh1WrwPGFd5IqVaBGDWjUCKKjYe9eWLYMnM7gKKV8SnOV\nUsql4cOHM3nyZB577DFq1KhBgwYNePXVV3OLYTzyyCO0b9+e1q1b06ZNG9q3b1/kQgnt2rVj2rRp\nDBs2jPj4eJo1a5ZbZCIiIoKFCxeyefNmGjRoQP369XPnJl188cW0bNmSWrVqUaNGDQAmTpzIKaec\nwrnnnktsbCxdu3blzz//BKB79+7cc889XHzxxTRr1owuXboUGNfcuXNZs2YNVatWZcKECQwePDjP\n+pzeqOzsbCZPnkzdunWpVq0aq1atYsqUKW5j9ETt2rWJi4ujTp06DBo0iNdff52mTZsCcO+99xIV\nFUWtWrUYMmQIAwcOzPPYcePGcf311xMfH8/777+fZ11UVBQLFy5kyZIlVKtWjWHDhjFr1qzcfQdL\n+XcprLa+iNQCBgDfG2O+coxx72SMmVmkA4k0BBKB04Edxpg4p3UpxpiTSu2KiPF17X+l3DIGvv8e\nZs+Gd9+FevXg9dehffuS7ffIEdvTNXQo1KzpnViVCiEigjHGq1mwNOQqkcKHS3myjQosGS+YseH3\nR3J8rgMdhlJF5u69W9JcVWhPluMM32RjzFeO+9uLkbQqA+8DdzvOEuZ/JvqpVMHlq6+gbVu47jqo\nVg2++QZ+/LHkDSyAzEzYswdatIBhw8BpoqZSqng0VymllAomZQrbQET6AJOAGoA4bsYYE+PJAUSk\nDDZpzTLGfOxYvFdEahpj9jrOPv7j7vHOpSk7depEp06dPDmsUiVTrRpMmgRdu4IXr2AOQHw8vPoq\njBlj53K1bg333w/Dh4OLEqhKhbrExEQSExN9egzNVUoppUrC27nKk+GCfwE9jTEbi3UAkZnAfmPM\ncKdlk4AUY8wkEXkIiDPGjHDxWB0uqMLfli22gXXnnXDJJYGORimf89FwwbDPVTpcMDzocEGlgouv\nhgt60sj6xhhz8mWcPdm5yPnAKmA9dpiFAUYBa4H3gPpAEtDXGJPm4vHayFK+9c03ULcuNGwY6EiU\nKjV81MgK+1yljazwoI0spYKLrxpZhQ4XBH4QkXeBj4CjOQuNMQsKe6Ax5hsg0s1qPWWvAmf/fnjo\nIVsBcO5cnzWy4uMhNdX9+rg4SEnxyaGVKm00VymllAoanjSyYoBMoKvTMgMUmriUCkrz59uhedde\nCxs3QoxHUzaKJTW14LPKhVYZPXgQKlf2akxKhSnNVUoppYJGoY0sY8wQfwSilM8ZAzfdBF9/DZ98\nAmefHeiICpacbGP8+GM444xAR6NUUNNcpZRSKph4Ul2wGTAFqGmMOV1EWgO9jDGP+Tw6pbxJBPr3\nh5degooVPX5YYUP+YmNtdfcDB+zQv3//zdt79emnULUqVK8OdepApLtBSfnVqgXPPQfdu8NHH0GH\nDh7HrFRpo7lKqcBKSEgImovAKlUUCQkJPtmvJ4UvVgIPAK8bY85wLPvNGHO6TyLKe2wtfKF8rijz\npnbuhLVr7TWKf/oJ/voLtm51/9ioKLjoItsA++cfu5/GjaF5c9tJNXIkHDpUSJtv2TK4/nrbo6UN\nLRUGfFT4IuxzlSdFLfJ/n+m8z+ATroUvlAo3/ih8UdEYszbf2YnjxT2gUsGmoHlTR47AZ5/ZKVzL\nl9ttzzkWvQEHAAAgAElEQVTHNpDuvNM2lhISoGxZz46VmWkbZr//Dt99Z5fVqAHnnQe9etlbgwb5\nHtS9O8yYAVdeabvFWrcu9nNVKoxpruLkBpV2LCilVGB40sjaLyJNcFzpXkT+B+zxaVRKldTPP9s5\nTZddVuSHHj8OX3wB8+bZzqPWre1u3nvP/l6SaxNXrGj30bq1Hbn4/PM2zBUr7DSxcePsuptugj59\noHx5xwMvuwxefhkyMop/cKXCm+YqpZRSQcOT4YKNganAeUAq8Dcw0BizzefB6XBBVRwLFsAtt8Dr\nr9uWSiFyhuDs3Wsf8vrr9tJZ114L/frZeVS+kn/4z9GjtrH1xht2OOLtt8Pdd9shQEqFCx8NFwz7\nXFWca2DpdbOCjw4XVCo0+PxixE4HqgREGGP8dipdG1mqSIyBJ5+EKVNsoYh27Tx6mAgMHAiLFkHf\nvjBsGLRq5eNYnY7t7i2+eTNMmgQffmh7tkaMsPMrlAp1vmhkOe07bHOVNrLCgzaylAoNPpuTJSLD\n3R0QwBgzubgHVcrrjhyxLZFNm+xkJw+6n9atg/Hj7e+tWsELLwRXj1HTprZHa8wYePxxOPVUePRR\n+zQ9rlCoVJjTXKWUUioYFTS7JNpxaw/cBtR13G4FzvR9aEoVwcaN9pTtqlWFNrA2b4b//Q+6dYPz\nz7fLHnwwuBpYzho0sEMYly+HOXOgfXs7lBCA/fsDGptSQUBzlVJKqaDjyZysVcAVOUMvRCQaWGyM\nucjnwelwQeVF//4Ljz0Gb70F998Pd91lC1EEcjhNYccuqLx8ZTLYSAvqbVll68IrFSJ8NCcr7HOV\nDhcMDzpcUKnQUNJc5UmdtJrAMaf7xxzLlAoJxsD06bbcemoq/Pabnd9UhOsRB0xOefn8t5074fxu\n0ZzF9+y46i5bMUOp0k1zlVJKqaDhSU/Ww0Bf4EPHoiuBd40xT/o4Nu3JUiW2eTOcdpoty+5OIC/W\nWdhZ5oLWZ2dDZKShZrk0ZvX+gEvfvck3QSrlZT7qyQr7XKU9WeFBe7KUCg0+78kyxjwODMGWxE0F\nhvgjaSnl1mefwTvvFLhJVhZMnAgdOtgG1vHjrnuEjAlcA6uk7PW6hHfmwfXv9+SV+7cGOiSlAkZz\nlVJKqWDiycWIMcb8BPxU6IZK+drixTBkCHzwgdtN/voLrrsOqlSBH36ARo3Cuxpfp6vi+OalZVx+\n/2lsyYannw7v56uUO5qrThYXZ3uz8i8L1ZNLSikVKjyZk6VUcPjwQ7jhBli4EC688KTVOXOvOnSw\n171avhwaNvR/mEWR8w+Qu5un18VqfHt3Vv9RlR9/hOuvL3h4pFKq9EhJObn33l0xHaWUUt6jjSwV\nEm6q/A7JfW7jzH+WIueek6chEh8PBw7A1VfDiy9CYiLceefJZ2+Dkat/gIo7lDG+fiWWLbOP6dcP\njh0r/DFKKaWUUsr7PCl8cScw2xjj93NfWvhCAZCWxu9x53Ha+vfg9NNPWi1iryX1v//BE09AuXIn\nrw/Xt5Gr53b0qG1kZWfbUZVRUYGJTSl3fFT4IuxzVZ7P++HDdmx0uXLQrNnJG2/YYK8bWKGCvcXG\nQrVq0KABUqN62H4nhgItfKFUaChprvJkTlZN4HsR+Ql4E1iuLR/lV7GxtGYdx0/P+3Y1Bl57zf7+\nwgtw5ZUBiC0IlSsH8+dDnz7wf/8Hs2blFMlQKqyFd646cIDBLISBn8H33/NvUhpbal/AP536ktat\nGWlpcPDgf4V+jm+N5vgvCRzPMpzIOkHE0TQiM3cS0TQD6MTTT9vrttepA02bQt0KKUililC+fKCf\nqVJKhYVCe7IARESArtjKTe2B94DpxpgtPg1Oe7KUQ/4em8xMuPVW+OUXSEqC9HT3jw3nSd5ue+my\nsjh8IJPL+lehRQt49dXQGD6pSgdf9GQ59hu2uWrV6xt56db1/NviPH5OrsXhY5E0aSLUqmU7qWJj\noXJl23NdpkzeW0SE7dnOzoYTJ2DMGBg+HHbvhl27YNMmMJmZtD/yNZc13ULPm2rS6NZuUKmST59T\naaU9WUqFBn/0ZGGMMSKSDCQDx4E44H0R+dQY82BxD65UcWzZAlddBW3bwpo1oXFRYb978UUq/PQT\nn3wyh06dbDn7kSMDHZRSvhXOuWrRlha8Tws+mQTt20OtWsU/cTJmDDz77H/3jYHduyuy5ssLWfzG\nKTw2Kp7TRvzCHVfupM+UrkRW87ACj1JKqVyezMm6G7ge2A+8AXxkjMkSkQhgszGmic+C056s0ikp\nCRIS8izK6bFZudLONxo9Gm6/XXtn4uNdVwqryCH+pBn/F72Atzeew7nn2iGVffr4P0al8vPRnKyw\nz1Xeml9a2H6ysuDDV3bz/MTDpMc24KnJUVx+ecmPqyztyVIqNPj8YsRAPNDHGNPNGDPfGJMFYIzJ\nBnoU98BKuTR/Ppx3nsvxf9OnQ9++MHs23HGHNrDAfXXCQ6YSdadPYGzGfdStY/joI7jlFvjxx0BH\nrJTPaK7ykqgo6HtPHb7Z04Qnn47innugbNm8l5eIjw90lEopFdw8aWQtBXJntIhIjIicA2CM2eir\nwFQp9NFHtvb6kiUQE5O7+MQJ+3PiRFss65JLAhRfqBk8mGgyYMEC2rWD11+3xUH27Al0YEr5hOYq\nLxOBnj3t3NesLFvF9aef9FpbSinlCU8aWVOAg073DzqWKeU9ixbZrpbFi6FNm9zFBw/+VzXwu++g\nefMAxReKIiO5j2fhoYfg2DH69IEbb4QBA/5ruCoVRjRX+UjOvNdnnoGuXQ0fPevTOiJKKRUWPGlk\n5Rls7hh64VHBDKU8smIF+3rdwNn/LETat8szJCU62ra/YmN1eEpxfM4lMG1a7sWyRo+GyEgYNy6w\ncSnlA5qrfOyaa2DplCRufSCalvwW6HCUUiqoedLI2ioid4lIlON2N7DV14GpUqR6da40H7LWnJ07\np2jzZmjSxFbBys7WoSkl0rlz7gS2yEiYMwfefBNWrAhwXEp5l+YqP2j/v4Ysn7adfVRnwZN/BDoc\npZQKWp5UF6wBvAhcDBjgc+AeY8w/Pg9OqwuWGs7Vrn74AXr1grFj7QhCVXzuqoglJsK119r5FbVr\n+z0sVcr5qLpg2Ocqf1UX9OQx58vX/Ckt+Pj9LM7rU6vkQZUiWl1QqdBQ0lzl0cWIA0UbWaVHTgJf\ntgwGDYI33oDevQMdVegr6J+pMWNstcFFi7RSo/IvX12MOFBCrZGV/9IPnlywPf+x4+OhU+oHrKIj\nh6jIESqG9YXfvUkbWUqFBp9fjFhEqgM3Aw2dtzfG3FDcgyrlyowZtkbDxx/bKu6q5OLi3DegYmOh\nUSPboL35Zv/GpZS3aa7yXP6GUHFOsqSkAKYPk69cyTs7L+Cr1VC+vFfCU0qpsODJcMHVwFfAj0Bu\nTTJjzAe+DU17ssLS3r3w+ee2xJ0TEVseeNkyaNEiQLGVBs8/b7sKq1ZFBH77DTp1grVrbYNLKX/w\n0XDBsM9V3urJ8mS/nvZ2GQNXXWW/v2fPLnoPWWmkPVlKhQaf92QBFY0xDxX3AErlSkuDbt1OGgf4\nzDP256pVkJAQgLhKk40b7Qv+5JMAtGxpew8HD4Yvv7SFMZQKUZqrvCg11bMGnQi8/TaccQbMmgVX\nXJF3nVJKlVaeVBdcJCKX+zwSFd4OHbLZt2PHPPXDn3gCpk61v2sDyw8eftheldjpdPO999oKjlP0\nikIqtGmuCpDYWFux9JZbtBKsUkrl8KSRdTc2eR0RkXQRyRCRdE92LiLTRWSviKxzWjZWRHaKyE+O\nW/fiBq9CxNGj0KcPNG0Kzz0HIhhj21qzZsHKlYEOsBRp0MD2JL78cu6iyEh7Ka1x42DXrsCFplQJ\nFTtXQenOVzlzN51vcXFF20fnzvarZfhw38SolFKhxqfVBUXkAuAgMNMY09qxbCyQYYyZ7MHjdU5W\nOBg6FPbvh/fegzJlMMZ2qCxcCJ99BjVr+m6ugXJh0ya46CIq7fubQ6ZS7uIxY+wcrQULAhibKhWC\nsbpgSfJVqM/J8paDacc5vU4K02eXo0ufKkEfb6DonCylQkNJc1WhPVliDRSR0Y779UXkbE92boz5\nGnA1eCCokqvysYcegnnzchtYDzwAS5faOUA1awY6uFLo1FPhoovoycI8i0eNgg0bbHVHpUJNSXIV\naL7yhsqxZXi+y0LuvOEgx4657iGLjw90lEop5R+eDBd8FegA5JSDOwi8UsLjDhORX0TkDRGpUsJ9\nqWDXpAmUK4cxcPfd9kK4n38O1aoFOrBSbNYs3qV/nkXly9vpWnfeCRkZAYpLqeLzRa4CzVdF0ntO\nXxKO/MFLD+4gJcX2ZDnfdM6WUqq08KS64DnGmDNF5GcAY0yqiJQtwTFfBR41xhgReQyYDNzobuNx\nTkUSOnXqRKdOnUpwaBUo2dlwxx3w8892iGBsbKAjKuUqVCjwGloxMVp+WXlPYmIiiYmJvj6Mt3MV\nFCFfaa6yJCaaF0Yf4LxxZ3LtA4Y6dbUjUCkVGrydqzy5TtZ3wHnA944EVh1YYYw5w6MDiCQAC3PG\nuHu6zrFe52SFgRMn7LSsP/+ExYvtP/D56dj94LFnD7RqBVlZkF5A2QBthKni8tF1skqUqxz7KFa+\n0jlZ+Zw4wYO1Z5HWpiNTP817Ab6QeQ4+pHOylAoNPp+TBbwIfAjUEJHHga+BJ4pwDMFpTLuI1HJa\n1wf4rQj7UsFu5kw75szhxAkYMgS2brXzsFw1sFRwqV3bzpvr2PHkoT467EcFsZLmKtB85R2RkYx8\nsykfflebTZsCHYxSSgWGR9UFReRUoAs2+XxujNno0c5F5gKdgKrAXmAs0BloC2QD24BbjDF73Txe\ne7JCyccfw6232ooWp55KVhZcf70tLPjxx1CxovuH6tnN4HL0KJx+uq303q2b6230b6aKy1fVBYub\nqxyPLXa+0p4s155+Gr79Nm/F0vzPIT7+5BM24d5Lrj1ZSoWGkuYqT4YLNnC13BizvbgH9ZQ2skLI\nF19A//62u6pdO44dgwEDIDPTJtjy5Qt+eKj98xBWHn8cevWyYwSdLFxoC0P++itERZ38MP2bqeLy\n0XDBsM9VofaZO3wYmjWzV+/o0MEuy/8cXD2nUHueRaWNLKVCgz+GCy4GFjl+fg5sBZYW94AqDK1d\naxtY8+dDu3YcPQrXXAPHjsGHHxbewFJB4LnnTlrUo4e9dvEr3qjPppTvaa4KMhUqwPjxMGLEf42m\n/GXdi3rRY6WUChVFvhixiJwJ3G6Muck3IeU5lvZkBbvsbGjfHh59FHr04MgR6NPHJtd586Csh7W9\nwv3MZVDbvx+aNrUXKc534bKNG+Gii+CPP06+vo3+zVRx+eNixOGYq0LxM3f8OLRoAdOmgacFF0Px\neRaF9mQpFRr80ZOVhzHmJ+Cc4h5QhZmICFi9Gnr0IDPTjjqLiYF33vG8gaUCrFo16NsXpkw5aVWL\nFnD11fDkkwGIS6kS0FwVHMqUgYdHZvPogwcDHYpSSvmVJ3OyhjvdjQDOBKoaY9xMh/ce7ckKHQcP\nQs+eUK8evPWWTaxFEe5nLoPexo3QuTNs23bS+M49e2wRjJ9/tsMHc+jfTBWXj+ZkhX2uCtXPXNYf\nW2l+WgQzFlblwsujC90+fzGMcCuEoT1ZSoUGf/RkRTvdymHHu/cu7gFV+MnIgMsug0aN4O23XTew\n4uPzjsPPf9Nx+QHWooUd9vnVVyetql0bbr8dRo8OQFxKeU5zVZCKat6Yh8/9gkfv3OfR9ikperkI\npVToK/KcLH/SnqwgdPx4nlZUWpptYLVpA6++akcPuhKqZ2BLlRMnIDLS5ar0dFslbPly+7cG/Zuq\n4vPHnCx/0p6swmX99gfN2pRnzvLqnHdJAdfzcCGUn7cr2pOlVGjwRwn3hYDbjYwxvYp78MJoIyvI\nHD1qxwQOGwa9epGSYq+h1KEDvPCCTYTuhFuSLI1eegmWLLFV+kH/pqr4fDRcMOxzVah/5qa2f50F\nB7uybFOjIj0u1J93ftrIUio0+GO44FbgMDDNcTsIbAGeddxUaXD8OFx3na1qccUV7N8PXbrYynOF\nNbBUeLjlFvjzT3tJNKWCkOaqIPd/U85lw+Zy/LzmaKBDUUopn/OkJ+sHY0z7wpb5gvZkBQlj4Kab\nYMcOWLiQf/4tR5cu9jpKTzxhG1j5JyrnF24Tl0uruXNtj9bq1XZoqH48VXH4qCcr7HNVOPToPHvb\nX3yf0ph33vW8uHE4PG9n2pOlVGjwR09WJRFp7HTARkCl4h5QhRhj4P774fffYcEC9qSUo1Mney2s\nnAYW2AaW80Tl/DdtYIWHfv3s/KyleolXFXw0V4WAoU+dwmefR7BlS6AjUUop3/KkkXUvkCgiiSKy\nEvgSuMe3YamgkZoKmzfDkiXsTKtMx44wYACMH69DBMNWZibcfbe90HQ+kZH2utNaaVAFIc1VISA6\n2g49flYHcCqlwpxH1QVFpBxwquPuJmOMXwZU63DB4JGUBBdfbJPjgw+evD7chnOUasbYcu6PPw7d\nu5+0Ojsb2rWDX37Rv7kqHl9VFwz3XBUu37N799qrRmzaBDVqFL69q+HooTwEXYcLKhUafD5cUEQq\nAg8Aw4wxvwINRKRHcQ+oQs/WrdCpE9x5p+sGlgozInDbbbYmvwsREbY3C1x2dikVEJqrQkfNmnbo\n8YsverZ9/utm6bWzlFKhwJPCF+8CPwLXG2NOdySy1caYtj4PTnuy/Kqg4hUVKthRZO6EyxlW5XDo\nEDRoAD//bH/mY4xtbL3zjv1nSami8FHhi7DPVeH0PbtlUxbnnn2CrTvLER1T9LdCKL8W2pOlVGjw\nR+GLJsaYp4AsAGNMJqCzccJQaiqYdesx2QZjYONGqFsXpk6F8uVtUnN3i4sLdPTKqypVgv794a23\nXK4WgcqV7Sbu3hPx8X6OWZV2mqtCSJNmkXSJ+JKp920KdChKKeUTnjSyjolIBRwXeRSRJoBe5CIM\nXcmHcOmlsHcvv/1m52A9/jjcfLPr4RpaPTDM3XwzzJvn9nRxejpccAHMmOH6PaHDeZSfaa4KJRER\nPPSQ8NzMqhw7FuhglFLK+zxpZI0FlgH1RWQO8DmgM3PCzdKlvMatsGQJvyTX4tJL4ZlnYPDgQAem\nAqZtW/j+e7dlJEXgscdspcmsLD/HptTJNFeFmDMevJTTIv9kzpg/Ah2KUkp5XYGNLBERYBPQB/g/\nYB7Q3hiT6PPIlP98+SUMHkxvPub7E2fSrZudkDxgQKADUwEXHV3g6o4doVEjePtt/4SjlCuaq0JU\nZCQP3ZbOUy9X0CI6Sqmw40nhi/XGmFZ+iif/sbXwha+tWQO9esH8+UinjlSvDtOnQ8+egQ5MhYrV\nq22D/M8/oWzZ/5aH8sR05Vs+KnwR9rkqHD9T5ugxzo7eyMhJsfS5N8Hjx4Xya6GFL4JXRoYd6u6i\n3pMqhfxR+OInETmruAdQQa5uXXjnHb7M7gjArFnawFJFc955cOqpbmtkKOUvmqtCkJQry6jX6vPE\nnAYh22hSoev4cVg+cy8vX7yAl2IeZkHcjfzWfjCsWxfo0FQY8KQnaxNwCpAEHMJWazLGmNY+D057\nsryqoBLtYKvFZWT4Lx4VPr77Dq65BjZvhnLl7LJQPtOsfMtHPVlhn6vC9TOVnQ2tWsFzz0HXrp49\nJpRfC+3JCg7Z2fBazbEMTH2RlObnEX3xWcS1qkdE2TLQpQvUr59n+61boUwZ7eUqTUqaq9w2skSk\nkTHmbxFx2X9vjEkq7kE9pY0s73KVlD7+2BaR++gj2yOhlEuffw5Vq9piGG5ccYW93X67vR/K/wQp\n3/JmI6s05apw/kzNng3TpsHKlZ5tH8qvhTaygkfy9zuo1bIqVKxY6LbzZp9g3F0pjHulOtde64fg\nVMD5crjg+46fbxpjkvLfintAFTzmz4ehQ2HJEm1gqUKsX2/LTRZg3Dh44gk4csQ/ISnloLkqDPTv\nDzt2wNdfBzoSVZrUOqu+Rw0sgGvrfcVvZdrwwQNrGDkydBv5yn8KamRFiMgooJmIDM9/81eAynvO\nYQ08+ihgzxredResWAHt2wc4MBX8Bg2CRYsKHG961llw5pn24tVK+ZHmqjBQpgw89BA8+WSgI1Hh\nKHn6YszuPSXbSadORL01jfeO9OTw/EXcdZc2tFTBCmpk9QdOAGWAaBc3FUrWrOETekH79rzxBowY\nYUeAtWkT6MBUSKhaFS67zLbOCzB+PEycCIcP+ykupTRXhY3/+z/45at0fl62N9ChqHBx4gQbez5A\n1tDb2fadF95XV1xBxJLFTP73BrKXf0piYsl3qcKXJ4UvLjPGLPVTPPmPrXOyvMFRpv3yfW/T7fnL\nmTwZPvsMmjYNdGAqpHzxBdxzD/z6q9sLFANcdRVcdBEMH65n+ZRrPip8Efa5KpTnIXlq8sWLWLOt\nFu9tLXiIRSi/Fjonyz9MxkE2t7+WfdsPU2XZu5zesar3dv7115irrkK++MJWbVFhyWeFL4KBNrK8\n4OuvoU8fzJtvEdHzCpo1g08/1eo4qhiys23L/J137NhAN379Fbp3t3Oz0tLc7y4uDlJSfBCnCnq+\naGQFkjayvOfg9hQaNzzBqsUHOfWyRm63C+XXQhtZvpe9cze7zuzB9yfO5Pxfp1CzXpT3D/LZZ3DG\nGXakhwpL/rhOlgpV2dkwciTZs+Zw1/IrAPjqK21gqWKKiIDFi6F1wRWx27SB88+Hhx+2/wS5uxV0\nOQGlVOlUuUE8wy9Zz9hbkgMdigphy254l2WVrqbLlmm+aWABXHKJNrBUgQoq4X6NMWZ+TnlcP8eV\nE4P2ZBWB6+tgZZPTlo6N1X9slX/89pvNP3/9Za+/5koon4lWJePlEu6lJleVls/Mob0HaVrnIIvn\n/MsZ/Zu73CaUXwvtyfK9vXshJgYqVAh0JCqU+bIna6Tj5wfF3bnyr9TUvD0FmZnQo0cEl18Ohw5p\nA0v5z+mnQ8eO8MorgY5ElQKaq8JMpZqVGdXnDx4ZFxnoUFSIqlnT/w2sb76xw+WVylFQT9angAHO\nAr7Kv94Y08u3oWlPVlE5n9n791/o1Qvq1YO334YoH/WWK+XO779D5862NyvaRY23UD4TrUrGyz1Z\npSZXlabPzNEjhuanCrNnwwUXnLw+/8iNUJrjqT1Z4WnGW9m8+JLw3VqhTJlAR6O8wWeFL0SkLHAm\nMAu4Kf96Y4yH12UvPm1kFc0F8jVfZ5/Pvv1C9+5w7rnw0kt2Ko1SgXDdddCyJYwadfK60vQPo8rL\ny42sUpOrSttn5u234c03YeXKAguaAqH12mgjy7vMrt1w7BjSqGFg47juOh5Z148Gw3pxyy0BDUV5\nic+GCxpjjhlj1gDnOZLUj8CPxpiVniYtEZkuIntFZJ3TsjgRWSEif4jIchGpUtzglZPnn2cO17Ht\nxwNceCFcfjm8/LI2sJSPHDwIP/xQ6GZjxsBzz9meVaV8wRu5CjRfBaOBA+13xwc6EFS5c+AAB9p1\nZfmdCwMdCTJ4MKPThvPE2KNkZAQ6GhUMPPkXvKaI/AxsAH4XkR9F5HQP9/8W0C3fshHAZ8aY5sAX\n/DeeXhWHMbaM22uvcS7fcn7vatx2G0yYUPiZP6WKLSkJeveG48cL3Kx5c3sN4xdf9FNcqjQrSa4C\nzVdBp0wZeOEFuP9+vcC5ciE9nZRzuvNuZg9aTrkz0NFA166UP7Mlk+q+wNNPBzoYFQw8aWRNBYYb\nYxKMMQ2A+xzLCmWM+RrIX26hNzDD8fsM4EoPY1X5HT8OQ4fCihV8OmENydThhRfg7rsDHZgKey1b\nQv36sGxZoZuOHm3/USromllKeUGxcxVovgpWnTrZy/I9PVq7w5WTrCz+7dKHT3a1o8OXT1K/fqAD\ncpg0iWu2Pc3y9/4lKyvQwahA86SRVckY82XOHWNMIlCpBMesYYzZ69hXMlCjBPsq3UaPhm3bmHXz\nKgYOiwXgf/8LcEyq9LjxRjthohBNm0LPnvD8836ISZVm3s5VoPkqKDw98QQvPJfN9lnuR3/GxdnR\nG863+Hg/Bqn8xxgyBt7G2vUVqPbOK5zZLoiG7Zx6KpE9r2BNv+e04JjyqJG1VURGi0hDx+0RYKsX\nY9DZn8Vkht/HxI5LeeTxCnzxRaCjUaVOv37w5Zf2giSFGD3azhHUywgoH/J1rgLNVwHRsEkkdw9M\n4fahxzH/prvcJiVFL3hemszedgFbH59Hj95BWOZ/zBjklCaBjkIFAU+KTN4AjAcWYBPMV45lxbVX\nRGoaY/aKSC3gn4I2HjduXO7vnTp1olOnTiU4dPg4cQLuHl+NVatg9WqoWzfQEalSJyYGrrwSZs2y\nkyYK0Lix3XTyZDtfEP478+xOKJVkVgVLTEwkMTHR14fxdq6CIuQrzVW+NWJaE9ovLMecK+cz8Msb\nAx2OCiQRblj1f5QrF+hA3Gjc2N5UyPF2rnJbwt1rBxBpCCw0xrRy3J8EpBhjJonIQ0CcMWaEm8dq\nCXcXDh+2pbHT0uDDD6GKo95VKJWwVWFiwwb7Rjz//EI33bYN2rWDP/+EqlUL37W+n8OXN0u4e1Nx\n85WWcPePH1dmcHmXo/w6ZTW1bi788mfB+nppCXelQoPPSrh7g4jMBVYDzURku4gMASYCl4rIH0AX\nx31VmN9/hxMnSE62E4ErVIClS/9rYCkVEC1betTAAmjY0M4ZfPZZ34akVHFovgp+7TpGc+OgLG66\nJxpz9Figw1E+FB+vc+xU6PN5T1ZJaE+WwwcfwG23se611fS89xRuvNHOcck/1CpYz9oplWP7djjj\nDNi0CapXL3hbfT+Hr2DtySou7cnyn2PH4MLzT9C3fyT33VfwtsH6emlPVuHy/O1SU2HfPqR5s6D8\nexYkLQ369oUlS+wlCVRo8XlPloicdJra1TLlA8bYSSx3383iR76lyy2nMGmSvcCrXgNLhaIGDWy9\nDHmxgk0AACAASURBVL2GiPI2zVWlQ9my8O78SJ56CtasCXQ0yueOHSOtSx+WXTuj8G2DUGyFo8Sm\nbuXDDwMdiQoET4YLvuThMuVNx4/DnXdi3nyL529cz80Tm7BwIfTvH+jAlCqZUaNg+nTYtSvQkagw\no7mqlGjYEKZOtT0Ee/YEOhrlM8aQfu0trPk9hojHHg10NMXz+ee8ltZfL2FSSrntvBSRDsB5QHUR\nGe60KgYIwpqZYWb8eLI2beHOs3/gmwXl+PZbSEgIdFBKFeDAAY8qWtSrBzffbHtkp0/3Q1wqrGmu\nKp1694b16+01+FauhEolvSKaCjqZjzzB9sXr2PPMKoZcFqIf5W7diDt+B/Fbvuf778/irLMCHZDy\np4J6ssoClbENsWinWzqgl7z1sZQbH+ByFrM9uRzffKMNLBXkjIEzz4SNGz3afORIWLwYfv3Vx3Gp\n0kBzVSn18MNw+ulw3QXbODFzTqDDUV7Un3mkPzuVj25YyJBhnreg8xfMCHixjMhI5LbbeKLeq7zy\nSoBjUX5XaOELEUkwxiSJSGUAY8xBv0RG6S18sW4dXHWVvU2c+N9kyfj4gi+uqNcVUgE1YoQd5vrM\nMx5t/sor8NFHsGKF6zmGwTppXZWcLwpflIZcpZ+Jkx07Bj06H6T2T0t4a0YEEX3/a1cH6+ulhS8K\nN0TeIv6Sdjy9vDURju6Awv4HgpP/D8r/mID8n7R/P9mnNKVH879Y9G3V3Oejgl9Jc5UnjazTgVlA\nzvmA/cBgY8xvxT2op0pjI+vdd2HYMHjhBRgwIO+6YE0YSgH2AlgXXgg7d0JUVKGbZ2VBq1bw3HNw\n2WUnr9f3e/jyUSMr7HOVfiZcy8yEyy86SNPfP+b1l7OIuOH/gOB9vbSRVTgR+3etUMG7+y1OQ80r\nBg+2Ce/++728Y+VL/rhO1lRguDEmwRiTANznWKa84cQJmDKFE0eyeOgh2xmwYsXJDSylgl6zZtC8\nOSxa5NHmUVHw1FM25xw/fvL6uLiTr5MSNENAVDDSXFVKVawIixIrs7HFVQy9qzzHn30h0CEpL/B2\nAwts48mYgm+FNcKK5cEH7fVLVKniSSOrkjHmy5w7xphEQKeYekNaGvToQco7K7j8CuGHH+D77/Vz\nqELYjTcWqZpFz55Qo4brhxSUDH2SBFWo01xVilWuDEsTK7L9zN5c8+SZHN6lY+eDVam80HDLltCl\nS6CjUH7mSSNrq4iMFpGGjtsjwFZfBxb2NmyAc85hXexFnLVzAae3LcPy5VCtWqADU6oE/vc/aNrU\n4zE6Ina44NixtjihUiWguaqUi46GRZ9VoPylF9B9QLj/1x66UlPznTjLNlRJ/TvQYSnldZ40sm4A\nqgMLHLfqjmWquObNw3TsxJsXvkWXz0by6KPCs8/q1cBVGKhUybaainC17LZt7fVuRo3yYVyqNNBc\npShbFubMEc48097fvDmw8ajCHXpwPNO42eWwcaVCWaGFL3I3FIkGTDhWbPIrYzh0093csW8ca/+K\n5/334bTTPHtosE7iVaqk0tLs5+Cjj+DsswvfXj8Loc0XhS+c9h22uUrf90VTqZItnpAjWCrwlvbC\nF87v42PTZrDvzvGcefRb9pqaLrcJZHy+MGeOHd7au7fvjqG8w+eFL0SklYj8DPwGbBCRHx1VnFQx\nbNwknPPdi2THxvP99543sJQKZ7GxMGkS3HabrQWjVFFprlL5HToEiYlQsya8cOWXdEr9INAhlUr5\n52DFxdnlJz77ksw7H+T5SxbzDzUL3kkYqXDioF4zq5TwZLjg62jFJq+YPRsuugjuvRdmzNAr1Cvl\nbOBAe3bvtdf+n737Do+iWh84/n0TAiFAIKEmIYTiDwuCKKCgKE0FpdmoglwUsStwsWEhEbx29KpX\nFESlCCpioYpeFWxwEQUpgqJIEkpoARJ6yfn9MZO4CbvJJtnN7G7ez/PMk90pZ96Z7M67Z+bMGacj\nUUFKc5U6TYcOsGwZvLmuLRGc4NjjT+rlwDJW8B6szEzg11853Ls/KWe9x/g5ZzsdYtkxhmtSWpL9\nv1/Zts3pYJS/ae+C/nTqFGRmcuQI3HYbjBsHX35pdcBWjFtWlApexfgxIwITJ0JyMqSmFj5vYd27\nl4ueqpQ7mquUW40awQ+rKvMp19Dhxd5s731H/naEqswtm/o742s8z+Nfd6JSpdOP6blXu0KOCGF9\nbuDxpKnMnOl0MMrftHdBf9m+HS6/nF9GvE3r1pCdDStXQosWTgemVBkZOxbeeKNYi5xzDowaBbfe\nWnj9rKhnnWgX7+WS5irlUdWqcIxIeo4+kwu//BfLL7jDenC68il33bO7qzC1GncNI38anDet4DHd\nyXvn3J3E8+mJu0GD6Jwxk+lTc/Siaogrbu+Cc4BaaI9NhVu4kJzzWzEhcgyXLxrFww9bNzomJenZ\nd1WOtGtXrGdm5br/fquS9OabfohJhTLNVapQMTHwaHIE2w7H0Pm3idRIrKp518dO657dQ4WpYkWo\nV6/s4/OGu5N44MPfa+eeS8W4WM7Z8w2//+6TkFWAKrR3QREJB54xxowuu5DyrT+4ehc8fhzGjGH7\nrKX8I/5zDkbE8O67VlMFKLrHmtJOVyqgnDplffjnzy/2Jdx166BTJ/jpJ2jQoPir1u9KYPN174Ll\nJVfp59p3Nm6Ea66B336zUndERNmtO5R7Fywvn9FSb+dzz3F83e9UnDrZZzEp3/Nr74LGmFNA+5IW\nXu5Mn84n38Rywcn/cUmPGL755u8KljeKus8kZNsoq9AUHg7/+EeJrmade67VQcw//qG9Daqiaa5S\nxXXWWfC//1mvr7gCdu92Np6Ql57udAQ+VeomhQMGUDE60m/xqcBQ5HOyRGQikADMBg7ljjfGfOTf\n0ILrSpYxcNedhs8Ww4wZwsUXnz5PeTnDo1SezZvhoousex8qVSrWoqdOQZcu1g+gRx4p3mr1uxbY\n/PGcrPKQq/Rz7Xsi1vFlxgz4aPYpLjj7iHUDlz/XWc6uZB154TX2PvUGsVtWEVXVm7tUgpN+P0OP\n35+TBUQCe4HOQE976FHSFYYqEehyubB6tfsKllLlUuPG0K0bJWl4Hh5u3cv4yivw3Xd+iE2FGs1V\nqkTGj4fnn4eul59k5llPWCeHlE8cn/khB8c8yRvdPqFyldCtYCnlTpFXspwUTFeyvKFnOZQqvgUL\nrIcU//QT1K7t3TL6XQts/riS5SS9khW8XPfpml8M116exXWH3+Xpec0I79zBP+ssJ1eyTn3xFdk9\n+vOvjl/w1MLzCA93NjZ/0+9n6CmLK1lKKeWY7t2tBxXfcAOcOOF0NEqpUNXiPGHFxuqsOrMfPbqd\n5NAHC5wOKWiZFT9yqFd//nXeB4yfF/oVrNJYtw7WrnU6CuUPWslSSgW8ceOgWjUYMcLpSJRSoaxm\nTfhsRU3iurXgikF1yHz/C6dDCkpfvb+bcUlTGPt1RypWdDqawPbNN/DUU05HofxBmwuWIb2UrFTJ\nHTgAbdvCvfdazQcLo9+1wKbNBUu6Hv1c+5qnfZqTA/ffvIfPV9Tg8y8rEBfnw3WWg+aCp07BoUMQ\nHe10RGWnpN/Po9ffSMvPn+WnjASqVPF9XKrk/N5cUETqisgUEVlkvz9HRG4p6QqVUqokqle3Hrk1\nbhx8/LHT0ahAo7lK+VJYGDz/di0GDKrApZfCtm1ORxRcwsPLVwWrNCJrRDIy/n0WaOvUkONNc8F3\ngMVAvP3+d0Ab7SilimfNmuL3xV5AkyZWReu226wmFkq5eAfNVcqHRGDMGOt406ULZGQ4HZEKJrGx\nXj5La8AArj82k/feK/MQlZ95U8mqZYz5AMgBMMacBPTxoEqp4klMhP/8B/buLVUxF1wAM2daHWEs\nW+aj2FQo0Fyl/OL++2HgQLj8ctizx+loAlB6Oic/+6/TUTiu4AOKwWo+6Drs2+dmwU6diD26jdTP\nf+PAgTINWfmZN5WsQyJSEzAAItIW0I+BUqp4YmKsrgLffbfURV1+OUydCr176zO0VB7NVcpvHnsM\nevWCrs3SObh8ndPhOMLdlZmW1f/iwPkdmP7QeqfDc1xmZv4KVWamlwuGhxPWvx8zus/Kq5yp0OBN\nJWsUMBdoIiLfA9OAe/walVIqNA0bBpMm+eTu/auughkz4NprYenS/NMKnlH0qsmGCnaaq5TfiMCT\nT8L5zU7Qr9MuTqbvcDokvytYqYICV2Y2/cGnWR153vyTjh/f52ywwW7gQM5O/UzvYwsxhfYuKCJh\nQFtgBXAmIMBvxpgyeVqN9i6oVIgxBs49F159FTp18kmRX30F/frBG2/Addd5t4x+F53l694Fy0uu\n0s+t7xV3n544AT3O/pPGWat57a+rkCpRxV9nkPQuWOi++e03si68nNFZj/Fo6nAaNPBiGeV5/xhj\nfbi0v/uA4tfeBY0xOcB/jDEnjTHrjTHryippBSt3l9Nzh5gYp6NTymEiVh/sPuwesHNnWLzYKnbC\nBE3w5ZHmKlVWIiJg9k+N+eFEG164eE7IHHDc/Xbx9JvFHDvO3rbdebbqE3xQfThJSfo7p9REtIIV\ngop8TpaIPA8sAz4q68tKwXglS8/iKFWEkyet/n193Pg8Lc265euyy+Cll6wfQ57o99RZ/nhOVnnI\nVfq59b2S7tP0TUe5qFk279zzM1e+0LV46wzAK1nF2Q85OfDiw7sYcn8datXyb1yhRr/DwaW0ucqb\nSlY2UAU4CRzFaoZhjDF+bznqKXE1bNiQ1NRUf69eKZ9LSkpiy5YtTocRsg4cgBtvhP374YMPID7e\n/Xya6Jzlp0pWwOUq369HP7e+Fhubv8e3mBjvOyxYOmcP/e6sybLlQqNG3q8z2CtZquS82c85OVbL\nwUqVyiYm5Vlpc1WFomYwxlQraeGFEZEtWD0/5QAnjDEXertsamoqwXaFSymwvrDKf6pXh7lz4amn\noHVrq6v3jh2djkqVBX/lKihdvlKBrWCFqjiH6A7X1+KhdOte0O+/h6ji356l1Gn++U/riSejRjkd\niSotb3oXRERiRORCEbksd/DBunOAjsaY8zVhKaV8JSzMeubx1KnQvz/8619wSp+WVC74KVeB5ivl\nwX33wTnnwO23h/CVoN9/dzqC8sMYbg2bwuwZx5yORPlAkZUsERkGfAMsBlLsv8k+WLd4s36llCqJ\nK66AH3+Ezz+3OsfQFsahzY+5CjRfKQ9ErKdSrFwJ06Y5HY2PnTzJvpvu5a82fTh26KTT0YSEgo8X\nOe1xIiKc/eM0zvzrMzZtciRE5UPeJI37gDZAqjGmE3A+sN8H6zbAFyLyo4jc6oPylFLBZvLk0x9y\n5UOJifDll3D11dCmDcya5bdVKef5K1eB5itViCpV4P33YfQ/Db8t2ux0OF4p2Jvgab0CZmWxt30v\n1ry/gW/HLaVSlSLvLlFeKPjAYtf7AXPJjQO5t/ZMzVchwJtK1lFjzFEAEalkjNmI9RyS0rrEGHMB\ncDVwl4i090GZAS01NZWwsDBycnJKXVajRo346quvvJp36tSpXHrppXnvq1Wr5rPOF5566imGDx8O\n+Hb7ANLT04mOjtb770JZRIT1hE8/Cg+HBx+ERYsgJQUGD/br6pRz/JWroBzmK1U8zZvD+P7r6HfN\nUY7uPOB0OEXaty//j/1896alppJ59iXM/6UBJz5ZyE331nAsznLphhtosf0zPp2RHbpNUMsJb05N\nbBWRGsAnWGfy9gGlbnhjjNlh/90tIh8DFwLfFZwvOTk573XHjh3pGOB3sTdq1IgpU6bQuXNnt9Od\n6vjAdb3Z2dlFzr906VIGDRpEenp6ofM9/PDDHtdTXAX3XWJiIllZWSUuTwWBgQPh0Ufh55/hggv8\nuqpWreCnn2D0aOu+rcI+qsXpYUwVbcmSJSxZssTfq/FLrgLv8lWw5Srle8Nfac5/F/3E6Ev/x6u/\nXeHzx1SUhZzjJ9l1fjfeqnAbN6y+j6ZnBt82BL2aNQnvdBlDd3/KgQODqKF13DLj61zlTe+C19ov\nk0Xka6A68FlpVioiUUCYMeagiFQBrsRqQ38a18Slyo4xpsgK06lTpwgPDy+jiFRIqlgRRo6EZ5+F\n997z++qqVIGJE63mg8OHw9ChkJx8+jMgg/C3UUArWOlISXF7uC8Vf+Qq8D5faa5SIjD527M5v2Em\nXe5bwrUvd3I6pGKTiAosePh77rw1Vn/cO0gGDODuGTOgxiCnQylXfJ2rvOn4okHuAPwFrAbqlWqt\nUBf4TkRWAcuBecaYz0tZZsDJyclh9OjR1K5dmzPOOIMFCxbkm56VlcWwYcOIj48nMTGRxx57LK9p\n3ObNm+nSpQu1atWiTp06DBo0yOurOpmZmfTq1Yvq1avTtm1b/vzzz3zTw8LC2LzZaje+cOFCmjVr\nRnR0NImJiUyYMIHDhw9z9dVXs337dqpVq0Z0dDQZGRmkpKTQp08fBg8eTI0aNZg6dSopKSkMdml/\nZYxhypQpJCQkkJCQwAsvvJA3bejQoTz++ON575cuXUpiYiIAN910E2lpafTs2ZPo6Gief/7505of\n7tixg969e1OzZk2aNm3Km2++mVdWSkoK/fr1Y8iQIURHR9O8eXN+/vlnr/aXctjw4fDf/0KBz6k/\n9ewJq1fD2rXQrh1s2FBmq1Z+4qdcBeUkXylLwY4J3A2ndVbgokZ8FO+9dYTbX21G6pK/yiTmgvdX\nFRZfUUTglvu1guW43r3h/vudjkKVkjf3ZC0A5tt/vwQ2A4tKs1JjzF/GmJZ2d7jNjTFPl6a8QDVp\n0iQWLlzIL7/8wsqVK/nwww/zTR8yZAgVK1Zk8+bNrFq1ii+++CKv4mCMYcyYMWRkZLBhwwa2bt3q\n9ZnSO++8k6ioKHbu3MmUKVN466238k13vUI1bNgwJk+eTFZWFuvWraNz585ERUWxaNEi4uPjyc7O\nJisri3r1rN8qc+fOpW/fvuzfv5+BAweeVh5Yl1v//PNPFi9ezDPPPFPovWO5y06bNo0GDRowf/58\nsrKyGD169Gll9+vXjwYNGpCRkcHs2bMZM2ZMvsu68+bNY+DAgRw4cICePXty1113ebW/lMOqVbMq\nWvPnl+lq69a1nql1221w2WXwn/+EcBfM5YPPcxWUn3ylLAU7JnA3uOuswNVFg/6P0b02MWBIBCdO\n+D/mgvdXFRWfCgJVqkCn4LsSqvIrspJlJ5UW9t//w2qLvsz/oQW/2bNnM2LECOLj46lRo0a++5d2\n7tzJokWLePHFF4mMjKRWrVqMGDGCWXZ3Mk2aNKFLly5UqFCBmjVrMnLkSJZ60QtbTk4OH330EePG\njSMyMpJmzZoxZMiQfPO4diRRsWJF1q9fT3Z2NtWrV6dly5aFlt+uXTt69uwJQGRkpNt5kpOTiYyM\n5Nxzz2Xo0KF52+QNT51cpKens2zZMp555hkiIiI477zzGDZsGNNc+sxt3749Xbt2RUQYPHgwa9as\n8Xq9ymHjxlkPnCljIlb97vvvredqde8OGRllHobyAc1VKpD8c87F1GhWn8ceczoSz46+9wm7/zXZ\n6TCUClnFfu6HMeZn4CI/xOI7ycnur/F7uhLkbn4ftK/fvn17XnM4gKSkpLzXaWlpnDhxgri4OGJj\nY4mJieH2229nz549AOzatYsBAwZQv359atSowaBBg/KmFWb37t2cOnWK+vXru11vQXPmzGHBggUk\nJSXRqVMnli9fXmj5rtvjjoictu7t27cXGXdRduzYQWxsLFFRUfnK3rZtW9773KttAFFRURw9etRn\nPR0qP3P43r6mTa2KVuvWUMR5BhUkgiJXqZAVFi5MnQrvvguflfrOwNJzbVJYWY4wOeIOdt80io9+\nP9fp0JQKWd7ckzXKZRgtIjOB0v9q9qfkZPfX+AurZHk7bzHExcXl650v1eVpqImJiURGRrJ3714y\nMzPZt28f+/fvz7v6MmbMGMLCwli/fj379+9nxowZXnVlXrt2bSpUqJBvvWlpaR7nb9WqFZ988gm7\nd++md+/e9O3bF/DcS6A3vQcWXHd8fDwAVapU4fDhw3nTduzY4XXZ8fHxZGZmcujQoXxlJyQkFBmP\nUt6IiIAnnoCPPrLe33oruHzcVIALylylQlrt2jBjhtXBjg/ONZZKbpPCU6vXkl63DTFhB/j+lVUM\nf7uds4GpIr30knXbsgo+3lzJquYyVMJq797bn0GFir59+/Lyyy+zbds29u3bxzPPPJM3rV69elx5\n5ZWMHDmS7OxsjDFs3ryZb775BrC6Wa9atSrVqlVj27ZtPPfcc16tMywsjOuuu47k5GSOHDnCr7/+\nytSpU93Oe+LECWbOnElWVhbh4eFUq1Ytr7fAunXrsnfv3mJ3oW6MYdy4cRw5coT169fz9ttv079/\nfwBatmzJwoUL2bdvHxkZGfz73//Ot2y9evXyOuRwLQ+gfv36XHzxxTz88MMcO3aMNWvWMGXKlHyd\nbriLRaniuvhi6++xY3DRRdopRhDRXKUCTocOcOed1tMqTp1yNpa9k+aQ1aYzb0TfT6sN79L/tura\nk2oQiDm5m9dfdzoKVRLe3JOV4jI8aYx5N/eBj+p0rldjbr31Vrp27cp5551H69atuf766/PNO23a\nNI4fP84555xDbGwsffr0IcO+IWTs2LH89NNP1KhRg549e562bGFXfV555RWys7OJi4vj5ptv5uab\nb/a47PTp02nUqBE1atRg0qRJvPvuuwCceeaZDBgwgMaNGxMbG5sXlzfb36FDB8444wyuuOIKHnjg\nAbp06QLA4MGDadGiBQ0bNqRbt255la9cDz30EOPGjSM2NpYJEyacFuusWbP466+/iI+P5/rrr2fc\nuHF0KuTGUKeeSaZCw9SpVu/yl11mnY1WgU1zlQpUY8ZA+LFDpPT40dE4fjhyPjPv+oGHNgyhYSPN\nj0HBGAa/ciFbF6/HiztGVICRos72i8g8wONMxphevg7KZd3GXXwiolcpVFDSz64X5syxnhr8r385\nFoLI3z0NrlkDffpYZ6T//W+oXNmxsEKG/T3w6a+8QMxVvl+P9oAZCAr+H2JjT+/Rr+ADzTPW7qbN\n+Sd49f40rolshxnru39kwXjcfU70sxOYvPnscP/9fLKoIum3Pck995RpeOVeaXOVN80FNwNHgMn2\ncBD4E3jBHpRSynfatYPXX4cC9+w5pUUL+PFHyMqyQtu0yemIlAeaq5QjCnah7q4b9XrNazPnzf18\n/txqj+UUfN5VcZ/Rlct61pfJt1xMTCk3UvmFu0cGnNYF/+DBdNs1jalvOdzeVBWbN1eyVhpjWhc1\nzh/0SpYKNfrZ9dKoUXD0KLz2miOrd3d20VunnYVUp/HTlayAy1W+X49ejQgEpbly9OWdc7i87g2k\ndfyTxA6NvVqmqHnyjTt4kJ13pnAofS+Nv37rtOVV4CuYf2JiYO//XcSwtMd59IfuNGrkXGzlTVlc\nyaoiInlHAhFpBFQp6QqVUqpIjzwCs2fDxo2OrL6wB5L+739Qvz489ph1I3txH1Sq/EZzlQp4XV6z\n7q8+dUVXdq/14UP5jCFrymwy653N0tm7+PmGp3xXtipTBfPPvn0gw4Yxqc2bWsEKMt5UskYCS0Rk\niYgsBb4Gyv6poUqp8qNmTXjwQWsIMBdeCCtXwpIl0KsX7N/vdETKprlKBY3Nlw3lcKv2bPvur2It\nZzUFzD90rfo925u0J/228czo9i5X7pjKDXfV9VPkyhH9+xN+5hl6KTvIFNlcEEBEKgFn2W83GmOO\n+TWqv9erzQVVSNHPbjEcPWpVsp57DipWdDqa05w4Af/8p/Wg0U8+gXPOscZrk66i+aO5oF1uQOUq\n369HP1uBwF1zroJNhAubR1IEM9bw1Q2vUe+ztzk7awUSJiX+/77b5iV2HI+l69Qbad7S2Qe7K9/T\n771zSpurPFayRKQNkG6MybDf3wRcD6QCycYYv991oJUsFWr0sxt6pk6F0aPhjTfguus0IXrDl5Ws\nQM5Vvl+PfraClev/LreSFRsLOfv2c4AaQMnv5zxyRHs9DWX6vXeOP+/JegM4bq/kMuBpYBpwAJhU\n0hUqpVQoGTIEFi2ynqn1yCNOR1Muaa5SQWnfPthvauTde5OvguX6q/rgQY7M+y9b733W7a9trWAp\nFZgKq2SFu5wB7AdMMsbMMcY8Bpzh/9CUUio4tG5tdfP+/ffWe+38okxprlIBz/VeKii8W/XjR3PY\nUzGevZXiyKpYk6PRtVl1TTJL5x4g59iJsgtaBQR39+FV0S59gkKhlSwRqWC/7gJ85TKtgpv5VTkQ\nFhbG5s2bvZo3JSWFwYMHA5Cenk50dLTPmsrdcccdPPnkkwAsXbqUxMREn5QL8N1333H22Wf7rDxV\nPtSpA198AZUqFf68G2+ec6OKRXOVCniuPcaBmytXLsIjwti2ZBNr31rJyukb2bjyEK2PfMeNW54k\nLDLw7k9V/lWwt8GtW+HY4ZNkZTkdmSpKYZWsWcBSEfkU6wGP3wKIyBlYzTCUBzNnzqRNmzZUq1aN\nhIQEunfvzve5p7gdNHXqVC699NJSlSFSvKapufMnJiaSlZVV5PLexjhx4kQecWmbVdy4XBWsOLZv\n354NGzaUuDzlJ7/+CsuWOR1FoSIirP463n0XatWy/moX736nuUqFlPBwOO+SqnS8MYHO/WrT8oKw\nQOz7RzkkYcEkXmIEU6c6HYkqisdKljHmSeCfwDtAe5e7esOAe/wfWnCaMGECo0aN4tFHH2XXrl2k\npaVx1113MW/evGKXderU6U/3djfOW8aYUlVGcsvwJ29izMnJ8ek6S7tPVBlJS4MBAwiG03cDB8KX\nX1rP0hoxwuqJUPmH5iqlVLnSowc38i5vPrePkyedDkYVptDnZBljlhtjPjbGHHIZ97sx5mf/hxZ8\nsrKyGDt2LK+99hq9e/emcuXKhIeHc/XVV/P0008DcPz4cUaMGEFCQgL169dn5MiRnLB/geU2qxO1\nPQAAIABJREFUe3v22WeJi4vj5ptvdjsOYP78+Zx//vnExMTQvn171q5dmxfH1q1buf7666lTpw61\na9fm3nvvZePGjdxxxx0sW7aMatWqEWu3WTp+/DijR48mKSmJuLg47rzzTo4d+7vX4+eee474+Hjq\n16/P22+/XWiFZMuWLXTs2JHq1avTtWtX9uzZkzctNTWVsLCwvArSO++8Q5MmTYiOjqZJkybMmjXL\nY4xDhw7lzjvvpHv37lSrVo0lS5YwdOhQHn/88bzyjTE89dRT1K5dm8aNGzNz5sy8aZ06deKtt97K\ne+96taxDhw4YY2jRogXR0dHMnj37tOaHGzdupFOnTsTExNC8efN8FeahQ4dy991306NHD6Kjo2nX\nrh1//VW8554oL3XrBldcYfWbHgRatLCep/X773D55ZDhw+eOqvw0Vymlyo34eBbQnTsqTOb9950O\nRhXGm4cRKy8tW7aMY8eOcc0113icZ/z48axYsYI1a9bwyy+/sGLFCsaPH583PSMjg/3795OWlsak\nSZPcjlu1ahW33HILkydPJjMzk9tuu41evXpx4sQJcnJy6NGjB40aNSItLY1t27bRv39/zjrrLF5/\n/XXatWtHdnY2mXZj8AcffJA//viDNWvW8Mcff7Bt2zaeeOIJAD777DMmTJjAl19+yaZNm/jvf/9b\n6PYPHDiQNm3asGfPHh599FGmFriWnVtBO3z4MPfddx+LFy8mKyuLH374gZYtW3qMEWDWrFk89thj\nZGdnc8kll5y27oyMDDIzM9m+fTvvvPMOw4cPZ9OmTR5jzY1l6dKlAKxdu5asrCz69OmTb/rJkyfp\n2bMn3bp1Y/fu3bz88svceOON+cp+//33SUlJYf/+/TRp0iRfM0blYy+8YN34tHCh05F4JSYG5s+H\njh2hTZuAb+2olFIqCDzLA/xj/4u8+fJhp0NRhdBKlg/t3buXWrVqERbmebfOnDmTsWPHUrNmTWrW\nrMnYsWOZPn163vTw8HBSUlKIiIigUqVKbsdNnjyZ22+/ndatWyMiDB48mEqVKrF8+XJWrFjBjh07\nePbZZ4mMjKRixYpcfPHFHuOZPHkyL774ItWrV6dKlSo89NBDzJo1C4DZs2czdOhQzj77bCpXrkxy\ncrLHctLT01m5ciVPPPEEERERXHrppfTs2dPj/OHh4axdu5ajR49St27dIjua6N27N23btgXI2y+u\nRIRx48YRERHBZZddRvfu3fnggw8KLdOVp2aQy5Yt49ChQzz44INUqFCBTp060aNHj7x9BHDttdfS\nqlUrwsLCuPHGG1m9erXX61XFFB0N77wDt9wC27c7HY1XwsIgJQVeew1697bG6TNPlFJKldTWmBYs\n3NeOFisma4dKASwkK1meevUq7lBcNWvWZM+ePYXeM7R9+3YaNGiQ9z4pKYntLj8Wa9euTURERL5l\nCo5LTU3lhRdeIDY2ltjYWGJiYti6dSvbt28nPT2dpKSkQit6uXbv3s3hw4dp1apVXllXXXUVe/fu\nzYvVtdlcUlKSx8rI9u3biYmJobLLAzuSkpLczhsVFcX777/PxIkTiYuLo2fPnvz222+FxlpU74Ex\nMTFERkbmW/d2H/wI37Fjx2nrTkpKYtu2bXnv69Wrl/c6KiqKgwcPlnq9qhAdO1oPpVq1yulIiqVn\nz7+7eB88GLKznY1HKaVUcMrMhOtWPc6/J1bSDpUCWEhWsgr25lXSobjatWtHpUqV+OSTTzzOk5CQ\nQGpqat771NRU4uPj8967u+ep4LjExEQeeeQRMjMzyczMZN++fRw8eJB+/fqRmJhIWlqa24pewXJq\n1apFVFQU69evzytr//79HDhgdcgVFxdHenp6vlg93ZMVFxfHvn37OHLkSN64tLQ0j/vhiiuu4PPP\nPycjI4MzzzyT4cOHe9z+wsbncrfu3P1apUoVDh/++5J6RjFujomPj8+3D3LLTkhI8LoM5QcPPADd\nuzsdRbH93/9Zf6Oi4IIL4KefnI1HKaVUkGrZEm6/3ekoVCFCspLllOjoaFJSUrjrrrv49NNPOXLk\nCCdPnmTRokU89NBDAPTv35/x48ezZ88e9uzZw7hx4/KeJeWtW2+9lddff50VK1YAcOjQIRYuXMih\nQ4e48MILiYuL46GHHuLw4cMcO3aMH374AYC6deuydevWvI42RIRbb72VESNGsHv3bgC2bdvG559/\nDkDfvn1555132LBhA4cPH867V8udBg0a0Lp1a8aOHcuJEyf47rvvTutRMfcq2K5du5g7dy6HDx8m\nIiKCqlWr5l15Kxijt4wxeev+9ttvWbBgAX379gWgZcuWfPTRRxw5coQ//viDKVOm5Fu2Xr16Hp/9\nddFFFxEVFcWzzz7LyZMnWbJkCfPnz2fAgAHFik8pV5MmwZNPwlVXwYQJ4OMOM5VSSinlMK1k+dio\nUaOYMGEC48ePp06dOjRo0IDXXnstrzOMRx99lNatW9OiRQvOO+88WrduXeyOElq1asXkyZO5++67\niY2NpWnTpnmdTISFhTFv3jw2bdpEgwYNSExMzLs3qXPnzjRr1ox69epRp04dAJ5++mnOOOMM2rZt\nS40aNbjyyiv5/fffAejWrRsjRoygc+fONG3alC5duhQa18yZM1m+fDk1a9Zk3LhxDBkyJN/03KtR\nOTk5TJgwgYSEBGrVqsU333zDxIkTPcbojbi4OGJiYoiPj2fw4MG88cYb/J992WDkyJFERERQr149\nhg4dyqBBg/Itm5yczE033URsbCwffvhhvmkRERHMmzePhQsXUqtWLe6++26mT5+eV7Z2/66KKybG\nao7crx/s3m11lhgerg8rVkopVTK5eaWwQXNL2RN/P/eoNETEuItPRPz+vCal/EE/u350/DjB+MTO\nEycgORnefBNeesl6xlaof0Ts70HInKHwlKt8v57Q/2yUB5IimLH6j1S+c/w4XHMNTJ8ONWu6n0eP\nH8VX2lylV7KUUsFvxw5o1sx6KFWQiYiwmg7Onw+5T3PQZ2oppZTyVsUIQ8+Iz3joQa1FBRKtZCml\ngl9cHDz8MHTuDEX0VBmo2rSBn3+GyEhrc7TJh1JKKa/k5HDr1sepMWcK337rdDAql1aylFKh4eab\nYdw46NQJfvzR6WhKpFIlOHIEVq6ECy+Edu2sHghdez3VrnqVUkrlEx5OhXemMD7nYR4esIX9+50O\nSIFWspRSoWToUOupv1dfDYU8SiHQtWoFy5ZZz1y++mqrl15tQqiUUsqj5s2plDyGmSdu4I6hR/X+\nqwCglSylVGi55hpYvBiqVnU6klIJC7MqWRs2QOXKcM45VotIpZRSyq0RI0i4pBHjs+87rZcLb3og\n1ObpvqWVLKVU6LngArj8cqej8ImYGHjxRVi9GvbsscYlJ1vdvyullFJ5RAh/ZwpNqu9BsrPyTcrM\nzN/03JtBm6eXjlaylFIqCDRoAJMnW6+3bYOmTWH4cOtKl1JKKQVAdDTMmQPVqzsdSblXwekASiIp\nKUkfAquCUlJSktMhlG+vvAJRUTB4cFA+UyvX5MlWt+8TJ0LHjnDWWTBkCNxwg5VflVJKKeUsx65k\niUg3EdkoIr+LyIPFWXbLli0YYwJyAOdj0CFwhy1btvjnC6W8c/758MEHcMYZ8PzzsGuX0xGVWJ06\nMHYspKXBiBEwd651tWvAAHjvPW3m4SulyVVKKRUINm6EW2/VvFDWHKlkiUgY8CrQFWgGDBCRs5yI\nRZ1uyZIlTodQ7ug+LyPt21udYsyZA+vXs6RxY7j+ejh1yunISqxSJbj2WqszxT/+sK5svfsuJCVB\nhw7WA46//hoOHXI60uBT3nNVKB6XQnGbIDS3KxS3CZzZrsRE6PfjP3kjcTxvv3KQ48d9v45Q/X+V\nhlNXsi4ENhljUo0xJ4D3gN4OxaIK0C9K2dN9XsbatIG332bJPffAP/4B4eGnz3PyJJw4UeahlUat\nWnDbbTBvHuzcCQ88APv3w5gx1pWv1q1h2DCrI40vvoD09KCuX5aFcp2rQvG4FIrbBKG5XaG4TeDM\ndlWpApd/fDfDL1nH9aOSeCd2JJNvXsbuDN8lgFD9f5WGU5WsBCDd5f1We5yjfPMB8b4Mb9ZX1Dye\npns7PhC+FKWNobjLl/V+93ZcWQu2/V7caV6Nq1QJevZ0X+iyZVCtmtW0sFs3q/by6KPWVTB3jh2z\n2mIcPGg9Ufj4casGY/7uRrcsjzGVK0P37tCjxxKWLYO9e+Hll62K1ubN8K9/WQ88joqCevWW0KGD\ndavaqFHWtEmTrGc6l/YYU9i8QaBMclVZfRdL+v0qqbLYrmDbJgD+Kt16AnG7SvsZ9NcxQj+DLho1\nInbxe/w8/T9cc2NVus8dTuz5SZCTc9qsv2/MYfZbc6nAidNOxOn/ynvau6ALrWQ5I9h+7Bc2XStZ\npZu/zCtZhbn0UsjKggUL4J57oGVLq7MMT43av/4aGjWCunWtftejoqBCBej994WPfOtfuNDq/ang\n0L+/+/IXLYKYGB6gm1V+7jBwoOf5Y2NZctVVEBtLZHwsF/eI5fZvBvLKK1a4O3ZYm9i37xLGdvsf\nl398FwmvP0b2uJf48d5prP0hu7xXssqE0z9wfRGDP8oMxB9NPilzS+nWE4jbpZUs/6zfH2Uu2biR\nOm+MI37PWsLXrLIeyljAvf138dMtfTlCZaRCGCelAsekEjkNG7tdf5v6OziS8gyZYTXzDafObuZ9\nXCH4vxJjyv6R0CLSFkg2xnSz3z8EGGPMMwXm0+dVK6VUCDLGBHwXsZqrlFKqfCtNrnKqkhUO/AZ0\nAXYAK4ABxhh94otSSqmAoLlKKaVUSTnynCxjzCkRuRv4HKvJ4hRNWkoppQKJ5iqllFIl5ciVLKWU\nUkoppZQKVdrxhVJKKaWUUkr5UNBVskSkg4h8IyITReQyp+MpT0QkSkR+FJGrnY6lvBCRs+zP+gci\ncrvT8ZQHItJbRCaJyCwRucLpeMoLEWkkIm+KyAdOx+ILoZyrQi0XhOpxNlSPZSF4rIgSkXdE5A0R\n8dBdbPAJtf9TruJ8r4KukgUYIBuohPXMElV2HgTedzqI8sQYs9EYcwfQD7jY6XjKA2PMp8aY4cAd\nQF+n4ykvjDF/GWOGOR2HD4VyrgqpXBCqx9lQPZaF4LHiOmC2MeY2oJfTwfhKCP6fgOJ9rxyrZInI\nFBHZKSJrCozvJiIbReR3EXmw4HLGmG+MMd2Bh4AnyireUFHS/S4ilwO/AruBgO96OdCUdL/b8/QE\n5gMLyyLWUFGafW57FPiPf6MMPT7Y7wElVHNVKOaCUD3OhuqxLNSOFblKsF31+fuh5wUe/Rs49P91\nmqK/V8YYRwagPdASWOMyLgz4A0gCIoDVwFn2tMHABCDOfl8R+MCp+IN1KOF+fxGYYu//xcDHTm9H\nsA2l/bzb4+Y7vR3BNJRin8cDTwOdnd6GYBx8cGyf7fQ2+Hh7AjJXhWIuCNXjbKgey0LtWFGK7boR\nuNp+PdPp+H21XS7zBOT/qTTb5e33ypEu3AGMMd+JSFKB0RcCm4wxqQAi8h7QG9hojJkOTBeRa0Wk\nK1AdeLVMgw4BJd3vuTOKyE3AnrKKN1SU4vPeQawHoFYCFpRp0EGuFPv8HqznIkWLyBnGmEllGniQ\nK8V+jxWRiUBLEXnQFHjgr1NCNVeFYi4I1eNsqB7LQu1Ykau42wV8DLwqIt2BeWUabDEUd7tEJBZ4\nkgD9P+UqwXZ5/b1yrJLlQQJ/XzIFqx37ha4zGGM+xvpAKt8pcr/nMsZMK5OIygdvPu9LgaVlGVSI\n82afvwK8UpZBlQPe7PdMrDbuwSBUc1Uo5oJQPc6G6rEs1I4VuTxulzHmMHCzE0H5QGHbFYz/p1yF\nbZfX36tg7PhCKaWUUkoppQJWoFWytgENXN7Xt8cp/9L97gzd72VP97kzQm2/h9r25ArF7QrFbQLd\nrmCj2xVcfLJdTleyhPy9E/0InCEiSSJSEegPzHUkstCm+90Zut/Lnu5zZ4Tafg+17ckVitsVitsE\nul3BRrcruPhlu5zswn0m8APQVETSRGSoMeYUcA/wObAeeM8Ys8GpGEOR7ndn6H4ve7rPnRFq+z3U\ntidXKG5XKG4T6HbpdgUG3a7ib5fYXREqpZRSSimllPIBp5sLKqWUUkoppVRI0UqWUkoppZRSSvmQ\nVrKUUkoppZRSyoe0kqWUUkoppZRSPqSVLKWUUkoppZTyIa1kKaWUUkoppZQPaSVLKaWUUkoppXxI\nK1kqYIjINSKSIyJNnY7FExF52OkYfEVEbhORQcWYP0lE1hZzHV+KSNVCps8SkSbFKVMppQJBKOYs\nEflaRC7w5zqKWXZPEXmgmMtkF3P+2SLSsJDpz4lIp+KUqRRoJUsFlv7At8AAf69IRMJLuOgYnwbi\nEBEJN8a8YYyZUcxFvX56uYhcDaw2xhwsZLaJwIPFjEEppQKB5iw/rsPOU/OMMc8Wc9Hi5KlzgDBj\nzJZCZnsFeKiYMSillSwVGESkCnAJcAsuCUtEOojIUhGZLyIbReQ1l2nZIjJBRNaJyBciUtMeP0xE\nVojIKvsMVaQ9/m0RmSgiy4FnRCRKRKaIyHIR+UlEetrzDRGROSKySER+E5Gn7fFPAZVF5GcRme5m\nGwaIyBp7eNqLOBvb6/jR3samLnH+W0S+F5E/ROQ6N+tKEpENIjJDRH4VkQ9ctvMCEVlil7tIROra\n478WkRdFZAVwr4iMFZFR9rSWIrJMRFbb217dHt/KHrcKuMtl/eeIyP/sfbHaw9WoG4FP7fmj7P/h\nKnv/9LHn+Ra4XET0WKSUChrBnrNEJMwuf42I/CIi97lM7msf3zeKyCUu63jFZfl5InKZF3mxJPlv\noogss7c5b7123vvSzjlfiEh9e3xDEfnB3o5xLuuuZ5f9s72dl7j5V7rmKbf7xBiTBsSKSB2PHwil\n3DHG6KCD4wMwEJhsv/4OON9+3QE4DCQBAnwOXGdPywH6268fA16xX8e4lDsOuMt+/TYw12Xak8BA\n+3V14DegMjAE+AOoClQCtgAJ9nxZHuKPA1KBWKyTF18CvTzE+bL9+r9AE/v1hcCXLnG+b78+G9jk\nZn1Jdrlt7fdTgFFABeB7oKY9vi8wxX79NfCqSxljgVH261+A9vbrFGCCy/hL7NfPAmvs1y8DA+zX\nFYBKbmLcAlSxX18HvOEyrZrL68W5/28ddNBBh2AYQiBnXQB87vI+2v77NfCc/foq4Av79ZDc3GW/\nnwdcVtg6PGyzN/nPdZuHuCwzFxhkvx4KfGy//hS40X59Z248WDnxYfu15OajAvEtAZoVtk/s15OA\na53+3OkQXIOePVaBYgDwnv36fawElmuFMSbVGGOAWUB7e3wO8IH9egbWWUWAFiLyjYissctp5lLW\nbJfXVwIP2VdplgAVgQb2tC+NMQeNMceAX7ESZmHaAF8bYzKNMTnAu8BlHuJsb58FvRiYba//DaCu\nS3mfABhjNgCezp6lGWOWu5YLnAmcC3xhl/sIEO+yzPsFCxGRaKC6MeY7e9RU4DL7alZ1Y8z39njX\ns5TLgEdE5H6gob2fCooxxhyyX68FrhCRp0SkvTHGtc387gIxKqVUoAv2nLUZaCRWq4mugOsx+SP7\n709elFOUUxQ//83GvXZY+xOsfJS7/y7h7/+Fa576ERgqIo8DLVzykas4rBwEhe+TXWieUsVUwekA\nlBKRGKAzcK6IGCAcq031/fYsBdtXe2pvnTv+bayrSOtEZAjWmcVcBQ+y1xtjNhWIpy3gWmk4xd/f\nFSlsUwqZVjDOMGCfMcbTDcau6y9OuQKsM8a4axYBp29/UetwO94YM8tuwtIDWCgiw40xSwrMdtJl\n/k1i3Ux9NTBeRL40xuQ264gEjnhYv1JKBZRQyFnGmP0ich7QFbgd6AMMsyfnluVazkny32IS6RqC\nu3V44E3+85SnCrvXKndaXizGmG9F5DKgO/COiLxgTr8P+TD2thTYJ7dhtQS5xZ5P85QqNr2SpQJB\nH2CaMaaRMaaxMSYJ+EtEcs/+XWi3xQ4D+mHdxwPW5/cG+/WNLuOrAhkiEmGP92QxcG/uGxFp6UWs\nx8X9DcgrsK7+xNrTB2CdaXQX53f2lZy/RCR3PCLSwsM6PSWwBiJykf16INb2/wbUtpMuIlJBrBt7\nPTLGZAGZLu3VBwNLjTEHgH0icrE9Pq8nQhFpZIz5yxjzClZTDXex/yYije3544AjxpiZwHPA+S7z\nNQXWFRajUkoFkKDPWfa9UeHGmI+BR7GayrmTm3+2AC3FkojVxK/QddjCKV3+c/UDf9//Noi/9993\nLuPz9p+INAB2GWOmAG/ifhs3AGfY87vuk8fQPKVKSStZKhD0Az4uMG4Ofx80VwKvAuuBP40xn9jj\nD2Els7VAR6y27GAdHFdgHYA3uJRZ8CzYeCDCvsl1HfCEh/hcl5sErC14g68xJgOr96ElwCpgpTFm\nvoc4c9dzI3CLfRPvOqCXhzg9nb37DbhLRH4FagCvG2NOYCW0Z0RktR1LuyLKAfgH8Ly9zHkuMd4M\nvCYiPxdYvq99I/MqrKYt09yUuQDI7fa2ObDCnv9xrH2PfSPxYWPMrkJiU0qpQBL0OQtIAJbYx+Tp\n/N17ntv8Yzcb32Jv00tYTQmLWgeUPv+5uher+d9qe/nczjpGYOXCX7Ca/+XqCPxi56++wL/dlLmQ\nv/OU230iIhWAJlj/V6W8JlaTYaUCk4h0AP5pjOnlZlq2MaaaA2EViz/iFJEkYL4xprkvy/UlEakH\nTDXGdC1knhHAAWPM22UXmVJK+Uco5CxfCvRtFqsnx6+wOnhy+4NYRK7B6thkbJkGp4KeXslSwSxY\nzhD4K86A3n776t5kKeRhxMA+rI42lFIq1AX0MdtPAnqbjTFHsXraTShktnDghbKJSIUSvZKllFJK\nKaWUUj6kV7KUUkoppZRSyoe0kqWUUkoppZRSPqSVLKWUUkoppZTyIa1kKaWUUkoppZQPaSVLKaWU\nUkoppXxIK1lKKaWUUkop5UNayVJKKaWUUkopH9JKllJKKaWUUkr5kFaylFJKKaWUUsqHtJKlVCFE\nJFtEGjodh1JKKVUYzVdKBRatZKmQICI5ItK4lGV8LSI3u44zxlQzxmwpVXA+JCJJIvKViBwSkV9F\npEsR8z8jIntEZLeIPF1g2lcisktE9ovIKhHpVWD6QBHZYifuj0Skhsu0iiLylogcEJHtIjKywLIt\nRWSlHeePInJegekjRWSHve43RSSi5HslX7kd7M/CnALjW9jjv/LFepRSqqQ0X3mcX/MVmq9CiVay\nVKgwhU0UkfCyCsTPZgE/AbHAo8CHIlLT3YwichvQC2gOtAB6ishwl1nuAxKMMTWA24AZIlLXXrYZ\n8DpwI1AXOAJMdFk2BWgCJAKdgQdE5Ep72QjgE2AaUMP++6mIVLCndwUeADoBSXY5KSXfJafZDbQT\nkRiXcUOA33y4DqWUKinNVwVovtJ8FZKMMTro4HYA6gNzgF1YB4KX7fGCdcDcAmQA7wDR9rQkIAe4\nCUi1lx3jUmYYMAb4AzgA/Ih14AQ4C/gc2AtsAPq4LPc28CowH8gClgGN7GlL7XUetKf1AToA6VgH\nxx3AVKwD6Dw7pr3263i7jPHASeCwXUbutuYAje3X0VgH4F3AX8AjLvENAb4FngMygT+Bbj7+f/wf\nVvKo4jJuKTDcw/zfA8Nc3g8FfvAw74X2tre23z8JzHCZ3hg4lrtuYBvQxWV6CjDTfn0lkF6g/FTg\nSvv1u8B4l2mdgB2FbHcOcAfwu/2ZecKO53tgP/AeUMGeN/f//hpwp8tnbivWZ/Yrp79XOuigg+8H\nNF/lHis1X2m+0iFABr2SpdwSkTCsBPEX0ABIwDo4gHXwuwnrANEYqIaVUFxdgnWQvRx4XETOtMf/\nE+iHdUCvDtwMHBaRKKyENQOoBfQHXhORs1zK7AeMxUo+f2IdWDHGdLCnNzfGRBtjZtvv69nzNgCG\nYx283sI6m9UA6yD9H7uMR7GSzt12GffaZbiecXzV3taGQEfgJhEZ6jL9QqxkWxMreU3BAxGZJyL7\nRCTTzd+5HhZrBmw2xhxyGfeLPd7T/L8UNq8dxxFgObDEGLPS3bLGmM1YSaup3QwjDljjoexzCkwr\nON1dXHUKnMkr6ErgfKAt1g+RN4CBWP/L5sAAl3kN1o+Lm+z3XYG1WD9elFIhRvOV5is0X6kApJUs\n5cmFWAemB4wxR40xx40xP9jTBgITjDGpxpjDwMNAfzvRgXXQSLaXWYN1UMpt43wL1hm1PwCMMWuN\nMfuAHsBfxphpxvIL1lnJPi4xfWyM+ckYk4N1dqllgZilwPtTwFhjzAljzDFjTKYx5mP79SHgKeCy\nIvaDQF4S7wc8ZIw5bIxJBV4ABrvMm2qMecsYY7DORNYTkTruCjXG9DTGxBhjYt387eVuGaAq1pkx\nV1lYidSb+bPscfnisMddhfWjwZt1VcX6HxcsOzeOouJ0F5cUsh0AzxhjDhljNgDrgM/tz182sAgr\noblu13IgRkSaYiWvaYWUrZQKbpqvXMrUfJVvXZqvlGO0kqU8ScQ6COe4mRaPdTk9VypQAastdK6d\nLq8P8/fBMhHY7KbMJKCtfWYsU0T2YSVH1zIzPJTpyW5jzIncNyJSWUTesG+O3Y/VdKGGiBRMdu7U\nwtrGNJdxqVhnTE+LzxhzBOtAXFSMxXEQqwmIq+pAtpfzV7fH5WOMOWWMWQx0FZEeXqwrt4yCZefG\nUVSc7uIyhWwHWE1ech0h/+frCO7383TgbqyzuB8XUrZSKrhpvspP85XmKxUAtJKlPEkHGric7XO1\nHSvJ5EoCTpD/QFJYuU08jF9inxnLPUsWbYy5u7iBuyh4c/E/sZqEtDHWzbO5ZwXFw/yu9mBtY8Ht\n3laSwERkod0LUpabYYGHxdYDjUWkisu48+zxnuZ37SWpZSHzgpWUc/83+ZYVkSZABPCCig3dAAAg\nAElEQVS7MWY/VlMG17Jd41iPdeOyqxZYZ/Q8xbXTPkPsSzOAO4EFxpijPi5bKRU4NF/lp/lK85UK\nAFrJUp6swDowPS0iUSJSSUQutqfNAkaKSEMRqYrV1vw9l7OIhZ1pexMYJyJnAIhIc7tt83ys9tOD\nRKSCiESISGuXtvFFycBqb1+YalhnkbJEJBZILjB9p6cy7G37AHhSRKqKSBIwEuvsU7EZY642Vne7\n0W6G7h6W2QSsBsba/4/rgHOxmqm4Mw0YJSLxIpIAjMK6IRsROVNEuolIpL2/BwGXYp0tBat5S08R\nucROkk8Ac8zf7eunA4+KSA0RORu4NbdsYAlwSkTuEavr3Huxbgb+2iWuW0TkbPt//6jLsj5jrK6M\nL7PLV0qFLs1XLjRfab5SgUErWcot+yDdE+tMWhrWmbu+9uS3sA5a32Dd0HsYuNd18YLFubyegHXw\n/1xEDmAlscrGmINYN4v2xzrzuB14GqjkZcjJwDS76cYNHuZ5CYjCOsv3A7CwwPR/A31EZK+IvOQm\n9nuxtnUz1rbPMMYUdrAttJveEuoPtAH2Yf1YuN4YsxdARNqLSFbeyo15A6tHqrVY9xnMNcZMticL\n1j7bidW04R6grzFmtb3sr8DtwEysHwSVgbtc4hiLtR9Sga+Ap40xX9jLngCuwerBah9WG/PexpiT\n9vTFwLNYSewvrM9QciHbXNjnqVDGmB+MMRlFz6mUClaarzRfoflKBSCx7nn0U+Ei9bHOAtTFOjMw\nyRjzioiMxTqTkNtudYwx5jO/BaKUUkp5ICKVsH6IVsRqhvShMSbFPnP9PlZTqy1YP+wK3iSvlFJK\nncbflax6QD1jzGr7Mv1PQG+sXm+yjTET/LZypZRSyksiEmWMOSzWg2C/x7oScD2w1xjzrIg8CMQY\nYx5yNFCllFJBwa/NBY0xGS6Xcw9iPZMht3cbb3rIUUoppfzOWN17g9XkqwJWM5/eWN1bY/+9xoHQ\nlFJKBaEyuydLRBpi9cryP3vU3SKyWkTeFJHqZRWHUkopVZCIhInIKqx7Or4wxvwI1DXG7ATrpCHg\n9jlCSimlVEFlUsmymwp+CNxnX9F6DWhsjGmJldC02aBSSinHGGNyjDHnA/WBC0WkGaW4iV0ppVT5\nVsHfKxCRClgVrOnGmE8BjDG7XWaZjNWjjLtlNaEppVQIMsYEZJNxY0yWiCwBugE7RaSuMWanfY/x\nLnfLaK5SSqnQVJpcVRZXst4CfjXG/Dt3hJ2scl3H3w99O40xpsyGsWPHlmkZ3sxb1Dyepns73t18\nvtgPZbnfi7t8We93b8aV9T4Pxv1e3GmBuN/L+hjjz/1emu9AoBGRWrnN1kWkMnAF1j3Ec4F/2LMN\nAT71VEZZfh5K+j/15fFeY/ftd0Jj93/sdCj5b0qnYy/rfR7MsZcm5/k6V/n1SpaIXALcCKy127ob\nYAwwUERaYnXrvgW4zZ9xeKtjx45lWoY38xY1j6fp3o73xTaXVmljKO7yZb3fvR1X1oJtvxd3WiDu\n97I+xng7f0n2e2m/AwEmDpgqImFYJx/fN8YsFJHlwAcicjPWM3b6FlZIcZV0v5T0f+rL/4PG7v10\njb10ZWnsJVeacoI19tLkPJ/nqpLWcMtisMJTZW3s2LFOh1Du6D53hu53Z9jHdsdzjK+GYM5Vwfwd\n0NidEayx00G/p04I5thLm6vKrHdBFTyC4KxzyNF97gzd76q8C+bvgMbujKCNvaHTAZRc0O5zgjv2\n0vLrw4hLS0RMIMenlFKq+EQEE6AdX5SE5iqlAp+kCGasfk+V90qbq7SSpZRSqkxpJUup0NOwYUNS\nU1OdDkOpYktKSmLLli2njddKllJKqaCilSylQo/9vXY6DKWKzdNnt7S5Su/JUkoppZRSSikf0kqW\nUkopFaBiY0HEGmJjnY5GKaWUt/z6nCyllFJKldy+fZDbikVCpoGlUkqFPr2SpZRSSimlyqXU1FTC\nwsLIyckpdVmNGjXiq6++8mreqVOncumll+a9r1atmtvOF0riqaeeYvjw4YBvtw8gPT2d6Ohovf/O\nC1rJUkoppZRSIauoyo84dJnYdb3Z2dk0bNiw0PmXLl1KYmJikeU+/PDDTJo0ye16iqvgvktMTCQr\nK8uxfRZMtJKllFJKKaVUgDPGFFm5OXXqVBlFo4qilSyllFJKKVUu5OTkMHr0aGrXrs0ZZ5zBggUL\n8k3Pyspi2LBhxMfHk5iYyGOPPZbXNG7z5s106dKFWrVqUadOHQYNGkRWVpZX683MzKRXr15Ur16d\ntm3b8ueff+abHhYWxubNmwFYuHAhzZo1Izo6msTERCZMmMDhw4e5+uqr2b59O9WqVSM6OpqMjAxS\nUlLo06cPgwcPpkaNGkydOpWUlBQGDx6cV7YxhilTppCQkEBCQgIvvPBC3rShQ4fy+OOP5713vVp2\n0003kZaWRs+ePYmOjub5558/rfnhjh076N27NzVr1qRp06a8+eabeWWlpKTQr18/hgwZQnR0NM2b\nN+fnn3/2an+FAq1kKaWUUkqpcmHSpEksXLiQX375hZUrV/Lhhx/mmz5kyBAqVqzI5s2bWbVqFV98\n8UVexcEYw5gxY8jIyGDDhg1s3bqV5ORkr9Z75513EhUVxc6dO5kyZQpvvfVWvumuV6iGDRvG5MmT\nycrKYt26dXTu3JmoqCgWLVpEfHw82dnZZGVlUa9ePQDmzp1L37592b9/PwMHDjytPIAlS5bw559/\nsnjxYp555hmvmk9OmzaNBg0aMH/+fLKyshg9evRpZffr148GDRqQkZHB7NmzGTNmDEuWLMmbPm/e\nPAYOHMiBAwfo2bMnd911l1f7KxRoJUsppZRSSpULs2fPZsSIEcTHx1OjRg0efvjhvGk7d+5k0aJF\nvPjii0RGRlKrVi1GjBjBrFmzAGjSpAldunShQoUK1KxZk5EjR7J06dIi15mTk8NHH33EuHHjiIyM\npFmzZgwZMiTfPK4dSVSsWJH169eTnZ1N9erVadmyZaHlt2vXjp49ewIQGRnpdp7k5GQiIyM599xz\nGTp0aN42ecNTJxfp6eksW7aMZ555hoiICM477zyGDRvGtGnT8uZp3749Xbt2RUQYPHgwa9as8Xq9\nwU4rWUoppZRSyr+Sk/9+6Jvr4OlKkLv5vbxqVJjt27fn6zwiKSkp73VaWhonTpwgLi6O2NhYYmJi\nuP3229mzZw8Au3btYsCAAdSvX58aNWowaNCgvGmF2b17N6dOnaJ+/fpu11vQnDlzWLBgAUlJSXTq\n1Inly5cXWn5RnWGIyGnr3r59e5FxF2XHjh3ExsYSFRWVr+xt27blvc+92gYQFRXF0aNHfdbTYaDT\nSpZSSimllPKv5GTroW8Fh8IqWd7OWwxxcXGkp6fnvU9NTc17nZiYSGRkJHv37iUzM5N9+/axf//+\nvKsvY8aMISwsjPXr17N//35mzJjhVVfmtWvXpkKFCvnWm5aW5nH+Vq1a8cknn7B792569+5N3759\nAc+9BHrT01/BdcfHxwNQpUoVDh8+nDdtx44dXpcdHx9PZmYmhw4dyld2QkJCkfGUB1rJUkoppZRS\n5ULfvn15+eWX2bZtG/v+n707j7O5+h84/jozdmaYsQ1jb6ESsoXEIPuWpWRLo2ihknyLSkxUqFTf\nfl+JJCoKaSFZoqFQWsheWSLL2GaYsQwz5vz+OHfG7HPv3Pu527yfj8fnMfd+7md5z5hx7vuec94n\nLo6pU6emvRYWFkaHDh146qmnSEhIQGvNgQMH2LBhA2DKrJcqVYqgoCCOHj3Ka6+9Ztc9AwIC6N27\nNxMnTuTSpUvs3r2befPmZXtsUlISCxYsID4+nsDAQIKCgggMDASgYsWKnDlzxu5iG6m01kyaNIlL\nly6xa9cu5s6dy3333QdAgwYNWLFiBXFxccTExPD2229nODcsLCytIEf66wFUqVKFFi1aMG7cOC5f\nvsz27duZM2dOhqIb2cVSUEiSJYQQQggh/Fb63phhw4bRsWNH6tevT+PGjenTp0+GY+fPn8+VK1e4\n+eabCQ0N5Z577iEmJgaACRMm8Ntvv1GmTBm6d++e5dzcen3eeecdEhISqFSpEkOHDmXo0KE5nvvR\nRx9Rs2ZNypQpw6xZs/jkk08AqF27Nv3796dWrVqEhoamxWXP99+6dWuuv/562rdvzzPPPEO7du0A\nGDx4MPXq1aNGjRp06tQpLflKNXbsWCZNmkRoaCjTp0/PEuvChQs5ePAglStXpk+fPkyaNIk2bdrk\nGktBobw5o1RKaW+OTwghhOOUUmit/aaltbKtUsqMksr8WAhvY/u79nQYQjgsp99dZ9sq6ckSQggh\nhBBCCBfKM8lSSnVXSkkyJoQQwmtJWyWEEMKb2NMg9QP+VkpNU0rVsTogIYQQIh+krRJCCOE17JqT\npZQKBvoDkYAG5gILtdYJlgYnc7KEEMLvWDUnyx/bKpmTJXyFzMkSvsqjc7K01vHAEuBToBLQC/hd\nKfV4fm8shBBCuJK0VUIIIbyFPXOyeiqlvgCigcJAU611Z6A+8LS14QkhhBB5k7ZKCCGENylkxzG9\ngTe11hvS79RaX1RKPWhNWEIIIYRDpK0SQgjhNewZLhiTudFSSk0F0FqvtSQqIYQQwjHSVgkhhPAa\n9iRZ7bPZ19nVgQghhBBOyHdbpZSqopRap5TapZTakTqHSyk1QSl1RCn1u23r5NKIhRDCBQICAjhw\n4IBdx0ZFRTF48GAA/v33X4KDg11WsOTRRx/l5ZdfBmD9+vVUrVrVJdcF+PHHH7nppptcdj13yDHJ\nUko9qpTaAdRRSm1Ptx0EtrsvRCGEECJ7LmqrkoHRWutbgObAyHRl4KdrrRvatpUWfAtCCDdYsGAB\nTZo0ISgoiPDwcLp27crGjRs9HRbz5s3jzjvvdOoaSjlWAC/1+KpVqxIfH5/n+fbG+O677/L888/n\nO670MieOLVu2ZM+ePfm+nifkNidrAfAt8CowNt3+BK11rKVRCeEPfvsNPvoIduyA48fhzBm4fBlG\njYKJEz0dnRD+wum2SmsdA8TYHp9XSu0Bwm0vu7zUvBDCvaZPn860adN477336NChA0WKFGHVqlUs\nW7aMO+64w6FrXb16lcDAwDz32Utr7VQyknoNK9kTY0pKCgEBrlsP3tmfiTfI7aehtdb/ACOAhHQb\nSqlQ60MTwsclJ0OVKvDMM7B4MfzxBxw8CKNHZ3/855/DsmWQkuLeOIXwbS5tq5RSNYAGwM+2XSOV\nUtuUUu8rpUq7IuD8Cgkxa2WlbqHSEguRp/j4eCZMmMCMGTPo2bMnxYsXJzAwkC5dujBlyhQArly5\nwqhRowgPD6dKlSo89dRTJCUlAdeGvU2bNo1KlSoxdOjQbPcBLF++nNtuu42QkBBatmzJjh070uI4\ncuQIffr0oUKFCpQvX54nnniCvXv38uijj7J582aCgoIItf1RX7lyhTFjxlC9enUqVarEY489xuXL\nl9Ou9dprr1G5cmWqVKnC3Llzc01I/vnnHyIiIihdujQdO3bk9OnTaa8dOnSIgIAAUmzvOz788EOu\nu+46goODue6661i4cGGOMUZGRvLYY4/RtWtXgoKCiI6OJjIykhdffDHt+lprXn31VcqXL0+tWrVY\nsGBB2mtt2rThgw8+SHuevresdevWaK2pV68ewcHBLF68OMvww71799KmTRtCQkK49dZbWbZsWdpr\nkZGRjBw5km7duhEcHEzz5s05ePBg7r8oFsgtyUr9SfwG/Gr7+lu650KIlBT45ZfsX7v9dhgzBjp2\nhFtugbAw8y4pODj745WCqCi49Vb47DNZdVQI+7isrVJKlcKss/Wk1vo8MAOopbVugOnpmu6qoPMj\nNtb8t5C6xcV5MhohfMPmzZu5fPkyd999d47HTJ48mS1btrB9+3b++OMPtmzZwuTJk9Nej4mJ4ezZ\nsxw+fJhZs2Zlu2/r1q08+OCDzJ49m9jYWB5++GF69OhBUlISKSkpdOvWjZo1a3L48GGOHj3Kfffd\nR506dZg5cybNmzcnISGB2FjT+f7ss8+yb98+tm/fzr59+zh69CgvvfQSACtXrmT69OmsXbuWv//+\nm++++y7X73/AgAE0adKE06dP88ILLzBv3rwMr6cmaBcvXuTJJ59k1apVxMfHs2nTJho0aJBjjAAL\nFy5k/PjxJCQkZNsjGBMTQ2xsLMeOHePDDz9k+PDh/P333znGmhrL+vXrAdixYwfx8fHcc889GV5P\nTk6me/fudOrUiVOnTvHf//6XgQMHZrj2Z599RlRUFGfPnuW6667LMIzRXXJMsrTW3Wxfa2qta9m+\npm613BeiEF5Ia5MI1a8Pjz5qhgE6q3dvk7C9+SZMmQJt2sCuXc5fVwg/5qq2SilVCJNgfaS1/sp2\nzVP62jic2UCTnM6fOHFi2hYdHZ3v70cI4VpnzpyhXLlyuQ5lW7BgARMmTKBs2bKULVuWCRMm8NFH\nH6W9HhgYSFRUFIULF6Zo0aLZ7ps9ezaPPPIIjRs3RinF4MGDKVq0KD/99BNbtmzh+PHjTJs2jWLF\nilGkSBFatGiRYzyzZ8/mzTffpHTp0pQsWZKxY8eycOFCABYvXkxkZCQ33XQTxYsXZ2Iu0w/+/fdf\nfv31V1566SUKFy7MnXfeSffu3XM8PjAwkB07dpCYmEjFihXzLDTRs2dPmjVrBpD2c0lPKcWkSZMo\nXLgwrVq1omvXrixatCjXa6aX0zDIzZs3c+HCBZ599lkKFSpEmzZt6NatW9rPCKBXr140atSIgIAA\nBg4cyLZt2/K8X3R0dIb/y52V5zpZSqk7gG1a6wtKqUFAQ+AtrfVhp+8uhC/6+WczryopCV5/HTp0\nML1QrqCUuV67djBzJkyYYIYa+sHYZCGs5IK26gNgt9b67XTXDLPN1wKzDtfOnE52RYMshD9zVTPm\n6CCPsmXLcvr06VznDB07doxq1aqlPa9evTrHjh1Le16+fHkKFy6c4ZzM+w4dOsT8+fN55513bHFq\nkpKSOHbsGAEBAVSvXt2uOUunTp3i4sWLNGrUKG1fSkpKWsJx7NgxGjdunCHWnJKRY8eOERISQvHi\nxTMcf+TIkSzHlihRgs8++4zXXnuNoUOH0rJlS15//XVq166dY6x5VQ8MCQmhWLFiGe6d/ueaX8eP\nH89y7+rVq3P06NG052FhYWmPS5Qowfnz5/O8bkREBBEREWnPo6KinIrTnhlq7wIXlVL1gaeB/cBH\nuZ9iZFMW9wnb/hCl1Gql1J9KqVWeHucuhN3mzTM9To88Alu2mKGAViRAgYEwYgQsWSIJlhD2caat\nugMYCLRVSm1NV659mq1S4TagNfCURbEL4ffSD3V1ZnNU8+bNKVq0KF9++WWOx4SHh3Po0KG054cO\nHaJy5cppz7Ob85R5X9WqVXn++eeJjY0lNjaWuLg4zp8/T79+/ahatSqHDx9Om/uU23XKlStHiRIl\n2LVrV9q1zp49y7lz5wCoVKkS//77b4ZYc5qTValSJeLi4rh06VLavsOHc/7cqX379qxevZqYmBhq\n167N8OHDc/z+c9ufKrt7p/5cS5YsycWLF9Nei4mJyXJ+TipXrpzhZ5B67fDw8BzO8Ax7kqxk23CJ\nnsD/aa3/BwTZef3MZXFH2MrijgW+01rXBtYB4xwPXQgP6N0b9u6FIUPAhVV0hBBOy3dbpbXeqLUO\n1Fo30FrfllquXWt9v9a6nm3/3VrrE5Z+B0IIlwsODiYqKooRI0bw1VdfcenSJZKTk/n2228ZO9YU\nJL3vvvuYPHkyp0+f5vTp00yaNCltLSl7DRs2jJkzZ7JlyxYALly4wIoVK7hw4QJNmzalUqVKjB07\nlosXL3L58mU2bdoEQMWKFTly5EhaoQ2lFMOGDWPUqFGcOnUKgKNHj7J69WoA7r33Xj788EP27NnD\nxYsX0+ZqZadatWo0btyYCRMmkJSUxI8//pihQARcG5J38uRJvv76ay5evEjhwoUpVapUWs9b5hjt\npbVOu/cPP/zAN998w7333gtAgwYNWLp0KZcuXWLfvn3MmTMnw7lhYWE5rv11++23U6JECaZNm0Zy\ncjLR0dEsX76c/v37OxSf1ex5l5iglBoHDAK+UUoFAIXzOAcwZXG11ttsj88De4AqmEYwdebdPCDn\n2YhCeJOgILMJIbxNvtsqIYR/Gz16NNOnT2fy5MlUqFCBatWqMWPGjLRiGC+88AKNGzemXr161K9f\nn8aNGztcKKFRo0bMnj2bkSNHEhoayo033phWZCIgIIBly5bx999/U61aNapWrZo2N6lt27bccsst\nhIWFUaFCBQCmTJnC9ddfT7NmzShTpgwdOnTgr7/+AqBTp06MGjWKtm3bcuONN9KuXbtc41qwYAE/\n/fQTZcuWZdKkSQwZMiTD66m9USkpKUyfPp3w8HDKlSvHhg0bePfdd3OM0R6VKlUiJCSEypUrM3jw\nYN577z1uuOEGAJ566ikKFy5MWFgYkZGRDBo0KMO5EydO5P777yc0NJQlS5ZkeK1w4cIsW7aMFStW\nUK5cOUaOHMlHH32Udm1vKf+u8qqtr5QKAwYAv2itf1BKVQMitNbzHbqRKYsbDdQF/tVah6R7LVZr\nnaUYrVJK5xWfEJZJSfG+3iqtYfBgGDsW6tb1dDRC5ItSCq21S1tBV7VV+by3ZW2VUjkPkcrtNSHc\nzfZ37ekwhHBYTr+7zrZVeSZZrmArixsNTNJaf5U5qVJKndFal83mPEmyhGfMnQvz58O6dd43J+rT\nT+HppyE6Gmyf2gjhS6xIsjxJkiwhJMkSvsuqJMue6oK9galABUDZNq21zmGxnyznZymLC5xQSlXU\nWp+wffp4Mqfz01dsylz1QwiXS0oylQPXrfPeohP33QcXL8Jdd8HmzZBucq4Q3ig6OtrysubOtlVC\nCCGEK9kzXHAf0F1rvSdfN1BqPnBaaz063b6pQKzWeqpS6lkgRGs9NptzpSdLuE9cHNx7LxQqZHqL\nSnt50ctXXoEvv4T16yFdeVYhvJ1FwwWdaqucvLf0ZIkCT3qyhK+yqifLngknJ5xIsHIqizsVaK+U\n+hNoB0zJz/WFcJmzZ6FZMzPPadky70+wAMaNM8MFbWtyCFHA5butEkIIIVzNnp6st4Ew4Evgcup+\nrfVSa0OTnizhRlrDjz/CnXd6OhLHJCaanrdCeY78FcJrWNST5ZdtlfRkCV8hPVnCV3ms8IVSam42\nu7XWemh+b2ovSbKEv7tyBf78E3bvhmPH4MQJuHDBvHEKDISyZaF8edNhdcstEBbmndPEhHCERUmW\n/7VVFy8SULIYKTr7QSeSZAlvIkmW8FU+XV0wvyTJEv7m/HnYsAG++87U1vjzT6hRwyRQVapAhQpQ\nqpSpHJ+cDGfOwMmT5ridO6FYMWjXDjp2hB49zLFC+BqpLmifq8MfZdrsMozTr+ZwX0myhPeQJEv4\nKk9WF7wReBeoqLWuq5SqB/TQWk/O702F8LiEBLctKpyYCN98AwsXwpo10LChKQw4cyY0aGASJ3to\nDfv2wdq1sGABPPYYdO0KI0dC8+bWfg9CeDt/a6sSE6Hpxnd4lR4waxYMH+7pkITIVfXq1b1mEVgh\nHFG9enVLrmvPcMH1wH+A97TWt9n27dRaW74SqvRkCUtMnw7Ll5uuJAsdOADvvmuW3KpfH/r3h969\nITTLstv5c+qUSbbefhvCw2H8eOhw8xE4eND35paJAsWi4YJ+11Z9/DFEDk7iSNkGVFw1Hxo1ynRf\n6ckSwl4qSqEnyB+MsJ87qguW0FpvybQvOb83FMKjpk2DGTNg3jzLbrFtm0mmmjY1b4C2bDG9Tw89\n5LoEC8xcrSefhL/+ghEjTI9W53tKsrv3C2acoRAFi9+1VYMGQTKF6V12PUn3DoT4eE+HJIQQwk72\nJFmnlVLXARpAKdUXOG5pVEJY4dVX4f33zbpSVau6/PLbtkGvXtClC7RqBYcOweuvQ61aLr9VBoUK\nmfWJd+6Ejv1CaH3hG6LaRJOUZO19hfAyfttWBdUsx8TSb5quLSGEED7BnuGCtYBZQAsgDjgIDNJa\n/2N5cDJcULjKpEnwySdmiGDlyi699NGjZsmqNWvgmWfg4YehRAmX3sKxeP6+yLD6WzheuSELlgVz\n002ei0WI7Fg0XNAv2yqlTNXR227TzPsQ7mqvMrwmTaQQ9pHhgsJRlg8X1Fof0FrfBZQH6mitW7qj\n0RLCpcqVg+holyZYiYnwyitQr56pDPjXX/DUU55NsADCbyjBN5+d57GEabRqpVm0yLPxCOEO/txW\nVagA8+YpHohUxMV5OhohhBD2yLEnSyk1OrcTtdbTLYkoYwzSkyW8UnS0mWNVr557hgTmS+/ebO38\nHH1ebUzv3mY6WoA9A4SFsJgre7L8va1K31s1YgRcugQffJD1NSFE7qQnSzjKyp6sINvWGHgUCLdt\njwAN83tDIXzZuXNmOODgwfDWW7B0qbUJVmioeSOV05ZrIY3PP+e2YY359Vf45Rfo18/0vgnhZwpM\nWzVlihnxvHKlpyMRQgiRlxyTLK11lNY6CqgCNNRaP621fhpoBFRzV4BCeIsVK6BuXfPJ8c6d0K2b\n89fMK4kCc7+cNsjl/ABFaKi5x+rVEBgI7dubRFEIf1GQ2qqgIJg92yyZFf/b34SVSbT/QxchhBBu\nZc/goYrAlXTPr9j2CeGdVqyAv/922eUuXTLl0R97zFR+nzULSpd2zbXj4nJPomJjcz8/Njb381Pn\nbxQtatbUqlcPOnaUREv4pQLRVrVvb7Zx9x3g+OOvZPv3LoQQwvMK2XHMfGCLUuoL2/O7gQ8ti0gI\nZ6xZAw88AN9+65LL7dxpFhG+5RZTor1MGcfODw3N/Y1PSIhz8eUlJORaj1h6ZcqYRPHsWWvvL4Qb\nFZi26vXXoe5NdzHg7be5o/8epISoEEJ4H3uqC74MRGJK4sYBkVrrV60OTAiH/WJpRkgAACAASURB\nVPorDBhgJko1auTUpbSGd9+FNm1g9GhYuDDnBCu3IX+p18pvT5WzMvR0xSegNaSkwBNPmN6s8+et\nvb8Q7lKQ2qqQEPjv/wJ5qPjHJA5/QqpfCCGEF8pznSxPkuqCwm4HD8Idd8CMGXD33U5d6uJFGDYM\ndu2CRYvgxhtzP94nKnytWwfPPgtbtoBSaG0qDXbsCMuWQeHCng5QFCRWrJPlSe6qLpie1tC7l+bW\nLXN46eVAiIz0jf+LhPAQqS4oHGX5OllCeL1Ll6BzZ3j+eacTrP37oXlzUyRi0yaTYOVVnMLqIX8u\nERFhurA+/xy41stWpIgpRS9vzITwLUrB/2Yo3r00hB0vLoKkJE+HJIQQIh1JsoTvK14cPvzQLCLj\nhBUroEULU7lr3rxriwo7W5zCKwQEwEsvmS0lJW33p5+aRZSfey7rKU6VjxdCWK5yZXh5amEeqric\nqwHSHS2EEN4kz+GCSqnHgY+11m6vWyTDBYU7hITkXgAiJMRHEqm8aA2NG8MLL0CvXnYV5cjt+5ah\nSSK/rBgu6K9tVV5/ZykpZu5o794wapT8TQqRExkuKBzljuGCFYFflFKLlFKdlMquVpkQvikx0SRY\nTZvCsWM+3FNlD6Vg/HiYNAm0zlAUY+dOKFcOfv7ZD79vUVAUyLYqIMCsnTVpkqcjEUIIkZ491QVf\nAG4A5gAPAH8rpV5RSl1ncWxCuERuw96KFzdFH6KjoVIlT0fqBj16mKoeyckZdt9yC7z/PvTpA8eP\neyg2IZzgTFullKqilFqnlNqllNqhlHrCtj9EKbVaKfWnUmqVUspFK+S51o03wtNPm8fSkyWEEN7B\nrjlZtnEQMbYtGQgBliilplkYmxDZ++or+OMPuw/Pbk7Vrl1Qs6aplZGYaJKtAiEgAB59NNtygj17\nmvloffrIHHrhm5xoq5KB0VrrW4DmwAilVB1gLPCd1ro2sA4YZ1nwThozxnz9+CMtq40LIYQXyDPJ\nUko9qZT6DZgGbARu1Vo/CjQC+lgcnxAZ/fCD6Ylx4uPaNWtMsb2JE2HyZJN3COP5503PX3aFMITw\nZs60VVrrGK31Ntvj88AeoArQE5hnO2weZoFjr5T6ucmYJy5zuIOUDBVCCE+z5+1lKNBba91Ra71Y\na50EoLVOAbpZGp0Q6e3ZA337wiefQIMG+brEvHkwaBAsWQL33+/i+PxAQID5GX32GSxf7ulohHCI\nS9oqpVQNoAHwE1BRa33Cdp0YoIKrg3a1p8cWod+u8Vx5f76nQxFCiALNniTrWyBtCrxSKlgpdTuA\n1nqPVYEJkUFMDHTpAtOmQfv2Dp+uNUydChMmmPlXrVq5PkR/UbYsLFwIDz4Ihw97Ohoh7OZ0W6WU\nKgUsAZ609Whl7g7y+u6hMc8EUPa26ox98hKcOuXpcIQQosAqZMcx7wIN0z0/n80+IayTnAzdu8PQ\noTBkSL4u8dRTsHYtbNwI4eEujs9XpaSYuW233ZblpTvuMBPp77sP1q/PdgqXEN7GqbZKKVUIk2B9\npLX+yrb7hFKqotb6hFIqDDiZ0/kTJ05MexwREUFERIRDwbtCSIhZSB1Ks4l7KVzpA6YmPX1t9XEh\nhBA5io6OJjo62mXXs2edrG1a6waZ9m3XWtdzWRQ531vWyRLG5s3QrJnDbxYuX4ZixeDOO029jJAQ\ni+LzRWfPQq1asGNHtplnSgp06wYNG5q5a5nJOlkivyxaJ8uptkopNR84rbUenW7fVCBWaz1VKfUs\nEKK1HpvNuR5bJysnf/yaREST83w3cSONJsjIfiFknSzhKHesk3VAKfWEUqqwbXsSOJDfGwqRL82b\nO5xgJSSYJAFg1SpJsLIoUwYGD4Z33sn25YAA+OADU9p90yY3xyaE4/LdViml7gAGAm2VUluVUr8r\npToBU4H2Sqk/gXbAFMuid7H6jQuTQgC9P+jKiROejkYIIQoee3qyKgD/BdpixqOvBUZprXMcNuGy\n4KQnS9ghNNSUac9JmTK5v16gHTwITZqYr0FB2R7yxRfwn//Atm1QqtS1/dKTJfLLop4sv2yrnPk7\nS11/fO1a+O67ArRUhRDZkJ4s4Shn26o8kyxPkiRL2CPzm5BTp0xtjA4dTLELmY6Qh3vugdatYeTI\nHA8ZOtTMy3rvvWv7JMkS+WVFkuVJ3pxkXb1qKqpeuACffw6F7JmJLYQfkiRLOMryJEspVR4YBtQg\nXaEMrfXQ/N7UXpJkFVDffWe6TJo1s+vw9G9CTp6Edu2gRw8zj0gSLDusXw+PPAK7d+f4A4uPh/r1\nzcjC1CGYkmSJ/LKoJ8sv2ypnkyyt4coV839i5cowZ478vygKJkmyhKPcMSfrK6A08B3wTbpNCNfb\ntg0GDDAfvzro+HGzyHDfvpJgOaRVK5g0yVS6yEFwMMyfD8OHS1Vo4bWkrcpBkSKmF2v3zquMarQB\nfeGip0MSQgi/l6/qgu4iPVkFzKFDpnb4W2+ZTMlOSsGRI9C2rVlg+PnnLYyxgHvmGTN9a/Fi6ckS\n+eeu6oLu4u09WanOxqbQsfZBGhfbxTt72xNQUiZpiYJDerKEo9zRk7VcKdUlvzcQwi5xcdC5M4wZ\n41CClap1a7N4riRY1nrpJVPxfckST0ciRBbSVuWhTGgAq/+swdbEOjxyw1pSEi54OiQhhPBb9vRk\nJQAlgSu2TQFaax2c58WVmgN0A06krlWilJqAGTefWvHpOa31yhzOl56sgkBruOsuqFcP3nzToVP/\n+Qdq1oTp082Cw8J6mzZBnz5w6RKcO5fzcSEhEBvrvriE77CoJyvfbZUL7u0TPVmpEs5epWudfdTS\nB3h/zx0UCrX8RySEx0lPlnCUV1cXVEq1BM4D8zMlWQla6+l2nC9JVkHx00/QtKlZnMlO+/ebIheH\nDsmwNXcbPRpOnIBPPsn5GBlOKHIi1QUdubbrkyyACwkp9Lp5L2WCNR9vvYUiRfIfoxC+QJIs4SjL\nhwsqY5BSarzteVWlVFN7Lq61/hHIboUiv2lchYs0a5ZrghUaat4wpN+uv94kWLLIsAtdugQH8l6/\ndfJk+Pln+PprN8QkhB2caav8VUhIxv8zQ0OvvVYyKICv/7qJxFo30acPJCZ6Lk4hhPBH9nQbzACa\nAwNsz88D/3PyviOVUtuUUu8rpUo7eS1RAMTFmU9ktYY9eyA8HN5/3zyXIWkutHKlqR6ShxIlTCno\nxx6ThZ6F17CirfJpsbHX/t/UOuvfarHiis+XBlCypFma4YJM0RJCCJexJ8m6XWs9AkgE0FrHAc4M\nLJgB1LJVgYoB8hw2KESqXbtMFcGXXzaFLoSLde9uerL27Mnz0NatoWdPM3RQCC/g6raqQChc2Az7\nrVoVOnbMfZ6lEEII+9mz9nuSUioQ0JC24GPOC+rkQWudfpWd2cCy3I6fOHFi2uOIiAgiIiLye2vh\nLTZvNsPS2rZ16LTt282bgDfeMEtpCQsUKgRDhphuqtdfz/PwKVPg1ltNB1inThlfSx2qlBMpjFFw\nREdHEx0dbfVtXNpWFSSBgeZP/okn4K42yaycf4qydSt5OiwhhPBp9lQXHAj0AxoC84C+wAta68V2\n3UCpGsAyrfWttudhWusY2+OngCZa62zfMkvhCz/0119m8du5c03JdjspBRUrwjvvwD33WBifgL//\nNuuVHTmCPbPh16wxvYo7d5pFi+0lhTEKLouqCzrVVjl5b68sfOHotbSGZ7rtZv3aJNZtK0upOlVc\nc2MhvIAUvhCOckt1QaVUHaAdpmDFWq113mOJzHkLgAigLHACmAC0ARpgPmH8B3hYa30ih/MlyfIn\nJ09C8+Ywbhw89JDdp/3yiyk8+Pnn0Lu3hfGJa9q0gREj7F6zbNgwU7fkvffsv4UkWQWXVdUF89tW\nueC+fpFkgXn9wabbifkznq8O30bhMiVdc3MhPEySLOEoy5MspVS17PZrrQ/n96b2kiTLj1y4YN64\nd+4MUVF2n/bTT9CjB5w6JW/I3Wr9etOL1by5XYefO2eGDc6da8rq20OSrILLop4sv2yrXPl3Ehqa\nsfhFTkN2k65oetbaQVjgKeYcaIMKtH9pDSG8lSRZwlHuSLJ2YMa4K6AYUBP4U2t9S35vandwkmT5\nj969oXRp+OCDbCfqZG78M5P5O97v229N59f27VCqVN7HS5JVcFmUZPllW2Xl30mu62jFXqZltUM8\n0OogT67oaE0AQriRJFnCUZavk6W1vlVrXc/29QagKbA5vzcUBdS4cTBrVo6VENKXaNcaoqOhfHlY\ntUrKtPuKzp3NdLtx4zwdiSiIpK1yrZKhRVn6XWleWX8HP2yQN6ZCCOEoh8cAaK1/B263IBbhz5o0\nMbWC7bB2rSlu8emn0KGDxXEJl5o+HZYuhQ0bPB2JKOikrXJezWYV+XBJKe7rrzh50tPRCCGEb8mz\nhLtSKv0qOAGYyk3HLItIFGirVsGgQabIRatWno5GOCo0FGbMMNUG//jDLFoshDtIW2WNzp1h8GBT\n3ObLL3NflkEIIcQ19vRkBaXbigLfAD2tDEoUTCtWmMb8yy8lwfIqly45dHjPnqbj8oUXLIpHiOxJ\nW+Wg1LXsUrfQ0OyPi4qCQ4fMlFohhBD2sauEu6dI4Qsf9csvEBMD3bvbfYpSZg7W119Ds2YWxiYc\nc/Ei1Kxp1jcrXdru006fNtUGly7NuUChFL4ouKwq4e4pvlr4wpF77doFERHmv/caNdwTjxCuJIUv\nhKOcbavsGS64DFOxKVta6x75vbnwQ/v2ma4MBxZMWrrUfF2xAho3tigukT8lSkDLlrBokRkvZKdy\n5czC0UOHwtatUKyYhTEKgbRVVrvlFhg18BQjO8axbO+NMmxQCCHyYM9wwQPAJWC2bTsP7AfesG1C\nGCdPQqdOMHGi3b1Yn30Gjz1mHkuC5aWGDIH58x0+rW9fqFvX/DoI4QbSVlnsPy8U5cABWDptn6dD\nEUIIr2fPOlm/aq0b57XPCjJc0IecP28WG+7Sxe7Fhj/5BMaMMcUu6teXoWNeKykJwsNh82a47jqH\nTj15EurVg2XLzDyt9GS4YMFl0TpZftlWectwwVQbnlvJgNcbsvtkOYLLyCLFwnfIcEHhKMvXyQJK\nKqVqpbthTaBkfm8o/FRkpHk3bWe3xbx58J//wHffmdOEFytcGPr3z1dvVoUK8Oab5tcjMdGC2IS4\nRtoqN2g1uQMdymxhwr17PB2KEEJ4NXuSrKeAaKVUtFJqPfA9MMrasITPGT8eZs60q77vnDnw/POw\nbp0Z5y98QGQkXL2ar1Pvuw/q1JFqg8Jy0la5Q0AAUz6uwkffVeKv3897OhohhPBadlUXVEoVBerY\nnu7VWl+2NKpr95Xhgn5m5kx45RWz4PANN1zbL0PH/NuZM2ZI6Lx50K6d2Sf/5gWXVdUF/bGt8qbh\ngqGhEBdnHnfiWzbRnHjKAKYcfGysG4IUIp9kuKBwlOXDBZVSJYD/ACO11n8A1ZRS3fJ7Q1FwvfMO\nTJkC0dEZEyzh/8qWNWvsREbKGzFhDWfbKqXUHKXUCaXU9nT7JiiljiilfrdtnSwI3WvktW5WXJxJ\nwrSGLy51JrRGGb7/3jxPTb6EEEIY9gwXnAtcAVJXuzkKTLYsIuGXpk83c3Oio6FWrTwPF36oQwfo\n3RseecS8Kcv8hi7zltPCqELkwNm2ai7QMZv907XWDW3bSidj9GqxsdeSqLwSp2LFzIdmo0dDSor7\nYhRCCF9hT5J1ndZ6GpAEoLW+CMgKGQXZZ5/BkiV2Hz5tGsyYAevXyyKWBd2rr8Lu3fDxx1nf0GXe\n5JNx4SCn2iqt9Y9Adr910t7l4N57TV2cRYs8HYkQQngfe5KsK0qp4tgWeVRKXQe4ZZy78EIrV8IT\nT0Dt2nkeqjW89JIZJnb6NFSrlnOvRUiIG2IXHle8uCndP3o0HDjg6WiEn7GqrRqplNqmlHpfKVXa\nBdfzG0rByy/DhAmejkQIIbyPPUnWBGAlUFUp9QmwFnjG0qiEd9q8Ge6/H774Am69NddDtTbV5BYt\nMkMEz53LvddC5un4CK3NKsMnT+b7EvXrm2KU99wjZd2FS1nRVs0AammtGwAxwHQnr+d32rWDShVT\nKEW8p0MRQgivUii3F5VSCtgL9AaaYYZNPKm1Pu2G2IQ32bkTevUyayW1aJHroVqbRYbXrTMJVrly\n7glRuIFSULSoyZ5Hjsz3ZR5/HDZsgKefhv/9z4XxiQLJqrZKa30q3dPZwLKcjp2Ybo3AiIgIIiIi\nnLm1V0idN5n+eWZKweSGS+n1QysuXw6maFH3xSeEEK4UHR1NdHS0y66XZwl3pdQOrXXu3RYWkRLu\nXuLqVdNz9eKLZtGjbKQv7ZsdKe/rR775xowR2rTJqcucOwcNG5qS/v36ZX1dSrz7LytKuLuirVJK\n1QCWpV5HKRWmtY6xPX4KaKK1HpDNeX5Rwj3fLlygbamf6ft8HR6bXNnT0QiRLSnhLhxleQl34Hel\nVJP83kD4gcBA2LgxxwQLTIKVnAwPPWQ6us6eleGAfqtDB9i3z+lJVaVLw+LFpkPsr79cFJsoyJxq\nq5RSC4BNwI1KqcNKqUhgmlJqu1JqG9Aas+CxyKxkScI5wsvTi3HxoqeDEUII72BPT9Ze4HrgEHAB\nMwxDa63rWR6c9GT5DKVg8GA4fBiWLYOgIE9HJCw1YgRUqmQm3jnp3XfNkMHNmzP+3vjEJ/giXyzq\nyfLLtspX/g5Kqgt0LBpNi5ENGfN6JU+HI0QW0pMlHOVsW5VjkqWUqqm1PqiUqp7d61rrQ/m9qb0k\nyfIeeQ0HLFwYIiLgyy+hRAm3hSU8ZdMmePZZ+OEHpy+lNTz8sKmlsXQpBNj6133lzaVwnCuTLH9v\nq3zl7yA0FHrEzeVLenGOMjJEXHgdSbKEo6xMsn7TWjdSSq3VWrfLd4ROkCTLQ5KToVDGmig5NfSX\nL5v5NElJ8PnnZoFKUQBobX5PChd2yeWuXDFVyiIiYNIksy+3xF7ewPk2FydZft1W+UqSBcCFC/Tr\ndI5G3Svz7LM+FLcoECTJEo5ytq3KrbpggFLqOcz49NGZX9RaSylbf3T2LLRvb1YPbpL79IbEROjT\nxxSb++ILKFLETTEKz1PKZQkWmN+dzz+Hpk2hbl2TuOeWRCmXDjQTPk7aKm9RsiQT3iuJHxRWFEII\np+VW+OI+4ComEQvKZhP+JiEBOneGO+6Axo3tOjQ4GD77TBIs4bwKFcxw05Ej4ZdfPB2N8CHSVnmR\nm2+Gu+4yoxrSLzgfGurpyIQQwr3sKXzRWWv9rZviyXxvGS7oLgkJ0KUL3HKLqUSQqasg/ZCV06dN\ngtWwoenwCgz0QLzCby1bBsOHm+le11+f/TE+NYRKZGFR4Qu/bKt88Xd97164807Yv998EAe++X0I\n/yLDBYWjLC/h7qlGS7hRfDx06gQ33WSyplzGYh09Cq1bm/kzM2dKgiVcr3t3eOkl8yt54oSnoxG+\nQtoq71Gnjvn7/e9/PR2JEEJ4jj3rZAl/d/iwWdxq5sxrpd2ysX+/+XRy8GCYMkXmxQib2bPNBD0X\nGjYMBg2Crl3h/HmXXloI4QYvPn2Bt1+7zNmzno5ECCE8I8d31Eqpe2xfa7ovHOERdevCa6/lmmCB\n6cF65hkYO9ZNcQnfsGABrFjh8stOmGCGpPbq5fIcTvgRaau80w3XpdD18he89fwpT4cihBAekdu7\n6nG2r5+7IxDheaGhGScqZ95eew0eecTTUQqvM3CgSbRcTCkzerVsWejb15R5FyIb0lZ5o6Agxj9+\nlv97v1iuaywKIYS/ym2drDWABpoAWVYc1Vr3sDY0KXzhbtlNTF67Fvr3h7lzzdAtIbKIi4MaNcyw\n09KlXX75pCRT0l1rWLTIVI7Pa3FsWUfLu7l4nSy/bqt8umBEQgIPVfiKSg90YvLMcr77fQi/IIUv\nhKOsXIy4CNAQ+Ah4KPPrWuv1+b2pvSTJssCZM7BuHdxzT5aXMjfmixaZctpLlkCrVm6MUfieXr1M\nxYqhQy25/JUrZk224sVNp1mh3Fb4w8ffmBYALk6y/Lqt8vXf5X+emUGjtwcTeyXIp78P4fskyRKO\nsqy6oNb6itb6J6CFrZH6DfhNa73eHY2WsMDx42Zi1W+/5Xnof/8Lo0fDd99JgiXsMHAgfPKJZZcv\nUgQWL4Zz52DIEEhOtuxWwsdIW+XdaowfTN+ALwjinKdDEUIIt7KnumBFpdRWYBewWyn1m1Kqrj0X\nV0rNUUqdUEptT7cvRCm1Win1p1JqlVLK9eOLRFb//GNKAw4caEoD5iAlBZ591syF2bgR6tVzX4jC\nh3XrBi++aOktihUzixWfOQP33SdztEQW+W6rhIWCgnh+YxcSKM3p054ORggh3MeeJGsWMFprXV1r\nXQ142rbPHnOBjpn2jQW+01rXBtZxbdKysMrevaY7atQoGJf7j3vIELMI7MaNUL26m+ITvq9YMdNL\narHixeGrr+DqVbj7brh0yfJbCt/hTFslLFStYTnAFE8SQoiCwp4kq6TW+vvUJ1rraKCkPRfXWv8I\nZJ6e3hOYZ3s8D7jbnmuJfEpJMR/7T5pkJljlICHBfD13zgwRLFvWTfEJ4aCiRc18wZAQ6NLl2u+u\nKPDy3VYJ65UuDdOmXatWGxrq6YiEEMJa9iRZB5RS45VSNWzbC8ABJ+5ZQWt9AkBrHQNUcOJaIi8B\nAfDjj6aLKgcnTkBEhHm8dCmUKOGe0ITIr8KFYf58uP566NAh90qDosBwdVslXOjsWfM539NPm0Ie\n8jcrhPB3edToAmAoEAUsxZTJ/cG2z1VyLfUyceLEtMcRERFEpGYDwn6lSuX40t69pjT74MHw++95\nV20TwlsEBsKsWfDUU9C2LaxeDeXLezoqkZ3o6Giio6Otvo3VbZVw0rhxULcujBnj6UiEEMJ6OZZw\nd9kNlKoOLNNa17M93wNEaK1PKKXCgO+11jflcK6UcLfQ99+bkYSvvAIPPuj7pYKFlzh6FCpXNr9Q\nbqA1jB9vemHXrIHwcPld9nauLOHuDaSEu/1GNfsJdV0t3lpQwa++L+H9pIS7cJRlJdxdSNm2VF8D\nD9geDwG+ckMMBYPW8NNPdh364YcmwVq40CRYQrhMhw6webPbbqcUTJ4M999v6rv884/bbi2EcNDY\nnnuYt6i4p8MQQgjLWZpkKaUWAJuAG5VSh5VSkcAUoL1S6k+gne25cFZKiqkeOHw4JCbmetjzz5s6\nGOvXm2FWQrhU//6WrpmVk7FjzdBBWddNCO8V9vRAhpb8jCr86+lQhBDCUnkmWUqpO+zZlx2t9QCt\ndWWtdVGtdTWt9VytdZzW+i6tdW2tdQet9dn8BC7SSUw03VJ//AEbNphy2tm4dMm8/42ONh1edeq4\nN0xRQAwYYFYOTkpy+61HjoSoKPN4+/bcjxX+xZm2SrhRkSI881p5Egji8D8pno5GCCEsY09P1jt2\n7hOecPYsdOpkHq9cCWXKZHvYyZMQFGRKX2/aBBUqXCulm7qFhLgxbuG/atUyZf9Wr/bI7SMjzdcO\nHeCXXzwSgvAMaat8RIUHu9OXJYwbdNjToQghhGVyrCWnlGoOtADKK6VGp3spGAi0OjCRVWho1rK3\nK+jPX9TnKd6kzHcBxMZmPW/HDujZ0yzgmpLitnoEoiAbONAMGeza1WMhzJ5tbr9kiQwh9GfSVvmg\ngAD+5EYObg9h82Zo3tzTAQkhhOvlVrC7CFDKdkxQuv3xQF8rgxLZi4vLpsrUmY/pXLYsT2KSsNwS\nqJAQSbCEm9x7Lxw75tEQuneHBQugTx+T73Xo4NFwhHWkrfJBu0JaERcHLVqY5yEhZPshoRBC+Ko8\nS7grpaprrQ8ppUoBaK3PuyUypIR7Zo6U8k1JMXNT5s6FL76ARo2sjU0Ib5L+b2XjRujVCz74ALp1\n82xcwrCihLu/tlX+VsI9vZQUaNYMnnjCrNXor9+n8A5Swl04ytm2yp6lZ4OUUluBUNsNTwNDtNY7\n83tTYa2EBNNgnT5t5qRUrOjpiITwnDvugOXLTYL18cfSo+XHpK3yMQEB8NZb0K+fpyMRQgjXs6fw\nxSxgtNa6uta6OvC0bZ9wp8RE+rMgz8P27zfj2ytWhHXrJMESAqBpU9OjO3Cgqa4p/JJTbZVSao5S\n6oRSanu6fSFKqdVKqT+VUquUUqUtiLtAa9EC7rzT01EIIYTr2ZNkldRaf5/6RGsdDZS0LCKR1ZEj\n0KoVPfjaVK/IwerVpsEaORLeew+KFHFjjEJ4kdT5h+m3li1N726bNhAc7OkIhQWcbavmAh0z7RsL\nfKe1rg2sA8Y5G6TI6rXXIJBk9uzMuX0TQghfY0+SdUApNV4pVcO2vQAcsDowYfPDD+Zj+D596M9C\nCMxaLCt1/lVkpFme6JFHPBCnEF4kNtbM78huW7nSDKmV8u5+x6m2Smv9I5Cpfis9gXm2x/OAu10T\nqkgvPBxGBszgrltj0j4UCQ31dFRCCOEce5KsoUB5YKltK2/bJ6ykNcyYAX37muoVzz4LZJ17d/o0\ndOlihgb++quUqhZeqEcP2LfP01Gk6Wjrq+jRA/7+27OxCJeyoq2qoLU+AaC1jgEqOHk9kYM3/mhP\n5cCTfPB6LFpnXa5ECCF8TZ6FL7TWccATSqkg89R9FZsKtIsXzfi/jRvNwq7Z+PlnUym7Xz945RUo\nZE8ZEyHcrUYNU0v9xRc9HUkGL71k1vHetEnmLvoDN7VVOZYmmzhxYtrjiIgIIiIiLLi9/wqsexOz\nhs2i03M16DZYk92HikIIYaXo6GiiXThx254S7rcC87FVbALcVrFJSrhnlFrKN7WTKyoKZs2Cu2UA\ni/BmP/8M998Pe/d6zUJtqX9LEyfCsmWmGEZQUF5nCVexqIS7022VUqo6sExrXc/2fA8QobU+oZQK\nA77XWt+UzXlSwt0Vrlzh6coLOHVzBB/9UKPgfN/CLaSEu3CUs22VPcMFPgmM2gAAIABJREFU30Oq\nC3qN+HhTIW32bNi8WRIs4QOaNjUFW377zdORZDFhgllDrm9fuHLF09EIJ7mirVJk7EL5GnjA9ngI\n8JWzQYpcFClC1Gc38eNPgUCKp6MRQginSHVBb3D1Kly+bNehDRuaT9w3b4brrrM4LiFcQSkYMAA+\n+cTTkWShlOkVLlYMHn64APUY+Cen2iql1AJgE3CjUuqwUioSmAK0V0r9CbSzPRcWKtXudj74qhwQ\nwJkzno5GCCHyT6oLelpMDNx1F8ycmeMhKSkwxda0T51qyrMXL+6m+IRwhYEDzbBBL1SokJkytm0b\nTJ/u6WiEE5ytLjhAa11Za11Ua11Naz1Xax2ntb5La11ba91Ba33WwviFTURn08A9/riHAxFCCCc4\nWl3wc6AcUl3QNb7/3oxVat3aLG6VjWPHoEMH+OYb87xPHzfGJ4Sr1K5tirh4qZIl4auv4I03YMUK\nT0cj8knaKj/z22+wZImnoxBCiPzJtR6dUioQeF5r/YSb4ikYkpJMabP334f586F9e8CsC5Jb2dqQ\nEDfFJ4QVvKToRU6qVYPPP4eePU0hjJtv9nREwl7SVvmnDz+EXr3MQuJhYZ6OpuDQGk6ehKNHzduV\n4sWhZk0pDiSEo3JNsrTWV5VSLd0VTIExaZJZCXXr1gwtR1yc+c/twgV45hlYvhw+/hjuvNODsQpR\ngDRvDq+/Dt27w5YtULaspyMS9pC2yj81bw4PDU3h/l4XWLkxiAB7xt6IfDl1ChYvNivH/PgjcOUy\nVThCEZXMBUrwz6WKhJe/QqeexYgcVojbbvN0xEJ4P3tKuL8LhAOLgQup+7XWS60NzY9LuF+6BEWL\nkrnFUMr85zZkCLRoAW+/Lb1XQlghr7LYzzxjhiqtWiXrz1nBohLuftlWFagS7umkjuyoxT7KcYZj\nRWvxb2J5T4fld7ZsMXO9166Frl3NIu0tW0L4pX3XVms/e5aU3Xv5Y8VRlpV9gNl7WnL99WYOqy8l\nW1LCXTjK2bbKniRrbja7tdba8rHufptkZSMx0XTJh4XB//4HvXt7OiIh/Fdeb1yvXoWOHU31+Vde\ncV9cBYVFSZZftlUFNclK7/Crn3Dbc51YEV2S21sX83Q4fuGXjVcY9+AJ/j5clP9MLc+QB5R9wwG1\nJvmqYu5cGD/e1DR69VUoUsTykJ0mSZZwlOVJlif5RZKVmGjqQ+fi99/NWq27dsGJE1ChgptiE8IT\nZs0yxV5q1/ZYCPa8cT11ytSl+b//M5/uCtexIsnyJEmyLKY1owOm82XQ/fx+uDxlyng6IN91/Jjm\nuYH/sOqHErx086cMeacJhVu3yNe1zpyByEjzvuXLL6FSJRcH62KSZAlHuWMxYpEf58/DY49Bv345\nHnLlCkRFQadOMHas2ScJlvB7Bw6Yoi9ernx5WLQIHnoI9u/3dDRCFGBK8T7D6BKwisi7/iVF1il2\nmNYwb2oM9Wucpfzu9ez9Yi8PbX+Sir1aoBRpW2io/dcsW9ZUZe1WYyctG11k3z7r4hfCF0mSZYXv\nv4d69cwCw/Pnp+0ODSXDf2ZFi8LEieYT88GDZf6VKCAeeMBUdElO9nQkeWrWDF580SydcOmSp6MR\nouBKIJg31tTjxMELvPKy9EY44tgxU8znzXeLsvrJFUw7Npjg7q2BawW3UrfcKhxnRykY//hZxia8\nQMTtlzh40IJvQAgfJUmWK124wKxij3Ok7WC6HPw/1AdzUGVKpyVVAPHxZoHFsDD49FOz0HDqf26x\nsZ4NXwi3qFMHatSAlSs9HYldRoww5dxHjPB0JEIUbEWb1GPJjjrMfE+lrR0pcvftt9CwoRn6vOWv\nEBq8NhACA+0+P/OHw9n2erVsybANg3n+ygTa33GRmBhrvhchfE2eSZZSqqJSao5S6lvb85uVUg9a\nH5oPWrqUopfjqRK7gxW6S4ZPh7SGjz6CunXNSMJdu8xIQi9fOkgIa0RGmkVwfIBSZhrZpk2mA054\nJ2mrCobKlc0w3sjIa8XvRFbJyTBuHAwfbn5eUVH5K06Ruacrx16v227j0ZU9GXTuf/TucJ4rV1z2\nrQjhs+ypLvgtMBez0GN9pVQhYKvW+lbLg/O1whdaowJUlknKJ07AqFGmVOp778Fdd3kmPCG8xrlz\nUL26mZ/lyCQAF7Fn4e/MPcvbtpl1wzdtghtusDY+f2dRdUG/bKuk8IWR+efw3nvw1lvm71GG2md0\ndH8i/XpdJii8NPPnm/mlOcn8c83reW7nAqQsWUrvoaWpPLAtM971rk+RpfCFcJQ7Cl+U01ovAlIA\ntNbJwNX83tCvZeqWSk42a13VrQvVqsGOHZJgCQFA6dKwfbtHEiwwCVROn87mNC+hQQMzP6t/f+RT\nWu8kbZUfCwnJOFRt3Djo3Bl69dJcvuzp6LzHlm9OcftN8XQOWM033+SeYGUn88/Z0QQ2oG9v5v/R\ngLXrVPop6UIUSPYkWReUUmUBDaCUagacszQqP7BhgxkHvWyZeTx1KpQo4emohPAi1ap5OgKHjRwJ\n4eHmDZ7wOtJW+bHMH4zExcHrr0O5g78S2fGYVBwEFkzaT7ceihn91vP81r4E5GPWfeafsyNzxVPn\nb5WuVZa//jI1jg4dcjwGIfyFPX+Co4GvgeuUUhuB+cDjlkbl4wYNMtv48bBmDdx0k6cjEkK4glLw\nwQeweLGZUC68irRVBUxAAHw0L4V/Nh7hhaFHPR2Ox6SkwLjuO3lhYiHWvbWDHh/d45YJ35l7vSDr\nqIDISCQBFgVWodxeVEoFAMWA1kBtQAF/aq2T3BCbT9HajA8HqFoVdu+GUqU8G5MQwvXKljUFMPr1\nMwuJe/sCnAWBtFUFV/GI2/n6w1XcMSSUCpVPMuqVgrXYZEICDLrnMud+TGTL+kKUa9nGbffOq5er\nTBmzok1qMcPs5roK4c9y7cnSWqcA/9NaJ2utd2mtd0qjlT2lri378+qrkmAJ4c9atYKHHzY91ldl\n1o/HSVtVsJUb2JE1U37nrWlXeH9awXkXf/AgtGgBYdWLsvpMI8q1rJPlmMwl2N05DTYuDvbs1pQL\nSebYMcfX4BLC19kzXHCtUqqPUlJsPC//+Y+nIxDCBx0+DNHRno7CYS+8AElJZl6I8ArSVhVg1cbc\ny5r/rGbCSwF8+qmno7He+vUmwXr4YZg5E4oUzf7X3tnFhp1Vp9xphiX+H08Pk+mRouCxp4R7AlAS\nSAYSMcMwtNY62PLgciiLW6NGDQ7JbErhg6pXr84///zj6TC8y+bNcP/98Oef5GumtgXsLZt9+DA0\nbgzLl0PTptbH5S8sKuHudW2Va64tJdyzk9PPZecfV7mrYyCzZ0P37u6Pyx1mzTJzvj/5BO69N2Pi\nlHlIXuafU+blK9wxhO/itP/j5gl9OZRYkfR/9u6ORUq4C0c521blmWRZRSn1D6byUwqQpLXO8hYl\np4bL9k1bHqMQria/u9nQGurXh+nTvWaNA0fe2C5ZAmPHwtatEBRkbVz+wooky5MkyXK/3H4uv/wC\nXbvCggVe81+KSyQnaUa33cqafbX4ekMZbrjBO5KoPCUn8+V1TzPk8EucSSpNIVs1AEfW5HIFSbKE\no9yxThZKqRClVFOlVKvULb83TCcFiNBa35ZdgiWEKCCUgkceMauL+qC+fSEiAh6XOnYeZ1FbJXxM\nkybmw4/+/WHjRk9H4xqxxxLpXG0Xf/9xiZ/WJOS4ILozJdgtU6gQPef3oTZ7mfe+TJUUBUeeSZZS\n6iFgA7AKiLJ9neiCeyt77i+EKAAGDYK1a+Hffz0dSb68/bYZ9bhwoacjKbgsbKuED2rVylQB7XW3\n5vcfL3o6HKfsWX+S22udol7wQZYfaUDpulU9HZLDVOtW9GUJL469woULno5GCPewJ8l5EmgCHNJa\ntwFuA8664N4aWKOU+kUpNcwF1xNC+KrgYDMva8YMT0eSLyVLmgTriSdMxS/hEVa1VcILZV6jKbuq\neR07wntdv6ZL20R2/Zbo/iBdYMXbf9O6bQAvdN3KG3u7ERhc0tMh5ds0nuXODsWZPt3TkQjhHvYk\nWYla60QApVRRrfVezDokzrpDa90Q6AKMUEq1dME1vdqhQ4cICAggxQUr89WsWZN169bZdey8efO4\n8847054HBQW5rPjCq6++yvDhwwHXfn8A//77L8HBwTKHqaB49llTKstHNWxo5mYNHHhtOQfhVla1\nVcILZR4Wl1PVvF5zuvF640/p2PI8+/dccW+QTtAaXnsNhr1ak6+m7GXI5z3cssCwlc5QjlemBPDW\nW3DypKejEcJ6uS5GbHNEKVUG+BLT8xQHOF3aT2t93Pb1lFLqC6Ap8GPm4yZOnJj2OCIigoiICGdv\nbamaNWsyZ84c2rZtm+3rnqounP6+CQkJeR6/fv16Bg0axL95DN8aN25cjvdxVOafXdWqVYmPj8/3\n9YSP8YNVfZ96ClavhpdeMpswoqOjiba+TL8lbZXwcYGBDFo/jIuNZ3FXk3vYsLMsVWsEejqqXCUm\nwrBhsHs3/PRLIapWvfYZdHaFLXxJrVpmrtxrr3k6EiGsl2eSpbXuZXs4USn1PVAaWOnMTZVSJYAA\nrfV5pVRJoANmDH0W6ZMs4T5a6zwTpqtXrxIY6N2NlRDuFBAA8+bBbbeZqmatpOwCkPUDsqiobP+7\nd4oVbZXwE4ULM/znBzl/61zuatCLDXsrUjHMO3uFjh2DXr2gZk344QeoUiVrUuXrgzvGjYN69bLu\nTx0Cmv65VxTuECKf7Cl8US11Aw4C24AwJ+9bEfhRKbUV+AlYprVe7eQ1vU5KSgpjxoyhfPnyXH/9\n9XzzzTcZXo+Pj+ehhx6icuXKVK1alfHjx6cNjTtw4ADt2rWjXLlyVKhQgUGDBtndqxMbG0uPHj0o\nXbo0zZo1Y//+/RleDwgI4MCBAwCsWLGCW265heDgYKpWrcr06dO5ePEiXbp04dixYwQFBREcHExM\nTAxRUVHcc889DB48mDJlyjBv3jyioqIYPHhw2rW11syZM4fw8HDCw8N544030l6LjIzkxRdfTHu+\nfv16qlY1E3jvv/9+Dh8+TPfu3QkODub111/PMvzw+PHj9OzZk7Jly3LjjTfy/vvvp10rKiqKfv36\nMWTIEIKDg7n11lv5/fff7fp5CZFZ5vkembfs5n+kCguDOXNg8GD3L/xZkFnUVqVe+x+l1B9Kqa1K\nqS2uuKZws2LFGL11MAMb7KZ9e+988/7jkhiaNtV0727meJYokXUxYW+M21Hh4abWUWb2DgEVwlfY\nMyfrG2C57eta4ADwrTM31Vof1Fo3sJVvv1VrPcWZ63mrWbNmsWLFCv744w9+/fVXlixZkuH1IUOG\nUKRIEQ4cOMDWrVtZs2ZNWuKgtea5554jJiaGPXv2cOTIEbt79R577DFKlCjBiRMnmDNnDh988EGG\n19P3UD300EPMnj2b+Ph4du7cSdu2bSlRogTffvstlStXJiEhgfj4eMLCzHuVr7/+mnvvvZezZ88y\nYMCALNcDMzRo//79rFq1iqlTp+Y6dyz13Pnz51OtWjWWL19OfHw8Y8aMyXLtfv36Ua1aNWJiYli8\neDHPPfdchiFIy5YtY8CAAZw7d47u3bszYsQIu35eQmSWubHPvOXV+HfpAnffDcOH+/6nzj7E5W1V\nOrLkiD8oVYrx37elYydF585gx8h5t9Aa3hz4K33uDaBU7L+MH296xZXyveGAuUn/4dWG//5OcS5y\n/LinoxLCOnkmWbYkqJ7t6w2YuVObrQ/N9y1evJhRo0ZRuXJlypQpk2H+0okTJ/j222958803KVas\nGOXKlft/9u48PIoqe/j494QEwpJAwpqQEDa3QQEHdUQBQUZB2VyGVRBxRx0EdUZUNCD6E3DEZeaV\nEUQFFFTcQdw1KAiDO4iiCBICIbIbJKzJef+oSuiETtJJutPdyfk8Tz2pruXWqZvqun2rbt1i7Nix\nLHD7gG7Tpg09e/YkMjKShg0bMm7cOJYuXVrqNvPy8njttdeYPHky0dHRtGvXjpEjRxZaxrMjiZo1\na7J27Vr27dtH/fr16dixY4npd+7cmX79+gEQHR3tdZmJEycSHR3NqaeeyqhRowr2yRfFdXKRkZHB\nihUrmDp1KlFRUXTo0IFrr72WuXPnFizTpUsXevXqhYgwYsQIVq9e7fN2TYj56iv4+edgR1EhU6c6\nu1DkGocJkACXVfbKkSpCBKZNg44doX9/OHAguPHs23GQIW2/5PlXo1n59m5+OtCiyt25yud58eqb\n3a24IXouU8ZbB6Cm6ipzoaGqXwN/CUAs/jNxovc2PsXdCfK2vB+eBcvMzCxoDgeQkpJSML5582aO\nHDlCQkIC8fHxxMXFceONN7Jz504Atm/fztChQ0lKSqJBgwYMHz68YF5JduzYQW5uLklJSV63W9Sr\nr77K22+/TUpKCj169GDlypUlpu+5P96IyHHbzszMLDXu0mzbto34+Hjq1KlTKO2tW7cWfM6/2wZQ\np04dDh486LeeDk0lS0sDj6al4Sg62mnyM348rFsX7GiqHz+XVfbKkSpExHlbRLNmMGgQHAnS+3F/\nfD+Dv7TIJFZ/Z/nmFrS66OTgBBIMcXHcefMfzHsxEo9i3JgqxZdnsm7zGO4QkflAxX81B9LEid7b\n+JRUyfJ12TJISEgo1Dtfevqxjq6Sk5OJjo5m165d7N69mz179rB3796Cuy933303ERERrF27lr17\n9/L888/71JV548aNiYyMLLTdzZs3F7t8p06deOONN9ixYwcDBgxg0KBBQPG9BPrSe2DRbScmJgJQ\nt25dcnKOvRRyW5F2AiWlnZiYyO7du9nv8RbDzZs307x581LjMWHo+uudlxOvXx/sSCrkT3+CyZNh\n2DA4dCjY0VRtAS6rqt0rR6q6GjVg7lzg6BGuvHAbubmVt21VmDcPuvWN5Y5LNzJrw/lEN4mtvABC\nRLN7r+PqGnOYMt4evjJVky93smI8hlo47d0HBDKoqmLQoEE88cQTbN26lT179jB16tSCec2aNePC\nCy9k3Lhx7Nu3D1Vl48aNfPrpp4DTzXq9evWIiYlh69atPOxjf6cRERFcdtllTJw4kQMHDvDDDz8w\nZ84cr8seOXKE+fPnk52dTY0aNYiJiSnoLbBp06bs2rWrzF2oqyqTJ0/mwIEDrF27lmeffZYhQ4YA\n0LFjR5YsWcKePXvIysri8ccfL7Rus2bNCjrk8EwPICkpiXPOOYe77rqLQ4cOsXr1ambPnl2o0w1v\nsZgwFRMDN9/stOsJczfcACkpcM89wY6kygtYWeX5yhEg/5UjhUycOLFgqITu6o0fREXBy/+3gd+W\nb2D0xemV8vzk7787nT489BB8uLIeV8//a9i//6rc6tfnH2MO88LLUfihwYsxFZaWllboXF5hqhqy\ngxPe8YqbHgpatWqlH330kaqqHj16VG+77TZt2LChtm7dWp988kmNiIjQ3NxcVVXNzs7W0aNHa1JS\nkjZo0ED//Oc/60svvaSqqmvXrtVOnTppTEyMnn766Tp9+nRNTk72up2iduzYoX379tX69evrX/7y\nF73vvvu0a9euBfMjIiJ0w4YNevjwYe3du7fGx8dr/fr19ayzztLly5cXLHfNNddow4YNNS4uTrdt\n26YTJ07UESNGFNqW57RNmzZpRESEzpo1SxMTEzUhIUH/9a9/FSx78OBBHTx4sMbGxmqHDh30scce\nK7RPb775prZo0ULj4uL0kUceKUgvP7+2bt2qffv21fj4eG3btq3OnDnTaxyeseSvGypC+dgNOTt3\nqsbFqWZkBDuS45T137hzp2pSkuq77wYmnnDjfg+CXsb4MgB1gHrueF1gOXBhkWUCkEsOO2X4piL5\nlP3Jl3pW5Jd6+8BNmpfnv5iKWrFCtVUr1RtvVN2/3/sy1e7/vXevjmv5mo655ehxs/ydF0ysbplr\nKqqiZZVoKZduRGQRTnv04ipp/Stc0yt+2+otPhGxuxQmLNmxW0a33QaRkSF3R0uk7L0GfvyxcwX7\n22+hSZPAxBUu3O+BXy/fB6qsEpFWOHevFOfdki9okR5xiyur/KE8x1p1VNF82r1oOeddGsfAq+px\n39Mt/BcYEN8gj32/H+UoNYHj3//k+YLh6vhuqKwsp2n12rWF30nv72NfJgmaal8m47uKllWlvowY\npxvcZsDz7uehwG/AG+XdqDHG+OSee5y+jENM0ZdmFp3n7UfS+efDyJEwahQsXlx9WwgFUEDKKlX9\nFSi521UT9uL7ncsHz6fRY3gk+3O3M+WZJn75jn79ykYa/n6Us08QZn58AklJTqWq6Et3q3NFulkz\nuPJK51rao48GOxpj/MeXO1lfquoZpU0LBLuTZaoaO3arvpKuvh45Auee69zRGjOmcuMKJQG6kxVy\nZZV/0q7eP8B95a982vnZj/S942ROPkV46imoVat86ezfc5gHB6zi6WUncZqu5sOjPZAaoXfBKFRk\nZsKpp8IPPziVLrA7WSb4KlpW+fKNrysirT022AqnXboxxpgyiIpyunWfPBnsNW5+Z2VVNeb5olsR\n526Rp/y7R97meWrU9RQ++ljIzoauXWHTprLFkZcHz9/2NSc32cWvG3JZ/cVhPqanVbBKkZjoXHzy\nsY8vY8KCL3eyegMzcZpiCJACXK+q7wc8OLuTZaoYO3arPl+uvs6bB1OmwBdfgMer36qNAN3JCrmy\nyj9p252s8iiab56fPZ+BAu9NfFVh+nSnF8CcnMIvLfa2/NGjsHCh873esSaLJE3nC/c1bdXxOavy\n2LoVTjtNWbdOaNLE7mSZ4KtoWVVqJcvdSC0g/y1561S1Ut74YpUsU9XYsVv1+fLDQBVGjHD69Hj2\n2er3fFYgKlluuiFVVvknbatklUdJlazSlvX0889w6kmHaVjrD665aBsXXducLn0b8McfsHtnHt+u\njuCjj+Dll6FNG7jrLujTx/5n5XL0KLc0XECdwf2YNrOBVbJM0AWsuaCInCkizQDcgqoDcD/wsIiU\ncLPdGGMCYNMmuP32YEfhFyLw1FPw9dfw5JPBjia8WVllAunEE52/H01azsHvfuLW/hupz14a18uh\nY8s99O/vfJc//hg++wwuvji48Ya1yEjGX72d2XMj2bEj2MEYU3HF3skSka+Bv6rqbhHpBrwI/B2n\nl6VTVPVvAQ/O7mSZKsaO3Qo4fBjat4dHHnEuFYeoslx93bABzjnHaWbUrVtg4wol/ryTFcpllX/S\ntrsi5eGvO1nHzVd12hqKQN26ULOmT80PjY/27OGmhNeJveoyZr7cwK/5aneyTFkFsuOLGqqafzgP\nBmaq6quqei/QtrwbNMaYcqlZEx57DMaNg0OV0gos4Nq0gblzYcgQ2LIl2NGELSurTOXJ7zkjLs45\nJ+H88HdenesMVsGqgLg4xt+wh1nPRfLzz4Xz1bPCZUw4KLGSJSL579HqCXzsMc+X92uZKigiIoKN\nGzf6tOykSZMYMWIEABkZGcTGxvrtLs7o0aN58MEHAVi6dCnJycl+SRdg2bJlnHLKKX5Lz/hR795w\n0knw+OPBjsRvevWCW2+Fyy6DgweDHU1YsrLKmCqkReooBrKQ6fftDXYoxlRISZWsBcBSEXkTOAB8\nBiAibYHfKyG2sDV//nzOPPNMYmJiaN68OX369GH58uXBDos5c+bQtWvXCqUhZXxCP3/55ORksrOz\nS13f1xhnzJjBPffcU+64PBWtOHbp0oUff/yx3OmZAHv0UeetlZs3BzsSv/nnP6FVK7juOmsaVg5W\nVpkKKa37d1PJ4uO5a2ocTy2IYdeuYAdjTPkVW8lS1QeB24HngC4eDc4jcNq7Gy+mT5/ObbfdxoQJ\nE9i+fTubN2/m5ptvZtGiRWVOKzc316dpvlLVClVG8tMIJF9izMvL8+s2K5onppK1bQv33Qe//BLs\nSPxGxOll8OefITU12NGEFyurjDdFK05xccUvW7S5H/i+rgmMlFsv4fKBNXj00WBHYkz5lfh2PFVd\nqaqvq+p+j2k/q+rXgQ8t/GRnZ5OamsqTTz7JgAEDqF27NjVq1ODiiy9mypQpABw+fJixY8fSvHlz\nkpKSGDduHEeOHAGONXubNm0aCQkJXH311V6nASxevJjTTz+duLg4unTpwpo1awri2LJlC5dffjlN\nmjShcePGjBkzhnXr1jF69GhWrFhBTEwM8e6lusOHD3PHHXeQkpJCQkICN910E4c8nnd5+OGHSUxM\nJCkpiWeffbbECsmmTZvo3r079evXp1evXuzcubNgXnp6OhEREQUVpOeee442bdoQGxtLmzZtWLBg\nQbExjho1iptuuok+ffoQExNDWloao0aN4r777itIX1V56KGHaNy4Ma1bt2b+/PkF83r06MEzzzxT\n8Nnzbtl5552HqtK+fXtiY2NZuHDhcc0P161bR48ePYiLi+O0004rVGEeNWoUt9xyC3379iU2NpbO\nnTvz66+/lnygmIobMwbOPz/YUXhV9Mdd0aG4q+R16sCiRfDCC+BxuBofWFlliqrIc1L2jFVouPtu\nmDHD8t+EL3sFuR+tWLGCQ4cOcckllxS7zAMPPMCqVatYvXo13333HatWreKBBx4omJ+VlcXevXvZ\nvHkzM2fO9Drtm2++4ZprrmHWrFns3r2bG264gf79+3PkyBHy8vLo27cvrVq1YvPmzWzdupUhQ4Zw\n8skn89///pfOnTuzb98+drtnrTvvvJNffvmF1atX88svv7B161buv/9+AN59912mT5/ORx99xPr1\n6/nwww9L3P9hw4Zx5plnsnPnTiZMmMCcOXMKzc+voOXk5HDrrbfy3nvvkZ2dzeeff07Hjh2LjRFg\nwYIF3Hvvvezbt49zzz33uG1nZWWxe/duMjMzee6557j++utZv359sbHmx7J06VIA1qxZQ3Z2NgMH\nDiw0/+jRo/Tr14/evXuzY8cOnnjiCa644opCab/00ktMmjSJvXv8bZYQAAAgAElEQVT30qZNm0LN\nGE31U/QHWtGhpIe3mzSBJUucd+28H/BX6BpjTOhq2RIuvZSCu1nWrNOEG6tk+dGuXbto1KgRERHF\nZ+v8+fNJTU2lYcOGNGzYkNTUVObNm1cwv0aNGkyaNImoqChq1arlddqsWbO48cYbOeOMMxARRowY\nQa1atVi5ciWrVq1i27ZtTJs2jejoaGrWrMk555xTbDyzZs3i0UcfpX79+tStW5fx48ezYMECABYu\nXMioUaM45ZRTqF27NhMnTiw2nYyMDL788kvuv/9+oqKi6Nq1K/369St2+Ro1arBmzRoOHjxI06ZN\nS+1oYsCAAZx99tkABfniSUSYPHkyUVFRdOvWjT59+vDyyy+XmKan4ppBrlixgv3793PnnXcSGRlJ\njx496Nu3b0EeAVx66aV06tSJiIgIrrjiCr799luft2tMUSedBK++CsOHwxdfBDsaY4wJngkTnLtZ\nmZnHX8Cy3gZNqKuSlaySmuqUZSirhg0bsnPnzhKfGcrMzKRFixYFn1NSUsjMzCz43LhxY6Kiogqt\nU3Raeno6jzzyCPHx8cTHxxMXF8eWLVvIzMwkIyODlJSUEit6+Xbs2EFOTg6dOnUqSOuiiy5il/uk\naWZmZqFmcykpKcVWRjIzM4mLi6N27dqFlvemTp06vPTSS8yYMYOEhAT69evHTz/9VGKspfUeGBcX\nR3R0dKFte+ZreW3btu24baekpLB169aCz82aNSsYr1OnDn/88UeFt2uqty5d4OmnoW9fWL062NEY\nY0xwtGwJ1w7K5p6brM2gCT9VspJVUlOdsgxl1blzZ2rVqsUbb7xR7DLNmzcnPT294HN6ejqJiYkF\nn70981R0WnJyMvfccw+7d+9m9+7d7Nmzhz/++IPBgweTnJzM5s2bvVb0iqbTqFEj6tSpw9q1awvS\n2rt3L7//7nTIlZCQQEZGRqFYi3smKyEhgT179nDgwIGCaZtL6P3tggsu4P333ycrK4uTTjqJ66+/\nvtj9L2l6Pm/bzs/XunXrkpOTUzAvKyurxLQ8JSYmFsqD/LSbN2/ucxqmEsyYAV99FewofOLrM1v9\n+8MTTzi91q9bF9yYjTEmWO4+433efTuPr77wb6dXxgRalaxkBUtsbCyTJk3i5ptv5s033+TAgQMc\nPXqUd955h/HjxwMwZMgQHnjgAXbu3MnOnTuZPHlywbukfHXdddfx3//+l1WrVgGwf/9+lixZwv79\n+znrrLNISEhg/Pjx5OTkcOjQIT7//HMAmjZtypYtWwo62hARrrvuOsaOHcuOHTsA2Lp1K++7D4MM\nGjSI5557jh9//JGcnJyCZ7W8adGiBWeccQapqakcOXKEZcuWHdejYv5dsO3bt/PWW2+Rk5NDVFQU\n9erVK7jzVjRGX6lqwbY/++wz3n77bQYNGgRAx44dee211zhw4AC//PILs2fPLrRus2bNin3311/+\n8hfq1KnDtGnTOHr0KGlpaSxevJihQ4eWKT4TYA0bwsCB4B7Hoawsz2wNHgwPPQQXXAD2VgFjTHUU\nO+pyJiXPYtzw7faKCxNWrJLlZ7fddhvTp0/ngQceoEmTJrRo0YInn3yyoDOMCRMmcMYZZ9C+fXs6\ndOjAGWecUeaOEjp16sSsWbO45ZZbiI+P58QTTyzoZCIiIoJFixaxfv16WrRoQXJycsGzSeeffz7t\n2rWjWbNmNGnSBIApU6bQtm1bzj77bBo0aMCFF17Izz//DEDv3r0ZO3Ys559/PieeeCI9e/YsMa75\n8+ezcuVKGjZsyOTJkxk5cmSh+fl3o/Ly8pg+fTrNmzenUaNGfPrpp8yYMaPYGH2RkJBAXFwciYmJ\njBgxgqeeeooTTjgBgHHjxhEVFUWzZs0YNWoUw4cPL7TuxIkTufLKK4mPj+eVV14pNC8qKopFixax\nZMkSGjVqxC233MK8efMK0rbu30PEoEEwZAhcfjkcPhzsaPxq5Eh48EGnM8Wvra88Y0x1I8I1L17I\n7xt3sWDmvmBHY4zPJNDvPaoIEVFv8YlIwN/XZEwg2LEbQHl5TiUrLg5mzy7fg5UhQMR7c+U33oDr\nr4dXXoFu3So/Ln9yvwfh+Q/yoriyyj9p2wuqjQH435BHGfDm1XyfUZ9Gjcr+3ZBJgqbal8n4rqJl\nld3JMsZUDRERMG+e01OE+166quSSS2DBAvjb38DjNXDGGFMt/OXp6xha6zVuu946lzLhITLYARhj\njN/UqwfvvQfZ2cGOJCB69oQPP4QBA2DtWpg82albGmNMlVevHg9sHMapnWqxePGxToTyxcXZi4tN\naLHi2RhTtTRsCK1aBTuKgGnfHlatgk8/dV7UaT8qjDHVRd34WsybB9de6zRasPdmmVBmlSxjjAkz\njRvDRx85dcmOHSEtLdgRGWNM5ejSBW69FYYOhaNHy5dGfLz3V2cY409WyTLGVH2qsHdvsKPwq5o1\n4bHH4KmnYNgwGD8ePF4VZ4wxVdadd0LdunDbbeXrGGbPHrsLZgLPKlnGmKrv88/htNPgs8+CHYnf\nXXQRfPMNbNwI7drBkiXBjsgYYwIrIgJefBE+fjObR+/MCnY4xnhllSxjTNV37rnOLZ+BA51Ln/uq\n1rtWmjaFl1+GGTOcZjT9+zvPKxhjTFXVoAEsue0jHpuey5P3ZRV0hOFtqMrNAcOp6WNpsYbTvvgi\nLCtZKSkpiIgNNoTdkJKSEuyvT/V18cWwZo3TU0S7dvDCC867taqQXr2cXeze3RkfONAqW8aYqqvF\nrZeydNoq/vV/h/jn4HTy8go3A6wOzQHDqeljabGG0774ImgvIxaR3sBjOBW92ao61csyAXvBY6CI\nvTjSmND36acwdy7MmhVyLy321zlk/37nztajj0Lr1jB6tPOu5lq1Kp52RYmEz8uIg11WWZliTOm2\nzP2YS66Jp02HGJ7+uDUxsYVPLyLAxGMvIy76vQrn71k47UtpsYbavlS0rArKnSwRiQD+A/QC2gFD\nReTkYMRijpdmXZVVOsvzStatGzz9NGlLlwY7koCpWxfuuAM2bYKxY+GZZyAhAa68Et580zrJ8EV1\nKKvC+dxjsQdHKMaedOX5LPsimgZbv6fdKbm8/rqXH+e/BiU0vwjFPPdVOMdeUcFqLngWsF5V01X1\nCPAiMCBIsZgiqvMXIlgsz4PDa74//DDcdBO89BKkp4fuJUEfRUU5d7A+/NBpOnjmmc7drSZNnLtb\npkRVvqwK53OPxR4coRp7dMeTeWrbAOa+EMm998JZZzmn8Zwcd4FNwYyuYkI1z30RzrFXVLAqWc2B\nDI/PW9xpQeWfA8H3NHzZXmnLFDff1+mhcPBXNIayrl/Z+e7rtMoWbvle1nnlzvdLLoFWrWDBAqeU\nTkyEnj3hq69KX7cU/vi/VyTfk5Lg73933quVkeHUJUtLs6LnmNLSD3EBLavKmy/l/S758/9gsfs+\n32KvWFpljb17d+eCUv/+acye7ZzC43De2r7q6e/YlZFzfCIVjKG86wU63yuSTrjGXpHfGv4uq8Ky\n44tAsUpWcITbj/2S5lslq2LLh0Ql64QT4B//gDfegKwsWLnSeSlLUpL35S+80OkCKTkZTj4ZOnWC\nrl3hu++8bz81FYYMgSuugOHDjw3r1nlP/4EHYMSIgiFtzBhnvLjlH3wQRo4sGNJuvdUZ/+mnQos1\naOD0al9avlTzSlZAWUXF92XCIfaqVFGp6Pb8mVZ5Yo+IgNzcNN5/H37+GRLZCkCjMVdQp0VDdhHP\nr1EnsKbu2Xw+7mWv6S4b/QLLWo1gWasRzL1kDMtaj2BZ6xF8Ofkdr8svv2UBy9qMdIa2zjD3slv5\n6sF3i11+7mVjWdb2qkLDVw++63Wflt+y4Lhll7W9il6UPf1i4/dYLn/d4paf+89/e41n/v1PF5v+\nsxRe9llKTr/o8qXFn9b5rpCqZAWl4wsRORuYqKq93c/jAS36QLGIhHc7HWOMMV6FQ8cXVlYZY0z1\nVpGyKliVrBrAT0BPYBuwChiqqj9WejDGGGOMF1ZWGWOMKa/IYGxUVXNF5BbgfY51i2uFljHGmJBh\nZZUxxpjyCtp7sowxxhhjjDGmKrKOL4wxxhhjjDHGj8KukiUi54nIpyIyQ0S6BTue6kRE6ojIFyJy\ncbBjqS5E5GT3WH9ZRG4MdjzVgYgMEJGZIrJARC4IdjzVhYi0EpGnRcR7V19hJtzLqnA934fzOTOc\nzz3h+v11j/PnROQpERkW7HjKIlzzHML3WC/r+SXsKlmAAvuAWjjvLDGV507gpWAHUZ2o6jpVHQ0M\nBs4JdjzVgaq+qarXA6OBQcGOp7pQ1V9V9dpgx+FH4V5WheX5PpzPmeF87gnj7+9lwEJVvQHoH+xg\nyiKM8zxsj/Wynl+CVskSkdki8puIrC4yvbeIrBORn0XkzqLrqeqnqtoHGA/cX1nxVhXlzXcR+Svw\nA7ADCPmul0NNefPdXaYfsBhYUhmxVhUVyXPXBOD/BTbKqscP+R5SwrmsCufzfTifM8P53BPu399y\nxJ/EsReO51ZaoF6Ec95XIPaglrPlibtM5xdVDcoAdAE6Aqs9pkUAvwApQBTwLXCyO28EMB1IcD/X\nBF4OVvzhOpQz3x8FZrv5/x7werD3I9yGih7v7rTFwd6PcBoqkOeJwBTg/GDvQzgOfji3Lwz2Pvh5\nf4JWVoXz+T6cz5nhfO4J9+9vOeK/ArjYHZ8fTrF7LBP0c2Z5Yg/2sV6RPHeXK/X8EpQu3AFUdZmI\npBSZfBawXlXTAUTkRWAAsE5V5wHzRORSEekF1Af+U6lBVwHlzff8BUXkSmBnZcVbVVTgeD9PnBeg\n1gLertSgw1wF8vzvOO9FihWRtqo6s1IDD3MVyPd4EZkBdBSRO7XIC3+DJZzLqnA+34fzOTOczz3h\n/v0ta/zA68B/RKQPsKhSgy2irLGLSDzwICFwzixH7EE/1qFccZ+H08TUp/NL0CpZxWjOsdu24LRj\nP8tzAVV9HedLYfyn1HzPp6pzKyWi6sGX430psLQyg6rifMnzfwP/rsygqgFf8n03Tvv8cBDOZVU4\nn+/D+ZwZzueecP/+Fhu/quYAVwcjKB+VFHso5zmUHHuoHutQctxlOr+EY8cXxhhjjDHGGBOyQq2S\ntRVo4fE5yZ1mAsvyPTgs3yuf5XlwVLV8D+f9sdiDw2IPnnCO32KvfH6LO9iVLKFwz0VfAG1FJEVE\nagJDgLeCElnVZvkeHJbvlc/yPDiqWr6H8/5Y7MFhsQdPOMdvsVe+wMUdxB495gOZwCFgMzDKnX4R\n8BOwHhgfrPiq6mD5bvleXQbLc8v36r4/FrvFXp1iD/f4LfaqF7e4iRljjDHGGGOM8YNgNxc0xhhj\njDHGmCrFKlnGGGOMMcYY40dWyTLGGGOMMcYYP7JKljHGGGOMMcb4kVWyjDHGGGOMMcaPrJJljDHG\nGGOMMX5klSxjjDHGGGOM8SOrZJmQISKXiEieiJwY7FiKIyJ3BTsGfxGRG0RkeBmWTxGRNWXcxkci\nUq+E+QtEpE1Z0jTGmFBQFcssEflERP4cyG2UMe1+IvLPMq6zr4zLLxSRliXMf1hEepQlTWPAKlkm\ntAwBPgOGBnpDIlKjnKve7ddAgkREaqjqU6r6fBlX9fnt5SJyMfCtqv5RwmIzgDvLGIMxxoQCK7MC\nuA23nFqkqtPKuGpZyqk/ARGquqmExf4NjC9jDMZYJcuEBhGpC5wLXINHgSUi54nIUhFZLCLrRORJ\nj3n7RGS6iHwvIh+ISEN3+rUiskpEvnGvUEW7058VkRkishKYKiJ1RGS2iKwUka9EpJ+73EgReVVE\n3hGRn0Rkijv9IaC2iHwtIvO87MNQEVntDlN8iLO1u40v3H080SPOx0VkuYj8IiKXedlWioj8KCLP\ni8gPIvKyx37+WUTS3HTfEZGm7vRPRORREVkFjBGRVBG5zZ3XUURWiMi37r7Xd6d3cqd9A9zssf0/\nicj/3Lz4tpi7UVcAb7rL13H/h9+4+TPQXeYz4K8iYuciY0zYCPcyS0Qi3PRXi8h3InKrx+xB7vl9\nnYic67GNf3usv0hEuvlQLpan/JshIivcfS7YrlvufeSWOR+ISJI7vaWIfO7ux2SPbTdz0/7a3c9z\nvfwrPcspr3miqpuBeBFpUuwBYYw3qmqDDUEfgGHALHd8GXC6O34ekAOkAAK8D1zmzssDhrjj9wL/\ndsfjPNKdDNzsjj8LvOUx70FgmDteH/gJqA2MBH4B6gG1gE1Ac3e57GLiTwDSgXicixcfAf2LifMJ\nd/xDoI07fhbwkUecL7njpwDrvWwvxU33bPfzbOA2IBJYDjR0pw8CZrvjnwD/8UgjFbjNHf8O6OKO\nTwKme0w/1x2fBqx2x58AhrrjkUAtLzFuAuq645cBT3nMi/EYfy///22DDTbYEA5DFSiz/gy87/E5\n1v37CfCwO34R8IE7PjK/7HI/LwK6lbSNYvbZl/LPc59HeqzzFjDcHR8FvO6Ovwlc4Y7flB8PTpl4\nlzsu+eVRkfjSgHYl5Yk7PhO4NNjHnQ3hNdjVYxMqhgIvuuMv4RRg+VaparqqKrAA6OJOzwNedsef\nx7mqCNBeRD4VkdVuOu080lroMX4hMN69S5MG1ARauPM+UtU/VPUQ8ANOgVmSM4FPVHW3quYBLwDd\niomzi3sV9Bxgobv9p4CmHum9AaCqPwLFXT3brKorPdMFTgJOBT5w070HSPRY56WiiYhILFBfVZe5\nk+YA3dy7WfVVdbk73fMq5QrgHhH5B9DSzaei4lR1vzu+BrhARB4SkS6q6tlmfkeRGI0xJtSFe5m1\nEWglTquJXoDnOfk19+9XPqRTmlzKXv4txLvOOPkJTnmUn3/ncux/4VlOfQGMEpH7gPYe5ZGnBJwy\nCErOk+1YOWXKKDLYARgjInHA+cCpIqJADZw21f9wFynavrq49tb505/FuYv0vYiMxLmymK/oSfZy\nVV1fJJ6zAc9KQy7HvitS0q6UMK9onBHAHlUt7gFjz+2XJV0BvldVb80i4Pj9L20bXqer6gK3CUtf\nYImIXK+qaUUWO+qx/HpxHqa+GHhARD5S1fxmHdHAgWK2b4wxIaUqlFmquldEOgC9gBuBgcC17uz8\ntDzTOUrhR0yiPUPwto1i+FL+FVdOlfSsVf68glhU9TMR6Qb0AZ4TkUf0+OeQc3D3pUie3IDTEuQa\ndzkrp0yZ2Z0sEwoGAnNVtZWqtlbVFOBXEcm/+neW2xY7AhiM8xwPOMfv39zxKzym1wOyRCTKnV6c\n94Ax+R9EpKMPsR4W7w8gr8K5+xPvzh+Kc6XRW5zL3Ds5v4pI/nREpH0x2yyuAGshIn9xx4fh7P9P\nQGO30EVEIsV5sLdYqpoN7PZorz4CWKqqvwN7ROQcd3pBT4Qi0kpVf1XVf+M01fAW+08i0tpdPgE4\noKrzgYeB0z2WOxH4vqQYjTEmhIR9meU+G1VDVV8HJuA0lfMmv/zZBHQURzJOE78St+GqQcXKP0+f\nc+z5t+Ecy79lHtML8k9EWgDbVXU28DTe9/FHoK27vGee3IuVU6aCrJJlQsFg4PUi017l2EnzS+A/\nwFpgg6q+4U7fj1OYrQG647RlB+fkuArnBPyjR5pFr4I9AES5D7l+D9xfTHye680E1hR9wFdVs3B6\nH0oDvgG+VNXFxcSZv50rgGvch3i/B/oXE2dxV+9+Am4WkR+ABsB/VfUIToE2VUS+dWPpXEo6AFcB\n/3LX6eAR49XAkyLydZH1B7kPMn+D07Rlrpc03wbyu709DVjlLn8fTt7jPkico6rbS4jNGGNCSdiX\nWUBzIM09J8/jWO95Xssft9n4JnefHsNpSljaNqDi5Z+nMTjN/75118/vrGMsTln4HU7zv3zdge/c\n8msQ8LiXNJdwrJzymiciEgm0wfm/GuMzcZoMGxOaROQ84HZV7e9l3j5VjQlCWGUSiDhFJAVYrKqn\n+TNdfxKRZsAcVe1VwjJjgd9V9dnKi8wYYwKjKpRZ/hTq+yxOT44f43Tw5PUHsYhcgtOxSWqlBmfC\nnt3JMuEsXK4QBCrOkN5/9+7eLCnhZcTAHpyONowxpqoL6XN2gIT0PqvqQZyedpuXsFgN4JHKichU\nJXYnyxhjjDHGGGP8yO5kGWOMMcYYY4wfWSXLGGOMMcYYY/zIKlnGGGOMMcYY40dWyTLGGGOMMcYY\nP7JKljHGGGOMMcb4kVWyjDHGGGOMMcaPrJJljDHGGGOMMX5klSxjjDHGGGOM8SOrZBljjDHGGGOM\nH1klyxhjjDHGGGP8yCpZxpRARPaJSMtgx2GMMcaUxMorY0KLVbJMlSAieSLSuoJpfCIiV3tOU9UY\nVd1UoeD8SERSRORjEdkvIj+ISM8Slu3uLrtXRDaWNS0RGSYim9yC+zURaeAxr6aIPCMiv4tIpoiM\nK7JuRxH50k37CxHpUGT+OBHZ5sb2tIhElT9XCqV7nnssvFpkent3+sf+2I4xxpSXlVdel7Xy6th0\nK6+qCKtkmapCS5opIjUqK5AAWwB8BcQDE4BXRKRhMcvuB2YDd5Q1LRFpB/wXuAJoChwAZnisOwlo\nAyQD5wP/FJEL3XWjgDeAuUAD9++bIhLpzu8F/BPoAaS46UwqSyaUYgfQWUTiPKaNBH7y4zaMMaa8\nrLw6npVXx1h5VVWoqg02eB2AJOBVYDvOieAJd7rgnOQ2AVnAc0CsOy8FyAOuBNLdde/2SDMCuBv4\nBfgd+AJo7s47GXgf2AX8CAz0WO9Z4D/AYiAbWAG0cuctdbf5hztvIHAekIFzctwGzME5gS5yY9rl\njie6aTwAHAVy3DTy9zUPaO2Ox+KcgLcDvwL3eMQ3EvgMeBjYDWwAevv5/3ECTuFR12PaUuD6Utbr\nCWwsS1rAg8DzHvNaA4fylwe2Aj095k8C5rvjFwIZRbaXDlzojr8APOAxrwewrYT484DRwM/uMXO/\nG89yYC/wIhDpLpv/f38SuMnjmNuCc8x+HOzvlQ022OD/ASuv8s+VVl5ZeWVDiAx2J8t4JSIROAXE\nr0ALoDnOyQFgFE6hdB7OySMGp0DxdC7OifGvwH0icpI7/XZgMM4JvT5wNZAjInVwCqzngUbAEOBJ\nETnZI83BQCpO4bMB58SKqp7nzj9NVWNVdaH7uZm7bAvgepyT1zM4V7Na4BRQ/89NYwJOoXOLm8YY\nNw3PK47/cfe1JdAduFJERnnMPwunsG2IU3jNphgiskhE9ojIbi9/3ypmtXY4hc9+j2nfudPLqrS0\n2rmfAVDVjTiF1oluM4wEYHUx6/6pyLwS03bHmxS5klfUhcDpwNk4P0SeAobh/C9PA4Z6LKs4Py6u\ndD/3Atbg/HgxxlQxVl5ZeYWVVyYEWSXLFOcsnBPTP1X1oKoeVtXP3XnDgOmqmq6qOcBdwBC3oAPn\npDHRXWc1zkkpv43zNThX1H4BUNU1qroH6Av8qqpz1fEdzlXJgR4xva6qX6lqHs7VpY5FYpYin3OB\nVFU9oqqHVHW3qr7uju8HHgK6lZIPAgWF+GBgvKrmqGo68AgwwmPZdFV9RlUV50pkMxFp4i1RVe2n\nqnGqGu/lb/9iYqmHc2XMUzZOQVpWpaVV0vx6OP/j373MK0/a2Tj5XNJ+TFXV/ar6I/A98L57/O0D\n3sEp0Aqo6kogTkROxCm85paQtjEmvFl55ZGmlVeF5lt5ZYLGKlmmOMk4J+E8L/MScW6n50sHInHa\nQuf7zWM8B+dElZ/ucQ+14jTbONu9MrZbRPbgFI6eaWYVk2ZxdqjqkfwPIlJbRJ5yH47di9PcoIGI\nFC3svGmEs4+bPaal41wxPS4+VT2AcyIuLcay+AOnCYin+sC+AKRV0vw/3M+xXuaVJ+36OIVgSfux\n3WP8AIWPrwN4z+d5wC04V3FfLyFtY0x4s/KqMCuvrLwyIcAqWaY4GUALj6t9njJxCpl8KcARCp9I\nSkq3TTHT09wrY/lXyWJV9ZayBu6h6MPFt+M0CTlTVRtw7KqgFLO8p504+1h0v7eWJzARWeL2gpTt\nZXi7mNXWAq1FpK7HtA7u9LIqLa21HLuai4i0AaKAn1V1L05Thg4lrNu+yPba41zROy5tnCu8v7lX\niP3peeAm4G1VPejntI0xocPKq8KsvLLyyoQAq2SZ4qzCOTFNEZE6IlJLRM5x5y0AxolISxGph9PW\n/EWPq4glXWl7GpgsIm0BROQ0t23zYpz208NFJFJEokTkDI+28aXJwmlvX5IYnKtI2SISD0wsMv+3\n4tJw9+1l4EERqSciKcA4nKtPZaaqF6vT3W6sl6FPMeusB74FUt3/x2XAqTjNVI4jjlpATSDCXSfK\nx7ReAPqJyLluwXY/8KpHm/h5wAQRaSAipwDX4TzsDZAG5IrI38XpOncMzsPAn7jz5wLXiMgp7v9+\ngse6fqNOV8bd3PSNMVWXlVcerLyy8sqEBqtkGa/ck3Q/nCtpm3Gu3A1yZz+Dc9L6FOeB3hxgjOfq\nRZPzGJ+Oc/J/X0R+xynEaqvqHzgPiw7BufKYCUwBavkY8kRgrtt042/FLPMYUAfnKt/nwJIi8x8H\nBorILhF5zEvsY3D2dSPOvj+vqiWdbEvsprechgBnAntwfixcrqq7AESki4hkeyzbDaeQXozT7CUH\neM+XtFT1B+BGYD7OD4LawM0e66bi5EM68DEwRVU/cNc9AlyC04PVHpw25gNU9ag7/z1gGk4h9ivO\nMTSxhH0u6Xgqkap+rqpZpS9pjAlXVl5ZeYWVVyYEifPMY4ASF0nCuQrQFOfKwCxVfcK9GvASzu3r\nTcAgVS364KExxhgTcO4V9E9xrqJHAq+o6iQRScW56p3/jMXdqvpukMI0xhgTRgJdyWoGNFPVb93b\n9F8BA3C6VN2lqtNE5E4gTlXHBywQY4wxpgQiUkdVc8R5EexynDsBFwH7VHV6cKMzxhgTbgLaXFBV\ns1T1W3f8D5x3MiThVLTmuIvNwblVa4wxxgSFOt17g9PkK15DrRoAACAASURBVJJjzXx86c3NGGOM\nKaTSnskSkZY4vbKsBJqq6m/gVMQAr+9mMMYYYyqDiESIyDc4z3R8oKpfuLNuEZFvReRpEakfxBCN\nMcaEkUqpZLlNBV8BbnXvaJX7wUBjjDHG31Q1T1VPx2ltcZaI/Al4Emitqh1xKl/WbNAYY4xPIgO9\nARGJxKlgzVPVN93Jv4lIU1X9zX1ua3sx61rlyxhjqiBVDclmeKqaLSJpQO8iz2LNAhZ5W8fKKmOM\nqZoqUlZVxp2sZ4AfVPVxj2lvAVe54yOBN4uulE9VK21ITU2t1DR8Wba0ZYqb7+t0b8v5Ix8qM9/L\nun5l57sv0yo7z8Mx38s6LxTzvbLPMYHM94p8B0KNiDTKbwooIrWBC4B17kXAfJdx7AWlx6nM46G8\n/1N/nu8tdv9+J4IdO+d5P4bDIfaK/N6p6rEHcp9DNfaKlHn+LqsCeidLRM4FrgDWuG3dFbgbmAq8\nLCJX47y3YFDxqVSe7t27V2oavixb2jLFzfd1uj/2uaIqGkNZ16/sfPd1WmULt3wv67xQzPfKPsf4\nunx58r2i34EQkwDMEZEInIuPL6nqEhGZKyIdcV5Bsgm4wZ8bLW++lPd/6s//g8Xu+/xwiJ2W/t2e\nP9Oqyvke6Ngrkk64xl6RMs/vZVV5a7iVMTjhmcqWmpoa7BCqHcvz4LB8Dw733B70MsZfQziXVeH8\nHbDY/YeJvh/DoRa7r8I1blWLPVgqWlZVWu+CJnyEwVXnKsfyPDgs3011F87fAYs9OMI19nCNGyz2\ncBXQlxFXlIhoKMdnjDGm7EQEDdGOL8rDyioT7mSSoKl2DBvjqaJlVcB7FzTGADt3QlQU1Pfymp37\n73fmd+wIF14ISUmVH58xJiTFx8OePc54XBzs3h3ceIwpTsuWLUlPTw92GMaUWUpKCps2bfJ7ulbJ\nMiZQ/vgDXnwRnn0Wvv8e5s+HPn2OX65HD/jyS3j/ffjHP6BNG7jxRhg2DKKjKz9uY0zI2LMH8m+S\nSZW592eqovT0dL/0yGZMZZMAnVytkmWMv+3cCVOmwDPPQNeucNddcMEFUKuW9+W7dnUGgNxceO89\nmDcP/vY3q2QZY4wxxoQhq2QZ42+bN8PBg/Ddd5CcXLZ1a9SAiy92BmOMMcYYE5askmWMv/35z85g\njDHGGGOqJevC3ZhwkZMDjzwCR48GOxJjjDGmSkhPTyciIoK8vLwKp9WqVSs+/vhjn5adM2cOXfMf\nFQBiYmL81vnCQw89xPXXXw/4d/8AMjIyiI2NtefvfGCVLGPK66uvYMKEytvekSPwzjtOhxhHjlTe\ndo0xxpgwVlrlJ1AdH5TGc7v79u2jZcuWJS6/dOlSkn14DOGuu+5i5syZXrdTVkXzLjk5mezs7KDl\nWTixSpYx5fH003DRRdC+feVts359WLwYDhyAgQPh8OHK27YxxhhjgkpVS63c5ObmVlI0pjRWyTKm\nLHJzYdw4mDYNli2DQYMqd/vR0fDqq874qFHgp9v/xhhjTHWQl5fHHXfcQePGjWnbti1vv/12ofnZ\n2dlce+21JCYmkpyczL333lvQNG7jxo307NmTRo0a0aRJE4YPH052drZP2929ezf9+/enfv36nH32\n2WzYsKHQ/IiICDZu3AjAkiVLaNeuHbGxsSQnJzN9+nRycnK4+OKLyczMJCYmhtjYWLKyspg0aRID\nBw5kxIgRNGjQgDlz5jBp0iRGjBhRkLaqMnv2bJo3b07z5s155JFHCuaNGjWK++67r+Cz592yK6+8\nks2bN9OvXz9iY2P517/+dVzzw23btjFgwAAaNmzIiSeeyNNPP12Q1qRJkxg8eDAjR44kNjaW0047\nja+//tqn/KoKrJJljK+ys6FfP1izBv73PzjxxODEUbMmLFgA6ekwd25wYjDGGGPC0MyZM1myZAnf\nffcdX375Ja+88kqh+SNHjqRmzZps3LiRb775hg8++KCg4qCq3H333WRlZfHjjz+yZcsWJk6c6NN2\nb7rpJurUqcNvv/3G7NmzeeaZZwrN97xDde211zJr1iyys7P5/vvvOf/886lTpw7vvPMOiYmJ7Nu3\nj+zsbJo1awbAW2+9xaBBg9i7dy/Dhg07Lj2AtLQ0NmzYwHvvvcfUqVN9aj45d+5cWrRoweLFi8nO\nzuaOO+44Lu3BgwfTokULsrKyWLhwIXfffTdpaWkF8xctWsSwYcP4/fff6devHzfffLNP+VUVWCXL\nmLLo1s15LiouLrhx1K4NS5bA8OHBjcMYY4zxxcSJzhu1iw7FVVK8Le9jhaYkCxcuZOzYsSQmJtKg\nQQPuuuuugnm//fYb77zzDo8++ijR0dE0atSIsWPHsmDBAgDatGlDz549iYyMpGHDhowbN46lS5eW\nus28vDxee+01Jk+eTHR0NO3atWPkyJGFlvHsSKJmzZqsXbuWffv2Ub9+fTp27Fhi+p07d6Zfv34A\nRBfzfs2JEycSHR3NqaeeyqhRowr2yRfFdXKRkZHBihUrmDp1KlFRUXTo0IFrr72WuR4XgLt06UKv\nXr0QEUaMGMHq1at93m64s0qWMb6KjYXx4yEqKtiROGJjIdLewmCMMSYMTJwIqscPJVWyfF22DDIz\nMwt1HpGSklIwvnnzZo4cOUJCQgLx8fHExcVx4403snPnTgC2b9/O0KFDSUpKokGDBgwfPrxgXkl2\n7NhBbm4uSUlJXrdb1Kuvvsrbb79NSkoKPXr0YOXKlSWmX1pnGCJy3LYzMzNLjbs027ZtIz4+njp1\n6hRKe+vWrQWf8++2AdSpU4eDBw/6rafDUGeVLGOMMcYYUy0kJCSQkZFR8Dk9Pb1gPDk5mejoaHbt\n2sXu3bvZs2cPe/fuLbj7cvfddxMREcHatWvZu3cvzz//vE9dmTdu3JjIyMhC2928eXOxy3fq1Ik3\n3niDHTt2MGDAAAa5z38X1+mFLz39Fd12YmIiAHXr1iUnJ6dg3rZt23xOOzExkd27d7N///5CaTdv\n3rzUeKoDq2QZY4wxxphqYdCgQTzxxBNs3bqVPXv2MHXq1IJ5zZo148ILL2TcuHHs27cPVWXjxo18\n+umngNPNer169YiJiWHr1q08/PDDPm0zIiKCyy67jIkTJ3LgwAF++OEH5syZ43XZI0eOMH/+fLKz\ns6lRowYxMTHUqFEDgKZNm7Jr1y6fO9vIp6pMnjyZAwcOsHbtWp599lmGDBkCQMeOHVmyZAl79uwh\nKyuLxx9/vNC6zZo1K+iQwzM9gKSkJM455xzuuusuDh06xOrVq5k9e3ahTje8xVJdWCXLGG/S02HM\nGKd5QrjYsgU++CDYURhjjDEhxfNuzHXXXUevXr3o0KEDZ5xxBpdffnmhZefOncvhw4f505/+RHx8\nPAMHDiQrKwuA1NRUvvrqKxo0aEC/fv2OW7ekuz7//ve/2bdvHwkJCVx99dVcffXVxa47b948WrVq\nRYMGDZg5cyYvvPACACeddBJDhw6ldevWxMfHF8Tly/6fd955tG3blgsuuIB//vOf9OzZE4ARI0bQ\nvn17WrZsSe/evQsqX/nGjx/P5MmTiY+PZ/r06cfFumDBAn799VcSExO5/PLLmTx5Mj169CgxlupC\nQrlGKSIayvGZKmrLFjjvPBg7Fv7+92BH47tvv4ULLoDvvgO3GYAxoUhEUNUqU9IGsqwSOXatx3Pc\nGH+SSYKmVuzgcr/XforImMpT3LFb0bKq1DtZItJPROyOl6kesrKgZ08YPTq8KlgAHTvCDTc4lUMf\nxMd77+gpf4iPD3C8xviRlVXGGGNCiS8F0mBgvYhME5GTAx2QMUHz++/QuzdccQW474IIO/fcA19/\n7XTvXoo9e7x39JQ/7NlT8vpWSTMhxsoqY4wxIaPUSpaqDgdOBzYAz4nIChG5XkRiAh6dMZVp8mQ4\n91y4995gR1J+tWvDk0/CzTeDR28/gVBaJQ2sEmYqj5VVxhhjQolPTStUNRt4BXgRSAAuBb4WkTBr\nT2VMCSZPhieecGoA4ezCC6FHD/jsswolExdXciWptPcx795dsTtlxpRVecsqEaklIv8TkW9EZI2I\npLrT40TkfRH5SUTeE5H6Ad8JY4wxVUKpHV+IyADgKqAtMBeYo6rbRaQO8IOqtgxYcNbxhTEBE+yH\n6IO9fRM8gej4oqJllYjUUdUcEakBLAfGAJcDu1R1mojcCcSp6ngv61rHFyasWccXpjoLVMcXkT4s\ncxnwqKp+6jnRLYyuKe+GjTHGGD+qUFmlqvlv46yFUzYqMAA4z50+B0gDjqtkGWOMMUX50lwwq2ih\nJSJTAVT1o4BEZYwxxpRNhcoqEYkQkW+ALOADVf0CaKqqv7lpZAFN/B+2McaYqsiXO1kXAHcWmXaR\nl2nGhI8ff4QpU+C558L/GSxjDFSwrFLVPOB0EYkFXheRdjh3swotVtz6EydOLBjv3r073bt392Wz\nxhhjQkRaWhppaWl+S6/YZ7JEZDRwE9AG+MVjVgyw3O3JKaDsmSwTELt2wV/+4vQiOHJksKOpHPv2\nQUzhTtaC/XxHsLdvgsefz2QFoqwSkXuBHOBaoLuq/iYizYBPVPUUL8vbM1kmrNkzWeEtIiKCX375\nhdatW5e67KRJk/jll1+YN28eGRkZtGvXjt9//x3xwwXn0aNHk5SUxD333MPSpUsZPnw4GRkZFU4X\nYNmyZVx33XX8+OOPfknPUzBeRjwf6Ae86f7NHzpVRgXLmIA4fBguvxz+9rfqU8F67z24+OKQ+3VW\nWu+F1sW78VGFyyoRaZTfc6CI1Ma5K/Yj8BZOZxoAI91tGGPC0Pz58znzzDOJiYmhefPm9OnTh+XL\nlwc7LObMmUPXrl0rlEZZK0j5yycnJ5OdnV3q+r7GOGPGDO65555yx+UpIiKCjRs3Fnzu0qVLQCpY\ngVRSJUtVdRNwM7DPY0BE7OePCT+qcMst0KAB/N//BTsavyitohIdDZM+v4Bn1nclbfrXZGUFO+Jj\nrIt34yf+KKsSgE9E5Fvgf8B7qroEmApcICI/AT2BKX6O3RhTCaZPn85tt93GhAkT2L59O5s3b+bm\nm29m0aJFZU4rNzfXp2m+UtUK30UK9B1EX2LMy8vz6zb9cWct2Eq7kwXwFfCl+/crj8/GhJeXX4b/\n/Q+efx4ifHpFXMjZtw/eegv+/ndo3x727nX+DhwI48bBww/D//t/8PTT8NRTcOgQHM2LYOkJ13Df\n/TVo105JSoLLLnPS27QpqLtTopIqkHaXy3iocFmlqmtU9c+q2lFV26vqg+703ar6V1U9SVUvVNW9\ngdgBY0zgZGdnk5qaypNPPsmAAQOoXbs2NWrU4OKLL2bKFOe6yeHDhxk7dizNmzcnKSmJcePGceTI\nEQCWLl1KcnIy06ZNIyEhgauvvtrrNIDFixdz+umnExcXR5cuXVizZk1BHFu2bOHyyy+nSZMmNG7c\nmDFjxrBu3TpGjx7NihUriImJId4t3A4fPswdd9xBSkoKCQkJ3HTTTRw6dKggrYcffpjExESSkpJ4\n9tlnS6yQbNq0ie7du1O/fn169erFzp07C+alp6cTERFRUEF67rnnaNOmDbGxsbRp04YFCxYUG+Oo\nUaO46aab6NOnDzExMaSlpTFq1Cjuu+++gvRVlYceeojGjRvTunVr5s+fXzCvR48ePPPMMwWfPe+W\nnXfeeagq7du3JzY2loULFxbkeb5169bRo0cP4uLiOO200wpVmEeNGsUtt9xC3759iY2NpXPnzvz6\n668lHyiBoKohOzjhGeMnhw+rZmUFO4oyO3hQ9ZVXVC+/XDU2VrVnT9UpU1RXrXLu+ZSkYP6RI6on\nnKB5H36kGzaozp/vzGvSRPWUU1QnTFBdvz7gu+I3dmoIb+65PehljL+GQJZVnknbcW8ChYkVP7hC\n9Tfbu+++q1FRUZqbm1vsMvfee6927txZd+7cqTt37tRzzjlH77vvPlVVTUtL08jISL3rrrv08OHD\nevDgQa/Tvv76a23SpIl+8cUXmpeXp3PnztWWLVvq4cOHNTc3Vzt06KC33367HjhwQA8dOqTLly9X\nVdXnnntOu3btWiiesWPH6oABA3Tv3r36xx9/aP/+/fXuu+9WVdV33nlHmzVrpj/88IPm5OTosGHD\nNCIiQjds2OB13zp37qx33HGHHj58WD/99FONiYnRESNGqKrqpk2bNCIiQnNzc3X//v0aGxur690f\nA1lZWfrDDz8UG+NVV12lDRo00BUrVqiq6sGDB/Wqq67Se++9t1C+5W976dKlWrduXf35559VVbV7\n9+46e/bsgvSKbkNEdOPGjQWf09LSNDk5WVVVjxw5om3bttUpU6bokSNH9OOPP9aYmJiCtK+66ipt\n1KiRfvnll5qbm6tXXHGFDh06tNj/f3HHbkXLqlIv54vIuSJS1x0fLiLTRaRF4Kp9xgRIVBQ0bRrs\nKHyWlQWTJkHLlvCf/0Dv3s6dpw8/hDvvhDPPLD2NgrtBUZFcuX4Cn/z1Adq0gWHDnHnbtjkdLP7x\nB5xzDnTtCnPmOHfAjAknVlYZE9pKatpelqGsdu3aRaNGjYgooQXL/PnzSU1NpWHDhjRs2JDU1FTm\nzZtXML9GjRpMmjSJqKgoatWq5XXarFmzuPHGGznjjDMQEUaMGEGtWrVYuXIlq1atYtu2bUybNo3o\n6Ghq1qzJOeecU2w8s2bN4tFHH6V+/frUrVuX8ePHs2DBAgAWLlzIqFGjOOWUU6hdu3ahnk2LysjI\n4Msvv+T+++8nKiqKrl270q9fv2KXr1GjBmvWrOHgwYM0bdqUU045rp+fQgYMGMDZZ58NUJAvnkSE\nyZMnExUVRbdu3ejTpw8vv/xyiWl60mKaQa5YsYL9+/dz5513EhkZSY8ePejbt29BHgFceumldOrU\niYiICK644gq+/fZbn7frL760mZoB5IhIB+B2YAMwr+RVjDHllZEB118Pp5ziVII+/BA++QSuvdap\nGJWF53NPcw8P5fzHBqC5eag68yIi4Kyz4NFHYcsWuP12mD8fWrWCBx90OmI0JkxYWWVMCNMSnsEt\ny1BWDRs2ZOfOnSU+M5SZmUmLFseuyaSkpJCZmVnwuXHjxkRFRRVap+i09PR0HnnkEeLj44mPjycu\nLo4tW7aQmZlJRkYGKSkpJVb08u3YsYOcnBw6depUkNZFF13ELrdAzszMLNRs7v+zd+dxNpftA8c/\n19jJMGPfFWmREipaRaqnEiVrIT3pKVqQPFS2VFK/tKdNaNPqKUui0lBSKkoJyU4RhuzbzPX7456Z\nZp8zc873fM+cud6v1/c18z3L975mnHGf69z3fd316tXLMRn5448/iIuLo0yZMhken52yZcvyzjvv\nMGHCBGrUqEH79u1ZtWpVrrGmjyM7cXFxlC5dOkPb6X+vBfXnn39mabtevXps2bIl7bx69epp35ct\nW5Z9+/YF3W5+BZJkHUsZMusAPKuqz+FK4xpjQuivv9y6qqZNoVIl+P13eOEFaNw4RA2UKAF33ZXj\nerSSJaFjR1eMcM4cWLMGGjWC++6zIhSmULC+yhiTRatWrShVqhQffvhhjo+pVasWGzZsSDvfsGED\nNWvWTDvPbs1T5tvq1KnDfffdR2JiIomJiezatYt9+/bRtWtX6tSpw8aNG7NN9DJfp3LlypQtW5bl\ny5enXWv37t38/fffANSoUSNDWfQNGzbkuCarRo0a7Nq1i4MHD6bdtnHjxhx/D+3atWPu3Lls3bqV\nk046iVtuuSXHnz+321Nl13bq77VcuXIcOHAg7b6t+ajMVbNmzSyl4Tdu3EitWrUCvkY4BJJk7RWR\nYcANwCwRiQFK5PEcY/w3dy6kW+AZqY4dg6efdslUUhIsXw5jx7pEyy9NmsCrr8KSJS75O/FEGDPG\nFd4wJkJZX2WMySI2NpbRo0fTv39/PvroIw4ePMixY8eYPXs2Q4cOBaBbt248+OCD7Nixgx07djBm\nzBh69uyZr3b69u3LCy+8wOLFiwHYv38/H3/8Mfv37+fss8+mRo0aDB06lAMHDnD48GG+/vprAKpV\nq8bmzZvTCm2ICH379mXAgAFs374dgC1btjB37lwAunTpwuTJk1mxYgUHDhzggQceyDGmunXr0qJF\nC0aOHMnRo0f56quvslRUTB0F++uvv5g+fToHDhygRIkSHHfccWkjb5ljDJSqprX95ZdfMmvWLLp0\n6QJA06ZNmTZtGgcPHuT3339n4sSJGZ5bvXr1DCXc0zvnnHMoW7Ysjz76KMeOHSMhIYGZM2fSvXv3\nfMXntUCSrK7AYeDfqroVqA085mlUxgRr6VK4/nrYts3vSHL19dfQogV8+CEsWOCSrXQj3L6rVw9e\nfhkWLYKVK93I1sSJLhk0JsJYX2WMydagQYMYP348Dz74IFWrVqVu3bo8//zzdOzYEYD777+fFi1a\ncPrpp3PGGWfQokWLDPs9BaJ58+a8/PLL3H777cTHx9OoUSOmTJkCuD2fZsyYwerVq6lbty516tRJ\nW5vUpk0bGjduTPXq1alatSoAjzzyCA0bNqRly5ZUrFiRSy+9lN9++w2Ayy+/nAEDBtCmTRsaNWpE\n27Ztc43rrbfe4ptvvqFSpUqMGTOG3pn2CE0djUpOTmb8+PHUqlWLypUrs2DBAiZMmJBjjIGoUaMG\ncXFx1KxZk549e/Liiy9y4oknAjBw4EBKlChB9erV6dOnDzfckHFbw1GjRtGrVy/i4+N5//33M9xX\nokQJZsyYwccff0zlypW5/fbbef3119OuHSnl3yWneZyRQEQ0kuMzEWrnTpe5jBsHKZ+YRJpDh+D+\n+936p/HjoWvXgi3oFQnvHsPff+9mHB46BE89BeefH7620wv3z21CS0RQ1cjoBUPAs75q926KxZUn\nSYultGOve+MNGS3oyOBeXCl/1yGKyJjwyem1G2xfFUh1wWtFZLWI/C0ie0Rkr4jsKWiDxngqOdmN\nYHXqFLEJ1pIl0Lw5bNgAy5ZBt24FS7CCkpTkAsinFi3gq69g8GDo3t1VKQzBGlZjghaVfVXHjlzB\nx35HYYwxpgACmS74KHC1qlZQ1VhVLa+qsV4HZkyBPPII7N/vvkaY5GR4+GFXiv2++9zeyJUr+xTM\n4sXQrp0LKp9EXIK1ciWccAKccQZMmFCgSxkTSlHVVx09CveUeZZbmZB2W+YNum1TbmOMiVyBJFnb\nVHWF55EYEwrJyTB1KhQv7nckGezcCVdeCbNnu5GsHj18GL1Kr2VLKFPG1YcvoHLl4MEHISEB3njD\nTR385ZfQhWhMPkVVX1WiBHy9+1S2UxVWrwYybsmgalU/jTEmkgWSZH0vIu+ISPeU6RjXisi1nkdm\nTEHcfz/Uru13FBksXuymB552GsybFyHhiUD//vD880FfqnFj+PJL6N0bLr7YjdKlq9hqTLhEXV/V\n/44YHuR+t5eDMcaYQiXPwhciMimbm1VVb/ImpAxtW+ELU6i9+CIMH+6+XnNN6K8f1EL4/fuhbl1X\niTHdJozB+PNPVxhj6VKYNMm7whhWAKBw86LwRTT2VYcPQ7nSx/i5wgWcsi0BSpXK1K79HZjQsMIX\npijzqvCFVRc0xgNJSXD33fDJJzBjhttnygtBv8m66y437+/hh0MWE7iS9P36ubVbDz7oZiaGkr25\nLNysumB+rg23t/yeZz6qC5lKJ9vfgQkVS7JMUeZndcFGIvK5iPyScn66iNwfyMVFZKKIbBORZelu\nGykim0VkScpxeUGDNyYS32Hs3QsdOrj1SYsWeZdghcSdd8KZZ4b8sh07usqJf/zhLv/NNyFvwpgM\ngumrIt2bq1pwsHzge9MY44d69eohInbYUeiOevXqefI3EciarJeBYcBRAFVdBnQL8PqTgMuyuX28\nqjZLOT4J8FrGZPTXX9CqFeyJnCrNGzbAeedBrVquyEVcXHDXi4/PWE0s8xHs9WnQADp3DvIi2atc\n2dUgGTPGJV1Dh7r9tYzxSDB9VURr0QI++sjvKIzJ3fr161FVO+wodMf69es9+ZsIJMkqq6qLM912\nLJCLq+pXQHb1j6JmmojxSXIy9OwJbdpAbGRUaV6yBM49F266ya1TL1Ei+Gvu2pWxmljmIzEx+Da8\n1rmzG9VavdoVAPn+e78jMlGqwH1VpOvdG6ZM8TsKY4wx+RFIkrVDRBoACiAi1wF/Btnu7SLyo4i8\nIiIVgryWKYoeeQQOHIAHHvA7EgC++MLtf/XsszBggM/l2SNQ1arw/vuuCMiVV8JDD7l1a8aEkBd9\nVUS45ho35dY2/jbGmMIjkCSrP/AicLKIbAEGALcF0ebzwAmq2hTYCowP4lqmKJo/H55+OmL2w5o2\nDbp2dZsLe1FBMFqIQLdu8MMPbnuuNm1g0ya/ozJRJNR9VcQoWxauvRbefNPvSIwxxgQqz3eoqroW\nuEREygExqro3mAZVdXu605eBGbk9ftSoUWnft27dmtatWwfTvCnsDh6EG26AyZMjYsOpl1+GkSNh\nzhxP6keE16FDrkS0x8NwtWu7JOuxx9xak+eeg+uuy9814uJyDzMurnBMpSwqEhISSEhI8LSNUPdV\nkaZXL+jfbQeDS01F7rzD73CMMcbkIccS7iIyKLcnqmpAI1AiUh+YoapNUs6rq+rWlO8HAmepao8c\nnqs5xWeKsNWrI6Jk37hxbv+ruXOhYUNv2pBwlmg+7zw3DfOCC8LUoNuouUcPt4nxk0+6avKhENbf\nm8k3kdCVcA9VXxVkDJ71Vamv5eRkOL7GQWZVv5nTfnozw33GBCsUJdyNiTbB9lW5TRcsn3K0wE25\nqJVy3Ao0CzC4t4CvgUYislFE+gCPisgyEfkRuAgYWNDgTREVAQnWAw+4zXa/+iq4BMvz6oH5cc01\n8OqrYWwQzj7bbVx89Kgb1VqxIqzNm+gQir6qtojME5HlIvKziNyRcnvEbDkSEwPX9SjJu781tXm2\nxhhTCOS5GbGILACuTJ16ISLlgVmqeqHnwdlIlokwKZNAbAAAIABJREFUqjBiBPzvf/D551CtWnDX\ni6hPordtg5NOgs2b4bjjwt78pEkwZAg8/3zwVeUj6vdqsgjlSFa6axa4rxKR6kB1Vf1RRI4DfgA6\nAF2BvXmNhoVjJAvg22+h92V/smLkO8jAAfY6NyFjI1nGZOXlSFaqasCRdOdHUm4zpkhRdXs9TZ/u\nqgkGm2BFnGrV4Pzz4cMPfWm+Tx+3tm3IELjnHjgWFcW3TRgVuK9S1a2q+mPK9/uAFbjRMIigLUfO\nPhsOlqzIL1N+8DsUY4wxeQgkyXoNWCwio0RkFPAtMNnLoIxJk5wMP/7odxSowt13w6efwrx5UKWK\n3xF55PrrfS1h1qyZ20dr2TJo1w62b8/7OcakCElflbKOuGnK8yGCthwRgS43lOTdTZG1Cbsxxpis\n8kyyVPUhoA9uU+FdQB9VHet1YMYAMHYsDBrk65wYVbjzTrf+6vPPoVIl30LxXocOULGiS259UqkS\nfPwxtGwJrVrBqlW+hWIKkVD0VSlTBd8H7koZ0Yq4LUe6dC/Gu5VvQ8tHxibsxhhjshfQJkOqugRY\n4nEsxmQ0fz4884wb2vBpd9/UBOv7790oVoVo3zq7bFm3/5jPihVz+XXDhnDhhW4j4zAWPTSFVDB9\nlYgUxyVYr6vqRynXC3jLkXBtN9KiBRw5Iixb5snljTGmyAr1diN5Fr7wkxW+KML++svNHXvlFbjc\nn4Jeqm59UEKC29fJiwTLFq7n7dNP3SzGJ5905d4DYb/XyOZF4YtgichrwA5VHZTutoC2HAlX4YtU\nQ4ZAiRLw8MP2OjehYYUvjMkq2L4qoJEsY8IqOdltONy7t28JFrhNhufOdUUuon4EK4K1a+emaV55\nJezcCXfYPqwmxETkPOB64GcRWQoocC/QQ0SaAsnAeuA/vgWZTufO7oMHY4wxkSvPJCtlv5A3VHVX\nGOIxBtascSXER4/2LYSxY90UtYQEt5dVQcXHw65c/nLCug9WIdakCSxYAG3bwsGD7pN8Y9ILpq9S\n1YVAsWzu+iTowDzQogUcPux3FMYYY3ITaAn370TkXRG5XMSnxTGm6DjxRJg2DYr7M9D6xBNuT97P\nPoOqVYO71q5dbjpPTkdiYmhiLgrq13eJ1quvwqhRNk3KZFFk+ioR6HSt0owfbK8DY4yJUIFUF7wf\nOBGYCNwIrBaRh0WkgcexGRN2EybA00+76Wk1a/odjc+GDnUVPyJIrVquHsoHH8ADD/gdjYkkRa2v\nuq6zsJsKsHCh36EYY4zJRiAjWaSs6N2achwD4oD3ReRRD2MzJqwmT3bTBD//HOrW9TuaCFCyJLz9\ntt9RZFGtmhtlfPNNeOopv6MxkaQo9VUtW8J2qrJq0td+h2KMMSYbeSZZInKXiPwAPAosBJqo6m1A\nc6CTx/EZExbTpsG997pKdiec4Hc0EaJLF3jvvYicl1etmvu3evxxmDIl6/1xcW5KVU5HMOvsTGQq\nan1VTAyU5DAfzCgZkX+jxhhT1AUykhUPXKuql6nqe6p6FEBVk4GrPI3OFA3z58Ozz/rW/Lx5cOut\nMHMmnHRS/p8fH5/zm/lCXdiicWMoVw4WL/Y7kmzVq+eqPw4dCtOnZ7wvMTH3tXC5FSMxhVaR66t2\nUpn3914Gv/7qdyjGGGMyCSTJmg2kLc8XkVgROQdAVVd4FZgpIrZtc7WIGzXypfnvvoNu3dyATbNm\nBbtGbsUtCnVhCxFXK/rdd/2OJEcnn+wSrH//G5Yu9Tsa47Mi2FcJW4rXZe2k+X4HYowxJpNAkqwJ\nwL505/tSbjMmOElJbj+sG2+ESy8Ne/MrVkD79m6/44suCnvzhUOXLjBrlt9R5Oqss1zBkg4d4I8/\n/I7G+KhI9lUdr0rigyPt/Q7DGGNMJoEkWRm2sk+ZemGbGJvgjR0LR464etxhtnEjXHYZPPooXH11\n2JsvPBo3hh9+8DuKPF13Hdx2m/u3PHjQ72iMT4pkX3Vd3zg+WFzH7zCMMcZkEkiStVZE7hSREinH\nXcBarwMzUW7+fHjuOZg6Nez7YW3f7gbOBg2CXr3C2nThVK6c3xEEZOhQN+v09tv9jsT4pEj2Va1b\nw++/w6ZNfkdijDEmvUCSrFuBc4EtwGbgHOAWL4MyRUCDBm6zozBvRrVnD/zrX27kY8CAsDZtPCYC\nL70EixbBxIl+R2N8UCT7qhIl3AjutGl+R2KMMSY90Qgu/SqSYfaHMUE5dAiuuMJVEHz+efemPBRE\nrIJyJFmxAi68EObMybmYif2b+UtEUNUQ/QX6z8u+KrfXanx8xkqZcXGFvNiO8Y2MFnSk/adoTHrB\n9lV5ztMSkSpAX6B++ser6k0FbdSYcDt2zFURrFrVVYsPVYJlIs8pp8Azz7h/7yVL4Ljj/I7IhENR\n7KtSE6rDh6F6ddi9Kwko5mtMxhhjnECmC34EVAA+A2alO4wpFFShb183kvXaa1DM3oPkn6qb3pmc\n7HckAenWDVq1cuvuTJFRZPuqUqXgysbr6cFUv0MxxhiTIpCKA2VV9b+eR2Ki286dbi5LTCB5feio\nwj33wKpV8OmnULJkWJuPHiIwfDjUqgUtW/odTUCeeQaaNoWPPnLl3U3UK9J9VaeeZXliYV23NYZ9\nkmSMMb4L5B3vTBG5wvNITPQ6dMjVS//f/8Le9Lhxbm3OzJkFL5IXH+9yjJyOuLjQxhyxrrnGl3/D\ngoqNhddfh//8x+15baJeke6rLu9VlaWcyfaPv/M7FGOMMQSWZN2F67wOicgeEdkrInu8DsxEkbvu\nguOPh2uvDWuzL7/sqs3NmeMSpYLatcuNiOV0FJmF5qlJViGqGHHeedCnD9xxh9+RmDAo0n1VmTJQ\njw189KzVcjfGmEiQZ5KlquVVNUZVS6tqbMp5bDiCM1Fg8mS3J9bEiWGtNjFtGowcCXPnhr1KfPRq\n3tyNSv76q9+R5MuIEfDTT4VqEM4UgPVVcICyvP9VtUL1QYgxxkSrPJMscW4QkeEp53VE5GzvQzOF\n3k8/uQVRH3zg5m6FyRdfwK23wqxZ0LBh3o+36YABEil0UwbBfcL/yituk+L05a5NdLG+CtZxPF8f\nbs6u33f6HYoxxhR5gUwXfB5oBfRIOd8HPOdZRCZ6PP44PPUUNG4ctiaXLIGuXeHdd+HMMwN7jk0H\nzIe+feHcc/2OIt8uuAA6doQhQ/yOxHjI+iqEtu3LMf3ryn4HYowxRV4g1QXPUdVmIrIUQFV3iYjV\naDN5mzw5rNUEV6+Gq66CF1+E1q3D1mzRctppfkdQYGPHwsknw7ff+h2J8Yj1VUCnTu5Dpt69/Y7E\nGGOKtkDeAR8VkWKAQtqGj4VjsxzjrzAmWH/84QoYPvCAm9FmTGaxsfDII9C/v9+RGI9YXwW0b++W\nwe60GYPGGOOrQN4FPw38D6gqIg8BXwEPexqVMflQsaLbvmndOjebLfOaqmAqC5rocsMNbuNWE5UK\n3FeJSG0RmSciy0XkZxG5M+X2OBGZKyKrRGSOiFTwLvzQqFDBjei/+abfkRhjTNEmGkAVIhE5GWgL\nCPC5qq7wOrCUdjWQ+EzRdeCA2/9qwAAYPz77AoYiuRfbyut+E12WLoVmzdwn/ZaA+0NEUNWQlxst\naF8lItWB6qr6o4gcB/wAdAD6ADtV9VER+S8Qp6pDs3m+Z31Vfv5/Sn3sF1/AnXfCsmVhLepqCjEZ\nLehI6wiNSS/YviqQ6oJ1gQPADGA6sD/lNmP+sW+fm4d16FDYmjx61BW5AFdjw95MhFkhzUxTC6IM\nH+5vHCa0gumrVHWrqv6Y8v0+YAVQG5doTUl52BSgY6jj9sJFF8HBbX+zeIbtwm2MMX4JZLrgLGBm\nytfPgbXAbC+DMoWMKtx4o0uwwjQXS9VNDUxKcudhXP5lwH1U3qWL31EE5d13C92WXyZ3IemrRKQ+\n0BT4BqimqtvAJWJA1RDF6qmYGLi53me88pAlWcYY45dANiNuoqqnp3w9ETgbWOR9aKbQGDsWNm+G\n554L23DSkCHw22/w3nt5PzYuzvbBCrkzz4Q5c2DvXr8jKbD//hfuvdfvKEyohKKvSpkq+D5wV8qI\nVubh2kIzfNt7cBXe/6F+Yf4TNcaYQi2QEu4ZqOoSETnHi2BMITRrlkuuFi+G0qXD0uRjj8HHH8OX\nX7r1WHmxfa48ULGi2y/rk0+gc2e/oymQ22+HZ56BhQvhvPP8jsaEWn77KhEpjkuwXlfVj1Ju3iYi\n1VR1W8q6rb9yev6oUaPSvm/dujWtfd5Hokanc7mo16e8+2xz/j2sUAzAGWOMrxISEkhISAjZ9fIs\nfCEig9KdxgDNgEqqelnIosi5bSt8EcnWrYNzzoEPPwzbBrWTJsHo0fDVV1C7trvNClf45IUXXKZb\nCMuYpb5mpkxx+6otXGhr+sLJi8IXwfZVIvIasENVB6W7bRyQqKrjClPhi1Qzr5zAQ8vas2hTbU9i\nM9HDCl8Yk5XnhS+A8umOUrj57h0K2qCJInXqwEcfhS3Bmj7dTe+aM+efBMv4qH17N5J19KjfkRTY\nDTe4mi0ffuh3JCYECtxXich5wPVAGxFZKiJLRORyYBzQTkRW4aoWPuJJ5B65fPhZbPqzGL8sK3Lb\nhRljjO8CKuHuFxvJMqm+/BI6dXKzE886K+N9NpLlo3bt4Kmn4NRT/Y4kX+LjYdeunO+Pi7Nppl7y\nqoS7XyJ1JAtVht+yjb1lq/HkU1Hz6zYesJEsY7IKtq8KZLrgDHJZ7KuqVxe08bxYkmUAliyBFi1y\nfqNhb4hNMFTh4otdgcwbb3S3WeLuLY+mC0ZlXxVUkoWb1X3WWa42UZiWzZpCyJIsY7IKtq8KpPDF\nWqA68EbKeXdgG2ATbIznVq6EK690bxzsTa/xgohb5/fvf7vpg8XzXQ7IRAjrq7Jx/PGuGOiHH0K3\nbn5HY4wxRUcga7LOU9Wuqjoj5egBXKCq81V1vtcBmgjy3XewLXz7rqxfD5deCo8UqlUQpjC66CKo\nWxdef93vSEwQrK/Kwc03wyuv+B2FMcYULYEkWeVE5ITUExE5HgigcLaJKmvWuEIHy5eHpbk//4RL\nLoF77oHevcPSpCniRo2CBx8s1HU8ijrrq3LQsSMsWwarVvkdiTHGFB2BTIwZCCSIyFpAgHrAfzyN\nykSW3bvhqqtgxAho08bz5hIT3QjWjTfCHXd43pwxAFx4IdSvD2+8kedDTWSyvioHpUpB/+t38+gw\nZeI0233dGGPCIaDqgiJSCjg55XSlqh72NKp/2rXCF347dswtimrUyO3c6rG9e90I1oUXwqOP/rN3\nkRUiiHBvvw1t20KVKn5HEpQvv3Qjp+vW2evNS15VF4zGvio///dlrpqZvihQ4oR3aHjnv1i2Lta2\nwDBZWOELY7LyfJ8sESkL3APcrqo/AXVF5KoAg5soIttEZFm62+JEZK6IrBKROSJSoaDBmzAYMMD1\n8k884XlThw5Bhw5wxhkZEyxTCEybBjNm+B1F0C64AE44Ie/HmcgTTF8VLRIT/ykSpJox4Yr/9zXc\nVOotHh+63b8AjTGmCAlkTdYk4AjQKuV8C/BggNefBFyW6bahwGeqehIwDxgW4LVMuKlCw4bwzjue\nl1w7ehS6dIGqVWHCBEuwCp2rr3a7RUeBe+91X5Nt/9bCJpi+KvqVLMmgQTDl3dLs2OF3MMYYE/0C\nSbIaqOqjwFEAVT2Am++eJ1X9Csi85WcHYErK91OAjoGFasJOxI1kVfB2sDEpyU3RSk521d2KFfO0\nOeOFK66AefPg4EG/IwnaxRe7r1GSMxYlBe6rioqaw3rTvcQHPHxX+KrEGmNMURVIknVERMqQssmj\niDQAgpnnXlVVtwGo6lagahDXMoWcKvTv76oJvvcelCjhd0SmQOLjoVkz+PxzvyMJWuoo6iOP2Lqs\nQibUfVX0KVOGEcOVKe+VYd06v4MxxpjoFkiSNRL4BKgjIm8CnwNDQhiDvY0polThrrvgp5/go4+g\nTBm/IzJBiaIpg+DWtyxY4HcUJh+87quiQrWBPbir/zHuv9/vSIwxJrrlutBGRARYCVwLtMRNvbhL\nVYOZ0b1NRKqp6jYRqQ78lduDR40alfZ969atad26dRBNm1xt2wZHjkCdOp43pQqDB8OiRfDppxAb\n63mTxmtdu8Lq1X5HETL33APjxrmNik1wEhISSEhI8Oz6HvVV0alUKQaNKcXJJ8PChXDeeX4HZIwx\n0SnPEu4i8rOqNilwAyL1gRmp1xCRcUCiqo4Tkf8Ccao6NIfnWgn3cNm3D1q3hm7dXPbjIVVXXOCT\nT9zssvj4vJ9jJdxNOIm4apfHHw+zZ7uKlyZ0vCjhHmxfFWTbEVHCPbPcSrq/9x6MHg1LlkDJksHH\naQo3K+FuTFael3AHlojIWQW5uIi8BXwNNBKRjSLSB3gEaCciq4C2KefGT8eOuVGIM86Au+/2vLnR\no2HmTDeCFUiCZYwfSpVydV/GjfM7EhOgAvdV0Sq3ku7XXQf16sH//Z9/8RljTDQLZCRrJdAQ2ADs\nx03DUFU93fPgbCTLe6pwyy2webNbT+Nx5YmHHoI334SEBFeuPVXmT1wzS/8JrDFeSx092LPH7Zv1\n3XduVMuEhkcjWVHZV4VyFD/ztdavh7POUj7/VDm9aSCfuZpoZSNZxmQVbF+V45osETleVdeRdZ8r\nE02GDXOVJz7/3PME6//+D6ZMgfnzMyZY4BIsy6dNpImNhT594Nln4fHH/Y7GZMf6qoKrXx8ev3A6\n3S89l+83VLHiQ8YYE0K5fXT1fsrXV1V1Q+YjHMGZMEhddFK+vKfNPP00vPCC20qpRg1PmzKRICnJ\n7whC5vbbYfJk2LvX70hMDqyvCkLPp1pwxt6vuLvLJr9DMcaYqJJbdcEYEbkXt55qUOY7VXW8d2GZ\nsPnPfzxv4rnn4Ikn3BTB2rU9b874bcECePhhV9kkCtSrB23auETrjjv8jsZkw/qqIEjtWkx4vwrN\nOxzjtce30+vuKn6HZIwxUSG3kaxuQBIuESufzWFMnp580k0TnDfPvVk1RUDz5vD117B7t9+RhMyA\nAfDUU5Cc7HckJhvWVwWpwpXn89E9Cxn832J8O2+/3+EYY0xUCKTwxb9UdXaY4sncthW+KMQeewxe\nfNElWHXr5v5YK9EeZa66Cm64wW0JUAhlfj2qwtlnw4gR0L69f3FFC48KX0RlX+Vl4YsMVJn+rwn0\nW9iDb1dWpFat0LRpCgcrfGFMVp6XcPer0zIeWLwYfvstLE09/DC88oorcpFXgmWi0NVXu2qVUULE\njWY9+aTfkZicWF8VJBGunnkL/e8px9VXw34b0DLGmKBYzdaiYskS9xH8mjWeN/XAA/D6624Nln0a\nWkRddZVbk3X0qN+RhEznzrByJSxb5nckxgsiMlFEtonIsnS3jRSRzSKyJOW43M8YPVe8OEOHl6BJ\nEzcQbdNjjTGm4HJMskSkc8pX2x2msPvpJ7jiClfe71//8qwZVRg+HN591yVYVkWwCKtZE847LyxJ\nfbiULAn9+7u1WSZyhLCvmkT2ZeDHq2qzlKNQV3OJi3OjsqlHdpvBi7hp3omJMHRo+GM0xphokdtI\n1rCUrx+EIxDjkeXL4fLLXQ31a67xrBlVt+XW9OnwxRdQrZpnTZnCYsYMOPlkv6MIqVtugWnT4K+/\n/I7EpBOSvkpVvwKy2xI9pGvH/JSY6P6vTj1y2gC+VCn3Ov/f/9y0b2OMMfmXWwn3nSIyFzheRLIs\nrlDVq70Ly4TE7t1w6aWuvF+XLp41k5wMgwa5yt3z5kGlSlkfEx+fc4cO7hNWYyJd5cpu2uALL7gi\nGCYieN1X3S4iPYHvgbtV9e8gr1coVKoEM2coF565h+NjdtP2JisPa4wx+ZFjdUERKQk0A14Hbs58\nv6rO9zY0qy4YEr/+Cqee6tnljx2Dvn1dPY1Zs6BixewfZ9UDTWGS2+v155/d4PD69VCiRFjDihqh\nrC4Yyr5KROoBM1T19JTzKsAOVVUReRCooar/zuZ5haK6YEGu/cXQOXR9rDkLFggnn5fNJ2gmKlh1\nQWOyCravynEkS1WPAN+IyLmqul1Ejku5fV9BGzM+8DDBOnwYund3VajmzoVy5TxrypiI0aQJNGgA\nH37oRrWMv7zsq1R1e7rTl4EZOT121KhRad+3bt2a1q1bB9t8RLj4kcsYt3waV7Y9m29XH6RynTJ+\nh2SMMZ5ISEggISEhZNcLZJ+s03CfEMbj5qZvB3qr6i8hiyLntm0kK0IEMt0vMTHn+20kyxQmeb1e\n33nHTRn84ovwxRRNPNonK+i+SkTq40aymqScV1fVrSnfDwTOUtUe2TwvakeyAFBlWOPpfLXjZD7b\n2IhSpaNmmZpJYSNZxmTl+T5ZwEvAIFWtp6p1gbtTbjORxsN6u7t2/bNYOjERWraEm25yFbpzW0Bt\nDFOmwObNfkcRUtdcA6tWuboyJmIE1VeJyFvA10AjEdkoIn2AR0VkmYj8CFwEDPQi8IgnwkOL21Ht\nyEZuvnSjfWBmjDEBCCTJKqeqaZ/XqmoCYBPDIs0vv0CLFp7vILl1K7RuDa1auapTxXMrnWIMuHr+\n//uf31GEVMmSbi3i88/7HYlJJ6i+SlV7qGpNVS2lqnVVdZKq9lLV01W1qap2VNVtXgReGMQcV5bX\nljRh5YE6PPig39EYY0zkCyTJWisiw0WkfspxP7DW68BMPixdCpdcAkOGeLowas0auOAC6NQJHn/c\nTTUxJk8dOrgFTFHmlltg6lTYs8fvSEwK66tCLD4+475atVtUZ/qMGF5+2W3XYYwxJmeBJFk3AVWA\nabh9SCqn3GYiwXffuVJnzz0H3bp52tQFF8Dgwa50deYEK/Mml5kPK9FehLVr516nUTantFYtaNMG\n3njD70hMCuurQiz9NPHUaeE1argPF/r2hS1b/I7QGGMiV56FL/xkhS/ysGABXHcdTJwI7dt71szs\n2XDFFW4wokMHz5ox0axDB7dX2/XX+x1JQAItCPDFF3D77W62ro3sBs6Lwhd+itbCF5nvT3/+4IPw\n2Wfw+edQrJg38ZnwscIXxmQVjsIXJlKtXOk+UvQwwZo0Cfr0cd9bgmUKLEqnDKZW6Z7v+a6BxkSW\nYcNAjh3h4Xuia4TaGGNCxZKswuyWW6BtW08ureo+qXzgAXsDaUKgY0cYGH2F2USgXz8rgGGiQ+Y1\nWLlN8y5WDN646h2eeUZZsvhY+II0xphCIs8kS0TOC+Q2Ez2OHXNvHD/4AL7+Gk46ye+ITKEXHw/n\nnut3FJ7o2dNNm/rjD78jKdqsr8q/zGtpIeMarNz2PgSo9d8bePzEF7mx4y6OHPE+XmOMKUwCGcl6\nJsDbTCGX+ilmiRJuo9Uff4SaNa1whSl68irkEh//z2NjY13NmZds90C/WV+VT4mJ+UuqshDhho86\nU2/HEh4enN8nG2NMdMtxlyMRaQWcC1QRkUHp7ooFbJlrOB09Cvfc46YHnnqqZ83s2gWnnQbnnw9P\nP+2SLWOKorzebGYuctG/vyuieN999ncTbtZX+UtObMgLQz7lzEfPpmMfpemZUVPPxBhjgpLbSFZJ\n4DhcIlY+3bEHuM770AzgNuFp3x5Wr4a6dT1r5ptv3Nebb3brS+yNojGBa9wYGjWKuj2XCwvrq8Ik\n8whv6ohurVF9GVfrGfpev5+kJH9jNMaYSJFnCXcRqaeqG0TkOABV3ReWyLAS7mzeDFde6dayPPMM\nFM9x4DEob78Nd94J27d7VyrYmDQHD0KZMn5HEZTsSl+/+677gCIhwZeQChUvSrhHa1/lZQn3YKWP\nTQ8f4cJLSnL99XDrrf7GZfLPSrgbk1U4SriXF5GlwHJguYj8ICKnFbRBE6Aff4RWreCGG9w7Nw8S\nLFUYPRqGDnUL943x3M8/Q4sWfkfhiWuugd9+g+XL/Y6kyLK+ykdSqiTPP+82q9++3e9ojDHGf4Ek\nWS8Bg1S1nqrWA+5Ouc14aflyGD/ercXyYJfTAwegRw+30fA338Dpp4e8CWOyatzYLf5bvdrvSEKu\nRAno29fKufvI+qowSz99MD4emjRxnwv+979+R2aMMf4LJMkqp6pfpJ6oagJQzrOIjHP99dC5syeX\nXrfOzUAsWRK++AKqV/ekGWOyiolxaww/+sjvSDxxyy1uf/C9e/2OpEiyvirM0lcn3JWyJ/GoUTB3\nrtv+wxhjirJAkqy1IjJcROqnHPcDa70OzHjj00/dLMR//xsmTy70S2NMYXTNNTBtmt9ReKJWLbc/\n+Ouv+x1JkWR9VQSIjYWxY2HQXccidi2ZMcaEQyBJ1k1AFWBaylEl5TYTKmEox6QKjz0GvXrBO+/A\nHXd4MgvRmLy1aQOrVrnCLlGoXz83ZdDeYIad9VUR4voWqzi2bAXvvHHU71CMMcY3eVZTUNVdwJ0i\nUt6dhq9iU5GwbBl07+4qT9So4UkT+/fDTTfB2rWweDHUqeNJM8YEpmRJ+M9/3LzV2rX9jqZAUtei\nZKdiRfenvGABXHRReOMqyqyvihwxp5zE482HceOAoXTsXIHSpf2OyBhjwi/PkSwRaZJSsekXrGJT\naE2b5uYW3XdfSBKs+PiMe5ikHscd58pLf/+922oru8eIuDeOxoTFww/DBRf4HUWBpV+LkvnYvduN\nZj33nN9RFi3WV0WWi166njP2fc3T4w76HYoxxvgikOmCL2IVm0IrKQnuvx8GDHDl/Xr0CMlld+3K\n+GZv6lSoXBkmTIDk5JzfFKYeiYkhCcOYIq9XL7f+8Y8//I6kSLG+KpKcdhqPXrWAR8cls2OH38EY\nY0z4WXVBP1x3HSxaBN9958meQYcOwW23uTxu7ly3MaStvzImfGJjoVs3ePllvyMpUqyv8lH6cu6p\nJd0bPdWfbslTeWiYzdw0xhQ9Vl3QDyNHuuynWrWQX3r1amjZEnbuhCVL4MwzQ96EMSYA/frBSy/B\nUVv7Hy7WV/ko8xRaAKlTm5WH6/PUK2WpWNE7XKG6AAAgAElEQVTf+IwxJtzyW13wA6AyVrEpOE2b\nQrFinlz6vPNcTYF33nGfphtj/NGkCTRoELVbgkUi66siSGrS9Zlewj1DYvj7b78jMsaY8Mo1yRKR\nYsB9qnqnqjZT1eaqOiClipOJEPv3u8QK4JNP3FRBmx5oCoUZM6I6C+nf35VzN94KRV8lIhNFZJuI\nLEt3W5yIzBWRVSIyR0QqePIDRLkhQ9zXtTauaIwpQnJNslQ1CTg/TLFEn2++cdUnPPT999CsGRxM\nKeDUrJmnzRkTWocPR3UZvmuugRUr4Ndf/Y4kuoWor5oEXJbptqHAZ6p6EjAPGBZkG0VSpUru66hR\nvoZhjDFhFch0waUiMl1EeorItamH55EVZklJ8NBD0KEDlPNm3XVSEowdC1dcAQ88AK+95kkzxnjr\nX/+Cb791iwijUMmS0Levq/BpPBdUX6WqXwGZR746AFNSvp8CdAxRrEVOxYrw+usZC2MYY0w0E01d\noZrTA0QmZXOzqqrnc91FRPOKL+Js3gw9e7rvX389pJutxse7Mu05iYuzMuymELruOpds/fvffkcS\nEiL/LPwH91/C6afDhg1Qvrx/cUUSEUFVQzqpORR9lYjUA2ao6ukp54mqGp/u/gzn6W73rK/K/Hoq\nzB67bS3frq3M+3Nio+rnigYyWtCR9g9iTHrB9lV5jmSpap9sDltMnJ3PP4fmzaFdO/jss5AmWOAS\nrMmToUoVGDcOjh2zfa5MFOjaFd5+2+8oPFO7Nlx8Mbz5pt+RRLcw9VX2LjQI/etMZ9GCoyxd6nck\nxhjjvTxHsvxU6EayVq1ymU6rViG/9JYt7s3aGWe4RKtp05A3YYw/Dh6EmjVh5UpPtjUINxtxzpsX\nI1mhkM1I1gqgtapuE5HqwBeqeko2z9ORI0emnbdu3ZrWrVuHKKYoGvE5cIBnqj/Ep82GMGN+hej5\nuaKAjWQZAwkJCSQkJKSdjx49Oqi+ypKsCKfqkqr//he2b4cjR6BECb+jMibE1q+HevWitiymKpxy\nituc+MILo+hNcwFFcJJVH5dkNUk5Hwckquo4EfkvEKeqQ7N5nk0XDNChx57hxJHd2XywclT9XIWd\nJVnGZOX5dEGviMh6EflJRJaKyGK/4ohkmza5whbPPAOffupuswTLRKX69aM2wQL3o/XrF9WFFAs9\nEXkL+BpoJCIbRaQP8AjQTkRWAW1Tzk0QSt9+M/eV/D9isY2zjDHRLc8kS0SqpewfMjvl/FQRCcUK\n9WTcNIwzVfXsEFwvaiQnu0+8mzVzmwt/+62bJmiMKbx694Y5c/yOInoF21epag9VramqpVS1rqpO\nUtVdqnqJqp6kqpeq6m7vfoIiokwZbhpZh5IcYeFCv4MxxhjvBDKSNRmYA9RMOf8NGBCCtiXA9ouU\nn3+GCy6AV1+FefPg/vtt9MqYaFChgqvxYTwzGW/6KhNiJfvdzN/EMmKE35EYY4x3AklyKqvqu7iR\nJ1T1GJAUgrYV+FREvhORviG4XqG2f79bd9W2LfTqBQsXQpMmfkdljAmlfv3c16NH/Y0jSnnVV5lQ\nK1WKo5RiwwZIt8bcGGOiSiBJ1n4RqURK6VoRaQkhmUx9nqo2A64A+ovI+SG4ZqE0cyY0bgxPPumK\nW9x6KxQr9s+mjalHXJzfkRrjsTVrXCnNKHX66e7rtGn+xhGlvOqrjEdGjoThw6OrsIcxxqQqHsBj\nBgHTgQYishCoAlwXbMOq+mfK1+0i8j/gbOCrzI8bNWpU2vehLIsbCdavh0GD4Jdf4JVX3PZa1tmY\nIu3ll90fwbhxfkfiqfHjoUuXqK71kUHmsrge8aSvMt7p0QMefthtK9mund/RGGNMaOVawl1EYoCW\nwGLgJNw6qlWqGtRkFxEpC8So6j4RKQfMBUar6txMj4vKEu7798Mjj8Dzz8Ndd8GQIVC6dPSV6jUm\n3375BS6/HDZscMO5UUgEGjSA116Dc8/1Oxp/hLqEu1d9VT7atxLu+WT7yUUWK+FuTFaelnBX1WTg\nOVU9pqrLVfWXEHVa1YCvRGQp8A1uX5K5eTyn0EtOhjfegJNPhrVr4ccfYcQIl2AZY4DTToMaNf7Z\nsyBK3XUXPPGE31FEDw/7KuORxESXPCatXstp8VuYOdOdpx65JWDGGFMYBLIm63MR6SQSuoktqrpO\nVZumlG9voqpRv/fI4sWuHPuTT8Lbb8Obb0KdOn5HZUwEuvFGtwN3FOvTB774Atat8zuSqBLyvsp4\nL6ZeHUaXeJARg/ZG5YidMaboynW6IICI7AXKAceAQ7hpGKqqsZ4HFwXTBdetcwt7582Dv/+GAwdy\nfqxNjzAG90dwwgnujycKq72kTv+65x5ISnLrs4qaUE8XTLlmVPZV0TpdMD2dNJnmd57LiNcb0bGj\nu60o/NyRxKYLGpNVsH1VnkmWn3LquOrXr8+GDRt8iMiY4NSrV4/169f7HUbke+stuPRSqFzZ70hC\nLvXN48aNcOaZLpeM9TwNiCxeJFl+siQrSMeOMbNuP+4tM54fVx9HTEwR+bkjiCVZxmQVliRLROKA\nE4G01UOquqCgjQYqp44r5Yf2unljQs5euyb9m8du3eCcc2DgQH9jCjevkqxI66tCc+2ikWzo62/Q\nsl8z7n7lFLp0lSLzc0cKS7KMycrzJEtEbgbuAmoDP+IqOC1S1TYFbTTg4CzJMlHGXrsm/ZvHxYtd\nKffff4figWyoESU8mi4YcX1VaK5dRJKNpCTmnDuagbtH8POvxSlevIj83BHCkixjsvK0umCKu4Cz\ngA2qejFwJrC7oA0aY4xxzj4b6teHd97xO5KoYH1VYVasGJd+8wDxVYrz9ttuOabIP0d8vN8BGmNM\n/gSSZB1S1UMAIlJKVVfi9iExxhgTpKFD3b55ycl+R1LoWV9VyInAAw/AqFGwbZuVdDfGFG6BJFmb\nRaQi8CHwqYh8BFjViQLYsGEDMTExJIfg3dTxxx/PvHnzAnrslClTuOCCC9LOy5cvH7LiC2PHjuWW\nW24BQvvzAWzatInY2FibXleUqbqynFHsssugRAmYNcvvSAo966uiQJs2cPzx8PzzfkdijDHByTPJ\nUtVrVHW3qo4ChgMTgY5eB1ZY5ZX8+LWFS/p29+7dS/369XN9/Pz586kTwEZew4YN46WXXsq2nfzK\n/LurU6cOe/bs8e13ZiLA3LnQvr3fUXhKxI1mjR1ra1CCYX1V9HjqKXjwQfjrr5wfEx9v0wmNMZEt\nzyRLROqmHsA63ILi6p5HZnylqnkmN0lJSWGKxhRZbdrAmjXwyy9+R+KpTp1g+3b48ku/Iym8rK+K\nHqecAr26H2XYoEM5PmbXLptOaIyJbIFMF5wFzEz5+jmwFpjtZVDRIjk5mcGDB1OlShUaNmzIrEzz\ngfbs2cPNN99MzZo1qVOnDsOHD0+bGrd27Vratm1L5cqVqVq1KjfccAN79uwJqN3ExESuvvpqKlSo\nQMuWLVmzZk2G+2NiYli7di0AH3/8MY0bNyY2NpY6deowfvx4Dhw4wBVXXMEff/xB+fLliY2NZevW\nrYwePZrOnTvTs2dPKlasyJQpUxg9ejQ9e/ZMu7aqMnHiRGrVqkWtWrV4/PHH0+7r06cPI0aMSDtP\nP1rWq1cvNm7cSPv27YmNjeX//u//skw//PPPP+nQoQOVKlWiUaNGvPLKK2nXGj16NF27dqV3797E\nxsbSpEkTlixZEtDvy0SwEiWgb1+YMMHvSDxVrBgMGeJGs0yBWV8VRUbGP8PsDw6weLHfkRhjTMEE\nMl2wiaqenvL1ROBsYJH3oRV+L730Eh9//DE//fQT33//Pe+//36G+3v37k3JkiVZu3YtS5cu5dNP\nP01LHFSVe++9l61bt7JixQo2b97MqFGjAmq3X79+lC1blm3btjFx4kReffXVDPenH6G6+eabefnl\nl9mzZw+//PILbdq0oWzZssyePZuaNWuyd+9e9uzZQ/Xq7gPh6dOn06VLF3bv3k2PHj2yXA8gISGB\nNWvWMGfOHMaNGxfQ9MnXXnuNunXrMnPmTPbs2cPgwYOzXLtr167UrVuXrVu38t5773HvvfeSkJCQ\ndv+MGTPo0aMHf//9N+3bt6d///4B/b5MhOvbF6ZOhb17/Y7EU716wc8/w/ff+x1J4WR9VXSJHdqP\nxyo+zM1d/ubIEb+jMcaY/AtkJCsDVV0CnONBLKEzalTGydqpR05JSnaPDzChyc17773HgAEDqFmz\nJhUrVmTYsGFp923bto3Zs2fzxBNPULp0aSpXrsyAAQOYOnUqAA0aNKBt27YUL16cSpUqMXDgQObP\nn59nm8nJyUybNo0xY8ZQunRpGjduTO/evTM8Jn0hiZIlS7J8+XL27t1LhQoVaNq0aa7Xb9WqFe1T\n1siULl0628eMGjWK0qVLc9ppp9GnT5+0nykQORW52LRpE4sWLWLcuHGUKFGCM844g5tvvpnXXnst\n7THnn38+l112GSJCz549WbZsWcDtmghWqxZcfDG8/rrfkXiqVCkYNgxGjvQ7kuhQKPoqk7PSpenx\n9tUcv+1bxtx3KEtJ97g4vwM0xpjcBbIma1C6Y7CIvAX8EYbYCm7UqIyTtVOP3JKsQB+bD3/88UeG\n4hH16tVL+37jxo0cPXqUGjVqEB8fT1xcHLfeeis7duwA4K+//qJ79+7Url2bihUrcsMNN6Tdl5vt\n27eTlJRE7dq1s203sw8++IBZs2ZRr149Lr74Yr755ptcr59XMQwRydL2H38E/3L5888/iY+Pp2zZ\nshmuvWXLlrTz1NE2gLJly3Lo0KGQVTo0PhsyBMqX9zsKz918sxvNyuPP0GSjUPZVJldy0YW82Pkz\nXnr2MHPnZuyiExP9js4YY3IXyEhW+XRHKdx89w5eBhUtatSowaZNm9LON2z4p5pwnTp1KF26NDt3\n7iQxMZFdu3axe/futNGXe++9l5iYGJYvX87u3bt54403AiplXqVKFYoXL56h3Y0bN+b4+ObNm/Ph\nhx+yfft2OnToQJcuXYCcqwQGUukvc9s1a9YEoFy5chw4cCDtvj///DPga9esWZPExET279+f4dq1\natXKMx4TBc45B9Kt/YtWpUrB/fdDuqWLJnDWV0Wh6hNG8nT8aHpcezDad3MwxkSZQNZkjU53PKSq\nb6Zu+Ghy16VLF55++mm2bNnCrl27GDduXNp91atX59JLL2XgwIHs3bsXVWXt2rUsWLAAcGXWjzvu\nOMqXL8+WLVt47LHHAmozJiaGa6+9llGjRnHw4EF+/fVXpkyZku1jjx49yltvvcWePXsoVqwY5cuX\np1ixYgBUq1aNnTt3BlxsI5WqMmbMGA4ePMjy5cuZNGkS3bp1A6Bp06Z8/PHH7Nq1i61bt/LUU09l\neG716tXTCnKkvx5A7dq1Offccxk2bBiHDx9m2bJlTJw4MUPRjexiMaawufFGWL3aKg3ml5d9lYis\nF5GfRGSpiFgphnAqV46uv46kXfsy9OlT8G0O0pd8t3LvxphwCGS64AwRmZ7TEY4gC5P0ozF9+/bl\nsssu44wzzqBFixZ06tQpw2Nfe+01jhw5wqmnnkp8fDydO3dm69atAIwcOZIffviBihUr0r59+yzP\nzW3U55lnnmHv3r3UqFGDm266iZtuuinH577++uscf/zxVKxYkZdeeok333wTgJNOOonu3btzwgkn\nEB8fnxZXID//RRddRMOGDWnXrh1Dhgyhbdu2APTs2ZPTTz+d+vXrc/nll6clX6mGDh3KmDFjiI+P\nZ/z48VlinTp1KuvWraNmzZp06tSJMWPGcPHFF+caizGFTcmSMHy4rc3KL4/7qmSgtaqeqapnhyJe\nkw8VKvDEE/DnnzBmTMEukb7ku5V7N8aEg+T1ab+IPIXba+SNlJu6A9uADwFUNe9qDAUNTkSzi09E\nbJTCFEr22jUieX8af+yY2yvohRcg5TOKqJLydxDST0G87KtEZB3QQlV35nB/tn1VKATyeikqtm6F\n88+HwYPh1lsz3hcfnzF5iovLuG4r/e/RfqdZyWhBR9ovxZj0gu2rigfwmPNUtUW68xki8r2qDixo\no8YYU2DHjsG+fVCxot+ReKZ4cXjoIbjnHlfSPSbfdWCLJC/7KgU+FZEk4CVVfTkE1zT5VL06zJkD\nF14IpUu7qbWpMhfCsIkMxhi/BZJklRORE1R1LYCIHA+U8zYsY4zJwbPPwo8/wuTJfkfiqc6d4Ykn\n4M03i0TNj1Dwsq86T1X/FJEquGRrhap+lf4B6fcxbN26Na1btw5R0ya9Bg3g8ze3ctmVxdixsRx3\nDy+bbUKVWvI9/XlhcvQoHDjgPnApWdLty26M8VZCQkKG/VeDFch0wcuBl4C1gAD1gFtUdW7Iosi5\nbZsuaKKKvXZDYPduaNjQ1Tlv2NDvaPItP1OVvv4aunWDVaugTBlv4wonj6YLhqWvEpGRwF5VHZ/u\nNpsuGE5JSWy67WGumNKFZpdX4/m3KlIuH+l05t9pXlMNvXL4MCxdCosXw8qVruDN77/Djh1w8EAy\nZTnAMS3GES1B+eIHqR27h4anl+WsdnGcc46bOlmqVGhisemCxmQVbF+VZ5KV0kgp4OSU05Wqerig\nDeaHJVkm2thrN0RGj4Z16wrlaFZ+3zR37gzNmrmNiqOFF0lWynVD3leJSFkgRlX3iUg5YC4wOn3y\nZkmWP/a/9Cb97izO93GX8Nr0OJqfFdi82sy/07zOQyUpCb5L2M+sFzfz+Zcl+OmvGjSqsZdzrqpK\n48bQqJH73KhKFSifuAHZuwdE0D17Sdy4j80/7WRF3Ll8t60uCxe6xOyyy9y0yUsvhZTiwAViSZYx\nWXmWZInIWcAmVd2act4L6ARsAEapquef81iSZaKNvXZDpBCPZmX+1DyzzJ+ir1njtgn76SeIlm3h\nQplked1XpUw7/B9uXVZx4E1VfSTTYyzJ8omu+o03rpzK4E130v3Wiox5UPLctzycSdaBAzBrFnz0\n8jbmfFGSGslbuKLOL1x6KZzdvQHHtWriFpgVwLZt8NFH8NJLys41u7n71gP0HVWrQKNblmQZk5WX\nSdYS4BJVTRSRC4G3gTuApsApqnpdQRsNODhLskyUsdduCI0eDb/95hYtRZHs3uANH+5+1Hfe8Sem\nUAtxkhWxfVVorm1JVp6SktgxdwlD3juL2bPdqO9//pPzVLr8Jln5nU545AjMnQtvvw0zZ8LZZ8O1\nF+7ginrLqXvd2aGf+3vsGN8OmMoDr9TgZzmDUcOPcePQGvkqmGNJljFZeZlk/aSqZ6R8/xywXVVH\npZz/qKpNC9powMFZkmWijL12Q2jfPvj4Y+jSxe9IQiq7N9UHD0LjxvDSS3DJJf7EFUohTrIitq8K\nzbUtycqPH390H0osWwb33Qe9emUdKMpvkhXISFdSEsyfsYepz2xn2o8NOOUU6N4drrsOqlUL3c+X\nq0OH+GbINAZMaETxqpV4YVpVTjsnsMVqlmQZk1WwfVVun3MUE5HU6oNtgXnp7gukKqExxnjnuOOi\nLsHKSZky8PTT0L+/WyxvMrC+yqRp2hRmzICpU2H6dKhfZR+j+25i+1+hSyBSKxeKQDnZxynyK1WL\n72TANes5OO9r9iceYuFCuP12V3Y+Pj5kTeeudGlaPt2DrzfW4Ya6C7j4khjGjYPk5DC1b4zJILck\nayowX0Q+Ag4CXwKISEPg7zDEZiJQTEwMa9euDeixo0ePpmdK7elNmzYRGxsbslGc2267jYceegiA\n+fPnU6dOnZBcF+Crr77ilFNOCdn1jAmFq65yGxSPHet3JBHH+iqTxbnnwswZyhf93mfzO1/TqOZe\nep37O/NmHQzquqqu6ueYMXBy/Daqyk46nfgzX45bxLI9x/OG9uSQlkaVtCO3NZheiKlRjVsX9eaH\nX0ozYwZcfrnbyNkYE145Jlmq+hBwNzAZOD/dXIgY3Hx3k4O33nqLs846i/Lly1OrVi2uvPJKFi5c\n6HdYTJkyhQsuuCCoa0g+d3hMfXydOnXYs2dPns8PNMYJEyZw3333FTiu9DInjueffz4rVqwo8PWM\n8cpzz8Hzz7uyz8axvsrkSIRTxt3Iy7s789sb39F8zxfcffVq4khk4EC3sfGhQ4FdavZsuPtuVwHw\nkkvgzz9h4uN/s3ZHLA/+1pVTh1xFnhU3wqxuPSEhAVq2hObNYdEivyMypmjJdSqFqn6TzW2/eRdO\n4Td+/HgeffRRXnzxRS699FJKlizJnDlzmDFjBuedd16+rpWUlESxTDVZs7stUKoaVDKSeg0vBRJj\ncnIyMflZ0ZuHYH8nxoRS5k1Us9OsWe7PD8ceP5HE+iqTq5gYqnRry13d2nLXzp2cU3cLTz4Zz5NP\npt1N165QpfguKu7bzBnFhdMliaOUZC/lKUkVHnusFBdd5IrPnHlm6t9oIz9/qoAULw4PPOCKb3To\nAOPHHeGGPiX9DsuYIiF071QNe/bsYeTIkTz//PN06NCBMmXKUKxYMa644goeecRV/D1y5AgDBgyg\nVq1a1K5dm4EDB3L06FHgn2lvjz76KDVq1OCmm27K9jaAmTNncuaZZxIXF8f555/Pzz//nBbH5s2b\n6dSpE1WrVqVKlSrceeedrFy5kttuu41FixZRvnx54lMmiR85coTBgwdTr149atSoQb9+/TicbtHH\nY489Rs2aNalduzaTJk3KNSFZv349rVu3pkKFClx22WXs2LEj7b4NGzYQExNDcsrk8MmTJ9OgQQNi\nY2Np0KABU6dOzTHGPn360K9fP6688krKly9PQkICffr0YcSIEWnXV1XGjh1LlSpVOOGEE3jrrbfS\n7rv44ot59dVX087Tj5ZddNFFqCqnn346sbGxvPfee1mmH65cuZKLL76YuLg4mjRpwowZM9Lu69On\nD7fffjtXXXUVsbGxtGrVinXr1uX+QjHeeO45WL7c7yiClphIhqlGmY/kZLj6areoP7v7wz01yZhC\npVIlvt3fJO3v5eBB+P57l4A0ittOqXUr6d7kF/petJpHev7KJ8+uYf+GncybByNHug84gv1cLj7+\nnzVdmQ+v1m9ddRXMm32YEbds497Ov1kxFWPCQVUj9nDhZZXT7X775JNPtESJEpqUlJTjY4YPH66t\nWrXSHTt26I4dO/Tcc8/VESNGqKpqQkKCFi9eXIcNG6ZHjhzRQ4cOZXvbkiVLtGrVqvrdd99pcnKy\nvvbaa1q/fn09cuSIJiUl6RlnnKF33323Hjx4UA8fPqwLFy5UVdXJkyfrBRdckCGeAQMGaIcOHXT3\n7t26b98+vfrqq/Xee+9VVdXZs2dr9erV9ddff9UDBw5ojx49NCYmRtesWZPtz9aqVSsdPHiwHjly\nRBcsWKDly5fXnj17qqrq+vXrNSYmRpOSknT//v0aGxurq1evVlXVrVu36q+//ppjjDfeeKNWrFhR\nFy1apKqqhw4d0htvvFGHDx+e4feW2vb8+fO1XLly+ttvv6mqauv/Z+/Ow6uozgeOf99AWAIEEtYE\nQhAsLiigIIIii/uGuJRVEFHBBWrBtoqIBsT+RK3YqsUFAQELAq5sVqwa1ApFVAQREUTCEiKEsAeR\n5f39MZN4E+5NbpJ7M7nJ+3meeTJ3zsyZd05u5uTMnDnTrZtOmTIlN7/8+xAR3bRpU+7n1NRUTUpK\nUlXVo0eP6qmnnqoTJkzQo0eP6kcffaS1atXKzfvWW2/VevXq6cqVK/X48eN68803a79+/QL+/svq\nd7dcmDRJtVMn1QL+/sqLHTtUGzZUXbr05LRI+Iq5fwee1zGhmsL5dx0Jv09TsLi4vJdC4uICrxvu\n3/fOf3+pHaO/0Fs7fqdHj/rsd6x90YzJr6R1Vbm8kxXoClFRp6LavXs39erVK7Ar26xZs0hJSaFu\n3brUrVuXlJQUZs6cmZteqVIlxo0bR3R0NFXdl3zkXzZ58mTuuusu2rdvj4gwcOBAqlatyvLly1mx\nYgU7duzgySefpFq1alSpUoULLrggYDyTJ0/mmWeeoXbt2tSoUYNRo0Yxe/ZsAObNm8fgwYM544wz\nqF69OmPHjg2Yz9atW1m5ciWPPvoo0dHRXHTRRfTo0SPg+pUqVWLNmjX88ssvNGzYsNCBJnr27EnH\njh0BcsvFl4gwfvx4oqOj6dKlC9dccw1z584tME9fGuCy3rJlyzh06BAPPPAAlStXpnv37lx77bW5\nZQRwww030K5dO6Kiorj55ptZtWpV0Ps1IXTnnU6/n0mTvI4k7Bo1gldfhf79YedOr6MxxhQk/91p\nL7vz1r/iXP7zVV0yVu/ipjPWcjjbbmkZEy7lspHlrwtNcaaiqlu3LpmZmbld4vxJT0+nadOmuZ+T\nk5NJT0/P/Vy/fn2io6PzbJN/WVpaGk8//TTx8fHEx8cTFxfHtm3bSE9PZ+vWrSQnJwf1zNKuXbvI\nzs6mXbt2uXldddVV7N69OzdW325zycnJARsj6enpxMXFUd3nJYvJycl+142JiWHOnDm88MILJCQk\n0KNHD9avX19grIWNHhgXF0c1n5eh5C/X4tqxY8dJ+05OTmb79u25nxs1apQ7HxMTw8GDB0u8X1MM\nUVEwZYrzkuLvvvM6mrC78koYNAhuvtl5R48xxgSjxlmn8O7GVtTYs40rT93APhuD05iwKJeNLK90\n6tSJqlWr8s477wRcp3HjxqSlpeV+TktLIzExMfezv2ee8i9LSkrioYceIisri6ysLPbs2cPBgwfp\n06cPSUlJbNmyxW9DL38+9erVIyYmhrVr1+bmtXfvXva5Z9yEhAS2bt2aJ9ZAz2QlJCSwZ88eDh/+\nbXjcLVu2BCyHyy67jCVLlpCRkcFpp53G0KFDAx5/Qctz+Nt3TrnWqFGD7Ozs3LSMIoxlm5iYmKcM\ncvJu3Lhx0HmYUnTaaTBhAvTtG/ywYRFs3Dg4etR5VsQYE/l838EVzme0qiTU5bVNF9K6vTOghzEm\n9KyRFUKxsbGMGzeOYcOG8e6773L48FHIwAoAACAASURBVGGOHTvGe++9x6hRowDo27cvjz32GJmZ\nmWRmZjJ+/Pjcd0kFa8iQIbz44ousWLECgEOHDrF48WIOHTpEhw4dSEhIYNSoUWRnZ3PkyBE+//xz\nABo2bMi2bdtyB9oQEYYMGcKIESPYtWsXANu3b2fJkiUA9O7dm1dffZV169aRnZ3No48+GjCmpk2b\n0r59e1JSUjh69CifffZZngEi4LcueTt37mT+/PlkZ2cTHR1NzZo1c++85Y8xWKqau+9PP/2URYsW\n0dt9UW3btm156623OHz4MBs3bmTKlCl5tm3UqFHAd3+df/75xMTE8OSTT3Ls2DFSU1NZuHAh/fr1\nK1J8phTddhv06kVFuDxbuTLMnQuzZsH06V5HY4wpqfxdC8M5kE1UbE2efTeZHtc6dfPWddYLw5hQ\nskZWiN13331MnDiRxx57jAYNGtC0aVMmTZrE9ddfD8CYMWNo3749rVu3pk2bNrRv3z7P+56C0a5d\nOyZPnszw4cOJj4+nZcuWTHf/w4qKimLBggVs2LCBpk2bkpSUlPts0sUXX0yrVq1o1KgRDRo0AGDC\nhAmceuqpdOzYkTp16nD55Zfzww/OyMdXXnklI0aM4OKLL6Zly5ZccsklBcY1a9Ysli9fTt26dRk/\nfjyDBg3Kk55zN+rEiRNMnDiRxo0bU69ePT755BNeeOGFgDEGIyEhgbi4OBITExk4cCAvvfQSv/vd\n7wAYOXIk0dHRNGrUiMGDBzNgwIA8244dO5ZbbrmF+Ph43njjjTxp0dHRLFiwgMWLF1OvXj2GDx/O\nzJkzc/O24d/LIBF4+GFo2NDrSEpFgwawaBHcfz989JHX0RhjQincd7ZEYPw4p+fLrraX8sOy3aHd\ngTEVmAR6xqYsEBH1F5+IBHw2yJiyzL67JlxSU513/ezcWbxnSkuT+3dQbq5QBKqrQpN32f99mtIT\nru+DjBPW/O8vRC9ZxC/zl9DmausSb0xJ6yq7k2WMMeVAt27w4ovO/FdfeRqKMSYCnbX4SY7dPIg6\nPTqzfIa9y9uYkrJGljGm/Dt+HLZt8zqKsLvhBufnVVfBl196G4sxJvK0mn4/h+8bQ8yYkV6HYkzE\ns0aWMab8++wz6NABKsg7zF56yWloLVrkdSTGmHCKjw/9M1unP3U7rTe9W/KMjKngrJFljCn/unaF\n556Dyy+Hjz/2Opqwu/56mD8fhgyBv//dnukxprzasydMoxFWrhyijIypuKyRZYypGG66CV5/Hfr1\ncxpc5bzl0bEjLFsGU6c6rw3LyvI6ImNMSeUfbTAuruD0/FO43rsF4bmrZkwks0aWMabiuPhip+Ux\nZQpMnOh1NGGXnAz/+x8kJECbNvDBB15HZIwpifzv0cp/8SR/ev6puHe6jv6qvHP6KFbNWR9wnbDd\nVTMmQkVkIys5ORkRscmmiJuSk5O9/vMxp5wCy5c7Ly2uAKpXd7oMTpnidB/8/e/hp5+8jsoYUxbk\n3H2Cgu8+RUdDcpdkmvTrzIIeL3PsqJ5058rru2oV9U5aWTruwmIpaqxl6diKw7P3ZInIlcDfcRp6\nU1T1CT/rhO3dI+Ei9k4TY4yHCjoHHT4MTz8NzzwD/fvDffc5bc7SJhI578nyuq6yOsWEUv7vU85n\nGSdoihb6fdu5dB17r7uFg8eqcVv2c6zStiGLpaQCHVt5V5aOu7BYihqr18dW0rrKkztZIhIFPA9c\nAbQC+onI6V7EYk6WmprqdQgVjpW5N04q91WrYMYMOHjQk3jCrXp1GDMGvv0WataE9u2hd2947z04\ndszr6MqeilBXRfK5x2IvfQ26nsH2tybAwIG8zxV8+7d/ex1S0CK1zMFij1RedRfsAGxQ1TRVPQq8\nDvT0KBaTT0X+g/CKlbk3Tir3X3+FuXOhSRPnVs/rr8POnZ7EFk4JCfD44063wS5dYNw455DvvBPe\negv27vU6wjKj3NdVkXzusdi9sfTTTzn3xaGcxnrOuKur1+EELZLL3GKPTF41shoDW30+b3OXeSo0\nX4Tg8whmf4WtEyg92OVl4ctf0hiKun1pl3uwy0pbpJV7UdOKVe4dOsDChbBhA3TuDLNnQ8uWTssj\nBELxew9lucfGwvDhMGFCKp9+CqefDi+/7DS4zjgDBgyAYcNSWbQIvvsODh0qPN+y+n0vprDWVcUt\nl+L+LYXy92CxB58eCbET4DnNgrbbRx0q1ax+0vKfNx/mP79/gTVTv+DAz9nBxxBAccu9KP+PlTSG\n4m4X7u9MSfKJ1NhL8r9GqOsqexGCj9TUVLp161bSXIDg8ghmf4WtEyg92OWhOeaSKWkMRd2+tMs9\n2GWlLdLKvahpJSr3+vXhnnuc6dgxOHrU/3r9+8P69c4T3nXqQO3azjRsGLRocXKcr7xCt82b8z7J\nC877uxo29HdgsGtXnnVT58yhW6tWToz5LV3KjWTCmz5ZFLI+mZmkzpnD2D67GdkURg6Bo1O78N2u\n+nz5Jbz4Yio//tiNzZsh7afj1Kp2lPqxv3Lg8GLOOaUl8bV+pVaLBlSLi6FqVfjvf1NZubIb1apB\n1bT1VDp0gPkr/0Wt5zrT7nyrcnwV92+wuH9LoTzvWOzBp0dC7GwO3f5+3bWPmDUrqLL4JSrfvp60\nyonsiWnMzNhjdNv6+Unrb/8mk5+eXwRRUUiUQFQUREVRq1ldWv/pspNiyPgui81TP8r9/Nrnc6l2\nQSYXEwdc4hs90C13/W2ff8fyg2/kptZMiuOsP/qu7z//nH3U63M84Po/TTv5/Yu1kuJIzfrkpPLz\nXX/mf+dQ9cLdueufde/FTuQ+x5zxXRZbl3zHskNv5snHd31fcWSx7C8F5x9M/HO/ne/3d5+zvm/e\nOfnDxSf9vg7uOsyyvzix3wgs+0ve9QvK/0Z2B71+jpy4CjremaMn5Ym9av3anHv/pSH/38yTgS9E\npCMwVlWvdD+PAjT/A8UiUgEeWTTGmIonEga+sLrKGGMqtpLUVV41sioB63EuOewAVgD9VHVdqQdj\njDHG+GF1lTHGmOLypO+Gqh4XkeHAEn4bFtcqLWOMMWWG1VXGGGOKy7P3ZBljjDHGGGNMeeTV6ILG\nGGOMMcYYUy5ZI8sYY4wxxhhjQijiGlki0lVEPhGRF0Ski9fxVCQiEiMiX4jI1V7HUlGIyOnud32u\niNzldTwVgYj0FJGXRWS2iFzmdTwVhYicIiKviMhcr2MJhUivqyL1fB/J58xIPvdE6t+v+z1/VURe\nEpH+XsdTFJFa5hC53/Winl8irpEFKHAAqIrzYkhTeh4A5ngdREWiqt+r6t1AH+ACr+OpCFT1XVUd\nCtwN9PY6nopCVX9S1Tu8jiOEIr2uisjzfSSfMyP53BPBf783AvNU9U7gOq+DKYoILvOI/a4X9fzi\nWSNLRKaIyM8isjrf8itF5HsR+UFEHsi/nap+oqrXAKOAR0sr3vKiuOUuIpcC3wG7gDL/fpuyprjl\n7q7TA1gILC6NWMuLkpS5awzwz/BGWf6EoNzLlEiuqyL5fB/J58xIPvdE+t9vMeJvAmx154+XWqB+\nRHLZlyB2T+vZ4sRdpPOLqnoyAZ2BtsBqn2VRwEYgGYgGVgGnu2kDgYlAgvu5CjDXq/gjdSpmuT8D\nTHHL/33gba+PI9Kmkn7f3WULvT6OSJpKUOaJwATgYq+PIRKnEJzb53l9DCE+Hs/qqkg+30fyOTOS\nzz2R/vdbjPhvBq5252dFUuw+63h+zixO7F5/10tS5u56hZ5fPHlPFoCqfiYiyfkWdwA2qGoagIi8\nDvQEvlfVmcBMEblBRK4AagPPl2rQ5UBxyz1nRRG5BcgsrXjLixJ837uKyCicLkeLSjXoCFeCMv8D\nzstnY0XkVFV9uVQDj3AlKPd4EXkBaCsiD6jqE6UbuX+RXFdF8vk+ks+ZkXzuifS/36LGD7wNPC8i\n1wALSjXYfIoau4jEA3+lDJwzixG75991KFbcXXG6mAZ1fvGskRVAY367bQtOP/YOviuo6ts4fxQm\ndAot9xyqOqNUIqoYgvm+LwWWlmZQ5VwwZf4c8FxpBlUBBFPuWTj98yNBJNdVkXy+j+RzZiSfeyL9\n7zdg/KqaDdzmRVBBKij2slzmUHDsZfW7DgXHXaTzSyQOfGGMMcYYY4wxZVZZa2RtB5r6fG7iLjPh\nZeXuDSv30mdl7o3yVu6RfDwWuzcsdu9EcvwWe+kLWdxeN7KEvCMXfQGcKiLJIlIF6AvM9ySy8s3K\n3RtW7qXPytwb5a3cI/l4LHZvWOzeieT4LfbSF764PRzRYxaQDhwBtgCD3eVXAeuBDcAor+Irr5OV\nu5V7RZmszK3cK/rxWOwWe0WKPdLjt9jLX9ziZmaMMcYYY4wxJgS87i5ojDHGGGOMMeWKNbKMMcYY\nY4wxJoSskWWMMcYYY4wxIWSNLGOMMcYYY4wJIWtkGWOMMcYYY0wIWSPLGGOMMcYYY0LIGlnGGGOM\nMcYYE0LWyDJlhohcLyInRKSl17EEIiIPeh1DqIjInSIyoAjrJ4vImiLu40MRqVlA+mwRaVGUPI0x\npiwoj3WWiHwsIueGcx9FzLuHiNxfxG0OFHH9eSLSrID0p0Ske1HyNAaskWXKlr7Ap0C/cO9IRCoV\nc9PRIQ3EIyJSSVVfUtXXirhp0G8vF5GrgVWqerCA1V4AHihiDMYYUxZYnRXGfbj11AJVfbKImxal\nnjoTiFLVzQWs9hwwqogxGGONLFM2iEgN4ELgdnwqLBHpKiJLRWShiHwvIpN80g6IyEQR+VZEPhCR\nuu7yO0RkhYh87V6hquYunyYiL4jIcuAJEYkRkSkislxEvhSRHu56g0TkTRF5T0TWi8gEd/njQHUR\n+UpEZvo5hn4istqdJgQRZ3N3H1+4x9jSJ85/iMh/RWSjiNzoZ1/JIrJORF4Tke9EZK7PcZ4rIqlu\nvu+JSEN3+cci8oyIrADuFZEUEbnPTWsrIstEZJV77LXd5e3cZV8Dw3z2f6aI/M8ti1UB7kbdDLzr\nrh/j/g6/dsunl7vOp8ClImLnImNMxIj0OktEotz8V4vINyLyR5/k3u75/XsRudBnH8/5bL9ARLoE\nUS8Wp/57QUSWucecu1+33vvQrXM+EJEm7vJmIvK5exzjffbdyM37K/c4L/Tzq/Stp/yWiapuAeJF\npEHAL4Qx/qiqTTZ5PgH9gcnu/GfAOe58VyAbSAYEWALc6KadAPq68w8Dz7nzcT75jgeGufPTgPk+\naX8F+rvztYH1QHVgELARqAlUBTYDjd319geIPwFIA+JxLl58CFwXIM5n3fn/AC3c+Q7Ahz5xznHn\nzwA2+NlfsptvR/fzFOA+oDLwX6Cuu7w3MMWd/xh43iePFOA+d/4boLM7Pw6Y6LP8Qnf+SWC1O/8s\n0M+drwxU9RPjZqCGO38j8JJPWi2f+fdzft822WSTTZEwlYM661xgic/nWPfnx8BT7vxVwAfu/KCc\nusv9vADoUtA+AhxzMPWf7zEP8tlmPjDAnR8MvO3Ovwvc7M7fkxMPTp34oDsvOfVRvvhSgVYFlYk7\n/zJwg9ffO5sia7Krx6as6Ae87s7PwanAcqxQ1TRVVWA20NldfgKY686/hnNVEaC1iHwiIqvdfFr5\n5DXPZ/5yYJR7lyYVqAI0ddM+VNWDqnoE+A6nwizIecDHqpqlqieAfwFdAsTZ2b0KegEwz93/S0BD\nn/zeAVDVdUCgq2dbVHW5b77AacBZwAduvg8BiT7bzMmfiYjEArVV9TN30XSgi3s3q7aq/tdd7nuV\nchnwkIj8BWjmllN+cap6yJ1fA1wmIo+LSGdV9e0zvytfjMYYU9ZFep21CThFnF4TVwC+5+S33J9f\nBpFPYY5T9PpvHv51wilPcOqjnPK7kN9+F7711BfAYBF5BGjtUx/5SsCpg6DgMtmJ1VOmiCp7HYAx\nIhIHXAycJSIKVMLpU/0Xd5X8/asD9bfOWT4N5y7StyIyCOfKYo78J9mbVHVDvng6Ar6NhuP89rci\nBR1KAWn544wC9qhqoAeMffdflHwF+FZV/XWLgJOPv7B9+F2uqrPdLizXAotFZKiqpuZb7ZjP+hvE\neZj6auAxEflQVXO6dVQDDgfYvzHGlCnloc5S1b0i0ga4ArgL6AXc4Sbn5OWbzzHyPmJSzTcEf/sI\nIJj6L1A9VdCzVjlpubGo6qci0gW4BnhVRJ7Wk59DzsY9lnxlcidOT5Db3fWsnjJFZneyTFnQC5ih\nqqeoanNVTQZ+EpGcq38d3L7YUUAfnOd4wPn+/t6dv9lneU0gQ0Si3eWBvA/cm/NBRNoGEeuv4v8B\n5BU4d3/i3fR+OFca/cX5mXsn5ycRyVmOiLQOsM9AFVhTETnfne+Pc/zrgfpupYuIVBbnwd6AVHU/\nkOXTX30gsFRV9wF7ROQCd3nuSIQicoqq/qSqz+F01fAX+3oRae6unwAcVtVZwFPAOT7rtQS+LShG\nY4wpQyK+znKfjaqkqm8DY3C6yvmTU/9sBtqKIwmni1+B+3BVomT1n6/P+e35twH8Vn6f+SzPLT8R\naQrsVNUpwCv4P8Z1wKnu+r5l8jBWT5kSskaWKQv6AG/nW/Ymv500VwLPA2uBH1X1HXf5IZzKbA3Q\nDacvOzgnxxU4J+B1Pnnmvwr2GBDtPuT6LfBogPh8t3sZWJP/AV9VzcAZfSgV+BpYqaoLA8SZs5+b\ngdvdh3i/Ba4LEGegq3frgWEi8h1QB3hRVY/iVGhPiMgqN5ZOheQDcCvwN3ebNj4x3gZMEpGv8m3f\n232Q+Wucri0z/OS5CMgZ9vZsYIW7/iM4ZY/7IHG2qu4sIDZjjClLIr7OAhoDqe45eSa/jZ7nt/5x\nu41vdo/p7zhdCQvbB5S8/vN1L073v1Xu9jmDdYzAqQu/wen+l6Mb8I1bf/UG/uEnz8X8Vk/5LRMR\nqQy0wPm9GhM0cboMG1M2iUhX4E+qep2ftAOqWsuDsIokHHGKSDKwUFXPDmW+oSQijYDpqnpFAeuM\nAPap6rTSi8wYY8KjPNRZoVTWj1mckRw/whngye8/xCJyPc7AJimlGpyJeHYny0SySLlCEK44y/Tx\nu3f3JksBLyMG9uAMtGGMMeVdmT5nh0mZPmZV/QVnpN3GBaxWCXi6dCIy5YndyTLGGGOMMcaYELI7\nWcYYY4wxxhgTQtbIMsYYY4wxxpgQskaWMcYYY4wxxoSQNbKMMcYYY4wxJoSskWWMMcYYY4wxIWSN\nLGOMMcYYY4wJIWtkGWOMMcYYY0wIWSPLGGOMMcYYY0LIGlnGGGOMMcYYE0LWyDKmACJyQESaeR2H\nMcYYUxCrr4wpW6yRZcoFETkhIs1LmMfHInKb7zJVraWqm0sUXAiJyKMislpEjorII0Gs/4SIZIrI\nLhGZkC8tWUQ+EpFDIvKdiFySL72/iGx2K+63RKSOT1oVEZkqIvtEJF1ERubbtq2IrHTz/kJE2uRL\nHykiO0Rkr4i8IiLRxSuRk463q/tdeDPf8tbu8o9CsR9jjCkuq68Crm/1FVZflSfWyDLlhRaUKCKV\nSiuQMNsA/AVYWNiKInIncB1wNtAa6CEiQ31WmQ18CcQDY4A3RKSuu20r4EXgZqAhcBh4wWfbcUAL\nIAm4GLhfRC53t40G3gFmAHXcn++KSGU3/QrgfqA7kOzmM66I5VCQXUAnEYnzWTYIWB/CfRhjTHFZ\nfZWP1VdWX5VLqmqTTX4noAnwJrAT50TwrLtccE5ym4EM4FUg1k1LBk4AtwBp7rajffKMAkYDG4F9\nwBdAYzftdGAJsBtYB/Ty2W4a8DzOyXo/sAw4xU1b6u7zoJvWC+gKbMU5Oe4ApuOcQBe4Me125xPd\nPB4DjgHZbh45x3oCaO7Ox+KcgHcCPwEP+cQ3CPgUeArIAn4Ergzj72Ym8Egh6/wXuMPn82Dgc3e+\nJU5FVMMnfSkw1J3/K/CaT1pz4EjO+sB24BKf9HHALHf+cmBrvljSgMvd+X8Bj/mkdQd2FHAcJ4C7\ngR/c78yjbjz/BfYCrwOV3XVzfu+TgHt8vnPbcL6zH3n9d2WTTTaFfsLqq5xzpdVXVl/ZVEYmu5Nl\n/BKRKJwK4iegKdAY5+QAzsnvFpwTRHOgFk6F4utC4HfApcAjInKau/xPQB+cE3pt4DYgW0RicCqs\n14B6QF9gkoic7pNnHyAFp/L5EefEiqp2ddPPVtVYVZ3nfm7krtsUGIpz8pqKczWrKU4F9U83jzE4\nlc5wN4973Tx8rzg+7x5rM6AbcIuIDPZJ74BT2dbFqbymEICILBCRPSKS5efn/EDbFVEr4Bufz9+4\nywDOBDap6qEA6Xm2VdVNOJVWS7cbRgKwuoC8fdMKzNudb5DvSl5+lwPnAB1x/hF5CeiP87s8G+jn\ns67i/HNxi/v5CmANzj8vxphyxuorq6+w+sqUQdbIMoF0wDkx3a+qv6jqr6r6uZvWH5ioqmmqmg08\nCPR1KzpwThpj3W1W45yUcvo4345zRW0jgKquUdU9wLXAT6o6Qx3f4FyV7OUT09uq+qWqnsC5utQ2\nX8yS7/NxIEVVj6rqEVXNUtW33flDwONAl0LKQSC3Eu8DjFLVbFVNA54GBvqsm6aqU1VVca5ENhKR\nBv4yVdUeqhqnqvF+fl5XSEzBqolzJS3HfneZv7Sc9FpBpNfE+R3nzzuYbQPFJT7p/jyhqodUdR3w\nLbDE/f4dAN7DqdByqepyIE5EWuJUXjMKyNsYE9msvvLJ0+qrPOlWXxnPWCPLBJKEcxI+4SctEed2\neo40oDJOX+gcP/vMZ/PbyTIJ2OQnz2Sgo3tlLEtE9uBUjr55ZgTIM5Bdqno054OIVBeRl9yHY/fi\ndDeoIyL5Kzt/6uEc4xafZWk4V0xPik9VD+OciAuLMZwO4nQZyVHbXeYvLSf9QBDpOXnkzzuYbQPF\npT7p/uz0mT9M3u/XYfyX80xgOM5V3LcLyNsYE9msvsrL6iurr0wZYI0sE8hWoKnP1T5f6TiVTI5k\n4Ch5TyQF5dsiwPJU98pYzlWyWFUdXtTAfeR/uPhPOF1CzlPVOvx2VVACrO8rE+cY8x/39uIEJiKL\n3VGQ9vuZFhUnTz/W8tsVWXCupK71SWsuIjV80tvkS8/dVkRaANHAD6q6F6crQ5sCtm2dL5bWOFf0\nAsX1s3uFOJReA+4BFqnqLyHO2xhTdlh9lZfVV1ZfmTLAGlkmkBU4J6YJIhIjIlVF5AI3bTYwUkSa\niUhNnL7mr/tcRSzoStsrwHgRORVARM52+zYvxOk/PUBEKotItIi09+kbX5gMnP72BamFcxVpv4jE\nA2Pzpf8cKA/32OYCfxWRmiKSDIzEufpUZKp6tTrD7cb6ma4JtJ1bNtVw/naj3d9LoL/jGcB9IpIo\nIo2B+3AeyEZVNwCrgBQ3jxuBs3C6vIDTvaWHiFzoVmyPAm/69ImfCYwRkToicgYwJCdvIBU4LiJ/\nEGfo3HtxHgb+2Ceu20XkDPd3P8Zn25BRZyjjLm7+xpjyy+orH1ZfWX1lygZrZBm/3JN0D5wraVtw\nrtz1dpOn4py0PsF5oDcbuNd38/zZ+cxPxDn5LxGRfTiVWHVVPYjzsGhfnCuP6cAEoGqQIY8FZrhd\nN34fYJ2/AzE4V/k+BxbnS/8H0EtEdovI3/3Efi/OsW7COfbXVLWgk22Bw/QW02Q3hr44o15lAwMA\nRKSziOzP3bnqSzgjUq3Bec5gvqpO9smrL3AesAfnH4+bVHW3u+13wF3ALJx/CKoDw3y2TcEphzTg\nI2CCqn7gbnsUuB5nBKs9OH3Me6rqMTf9feBJnErsJ5zv0NgCjrmg71OBVPVzVc0ofE1jTKSy+srq\nK6y+MmWQOM88hilzkSk4D4j+rKqt3WVtcN5nUA3ndvY9qroybEEYY4wxBRCRqjj/iFbBeZblDVUd\nJyIpOFe9c56xGK2q//YoTGOMMREk3I2szjgPDc7waWS9DzytqktE5Cqc0YC6hy0IY4wxphAiEqOq\n2eK8CPa/OHcCrgIOqOpEb6MzxhgTacLaXVBVP8O5/errBM7oLOC8E6JYD2IaY4wxoeIO7w1Ol6/K\n/NbNJ5jR3Iwxxpg8vHgmayTwNxHZgtPP9UEPYjDGGGNyiUiUiHyN80zHB6r6hZs0XERWicgrIlK7\ngCyMMcaYXF40su4G/qiqTXEaXFM9iMEYY4zJpaonVPUcoAnQQUTOBCYBzVW1LU7jy7oNGmOMCUpY\nn8kCcIcOXeDzTNZe950POen7VNXv1UERCW9wxhhjPKGqZbYbnog8DBzyfRYrf12Wb32rq4wxphwq\nSV1VGneyhLx92reLSFcAEbkE+KGgjVU1LFNKSkpYtilonUBp/pYXtix/enGOJ1zlZGVlZWVlZWVV\nUFmVNSJSL6croIhUBy4DvheRRj6r3chvLyg9SST8boNdZrEXb7uS/s0EM9E1PN+10ojd63IvyTk6\nUmMP5zGX1dhLUveFuq6qXOIcCiAis4BuQF33Gayc4XCfdUdw+gUYGs4YAunWrVtYtilonUBp/pYX\ntqw48RdHcfdjZRXa7aysgt/Oyir47cpbWZVAAjDdfVFqFDBHVReLyAwRaYszYNNm4M5Q7rS0f7eh\n/D1Y7MGnh/T736x4m5WF2CO53CM19pLkE6mxl6TuC3ldVdwWbmlMTngmGCkpKV6HEDGsrIJnZRU8\nK6vgued2z+uYUE2RXFdF8ve2IsbOWO+/a5Fa7pEat6rF7pWS1lVeDHxhwiACrhSXGZFSVvHxIHLy\nFB9fejFESlmVBVZWJhJF8vfWYvdGpMYeqXGDxR6pwj7wRUmIiJbl+IwJJxHw9/UPtNyYSCEiaBke\n+KKorK4ypUXGCZpi3zVjSkNJ66qwPpNljDHGGGPKv2bNmpGWluZ1GMYUWXJyMps3bw55vtbIMsYY\nY4wxJZKWlhaSEdmMKW0i4elYYc9kGWOMMcYYY0wIWSPLGGOMMcYYY0LIuguaiuH4cdi9GypVgthY\niI72OiJjjDHGGFNO2Z0sU75taqHhEwAAIABJREFU3gxnnw3Vq8OZZ8Lvfuc0sm64wevIjDHGGOOx\ntLQ0oqKiOHHiRInzOuWUU/joo4+CWnf69OlcdNFFuZ9r1aoVssEXHn/8cYYOHQqE9vgAtm7dSmxs\nrD1/FwRrZJnyLTERpk6FAwcgMxOyspw7Wv/4h9eRGWNMwTIy4Ngxr6MwJuIV1vgJ18AHhfHd74ED\nB2jWrFmB6y9dupSkpKRC833wwQd5+eWX/e6nqPKXXVJSEvv37/eszCKJNbJM+ValCpx3HlSt+tuy\nmBho2tS7mMIk0MuLS/sFxsaYELn6ali2zOsojDFlhKoW2rg5fvx4KUVjCmONLBP5VOHpp+H//q9k\n+ezdC2PHwtGjIQmrtO3Z4xSFv2nPHq+jM8YUWY8eMH++11EYU66cOHGCP//5z9SvX59TTz2VRYsW\n5Unfv38/d9xxB4mJiSQlJfHwww/ndo3btGkTl1xyCfXq1aNBgwYMGDCA/fv3B7XfrKwsrrvuOmrX\nrk3Hjh358ccf86RHRUWxadMmABYvXkyrVq2IjY0lKSmJiRMnkp2dzdVXX016ejq1atUiNjaWjIwM\nxo0bR69evRg4cCB16tRh+vTpjBs3joEDB+bmrapMmTKFxo0b07hxY55++unctMGDB/PII4/kfva9\nW3bLLbewZcsWevToQWxsLH/7299O6n64Y8cOevbsSd26dWnZsiWvvPJKbl7jxo2jT58+DBo0iNjY\nWM4++2y++uqroMqrPLBGlolshw5Bnz4wZw7061eyvCpXhpUr4aab4NdfQxOfMcYUw7FjcPuqP3D0\n3cVeh2JMufLyyy+zePFivvnmG1auXMkbb7yRJ33QoEFUqVKFTZs28fXXX/PBBx/kNhxUldGjR5OR\nkcG6devYtm0bY8eODWq/99xzDzExMfz8889MmTKFqVOn5kn3vUN1xx13MHnyZPbv38+3337LxRdf\nTExMDO+99x6JiYkcOHCA/fv306hRIwDmz59P79692bt3L/379z8pP4DU1FR+/PFH3n//fZ544omg\nuk/OmDGDpk2bsnDhQvbv38+f//znk/Lu06cPTZs2JSMjg3nz5jF69GhSU1Nz0xcsWED//v3Zt28f\nPXr0YNiwYUGVV3lgjSwTuTIy4MILoUYN+OQTOOWUkuVXsya8/TZERcHNNzsjEpYhaWkwaZIz364d\ntGgBzZtD585w993O8sOH/W8bF2fdCI2JJJUrw+r0unyWdSasX+91OMaU3Nix/iuiQI0Uf+sH2aAp\nyLx58xgxYgSJiYnUqVOHBx98MDft559/5r333uOZZ56hWrVq1KtXjxEjRjB79mwAWrRowSWXXELl\nypWpW7cuI0eOZOnSpYXu88SJE7z11luMHz+eatWq0apVKwYNGpRnHd+BJKpUqcLatWs5cOAAtWvX\npm3btgXm36lTJ3r06AFAtWrV/K4zduxYqlWrxllnncXgwYNzjykYgQa52Lp1K8uWLeOJJ54gOjqa\nNm3acMcddzBjxozcdTp37swVV1yBiDBw4EBWr14d9H4jnTWyTGTasgUuusi56zR1KgQ4qRRZdLRz\nVywrC0aNCk2eJaAKCxfClVdC+/bwv/85yydNgiVLnOn//g9atnSWN20KY8ZA/t4LWVnWjdCYSNOz\npzA/8S7rMmjKh7Fj/VdEBTWygl23CNLT0/MMHpGcnJw7v2XLFo4ePUpCQgLx8fHExcVx1113kZmZ\nCcDOnTvp168fTZo0oU6dOgwYMCA3rSC7du3i+PHjNGnSxO9+83vzzTdZtGgRycnJdO/eneXLlxeY\nf2GDYYjISftOT08vNO7C7Nixg/j4eGJiYvLkvX379tzPOXfbAGJiYvjll19CNtJhWRfWRpaITBGR\nn0Vkdb7lfxCRdSKyRkQmhDMGU05VqwYPPQQPP+xc3QqlqlVh7lznrpbPLW8vXHghjB4N/fs77crp\n053l55/v3Mk69VTo0gVGjnSWL18O27bB6afb/2XGRLrrroN3My9Aq4boIpIxhoSEBLZu3Zr7OS0t\nLXc+KSmJatWqsXv3brKystizZw979+7NvfsyevRooqKiWLt2LXv37uW1114Laijz+vXrU7ly5Tz7\n3bJlS8D127VrxzvvvMOuXbvo2bMnvXv3BgKPEhjMSH/5952YmAhAjRo1yM7Ozk3bsWNH0HknJiaS\nlZXFoUOH8uTduHHjQuOpCMJ9J2sacIXvAhHpBvQAzlbVs4G/hTkGUx41aAC33hq+/OvWhf/+F7p2\nDd8+AsjOhnvvdeaHDoWvv4ZbbnFe9VWYFi3g1Vdh3jwnj5Ejy1yvR2NMkM4+G7Rqdb7t/gevQzGm\n3OjduzfPPvss27dvZ8+ePTzxxBO5aY0aNeLyyy9n5MiRHDhwAFVl06ZNfPLJJ4AzzHrNmjWpVasW\n27dv56mnngpqn1FRUdx4442MHTuWw4cP89133zE956ppPkePHmXWrFns37+fSpUqUatWLSpVqgRA\nw4YN2b17d9CDbeRQVcaPH8/hw4dZu3Yt06ZNo2/fvgC0bduWxYsXs2fPHjIyMvhHvlfcNGrUKHdA\nDt/8AJo0acIFF1zAgw8+yJEjR1i9ejVTpkzJM+iGv1gqirA2slT1MyB/h6S7gQmqesxdp/D7rMZ4\noWHD0N8lK8SaNdC2rdO9D5x2pHtuLZILL3QaZ6tXQ+/e8MsvIQ3TGFMKRGDHDmjd2p6hNKYkfO/G\nDBkyhCuuuII2bdrQvn17brrppjzrzpgxg19//ZUzzzyT+Ph4evXqRUZGBgApKSl8+eWX1KlThx49\nepy0bUF3fZ577jkOHDhAQkICt912G7fddlvAbWfOnMkpp5xCnTp1ePnll/nXv/4FwGmnnUa/fv1o\n3rw58fHxuXEFc/xdu3bl1FNP5bLLLuP+++/nkksuAWDgwIG0bt2aZs2aceWVV+Y2vnKMGjWK8ePH\nEx8fz8SJE0+Kdfbs2fz0008kJiZy0003MX78eLp3715gLBWFhLtFKSLJwAJVbe1+/hp4F7gSOAz8\nRVVXBthWK1KL11Rsb7/t3Ll65hkYMMD5p8rf178oy48ccfI6cgTefNN55CyYvIwJJxFBVctNTRvO\nukoEOnRwnse0v1cj4wRNKZtfAvfv2uswjCmyQN/dktZVXgx8URmIU9WOwP3AXA9iMJHkxAmYMsUZ\n07gcyhn578YbITMTBg50PsfFlTzvqlVh1iyny+Dtt9s/aMZEonXrYPdur6MwxhhTFJULW0FEegCL\nVDVUQ4FsBd4CUNUvROSEiNRVVb9ViO/7B7p160a3bt1CFIaJGGPGwGefOa0PL+3c6TwLFkInTjjv\nQG7bFt57D3wG4QmZ6GjnGa2uXeGpp+D++0O/D2MKkpqamue9KeEQhrqqzOjSBT780OsojDHGFEWh\n3QVF5DWgE/AmMFVVvy/SDkSa4XQXPNv9PBRorKopItIS+EBV/Y5jad0FDbNmOaMIrlgB9et7F4eq\nM4b6+PFw9dUhyfL4cRgyBKZNc4ZSr1MnuO3i4/0PvR4X99uzXP5s3ep0O5o5Ey691Flm3Y+MF8LR\nXbCkdVUJ9x3W7oJ//zt8u+AnNn64mY818LMOpvyz7oLGhJ5n3QVVdQBwDvAj8KqILBORoSJSq7Bt\nRWQW8DnQUkS2iMhgYCrQXETWALOAW4obvCnnvvoK/vhHePddbxtY4Pyn8/DD8OCDzu2nEjpxwum+\nlzOCa7ANLAj8zquCGlgASUlOA+vWW63rkSl/SlhXVRWR/4nI1+6rRVLc5XEiskRE1ovI+yJSO8yH\n4ddll8EHX8XTy3rXG2NMxAjqmSxV3Q+8AbwOJAA3AF+JSIHjyqpqf1VNVNWqqtpUVaep6jFVHaiq\nZ6tqe1Ut/FXZpuLZt88ZFu/5552htcqCnj2dcdRff71E2ajCiBGwcaPTfixNl14KvXrB3XeX7n6N\nKQ0lqKuOAN1V9RygLXCViHQARgH/UdXTgI+AB8MZfyBnnAFHK1cnmbTCVzbGGFMmFNrIEpGeIvI2\nkApEAx1U9SqgDfCn8IZnKqzjx+Evf4E+fbyO5Dci8Pjj8Mgj8Ouvxc7mkUecR8wWLYIaNUIYX5Ae\nf9wZ2t1eVmzKk5LWVaqa8zbOqjjPKyvQE8h5mc104PoQhx0UEbj8qsp8z+l2G9oYYyJEMHeybgSe\nce88PaWqOyG3Qro9rNGZiis+Hu680+soTta9OzRv7rzxtxj+8Q944w14/32o7UnHI6hWDf75T6cn\npjHlSInqKhGJcl8xkoHzrPAXQENV/dnNJwMI7cg3RXDZFVG8zY3OS9KNMcaUecE0sjJU9RPfBSLy\nBICq2nhHpuL5+9+d4b6KaMECePJJ+Pe/vX/E7JJL4PzzvY3BmBArUV2lqifc7oJNgA4i0grnblae\n1UIVbFF16QJfcS4nPvnMqxCMMcYUQTCNrMv8LLsq1IEYEzHOPBNOP71Im6xa5Qx08fbbkOx3LM3S\n9/TTzs9Nm7yNw5gQCUld5T7XlQpcCfwsIg0BRKQRsDPQdmPHjs2dwjFcfZMm8CvRrOs8JOR5G2Mi\nW1RUFJuCrMzHjRvHQPeVOFu3biU2NjZko0Lefffd/PWvfwVg6dKlJCUlhSRfgM8++4wzzjgjZPn5\nk5qamudcXlIB35MlIncD9wAtRGS1T1ItwPormNBTdR4+KGfS0+G662DSJGcI9bKicWPnZ0qKM+qg\nMZEoFHWViNQDjqrqPhGpjtNgmwDMB24FngAGAQGHqglFhVyY40TzyY7f0SrsezKm/Jk1axbPPPMM\n33//PbGxsbRt25bRo0dz4YUXehrX9OnTeeWVV/j000+LnYcU8X+nnPWTkpLYv39/oesHG+MLL7xQ\norh8RUVFsXHjRpo3bw5A586dWbduXbHzC0b+9/GOGzeuRPkVdCdrFtADp1Lp4TO1c4fKNSZ0liwp\nW4NchMiRI3DDDXDXXfD733sdjX9LlsCaNV5HYUyxhaKuSgA+FpFVwP+A91V1MU7j6jIRWQ9cgtPw\n8tRSG4/XmCKbOHEi9913H2PGjGHnzp1s2bKFYcOGsWDBgiLndfz48aCWBUtVS9QYyckjnIKJ8UQI\nXm/jq6RlUhYU1MhSVd0MDAMO+EyISHz4QzMVxp49Tl+6oUO9jiTk7r3XeT/VU085N+n8TXFx3sb4\nwAPOK8CMiVAlrqtUdY2qnquqbVW1tar+1V2epaqXquppqnq5qu4N0zEE7ZNP7AXixhTF/v37SUlJ\nYdKkSfTs2ZPq1atTqVIlrr76aiZMcK6b/Prrr4wYMYLGjRvTpEkTRo4cydGjR4Hfur09+eSTJCQk\ncNttt/ldBrBw4ULOOecc4uLi6Ny5M2t8rmBu27aNm266iQYNGlC/fn3uvfdevv/+e+6++26WLVtG\nrVq1iI+Pz43nz3/+M8nJySQkJHDPPfdw5MiR3LyeeuopEhMTadKkCdOmTSuwQbJ582a6detG7dq1\nueKKK8jMzMxNS0tLIyoqKreB9Oqrr9KiRQtiY2Np0aIFs2fPDhjj4MGDueeee7jmmmuoVasWqamp\nDB48mEceeSQ3f1Xl8ccfp379+jRv3pxZs2blpnXv3p2pU6fmfp4+fToXXXQRAF27dkVVad26NbGx\nscybN++k7offf/893bt3Jy4ujrPPPjtPg3nw4MEMHz6ca6+9ltjYWDp16sRPP/1U8BclDAq7kwXw\nJbDS/fmlz2djQmP4cOd2z6WXeh1J0a1dCzt2+E2aOtX5h2jaNNi71/8LhIN5iXC43XMPfPklfPGF\nt3EYU0wVqq6KioIff/Q6CmMix7Jlyzhy5AjXXx/4DQyPPfYYK1asYPXq1XzzzTesWLGCxx57LDc9\nIyODvXv3smXLFl5++WW/y77++mtuv/12Jk+eTFZWFnfeeSfXXXcdR48e5cSJE1x77bWccsopbNmy\nhe3bt9O3b19OP/10XnzxRTp16sSBAwfIcv8heOCBB9i4cSOrV69m48aNbN++nUcffRSAf//730yc\nOJEPP/yQDRs28J///KfA4+/fvz/nnXcemZmZjBkzhunTp+dJz2mgZWdn88c//pH333+f/fv38/nn\nn9O2bduAMQLMnj2bhx9+mAMHDvjtdpmRkUFWVhbp6em8+uqrDB06lA0bNgSMNSeWpe4t+zVr1rB/\n/3569eqVJ/3YsWP06NGDK6+8kl27dvHss89y880358l7zpw5jBs3jr1799KiRQseeuihAsspHAI2\nslT1WvfnKara3P2ZMzUvvRBNuTZ3LqxcCRM874VTPFOmwLPPnrR45UrnDtFbb0GtWh7EVQTVqsGf\n/gRPPOF1JMYUXUWrq7p0sS6DJjIF6s1R1Kmodu/eTb169YiKCnxfYdasWaSkpFC3bl3q1q1LSkoK\nM30eVq5UqRLjxo0jOjqaqlWr+l02efJk7rrrLtq3b4+IMHDgQKpWrcry5ctZsWIFO3bs4Mknn6Ra\ntWpUqVKFCy64IGA8kydP5plnnqF27drUqFGDUaNGMXv2bADmzZvH4MGDOeOMM6hevXqBz4Nu3bqV\nlStX8uijjxIdHc1FF11Ejx49Aq5fqVIl1qxZwy+//ELDhg0LHWiiZ8+edOzYESC3XHyJCOPHjyc6\nOpouXbpwzTXXMHfu3ALz9BWoG+SyZcs4dOgQDzzwAJUrV6Z79+5ce+21uWUEcMMNN9CuXTuioqK4\n+eabWbVqVdD7DZVgXkZ8oYjUcOcHiMhEEWka/tBMubdrF/zhDzBjBsTEeB1N8dx1l3PLyuc2/u7d\nzvNXL7wAYR4IJ2TuuMP5x+2HH7yOxJjiqSh1VZcusHT0+7Bxo9ehGFMkgXpzFHUqqrp165KZmVng\nM0Pp6ek0bfrb6SI5OZn09PTcz/Xr1yc6OjrPNvmXpaWl8fTTTxMfH098fDxxcXFs27aN9PR0tm7d\nSnJycoENvRy7du0iOzubdu3a5eZ11VVXsdt9EXl6enqebnPJyckBGyPp6enExcVRvXr1POv7ExMT\nw5w5c3jhhRdISEigR48erF+/vsBYCxs9MC4ujmrVquXZt2+5FteOHTtO2ndycjLbt2/P/dyoUaPc\n+ZiYGA4ePFji/RZVMEO4vwBki0gb4E/Aj4CNRWZKrm5dePfdyH5hU8uW0KYNzJsHOBXA4MFw441l\nd6ALf2rWhLvv/m1Yd2MiUIWoqzp3hs8PtYb//c/rUIyJCJ06daJq1aq88847Addp3LgxaWlpuZ/T\n0tJITEzM/ezvmaf8y5KSknjooYfIysoiKyuLPXv2cPDgQfr06UNSUhJbtmzx29DLn0+9evWIiYlh\n7dq1uXnt3buXffv2AZCQkMDWrVvzxBromayEhAT27NnD4cOHc5dt2bIlYDlcdtllLFmyhIyMDE47\n7TSGus/KB8q/sMEp/O07p1xr1KhBdnZ2blpGRkaBeflKTEzMUwY5eTfOGTa5jAimkXVMnSZyT+B5\nVf0nztC4xpRMVBS4t5kj2l13weTJADz/vDNkeyT2fvzDH5y2YhHOc8aUJRWirjrzTMg8HsfOj9d6\nHYoxESE2NpZx48YxbNgw3n33XQ4fPsyxY8d47733GDVqFAB9+/blscceIzMzk8zMTMaPH5/7Lqlg\nDRkyhBdffJEVK1YAcOjQIRYvXsyhQ4fo0KEDCQkJjBo1iuzsbI4cOcLnn38OQMOGDdm2bVvuQBsi\nwpAhQxgxYgS7du0CYPv27SxZsgSA3r178+qrr7Ju3Tqys7Nzn9Xyp2nTprRv356UlBSOHj3KZ599\ndtKIijl3wXbu3Mn8+fPJzs4mOjqamjVr5t55yx9jsFQ1d9+ffvopixYtonfv3gC0bduWt956i8OH\nD7Nx40amTJmSZ9tGjRoFfPfX+eefT0xMDE8++STHjh0jNTWVhQsX0q9fvyLFF27BNLIOiMiDwABg\nkYhEAdGFbGNMxXHttbBuHasWbOXRR+H116FKFa+DKrr69aFvX3jxRa8jMaZYyn1dFRcHlSqB/HKY\nGVOOEG/j/BoTlPvuu4+JEyfy2GOP0aBBA5o2bcqkSZNyB8MYM2YM7du3p3Xr1rRp04b27dsXeaCE\ndu3aMXnyZIYPH058fDwtW7bMHWQiKiqKBQsWsGHDBpo2bUpSUlLus0kXX3wxrVq1olGjRjRo0ACA\nCRMmcOqpp9KxY0fq1KnD5Zdfzg9uf/4rr7ySESNGcPHFF9OyZUsuueSSAuOaNWsWy5cvp27duowf\nP55BgwblSc+5G3XixAkmTpxI48aNqVevHp988knue6/8xRiMhIQE4uLiSExMZODAgbz00kv87ne/\nA2DkyJFER0fTqFEjBg8ezIABed+4MXbsWG655Rbi4+N544038qRFR0ezYMECFi9eTL169Rg+fDgz\nZ87MzbusDP8uhY2t777lvj/whap+6vZx76aqM8IenIiGe+x/Y0Lh0PwPafenroxJqcwAP2/mESmb\nwy7Hxzsj6OdXp47/5caEgoigqiGtBctrXeXv3JHy4K8c/ds/ePrYvRzRkx82N+WXjBM0pQxWJuT+\nXXsdhjFFFui7W9K6qtBGVkmIyBTgWuBnVW2dL+1PwFNAPVX1O4i1NbLKIdXiDQ9Uxt1+Oxw7BgsW\n+G+cxMV5P1R7sLp2dYZ0P3To5LRIOg5TdoWjkeWl0m5k/fvf8ESvL9h7sDJf6zlh2a8pm6yRZUzo\nhauRFczogjeKyAYR2Sci+0XkgIjsDzL/acAVfvJsAlwGpJ20hSm/Dh92nsHats3rSELq9dfh00/h\nn/90Glhl8V1YRTFsGLRv7/847O6WKatKWFdFlPPPh5W0ZxXWwDLGmLIqmGeyngSuU9XaqhqrqrVU\nNTaYzFX1M8Dfv2XPAH8pQpymPBg/Hpo2hSZNvI4kZLZuhXvvdRpaNWt6HU1oXH+9M5T7Wnuu3kSW\nYtdVkSYuDpo0KTc3Ao0xplwKppH1s6quC9UOReQ6YKuqrglVniYCfPMNvPIKPPec15GEjCoMGQJ/\n/COce67X0YROlSpO98dXXvE6EmOKJKR1VVnXqZPXERhjjClI5SDWWSkic4B3gNw3rqrqW0XdmYhU\nB0bjdBXMXVzUfEyEOXHCGeb8r38Fn5fDRbopU5z3Kd9/v+9ShX37oXZtr8IKiVtvdf6Je+KJyBwp\n0VRIIaurIkGnTjBtmtdRGGOMCSSYRlYskA1c7rNMgeJUXC2AZsA34oyv2AT4UkQ6qOpOfxuMHTs2\nd75bt25069atGLs1npo61Xl6+/bbvY4kZLZsgQcfhI8+At+XwN/CDBi6GObM8S64EGjRAk4/HRYt\nghtu8DoaE+lSU1NJTU0N925CWVeVeXYnyxhjyrawji4IICLNgAWqeraftJ+Ac1XV7+P0NrpgOfH1\n187tkFatvI4kJFThqqvgoosg/2s06kkmmbEtYPv2iH9Ia9o0ePttmD//t2VldSh6E1lsdMGi5O3/\nb+7ECahUSdn17U7qtWoYln2bsqcsjy7YrFkz0tJsPDMTeZKTk9m8efNJy0tjdMGWIvKhiHzrfm4t\nImOCyVxEZgGfAy1FZIuIDM63imLdBcu/c84pNw0scLoJZmbCAw+cnLabenDBBbBwYekHFmK9ejmj\nJmZkeB2JMYUrSV0ViaKiIJF0lg+b6XUoxgCwefNmVNUmmyJu8tfACoVgBr6YDDwIHAVQ1dVA32Ay\nV9X+qpqoqlVVtamqTsuX3lwDvCPLmLIop5vgq69C5UCdbfv0ifjuguDciLv+evjXv7yOxJigFLuu\nilTHqMwX31b3OgxjjDF+BNPIilHVFfmWHQtHMMaUZapwxx0wYgScdVYBK15/vfOw1r59pRZbuAwY\n4AxPb0wEqHB1VSZ1+WLPqXDwoNehGGOMySeYRlamiLTA6dqHiPwe2BHWqIwpg155xXmpsL9ugnnU\nqeO80Tc9vVTiCqdu3Zx3gW3Y4HUkxhSqwtVVJ6jMF1Ed0K9XeR2KMcaYfIJpZA0DXgJOF5HtwAjg\n7rBGZSLb1q3Oy6PKkS1bYPToQroJ+vq//4Mzzgh3WGFXqZLzbFY56P1oyr8KWVdFVxHS/mNXQYwx\npqwptJGlqptU9VKgPnC6qnZW1c1hj8xErhEjID7e6yhCJqeb4MiRhXQTLKf69rUug6bsq6h11Xln\nHOKLtAZeh2GMMSafgNfkReS+AMsBUNWJYYrJRLLFi2H16nI1WsIrr8CePflfOlxxdOoE+/fDt996\nHYkxJ6voddV51zfmi/2N6eV1IMYYY/Io6E5WLXdqj9PlorE73QWcG/7QTMTJzobhw+Gf/4Rq1byO\nJiRyuglOmxZkN8FyKCrKGTDR7maZMqrEdZWINBGRj0RkrYisEZE/uMtTRGSbiHzlTleG6RiK7bzz\n4IsvvI7CGGNMfoW+jFhEPgGuUdUD7udawCJV7RL24OxlxJHl4Yfhhx/KzQM8qnDFFc7gD6NHB7dN\neX1Z71dfQe/esHs37N3rf524OGdgEGMKE46XEZekrhKRRkAjVV0lIjWBL4GeQB/gQGF3w7x4GXFO\nWmYmNG/u3G2PCuYpaxPRyvLLiI0pb8L+MmKgIfCrz+df3WXG5PXrrzCx/PTMCUk3wb/9DVauDFlM\nXjnnHOfnhx86//D5m/bs8TZGU+EVu65S1QxVXeXOHwTW4dwNAwhpYzDU6taFevVg/XqvIzHGGOMr\nmEbWDGCFiIwVkbHA/4BXwxmUiVBPPAGNGxe+XgTI6Sb4ww8QHe1cMfadgh7XY98+mDs3rLGWBhG4\n4QZ45x2vIzEmoJDUVSLSDGjrbg8wXERWicgrIlI7NKGG1nnnlYtrOcYYU64U2l0Q4P/Zu/M4m+v9\ngeOv9zBomGHGvg4RpUhCCRlLJUsqt01U2rdfablpc3FpodKte28LCXWjUlqIiAwJSRRZSpF9n2HI\nMpj374/vmWlmzHJmzvI958z7+Xh8H5zz/Z7P9z1nvnM+5/P9fD7vj4i0BDp4Hi5Q1RUBjeqv89pw\nQRN0mcMEO3VyGlp5XYJrF2gUAAAgAElEQVT5DeE55fkffoC+fSPiNvOiRXDXXbBqVd77I3WopPG/\nQAwX9JTrU13lGSqYDAxX1c9EpCqwV1VVREYANVX1tjxep0OGDMl6nJSURFJSUjF/itxlFzxcUBVe\neu4YmxZu5dUvGvrlnCZ02XBBYwInOTmZ5OTkrMfDhg3zqa7yqpHlFmtkGTeMGQNjx8LixU4vlk+N\nLFWnd2/BAmjUKGAxB0NGhvOjfPNN3j+KNbKMtwLVyPKFiJQGpgMzVfWVPPYnAtNUtXke+1ybk6UK\nC2YdYVD3lSw+dn7JzdBTQlgjy5jgCcacLGNKjE2b4KmnirDocGFEoFs3mDnTD4W5KyoKrrjChgya\niPU2sCZ7A8uTECPT1UBILmTQst1prNRmHP85/HvMjTEmUlgjyxTfqlVOd0+EyFx0+OGH4eyz/Vhw\n9+7O+mER4Kqr4JNP3I7CGP8SkXbAjUBnEVmRLV37KBFZKSI/Ah2Bh1wNNB8VKkD92H38PGOz26EY\nY4zxKLSRJSL/JyLxwQjGhJGMDKdFsnat25H4zdixTp6Kv//dzwV37w5vv+3nQt3RuTOsWQM7d7od\niTE5+VJXqeq3qlpKVVuo6nmq2lJVv1TVm1S1uef5K1V1l7/j9pfWDVP4fv5ht8Mwxhjj4W0K9+9F\n5EMR6SYiITWO3rjkrbec8XS33OJ2JD5LSHBG9d11l7OoZ/ZsgvH+uL0QEwM1a/qhIPeVKeOMfvz8\nc7cjMeYUJbquan1BFN+vjnE7DGOMMR6FNrJU9WngDGAccAuwXkSeFZFC0xiJyDgR2SUiK7M9N0pE\n1npS4n4sInE+xG/csGcPPP00vP56RKx+mZoKXbvCc8+duvZTfovrxsefmtbdb42yEGep3E0o8qWu\nigStr6jF9xkt3Q7DGGOMh1ffkD1pk3Z6thNAPPCRiIwq5KXjgctyPTcbOFtVWwDrgSeKFLFx36BB\n0K8fND8lyVbYOnAAHn3U++NTUvJekDe/RlkkuewyWLgQDtvIJBNifKirwt65nSuz/kB1jhxxOxJj\njDHg3ZysB0XkB2AU8C3QTFXvAc4H+hT0WlVdCKTmem6OqmZ4Hi4B6hQncOOS1FT46ScYOtTtSPzi\njz+cf/2WTbAEqFgRWraEefPcjsSYv/hSV0WCsmXhrLOcj2djjDHu86YnKwG4WlUvU9UpqnocwNNQ\n6unj+W8Fwj+3dUkSHw/LlkFc+I/yzMwmCNC0aRBOePw47NgRhBMFXo8eEZMw0USOQNZVYaFVK2de\nqTHGGPd5c+9+JpA1CMozh+osVf1OVYudWk5EngKOq+qkgo4bmq3HJCkpiaSkpOKe0vhLhMwnHzMG\nDh4M4gmnTXNO+uWXQTxpYHTv7jS0/vOfiLkcTAAlJyeTnJwc6NMEpK4KJ61aOYuFG2OMcZ8Utkq9\niKwAWmYuZy8iUcAyVfVqhq2IJALTVLV5tuduAe4AOqvqsQJeq4XFZ0xx/PEHtG4N8+c7a2IF5TI7\ncADq1IFdu5yMg2FMFRo0cHqzMnsBRYL0PpqwJyKoql+b577WVT6eO2B1VUF/V7n3/fQT9O0Lq1cH\nJBQTAmSYoEPsg9aYYPC1rvJmuGCO2sMz9KIos1fEszkPnAUe/w5cUVADy5hAyRwm+OijQRommKli\nRWjRwskaEeZEnN6sL75wOxJjsvhaV4W9pk3hj/XpHNxlWWmMMcZt3jSyNojIAyIS7dkeBDZ4U7iI\nTAIWAY1FZLOIDAD+DVQAvhKR5SLyWrGjN8GxcSOcOOF2FH7z5pvOMMFHHnHh5F27wpw5LpzY/7p3\nt3lZJqQUu66KFNHR0Dx6LSs+3eR2KMYYU+J508i6G7gI2AZsBS4A7vSmcFXtq6q1VLWsqtZT1fGq\neoaqJqpqS892b/HDNwF39ChceiksWOB2JH7xxx8weDCMH+9SNsEIamR17uzkQDlwwO1IjAF8qKsi\nSet6u1g21/4ojTHGbYV+zVTV3cD1QYjFhKJRo6BZM+cbdZhzbZhgdm3aQP36Ts9gmOeMj4mB9u3h\nq6/gb39zOxpT0lld5Wh13klmLot2OwxjjCnxCv2WJyJVcZJU1M9+vKreGriwTEj4/Xd49VVYvtzt\nSPzC1WGCmaKjYepUFwPwr8xU7tbIMm4riXVVfHzO7J7x8bDwxXiGf1LNvaCMMcYA3mUXXAR8A/wA\nnMx8XlU/Dmxoll3QVapw+eXQqRMMGuR2ND7LzCa4YIGzYGd2lhWv+H7/3enN2r4doqLsfTTeCVB2\nwYisq4ry+SQCJ3buJb5GGTbtiyU+wdZXiDSWXdCY4PG1rvJmvFKMqob/t2xTNLNmOd+cH37Y7Uh8\nlpEBt90Gf//7qQ0s45uGDZ1hgz//7HYkxlhdBVCqehXOO2s3PyyNoWu38B6SbIwx4cybxBfTRaR7\nwCMxoeXSS53JNtHhP7b/zTfh0KGIaC+GpMxLxRiXWV3l0eryaiz70RpYxhjjJm8aWQ/iVF5HRSRN\nRA6KSFqgAzMui4qC6tXdjsJnGzY42QQnTAj7PBMh65JLYPZst6MwxuqqTK1bw/ffux2FMcaUbIU2\nslQ1VlWjVLWcqsZ5HscFIzhjfJGRAQMGwBNPhOAwwY0b4fXX3Y7CLzp3hkWL3I7ClHRWV/2lVStn\neQVjjDHuKbSRJY5+IjLY87iuiLQJfGjG+Obf/4aTJ2HgQLcjyUOZMvD0006AYa5SJTj7bLejMCWd\n1VV/adgQ0tJg9263IzHGmJLLm+GCrwFtgb6ex4eA/wYsIuOeI0fcjsBvfv0Vhg93hgmWKuU8l5Dg\nZN/KvcXHuxBg7drOcMwff3Th5P53ySVuR2CM1VWZRKw3yxhj3OZNI+sCVb0POAqgqqlAmYBGZYJv\n3To45xw4dsztSHx28iTccgsMGQKNGv31fGqqkwo595aS4lKgXbtGTMaISy91OwJjrK7KrtWBuSz7\ndKvbYRhjTInlTSPruIiUAhSyFnzMCGhUJrhU4e674cEHoWxZt6Px2UsvQblycN99bkdSiK5dYc4c\nt6PwiwsucP7ds8fdOEyJZnVVNq3if2fZ4nS3wzDGmBLLm0bWq8AnQDUReQZYCDwb0KhMcI0fD4cP\nh0GrpHCrV8MLL8DbbzsJEkPaxRfDd99Bevh/EcrM9B8hbUYTnopdV4lIHRH5WkRWi8gqEXnA83y8\niMwWkV9EZJaIVAxc+P7VOqk83/+eYAuEG2OMS7zJLvge8BjwHLADuFJVpwQ6MBMku3fD44/DmDF/\nTV4KU8ePw803wzPPQP36bkfjhUqV4OOPiaRvQREy+tGEIR/rqhPAw6p6Ns68rvtE5EzgcWCOqjYB\nvgae8H/kgVG3UyNOHs9g+3a3IzHGmJJJtJAveCJSL6/nVXVzQCLKeW4tLD7jo379oFYtGDXK7Uh8\nNmIELFwIM2c6E79zE4mo9kzIqVjRyWiWW3y8i/PeTEgSEVQ1j79Sn8r0W10lIp8C//FsHVV1l4jU\nAJJV9cw8jg9YXVWUz60cxx4+TPfYb7jrwy707mOLBEYKGSboEKvIjAkGX+sqbz55v8AZ4y5AOaAB\n8AtQaNJmERkH9AR2qWpzz3PxwAdAIvAHcK2qHihO8MYPBg1y8v2GuZ9+gldfheXL825gmcDbv9/p\nQfzyy5zrktnvwwRJseuq7ESkPtACWAJUV9VdAKq6U0Sq+THewIqJoXX8b3w/6zx69wmfsI0xJlIU\n2shS1WbZH4tIS+BeL8sfD/wbeCfbc5nDL0aJyCCc4RePe1me8bdmzQo/JsQdOwY33eR0xtWp43Y0\nJZeIk8p99uwQXPzZRDwf66rM11QAPgIeVNVDIpK7yyDfLoShQ4dm/T8pKYmkpKSinDogWj3fh/9+\nWMXtMIwxJiwkJyeTnJzst/IKHS6Y54tEVuWu0Ao4NhGYlq0nax1eDL/wHGvDBU2h/v53+O03mDq1\n4F4TGy4YeO+/D5Mnw2ef/fWcve8mt0AMF8znPEWpq0oD04GZqvqK57m1QFK2+mqeqp5yCyEkhwsC\nO3Y499H27LEe5UhhwwWNCZ6ADxcUkYezPYwCWgK+TKWtFrbDL0zISU6GSZOc4YJh/SVCNcx/AEen\nTnDPPc5aZWGeR8WEGT/UVW8DazIbWB6fA7cAI4Gbgc/yeF3IqlnTWc7ijz+gQQO3ozHGmJLFmyTX\nsdm2sjjj3nv7MQa7JRNMJ0+6HYHf7N/vZBN86y2oEs4jYpYsgZ493Y7CL6pXd/KorFjhdiSmBCp2\nXSUi7YAbgc4iskJElotIN5zG1SUi8gvQBXg+IJEHUKtWsGyZ21EYY0zJ482crGF+PucuEamebfjF\n7oIODsVx7mHtvvugdWu47Ta3I/HZ/fc7bZPLL3c7Eh81bQrz58PRo85t5zDXuTN8/bXz5c4Y8P84\n97z4Ulep6rdAfn2vXYtbbrDFx+fsEI+Ph4cfdhpZ11zjXlzGGFMSeZPCfRoF9Dap6hWFvL4+zpys\nZp7HI4EUVR3pSXwRr6p5Jr6wOVl+9vXXTtfPzz87+bbD2Pvvw9ChTjbBmBjvXhPSc4PatIEXX3QW\nKA5zn3wCb77pZBmEEH/fjSsClMLdp7rKx3OHxJysvF775ZcwcqTy9dfhPxzZ2JwsY4IpGCncNwA1\ngP95Ht8A7AI+9SK4SUASUFlENgNDcIZbTBGRW4FNwLVFD9sU2Z9/wh13wBtvhH0Da8sWeOABmDHD\n+wZWyOvUCebNi4hGVseOTrbH9HQoU8btaEwJUuy6KpKd//UL/LDo/8jIKEeUNxMEjDHG+IU3jax2\nqpp94M80EVmmqg8V9kJV7ZvPrrAZfhExHnsM2reHHj3cjsQnGRlwyy3w4IMRNhwtKcnJQT9kiNuR\n+CwhARo3hqVLnUvOmCApdl0Vyao0r0VC6TR++60cjRu7HY0xxpQc3tzXKi8ip2c+EJEGQPnAhWT8\nbu5cmD4dXnml8GND3CuvOFOXBg1yOxI/a9cO1q+PmMQknTs7HXPGBJHVVXlp0YLW8gPff+92IMYY\nU7J408h6CEgWkWQRmQ/MAwYGNizjVxdcAF98AZUquR2JT376CZ59Ft59F0oX0AebkODMRci9xccH\nL9Yii4uDzZsjJu95p07OFEBjgsjqqrw0aUKrY9+ybPFxtyMxxpgSxZvsgl+KyBlA5oLB61T1WGDD\nMn5VoQKcc47bUfjkzz/huuvg5ZfhdM+96oQESE099dj4+DBNtBBBEyY6dIBrr4UjR9yOxJQUVlfl\no3RpWtXfy5CFR4Bot6MxxpgSo9BvdSISA/wduF9VfwLqiUhkLOpjwsYDDzgdcv36/fVcaqrTmMq9\npaS4F6dxxMZC8+awaNFfaaVzbwkJbkdpIonVVflr2bYsP/5yGidOuB2JMcaUHN7cOh8PpANtPY+3\nASMCFpExubz/PnzzDfz3v25HYooic72slJS8G8N59UIa4wOrq/JRacK/qFUvmnXr3I7EGGNKDm8a\nWQ1VdRRwHEBVDwO24EYoU3WyQ0SADRucXqz333dGPZrwYckvTJBZXZUfEVq1chYlNsYYExzeNLLS\nReQ0PIs8ikhDwMa5h7IxY5w852EuPR1uuAGeegpatnQ7miDZs8fJ8BEB2raFlSvh4EG3IzElhNVV\nBWjVCsswaIwxQeRNI2sI8CVQV0TeA+YCjwU0KlN8a9Y4rZKhQ92OxGdPPw3Vqjk9WSXG8uXOImAR\n4LTToHVrZ6inMUFgdVUBWre2nixjjAkm0QLSsImIAHWAw8CFOEMvlqjq3qAEJ6IFxWdyOXrUyQ5x\n//1wxx1uR+OTWbPg9tthxQqoUiXvY0TCNItgQQ4dgho1YO9eKFfO7Wh8Nnw4HDgAL7546r6I/P0Z\nr4gIquq3oXyRXFf58neS/bWHDkH16s5cyDJl/BefCS4ZJugQ++A0Jhh8rasK7Mny1BozVHWfqn6h\nqtODVWmZYhg0CM44w2mdhLFt22DAAHjnnfwbWBGrQgVo1gyWLHE7Er+weVkmGKyuKlwF+ZMGddL5\n+We3IzHGmJLBm+GCy0WkdcAjMb5ZsQI+/RTGjnVuX4ap48ed9bDuu89Z0LZESkqC5GS3o/CL1q1h\n/XpLq2+CwuqqgsyZQ+s/59uQQWOMCRJvGlkXAItF5HcRWSkiq0RkZaADM0V03nnOgPv4eLcj8ckT\nT0DFis6/JVYENbLKlIGLLoL5892OxJQAVlcVpEULWh2cZ40sY4wJktL57RCRBqq6EbgsiPEYX1St\n6nYEPpk6FT76yMn9EOVN8z9StWsHbdq4HYXfZK6XddVVbkdiIpHVVfnLXAjcUY+vWMpbi48D0S5G\nZYwxJUNBX2U/8vz7tqpuyr0FIzhTcqxfD3ffDVOmQEKC29G4rEIFGDXK7Sj8xuZlmQCzuiofORcC\nFzKI4pf1URw54nZkxhgT+fLtyQKiRORJoLGIPJx7p6qO9uXEIvIQcBuQAawCBqhqui9lmvB0+DD8\n7W8wbJgzh8dElvPOc5KZ7NrlZDczxs8CWldFkjU05czKe1m5sjoXXOB2NMYYE9kK6sm6HjiJ0xCL\nzWMrNhGpBfwf0FJVm3vOcb0vZZY4e/YQKWmi7r8fzjnH6ckykadUKbj44oiZZmZCT8DqqkiTTBKt\n6u22RYmNMSYI8u3JUtVfgJEislJVZwbg3KWA8iKSAcQA2wNwjsh08iTceKMzb2fECLej8cm4cfDd\nd84WxkkRTSE6dXLmZV13nduRmEgThLoqYnzGlYy5Fb791u1IjDEm8hWaXiAQlZaqbgdeAjYD24D9\nqjrH3+eJWMOHQ3o6DB3qdiQ+WbLEySL48cfONKS8JCQ4ja+8tjBPpFiiZCa/MCZQfK2rRGSciOzK\nnpFQRIaIyFYRWe7ZuvkeqbtatcIyDBpjTBC4ksNNRCoBvYFEoBZQQUT6uhFL2Jk9G8aMgcmToXRB\nU+pC2/btzjyst9+GM8/M/7jU1OwTt3NuEb/20pw58O67bkfhF+ecA/v3w5YtbkdiTL7Gk3eGwtGq\n2tKzfRnsoPztnHNg40Y4dMjtSIwxJrIVlML9GlWdki09rj91BTaoaornXFOBi4BJuQ8cmq23Jikp\niaSkJD+HEka2boWbb3YaWDVruh1NsR09CldfDffcAz17uh1NCEtPh/HjoX9/tyPxWVSUs/zXvHlw\n001uR2OCLTk5meQATcrzV12lqgtFJDGvU/gQXsiJjoZmzZz16zt0cDsaY4yJXKKqee8QWa6qLTP/\n9etJRdoA44DWwDGcO4jfq+p/cx2n+cVXIs2YAWvXwiOPuB1JsanCbbfBwYPw4Yd/zcNKSHB6rXKL\njy8BPVb5SUuDWrVg714oV87taHz2+uuwdKnTbgTnd29/3iWTiKCqfmm8+LOu8jSypnkSMiEiQ4Bb\ngAPAMuARVT2Qx+sCVlf58+8ks6z774eGDeGhh/xTrgkeGSboEPvgNCYYfK2rChpvtk9EZgMNROTz\n3DtV9YrinlRVl4rIR8AK4Ljn3zHFLa/E6N7d2cLYf/7jzAdYtChnoovMYYEmm7g4aNrUaZlcfLHb\n0fisUyd4/nnn92xJTowfBayuAl4D/qmqKiIjgNE4S4+Er2PHaJW+jNnft3M7EmOMiWgFNbJ6AC2B\nd3GSVPiVqg4Dhvm7XBO6kpOdZIiLF+ef6MLkkpTkvHER0Mhq0gSOH4cNG5y76Mb4ScDqKlXdk+3h\nWGBafseGzdD20qVp/b+BPFtrCU6SX2OMMeD/oe35DhfMOkCkqqruEZEKAKoatOmyNlwwcvz2G7Rv\nD//7H3Tteup+GzqWjy++gJdeipjUfP36Oe3G22+333lJ5s/hgtnK9LmuEpH6OMMFm3ke11DVnZ7/\nPwS0VtVTkjSFy3DBzGHZ8+hIV+ZSoWJp9u/3T9kmOGy4oDHB42td5U12weoisgJYDawRkR9E5Jzi\nntAUQYR8A01NdRJcDBuWdwPLFCApCf71L7ej8JvM9bKMCQCf6ioRmQQsAhqLyGYRGQCMEpGVIvIj\n0BEI61lMKSlOtZI0sCVt6+/gwCmzy4wxxviLN42sMcDDqpqoqvWAR7D5U4F39KjzjfTnn92OxCfp\n6U4mwR494K678l/3yta8ykf58tC8udtR+E3nzk6GQVXnd57XtZCQ4HaUJkz5VFepal9VraWqZVW1\nnqqOV9WbVLW5qrZQ1StVdVfAog+m88+ndfRPbkdhjDERzZtGVnlVnZf5QFWTgfIBi8g430Dvuguq\nVYOzz3Y7mmLJbEyVLetMKRo9+q9kByVyzSsDQIMGzjWxbt1fd9Vzb3llmTTGC1ZXeatVK1odmON2\nFMYYE9G8aWRtEJHBIlLfsz0NbAh0YCXas8/CmjUwYULYpmFLTYXnnoPzznPStVtjymTq3NmGDJqA\nsLrKW40b0+rahkBkDEk3xphQ5E0j61agKjAV+Bio4nnOBMIHH8CYMfD55xAT43Y0PnntNZg2zTIJ\nmpw6dXKGDBrjZ1ZXeSsqikav/B8g7NlT6NHGGGOKodDsgm4qcdkFDx1y5t988gmce67b0RTbt986\nmQSXL3d6sowfqMKJExAd7XYkPtu6FVq0gN27ISqP2zyWdTDyBSK7oJvCJbtgXmXPnAndugWmfON/\nll3QmOAJRnZBEywVKsDq1WHdwFq92kl0AdbA8qt//hNGjnQ7Cr+oUwcqV4ZVq9yOxBjz/fduR2CM\nMZHJGlmh5rTT3I6g2LZsgcsvd5JcGD87/3wng0iEsFTuxoSGZcvcjsAYYyJToY0sEWnnzXOmZEtJ\ncYacPPgg3Hij29FEoPbt4bvv4NgxtyPxC0t+YfzN6qrisUaWMcYEhjc9Wf/28jlTQh05Aldc4fRi\nPfKI29FEqEqVoEmTiBnbk5QE33zjTDMzxk+sriqiW3mLY4fS2b7d7UiMMSbylM5vh4i0BS4CqorI\nw9l2xQGlAh1YxFOFgQPh0kudlXrD1IkTcP31UL8+jBrldjQRrmNHZ8hg+/ZuR+KzatWgbl0nOUqb\nNm5HY8KZ1VXFV4NdtE7YwLJlZ3LFFW5HY4wxkaWgnqwyQAWchlhsti0N+FvgQ4twzzwD8+eH9Rfm\njAy49VZnBNvbb+edKc74UefOTmq+CNG5s6VyN35hdVUxLeFCWp1cYkMGjTEmAApN4S4iiaq6SUQq\nAKjqoaBERgSncH/rLWfB4W+/hZo13Y6mWFThnntg7VonBXDuJb0sDbcpzKefwuuvw6xZOZ+3ayfy\nBSKFe6TWVYH8e4iTNN4tewdvJE1m5pd2lywcWAp3Y4InGCncY0VkBbAaWC0iP4jIOcU9YSYRqSgi\nU0RkrYisFpELfC0zLEyZAoMHw5dfhnUD6+GHnbbiggVQvrzzRSD7Fh/vdpQm1HXsCIsWQXq625GY\nCBGQuiqSlY6Po8KxPcyZdRIRSEhwOyJjjIkc3jSyxgAPq2qiqiYCj3ie89UrwAxVPQs4F1jrhzJD\n26FD8I9/OA2sxo3djqbYBg92pgadPOk0uPLaUlLcjtKEuvh4589g6VK3IzERIlB1VcRKSYEut51O\n1bh0Nm6E1FS3IzLGmMjhTSOrvKpmzZxQ1WSgvC8nFZE4oIOqjveUeUJV03wpMyxUqOCswBrGiw0/\n9xxMnQqzZ7sdiYkElsrd+JHf66oS4fHHaXVBlM3LMsYYP/OmkbVBRAaLSH3P9jSwwcfzNgD2ish4\nEVkuImNEJHxX4S2K0vkmdAx5o0c7CS7mzoWqVd2OxkSCTp0s+YXxm0DUVZGvUSMu6HgaS5a4HYgx\nxkQWbxpZtwJVgamerarnOV+UBloC/1XVlsBh4HEfyzQBNHKkk6Tg66/DdipZ5Fi6FDZudDsKv+jQ\nwVn668gRtyMxESAQdVWJ0L49LFzoDOHNPrfW5mgZY0zxFdqtoqqpwAMiEus89EvGpq3AFlXNHKDw\nETAorwOHDh2a9f+kpCSSkpL8cPog2bcPKld2OwqvJSTkPSa/XDlITHTmYdWuHfSwTG4ffgixsTBk\niNuR+Cw2Fpo3dxJgdOnidjQmUJKTk0lOTg7oOQJUV5UIrVs7I9n37MmZKVb8mv/RGGNKFm9SuDcD\n3gEy72ntBW5W1Z99OrHIfOAOVf1VRIYAMao6KNcx4ZvCffFiuOoq+OGHsGmZ5E4VrOrk6RgxAnbs\ngBo1Cj7eBMmsWc4v5Ztv3I7EL556yvn3mWecf+26inwBSuEekLrKy3OHZQr37Nq2debcZr+PaX+L\nocdSuBsTPMFI4f4mgcnY9ADwnoj8iJNd8Fk/lBkavvkGeveGCRPCpoGVmyo88QR89pnzOHcDy7io\nQwf48Uc4eNDtSPzikksskYrxi0DVVSVC+3YaKfdtjDEmJLiSXdBTzk+q2lpVW6jq1ap6wNcyQ0Jy\nMlx9Nbz3HnTr5nY0xZKR4ayDNWuWZX4LSTEx0KaNc61FgIsugl9+gb173Y7EhDnLLlhcJ07QfsLt\nLJx/0u1IjDEmYriVXTAyzZ0L11wDH3zg3J4PQ8ePwy23wHffOT9OlSpuR2Ty1LUrfPWV21H4RZky\nzsLEc+Y4j3NPvreJ+MZLVlcVV+nStGuwnSVLlBMn3A7GGGMiQ1GzC34MVMEyNuWtalVnEanOnd2O\npNiuusrJ1zFnjn2hDWlXX+10AUWIyy5zek7BWSA1v0WubbFUUwCf6ioRGSciu0RkZbbn4kVktoj8\nIiKzRKSi36MOEVU6N6f2aamsWuV2JMYYExkKbGSJSCngKVV9QFVbqur5qjrQk8XJ5Na8uTNfJgxl\nfnmNj4dPP82ZYcqEoCZN4Prr3Y7Cby67zJmXZZPsTXH4qa4aD1yW67nHgTmq2gT4GnjCTyGHng4d\naF9maY55WZbS3Rhjiq/ARpaqngTaBykWEyQJCXkPwypbFiZOhOhotyM0JU2jRs6wwdWr3Y7EhCN/\n1FWquhDI3SjrDUz0/H8icKUv5whp7drRPuVzFi7IyHoqd6+y9SQbY4z3vBkuuEJEPheR/iJydeYW\n8MhCXRjfck9N/cphd00AACAASURBVKvSXLMGGjRw0mcfOQJR3lwRxviZSM4hg8YUQyDqqmqqugtA\nVXcC1XwPM0TFx9O+yR4WLjgZztWbMcaEDG++UpcD9gGdgV6erWcggwp5R444Q7U+/tjtSHwyd66z\nJsrQofDkk7bwpHFX5pBBY4opGHVVRDc/Giz/mKgy0axf73YkxhgT/koXdoCqDghGIGFjzx5nDazE\nROjRw+1oim3cOKdh9eGHTmY3Y9zWuTPcdJNzD+O009yOxoSbANVVu0SkuqruEpEawO78Dhw6dGjW\n/5OSkkjKvqpvmJAooXNnmDcPGjd2OxpjjAmu5ORkkv24PI4EapV6fxARDan4fvnFaVhddx0MHx6W\nY+syMqBUKWcOzPTpTv6EwojkPToyv+dNEE2YACdPwm23uR2JX7RvD4MHO71aebFrLjKICKoacn3n\nIlIfmKaqzTyPRwIpqjpSRAYB8ar6eB6vC1hdFexrfsIEmDnTWYnE7VjMqWSYoEPsl2BMMPhaV4Vf\nK8EtixbBxRfDE084E5jCsIF1+PBfCekWL/augQX5r1sUHx+4WI2X4uJgyhS3o/AbGzJo3CIik4BF\nQGMR2SwiA4DngUtE5Begi+dxROvUyenJysgo/FhjjDH5s54sb/36K2zaFLaLDP/xh7MGVrNm8O67\ndjcyYuzfD3Xrwu7dETHGbulSuPVW+PnnvPfbnfTIEKo9WcUVST1Z4Ix0+OQTp75wOxaTk/VkGRM8\nAe/JEpHqnkUaZ3oeNxWRyBibVBSNG4dtA2vOHLjwQrjlFidFu4kglSpBixYwf77bkfjF+efDjh2w\ndavbkZhwY3WVnxw9SueztvP116fusnWzjDHGe96MeZsAzAJqeR7/CgwMVEDGf1ThpZegf3+YPBke\nfNAyCEak7t1hxgy3o/CLUqXg0kudOSHGFNEErK7y3fHjdPnqCb7+6sQpu2zdLGOM8Z43jawqqvoh\nkAGgqieAkwGNyvjs8GG48UaYNAm++84ZZ28iVI8eEbXAVK9eTlIWY4rI6ip/iI0lqXkKC+YrJ05t\nZxljjPGSN42sP0WkMp71QUTkQuBAQKMyPlm9Glq3huhoWLgQ6tVzOyITUM2aOS3pCNGtmzPx/sgR\ntyMxYcbqKj+p3v186pTby4oVbkdijDHhy5tG1sPA50BDEfkWeAf4P3+cXESiRGS5iHzuj/JKOlUY\nP95ZYPjRR51UvBGQC8EURsSZmxUhEhKcaWbz5rkdiQkzAaurSpyuXekSNa/QTJ/Z52jZ/CxjjMmp\nwEaWiEQB5YCOwEXAXcDZqrrST+d/EFjjp7IiWkJC3mnUMyu2Q4echVxffNHJgTBggM2/MuHLhgya\noghCXVWyXHABlx/6iJmfHy/wsOxztGx+ljHG5FRgI0tVM4D/quoJVV2tqj+rasGful4SkTpAd+At\nf5QX6VJTc044zl6x/fSTk5WtTBn4/nto2tTtaI3xTc+eTiMrd7ro/NZss7voJVsg66oSKTqajsM6\ns3JNKWs8GWNMMXkzXHCuiPQR8Xu/yMvA3/GMnzdFd9IzpbtrVxg8GMaNg5gYd2Myxh/OPNOZU7gy\nVz9E7uxmdhfdZBOouqpEKvfo/XS4OIqvvnI7EmOMCU/eNLLuAqYAx0QkTUQOikiaLycVkR7ALlX9\nERDP5rX69esjIiVqg1OfK13aeX7vXqF/f9/Ksi04W/369X350ynYsWNOt2YEEHGGDE6b5nYkJoz4\nva4q6S6/PGJWhzDGmKArXdgBqhobgPO2A64Qke7AaUCsiLyjqjflPnDo0KFZ/09KSiIpKYlNmzah\ntuy8CUNOIzdAduxwujV37IDShf5ph7yePeGpp+Dpp92OxPgqOTmZ5OTkgJ4jQHVVida9O4wYARkZ\nEOXNLVljjDFZxJvGiojEA2fgTCwGQFUX+CUAkY7AI6p6RR77NK/4RMQaWSYsBfzaPe88+Ne/oGPH\nwJ0jSNLToUYNZ8hgnToFHyty6vwtE7o8fwd+v+MQyLqqkPPmWVf5p2x3r+0mTZzF7Fu2LPg4t+Ms\nKWSYoEPsjTYmGHytqwq9NyUitwMLgFnAMM+/Q4t7QmNMAF11FXzyidtR+EWZMnDFFTB1qtuRmHBg\ndVVgXH45zJzpdhTGGBN+vBkA8CDQGtikqp2A84D9/gpAVefn1YtljCmGzEZWhNxS7tMHPv7Y7ShM\nmAhoXVVS9Vg9imkfHXM7DGOMCTveNLKOqupRABEpq6rrgCaBDSsybdq0iaioKDIyMnwuq0GDBnz9\n9ddeHTtx4kQ6dOiQ9Tg2NpY//vjD5xgAnnvuOe68807Avz8fwJYtW4iLi7OhoUVxzjlOWr4ff3Q7\nEr+45BInl8euXW5HYsKA1VUB0LH2b/z6i7Jtm9uRGGNMePGmkbVVRCoBnwJfichnwKbAhhW+Cmv8\nBDTxQQGyn/fgwYOFZrmbP38+devWLbTcJ554gjFjxuR5nqLK/d7VrVuXtLQ0196zsCQCQ4ZEzErU\n5co5k+8jZASkCSyrqwKgzHVX0bPCPPsbNMaYIiq0kaWqV6nqflUdCgwGxgFXBjow4y5VLbRxczJz\noS4TWvr3hxYt3I7Cb2zIoPGG1VUB0qULfQ7/j6mTbcigMcYUhTeJL+plbsBG4EegRsAjiwAZGRk8\n+uijVK1alUaNGvHFF1/k2J+Wlsbtt99OrVq1qFu3LoMHD84aGrdhwwa6dOlClSpVqFatGv369SMt\nzbslX1JSUrjiiiuoWLEiF154Ib///nuO/VFRUWzYsAGAGTNmcPbZZxMXF0fdunUZPXo0hw8fpnv3\n7mzfvp3Y2Fji4uLYuXMnw4YN45prrqF///5UqlSJiRMnMmzYMPr3759Vtqoybtw4ateuTe3atXnp\npZey9g0YMIB//OMfWY+z95bddNNNbN68mV69ehEXF8eLL754yvDDHTt20Lt3bypXrkzjxo156623\nssoaNmwY1113HTfffDNxcXE0a9aM5cuXe/V+mdDWrRssXQr79rkdiQllVlcFSJkyXHplDD8sh717\n3Q7GGGPChzfDBb8Apnv+nQtsACzXkBfGjBnDjBkz+Omnn1i2bBkfffRRjv0333wzZcqUYcOGDaxY\nsYKvvvoqq+Ggqjz55JPs3LmTtWvXsnXr1hxrhhXk3nvvJSYmhl27djFu3DjefvvtHPuz91Ddfvvt\njB07lrS0NH7++Wc6d+5MTEwMM2fOpFatWhw8eJC0tDRq1HC+q3z++edce+217N+/n759+55SHjhr\n4vz+++/MmjWLkSNHejV88p133qFevXpMnz6dtLQ0Hn300VPKvu6666hXrx47d+5kypQpPPnkkznW\n3pk2bRp9+/blwIED9OrVi/vuu8+r98uEtvLlnblZn33mdiQmxFldFSCnXd+bSyst5fPPvX9NQoIz\najlzS0gIXHzGGBOKvBku2ExVm3v+PQNoAywOfGg+GDo056d75pZfIyWv471s0BRkypQpDBw4kFq1\nalGpUiWeeOKJrH27du1i5syZvPzyy5QrV44qVaowcOBAJk+eDEDDhg3p0qULpUuXpnLlyjz00EPM\nnz+/0HNmZGQwdepUhg8fTrly5Tj77LO5+eabcxyTPZFEmTJlWL16NQcPHqRixYq0KGSYWdu2benV\nqxcA5cqVy/OYoUOHUq5cOc455xwGDBiQ9TN5I78kF1u2bGHx4sWMHDmS6Ohozj33XG6//Xbeeeed\nrGPat2/PZZddhojQv39/Vq5c6fV5TWi7/np47z23ozChLCzrqnDRrRt9XmhLrvuEBUpNdZKcZm6p\nqYELzxhjQlGR13BX1eXABQGIxX+GDs356Z65FdTI8vbYIti+fXuO5BGJiYlZ/9+8eTPHjx+nZs2a\nJCQkEB8fz913381ez3iM3bt3c8MNN1CnTh0qVapEv379svYVZM+ePZw8eZI62VZvzX7e3D7++GO+\n+OILEhMT6dSpE0uWLCmw/MKSYYjIKefevn17oXEXZseOHSQkJBATE5Oj7G3ZUl5l9rYBxMTEcPTo\nUb9lOjTu6tkTVqyArVvdjsSEi7Coq8JF6dL0vLI0ixbB7t15HxIfn/M+ZXx8cEM0xphQ482crIez\nbY+KyCTA92/NJUDNmjXZsmVL1uNNm/5KdFW3bl3KlSvHvn37SElJITU1lf3792f1vjz55JNERUWx\nevVq9u/fz//+9z+vUplXrVqV0qVL5zjv5s2b8z3+/PPP59NPP2XPnj307t2ba6+9Fsg/S6A3mf5y\nn7tWrVoAlC9fnsOHD2ft27Fjh9dl16pVi5SUFP78888cZdeuXbvQeEqsDz6AwYPdjsIvypVzEmBM\nmuR2JCZUWV0VWBUqQK9e8P77ee9PScl5nzIlJbjxGWNMqPGmJys221YWZ7x770AGFSmuvfZaXn31\nVbZt20ZqaiojR47M2lejRg0uvfRSHnroIQ4ePIiqsmHDBhYsWAA4adYrVKhAbGws27Zt44UXXvDq\nnFFRUVx99dUMHTqUI0eOsGbNGiZOnJjnscePH2fSpEmkpaVRqlQpYmNjKVWqFADVq1dn3759Xifb\nyKSqDB8+nCNHjrB69WrGjx/P9ddfD0CLFi2YMWMGqamp7Ny5k1deeSXHa2vUqJGVkCN7eQB16tTh\noosu4oknnuDYsWOsXLmScePG5Ui6kVcsJVrz5vD22xAhWSD794d3342YdZaN/wWsrhKRP0TkJxFZ\nISJL/VFmOMr8GzTGGFM4b+ZkDcu2PaOq72Uu+GhOlb035o477uCyyy7j3HPPpVWrVvTp0yfHse+8\n8w7p6ek0bdqUhIQErrnmGnbu3AnAkCFD+OGHH6hUqRK9evU65bUF9fr8+9//5uDBg9SsWZNbb72V\nW2+9Nd/XvvvuuzRo0IBKlSoxZswY3vNMfGnSpAk33HADp59+OgkJCVlxefPzd+zYkUaNGnHJJZfw\n2GOP0aVLFwD69+9P8+bNqV+/Pt26dctqfGV6/PHHGT58OAkJCYwePfqUWCdPnszGjRupVasWffr0\nYfjw4XTq1KnAWEq0s86CatXA03APd+3bQ1oa2FQ7k5cA11UZQJKqnqeqbfxUZtjp0gW2bYO1a92O\nxBhjQp8UdrdfRKYB+R6kqlf4O6hs59a84hMR66UwYSno1+4LL8Avv0C2dPfh7Kmn4NgxePHFnM+L\nWA9XOPH8Hfj1Lkgg6yoR2Qi0UtU8FxLIr67yh5C6tlV5tNvPlGnRlGdHlirSS0Pq5whjMkzQIfZG\nGhMMvtZV3gwX3AAcAcZ6tkPA78BLns0YE6r69oWpUyHbXLZw1q+fMy8rQkZAGv8KZF2lwFci8r2I\n3OFjWeFLhJt2vcC749I5ccLtYIwxJrR508hqp6rXqeo0z9YX6KCq81W18Jzixhj31K4NXbvCDz+4\nHYlfnHUW1KsHM231I3OqQNZV7VS1JdAduE9E2vsebnhq/sgl1D2xgenT3Y7EGGNCW2kvjikvIqer\n6gYAEWkAlA9sWMYYv/ngA2esToS4+2544w0nrbsx2QSsrlLVHZ5/94jIJzhrcC3Mfkz2xeKTkpJI\nSkryx6lDz7XXct/9D/HaCy9w5ZX2VcAYEzmSk5NJTk72W3nezMnqBozBGYohQCJwp6rO9lsU+Z/b\n5mSZiGLXru8OH3Z6s374ATKXgEtIyHux0/h4SyUdigI0JysgdZWIxABRqnpIRMoDs4Fh2cstMXOy\nPI49PoR6rz7CNz/G0bixd68JxZ8jHNmcLGOCx9e6qtBGluckZYEzPQ/Xqeqx4p7QU14d4B2gOk7W\nprGq+moex1kjy0QUu3b948EHITYWRowo+Dj7YheaAtHI8pTr17rKU2YD4BOceVmlgfdU9flcx5So\nRhZbt/LEGVM4fMu9vPJ6Wa9ekt+NkEx2Q8Q71sgyJngC1sgSkdbAFlXd6Xl8E9AH2AQMVdVifxyK\nSA2ghqr+KCIVgB+A3qq6Ltdx1sgyEcWuXf9Ys8ZJJ715M0RH539cSH5BNX5tZAWyripCDCWrkQVs\nnb2G5tefxfr1QuXKvpcXqj9nqLFGljHBE8jsgm8C6Z6TXAw8j9P7dABnSEaxqepOVf3R8/9DwFqg\nti9lGmNKjqZN4cwzYcoUtyMxISBgdZXJX51Lm9Knj/DqKWNQjDHGQMGNrFLZ7gBeB4xR1Y9VdTDQ\nyF8BiEh9oAXwnb/KNMbkIS0Nbr0VMjLcjsQvHn3UWQbM7n6XeEGpq8ypHnsMXnsNDh50OxJjjAk9\nBTayRCQz+2AX4Ots+7zJSlgoz1DBj4AHPT1apxg6dGjW5s+MH6Z4oqKi2LBhg1fHDhs2jP79+wOw\nZcsW4uLi/DZU7p577uGZZ54BYP78+dStW9cv5QIsXLiQs846y2/lhYzYWFi1Cr74wu1I/OLyyyE9\nHebOdTsSU5jk5OQcn+V+FvC6yuTtjDOcFSL+8x+3IzHGmNBT0Jysp3DWBNkL1ANaqqqKSCNgoqq2\n8+nETqU4HZipqq/kc0xYzsmaNGkSL7/8MuvWrSMuLo4WLVrw5JNP0q6dT2+ZzyZOnMhbb73FN998\nU+wySpUqxfr16zn99NMLPXbYsGH8/vvvvPPOOwGNcf78+fTv35/Nmzd7/ZrsoqKi+O2337z6mXzl\n+rU7aRKMHQvz5rkXgx+NHw/vvw+zZuW93+Z5hCY/z8kKaF3lZQwlbk5Wpl9+gXbtYN06qFKl+OWE\n+s8ZKmxOljHBE7A5War6DPAIMAFon60GiQL+r7gnzOZtYE1+DaxwNXr0aB5++GGefvppdu/ezebN\nm7nvvvuYNm1akcs6efKkV895S1URH9dLCnQDwZsYM/w83M3X9ySsXHMNbNwI337rdiR+0bcv/Pwz\nrFjhdiTGLUGoq0wBmjSB68/4geGD8hyMYowxJVZBwwVR1SWq+omq/pntuV9VdbkvJxWRdsCNQGcR\nWSEiyz1rnIS1tLQ0hgwZwmuvvUbv3r057bTTKFWqFN27d+f5552Mv+np6QwcOJDatWtTp04dHnro\nIY4fPw78Next1KhR1KxZk1tvvTXP5wCmT5/OeeedR3x8PO3bt2fVqlVZcWzdupU+ffpQrVo1qlat\nygMPPMC6deu45557WLx4MbGxsSQkJGTF8+ijj5KYmEjNmjW59957OXbsr6zHL7zwArVq1aJOnTqM\nHz++wAbJH3/8QVJSEhUrVuSyyy5j7969Wfs2bdpEVFRUVgNpwoQJNGzYkLi4OBo2bMjkyZPzjXHA\ngAHce++99OjRg9jYWJKTkxkwYAD/+Mc/sspXVZ577jmqVq3K6aefzqRJk7L2derUibfffjvr8cSJ\nE+nQoQMAHTt2RFVp3rw5cXFxTJky5ZThh+vWraNTp07Ex8fTrFmzHA3mAQMGcP/999OzZ0/i4uJo\n27YtGzduLPhCcVN0NDz9NAwZ4nYkflG2LAwaBNkuhRzi45075Lk3z6VlIkSg6irjnSFtZvLee8qv\nvxa/jNx/q/Y3aowJdwU2sgJFVb9V1VKq2kJVz1PVlqr6pRux+NPixYs5duwYV155Zb7HjBgxgqVL\nl7Jy5Up++uknli5dyohsi/3s3LmT/fv3s3nzZsaMGZPncytWrOC2225j7NixpKSkcNddd3HFFVdw\n/PhxMjIy6NmzJw0aNGDz5s1s27aN66+/njPPPJM33niDtm3bcvDgQVI8C5IMGjSI3377jZUrV/Lb\nb7+xbds2/vnPfwLw5ZdfMnr0aObOncv69euZM2dOgT9/3759ad26NXv37uXpp59m4sSJOfZnNtAO\nHz7Mgw8+yKxZs0hLS2PRokW0aNEi3xgBJk+ezODBgzl48GCewy537txJSkoK27dvZ8KECdx5552s\nX78+31gzY5k/fz4Aq1atIi0tjWuuuSbH/hMnTtCrVy+6devGnj17ePXVV7nxxhtzlP3BBx8wbNgw\n9u/fT8OGDXnqqacKfJ9cd/PNzkz17dvdjsQv7roLVq6ExYtP3ZeS4gxByr0VtF6PMaZoqo54kCdP\n+xd3XpNS7Lw6uf9W7W/UGBPuXGlkBVped66LsxXVvn37qFKlClFR+b+tkyZNYsiQIVSuXJnKlSsz\nZMgQ3n333az9pUqVYtiwYURHR1O2bNk8nxs7dix33303rVq1QkTo378/ZcuWZcmSJSxdupQdO3Yw\natQoypUrR5kyZbjooovyjWfs2LG8/PLLVKxYkfLly/P4448zefJkAKZMmcKAAQM466yzOO200wqc\nsL5lyxaWLVvGP//5T6Kjo+nQoQO9evXK9/hSpUqxatUqjh49SvXq1QtNNNG7d28uvPBCgKz3JTsR\nYfjw4URHR3PxxRfTo0cPPvzwwwLLzC6/YZCLFy/mzz//ZNCgQZQuXZpOnTrRs2fPrPcI4KqrruL8\n888nKiqKG2+8kR9//NHr87oiOhqWLIFatdyOxC/KlnV6skK9bWtMxIqN5cH32nBk3Wbe+s9Rt6Mx\nxpiQEJGNrLzuXBdnK6rKlSuzd+/eAucMbd++nXr16mU9TkxMZHu2HoWqVasSnWt11dzPbdq0iZde\neomEhAQSEhKIj49n69atbN++nS1btpCYmFhgQy/Tnj17OHz4MOeff35WWZdffjn79u3LijX7sLnE\nxMR8GyPbt28nPj6e0047LcfxeYmJieGDDz7g9ddfp2bNmvTq1YtffvmlwFgLyx4YHx9PuXLlcpx7\nux96anbs2HHKuRMTE9m2bVvW4xo1amT9PyYmhkOHwmBuQoTNQ7v5Zti6FWbPdjsSY0qmUt0vY1yP\nqTz12HFCecS0McYES0Q2stzStm1bypYty6effprvMbVr12bTpk1Zjzdt2kStbD0Kec15yv1c3bp1\neeqpp0hJSSElJYXU1FQOHTrEddddR926ddm8eXOeDb3c5VSpUoWYmBhWr16dVdb+/fs5cOAAADVr\n1mTLli05Ys1vTlbNmjVJTU3lyJEjWc8VlO3vkksuYfbs2ezcuZMmTZpw55135vvzF/R8przOnfm+\nli9fnsOHD2ft27lzZ4FlZVerVq0c70Fm2bVr29rZoaR0aXjxRXjgAcg2pdAYE0TnTPw7T7aaxTV/\ny+Conzu0EhIKHnlic7iMMaHGGll+FBcXx7Bhw7jvvvv47LPPOHLkCCdOnGDmzJk8/vjjAFx//fWM\nGDGCvXv3snfvXoYPH561lpS37rjjDt544w2WLl0KwJ9//smMGTP4888/adOmDTVr1uTxxx/n8OHD\nHDt2jEWLFgFQvXp1tm7dmpVoQ0S44447GDhwIHv27AFg27ZtzPZ0B1x77bVMmDCBtWvXcvjw4ay5\nWnmpV68erVq1YsiQIRw/fpyFCxeeklExsxds9+7dfP755xw+fJjo6GgqVKiQ1fOWO0ZvqWrWub/5\n5hu++OILrr32WgBatGjB1KlTOXLkCL/99hvjxo3L8doaNWrku/bXBRdcQExMDKNGjeLEiRMkJycz\nffp0brjhhiLFZwLviiucdXteftntSIwpoWJjGfjN36jfIIp77/VvSvbU1IJHntgcLmNMqLFGlp89\n/PDDjB49mhEjRlCtWjXq1avHa6+9lpUM4+mnn6ZVq1Y0b96cc889l1atWhU5UcL555/P2LFjuf/+\n+0lISKBx48ZZSSaioqKYNm0a69evp169etStWzdrblLnzp05++yzqVGjBtWqVQPg+eefp1GjRlx4\n4YVUqlSJSy+9lF89KaK6devGwIED6dy5M40bN6ZLly4FxjVp0iSWLFlC5cqVGT58ODfffHOO/Zm9\nURkZGYwePZratWtTpUoVFixYwOuvv55vjN6oWbMm8fHx1KpVi/79+/Pmm29yxhlnAPDQQw8RHR1N\njRo1GDBgAP369cvx2qFDh3LTTTeRkJDARx99lGNfdHQ006ZNY8aMGVSpUoX777+fd999N6vsiEj/\nfvKkM+s8ArzyitOjla2z2BgTRCLO+nWrVuWf9dMbubMNxscX7fWF9XxZL5gxJtDyXYw4FITrYsTG\n5Cckr92JE2HCBJg7F7yYyxfqnn0Wvv7amZ+V349jC5+6y5+LEYeCkrwYcX727IH27eGGG5wVIwJ9\nPyr3+1SU962wYxMScvaUxce7d1/KFiM2JngCthixMaaE6NcPTpyAf/3L7Uj84rHH4OhReOkltyMx\npuSqWhUWLIDPP83gjh7byDZlNuzkHqpoQxONMd6wRpYxJV2pUk5v1nPPQainn/dC6dLw3nvwwguw\nbFnex+S3SLENHTLGf6pXh+Qxv3Jo/nLa1NnG93PT3A7JL2zhZGOMN6yRZYyB00+H//4XrrrKGecT\n5hIT4bXXoE8fyCuZZH6LFNtdamP8K67NmUzedjF/bz6b3pce5vrma1g8fV9IDYEs6KZLXvPBirpw\ncu75YdYoM6ZksDlZxgRRyF+7Tz3lfAsYMcLtSPxi2DCYMcOZo1W+vHevCdc5MOHE5mQVpezIuR4P\nfb+WN+7/mTHLzkMS63FpjzK0bQtnneVkBq1Qofhl+zIny1eFncufsdmcLGOCx9e6yhpZxgRRyF+7\nGRlOtsFcC2KHK1W49VbYsgWmTYNsa2XnK5K+1IYqa2QVpezIux4zDhzkx/XlmfN1FMuWwdq1sH69\nk6im6skdVC2bRsJpR6gUc5xKFU5QqaJS6bI2VKpcmkqVyLHFl0qjUp0K1KoTxf79f50jmMkpCkuM\nkft36EsiDWtkGRM81sgyJozYtRt8J0/CzTfDjh0wdSpUrFjw8ZH4pTbUWCOrKGWXjOtRFQ4dgj0L\n1rJn4yH27zrG/t3p7N93kv2pyv5WXdmf5jSk/tqU/b/sYr9WJIMoKkWlUan0n1Qqe5hKF55Jpfio\nvxpj8VCnDjRI/4X6ratSs2k8UaUCcwkWteeqSJkQrZFlTND4WleV9mcwwZKYmBgZ6xOZEicxMdHt\nEEqczLweAwc6KaU/+QQaNXI7KmNMdiIQGwuxPc7idO9fBdSAkyc5uucgB7YcIXXrEfbvOMr+03M2\nyFJS4KcV5J05qwAAEWlJREFUJ9k4PZ2NR05wQI+RWGYnTSrvpdkZR2l2dzvOaSY0aRIxHfnGGJeF\nZU+WW0rKHUVjcjhwwJnUdNVVbkfiE1UnGcbQoTBqFNxyS95r99jfeeBZT1ZRyrbrMRAOb9/PxkU7\nWPftXlb9HMXPFduxahVs3gxnnw0XXABtzkvngno7adylbpF6vYo6HDD38dmdMvRwmMBQzXd/Yecu\n6FxFPb6o5w4nhb1PuRX1d1yU9ybQv1NfYinsXP4W7GssbNfJEpFuIrJORH4VkUFuxREpkpOT3Q4h\nbNh75b3k5GQnPd8TT0C3brB6tdshFZsI3Hef0158+WXo2hWWL/df+XZdRaZIr6vC+br1JfaYWpU4\n+29n0eflDgz9qh0ffQS//AL79sGrrzq93V9OPUL37kpCdBpdq6zgqQ4L+GzwMnb+vLfAsnNnH8zr\nS2D22Iua7bSg/YWt6ZV7f2Hny+v4efOSi3VutxXleinsfSpqVlpf3pvU1L/e80D8TosaS1HfB39+\nxoT6NZabK40sEYkC/gNcBpwN3CAiZ7oRS6QI54oy2Oy98l5ycjI0aQIrV8Lll0NSEvztb84qo2F6\ne71ZM/jhB7jmGujRA3r3htmznZwfvrDrKvKUhLoqnK/bQMQeEwMXXQQPPQSTZ1Rkw4lEfv3xCA/d\nc4xSeoLXX1Oanl+OevWcz5AXXnA+Dg8dcj/2YAnX2MM1brDYw5VbPVltgPWquklVjwPvA72DGUDx\nfumFv6agcvPbl9fzhT0XrIu2uOfx5nX2Xnn/OtffqzJl4MEHYcMGp6F1112wZk2+MRXG7fcqOhru\nvht++w169oR7702mXj24917nuJ077boKx7/BAAhoXRXs360/fw8lKfZqzWvQY/iFdB4RxZf7WrPv\naAXmzoUrr3Qylz72mLPwcsMa07nljIWM7D6fzwd/z/o5mzhx7KR/r/+NxXtZYTHkv7/g1/kzhuK+\nriifVcUVrrH7Uk64xu5L3efvusqtRlZtYEu2x1s9zwVN8d7Iwl8TaV9a7Aue90rEexUbC/ff7zSw\nmjY9db8qPPAAjBwJb7/tZJlIToYVK/I+pyqkpTnbwYPOduhQvreFk+fNg2PHnC09PeeW18+gmuOY\n5LlzcxxfvjzccQf065fMnDmQWE8RMmjaVOndex6XdMngjttO8uzwE7z1Frz2mnPcsmUwZUoy639V\n/vg1nW0b0/kz7SSpu9I5lHqcEycKfhuLokRcV6EroHVVSWqoFOV1oR67iLOu1403OkMLlyxxhvx1\nvngu7dueZPeuDN54Q7m0WxSx5dK5uvuXdOzoHP/YYzB6tDNU+aOXt/DV8z+wdPxqVk1dz7qZG9mQ\nvJktaw6ya9dfwwwPHYLDh+HP1HT4A47uP5q1leUox9KO5RlvxokMyuIcN+fLOQUen5ycjGYoZTjG\nsbS/tijm5Fs+aI5js782L/PmzSP9UHqeW56lZyjph9KZO3tugcdn/l4yj8/csr+uoPK9iSfz/Slq\n/JkxRJP38dmvxezlZ489moLjz112YeXnPj6/8vP6fWW+NnfZmeVHc+rv62T6yQLjz+/9zK/8/OLJ\n/TPnV37GiYygNbJcSXwhIn2Ay1T1Ts/jfkAbVX0g13HhOR7JGGNMgcIh8YXVVcYYU7KFYwr3bUC9\nbI/reJ7LIRwqYWOMMRHL6ipjjDHF4tZwwe+BRiKSKCJlgOuBz12KxRhjjMmL1VXGGGOKxZWeLFU9\nKSL3A7NxGnrjVHWtG7EYY4wxebG6yhhjTHGF9GLExhhjjDHGGBNuXFuM2BhjjDHGGGMiUdg1skSk\no4gsEJHXReRit+MJdSISIyLfi0h3t2MJZSJypuea+lBE7nY7nlAmIr1FZIyITBaRS9yOJ5SJSAMR\neUtEPnQ7llDm+ZyaICJvikhft+Pxh3Cvq8K17gjnz/Jw/mwN18+6cP7sCdf3HML3Wi/q50vYNbIA\nBQ4CZXHWLDEFGwR84HYQoU5V16nqPcB1wEVuxxPKVPUzT0rre4Br3Y4nlKnqRlW93e04wsDVwBRV\nvQu4wu1g/CTc66qwrDvC+bM8nD9bw/izLmw/e8L4PQ/ba72ony+uNbJEZJyI7BKRlbme7yYi60Tk\nVxEZlPt1qrpAVXsA/9/encfaUZZxHP/+2rIvlRKFAvayBZW1YKxAmxYRJYAgoBRKwcoSMRKRYJAi\nW2QJm4BQpAI2yCJbg2UpEMDaVspiWbra0hSlkGgIGJBdFPr4x7ynd7icc3rOvefeOXP7+yQT3vvO\nnJlnnnv6Psw578ydCJzfV/EWqbu5krQfsAR4HVgjHjHc3VylbQ4GpgMP9UWsRetJrpKzgV/3bpTt\noQW5WqN0I19b0flHf6v/5cqClLlWlbl2lHksL/PYWvaxrsxjT5lz34PYC/3/iO7E3dT4EhGFLMAo\nYDiwMNc3AHgR6ADWAuYDX0zrjgWuBIamn9cG7i4q/hLk6ipgSsrZI8C0os+jjXO16n2V+qYXfR5t\nnqstgEuAfYs+hxLkqjJeTS36HNo8X+OBA1P79qLjb/HvvrBaVebaUeaxvMxja9nHujKPPc3Gntum\n8PrSndiLfq/3JOdpu9WOL0X9MWIiYo6kji7dI4DlEfEygKQ7gW8DL0TErcCtkg6TtD8wGLi2T4Mu\nSHdzVdlQ0veAf/VVvEXqwftqjKSJZFN7HuzToAvSg1z9GPg6sLGk7SPihj4NvAA9yNUQSZOB4ZLO\niIhL+zbyYjSbL2AacK2kg4AH+jTY1ShzrSpz7SjzWF7msbXsY12Zx55mY5c0BLiINqgv3Yi98Pc6\ndCvuMWRTTBsaXwq7yKphSzq/toVsHvuI/AYRMY3sH8WabrW5qoiIW/okovbVyPtqNjC7L4NqU43k\nahIwqS+DalON5OoNsjnnVidfEfE+cHwRQXVTmWtVmWtHmcfyMo+tZR/ryjz21Iu9nXMO9WNv1/c6\n1I+7qfGljA++MDMzMzMza1vtdpH1D2BY7uetUp99mnPVOOeqcc5V45yr5vSnfJX5XBx7MRx7ccoc\nv2Pvey2Lu+iLLPHJJxc9A2wvqUPS2sBRwP2FRNZ+nKvGOVeNc64a51w1pz/lq8zn4tiL4diLU+b4\nHXvf6724C3yix+3AP4EPgVeA41L/AcAyYDkwsaj42mlxrpwr58q5KtPSn/JV5nNx7I59TYq97PE7\n9v4Xt9LOzMzMzMzMrAWKni5oZmZmZmbWr/giy8zMzMzMrIV8kWVmZmZmZtZCvsgyMzMzMzNrIV9k\nmZmZmZmZtZAvsszMzMzMzFrIF1lmZmZmZmYt5IssaxuSDpW0UtIORcdSi6Qzi46hVSSdJOmYJrbv\nkLSoyWPMkLRhnfV3SNqumX2ambWD/lizJM2UtEdvHqPJfR8s6WdNvuadJrefKmnrOusvl/S1ZvZp\nBr7IsvZyFPA4MK63DyRpYDdf+vOWBlIQSQMj4vqIuK3Jlzb818slHQjMj4h362w2GTijyRjMzNqB\na1YvHiPVqQci4rImX9pMndoRGBARK+psNgmY2GQMZr7IsvYgaQNgJHACuYIlaYyk2ZKmS3pB0nW5\nde9IulLSYkmPSdo09Z8oaa6keekTqnVT/02SJkt6GrhU0vqSpkh6WtJzkg5O202QdI+khyUtk3RJ\n6r8YWE/S85JurXIO4yQtTMslDcS5bTrGM+kcd8jFebWkJyS9KOnwKsfqkLRU0m2Slki6O3eee0ia\nlfb7sKTNUv9MSVdJmgucIuk8SaeldcMlPSVpfjr3wan/y6lvHnBy7vg7SvpLysX8Gt9GjQfuS9uv\nn36H81J+jkjbPA7sJ8ljkZmVRtlrlqQBaf8LJS2Q9JPc6rFpfH9B0sjcMSblXv+ApNEN1MXu1L/J\nkp5K57zquKnuzUg15zFJW6X+rSU9mc7jgtyxN0/7fj6d58gqv8p8naqak4h4BRgi6XM13xBm1USE\nFy+FL8DRwI2pPQfYPbXHAO8DHYCAR4HD07qVwFGpfQ4wKbU3ye33AuDk1L4JuD+37iLg6NQeDCwD\n1gMmAC8CGwLrACuALdN2b9eIfyjwMjCE7MOLGcAhNeK8JrX/CGyX2iOAGbk470rtLwHLqxyvI+13\nz/TzFOA0YBDwBLBp6h8LTEntmcC1uX2cB5yW2guAUan9C+DKXP/I1L4MWJja1wDjUnsQsE6VGFcA\nG6T24cD1uXUb5dqPVH7fXrx48VKGpR/UrD2AR3M/b5z+OxO4PLUPAB5L7QmV2pV+fgAYXe8YNc65\nkfqXP+cJudfcDxyT2scB01L7PmB8av+oEg9ZTTwztVWpR13imwXsVC8nqX0DcFjR7zsv5Vr86bG1\ni3HAnal9F1kBq5gbES9HRAB3AKNS/0rg7tS+jexTRYBdJf1Z0sK0n51y+5qaa38TmJi+pZkFrA0M\nS+tmRMS7EfEhsISsYNbzFWBmRLwRESuB3wOja8Q5Kn0KujcwNR3/emCz3P7uBYiIpUCtT89eiYin\n8/sFvgDsDDyW9nsWsEXuNXd13YmkjYHBETEndd0MjE7fZg2OiCdSf/5TyqeAsySdDmyd8tTVJhHx\nXmovAr4h6WJJoyIiP2f+9S4xmpm1u7LXrL8D2yibNbE/kB+T/5D++1wD+1mdj2m+/k2lur3I8glZ\nParkbySdv4t8nXoGOE7SucCuuXqUN5SsBkH9nLyG65Q1aVDRAZhJ2gTYF9hZUgADyeZUn5426Tq/\nutZ860r/TWTfIi2WNIHsk8WKroPsdyJieZd49gTyFw0f0/lvRfVOpc66rnEOAN6MiFo3GOeP38x+\nBSyOiGrTIuDT57+6Y1Ttj4g70hSWbwEPSfpBRMzqstlHue2XK7uZ+kDgQkkzIqIyrWNd4IMaxzcz\nayv9oWZFxL8l7QbsD/wQOAI4Ma2u7Cu/n4/45C0m6+ZDqHaMGhqpf7XqVL17rSrrVsUSEY9LGg0c\nBPxO0hXx6fuQ3yedS5ecnEQ2E+SEtJ3rlDXN32RZOzgCuCUitomIbSOiA3hJUuXTvxFpLvYA4Eiy\n+3gge/9+N7XH5/o3BF6VtFbqr+UR4JTKD5KGNxDrf1X9BuS5ZN/+DEnrx5F90lgtzjnpm5yXJFX6\nkbRrjWPWKmDDJH01tY8mO/9lwGdT0UXSIGU39tYUEW8Db+Tmqx8LzI6It4A3Je2d+lc9iVDSNhHx\nUkRMIpuqUS32ZZK2TdsPBT6IiNuBy4Hdc9vtACyuF6OZWRspfc1K90YNjIhpwNlkU+WqqdSfFcBw\nZT5PNsWv7jGSgfSs/uU9Sef9b8fQmb85uf5V+ZM0DHgtIqYAv6X6OS4Ftk/b53NyDq5T1kO+yLJ2\ncCQwrUvfPXQOms8C1wJ/Bf4WEfem/vfIitkiYB+yueyQDY5zyQbgpbl9dv0U7EJgrXST62Lg/Brx\n5V93A7Co6w2+EfEq2dOHZgHzgGcjYnqNOCvHGQ+ckG7iXQwcUiPOWp/eLQNOlrQE+Azwm4j4H1lB\nu1TS/BTLXqvZD8D3gV+m1+yWi/F44DpJz3d5/dh0I/M8sqktt1TZ54NA5bG3uwBz0/bnkuWedCPx\n+xHxWp3YzMzaSelrFrAlMCuNybfS+fS8qvUnTRtfkc7pV2RTCVd3DOh5/cs7hWz63/z0+srDOk4l\nq4ULyKb/VewDLEj1ayxwdZV9PkRnnaqaE0mDgO3Ifq9mDVM2ZdisPUkaA/w0Ig6psu6diNiogLCa\n0htxSuoApkfELq3cbytJ2hy4OSL2r7PNqcBbEXFT30VmZtY7+kPNaqV2P2dlT3L8E9kDnqr+D7Gk\nQ8kebHJenwZnpedvsqzMyvIJQW/F2dbnn77du1F1/hgx8CbZgzbMzPq7th6ze0lbn3NE/IfsSbtb\n1tlsIHBF30Rk/Ym/yTIzMzMzM2shf5NlZmZmZmbWQr7IMjMzMzMzayFfZJmZmZmZmbWQL7LMzMzM\nzMxayBdZZmZmZmZmLeSLLDMzMzMzsxb6P+CwD2/dcp7WAAAAAElFTkSuQmCC\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -802,7 +802,7 @@
" \n",
" # Plot apparent open period histogram\n",
" ipdf = ideal_pdf(qmatrix, shut=False) \n",
- " iscale = scalefac(recs[i].tres, qmatrix.aa, idealG.initial_occupancies)\n",
+ " iscale = scalefac(recs[i].tres, qmatrix.aa, idealG.initial_vectors)\n",
" epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=False)\n",
" dcplots.xlog_hist_HJC_fit(axes[i,0], recs[i].tres, recs[i].opint,\n",
" epdf, ipdf, iscale, shut=False)\n",
@@ -810,7 +810,7 @@
"\n",
" # Plot apparent shut period histogram\n",
" ipdf = ideal_pdf(qmatrix, shut=True)\n",
- " iscale = scalefac(recs[i].tres, qmatrix.ff, idealG.final_occupancies)\n",
+ " iscale = scalefac(recs[i].tres, qmatrix.ff, idealG.final_vectors)\n",
" epdf = missed_events_pdf(qmatrix, recs[i].tres, nmax=2, shut=True)\n",
" dcplots.xlog_hist_HJC_fit(axes[i,1], recs[i].tres, recs[i].shint,\n",
" epdf, ipdf, iscale, tcrit=math.fabs(recs[i].tcrit))\n",
@@ -829,9 +829,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "DCProgs GCC Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "dcprogsgcc"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -843,7 +843,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/MissedEvents.ipynb b/exploration/MissedEvents.ipynb
index 26e7d51..3eccfd2 100644
--- a/exploration/MissedEvents.ipynb
+++ b/exploration/MissedEvents.ipynb
@@ -58,7 +58,7 @@
],
"source": [
"from numpy import array\n",
- "from dcprogs.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, \\\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, \\\n",
" ApproxSurvivor, ApproxSurvivor, MissedEventsG, \\\n",
" expm\n",
"qmatrix = QMatrix([[ -3050, 50, 3000, 0, 0 ], \n",
@@ -96,9 +96,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAFCCAYAAABSJMy8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlXW+x/EPbMhb3ka2bG+VppRaWueclqXpkGkZSiqV\n2WRpyEW00cSp/gjTBj3nzCoZUZOL1mhqat5qJEfPgE2jaRfLS6PL1MoGHEEQRfIKm33+2KPdFDZ7\n74dnX96vtVoSw/Osr6Px4fu7hjgcDocAAIBXhZpdAAAAgYiABQDAAAQsAAAGIGABADAAAQsAgAEI\nWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAA\nAxCwAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGCDM7AIAwBB2\nu1RaKlVWSs2bS1arZLGYXRWCCB0sgMBSWCilpUkdOkjt2klRUc5fO3aUpk+XiorMrhBBIsThcDjM\nLgJoEHQ0ga26WpoyRcrJcf5ZX4vFIiUnS5mZUhiDeDAOAYvAV1jo/Ka7eLFUUvLD5202KSHB+c22\nY0fz6oPnqqulkSOlvDzXn4mNldavJ2RhGAIWgYuOJnhMmiQtXOjecwsWeL8eQAQsAhUdTfAoLJQ6\nd679h6hrsViko0cZwYAhWOSEwDRlSv3CVZI2bpSee86YemCcukYoamO3O58HDEAHi8BDRxM87Hbn\nauEfz63Xl83mXFnMgjd4GWNhCDze6GjS071bU4BzOByqqqpSVVWVqqurG+zjJhUVmulJuEpScbFU\nViZFRnrn/wzg3+hgEVh8uKNxOBwNGj4N+XFNTY3CwsIUHh6u8PDwBvvYevq0xv/hD57/4Rw+LHXt\n6vl7gB8hYBFYioudhwp4aMrjj6s8PNyrQWS32xUWFmZKEBn9scViUUhIiBf+AOvJS3/eKi6mg4XX\nMUSMwFJZ6ZXX3Nu7ty507OjVIAoLCzMnhAKZ1eoMRg9GLM62aKGqsDC18mJZgEQHi0BDRxN80tKk\n2bPdfnx9jx6KP3ZMI0eOVFJSku6++25+EIJXsE0HgeVyR+MJm02KiPBOPTBecrL78+UWi+K2bNHh\nw4fVo0cPPf300+rVq5fmz5+vU6dOebdOBB0CFgGluLRUWzp18uwlCQls2fAnnTo5Q9YdEyZIHTvK\narXq+eef16FDhzRv3jzt2LFDnTt31tixY/XRRx+JgT64g4BFQDh58qRefPFF9ejRQx/37i2HBx2N\n29+sYZ7MTOdJXPURGyvNnfuTT4WEhOi+++7TypUrdfjwYfXq1Uvx8fG67bbblJmZqfLyci8WjUBH\nwMKvVVRUaObMmYqKilJFRYX27t2rGYsXK8TDjgZ+JizMeczlxIl1jz5YLM4ziOs4FtNqtWratGk6\nePCgFi5cqE8//VRdunTR008/re3bt9PVok4scoJfOnv2rObPn685c+YoJiZGM2bMUJcuXX74gupq\nKS7OefyhqziLODAUFf1we1Jx8Q+ft9mkxEQpKcntH6LKysr01ltvKTc3V6GhoUpKStJTTz2lNm3a\neKl4BBICFn7lwoULysnJ0f/+7/9qwIABmjlzprp37371L67PbToTJjiHCwnXwGG3O09ounz/b0SE\n1+bWHQ6Htm3bptzcXOXl5WnYsGFKSkpS//79WYGMKwhY+IVLly7pT3/6k2bNmqU777xT6enp6t27\nt2sPG9jRACdPntSyZcuUm5srh8OhpKQkPf3003S1IGDh2+x2u1asWKGZM2eqa9euSk9PV58+fdx9\nmWEdDeBwOPTRRx8pJydHGzdu1NChQ5WUlKQBAwbQ1QYpAhY+qaamRmvXrtWMGTMUERGhWbNm6de/\n/rXZZQEuKS8vv9LVVldXKykpSWPHjlUE+6uDCgELn+JwOJSXl6fp06crPDxcs2bN0gMPPEAHAL/k\ncDi0Y8cO5ebm6r333tNDDz2kpKQkRUdH83c6CBCw8AkOh0P5+flKS0vT+fPnlZ6erocffphvQggY\np06d0vLly5WTk6NLly4pMTFR48aNk9VqNbs0GISAhem2b9+ul156ScXFxXrllVc0atQohYayRRuB\nyeFw6OOPP1Zubq42bNigIUOGXOlq+XsfWAhYmOazzz7T9OnT9dVXX2nGjBkaM2aMwtgmgyBy+vRp\nLV++XLm5uTp//vyVrrZt27ZmlwYv4MclNLgvv/xSI0aM0MiRIzV8+HB99dVXGjduHOGKoNOqVSs9\n++yz2rt3r5YtW6aDBw8qKipKo0aNUn5+vmpqaswuER6gg0WD+eqrrzRz5kx98MEHevHFFzVhwgQ1\nadLE7LIAn1JRUaEVK1YoJydHZ8+evdLVRnJ9ot+hg4Xhjh49qvj4eN177726/fbbdeTIEU2dOpVw\nBa6iZcuWmjhxovbs2aO3335bhw4d0i233KLHHntMf/3rX+lq/QgdLAxz7NgxzZ49W6tXr9bEiRM1\nbdo0tWrVyuyyAL9TUVGht99+Wzk5OTpz5owSExP1zDPPyGazmV0aakEHC687ceKEpk2bpttvv13N\nmjXTwYMHlZ6eTrgCbmrZsqVSUlK0e/durV69Wt988426d++uRx55RFu2bKGr9VF0sPCaU6dO6bXX\nXlN2draeeOIJvfTSS2rXrp3ZZQEB6cyZM1q5cqVycnJ06tQpJSQkKD4+nv/mfAgdLDxWWVmpWbNm\nqVu3biopKdEXX3yhBQsW8B86YKAWLVooOTlZX3zxhdauXat//vOf6tGjh+Li4rR582bZa7tBCg2C\nDhZuO3funBYuXKhXX31VgwYN0syZM9WtWzezywKCVmVlpVauXKnc3FyVlZVd6Wrbt29vdmlBiQ4W\n9Xbx4kW9/vrr6tatm3bu3KmCggKtWLGCcAVM1rx5cyUlJWnXrl1at26dioqK1LNnT40YMUKbNm2i\nq21gdLBwWXV1tZYuXarf//736tmzp9LT0/Wf//mfZpcFoBbff/+9Vq1apdzcXJWUlFzpajt06GB2\naQGPgEWd7Ha7Vq9erRkzZqhjx46aNWuW+vXrZ3ZZAOpp9+7dys3N1erVq9W/f38lJSVpyJAhsnAv\nsiEIWFyTw+HQhg0b9PLLL6t58+aaPXu2Bg4caHZZADz0/fffa/Xq1crNzdXx48c1fvx4xcfHq1On\nTmaXFlAIWPyCw+HQ5s2blZaWppqaGs2aNUsxMTFcHQcEoD179mjRokVauXKl+vXrp6SkJD300EOc\nDe4FBCx+4oMPPlBaWppOnz6t3//+9xo5ciRXaAFB4OzZs3rnnXeUm5urwsJCjR8/XuPHj9cNN9zg\n/kvtdqm0VKqslJo3l6xWKYiGo/nOCUnSzp07NWjQICUmJiolJUX79u3TI488QrgCQaJZs2Z65pln\ntHPnTm3atEnl5eW68847NWzYMP35z39WdXW16y8rLJTS0qQOHaR27aSoKOevHTtK06dLRUXG/UZ8\nCB1skNu9e7emT5+uffv26eWXX9bYsWMVHh5udlkAfMC5c+eudLXffffdla72xhtvvPoD1dXSlClS\nTo6ze70Wi0VKTpYyM6UAHoqmPQlSBw4c0GOPPaahQ4fqwQcf1OHDh5WQkEC4AriiadOmGjdunHbs\n2KHNmzfr9OnT+o//+A/FxMTo3Xff/WlXW10tjRwpLVxYe7hKzv994UIpLs75XICigw0yR44c0Suv\nvKItW7bo+eef16RJk9S0aVOzywLgJ86dO6e1a9cqNzdX3377reLj4zV+/Hjd9OqrztCsr0mTpAUL\nvF+oDyBgg8Q///lPpaena8OGDZo8ebKee+45tWjRwuyyAPix/fv3Kzc3V1uXLtWeM2dkcSdOLBbp\n6FHn/GyAYYg4wB0/flyTJ0/WnXfeKavVqkOHDunll18mXAF4rGfPnsrMzNQXycnuhavkHC7OyfFu\nYT6CgA1QJ0+e1AsvvKCePXvKYrHowIED+u///m/96le/Mrs0AIHEblf40qWevWPx4rrnbf0QARtg\nKioqNGPGDEVFRamyslL79u3TH//4R0VGRppdGoBAVFoqlZR49o7iYqmszDv1+BACNkCcPXtW//M/\n/6OuXbvqu+++02effaasrCx1DMB5DQA+pLLSt97jQwhYP3fhwgXNnTtXN998s/bu3att27ZpyZIl\n6tKli9mlAQgGzZv71nt8CAHrpy5duqTs7Gx17dpVH3zwgbZs2aJVq1bp1ltvNbs0AMHEapU8nYKy\n2aSICO/U40MIWD9z+U7WW2+9VRs2bND69ev13nvvqXfv3maXBiAYWSxSQoJn70hICMgzitkH6ydq\namq0Zs0azZgxQ1arVbNnz9aAAQPMLgsAnGcPd+7s3krgAN4HG7iHQAYIh8OhjRs3avr06WrUqJHm\nzZunwYMHc3UcAN/RqZPzbGF3TnKaMCEgw1WigzWWB1c1ORwO5efnKy0tTefPn1d6eroefvhhghWA\nb6qudp4tvHGj68/Exkrr1wfsgf/MwRrBw6uatm3bpujoaD377LNKTU3Vnj17NHz4cMIVgO8KC3OG\n5cSJdTcSFovzDOIADleJDta7PLyq6bPPPlNaWpoOHTqkGTNmaMyYMQoL4L98AAJUUZHz++Dixc5D\nJC6z2aTERCkpKWCHhX+MgPWWy1c15eW5/sy/h0f2HTigl19+Wbt27VJaWpri4+N13XXXGVcrADQE\nu915QtPlabKIiIBcLXwtBKy3TJrk1gT/lq5dNbayUi+++KImTJigJk2aGFAcAKChEbDe4MES9ZrQ\nUJ0/cEDNbrnFgMIAAGZhkZM31DXnWovQmho1W77cywUBAMxGB+spu925WtiT2yRsNueigCCamwCA\nQEcH6ymuagIAXAUB6ymuagIAXAUB6ymuagIAXAUB6ymuagIAXAUB6ymuagIAXAWriL2Bq5oAAD9D\nB+sNl69qckcAX9UEAMGMDtZbuKoJAPAjdLDewlVNAIAfoYM1QlGRPk9O1s1bt6rVhQs/fD7IrmoC\ngGBGwBpk1KhRGjpkiMYOHRq0VzUBQDAjYA1QU1Ojtm3bavfu3erUqZPZ5QAATMAcrAH27t2rNm3a\nEK4AEMQIWAMUFBRo0KBBZpcBADARAWuA/Px83X///WaXAQAwEXOwXnbx4kVZrVZ99913at26tdnl\nAABMQgfrZR9//LFuueUWwhUAghwB62UFBQUMDwMACFhvy8/PZ4ETAIA5WG86c+aM2rdvr9LSUjVp\n0sTscgAAJqKD9aK///3v6tOnD+EKACBgvYntOQCAywhYL+KACQDAZczBeklxcbG6d++usrIyWTjQ\nHwCCHh2sl2zdulXR0dGEKwBAEgHrNcy/AgB+jID1AofDQcACAH6CgPWCI0eOyG6369ZbbzW7FACA\njyBgveDy8YghISFmlwIA8BEErBewPQcA8HNs0/FQTU2NrFar9u3bpw4dOphdDgDAR9DBemjPnj1q\n27Yt4QoA+AkC1kOsHgYAXA0B6yHmXwEAV8McrAcuXryoiIgIFRYWqlWrVmaXAwDwIXSwHti5c6e6\nd+9OuAIAfoGA9UB+fj7DwwCAqyJgPXD5gAkAAH6OOVg3VVRUqGPHjiotLVXjxo3NLgcA4GPoYN30\n4Ycfqk+fPoQrAOCqCFg3sT0HAFAbAtZNHDABAKgNc7BuOH78uHr27KnS0lJZLBazywEA+CA6WDcU\nFBQoOjqacAUAXBMB6wa25wAA6kLA1pPD4eCACQBAnQjYejp8+LAcDoeioqLMLgUA4MMI2Hq6vD0n\nJCTE7FIAAD6MgK0ntucAAFzBNp16sNvtslqt+sc//qH27dubXQ4AwIfRwdbD7t27ZbPZCFcAQJ0I\n2HrgeEQAgKsI2Hpg/hUA4CrmYF104cIFWa1WFRYWqlWrVmaXAwDwcXSwLtqxY4d69uxJuAIAXELA\nuojjEQEA9UHAuogFTgCA+mAO1gWnT59Wp06dVFpaqsaNG5tdDgDAD9DBuuDDDz/UPffcQ7gCAFxG\nwLqA7TkAgPoiYF3A/CsAoL4I2DocO3ZMJSUluuOOO8wuBQDgRwjYOmzdulXR0dGyWCxmlwIA8CME\nbB3y8/MZHgYA1BsBWwuHw8EBEwAAtxCwtTh06JBCQ0PVrVs3s0sBAPgZArYWl7fnhISEmF0KAMDP\nELC1YHsOAMBdHJV4DXa7XRERETpw4IDatWtndjkAAD9DB3sNX3zxhTp06EC4AgDcQsBeA8cjAgA8\nQcBeA9tzAACeYA72Ks6fPy+r1apjx46pZcuWZpcDAPBDdLBXsWPHDt1+++2EKwDAbQTsVbA9BwDg\nKQL2MrtdKi6WDh/W7r/8RfdHR5tdEQDAjzEHW1go5eRIixdLJSVXPu2w2RSSkCAlJ0sdO5pYIADA\nHwVvwFZXS1OmOMPVbr/211kszpDNzJTCwhquPgCAXwvOgK2ulkaOlPLyXH8mNlZav56QBQC4JDjn\nYKdMqV+4StLGjdJzzxlTDwAg4ARfB1tYKHXuXPuw8LVYLNLRo8zJAgDqFHwdbF1zrrWx253PAwBQ\nh+DqYO12qUOHn6wWrjebTSoqcnazAABcQ3B1sKWlnoWr5NwrW1bmnXoAAAEruAK2stK33gMACFjB\nFbDNm/vWewAAASu4AtZqlSIjPXuHzSZFRHinHgBAwAqugLVYpIQEz96RkMACJwBAnYJrFbHEPlgA\nQIMIrg5Wkjp1cp4t7IbKJ58kXAEALgm+gJWcB/fHxtbrka979NBt+fnavXu3QUUBAAJJcAZsWJjz\n4P6JE+ueT7VYpEmTdPPevcqYN08PPPCANm3a1DB1AgD8VvDNwf5cUdEP98EWF//weZtNSkyUkpJ+\nMiy8c+dOxcXF6ZVXXlFSUpIJBQMA/AEBe5nd7jyhqbLSuc81IuKa3e2RI0cUExOjRx55RLNnz1Zo\naHAOBAAAro2AdVNZWZmGDx+uG264QUuWLFGjRo3MLgkA4ENovdwUERGh/Px8VVdXa/DgwSovLze7\nJACADyFgPdCkSROtXr1affr0Ud++ffXNN9+YXRIAwEcQsB4KDQ3Vq6++qsmTJ+vee+/Vp59+anZJ\nAAAfwBysF23cuFHx8fFatGiRRowYYXY5AAATEbBetmvXLg0fPlwvvviiJk+ebHY5AACTELAGOHr0\nqGJiYvTggw/qtddek4XLAQAg6BCwBjl16pTi4uLUunVrLV++XE2bNjW7JABAA2KRk0Fat26tzZs3\nq2nTpho4cKBOnDhhdkkAgAZEwBqoUaNGWrZsmQYPHqy+ffvq0KFDZpcEAGggYWYXEOhCQkKUnp6u\nm266SQMGDNDatWt17733ml0WAMBgzME2oP/7v//TmDFjtGDBAo0aNcrscgAABiJgG9jevXsVGxur\nZ599Vs8//7xCQkLMLgkAYAAC1gRFRUUaOnSo+vbtq/nz5yssjJF6AAg0BKxJzpw5o8cee0zh4eFa\ntWqVrr/+erNLAgB4EauITdKiRQvl5eUpMjJSv/71r3X8+HGzSwIAeBEBa6Lw8HAtXrxYI0eO1D33\n3KP9+/ebXRIAwEsYIvYRy5cvV2pqqlatWqWBAweaXQ4AwEN0sD5izJgxeuedd/TEE09o2bJlZpcD\nAPAQHayPOXDggIYOHar4+HilpaWxjQcA/BQB64OKi4s1bNgw9erVSzk5OQoPDze7JABAPTFE7INs\nNps+/PBDlZaWKiYmRhUVFWaXBACoJwLWRzVr1kwbNmxQVFSU+vfvr8LCQrNLAgDUAwHrw8LCwrRg\nwQI9/fTT6tu3r/bs2WN2SQAAFzEH6yfWrFmjiRMnatmyZRoyZIjZ5QCAsex2qbRUqqyUmjeXrFbJ\nYjG7qnqhg/UTjz32mN59912NGzdOixYtMrscADBGYaGUliZ16CC1aydFRTl/7dhRmj5dKioyu0KX\n0cH6mcOHDysmJkajRo3SrFmz2MYDIDBUV0tTpkg5Oc7u9VosFik5WcrMlHz8ohQC1g+VlpZq+PDh\n6ty5s9588001atTI7JIAwH3V1dLIkVJenuvPxMZK69f7dMgyROyHrFarCgoKdPHiRT3wwAMqLy83\nuyQAcN+UKfULV0nauFF67jlj6vESOlg/VlNTo+eff16bNm3Spk2b1LlzZ7NLAoD6KSyUOneufVj4\nWiwW6ehR5/ysD6KD9WOhoaGaM2eOJk2apH79+umzzz4zuyQAqJ+65lxrY7c7n/dRdLAB4s9//rPG\njx+vxYsXa/jw4WaXAwB1s9udq4VLStx/h83mXFnsg1t46GADxMMPP6xNmzYpJSVFCxYsMLscAKhb\naaln4SpJxcVSWZl36vEyAjaA3HXXXfroo4/0+uuva9q0aaqpqTG7JAC4tspK33qPlxGwAaZz587a\nsWOHPv/8c40aNUrnz583uyQAuLrmzX3rPV5GwAag1q1ba8uWLWrUqJHuv/9+lZaWml0SAPyS1SpH\nZKRn77DZpIgI79TjZQRsgGrUqJGWLVum++67T3379tXhw4fNLgkArjh16pT+8NprmnfunGcvSkjw\nyQVOEgEb0EJDQzV79my98MIL6t+/vz766COzSwIQ5L7++mtNnjxZN998s/bv36/7V692PyAvH5vo\nowjYIJCYmKglS5Zo5MiRWrNmjdnlAAgyDodD27dvV1xcnPr06aNmzZrpyy+/1FtvvaXbHnrI/ZCc\nMMFnD5mQ2AcbVPbs2aPY2FhNmTJF06ZN46IAAIaqrq7WunXrlJGRoZMnT2rq1KkaO3asrr/++p9/\noRQX5zz+0FV+cBYxARtkCgsLNXToUPXv31+ZmZkK8+G/nAD8U0VFhRYvXqx58+bpxhtvVGpqqmJj\nY2WpbSi4PrfpTJggzZ3r0+EqEbBBqaKiQo8++qgaN26sVatWqVmzZmaXBCAAHD16VPPmzdPSpUv1\n4IMPaurUqbrrrrvq95KiImfILl7sPETiMptNSkyUkpJ8elj4xwjYIFVVVaWkpCR9+eWXysvLk81m\nM7skAH7qk08+0Zw5c1RQUKD4+Hj99re/1Q033ODZS+125wlNlZXOfa4RET67WvhaCNgg5nA4NGvW\nLL355pt6//331aNHD7NLAuAn7Ha73n33XWVkZOhf//qXpkyZovHjx6u5jx76YAYCFlq2bJl+97vf\nadWqVbrvvvvMLgeAD6usrNSf/vQnzZ07V5GRkZo2bZpGjBjBeo6rYJsO9NRTT2nlypUaPXq0li9f\nbnY5AHxQUVGRXnjhBd10003atm2bVqxYoZ07d+rRRx8lXK+BgIUkaeDAgdq6davS0tI0a9YsMbAB\nQJI+//xzPfnkk+rVq5eqqqq0a9curVmzRvfcc4/Zpfk8hojxE8ePH9ewYcN05513KisrS+Hh4WaX\nBKCB1dTUKC8vTxkZGfrmm280efJkJSYmqmXLlmaX5lcIWPzC999/r9GjR6uqqkpr1qxRixYtzC4J\nQAM4e/asli5dqrlz56ply5aaNm2aHnnkEX7QdhNDxPiF66+/Xu+++666dOmi/v37q6ioyOySABjo\nX//6l1566SXddNNN+utf/6o33nhDn376qUaPHk24eoCAxVWFhYVp4cKFevLJJ3XPPfdo7969ZpcE\nwMv27t2rsWPHqmfPnqqoqNDOnTu1YcMG9e/fn6NUvYCAxTWFhITohRde0Jw5czR48GBt2bLF7JIA\neKimpkabNm3SoEGDFBMTo+7du+vrr7/WggUL1LVrV7PLCyjMwcIl27dv16OPPqrZs2dr/PjxZpcD\noJ7Onz+v5cuX649//KMaNWqk1NRUPf7447ruuuvMLi1gEbBw2aFDhxQTE6PRo0crPT392kNIdrtU\nWvrDEWdWq98dcQYEipKSEi1cuFDZ2dm66667NG3aNEVHRzME3AAYIobLoqKitHPnThUUFOipp57S\nxYsXf/oFhYVSWprUoYPUrp0UFeX8tWNHafp05yHeABrE/v37lZCQoFtvvVUlJSX68MMPlZeXp/vu\nu49wbSB0sKi38+fP68knn9SpU6e0fv16tW7e3PVrppKTpcxMn79mCvBHDodD+fn5mjNnjvbs2aNJ\nkyYpJSVFERERZpcWlAhYuMVut+t3v/ud8jdv1ift26vp1q2uP+wHFyUD/uTixYt6++23lZGRIUlK\nTU3VE088ocaNG5tcWXAjYOGRff37q9f27fV/cNIkacEC7xcEBJGysjJlZ2fr9ddfV+/evZWamqrB\ngwczBOwjCFi4r7BQ6ty59mHha7FYpKNH/ebiZMCXHDx4UHPnztXq1asVFxenqVOn6rbbbjO7LPwM\ni5zgvrrmXGtjtzufB+ASh8OhDz74QLGxsRowYIAiIyN18OBBvfHGG4Srj6KDhXvsdudq4ZIS999h\nszlXFrOFB7imS5cu6Z133lFGRobOnz+vqVOn6qmnnlKTJk3MLg11IGDhnuJi5xYcb7wnMtLz9wAB\npry8XLm5uZo/f766d++u1NRUDRkyRKGhDDz6C5Zxwj2VlV55zZa1a3X9HXfIZrPJZrOpWbNmXnkv\n4K+OHDmizMxMrVixQrGxsXr//fd1xx13mF0W3EDAwj3Nm3vlNSvz8vTV8uUqLi5WcXGxwsLCroRt\nZGTklY9//E9kZKQiIyM54g0Bw+FwaPv27crIyND27duVlJSkf/zjH2rfvr3ZpcEDDBHDPQbMwToc\nDlVWVl4J28v/lJSU/OJzJ06cUIsWLX4RvFcL44iICFmY54UPqqqq0rp165SRkaFTp05p6tSpGjt2\nLCM5AYKAhfvS0qTZs91+/O0uXdQsI0NDhw5VWD0PnaipqVF5efkvgvdqgXz69GlFRETUGcY2m00t\nW7ZkDyEMV1FRoUWLFmnevHnq3LmzUlNTNWzYMH4QDDAELNznwT5Yh8Wi9XPmaM7q1SosLFRiYqIS\nEhIMGRKrqqpSaWmpS2F88eLFa3bCP/93ugzU17fffqt58+Zp6dKleuihhzR16lT913/9l9llwSAE\nLDwzaZK0cKF7z/37JKe9e/cqOztbq1at0sCBA5WSkqKBAweaslry3LlzKikpueqw9M8D+cfzxbWF\ncdu2bZlkxXwbAAAHAklEQVQvDnIff/yxMjIyVFBQoPHjx+u3v/2tOnXqZHZZMBgBC89UV0txcdLG\nja4/c42ziCsrK7V8+XJlZWXpwoULSk5O1rhx49SmTRsvF+05h8OhM2fO1DpPfPnzJ06cUMuWLWtd\ntHX544iICLZhBAi73a4NGzYoIyNDxcXFeu655/TMM8+ouZcWCML3EbDwXHW167fpTJggzZ1b60H/\nDodDO3fuVFZWljZu3KiHH35YKSkpuvvuu/1yfrSmpkYnT550KYxPnz4tq9XqUhgzX+xFXrzDuLKy\nUm+++aYyMzPVrl07paamasSIEcyvBiECFt5TVOQM2cWLnQdIXGazSYmJUlJSvc8eLisr05IlS5Sd\nna3rr79eKSkp+s1vfhOwXUBVVZVOnDhR5yrq4uJiXbp0yaUtTTabTU2bNjX7t+abCgt/+Dv74xXx\nNpuUkOC8XtHFv7OFhYWaP3++3njjDd1///1KTU3V3XffbVDh8AcELLzPbpfKyn7oBiIiPD4Osaam\nRgUFBcrKytLf/vY3jR49WikpKbr99tu9VLT/uTxf7Mq2puuuu86lVdRt27ZVeHi42b8149Vn1KWO\nO4x37dqljIwMbd68WePGjdPkyZN10003GVM3/AoBC79z7NgxLV68WIsWLdKNN96olJQUPfroo9x9\neQ0Oh0MVFRUuhXFpaalatmzpUhi3adPGP+eLq6ulkSOlvDzXn/nZugG73a68vDxlZGTo22+/1ZQp\nU5SQkKCWLVsaVDT8EQELv1VdXa28vDxlZWVp9+7dGjt2rJKTk9W1a1ezS/NbdrtdJ0+edGkVdUVF\nhaxWa52rqG02m1q0aOE788UerHw/+4c/aMmSJZo7d65at26tadOmKS4uLji6ftQbAYuAcOTIEeXm\n5mrJkiW64447lJKSotjY2HofYAHXXbp06cp8cV3dcVVVlUsLtyIjI42dL/Zg77Y9JER3tmqlrtHR\nSk1NVb9+/Xznhwb4JAIWAeXChQtau3atsrKy9N133ykhIUGJiYnq0KGD2aUFtbNnz14J3Lq640aN\nGrkUxm7NF3t4+lj5xIn61euvu/08ggsBi4C1b9++KwdYREdHa8KECRo0aJB/zhsGicvzxXUt2iop\nKVFpaalatWrl0irqNm3aKNTh4A5jNCgCFgGvsrJSb7/9trKysnT27NkrB1hERESYXRo8cHm+2JUt\nTZWVlerxq19pjyfhehl3GMNFBCyChsPh0CeffKKsrCy99957io2N1YQJE9S3b1/m0gLcpUuXVP7J\nJ7INGOD5yw4fllhIBxcQsAhKJ0+e1NKlS5Wdna3GjRsrJSVFY8aMCdgDLCBn59munXfeQwcLFxCw\nCGo1NTXaunWrsrOzVVBQoMcff1wpKSnq3bu32aXB2wy4wxioDas9ENRCQ0M1aNAgrV27Vvv371f7\n9u01bNgw9e3bV2+99ZYuXLhgdonwFovFefyhJxISCFe4jA4W+Jnq6mq9//77ys7O1q5du64cYNGt\nWzfPXuzFA+XhJg/2wcpikY4erfd52ghedLDAz4SFhWn48OH6y1/+ok8++UQWi0X9+vXT4MGDtW7d\nOlVVVdXvhYWFzv2XHTo45wCjopy/duwoTZ/uHHJEw+jUyXm2sDsmTCBcUS90sIALLl68qHXr1ikr\nK0vffPPNlQMsOtb2DdeLB8rDi7x4hzFQGzpYwAWNGjXSb37zG23btk1btmzRyZMn1atXL40YMUJb\ntmxRTU3NTx+4fKD8woV1D0fa7c6vi4tzPgdjhYU5w3LixLqH6C0W59nFhCvcQAcLuOn777/XypUr\nlZWVpYqKCiUnJ+uZZ56R1Wr16EB5LVjg/WJxdQbcYQxcRsACHnI4HPr000+VnZ2tDRs26KnoaM3L\ny1MIC2n8hwF3GAMELOBF5eXlOvz44+qTn+/+S9LSpPR07xUFwBQELOBNHGYA4N9Y5AR4U2mpZ+Eq\nOecCy8q8Uw8A0xCwgDdVVvrWewCYhoAFvMlblwVw6QDg9whYwJusVs9vWrHZnKtYAfg1AhbwJg6U\nB/BvrCIGvI0D5QGIDhbwPg6UByA6WMAYHCgPBD06WMAIHCgPBD06WMBoHCgPBCUCFmgoHCgPBBUC\nFgAAAzAHCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAGIGABADAAAQsAgAEIWAAA\nDEDAAgBgAAIWAAADELAAABiAgAUAwAAELAAABiBgAQAwAAELAIABCFgAAAxAwAIAYAACFgAAAxCw\nAAAYgIAFAMAABCwAAAYgYAEAMAABCwCAAQhYAAAMQMACAGAAAhYAAAMQsAAAGICABQDAAAQsAAAG\nIGABADAAAQsAgAEIWAAADEDAAgBgAAIWAAADELAAABiAgAUAwAD/D47K58vZ7sq3AAAAAElFTkSu\nQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAFBCAYAAACrYazjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtU1VXC//HPUUIhkbC0nMbxQmleYCI5jpol5aghpsNl\nKj0+iq3Sx8SsJaOLHnvMpokuTGaRt3makDhmKd7SzMpMc5Q8eAlK81ZeRkswCDHOUYHz+8PkF+MN\nDwe/5/J+rdU/rMPXD87ox733d+9tcjqdTgEAAEM0MjoAAAD+jCIGAMBAFDEAAAaiiAEAMBBFDACA\ngShiAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwAgIEoYgAADEQRAwBgIIoY\nAAADUcQAABiIIgYAwEAUMQAABqKIAQAwEEUMAICBKGIAAAxEEQMAYCCKGAAAA1HEAAAYiCIGAMBA\nFDEAAAaiiAEAMBBFDACAgShiAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwA\ngIEoYgAADEQRAwBgIIoYAAADUcQAABiIIgYAwEAUMQAABqKIAQAwEEUMAICBKGIAAAxEEQMAYCCK\nGAAAA1HEAAAYiCIGAMBAAUYHAHxJUVGRsrOytKegQCfLytQsNFQdIyM1avRotWzZ0uh4ADyQyel0\nOo0OAXg7m82mmenpWrV6tRIkmR0OhUgql7QlKEhLnU7FxcZqYlqazGazwWkBeBKKGKinebNna1pq\nqqbY7RrldCrsAp8plZRlMumloCBNz8jQmHHjrnZMAB6KIgbqYd7s2XoxNVVrKip0Sx0+v0/SwOBg\nTaGM3YolAXgzihhwkc1m05CYGH1exxI+Z5+ku4KD9f769YqOjm6oeH6BJQH4AooYcNGIhARFL1um\nJ1z4IzTDZNK2+Hi9nZvbAMn8A0sC8BUUMeCCoqIidWrbVt86HBcsgMspkRTetKn2HDrE1KkLWBKA\nL2EfMeCC7KwsxUsulbAktZAUbzIpOyvLfaH8hM1m07QrKGFJukXSmooKTUtNVX5+fkPGA64YRQy4\nYE9BgXo4HPV6htluV/6//qXDhw+ruLhY5eXlOn36tJikurSZ6emaYrdf0bq8dLaMJ9vtmpme3hCx\nAJcxNQ24YPj99ytu5UpZ6vGMHEmpwcEKCAvTqVOn5HA45HA4VFVVpaZNm9b6r0mTJlf1awEBnnnW\nD0sC8EWe+acN8HDNQkNVXs9nlEsampioudnZtb5eWVmpU6dO1Srnc//V9WsnTpxQUVGRS9/rcDhk\nMpkapOzr+tkmTZqocePG5/2euXNJYNJf/uLiUwD3oogBF7Rs00b/CgjQf1dWuvwMW1CQukZEnPf1\ngIAABQQE6Nprr61PxHqprKx0qcR//bXS0tJ6fX/jxo3PK+yTxcWa5oYlgR2FhW76nQLqjyIG6sjp\ndGrt2rXKzMzU+vXrVel0qlSujc5KJC11OvVicrJ7Q7pJQECAmjVrpmbNmhny6zudTp05c+a8cn7y\nkUcUsmFDvZ4dIqm8tNQ9QQE34GUt4DJOnDihzMxMdenSRU8++aQGDRqkf//73xo6ZIjmm0wuPXO+\nyaTBgwaxTnkRJpNJgYGBat68uVq2bKk2bdro1ltv1W/atHHLkkBImKuT24D7UcTARXzzzTdKSUlR\nu3bttH79es2ZM0cFBQUaM2aMrr32Wk1MS9OLQUHad4XP3SfppaAgTUxLa4jYPq1jZKS2NG1ar2fY\ngoLU8QJLAoBRKGLgV6qqqrR8+XL1799fMTExCgsLU0FBgRYtWqS+ffvK9KsRsNls1vSMDA0MDq5z\nGZ87WGJ6RgbHW7pgZHKylursiVmuOLckMNJDlwTgn1gjBiQdP35cb775pmbPnq3WrVsrJSVFSUlJ\natKkySW/79wpTXelpmqy3a7kixy1WKKzRy2+zFGL9dKqVSvFxcZqvotHi7IkAE/EPmL4tW3btun1\n11/XsmXL9Kc//Unjx493aaSan5+vmenpWvnBB4o3mWS222suH7D9cvnA4EGDNDEtjZFwPXHZBnwN\nRQy/c/r0aS1evFiZmZk6cuSIxo0bp0ceeUQ33HBDvZ9dXFx89jq+wkKVl5YqJCxMHSMiNDI5mVGY\nG3HWNHwJRQy/ceTIEc2dO1fz5s1Tt27dlJKSosGDB3vsKVK4tHO3L7EkAG9HEcOnOZ1Off7558rM\nzNQnn3yi4cOH67HHHlOXLl2MjgY3YEkAvoAihk/6+eefZbValZmZqVOnTiklJUWjRo1S8+bNjY6G\nBsCSALwZRQyfsn//fs2aNUvz58/XnXfeqZSUFPXr10+NGrFTD4Bn4m8neL3q6mqtXr1acXFx6tmz\npwICAmSz2Wr2A1PCADwZb6nAa/3000966623NGvWLIWEhGjChAlavHixgoKCjI4GAHVGEcPrFBYW\nKjMzU++9955iY2OVnZ2tnj171jr1CgC8BUUMr3DmzBktX75cmZmZ2rt3r8aOHaudO3eqdevWRkcD\ngHqhiOHRjh07pn/84x+aM2eOOnTooJSUFMXHx+uaa64xOhoAuAVFDI/jdDq1ZcsWvf7661q1apWS\nkpK0atUq/f73vzc6GgC4HduX4DEcDofeffddZWZmqqSkRI899phGjx6tFi1aGB0NABoMRQzDHTx4\nUHPmzNGbb76p7t27KyUlRffdd58aN25sdDQAaHBssIQhnE6n1q5dq/j4eN1xxx1yOBz617/+VbMf\nmBIG4C8YEeOqKi8vV3Z2tt544w01atRIEyZMkMViUbNmzYyOBgCG4GUtXBW7d+/WG2+8oZycHN17\n772aNWuW+vbty95fAH6PIkaDqaqq0qpVq5SZmakvv/xSjz76qL788ku1adPG6GgA4DEoYrjdjz/+\nqDfffFOzZs3STTfdpJSUFP35z39WkyZNjI4GAB6HIobbbNu2TZmZmVqyZImGDh2qRYsWyWw2Gx0L\nADwaRexnioqKzt7bWlCgk2VlahYaqo6RkRo1erRL97aePn1aubm5yszM1OHDhzVu3Djt3buXO2AB\noI54a9pP2Gw2zUxP16rVq5UgyexwKERSuaQtQUFa6nQqLjZWE9PS6jSKPXr0qObOnat58+apS5cu\nSklJ0f3336+AAP5tBwBXgiL2A/Nmz9a01FRNsds1yulU2AU+Uyopy2TSS0FBmp6RoTHjxp33GafT\nqY0bNyozM1MfffSRhg0bpvHjx6tr164N/jMAgK+iiH3cvNmz9WJqqtZUVOiWOnx+n6SBwcGa8qsy\nrqio0IIFC5SZmSm73a7x48dr1KhRCg0NbdDsAOAPKGIfZrPZNCQmRp/XsYTP2SfpruBgzbZatXHj\nRmVlZal3795KSUnRH//4RzVqxIFsAOAuLOj5sJnp6Zpit19RCUvSLZJSKyo0+sEH9ejEibLZbGrf\nvn1DRAQAv8eI2EcVFRWpU9u2+tbhuOCa8OWUSApv0kR7Dh/mDWgAaEDMMfqo7KwsxUsulbAktZAU\n36iRsrOy3BcKAHAeithH7SkoUA+Ho17PMNvt2lNY6KZEAIALoYh91MmyMoXU8xkhkspLS90RBwBw\nERSxj2oWGqryej6jXFJImKuT2wCAuqCIfVTHyEhtadq0Xs+wBQWpY0SEmxIBAC6Et6Z9lFvemm7a\nVHsOHeKtaQBoQIyIfVSrVq0UFxur+SaTS98/32TS4EGDKGEAaGCMiH1YfU/Wen/9ekVHRzdUPACA\nGBH7NLPZrOkZGRoYHKx9dfyec2dNT8/IoIQB4CqgiH3cmHHjNCUjQ3cFB+vvOnvL0oWUSHrFZNJd\n/3HhAwCgYTE17SdWrFihkUlJMjVqpPhGjWS222vuI7b9ch/x4EGDNDEtjZEwAFxFFLGfmDRpkho1\naqTJkycrOytLewoLVV5aqpCwMHWMiNDI5GRezAIAA1DEfqC8vFzt2rXTtm3b1LZtW6PjAAB+hTVi\nP/DWW2+pX79+lDAAeCBGxD6uqqpKHTt21Ntvv63evXsbHQcA8B8YEfu4lStX6oYbblCvXr2MjgIA\nuACK2MfNmDFDTzzxhEwunrAFAGhYTE37sO3bt2vIkCH69ttvdc011xgdBwBwAYyIfdirr76qlJQU\nShgAPBgjYh/1ww8/qHPnztq/f79atGhhdBwAwEUwIvZRs2bN0rBhwyhhAPBwjIh9kN1uV7t27bRh\nwwZ16tTJ6DgAgEtgROyDFixYoOjoaEoYALxAgNEB4F5Op1MzZszQq6++anQUAEAdMCL2MWvXrpXJ\nZFK/fv2MjgIAqAOK2MdwgAcAeBde1vIhu3fv1t13360DBw4oKCjI6DgAgDpgROxDZs6cqbFjx1LC\nAOBFGBH7iJKSEoWHh2vnzp1q3bq10XEAAHXEiNhH/OMf/9CQIUMoYQDwMoyIfcCZM2fUoUMHrVix\nQlFRUUbHAQBcAUbEPiA3N1fh4eGUMAB4IYrYy507wOPJJ580OgoAwAUUsZfLy8vT8ePHNXjwYKOj\nAABcQBF7uRkzZmjixIlq3Lix0VEAAC7gZS0vdvDgQd1xxx06cOCAQkJCjI4DAHABI2IvlpmZqeTk\nZEoYALwYI2IvdfLkSbVt21Zbt25Vu3btjI4DAHARI2IvlZWVpXvuuYcSBgAvx4jYC1VXV6tTp07K\nysrSnXfeaXQcAEA9MCL2QqtWrdJ1112n3r17Gx0FAFBPFLEXOneAB3cOA4D3Y2ray+zYsUODBw/W\nt99+q8DAQKPjAADqiRGxl5k5c6bGjx9PCQOAj2BE7EV++OEHde7cWfv27dP1119vdBwAgBswIvYi\nc+bM0YMPPkgJA4APYUTsJRwOh9q1a6d169apc+fORscBALgJI2Iv8c477ygqKooSBgAfQxF7Ae4c\nBgDfRRF7gXXr1qmqqkr9+/c3OgoAwM0oYi8wY8YMPfHEExzgAQA+iJe1PNyePXvUp08fHTx4UEFB\nQUbHAQC4WYDRAXBpr732msaMGUMJA/BoRUVFys7K0p6CAp0sK1Oz0FB1jIzUqNGj1bJlS6PjeTRG\nxB6stLRU4eHh+uqrr/Sb3/zG6DgAcB6bzaaZ6elatXq1EiSZHQ6FSCqXtCUoSEudTsXFxmpiWprM\nZrPBaT0TRezBXn75ZRUUFOjtt982OgoAnGfe7NmalpqqKXa7RjmdCrvAZ0olZZlMeikoSNMzMjRm\n3LirHdPjUcQeqrKyUh06dNCyZct0xx13GB0HAGqZN3u2XkxN1ZqKCt1Sh8/vkzQwOFhTKOPzUMQe\n6r333tMbb7yh9evXGx0FAGqx2WwaEhOjz+tYwufsk3RXcLDeX79e0dHRDRXP67B9yUOd27IEAJ5m\nZnq6ptjtV1TCknSLpMl2u2ampzdELK/FiNgD5eXlafjw4dq7d68aN25sdBwAqFFUVKRObdvqW4fj\ngmvCl1MiKbxpU+05dIi3qX/BiNgDvfrqq3r88ccpYQAeJzsrS/GSSyUsSS0kxZtMys7Kcl8oL0cR\ne5hDhw7p448/1sMPP2x0FAA4z56CAvVwOOr1DLPdrj2FhW5K5P040MMgF9v8fvDwYY0cOVLNmzc3\nOiIAnOdkWZlC6vmMEEnlpaXuiOMTKOKr7FKb37/IzdW7DocGDhggm83G5ncAHqdZaKjK6/mMckkh\nYa5ObvsepqavonmzZ2tITIyily3Ttw6H3nQ49N+SLJL+W9JbDoeOSLr74481JCZG82bPNjYwAPzK\nN998o+++/14b6nkBjS0oSB0jItyUyvvx1vRVwuZ3AN7o+++/18KFC2W1WnXkyBENGTJE72Zl6bvT\np3lr2k0YEV8FNptN066ghKWz++3WVFRoWmqq8vPzGzIeANRy4sQJzZ8/XwMGDFDnzp21Y8cOpaen\n6/Dhw5o7d64Gx8Vpvouj4vkmkwYPGkQJ/woj4qtgREKCopct0xMu/FbPMJm0LT5eb+fmNkAyADjr\n9OnTWrNmjXJycvThhx+qb9++slgsuv/++xUcHFzrs5ys5V4UcQNj8zsAT1VdXa1NmzbJarVq0aJF\nuu2222SxWPTnP/9ZN9xwwyW/l+U29+Gt6Qbmzs3vk/7yFzcmA+Cvdu7cKavVqgULFigoKEgWi0U2\nm03t27ev8zPOleldqamabLcr+SK3L5Xo7O1LL3P70kVRxA3MXZvfd7D5HUA9HDlyRAsXLlROTo6O\nHTum4cOHa8mSJbr99ttlcnG9d8y4cbrDbNbM9HQ9+8EHijeZZLbba7Zk2n65j3jwoEF6Py2N6eiL\noIgbGJvfARilrKxMS5YsUU5OjrZt26b4+HhlZGQoJibGbUfoRkdH6+3cXBUXFys7K0s7CgtVXlqq\nkLAwdY2I0IvJySyrXQZF3MDY/A7gajp16pRWr14tq9Wqjz76SPfcc4/GjRunuLg4BQUFNdiv27Jl\nS5bPXMT2pQbWMTJSW5o2rdcz2PwO4FKqq6u1YcMGjR07Vr/5zW80Y8YM9e/fX999952WLVumpKSk\nBi1h1A9vTTcw3poG0FC++uor5eTk6J133lFISIhGjBihYcOGqW3btkZHwxVgarqBtWrVSnGxsZrv\n4j5iNr8D+LXDhw/rnXfekdVq1Y8//qjhw4drxYoVioyMdPmlKxiLEfFVwOZ3APXx008/afHixbJa\nrfryyy+VkJCgESNG6O6771ajRqwwejv+F7wKzGazpmdkaGBwsPbV8XvObX6fnpFBCQN+yOFwKDc3\nVwkJCWrbtq1Wr16tCRMm6OjRo/q///s/xcTEUMI+gqnpq+RKNr+/ZTLpr5ISH3iAze+AH6murtb6\n9etltVq1ZMkS/f73v5fFYtGbb76pMHZO+Cympq+y/Px8zUxP18rLbH6/LyFBTzzxhPLy8hQeHm50\nbAANxOl0qqCgQFarVe+8845atGghi8WiYcOGqU2bNkbHw1VAERvk3Ob3Pb/a/N4xIkIjf7X5febM\nmbJardq4caMCAwMNTgzAnQ4dOqQFCxYoJydHJ06ckMVikcViUbdu3YyOhquMIvZgTqdTgwcPVkRE\nhF544QWj4wCop5KSEi1atEhWq1Vff/21kpKSZLFY1KdPH9Z7/RhF7OGKiooUFRWl7Oxs9evXz+g4\nAK6Q3W7XypUrZbVatW7dOg0YMEAjRozQfffdpyZNmhgdDx6AIvYCH3/8sUaPHq3t27eznxjwAlVV\nVfrss89ktVq1dOlSde/eXRaLRQkJCQoNDTU6HjwMRewlJk+erF27dmnFihVs2gc8kNPp1I4dO5ST\nk6OFCxfqxhtvlMVi0UMPPaSbb77Z6HjwYBSxlzh9+rTuvPNOjRw5UhMmTDA6DoBffPfdd1qwYIGs\nVqvsdruGDx8ui8WiLl26GB0NXoIi9iJ79+5V7969tXbtWkVGRhodB/Bbx48fr3np6ptvvtEDDzwg\ni8Wi3r17M2OFK0YRe5ns7Gy98MILys/PV3BwsNFxAL9RUVGhFStWyGq1asOGDYqNjZXFYtHAgQPZ\nXoh6oYi9jNPp1IgRIxQSEqI5c+YYHQfwaZWVlfr0009ltVq1YsUKmc1mWSwWxcfHq3nz5kbHg4+g\niL3QiRMndPvttysjI0MJCQlGxwF8itPp1NatW2W1WrVw4ULdfPPNNS9dtW7d2uh48EEUsZfKy8vT\nkCFDtHXrVo7BA9xg//79slqtWrBggc6cOSOLxaLhw4frtttuMzoafBxF7MXS09P14Ycf6tNPP1Xj\nxo2NjgN4neLiYr377ruyWq3av39/zUtXPXv25KUrXDUUsRerqqpS//79dc899+jpp582Og7gFX7+\n+WctX7685hz3uLg4jRgxQv3799c111xjdDz4IYrYyx05ckTdu3dXbm6u7rzzTqPjAB6psrJSn3zy\niaxWq95//3316tVLFotFf/rTn9SsWTOj48HPUcQ+YMWKFXr88ce1Y8cOXXfddUbHATyC0+mUzWZT\nTk6O3n33XbVr104Wi0UPPvigbrzxRqPjATUoYh+RkpKi4uJiLVy4kLUteLyioqKz14AWFOhkWZma\nhYaqY2SkRo0eXe/z1Pfu3Sur1Sqr1SpJNdcL3nrrre6IDrgdRewj7Ha7evTooSeffFIPP/yw0XGA\nC7LZbJqZnq5Vq1crQZLZ4VCIpHJJW4KCtNTpVFxsrCampclsNtf5uceOHdO7776rnJwcHTx4UA89\n9JAsFovMZjP/MIXHo4h9yNdff62+fftq48aNbLmAx5k3e7ampaZqit2uUU6nwi7wmVJJWSaTXgoK\n0vSMDI0ZN+6izzt58qSWLVumnJwc5eXl6f7775fFYtEf//hHBQQENNjPAbgbRexj5syZo7lz5yov\nL4+7TuEx5s2erRdTU7WmokK31OHz+yQNDA7WlP8o4zNnzuijjz6S1WrVqlWr1KdPH1ksFg0dOlTX\nXnttg+UHGhJF7GOcTqcSEhLUvn17vfLKK0bHAWSz2TQkJkaf17GEz9kn6a7gYK347DNVVlbKarXq\nvffeU3h4uEaMGKEHHniA+7nhEyhiH/Tjjz8qKipKc+fOVWxsrNFx4OdGJCQoetkyPeHCXzV/l/Ri\ncLBatGlTc9JVeHi4+0MCBqKIfdRnn32mYcOGafv27brpppuMjgM/VVRUpE5t2+pbh+OCa8KXUyKp\nQ2Cg9hw+rFatWrk7HuARGhkdAA0jJiZGjzzyiEaNGqXq6mqj48BPZWdlKV5yqYQlqYWkhMaN9fb8\n+W5MBXgWitiHTZs2TeXl5ZoxY4bRUeCn9hQUqIfDUa9nmO127SksdFMiwPPwjr8PCwgI0IIFC9Sj\nRw/FxMSoe/fuRkeCnzlZVqaQej4jRFJ5aak74gAeiSL2ce3atdNrr72mYcOGadu2bZyriwZ1+vRp\nbd++XZs3b9bmzZu1du1a3V3PZ5ZLCglzdXIb8HxMTfuBhx56SH369NGECROMjgIf88MPP2jp0qWa\nPHmy+vTpoxYtWmjMmDHavXu34uLi9EhKir5o2rRev4YtKEgdIyLclBjwPLw17SdOnjyp7t27a/r0\n6XrooYeMjgMvVFlZqYKCAm3atKlmxPvTTz+pZ8+e6tWrl3r37q0ePXooJOT/T0a7663pvf/+N3uG\n4bMoYj+ybds2DRw4UFu2bFH79u2NjgMPd/z48ZrC3bx5s/Lz8/W73/2upnR79eqlTp06qVGjS0+s\n1Wcf8Ssmk/7WpIn6xsbqueeeU5cuXVz9cQCPRRH7mVdeeUWLFi3Shg0buAQdNaqqqvT111/XlO6m\nTZt07Ngx9ejRo6Z0//CHPyjMhbXa+p6stWjNGuXl5emll15SXFycnnnmGbVt2/aKcwCeiiL2M9XV\n1Ro0aJCio6P13HPPGR0HBvnpp5+Ul5dXU7pbtmzRjTfeWFO6vXv3VpcuXdS4cWO3/HruOGu6rKxM\nf//73/XGG29oxIgR+p//+R8O+YBPoIj90LFjxxQVFaUFCxYoJibG6DhoYNXV1dq9e3dN6W7evFmH\nDh1SdHR0Ten27NlTN9xwQ4PmOHf70mS7XckXuX2pRGdvX3r5ErcvHTt2TM8//7xycnI0fvx4TZo0\nSaGhoQ2aHWhIFLGf+vDDD/Xoo49qx44duv76642OAzcqLy/Xli1bako3Ly9P1113Xa213cjISEOu\nCszPz9fM9HSt/OADxZtMMtvtNfcR2365j3jwoEGamJam6OjoSz7rwIEDeuaZZ7R69WpNnjxZjz32\nmIKCgq7KzwG4E0XsxyZNmqT9+/dr6dKlXJ7upZxOp/bv319Tups2bdK+ffsUFRVVU7q9evXyuPPG\ni4uLlZ2VpT2FhSovLVVIWJg6RkRoZHLyFb8d/fXXX2vq1KnKz8/XtGnTlJyczH3E8CoUsR87deqU\nevXqpUcffVTjLnEBOzxHRUWFbDZbrWnmpk2b1irdqKgoBQYGGh31qsvLy9NTTz2lI0eO6K9//auS\nkpIu+0Y34AkoYj+3e/du9enTR+vWrVO3bt2MjoNfcTqdOnjwYK3S3bVrlyIiImpNM//2t781OqrH\ncDqd+uSTT5SWlqbq6mqlp6drwIABzPjAo1HE0D//+U/NmDFDW7ZsYY3NQA6HQ9u2bas1zex0OtW7\nd++a0u3evbua1vOkKn/gdDqVm5urqVOn6qabblJ6erp69epldCzggihiyOl0atiwYbr++uv1xhtv\nGB3Hbxw5cqRW6RYWFuq2226rNdpt164do7l6qKys1Pz58zV9+nRFRUXpb3/7GzM/8DgUMSSd3Vca\nFRWlV199VUOHDjU6js85ffq0duzYUevAjIqKilpru2azWddee63RUX2Sw+HQrFmz9OKLL2rgwIGa\nPn06p8vBY1DEqLFp0yYlJCRo69atuvnmm42O49WOHTtWa213+/btCg8Prynd3r1765ZbbmG0e5Wd\nOHFCr7zyil5//XUNHz5cU6dO1Y033mh0LPg5ihi1PPfcc/r000/18ccfu+1UJV9XWVmpwsLCWpch\nlJSUnHcZQvPmzY2Oil8UFxfr+eefV3Z2tsaNG6fU1FRdd911RseCn6KIUUtVVZX69eunAQMG6Kmn\nnjI6jkf68ccfa12GYLPZ1KZNm1pru7fddhtbZ7zAwYMHNX36dK1cuVKpqalKSUlRcHCw0bHgZyhi\nnOfw4cOKjo7W8uXL1bNnT6PjGKqqqko7d+6sNc38/fff17oMoWfPni5dhgDPsWvXLk2dOlVffPGF\nnn76aT388MNcioKrhiLGBS1dulSTJk3S9u3b/eoc359++klffPFFrcsQWrZsWesyhK5duzJt76O2\nbNmip556SgcPHtRf//pXPfDAA8xsoMFRxLiocePG6cSJE8rJyfHJl4qqq6u1Z8+eWqPdAwcOnHcZ\nAhfS+5+1a9cqLS1NZ86c0fPPP6/77rvPJ/8MwDNQxLioiooKmc1mTZkyRSNHjjQ6Tr2dPHmy1mUI\nmzdvVmho6HmXITAlCens/vqlS5dq6tSpuuGGG5Senq4777zT6FjwQRQxLqmwsFD33nuvNm3apFtv\nvdXoOHV27jKEX+/b3bt3r26//fZae3dbt25tdFR4uMrKSr399tt65plnFBkZqb/97W+KjIw0OhZ8\nCEWMy8pcDfewAAAJ0ElEQVTMzFRWVpY2bdqkwMBAFRUVnb05p6BAJ8vK1Cw0VB0jIzVq9GjDpnEr\nKiqUn59fa5o5MDCw1tru7bffriZNmhiSD97v1KlTmjNnjtLT09WvXz89++yzCg8PNzoWfABFjMty\nOp0aOnSoQkND5fz5Z61avVoJkswOR81dslt+uUs2LjZWE9PSZDabGzTPoUOHapXuzp071a1bt1rT\nzG3atGmwDPBf5eXlmjFjhl577TU98MADevrpp5lZQb1QxKiTV15+Wc9OmaJpkpKdTl1os06ppCyT\nSS8FBWl6RobGuOlqxVOnTp13GUJ1dXWt0u3evTsXVuCqOn78uF544QX985//1NixYzV58uQr2sbm\niTNLMAZFjMuaN3u2XkxN1ZqKCt1Sh8/vkzQwOFhTXCzjo0eP1irdgoICderUqdbabvv27XmLFR7h\n8OHDevbZZ7Vs2TJNmjRJjz/++CUPBbHZbJqZnm74zBI8B0WMS7LZbBoSE6PP61jC5+yTdFdwsN5f\nv17R0dEX/dyZM2dqLkM4V74///xzTeGeuwyhWbNm9f5ZgIa0e/duPf3009q4caOmTp2qRx55RIGB\ngbU+M2/2bE1LTdUUu12jrvLMEjwXRYxLGpGQoOhly/SEC/83mWEyaVt8vN7Oza35WlFRUa3S3bZt\nmzp06FDrMoRbb72V0S681tatW/XUU09p3759evbZZzVs2DA1atToqs8swXtQxLiooqIidWrbVt86\nHBf8l/vllEjqEBiotGef1VdffaXNmzfrxx9/1B/+8IeaaeYePXr41cld8B/r1q1TWlqa7Ha7Ro0a\npZeffrrBZpbg3ShiXFTGSy9p57Rp+qfD4fIzhptM2te9u8aMHatevXqpc+fOHBkIv+F0OrVixQqN\n/a//0l/KyzXJhWdcaGYJviXA6ADwXHsKCtSjHiUsSXc5nQrp3FmPPPKIm1IB3sNkMqlXr146deaM\nHnbxGaOcTj37wQcqLi7mbWofxdAEF3WyrEwh9XxGiKTy0lJ3xAG8UnZWluIll5Z3JKmFpHiTSdlZ\nWe4LBY9CEeOimoWGqryezyiXFMIVgfBj7phZMtvt2lNY6KZE8DQUMS6qY2SktjRtWq9n2IKC1DEi\nwk2JAO/DzBIuhyLGRY1MTtZSnd3X6IoSSUudTo1MTnZfKMDLMLOEy6GIcVGtWrVSXGys5ru4p3e+\nyaTBgwbxggn82vU336x/BdTvvVhmlnwb25dwSQ19shbgi3bt2qXc3FwtXrxYR48elb2kRIeqqlze\njx/etKn2HDrEP2p9FCNiXJLZbNb0jAwNDA7Wvjp+z7kTgaZnZFDC8AtOp1MFBQX63//9X3Xt2lX9\n+/dXcXGxXnvtNX3//fcaOmQIM0u4KEbEqJNzZ+ROttsvevtSic6ekfsyZ+TCDzidTm3durVm5FtZ\nWanExEQlJSWpR48etQ6uYWYJl0IRo87y8/M1Mz1dKz/4QPEmk8x2e82tMbZfbo0ZPGiQJqal8ZcG\nfFJ1dbXy8vKUm5ur3NxcBQYGKikpSYmJibrjjjsueUY6Z03jYihiXLHi4uKz96gWFqq8tFQhYWHq\nGBGhkcnJTJ/B51RVVWnjxo1avHixlixZorCwsJry7dat2xVdUMLMEi6EIgaA/3DmzBl99tlnys3N\n1dKlS3XzzTcrMTFRiYmJuu222+r1bGaW8J8oYgCQdOrUKa1du1aLFy/WihUrFB4eXjPy7dChg9t/\nPWaWcA5FDMBv2e12rVmzRrm5uVq1apW6du2qxMREJSQk6He/+53R8eAnKGIAfuXkyZP64IMPlJub\nqzVr1qh79+5KTExUfHy8WrdubXQ8+CGKGIDPKysr08qVK7V48WJ9+umn6tWrl5KSkjR06FCmgWE4\nihiATyopKdHy5cuVm5urDRs2KCYmRomJiRoyZIjCOLcZHoQiBuAzioqKtHTpUuXm5uqLL75Q//79\nlZiYqLi4ODVv3tzoeMAFUcQAvNrRo0e1ZMkSLV68WDt27FBsbKySkpJ033336dprrzU6HnBZFDEA\nr3Pw4MGa06127dql+++/X4mJiRowYICa1vMObeBqo4gBeIV9+/bVnOt84MABDR06VElJSbr33nsV\nGBhodDzAZRQxAJcUFRWdPZCioEAny8rULDRUHSMjNWr0aLe9ibxz586ake8PP/yghIQEJSYmqm/f\nvgqo5x2/gKegiAFcEZvNppnp6Vq1erUSJJkdjpojGrf8ckRjXGysJqalyWw2X9Gzz10nuHjxYuXm\n5qq8vLzmaMnevXurcePGDfEjAYaiiAHU2blLC6bY7Rp1kUsLSnX20oKX6nhpgdPpVH5+fs20c3V1\ndc11gmazudZ1goAvoogB1Ik7r/E7d53guRuNmjRpUnOuc1RU1BXdaAR4O4oYwGW542L7qKgoff75\n58rNzdWSJUvUokWLmpFv165dKV/4LYoYwGWNSEhQ9LJlesKFvy5eMZn0Ztu2Ol5Rod/+9rc1a76d\nOnVqgKSA96GIAVxSUVGROrVtq28djguuCV9OiaR2AQFau2nTFb+8BfgD3oIAcEnZWVmKl1wqYUlq\nISnpmmu04bPP3BcK8CEUMYBL2lNQoB4OR72eYbbbtaew0E2JAN9CEQO4pJNlZQqp5zNCJJWXlroj\nDuBzKGIAl9QsNFTl9XxGuaQQrh4ELogiBnBJHSMjtaWeFynYgoLUMSLCTYkA38Jb0wAuyR1vTYc3\nbao9hw657QxqwJcwIgZwSa1atVJcbKzmu3jgxnyTSYMHDaKEgYtgRAzgstxxslZ0dHRDxQO8GiNi\nAJdlNps1PSNDA4ODta+O33PurOnpGRmUMHAJFDGAOhkzbpymZGToruBgzTCZdLHNSCU6e6zlXRe5\n8AFAbUxNA7gi+fn5mpmerpUffKB4k0lmu73mPmLbL/cRDx40SBPT0hgJA3VAEQNwSXFxsbKzsrSn\nsFDlpaUKCQtTx4gIjUxO5sUs4ApQxAAAGIg1YgAADEQRAwBgIIoYAAADUcQAABiIIgYAwEAUMQAA\nBqKIAQAwEEUMAICBKGIAAAxEEQMAYCCKGAAAA1HEAAAYiCIGAMBAFDEAAAaiiAEAMBBFDACAgShi\nAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwAgIEoYgAADEQRAwBgIIoYAAAD\nUcQAABiIIgYAwEAUMQAABqKIAQAwEEUMAICBKGIAAAxEEQMAYCCKGAAAA1HEAAAYiCIGAMBAFDEA\nAAaiiAEAMBBFDACAgShiAAAMRBEDAGAgihgAAANRxAAAGIgiBgDAQBQxAAAGoogBADAQRQwAgIEo\nYgAADEQRAwBgIIoYAAAD/T+9XNrfksX6MgAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -106,7 +106,7 @@
}
],
"source": [
- "from dcprogs.likelihood import network\n",
+ "from HJCFIT.likelihood import network\n",
"from networkx import draw as nx_draw, draw_spectral\n",
"\n",
"graph = network(qmatrix)\n",
@@ -127,15 +127,15 @@
"[[ 1.00000000e+00 -3.72362979e-20 3.98565840e-17]\n",
" [ -1.90203993e-16 1.00000000e+00 8.58280665e-28]\n",
" [ -1.83880688e-16 -1.43995601e-20 1.00000000e+00]]\n",
- "[[ 9.99998098e-01 7.10033034e-11 -1.18861914e-21]\n",
- " [ 5.60101709e-07 1.00000000e+00 -1.19196101e-21]\n",
- " [ -1.22912506e-13 -4.23663173e-17 9.99999998e-01]]\n"
+ "[[ 9.99998098e-01 7.10033034e-11 -1.14561128e-21]\n",
+ " [ 5.60101709e-07 1.00000000e+00 -1.14894920e-21]\n",
+ " [ -1.21873763e-13 -4.22346238e-17 9.99999998e-01]]\n"
]
}
],
"source": [
"from numpy import outer\n",
- "from dcprogs.likelihood import Asymptotes, DeterminantEq, eig, inv\n",
+ "from HJCFIT.likelihood import Asymptotes, DeterminantEq, eig, inv\n",
"eigenvalues, eigenvectors = eig(-qmatrix.matrix)\n",
"def get_ci00(i): \n",
" return outer(eigenvectors[:, i], inv(eigenvectors)[i, :])[:qmatrix.nopen, :qmatrix.nopen]\n",
@@ -166,9 +166,9 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEZCAYAAAAzL+qdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FdX28PHvSqWHFhApIUjoKppQxAKICqKCSvwJokiT\nV4r1qoh6r4oF9epVUfAqRVRQUESMKAJKsREgKILABWMQaUIohk7aev+Y4d4YU07qnCTr8zznYc6e\nvfes2ZxkZWb2zBFVxRhjjPEnAV4HYIwxxmRnyckYY4zfseRkjDHG71hyMsYY43csORljjPE7lpyM\nMcb4HUtOxhhj/I4lJ2OMMX7HkpMx+RCRCSJydwlvY7WItC1C+5Yisk5EjojInT62+VVELivsNr0k\nIhtFpFsh2w4WkWUiskZEuhZzaKaYWHKq4ETkJhFJEJGjIrJHRBaKyEVex1UafPnlLCLhwCDg9Sxl\ntUXkIxE5JiLbReQmH7aVX5vngfGF2Q/XA8AyVa2uqhNz2H6ZSUS+xKqqbVV1eSH6jgF6A5cClwP3\nZVlXWUQeF5Gf3Z+H7SLygYh0Luh2TNFZcqrARORe4CXgaaA+0ASYDPT1Mi4/Mxj4TFVPZCmbBKTi\njNlA4DUfjnryaxMHdBeRMwoZZwSwsZBtywwRCSpiF/2AFsAyYD7wh9tvVWAJEA30VdVqQFu37Ioi\nbtMUhqpW6BdwB/AfnB/s53JY3xJYl+V1GLjbXfdPt+164COgZjHEMwZIBBSoW4L7HQYcBW7Io05r\nYDnOD/BGoE+Wdb8C97v7fgyYhvOLdyFwBPgCqJWt/jhgE3AIeBOoVIBt3eduKwWYc7otcCbwIZAM\nbAPuzLYPObYF3gEygRPuODyQyxgsBW7O8r4qTpJpkaXsHeCZPMbRpzY4vwhvLej/hxtjBnDS3ZcW\n2drluK9FGdccxrggn4UHgV/cdZuA6/KK1e1/rNv/KSDILbsMOAs4CJyfJe5koFsusb4AXJTlfZD7\n7yvAt6ff28v7l+cBlNqOQjdgRray7u4PTqj7vl4+fQQCvwMR7vsrsny4nwWeLYY4zwOauj98JZmc\negHpuf0wAsE4SfIhIATnNMgRoKW7/lcg3v0l1BDYB3zvxl/J/YX5aJb+fgV+AhoDtd1fBE8WYFur\n3V88tYHNwO04R/5rgX+47ZoBSUDPbNv9S9ss6y7LZ5ySgQ7Z/n+OZ6tzH/BJPv+n+bYBJgL/KuT/\nx3JgeB4x/GVfizKuOfRTkM/CDe42A4AbcRJag9xidd+vcz87lbPXAW7DSXJVgEXA83mMQ0v3s7fc\nrVvf3fdU4OKS+nmzV8FfFf203kicv15PAajqvnzq9wB+UdXtbv3FqprurosHGgGISKCI/NO94Lpe\nRP6frwGp6g+q+mtBd6QQ6gD7s8SfXWegGs74pKrqUmABMCBLnVdUda+q7gK+Bla58Z/EOZI8L1uf\nr6rqDlU9CDyVpS9ftjVRVXe7bT8B2gMdgHBVHe+2SwKmAP2zbTentr6qiZMETquGc/ScVQpQPY8+\nfG1zxN1eTnwZo8Ioyrhm5fNnQVU/cLeZqapzgJ+Bjj7EuUP/fHr1dH9TcBL3KqAB8HBunajqFlW9\nUFW7qWpPVd2Lk+gPqOrXp+u5E1T+EJETInJJbv2JSH0R+VpEPs0nflNAFT05tQAuFpFVIrJCRDrk\nU78/8F4u64binMYAGAakqGoHnB/020QkslgiLj4HgLp5nMM/E9ihqplZyrbj/GV82t4syydyeF8t\nW587svV1ZgG29XuW5eNu3xHAme4vkT9E5A+cI4v62babU1tfHeLPSeQoUCNbnRr8OYFl52ub6rjX\nQHLgyxgVRlHGNSufPwsiMsidWXi673ZA3Xzi3JHP+iluP6+c/mOzAM4A9mQtUNWOOL8fKuEc8edm\nAPCyql5VwG2afBT14qLfE5FVQCjOD0dtEVnnrhqLs/+1cf4q7QC8LyLNVPUvX3IlIiFAH5zrJtnX\nPYxzimyWW3QFcI6IxLrvw4AoEfkN+DGXUIeo6ppC7GJhrcQ5f38tMDeH9buBxiISkOUXYhNgaxG2\n2TjLchN3G0XZ1g5gm6pGFTIeX77MbD3OL6nT/zdbgSARiVLVn92yc8l7MoKvbVoDM3Ppo6j/HwX5\n4raijmuuRCQCJ5H0AFaqaob7MylZquUUa67xi0g1nIk904DHRORD90jQV7/hjG2gqmZkKT8X5w+C\ng+52ngAuxDnrMArnj/uHga0iclJVFxRgmyYf5f7ISVU7qWp7YDgQp6rt3dciYCcwTx2rcS7E5vYX\n3JXA9+5pgP8SkcHA1cDALElNgDuybCvSPQWYoartcnmVZmJCVVNwrilMEpFrRaSKiASLyJUi8hzO\nKZLjwANueTfgGmB2ETY7WkQaiUhtnB/qOW55Ybe1GjgiImPdacCBItLOhyPg0/biXE/Jy2fAf++F\nUdVjwDxgvIhUFZELcWY3vgMgIjNEZEbWDvJr47arhDNTbEkucRT1/8OXfT2tqOOal6o4iSYZQESG\n4BzxFDZWgJeBBFUdDnwK/LuAMX2BcxT7kjvlX9wzHUP58x+Tz6jqpTi/S653TwNuwrlWZYmpmJX7\n5JSP+TiTIhCRFjgXf/fnUncA2U7piUgvnNlEfVT1eJZVi4CRIhJ8um93qqpfUdUXgHuBR3B+WezA\nmS04X1VTcX75XYkzJpOBQar6nyJs8l1gMc7F9V+AJ904CrUt96/cq3Guk2xz207FOVL1xQTgEff0\n0n251Hkb6C0ilbOUjQIq41z4fw8Yqaqnj4Ia41xwzy6vNuDs/3JV3Z1D20KPURa+7OvpbRV1XPPq\nexPOjLmVOEnobP46Xj7HKiJ9cSb3jHSL7gXOF5GBBYjpOM49T41wZt8m41wnSwJGu9upB/xbRJbh\nHPntEpFAp/n/TrWKc5/gQ75u2+ROcjiDVS65f2kOVtXBWcpCgOk4P4SpwH2qulREzgSmqmpvt15V\nnEP/Zu4Rx+n2iTinDA+4RfGqeruIBOD84r0G5ygqGbg2a9s84rwTJ+GdgfOL7DP3L8IyTUR+xZlN\n9oXXsRSUiDwN7FPVl/KpF4Lzl/Y5qppWwG2sAoapal7XN4xHROQV4FNV/VxE3sQ56t0D3KOqI7yN\nrnyqMMnJeKssJydjRKQ/zhmGNTg3516Jc7RVR1UneRlbeWXJyZQKS07GmIKw5GSMMcbvlOup5HXr\n1tWmTZt6HYYxxhhg7dq1+1U13Je65To5NW3alISEBK/DMMYYA4jIdl/rVvSp5MYYY/yQJSdjjDF+\nx5KTMcYYv2PJyRhjjN+x5GSMMcbvWHIyxhjjdyw5GWOM8TuWnHKxdvshJi1LZO32Q16HYowxFU65\nvgm3sNZuP8TAqfFojWVMWhvCOzf8jeiIWl6HZYwxFYYdOeUgPukAqenpBFXeRmD4x7z8/cvYMwiN\nMab0WHLKQedmdQgNCuCFvfu54HAlfjj8IX//9u+WoIwxppRYcspBdEQtZg7vQuWWl/Pvg4mMSq9C\nw9BaiIjXoRljTIVgySkX0RG16HrzQwTcOJORe7Yz8ru3+X1HPPcsu4eDJw96HZ4xxpRrlpzy0+oq\nGLwATh0lae7NfL1zBYMWDmLnkZ1eR2aMMeWWJSdfNIqB4UvoEliDKXv2cejEAW5ZeAtbD231OjJj\njCmXLDn5qnYzGLaE8y5/lrd7z6RptUbUrlTb66iMMaZc8ik5iUgvEdkiIoki8mAO60NFZI67fpWI\nNM2ybpxbvkVEeubXpzieEpGtIrJZRO50y8NE5BMR+VFENorIkKLseKFUrQPnDeSsoBq8+Z+11P3l\nK15b9xqfb/u81EMxxpjyLN/kJCKBwCTgSqANMEBE2mSrNgw4pKrNgReBZ922bYD+QFugFzBZRALz\n6XMw0Bhopaqtgdlu+Whgk6qeC3QDXhCRkMLsdJFVqQ2X3E9aiytZtfs77v/qfmZumulJKMYYUx75\ncuTUEUhU1SRVTcVJFn2z1ekLvOUuzwV6iDPvui8wW1VPqeo2INHtL68+RwLjVTUTQFX3ueUKVHf7\nrQYcBNILvMfFISAQYoYQHFyJ15NTuCyzEs+ueZYX177oSTjGGFPe+JKcGgI7srzf6ZblWEdV04EU\noE4ebfPq8yzgRhFJEJGFIhLllr8KtAZ2AxuAu04nMM+IEBozhOd3bufGUwGEq13CM8aY4uCPv01D\ngZOqGgNMAaa75T2BdcCZQHvgVRGpkb2xiIxwE1tCcnJyyUfb9joCB33Mw4dSuHnpRHZsXciDXz/I\nsbRjJb9tY4wpp3xJTrtwrgGd1sgty7GOiAQBYcCBPNrm1edOYJ67/BFwjrs8BJinjkRgG9Aqe7Cq\n+oaqxqhqTHh4uA+7VwwiLkCGLYGQqmz85HY+T1rI0EVDWfrzL/Zkc2OMKQRfktMaIEpEIt0JCP2B\nuGx14oBb3eVYYKk6D6KLA/q7s/kigShgdT59zge6u8tdgdM3E/0G9AAQkfpASyCpIDtboupGwfAv\n6FW9GS/vSybxYCJ3Lh/Gv5atZODUeEtQxhhTAPl+ZYaqpovIGGAREAhMV9WNIjIeSFDVOGAa8I6I\nJOJMVOjvtt0oIu8Dm3AmL4xW1QyAnPp0N/kMMEtE7gGOAsPd8ieAGSKyARBgrKruL/oQFKNq9WDw\nAromreCqX5W4bRPJTA8hTTOJTzpgX7thjDE+kvL8pO2YmBhNSEjwZNs//udnGr53KU+mD2Rx+GFG\nd7mU0R1jPYnFGGP8gYisdecT5MsfJ0SUC+e2bE5Kj+eI7D6QNk0O8O/NjzNl/RT72g1jjPGBJaeS\nIsJZlwzgrsvO5t2jp7jqVCYTf5jIE/FPeB2ZMcb4PUtOpSDk8vFMOKqMPHycdmnOrVl2BGWMMbmz\n5FQaGpyD3LaUUaFNuH7pSyQufYxbFt5iX7thjDG5sORUWqqfAUM+g7bXkrJqMkn7NzLws4GsT17v\ndWTGGON3LDmVpuDK0G860Z3vZubO3VQmgKGLhrJ271qvIzPGGL+S731OppgFBED3h2h2bn/erVKT\niSseopUGk56ZTqAE4jzX1hhjKjZLTl6p3YzamRk8tnUNWuULHkmcQ2hgKA91eoigAPtvMcZUbHZa\nz0sBgTBkIXrhXYQHVOKDrR8w5ssxHE096nVkxhjjKUtOXqtWj4CAQO4+cpLHkg8Qv/s7Riy+jUyP\nvw3EGGO8ZOeP/MVlj9MvM4MGP77J0YAzCTh1lO92H+OH7cfo3KyOPZfPGFOhWHLyF4FBcOUzdKkb\nBZ/dz/dTLuX2KoGc+D2WwKXtmDW8syUoY0yFYaf1/E2HYXDzh9Q//Dst0g9TqeHbaI2lrPzFvx7A\nbowxJcmSkz86qzuHrv6Ix/YEUP1IJCH1PudEpW+9jsoYY0qNndbzU+3O7cDaGiu4adshAk9MY0jK\nJo6nHedY2jHCq5TSN/waY4xHLDn5sejIukRH1oWl1aFyLR5e9RTxe+KZ2H0ibeu29To8Y4wpMXZa\nryy49GG4YBSDGvUg6Nh+bl14C59v+9zrqIwxpsRYcipDWobW4b2DqbQ9cZxHv3mYgycPeh2SMcaU\nCJ+Sk4j0EpEtIpIoIg/msD5UROa461eJSNMs68a55VtEpGd+fYrjKRHZKiKbReTOLOu6icg6Edko\nIisKu9NlVoNzqX3bcqYGNmH6ju3U/mYi8bu+43jaca8jM8aYYpXvNScRCQQmAZcDO4E1IhKnqpuy\nVBsGHFLV5iLSH3gWuFFE2gD9gbbAmcAXItLCbZNbn4OBxkArVc0UkXpuHDWByUAvVf3tdHmFU70+\nwbcuoO3C+znw3cvcuWsejcOaMfGySTSs1tDr6Iwxplj4cuTUEUhU1SRVTQVmA32z1ekLvOUuzwV6\niPN47b7AbFU9parbgES3v7z6HAmMV3We36Oq+9zym4B5qvpbtvKKJygErnmZOlc+z0t797MnZRsD\nFgywr94wxpQbviSnhsCOLO93umU51lHVdCAFqJNH27z6PAvnqCtBRBaKSJRb3gKoJSLLRWStiAzy\nIfbyrcMwutw4l1ldJlAjtAYLN73ndUTGGFMs/HEqeShwUlVjROR6YDpwMU6s0UAPoDKwUkTiVXVr\n1sYiMgIYAdCkSZNSDdwTEV2IBN5NS6PyvBEcOed25uxezuC2g+2rN4wxZZYvR067cK4BndbILcux\njogEAWHAgTza5tXnTmCeu/wRcE6W8kWqekxV9wNfAedmD1ZV31DVGFWNCQ+vODer1mh+OcE3zWHJ\nwfW8/P3LjF5yO4dTD3sdljHGFIovyWkNECUikSISgjPBIS5bnTjgVnc5FliqquqW93dn80UCUcDq\nfPqcD3R3l7sCp4+MPgYuEpEgEakCdAI2F2x3y7GQKtCsG9c37sHjf5xg9Z5VxM6L5anFX7F2+yGv\nozPGmALJNzm515DGAItwksH7qrpRRMaLSB+32jSgjogkAvcCD7ptNwLvA5uAz4HRqpqRW59uX88A\n/URkAzABGO72tdntYz1Ogpuqqj8VdQDKnUphXH/Vv3l9/xGCjuzkh28XM3BqvCUoY0yZIs4BTvkU\nExOjCQkJXofhiZmfLiV61RhayG5uq9YVbd6Badc+RIDYfdfGGG+IyFpVjfGlrv2mKqdatzuPm/VJ\nFmV2oEnl9SQcnsNdX4ziSOoRr0Mzxph8WXIqp6IjavHG8O5s6z6ZoU1HMu5EIN/siWfApwM4mnrU\n6/CMMSZPNte4HIuOqOV+e+4D3JR+Fy0P/MTqb5+l2i/LOda8O1WDq3odojHG5MiOnCqKoFCia7dl\n5JGTpFSuQWxcLC8m/IuMzAyvIzPGmL+w5FSRBFeCQR9TuXFnLqjcgOkb32TkoqH8cfIPryMzxpg/\nseRU0YgQEhjCPyKu4fGDR0jYu5ZHvxjjdVTGGPMnds2pomp7HdeHtyLqg5uotWsRWusVEpp1pkOD\nDl5HZowxduRUodVrzdnDVtDorCtY+N3TDF08lGdWjictM83ryIwxFZwlp4quUg24cSaXX/AAN6cc\nYdbWD7ht8W3sP7Hf68iMMRWYndYzIELwRfcwtnEn2p3cxeNrnuPHH9+mZoMhxCcdoHOzOu6UdGOM\nKR2WnMz/RHThKqDT74lU/2Y6MScrcSpoL68s7cSs4RdYgjLGlBpLTuYv6l74N94+1oW0n2cQWjOB\noJStfJ0YYcnJGFNq7JqT+augENq2PYf6+7sx7NBRMmpsYMm+u/j92O9eR2aMqSAsOZkcRUfU4l/D\n+1Cv+Ru8fDSEiD9+pXb866SnnfQ6NGNMBWBfmWHyl3ocFj6A/vAO9zRtSfhZl3N/l0cJCQzxOjJj\nTBliX5lhildIFej7Khl9J9Pw6EFmJ8Vx64IB7Dq6y+vIjDHllCUn47Og8wZy/42f8mKtjvx6bDfD\nFg4hLd1O8xljip8lJ1Mw4S25rM805vSeyT/+OELwNy+zbt860jPTvY7MGFOOWHIyhdKk5ll0ueA+\ndrS7hiGLhnBb3I0kH0/2OixjTDnhU3ISkV4iskVEEkXkwRzWh4rIHHf9KhFpmmXdOLd8i4j0zK9P\ncTwlIltFZLOI3JltWx1EJF1EYguzw6YYtetH47pteLx2J3469B9u+LA3a3bHex2VMaYcyDc5iUgg\nMAm4EmgDDBCRNtmqDQMOqWpz4EXgWbdtG6A/0BboBUwWkcB8+hwMNAZaqWprYHa2WJ4FFhdqb02J\n6HP5C7xbI4bqJ4/w5eJ74YjdD2WMKRpfjpw6AomqmqSqqTjJom+2On2Bt9zluUAPERG3fLaqnlLV\nbUCi219efY4ExqtqJoCq7suynTuAD4GsZcZrIVWJ6vcWs897gL/tTCLl9Yt47PP/Z19iaIwpNF+S\nU0NgR5b3O92yHOuoajqQAtTJo21efZ4F3CgiCSKyUESiAESkIXAd8FpewYrICLdtQnKyXQMpTVVj\nhhI8Yhnrq9Uk7vdv+b+5vfhgw7dMWpbI2u2HvA7PGFOG+OOEiFDgpHuj1hRgulv+EjD29BFVblT1\nDVWNUdWY8PDwEg7V/EW91lw8dAXvVDuPTBUeXzuaiStnM3BqvCUoY4zPfElOu3CuAZ3WyC3LsY6I\nBAFhwIE82ubV505gnrv8EXCOuxwDzBaRX4FYnOtX1/oQvyltIVVpG/sOvRtMJvRwFG+nv03d9N9Z\nkbjd68iMMWWEL8lpDRAlIpEiEoIzwSEuW5044FZ3ORZYqs5zkeKA/u5svkggClidT5/zge7ucldg\nK4CqRqpqU1VtinNda5Sqzi/wHptS0zWqKXWTr+SH1I4crJPI/L13smbnt16HZYwpA/JNTu41pDHA\nImAz8L6qbhSR8SLSx602DagjIonAvcCDbtuNwPvAJuBzYLSqZuTWp9vXM0A/EdkATACGF8+umtIW\nHVGLp4dfR0aPx3iy1zWEnUph2Be38+q3j9tNu8aYPNmDX02pOb45jqdWPEBc5WCmNr2BTpf8HUS8\nDssYU0rswa/GL1Vp3YenBi7nXc6k07IX2DC7H8sSP/E6LGOMH7LkZEpX9TM4+5aFcPl43jy0nju/\nfYgJX95Nakaq15EZY/yIJSdT+gIC4MK7eOaamdycGsS7O79k4GcD2XfUnixhjHFYcjKeCWncmbHD\n1vLqpa9SJz2dWh+OIDX9lNdhGWP8QJDXAZgKLiCAro270jXlAHriEHd9dT/VCODhi5+ianBVr6Mz\nxnjEjpyMf2h3PRozhNZVz+TT377gxtnd2fz7D15HZYzxiCUn4zcCJICRMX9jWnhXTqQe4faFg1i3\ndpk9m8+YCsiSk/EvgcHEXDWJDy96nucOnaJNXCzr4x/m5jcXWYIypgKx5GT8Us2WV/FT21ksoh3r\nz/iJmk2e5qN1H3gdljGmlFhyMn6rfavm3J85lpjfLqJOeiYf//EKT658gvL8VBNjjMNm6xm/FR1R\ni1nDLyA+qQUDmzzKNwffJSNpGXL8SVK7jSUkMMTrEI0xJcSSk/Fr0RG1iI6oBUDnZn9Dj6ZzOPJC\nBnx8HdefeQmDO95HYECgx1EaY4qbndYzZYcI0v1BtME5tAwO46UtMxk+5zL2pNj3RBlT3lhyMmVO\nWGgYL1z+Ok9Ubc2mk/t4/MNrYd9mr8MyxhQjS06mTJJK1bk29n3mnj+ORw4eQV/vyluf/T+OnEzx\nOjRjTDGw5GTKtMbn3kyj21eyMfICXtz3LbFzuvH9Lvu2XWPKOktOpuyrFk67gfOZcdZAAiSIIV+O\nYvoPr3kdlTGmCGy2nikfRGh/8Tjmdr6TZ+KfImLNm5BRiW9qXc6Pv52kc7M6/531Z4zxfz4dOYlI\nLxHZIiKJIvJgDutDRWSOu36ViDTNsm6cW75FRHrm16c4nhKRrSKyWUTudMsHish6EdkgIt+JyLlF\n2XFTPlUNrsoTXcbTo90tzA1oyMgV1zF/9T8ZOHWlPf7ImDIk3+QkIoHAJOBKoA0wQETaZKs2DDik\nqs2BF4Fn3bZtgP5AW6AXMFlEAvPpczDQGGilqq2B2W75NqCrqp4NPAG8Uag9NuVfYBB0uYNfDoRx\n5qkQfj/jO1o0eILl/9ngdWTGGB/5cuTUEUhU1SRVTcVJFn2z1ekLvOUuzwV6iIi45bNV9ZSqbgMS\n3f7y6nMkMF5VMwFUdZ/773eqevpP33igUcF311Qkl7Vowd7d99IjuT57Kh8mMGkM7FjtdVjGGB/4\nkpwaAjuyvN/pluVYR1XTgRSgTh5t8+rzLOBGEUkQkYUiEpVDTMOAhTkFKyIj3LYJycnJPuyeKa+i\nI2oxbfilREX/m+ebPcCok5n8MeNKHv/gGg4e2eN1eMaYPPjjbL1Q4KSqxgBTgOlZV4pId5zkNDan\nxqr6hqrGqGpMeHh4iQdr/Ft0RC1Gd29O1663EjLyO35ofQXzj23jug97smz7Uq/DM8bkwpfktAvn\nGtBpjdyyHOuISBAQBhzIo21efe4E5rnLHwHnnK4kIucAU4G+qnrAh9iN+Z9KNege+x6z299PeOVw\n7lx+F2999xSkp3odmTEmG1+S0xogSkQiRSQEZ4JDXLY6ccCt7nIssFSd7zWIA/q7s/kigShgdT59\nzge6u8tdga0AItIEJ2ndoqpbC76rxjhatr+V92I/Z2TrW7nsq9fI3PIZG5JtsoQx/iTf+5xUNV1E\nxgCLgEBguqpuFJHxQIKqxgHTgHdEJBE4iJNscOu9D2wC0oHRqpoBkFOf7iafAWaJyD3AUWC4W/4P\nnOtYk525FqS7p/6MKbDgwGBGdbwPzriYD0/u4LHPbmJAjdbc03salUOrex2eMRWelOcvbouJidGE\nhASvwzB+7kT6CSZ+fDMzj24lQgN5+sInOSfqaq/DMqbcEZG1vh5U+OOECGNKVeWgyoy9fi7TogaR\nlpnGHx+PhJWTyMxI9zo0YyosO3IyJovUP3YQ8tn9fL99KRMaNOLW1o+y/Xhbe/yRMcXAjpyMKaSQ\nmo1hwHucuugu9mee4pHNjzBx7WsMnPqtPf7ImFJkycmY7ES44OKHubH+CwQfaU5I+GIuqvE6Gzeu\n9zoyYyoMS07G5KJDu04c2TeCKjv6Mf7ojzSrn84bP75OWtpJr0Mzptyz5GRMLqIjajFreGcGXXgz\nvw9axW9V9vLKulfpP+sCNiZ+5nV4xpRrNiHCmAJY9u0Entgyk4MBwpP1LuHqni9DYLDXYRlTJtiE\nCGNKSPcLxzH/2k+IDQqnw9rZpE/pzuYt2R+YYowpKktOxhRQjdrNeOTmZdTv9yZz0vfTf+VDPD8v\nlpNpJ7wOzZhyw5KTMYXVpi99b1lCv5AzeOvIFmIX3MC63fZ9UcYUB0tOxhRBtbDG/OOmL5h62Rtk\nZKZz6qMRsHUxaZlpXodmTJlmycmYYtCp4QXE9X6PTq36EV85lD7zrmbVuje9DsuYMsuSkzHFJLhy\nLejxdypXqkngyRSG//gvxs3syauL4+3pEsYUkCUnY4rZueHn8sF1C7ghsDGfpu9CNtzK5KmvW4Iy\npgAsORlTAipXrUudhhOJ2N6Hy1OEp0Ke460lfdh/wL4n0xhfWHIypoR0blaHn9Mvpm/aBJ4LuZhv\ngg7R95PRH9DWAAAZzUlEQVR+fLT1Q8rzze/GFAd7QoQxJWjt9kPEJx2gc7M61MpI4PF1r/D9kW3c\n0aA7I2LugdqRXodoTKkpyBMiLDkZU4oyNZN5m9+j22d/J+zqV/hIjnFd82sJDgzxOjRjSlyxP75I\nRHqJyBYRSRSRB3NYHyoic9z1q0SkaZZ149zyLSLSM78+xfGUiGwVkc0icmeW8olu/fUicr4vsRvj\nTwIkgNg2A6k7KoEvQwN5Iv4JBrzdkZ82f+h1aMb4lXyTk4gEApOAK4E2wAARaZOt2jDgkKo2B14E\nnnXbtgH6A22BXsBkEQnMp8/BQGOglaq2Bma75VcCUe5rBPBaYXbYGL9QpTa9InvxUquhHNR0Bq56\nlLfn9YfUY15HZoxf8OXIqSOQqKpJqpqKkyz6ZqvTF3jLXZ4L9BARcctnq+opVd0GJLr95dXnSGC8\nqmYCqOq+LNt4Wx3xQE0RaVCIfTbGb/TodA8f9/uc2EqNOHvLlzC5M/9Z91b+DY0p53xJTg2BHVne\n73TLcqyjqulAClAnj7Z59XkWcKOIJIjIQhGJKkAciMgIt21CcnKyD7tnjLeqhzXi7/0/57ybPiY+\nNJgbfnyesbO6cSDlN69DM8Yz/jiVPBQ46V40mwJML0hjVX1DVWNUNSY8PLxEAjSmRER04fyhKxgV\n1o7FaQfo+9lNfLblQ9b+epBJyxLtJl5TofiSnHbhXAM6rZFblmMdEQkCwoADebTNq8+dwDx3+SPg\nnALEYUyZFhJanZHXvsfcPvOIDItkz9cvs3L6fbywZAMDp9pjkEzF4UtyWgNEiUikiITgTHDI/u1q\nccCt7nIssFSdOepxQH93Nl8kzmSG1fn0OR/o7i53BbZm2cYgd9ZeZyBFVfcUcH+NKRPOqh3FWz3f\nJLLSlcziPKqcNYGza/6blT/bqT5TMeSbnNxrSGOARcBm4H1V3Sgi40Wkj1ttGlBHRBKBe4EH3bYb\ngfeBTcDnwGhVzcitT7evZ4B+IrIBmAAMd8s/A5JwJlVMAUYVac+N8XMBgUGEXXw7hwLqU+dEXf5T\nN4nPf7uZVd9P8To0Y0qc3YRrjJ87/ZSJumkfMmPnTM4/fpSnzrwCvfwJpHo9r8Mzxmf2hAiXJSdT\n3pw8cYjUb/5F6MrXGNognGsjetGvxz8JCAzyOjRj8lXsT4gwxviHSpVrUePyJzg8ZAGhwVUZv+cL\nBi24kS0Ht3gdmjHFypKTMWVQeOPOTBu0mqfbjmDHyf08+uVd6JdPeh2WMcXGkpMxZZQEBHBNzB3E\nXRvHhOpnI6FVeXrV0yzdPMfr0IwpMktOxpRxYaFhRPb6J0c6DCNhdzx3rX6SO97uwu7ddr3VlF2W\nnIwpJ6qH1mDO1bP5W52OrMo4zKCFg0j75kXWbttnT5gwZY7N1jOmHNqzO4GkZY9x4c9f81q1xiw4\ncRW/pHZj1vDOREfU8jo8U0HZbD1jKrgGZ8Zw4cAFfNLmOeLClN+afEaT8Iks/fkXr0MzxieWnIwp\nx87s9H/8vuPvnHPwDPbU2M2He+/gj/jJkJHudWjG5Mnu3DOmHIuOqMXUYT2JT4qhf/2jpOyYSs01\n00lofD5BgcG0PyPa6xCNyZElJ2PKueiIWv+7ztT6FbjoAJO+vp+EvQn0Da7PPVdMpk7dFt4GaUw2\ndlrPmIpEBKrWZdKlrzK0Wgs+Tf2daz65np+/mmCn+oxfseRkTAVUJaQq9/T7kA+7TuTqgDCaLX2G\nXVMvYd2Gd70OzRjAkpMxFVqzyEt5aNA3BN4wg9dJ4ZbvJ/D396/iwIkDXodmKjhLTsZUdCLQ9joe\nHLiModWiWHBiJ9fMv4bV69+GzAyvozMVlE2IMMYAUKVaPe7pN4++KUm8uupZouL+xsnqTfnkaCD7\n9tenc7M6dgOvKTX2hAhjzF+pwo5VPLF9Le8n/Zv2h6uReGAorw6JtQRlCs2eEGGMKRoRaNKZaqmX\n0OJgY36qfgSNeIlvVtwPGWleR2cqAJ+Sk4j0EpEtIpIoIg/msD5UROa461eJSNMs68a55VtEpGd+\nfYrIDBHZJiLr3Fd7tzxMRD4RkR9FZKOIDCnKjhtj8ndJ80ZsPHgHYdsG0fRkCJfu/Bh97QJ++uFN\nr0Mz5Vy+p/VEJBDYClwO7ATWAANUdVOWOqOAc1T1dhHpD1ynqjeKSBvgPaAjcCbwBXD6br8c+xSR\nGcACVZ2bLY6HgDBVHSsi4cAW4AxVTc0tdjutZ0zRrd1+iPikA3SOrE30qdV8+8VYbq+WSTepzgO9\np9G4bmuvQzRlRHGf1usIJKpqkpsIZgN9s9XpC7zlLs8FeoiIuOWzVfWUqm4DEt3+fOkzOwWqu/1W\nAw4CdtegMSUsOqIWo7s3J7ppbWjZiw7Dv+Gu2tGs0qP0XTiQ6QkvwamjXodpyhlfklNDYEeW9zvd\nshzrqGo6kALUyaNtfn0+JSLrReRFEQl1y14FWgO7gQ3AXaqamT1YERkhIgkikpCcnOzD7hljCiIk\ntDrDr5nBgtgl9Gzak2o/fQRfPMbWQ1spzxOsTOnyxwkR44BWQAegNjDWLe8JrMM5PdgeeFVEamRv\nrKpvqGqMqsaEh4eXUsjGVDz1qtZnwsUT+L9Ln2N39EAGLBjA4FkXsXnLx16HZsoBX5LTLqBxlveN\n3LIc64hIEBAGHMijba59quoedZwC3sQ5BQgwBJjnrksEtuEkMWOMl5p0on69c3io9WB+TUvhxpUP\n8+TsXuhRO3NhCs+X5LQGiBKRSBEJAfoDcdnqxAG3usuxwFJ1ju/jgP7ubL5IIApYnVefItLA/VeA\na4Gf3H5/A3q46+oDLYGkgu+yMaa4BQYE0i/mDj65fiEDqzaD5C3Iq9H89vWzpKed9Do8Uwbl+4QI\nVU0XkTHAIiAQmK6qG0VkPJCgqnHANOAdEUnEmajQ3227UUTeBzbhTF4YraoZADn16W5yljsbT3BO\n493ulj8BzBCRDe66saq6v+hDYIwpLjXCGjP2hjh072ZSP3+AEVtmUOnnWVwQNoTLYgbbDbzGZ/aE\nCGNMidDMTN5dNJ7pu+ayL1jIPNqW6RfdQ6dzO3kdmvGIPSHCGOM5CQjgj0o382vSeE7t60mdgL20\nW/B/7E35jSOpR7wOz/g5e/CrMabEdG5Wh+DAyqQd7E7m4fPY3asyLyU8y0971jCmXheuv/Q5AoNC\nvA7T+CE7rWeMKVH/fcKE+1Tzjfs38tynQ/ieE7TICOCfHR+iWbsbvQ7TlIKCnNaz5GSMKXWamcmS\nb59m+tY5vL5rB8HNe5J84RgiIi72OjRTguyakzHGr0lAAFdc/Ajv3bKasO7/4K0DCVy7bCT//PB6\nDqce9jo84wcsORljPCMhleHie7mh/wL6hjbgnaM/c/W8q1n200zIsEdnVmSWnIwxnqsb3prHBizh\n/avfJyqsGfWWjEd/nM365PVeh2Y8YrP1jDF+o1Wd1kzr9SactZivQoMZ/dlAugbUoE/LB/n5WGv7\nqvgKxI6cjDH+RQRa9KRzo4u4t8lVJKSnMHbTONb/cBujpy5h7fZDXkdoSoElJ2OMXwoJDGFI92cY\nWP9ftDscRs+MLSwOuIsflz9E6im7ibe8s+RkjPFrXdp2YE3yI7xx6FGWBTbnFf2aPrO68Pm6qfb9\nUeWY3edkjPF7WW/kTd0/m+d/mspWUjm/7tlMazuaoKYXeh2i8YHdhOuy5GRM+ZSRmUHcL3Hs2TCb\nUcl7SOj7AvWr1KdxjSZeh2byUJDkZLP1jDFlTmBAINdFXQcRV6CH9/DkN/exPSWJ/lWacvvlEwmr\n2dTrEE0R2TUnY0zZFVIVqducKT1eo2/IGbx7LIneH13F9uVPQfopr6MzRWDJyRhT5oVXb8BjAxbz\nwUX/5NrAOjRZ/hyJr3Vg0ddPoJmZXodnCsGuORljyp/EL3ly+f3MCU7j3IBqXHPuc+w/0MBu4vWY\nPfjVGFOxNe/BuMHxPN6wF9sFnvxhFKtXPcLYqR/bTbxlhE/JSUR6icgWEUkUkQdzWB8qInPc9atE\npGmWdePc8i0i0jO/PkVkhohsE5F17qt9lnXd3LKNIrKisDttjCn/AoNCuP6yf9KvwRsEJHfj6VMr\nqKrJvLj2BQ4c/MXr8Ew+8k1OIhIITAKuBNoAA0SkTbZqw4BDqtoceBF41m3bBugPtAV6AZNFJNCH\nPu9X1fbua53bV01gMtBHVdsCNxR2p40xFcfFzRtxKqU3vU9OZGtVYcOROHp/3JfX5g/k+NF9Xodn\ncuHLkVNHIFFVk1Q1FZgN9M1Wpy/wlrs8F+ghIuKWz1bVU6q6DUh0+/Olz+xuAuap6m8AqmqfKmNM\nvqIjajFreGdGXHEeM28axvxur9IlqCaTU9bz2KxukDDdvp7DD/mSnBoCO7K83+mW5VhHVdOBFKBO\nHm3z6/MpEVkvIi+KSKhb1gKoJSLLRWStiAzKKVgRGSEiCSKSkJyc7MPuGWPKu+iIWozu3pzoiFpE\nRlzCi7d8wzvnj2NE0Bnognt4eHo0X377jM3s8yP+OCFiHNAK6ADUBsa65UFANHAV0BP4u4i0yN5Y\nVd9Q1RhVjQkPDy+lkI0xZU37s2+i+dAvOdDvdTYEKncnzmLQx9fzw74fvA7N4Fty2gU0zvK+kVuW\nYx0RCQLCgAN5tM21T1Xdo45TwJs4pwDBObpapKrHVHU/8BVwrg/xG2NMzkSoe3Z/5t2ymkcjr2dn\nWgr3L72LtDk3oxkZXkdXofmSnNYAUSISKSIhOBMc4rLViQNudZdjgaXq3EAVB/R3Z/NFAlHA6rz6\nFJEG7r8CXAv85Pb7MXCRiASJSBWgE7C5MDttjDFZBQVXIvaSx/n0uk95tWkswTUjeG7t8zy+ZAzJ\n+zZ6HV6FlO+z9VQ1XUTGAIuAQGC6qm4UkfFAgqrGAdOAd0QkETiIk2xw670PbALSgdGqmgGQU5/u\nJmeJSDggwDrgdrevzSLyObAeyASmqurpxGWMMUVWJbgKrTrfiaoSmPA883et4NOdy7muUkuq176P\nC1q1spt4S4k9IcIYY3KxY8e3PL90LF/pH8zYcZi4tD5cMegBOjW3p58Xhj0hwhhjikHjxhfSoskM\nGibdxNHURpxdYx6PrOhN3LKHyMi0a1IlyZKTMcbkoXOzOiTqeQxKf5iZpwYQJoE8/NsnxH4Sy6pt\ni6Ecn33ykn2fkzHG5OH0TbzON/F24bzGz7Hkl094ZcMUjix5BM7dRlKry2kW1szrUMsVu+ZkjDGF\nkJZ+kqB177H1zHbcsGQYFwbW4K6OY2nV4hqvQ/Nbds3JGGNKWHBQJSRmCBH1zuaes/qxPu0Pblj5\nEI/NuhQOJnkdXplnyckYY4qgUlAlhlz0KAuvX8jwai1pcOBXeLUDqz4aTPK+TV6HV2bZaT1jjClO\nR34nbfkzXLFvMccCAri5YXfaN7ufDTtSK/yXHdppPWOM8Ur1Mwi+5iVmXPY63ULqMmXPckZ/Fcv2\nZc8zZOpX9mWHPrLkZIwxJSAi4mKeG7ic2DNeoPEfTblPFpIRvI03f5hG2qljXofn9yw5GWNMCbq6\nVQeSDg3h6tQJaNh/WJHyFtfM6szHSx8kIz3V6/D8ll1zMsaYErZ2+yHikw7QKbI2J5Jn8cpP09gc\nkME/TgZzw0X/gNZ9IKD8HysU5JqTJSdjjCllmpnJ0pXPcuEP8zh6MJG/NW7K8LZDuChmDFKOk5RN\niDDGGD8mAQH0uHAclUbFs7vHw+zVdEZtnsLghbeQsGeN1+H5BUtOxhjjlYBAzrnwPj4ZGM8jrW5l\nx7E9vP/N47DgHo6nHfc6Ok/ZaT1jjPETJ9JPcHzNFGrWjCR263Qi0jMZ0340zc+6wuvQikVBTuvZ\ng1+NMcZPVA6qTOUL7iQ1I5Wex37hrQ1TWfr1vVwVH07fNk+y9o/6FeZGXjutZ4wxfiYkMITbY+5m\n4bWfMLhaC345vodz519D0Iq7uWfGuxXiRl5LTsYY46dq1ork3th59Gw0jfcze/Br3c0ciXiNt5bd\nzN5je70Or0T5lJxEpJeIbBGRRBF5MIf1oSIyx12/SkSaZlk3zi3fIiI98+tTRGaIyDYRWee+2mfb\nVgcRSReR2MLssDHGlDXt27RhAkNZsfduzj4cxleyk97zevPltxPg6D6vwysR+V5zEpFAYBJwObAT\nWCMicaqa9XG7w4BDqtpcRPoDzwI3ikgboD/QFjgT+EJEWrht8urzflWdm0sszwKLC7GvxhhTJv3v\nCw+j6NzsZurXPsbUdZM556tXOFUvmunHfqF/5FXUCmvidajFxpcjp45AoqomqWoqMBvom61OX+At\nd3ku0ENExC2fraqnVHUbkOj250ufObkD+BAon38qGGNMLqIjajG6e3OiI2rRqHojHrv4acJHrmJN\n5cq89uNr9JrXm4nz/o+UlN+8DrVY+JKcGgI7srzf6ZblWEdV04EUoE4ebfPr8ykRWS8iL4pIKICI\nNASuA17LK1gRGSEiCSKSkJyc7MPuGWNMGVWzMRc1upiPuk7kouBaTDmymbGzr4Dlz8DJFK+jKxJ/\nnBAxDmgFdABqA2Pd8peAsaqamVdjVX1DVWNUNSY8PLxkIzXGGD9wVtNuvHDz18zt8gx3Vm8Nyycw\ndkYnpsbdyvEyek3Kl/ucdgGNs7xv5JblVGeniAQBYcCBfNrmWK6qe9yyUyLyJnCf+z4GmO2cLaQu\n0FtE0lV1vg/7YIwx5V7LqKsg6ipO7VjF0WV38/Kh73nn4z4MbT+SFqGX8v2OU2XmPilfjpzWAFEi\nEikiITgTHOKy1YkDbnWXY4Gl6jx6Ig7o787miwSigNV59SkiDdx/BbgW+AlAVSNVtamqNsW5rjXK\nEpMxxvxVaONOTBq0kpkdHqVl+Nn8+4fXqDfzEl5fEs/AaV+Xifuk8j1yUtV0ERkDLAICgemqulFE\nxgMJqhoHTAPeEZFE4CBOssGt9z6wCUgHRqtqBkBOfbqbnCUi4YAA64Dbi293jTGm4ji3TSxvtIll\nysdz+CR9ESdrr6FarZV8uqIlbW+YSKXK/nsEZc/WM8aYcm7t9kMMnBpPRvAvtKj3Nr9VPkF4hvJY\nxDVccsmjEFypVOKwr8wwxhjzX6fvk7r74l6Mv3IR08+5i4iAUMJXTUEntueTxfdyys9m99mRkzHG\nVESq8OvXrFn2GEMDk6mXoQw7/076nX0roYGhJbJJO3IyxhiTNxGIvISYwV8w9ew7aFSpDhN+fIXb\nPukPCW96HZ0dORljjAFVZfXvqzm5+nW6BlRnUuMW1ElL5/pzhhISWr1YtlGQIydLTsYYY/5Hlcy0\nE4xYNoZVv6+hfoZyW8PuND3rfhJ2pBbpPik7rWeMMaZwRAgIqcKUy6fyRrvRNAgI4Zk9ywh5rxuz\nF3/DwKnxpXKflCUnY4wxfyEBAVwQfTtvD0pgVNXbSExtx06tQ1p6JvFJB0p8+/Y17cYYY3IlAQGc\n33EQA9e3IEAyCQ4KoHOzOiW+XUtOxhhj8vS/75M6UGrP5rPkZIwxJl/REbVK9YGxds3JGGOM37Hk\nZIwxxu9YcjLGGON3LDkZY4zxO5acjDHG+B1LTsYYY/yOJSdjjDF+p1w/+FVEkoHtReiiLrC/mMKp\nyGwci87GsOhsDIuuqGMYoarhvlQs18mpqEQkwdcn6Jrc2TgWnY1h0dkYFl1pjqGd1jPGGON3LDkZ\nY4zxO5ac8vaG1wGUEzaORWdjWHQ2hkVXamNo15yMMcb4HTtyMsYY43fKZXISkV4iskVEEkXkwRzW\nh4rIHHf9KhFpmmXdOLd8i4j0zK9PERnjlqmI1M1SLiIy0V23XkTOL7k9Ln5+MobdRCRFRNa5r3+U\n3B4Xv1Iew1lu+U8iMl1Egt1y+xwWfQztc+j7GE4TkR/dz9pcEamW3zZyparl6gUEAr8AzYAQ4Eeg\nTbY6o4B/u8v9gTnuchu3figQ6fYTmFefwHlAU+BXoG6WbfQGFgICdAZWeT02ZXAMuwELvB6PMjKG\nvd3PmgDvASPtc1hsY2ifQ9/HsEaWfv8FPJjXNvJ6lccjp45AoqomqWoqMBvom61OX+Atd3ku0ENE\nxC2fraqnVHUbkOj2l2ufqvqDqv6aQxx9gbfVEQ/UFJEGxbqnJcdfxrAsK+0x/Mz9rCmwGmiUZRv2\nOSzaGJZlpT2Gh8E5YgcqA5rPNnJVHpNTQ2BHlvc73bIc66hqOpAC1MmjrS99FiYOf+UvYwhwgXua\nYKGItC3ITnjMkzF0T0XdAnxegDj8lb+MIdjnMGvbPPsUkTeB34FWwCv5bCNX5TE5mfLje5zHnZyL\n8yGf73E8ZcFk4CtV/drrQMqw7GNon8MCUNUhwJnAZuDGwvZTHpPTLqBxlveN3LIc64hIEBAGHMij\nrS99FiYOf+UXY6iqh1X1qLv8GRCcdcKEnyv1MRSRR4Fw4N4CxuGv/GIM7XP4l7b59qmqGTin+/rl\ns43ceXmxriReQBCQhHMB7/TFurbZ6ozmzxfn3neX2/LnC4BJOBf/fOnzV/58Mf8q/nwherXXY1MG\nx/AM/ncvXkfgt9Pv/f1V2mMIDAe+Aypn24Z9Dos+hvY59GEM3c9Yc7etAM8Dz+e1jTxj93rwSug/\npDewFWdGycNu2Xigj7tcCfgA5wLfaqBZlrYPu+22AFfm1adbfifOOdd0YDcwNct/ziS3/gYgxutx\nKYNjOAbY6H7444EuXo+LH49hulu2zn39wz6HxTaG9jn0YQxxzsR9637OfgJm4c7ey2sbub3sCRHG\nGGP8Tnm85mSMMaaMs+RkjDHG71hyMsYY43csORljjPE7lpyMMcb4HUtOxhhj/I4lJ2OMMX7HkpMx\nxhi/8/8BzLSjXwdRD34AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEbCAYAAACP7BAbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX5//H3TUgEBQG1xoqCqCxCFAHRVApG6wKu9Ke1\nahXXSq32a6t+QatVtLVKbb8qauu+b8Vq1SpWXIigsimKJCDiwi67wbAn4f79cU5wGLNMkknOzOTz\nuq65OHPmPOfc82SYe57lnGPujoiISKppEXUAIiIiVVGCEhGRlKQEJSIiKUkJSkREUpISlIiIpCQl\nKBERSUlKUCIikpKUoEQAM+sSdQwisj0lKGn2wuR0WBL318nMft7AfXQzs4/MbK2ZXZZgma/M7KiG\nHDcqZlZkZoOijkNSixJUhjOzs8xsupmVmtkSM3vVzAZEHVdTqMMX9q/c/dmYcqeY2e/NbKSZnVPL\nMb63rbsvBHY0s54NCH8E8La7t3P3u6s4bloko0TjdPc8d59Yj/2bmZ1rZkeY2bF1KKPvvjTQMuoA\npPGY2RUEX3TDgfHAFuA44CTgvQhDSxlmdhCwKOb5zsD17t4vfD7ZzMa5++oqyta07dPA7cCv6xla\nZ+CZepZNG2aW5e4VDdjFJcAGoBwormL/Q4AfAUuB9QQ/yvOBq8LnksrcXY8MfAA7A6XA/6thmx7A\nBOAbYBZwUsxrXxH8J54Z7ucBYHdgHPAtQcJrF7f91QRfEquBh4CcOhzryvBY3xB8MeeEr/0Q+Bew\nAvgC+E3ce4gtWxKW3QF4HKgg+BL6Friqmjq4FugV8/xE4PGY5/cCp1VTtsZtgQeBNnWtf+Atgi/c\njWHs+8eVq/K9NaQeq6jTuvztRwKfh68VAUMTiHNEuP+NQFa47ihg3/Dzc3C47Z5hzIOqiXVMZR0D\nO8W99o/4vzvQH3gj6v+feiT2iDwAPRrpDxu0lLYALap5vSUwL/xyaQkcGX6JdA1f/wp4H9gt/HJb\nDnwAHATkhF+if4jZ31fAJ+EXSnvgXeCmOhxrCpAblp0NXAxYeMxrwy+xfcIvwmPijvu9sjGvHVlL\nPb0IWMzzXwFjYp7fClxTTdkatwV+Axxbz/qfAFxQQ9zfe28Nqccq9lOXv/2pQG64/DNgXczz6uKc\nEX5WdohZd1S4fBFBomsNvA6MrqEeDgfOBI4F9o1ZfwPwUDX1/suo/3/qkdij2fbDmtlvzGyOmc0y\ns1ureL1ykHpGzGD1/4Sv/SUs+7GZPR929cSW7RSO+VyRhDi7m9n7ZrapjvvbFVjl7lureT2f4Bfn\naHcvd/cJwCsE/9kr3eXuq9z9a2ASMNXdP3H3LcC/gT5x+7zL3Ze6ewlwc8y+fpTAse509+Vh2f8A\nBxP82t3N3W929wp3n0/QKoktV13ZSlZjLUFrD7+5Qh2ATTHPtwBtqilb27ZLga7VlE2k/mtT1Xur\nSz2eUcO+E/7bu/vz7r48XH6OIPEemkCcS919c/wL7v4gQQKdSpBsr6suSHd/392fcffx7v4lgJnt\nQpD4b6hi+3J3f6CG9y0pJOMTVDh4+kjcugKCcZgD3f1A4K/x5dz9M3fv4+59gX4E3RQvhC+PJ+gW\nOpjgP+M1ccX/RtAdkgyrCX6J31aPcrvVMBi8JzFjL6EFQMeY58tjljdW8Tz+i3tx3L72DJd/WMdj\nbQj33RnoaGZrwsc3BHX9g7h9VVU2UVlxz0vZ/gu1NbCmmrK1bVtC0NValUTqvz7qUo+7J7ifGv/2\nZjYs/BH3TbjvXgStr5osruX1B8P93OXuZbVsG28gMN/dtx3DzI41s9vM7LmaJlOY2c5m9udk/LiU\nhsv4BBWKv+nVJcCt7l4O4O6rail/NPBF5Qfe3d+MaZlMAfaq3NDMTgG+JG7A1syOCVtCH5jZP81s\nx4QCD37FfkgwJlEXk4HNwNBqXl8K7B23rhOwpI7HiRW7v87hMRpyrEXAl+6+S/jo4MGstpMSjCeR\nm53F1+sXbJ8Ad+W79xGvtm1bU/1AfEPrvy43cmtoPVbLzDoB9wO/DvfbgeCzX5m4q4uz2vjNbCfg\nDoJxzFFm1r6OYW0lGIP77mDu4wmSbEm4XJ0hwNvhsSVizSVBxXcxdAMGmdkUM5tgZofUUv7nVD+j\n6gLgNdj2H2sEcGPsMc1sV4Juip+4+yHAhwSD2Y3G3b8l6OK4J5wK3drMWprZkLBLcyqwwcxGhOsL\nCAb9GzJz7FIz6xh2sfweqJy6Xd9jTQNKw3KtzCzLzHol8PeqtJxg0L3GbcK/W6V3gL4xz/sSjLlg\nZvubmSWybWgXYFk1x21o/S+j9vdWqaH1WJOdCBLCKjNrYWbnA3kxryfyN4g3Bpjm7hcT9ETcV8fy\nbxH0HlS24An/bj8l6K6sXHeZmQ02s3+Ez3cDziYYvyut4zGlEWRsggqTzwyCroKTYsaTjiUYKO3g\n7vkECWVsDfvJBk4GnqvitWuBMnd/Olw1Crjd3TfEbZoP9ATeM7OPgGGEv57D7oRZZvZJ+KhcvqkB\nbx8Ad/8/4AqC5LgCWEgw7fnFsNvkJOB4YBVwN3COu8+rLB6/uwQO+TRB9+fnBF2fN4dx1PVYlfFv\nJfjSPphgEH0FwYyy2G6zmuK6BfhD2K1VXZfNO8SMl4R/u7+Y2XVm9gfgNndfEb78H4LWdCLbQjCp\noMrp/PWtkxi3VvHeGlKP2xWp5XnsvucQdGlPIUiavQgmyFSq6m9Q1f4cwMxOJpjwUDk9/wqgj5kl\nPDYX/l1OAK43syvN7DyCCS1/AwrD4/wM+DqMdX1YbhWwxN3/VdlDYmbjzOzqRI8tyWXbjw9nHjM7\nAjjX3S+IWTeOYGbQO+Hzz4HDvOpzXU4m6L4YHLf+POCXBDOPNofrJvJdd18Hgim21xMkhjPd/RcN\neB83AKVh0kk5ZvYVcKG7vx11LHVhZh0IpiJfm8C2LYAjwgkNiez7QXe/qKExSvKZ2T3AHwjGl9sD\nk9x9mZn9w90viTY6qZRQCypsBn9qZp+Z2chqthljZvMsmNl2cG1lzayDmY03s7lm9rqZtQvX9w9b\nO5WPoTFl+oati8/M7I76v21eJDjnAjPrBmRXlZxCZxLX7WJmg4H/BU6OnYXk7oPcfV9335egD/3P\n7v53gl+XA8xsv7D8jmZW3eyumtQ2I03qyN2/AVaH3bC1OY3gb1krM+sPvNGQ2KRRvU7QUssjmHa/\nNuzq/TbKoCROTXPQw9ZVC4Ium85ANvAx0CNumyHAq+HyYcCU2soCo4ER4fJIgkkLAK0Iz90B9iDo\nw658PhXoHy6PA45LIP4jgIfj1mUDTxCcHPkBwa9iCGabvRKz3Y7ASqBtXPl5BDOuZoSPv1dx3BuA\nK2KeFxCMBcwM6+HE2mIPy+USDHKXEMwQW0gNJ39G9SCYGHJU1HHUM/YWwPAEttspwf1lASOjfl96\n1PlzcCgxJ5DrEf2j1i4+M8sHbnD3IeHzq4O85qNjtrkXmODu/wyfzwm/kLtUV9bMPg0Tw3Iz2wMo\ndPceccfuQnDCYEeCKbFvu3vP8LUzwvJqjktKCT/Pa919Y9SxSGIsuLhvL2CUV3/uoDSxRK7F15Ht\nz9dYzPYn4VW3Tcdayub6dyf3LTOzbedkmNmhwMME027PcfetZtaR7c+dqDyGSEpx9+pm7kmKqvxx\nLamlsWbx1WesZFtTzt2nuXsewRnwvzeznKRFJiIiaSGRFtQSgpZMpb34/smES9j+pMPKbXJqKLvM\nzHJjuvhip+cC4O5zzWwdwUBmdcf4HjPL7KmJIiIRcfcmm6yVSAtqOrC/mXUOWzJnAC/HbfMywbk9\nlWNWJWH3XU1lXwbOC5fPBV4Ky+9jZlnhcmegO8FlS5YRzLQ5NDzpblhlmapEPbiXiY8bbrgh8hgy\n8aF6Vb2my6Op1dqCcvcKC+7oOZ4goT3k7nPMbHjwst/v7uPM7PjwfKL1wPk1lQ13PRoYa2YXEMyI\nOz1c/2PgajPbQnCG+iXuXnl9s0uBRwlm+o1z9/82tAJERCQ1JXTDwjARdI9bd1/c8ypvS11V2XD9\nGmLOyo9Z/yTwZDX7+hA4MJGYRUQkvWXspY4k+QoKCqIOISOpXhuH6jX9ZeSljszMM/F9iYhEyczw\nFJskISIi0uSUoEREJCUpQYmISEpSghIRkZSkBCUiIilJCUpERFKSEpSIiKSkjE1QpaVRRyAiIg2R\nsQlq4EAlKRGRdJaxCapN0RSKi6OOQkRE6itjE9TLnETvT56IOgwREamnjE1QD4w5mVajR8HIkVBR\nEXU4IiJSRxmboKbtVsLSN16AadPgoYeiDkdEROoo869mXlYGZtAyoVtfiYhINZr6auaZ/62dnR11\nBCIiUg8Z28UXb83GNdw++XYyscUoIpKJmk2CKt9aTquWrTAzWLkSrr8+6P4TEZGUlPljUFVZuxbO\nOgs2boTnnoNdd2264ERE0pTuqNsU2rWDl1+Gfv3gsMNg9uyoIxIRkTjNM0EBZGXx99O78OrP++IF\nBTBuXNQRiYhIjOaboICTup3EqH2+4obLD2LLxx9GHY6IiMRo1glq73Z7M/G8ibQadBQ+YsS29aWl\nMHmyLjYrIhKl5jlJogalpcGV0IuLoVcvmDQJ2rZNcoAiImlIkyQiVlQUJKfycviieJOuiC4iEhEl\nqDh5edBlwHSyBv+O6S1/xMFT7oUMbGWKiKQ6dfFVYdma9bw2fQ4/270dbc75aTAV/Z57oFWrJEYp\nIpJemrqLTwmqNuvWwYUXwpdfwvPPQ6dOydmviEia0RhUqmnTBp59lk2nDsXz86GkJOqIRESahcy/\nmnkymDE6v5w5LTtxZ8vN5EYdj4hIM6AWVIKuG3Qd3fodyyEPHELJJrWiREQam8ag6mjuqrl03617\no+xbRCSVaZJEEjRmgvqeiRODs3tPOKFpjiciEhFNkkgz3rIl5RdfBDfdBFu3Rh2OiEjGUIJqoFn7\nteHCaw+E8eNh6NDgXlMiItJg6uJLAnfHysrgyivh9dfh3/8OLuQnIpJBNAaVBE2doLbz+OOQm0vp\n4cdRVBRcOkkXmxWRTKAxqHQ3bBhv7dOOPj+dwKBBwZXRddsOEZG6U4JqBHM+38gXfc6kPP8Wimdv\n1RXRRUTqQQmqEZw76EgOeHc61vl9uvVdFgxHLVgQdVgiImlFY1CNpLT0u5setrV10LMnnH8+XH89\nZGVFGpuISH1okkQSpEKC+p5ly+Css6BFC3jqKcjVFf1EJL1okkSm2mMPvnl5LC91WIH36xdcgUJE\nRKqlFlQTqthawZtfvslxnzuMGAFTp0Lr1lGHJSKSEHXxJUGqJqjtbN0adPeJiKQJdfE1F2Fy2upb\nWbF+RcTBiIikHiWoiE1fMp2D/nEQ4+aNC1pVqd7yExFpIuriSwGTFkzirBfO4tV1Qzlo5tfw0EPQ\nrl3UYYmIbEdjUEmQbgkKYNWGVezsOeSMuCa4Mvpzz8HBB0cdlojINkpQSZCOCWo7zzwD//M/bLr+\nz3zU7yLyDjRdcFZEIqcElQRpn6CA9R9+yuIjjueRTRfx37zfM2mSroouItHSLD4BYObm7vQtGMTD\nrYcweza64KyINDstow5AqnbggUbXxY8ye3NwGT/d/1BEmht18aWw7S44G3bvuTtmTdbCFhHZRl18\nsk3btpCf/11y2lS+iYEP/5hlpw2BN96INjgRkUamBJVGWrVsxe8HXctvdptK6VmnwciRUFYWdVgi\nIo0ioQRlZoPN7FMz+8zMRlazzRgzm2dmH5vZwbWVNbMOZjbezOaa2etm1i5cf7SZfWBmM81supkd\nGVNmQrivj8xshpntVv+3np6O73o8d/91DsXjn4SiIvjxj+HLL6MOS0Qk6WpNUGbWArgbOA7oBZxp\nZj3ithkC7OfuXYHhwL0JlL0aeNPduwNvA9eE61cCJ7p7b+A84Im4kM509z7u3tfdV9Xx/WaE3Da5\n5Pc5CV55JbjH1GGHwcyZUYclIpJUibSgDgXmufsCdy8DngVOidvmFOBxAHefCrQzs9xayp4CPBYu\nPwYMDcvPdPdl4XIx0MrMsusYc/NgBpdfDu+8w+oue1CyqSTqiEREkiaRL/uOwKKY54vDdYlsU1PZ\nXHdfDhAmpN3jD2xmpwEzwuRW6dGwe++6BGJvHnr25N+f/4e7p90ddSQiIknTWOdB1Wca4nbzws2s\nF3ALcEzM6rPc/Wsz2wl4wczOdvcnGxBnxrio70VkwtR6EZFKiSSoJUCnmOd7hevit9m7im1yaii7\nzMxy3X25me0BbLspkpntBbwAnOPu8yvXu/vX4b/rzexpgi7EKhPUqFGjti0XFBRQUFBQy9tMf9ud\nH7VyJfzv/7LuhtuYtewH5OXpUkkiUjeFhYUUFhZGdvxaT9Q1syxgLvAT4GtgGsFEhTkx2xwPXOru\nJ5hZPnCHu+fXVNbMRgNr3H10OLuvg7tfbWbtgUJglLu/GBdHe3dfHY5JPQ284e73VxFzRpyo2yBb\ntjD1vOPp9O8ZDNvyL1YeeJSu5yciDZJyJ+q6ewVwGTAeKAaeDRPMcDO7ONxmHPCVmX0O3Af8uqay\n4a5HA8eYWWUCuzVcfymwH3B93HTyHYDXzexjYAbBeNYDDa6BTJWTw6fn/pVzj23Dozkncnbxb5n9\n0eaooxIRSZgudZTBSkthQMEGlufcwjOzZ3JEl8VkTZ0MO+wQdWgikoZ0u40kUIL6zrbr+fV02s79\nAPr3jzokEUlTSlBJoARVu+XrlpPbJjfqMEQkjaTcGJRkntLNpRzzxDFsLNsYdSgiItVSgmqG2u7Q\nlhnDZ9A6uzW8+y4MGwZr10YdlojIdpSgmqmWLcJT4Pr0gZ12gt69YeLEaIMSEYmhMSgBoPT5Zyj/\n5YVknXseO4++A3Jyog5JRFKMxqAkEq1/+jMefeRy3hv/EMuOzo86HBERtaBkezOWfsjGr+YxYMAZ\nUYciIilG08yTQAkq+UpLg/sj6pp+Is2Xuvgk5cxfsYrDjyhl0CAYODBIViIijU0JSmo1ZsIzHF3y\nCx4pP5uvi9dQXBx1RCLSHChBSa1uPP43TN7pab5psSuzOJCDFr0adUgi0gxoDEoSUnlNv4PWFLLj\nZRdAQQHcfju0axd1aCLSRDRJIgmUoBrZunXMHHYsm0pLyHt1Ojvl7BR1RCLSBDRJQlJfmzbs/dQr\n/OPiPvS+tzcLShZEHZGIZCC1oKRB3vryLQr2KSCrRVbUoYhII1MXXxIoQUVo+XJo0ya4vp+IZBR1\n8Ul6e+IJ1vXqysbCN6OORETSnBKUJJVfeSXPntOHnDPPhquugo2655SI1I8SlCSVmXHRH18la1YR\nLFoEffvC1KlRhyUiaUhjUNK4xo6FZcsouXgYWWXtdT0/kTSmSRJJoASVWtydvvcewqLJP6LkX7eS\n160NkyYpSYmkG02SkIxjZtza603WrFtHxRlDKJ7tup6fiNRKLShpEqWlwZXQi7/8hl77duD9G15n\nx11bw6BBUYcmIglSC0oyUtu2MGkSTBrfgUmTYMdWW+HMM+HSS+Hbb6MOT0RSkBKUNJm2bSE/Pxx7\nGjIEiopYX7qGVfvtiY8bF3V4IpJilKAkOh06kP3IYyy5/Ubs0kvh2mujjkhEUojGoCQ1rFsHixdD\njx5RRyIi1dAYlDRPbdpsS05bKrZwz7R72FKxJeKgRCRKSlCSctZtWcdrn79Gv/v7Mf2r90CtYZFm\nSV18kpLcnX8W/5N9Hnye/OISuP9+6NIl6rBEmjV18YkQ/Ec4I+8M8v/6DBxzDPTvD3feSWlJBZMn\nB+dViUhmUwtK0sNnn1F+/kUUz9zM2X47WV0P1+WSRJqYWlAiVenWjel/KeT+tn25ZLeLmT0bXS5J\nJMOpBSVpY9vlkmZvpVfPFmpBiTQxXc08CZSgMldpadBy6tXru+Tk7pRtLSMnKyfa4EQynLr4RGqw\n3eWSQu8ufJehf+jK7NtGaEq6SAZRC0oyQuF/7maXX1/J7nvsyx5Pvgjdu0cdkkjGUQtKpB4KTrqM\nfecup/3Pz4UBA+Cmm2Dz5qjDEpEGUAtKMs+iRXDZZbBsGUyeDC30O0wkGTRJIgmUoAR3mD+fh0sm\n4O5c2PfCqCMSSXtNnaBaNtWBRJqUGXTpwpDSVqwvWx91NCJSD2pBSfPizro5i5i1thN5eTqPSqQu\nNElCpBGt/2AOZb0P4tXTT+bIARt0TT+RFKYEJc3KJ+U9OaT9v+hv7/HUwl2Y9vcHog5JRKqhLj5p\nVr67XJJzzsFXcu+y58j50eFw333Qvn3U4YmkNM3iSwIlKKnJdpdLytoQ3GvqssugpeYMidRECSoJ\nlKCkvt5b+B47Zu9Inx/2iToUkZSjaeYiEVq5YSU7Ze8UPKmogKysaAMSacbUghKpSlkZ9OkDw4fD\nJZeo+08ETTMXSQ3Z2TB2LDz/PFv69mbuK49FHZFIs6MEJVKdnj1hwgQ+O/9k2v3iAt4f3Iu1i7+I\nOiqRZkMJSqQmZuT97hZyPv2cTTktWDh1PBDMBJw8GZ3oK9KINAYlUkfbzqUKp6rr1vPSXGgMSiTF\nFRUFyam8HIqXzOf9j9ZEHZJIRlKCEqmjvLyg5ZSdDbk/HkeHh4fBXXcFGUtEkkZdfCL1sN3VKBYU\nweWXw4oVMGYMHHlk1OGJNIqU7OIzs8Fm9qmZfWZmI6vZZoyZzTOzj83s4NrKmlkHMxtvZnPN7HUz\naxeuP9rMPjCzmWY23cyOjCnT18w+Cfd1R/3ftkjDtG0L+fnh2FNeHrz5JowaBeefT9mpQ1k6a3LU\nIYqkvVoTlJm1AO4GjgN6AWeaWY+4bYYA+7l7V2A4cG8CZa8G3nT37sDbwDXh+pXAie7eGzgPeCLm\nUP8ALnT3bkA3Mzuuzu9YpDGYwamnwpw5LNhrZ1751ZH8aeKf2FS+KerIRNJWIi2oQ4F57r7A3cuA\nZ4FT4rY5BXgcwN2nAu3MLLeWsqcAlWc/PgYMDcvPdPdl4XIx0MrMss1sD6Ctu08PyzxeWUYkZbRu\nzf53Ps4xr8zho2Uf8epnr0YdkUjaSuT6LR2BRTHPFxMkntq26VhL2Vx3Xw7g7svMbPf4A5vZacAM\ndy8zs45h+fhjiKScLh268Pzpz0cdhkhaa6xZfPUZRNtuVoOZ9QJuAS5OSkQiUZsxg42/Hs7ar+dH\nHYlIWkikBbUE6BTzfK9wXfw2e1exTU4NZZeZWa67Lw+771ZUbmRmewEvAOe4+/xajlGlUaNGbVsu\nKCigoKCguk1FmkanTixcOY89e+XB6Nvhggso3ZBFUVEwz0In+0qqKSwspLCwMLLj1zrN3MyygLnA\nT4CvgWnAme4+J2ab44FL3f0EM8sH7nD3/JrKmtloYI27jw5n93Vw96vNrD1QCIxy9xfjYpkC/A8w\nHXgVGOPu/60iZk0zl5TlH36IXX45Fes3cuG6MTw1f4CuSCFpISVvWGhmg4E7CboEH3L3W81sOODu\nfn+4zd3AYGA9cL67z6iubLh+F2AsQatoAXC6u5eY2bUEM/zmEXQVOnCsu68ys37Ao0ArYJy7X15N\nvEpQktrcmXfTM2wedQv5NonNHUqZ9Ore5OdHHZhI9VIyQaUbJShJB6WlMPDHTlHJB3D2YH438BJu\nOOpq2uS0iTo0kSql5Im6IpJ8bdvCpHeNd//Zn1mXfsyyjQt4cMaDUYclkjLUghJJIe6OucMvfwnD\nhsERR0Qdksg2akGJNGNmFlyV4thj4dxzKf/pUBZ8+HbUYYlEQglKJNWYwc9/DnPmsKRrLrseeTyM\nGAFr10YdmUiTUoISSVWtW9P5L/fR5rP5sGYN/OtfUUck0qQ0BiWSZtydD5Z+QP+O/aMORZoZjUGJ\nSI1WbVjFmc+fyYlPn8inqz6ltBQmTw6mrYtkErWgRNLQ5vLN3DXtLjqOfRt/qiu/++Z6fpi3q65G\nIY1KLSgRqdUOLXfgqsOvYv9jH+Pb1WUUVfTguFl/ZfYM3X9KMocSlEga6zHwB9x70N85quUkBrd5\nl/7DDmDGX69ia0V51KGJNJi6+ETSXGkpFBdDr15Q/v5LFP1tJD9+rRjLyoo6NMkwuhZfEihBiYgk\nn8agRCTpnvrkKZZ/s7j2DUVSiBKUSIZzd2Yt/ID1XTtTeNHRVKzTfHRJD0pQIhnOzLj1xNvJev0N\ndv9yBVk9DoBHHoGKiqhDE6mRxqBEmpspU+Cqq+Dbb+H++9FdEiVRmiSRBEpQIrVwhxdfhC5duKX0\nNU7d/1xWz9+TvDyd6CvV0yQJEWl8ZvDTn+K9e9OmxW6cdkIHBg2CgQN1ySRJHUpQIs2YmXFIi18y\nZ1Zrysth9myY++5KWL066tBElKBEmru8vOAk3+xs6NkTei0Zz8b9OlM4/Dg2rF0VdXjSjClBiTRz\nbdvCpEkwcWLwb+uLfsGy159nh09ms7ZzLl/ffhOU69JJ0vQ0SUJEqvXpa0/Q7baHabFiJXz4Ieyw\nQ9QhSYQ0iy8JlKBEksgd5swJ+v+Aiq0VZLXQdf6aIyWoJFCCEmk8f3znj3Ro3YHLDr0s6lCkiSlB\nJYESlEjj2VKxhY1lG2nXqh3cfTeceCLss0/UYUkT0HlQIpLScrJyguTkDitXQr9++G9/y8I5n+nW\n85JUSlAiUj9mcOONMHs2S1cvZcd+PRh31tEcPWipkpQkhRKUiDRMbi4Lfz2WAa3foEfF5wwpOZvi\n4qiDkkygMSgRabDS0uAySbNnwwEHbOXdd1vomn4ZSGNQIpJ2Yk/2jU9OWyq28MLs53Hd3kPqSAlK\nRJKibdvgzh3xLafl65az5LWxWL9+8OqrweQKkQSoi09EGl/l7T2uuw7at4c//xmOOCLqqKSOdB5U\nEihBiaSoigp4+mm44Qa++EFL1t9zBwcdcnzUUUmClKCSQAlKJLX55s28c9MFXNj2bfru92OeOfUZ\nWrZoGXVYUgslqCRQghJJDxvKNjD+i/EM7TEUCGYDFhWhO/umKCWoJFCCEkk/lVPVWxV9wE7d9+TF\nKXsqSaUYTTMXkWapqAiKi+FHFZMY+/k+zD/vF7BiRdRhSYSUoEQkJVTe2fee7N9xaq8pdN21PRxw\nAFxzjW7aS0OJAAALSElEQVRB30ypi09EUkZpadCK6tUrHINauBBuvhmKilj71jgcp32r9lGH2Wxp\nDCoJlKBEMsyWLYyd9yKXjruUyw+7nMsPu5y2O2iAqqlpDEpEJF5ODqf3Op33LniPT1d9yltfvRWs\n1w/RjKYWlIikp7Ky4NpKw4bB8OHQqlXUEWU8taBERBKRnQ0PPwwTJlC+Xxfev+Zs2Lw56qgkiZSg\nRCR99e4NL77I0sfuodOkWdC9O/znP5SWorv7ZgB18YlI5nj/fdZvbsmA3x26bTbgpEm6KkWyqItP\nRKS+Dj+cT1oFyal8azmf9D6Wv4x/jPKt5VFHJvWgBCUiGaXyhN/srJbsu+T3vFPyKMePOQx/5BEo\nV6JKJ+riE5GME3/C77KP3mWPK68PTvy97jo4+2xoqaun15VO1E0CJSgRqdI778CNN8LChSy9/AJ2\nH34FLXM0PT1RSlBJoAQlIjV65x2KLzud7DvuottPTo86mrShBJUESlAiIsmnWXwiIhGZtmQaT036\nO+WbN+pcqhSgBCUiEspukc239/wfSzruzJ8OvZqjBpYxcKCSVFSUoEREQn1+2IdLnv2cj676G0O+\neIfiiu7kFz3A7I+3RB1as6QxKBGROJW3n29f9C5/bv1H8n/wBTa7iM0toVXL5jvrT5MkkkAJSkQa\nartzqVbPZ3r2Sq6bcB2vn/161KFFRgkqCZSgRKQxrNuyjjY5baIOIzIpOYvPzAab2adm9pmZjaxm\nmzFmNs/MPjazg2sra2YdzGy8mc01s9fNrF24fhcze9vMSs1sTNwxJoT7+sjMZpjZbvV72yIidfe9\n5HTRRXz2u2GsXb4wmoAyXK0JysxaAHcDxwG9gDPNrEfcNkOA/dy9KzAcuDeBslcDb7p7d+Bt4Jpw\n/SbgOuDKakI60937uHtfd1+V8DsVEUkyv/JKVs+cTPm++zDh3EGUrVwedUgZJZEW1KHAPHdf4O5l\nwLPAKXHbnAI8DuDuU4F2ZpZbS9lTgMfC5ceAoWH5De7+PlDdncc081BEUoIdcAA/ense6ya+SfvV\nG2jZoyfcfHPUYWWMRL7sOwKLYp4vDtclsk1NZXPdfTmAuy8Ddk8w5kfD7r3rEtxeRKRRde53FH1e\n+QCbMSO4nHpIJ/s2TGNdzrc+g2iJzGo4y92/NrOdgBfM7Gx3f7KqDUeNGrVtuaCggIKCgnqEJCJS\nB507Bw+CpNTlskv5ZsrJHNj6uLS8cWJhYSGFhYWRHT+RBLUE6BTzfK9wXfw2e1exTU4NZZeZWa67\nLzezPYAVtQXi7l+H/643s6cJuhBrTVAiIk2tqAhKXvoDWzftyOwKp+Sqm2l75enQrVvUoSUs/sf9\njTfe2KTHT6SLbzqwv5l1NrMc4Azg5bhtXgaGAZhZPlASdt/VVPZl4Lxw+VzgpSqOva0lZmZZZrZr\nuJwNnAgUJRC/iEiTy8uDvH32IHvrzhzYs4Ldd62AAQMo/9lpzH1rbNThpYWEzoMys8HAnQQJ7SF3\nv9XMhgPu7veH29wNDAbWA+e7+4zqyobrdwHGErS8FgCnu3tJ+NpXQFuCFlgJcCywEJhI0OrLAt4E\nrqjqhCedByUiqSD+xomUlrLkrzeQdcedLNpvN3b641/oecK5UYeZMJ2omwRKUCKSyjatK2HaHy8h\nq+3ODLjuvqjDSZgSVBIoQYmIJF9KXklCREQaX+nmUn7ySAFlz/0TKiqiDidySlAiIimiTU4b7ux7\nLdl33gU9esCDD1K6ekuzPZdKXXwiIqlo4kTKb/ozqyYWMzrnPN7b/ze8NWn3SM+lUhefiIjAoEFM\n/+N/Gbr13wxo/TxdOu3PFS/dSMmmkqgjazJKUCIiKSovDzblHcJZa2czc800trRexLot66IOq8mo\ni09EJIV971yqWOvXw6JFwXhVE1AXn4iIbNO2LeTnV3Mdv+JiNg04jOJBB8D06U0eW2NTghIRSVeH\nHkrF5/PIHfIzOPVU+MlP4I03IEN6kNTFJyKSCcrK4OmnYfRoePBBpnbK4pA9DyGrRVbSDqErSSSB\nEpSINFtbt1LuFRQ8diQr1q9gxIARnL7/hRQXG3l5DbvlhxJUEihBiUhz5+5MXDCRVz59gzeu/hOL\nitbS4wDjv+/vXO8kpUkSIiLSYGbGEfscwf9r9yeKi+GYitd4qWhfvr30Gnzp0qjDS4gSlIhIBsvL\nC6aov5B9BsN6TOcHrdexoVsXlp5xAsydG3V4NVIXn4hIhos/l2r1wrns/OATZN/3QDA9vVOn2neC\nxqCSQglKRCQBW7ZATg4AazetZeKCiZzQ7QRaWNWdaxqDEhGRphEmJ4ClpUsZ9c4o8v6ex7gpT8Lm\nzREGFlALSkREgGDm39tfvU3Hh8bS49FX4Le/hYsvhnbtAHXxJYUSlIhIA82cCbfdBq+9BhddxIph\nvyQ3r6u6+EREJGK9e8OTT8KMGWxcu4GKw5rmgrSx1IISEZEaTZ4MRxeUsGFLB7WgREQkdeTlQdcD\n2jf5cdWCEhGRWpWWws47a5JEgylBiYgkn86DEhERQQlKRERSlBKUiIikJCUoERFJSUpQIiKSkpSg\nREQkJSlBiYhISlKCkoQVFhZGHUJGUr02DtVr+lOCkoTpP3zjUL02DtVr+lOCEhGRlKQEJSIiKSlj\nr8UXdQwiIplIF4sVEZFmT118IiKSkpSgREQkJaVMgjKzwWb2qZl9ZmYjq9lmjJnNM7OPzezg2sqa\nWQczG29mc83sdTNrF67fxczeNrNSMxsTd4y+ZvZJuK87Guv9NpUUqtcJ4b4+MrMZZrZbY73nxtbE\ndXq0mX1gZjPNbLqZHRlTRp/VWsrWs14z5rMKTV6v/cN6q3wMjSlT98+ru0f+IEiUnwOdgWzgY6BH\n3DZDgFfD5cOAKbWVBUYDI8LlkcCt4fKOwOHAxcCYuONMBfqHy+OA46Kunwyp1wlAn6jrJA3rtDew\nR7jcC1isz2qj12tGfFYjqtdWQItweQ9geczzOn9eU6UFdSgwz90XuHsZ8CxwStw2pwCPA7j7VKCd\nmeXWUvYU4LFw+TFgaFh+g7u/D2yOPYCZ7QG0dffp4arHK8ukqZSo1xip8nlriKau05nuvixcLgZa\nmVm2PquNU68xx8qEzyo0fb1ucvet4frWwFao/3drqvwROgKLYp4vDtclsk1NZXPdfTlA+GHcPYE4\nFtcSRzpJlXqt9GjYZXJdgtunosjq1MxOA2aEXxb6rDZOvVbKhM8qRFCvZnaomRUBM4FfhQmrXp/X\nVElQ9VGfufiaU1+7xqrXs9z9QGAgMNDMzq7HcdJVg+vUzHoBtxB0n0qgseq1OX9WoYH16u7T3D0P\n6A/83sxy6htIqiSoJUCnmOd7hevit9m7im1qKrssbKpWNjFXJBBHVcdIV6lSr7j71+G/64GnCboP\n0lGT16mZ7QW8AJzj7vNrOUa6SpV6zaTPKkT4HeDuc4F1QF4Nx6hRqiSo6cD+ZtY5zLZnAC/HbfMy\nMAzAzPKBkrCJWVPZl4HzwuVzgZeqOPa2XwthU3Vt2ES18HhVlUkXKVGvZpZlZruGy9nAiUBRw99e\nJJq0Ts2sPfAKMNLdp1QeQJ/VxqnXDPusQtPX6z5mlhUudwa6A/Pr/XmNepZJzEySwcBcYB5wdbhu\nOHBxzDZ3E8wqmQn0ralsuH4X4M3wtfFA+5jXvgJWAd8CC/ludko/YFa4rzujrpdMqFeC2X0fEMwC\nmgXcTngVk3R8NGWdAtcCpcAM4KPw3930WW2ces20z2oE9Xo2QUKfEdbjSTFl6vx51aWOREQkJaVK\nF5+IiMh2lKBERCQlKUGJiEhKUoISEZGUpAQlIiIpSQlKRERSkhKUiIikJCUoERFJSf8fmuJ36Aek\nSzIAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -209,7 +209,7 @@
{
"data": {
"text/plain": [
- "-25304.63240237971"
+ "-25304.6324023797"
]
},
"execution_count": 7,
@@ -218,7 +218,7 @@
}
],
"source": [
- "from dcprogs.likelihood import DeterminantEq, find_lower_bound_for_roots, eig\n",
+ "from HJCFIT.likelihood import DeterminantEq, find_lower_bound_for_roots, eig\n",
"a = DeterminantEq([[ -0.9765569699831389, 0, 0, 0, 0, 0, 0.9765569699831388, 0, 0],\n",
" [ 0, -21087.12668613774, 0, 0, 0, 4972.429427806393, 9423.400001111493, 0.7672868902249316, 6690.529970329637],\n",
" [ 0, 0, -0.02903705186960781, 0, 0.02903705186960781, 0, 0, 0, 0],\n",
@@ -244,9 +244,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "DCProgs GCC Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "dcprogsgcc"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -258,7 +258,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/OpenMP_example.ipynb b/exploration/OpenMP_example.ipynb
index 0581226..0ffe186 100644
--- a/exploration/OpenMP_example.ipynb
+++ b/exploration/OpenMP_example.ipynb
@@ -259,7 +259,7 @@
"outputs": [],
"source": [
"# Import HJCFIT likelihood function\n",
- "from dcprogs.likelihood import Log10Likelihood\n",
+ "from HJCFIT.likelihood import Log10Likelihood\n",
"\n",
"kwargs = {'nmax': 2, 'xtol': 1e-12, 'rtol': 1e-12, 'itermax': 100,\n",
" 'lower_bound': -1e6, 'upper_bound': 0}\n",
@@ -289,7 +289,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "100 loops, best of 3: 12.7 ms per loop\n"
+ "10 loops, best of 3: 37.6 ms per loop\n"
]
}
],
@@ -309,9 +309,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "DCProgs GCC Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "dcprogsgcc"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -323,7 +323,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/TimeSeries.ipynb b/exploration/TimeSeries.ipynb
index 6e1d6d7..21267e8 100644
--- a/exploration/TimeSeries.ipynb
+++ b/exploration/TimeSeries.ipynb
@@ -36,34 +36,34 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "[ 0. 4.74546135 12.6695942 19.45260127 22.45444387\n",
- " 29.65470963 37.66236166 47.21055899 53.305299 59.97349316\n",
- " 63.90831412 70.22433515 74.15287125 83.42018035 86.54892714\n",
- " 93.37706804 101.50739019 105.81944245 111.90180027 120.05447999\n",
- " 129.63920164 134.04513702 141.6226389 149.00074976 157.41458182\n",
- " 164.30504192 167.58304251 171.3212751 178.59463529 186.15284383\n",
- " 191.87338536 201.47128713 210.24324846 218.9044409 226.53731567\n",
- " 231.82443715 236.70861132 239.85201642 247.21002347 250.96255353\n",
- " 257.46176192 262.04452535 268.07054396 275.4958293 284.78293946\n",
- " 291.91725085 301.83490275 310.9262623 313.97017921 323.13328549\n",
- " 330.34590097 333.67112109 336.6986944 345.47071264 354.80365501\n",
- " 360.31017249 365.90673032 375.61425461 383.75648647 388.42726059\n",
- " 393.6267829 401.83385077 410.52766077 420.48961902 427.54754617\n",
- " 432.70594177 441.08293399 448.79772028 452.05871769 458.59302116\n",
- " 463.02751366 466.50817244 475.34367822 480.27257628 488.56874504\n",
- " 493.2150171 500.95870192 507.18030118 512.51471318 518.9803798\n",
- " 526.05768444 531.79230826 537.09201398 541.14917867 549.69490515\n",
- " 555.53639634 564.70201042 567.83881251 573.65156966 580.1753128\n",
- " 584.21257129 588.51464923 592.51522648 596.90823164 603.77042679\n",
- " 613.23240743 620.41391596 629.58898445 639.27235979 643.43556275\n",
- " 651.58054567]\n"
+ "[ 0. 8.59256356 13.17355631 22.65902932 30.51518269\n",
+ " 39.80841094 43.44484256 52.40072443 59.61475713 67.98731603\n",
+ " 76.4723764 80.89963682 90.84416819 96.54831984 105.41180332\n",
+ " 115.19328038 123.54596142 132.36917277 142.20242392 148.21030341\n",
+ " 158.20874751 161.38849311 170.48725632 176.4956325 185.39531444\n",
+ " 191.89856023 198.83685826 204.49651737 209.7973213 216.95273892\n",
+ " 221.05919062 229.65418582 238.26067727 241.70173579 245.65145402\n",
+ " 249.52013766 256.54599658 262.18962559 266.15962003 273.93633196\n",
+ " 283.39856545 286.70842402 296.25077954 305.3712874 313.01989332\n",
+ " 320.42691522 328.14012926 337.8075964 341.70598939 350.20743812\n",
+ " 353.38204688 362.27510626 371.70551543 375.2230498 384.61762256\n",
+ " 389.15553529 392.73575791 401.43023923 408.29600194 413.83360224\n",
+ " 417.92996481 423.7774031 432.98776285 442.64181207 449.18417602\n",
+ " 452.27298482 456.38927169 462.51919708 466.31855265 470.69058382\n",
+ " 480.14110632 484.75552799 490.97614438 493.98123983 502.03687601\n",
+ " 507.35256576 513.18612587 522.63779955 525.99850407 534.83319294\n",
+ " 539.53052581 546.00109775 551.15733842 557.08909557 562.36622206\n",
+ " 569.95964467 574.04627895 579.80772582 583.72298285 593.37151631\n",
+ " 600.4412491 607.52752039 612.33312193 616.38161548 624.81590068\n",
+ " 634.03294875 640.49775222 646.01028819 651.79184332 656.47139117\n",
+ " 663.41252658]\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAEKCAYAAAAl5S8KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX10ldWVP/7JzU14CwGaABFEQ6gkbQiKdLokQWNpOwgS\noNSxWksn0ZKAOp2ugSALZi3pWsJKoXR1pv7UgFUK35ZORyNvYhnfchFC1dooMZaIBH4ywkVIgfBS\nyM3L74/n7vPss5/9PLmkM0vX93f3Wi7Jvfc8zzl777P3Pvvsl5Senh4kIQlJSEISPnsIfdYTSEIS\nkpCEJDiQFMhJSEISkvA5gaRATkISkpCEzwkkBXISkpCEJHxOICmQk5CEJCThcwJJgZyEJCQhCZ8T\nSArkJCQhCUn4nEBSICchCUlIwucEkgI5CUlIQhI+JxC+mh9nZ2f35Obm/i9NJQlJSEIS/u+Ed955\n53RPT8/w3n53VQI5NzcXf/zjH/s+qyQkIQlJ+P8hpKSk/L+J/C7pskhCEpKQhM8JJAVyEpKQhCR8\nTiApkJOQhCQk4XMCSYGchCQkIQmfE0gK5CQkIQlJ+JxAUiAnIQlJSMLnBJICOQlJSEISPieQFMhJ\nSEISkvA5gaRATkISkpCEzwkkBXISkpCEJHxOICmQk5CEJCThcwJJgZyEJCQhCZ8TSArkJCQhCUn4\nnMBVCeS//OUvSElJwZe//GVEo1EAwIkTJ1BaWopoNIrf/va3SElJQf/+/TF48GAcOHDA8xvtb/kZ\n/fuVV17B0KFD8eqrr6K0tBTvvfee+puBAwciNTUVr732mnnWLbfcgsmTJ2PixInIyMjAjTfeiClT\npnjmoD2TfvPkk08iJSUFGzZs8MzzlVdeQWZmJr7yla+YOYRCIYwdOxbhcBhr165FOBw2c/JbI70/\naB4nTpzAzTffjMzMTIML+u7ll19GKBRCRkaGwTeNKSgoQEpKCp577rlAGgTNheNz4sSJyMzMxIED\nB6wxhOvJkyerOCY68nGJ8oKkVVFREVJTU3HjjTeauUvcBK2D/038SvzM+UauJdF5ffnLXzbjJA38\nniOfReshfN18880YOHAgBg8ebNH/3XffNTzI18p54tVXX8Utt9ziuxaJo6DvJM9oPJkIn2k8J5+p\n8Qo9r6ioyOytIJr4/f+WW27Bl770JYTDYfznf/5nQrJI+57zNcmKtWvXqvNBopU1e3p6Ev4vJSWl\nB0APgJ5Fixb19PT09CxatKgnFAr1LFq0qCc9Pd18D6CnsLDQ8xvtb/kZ/XvYsGE9AHqGDRvWEwqF\negoLC31/Q7+jZ/F58P/kHLRn0m9CoVAPgJ5QKOSZp3yv3/toTn5rpPcHzYOvh3BB3/F3E77lmPT0\n9EAaBM1Fw2dhYaE1pjcc0xz5uER5QdJKvkfDTdA6+N+cX+Wz5FquZl7a89LT032f4/cswpfkJxor\nf0uf+/Gm3/uC5hLEM9qcEuEzjefkMzVe0fZCEE38/s/xmZ6enpAs0r7nfE2yguSFnA+AT3sSkbE9\nPT0JCW4AJJCTkIQkJCEJVwk9PT0pvf3mb/Ihh/sP7PU3AwYMAFLceYT7DwLg/D1w4EDMmzcP3/rW\nt5CSmnit/NTUVN/vQqHel5Q+aEjg92lpafp70wf0+mwVUkJIG5ABhJx5O/P3oQ3D1YABA3DNNdf4\nzjElxfuMtIGZSEnvFzgdToOguaSkhq+KLgShUAjXXnutWa8GAwYMQG5uLkLhNPOuoWPGx2mTYv0G\nKX/bVUf//v2Rm5uLlID5+EFqaipmzJjh8Cgb3y9jWJ/mMnRMvvk35/9QOL1Pz7taGJg1Cl8YO8Hz\neUooleHf86WhEwCV7wDv3uPPSk1NdXnbZ7wfpIRS8YWxE5Daz3//ubxydc8m6Nevn6GF9gxOq4Qg\nlIpQOI3zTHdCwxKcrwrj83KBlJRAZurfvz/Q04OUlBBCoRDG510PwNmAly9fxsiRIzFy5Ej0dHUm\njMyuri7f78Lh3gXIF68f7ftdKDVNfX4oFMKC+/8xoflJGDZ0CB74x+8B3V1ICaXGn68cNlJSgPiJ\nJZSahitXrmDYMH3jd3V1qYpj/NgxqLq/Qh2j0cB/LiGk9HTjS/nj/RfmQ6/u7m5kZmYC3T50SknB\nlStXMHDgQHR3xsy77p31ddw//15nPuw3Dk76ttGQkoKOjg4MHDgQPd1dDr+GQgkpbsDBc25ursOj\nbPy4665x1n8VyiI9PR333Pm1+J5Js/i/u7Ojb+u7SvjHu+fg7ulTPZ+noIfhn38RQigFKBh/g/nb\n71Td3R2XOXEcffH60WatXV1djhwIpRoeTwh3KSlIQQ++c8etWFCh77+UlBDjFWc1VwuxWMzQguQV\nnwOnVSJyKoQeFIy/ASnocWRggrI2deXKlQlP+sc//rHz4zhSw+EwOkPpyBg+GpfPtXkfnuoIn5yi\nqcif/j3MKS5EY2MjwsOuQc6Xvop7y76BaDSKixcv4mLGGEyYvQDhtsPoCPVDSiiMrtgVAIhbaT0Y\nMGwkBn0hB6Oyh+Iy0pCSkuph5J6eHvQfNgJdnV1Ad6eYUQrGjh2LCxcuoDO1H1JCqQilhhEeMAjX\njb4G5/96BdcU3oLvfWsm3n77bTMqFAqhu7sbY8aMwcWMMfjrmVPue3shzrBhw3Dp0iWMGjUKZ1OH\n4Yu3z8OASydxsaMLA4YMRyg1DUAPQqmpSE3rj+vHjEb7hUsYMjoPFd+9G42Njbh0uQMpoVT075eO\nzs5OpKSGsWhhFd566y22OZx5hMNhDBs2DAcPHjQ0oN/83T+u8NBgWFonzl/6K9IGDEb/wV9AD3qQ\nEkpBalp/VC14AI2NjegKD0Dn5b+aNYXDYXR39yBtwCAgJcURVHFIyxiC60ePMjjuinVg0MCBGD16\nNLq6uhDr6sFNd/0TvnXbJDQ2NqKnXyaGjRmP7989x/DC5S+Mw03/8EPMuOl6NDY2ojM1HSmhUGJC\nKyUFGSOvdzZmCqx1ZE8sNc9966231LHO/1KAUCrC/Qbg+jHXIiMjQ59XKB0pKfq8Bg4ciFgsxh6d\ngp6eHlx77bU4evxTZAwfjYrv3m3WHL3YjZTUMLo7/oqenh5kDL8W3R2XXCHHIDxgMPqnO8q0p6fH\nEWwpKRh63Xh0nD9j6B0KucJzRP5kjMjsb9Zy9MQpi/8rH6iw8B/uNxCxv15E+sAMLLi/HI2NjRhW\nMMXs0bPnzrkTCoUQ7jcI148ZjY5QP5QsqjE46kkfjKHX3oARmf3QfuESho4eh2u+kIn2C5cQ7tcf\nA4aNQMaIMbhmWAba29vNfMPhMLp7gNE33obvfWummdvBlg9BBoRjqadYfE280m/wMAA9cSu9Bymp\nqUAPEAqnW/zqzD8VixYuNO84338k8qd/D/3aj+GvXSkomlOFb902yXx/7NNz6Oz4K9Djb/QuWrQI\njY2NmD9/Pp588kk89dRTp1auXLnWdwDxSV98yMNvmIRPP/wTAGDcrXMAAIff2GYdZfpnZuGv504D\nAEaMvxkAzBj5NwBce/PXAAD//afXzfep508AAL48/8cAgOMH9gIA/vz7TeY3WXkTcHD3ZgBwmW/8\nzTh1qNGae//MLBRXrcarayoBAHPXvQQAuHLBYayXHr3HMy9aD8cR/WZEegeam5sx/IZJeODb01FT\nU6PiTBv76Yd/wlf/8V+t3/XLcI53b/w/1ea7t371mGc9d6zcYubL5yjfdeO3/wkH6h43nwfRYMaP\nfwsA+PAV59l01Pzz7zcBcGjTdrgJg0deh6y8Cfjz7zfhxm//EwCg4+I5g38AyJs6G4ff2AbAxfG2\nJTPNPL50x/etZ9O7aT1ybgDw9aXrAQBNW58yeFi7di2WLFmCWx9ai71PLEVOTg66Btvuncn3LbWe\n7UdfmvOMH/8WHRfbcXLXvxvach6V44n3r1xsxyeN9QCAadW1GDxyDLYunoHbb78dkUhEpQ0AvPf8\nL8xntz7k7NU5Y1NQXV1txoy7dQ5a924HACxbtgy/fH63mQPN/46VWwzt5D68Y+UWvLz2QXxhVK61\nFo3/5ToJNJ750h3fx8Hdm1FaWopjXUPMuyWO+L6md25dPMPCHX1P+MocNRbnPmk1dKc9S3MgHtD4\nmvbO0f27rDVcU1QCwMuvw2+YZI3X1gm4/MrXRDTvcQIeAAB/9/0VANy9S5CSkvJOT0/PV9ALXL2D\nEMDgkWPMv3On3Onzm+vYb2Za3xVXrQp8flae4+MaeTkTgLMRJRCCSejI8RdTBiBnRLZh5svtbc5z\n4sRtqF1hD3r0nl7nxd/b1fK6+dtPGEvI/6Z7HJQMQ2sG3E1CkDtlpmHCd369xsyXQ0j4ek807fM8\ngwNfq3mmmaf3SHu5vQ2X29vi89hkFMiJpn0IpYbxy6c3YNE/L8H5k8fMGA+OAbS1vm/9ra2H4wIA\nju5/EYCDa8JDdnY2AOD04SbPmlpedoRT07Za69mcbzkQDzdtqzWbbPSk21E0p8r6nRxP41riwhAA\nXltb5WzyxTPw3HPPYfhwb6Nhwh0HmvPOUZnW5xyfNTU1mDjvYc9YST8OTdtq0XXxDHKnPGh9rvE/\nAeGf8yvg8j7g0rGhoQFDcyd4xhJwHJp3Lp6h4m7KlCmIRCLouOAIabPvmUAePHKMZWxJvqa9Q3Mn\n4+L8yY8BuPza3dWpjpefSX7laxraccrzndy7Vwt9EshcCGtIA2AhTU6SE4aAEy57XBEAIPKEo8lI\n64ya6DKExtR8/MFXtqD1Q9dlUTB9vqUkaHNljHA/0+Ylgd77dnOz7zy+9a1v4YUXXvB8zoVH0dyF\n1ndc6UhhSvhbsGAB3myzL+zoXXyzAI51+PuV95pLwSAa0NixxTPt7+BYakVzqjB4xBjLsiCFUly1\nCq//7CFUVFQgc9RYS9DT5px7u2sYSKUn5w249CcgoZSV536+ceNGlJeXmw0TjUbNvGkznv/0mPUc\nP+OBK2oAmDBhAj4gGjBBJccTzSbft9QIcmeezrrvuusu9X2uMnatKJpz7Q9nY+aCRzB4hMOfxVWr\nzAkDsPlt27Zt+MGSR3FNUYmhHYfKykq8+PaHALz01/ifgPAv9wN/N80rFotZNJW04wqXKzSOO/PM\n4mIAjvIH/ITlncbI0tZFe6fj4jnr/8RDxK/tx4+o4+VnmpFGazp1qNnzndy7Vwt9EsicgTWkAcCN\n33Y1uZykZqlwwpG1MG/ePADAR3EEcQYhpr5j5Rb8fuW91mVey8tbgK5ODBmVh3PHWwEAB3dvtqwL\n2lykOQGvdteA3ltYWIjm5mYc3b8LBw8eREFBgfnNCy+8gLz4kYwD17Zk9RFwwnMmBVz8bdiwwSgn\n/i4A+OTdiPU5WYcnTpywnkHAaUAbTQo0gnd+vQanDjVibEkZ8r/5XQCuQmmoXYH240cMPhpqV5gN\nTJtzwxPOetavXx+4yQmI/qQQCDfcqlu9erX5bvvSMowcMRxD4/Sj8RKPfsYD8XDRnCpk503Ae897\nT13aeBrHLdQbv/2wUfxk8UmQyhhwlfXy5X9Aa9zlA/zCWvPBgwdxaxnR5jHMmTMnPo87VWNi/fr1\nuGPlFkQ/fE85MXn5n4Dw5z2puIqE3ldaWmq9W9KOK1yu0Dy4e/QerFu3DgBMRIcmLOVpWa6LaC5P\nDZJfw+EwysvLsS3iFaD8mRpeaU3SLcrf31foo4XsCmE/E91hasdHJiepWSqccCQQ6uIbmfw8XIgQ\ngn+/0vltZ2enNb7z2knobqm33sER7XWDPObR7hrQe9/4+cPmby6MCdxN5QIXuvwoCtiEl0ftyfct\nxTu/XoO5t38FW+u91hUAjL6pNHDeQTSgjUYbkFvygOsqOLJvB47s2wE8eo9RKPwI2T8zy9rEtDkX\nLFhgPpPKOMhaJCDcFM1diNfWOiepjRs3ori4GA21K9DT3YVoNIovznPoR3SU7hA/44F4mBQP4AhW\nab37HY+5K+W95x+P82u1sfgkuMrYVQxGWReNBeAKpay8CebZBQUFmFZda8akpaUhFovh6P5dqjFR\nWVmJF+I48FVOBvzxT8AVCdE9EomgYPp837Fc4XKFxnFHsHjxYkQiEaQPdNw2mrXJ3XfquuJ7R1q2\n9G6ad2dnJ55++mlzJ8OBP1MzHoNO53LvXi30SSBzIZyIiS4nqVkqfJFSIBCCOuIXAIDXwuRw+nAT\nzry+2fqsYPp8a0PRv7kbQ2p3Dei9dIMeNA8JXOj6MYwGTdtqcepQIzYcarQ2JAdJh6I5VdYxOogG\ntNHoeOfiwYF+GUNQMH2+5bIghVI0dyGO7t+F5rgLhys12pzcQpbKOMhaJCBhw3H94YfOUZw2WE5O\njseykwLVz3gg3NHvR/aL4b3nH8fxA/usjeV3POZ8NfyGSWbdZPFJkMoYcAXI6ll5ePUP7yIjzpfS\nSODCfNasWXjp1T0omrvQ0I7D+vXrMXHewzh1qNGhv+V+8fI/AeHfPdFVe95NroO0tDRrjpJ2XOFy\nPGm4a2hoAOC6LDRrU9LATwBq9xeAy6/kQ9bG888045Gfkv+noU8CmW9+DWmpg4ah9EH/iy7NUuGE\nI0Ygl8WbcQR1EDHWVBqmloICcBkpb+ps4286uHuz41OMI54I29bqMpmfZcCB3ktH9PMnj2HZsmWe\ni728qbM9Y7m2lQzDBZO8TOKgWVcADIMRBF30ADYN6Jncz2a/c5drpcWtIe5GSB80BE/+20/xwA8W\nxIWis4Hl5gS8yjjQWowDbXiuKKg2BPcpEv3od5LP/IwH4uF+GUNw/uTHOBUXCFKgJ3I8Pn/yY7Nu\nsvgkaH5J4oeqHZk4d7zVuNr4mnmUBeC6q47uf5EJeduY8LPmNP4nIPzL/cAVCdGxuLgYHzBDRtKO\n8zUXpl7cPYb9+/cDcC+oNWHZmwFIe0dGDNFaiF+HDkxDfn4+PmrXnyPXyY1HWhOd1rT39xX6JJC5\nENaQ1nXxjDPZ+CLkJDVLhROOGLYufpkxetLtAOwNRr/hFx78u8jO59Ba/4z5rH9mlvUbjbCaANGe\nzd9bXLUKNWwOOTk5KC4uRl1dnWcs17byiMkJL4/ahL/502+xNiTguAM2bNhgcETAj9H8GQScBrTR\nONMCMH6zorkL0VC7HJfb2+LKb5P5Te6UmXh70ypUVFSgf2aWtYlpcz777LMMBza9gqxFAhJK/ILr\nrrvuQn19vcFbNBrF0Dj9vD5n5zju598j6/Ho/l243N6GwsJCpOZ/zSPM/I7H3JVyub3NikDQQPNL\nkrKeNetW7Hljr/HV53/zXkPHmpoazPmpG51DhsD5k8csvPfPzHJoFfc5pw4a5qF/kGCT0Sryc8B1\nHUQiEUx9cI36G8BWuJbLkOGOgKJSpHHBgS6rCeS6aO/IU5/k12i7wzOay4I/Uzce/U/FflFQiULf\nLvXE8ac3kJPUmIETjpBHmWiEoOMHvM720ZNut47m9N1Z4XAfPPI6C9HcKiLQQlwk0HtzcnLMzf68\nefOMAI5Go6owBmyhK4+i/OgoLTPybdY01lsbEoCpRCdxIIVJEA3kBvT6eV/E4JHXoV/GEHOUJoXC\nBfvl9jY1DK2iwmHq8vJyjzIOshZJYHkUBZwLM8AVDDk5Oa4gZD5nDr3594rmLsSVC2dxds8mHKgj\nX/BjvY7nG7Rk0U8Mbcnik6D5e0lZZ2c7iQuk+Dg+582bhzcYbuhUVly1yhKedOQnn/Nr6x5y6M/m\nrfE/gd9xn9OF6FhaWoqTbI6SdlzhagqR73uKSskc5fjRNWvT0CAOkq9p70gXoMav2nj5mWY80pq0\nTFktauhqoE8CmYOfic6P7FpIlgROOBIIUyfkAgD2KsdvQvCHr3g13OCRY3D2TBvGFNxkjrOnDjVa\nTNkk3SCKX1cDem/4kxii0Siy8iZgx47f9joOsLWttD44juQm4dZuIqF5gH9gPAGnQZD7BHBoQ++n\nW3nuRuifmYVXX9qOGf/wPUupaRtbKuMga5GAhBK/4KILM9owWVlZ+GKFQz/ajH7uHQnEw0f3v2j4\nJXPUWNW/rY3jLot9Tz7SaxyydnlMc974lh2HzPG5Y8cOjJvmVSZ+AhSI46C700N/jf8JCP9y/VyR\nEB1bWlrQNbjdM5aA7ymu0DTcjR8/HpFIBBfisiARa1Oui/YO7TW5l4hfL/u4peRnmvFIa/roWe9d\nU9CFXyLQJ4HMhbAf0nisoJykZmnYxyHHWnghfgykcDUeh0xMLf3HNP7YwXetORRMn68WTuFMloiw\no/fujb83e1yRNYdwOIwlS5aoySJc20r/HBfQMvKgX8YQ9M/Mwo8eXICtjZ9Y4yorK7F+/XqPy4KO\n0Tk5OeYZHDgNZCKAwUPc5UQW2MHdm81xkoeW1f/sYZSUlHjikGlzLq38rvlMKuMga5FA82muW7cO\nZWVlZsM0NzfjU2EZSyvJz3ggRc3vB46duRQX6JW+44n3ZawwrdsvDlm7PCYBsrpqJu5+aLmJuebP\njsViljDfvn075i/8EbLyJqj3H2vXrsWa9b8B4C8ogvAv9wN/N7kOotEo5ix5xjOWwG9PcdwRlJeX\nY8OGDYbHNGEpL6vlumjv0FgyIIiHiF/9xsvPNOOR1qTFIWtRQ1cDfRLI3NL0M9G5hZzIJK2wr/hG\nospK/x1HEBcixNTTqmvx2toq6/jQtPUpxE5/bGXkHNy92Yrhpc114VOvZR4E9N4JEybg/fffR8vL\nW7Bv3z6UlDh46OzsRE1NjRqGxrWtXyQJ4LVMyLdZU1Nj+esA5yYd8LosyDqkQtlBNJCJANJv1lC7\nAqcONSJv6myz4UgANG2rxeX2NqSlpaH9+BErDpl+W13t4HrJkiUeZRxkLXKFwOcHOBdmgCsYcnJy\nMDBOP3PhJE48fsYD8XBx1SqcPtyEt57+V8RiMfQbNDRwPI3j8ypZ9BP0y3DGkcUnQROepKw3btyI\nT96NxOPK7Tjkffv2YW45CZNqzJ7t7DHHx+8VfNXV1Zjz013YVbMwTn+X9hr/E/AQMQ5ckRAdZRyy\npB0X+FyheXC3eAaWL18OwL3U04SlvKyWfO2njCW/0tw/UPYFf6ZmPNKatDjk3k5VvUGfBHLQ8ZqA\nW6dykpqlwglHAmHnFgf5Q3OPAgDS2bsIwXSZwgu55E6ZidjoSRh09rCVMMGZ0huFUO2bycWB3vtR\n3c/M3ySMOchEDcAWutJfbbLKWIwvWWdFcxei/mcP4dapJdaNNgeK1TbPE5dlQTSQvmPpNyNXQeve\n7Q5d11R6FEpZWRl2vRJRs7HiHRNUCLIWCXjCinHdNDSgrKzMbJhoNIpp8+1kBymk/IwHnhhDz584\n72FP9pvf8Zi7UozLYk2lsfgkaJfHpKw/FKnTPM67pKTEo5ABB4eaMUHCMvaX4yiqsN0aGv8T+IXE\naYokEolYxpekHVe4XKFx3BGUl5cjEokgI74WzYjwXFZ7jBdn70gfuXQR0ty1MNLehCqtSfMhJ+om\n84M+CWQuhBOxfuUkNUuFE44EAglZQlD6IJdZgyIirlw4h7P1z+As+6xg+nyMmujWaKDNlZnjMp1f\nJhcHei9ZnolEZpjnM20rrbc/WqFTtjA9uv9FdHd1oqWlBfnz/kV9tsy4ksfoIBrIvH9pXWSPK/KE\nF/IjYNvhJtTV1SGUGlazsVr+65fmM6mMg6xFAhI2HNfywiwtLc3Mm2grj+N+xgMp6qy8CTh/8mOM\nG5ODA3WPO0KSWZx+x2MZ4UDrJotPgnZ5TAJk80PfwFfn3m+sbJkqzHGwbNkyPLnpd8j/5r2qO66l\npQVZN34Tpw41etwvGv8TEP6P7rf3g5X6z1wHnOaSdlzhcoWm4e70aacYGaU1a4LRSwObr2nveHzk\ncSB+JStZE6D8M814NPHuWVme77SooauBPglkbmlqSJNxyHKSmqXCCUfWAsUhvyviZPHoPYap/+77\nK/D2Jlu40XgZh+yEwDiIJ8JyJvPL5OJA76U45LbW9/Hss8+iosKuQcyzlzSQFzFWTr8Q1rRuHtol\ngRjM7/lBNJCJANJv1vLyFpw61IhQahiT73vEmmND7Qp0XDxnQrB4Wj1tTt6PTCrjIGuRwBT/YYqC\n4pBJMGRlZWFMnH7aZuefS+OBeDh7XBHaWt9Hc7NjgQWlDvNxfF6DR15n1k0WnwTt8pgEyF2vP4Uj\n+2jMJuvZzz77LJau/nfzN91TnD7c5Ap5Zkzw7EVJf43/CbSkDcBWJETH0tJSy5CRtOM04MLUi7tq\n7Ny5E4DrstCFpX1ZLddFuCUDR15QEr9SeOobTUc86+fP1IxHWtPeJ7z+5UQCA4Kgb5d6TAhrSJNx\nyHKSmqXCCUcCoS4eb0jHcS5EguKQJ9+3FG9GXkbr689Yn3NES8ICiVVq0uKQKawLcMLh8vPzETHW\npFu2j2tbecTkhJdH7eKqVWja+hTunvplTxzybbfdhj179nh81vwYzedNoIX70QaUfjNyFXR3dTrK\n71duLQM6QtbU1FjWIeBubB6HLJVxkLVIwH3CMg6Z8BaNRjEiTj9v0kG8SJLPUZSsR1I8OTk5GFly\nl+fI7nc85q4UjnOy+CQEXR5T/Qsee0/PrKiosMIeqbBUW+v7Ft5D4TR0d8awfft2PLD4UaRlX6cm\n+/gB4Y+HmQI2DxHdI5GIdTcjaccFPldoHHcEtbW1KCgoMPc+mrXJY77lnAAXtzK7V/IrhafKMFJt\nnRKCTsWJRkH5QR8tZPf4k4iJLiepWSp8kTLWkBCkxSFnjhprjjh8/BlxyZU3dbadDRf/NxeMiaSB\n8xjpWCyGhtoVxloGHMHALUIOXOhKfzVfv7TMyLdZs3e7h4H27NkDwOuzlpdlQTQg/B5p0Dfp6cNN\nyJs6G8cP7EN6huM2IrxxwX65vU3NxqqocDZdeXm5RxkHWYuyBgW3+sePdzqZ0AYrLCw09Gs7omea\n+fn3eGLMqIkl6Gqpt2pS+I2ncZx2vAYGWXwSNH8vKevimwcBcHmR47OwsNCiIz2/uGqVRbvuTsfV\nN3v2bEx9cA32PrHUumwFdP4n8Dvu83cTHQsLC605Stpxhcv3n4Y7cvFQEpfGGzIpQ/I17R3pI9f4\nVRvvt07sYmKsAAAgAElEQVQOtCaKYOKQSIGyIOiTQOZC2M9E59XePDVSFUtFs5TIZfGGOH4Dj7kX\nUK1noUJqGHnFd5oiP617tzvzNgJJuEEWz0ioUhO9lwrUDx45Bjhz2PM73oOMgGtb6aflFo4Uptza\nTVQDy0uMIBoEuU8Ahzb0fhLI3I2QOWos3nrtJXx12gw1G4uDVMaJrIc2PL/gKi8vB6CHKNF7pSXj\nZzwQD58+3GT85KFwWmDqMB/H8ffe84/jdOv7wKP3GItPgnZ5TAJk3esOfkmoBlXpozuWoDhkHsPN\nQeN/CZIP+Lu5hZ1I1h9/J1Cp4o6g45Jt1fK5SRrIddHeIZ868QeddohfL316DNnZ2aZCoN8zNeOR\n5v7mT+/3jE2kQFkQ9EkgcyT7bShe7S2oQIr2TLIWyGVB/lh+KUdMzS88+PgzFzusimt5U2dbFx9E\nWCsqIIFKTfReOjblTrnTOkLl5OSgvLxcjUPmwkP65zjhZeRB9rgiDBmVh0Xfvxu/2/uBNY58t9Jl\nQcdoqoccRAPCwfhvOPiWfjNymbTu3W5OI6RQKAKkoKDA6cpSudqzbu6ykMo4yFokoA1fNHehoffy\n5ctRX19v8Nbc3Iyz6bXWeGkl+RkPZD2SUTBhwgScScv2CHS/47G8QCXwu9TTLo9JWS8u/3t8cLzd\nxNzzVOHm5mZMq/6hGbNt2zZ8Z/79GDxyjKEd4HVZAP41poPw7z2puIqEXAfNzc1W+rGkHZcPWvMC\njtPVq1ejrq7OKCPN2pS4luuSdUzkBSXxa3dXp+Vj58CfqRmPJg5ZOQknUqAsCPokkPnxx89E52FY\ncpKapcIJxy8MAKArjiAuRIiptUu9d369BpdEjGDr3u1qzv3V3orSe8lN0bT1KetSLxqNoqamxqR/\ncuBCV/qrOeG1pJFzx1tRU1PjCdMhwS9dFiRMqB5yEA14xwzA6zcjl8noSbdjVPy7XHOB9qLx+V1u\nb7PS6mlzcpeFVMZB1iIvP2p9DtdClgkw/Hd+AlQaD8TDxVWrcP7kMXyw+VFEo+97Qgn9jsfcyptW\nXWtFA2mgXR6b0LuGBpw61Bg/CfzCOmVYl3prKq16yFx4cpcFxSHzok+0VkDnf8JfukwmYoqE6Fha\nWmq9W9KOC3yteQHHaVWVwy/kstCsTWlRS76WBaYINH5NS0tTBSj/TDMeaU1aHHIiBcqCoE8CmQth\nPxOdh2HJSWqWCiccCYSWBucmveu4tyQTIVgKYxp/JWscssMdlgXNmdJzVFqjh7j4vffSO1vN3zLC\nAoDHrw3YQlce8y58SvjyxviStZuTk+MbmieLJ0kXUBAN6Jm0AaXfjFwFnzTWO6FOv3IVCm3oZcuW\n4edP2DG3tDm5sJQCIMhaNL+Jb3h+wUUXZrRh2tra8PWFds0TPwEqgSfG8Kp2Emd+x+OOi+fMONPC\n6dF7jMUnQbs8JmW9f5S/MK+oqPA0KAAcHErhCTh4b6hdgdjpj5F/t936SeN/AsI/z4wFbEVCdOQX\nkHysO8ZVuJweHHcEs2bNcuohx91imrCUl9WSRrR3ZKgs8QTnv1gspgpQ/pmmsGhNlz56y/Pd1YTB\natAngcyFsJ+JzsOw5CQ1S4UTjgQCXY5NjcfeBvWd49AvYwja//A4uBgvmD7fmjc9i9+kJ5I7T++l\nSzxtHlR4SALXttI/x60/KUwJf/n5+bh0vd3vjix1GRHAO2nwZxDY/c2cjea9EHH8ZrlT7kT6oCFW\nHDIpFGqJQ1EWWjbWsDZvwSGCIGtRAsf1zp07sWSJ28MvFouZebuJDfZx3M94IEVNiqewsBDNuzc7\ndGA86nc85q4UwF03WXwSNJ8rCZD/WDoPt37vX4x7TaYKcxyQxZw7ZaaqbPLz83GsawhOHWr0rTGt\n1UMm/Mv9IFsbkeuA09yTos8Urta8gBsp1CeRjBlNWEoayHXR3iFBT01U6YJStnDSBKhWIEtb09m2\nNs93iRQoC4I+CWRuaaomeigVJVWuL1FOUmMe+zjkWAuUOv3nOIKM8F/sXh5R6jQHGj/6plJzlD+4\ne7MVG0yEbY+6lnwilZrovZQ6faJpn5U6DTiKRItDturJ+kSSyH8DLv4ikQgmCp8XKQZ5fOKdNPgz\nCDTlJksXmrnGuz0Pv2GS+Y4UCrXEoYp3PK2eNmekznWnSGUcZC2aeF/FJ1xb63aG2PHIbIwYno0R\ncfrReLkOP+OBeJiMgua4cA1KHebj+AVt3tTZZt1k8UkIqnp2112/wUEz5hd24SIrdRrmZHZNUYlq\nTFAmWmvDLt8a05z/3bnY9SAItNZGpaWl1rsl7fwuqz24W1OJjRs3AnDjkDVhKV0Rcl3yspBODpJf\nc3JyUFZWhq31f/S8Qy2QZRmP8dO54rL4TOKQrewazUTv7sK+Jx8B4oHTcpKapcIJRxuJiguRL48L\nEUIwr43Kx//p7Tdx4o1N1ucc0VoqZSKVmuR7J9+31BLG4XAY2dnZzJp05xBELE54LQ75wAtP4ju3\nFnrikNPT09HR0eEpLiS78wbRQHbM8Pp5Zxq/JsWXk0KhI+SOHTvQPzNLzcZau3at+Uwq4yBrkYA2\nPL/gWr58OZ5//nk01K4wFzRj4vTzJB3Ej+N+/j3iYVI8aWlp+FJZlYdP/Y7H3JVionnwmLH4JGiX\nx6Ssx9/+FUQiEXMHwVOFS0pKrAs0bhRoxoRTXOgppH1hlG+NaQ0IfzL7kysSortjJDzsGUvAFS5X\naBx3BKtXr7b2kmZt8phvIPiilb9f8ms0GsWGDRt6jUPWjMeg0/lnEofMhfDV1BCmSWqWCl+kXwNQ\n/i5CMC8gxMefFdEX0idI/84YoYXy+KeBS8u2aVutiUkGnOJCfnHIHA/SX83DiKRlZuKQ9+3wFNTu\n6OgA4C0uJFNug2hAG43we6LJ9ptduXDOpE6T9UJAQisWiyEWa1OzsXhxISnkequRC7Aat0oYHW2w\nwsJCg0PCn3SH+Pn3eGLM4JFjMODMYbceMvOt+h2PefQOL8BEFl8iQDxePmWIVf+C4zMtLc0jzEPh\nNCcdWNmH1dXV5tJbxiFr/E/gCYmL7wf+bqJjTk6OKKVg044rXK15AcedxJdmwPTm/iTaSx85Wcq9\nxefLzzTjkdaktXBKpEBZEPRJIHPiq1afcFnISWqWCiccMQK5LPZ6YhVdQX7NxKkeYUTjZeo09wkS\nYY+QIHz0nquq1ETWCeAU1pGXN8NvuMkzhmtbGZLFcSIjD7i1m2gTRRnnHEQDmQggaXqiaZ95/zXx\n0EPuRsgcNRYv/ef/wddnzLbS6rXOClIZB1mLBNrJhbpO04Zpa2tD0fwfW2uXLe79jAduTXElFpQ6\nzMfxze+Or/RYfATa5TE9Y/kO5xKKfJxcUZeVleHNI38xfxP/NW2rZUkctjHBY7g5aPxPwPsl+gHR\nMT8/36qYJmnHFa7mm+W4oz6JBJqwlDSQ66K9c/zAXgCuwKcLSuLXgd1/RXZ2Ni4N9QpQ/kzNeKQ1\nvbrq+56xiRQoC4L/nThk4bIIykoj0Go5vBC/NKBqUjwOmZhac1kUV63C6889g9a9z5nPht8wyUK0\n0dAB2l0D+d6iOVUmXhqA8U1pVb64tpVHTKu0oafd/J04f/IYHvj2dGze/QdrnIlDFi4L3kmDnsFB\nowHP9wdgaEpdrynSAnAVSv4378XeJxy3Tf/MLDUbi8chJxIW5JfmO/m+peb9VVVVqK+vN3iLRqMY\nGKefX9JBb3HI3PLpuvbmXrub8DRdzoe0bj8LWfP3krIuv2caGg99jNxbHHrxVOG6ujrrhMTDLTne\nZQsnhMIe+mv8L9fpKnVvKzZyHciKaZ7mvUzhar5Zvu9lCyfN2pRxyHJdNGfiM3k/QvzajniFwOp/\n8ryDP1PjV1oTrzAp3x9UoCwI/uY4ZD8TnYdhyUlqlgonHG+TBHi1HuAiWGty2lC7Au3C4X7+5Mdq\n3z6tt1wQ0HspuuGdX6+xmpySb0oDLnSl1WdbyLZlRr7NmppGj8vCxCGLU4Is7BNEA9kY0tPvb1st\nzp/8GMNvmOTp6MwF++X2NiutXmvhJBVBkLXIe/oB9qli1qxZAOyQQKKfttm15xIQD0++byk6Lrbj\n5K5/x8Hdm3uNQ6Zx3JUyrbrWfC4tPgLN30vK+vTp02g/fgQH6pzEKn7KWLZsGX7JhLkRxnOqWOec\nSquF0x0rt+DltQ9aRZ8Anf896xTAFQnRsbS0VG2/pvlQteYFfN/LFk6atSnn5jVe4hUGfTrySP7T\nBCj/7GrD2BIpUBYEfRLIXAj7meg8nEZOsrebSNr0Iy87xzd5/AZcBDuM6x1/MWUAckZkmyPk5fY2\niyk9TKeUxNSA3tvV8rr5W8vK04ALXVncJSikj18a+YXmSd+ut2KaPw287hM7tA5w8He5vS0+j01G\noZxo2odQahi/fHoDFv3zEjUbi4NUxkHWIgFteH7BRRdm2jGYNqN0h/gZDzwxhhTb6Em3e5SF3/G4\nhbURM3HIAS2cNBcMzXmniEPm+KypqbEu0AiCOow3batF18UzyJ3yoPW5xv8EsoMMAVckvJHr0NwJ\nnrEEHId2qKUXd1RYqeOCE6qmCUt5WS35mvaOLClLF5TEr2SFawKUf6YZj7SmoR2nPN8lUqAsCPok\nkLkQ9jPROdLkJDUtyglH1kLkCcfypWB4HqgeFBGRPa4IB1/ZgtYP3cu+gunzLSVBm4v7GRO5IaX3\nvh0PN9PmQVW4JFj1ZJXQMgIpTAl/CxYswJtt/dR3aT3zfr/yXpM6HUQDGksF2d3NGq+SNqcKg0eM\nsU4ipFAorrOiosLTwok259zbv2I+k0ovyFokIKFEbY0Axx1QXl5uNgw1nAXczXhedMPwMx6k9Thh\nwgR8QDRggsrveMxdKc48nXX7tXDSLo9pzrU/nI2ZCx7B4Phlmzyic37btm0bfrDkUVxTVOIppg84\n7b1efNux0v1qTEs/O+DtIEP7gb+b5hWLxSyaStpxhas1L7BclfE+iWTh68LSvqyW66K9Q3HI9H/i\nIRmHrAlQGW8tgdaktXBKpEBZEPSt6zRjYD8TnRcXCiqQQsAJR9YCFRf66ILdyhuLZximvmPlFvx+\n5b0Ih92ltLy8BejqxJBReTh3vBWAc6nHrQvaXDy0J5FKTfReclkc3b8LBw8etIrIvPDCC8i7dY5n\nLNe2fpEkgPeoTfjbsGGDJ1OLBL9MnSbrkFKng2jAO2YAXsuI/MdjS8pMe3rub24/fsTgg7uzaHNu\niN8lrF+/PnCTE8iLFM0nTJd6PAGGCsXwfn8WTnyMB+LhojlVyM6bEK/D4gW/4zG3UG/89sNG8ZPF\nJ0G7LCNlvXz5H1gNFruFk/EJAwAes1KnNWNi/fr1uGPlFkQ/fM+3xrQMbQNYAfaAetA8Dpm/W9KO\nK1yteQHf9+vWrQPgFubShKU8Lct1aWn2gJdfw+EwysvLsS3iFaBavDXHK61JS51OpEBZEPTRQnaF\nsJ+JzosLyUlqlgonHAmEuvhGJl8eFyKEYLpM6ezstMZ3XjsJ3S311jusSmQeN8hjCVVqove+8fOH\nzd9aRS9e2IiAC13pr7b6komjNl2qzb39K9har4fmaT38OATRgDYabUDpNyNXwZF9O3Bk3w6rzRQ/\nQvbPzFKzsRYsWGA+k8o4yFokINzwC66NGzeiuLjYSoChQjFER+kO8TMe+MUPrYWX0STwOx5zVwov\n20kWnwTt8tgo6yLHf0pCiacKFxQUWBdoFG55dP8u1ZiorKzECyyGm4PG/wR+F69ckRDdI5GIlQQl\nx3KFyxUaxx3B4sWLndTpgY7bRrM2uftOXdc2N2HI+pz1CTx1qBGdnZ14+umnPXcy8pma8Rh0Ok80\nCsoP+iSQuRBOxESXk9QsFb5IvwagVGwa0EOq+Pgzr9sXfQXT51sbSusblkilJnov3bAGzUMCF7p+\nDKNB07ZanDrUiA2HGtUeYICXDjLlNogGtNHoeCcvRPplDPFcnvLQqKP7d5mMQS0bi1vIUhkHWYsE\nJGw4runCjDZYTk6Ox7KTAtXPeJCJMSP7xfDe84879Q/YxvI7HnO+Gn7DJLNusvgkaJfHxA+rZ+Xh\n1T+8i4w4XwZV6Zs1axZeenUPiuYutGpCEKxfvx4T5z2MU4caraJPfM5a6rTsIEP7gb+bXAdpaWnW\nHCXtuMLVmhfwzxoaGgC4LgvN2pQ08BOAfheTxK/kQ9bG888045Gfkv+noU8CmW9+DWmyhZMEzVLh\nhCNGIJfFm7Jg9ppKw9RalAWNl3HI5z895snLb2t1mSyRkCzeKr65uRnnTx6zoiwIeONHAq5tJcNY\nxfMDihz5hebJ5Jigix7ApoFMBNDCznjRHf6bhtoVSB80BE/+20/xwA8WWGn12g21VMaB1mIcaMNz\nRUEtnLhPUVb6knzmZzzwhpjnT36MU3GBEJQ6zMdxXJ8/+bFZN1l8EjS/JPFD1Y5MnDvealxtfM3L\nli2zMjXJXXV0/4tMyNvGRG91QTj/ExD+g+pBmy4uxcVW411JO87XWvMCXjeF+iTSBbUmLHszAGXE\nEF3q0VqIX4cOTEN+fj4+8tYts0AzHmlNsmQDf39foU8CmQthDWmyhZOcpGapaCFpdfHLDN7ORv5G\nq0NbXLUKkZ3PobXebeEkq6FphE0kxEVr4VTD5kC9urQqX1zbekLLGOHlUZvwN3/6LZ7U6QULFmDD\nhg2eOGRPd94AGvCOGYAedtZQu9yJbd29GcAm85vcKTPx9qZVqKioQP/MLDUbi8chSyEZZC0SkFDS\nWjgR3ni/Qa/P2TmO+/n3yHo8un8XLre3obCwEKn5X/MIM7/jMXelXG5vsyIQNND8kqSsZ826FXve\n2Gt89TxVuKamxkr1JUPg/MljnkarPA45ddAw3xrTGshoFfk54LoOIpGIWtaWgCtcrXkB3/cyDlkD\nGfMt1yXrsdDJQfJrtN3hGc1lwZ+pG4/+p+JECpQFQd8u9cTxpzeQk9SYQYtlpDbbhCCthdPoSbd7\nYnAbalfgrHC4Dx55nYVo2SYcuLo0cKro1lC7whTWAWB6dWnAha48ivKjo7TMyLdZ01jvyb2nmGeJ\nAylMgmggN6DXz/siBo+8Dv0yhpijNCkULtgvt7epYWg8Drm3ZAvAK7A8igLOhRlgJ8AYQch8zhx6\n8+8VzV2IKxfO4uyeTW7qNPOt+o3nG7Rk0U8MbWVnbALN30vKOjs7HT3dXUbxcXzOmzfP7Z6zeIY5\nlRVXrbKEJ49DnlZdi9fWPWQVfQJ0/ifwO+5zuhAdS0tLcZLNUdKOK9ze0uRlHLJmbcr0ecnXJs1e\nuAA1ftXGy88045HWRPKJQyIFyoKgTwKZg5+Jzo/sWkiWBE44EghTJ+QCAPYqx29C8IeveDXc4JFj\ncPZMG8YU3GSOs6cONVpM6ekbpvh1NaD3hj+JIRqNIitvAnbs+G2v4wBb2/oFrgPeTcKt3USLl8g4\n5yAaBLlPAIc29H66leduhP6ZWXj1pe2Y8Q/f0ytlMZDKOMhaJOBtiGgedGFGGyYrKwtfrLAzzBLJ\nvARcHj66/0XDL5mjxvaaSq9Vodv35CO9xiFrl8c0541v2XHIHJ87duzAuGleZRLUwuno/heB7k7f\nGtOc/wlkp2YCrkiIji0tLega3O4ZS2DV3WYKTcPd+PHjEYlEcCEuCxKxNuW6aO/QXpN7ifj1so9b\nSn6mGY+0po+e9d41JVKgLAj61nWaCWE/pPFYQU+NVMXSsI9DjrVA1d4oXI3HIRNTS/8xjT928F1r\nDgXT51uFTAg4kyUi7Oi9e+PvzR5XZM0hHA5jyZIlarII17ZaVxACGXnQL2MI+mdm4UcPLsDWxk+s\ncZWVlVi/fr3HZSE7aQTRQCYCGDywruEtL2/Bwd2bzXGSh5bV/+xhlJSUeOKQaXMurfyu+Uwq4yBr\nkUDzaa5btw5lZWVmwzQ3N+NTYRlLK8nPeCBFze8Hjp25ZGUdauN5ZxLuOqN1+8Uha5fHJEBWV83E\n3Q8tNzHX/NmxWMwS5tu3b8f8hT9CVt4E9f7Dqfb2GwD+giII/3I/8HeT6yAajWLOkmc8Ywn89pTW\n1aW8vBwbNmwwPKYJS3lZLdclS4eSAUE8RPzqN15+phmPpoWTEoecSIGyIOiTQOaWpp+Jzi3kRCZp\nhX3FNxIVF/rvOIK4ECGmpnrI/PjQtPUpxE5/bGXkHNy92Yrhpc114VOvZR4E9F4qLtTy8harHnJn\nZ6fa4w6wta1fJAmgtZt3fJs1NTWWvw5wbtIBr8uCrENKnQ6igUwEkH4zqjbHK5mZerbbanG5vQ1p\naWloP37EikOm3/Jqb1IZB1mLXCHw+QHOhRngCoacnBwMpHRcunASJx4/44F4uLhqFU4fbsJbT/8r\nYrEY+g0aGjiexvF5lSz6CfplOOPI4pOgCU9S1hs3bsQn70biceV2HLJdD7kas2c7e8zx8XsFX3V1\ntWnhxIs+ATr/E/AQMQ5WvZU4HWUcsqQdF/ha8wI+lnoQ0qWeJizlZbWndraPMpb8SnP/QNkX/Jma\n8Uhr0uKQr6ZAmQZ9EshBx2sCbp3KSWqWCiccCYSdWxzkD809CsAuhEIIpssUXugjd8pMxEZPwqCz\nh62ECc6U3iiE6oQqNdF7P6r7mflbq+glEzUAW+hKf7XJKmMxvqaoS7wx461TS6wbbQ6y7oK8LAui\ngfQdS78ZuQpa92536Krk+JeVlWHXKxE1G4t6I2oQZC0S8IQV47ppaEBZWZnZMNFoFNPm28kOUkj5\nGQ88MYaeP3Hew57sN7/jMXelGJfFmkpj8UnQLo9JWX8oUqd5nHdJSYlHIQMODjVjgoRl7C/HUVRh\nuzU0/ifwC4nTFEkkErGML0k7rnC5QuO4IygvL0ckEkFGfC2aEeG5rPYYL87ekT5yrf6zLIzk90wJ\ntCbNh5yom8wP+iSQ7fqnvVu/cpKapcIJRwKBhKzsjwUER0RcuXAOZ+ufwVn2WcH0+Va1ONpcmTku\n0yVSqYneS5bn1RQf4dpWWm9/tEKnbGFKjRlbWlqQH29nJUFmXMljdBANZN6/tC6yxxV5wgv5EbDt\ncBPq6uoQSrWriplCL//1S/OZVMZB1iIBCRuOa3lhlpaWZuZNtJXHcT/jgRR1Vt4EnD/5McaNycGB\nuscdIcksTr/jsYxwoHX7dZ3WLo9JgGx+6Bv46tz7jZUtU4U5DpYtW4YnN/0O+d+8V3XHtbS0IOvG\nb+LUoUaP+0XjfwLZqZn2g5X6z1wHnOaSdlzhas0LrGYX8T6JlNasCUYvDWy+pr3j8ZHHgfiVrGRN\ngPLPNOPRxLtnZXm+u9qmyRL6JJC5pakhTcYhy0lqlgonHFkLFIf8riyYzUr5aV2nabyMQ3ZCYBzE\nE2E5kyVSqYneS3HIba3vW2UQCbQWThzkRYxWfpSA1s1DuyTwHoba84NoIBMBpN+s5eUtOHWoEaHU\nMCbf94g1x4baFei4eM6EYPG0ellxDvAq4yBrkcAU/2GKguKQSTBkZWVhjOks7N3s/HNpPBAPZ48r\nQlvr+2hudiywoNRhPo7Pa/DI68y6yeKToPZpiwuQu15/Ckf20ZhN1rOtrtNwK/2dPtzkCnlmTPDs\nRb8a00H4D6oHzTvDc0NG0o7TQGte4K6vGjt37gTguix0YWlfVst1EW7JwJEXlMSvFJ76RpO3GTF/\npmY80pr2PuH1L38mLZy4ENaQJuOQ5SQ1S4UTjgQC1Rmm4zgXIkFxyJPvW4o3Iy+j9fVnrM85oiVh\ngcQqNWlxyBTWBTjhcPn5+YgoLZy4tpVHTE54rYVT09ancPfUL3vikG+77Tbs2bPH47OW3XmDaMA7\nZgDeS1dyFXR3dTrK71duLQM6QlKTUy0bi8chS2UcZC0ScJ+wjEMmvEWjUYyI08+bdBAvkuRzFCXr\nkRRPTk4ORpbc5Tmy+x2PuSuF45wsPglBl8dU/4LH3tMzKyoqrLBHKizV1vq+hfdQOA3dnTFs374d\nDyx+FGnZ1/nWmNaA8MfDTAGbh4jukUjEupuRtOMCnys0jjuC2tpaFBQUmHsfzdrkMd9yToC39Cpl\n90p+pfDU3lo4acZj0Kn4M2nhxI8/iZjocpKapcIX6dcAVItDzhw11hxx+Pgz4pIrb+psOxsu/m8u\nGBNJA+cx0rFYDA21K4y1DDiCwa+FExe6QQXjpWVmWjjt3e5hoD179gDw+qx7a1XDaUD4PdKgb9LT\nh5uQN3U2jh/YZ1q0E964YL/c3qZmY1VUOJuuvLzco4yDrEVZg4Jb/ePHjwfgbrDCwkJDv7YjeqaZ\nn3+PJ8aMmliCrpZ6qyaF33gax2nHa2CQxSdB8/eSsi6+eRAAlxc5PgsLCy060vOLq1ZZtOvudFx9\ns2fPxtQH12DvE0s9LZw0/ifwO+7zdxMdCwsLrTlK2ll1t5XmBRx35OKhJC6NN2RShuRrb+d0WOuU\n/NdbCyfNeKQ1UQQTh0QKlAVBnwQyF8J+Jjqv9uapkapYKpqlRC6LN8TxG3jMvYBqPQsVUsPIK77T\nFPkxzSeNQBJukMUzEqrURO8dkd6B5uZm5+8zhz2/o+IwHLi2lX5av+68gG3tJqqB5SVGEA2C3CeA\nQxt6Pwlk7kbIHDUWb732Er46bYaajcVBKuNE1sPbENE8ysvLAeghSvReacn4GQ/Ew6cPNxk/eSic\nFpg6zMdx/L33/OM43fo+8Og9xuKToF0ekwBZ97qDXxKqQVX66I4lKA6Zx3Bz0PhfguQD/m5uYSeS\n9cffCVT6dnUBgI5LtlXL5yZpINdFe4d86sQfdNohfr306TFkZ2ebCoF+z9SMR5r7mz+93zM2kQJl\nQfC/08IJdrW3oAIp2jPJWiCXBflj+aUcMXWraGZK489c7LAqruVNnW1dfBBhraiABCo10Xvp2JQ7\n5U7rCJWTk4Py8nI1DpkLD+mf44SXkQfZ44owZFQeFn3/bvxu7wfWONPCSbgs6BhN9ZCDaEA4GP8N\nB89TivIAACAASURBVN/Sb0Yuk9a9281phBQKRYAUFBSgf2YWiivdXooE3GUhlXGQtUhAG75o7kJD\n7+XLl6O+vt7grbm5GWfTa63x0krqrYUTGQUTJkzAmbRsj0AP6nCsuc78LvW0y2NS1ovL/x4fHG83\nMfc8Vbi5uRnTqn9oxmzbtg3fmX8/Bo8cY2gHeF0WgH+N6SD8e08qriIh10Fzc7OVfixpx+WD1ryA\n43T16tWoq6szykizNiWu5bpkHRN5QUn8Sp3KycfOgT9TMx5NHLJyEk6kQFkQ/M0tnPxMdB6GJSep\nWSqccPzCAAC64gjiQoSYWrvUe+fXa3BJxAi27t2u5txf7a0ovZfcFE1bn7Iu9aLRKGpqakz6Jwcu\ndKW/mhNeSxo5d7wVNTU1njAd08JJuCxImFA95CAa8I4ZgNdvRi6T0ZNux6j4d7nmAu1F4/O73N5m\npdXT5uQuC6mMg6xFXn7U+hyuhSwTYPjv/ASoNB6Ih4urVuH8yWP4YPOjiEbf77WFE43jVt606lor\nGkgD7fLYhN41NODUocb4SeAX1inDutRbU2nVQ+bCk7ssKA6ZF32itQI6/xP+ZL89rkiIjqWlpda7\nJe24wNeaF3CcVlU5/EIuC83alBa15GtZYIpA49e0tDRVgPLPNOOR1qTFISdSoCwI+iSQuRD2M9F5\nGJacpGapcMKRQGhpcG7Su457SzIRgqUwpvFXssYhO9xhWdCcKT1HpTV6iIvfey+9s9X8LSMsAHj8\n2oAtdOUx78KnhC9vjC/vG+cXmieLJ0kXUBAN6Jm0AaXfjFwFnzTWO6FOv3IVCm3oZcuW4edP2DG3\ntDm5sJQCIMhaNL+Jb3h+wUUXZrRh2tra8PWFds0TPwEqgSfG8Kp2Emd+x+OOi+fMONPC6dF7jMUn\nQbs8JmW9f5S/MK+oqPA0KAAcHGrNSnNycpw45NMfI/9uu/WTxv8EhH+eGQvYioToyC8g+Vh3jKtw\nOT047ghmzZrl1EOOu8U0YSkvqyWNaO/IUFniCc5/sVhMFaD8M01h0ZouffSW57ur7cEnoU8CmQth\nPxOdh2HJSWqWCiccCQS6HJsaj70N6jvHoV/GELT/4XFwMV4wfb41b3oWv0lPJHee3kuXeNo8qPCQ\nBK5tpX+OW39SmBL+8vPzcel6u98dWeoyIoB30uDPILD7mzkbzXsh4vjNcqfcifRBQ6w4ZFIo1BKH\noiy0bKxhbd6CQwRB1qIEjuudO3diyRK3h18sFjPzdhMb7OO4n/FAipoUT2FhIZp3b3bowHjU73jM\nXSmAu26y+CRoPlcSIP+xdB5u/d6/GPeaTBXmOCCLOXfKTFXZ5Ofn41jXEJw61OhbY1qrh0z4l/tB\ntjYi1wGnuSdFnylcrXkBN1KoTyIZM5qwlDSQ66K9Q4L+SjzKgi4oZQsnTYBqBbK0NZ1ta/N8l0iB\nsiDok0DmlqZqoodSUVLl+hLlJDXmsY9DjrVAqdN/jiPICH/Wsp1SpznQ+NE3lZqj/MHdm63YYCJs\ne9S15BOp1ETvpdTpE037rNRpwFEkWhyyVU/WJ5JE/htw8ReJRDBR+LxIMcjjE++kwZ9BoCk3WbrQ\nzDXe9Xr4DZPMd6RQqCUOVbzjafW0OSN1rjtFKuMga9HE+yo+4dpatzPEjkdmY8TwbIyI04/Gy3X4\nGQ/Ew2QUNMeFa1DqMB/HL2jzps426yaLT0JQ1bO77voNDpoxv7ALF1mp0zAns2uKSlRjgjLRWht2\n+daY5vzvzsWuB0GgtTYqLS213i1p53dZ7cHdmkps3LgRgBuHrAlL6YqQ65KXhXRykPyak5ODsrIy\nbK3/o+cdaoEsy3iMn84Vl8VnEodsZddoJnp3F/Y9+QgQD5yWk9QsFU442khUXIh8eVyIEIJ5bVQ+\n/k9vv4kTb2yyPueI1lIpE6nUJN87+b6lljAOh8PIzs5m1qQ7hyBiccJrccgHXngS37m10BOHnJ6e\njo6ODk9xIdmdN4gGsmOG18870/g1Kb6cFAodIXfs2IH+mVlqNtbatWvNZ1IZB1mLBLTh+QXX8uXL\n8fzzz6OhdoW5oBkTp58n6SB+HPfz7xEPk+JJS0vDl8qqPHzqdzzmrhQTzYPHjMUnQbs8JmU9/vav\nIBKJmDsInipcUlJiXaBxo0AzJpziQk8h7QujfGtMa0D4k9mfXJEQ3R0j4WHPWAKucLlC47gjWL16\ntbWXNGuTx3wDwRet/P2SX6PRKDZs2NBrHLJmPAadzj+TOGQuhK+mhjBNUrNU+CL9GoDydxGCeQEh\nPv6siL6QPkH6d8YILZTHPw1cWrZN22pNTDLgFBfyi0PmeJD+ah5GJC0zE4e8b4enoHZHRwcAb3Eh\nmXIbRAPaaITfE0223+zKhXMmdZqsFwISWrFYDLFYm5qNxYsLSSHXW41cgNW4VcLoaIMVFhYaHBL+\npDvEz7/HE2MGjxyDAWcOu/WQmW/V73jMo3d4ASay+BIB4vHyKUOs+hccn2lpaR5hHgqnOenAyj6s\nrq42l94yDlnjfwJPSFx8P/B3Ex1zcnJEKQWbdlzhas0LOO4kvjQDpjf3J9Fe+sjJUu4tPl9+phmP\ntCathVMiBcqCoE8CmRNftfqEy0JOUrNUOOGIEchlsdcTq+gK8msmTvUIIxovU6e5T5AIe4QE4aP3\nXFWlJrJOAKewjry8GX7DTZ4xXNvKkCyOExl5wK3dRJsoyjjnIBrIRABJ0xNN+8z7r4mHHnI3Quao\nsXjpP/8Pvj5jtpVWr3VWkMo4yFok0E4u1HWaNkxbWxuK5v/YWrtsce9nPHBriiuxoNRhPo5vfnd8\npcfiI9Auj+kZy3c4l1Dk4+SKuqysDG8e+Yv5m/ivaVstS+KwjQkew81B438C3i/RD4iO+fn5VsU0\nSTuucDXfLMcd9Ukk0ISlpIFcF+2d4wf2AnAFPl1QEr8O7P4rsrOzcWmoV4DyZ2rGI63p1VXf94xN\npEBZEPzvxCELl0VQVhqBVsvhhfilAVWT4nHIxNSay6K4ahVef+4ZtO59znw2/IZJFqKNhg7Q7hrI\n9xbNqTLx0gCMb0qr8sW1rTxiWqUNPe3m78T5k8fwwLenY/PuP1jjTByycFnwThr0DA4aDXi+PwBD\nU+p6TZEWgKtQ8r95L/Y+4bht+mdmqdlYPA45kbAgvzTfyfctNe+vqqpCfX29wVs0GsXAOP38kg56\ni0Pmlk/XtTf32t2Ep+lyPqR1+1nImr+XlHX5PdPQeOhj5N7i0IunCtfV1VknJB5uyfEuWzghFPbQ\nX+N/uU5XqXtbsZHrQFZM8zTvZQpX883yfS9bOGnWpoxDluuiOROfyfsR4td2xCsEVv+T5x38mRq/\n0pp4hUn5/qACZUHwN8ch+5noPAxLTlKzVDjheJskwKv1ABfBWpPThtoVaBcO9/MnP1b79mm95YKA\n3kvRDe/8eo3V5JR8UxpwoSutPttCti0z8m3W1DR6XBYmDlmcEmRhnyAayMaQnn5/22px/uTHGH7D\nJE9HZy7YL7e3WWn1WgsnqQiCrEXe0w+wTxWzZs0CYIcEEv20za49l4B4ePJ9S9FxsR0nd/07Du7e\n3GscMo3jrpRp1bXmc2nxEWj+XlLWp0+fRvvxIzhQ5yRW8VPGsmXL8EsmzI0wnlPFOudUWi2c7li5\nBS+vfdAq+gTo/O9ZpwCuSIiOpaWlavs1zYeqNS/g+162cNKsTTk3r/ESrzDo05FH8p8mQPlnVxvG\nlkiBsiDok0DmQtjPROfhNHKSvd1E0qYfedk5vsnjN+Ai2GFc7/iLKQOQMyLbHCEvt7dZTOlhOqUk\npgb03q6W183fWlaeBlzoyuIuQSF9/NLILzRP+na9FdP8aeB1n9ihdYCDv8vtbfF5bDIK5UTTPoRS\nw/jl0xuw6J+XqNlYHKQyDrIWCWjD8wsuujDTjsG0GaU7xM944IkxpNhGT7rdoyz8jsctrI2YiUMO\naOGkuWBozjtFHDLHZ01NjXWBRhDUYbxpWy26Lp5B7pQHrc81/ieQHWQIuCLhjVyH5k7wjCXgOLRD\nLb24o8JKHRecUDVNWMrLasnXtHdkSVm6oCR+JStcE6D8M814pDUN7Tjl+S6RAmVB0CeBzIWwn4nO\nkSYnqWlRTjiyFiJPOJYvBcPzQPWgiIjscUU4+MoWtH7oXvYVTJ9vKQnaXNzPmMgNKb337Xi4mTYP\nqsIlwaonq4SWEUhhSvhbsGAB3mzrp75L65n3+5X3mtTpIBrQWCrI7m7WeJW0OVUYPGKMdRIhhUJx\nnRUVFZ4WTrQ5597+FfOZVHpB1iIBCSVqawQ47oDy8nKzYajhLOBuxvOiG4af8SCtxwkTJuADogET\nVH7HY+5KcebprNuvhZN2eUxzrv3hbMxc8AgGxy/b5BGd89u2bdvwgyWP4pqiEk8xfcBp7/Xi246V\n7ldjWvrZAW8HGdoP/N00r1gsZtFU0o4rXK15geWqjPdJJAtfF5b2ZbVcF+0dikOm/xMPyThkTYDK\neGsJtCathVMiBcqCoG9dpxkD+5novLhQUIEUAk44shaouNBHF+xW3lg8wzD1HSu34Pcr70U47C6l\n5eUtQFcnhozKw7njrQCcSz1uXdDm4qE9iVRqoveSy+Lo/l04ePCgVUTmhRdeQN6tczxjubb1iyQB\nvEdtwt+GDRs8mVok+GXqNFmHlDodRAPeMQPwWkbkPx5bUmba03N/c/vxIwYf3J1Fm3ND/C5h/fr1\ngZucQF6kaD5hutTjCTBUKIb3+7Nw4mM8EA8XzalCdt6EeB0WL/gdj7mFeuO3HzaKnyw+CdplGSnr\n5cv/wGqw2C2cjE8YAPCYlTqtGRPr16/HHSu3IPrhe741pmVoG8AKsAfUg+ZxyPzdknZc4WrNC/i+\nX7duHQC3MJcmLOVpWa5LS7MHvPwaDodRXl6ObRGvANXirTleaU1a6nQiBcqCoI8WsiuE/Ux0XlxI\nTlKzVDjhSCDUxTcy+fK4ECEE02VKZ2enNb7z2knobqm33mFVIvO4QR5LqFITvfeNnz9s/tYqevHC\nRgRc6Ep/tdWXTBy16VJt7u1fwdZ6PTRP6+HHIYgGtNFoA0q/GbkKjuzbgSP7dlhtpvgRsn9mlpqN\ntWDBAvOZVMZB1iIB4YZfcG3cuBHFxcVWAgwViiE6SneIn/HAL35oLbyMJoHf8Zi7UnjZTrL4JGiX\nx0ZZFzn+UxJKPFW4oKDAukCjcMuj+3epxkRlZSVeYDHcHDT+J/C7eOWKhOgeiUSsJCg5litcrtA4\n7ggWL17spE4PdNw2mrXJ3Xfqura5CUPW56xP4KlDjejs7MTTTz/tuZORz9SMx6DTeaJRUH7QJ4HM\nhXAiJrqcpGap8EX6NQClYtOAHlLFx5953b7oK5g+39pQWt+wRCo10XvphjVoHhK40PVjGA2attXi\n1KFGbDjUqPYAA7x0kCm3QTSgjUbHO3kh0i9jiOfylIdGHd2/y2QMatlY3EKWyjjIWiQgYcNxTRdm\ntMFycnI8lp0UqH7Gg0yMGdkvhveef9ypf8A2lt/xmPPV8BsmmXWTxSdBuzwmflg9Kw+v/uFdZMT5\nMqhK36xZs/DSq3tQNHehVROCYP369Zg472GcOtRoFX3ic9ZSp2UHGdoP/N3kOkhLS7PmKGnHFa7W\nvIB/1tDQAMB1WWjWpqSBnwD0u5gkfiUfsjaef6YZj/yU/D8NfRLIfPNrSJMtnCRolgonHDECuSze\nlAWz11QaptaiLGi8jEM+/+kxT15+W6vLZImEZPFW8c3NzTh/8pgVZUHAGz8ScG0rGcYqnh9Q5Mgv\nNE8mxwRd9AA2DWQigBZ2xovu8N801K5A+qAhePLffooHfrDASqvXbqilMg60FuNAG54rCmrhxH2K\nstKX5DM/44E3xDx/8mOciguEoNRhPo7j+vzJj826yeKToPkliR+qdmTi3PFW42rja162bJmVqUnu\nqqP7X2RC3jYmeqsLwvmfgPAfVA/adHEpLrYa70racb7WmhfwuinUJ5EuqDVh2ZsBKCOG6FKP1kL8\nOnRgGvLz8/GRt26ZBZrxSGuSJRv4+/sKfRLIXAhrSJMtnOQkNUtFC0mri19m8HY28jdaHdriqlWI\n7HwOrfVuCydZDU0jbCIhLloLpxo2B+rVpVX54trWE1rGCC+P2oS/+dNv8aROL1iwABs2bPDEIXu6\n8wbQgHfMAPSws4ba5U5s6+7NADaZ3+ROmYm3N61CRUUF+mdmqdlYPA5ZCskga5GAhJLWwonwxvsN\nen3OznHcz79H1uPR/btwub0NhYWFSM3/mkeY+R2PuSvlcnubFYGggeaXJGU9a9at2PPGXuOr56nC\nNTU1VqovGQLnTx7zNFrlccipg4b51pjWQEaryM8B13UQiUTUsrYEXOFqzQv4vpdxyBrImG+5LlmP\nhU4Okl+j7Q7PaC4L/kzdePQ/FSdSoCwI+napJ44/vYGcpMYMWiwjtdkmBGktnEZPut0Tg9tQuwJn\nhcN98MjrLETLNuHA1aWBU0W3htoVprAOANOrSwMudOVRlB8dpWVGvs2axnpP7j3FPEscSGESRAO5\nAb1+3hcxeOR16JcxxBylSaFwwX65vU0NQ+NxyL0lWwBegeVRFHAuzAA7AcYIQuZz5tCbf69o7kJc\nuXAWZ/dsclOnmW/VbzzfoCWLfmJoKztjE2j+XlLW2dnp6OnuMoqP43PevHlu95zFM8yprLhqlSU8\neRzytOpavLbuIavoE6DzP4HfcZ/ThehYWlqKk2yOknZc4faWJi/jkDVrU6bPS742afbCBajxqzZe\nfqYZj7Qmkk8cEilQFgR9Esgc/Ex0fmTXQrIkcMKRQJg6IRcAsFc5fhOCP3zFq+EGjxyDs2faMKbg\nJnOcPXWo0WJKT98wxa+rAb03/EkM0WgUWXkTsGPHb3sdB9ja1i9wHfBuEm7tJlq8RMY5B9EgyH0C\nOLSh99OtPHcj9M/MwqsvbceMf/ieXimLgVTGQdYiAW9DRPOgCzPaMFlZWfhihZ1hlkjmJeDy8NH9\nLxp+yRw1ttdUeq0K3b4nH+k1Dlm7PKY5b3zLjkPm+NyxYwfGTfMqk6AWTkf3vwh0d/rWmOb8TyA7\nNRNwRUJ0bGlpQdfgds9YAqvuNlNoGu7Gjx+PSCSCC3FZkIi1KddFe4f2mtxLxK+XfdxS8jPNeKQ1\nffSs964pkQJlQdC3rtNMCPshjccKemqkKpaGfRxyrAWq9kbhajwOmZha+o9p/LGD71pzKJg+3ypk\nQsCZLBFhR+/dG39v9rgiaw7hcBhLlixRk0W4ttW6ghDIyIN+GUPQPzMLP3pwAbY2fmKNq6ysxPr1\n6z0uC9lJI4gGMhHA4IF1DW95eQsO7t5sjpM8tKz+Zw+jpKTEE4dMm3Np5XfNZ1IZB1mLBJpPc926\ndSgrKzMbprm5GZ8Ky1haSX7GAylqfj9w7MwlK+tQG887k3DXGa3bLw5ZuzwmAbK6aibufmi5ibnm\nz47FYpYw3759O+Yv/BGy8iao9x9OtbffAPAXFEH4l/uBv5tcB9FoFHOWPOMZS+C3p7SuLuXl5diw\nYYPhMU1YystquS5ZOpQMCOIh4le/8fIzzXg0LZyUOORECpQFQZ8EMrc0/Ux0biEnMkkr7Cu+kai4\n0H/HEcSFCDE11UPmx4emrU8hdvpjKyPn4O7NVgwvba4Ln3ot8yCg91JxoZaXt1j1kDs7O9Ued4Ct\nbf0iSQCt3bzj26ypqbH8dYBzkw54XRZkHVLqdBANZCKA9JtRtTleyczUs91Wi8vtbUhLS0P78SNW\nHDL9lld7k8o4yFrkCoHPD3AuzABXMOTk5GAgpePShZM48fgZD8TDxVWrcPpwE956+l8Ri8XQb9DQ\nwPE0js+rZNFP0C/DGUcWnwRNeJKy3rhxIz55NxKPK7fjkO16yNWYPdvZY46P3yv4qqurTQsnXvQJ\n0PmfgIeIcbDqrcTpKOOQJe24wNeaF/Cx1IOQLvU0YSkvqz21s32UseRXmvsHyr7gz9SMR1qTFod8\nNQXKNOiTQA46XhNw61ROUrNUOOFIIOzc4iB/aO5RAHYhFEIwXabwQh+5U2YiNnoSBp09bCVMcKb0\nRiFUJ1Spid77Ud3PzN9aRS+ZqAHYQlf6q01WGYvxNUVd4o0Zb51aYt1oc5B1F+RlWRANpO9Y+s3I\nVdC6d7tDVyXHv6ysDLteiajZWNQbUYMga5GAJ6wY101DA8rKysyGiUajmDbfTnaQQsrPeOCJMfT8\nifMe9mS/+R2PuSvFuCzWVBqLT4J2eUzK+kOROs3jvEtKSjwKGXBwqBkTJCxjfzmOogrbraHxP4Ff\nSJymSCKRiGV8SdpxhcsVGscdQXl5OSKRCDLia9GMCM9ltcd4cfaO9JFr9Z9lYSS/Z0qgNWk+5ETd\nZH7QJ4Fs1z/t3fqVk9QsFU44EggkZGV/LCA4IuLKhXM4W/8MzrLPCqbPt6rF0ebKzHGZLpFKTfRe\nsjyvpvgI17bSevujFTplC1NqzNjS0oL8eDsrCTLjSh6jg2gg8/6ldZE9rsgTXsiPgG2Hm1BXV4dQ\nql1VzBR6+a9fms+kMg6yFglI2HBcywuztLQ0M2+irTyO+xkPpKiz8ibg/MmPMW5MDg7UPe4ISWZx\n+h2PZYQDrduv67R2eUwCZPND38BX595vrGyZKsxxsGzZMjy56XfI/+a9qjuupaUFWTd+E6cONXrc\nLxr/E8hOzbQfrNR/5jrgNJe04wpXa15gNbuI90mktGZNMHppYPM17R2PjzwOxK9kJWsClH+mGY8m\n3j0ry/Pd1TZNltAngcwtTQ1pMg5ZTlKzVDjhyFqgOOR3ZcFsVspP6zpN42UcshMC4yCeCMuZLJFK\nTfReikNua33fKoNIoLVw4iAvYrTyowS0bh7aJYH3MNSeH0QDmQgg/WYtL2/BqUONCKWGMfm+R6w5\nNtSuQMfFcyYEi6fVy4pzgFcZB1mLBKb4D1MUFIdMgiErKwtjTGdh72bnn0vjgXg4e1wR2lrfR3Oz\nY4EFpQ7zcXxeg0deZ9ZNFp8EtU9bXIDc9fpTOLKPxmyynm11nYZb6e/04SZXyDNjgmcv+tWYDsJ/\nUD1o3hmeGzKSdpwGWvMCd33V2LlzJwDXZaELS/uyWq6LcEsGjrygJH6l8NQ3mrzNiPkzNeOR1rT3\nCa9/+TNp4cSFsIY0GYcsJ6lZKpxwJBCozjAdx7kQCYpDnnzfUrwZeRmtrz9jfc4RLQkLJFapSYtD\nprAuwAmHy8/PR0Rp4cS1rTxicsJrLZyatj6Fu6d+2ROHfNttt2HPnj0en7XszhtEA94xA/BeupKr\noLur01F+v3JrGdARkpqcatlYPA5ZKuMga5GA+4RlHDLhLRqNYkScft6kg3iRJJ+jKFmPpHhycnIw\nsuQuz5Hd73jMXSkc52TxSQi6PKb6Fzz2np5ZUVFhhT1SYam21vctvIfCaejujGH79u14YPGjSMu+\nzrfGtAaEPx5mCtg8RHSPRCLW3YykHRf4XKFx3BHU1taioKDA3Pto1iaP+ZZzArylVym7V/Irhaf2\n1sJJMx6DTsWfSQsnfvxJxESXk9QsFb5IvwagWhxy5qix5ojDx58Rl1x5U2fb2XDxf3PBmEgaOI+R\njsViaKhdYaxlwBEMfi2cuNANKhgvLTPTwmnvdg8D7dmzB4DXZ91bqxpOA8LvkQZ9k54+3IS8qbNx\n/MA+06Kd8MYF++X2NjUbq6LC2XTl5eUeZRxkLcoaFNzqHz9+PAB3gxUWFhr6tR3RM838/Hs8MWbU\nxBJ0tdRbNSn8xtM4TjteA4MsPgmav5eUdfHNgwC4vMjxWVhYaNGRnl9ctcqiXXen4+qbPXs2pj64\nBnufWOpp4aTxP4HfcZ+/m+hYWFhozVHSzqq7rTQv4LgjFw8lcWm8IZMyJF97O6fDWqfkv95aOGnG\nI62JIpg4JFKgLAj6JJC5EPYz0Xm1N0+NVMVS0Swlclm8IY7fwGPuBVTrWaiQGkZe8Z2myI9pPmkE\nknCDLJ6RUKUmeu+I9A40Nzc7f5857PkdFYfhwLWt9NP6decFbGs3UQ0sLzGCaBDkPgEc2tD7SSBz\nN0LmqLF467WX8NVpM9RsLA5SGSeyHt6GiOZRXl4OQA9RovdKS8bPeCAePn24yfjJQ+G0wNRhPo7j\n773nH8fp1veBR+8xFp8E7fKYBMi61x38klANqtJHdyxBccg8hpuDxv8SJB/wd3MLO5GsP/5OoNK3\nqwsAdFyyrVo+N0kDuS7aO+RTJ/6g0w7x66VPjyE7O9tUCPR7pmY80tzf/On9nrGJFCgLgv+dFk6w\nq70FFUjRnknWArksyB/LL+WIqVtFM1Maf+Zih1VxLW/qbOvigwhrRQUkUKmJ3kvHptwpd1pHqJyc\nHJSXl6txyFx4SP8cJ7yMPMgeV4Qho/Kw6Pt343d7P7DGmRZOwmVBx2iqhxxEA8LB+G84+JZ+M3KZ\ntO7dbk4jpFAoAqSgoAD9M7NQXOn2UiTgLgupjIOsRQLa8EVzFxp6L1++HPX19QZvzc3NOJtea42X\nVlJvLZzIKJgwYQLOpGV7BHpQh2PNdeZ3qaddHpOyXlz+9/jgeLuJueepws3NzZhW/UMzZtu2bfjO\n/PsxeOQYQzvA67IA/GtMB+Hfe1JxFQm5Dpqbm630Y0k7Lh+05gUcp6tXr0ZdXZ1RRpq1KXEt1yXr\nmMgLSuJX6lROPnYO/Jma8WjikJWTcCIFyoLgb27h5Gei8zAsOUnNUuGE4xcGANAVRxAXIsTU2qXe\nO79eg0siRrB173Y15/5qb0XpveSmaNr6lHWpF41GUVNTY9I/OXChK/3VnPBa0si5462oqanxhOmY\nFk7CZUHChOohB9GAd8wAvH4zcpmMnnQ7RsW/yzUXaC8an9/l9jYrrZ42J3dZSGUcZC3y8qPW53At\nZJkAw3/nJ0Cl8UA8XFy1CudPHsMHmx9FNPp+ry2caBy38qZV11rRQBpol8cm9K6hAacONcZPWhll\nDwAAIABJREFUAr+wThnWpd6aSqseMhee3GVBcci86BOtFdD5n/An++1xRUJ0LC0ttd4taccFvta8\ngOO0qsrhF3JZaNamtKglX8sCUwQav6alpakClH+mGY+0Ji0OOZECZUHQJ4HMhbCfic7DsOQkNUuF\nE44EQkuDc5PeddxbkokQLIUxjb+SNQ7Z4Q7LguZM6TkqrdFDXPzee+mdreZvGWEBwOPXBmyhK495\nFz4lfHljfHnfOL/QPFk8SbqAgmhAz6QNKP1m5Cr4pLHeCXX6latQaEMvW7YMP3/CjrmlzcmFpRQA\nQdai+U18w/MLLrowow3T1taGry+0a574CVAJPDGGV7WTOPM7HndcPGfGmRZOj95jLD4J2uUxKev9\no/yFeUVFhadBAeDgUGtWmpOT48Qhn/4Y+XfbrZ80/icg/PPMWMBWJERHfgHJx7pjXIXL6cFxRzBr\n1iynHnLcLaYJS3lZLWlEe0eGyhJPcP6LxWKqAOWfaQqL1nTpo7c8311tDz4JfRLIXAj7meg8DEtO\nUrNUOOFIINDl2NR47G1Q3zkO/TKGoP0Pj4OL8YLp861507P4TXoiufP0XrrE0+ZBhYckcG0r/XPc\n+pPClPCXn5+PS9fb/e7IUpcRAbyTBn8Ggd3fzNlo3gsRx2+WO+VOpA8aYsUhk0KhljgUZaFlYw1r\n8xYcIgiyFiVwXO/cuRNLlrg9/GKxmJm3m9hgH8f9jAdS1KR4CgsL0bx7s0MHxqN+x2PuSgHcdZPF\nJ0HzuZIA+Y+l83Dr9/7FuNdkqjDHAVnMuVNmqsomPz8fx7qG4NShRt8a01o9ZMK/3A+ytRG5DjjN\nPSn6TOFqzQu4kUJ9EsmY0YSlpIFcF+0dEvRX4lEWdEEpWzhpAlQrkKWt6Wxbm+e7RAqUBUGfBDK3\nNFUTPZSKkirXlygnqTGPfRxyrAVKnf5zHEFG+LOW7ZQ6zYHGj76p1BzlD+7ebMUGE2Hbo64ln0il\nJnovpU6faNpnpU4DjiLR4pCterI+kSTy34CLv0gkgonC50WKQR6feCcN/gwCTbnJ0oVmrvGu18Nv\nmGS+I4VCLXGo4h1Pq6fNGalz3SlSGQdZiybeV/EJ19a6nSF2PDIbI4ZnY0ScfjRersPPeCAeJqOg\nOS5cg1KH+Th+QZs3dbZZN1l8EoKqnt11129w0Iz5hV24yEqdhjmZXVNUohoTlInW2rDLt8Y05393\nLnY9CAKttVFpaan1bkk7v8tqD+7WVGLjxo0A3DhkTVhKV4Rcl7wspJOD5NecnByUlZVha/0fPe9Q\nC2RZxmP8dK64LD6TOGQru0Yz0bu7sO/JR4B44LScpGapcMLRRqLiQuTL40KEEMxro/Lxf3r7TZx4\nY5P1OUe0lkqZSKUm+d7J9y21hHE4HEZ2djazJt05BBGLE16LQz7wwpP4zq2Fnjjk9PR0dHR0eIoL\nye68QTSQHTO8ft6Zxq9J8eWkUOgIuWPHDvTPzFKzsdauXWs+k8o4yFokoA3PL7iW/3/EfX9wltWV\n/2chAar8sJsIEYuLsJLshthSOzslweLSdvEHAce6VtfSSdomUet2O8sPGfjO6M4Ik2LpdLeOmsS6\nFLZlt6uREMSy1poXQ/BHu7HGuEQkMLBiEFIgIIt5A/v943k/9z333PM8eUm34/lHeeC+z3Pvufec\nzz0/V6/GM888g46GNc5BMy3DvyDpIHMdj7PvcQ9T8eTn5+PPKuuCfRp3PZamFBfNg4cd4tNkOY+p\nrGfd8DmkUinng5CpwhUVFZ4DTYICC0xExYWeQP4fT42tMW0R109nf0pFQr5HIOH+YCxJKlyp0OTa\nkdatW+edJQttyphvINnRKt+v92tfXx+ampqGjUO2wGPS7fxjiUOWQvhiagjzIy2kIicZ1wBUvosL\nLAsIyfEnVfSFtgny/8dPtkJ54tPANbLtamlwMclAVFwoLg5ZroO2V8swIo3MXBzy7tagoPbg4CCA\nsLiQTrlN4gEPGtf3/S7fbvbRmVMudZrohUShlU6nkU73m9lYsriQFnLD1cgFRI1bI4yOB6y0tNSt\nIddPm0Pi7HsyMWbClGn4xIn92XrIwrYadz2W0TuyABMRXy7EPV41d5JX/0KuZ35+fiDMR+XlR+nA\nxjlcsWKFc3rrOGRr/5OCkLjMeZDvJh+LiopUKQWfd1LhWs0L5Nrp9bIAzHDmT/Je28iJlIeLz9fP\nLPDIOVktnHIpUJZEIxLIkvkm6lMmC/2RFlKRjONGoMmiPYhVzAryK66dFwgjjtep09ImSMYeoCB8\n8M6LqtREdAJEhXW08+byaz4TjJHaVodkyTXRkQcS7ebaRFHHOSfxQCcCaJ6+37Xbvf+KTOihNCNM\nnHo1nv/3f8EXb1rspdVbnRW0Mk5CiyTr5sKu0zww/f39KFv6D97cdYv7OPAg0ZRUYkmpw3KcPPzZ\n8bUB4iNZzmP+xurWyAlFG6dU1JWVlXj1wO/cn7n/uloaRBKHDyZkDLcka/+TZL/EOCIfi4uLvYpp\nmndS4Vq2Wbl27JNIsoSl5oGeF8/OkTfbAWQFPh2U3K+XXPgfFBYW4uxloQCVv2mBR87pxbVfD8bm\nUqAsif4wccjKZJGUlUayajk8m3EasJqUjEPmprZMFuV1a/HS00+ht/1p9+zya+Z4C+00dIJ2t0i/\nt2xJnYuXBuBsU1aVL6lt9RXTK20YtJu/BaePHsY3v7IQm3e+4o1zccjKZCE7afA3JFk8kPn+ABxP\n2fWakRZAVqEUf/kutD8WmW3GTSwws7FkHHIuYUFxab7X3b3Svb+urg5tbW1u3fr6+nBJhn9xSQfD\nxSFL5HP+U58dtruJTNOV+5DzjkPIlr2XyrrqzgXo3HcI0z8f8UumCjc3N3s3JBluKdddt3DCqLyA\n/9b+1/PMKvWwFRtNB7piWtC8VyhcyzYrz71u4WShTR2HrOfFb+Y+0/4R7tcBZCoErvjb4B3yN639\nyjnJCpP6/UkFypLo945DjoPoMgxLf6SFVCTjZJskINR6QHaBrSanHQ1rMKAM7qePHjL79lm95ZKI\n72V0w29+ut5rckrblEVS6GrU5yNkH5nRtllf3xmYLFwcsrol6MI+STzQjSGDfn8tDTh99BAuv2ZO\n0NFZCvZzA/1eWr3VwkkrgiS0KHv6Af6tYtGiRQD8kEDyzzrs1u+SuIevu3slBj8cwNEd/4S9OzcP\nG4fMcdKUsmBFg3uuER/JsvdSWR8/fhwDRw7gzeYosUreMlatWoUfC2HuhPGSOtE5p9Zr4XTjQ1vw\nwiP3eUWfAHv/B/NUJBUJ+Th//nyz/ZplQ7WaF8hzr1s4WWhTf1sIXjIVBmM68uj9ZwlQ+exiw9hy\nKVCWRCMSyFIIx0F0GU6jP3I4TyQP/ZRz0fVNX7+B7AJHGzcc/+EffQJFkwvdFfLcQL+3KYNNZ5TE\ntIjvPd/zkvuzlZVnkRS6urhLUkifdBrFheZp225YMS2eB6H5xA+tA6L1OzfQn/mOTU6hvN+1G6NG\n5+HHTzbh3r9bbmZjSdLKOAktknjgpYOLDjPrGszDqM0hceBBJsZQsV0554ZAWcRdj3tEGzEXh5zQ\nwskywfCbt6s4ZLme9fX1ngONlNRhvKulAec/PIHpc+/znlv7n6Q7yJCkIpGNXC+bPjsYS5Jr6Ida\nhmvHwkqDZ6JQNUtYame13tc8O7qkLB2U3K9E4ZYAlc8s8Mg5XTZ4LPi7XAqUJdGIBLIUwnEQXS6a\n/khLi0rGES2kHouQL4PhZaB6UkRE4cwy7P3lFvS+k3X2lSxc6ikJHi5pZ8zFQ8r3vp4JN7O+g1W4\nNHn1ZI3QMpIWply/mpoavNo/1nyX1TPvFw/d5VKnk3jAsSzInj2smSppS+owYfI07yZChcK4zurq\n6qCFEw/nrTd8zj3TSi8JLZIolNjWCIjMAVVVVe7AsOEskD2Mp1U3jDjwoNHj7Nmz8TZ5IARV3PVY\nmlKi74zmHdfCyXIe85sbvrMYN9c8gAkZZ5u+osv91tLSgm8tfxBXlFUExfSBqL3Xc69HKD2uxrS2\nswNhBxmeB/luflc6nfZ4qnknFa7VvMAzVWb6JBLh28LSd1brefHsMA6Z/+Ue0nHIlgDV8daaOCer\nhVMuBcqSaGRdp8UGjoPosrhQUoEUkmQc0QKLC717xm/ljWU3uU1940Nb8IuH7kJeXnYqPS9sAc4P\nYdLUGTh1pBdA5NST6IKHS4b25FKpie+lyeLgnh3Yu3evV0Tm2WefxYzrlwRjpbaNiyQBwqs216+p\nqSnI1KLg16nTRIdMnU7igeyYAYTIiPbjqysqXXt6aW8eOHLArYc0Z/FwNmV8CY2NjYmHnKQdKZZN\nmE49mQDDQjGy35+3JjHggXu4bEkdCmfMztRhCSnueiwR6qe/cr9T/ER8mixnGZX16tWviBosfgsn\nZxMGADzspU5bYKKxsRE3PrQFfe/8NrbGtA5tA0QB9oR60DIOWb5b804qXKt5gTz3GzZsAJAtzGUJ\nS31b1vOy0uyBcL/m5eWhqqoKLalQgFrx1nJdOScrdTqXAmVJNEKEnBXCcRBdFhfSH2khFck4CoTm\nzEGmLU8KES4wnSlDQ0Pe+KFPzcGFnjbvHV4lssAM8nBOlZr43pd/eL/7s1XRSxY2Ikmhq+3VXl8y\nddWmU+3WGz6HrW12aJ7Vw09SEg940HgAtd2MpoIDu1txYHer12ZKXiHHTSwws7FqamrcM62Mk9Ai\niWsjHVwbN25EeXm5lwDDQjHkozaHxIEH6fjhXGQZTVLc9ViaUmTZTiI+TZbz2Cnrssh+SqEkU4VL\nSko8BxrDLQ/u2WGCidraWjwrYrglWfufFOd4lYqEfE+lUl4SlB4rFa5UaHLtSMuWLYtSpy+JzDYW\n2pTmO3NeLdmEIe+56BN4bF8nhoaG8OSTTwY+Gf2bFnhMup3nGgUVRyMSyFII5wLR9UdaSEVOMq4B\nKItNA3ZIlRx/4iXf0VeycKl3oKy+YblUauJ76WFN+g5NUujGbRiLuloacGxfJ5r2dZo9wICQDzrl\nNokHPGi83mmHyNjxkwLnqQyNOrhnh8sYtLKxJELWyjgJLZIobORa02HGA1ZUVBQgOy1Q48CDToyZ\nMjaN3z7zaFT/QBysuOux3FeXXzPHzZuIT5PlPOZ+WLdoBl585Q2Mz+zLpCp9ixYtwvMv7kLZrfd4\nNSFIjY2NuPa2+3FsX6dX9El+s5U6rTvI8DzId9N0kJ+f732j5p1UuFbzAvmso6MDQNZkYaFNzYM4\nARjnmOR+pQ3ZGi+fWeBR3pL/r2lEAlkefmvRdAsnTRZSkYzjRqDJ4lVdMHt9rdvUVpQFx+s45NMf\nHA7y8vt7s5ssl5As2Sq+u7sbp48e9qIsSLLxI0lqW71hvOL5CUWO4kLzdHJMkqMH8HmgEwGssDNZ\ndEf+m46GNRhz6SQ8/o/fxze/VeOl1Vseaq2ME9FihnjgpaJgCydpU9SVvvQ+iwMPsiHm6aOHcCwj\nEJJSh+U4udanjx5y8ybi02TZJbkf6lon4tSRXmdqk3NetWqVl6lJc9XBPc8JIe+DieHqgsj9T+L6\nJ9WDdl1cysu9xruad3JfW80LZN0U9kmkg9oSlsMBQB0xRKce58L9etkl+SguLsa7Yd0yjyzwyDnp\nkg3y/SOlEQlkKYStRdMtnPRHWkjFCklrzjgzZDsb/W+sOrTldWuR2v40etuyLZx0NTSLsbmEuFgt\nnOrFN7BXl1XlS2rbILRMMF5ftbl+Sxd+PkidrqmpQVNTUxCHHHTnTeCB7JgB2GFnHQ2ro9jWnZsB\nbHL/Zvrcm/H6prWorq7GuIkFZjaWjEPWQjIJLZIolKwWTlw32W8wtDlH1/E4+x7R48E9O3BuoB+l\npaUYXfyXgTCLux5LU8q5gX4vAsEiyy5JZb1o0fXY9XK7s9XLVOH6+nov1ZdA4PTRw0GjVRmHPPrS\nT8bWmLZIR6vo50DWdJBKpcyytiSpcK3mBfLc6zhki3TMt56XrsfCm4Per30D0Z6xTBbyN23wGH8r\nzqVAWRKNzKmnrj/Dkf5IazNYsYxss80Fslo4XTnnhiAGt6NhDU4qg/uEKVd5C63bhAMXlwbOim4d\nDWtcYR0ArleXRVLo6quovDpqZEbbZn1nW5B7z5hnvQZamCTxQB/A0M77HCZMuQpjx09yV2kqFCnY\nzw30m2FoMg55uGQLIBRYgaJA5DAD/AQYJwiFzVnScPa9slvvwUdnTuLkrk3Z1GlhW40bLw9oxb3f\nc7zVnbFJlr2XyrqwcAz+98J5p/jket52223Z7jnLbnK3svK6tZ7wlHHIC1Y04Fcbvu0VfQLs/U+K\nu+5LvpCP8+fPx1HxjZp3UuEOlyav45AttKnT5/W+dmn2ygRo7VdrvH5mgUfOifJJUi4FypJoRAJZ\nUhxEl1d2KyRLk2QcBcK82dMBAO3G9ZsL/M4vQw03Yco0nDzRj2kln3HX2WP7Or1NGfQNM+y6FvG9\nee+l0dfXh4IZs9Ha+q/DjgN8bRsXuA6Eh0Si3VyLl+g45yQeJJlPgIg3fD+98tKMMG5iAV58fhtu\n+uuv2ZWyBGllnIQWSbINEb+DDjMemIKCAvxptZ9hlkvmJZDdwwf3POf2y8SpVw+bSm9Vodv9+APD\nxiFbzmN+88bX/DhkuZ6tra2YuSBUJkktnA7ueQ64MBRbY1ruf5Lu1EySioR87OnpwfkJA8FYkld3\nWyg0a+1mzZqFVCqFMxlZkAva1PPi2eFZ02eJ+/VcjFlKP7PAI+f07j+HvqZcCpQl0ci6TgshHLdo\nMlYwqJFqIA3/OhShBVZ7Y7iajEPmptb2Y44/vPcN7xtKFi71CpmQ5CbLRdjxve2Z9xbOLPO+IS8v\nD8uXLzeTRaS2tbqCkHTkwdjxkzBuYgG+e18Ntna+542rra1FY2NjYLLQnTSSeKATAdw6iK7hPS9s\nwd6dm911UoaWtf3gflRUVARxyDycK2v/xj3TyjgJLZIsm+aGDRtQWVnpDkx3dzc+UMhYo6Q48EBF\nLf0Dh0+c9bIOrfGyM4k0nXHecXHIlvOYAmRd3c2449urXcy1/O10Ou0J823btmHpPd9FwYzZpv8j\nqvb2MwDxgiJp/fV5kO+m6aCvrw9Llj8VjCXFnSmrq0tVVRWamprcHrOEpXZW63np0qEEENxD3K9x\n4/UzCzy6Fk5GHHIuBcqSaEQCWSLNOIguEXIuH+mFfWUOEosL/XdmgaQQ4aZmPWR5feja+gTSxw95\nGTl7d272Ynh5uM58ECLzJOJ7WVyo54UtXj3koaEhs8cd4GvbuEgSwGo3H9k26+vrPXsdEHnSgdBk\nQXTI1OkkHuhEAG03Y7U5WcnM1bNtacC5gX7k5+dj4MgBLw6Z/1ZWe9PKOAktSoUgvw+IHGZAVjAU\nFRXhEqbj0uGkbjxx4IF7uLxuLY7v78JrT/4/pNNpjL30ssTxHCe/q+Le72Hs+GgcEZ8mS3hSWW/c\nuBHvvZHKxJX7cch+PeQVWLw4OmORjT8UfCtWrHAtnGTRJ8De/yQZIibJq7eS4aOOQ9a8kwLfal4g\nx7IHIZ16lrDUzuqgdnaMMtb7ld/+tnEu5G9a4JFzsuKQL6ZAmUUjEshJ12uSRKf6Iy2kIhlHgbB9\nS7T4l00/CMAvhMIFpjNFFvqYPvdmpK+cg0tP7vcSJuSmDKMQVuRUqYnvfbf5B+7PVkUvnagB+EJX\n26tdVpmI8XVFXTKNGa+fV+F5tCXpugvaWZbEA2071nYzmgp627dFfDVy/CsrK7HjlykzG4u9ES1K\nQoskmbDiTDcdHaisrHQHpq+vDwuW+skOWkjFgQeZGMPfv/a2+4Pst7jrsTSlOJPF+lqH+DRZzmMq\n63dU6rSM866oqAgUMhCtoQUmKCzTvzuCsmrfrGHtf1JcSJylSFKplAe+NO+kwpUKTa4dqaqqCqlU\nCuMzc7FAROCsDsBLdHa0jdyq/6wLI8X9pibOybIh52omi6MRCWS//unw6Fd/pIVUJOMoEChkdX8s\nIDki4qMzp3Cy7SmcFM9KFi71qsXxcE0sym66XCo18b1EnhdTfERqW43efu2FTvnClI0Ze3p6UJxp\nZ6VJZ1zpa3QSD3Tev0YXhTPLgvBCeQXs39+F5uZmjBrtVxVzhV7+48fumVbGSWiRRGEj11o7zPLz\n8913k7f6Oh4HHqioC2bMxumjhzBzWhHebH40EpICccZdj3WEA+cd13Xach5TgGz+9pfwF7d+w6Fs\nnSos12DVqlV4fNPPUfzlu0xzXE9PDwo+/WUc29cZmF+s/U/SnZp5HrzUf2E6kDzXvJMK12pe4DW7\nyPRJZFqzJRhDHvj7mmcnsJFniPuVKNkSoPKZBR5dvHtBQfB3F9s0WdOIBLJEmtai6Thk/ZEWUpGM\nI1pgHPIbumC2KOVndZ3meB2HHIXARAtPxspNlkulJr6Xccj9vW95ZRBJVgsnSdoRY5UfJXHeMrRL\nk+xhaP1+Eg90IoC2m/W8sAXH9nVi1Og8XHf3A943djSsweCHp1wIlkyr1xXngFAZJ6FFkiv+IxQF\n45ApGAoKCjDNdRYOD7t8rsED93DhzDL0976F7u4IgSWlDstx8rsmTLnKzZuIT5PZpy0jQG5/6Qkc\n2M0xm7zf9rpOI1vp7/j+rqyQF2BCZi/G1ZhOWv+ketCyM7wEMpp3kgdW84Ls/FZg+/btALImC1tY\n+s5qPS+uLQGOdlByvzI89eWusBmx/E0LPHJO7Y+F9uWPpYWTFMLWouk4ZP2RFlKRjKNAYJ1hXsel\nEEmKQ77u7pV4NfUCel96ynsuF1ozFsitUpMVh8ywLiAKhysuLkbKaOEkta2+YkrGWy2curY+gTvm\n/XkQh/yFL3wBu3btCmzWujtvEg9kxwwgdLrSVHDh/FCk/H6SrWXAKySbnFrZWDIOWSvjJLRIkjZh\nHYfMdevr68PkDP/CpINMkaSYqyjRIxVPUVERplTcHlzZ467H0pQi15yIT1OS85j1L2TsPX+zurra\nC3tkYan+3re8dR+Vl48LQ2ls27YN31z2IPILr4qtMW0R10+GmQL+HiLfU6mU55vRvJMCXyo0uXak\nhoYGlJSUOL+PhTZlzLf+JiAsvcrsXr1fGZ46XAsnCzwm3Yo/lhZO8vqTC0TXH2khFTnJuAagVhzy\nxKlXuyuOHH9COblmzFvsZ8Nl/l8KxlzSwGWMdDqdRkfDGoeWgUgwxLVwkkI3qWC8RmauhVP7tmAD\n7dq1C0Bosx6uVY3kAdf3QId9SI/v78KMeYtx5M3drkU7100K9nMD/WY2VnV1dOiqqqoCZZyEFnUN\nCon6Z82aBSB7wEpLSx3/+g/YmWZx9j2ZGDP12gqc72nzalLEjec4yTtZA4OIT5Nl76WyLv/spQCy\ne1GuZ2lpqcdH/n553VqPdxeGIlPf4sWLMe++9Wh/bGXQwsna/6S46758N/lYWlrqfaPmnVd322he\nINeOJh4mcVl7Qydl6H0ddk6HN0+9/4Zr4WSBR86JEUyScilQlkQjEshSCMdBdFntLaiRaiAVCynR\nZPGyun4DD2cdUL0nYdLoPMwov8UV+XHNJ51AUmaQZTflVKmJ7508ZhDd3d3Rn0/sD/4di8NIktpW\n22njuvMCPtrNVQNrJ0YSD5LMJ0DEG76fAlmaESZOvRqv/ep5/MWCm8xsLElaGecyH9mGiN9RVVUF\nwA5R4ns1kokDD9zDx/d3OTv5qLz8xNRhOU6u32+feRTHe98CHrzTIT5NlvOYAmTDS9H6UqgmVemj\njyUpDlnGcEuy9r8mvQ/kuyXCziXrT74TqI3t6gIAg2d9VCu/TfNAz4tnhzZ17g/edrhfz35wGIWF\nha5CYNxvWuCR3/7q978RjM2lQFkS/WFaOMGv9pZUIMX6TaIFmixoj5VOOW7qXtXMlONPfDjoVVyb\nMW+x5/ggY72ogBwqNfG9vDZNn3uLd4UqKipCVVWVGYcshYe2z0nG68iDwpllmDR1Bu79+h34efvb\n3jjXwkmZLHiNZj3kJB5wDWZ9KVpvbTejyaS3fZu7jVChMAKkpKQE4yYWoLw220uRJE0WWhknoUUS\nD3zZrfc4fq9evRptbW1u3bq7u3FyTIM3XqOk4Vo4ERTMnj0bJ/ILA4Ge1OHYMp3FOfUs5zGV9bKq\nv8LbRwZczL1MFe7u7saCFd9xY1paWvDVpd/AhCnTHO+A0GQBxNeYTlr/8KaSVSQ0HXR3d3vpx5p3\nUj5YzQvkmq5btw7Nzc1OGVloU6+1npeuY6IdlNyv7FROG7sk+ZsWeHRxyMZNOJcCZUn0e7dwioPo\nMgxLf6SFVCTjpMMAAM5nFkgKEW5qy6n3m5+ux1kVI9jbvs3Mub9YryjfSzNF19YnPKdeX18f6uvr\nXfqnJCl0tb1aMt5KGjl1pBf19fVBmI5r4aRMFhQmrIecxAPZMQMI7WY0mVw55wZMzfzddOdAe87Z\n/M4N9Htp9Tyc0mShlXESWpTlR73nyCJknQAj/12cANXggXu4vG4tTh89jLc3P4i+vreGbeHEcRLl\nLVjR4EUDWWQ5j13oXUcHju3rzNwEfuTdMjyn3vparx6yFJ7SZME4ZFn0iXMF7P3P9dP99qQiIR/n\nz5/vvVvzTgp8q3mBXNO6umi/0GRhoU2NqPW+1gWmSNZ+zc/PNwWofGaBR87JikPOpUBZEo1IIEsh\nHAfRZRiW/kgLqUjGUSD0dESe9PNHwpJMXGAtjDn+o4KZKMwb9BC03JTBVWm9HeIS996zv9nq/qwj\nLAAEdm3AF7r6mnfmA65XGOMr+8bFhebp4knaBJTEA/4mD6C2m9FU8F5nWxTq9JOsQuGBXrVqFX74\nmB9zy8MphaUWAElo0f2bzIGXDi46zHhg+vv78cV7/JoncQJUk0yMkVXt9JrFXY8HPzzlxrkWTg/e\n6RCfJst5TGW9Z2q8MK+urg4aFADRGlrNSouKiqI45OOHUHyH3/rJ2v8krr/MjAV8RUI3Owu9AAAg\nAElEQVQ+SgekHJsdk1W4kh9y7UiLFi2K6iFnzGKWsNTOas0jnh0dKss9IfdfOp02Bah8Zikszuns\nu68Ff3exPfg0jUggSyEcB9FlGJb+SAupSMZRINA5Ni8Te5vUd07S2PGTMPDKo5BivGThUu+7+VvS\nk55L7jzfSyee9R0sPKRJalttn5PoTwtTrl9xcTHO/onf745IXUcEyE4a8jdIfn+z6KCFDpHIbjZ9\n7i0Yc+kkLw6ZCoUtcRhlYWVjfbI/LDhESkKLmuRab9++HcuXZ3v4pdNp993ZxAb/Oh4HHqioqXhK\nS0vRvXNzxAexR+Oux9KUAmTnTcSnybK5UoD828rbcP3X/t6Z13SqsFwDIubpc282lU1xcTEOn5+E\nY/s6Y2tMW/WQuf76POjWRjQdSJ4HKfpC4VrNCyRIYZ9EghlLWGoe6Hnx7FDQf5SJsqCDUrdwsgSo\nVSDLmtPJ/v7g73IpUJZEIxLIEmmaEH3UaFTUZW2J+iOtzeNfhyK0wNTp/8oskBP+omU7U6clcfyV\nn5nvrvJ7d272YoPJ2IG+LJLPpVIT38vU6fe7dnup00CkSKw4ZK+ebEwkif5/ILt+qVQK1yqbFxWD\nvj7JThryN0iWctOlC923ZrpeX37NHPd3VChsicOKdzKtnocz1Zw1p2hlnIQWXbyvYRNuaMh2hmh9\nYDEmX16IyRn+cbyeRxx44B4mKOjOCNek1GE5TjpoZ8xb7OZNxKcpqerZ7bf/DHvdmB/5hYu81Gm4\nm9kVZRUmmGAmWm/Hjtga03L/Z7/FrwdBslobzZ8/33u35l2cszpYu/W12LhxI4BsHLIlLLUpQs9L\nOwt5c9D7taioCJWVldja9uvgHWaBLA88Zm7nhsniY4lD9rJrLIh+4Tx2P/4AkAmc1h9pIRXJOB4k\nFheiLU8KES6wrI0qx//n66/i/Zc3ec/lQluplLlUatLvve7ulZ4wzsvLQ2FhoUCT2W9IYpZkvBWH\n/Oazj+Or15cGcchjxozB4OBgUFxId+dN4oHumBHaeW92dk3Gl1Oh8ArZ2tqKcRMLzGysRx55xD3T\nyjgJLZJ44KWDa/Xq1XjmmWfQ0bDGOWimZfgXJB1kruNx9j3uYSqe/Px8/FllXbBP467H0pTionnw\nsEN8miznMZX1rBs+h1Qq5XwQMlW4oqLCc6BJUGCBiai40BPI/+OpsTWmLeL66exPqUjI9wgk3B+M\nJUmFKxWaXDvSunXrvLNkoU0Z8w0kO1rl+/V+7evrQ1NT07BxyBZ4TLqdfyxxyFIIX0wNYX6khVTk\nJOMagMp3cYFlASE5/qSKvtA2Qf7/+MlWKE98GrhGtl0tDS4mGYiKC8XFIct10PZqGUakkZmLQ97d\nGhTUHhwcBBAWF9Ipt0k84EHj+r7f5dvNPjpzyqVOE72QKLTS6TTS6X4zG0sWF9JCbrgauYCocWuE\n0fGAlZaWujXk+mlzSJx9TybGTJgyDZ84sT9bD1nYVuOuxzJ6RxZgIuLLhbjHq+ZO8upfyPXMz88P\nhPmovPwoHdg4hytWrHBObx2HbO1/UhASlzkP8t3kY1FRkSql4PNOKlyreYFcO71eFoAZzvxJ3msb\nOZHycPH5+pkFHjknq4VTLgXKkmhEAlky30R9ymShP9JCKpJx3Ag0WbQHsYpZQX7FtfMCYcTxOnVa\n2gTJ2AMUhA/eeVGVmohOgKiwjnbeXH7NZ4IxUtvqkCy5JjryQKLdXJso6jjnJB7oRADN0/e7drv3\nX5EJPZRmhIlTr8bz//4v+OJNi720equzglbGSWiRZN1c2HWaB6a/vx9lS//Bm7tucR8HHiSakkos\nKXVYjpOHPzu+NkB8JMt5zN9Y3Ro5oWjjlIq6srISrx74nfsz919XS4NI4vDBhIzhlmTtf5LslxhH\n5GNxcbFXMU3zTipcyzYr1459EkmWsNQ80PPi2TnyZjuArMCng5L79ZIL/4PCwkKcvSwUoPI3LfDI\nOb249uvB2FwKlCXRHyYOWZkskrLSSFYth2czTgNWk5JxyNzUlsmivG4tXnr6KfS2P+2eXX7NHG+h\nnYZO0O4W6feWLalz8dIAnG3KqvIlta2+YnqlDYN287fg9NHD+OZXFmLzzle8cS4OWZksZCcN/oYk\niwcy3x+A4ym7XjPSAsgqlOIv34X2xyKzzbiJBWY2loxDziUsKC7N97q7V7r319XVoa2tza1bX18f\nLsnwLy7pYLg4ZIl8zn/qs8N2N5FpunIfct5xCNmy91JZV925AJ37DmH65yN+yVTh5uZm74Ykwy3l\nuusWThiVF/Df2v96nlmlHrZio+lAV0wLmvcKhWvZZuW51y2cLLSp45D1vPjN3GfaP8L9OoBMhcAV\nfxu8Q/6mtV85J1lhUr8/qUBZEv3ecchxEF2GYemPtJCKZJxskwSEWg/ILrDV5LSjYQ0GlMH99NFD\nZt8+q7dcEvG9jG74zU/Xe01OaZuySApdjfp8hOwjM9o26+s7A5OFi0NWtwRd2CeJB7oxZNDvr6UB\np48ewuXXzAk6OkvBfm6g30urt1o4aUWQhBZlTz/Av1UsWrQIgB8SSP5Zh936XRL38HV3r8TghwM4\nuuOfsHfn5mHjkDlOmlIWrGhwzzXiI1n2Xirr48ePY+DIAbzZHCVWyVvGqlWr8GMhzJ0wXlInOufU\nei2cbnxoC1545D6v6BNg7/9gnoqkIiEf58+fb7Zfs2yoVvMCee51CycLbepvC8FLpsJgTEcevf8s\nASqfXWwYWy4FypJoRAJZCuE4iC7DafRHDueJ5KGfci66vunrN5Bd4GjjhuM//KNPoGhyobtCnhvo\n9zZlsOmMkpgW8b3ne15yf7ay8iySQlcXd0kK6ZNOo7jQPG3bDSumxfMgNJ/4oXVAtH7nBvoz37HJ\nKZT3u3Zj1Og8/PjJJtz7d8vNbCxJWhknoUUSD7x0cNFhZl2DeRi1OSQOPMjEGCq2K+fcECiLuOtx\nj2gj5uKQE1o4WSYYfvN2FYcs17O+vt5zoJGSOox3tTTg/IcnMH3ufd5za/+TdAcZklQkspHrZdNn\nB2NJcg39UMtw7VhYafBMFKpmCUvtrNb7mmdHl5Slg5L7lSjcEqDymQUeOafLBo8Ff5dLgbIkGpFA\nlkI4DqLLRdMfaWlRyTiihdRjEfJlMLwMVE+KiCicWYa9v9yC3neyzr6ShUs9JcHDJe2MuXhI+d7X\nM+Fm1newCpcmr56sEVpG0sKU61dTU4NX+8ea77J65v3iobtc6nQSDziWBdmzhzVTJW1JHSZMnubd\nRKhQGNdZXV0dtHDi4bz1hs+5Z1rpJaFFEoUS2xoBkTmgqqrKHRg2nAWyh/G06oYRBx40epw9ezbe\nJg+EoIq7HktTSvSd0bzjWjhZzmN+c8N3FuPmmgcwIeNs01d0ud9aWlrwreUP4oqyiqCYPhC193ru\n9Qilx9WY1nZ2IOwgw/Mg383vSqfTHk8176TCtZoXeKbKTJ9EInxbWPrOaj0vnh3GIfO/3EM6DtkS\noDreWhPnZLVwyqVAWRKNrOu02MBxEF0WF0oqkEKSjCNaYHGhd8/4rbyx7Ca3qW98aAt+8dBdyMvL\nTqXnhS3A+SFMmjoDp470AoicehJd8HDJ0J5cKjXxvTRZHNyzA3v37vWKyDz77LOYcf2SYKzUtnGR\nJEB41eb6NTU1BZlaFPw6dZrokKnTSTyQHTOAEBnRfnx1RaVrTy/tzQNHDrj1kOYsHs6mjC+hsbEx\n8ZCTtCPFsgnTqScTYFgoRvb789YkBjxwD5ctqUPhjNmZOiwhxV2PJUL99Ffud4qfiE+T5Syjsl69\n+hVRg8Vv4eRswgCAh73UaQtMNDY24saHtqDvnd/G1pjWoW2AKMCeUA9axiHLd2veSYVrNS+Q537D\nhg0AsoW5LGGpb8t6XlaaPRDu17y8PFRVVaElFQpQK95arivnZKVO51KgLIlGiJCzQjgOosviQvoj\nLaQiGUeB0Jw5yLTlSSHCBaYzZWhoyBs/9Kk5uNDT5r3Dq0QWmEEezqlSE9/78g/vd3+2KnrJwkYk\nKXS1vdrrS6au2nSq3XrD57C1zQ7Ns3r4SUriAQ8aD6C2m9FUcGB3Kw7sbvXaTMkr5LiJBWY2Vk1N\njXumlXESWiRxbaSDa+PGjSgvL/cSYFgohnzU5pA48CAdP5yLLKNJirseS1OKLNtJxKfJch47ZV0W\n2U8plGSqcElJiedAY7jlwT07TDBRW1uLZ0UMtyRr/5PiHK9SkZDvqVTKS4LSY6XClQpNrh1p2bJl\nUer0JZHZxkKb0nxnzqslmzDkPRd9Ao/t68TQ0BCefPLJwCejf9MCj0m381yjoOJoRAJZCuFcILr+\nSAupyEnGNQBlsWnADqmS40+85Dv6ShYu9Q6U1Tcsl0pNfC89rEnfoUkK3bgNY1FXSwOO7etE075O\nswcYEPJBp9wm8YAHjdc77RAZO35S4DyVoVEH9+xwGYNWNpZEyFoZJ6FFEoWNXGs6zHjAioqKAmSn\nBWoceNCJMVPGpvHbZx6N6h+IgxV3PZb76vJr5rh5E/FpspzH3A/rFs3Ai6+8gfGZfZlUpW/RokV4\n/sVdKLv1Hq8mBKmxsRHX3nY/ju3r9Io+yW+2Uqd1BxmeB/lumg7y8/O9b9S8kwrXal4gn3V0dADI\nmiwstKl5ECcA4xyT3K+0IVvj5TMLPMpb8v81jUggy8NvLZpu4aTJQiqScdwINFm8qgtmr691m9qK\nsuB4HYd8+oPDQV5+f292k+USkiVbxXd3d+P00cNelAVJNn4kSW2rN4xXPD+hyFFcaJ5Ojkly9AA+\nD3QigBV2JovuyH/T0bAGYy6dhMf/8fv45rdqvLR6y0OtlXEiWswQD7xUFGzhJG2KutKX3mdx4EE2\nxDx99BCOZQRCUuqwHCfX+vTRQ27eRHyaLLsk90Nd60ScOtLrTG1yzqtWrfIyNWmuOrjnOSHkfTAx\nXF0Quf9JXP+ketCui0t5udd4V/NO7mureYGsm8I+iXRQW8JyOACoI4bo1ONcuF8vuyQfxcXFeDes\nW+aRBR45J12yQb5/pDQigSyFsLVouoWT/kgLqVghac0ZZ4ZsZ6P/jVWHtrxuLVLbn0ZvW7aFk66G\nZjE2lxAXq4VTvfgG9uqyqnxJbRuElgnG66s212/pws8HqdM1NTVoamoK4pCD7rwJPJAdMwA77Kyj\nYXUU27pzM4BN7t9Mn3szXt+0FtXV1Rg3scDMxpJxyFpIJqFFEoWS1cKJ6yb7DYY25+g6HmffI3o8\nuGcHzg30o7S0FKOL/zIQZnHXY2lKOTfQ70UgWGTZJamsFy26Hrtebne2epkqXF9f76X6EgicPno4\naLQq45BHX/rJ2BrTFuloFf0cyJoOUqmUWdaWJBWu1bxAnnsdh2yRjvnW89L1WHhz0Pu1byDaM5bJ\nQv6mDR7jb8W5FChLopE59dT1ZzjSH2ltBiuWkW22uUBWC6cr59wQxOB2NKzBSWVwnzDlKm+hdZtw\n4OLSwFnRraNhjSusA8D16rJICl19FZVXR43MaNus72wLcu8Z86zXQAuTJB7oAxjaeZ/DhClXYez4\nSe4qTYUiBfu5gX4zDE3GIQ+XbAGEAitQFIgcZoCfAOMEobA5SxrOvld26z346MxJnNy1KZs6LWyr\ncePlAa2493uOt7ozNsmy91JZFxaOwf9eOO8Un1zP2267Lds9Z9lN7lZWXrfWE54yDnnBigb8asO3\nvaJPgL3/SXHXfckX8nH+/Pk4Kr5R804q3OHS5HUcsoU2dfq83tcuzV6ZAK39ao3XzyzwyDlRPknK\npUBZEo1IIEuKg+jyym6FZGmSjKNAmDd7OgCg3bh+c4Hf+WWo4SZMmYaTJ/oxreQz7jp7bF+ntymD\nvmGGXdcivjfvvTT6+vpQMGM2Wlv/ddhxgK9t4wLXgfCQSLSba/ESHeecxIMk8wkQ8Ybvp1demhHG\nTSzAi89vw01//TW7UpYgrYyT0CJJtiHid9BhxgNTUFCAP632M8xyybwEsnv44J7n3H6ZOPXqYVPp\nrSp0ux9/YNg4ZMt5zG/e+JofhyzXs7W1FTMXhMokqYXTwT3PAReGYmtMy/1P0p2aSVKRkI89PT04\nP2EgGEvy6m4LhWat3axZs5BKpXAmIwtyQZt6Xjw7PGv6LHG/nosxS+lnFnjknN7959DXlEuBsiQa\nWddpIYTjFk3GCgY1Ug2k4V+HIrTAam8MV5NxyNzU2n7M8Yf3vuF9Q8nCpV4hE5LcZLkIO763PfPe\nwpll3jfk5eVh+fLlZrKI1LZWVxCSjjwYO34Sxk0swHfvq8HWzve8cbW1tWhsbAxMFrqTRhIPdCKA\nWwfRNbznhS3Yu3Ozu07K0LK2H9yPioqKIA6Zh3Nl7d+4Z1oZJ6FFkmXT3LBhAyorK92B6e7uxgcK\nGWuUFAceqKilf+DwibNe1qE1XnYmkaYzzjsuDtlyHlOArKu7GXd8e7WLuZa/nU6nPWG+bds2LL3n\nuyiYMdv0f0TV3n4GIF5QJK2/Pg/y3TQd9PX1Ycnyp4KxpLgzZXV1qaqqQlNTk9tjlrDUzmo9L106\nlACCe4j7NW68fmaBR9fCyYhDzqVAWRKNSCBLpBkH0SVCzuUjvbCvzEFicaH/ziyQFCLc1KyHLK8P\nXVufQPr4IS8jZ+/OzV4MLw/XmQ9CZJ5EfC+LC/W8sMWrhzw0NGT2uAN8bRsXSQJY7eYj22Z9fb1n\nrwMiTzoQmiyIDpk6ncQDnQig7WasNicrmbl6ti0NODfQj/z8fAwcOeDFIfPfympvWhknoUWpEOT3\nAZHDDMgKhqKiIlzCdFw6nNSNJw48cA+X163F8f1deO3J/4d0Oo2xl16WOJ7j5HdV3Ps9jB0fjSPi\n02QJTyrrjRs34r03Upm4cj8O2a+HvAKLF0dnLLLxh4JvxYoVroWTLPoE2PufJEPEJHn1VjJ81HHI\nmndS4FvNC+RY9iCkU88SltpZHdTOjlHGer/y2982zoX8TQs8ck5WHPLFFCizaEQCOel6TZLoVH+k\nhVQk4ygQtm+JFv+y6QcB+IVQuMB0pshCH9Pn3oz0lXNw6cn9XsKE3JRhFMKKnCo18b3vNv/A/dmq\n6KUTNQBf6Gp7tcsqEzG+rqhLpjHj9fMqPI+2JF13QTvLknigbcfabkZTQW/7toivRo5/ZWUldvwy\nZWZjsTeiRUlokSQTVpzppqMDlZWV7sD09fVhwVI/2UELqTjwIBNj+PvX3nZ/kP0Wdz2WphRnslhf\n6xCfJst5TGX9jkqdlnHeFRUVgUIGojW0wASFZfp3R1BW7Zs1rP1PiguJsxRJKpXywJfmnVS4UqHJ\ntSNVVVUhlUphfGYuFogInNUBeInOjraRW/WfdWGkuN/UxDlZNuRczWRxNCKB7Nc/HR796o+0kIpk\nHAUChazujwUkR0R8dOYUTrY9hZPiWcnCpV61OB6uiUXZTZdLpSa+l8jzYoqPSG2r0duvvdApX5iy\nMWNPTw+KM+2sNOmMK32NTuKBzvvX6KJwZlkQXiivgP37u9Dc3IxRo/2qYq7Qy3/82D3TyjgJLZIo\nbORaa4dZfn6++27yVl/H48ADFXXBjNk4ffQQZk4rwpvNj0ZCUiDOuOuxjnDgvOO6TlvOYwqQzd/+\nEv7i1m84lK1TheUarFq1Co9v+jmKv3yXaY7r6elBwae/jGP7OgPzi7X/SbpTM8+Dl/ovTAeS55p3\nUuFazQu8ZheZPolMa7YEY8gDf1/z7AQ28gxxvxIlWwJUPrPAo4t3LygI/u5imyZrGpFAlkjTWjQd\nh6w/0kIqknFEC4xDfkMXzBal/Kyu0xyv45CjEJho4clYuclyqdTE9zIOub/3La8MIslq4SRJO2Ks\n8qMkzluGdmmSPQyt30/igU4E0Haznhe24Ni+TowanYfr7n7A+8aOhjUY/PCUC8GSafW64hwQKuMk\ntEhyxX+EomAcMgVDQUEBprnOwuFhl881eOAeLpxZhv7et9DdHSGwpNRhOU5+14QpV7l5E/FpMvu0\nZQTI7S89gQO7OWaT99te12lkK/0d39+VFfICTMjsxbga00nrn1QPWnaGl0BG807ywGpekJ3fCmzf\nvh1A1mRhC0vfWa3nxbUlwNEOSu5Xhqe+3BU2I5a/aYFHzqn9sdC+/LG0cJJC2Fo0HYesP9JCKpJx\nFAisM8zruBQiSXHI1929Eq+mXkDvS095z+VCa8YCuVVqsuKQGdYFROFwxcXFSBktnKS21VdMyXir\nhVPX1idwx7w/D+KQv/CFL2DXrl2BzVp3503igeyYAYROV5oKLpwfipTfT7K1DHiFZJNTKxtLxiFr\nZZyEFknSJqzjkLlufX19mJzhX5h0kCmSFHMVJXqk4ikqKsKUituDK3vc9ViaUuSaE/FpSnIes/6F\njL3nb1ZXV3thjyws1d/7lrfuo/LycWEojW3btuGbyx5EfuFVsTWmLeL6yTBTwN9D5HsqlfJ8M5p3\nUuBLhSbXjtTQ0ICSkhLn97HQpoz51t8EhKVXmd2r9yvDU4dr4WSBx6Rb8cfSwklef3KB6PojLaQi\nJxnXANSKQ5449Wp3xZHjTygn14x5i/1suMz/S8GYSxq4jJFOp9PoaFjj0DIQCYa4Fk5S6CYVjNfI\nzLVwat8WbKBdu3YBCG3Ww7WqkTzg+h7osA/p8f1dmDFvMY68udu1aOe6ScF+bqDfzMaqro4OXVVV\nVaCMk9CirkEhUf+sWbMAZA9YaWmp41//ATvTLM6+JxNjpl5bgfM9bV5NirjxHCd5J2tgEPFpsuy9\nVNbln70UQHYvyvUsLS31+MjfL69b6/HuwlBk6lu8eDHm3bce7Y+tDFo4WfufFHfdl+8mH0tLS71v\n1Lzz6m4bzQvk2tHEwyQua2/opAy9r8PO6fDmqfffcC2cLPDIOTGCSVIuBcqSaEQCWQrhOIguq70F\nNVINpGIhJZosXlbXb+DhrAOq9yRMGp2HGeW3uCI/rvmkE0jKDLLsppwqNfG9k8cMoru7O/rzif3B\nv2NxGElS22o7bVx3XsBHu7lqYO3ESOJBkvkEiHjD91MgSzPCxKlX47VfPY+/WHCTmY0lSSvjXOYj\n2xDxO6qqqgDYIUp8r0YyceCBe/j4/i5nJx+Vl5+YOizHyfX77TOP4njvW8CDdzrEp8lyHlOAbHgp\nWl8K1aQqffSxJMUhyxhuSdb+16T3gXy3RNi5ZP3JdwK1sV1dAGDwrI9q5bdpHuh58ezQps79wdsO\n9+vZDw6jsLDQVQiM+00LPPLbX/3+N4KxuRQoS6I/TAsn+NXekgqkWL9JtECTBe2x0inHTd2rmply\n/IkPB72KazPmLfYcH2SsFxWQQ6UmvpfXpulzb/GuUEVFRaiqqjLjkKXw0PY5yXgdeVA4swyTps7A\nvV+/Az9vf9sb51o4KZMFr9Gsh5zEA67BrC9F663tZjSZ9LZvc7cRKhRGgJSUlGDcxAKU12Z7KZKk\nyUIr4yS0SOKBL7v1Hsfv1atXo62tza1bd3c3To5p8MZrlDRcCyeCgtmzZ+NEfmEg0JM6HFumszin\nnuU8prJeVvVXePvIgIu5l6nC3d3dWLDiO25MS0sLvrr0G5gwZZrjHRCaLID4GtNJ6x/eVLKKhKaD\n7u5uL/1Y807KB6t5gVzTdevWobm52SkjC23qtdbz0nVMtIOS+5WdymljlyR/0wKPLg7ZuAnnUqAs\niX7vFk5xEF2GYemPtJCKZJx0GADA+cwCSSHCTW059X7z0/U4q2IEe9u3mTn3F+sV5Xtppuja+oTn\n1Ovr60N9fb1L/5Qkha62V0vGW0kjp470or6+PgjTcS2clMmCwoT1kJN4IDtmAKHdjCaTK+fcgKmZ\nv5vuHGjPOZvfuYF+L62eh1OaLLQyTkKLsvyo9xxZhKwTYOS/ixOgGjxwD5fXrcXpo4fx9uYH0df3\n1rAtnDhOorwFKxq8aCCLLOexC73r6MCxfZ2Zm8CPvFuG59RbX+vVQ5bCU5osGIcsiz5xroC9/7l+\nut+eVCTk4/z58713a95JgW81L5BrWlcX7ReaLCy0qRG13te6wBTJ2q/5+fmmAJXPLPDIOVlxyLkU\nKEuiEQlkKYTjILoMw9IfaSEVyTgKhJ6OyJN+/khYkokLrIUxx39UMBOFeYMegpabMrgqrbdDXOLe\ne/Y3W92fdYQFgMCuDfhCV1/zznzA9QpjfGXfuLjQPF08SZuAknjA3+QB1HYzmgre62yLQp1+klUo\nPNCrVq3CDx/zY255OKWw1AIgCS26f5M58NLBRYcZD0x/fz++eI9f8yROgGqSiTGyqp1es7jr8eCH\np9w418LpwTsd4tNkOY+prPdMjRfm1dXVQYMCIFpDq1lpUVFRFId8/BCK7/BbP1n7n8T1l5mxgK9I\nyEfpgJRjs2OyClfyQ64dadGiRVE95IxZzBKW2lmtecSzo0NluSfk/kun06YAlc8shcU5nX33teDv\nLrYHn6YRCWQphOMgugzD0h9pIRXJOAoEOsfmZWJvk/rOSRo7fhIGXnkUUoyXLFzqfTd/S3rSc8md\n53vpxLO+g4WHNEltq+1zEv1pYcr1Ky4uxtk/8fvdEanriADZSUP+BsnvbxYdtNAhEtnNps+9BWMu\nneTFIVOhsCUOoyysbKxP9ocFh0hJaFGTXOvt27dj+fJsD790Ou2+O5vY4F/H48ADFTUVT2lpKbp3\nbo74IPZo3PVYmlKA7LyJ+DRZNlcKkH9beRuu/9rfO/OaThWWa0DEPH3uzaayKS4uxuHzk3BsX2ds\njWmrHjLXX58H3dqIpgPJ8yBFXyhcq3mBBCnsk0gwYwlLzQM9L54dCvqPMlEWdFDqFk6WALUKZFlz\nOtnfH/xdLgXKkmhEAlkiTROijxqNirqsLVF/pLV5/OtQhBaYOv1fmQVywl+0bGfqtCSOv/Iz891V\nfu/OzV5sMBk70JdF8rlUauJ7mTr9ftduL3UaiBSJFYfs1ZONiSTR/w9k1y+VSmwcfM0AACAASURB\nVOFaZfOiYtDXJ9lJQ/4GyVJuunSh+9ZM1+vLr5nj/o4KhS1xWPFOptXzcKaas+YUrYyT0KKL9zVs\nwg0N2c4QrQ8sxuTLCzE5wz+O1/OIAw/cwwQF3RnhmpQ6LMdJB+2MeYvdvIn4NCVVPbv99p9hrxvz\nI79wkZc6DXczu6KswgQTzETr7dgRW2Na7v/st/j1IEhWa6P58+d779a8i3NWB2u3vhYbN24EkI1D\ntoSlNkXoeWlnIW8Oer8WFRWhsrISW9t+HbzDLJDlgcfM7dwwWXwscchedo0F0S+cx+7HHwAygdP6\nIy2kIhnHg8TiQrTlSSHCBZa1UeX4/3z9Vbz/8ibvuVxoK5Uyl0pN+r3X3b3SE8Z5eXkoLCwUaDL7\nDUnMkoy34pDffPZxfPX60iAOecyYMRgcHAyKC+nuvEk80B0zQjvvzc6uyfhyKhReIVtbWzFuYoGZ\njfXII4+4Z1oZJ6FFEg+8dHCtXr0azzzzDDoa1jgHzbQM/4Kkg8x1PM6+xz1MxZOfn48/q6wL9mnc\n9ViaUlw0Dx52iE+T5Tymsp51w+eQSqWcD0KmCldUVHgONAkKLDARFRd6Avl/PDW2xrRFXD+d/SkV\nCfkegYT7g7EkqXClQpNrR1q3bp13liy0KWO+gWRHq3y/3q99fX1oamoaNg7ZAo9Jt/OPJQ5ZCuGL\nqSHMj7SQipxkXANQ+S4usCwgJMefVNEX2ibI/x8/2QrliU8D18i2q6XBxSQDUXGhuDhkuQ7aXi3D\niDQyc3HIu1uDgtqDg4MAwuJCOuU2iQc8aFzf97t8u9lHZ0651GmiFxKFVjqdRjrdb2ZjyeJCWsgN\nVyMXEDVujTA6HrDS0lK3hlw/bQ6Js+/JxJgJU6bhEyf2Z+shC9tq3PVYRu/IAkxEfLkQ93jV3Ele\n/Qu5nvn5+YEwH5WXH6UDG+dwxYoVzumt45Ct/U8KQuIy50G+m3wsKipSpRR83kmFazUvkGun18sC\nMMOZP8l7bSMnUh4uPl8/s8Aj52S1cMqlQFkSjUggS+abqE+ZLPRHWkhFMo4bgSaL9iBWMSvIr7h2\nXiCMOF6nTkubIBl7gILwwTsvqlIT0QkQFdbRzpvLr/lMMEZqWx2SJddERx5ItJtrE0Ud55zEA50I\noHn6ftdu9/4rMqGH0owwcerVeP7f/wVfvGmxl1ZvdVbQyjgJLZKsmwu7TvPA9Pf3o2zpP3hz1y3u\n48CDRFNSiSWlDstx8vBnx9cGiI9kOY/5G6tbIycUbZxSUVdWVuLVA79zf+b+62ppEEkcPpiQMdyS\nrP1Pkv0S44h8LC4u9iqmad5JhWvZZuXasU8iyRKWmgd6Xjw7R95sB5AV+HRQcr9ecuF/UFhYiLOX\nhQJU/qYFHjmnF9d+PRibS4GyJPrDxCErk0VSVhrJquXwbMZpwGpSMg6Zm9oyWZTXrcVLTz+F3van\n3bPLr5njLbTT0Ana3SL93rIldS5eGoCzTVlVvqS21VdMr7Rh0G7+Fpw+ehjf/MpCbN75ijfOxSEr\nk4XspMHfkGTxQOb7A3A8ZddrRloAWYVS/OW70P5YZLYZN7HAzMaScci5hAXFpfled/dK9/66ujq0\ntbW5devr68MlGf7FJR0MF4cskc/5T3122O4mMk1X7kPOOw4hW/ZeKuuqOxegc98hTP98xC+ZKtzc\n3OzdkGS4pVx33cIJo/IC/lv7X88zq9TDVmw0HeiKaUHzXqFwLdusPPe6hZOFNnUcsp4Xv5n7TPtH\nuF8HkKkQuOJvg3fI37T2K+ckK0zq9ycVKEui3zsOOQ6iyzAs/ZEWUpGMk22SgFDrAdkFtpqcdjSs\nwYAyuJ8+esjs22f1lksivpfRDb/56XqvySltUxZJoatRn4+QfWRG22Z9fWdgsnBxyOqWoAv7JPFA\nN4YM+v21NOD00UO4/Jo5QUdnKdjPDfR7afVWCyetCJLQouzpB/i3ikWLFgHwQwLJP+uwW79L4h6+\n7u6VGPxwAEd3/BP27tw8bBwyx0lTyoIVDe65Rnwky95LZX38+HEMHDmAN5ujxCp5y1i1ahV+LIS5\nE8ZL6kTnnFqvhdOND23BC4/c5xV9Auz9H8xTkVQk5OP8+fPN9muWDdVqXiDPvW7hZKFN/W0heMlU\nGIzpyKP3nyVA5bOLDWPLpUBZEo1IIEshHAfRZTiN/sjhPJE89FPORdc3ff0Gsgscbdxw/Id/9AkU\nTS50V8hzA/3epgw2nVES0yK+93zPS+7PVlaeRVLo6uIuSSF90mkUF5qnbbthxbR4HoTmEz+0DojW\n79xAf+Y7NjmF8n7XbowanYcfP9mEe/9uuZmNJUkr4yS0SOKBlw4uOsysazAPozaHxIEHmRhDxXbl\nnBsCZRF3Pe4RbcRcHHJCCyfLBMNv3q7ikOV61tfXew40UlKH8a6WBpz/8ASmz73Pe27tf5LuIEOS\nikQ2cr1s+uxgLEmuoR9qGa4dCysNnolC1SxhqZ3Vel/z7OiSsnRQcr8ShVsCVD6zwCPndNngseDv\ncilQlkQjEshSCMdBdLlo+iMtLSoZR7SQeixCvgyGl4HqSRERhTPLsPeXW9D7TtbZV7JwqackeLik\nnTEXDynf+3om3Mz6Dlbh0uTVkzVCy0hamHL9ampq8Gr/WPNdVs+8Xzx0l0udTuIBx7Ige/awZqqk\nLanDhMnTvJsIFQrjOqurq4MWTjyct97wOfdMK70ktEiiUGJbIyAyB1RVVbkDw4azQPYwnlbdMOLA\ng0aPs2fPxtvkgRBUcddjaUqJvjOad1wLJ8t5zG9u+M5i3FzzACZknG36ii73W0tLC761/EFcUVYR\nFNMHovZez70eofS4GtPazg6EHWR4HuS7+V3pdNrjqeadVLhW8wLPVJnpk0iEbwtL31mt58Wzwzhk\n/pd7SMchWwJUx1tr4pysFk65FChLopF1nRYbOA6iy+JCSQVSSJJxRAssLvTuGb+VN5bd5Db1jQ9t\nwS8eugt5edmp9LywBTg/hElTZ+DUkV4AkVNPogseLhnak0ulJr6XJouDe3Zg7969XhGZZ599FjOu\nXxKMldo2LpIECK/aXL+mpqYgU4uCX6dOEx0ydTqJB7JjBhAiI9qPr66odO3ppb154MgBtx7SnMXD\n2ZTxJTQ2NiYecpJ2pFg2YTr1ZAIMC8XIfn/emsSAB+7hsiV1KJwxO1OHJaS467FEqJ/+yv1O8RPx\nabKcZVTWq1e/Imqw+C2cnE0YAPCwlzptgYnGxkbc+NAW9L3z29ga0zq0DRAF2BPqQcs4ZPluzTup\ncK3mBfLcb9iwAUC2MJclLPVtWc/LSrMHwv2al5eHqqoqtKRCAWrFW8t15Zys1OlcCpQl0QgRclYI\nx0F0WVxIf6SFVCTjKBCaMweZtjwpRLjAdKYMDQ1544c+NQcXetq8d3iVyAIzyMM5VWrie1/+4f3u\nz1ZFL1nYiCSFrrZXe33J1FWbTrVbb/gctrbZoXlWDz9JSTzgQeMB1HYzmgoO7G7Fgd2tXpspeYUc\nN7HAzMaqqalxz7QyTkKLJK6NdHBt3LgR5eXlXgIMC8WQj9ocEgcepOOHc5FlNElx12NpSpFlO4n4\nNFnOY6esyyL7KYWSTBUuKSnxHGgMtzy4Z4cJJmpra/GsiOGWZO1/UpzjVSoS8j2VSnlJUHqsVLhS\nocm1Iy1btixKnb4kMttYaFOa78x5tWQThrznok/gsX2dGBoawpNPPhn4ZPRvWuAx6XaeaxRUHI1I\nIEshnAtE1x9pIRU5ybgGoCw2DdghVXL8iZd8R1/JwqXegbL6huVSqYnvpYc16Ts0SaEbt2Es6mpp\nwLF9nWja12n2AANCPuiU2yQe8KDxeqcdImPHTwqcpzI06uCeHS5j0MrGkghZK+MktEiisJFrTYcZ\nD1hRUVGA7LRAjQMPOjFmytg0fvvMo1H9A3Gw4q7Hcl9dfs0cN28iPk2W85j7Yd2iGXjxlTcwPrMv\nk6r0LVq0CM+/uAtlt97j1YQgNTY24trb7sexfZ1e0Sf5zVbqtO4gw/Mg303TQX5+vveNmndS4VrN\nC+Szjo4OAFmThYU2NQ/iBGCcY5L7lTZka7x8ZoFHeUv+v6YRCWR5+K1F0y2cNFlIRTKOG4Emi1d1\nwez1tW5TW1EWHK/jkE9/cDjIy+/vzW6yXEKyZKv47u5unD562IuyIMnGjySpbfWG8YrnJxQ5igvN\n08kxSY4ewOeBTgSwws5k0R35bzoa1mDMpZPw+D9+H9/8Vo2XVm95qLUyTkSLGeKBl4qCLZykTVFX\n+tL7LA48yIaYp48ewrGMQEhKHZbj5FqfPnrIzZuIT5Nll+R+qGudiFNHep2pTc551apVXqYmzVUH\n9zwnhLwPJoarCyL3P4nrn1QP2nVxKS/3Gu9q3sl9bTUvkHVT2CeRDmpLWA4HAHXEEJ16nAv362WX\n5KO4uBjvhnXLPLLAI+ekSzbI94+URiSQpRC2Fk23cNIfaSEVKyStOePMkO1s9L+x6tCW161FavvT\n6G3LtnDS1dAsxuYS4mK1cKoX38BeXVaVL6ltg9AywXh91eb6LV34+SB1uqamBk1NTUEcctCdN4EH\nsmMGYIeddTSsjmJbd24GsMn9m+lzb8brm9aiuroa4yYWmNlYMg5ZC8kktEiiULJaOHHdZL/B0OYc\nXcfj7HtEjwf37MC5gX6UlpZidPFfBsIs7nosTSnnBvq9CASLLLsklfWiRddj18vtzlYvU4Xr6+u9\nVF8CgdNHDweNVmUc8uhLPxlbY9oiHa2inwNZ00EqlTLL2pKkwrWaF8hzr+OQLdIx33peuh4Lbw56\nv/YNRHvGMlnI37TBY/ytOJcCZUk0Mqeeuv4MR/ojrc1gxTKyzTYXyGrhdOWcG4IY3I6GNTipDO4T\nplzlLbRuEw5cXBo4K7p1NKxxhXUAuF5dFkmhq6+i8uqokRltm/WdbUHuPWOe9RpoYZLEA30AQzvv\nc5gw5SqMHT/JXaWpUKRgPzfQb4ahyTjk4ZItgFBgBYoCkcMM8BNgnCAUNmdJw9n3ym69Bx+dOYmT\nuzZlU6eFbTVuvDygFfd+z/FWd8YmWfZeKuvCwjH43wvnneKT63nbbbdlu+csu8ndysrr1nrCU8Yh\nL1jRgF9t+LZX9Amw9z8p7rov+UI+zp8/H0fFN2reSYU7XJq8jkO20KZOn9f72qXZKxOgtV+t8fqZ\nBR45J8onSbkUKEuiEQlkSXEQXV7ZrZAsTZJxFAjzZk8HALQb128u8Du/DDXchCnTcPJEP6aVfMZd\nZ4/t6/Q2ZdA3zLDrWsT35r2XRl9fHwpmzEZr678OOw7wtW1c4DoQHhKJdnMtXqLjnJN4kGQ+ASLe\n8P30ykszwriJBXjx+W246a+/ZlfKEqSVcRJaJMk2RPwOOsx4YAoKCvCn1X6GWS6Zl0B2Dx/c85zb\nLxOnXj1sKr1VhW734w8MG4dsOY/5zRtf8+OQ5Xq2trZi5oJQmSS1cDq45zngwlBsjWm5/0m6UzNJ\nKhLysaenB+cnDARjSV7dbaHQrLWbNWsWUqkUzmRkQS5oU8+LZ4dnTZ8l7tdzMWYp/cwCj5zTu/8c\n+ppyKVCWRCPrOi2EcNyiyVjBoEaqgTT861CEFljtjeFqMg6Zm1rbjzn+8N43vG8oWbjUK2RCkpss\nF2HH97Zn3ls4s8z7hry8PCxfvtxMFpHa1uoKQtKRB2PHT8K4iQX47n012Nr5njeutrYWjY2NgclC\nd9JI4oFOBHDrILqG97ywBXt3bnbXSRla1vaD+1FRURHEIfNwrqz9G/dMK+MktEiybJobNmxAZWWl\nOzDd3d34QCFjjZLiwAMVtfQPHD5x1ss6tMbLziTSdMZ5x8UhW85jCpB1dTfjjm+vdjHX8rfT6bQn\nzLdt24al93wXBTNmm/6PqNrbzwDEC4qk9dfnQb6bpoO+vj4sWf5UMJYUd6asri5VVVVoampye8wS\nltpZreelS4cSQHAPcb/GjdfPLPDoWjgZcci5FChLohEJZIk04yC6RMi5fKQX9pU5SCwu9N+ZBZJC\nhJua9ZDl9aFr6xNIHz/kZeTs3bnZi+Hl4TrzQYjMk4jvZXGhnhe2ePWQh4aGzB53gK9t4yJJAKvd\nfGTbrK+v9+x1QORJB0KTBdEhU6eTeKATAbTdjNXmZCUzV8+2pQHnBvqRn5+PgSMHvDhk/ltZ7U0r\n4yS0KBWC/D4gcpgBWcFQVFSES5iOS4eTuvHEgQfu4fK6tTi+vwuvPfn/kE6nMfbSyxLHc5z8rop7\nv4ex46NxRHyaLOFJZb1x40a890YqE1fuxyH79ZBXYPHi6IxFNv5Q8K1YscK1cJJFnwB7/5NkiJgk\nr95Kho86DlnzTgp8q3mBHMsehHTqWcJSO6uD2tkxyljvV37728a5kL9pgUfOyYpDvpgCZRaNSCAn\nXa9JEp3qj7SQimQcBcL2LdHiXzb9IAC/EAoXmM4UWehj+tybkb5yDi49ud9LmJCbMoxCWJFTpSa+\n993mH7g/WxW9dKIG4Atdba92WWUixtcVdck0Zrx+XoXn0Zak6y5oZ1kSD7TtWNvNaCrobd8W8dXI\n8a+srMSOX6bMbCz2RrQoCS2SZMKKM910dKCystIdmL6+PixY6ic7aCEVBx5kYgx//9rb7g+y3+Ku\nx9KU4kwW62sd4tNkOY+prN9RqdMyzruioiJQyEC0hhaYoLBM/+4Iyqp9s4a1/0lxIXGWIkmlUh74\n0ryTClcqNLl2pKqqKqRSKYzPzMUCEYGzOgAv0dnRNnKr/rMujBT3m5o4J8uGnKuZLI5GJJD9+qfD\no1/9kRZSkYyjQKCQ1f2xgOSIiI/OnMLJtqdwUjwrWbjUqxbHwzWxKLvpcqnUxPcSeV5M8RGpbTV6\n+7UXOuULUzZm7OnpQXGmnZUmnXGlr9FJPNB5/xpdFM4sC8IL5RWwf38XmpubMWq0X1XMFXr5jx+7\nZ1oZJ6FFEoWNXGvtMMvPz3ffTd7q63gceKCiLpgxG6ePHsLMaUV4s/nRSEgKxBl3PdYRDpx3XNdp\ny3lMAbL521/CX9z6DYeydaqwXINVq1bh8U0/R/GX7zLNcT09PSj49JdxbF9nYH6x9j9Jd2rmefBS\n/4XpQPJc804qXKt5gdfsItMnkWnNlmAMeeDva56dwEaeIe5XomRLgMpnFnh08e4FBcHfXWzTZE0j\nEsgSaVqLpuOQ9UdaSEUyjmiBcchv6ILZopSf1XWa43UcchQCEy08GSs3WS6VmvhexiH3977llUEk\nWS2cJGlHjFV+lMR5y9AuTbKHofX7STzQiQDabtbzwhYc29eJUaPzcN3dD3jf2NGwBoMfnnIhWDKt\nXlecA0JlnIQWSa74j1AUjEOmYCgoKMA011k4POzyuQYP3MOFM8vQ3/sWursjBJaUOizHye+aMOUq\nN28iPk1mn7aMALn9pSdwYDfHbPJ+2+s6jWylv+P7u7JCXoAJmb0YV2M6af2T6kHLzvASyGjeSR5Y\nzQuy81uB7du3A8iaLGxh6Tur9by4tgQ42kHJ/crw1Je7wmbE8jct8Mg5tT8W2pc/lhZOUghbi6bj\nkPVHWkhFMo4CgXWGeR2XQiQpDvm6u1fi1dQL6H3pKe+5XGjNWCC3Sk1WHDLDuoAoHK64uBgpo4WT\n1Lb6iikZb7Vw6tr6BO6Y9+dBHPIXvvAF7Nq1K7BZ6+68STyQHTOA0OlKU8GF80OR8vtJtpYBr5Bs\ncmplY8k4ZK2Mk9AiSdqEdRwy162vrw+TM/wLkw4yRZJirqJEj1Q8RUVFmFJxe3Blj7seS1OKXHMi\nPk1JzmPWv5Cx9/zN6upqL+yRhaX6e9/y1n1UXj4uDKWxbds2fHPZg8gvvCq2xrRFXD8ZZgr4e4h8\nT6VSnm9G804KfKnQ5NqRGhoaUFJS4vw+FtqUMd/6m4Cw9Cqze/V+ZXjqcC2cLPCYdCv+WFo4yetP\nLhBdf6SFVOQk4xqAWnHIE6de7a44cvwJ5eSaMW+xnw2X+X8pGHNJA5cx0ul0Gh0NaxxaBiLBENfC\nSQrdpILxGpm5Fk7t24INtGvXLgChzXq4VjWSB1zfAx32IT2+vwsz5i3GkTd3uxbtXDcp2M8N9JvZ\nWNXV0aGrqqoKlHESWtQ1KCTqnzVrFoDsASstLXX86z9gZ5rF2fdkYszUaytwvqfNq0kRN57jJO9k\nDQwiPk2WvZfKuvyzlwLI7kW5nqWlpR4f+fvldWs93l0Yikx9ixcvxrz71qP9sZVBCydr/5Pirvvy\n3eRjaWmp942ad17dbaN5gVw7mniYxGXtDZ2Uofd12Dkd3jz1/huuhZMFHjknRjBJyqVAWRKNSCBL\nIRwH0WW1t6BGqoFULKREk8XL6voNPJx1QPWehEmj8zCj/BZX5Mc1n3QCSZlBlt2UU6UmvnfymEF0\nd3dHfz6xP/h3LA4jSWpbbaeN684L+Gg3Vw2snRhJPEgynwARb/h+CmRpRpg49Wq89qvn8RcLbjKz\nsSRpZZzLfGQbIn5HVVUVADtEie/VSCYOPHAPH9/f5ezko/LyE1OH5Ti5fr995lEc730LePBOh/g0\nWc5jCpANL0XrS6GaVKWPPpakOGQZwy3J2v+a9D6Q75YIO5esP/lOoDa2qwsADJ71Ua38Ns0DPS+e\nHdrUuT942+F+PfvBYRQWFroKgXG/aYFHfvur3/9GMDaXAmVJ9Idp4QS/2ltSgRTrN4kWaLKgPVY6\n5bipe1UzU44/8eGgV3FtxrzFnuODjPWiAnKo1MT38to0fe4t3hWqqKgIVVVVZhyyFB7aPicZryMP\nCmeWYdLUGbj363fg5+1ve+NcCydlsuA1mvWQk3jANZj1pWi9td2MJpPe9m3uNkKFwgiQkpISjJtY\ngPLabC9FkjRZaGWchBZJPPBlt97j+L169Wq0tbW5devu7sbJMQ3eeI2ShmvhRFAwe/ZsnMgvDAR6\nUodjy3QW59SznMdU1suq/gpvHxlwMfcyVbi7uxsLVnzHjWlpacFXl34DE6ZMc7wDQpMFEF9jOmn9\nw5tKVpHQdNDd3e2lH2veSflgNS+Qa7pu3To0Nzc7ZWShTb3Wel66jol2UHK/slM5beyS5G9a4NHF\nIRs34VwKlCXR793CKQ6iyzAs/ZEWUpGMkw4DADifWSApRLipLafeb366HmdVjGBv+zYz5/5ivaJ8\nL80UXVuf8Jx6fX19qK+vd+mfkqTQ1fZqyXgraeTUkV7U19cHYTquhZMyWVCYsB5yEg9kxwwgtJvR\nZHLlnBswNfN3050D7Tln8zs30O+l1fNwSpOFVsZJaFGWH/WeI4uQdQKM/HdxAlSDB+7h8rq1OH30\nMN7e/CD6+t4atoUTx0mUt2BFgxcNZJHlPHahdx0dOLavM3MT+JF3y/CceutrvXrIUnhKkwXjkGXR\nJ84VsPc/10/325OKhHycP3++927NOynwreYFck3r6qL9QpOFhTY1otb7WheYIln7NT8/3xSg8pkF\nHjknKw45lwJlSTQigSyFcBxEl2FY+iMtpCIZR4HQ0xF50s8fCUsycYG1MOb4jwpmojBv0EPQclMG\nV6X1dohL3HvP/mar+7OOsAAQ2LUBX+jqa96ZD7heYYyv7BsXF5qniydpE1ASD/ibPIDabkZTwXud\nbVGo00+yCoUHetWqVfjhY37MLQ+nFJZaACShRfdvMgdeOrjoMOOB6e/vxxfv8WuexAlQTTIxRla1\n02sWdz0e/PCUG+daOD14p0N8miznMZX1nqnxwry6ujpoUABEa2g1Ky0qKorikI8fQvEdfusna/+T\nuP4yMxbwFQn5KB2Qcmx2TFbhSn7ItSMtWrQoqoecMYtZwlI7qzWPeHZ0qCz3hNx/6XTaFKDymaWw\nOKez774W/N3F9uDTNCKBLIVwHESXYVj6Iy2kIhlHgUDn2LxM7G1S3zlJY8dPwsArj0KK8ZKFS73v\n5m9JT3ouufN8L5141new8JAmqW21fU6iPy1MuX7FxcU4+yd+vzsidR0RIDtpyN8g+f3NooMWOkQi\nu9n0ubdgzKWTvDhkKhS2xGGUhZWN9cn+sOAQKQktapJrvX37dixfnu3hl06n3XdnExv863gceKCi\npuIpLS1F987NER/EHo27HktTCpCdNxGfJsvmSgHybytvw/Vf+3tnXtOpwnINiJinz73ZVDbFxcU4\nfH4Sju3rjK0xbdVD5vrr86BbG9F0IHkepOgLhWs1L5AghX0SCWYsYal5oOfFs0NB/1EmyoIOSt3C\nyRKgVoEsa04n+/uDv8ulQFkSjUggS6RpQvRRo1FRl7Ul6o+0No9/HYrQAlOn/yuzQE74i5btTJ2W\nxPFXfma+u8rv3bnZiw0mYwf6skg+l0pNfC9Tp9/v2u2lTgORIrHikL16sjGRJPr/gez6pVIpXKts\nXlQM+vokO2nI3yBZyk2XLnTfmul6ffk1c9zfUaGwJQ4r3sm0eh7OVHPWnKKVcRJadPG+hk24oSHb\nGaL1gcWYfHkhJmf4x/F6HnHggXuYoKA7I1yTUoflOOmgnTFvsZs3EZ+mpKpnt9/+M+x1Y37kFy7y\nUqfhbmZXlFWYYIKZaL0dO2JrTMv9n/0Wvx4EyWptNH/+fO/dmndxzupg7dbXYuPGjQCycciWsNSm\nCD0v7SzkzUHv16KiIlRWVmJr26+Dd5gFsjzwmLmdGyaLjyUO2cuusSD6hfPY/fgDQCZwWn+khVQk\n43iQWFyItjwpRLjAsjaqHP+fr7+K91/e5D2XC22lUuZSqUm/97q7V3rCOC8vD4WFhQJNZr8hiVmS\n8VYc8pvPPo6vXl8axCGPGTMGg4ODQXEh3Z03iQe6Y0Zo573Z2TUZX06Fwitka2srxk0sMLOxHnnk\nEfdMK+MktEjigZcOrtWrV+OZZ55BR8Ma56CZluFfkHSQuY7H2fe4h6l48vPz8WeVdcE+jbseS1OK\ni+bBww7xabKcx1TWs274HFKplPNByFThiooKz4EmQYEFJqLiQk8g/4+nWCEemQAAIABJREFUxtaY\ntojrp7M/pSIh3yOQcH8wliQVrlRocu1I69at886ShTZlzDeQ7GiV79f7ta+vD01NTcPGIVvgMel2\n/rHEIUshfDE1hPmRFlKRk4xrACrfxQWWBYTk+JMq+kLbBPn/4ydboTzxaeAa2Xa1NLiYZCAqLhQX\nhyzXQdurZRiRRmYuDnl3a1BQe3BwEEBYXEin3CbxgAeN6/t+l283++jMKZc6TfRCotBKp9NIp/vN\nbCxZXEgLueFq5AKixq0RRscDVlpa6taQ66fNIXH2PZkYM2HKNHzixP5sPWRhW427HsvoHVmAiYgv\nF+Ier5o7yat/IdczPz8/EOaj8vKjdGDjHK5YscI5vXUcsrX/SUFIXOY8yHeTj0VFRaqUgs87qXCt\n5gVy7fR6WQBmOPMnea9t5ETKw8Xn62cWeOScrBZOuRQoS6IRCWTJfBP1KZOF/kgLqUjGcSPQZNEe\nxCpmBfkV184LhBHH69RpaRMkYw9QED5450VVaiI6AaLCOtp5c/k1nwnGSG2rQ7LkmujIA4l2c22i\nqOOck3igEwE0T9/v2u3ef0Um9FCaESZOvRrP//u/4Is3LfbS6q3OCloZJ6FFknVzYddpHpj+/n6U\nLf0Hb+66xX0ceJBoSiqxpNRhOU4e/uz42gDxkSznMX9jdWvkhKKNUyrqyspKvHrgd+7P3H9dLQ0i\nicMHEzKGW5K1/0myX2IckY/FxcVexTTNO6lwLdusXDv2SSRZwlLzQM+LZ+fIm+0AsgKfDkru10su\n/A8KCwtx9rJQgMrftMAj5/Ti2q8HY3MpUJZEf5g4ZGWySMpKI1m1HJ7NOA1YTUrGIXNTWyaL8rq1\neOnpp9Db/rR7dvk1c7yFdho6QbtbpN9btqTOxUsDcLYpq8qX1Lb6iumVNgzazd+C00cP45tfWYjN\nO1/xxrk4ZGWykJ00+BuSLB7IfH8Ajqfses1ICyCrUIq/fBfaH4vMNuMmFpjZWDIOOZewoLg03+vu\nXuneX1dXh7a2NrdufX19uCTDv7ikg+HikCXyOf+pzw7b3USm6cp9yHnHIWTL3ktlXXXnAnTuO4Tp\nn4/4JVOFm5ubvRuSDLeU665bOGFUXsB/a//reWaVetiKjaYDXTEtaN4rFK5lm5XnXrdwstCmjkPW\n8+I3c59p/wj36wAyFQJX/G3wDvmb1n7lnGSFSf3+pAJlSfR7xyHHQXQZhqU/0kIqknGyTRIQaj0g\nu8BWk9OOhjUYUAb300cPmX37rN5yScT3MrrhNz9d7zU5pW3KIil0NerzEbKPzGjbrK/vDEwWLg5Z\n3RJ0YZ8kHujGkEG/v5YGnD56CJdfMyfo6CwF+7mBfi+t3mrhpBVBElqUPf0A/1axaNEiAH5IIPln\nHXbrd0ncw9fdvRKDHw7g6I5/wt6dm4eNQ+Y4aUpZsKLBPdeIj2TZe6msjx8/joEjB/Bmc5RYJW8Z\nq1atwo+FMHfCeEmd6JxT67VwuvGhLXjhkfu8ok+Avf+DeSqSioR8nD9/vtl+zbKhWs0L5LnXLZws\ntKm/LQQvmQqDMR159P6zBKh8drFhbLkUKEuiEQlkKYTjILoMp9EfOZwnkod+yrno+qav30B2gaON\nG47/8I8+gaLJhe4KeW6g39uUwaYzSmJaxPee73nJ/dnKyrNICl1d3CUppE86jeJC87RtN6yYFs+D\n0Hzih9YB0fqdG+jPfMcmp1De79qNUaPz8OMnm3Dv3y03s7EkaWWchBZJPPDSwUWHmXUN5mHU5pA4\n8CATY6jYrpxzQ6As4q7HPaKNmItDTmjhZJlg+M3bVRyyXM/6+nrPgUZK6jDe1dKA8x+ewPS593nP\nrf1P0h1kSFKRyEaul02fHYwlyTX0Qy3DtWNhpcEzUaiaJSy1s1rva54dXVKWDkruV6JwS4DKZxZ4\n5JwuGzwW/F0uBcqSaEQCWQrhOIguF01/pKVFJeOIFlKPRciXwfAyUD0pIqJwZhn2/nILet/JOvtK\nFi71lAQPl7Qz5uIh5Xtfz4SbWd/BKlyavHqyRmgZSQtTrl9NTQ1e7R9rvsvqmfeLh+5yqdNJPOBY\nFmTPHtZMlbQldZgweZp3E6FCYVxndXV10MKJh/PWGz7nnmmll4QWSRRKbGsEROaAqqoqd2DYcBbI\nHsbTqhtGHHjQ6HH27Nl4mzwQgirueixNKdF3RvOOa+FkOY/5zQ3fWYybax7AhIyzTV/R5X5raWnB\nt5Y/iCvKKoJi+kDU3uu51yOUHldjWtvZgbCDDM+DfDe/K51OezzVvJMK12pe4JkqM30SifBtYek7\nq/W8eHYYh8z/cg/pOGRLgOp4a02ck9XCKZcCZUk0sq7TYgPHQXRZXCipQApJMo5ogcWF3j3jt/LG\nspvcpr7xoS34xUN3IS8vO5WeF7YA54cwaeoMnDrSCyBy6kl0wcMlQ3tyqdTE99JkcXDPDuzdu9cr\nIvPss89ixvVLgrFS28ZFkgDhVZvr19TUFGRqUfDr1GmiQ6ZOJ/FAdswAQmRE+/HVFZWuPb20Nw8c\nOeDWQ5qzeDibMr6ExsbGxENO0o4UyyZMp55MgGGhGNnvz1uTGPDAPVy2pA6FM2Zn6rCEFHc9lgj1\n01+53yl+Ij5NlrOMynr16ldEDRa/hZOzCQMAHvZSpy0w0djYiBsf2oK+d34bW2Nah7YBogB7Qj1o\nGYcs3615JxWu1bxAnvsNGzYAyBbmsoSlvi3reVlp9kC4X/Py8lBVVYWWVChArXhrua6ck5U6nUuB\nsiQaIULOCuE4iC6LC+mPtJCKZBwFQnPmINOWJ4UIF5jOlKGhIW/80Kfm4EJPm/cOrxJZYAZ5OKdK\nTXzvyz+83/3ZquglCxuRpNDV9mqvL5m6atOpdusNn8PWNjs0z+rhJymJBzxoPIDabkZTwYHdrTiw\nu9VrMyWvkOMmFpjZWDU1Ne6ZVsZJaJHEtZEOro0bN6K8vNxLgGGhGPJRm0PiwIN0/HAusowmKe56\nLE0psmwnEZ8my3nslHVZZD+lUJKpwiUlJZ4DjeGWB/fsMMFEbW0tnhUx3JKs/U+Kc7xKRUK+p1Ip\nLwlKj5UKVyo0uXakZcuWRanTl0RmGwttSvOdOa+WbMKQ91z0CTy2rxNDQ0N48sknA5+M/k0LPCbd\nznONgoqjEQlkKYRzgej6Iy2kIicZ1wCUxaYBO6RKjj/xku/oK1m41DtQVt+wXCo18b30sCZ9hyYp\ndOM2jEVdLQ04tq8TTfs6zR5gQMgHnXKbxAMeNF7vtENk7PhJgfNUhkYd3LPDZQxa2VgSIWtlnIQW\nSRQ2cq3pMOMBKyoqCpCdFqhx4EEnxkwZm8Zvn3k0qn8gDlbc9Vjuq8uvmePmTcSnyXIecz+sWzQD\nL77yBsZn9mVSlb5Fixbh+Rd3oezWe7yaEKTGxkZce9v9OLav0yv6JL/ZSp3WHWR4HuS7aTrIz8/3\nvlHzTipcq3mBfNbR0QEga7Kw0KbmQZwAjHNMcr/ShmyNl88s8Chvyf/XNCKBLA+/tWi6hZMmC6lI\nxnEj0GTxqi6Yvb7WbWoryoLjdRzy6Q8OB3n5/b3ZTZZLSJZsFd/d3Y3TRw97URYk2fiRJLWt3jBe\n8fyEIkdxoXk6OSbJ0QP4PNCJAFbYmSy6I/9NR8MajLl0Eh7/x+/jm9+q8dLqLQ+1VsaJaDFDPPBS\nUbCFk7Qp6kpfep/FgQfZEPP00UM4lhEISanDcpxc69NHD7l5E/FpsuyS3A91rRNx6kivM7XJOa9a\ntcrL1KS56uCe54SQ98HEcHVB5P4ncf2T6kG7Li7l5V7jXc07ua+t5gWybgr7JNJBbQnL4QCgjhii\nU49z4X697JJ8FBcX492wbplHFnjknHTJBvn+kdKIBLIUwtai6RZO+iMtpGKFpDVnnBmynY3+N1Yd\n2vK6tUhtfxq9bdkWTroamsXYXEJcrBZO9eIb2KvLqvIltW0QWiYYr6/aXL+lCz8fpE7X1NSgqakp\niEMOuvMm8EB2zADssLOOhtVRbOvOzQA2uX8zfe7NeH3TWlRXV2PcxAIzG0vGIWshmYQWSRRKVgsn\nrpvsNxjanKPreJx9j+jx4J4dODfQj9LSUowu/stAmMVdj6Up5dxAvxeBYJFll6SyXrToeux6ud3Z\n6mWqcH19vZfqSyBw+ujhoNGqjEMefeknY2tMW6SjVfRzIGs6SKVSZllbklS4VvMCee51HLJFOuZb\nz0vXY+HNQe/XvoFoz1gmC/mbNniMvxXnUqAsiUbm1FPXn+FIf6S1GaxYRrbZ5gJZLZyunHNDEIPb\n0bAGJ5XBfcKUq7yF1m3CgYtLA2dFt46GNa6wDgDXq8siKXT1VVReHTUyo22zvrMtyL1nzLNeAy1M\nknigD2Bo530OE6ZchbHjJ7mrNBWKFOznBvrNMDQZhzxcsgUQCqxAUSBymAF+AowThMLmLGk4+17Z\nrffgozMncXLXpmzqtLCtxo2XB7Ti3u853urO2CTL3ktlXVg4Bv974bxTfHI9b7vttmz3nGU3uVtZ\ned1aT3jKOOQFKxrwqw3f9oo+Afb+J8Vd9yVfyMf58+fjqPhGzTupcIdLk9dxyBba1Onzel+7NHtl\nArT2qzVeP7PAI+dE+SQplwJlSTQigSwpDqLLK7sVkqVJMo4CYd7s6QCAduP6zQV+55ehhpswZRpO\nnujHtJLPuOvssX2d3qYM+oYZdl2L+N6899Lo6+tDwYzZaG3912HHAb62jQtcB8JDItFursVLdJxz\nEg+SzCdAxBu+n155aUYYN7EALz6/DTf99dfsSlmCtDJOQosk2YaI30GHGQ9MQUEB/rTazzDLJfMS\nyO7hg3uec/tl4tSrh02lt6rQ7X78gWHjkC3nMb9542t+HLJcz9bWVsxcECqTpBZOB/c8B1wYiq0x\nLfc/SXdqJklFQj729PTg/ISBYCzJq7stFJq1drNmzUIqlcKZjCzIBW3qefHs8Kzps8T9ei7GLKWf\nWeCRc3r3n0NfUy4FypJoZF2nhRCOWzQZKxjUSDWQhn8ditACq70xXE3GIXNTa/sxxx/e+4b3DSUL\nl3qFTEhyk+Ui7Pje9sx7C2eWed+Ql5eH5cuXm8kiUttaXUFIOvJg7PhJGDexAN+9rwZbO9/zxtXW\n1qKxsTEwWehOGkk80IkAbh1E1/CeF7Zg787N7jopQ8vafnA/KioqgjhkHs6VtX/jnmllnIQWSZZN\nc8OGDaisrHQHpru7Gx8oZKxRUhx4oKKW/oHDJ856WYfWeNmZRJrOOO+4OGTLeUwBsq7uZtzx7dUu\n5lr+djqd9oT5tm3bsPSe76JgxmzT/xFVe/sZgHhBkbT++jzId9N00NfXhyXLnwrGkuLOlNXVpaqq\nCk1NTW6PWcJSO6v1vHTpUAII7iHu17jx+pkFHl0LJyMOOZcCZUk0IoEskWYcRJcIOZeP9MK+MgeJ\nxYX+O7NAUohwU7Mesrw+dG19Av+/vfMPsqq6D/jne997+37ssrAsywPcJQsKbGRFRKUQaBSDBo3Y\noGkULcHERIembdKJdsw0k8E/MmPSTmz6IyROkjpNO2mrtU3qdGqCSZlp4wRIkahR/FEgRh8SSRTk\n5+6+b/+499y9974fvCXAvke+n5k3795zz7nn+z3ne7733HPPPXfojZ/F3sh5/vFvxubwusb19v7K\nnnk9XL5ucaFd3/tWbD3k4eHhqt+4g/jVttZMEqj2uXl/bPP++++PjdeB/yQdKocsXO/QvTpdrw6S\nLwIkx83canPRlczC9Wy//VWOHTxAJpPh4Gu7Y/OQXdzoam/Ji3G93mL0ghCVD/wHZjDqGKZNm0bB\nvY7rHjgl7nhqdR6cDb/rrs/xxstPs/Vrn2FoaIhs+6S66V26qFzLNnyebIefzvX4klRznu5i/dBD\nD/HqU1uCeeXxecjx9ZDv4YYb/Dbmj/FXOr577rkn/IRTdNEnqG7/jugUsSix9VaCekzOQ07WXdTh\nV/t4QTSt+wahe6hXzVkmH1ZXrJ1d42KctFcn+0+rtIvoOat1Hp1O1eYhj2WBsmqckkOud3vtiPZO\nk0JW66lEK845hMe+5Rf+pP49QHwhFFfA7mFKdKGP/qXXMXTeJbS/+XLshYmoUVbOQrinoZWaXL4v\nPfrFcL/ail7JFzUg7nST49XhW2WROb7hoi7Bhxl/e/my2BPtKMl1F5IPy+rVQXLsODlu5oYK/u+/\nv+PXa5V3/FevXs1/bN5S9W0s923EatTrLTqiL6yEQzc//CGrV68OG8y+ffu4al38ZYekk6rVeYi+\nGOPOv+DGP6h4+63W7XF0KCUcsvjCnWGPL0m1h8fuYv1C4tXp6DzvZcuWVVyQwS/Dap0J5yyHfvka\nF304PqxRzf4dtabEVbuQbNmyJdb5StZd9IIbvaBFy85x++23s2XLFjoCXap1IioeVld0Xvy2kxwj\nr7b+c3JhpFrnTOJ0qjaG3OgwWS1OySHH1z89ee83KWS1nkq04pxDcE42+X0sqD8j4vjbb/Hmf32D\nNyNhA+9dF1stzjWuzmmjRtfISk0uX9fzHMviI9GrbbL3tj02dSruTN2HGXft2sW84HNWSZJvXCVv\no+vVQfK9/2TvYsr5F1VML4zeAh54+WkeffRRvFR8VbFwoZfvfj0MS16M6/UWHc7ZRMs6+cAsk8mE\ncru6Td6O1+o8uAt19+xBDr3+M87vm8ZPHv1r30lGepy1bo+TMxyc3rW+Ol3t4bFzIN/8+EoWv/8j\nYS87+apwtAzuvfdeNv3dPzPv6rVVh+N27dpF98VX84sXd1QMv1Szf0fyS82uPcRe/Y8MHUTrPFl3\n0QtutY8XxD52EXwn0b3WXM0xVtZB3K5d26kYIw9w9up6ydUcaDSsWucxnO/e3V1xbKwfTa5AVRv+\nAQpoKpPVUqmkqqrLNnxBJ/bO0VKppO44oF4mqzt37lRV1cmzBjWTaw/TvPPaD2t794xwPxnHbS9b\ntkzT6bROm79Ec53d2tU3ryLO3JW3hnk+8cQT4bkAbWufGJMpO6ErzPPiD/yRdkydqf1L36f5rqla\nKpXCMBfHpXvwwQcr5Jw5c6ZfFtm83n333bF8AO2+4BIFCWVSVZ02uFTb2ifG5Hc6veuu+7XrHQNa\nKpX0vZ/9e+2ePRjK4fQBtPfSlaG8URmBsLyTaR5++OG6dXDBlTdpvmtqVVmS5/LSbbpz585Qxq6+\neQposVhUQNPZQkUeUfmScri8a9lC1MZcXoBeeOGFWiqV9MpPfVkBFRGde/Wt2jF1ZqjHwg9+Ujun\nz4rpET2vO1dh8jQtlUq6eP1nNJ3Nh+G5iVPGLJeXyWq+q6ilUkkfeOCBWB04kvUbtY1LL720orxC\n+81mdeKM80MZRu16cqxtRG1i/uqPVdRLLftP6jn/+o/G2kOyjQKaSqViMiXLaPH6z4R1EG1f0bJz\n8ZcsWRLTfebiazTX2V0hW7S9J/NzZdsz71Jta5+o5y28QnOd3XrlH/9VzF49z1NAJxTfEUtfyxdF\njzudorK67Xe+7yMVdRvY2nZtxMc2EkkTDhnQDRs2qKrqhGn94X7SKc2fP19VVfuXXqeIhGl65i5S\nGN1XVZ02f0kY1nfZSkVk9FzihYbn8nLnjObX1dWlquqnT8iSlDvX2R1eXFy4q2wXJ2xknhfKWS3f\nej8nUyhXUA6u3DL5jgo5nGxOjv6l11WUhTuWSqUqyltVdVLf3DC8ra2tbh24/HITpyiIprOFWB5+\n3cTr1aVxdVKvjAuFQpguWcZJXZPlFI3TUZxZkY875pwhoO095ykisTJVVZ2x8N0xu6t3rqQu1dK7\nOsx3Ta2abunSpbE6cFTTub17ugLa3T0qw/z584N6Gj1vOt8xakMTJsQuHk62mCyBvSTzq2b/yfKP\ntrdkO446xlRbtqLtujTODpN2HS87P/4tt9xS1cYq62C0bSXt2qVxNlDonq4wagtJe5VUOpa+lp7R\n49G25WStZzeBrTXkkMWP2xjiOyLDMAyjAXK5HEePHkVEfqyql50svvfrZNbT00MqXX8YWlJpxPOz\nyefz9Pf3h2nES9FWmMi0waUgAkAqlTp5xkHcU0FE6O3tJd3WFgtPpVLISc67ePFixGtAvgT5fJ6r\nrrqKVNo9BKidTyqVwovkkclPGFNeU6ZMYcGCBXVlidZBPXK5HL29vWPK30fwMm31Y6QypLL5sC4L\nhQI33ngja9asCctJUhl/kR35tcwUgHzX1DCvtrb6siUkJZOfELNRV4ZeI7YawfM8li9fTls2F5xa\nmNQ3l84Zs8d0nlMllUpx7bXXsmbNGjJt8WVc8/l8WP7JtbVzuVyDNjNq1/XsrFobr9f2nG3UWqwJ\nfD/jpTOn1D799L4vmjxrMDxH1Cd46Tbyk6fR1j4RSVU+zEvS1tbGbbfdxu7du8ckx6/tkLVcJpfL\n1YwzqXMCgl+px48fp1AohGkE5Y71t/L+5RfjiZDL5RgZGambZyqVgjq9+pM1NlWls7OT8vBwaBip\nVIqRkRFUlVwuh+dVFovneSxatAhh7DcJuVyOuXPnouWRoKx0VJcITo5yEM/zPObMqnx6LiJ4nldV\n12KxWNNwq9VBNO+kLCdOnKCzszN5mpppRlEG5lxQtRydHKIjzDt/Vljvx44do1gsUiwWw3ISHWFg\n7hw8afBCXUNGz/OYNX1KmNfw8HBN2arp8tHbfy9mo64MUR2TXOl0msHBQYaHTvj1K8La69/DrTdc\ng+d5DZ+rlvM6WfqRkRH6+/spFouMDA/F7P/48eNh+aPl2LETJ05UtZlKmXy7rmdn0TYezaPWnXrU\nNmp1NHxbKTMwdw7C2OoklF99X/TB9y5H0FBO5xMoD3P7zWv4yLq1iNb3UeBPf+3s7AzfA2iU1MaN\nGxuOfN99923s7u7m6NGjgG9g69atY9OmTXzlK/4T2aixOAdz5513smnTJkSEHTt2hGlEhH379nH4\n8GFWrFjBpk2bePzxx+nq6iKdTpPNZsnlcuTzecrlMgMDA+EKSy7OkSNHSKVS9PT0cPjwYVSV/v5+\n2tvbw33P8/A8j2w2S19fH2+//Tbr1q2jo6ODQqEQO+fmzZsREbZt24bneaxdu5Znn32WcrlMX18f\nK1asYPfu3QwNDdHd3c2xY8dqGlMqlWLSpEkcOXKEGTNmVOi4cOFC32hVmTVrVlU5duzYQblcZubM\nmWQyGU6cOEFXVxfr169n69atgO+EVZWhoSHS6TRdXV08//zzZDIZBgcHef311wHYvn17RR3Uk2XV\nqlXs2LGDnp4ejh07RqFQoLOzkxMnfIeyfPly3njjjfDikMlk6OnpYcqUKWEZ7969m2w2y0UXXcSh\nQ4dIp9M8+eSTDdlCNE5HRwd79uxBRCgWixw/fpxyuYznecyePTssm3Q6zcDAQFU9onlt3boVEWHB\nggUcOHCAcrlMoVBg6tSpjIyMxHTp6OhoSK5sNku5XEZEKBQKDA0NhXWwf/9+VJXe3t7YeaI6d3R0\n8Morr5DP51mxYgV79+4NdSwUCqGDcF9LUVVWrlxJqVSiXC5zxRVXsHfvXlSVYrHI0aNHUVWy2Sw3\n3XQTR44ciekStf9Vq1ZVyBI9lrSZgwcPxsq9q6uLYrFYYbtJO9u8eXOFzTm7d+e8/PLL2bt3L7lc\nLrQVJ9sLL7zAhAkTWLRoEa+++iqe57Ft27aKOonacvTfXWAymUx4IchkMtx11101fZHTJ3o8atev\nvfYaAL29vRw86L+1uGHDBvbt28fNN9/sfGdp48aND57Mx45pDPmyyy7T7du3NxzfMAzD4OyMIRuG\nYRinD3PIhmEYTYI5ZMMwjCbBHLJhGEaTYA7ZMAyjSTCHbBiG0SSYQzYMw2gSzCEbhmE0CeaQDcMw\nmgRzyIZhGE2COWTDMIwmwRyyYRhGk2AO2TAMo0kwh2wYhtEkjPUTToeAXWdOnLPKFOCN8RbiNHEu\n6QLnlj7nki5wbulzNnV5h6r2nCzSyb/jE2dXI2t6tgIist10aU7OJX3OJV3g3NKnGXWxIQvDMIwm\nwRyyYRhGkzBWh3zSb0K1EKZL83Iu6XMu6QLnlj5Np8uYHuoZhmEYZw4bsjAMw2gSGnLIIrJKRHaJ\nyEsicu+ZFup0ICLfEJH9IvJMJGyyiHxPRF4M/ruCcBGRvwz0+4mILBo/ySsRkT4R+YGI/FREnhWR\nTwThLaePiOREZKuI7Ax0uS8InyUiPwpk/icRaQvCs8H+S8Hx/vGUvxoikhKRHSLyWLDfyrrsEZGn\nReQpEdkehLWcnQGIyCQReUREnheR50RkabPrclKHLCIp4G+Aa4ELgbUicuGZFuw08BCwKhF2L/CE\nqs4Bngj2wddtTvC7E9h0lmRslGHgU6p6IbAE+HhQB62oz3HgKlW9GFgIrBKRJcDngQdU9QLgV8Ad\nQfw7gF8F4Q8E8ZqNTwDPRfZbWReAFaq6MDIlrBXtDOBLwH+q6gBwMX4dNbcuqlr3BywFHo/sfxr4\n9MnSNcMP6AeeiezvAqYH29Px51UDfBVYWy1eM/6AbwNXt7o+QAH4X+C38Cfop5M2BzwOLA2200E8\nGW/ZIzr04jfsq4DHAGlVXQK59gBTEmEtZ2fARGB3snybXZdGhizOA16J7P88CGtFiqpaCrb3AcVg\nu2V0DG5zLwF+RIvqE9ziPwXsB74HvAy8qarDQZSovKEuwfG3gO6zK3Fd/gL4E6Ac7HfTuroAKPBd\nEfmxiNwZhLWinc0CfgH8bTCc9DURaafJdfmNfain/mWwpaaYiEgH8C/AJ1X1YPRYK+mjqiOquhC/\nd7kYGBhnkU4JEbke2K+qPx5vWU4jy1V1Ef4t/MdF5N3Rgy1kZ2lgEbBJVS8BDjM6PAE0py6NOORX\ngb7Ifm8Q1oq8LiLTAYL//UF40+soIhl8Z/wPqvpoENyy+gCo6pvAD/Bv6yeJiHuVPypvqEtwfCJw\n4CyLWotlwA0isgf4R/xhiy/RmroAoKqvBv/7gX/Fv2C2op39HPiWrO4aAAAClElEQVS5qv4o2H8E\n30E3tS6NOORtwJzgyXEbcAvwnTMr1hnjO8D6YHs9/lisC/9Q8KR1CfBW5LZm3BERAb4OPKeqX4wc\najl9RKRHRCYF23n8sfDn8B3zB4JoSV2cjh8Avh/0bMYdVf20qvaqaj9+u/i+qt5GC+oCICLtIjLB\nbQPXAM/QgnamqvuAV0RkXhD0HuCnNLsuDQ6QXwe8gD/W96fjPWDfoMzfAkrAEP7V8g788bongBeB\nzcDkIK7gzyR5GXgauGy85U/oshz/1uonwFPB77pW1AdYAOwIdHkG+GwQPhvYCrwEPAxkg/BcsP9S\ncHz2eOtQQ68rgcdaWZdA7p3B71nX1lvRzgL5FgLbA1v7N6Cr2XWxN/UMwzCahN/Yh3qGYRjNhjlk\nwzCMJsEcsmEYRpNgDtkwDKNJMIdsGIbRJJhDNpqWYLWu3w+2Z4jII+Mtk2GcSWzam9G0BOt2PKaq\ng+MsimGcFcb61WnDOJvcD5wfLET0IvBOVR0UkduB9wPt+Msl/jnQBqzDX97zOlX9pYicjz/Zvwc4\nAnxMVZ8/+2oYRmPYkIXRzNwLvKz+QkT3JI4NAjcClwOfA46ov4jMk8CHgjgPAn+oqpcCdwNfPitS\nG8YpYj1ko1X5gaoeAg6JyFvAvwfhTwMLgpXx3gU87C8FAkD27ItpGI1jDtloVY5HtsuR/TK+XXv4\n6xIvPNuCGcapYkMWRjNzCJhwKgnVXy96t4j8LoTfTLv4dApnGKcbc8hG06KqB4D/Ef9DtX92Cqe4\nDbhDRNzqZb9zOuUzjNONTXszDMNoEqyHbBiG0SSYQzYMw2gSzCEbhmE0CeaQDcMwmgRzyIZhGE2C\nOWTDMIwmwRyyYRhGk2AO2TAMo0n4f7OOmZgjqb81AAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAEKCAYAAAAsDo9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuMHdd937/n7t59kHuVJZdvLU3RlghrI8mWFFO0Hklg\nxYYRiYnJKLCcyE2NVjGaNlZEig+nCObmj6IPpClsICjitFUDC5KoZeXGKZDoAdVA2sR2isiWaUUR\na9eSlVaiKIVrcXfJfdzTP+7MnfP6zZx75zqXS3+/wIXm/M5vfvM7Z2bO+c1HFKW01qAoiqL+/lUb\ndAIURVE/quICTFEUNSBxAaYoihqQuABTFEUNSFyAKYqiBiQuwBRFUQPScKyjUop/Xo2iKKoHaa1V\nyN5VBay1vix+SZIMPAeO4/Icy+UyjstpLIMeR5GIICiKogYkLsAURVED0o/kAvzTP/3Tg06hL7pc\nxgFcPmO5XMYBXD5juZTHocoYRcdRKR3rS1EURbWllILux7+EoyiKovonLsAURVEDEhdgiqKoAYkL\nMEVR1IDEBZiiKGpA4gJMURQ1IHEBpiiKGpC4AFMURQ1IXIApiqIGpK4X4Farhb179+KWW27BsWPH\n0Gq1cPz4cetv/dFaWzatNY4ePYp9+/ah1Wp1+qVzjx07hmPHjuHw4cOo1+tYXl4ujF0UK7O554Vi\nubZWq9UZp3u9Xq7j5hhz3pEjR7B9+3YcPXoUx48fx+rqqjX/5rlmfDP3ouu6827GabVaOHLkCLZu\n3Ypt27aVXjP2/qyurlpjynxXV1exY8cOrK6uFsaKuRdSXu4cfeADH7CuGRvjoYcewsTEBJaXl0vv\niztfR48e7fgeOXIEe/fu9d6N1dVVz5bFOXr0aPDeunlL74R5fsy9XFpa6ryH0pyHYrrvvDlnUg7Z\n8bFjx3DkyBHs2LEDKysr1tzt27cPq6urhWN03xtzTEeOHMG2bdusOGXrV5bPli1bsH79ehw9ejQ4\n96HjQnXxV6pprbU+dOiQBqAB6JGREX348GHdaDT0yZMndabZ2VnLNjs7q+v1ugagH3rooU6/dO7Y\n2FjHH4DevXt3YeyiWJnNPS8Uy7VlYx0ZGfGu18t13BxjzqvVahqAVkrp8fFxfffdd1vzb55rxjdz\nL7quO+/j4+Md/8OHD3euH3PN2PuTjSEbU+ab2ffv318YK+ZeSHmF5si8ZmwM89lsNBqF98WdL/PZ\nTv+ebe/dyOKZtixOdr57b928pXfCPD/mXm7evLkzVmnOQzHdd96cMymH7HhsbKzjf/PNN3tzt3//\n/sIxuu+NOSbzmc7ilK1fZj4AdK1WC8596DhdO4Prald/F0T63zQH+7ds2YJarQalFCYmJnD69Gls\n3rwZZ8+eFc/JdtXs3IWFBZw/fx6tVivoX6vV8J73vKcTe25uDiMjIzh//rwXy8yjXq9DKYWlpSVc\nc801eOedd6z+kE26/qZNm3DmzJngOdJ1VlZW8Oabb3ZynJiYwNLSEiYnJ3HmzJngeWfPnsXKykrU\nvXHnU5J73exaCwsLWFxcLDy37JpubOn+dKPR0VFcvHixE8uN7Y6jaK5j8xgbG0Oj0SiMEavsfanX\n62i1WlaV3W8NDQ0BaH9F1Go1tFqtzj+zd+LcuXO4cOGCGMMd79LSkuibzXlZzFhlc5Xl3O152Rh7\neW8AoNFoYP369d769fbbb5fet6GhIQwNDXW+FLJ32TzWwt8F0VUF/MADD1i7gPnbuXOnfuKJJ/SJ\nEyf0zp07U/u0BvZqoG75TkxMpMdD1rmPP/643rhxYzD+VVddpR977DEn9iENNDQAPTQ0lNqv0MA9\nGjihgbbv1NSUnpqaEvvDua/3cn7wwQeN/p0aeCKNdUXgOma/m2Mjzb0ov0c1MCLOd/YbGxsz5qwd\nf/369UHf6elpfejQIWcM92jgFzQwVXqt8DWVEFu6P8qLNzk5qW+88UbHflNnfvzY9vyZ9296etqa\ni+zc3N6+/vj4eGBsd2ngYMH9mg6cI/3GOnM6NTUlPtf+b9hqK6V0o9FI2xuC8yddw34nntDAY178\n9jyNCePdFriWsub8scce8563kZERPTo62tXzlD//YxqoRZ/r5vPoo4/qkRH/vdm4caP+zGc+Y319\n2D//fZ6entYPPvignpycLMlh3LrX+Vim0j65Au6KAWe7rK9pnDt3DrVarbPTApvQaMzh8OE7UK/b\n3u2ddQLAKoBG59yhoSEsLCwEr6CUwvDwsBNbodFoX7+9S02j0dA4efJezM7W0Gi0fefn59O4M8H+\nUO71ur37Ly0tOWM7h5Mna5id/Tja78eMcR23380Rae5F+dVRq5Xv5MvLy1hcXLTmM1y5TGNubg5K\nKWcM92J29l6Mjc07/hsjrjmN9jMYih2+P7WaXwhcvHgRStn2m2/O58eOPePNn3n/5ubmrLnIzm3b\n83xDVdL+/TXMzn6i4H5lsV35r9HQ0DLGx9vPwvz8vDFfxRoZqSGb+6y6u3jxIoBNGBtbDM4fMB24\nxkbnnahhdnYY9bp9/tAQMD6uhPG6zwTQvk0znTkfHh72nrfV1dWuvnaWl5c7z//YGFCvh9aZkG0C\n2f3M8qnX68F7u7i4iHq9LlSz48H3eW5uDrVaraTCn8bYmLbudbYGjI3NY3y8eOxdLcCnTp3CVVdd\nhdtvvz21jGLXrl0Afg0PP/wwTp8+jdOnT+Phhx/u2E6dOoWZmRkAHwQA7Nq1C9deey2AvXjooYcA\nfNY69+DBgwB+qbPgAr+IDRs24PXXXzdin+nEzq7VjrUnkMcZHDx4EAcOHABwT7A/ZJuZmcGuXbsw\nOzsL4DCuvfZa43qhc+4xrhPq35Pm+GtO7nJ+W7ZsAfBe3HbbbVi/fj0AhXXr1uFd73pXOv9XYPPm\nzem5+Xxmubd1e3q8x5szf95/EcAvpfd3EpOTkwCG0WivSIFrymOS7s+WLVuwadMmAMC2bdsAbMWB\nAwfwyiuvYP/+/QBWsH//fnzve98TYp0KXsue699Mr/cBxzfPd2ZmBqOjo+k1H8SmTZvw0ksvRdyv\n38To6CgmJtoL8YYNGwDUOmO6++67AbzLmCPz/u7BVVddBWDSmM+hzrmTk5Ppu/ET2L9/P7TWuOOO\nO1Lbr+HgwYPpM5G9f1d03r/8GtlcT1r5Z/PTfhez86cj7uU4Nm/e3Mmv/U6eCsTcmca8DZs3b8aW\nLVvwwQ9+EMAT2LVrV1q8bce9997rFHK3GTm036F2vPXYtm0brr/+euzYsQNAPZ272/GJT3wC733v\newHUg2Nsz9EUAGD79u2dZ+zUqVNp36bO1detWwfgjuD7nM1D+91o44nR0VFs3boVQBuRuXMfPi5Q\nNwgiU5IkOkkSDSRaa935pynDveOTJInX7/pltvwavkModkweMXm6NnOcxeckUf1FsaT83PnO234c\nKfe4Mfh5Au17EL5mXOyQXxbT94XTDscqG0dsHqH7K/m6MbNcY+6LG9O8p9mx6xd6X8zzw/OaBP/p\njs0dd9l4zftS9JwWvTvt5wuiv5uPOS/mPc1tRWP03xs3j/x87/TCebDPTTwf/1hGED0twOYkFk1A\nTLvo4TevJfWb7SoLY9H1pevZtrj+olhSfv58w/Mvi192PzKb629eX8q3bH66e9DdBTgudsz1Qvlm\nL5Qfo/x6crykC/+kdMzmuWa/FK8o/5BPkX/YV86v6H66C7Cfeyie79/N+hNegO0xdbN+5QtwXP7G\nGILrak//IUaSJGg2m4alGfDybeXn9Kp+xrKVJEmf41ePlc+/GcuP6/uU5RHybyJJEiilnPtXFqu4\nX46VdB2re9/c3r6/3cdo568sn2azGRGv7d9sNjv3R3qf5PelWdjnXku6vpRbWKrER4qZWD5xORTn\n5c9xOJ/8mfX7i9+N8PXD97cZcVwgaWV2f/B26W5L+HAlVY4gwv2h9g8DQcS03djFCKK3/PzPuXCl\n5e68sVVqZnP9pZ0/dkx2DDv/MIKo1pau102+Mb4mHov5MnFjuvNpvxshW2L1S++fdP/cMcQ8P3Iu\noZiJ93yUIQbpecqOQ1gm5vkz40tjyua/6Hy3HZuPf9znCtjfCUKrvW8rPyek8B+fK7tWv9T9Tlka\nsccc7LZfmftxi6v3kL0ZsLcriSRJCqo76Rqx/abK7nc3sSTf3F5+f8N9oQrUr2TlmPl8hiqrPF44\nj6L3z71+KJ+iSj3kH+MjxWxax/mfdon7WsjnsxmwledTfH/Lr2/Gazbb+dt/YqcZcVwgaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQJkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcxm9YxGbAjaWV2f7B2\nwHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WORAcdK8s3tZMB+X1hk\nwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3yYBjJPnmdjJgv69c\n3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+EL0v5y6fPFTAZcBVV\nj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7IgLPjPlfAZMCVIvaY\ng90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLgmGouMWxkwEX+ZMB+\nPhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlNYogAGbDZJgN2/RLv\n+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCewZS1yYDL8/PnW660\nyIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZcGB3MdtkwP7OG1ul\nZjaJIQKGSgxgAAARk0lEQVRkwGabDNj1S7zngww4O+5zBUwGXClijznYbTLgGEm+uZ0M2O8rVzcx\nm9YxGbAjaWV2f7B2wHgGU9YmAy7Pz59vudIiA46p5hLDRgZc5E8G7OcD4ctS/vLpcwVMBlxF1WOR\nAcdK8s3tZMB+X1hkwGTAgd3FbJMB+ztvbJWa2SSGCJABm20yYNcv8Z4PMuDsuM8VMBlwpYg95mC3\nyYBjJPnmdjJgv69c3cRsWsdkwI6kldn9wdoB4xlMWZsMuDw/f77lSosMOKaaSwwbGXCRPxmwnw+E\nL0v5y6fPFTAZcBVVj0UGHCvJN7eTAft9YZEBkwEHdhezTQbs77yxVWpmkxgiQAZstsmAXb/Eez7I\ngLPjPlfAZMCVIvaYg90mA46R5JvbyYD9vnJ1E7NpHZMBO5JWZvcHaweMZzBlbTLg8vz8+ZYrLTLg\nmGouMWxkwEX+ZMB+PhC+LOUvnz5XwGTAVVQ9FhlwrCTf3E4G7PeFRQZMBhzYXcw2GbC/88ZWqZlN\nYogAGbDZJgN2/RLv+SADzo77XAGTAVeK2GMOdpsMOEaSb24nA/b7ytVNzKZ1TAbsSFqZ3R+sHTCe\nwZS1yYDL8/PnW660yIBjqrnEsJEBF/mTAfv5QPiylL98+lwBkwFXUfVYZMCxknxzOxmw3xcWGTAZ\ncGB3MdtkwP7OG1ulZjaJIQJkwGabDNj1S7zngww4O+5TBay1RqvVwo4dO7B9+3YAz6DVagG4PVuk\nO37AhY6t/c+nceWVV6LVanX62+ceD5x7DM888wz+5E/+BIDC8vKy03/ciX17GuvZQKzjxiYi94ds\nrVYLV155JYDbnOuFznnWuE64352ruPyOYGJiAk8//TSAZ7G6umrM/6Jxrj2f2X0CbvPmxr0/uW3R\nmsv2Pz8IpRTGx8fTax6z8i0ak3R/VldXASAdU+7btqtOvxSr/F4cT6/nPoN2vq1WKx3TROeaMfer\n1Wrh/PnzAJA+m7djdXUV27dvT+fcnKPjgfm6Fdu3b0+v/UHs2LEDO3bsMN6Ndjz3fcnj3Jpex37/\n3LmW3838/Jh7ubS01Bmrew9yvwVv7O37O22M4TyUyt5n399+h57BU089hUajgZWVFeTP91FMT0+n\n96tojPNYv349br311sCYjqSeO9I48vuctxcxPz9vMOCnA3N/wTsulbQyuz8A+uTJk/rQoUOd3QMY\n0YcPH9bAiD558mRnxZ+dndVAo2Nrt+sagH7ooYc6/fK5Q7per3eus3v3bqd/xImd5dEIxGr7ujmF\nYrm2fKxD3vWk8Rb1u+ONy689B0opDYzru+++25p/81wzvpm7OzfytcY0MNzxb/8Tzm9IvGbs/cnG\n0B7TcMc3s+/fv78wVvm98J+H4jnKrxlzv8x52b17twZGnPsy5D0LdkwVmFfz3cjjme9LHic7337/\n3LHL71d+fsy93Lx5c2es8pzXvbFn73A+BnPOfH97jGMd/5tvvtmbu/3795eMsWbM7bAzpnzO23Fi\n1q8xbd+vWmDuG96x1sUVsNIxqzSA9ssia8uWLajValBKYWJiAqdPn8bmzZtx9uxZcSeo1+tYXl7u\nnLuwsIDz58+nO4uvWq2G97znPZ3Yc3NzGBkZwfnz571YZh71eh1KKSwtLeGaa67BO++8Y/WHbNL1\nN23ahDNnzgTPka6zsrKCN998s5PjxMQElpaWMDk5iTNnzgTPO3v2bLrzxyuLL8m9bnathYUFLC4u\nFp5bdk03tnR/utHo6CguXrzYieXGdsdRNNexeYyNjaHRaBTGiJVSClpr1Ot1tFotq8rut4aGhgC0\nvyJqtRparVbnn9k7ce7cOVy4cEGM4Y43q3xDyua8LGassrnKcu72vGyMvbw3ANBoNLB+/Xpv/Xr7\n7bdL79vQ0BCGhoawtLTkvcv1eh0vvvgitNbhP94jrczuD+luBWfXThdmDVyhgXs0cEIDOzUAPT09\nrX/jN35DT0xMOOe120NDWbyd6bm/oIGNweqgHf+AFfvQoUN6eno67W/nsXPnTv3EE0/oEydO6J07\nd6Z9UxoYL+jPrn9PJ/769eud69c1cEunPxxnPL2W3e/mmOVelN+jjz6qR0ZGhLkwf2OdOcvn0849\nv0cNDRzyxvD444/rqampiGuZ1xxzrtnQwL7S+xMe06QGtlq2m266yZif6TT2FcL8mfdv2slrOh1z\nw7HXvDzuuusu/fjjj4v3K7eX/8bGxow5ndJ+BRX++c+d6uS+YcMGb/7yezveuUatVtNm/tl9fuyx\nx7z4Y2NjeuPGjZZ/Nt5t27Z5+eXzl73vj3nPGzASnN/i56n9/G/cuFGPj49Hn+vn82h6/dA1fkLn\nlbf9C7/PDQ08qNvPp5zD1NSUc6/zNSCruKV1tSsGXK/77lprTE9Po9HQOHnyXszO1tBonMPMzAzm\n5uYwNDSEixcvWueMjCx1OE773HPpufdibGwheO3du6cwO/tLVmylFObm5jA9PQ2gnce5c+dQq9U6\nO/7MzAzGxuYxPg7MzMwE+/Prf7wT3939R0YUDh++vdMfvo7G+PiC1+/mmOVelF+9Xo/ayYeGljE+\nvmjNZ71u557fI+DwYeWNYWhoCPPz86jV8vu7cePGkmsq5x4Chw/fVnp/QmMaH7+Im2660rKZ89No\nzKWxtRU7fP/mnLzm0jHDmaMhL49sLqT7ldv981wtLy9jYWHBuL8qeG7ovGzuh4eHAWiMjFzEzMwM\nFhcXvfnL7m372Wtfo9VqpTHsd2J4eNh7rpeXl7G4uBgc7/z8fJpDrlarlc559r4Pe8/b0NAqAlMi\nqv08tZ//hYWF4DMyOjrq2SYmJoz7nOVTR60WesYUDh/+KdRqfjU7NTUlrAvA4cM1jI3JFf709DTm\n5+ede52vAfafGfbVFYJ43/veh1deeQXXXXcdJicn8Wd/9meYnJzEpz/9aezZswenT5+G1hp79uzB\nwYMH8eSTT+IP/uAP8Prrr+NnfuZncMstt+DIkSOYnJzExz/+cbz99tvYuHGjde6pU6cAACdOnMDo\n6CjuuusuPPvss7hw4QJ+67d+y4t9//334+WXXw7Gynzvu+8+AMAjjzyCJ598Mpina7vxxhtx7tw5\n/M7v/A6++tWv4tlnn8W2bdtw//33i+cUXcfNMcu96LzPf/7zmJycxNTUFL773e/irbfewvDwMDZt\n2oQbbrgBL7zwApaWlvChD30I1113XSf+iRMnOrl/7nOfw/e///3OPTKva17r1KlTOHDgAL70pS/h\n1Vdfxbp16/D1r38d58+fx/j4OJaWltBqtTA+Po5169Z51wzFDt2fz3/+81hZWcGHP/xhvPzyy3jt\ntddw55134qmnnsKtt96KL33pSzhw4AD+/M//HL//+7/vxZLaMXNt2k+cOIGXXnoJH/nIR3D11Vfj\ni1/8IjZs2IBPfepTpTF++7d/G1NTU/jJn/xJPPXUU3jnnXcwOTmJdevWefflkUce6dzf6667Dl/4\nwhdw7tw5bN26Fa+++iqWlpawYcMG7NmzBy+++CJ27dqFrVu3YnR0FPv27cOf/umf4gc/+AGef/55\n3HfffXjuuedw9dVXY+/evTh58iSUUvj0pz/deW+ye/LCCy/ghhtu8N6JEydOoNFoYO/evfja176G\n73znO4X38pOf/CQmJibw67/+6/jd3/1dzM/P4+LFi9ach2ICwC//8i933vnXXnsN73//+3HNNddg\ndnYWAPDAAw9YOWRz9e1vfxtvvPEGrrzySiwtLeGtt97ChQsXcMUVV2B6eho7d+7E888/j5WVFXzs\nYx/zxui+N61WC3feeSfeeustfPOb38TKygr27duHv/iLv8Di4iJuv/12/Oqv/qq4fk1NTeG5557D\nm2++ieHhYUxOTnYQVZIknbk377X5Ln/2s58VEURXC3CsL0VRFNVWyqmDC3BP/yEGRVEUVV1cgCmK\nogYkLsAURVEDEhdgiqKoAYkLMEVR1IDEBZiiKGpA4gJMURQ1IHEBpiiKGpC4AFMURQ1IXIApiqIG\nJC7AFEVRA9KP5AL8la98ZdAp9EWXyziAy2csl8s4gMtnLJfyOLgAr2FdLuMALp+xXC7jAC6fsVzK\n4/iRXIApiqIuBXEBpiiKGpD69v+EoyiKosKq/BeyUxRFUf0VEQRFUdSAxAWYoihqQIpagJVSH1VK\nvaSUelkpdeyHnVQVKaX+o1LqDaXUC4Ztg1LqaaXU3yilnlJK/ZjR91ml1Gml1F8rpT4ymKx9KaWm\nlVLPKaW+rZT6llLqM6l9LY5lVCn1NaXU8+lYktS+5sYCAEqpmlLqr5RSX07ba3Uc31NKfTO9L19P\nbWtuLEqpH1NKzaZ5fVspdcuaGYf0/6vPfmgv0v8bwC4AdQDfAPDesvMG9QNwO4D3A3jBsP1rAEfT\n42MA/lV6PAPgeQDDAK5Kx6kGPYY0t20A3p8eTwD4GwDvXYtjSfNbl/5zCMBXAexdw2N5EMAjAL68\nVp+vNL/vAtjg2NbcWAD8ZwCfSo+HAfzYWhlHTAW8F8BprfUrWutlAI8D+PmI8wYirfX/APB3jvnn\nAfxhevyHAD6WHv8cgMe11ita6+8BOI32eAcurfXrWutvpMfnAfw1gGmswbEAgNZ6IT0cRfvh11iD\nY1FKTQP4WQD/wTCvuXGkUvC/gtfUWJRSVwC4Q2v9MACk+c1hjYwjZgG+EsD3jfZrqW0taYvW+g2g\nvbAB2JLa3bH9LS7BsSmlrkK7qv8qgK1rcSzpZ/vzAF4H8IzW+i+xNsfy7wAcQXsDybQWxwG0x/CM\nUuovlVL/OLWttbHsBnBWKfVwioW+oJRahzUyjh/Vfwm3Zv7snVJqAsBJAA+klbCb+5oYi9a6pbW+\nEe0qfq9S6sexxsailLoLwBvpl0nwz3WmuqTHYeg2rfVNaFf0/1QpdQfW2D1B+2vqJgC/l45lHsBx\nrJFxxCzAfwvgXUZ7OrWtJb2hlNoKAEqpbQDOpPa/BbDT8LukxqaUGkZ78f2i1vqPUvOaHEsmrfUP\nAHwFwEex9sZyG4CfU0p9F8BjAD6klPoigNfX2DgAAFrr/5f+800A/xXtT/G1dk9eA/B9rfX/Stv/\nBe0FeU2MI2YB/ksAVyuldimlRgDcC+DLP9y0KkvBrlC+DOAfpse/AuCPDPu9SqkRpdRuAFcD+Prf\nV5IR+k8AXtRaf86wrbmxKKU2Zf8WWik1DuDDaDPtNTUWrfVvaq3fpbV+N9rvwXNa608C+GOsoXEA\ngFJqXfp1BaXUegAfAfAtrL178gaA7yul9qSmOwF8G2tlHJH/lvGjaP9b+NMAjg/633qW5PoogP8L\n4CKAVwF8CsAGAM+mY3gawKTh/1m0/03oXwP4yKDzN/K6DcAq2n/q5HkAf5Xeh41rcCzXp/l/A8AL\nAP55al9zYzHy+ynkfwpizY0DbXaaPVvfyt7rNTqW96FdKH4DwJNo/ymINTEO/qfIFEVRA9KP6r+E\noyiKGri4AFMURQ1IXIApiqIGJC7AFEVRAxIXYIqiqAGJCzBFUdSAxAWYumSV/jWD/yQ93q6UemLQ\nOVFUP8U/B0xdskr/EqI/1lpfP+BUKOqHouFBJ0BRBfqXAN6tlPortP/LpWu11tcrpX4F7b9ecD3a\n/ynpvwUwAuCTAC4A+Fmt9Tml1LsB/B6ATQAWANyvtX55AOOgqKCIIKhLWccBfEe3/5Yr96+A/HG0\nF+G9AP4FgPOp31cB/IPU5wsA/pnW+gPp+f/+7ytxiooRK2Bqreq/6/Zf8r6glDoH4L+l9m8BuD79\nC2ZuBTCrlMr+Yqb6APKkKFFcgKm1qovGsTbaLbSf6xqAv0urYoq6JEUEQV3KegdAIz0u+gvQPWmt\n3wHwf5RS92Q2pdQNfcyNoiqLCzB1yUpr/TaA/6na/4frfwP5/2og2e8D8I+UUt9QSp1C+/8HRlGX\njPjH0CiKogYkVsAURVEDEhdgiqKoAYkLMEVR1IDEBZiiKGpA4gJMURQ1IHEBpiiKGpC4AFMURQ1I\nXIApiqIGpP8PKs6h4slHEPcAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -72,8 +72,8 @@
],
"source": [
"import matplotlib.pyplot as plt\n",
- "from dcprogs.likelihood import plot_time_series\n",
- "from dcprogs.likelihood.random import time_series as random_time_series\n",
+ "from HJCFIT.likelihood import plot_time_series\n",
+ "from HJCFIT.likelihood.random import time_series as random_time_series\n",
"\n",
"perfect, series = random_time_series(N=100, n=100, tau=1)\n",
"print(perfect)\n",
@@ -91,9 +91,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAEKCAYAAAAl5S8KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvW+QntV1J/jrbv1FSDJIAYNN3EBkOYGeuI2NEcTBdqzM\nAC6DHc+OSWYmzswWYCfzyYUrVd4q19bKVUm7/GkyLrQfUrV2Ud4PmQAumxnCxmvWWLYBTRfTZmy5\nIyxDEGCpJfQPEGp174dH93nO/d3fOfd5X1Xa1O57qij6uXrf95znnn/3nHPvPWPLy8sYwQhGMIIR\n/Oph/FdNwAhGMIIRjKCBkUEewQhGMII3CYwM8ghGMIIRvElgZJBHMIIRjOBNAiODPIIRjGAEbxIY\nGeQRjGAEI3iTwMggj2AEIxjBmwRGBnkEIxjBCN4kMDLIIxjBCEbwJoFVg3x469aty5OTk/9EpIxg\nBCMYwf83Ye/evYeXl5d/rfa5gQzy5OQknnrqqeGpGsEIRjCC/x/C2NjYL/p8bpSyGMEIRjCCNwmM\nDPIIRjCCEbxJYGSQRzCCEYzgTQIjgzyCEYxgBG8SGBnkEYxgBCN4k8DIII9gBCMYwZsERgZ5BCMY\nwQjeJDAyyCMYwQhG8CaBkUEewQhGMII3CYwM8ghGMIIRvElgZJBHMIIRjOBNAiODPIIRjGAEbxIY\nGeQRjGAEI3iTwMAG+cUXX8TNN9+Ml156yX2+4YYbsGPHjvAz9pnHvM8//fTTxWfsmP2tvjSo3xyG\nzmG/m/D3paP2u4PwqQ8tg8z/oHMw6Gc8Xg/6HsPw859Khs5Xrmo0KF3oO6fR/A1Db8SrQWTdvk9t\nPrz/D2uLat/xfh99b9ZcXl7u/d911123/JnPfGZ5fHx8+TOf+czy8vKyfAawDCD8jH3mMe/z11xz\nTfEZO2Z/qy8N6jeHoXPY7yb8femo/a431uc3FS2DzP+gczDoZzxeD/oew/Dzn0qGzleuajQoXeg7\np9H8DUNvxKtBZN2+T20+vP8Pa4tq3/F+H8Avl3vY2LHl5eVehhsAxsbG+n94BCMYwQhG0MLy8vJY\n7TMDpSwuvvhijK9aDQAYm1iFVes2AGPNT6xfvx5vf/vbgbEO5/j4OI2NYWL12vY7F1xwAT7xiU/g\n4x//OMbGJwp869evx+TkZPFvExP6s5/4xCdwyy23AChpGJ/oIob1F13ivOFYhjfROb5qDdZcsBmb\nLr8qp2FsPPte/t1mbGx8Amsu2Iy3XrsjpF9B+q3xVWuKf5NzNzaGi6+8FhdecgVwbqz7jdXy/Wu0\nTKxd34tWy/eOb+Ptv73linc282fkZXJysuPL2Bgum9qBNRs2g/kwNrHaYmp5/fGPfzyTLQ/WrVuX\n4RpftRoXXnJFhivnZ/d7dp7tv6++YGM4Hfx+Cmf+2yX9zBuLs5Uz9R3xW80rjWH1+o3Yuu3d8t8u\nedf7sG7z1vKfJlZn8uPJTESvpy8W1l54kXyP8VVrsP7it2L1en/OvfnwYGxiVWOLzoHkhZlH++9p\nLnKeMoIxjK9abXV3qQ9dAxnkiYkJLC2ewdj4BMaWl/DOq94BLC8BY2M4ffo0Nm3aBJgV99LSUjs2\nNj6B8fExbN92NbC8hLHxCbz++uu49NJLcemll2J56WwuSOd+84ILLmj+zcDZs/kzAJw+fRqXXnop\n3vGOd6CJaHIals4uNpM0Po4rL9uKRihYMBo6E15guZn8pUX8+z/+Q/zhx34fwBjGJ1Y3NCwvYWxs\nvMU3vmp1993lhuljWMa//+M/xB2/89v5d5uXzNE777+0+Eb2b2MTq+TcjY+N4V/9iw/gX3/iNuDc\nWPcbZ4r3H5tY1dFSKHHz2e1XX+nMlf3oeMv3sYlVhm9LLV13fvT3mvlbXgLGxju6El/GxnDH77wb\n/+7f3NnMp+X/2TOS15deemk775bnDG+88UaLa2x8Alg6i3/zBx9tcY2Njbf87OZhuZDRRPv4+Di2\nTV7hz4ud9wBn/tvL52Sp+42ONznO8QkjZ5aG9j2W5QIHy8v4nz/9r/HJ37uheU+Db3xsDH/woffi\n03d+sniXseWzeNc7txV0DUKv0hdevF3965edM2Rr8vdYWsSn/9XH8e//+I8Ed0nv+sDYGMaWlxpb\ndO454wUaJ9DKNMlBsoE5T/PfHx8ba+ZsaRHr1q0DetragVo4nTlzBus2b8H6zVtx50d/Dw888AA2\nvnUSm976Dtx+4zV44IEHsObCt+CNk69gzYWb8bZfuxhHjx7Fr22/Dpdsm8bNv74GDzzwQPb84osv\nAgAmb7wNkzfcgl888BW8ePQk3vOpz+Hd48/hgQcewLrNW3D2jdNYu2kL1l34FmxcOo4Xj57EBW+5\nBMcO/gPGxlfjrn/3b9vfGl+1GkuLZ7Bu86/hsosvxNGjR/HWa3bgrde8HzdufePcb16Ms2+cxsSa\ndVi9fgO2rh/HwcOv4Ddv+ePuM5subt81/fbGt74Dm976Dqw59hx+8fwL2Hz5lXjLxBt47oWD2HLl\nFD75e9fjgQcewFuu2Ia3vH0bbp1+R/vddZub33vLxBv4xfMvYGL1GqxatwFnXjuBVWsvaOn4x5cP\nY/KG27DzXRef+6134i1v34axl/5H9m88d7/1+v8wdOZ8YR4oWibWrMPi66ew+oJNWLP+QvzRHf8c\nDzzwALZceQ1eP3EUWF7G6g0bcdHEGzh4+BWs23QxTh76R4yNr8YVl/1aOx9JNhRdG7Zcjg1bL2/n\nyfIlfYZp3fjWSZx57WQTbZyjq/29iy/Dhq2XY8MbC+17LJ09g6XFRVyw5TKs2bAZd956cytHzM+3\nvftmXP7bH8Dh/+d+vHDoCLZ98F/i1Wf+PpOF9Nkr3rsTV7z391q53PjWd+DMayexat2GTC5Zdj2c\n79twRNKRcB978qHi95L8Jb4mGhZffxXjq9fgbb92USaXPz9wAFhebnUhFZvWbWrkf80Fm7B6w0b8\noaFvy5XX4vUTR/H68cOtblkZevWZv8fBI8fxz+74TG96lb5MrFmPNRs2Y92Fb8H/9M9vynQuyWWS\np0Tb2o0X4fSJo1hz4WasWjqD199YzGTurdfswGuv/BInD/0jlhYXsXbjRVh8/RTGV63B4huvn/ND\n3TttufJaXHzltZk+1WjweHrqyEt47eghrFq3Hn/8L2/HAw88gHvuuQd33XUX3v3udx/qY2MHyiG/\n973vXX77nf8bAODBz90CAPi9z//vAIC/n7kLAPDbf/Af8N8fvA/v2nknfvJfvwYAuOSd7wEA/PJn\n/00+89jb3/MhAMA//rf/GwBwx1f+CwBgz+4vFJ957x99PqMn0fT0Mz/B+65/P/7LFz8FAPjNf/Fv\nAaCl6fo//l8AAKdPHgMAPP2f/2NB12//wX9o/03Rmeh68HO3FDSrd0w4n/g/drV/H/jBw3aK8cuf\n/bfscwDwgT/9MgDge//p3urc2TkAcr7Yd7G/mf7txbnvF7TY37fjaT5TuPb0f/6PBU5F1y3/6/8J\nAC5fFK3pdw/+98eLz9p5T/xI8NT9M+2/Acj4lcDSaPH2mWc1L57sejjVmJ2Tmu6k5zUXbi7m4cHP\n3YKrP3A7nn38m3jb9AdbmoBu3t841cj//u891P5bkr+1537ze//pXgBw56cvvUpf3jinf+nzV3/g\n9pYelpX0e4f2z+HDn/tP+PuZuwpZSfgmd9wKoNPvTW/99WaezslrklHWNTs3P/mvX5M0RDxNYHkL\nAGNjY3uXl5ffiwoMtEIGOqOIc8TMPXhf83zuBV+c+z6wtIitV0+135m6457sN/gZALZcdW0V58ZL\nr6jSAwAHfvBtLDz+TeydnwbOTeTCsz/OvpcYZY3Q9p156JEE0sKNd39J4p66/W73c4zT/p1w2jxU\nZ6QbIdn36DfOPd+L6845IAtqXiRfDBzeP9f+nd4z8SUpaYKE085h+jsJfkP3t8/91eBUPN17zkh6\nfFG0tu8iwM57y49zsIb4p2TF0h/JAgBcNnVT9px43PGnhBpONWbnxMPJz1a2LM7JHbfh2KarMHX9\n+7PvJf1UtCf5Y/7Z+RmGXqUvP/u/cvyTO25r/557aHfzhzGG23feiSMHD5yTtbsKHU18O/7ScxnN\n6f+drtyVvWvSNQCZ7VI0RDyN7FgfGNggs/KzcF33R5/Ho1/+7DlGN56VFZWfgXwS2LglnJZZ6TO8\nwgSAEy8/DyAXDhbkxCBr4KyRyn+7Y5Zlhp18NjSKaVag09/J+HVG8K7CYVnjoATEzks3VvLFglWi\n9J5pnrlIkXBuubJ73zSfnRHc1c57AsvTBDUDo2hN73L5P7up+Kydd1YGngPluKwhi2QBKB10enfL\nH092PZxqzM6JhzPJFTshfPFTGc65B+/DwvxstjgBOkOs5j/JHztCOz/D0Kv0hWWdFxIMh/fP4eyp\no62ssY4mviX5TjSf/GXzeXZAanFoF0AKIp4q/RwEBjbIrPwsXHMP7cbZ109kQsqKys9APgls3BJO\ny6z0GbWSufHuL+Gxb/1NJhwsyIlRdgJ5tVZbyVuDw4ZGMc0KdPq7fVcD7LCUcbCghFjxBUA7p1aJ\nSgUs+QPkDiXNp50jVm4l2DUDo2hN76I+a+edHYAnR947RbIAlMqfZKGP7Ho41Zh9Tw9ngvRsnajF\nObnjVrxydKGQz6Q3XoQJlPy08zMMvUpfWHatE2XnBjSGdvXWX29pYx1lQ5xo3njJFfKd1OIwcrAN\njT5POSobFAY2yLVQGABwdjEzIl6YZcFOAgtPwmmZlT6jlH7P7i/glflZHNg2jSQYbCBb4Qroqq3k\nLW42NIppVqDT32ou2GFZ46AFpAyBJV8M5EqkFTDCmebTzhErt3KWrLDKcTGU4WYHdt559ePJkXVc\nKgUExCvHBEkWIsfcF6cds+/p4eRn64AtzjTO8pn0U4XYSf6UsT4fepW+sOza92DnBjR8efgv7mlo\nM7KbdDTx7Sla6CQd4ndSi0NruxQNg8jRoDDECjkOhaduvxsv/ezpzIi4YZZhtMppMk7LrPQZpfRb\nrroWx18/kwmHMpCJXo/O2kre4mZDUwu9CpwJPndL6MCUgKgQWPHFglWiQgENLRZn6/2/+KkyakGp\n3Gplzwqr+MK0pnd549Tx4rN23lkWeF6U47JOMpKFBleu/EkW7Ht7suvhVGN2TjycaQFS5oB3FXnx\nM4efOzdPXeot6acXYQJlysLOzzD0Kn1hB2YXEvxvQMOXM4efw5brbgZQ6mjiW5LVRHPiC8+XcrxR\nThyIeZqKlCuWsqiFwnvvn8H4+o3Zi3phlgWV00wCpApwXuEBaLzy/OPfahP/QGkgE6OsgeMVWG0l\nbw1OaWhKplmB5qKGDTkjB6YERK2GFV/ss1UiLk5xUS/hXPh5x6M0n3aOePWmw/5cYZXjYloLYTef\ntfPODqDDn8uRB5EsAKXyJ1mwSu7J7iBg58TDyc9Wfjgv/uQTP8LUNb+Zfa+sAeQRJlDKtFoMDEKv\n0pcoT62K6hsvvQJHDh5oZY11NPHtnR+5M6dZ0ANoxxvlxIGYp0o/B4GBDXItFL5s6iYc+tu/akMK\nwA+zLKicJuO0zPIYCjQKYhP/QGkgE6PsBPJqrbaSz51IbmgU06xAc1HDGkF2MtY4KAHpEy5FoTQX\np7iot5ZWG0A3n3aOePXWJx2jHJcn1Oqzdt5rNQAlu/adIlkAyvdJstBHdj2casy+p4eTn21RmPPi\nC7PfxYHjH4NNvamCZIIkf+ws7fwMQ6/SF5Zdu5BQRfXJHbfh2T0Pt5sGWEcT31i/T/6y2XXBMqoW\ndFFOHIh5qhYhg8DABrkWCq+9cDMwviozIn6YVXpllRdSBbgo77l9551Y2nYzbvzw77djbCATo6yB\nYwGsreQtbjY0imlWoIuiRgv3Fg4rDwlLAVEhsORL9pudEpXFqXMwk28NanF/8VPtfNo5GnT1AWjH\nxbSmdzn438s5tfNeFKHauc3lyIJ1kpEsAOX7qLykJ7seTjXmbWGzOBMoA6Bwsnwm/VRppSR/Gy/9\n9Wzczs8w9Cp9iXYlqKL63IP3AUuLrayxjia+sX5vvbrRIY7+1OIwyokDFZ62sKv4TB8YvKhXCYWT\n0loj4oVZFlROs8BpICo8HN4/h4VHvo4984+142wgE6OsgeMVWG0lb3GzMVBMswLNRQ1dnGocljUO\nSkAUeHxRoTQXp9hIJpxWedN8eiEp0G/fuHJcTKvaiZJA8sMBpfzWSUayAJTKr3Ktruw6ONWYnRMP\np/fMOKduvxuLv3Ubbpi+JvuMqgEkSPLHdNr5GYZepS9cfLMLCVVUn9xxK44cPNDKWrl4yfnG22KZ\nPrU4jHLiQMxTZTMGgYENMgMzbeqOe/Cdr/xpw+gZvW1LeWWV02SwzPIKD0Dnle3ks4FMjLIGjg1R\nbSVvDU5xYEYwzQo0FzVOvPxc+zl2WNHhC0CHwIovFqwScXGKUxYJ55arOmErt+3dW6zWVNjPCqEc\nF9Oa3kXtQ/b4oX5HgXWEkSwApbL12fpXw6nG7Jx4ON19yLQjYu/9Mzg0P4s9T0znWwtFDSCByo0D\n+XsOQ6/SF+a/XUioovrpk8dw9tTRVtZYR7nelGhO+sUGWi0Oo5y4B90Cr9TPQWBgg1wLhRNB3kke\n9QzonGYSIFWA8woPQCNkj3/n77B18vLu98lApu/ZCeTVWm0lbw1OnxM6ltYoB84OyxoHJSAqBPb4\nokJpTwEZZ4d7Vzufdo7clMGM3jYIeI4rpzW9i/qsnfdaDUA5rtxJ+rIAlMqfZKGP7Ho41Zh9Tw9n\nAnWYh/Pih/bPuYdmojpJuYjp5mcYepW+sOxGh7mAxtDafciso2yIE80XXvLr8jf14tDPiQM1np4f\nDGyQa6HwiZefB5YW3ZM86hnQOU3GaZnlFR6ARsgW5mexb9s0vNM2iVHWwLEA1lbyFjcbGs00K9B5\nUcMaUHZY1jiouVMhsOSLAatEXJzi1WEar+3ZLAssZdhfOwWl8KR3UZvus2Ou5Nw8Ocpy7cZJRrIA\nqMjltnPf66KbQXFGYxFOfra5Uc6LX/Ab1xfymXis0kpJ/k6cO92WaLfzMwy9Sl+8AjKgnUU6CZw2\nDbCOJr6l3Uu8mGh1ycnJA/4x9AQRT/vsq49gYINcC4XTxm3vJI96BnROk3FaZnmFh2as2RoTnbhJ\nDLIGjldgtZW8NThsaBTTrEBzUaPd0lXJR6u5UyGw4osHXJyy+43tuL0HoIhaUAqjCvtZYZXjYlrT\nu6zZsKn4rJ13dgA8L9pxdU4ykgWgdNBcQAJ82fVwqjE7Jx7OtABRRWHOi786P4t9y6/BOkFeSVrw\n8rt2foahV+mLn/PdJaPOuYd24+ypo9h46QcAlDrK+sSLDL47w1uFJ1A0RDxtdVwcpukDAxvkWii8\nZ/cXsPTaCVz3Z3/ZfsYLsyyonGYSIFWA8woPQOOVX/jFs+GJm2IfppjA2kreGhw2NIou+3ss9H3z\n0UpAdAhc8sX+ZpSPP00HMBJOK/xpPu078epNhf2ssMpxMa2FsNNlMwnYAXTzksuRBeskI1kASuVP\nsmDDVU92PZxqzM6Jh5OfVcEYaAzuU997FNvfc332vaIGIHaTcJRg52cYepW+dPO1q6U3gVcgm9hw\nUStr3kKD9TstMrZ/pL4TKMqJAzFPV/xyoVoovOWqa3FofrYxIs55flXsUTlNxmmZFeU95x68D6ef\n/zEW1q1ux9hAJkbYCeTVWm0lbw0OGxrFNPt7LPT2FFoU9igBUascxRcLUT6eV6IJpzrebt+JV28q\n7GeFVY6LaVWXRSVQOz8SeHJkHZd3gKnPyj3JQh/Z9XCqsSiPyk4nPdu0CefFj//wmzi8Oe/8kpy8\nSisl+WNnaednGHqVvrDs2oWESm9N3X43XvryZ9tNA95Cg/U7pV9YRuVNiUFOvKHR5+mK70OuhcJb\nr54CJvKfdcOsGb2VhI2bKsB5hQegEbIzb5vGjR/tuh+wgUyMsgaOBbC2kre4mRGKaVagi6JGgpm7\nCodljYMWkDIElnwxYJWoKE4lODcPhdP73C3tfOZFm1y5VdjPdCnHxbSm76h9yHbevZ00CZTjsgod\nyQJ/FuhkoT3BGMiuh1ONRXlUdjrykILIi3uGQqWVkvzxu9j5GYZepS/2QIulF9BF9b33z+DsqaOY\n3PFZAKWOJr6xfifZ7LMTyIKiIeRpC36NJIIhVshxKLzv0W9gYt1G9ySPemYojVtZgPMKD0AjZK98\n96+x54VZE/bmBrK8D/beYgVWW8lbg+PlPS1YgeaiRnQowRoHJSAqBFZ8aaAMpbk4xUqacFoF7bNt\nUEGZjigdF9NaCrtebfJ+9TeKFEbpuKyTjGQBKJW/OLAEX3Y9nGrMzomHk58tPzkv/uRPn8P73pXX\nWlQNIIG6zAvI52cYepW+MG8tP1VR/bKpm3Dk4IFW1lhHE9/ShfTDXDgV5cSBmKcrvg+5Fgpv33kn\nHv/q5xtG0/WJCZTiqpwm44xysBbU7WBsIBOjrIHj1VptJW/By3taplmB5qKGnRNWBCtESkBUCKz4\nYiHbtuScbmKcqumAnSNerUW3xPHvRLSmd7n8n/1O8dlBagDKcdl3imQBKJU/yUIf2fVwqrHoUiyW\nP1UU5rz4oflZ7Nk2LXcKeBEmUDpLOz/D0mvpAsr5svxUq/q1F27G2VNHW1ljHeVLhLwL6/ldLUQ5\ncSDmae2q3BoMbJBrofDh/XPA+Cr3JI96BnROMwmQKsB5hYc09uQTP8KkuVCFDWS06ksCWFvJW0Vk\nQ6OYZgU6yoGzw4q2xAHaKEm+WNozJSqLUw3synB2uO+V+82jTf4drlxhlePyQmX12czpVmoAynFZ\nJxnJAuDf4NdHdj2casy+Z99bA+08cF780PxsIZ/t0X1hMJP8sbO08zMMvUpfeL68PHWCAz94GBMb\nLmplzdulwfqddmOxjKrFYW0vdMzT84PzbuHEwrXw7I+BpUX3JI96BnROk3FaZnmFB6C7UGVufroV\nDDaQ3FkAKAWwtpK3uNnQKKZZgeaihi2kscOyxqHPahhw+JL9ZqdEXJziay5VwSLNZ9pwD5TKrcJ+\nVljluJjWSNjtvHP47cmRdVzWSUay0ODKlV/dsTEoTjUWXYrFTic9W55xXnzTDZ/E5I6d2fdUBJAg\nyV+6kCc5QDs/w9Cr9CX1SUzg5anb37vjHjz21T9vNw14x/zT7/Ji4mDSrXMyqhaHtb3QEU9XfJdF\nLRRO+5Dt/atemOWdLGPjpvIzXuHBQnTiJjHI21sJ1Ffy1uCwoVFMUz3pUlGj3Wr2xU+VFzgZ49Bn\nNQxovliwSsTFqbWtc8jfRa1eovsjdNifK2yfFUgk7Hbe2QHwvKjve40U1GqclT/Jgn0nT3Y9nDU6\nPJzFXTIJZu4q8uLH52cxt7A/W7UmJx9dls+/7eV3+9Kr9IXl1C4kVFH9wA++jbOnjrbP5eIlrzfx\noaZ9tA9ZvX+UEwdinrb0r9Q+5FoovGf3F3DmyEFM/Ul80QuDymkmAVIFOK/wADRe+djS2vDEjUqD\n8GqttpLPnUhOh2KayoEXhzFQOixrHJSAqBBY8QWADKW5OOXdDKaaDmRXotLqTYX9rLB9ViCRsNt5\nr9UAlOPyGimolTsrf5KFPrLr4azR4eHkZ3VoCmgM3qmx9Zi84UPZ95KT9yJMoH9+ty+9Sl9Ydq2B\nVkX1Ey8/j4kNF7WyxjrKhpgPNbGMypsSK40tIp6u+Em9Wii88dIrcGh+Nrsc3guzsjGR02ScObN0\n4QFohOzk/CxefPWX7RgbyPL0WdxDLEFeze5ws6FRTFM5cO+4soU8JCwFRIXAii8eLVyc8tpR2d9o\nj66bOWLlVmE/K6xyXEyruiwqgZ03zoFHuwQSWJ5HsgCUys/duofBqcaiS7GYN+nZzgPnxV/9hydw\n+tq8TX1y8tGF6uwYozx1H3qVvrDs2oWEykenCDxtGvB6RbJ+Jx3yLtm3UMuJRzztexmRBwMb5Foo\nnC6Q9k7yqGdA5zQZp2WWV3gAGiF77YJLcN3HP92OsYFUnaxrJ7UaOjuhsrjZ0CimWYEuihoJqJUQ\nQFu7hID02XnRJ5Quwt90UpD3J5s9u+22Q6jrGsuwnxVWOS4vH69WlnbeoyIUoB2X5XlNFsrIpZEF\ne6Tck10PpxqL2tDzAkRdalPkxZcWC/nsTpaJg0ZOR3dvfvrSq/SF7ye2PFbR757dTQuny373Y8W/\nWbpYv9Pzz/fQ3nSxOIxy4kCFpwkqRVgPBjbItVB47sH7sPriy92TPOoZ0DlNxmmZ5RUegMYrn3z6\nEcyNnxaHGxoDqTpZs5GqreStwWFDo5iWdwPOixr2khV2WLnRKAWkz86LKJTm4hQrSbepvqyyRy13\n1GqBFVY5Ljcf30L3WYu/44fGrxyXdZKRLChQN/Z5suvhVGPRBUzsdFRRmPO7P5x9BtPb3p59r6wB\n5BEmUMqwnZ9h6FX6EuWpVdS45aprceTgAdnFJv070G2R5MWE1znIO7ykaIh4qhzcIDCwQa6FwpM7\nbsWTX/tSexsT4IdZFlROk3Gqz6iN7bVVA6A3v9fayDe/3QmVVXg2NIppVqC5qGEZzw7LGgclICoE\nVnyxoFrXp8+kTfWMUzUdsHPEq7c+dwNrx5XTmt5F7UO2816rASjHlTtJXxYAlSMvu9YMilONRZdi\ncdSRnm1RmPO7h+ZnMTf9QXnq0IswAbWI0cXLvvQqfYny1KqovvXqKfz0ka+3mwZYRxPfWL/L+5B3\nZe86CA0RT3/l+5BZuE6fPAaMr3JP8qhnQOc0o4uAPIYCjZA9/cxPMHX9+9sxnih1IIMFsLaS73OD\nmsJp/1Zdg9lhWeOgBESFwJIvBtS9FKUjuzfD2eKe6Y6uZ33WSLnltiVSWCXAZbdovUWKgfnxFCmr\n7K5hnGQkC0DpoFXXGk92PZxqLLoUi51OerZFYc6LH5qfLWhI+qnSSl5Hdzs/w9Cr5iLKU6ui+r5H\nvwGMr2pljXXUO3CVdIidulocRjlx7z3UvebDwHnvQ2bhenHu+8DSonuSRz0D8f49VYDz6AEaIVt4\n/JvYOz/g6gEJAAAgAElEQVTtXqWpOlmzANZW8hZ3lPdlnPZv1ViUHZY1DkpA5AUpii8GrBJxcYpT\nFgmn2rYXdTMJ89TBFadMayTsdt45tcH3J2vH1dEfyQJQKn/icbRPuoZTjUVt6L27xb0dRZM7bsOx\nTVdlixNA7VzqwOvobudnGHqVvvB1mNn9yaKovn3nnThy8EC7aYB11DuZV57ezftF2sVhlBPn9+jo\nbuZjxfch10LhdIF06goL+GGW9coqp8k4LbO8wgOgbwdjQVadrHm1VlvJ28mP8r6M0/6djJ+9ZIUd\nljUOSkB0CFzyxULeATgvTvGl4Qnnliujfci7itWbCvtrBkbRmt5FtXCy8+51xUigHJc1ZJEsAKWD\nTu8ehew1nGrMzomH023h9MVPFXnxhfnZbHECdIbYizDTdy3Y+RmGXqUvLOu1k4mH989lHeVZR7ne\nlGg+ea74HLWlSlBrohDxNGra2gcGNsi1UHjuod04+/oJ9ySPegZ0TpOv77TM8goPQCMgj33rb8IT\nN6qTda2NPJB7QGtw2NAoplmBjnPgucOq5aWUECu+AJChdKmAeuuOajoQ9ZNTgl0zMIrW9C7qs9Hl\n8J4cee8UyQJQKn/ZrduXXQ+nGrPv6eFMoPogcl78laMLhXwmvfEiTCDeBjoMvUpfWHatE1VF9YVn\nf5y1cGIdZUOcaN54yRXyndTiMHKwDY0+T1VXm0Fg8K7TlVAYAHB20T3Jo54BndNknJZZXuEBaATk\nlflZHNg2jSQYbCBVJ+s+zLJCZXF7e3clTrN/Us0FO6zsSK8UkDIElnwxkCuRVsAIZ5pPO0es3MpZ\nssL22UivLotKoLt1N9DnZi+VAgLilWMC7tZ9PjjtWHQpFjsd1Slc5cW9C6NUiB11dD8fepW+sOza\n9/B2QDz8F/e0mwZYR71Lx7grTnqnWlsyeXBmADkaFIZYIceh8NTtd+Olnz3tnuRRz4DOaTJOyyyv\n8AA0Qnb89TPVEzeJXo/O2kre4mZD0/dSmCLkFC2c7LMSEBUCK75YsEpUKKChxeK0rZ1UG3lWbrWy\nZ4VVfGFavTs2gHzeoyJUg6t0XNZJRrLQ4MqVn7t1A77sejjVWNSGnhcgqijMefEzh5/LrjIAOgPl\nRZhAmbKw8zMMvUpf2IHZhYS3A+LM4eew5bqbAZQ6yidf+bATz5dyvFFOHIh52t66t1Ipi1oovPf+\nGYyv3+ie5FHPgM5pJgFSBTiv8AA0Xnn+8W9lpwXZQKpO1rwCq63krcEpDY0+0s1/p6KGDTkjB6YE\nRK2GFV/ss1UiLk5xUS/hbC9iRzefdo549abD/lxhleNiWgtht3fXmnlnB9Dhz+XIg0gWgFL51Y19\nnuwOAlEbejagqijMefEnn/gRpszNh4CqAeQRJlDKtHfKrS+9Sl+iPLUqqqd+mUnWWEcT3975EdqW\nKegBtOONcuJAzNPo5GMfGNgg10Lhy6ZuwqG//atsH7IXZllQOU3Gmd2b4DAUaBTEJv4Bf0O4ncBa\nG3kgF6rcieSGRjHNCjQXNawRZCdjjYMSkD7hUhRKc3HK6wSsmg7YOeLVW590jHJcnlCrz9p5r9UA\nZHcN806RLADl+3C37mFwqrHoUix2OunZFoU5L74w+10cOP4x2NSbKkgm8Dq6Z1sch6BX6QvLrl1I\nqKJ6OgmcNg2wjia+sX6nA2Qso2pBF+XEgZinK97CqRYKr71wMzC+KjzJ4+V9Aci8kCrARXnP7Tvv\nxNK2m3Hjh3+/HWMDqS5lYQGsreQtbjY0imlWoIuiRgv3Fg4rDwnFPb3qghTFl+w3OyUqi1PnYCbf\nGtTiNtce2jkadPUBaMfFtKprLhNE+1y7ufV7/FknGckCUL6Pykt6suvhVGPRpVis8MoAKJzehVEq\nreR1dLfzMwy9Sl+iXQmqqD734H3A0qJ7A6DXbGHr1Y0OcfSnFodRThyo8LSFXcVn+sDgRb1KKJyU\n1jvJo54BndMscBqICg+H989h4ZGvY8/8Y24vMtXJmldgtZW8xc3GQDFNdQZWXYPZYVnjoAREgccX\nFUpzccq7Y1Y1FPVCUqDfvnHluJhWtRMlgeSHA0r5rZOMZAEolV/lWl3ZdXCqsagNfZ8COefFF3/r\nNtwwfU32GVUDSOB1dLfzMwy9Sl+4+GYXEqqoPrnjVhw5eEB2sUn/rmnW9KnFYZQTB2KerngLJwZm\n2tQd9+A7X/nTtiss4IdZFlROkyFqXW9B3Q7mNcCMesLVVvLW4BQHZgTT8m7AeVHDdg1mhxUdvgB0\nCKz4YsEqERenOGWRcNpz+uW2vXt7NZBkhVCOi2lN76L2IXv8UL+jwDrCWn9AVrY+W/9qONVY1Ia+\nug+ZdkTsvX+maeH0RN7CSdUAEnjdbOx7DkOv0peoy4wqqp8+eQxnTx1tZY11lOtNieby6HT+rhai\nnLgH3QKv1M9BYPCu05VQWLX26RNmqZwmt/aOWtdbuPHuL+Hx7/wdtk5e3v0+GUjVybrWRh7gLsud\nwRnkMhr7t3Io7LCscVACokJgjy8qlI7aSVmcHe5d7XzaOXJTBjN62yDgOa6c1vQu6rN23ms1AOW4\ncifpywJQKn/RrTuQXQ+nGova0LPTUYd5OC9+aP+ce2gmqpOUi5hufoahV+kLy26tfdKLc9/P9iGz\njrIhTjSnzja1nHxDp58TB2o8PT8Y2CDXQuETLz8PLC26J3nUM6BzmozTMssrPACNkC3Mz2Lftml4\np21UJ2sWwNpK3uJmQ6OZZgU6L2pEffOscVBzp0JgyRcDVom4OMWrw+iuVztHZYGlDPtrp6AUnvQu\natN9dsyVnJsnR95l5JEsACpyybt1D4MzGotw8rPNjXJe/ILfuL6Qz8RjlVbyOrrb+RmGXqUvXgEZ\n0M4inQROmwZYRxPf0u4lXky0uuTk5AH/GHqCiKcrfkF9LRROG7e9kzzqGdA5TcapuiJw4aEZa7bG\nRCduVCdrXoHVVvLW4LChUUyzAs1FDds1OMpHq7lTIbDiiwdcnLL7je24vQdAtZFnYVRhPyusclxM\nq7piMoGdd3YAPC/acXVOMpIFoHTQXEACfNn1cKqxqA09L0BUUZjz4q/Oz2Lf8muwTpBXkha8/K7X\n4qovvUpf/JzvLt2y66HdOHvqKDZe+gEApY6yPvEig+/O8FbhCRQNEU9bHV+pFk61UHjP7i9g6bUT\nuO7P/rL9jBdmWVA5zSRAqgDnFR6Axiu/8ItnwxM36gY5htpK3hocNjSKLtXCKQl933y0EhAdApd8\nsb8Z5eNP0wGMhNMKf5pP+068elNhPyusclxMayHsdNlMAnYA3bzkcmTBOslag4IyR34r4fFl18Op\nxqI29GzAVFGY8+JPfe9RbH/P9dn3ihqA2E3CUYLX4qovvUpfuvna1dKbwCuQTWy4qJU1b6HhtUjb\n/pH6TqAoJw7EPF3xy4VqoXBqO566wgJ+mGVB5TQZp2VWlPece/A+nH7+x1hYt7odYwOZGGEnsNZG\nHsiFyhocNjSKaaqFkzqFFoU98p5escpRfLEQ5eN5JZpwquPt2dWTtHpTYT8rrHJcTKu6LCqB2vmR\nwJMj67i8A0x9Vu7crXsYnGosyqOy00nPNm3CefHjP/wmDm9en30vOXmVVvI6uqsmt4PQq/SFZdcu\nJFR6a+r2u/HSlz/bbhrwFhqs3yn9wjIqb0oMcuINjT5PV3wfci0U3nr1FDCR/6wbZs3orSRs3FQB\nzis8AI2QnXnbNG786CfbMTaQqpM1C2BtJW9xMyMU06xAF0WNBDN3FQ7LGgctIGUILPliwCpRUZxK\nUHT1OAefu6Wdz7xokyu3CvuZLuW4mNb0HbUP2c67t5MmgXJcXiuiPit37tYdya6HU41FeVR2OvKQ\ngsiLe4ZCpZW8y9bt/AxDr9IXe6DF0gvoovre+2dw9tRRTO74LIBSRxPfWL+7rjf1nUAWFA0hT1vw\nayQRDLFCjkPhfY9+AxPrNronedQzQ2ncygKcV3gAGiF75bt/jT0vzJqwNzeQqpM1r8BqK3lrcLy8\npwUr0FzUiA4lWOOgBESFwIovDZShNBen+vQ07LNtUEGZjigdF9NaCrtebfJ+9TeKFEbpuKyTjGQB\nKJW/OLAEX3Y9nGosakPPTkcVhTkv/uRPn8P73pXXWlQNIIHX0d3OzzD0Kn1h3lp+qqL6ZVM34cjB\nA7KLTfp3oOt6M8yFU1FOHIh5uuL7kGuh8Padd+Lxr36+7QoL+GGWBZXTZJxRDtaCuh2MDaTqZF1r\nIw/4J4u8vKdlmhVor7OBHUtghahPQ1NA88WCal2viqcWp2o6YOeIV2vRLXH8OxGt3CfNwiA1AOW4\n7DtFsgCUys/duofBqcaiS7FY/lRRmPPih+ZnsWfbtNwp4EWYQOks7fwMS6+lC4hbOKlV/doLN+Ps\nqaOtrLGO8iVC3oX1/K4Wopw4EPP0V97CiYXr8P45YHyVe5JHPQM6p5kESBXgvMJDGnvyiR9h0lyo\nwgYyWvUlAayt5K0isqFRTLMCHeXA2WFFW+IAbZQkXyztonV9uZdyV4azw32v3G8ebfLvcOUKqxyX\nFyqrz2ZOt1IDUI7LOslIFgD/Br8+suvhVGO1NvQK7DxwXvzQ/Gwhn+3RfWEwvY7udn6GoVfpC8+X\nl6dOcOAHD2Niw0WtrHm7NFi/024sllG1OKzthY55en5w3i2cWLhS23HvJI96BnROk3FaZnmFB6C7\nUGVufroVDK8DcXbXMAlgbSVvcXut6xVO+7cqpLHDssahz2oYcPiS/WanRFyc4msuVcEizWfacA+U\nyq3CflZY5biY1kjY7bxz+O3JkXVc1klGstDgypVf3bExKE41Fl2KxU4nPVuecV580w2fxOSOndn3\nVASQwOvobudnGHqVvnCfRC9P3f7eHffgsa/+ebtpwDvmn36XFxMHk26dk1G1OKzthY54uuK7LGqh\ncNqHbO9f9cIs72QZGzeVn+nT5TU6caM6WfMKrLaStwbHbV1vmKZ60qWihu0aXFzgZIxDn9UwoPli\nwSoRF6fWts4hfxe1eonuj9Bhf66wfVYgkbDbeWcHwPOivu81UlCrcVZ+7tbd/K1l18NZo8PDWdwl\nk2DmriIvfnx+FnML+7NVa3Ly0WX5/NtefrcvvUpfWE7tQkIV1Q/84Ns4e+po+1wuXvJ6Ex9q2kf7\nkNX7RzlxIOZpS/9K7UOuhcJ7dn8BZ44cxNSfxBe9MKicZhIgVYDzCg9A45WPLa0NT9yoNEitjTyQ\nr/pyJ5LToZimcuDFYQyUDssaByUgKgRWfAEgQ2kuTnk3g6mmA9mVqEUL+DLsZ4XtswKJhN3Oe60G\noByX10hBrdxZ+ctu3b7sejhrdHg4+VkdmgIag3dqbD0mb/hQ9r3k5L0IE+if3+1Lr9IXll1roFVR\n/cTLz2Niw0WtrLGOsiHmQ00so/KmxEpji4inK35SrxYKp7bj9nJ4L8zKxkROk3HmzNKFB6ARspPz\ns3jx1V+2Y2wgy9NncQ+xBHk1u8PNhkYxTeXAvePKFvKQsBQQFQIrvni0cHHKa0dlf6M9um7miJVb\nhf2ssMpxMa3qsqgEdt44Bx7tEkhgeR7JAlAqP3frHganGosuxWLepGc7D5wXf/UfnsDpa9+TfS85\n+ehCdXaMUZ66D71KX1h27UJC5aNTBJ42DXi9Ilm/kw55l+xbqOXEI572vYzIg4ENci0UThdIeyd5\n1DOgc5qM0zLLKzwAjZC9dsEluO7jn27H2ECqTta1k1oNnZ1QWdxsaBTTrEAXRY0E1EoIoK1dQkD6\n7LzoE0oX4W86Kcj7k82e3XbbIdR1jWXYzwqrHJeXj1crSzvvUREK0I7L8rwmC2Xk0siCPVLuya6H\nU41Fbeh5AaIutSny4kuLhXx2J8vEQSOno7s3P33pVfrC9xNbHqvod8/upoXTZb/7seLfLF2s3+n5\n53tob7pYHEY5caDC0wSVIqwHAxvkWig89+B9WH3x5e5JHvUM6Jwm47TM8goPQOOVTz79CObGT4vD\nDY2BVJ2s2UjVVvLW4LChUUzLuwHnRQ17yQo7rNxolALSZ+dFFEpzcYqVpNtUX1bZo5Y7arXACqsc\nl5uPb6H7rMXf8UPjV47LOslIFhSoG/s82fVwqrHoAiZ2OqoozPndH84+g+ltb8++V9YA8ggTKGXY\nzs8w9Cp9ifLUKmrcctW1OHLwgOxik/4d6LZI8mLC6xzkHV5SNEQ8VQ5uEBjYINdC4ckdt+LJr32p\nvY0J8MMsCyqnyTjVZ9TG9tqqAdCb32tt5Jvf7oTKKjwbGsU0K9Bc1LCMZ4dljYMSEBUCK75YUK3r\n02fSpnrGqZoO2Dni1Vufu4G148ppTe+i9iHbea/VAJTjyp2kLwuAypGXXWsGxanGokuxOOpIz7Yo\nzPndQ/OzmJv+oDx16EWYgFrE6OJlX3qVvkR5alVU33r1FH76yNfbTQOso4lvrN/lfci7sncdhIaI\np7/yfcgsXKdPHgPGV7knedQzoHOa0UVAHkOBRsiefuYnmLr+/e0YT5Q6kMECWFvJ97lBTeG0f6uu\nweywrHFQAqJCYMkXA+peitKR3ZvhbHHPdEfXsz5rpNxy2xIprBLgslu03iLFwPx4ipRVdtcwTjKS\nBaB00KprjSe7Hk41Fl2KxU4nPduiMOfFD83PFjQk/VRpJa+ju52fYehVcxHlqVVRfd+j3wDGV7Wy\nxjrqHbhKOsROXS0Oo5y49x7qXvNh4Lz3IbNwvTj3fWBp0T3Jo56BeP+eKsB59ACNkC08/k3snZ92\nr9JUnaxZAGsreYs7yvsyTvu3aizKDssaByUg8oIUxRcDVom4OMUpi4RTbduLupmEeergilOmNRJ2\nO++c2uD7k7Xj6uiPZAEolT/xONonXcOpxqI29N7d4t6Ooskdt+HYpquyxQmgdi514HV0t/MzDL1K\nX/g6zOz+ZFFU377zThw5eKDdNMA66p3MK0/v5v0i7eIwyonze3R0N/Ox4vuQa6FwukA6dYUF/DDL\nemWV02Scllle4QHQt4OxIKtO1rxaq63k7eRHeV/Gaf9Oxs9essIOyxoHJSA6BC75YiHvAJwXp/jS\n8IRzy5XRPuRdxepNhf01A6NoTe+iWjjZefe6YiRQjssaskgWgNJBp3ePQvYaTjVm58TD6bZw+uKn\nirz4wvxstjgBOkPsRZjpuxbs/AxDr9IXlvXaycTD++eyjvKso1xvSjSfPFd8jtpSJag1UYh4GjVt\n7QMDG+RaKDz30G6cff2Ee5JHPQM6p8nXd1pmeYUHoBGQx771N+GJG9XJutZGHsg9oDU4bGgU06xA\nxznw3GHV8lJKiBVfAMhQulRAvXVHNR2I+skpwa4ZGEVrehf12ehyeE+OvHeKZAEolb/s1u3LrodT\njdn39HAmUH0QOS/+ytGFQj6T3ngRJhBvAx2GXqUvLLvWiaqi+sKzP85aOLGOsiFONG+85Ar5Tmpx\nGDnYhkafp6qrzSAweNfpSigMADi76J7kUc+AzmkyTsssr/AANALyyvwsDmybRhIMNpCqk3UfZlmh\nsri9vbsSp9k/qeaCHVZ2pFcKSBkCS74YyJVIK2CEM82nnSNWbuUsWWH7bKRXl0Ul0N26G+hzs5dK\nAQHxyjEBd+s+H5x2LLoUi52O6hSu8uLehVEqxI46up8PvUpfWHbte3g7IB7+i3vaTQOso96lY9wV\nJ71TrS2ZPDgzgBwNCkOskONQeOr2u/HSz552T/KoZ0DnNBmnZZZXeAAaITv++pnqiZtEr0dnbSVv\ncbOh6XspTBFyihZO9lkJiAqBFV8sWCUqFNDQYnHa1k6qjTwrt1rZs8IqvjCt3h0bQD7vURGqwVU6\nLuskI1locOXKz926AV92PZxqLGpDzwsQVRTmvPiZw89lVxkAnYHyIkygTFnY+RmGXqUv7MDsQsLb\nAXHm8HPYct3NAEod5ZOvfNiJ50s53ignDsQ8bW/dW6mURS0U3nv/DMbXb3RP8qhnQOc0kwCpApxX\neAAarzz/+Ley04JsIFUna16B1Vby1uCUhkYf6ea/U1HDhpyRA1MColbDii/22SoRF6e4qJdwthex\no5tPO0e8etNhf66wynExrYWw27trzbyzA+jw53LkQSQLQKn86sY+T3YHgagNPRtQVRTmvPiTT/wI\nU+bmQ0DVAPIIEyhl2jvl1pdepS9RnloV1VO/zCRrrKOJb+/8CG3LFPQA2vFGOXEg5ml08rEPDGyQ\na6HwZVM34dDf/lW2D9kLsyyonCbjzO5NcBgKNApiE/+AvyHcTmCtjTyQC1XuRHJDo5hmBZqLGtYI\nspOxxkEJSJ9wKQqluTjldQJWTQfsHPHqrU86RjkuT6jVZ+2812oAsruGeadIFoDyfbhb9zA41Vh0\nKRY7nfRsi8KcF1+Y/S4OHP8YbOpNFSQTeB3dsy2OQ9Cr9IVl1y4kVFE9nQROmwZYRxPfWL/TATKW\nUbWgi3LiQMzTFW/hVAuF1164GRhfFZ7k8fK+AGReSBXgorzn9p13Ymnbzbjxw7/fjrGBVJeysADW\nVvIWNxsaxTQr0EVRo4V7C4eVh4Tinl51QYriS/abnRKVxalzMJNvDWpxm2sP7RwNuvoAtONiWtU1\nlwmifa7d3Po9/qyTjGQBKN9H5SU92fVwqrHoUixWeGUAFE7vwiiVVvI6utv5GYZepS/RrgRVVJ97\n8D5gadG9AdBrtrD16kaHOPpTi8MoJw5UeNrCruIzfWDwol4lFE5K653kUc+AzmkWOA1EhYfD++ew\n8MjXsWf+MbcXmepkzSuw2kre4mZjoJimOgOrrsHssKxxUAKiwOOLCqW5OOXdMasainohKdBv37hy\nXEyr2omSQPLDAaX81klGsgCUyq9yra7sOjjVWNSGvk+BnPPii791G26Yvib7jKoBJPA6utv5GYZe\npS9cfLMLCVVUn9xxK44cPCC72KR/1zRr+tTiMMqJAzFPV7yFEwMzbeqOe/Cdr/xp2xUW8MMsCyqn\nyRC1rregbgfzGmBGPeFqK3lrcIoDM4JpeTfgvKhhuwazw4oOXwA6BFZ8sWCViItTnLJIOO05/XLb\n3r29GkiyQijHxbSmd1H7kD1+qN9RYB1hrT8gK1ufrX81nGosakNf3YdMOyL23j/TtHB6Im/hpGoA\nCbxuNvY9h6FX6UvUZUYV1U+fPIazp462ssY6yvWmRHN5dDp/VwtRTtyDboFX6ucgMHjX6UoorFr7\n9AmzVE6TW3tHrest3Hj3l/D4d/4OWycv736fDKTqZF1rIw9wl+XO4AxyGY39WzkUdljWOCgBUSGw\nxxcVSkftpCzODveudj7tHLkpgxm9bRDwHFdOa3oX9Vk777UagHJcuZP0ZQEolb/o1h3IrodTjUVt\n6NnpqMM8nBc/tH/OPTQT1UnKRUw3P8PQq/SFZbfWPunFue9n+5BZR9kQJ5pTZ5taTr6h08+JAzWe\nnh8MbJBrofCJl58HlhbdkzzqGdA5TcZpmeUVHoBGyBbmZ7Fv2zS80zaqkzULYG0lb3GzodFMswKd\nFzWivnnWOKi5UyGw5IsBq0RcnOLVYXTXq52jssBShv21U1AKT3oXtek+O+ZKzs2TI+8y8kgWABW5\n5N26h8EZjUU4+dnmRjkvfsFvXF/IZ+KxSit5Hd3t/AxDr9IXr4AMaGeRTgKnTQOso4lvafcSLyZa\nXXJy8oB/DD1BxNMVv6C+FgqnjdveSR71DOicJuNUXRG48NCMNVtjohM3qpM1r8BqK3lrcNjQKKZZ\ngeaihu0aHOWj1dypEFjxxQMuTtn9xnbc3gOg2sizMKqwnxVWOS6mVV0xmcDOOzsAnhftuDonGckC\nUDpoLiABvux6ONVY1IaeFyCqKMx58VfnZ7Fv+TVYJ8grSQteftdrcdWXXqUvfs53l27Z9dBunD11\nFBsv/QCAUkdZn3iRwXdneKvwBIqGiKetjq9UC6daKLxn9xew9NoJXPdnf9l+xguzLKicZhIgVYDz\nCg9A45Vf+MWz4YkbdYMcQ20lbw0OGxpFl2rhlIS+bz5aCYgOgUu+2N+M8vGn6QBGwmmFP82nfSde\nvamwnxVWOS6mtRB2umwmATuAbl5yObJgnWStQUGZI7+V8Piy6+FUY1EbejZgqijMefGnvvcotr/n\n+ux7RQ1A7CbhKMFrcdWXXqUv3XztaulN4BXIJjZc1Mqat9DwWqRt/0h9J1CUEwdinq745UK1UDi1\nHU9dYQE/zLKgcpqM0zIrynvOPXgfTj//YyysW92OsYFMjLATWGsjD+RCZQ0OGxrFNNXCSZ1Ci8Ie\neU+vWOUovliI8vG8Ek041fH27OpJWr2psJ8VVjkuplVdFpVA7fxI4MmRdVzeAaY+K3fu1j0MTjUW\n5VHZ6aRnmzbhvPjxH34Thzevz76XnLxKK3kd3VWT20HoVfrCsmsXEiq9NXX73Xjpy59tNw14Cw3W\n75R+YRmVNyUGOfGGRp+nK74PuRYKb716CpjIf9YNs2b0VhI2bqoA5xUegEbIzrxtGjd+9JPtGBtI\n1cmaBbC2kre4mRGKaVagi6JGgpm7CodljYMWkDIElnwxYJWoKE4lKLp6nIPP3dLOZ160yZVbhf1M\nl3JcTGv6jtqHbOfd20mTQDkurxVRn5U7d+uOZNfDqcaiPCo7HXlIQeTFPUOh0kreZet2foahV+mL\nPdBi6QV0UX3v/TM4e+ooJnd8FkCpo4lvrN9d15v6TiALioaQpy34NZIIhlghx6Hwvke/gYl1G92T\nPOqZoTRuZQHOKzwAjZC98t2/xp4XZk3YmxtI1cmaV2C1lbw1OF7e04IVaC5qRIcSrHFQAqJCYMWX\nBspQmotTfXoa9tk2qKBMR5SOi2kthV2vNnm/+htFCqN0XNZJRrIAlMpfHFiCL7seTjUWtaFnp6OK\nwpwXf/Knz+F978prLaoGkMDr6G7nZxh6lb4wby0/VVH9sqmbcOTgAdnFJv070HW9GebCqSgnDsQ8\nXYl4gb8AACAASURBVPF9yLVQePvOO/H4Vz/fdoUF/DDLgsppMs4oB2tB3Q7GBlJ1sq61kQf8k0Ve\n3tMyzQq019nAjiWwQtSnoSmg+WJBta5XxVOLUzUdsHPEq7Xoljj+nYhW7pNmYZAagHJc9p0iWQBK\n5edu3cPgVGPRpVgsf6oozHnxQ/Oz2LNtWu4U8CJMoHSWdn6GpdfSBcQtnNSqfu2Fm3H21NFW1lhH\n+RIh78J6flcLUU4ciHn6K2/hxMJ1eP8cML7KPcmjngGd00wCpApwXuEhjT35xI8waS5UYQMZrfqS\nANZW8lYR2dAoplmBjnLg7LCiLXGANkqSL5Z20bq+3Eu5K8PZ4b5X7jePNvl3uHKFVY7LC5XVZzOn\nW6kBKMdlnWQkC4B/g18f2fVwqrFaG3oFdh44L35ofraQz/bovjCYXkd3Oz/D0Kv0hefLy1MnOPCD\nhzGx4aJW1rxdGqzfaTcWy6haHNb2Qsc8PT847xZOLFyp7bh3kkc9AzqnyTgts7zCA9BdqDI3P90K\nhteBOLtrmASwtpK3uL3W9Qqn/VsV0thhWePQZzUMOHzJfrNTIi5O8TWXqmCR5jNtuAdK5VZhPyus\nclxMayTsdt45/PbkyDou6yQjWWhw5cqv7tgYFKcaiy7FYqeTni3POC++6YZPYnLHzux7KgJI4HV0\nt/MzDL1KX7hPopenbn/vjnvw2Ff/vN004B3zT7/Li4mDSbfOyahaHNb2Qkc8XfFdFrVQOO1Dtvev\nemGWd7KMjZvKz/Tp8hqduFGdrHkFVlvJW4Pjtq43TFM96VJRw3YNLi5wMsahz2oY0HyxYJWIi1Nr\nW+eQv4tavUT3R+iwP1fYPiuQSNjtvLMD4HlR3/caKajVOCs/d+tu/tay6+Gs0eHhLO6SSTBzV5EX\nPz4/i7mF/dmqNTn56LJ8/m0vv9uXXqUvLKd2IaGK6gd+8G2cPXW0fS4XL3m9iQ817aN9yOr9o5w4\nEPO0pX+l9iHXQuE9u7+AM0cOYupP4oteGFROMwmQKsB5hQeg8crHltaGJ25UGqTWRh7IV325E8np\nUExTOfDiMAZKh2WNgxIQFQIrvgCQoTQXp7ybwVTTgexK1KIFfBn2s8L2WYFEwm7nvVYDUI7La6Sg\nVu6s/GW3bl92PZw1Ojyc/KwOTQGNwTs1th6TN3wo+15y8l6ECfTP7/alV+kLy6410KqofuLl5zGx\n4aJW1lhH2RDzoSaWUXlTYqWxRcTTFT+pVwuFU9txezm8F2ZlYyKnyThzZunCA9AI2cn5Wbz46i/b\nMTaQ5emzuIdYgrya3eFmQ6OYpnLg3nFlC3lIWAqICoEVXzxauDjltaOyv9EeXTdzxMqtwn5WWOW4\nmFZ1WVQCO2+cA492CSSwPI9kASiVn7t1D4NTjUWXYjFv0rOdB86Lv/oPT+D0te/JvpecfHShOjvG\nKE/dh16lLyy7diGh8tEpAk+bBrxekazfSYe8S/Yt1HLiEU/7XkbkwcAGuRYKpwukvZM86hnQOU3G\naZnlFR6ARsheu+ASXPfxT7djbCBVJ+vaSa2Gzk6oLG42NIppVqCLokYCaiUE0NYuISB9dl70CaWL\n8DedFOT9yWbPbrvtEOq6xjLsZ4VVjsvLx6uVpZ33qAgFaMdleV6ThTJyaWTBHin3ZNfDqcaiNvS8\nAFGX2hR58aXFQj67k2XioJHT0d2bn770Kn3h+4ktj1X0u2d308Lpst/9WPFvli7W7/T88z20N10s\nDqOcOFDhaYJKEdaDgQ1yLRSee/A+rL74cvckj3oGdE6TcVpmeYUHoPHKJ59+BHPjp8XhhsZAqk7W\nbKRqK3lrcNjQKKbl3YDzooa9ZIUdVm40SgHps/MiCqW5OMVK0m2qL6vsUcsdtVpghVWOy83Ht9B9\n1uLv+KHxK8dlnWQkCwrUjX2e7Ho41Vh0ARM7HVUU5vzuD2efwfS2t2ffK2sAeYQJlDJs52cYepW+\nRHlqFTVuuepaHDl4QHaxSf8OdFskeTHhdQ7yDi8pGiKeKgc3CAxskGuh8OSOW/Hk177U3sYE+GGW\nBZXTZJzqM2pje23VAOjN77U28s1vd0JlFZ4NjWKaFWgualjGs8OyxkEJiAqBFV8sqNb16TNpUz3j\nVE0H7Bzx6q3P3cDaceW0pndR+5DtvNdqAMpx5U7SlwVA5cjLrjWD4lRj0aVYHHWkZ1sU5vzuoflZ\nzE1/UJ469CJMQC1idPGyL71KX6I8tSqqb716Cj995OvtpgHW0cQ31u/yPuRd2bsOQkPE01/5PmQW\nrtMnjwHjq9yTPOoZ0DnN6CIgj6FAI2RPP/MTTF3//naMJ0odyGABrK3k+9ygpnDav1XXYHZY1jgo\nAVEhsOSLAXUvRenI7s1wtrhnuqPrWZ81Um65bYkUVglw2S1ab5FiYH48Rcoqu2sYJxnJAlA6aNW1\nxpNdD6caiy7FYqeTnm1RmPPih+ZnCxqSfqq0ktfR3c7PMPSquYjy1Kqovu/RbwDjq1pZYx31Dlwl\nHWKnrhaHUU7cew91r/kwcN77kFm4Xpz7PrC06J7kUc9AvH9PFeA8eoBGyBYe/yb2zk+7V2mqTtYs\ngLWVvMUd5X0Zp/1bNRZlh2WNgxIQeUGK4osBq0RcnOKURcKptu1F3UzCPHVwxSnTGgm7nXdObfD9\nydpxdfRHsgCUyp94HO2TruFUY1Ebeu9ucW9H0eSO23Bs01XZ4gRQO5c68Dq62/kZhl6lL3wdZnZ/\nsiiqb995J44cPNBuGmAd9U7mlad3836RdnEY5cT5PTq6m/lY8X3ItVA4XSCdusICfphlvbLKaTJO\nyyyv8ADo28FYkFUna16t1VbydvKjvC/jtH8n42cvWWGHZY2DEhAdApd8sZB3AM6LU3xpeMK55cpo\nH/KuYvWmwv6agVG0pndRLZzsvHtdMRIox2UNWSQLQOmg07tHIXsNpxqzc+LhdFs4ffFTRV58YX42\nW5wAnSH2Isz0XQt2foahV+kLy3rtZOLh/XNZR3nWUa43JZpPnis+R22pEtSaKEQ8jZq29oGBDXIt\nFJ57aDfOvn7CPcmjngGd0+TrOy2zvMID0AjIY9/6m/DEjepkXWsjD+Qe0BocNjSKaVag4xx47rBq\neSklxIovAGQoXSqg3rqjmg5E/eSUYNcMjKI1vYv6bHQ5vCdH3jtFsgCUyl926/Zl18Opxux7ejgT\nqD6InBd/5ehCIZ9Jb7wIE4i3gQ5Dr9IXll3rRFVRfeHZH2ctnFhH2RAnmjdecoV8J7U4jBxsQ6PP\nU9XVZhAYvOt0JRQGAJxddE/yqGdA5zQZp2WWV3gAGgF5ZX4WB7ZNIwkGG0jVyboPs6xQWdze3l2J\n0+yfVHPBDis70isFpAyBJV8M5EqkFTDCmebTzhErt3KWrLB9NtKry6IS6G7dDfS52UulgIB45ZiA\nu3WfD047Fl2KxU5HdQpXeXHvwigVYkcd3c+HXqUvLLv2PbwdEA//xT3tpgHWUe/SMe6Kk96p1pZM\nHpwZQI4GhSFWyHEoPHX73XjpZ0+7J3nUM6BzmozTMssrPACNkB1//Uz1xE2i16OztpK3uNnQ9L0U\npgg5RQsn+6wERIXAii8WrBIVCmhosThtayfVRp6VW63sWWEVX5hW744NIJ/3qAjV4Codl3WSkSw0\nuHLl527dgC+7Hk41FrWh5wWIKgpzXvzM4eeyqwyAzkB5ESZQpizs/AxDr9IXdmB2IeHtgDhz+Dls\nue5mAKWO8slXPuzE86Ucb5QTB2KetrfurVTKohYK771/BuPrN7onedQzoHOaSYBUAc4rPACNV55/\n/FvZaUE2kKqTNa/Aait5a3BKQ6OPdPPfqahhQ87IgSkBUathxRf7bJWIi1Nc1Es424vY0c2nnSNe\nvemwP1dY5biY1kLY7d21Zt7ZAXT4cznyIJIFoFR+dWOfJ7uDQNSGng2oKgpzXvzJJ36EKXPzIaBq\nAHmECZQy7Z1y60uv0pcoT62K6qlfZpI11tHEt3d+hLZlCnoA7XijnDgQ8zQ6+dgHBjbItVD4sqmb\ncOhv/yrbh+yFWRZUTpNxZvcmOAwFGgWxiX/A3xBuJ7DWRh7IhSp3IrmhUUyzAs1FDWsE2clY46AE\npE+4FIXSXJzyOgGrpgN2jnj11icdoxyXJ9Tqs3beazUA2V3DvFMkC0D5Ptytexicaiy6FIudTnq2\nRWHOiy/MfhcHjn8MNvWmCpIJvI7u2RbHIehV+sKyaxcSqqieTgKnTQOso4lvrN/pABnLqFrQRTlx\nIObpirdwqoXCay/cDIyvCk/yeHlfADIvpApwUd5z+847sbTtZtz44d9vx9hAqktZWABrK3mLmw2N\nYpoV6KKo0cK9hcPKQ0JxT6+6IEXxJfvNTonK4tQ5mMm3BrW4zbWHdo4GXX0A2nExreqaywTRPtdu\nbv0ef9ZJRrIAlO+j8pKe7Ho41Vh0KRYrvDIACqd3YZRKK3kd3e38DEOv0pdoV4Iqqs89eB+wtOje\nAOg1W9h6daNDHP2pxWGUEwcqPG1hV/GZPjB4Ua8SCiel9U7yqGdA5zQLnAaiwsPh/XNYeOTr2DP/\nmNuLTHWy5hVYbSVvcbMxUExTnYFV12B2WNY4KAFR4PFFhdJcnPLumFUNRb2QFOi3b1w5LqZV7URJ\nIPnhgFJ+6yQjWQBK5Ve5Vld2HZxqLGpD36dAznnxxd+6DTdMX5N9RtUAEngd3e38DEOv0hcuvtmF\nhCqqT+64FUcOHpBdbNK/a5o1fWpxGOXEgZinK97CiYGZNnXHPfjOV/607QoL+GGWBZXTZIha11tQ\nt4N5DTCjnnC1lbw1OMWBGcG0vBtwXtSwXYPZYUWHLwAdAiu+WLBKxMUpTlkknPacfrlt795eDSRZ\nIZTjYlrTu6h9yB4/1O8osI6w1h+Qla3P1r8aTjUWtaGv7kOmHRF7759pWjg9kbdwUjWABF43G/ue\nw9Cr9CXqMqOK6qdPHsPZU0dbWWMd5XpTork8Op2/q4UoJ+5Bt8Ar9XMQGLzrdCUUVq19+oRZKqfJ\nrb2j1vUWbrz7S3j8O3+HrZOXd79PBlJ1sq61kQe4y3JncAa5jMb+rRwKOyxrHJSAqBDY44sKpaN2\nUhZnh3tXO592jtyUwYzeNgh4jiunNb2L+qyd91oNQDmu3En6sgCUyl906w5k18OpxqI29Ox01GEe\nzosf2j/nHpqJ6iTlIqabn2HoVfrCsltrn/Ti3Pezfciso2yIE82ps00tJ9/Q6efEgRpPzw8GNsi1\nUPjEy88DS4vuSR71DOicJuO0zPIKD0AjZAvzs9i3bRreaRvVyZoFsLaSt7jZ0GimWYHOixpR3zxr\nHNTcqRBY8sWAVSIuTvHqMLrr1c5RWWApw/7aKSiFJ72L2nSfHXMl5+bJkXcZeSQLgIpc8m7dw+CM\nxiKc/Gxzo5wXv+A3ri/kM/FYpZW8ju52foahV+mLV0AGtLNIJ4HTpgHW0cS3tHuJFxOtLjk5ecA/\nhp4g4umKX1BfC4XTxm3vJI96BnROk3GqrghceGjGmq0x0Ykb1cmaV2C1lbw1OGxoFNOsQHNRw3YN\njvLRau5UCKz44gEXp+x+Yztu7wFQbeRZGFXYzwqrHBfTqq6YTGDnnR0Az4t2XJ2TjGQBKB00F5AA\nX3Y9nGosakPPCxBVFOa8+Kvzs9i3/BqsE+SVpAUvv+u1uOpLr9IXP+e7S7fsemg3zp46io2XfgBA\nqaOsT7zI4LszvFV4AkVDxNNWx1eqhVMtFN6z+wtYeu0Ervuzv2w/44VZFlROMwmQKsB5hQeg8cov\n/OLZ8MSNukGOobaStwaHDY2iS7VwSkLfNx+tBESHwCVf7G9G+fjTdAAj4bTCn+bTvhOv3lTYzwqr\nHBfTWgg7XTaTgB1ANy+5HFmwTrLWoKDMkd9KeHzZ9XCqsagNPRswVRTmvPhT33sU299zffa9ogYg\ndpNwlOC1uOpLr9KXbr52tfQm8ApkExsuamXNW2h4LdK2f6S+EyjKiQMxT1f8cqFaKJzajqeusIAf\nZllQOU3GaZkV5T3nHrwPp5//MRbWrW7H2EAmRtgJrLWRB3KhsgaHDY1immrhpE6hRWGPvKdXrHIU\nXyxE+XheiSac6nh7dvUkrd5U2M8KqxwX06oui0qgdn4k8OTIOi7vAFOflTt36x4GpxqL8qjsdNKz\nTZtwXvz4D7+Jw5vXZ99LTl6llbyO7qrJ7SD0Kn1h2bULCZXemrr9brz05c+2mwa8hQbrd0q/sIzK\nmxKDnHhDo8/TFd+HXAuFt149BUzkP+uGWTN6KwkbN1WA8woPQCNkZ942jRs/+sl2jA2k6mTNAlhb\nyVvczAjFNCvQRVEjwcxdhcOyxkELSBkCS74YsEpUFKcSFF09zsHnbmnnMy/a5Mqtwn6mSzkupjV9\nR+1DtvPu7aRJoByX14qoz8qdu3VHsuvhVGNRHpWdjjykIPLinqFQaSXvsnU7P8PQq/TFHmix9AK6\nqL73/hmcPXUUkzs+C6DU0cQ31u+u6019J5AFRUPI0xb8GkkEQ6yQ41B436PfwMS6je5JHvXMUBq3\nsgDnFR6ARshe+e5fY88LsybszQ2k6mTNK7DaSt4aHC/vacEKNBc1okMJ1jgoAVEhsOJLA2UozcWp\nPj0N+2wbVFCmI0rHxbSWwq5Xm7xf/Y0ihVE6LuskI1kASuUvDizBl10PpxqL2tCz01FFYc6LP/nT\n5/C+d+W1FlUDSOB1dLfzMwy9Sl+Yt5afqqh+2dRNOHLwgOxik/4d6LreDHPhVJQTB2Kervg+5Foo\nvH3nnXj8q59vu8ICfphlQeU0GWeUg7WgbgdjA6k6WdfayAP+ySIv72mZZgXa62xgxxJYIerT0BTQ\nfLGgWter4qnFqZoO2Dni1Vp0Sxz/TkQr90mzMEgNQDku+06RLACl8nO37mFwqrHoUiyWP1UU5rz4\noflZ7Nk2LXcKeBEmUDpLOz/D0mvpAuIWTmpVv/bCzTh76mgra6yjfImQd2E9v6uFKCcOxDz9lbdw\nYuE6vH8OGF/lnuRRz4DOaSYBUgU4r/CQxp584keYNBeqsIGMVn1JAGsreauIbGgU06xARzlwdljR\nljhAGyXJF0u7aF1f7qXcleHscN8r95tHm/w7XLnCKsflhcrqs5nTrdQAlOOyTjKSBcC/wa+P7Ho4\n1VitDb0COw+cFz80P1vIZ3t0XxhMr6O7nZ9h6FX6wvPl5akTHPjBw5jYcFEra94uDdbvtBuLZVQt\nDmt7oWOenh+cdwsnFq7Udtw7yaOeAZ3TZJyWWV7hAeguVJmbn24Fw+tAnN01TAJYW8lb3F7reoXT\n/q0KaeywrHHosxoGHL5kv9kpERen+JpLVbBI85k23AOlcquwnxVWOS6mNRJ2O+8cfntyZB2XdZKR\nLDS4cuVXd2wMilONRZdisdNJz5ZnnBffdMMnMbljZ/Y9FQEk8Dq62/kZhl6lL9wn0ctTt793xz14\n7Kt/3m4a8I75p9/lxcTBpFvnZFQtDmt7oSOervgui1oonPYh2/tXvTDLO1nGxk3lZ/p0eY1O3KhO\n1rwCq63krcFxW9cbpqmedKmoYbsGFxc4GePQZzUMaL5YsErExam1rXPI30WtXqL7I3TYnytsnxVI\nJOx23tkB8Lyo73uNFNRqnJWfu3U3f2vZ9XDW6PBwFnfJJJi5q8iLH5+fxdzC/mzVmpx8dFk+/7aX\n3+1Lr9IXllO7kFBF9QM/+DbOnjraPpeLl7zexIea9tE+ZPX+UU4ciHna0r9S+5BrofCe3V/AmSMH\nMfUn8UUvDCqnmQRIFeC8wgPQeOVjS2vDEzcqDVJrIw/kq77cieR0KKapHHhxGAOlw7LGQQmICoEV\nXwDIUJqLU97NYKrpQHYlatECvgz7WWH7rEAiYbfzXqsBKMflNVJQK3dW/rJbty+7Hs4aHR5OflaH\npoDG4J0aW4/JGz6UfS85eS/CBPrnd/vSq/SFZdcaaFVUP/Hy85jYcFEra6yjbIj5UBPLqLwpsdLY\nIuLpip/Uq4XCqe24vRzeC7OyMZHTZJw5s3ThAWiE7OT8LF589ZftGBvI8vRZ3EMsQV7N7nCzoVFM\nUzlw77iyhTwkLAVEhcCKLx4tXJzy2lHZ32iPrps5YuVWYT8rrHJcTKu6LCqBnTfOgUe7BBJYnkey\nAJTKz926h8GpxqJLsZg36dnOA+fFX/2HJ3D62vdk30tOPrpQnR1jlKfuQ6/SF5Zdu5BQ+egUgadN\nA16vSNbvpEPeJfsWajnxiKd9LyPyYGCDXAuF0wXS3kke9QzonCbjtMzyCg9AI2SvXXAJrvv4p9sx\nNpCqk3XtpFZDZydUFjcbGsU0K9BFUSMBtRICaGuXEJA+Oy/6hNJF+JtOCvL+ZLNnt912CHVdYxn2\ns8Iqx+Xl49XK0s57VIQCtOOyPK/JQhm5NLJgj5R7suvhVGNRG3pegKhLbYq8+NJiIZ/dyTJx0Mjp\n6O7NT196lb7w/cSWxyr63bO7aeF02e9+rPg3Sxfrd3r++R7amy4Wh1FOHKjwNEGlCOvBwAa5FgrP\nPXgfVl98uXuSRz0DOqfJOC2zvMID0Hjlk08/grnx0+JwQ2MgVSdrNlK1lbw1OGxoFNPybsB5UcNe\nssIOKzcapYD02XkRhdJcnGIl6TbVl1X2qOWOWi2wwirH5ebjW+g+a/F3/ND4leOyTjKSBQXqxj5P\ndj2caiy6gImdjioKc373h7PPYHrb27PvlTWAPMIEShm28zMMvUpfojy1ihq3XHUtjhw8ILvYpH8H\nui2SvJjwOgd5h5cUDRFPlYMbBAY2yLVQeHLHrXjya19qb2MC/DDLgsppMk71GbWxvbZqAPTm91ob\n+ea3O6GyCs+GRjHNCjQXNSzj2WFZ46AERIXAii8WVOv69Jm0qZ5xqqYDdo549dbnbmDtuHJa07uo\nfch23ms1AOW4cifpywKgcuRl15pBcaqx6FIsjjrSsy0Kc3730Pws5qY/KE8dehEmoBYxunjZl16l\nL1GeWhXVt149hZ8+8vV20wDraOIb63d5H/Ku7F0HoSHi6a98HzIL1+mTx4DxVe5JHvUM6JxmdBGQ\nx1CgEbKnn/kJpq5/fzvGE6UOZLAA1lbyfW5QUzjt36prMDssaxyUgKgQWPLFgLqXonRk92Y4W9wz\n3dH1rM8aKbfctkQKqwS47Batt0gxMD+eImWV3TWMk4xkASgdtOpa48muh1ONRZdisdNJz7YozHnx\nQ/OzBQ1JP1VayevobudnGHrVXER5alVU3/foN4DxVa2ssY56B66SDrFTV4vDKCfuvYe613wYOO99\nyCxcL859H1hadE/yqGcg3r+nCnAePUAjZAuPfxN756fdqzRVJ2sWwNpK3uKO8r6M0/6tGouyw7LG\nQQmIvCBF8cWAVSIuTnHKIuFU2/aibiZhnjq44pRpjYTdzjunNvj+ZO24OvojWQBK5U88jvZJ13Cq\nsagNvXe3uLejaHLHbTi26apscQKonUsdeB3d7fwMQ6/SF74OM7s/WRTVt++8E0cOHmg3DbCOeifz\nytO7eb9IuziMcuL8Hh3dzXys+D7kWiicLpBOXWEBP8yyXlnlNBmnZZZXeAD07WAsyKqTNa/Wait5\nO/lR3pdx2r+T8bOXrLDDssZBCYgOgUu+WMg7AOfFKb40POHccmW0D3lXsXpTYX/NwCha07uoFk52\n3r2uGAmU47KGLJIFoHTQ6d2jkL2GU43ZOfFwui2cvvipIi++MD+bLU6AzhB7EWb6rgU7P8PQq/SF\nZb12MvHw/rmsozzrKNebEs0nzxWfo7ZUCWpNFCKeRk1b+8DABrkWCs89tBtnXz/hnuRRz4DOafL1\nnZZZXuEBaATksW/9TXjiRnWyrrWRB3IPaA0OGxrFNCvQcQ48d1i1vJQSYsUXADKULhVQb91RTQei\nfnJKsGsGRtGa3kV9Nroc3pMj750iWQBK5S+7dfuy6+FUY/Y9PZwJVB9Ezou/cnShkM+kN16ECcTb\nQIehV+kLy651oqqovvDsj7MWTqyjbIgTzRsvuUK+k1ocRg62odHnqepqMwgM3nW6EgoDAM4uuid5\n1DOgc5qM0zLLKzwAjYC8Mj+LA9umkQSDDaTqZN2HWVaoLG5v767EafZPqrlgh5Ud6ZUCUobAki8G\nciXSChjhTPNp54iVWzlLVtg+G+nVZVEJdLfuBvrc7KVSQEC8ckzA3brPB6cdiy7FYqejOoWrvLh3\nYZQKsaOO7udDr9IXll37Ht4OiIf/4p520wDrqHfpGHfFSe9Ua0smD84MIEeDwhAr5DgUnrr9brz0\ns6fdkzzqGdA5TcZpmeUVHoBGyI6/fqZ64ibR69FZW8lb3Gxo+l4KU4ScooWTfVYCokJgxRcLVokK\nBTS0WJy2tZNqI8/KrVb2rLCKL0yrd8cGkM97VIRqcJWOyzrJSBYaXLnyc7duwJddD6cai9rQ8wJE\nFYU5L37m8HPZVQZAZ6C8CBMoUxZ2foahV+kLOzC7kPB2QJw5/By2XHczgFJH+eQrH3bi+VKON8qJ\nAzFP21v3ViplUQuF994/g/H1G92TPOoZ0DnNJECqAOcVHoDGK88//q3stCAbSNXJmldgtZW8NTil\nodFHuvnvVNSwIWfkwJSAqNWw4ot9tkrExSku6iWc7UXs6ObTzhGv3nTYnyusclxMayHs9u5aM+/s\nADr8uRx5EMkCUCq/urHPk91BIGpDzwZUFYU5L/7kEz/ClLn5EFA1gDzCBEqZ9k659aVX6UuUp1ZF\n9dQvM8ka62ji2zs/QtsyBT2AdrxRThyIeRqdfOwDAxvkWih82dRNOPS3f5XtQ/bCLAsqp8k4s3sT\nHIYCjYLYxD/gbwi3E1hrIw/kQpU7kdzQKKZZgeaihjWC7GSscVAC0idcikJpLk55nYBV0wE7R7x6\n65OOUY7LE2r1WTvvtRqA7K5h3imSBaB8H+7WPQxONRZdisVOJz3bojDnxRdmv4sDxz8Gm3pThpQz\nXwAAIABJREFUBckEXkf3bIvjEPQqfWHZtQsJVVRPJ4HTpgHW0cQ31u90gIxlVC3oopw4EPN0xVs4\n1ULhtRduBsZXhSd5vLwvAJkXUgW4KO+5feedWNp2M2788O+3Y2wg1aUsLIC1lbzFzYZGMc0KdFHU\naOHewmHlIaG4p1ddkKL4kv1mp0RlceoczORbg1rc5tpDO0eDrj4A7biYVnXNZYJon2s3t36PP+sk\nI1kAyvdReUlPdj2caiy6FIsVXhkAhdO7MEqllbyO7nZ+hqFX6Uu0K0EV1ecevA9YWnRvAPSaLWy9\nutEhjv7U4jDKiQMVnrawq/hMHxi8qFcJhZPSeid51DOgc5oFTgNR4eHw/jksPPJ17Jl/zO1FpjpZ\n8wqstpK3uNkYKKapzsCqazA7LGsclIAo8PiiQmkuTnl3zKqGol5ICvTbN64cF9OqdqIkkPxwQCm/\ndZKRLACl8qtcqyu7Dk41FrWh71Mg57z44m/dhhumr8k+o2oACbyO7nZ+hqFX6QsX3+xCQhXVJ3fc\niiMHD8guNunfNc2aPrU4jHLiQMzTFW/hxMBMm7rjHnznK3/adoUF/DDLgsppMkSt6y2o28G8BphR\nT7jaSt4anOLAjGBa3g04L2rYrsHssKLDF4AOgRVfLFgl4uIUpywSTntOv9y2d2+vBpKsEMpxMa3p\nXdQ+ZI8f6ncUWEdY6w/IytZn618NpxqL2tBX9yHTjoi99880LZyeyFs4qRpAAq+bjX3PYehV+hJ1\nmVFF9dMnj+HsqaOtrLGOcr0p0Vwenc7f1UKUE/egW+CV+jkIDN51uhIKq9Y+fcIsldPk1t5R63oL\nN979JTz+nb/D1snLu98nA6k6WdfayAPcZbkzOINcRmP/Vg6FHZY1DkpAVAjs8UWF0lE7KYuzw72r\nnU87R27KYEZvGwQ8x5XTmt5FfdbOe60GoBxX7iR9WQBK5S+6dQey6+FUY1EbenY66jAP58UP7Z9z\nD81EdZJyEdPNzzD0Kn1h2a21T3px7vvZPmTWUTbEiebU2aaWk2/o9HPiQI2n5wcDG+RaKHzi5eeB\npUX3JI96BnROk3FaZnmFB6ARsoX5WezbNg3vtI3qZM0CWFvJW9xsaDTTrEDnRY2ob541DmruVAgs\n+WLAKhEXp3h1GN31aueoLLCUYX/tFJTCk95FbbrPjrmSc/PkyLuMPJIFQEUuebfuYXBGYxFOfra5\nUc6LX/Ab1xfymXis0kpeR3c7P8PQq/TFKyAD2lmkk8Bp0wDraOJb2r3Ei4lWl5ycPOAfQ08Q8XTF\nL6ivhcJp47Z3kkc9AzqnyThVVwQuPDRjzdaY6MSN6mTNK7DaSt4aHDY0imlWoLmoYbsGR/loNXcq\nBFZ88YCLU3a/sR239wCoNvIsjCrsZ4VVjotpVVdMJrDzzg6A50U7rs5JRrIAlA6aC0iAL7seTjUW\ntaHnBYgqCnNe/NX5Wexbfg3WCfJK0oKX3/VaXPWlV+mLn/PdpVt2PbQbZ08dxcZLPwCg1FHWJ15k\n8N0Z3io8gaIh4mmr4yvVwqkWCu/Z/QUsvXYC1/3ZX7af8cIsCyqnmQRIFeC8wgPQeOUXfvFseOJG\n3SDHUFvJW4PDhkbRpVo4JaHvm49WAqJD4JIv9jejfPxpOoCRcFrhT/Np34lXbyrsZ4VVjotpLYSd\nLptJwA6gm5dcjixYJ1lrUFDmyG8lPL7sejjVWNSGng2YKgpzXvyp7z2K7e+5PvteUQMQu0k4SvBa\nXPWlV+lLN1+7WnoTeAWyiQ0XtbLmLTS8FmnbP1LfCRTlxIGYpyt+uVAtFE5tx1NXWMAPsyyonCbj\ntMyK8p5zD96H08//GAvrVrdjbCATI+wE1trIA7lQWYPDhkYxTbVwUqfQorBH3tMrVjmKLxaifDyv\nRBNOdbw9u3qSVm8q7GeFVY6LaVWXRSVQOz8SeHJkHZd3gKnPyp27dQ+DU41FeVR2OunZpk04L378\nh9/E4c3rs+8lJ6/SSl5Hd9XkdhB6lb6w7NqFhEpvTd1+N1768mfbTQPeQoP1O6VfWEblTYlBTryh\n0efpiu9DroXCW6+eAibyn3XDrBm9lYSNmyrAeYUHoBGyM2+bxo0f/WQ7xgZSdbJmAayt5C1uZoRi\nmhXooqiRYOauwmFZ46AFpAyBJV8MWCUqilMJiq4e5+Bzt7TzmRdtcuVWYT/TpRwX05q+o/Yh23n3\ndtIkUI7La0XUZ+XO3boj2fVwqrEoj8pORx5SEHlxz1CotJJ32bqdn2HoVfpiD7RYegFdVN97/wzO\nnjqKyR2fBVDqaOIb63fX9aa+E8iCoiHkaQt+jSSCIVbIcSi879FvYGLdRvckj3pmKI1bWYDzCg9A\nI2SvfPevseeFWRP25gZSdbLmFVhtJW8Njpf3tGAFmosa0aEEaxyUgKgQWPGlgTKU5uJUn56GfbYN\nKijTEaXjYlpLYderTd6v/kaRwigdl3WSkSwApfIXB5bgy66HU41FbejZ6aiiMOfFn/zpc3jfu/Ja\ni6oBJPA6utv5GYZepS/MW8tPVVS/bOomHDl4QHaxSf8OdF1vhrlwKsqJAzFPV3wfci0U3r7zTjz+\n1c+3XWEBP8yyoHKajDPKwVpQt4OxgVSdrGtt5AH/ZJGX97RMswLtdTawYwmsEPVpaApovlhQretV\n8dTiVE0H7Bzxai26JY5/J6KV+6RZGKQGoByXfadIFoBS+blb9zA41Vh0KRbLnyoKc1780Pws9myb\nljsFvAgTKJ2lnZ9h6bV0AXELJ7WqX3vhZpw9dbSVNdZRvkTIu7Ce39VClBMHYp7+yls4sXAd3j8H\njK9yT/KoZ0DnNJMAqQKcV3hIY08+8SNMmgtV2EBGq74kgLWVvFVENjSKaVagoxw4O6xoSxygjZLk\ni6VdtK4v91LuynB2uO+V+82jTf4drlxhlePyQmX12czpVmoAynFZJxnJAuDf4NdHdj2caqzWhl6B\nnQfOix+any3ksz26Lwym19Hdzs8w9Cp94fny8tQJDvzgYUxsuKiVNW+XBut32o3FMqoWh7W90DFP\nzw/Ou4UTC1dqO+6d5FHPgM5pMk7LLK/wAHQXqszNT7eC4XUgzu4aJgGsreQtbq91vcJp/1aFNHZY\n1jj0WQ0DDl+y3+yUiItTfM2lKlik+Uwb7oFSuVXYzwqrHBfTGgm7nXcOvz05so7LOslIFhpcufKr\nOzYGxanGokux2OmkZ8szzotvuuGTmNyxM/ueigASeB3d7fwMQ6/SF+6T6OWp29+74x489tU/bzcN\neMf80+/yYuJg0q1zMqoWh7W90BFPV3yXRS0UTvuQ7f2rXpjlnSxj46byM326vEYnblQna16B1Vby\n1uC4resN01RPulTUsF2DiwucjHHosxoGNF8sWCXi4tTa1jnk76JWL9H9ETrszxW2zwokEnY77+wA\neF7U971GCmo1zsrP3bqbv7XsejhrdHg4i7tkEszcVeTFj8/PYm5hf7ZqTU4+uiyff9vL7/alV+kL\ny6ldSKii+oEffBtnTx1tn8vFS15v4kNN+2gfsnr/KCcOxDxt6V+pfci1UHjP7i/gzJGDmPqT+KIX\nBpXTTAKkCnBe4QFovPKxpbXhiRuVBqm1kQfyVV/uRHI6FNNUDrw4jIHSYVnjoAREhcCKLwBkKM3F\nKe9mMNV0ILsStWgBX4b9rLB9ViCRsNt5r9UAlOPyGimolTsrf9mt25ddD2eNDg8nP6tDU0Bj8E6N\nrcfkDR/KvpecvBdhAv3zu33pVfrCsmsNtCqqn3j5eUxsuKiVNdZRNsR8qIllVN6UWGlsEfF0xU/q\n1ULh1HbcXg7vhVnZmMhpMs6cWbrwADRCdnJ+Fi+++st2jA1kefos7iGWIK9md7jZ0CimqRy4d1zZ\nQh4SlgKiQmDFF48WLk557ajsb7RH180csXKrsJ8VVjkuplVdFpXAzhvnwKNdAgkszyNZAErl527d\nw+BUY9GlWMyb9GzngfPir/7DEzh97Xuy7yUnH12ozo4xylP3oVfpC8uuXUiofHSKwNOmAa9XJOt3\n0iHvkn0LtZx4xNO+lxF5MLBBroXC6QJp7ySPegZ0TpNxWmZ5hQegEbLXLrgE13380+0YG0jVybp2\nUquhsxMqi5sNjWKaFeiiqJGAWgkBtLVLCEifnRd9Quki/E0nBXl/stmz2247hLqusQz7WWGV4/Ly\n8Wplaec9KkIB2nFZntdkoYxcGlmwR8o92fVwqrGoDT0vQNSlNkVefGmxkM/uZJk4aOR0dPfmpy+9\nSl/4fmLLYxX97tndtHC67Hc/VvybpYv1Oz3/fA/tTReLwygnDlR4mqBShPVgYINcC4XnHrwPqy++\n3D3Jo54BndNknJZZXuEBaLzyyacfwdz4aXG4oTGQqpM1G6naSt4aHDY0iml5N+C8qGEvWWGHlRuN\nUkD67LyIQmkuTrGSdJvqyyp71HJHrRZYYZXjcvPxLXSftfg7fmj8ynFZJxnJggJ1Y58nux5ONRZd\nwMRORxWFOb/7w9lnML3t7dn3yhpAHmECpQzb+RmGXqUvUZ5aRY1brroWRw4ekF1s0r8D3RZJXkx4\nnYO8w0uKhoinysENAgMb5FooPLnjVjz5tS+1tzEBfphlQeU0Gaf6jNrYXls1AHrze62NfPPbnVBZ\nhWdDo5hmBZqLGpbx7LCscVACokJgxRcLqnV9+kzaVM84VdMBO0e8eutzN7B2XDmt6V3UPmQ777Ua\ngHJcuZP0ZQFQOfKya82gONVYdCkWRx3p2RaFOb97aH4Wc9MflKcOvQgTUIsYXbzsS6/SlyhPrYrq\nW6+ewk8f+Xq7aYB1NPGN9bu8D3lX9q6D0BDx9Fe+D5mF6/TJY8D4Kvckj3oGdE4zugjIYyjQCNnT\nz/wEU9e/vx3jiVIHMlgAayv5PjeoKZz2b9U1mB2WNQ5KQFQILPliQN1LUTqyezOcLe6Z7uh61meN\nlFtuWyKFVQJcdovWW6QYmB9PkbLK7hrGSUayAJQOWnWt8WTXw6nGokux2OmkZ1sU5rz4ofnZgoak\nnyqt5HV0t/MzDL1qLqI8tSqq73v0G8D4qlbWWEe9A1dJh9ipq8VhlBP33kPdaz4MnPc+ZBauF+e+\nDywtuid51DMQ799TBTiPHqARsoXHv4m989PuVZqqkzULYG0lb3FHeV/Gaf9WjUXZYVnjoAREXpCi\n+GLAKhEXpzhlkXCqbXtRN5MwTx1cccq0RsJu551TG3x/snZcHf2RLACl8iceR/ukazjVWNSG3rtb\n3NtRNLnjNhzbdFW2OAHUzqUOvI7udn6GoVfpC1+Hmd2fLIrq23feiSMHD7SbBlhHvZN55endvF+k\nXRxGOXF+j47uZj5WfB9yLRROF0inrrCAH2ZZr6xymozTMssrPAD6djAWZNXJmldrtZW8nfwo78s4\n7d/J+NlLVthhWeOgBESHwCVfLOQdgPPiFF8annBuuTLah7yrWL2psL9mYBSt6V1UCyc7715XjATK\ncVlDFskCUDro9O5RyF7DqcbsnHg43RZOX/xUkRdfmJ/NFidAZ4i9CDN914Kdn2HoVfrCsl47mXh4\n/1zWUZ51lOtNieaT54rPUVuqBLUmChFPo6atfWBgg1wLhece2o2zr59wT/KoZ0DnNPn6Tsssr/AA\nNALy2Lf+JjxxozpZ19rIA7kHtAaHDY1imhXoOAeeO6xaXkoJseILABlKlwqot+6opgNRPzkl2DUD\no2hN76I+G10O78mR906RLACl8pfdun3Z9XCqMfueHs4Eqg8i58VfObpQyGfSGy/CBOJtoMPQq/SF\nZdc6UVVUX3j2x1kLJ9ZRNsSJ5o2XXCHfSS0OIwfb0OjzVHW1GQQG7zpdCYUBAGcX3ZM86hnQOU3G\naZnlFR6ARkBemZ/FgW3TSILBBlJ1su7DLCtUFre3d1fiNPsn1Vyww8qO9EoBKUNgyRcDuRJpBYxw\npvm0c8TKrZwlK2yfjfTqsqgEult3A31u9lIpICBeOSbgbt3ng9OORZdisdNRncJVXty7MEqF2FFH\n9/OhV+kLy659D28HxMN/cU+7aYB11Lt0jLvipHeqtSWTB2cGkKNBYYgVchwKT91+N1762dPuSR71\nDOicJuO0zPIKD0AjZMdfP1M9cZPo9eisreQtbjY0fS+FKUJO0cLJPisBUSGw4osFq0SFAhpaLE7b\n2km1kWflVit7VljFF6bVu2MDyOc9KkI1uErHZZ1kJAsNrlz5uVs34Muuh1ONRW3oeQGiisKcFz9z\n+LnsKgOgM1BehAmUKQs7P8PQq/SFHZhdSHg7IM4cfg5brrsZQKmjfPKVDzvxfCnHG+XEgZin7a17\nK5WyqIXCe++fwfj6je5JHvUM6JxmEiBVgPMKD0Djlecf/1Z2WpANpOpkzSuw2kreGpzS0Ogj3fx3\nKmrYkDNyYEpA1GpY8cU+WyXi4hQX9RLO9iJ2dPNp54hXbzrszxVWOS6mtRB2e3etmXd2AB3+XI48\niGQBKJVf3djnye4gELWhZwOqisKcF3/yiR9hytx8CKgaQB5hAqVMe6fc+tKr9CXKU6uieuqXmWSN\ndTTx7Z0foW2Zgh5AO94oJw7EPI1OPvaBgQ1yLRS+bOomHPrbv8r2IXthlgWV02Sc2b0JDkOB/7e9\nrw+yq7ju/PWb0XxKGutbAgEjxCAFSUHiKxIQG4jBEnbZiLAhMoVxTGKMvfkqh5RdTmVxlVzlKBtn\ns5sYk9rNbsWhvFtxEuyQ1MrY2K7FOIDYMRkcrAyKtMZGGBAC9AGDNNP7x71937mnf933vicxeiP3\nr0qluf3ue326z0d3n9PdJ1MQ6fgHwhvCZQdWpZEHykJVHkTKhoYxTQq0DmpII6gHGWkcmIDUWS7F\nltI6OBXKBMySDsg+0rO3Ou4YNnCFhJq9K/u9KgZAs2uINsVkAfDbo7N1t1MnK4tdiqUHHfcsg8La\nL35g9FvY99p7IV1vLCDpEMroXtri2Aa9TF+07MqJBAuqu5PAbtOA1lHHN63f7gCZllE2oYv5xIE4\nT6c9hVPVUrh39hDQ6I6e5An5fQFQvxALwMX8nquu3YapkXfg8muuK8q0gWSXsmgBrJrJy7q1oWFM\nkwLtBTUK3OUNWOUlIbmnl12QwvhS+s2mEvnBqRw7yluDirrFtYeyj1qdfQB84NK0smsuHWL7XJt9\nG87xJwfJmCwAfnuYXzIku6E6WVnsUiyt8MwAsDpDF0Yxt1Ioo7vsn3boZfoS25XAgupj938BmDoe\nvAEwlGxh4cpMh/Tqj00OYz5xoIKnBbZ779RB60G9iqWwU9rQSR72DHCfplenQCzw8NKeMRzY+UU8\nMv7tYC4ylslaz8CqZvKybm0MGNNYZmCWNVgPWNI4MAFhCPGFLaV1cCp0xyxLKBpakgL19o2zgUvT\nynaiOFB+BMCUXw6SMVkAfOVnvtag7AbqZGWxNPR1AuTaL378gndj44Y1pXdYDMAhlNFd9k879DJ9\n0cE3OZFgQfXhTdfj5ef20Sw27nNOM6ePTQ5jPnEgztNpT+GkoZm27oaP4KE/+liRFRYIL7MkmE9T\nI5a6XoLdDhZKgBnLCVc1k5cGxzswQ5hWzgZcDmrIrMF6wIodvgD4EpjxRUIqkQ5OaZeFq1Oe0/e3\n7d1VK4GkVgg2cGlaXVvYPuQQP9jvMMiBsCo/oFa2Olv/qupkZbE09JX7kNWOiCfu25GlcHqsnMKJ\nxQAcQtlsZDvboZfpSyzLDAuqTxx+FZNHDhaypnVUx5sczf7R6XJbJWI+8RCaEzxfP1tB61mnK5bC\nLLVPnWUW82nq1N6x1PUSl9/xGTz80NewcPiM5u8rA8kyWVelkQd0luWmwWnlMhr5NxtQ9IAljQMT\nELYEDvGFLaVj6aRknc26txf9Kfso6DLYwbcNAqGBq0yrawt7V/Z7VQyADVzlQTIsC4Cv/F627ojs\nhupkZbE09HrQYYd5tF/8xT1jwUMzsTiJP4lp9k879DJ90bJblT5p/9h3SvuQtY5qQ+xodpltqnzy\nGZ1hnzhQxdMTQ8sGuWopfOgnzwJTx4MnedgzwH2auk7JrFDgAciE7MD4KHaPbEDotA3LZK0FsGom\nL+vWhoYzTQp0OagRy5snjQPrO7YEpnwRkEqkg1N6dhi761X2kR9g8Zf9VaegWD2uLWzTfemYqxrc\nQnIUuow8JgsAW7mUs3W3U2esLFanfpa+Ue0XHzjvMk8+HY+ZWymU0V32Tzv0Mn0JBZABPli4k8Bu\n04DWUcc3t3tJTyYKXQr45IHwMXSHGE+n/YL6qqWw27gdOsnDngHu09R1sqwIOvCQlWVbY2Inblgm\naz0Dq5rJS4OjDQ1jmhRoHdSQWYNj/mjWd2wJzPgSgg5Oyf3GslzeA8DSyGthZMt+rbBs4NK0sism\nHWS/6wFA9wsfuJqDZEwWAH+A1gEkICy7oTpZWSwNvZ6AsKCw9osfHR/Fbvs65CCoZ5ISIf9uKMVV\nXXqZvoR9vtt5yq6v3IvJIwcxZ8nPA/B1VOuTnmTouzNCs3AHRkOMp4WOT1cKp6ql8CP3fgpTrx/C\nxf/+D4p3QsssCebTdALEAnChwAOQjco//n//Fj1xw26Q06iayUuDow0No4ulcHJCX9cfzQSEL4F9\nvsjfjPnjJ9QBDFenFH7Xn7JNevbGlv1aYdnApWn1hF1dNuOgB4Bmv5TlSEIOklUJCnwf+fWqnrDs\nhupkZbE09NqAsaCw9ovv+j8PYtVFl5W+58UAyG4SvUoIpbiqSy/Tl2Z/bS/odQgFyLoG5xWyFppo\nhFKkrXpn9U6gmE8ciPN02i8XqloKu7TjLissEF5mSTCfpq5TMivm9xy7/wuYePYpHOibVZRpA+kY\nITuwKo08UBYqaXC0oWFMYymc2Cm02LKH3tNLZjmMLxIxf7yeibo62fH20tWTavbGlv1aYdnApWll\nl0U5sJ0fDiE5kgNX6ABTnZm7ztbdTp2sLOZH1YOOe5ZuE+0Xf+2fvoqXhvpL33ODPHMrhTK6syS3\nrdDL9EXLrpxIMPfWuvfdgef/8KPFpoHQREPrt3O/aBmlNyVGfOIZjWGeTvs+5Kql8MKV64Cu8s8G\nl1k7+FYSbdxYAC4UeAAyITt25gZc/p6bijJtIFkmay2AVTN5WbdmBGOaFGgvqOGw48PegCWNAxcQ\nfwlM+SIglcgLTjl4WT1yfHxL0Z/loE1ZudmyX9PFBi5Nq/sO24cs+z20k8aBDVyhVER1Zu46W3dM\ndkN1srKYH1UPOvSQAvGLhwwFcyuFLluX/dMOvUxf5IEWSS/Ag+pP3LcDk0cOYnjTRwH4Our4pvW7\nmfWmeieQBKMhytMC4RhJDG3MkONL4d0PfgldfXOCJ3nYs4Zv3PwAXCjwAGRC9sq3/gKP/HhULHvL\nBpJlstYzsKqZvDQ4Ib+nhBRoHdSIHUqQxoEJCFsCM75k8JfSOjhVJ6dhnW2DDL47wh+4NK2+sPPZ\npt6v/qbnwvAHLjlIxmQB8JXfO7CEsOyG6mRlsTT0etBhQWHtF3/8Bz/EpavLsRYWA3AIZXSX/dMO\nvUxfNG8lP1lQfdm6K/Dyc/toFhv3OdDMetPOhVMxnzgQ5+m070OuWgqvunYbHv787xZZYYHwMkuC\n+TR1nTEfrAS7HUwbSJbJuiqNPBA+WRTye0qmSYEOZTaQZQ5SiOokNAU4XyRY6noWPJV1sqQDso/0\nbC12S5z+nRitOk+aRCsxADZwyTbFZAHwlV9n626nTlYWuxRLyx8LCmu/+Ivjo3hkZAPdKRBaYQL+\nYCn7p116JV1APIUTm9X3zh7C5JGDhaxpHdWXCIUurNdtlYj5xIE4T095CictXC/tGQMa3cGTPOwZ\n4D5NJ0AsABcKPLiyxx97FMPiQhVtIGOzPieAVTN5qYja0DCmSYGO+cD1gBXbEgdwo0T5Imknqev9\nvZTbS3U2676L7jePbfJv1lVWWDZwhZbK7N3SoFsRA2ADlxwkY7IAhG/wqyO7oTpZWVUaegbZD9ov\n/uL4qCefxdF9YjBDGd1l/7RDL9MX3V8hP7XDvu/+I7oG5xWyFtqlofXb7cbSMsomh1V7oeM8PTGc\ncAonLVwu7XjoJA97BrhPU9cpmRUKPADNC1XGxjcUghHKQFy6a1gJYNVMXtYdSl3P6pR/s0CaHrCk\ncagzGwYCfCn9ZlOJdHBKX3PJAhauP92Ge8BXbrbs1wrLBi5Na0zYZb/r5XdIjuTAJQfJmCxkdZWV\nn92x0WqdrCx2KZYedNyz5Jn2i8/deBOGN11b+h5bATiEMrrL/mmHXqYvOk9iyE9d/N4NH8G3P/+J\nYtNA6Ji/+109mXjO6VYuo2xyWLUXOsbTad9lUbUUdvuQ5f2roWVW6GSZNm7MP1Mny2vsxA3LZK1n\nYFUzeWlwgqnrBdNYTjoX1JBZg70LnIRxqDMbBjhfJKQS6eBUbzE4lNvCZi+x+yP4sr+ssHVmIDFh\nl/2uBwDdL+z7oUQKbDaulV9n687+5rIbqrOKjlCd3l0yDjs+7PnFXxsfxdiBPaVZqxvkY5fl698O\n+Xfr0sv0RcupnEiwoPq+7/4DJo8cLJ79yUs53qQPNe1W+5BZ+2M+cSDO04L+6dqHXLUUfuTeT+HY\ny89h3a/EL3rRYD5NJ0AsABcKPADZqPzqVG/0xA1zg1SlkQfKs77yIFKmgzGN+cC9wxjwByxpHJiA\nsCUw4wsAupTWwanQzWAs6UDpSlQvBby/7NcKW2cGEhN22e9VMQA2cIUSKbCZu1Z+P1t3WHZDdVbR\nEapTP7NDU0Bm8I6YfgxvvLr0PTfIh1aYQH3/bl16mb5o2ZUGmgXVD/3kWXQNzitkTeuoNsT6UJOW\nUXpTYkViixhPp/2kXtVS2KUdl5fDh5ZZpTLi09R1lpnFAw9AJmSHx0ex/+gLRZk2kP7ps3gOMYdy\nNLtZtzY0jGnMBx46rixRXhL6AsKWwIwvIVp0cCqUjkr+RnF0XfSRVm627NcKywYuTSsNIvQPAAAa\njklEQVS7LMpB9pv2gcd2CThInsdkAfCVX2frbqdOVha7FEvzxj3LftB+8aPPPIaJtReVvucG+diF\n6npgjPmp69DL9EXLrpxIMH+0W4G7TQOhXJFav50OhS7Zl6jyicd4WvcyohBaNshVS2F3gXToJA97\nBrhPU9cpmRUKPACZkL0+sBgXb/1gUaYNJMtkXXVSK6OzKVSybm1oGNOkQHtBDQeVSghQW7uIgNTZ\neVFnKe0tf91JQb0/WezZLbYdgl3X6C/7tcKygSvkj2czS9nvsSAUwAcuyfMqWfBXLpksyCPlIdkN\n1cnKYmno9QSEXWrj+cWnjnvy2TxZRg4aBTK6h/qnLr1MX/T9xJLHbPX7yL1ZCqdlb3+v95mkS+u3\ne977iNqbTiaHMZ84UMFTh4ogbAgtG+SqpfDY/V/ArPlnBE/ysGeA+zR1nZJZocADkI3Kh5/cibHG\nBDnckBlIlslaG6mqmbw0ONrQMKaVswGXgxrykhU9YJWNhi8gdXZexJbSOjillaS5qd6PssdS7rDZ\nglZYNnAF/fEFmu/K+pv84PWzgUsOkjFZYGA39oVkN1QnK4tdwKQHHRYU1v7dfxr9PjaMLC99z48B\nlFeYgC/Dsn/aoZfpS8xPzVaNC85di5ef20ez2LjPgeYWST2ZCGUOCh1eYjTEeMoGuFbQskGuWgoP\nb7oej//lZ4rbmIDwMkuC+TR1newdtrG9atYA8M3vVWnks99uCpVUeG1oGNOkQOughmS8HrCkcWAC\nwpbAjC8SLHW9e8dtqtd1sqQDso/07K3O3cB84CrT6trC9iHLfq+KAbCBqzxIhmUBYD5yP2tNq3Wy\nstilWHrV4Z5lUFj7d18cH8XYhqvoqcPQChNgkxgevKxLL9OXmJ+aBdUXrlyHH+z8YrFpQOuo45vW\nb/8+5O2ltrZCQ4ynp3wfshauicOvAo3u4Eke9gxwn2bsIqAQQ4FMyJ78/tNYd9nPFWW6o9iBDC2A\nVTP5OjeosTrl3yxrsB6wpHFgAsKWwJQvAuxeCn8gu6tUZ1H3jubR9VKeNaXcdNuSUlgmwH62aL5F\nSkPzY5dSVppdQwySMVkA/AGaZa0JyW6oTlYWuxRLDzruWQaFtV/8xfFRjwann8ytFMroLvunHXpZ\nX8T81CyovvvBLwGN7kLWtI6GDlw5HdKDOpscxnzioXawe83bwQnvQ9bCtX/sO8DU8eBJHvYMxPfv\nsQBciB4gE7IDD38VT4xvCF6lyTJZawGsmsnLumN+X12n/JslFtUDljQOTEDoBSmMLwJSiXRwSrss\nXJ1s214sm0nUTx254lTTGhN22e/ataHvT+YDV5P+mCwAvvI7Hsf2SVfVycpiaehDd4uHdhQNb3o3\nXp17bmlyArCdS02EMrrL/mmHXqYv+jrM0v3JJKi+6tptePm5fcWmAa2joZN5/undcr5IOTmM+cR1\nO5p0Z/0x7fuQq5bC7gJplxUWCC+z5KjMfJq6TsmsUOAB4LeDaUFmmaz1bK1qJi87P+b31XXKv53x\nk5es6AFLGgcmIHwJ7PNFopwBuByc0peGuzoXrIjtQ97uzd7Ysr/KwDBaXVtYCifZ76GsGA5s4JKG\nLCYLgD9Au7bHluxVdbIy2SehOoMpnP7DL3t+8QPjo6XJCdA0xKEVpvuuhOyfduhl+qJlvepk4kt7\nxkoZ5bWO6niTo/lwHnyOpaVyqEqiEONpLGlrHbRskKuWwmNfuReTbxwKnuRhzwD3aerrOyWzQoEH\nIBOQbz/w5eiJG5bJuiqNPFAeAaXB0YaGMU0KdNwHXh6wqvxSTIgZXwDQpbSvgHzrDks6EMsnxwS7\nysAwWl1b2Luxy+FDchRqU0wWAF/5/WzdYdkN1cnKZDtDdTqwPIjaL/7KwQOefDq9Ca0wgfg20Hbo\nZfqiZVcOoiyofuDfniqlcNI6qg2xo3nO4rNom9jkMDbAZjSGecqy2rSC1rNOVyyFAQCTx4Mnedgz\nwH2auk7JrFDgAcgE5JXxUewb2QAnGNpAskzWdZglhUrWHdq7S+sU+ydZX+gBq3SklwqIvwSmfBEo\nKxFXwFidrj9lH2nlZoOlVtg6G+nZZVEOPFt3hjo3ezEXEBCfOTrobN0nUqcsi12KpQcdlimc+cVD\nF0axJXYso/uJ0Mv0RcuubEdoB8Q/fvYjxaYBraOhS8d0VhzXpqq0ZPTgTAty1CramCHHl8Lr3ncH\nnv/XJ4MnedgzwH2auk7JrFDgAciE7LU3jlWeuHH0huismsnLurWhqXspjLfkJCmc5DMTELYEZnyR\nkErkKaCgRdYpUzuxNPJaudnMXiss44umNXTHBlDu91gQKqvLH7jkIBmThayusvLrbN1AWHZDdbKy\nWBp6PQFhQWHtFz/20g9LVxkATQMVWmECvstC9k879DJ90QOYnEiEdkAce+mHWHDxOwD4OqpPvurD\nTrq/2MAb84kDcZ4Wt+5Nl8uiain8xH070OifEzzJw54B7tN0AsQCcKHAA5CNyuMPP1A6LagNJMtk\nrWdgVTN5aXB8Q8OPdOu/XVBDLjljAxgTEDYbZnyRz1KJdHBKB/VcncVF7Gj2p+wjPXvjy/6ywrKB\nS9PqCbu8u1b0ux4AmvWX5SiEmCwAvvKzG/tCstsKYmnotQFlQWHtF3/8sUexTtx8CLAYQHmFCfgy\nHTrlVpdepi8xPzULqrt8mU7WtI46vp3/TrUtk9AD8IE35hMH4jyNnXysg5YNctVSeNm6K/Di3/5p\naR9yaJklwXyaus7SvQkBhgKZgkjHPxDeEC47sCqNPFAWqvIgUjY0jGlSoHVQQxpBPchI48AEpM5y\nKbaU1sGpUCZglnRA9pGevdVxx7CBKyTU7F3Z71UxAJpdQ7QpJguA3x6drbudOllZ7FIsPei4ZxkU\n1n7xA6Pfwr7X3gvpemMBSYdQRvfSFsc26GX6omVXTiRYUN2dBHabBrSOOr5p/XYHyLSMsgldzCcO\nxHk67SmcqpbCvbOHgEZ39CRPyO8LgPqFWAAu5vdcde02TI28A5dfc11Rpg0ku5RFC2DVTF7WrQ0N\nY5oUaC+oUeAub8AqLwnJPb3sghTGl9JvNpXID07l2FHeGlTULa49lH3U6uwD4AOXppVdc+kQ2+fa\n7Ntwjj85SMZkAfDbw/ySIdkN1cnKYpdiaYVnBoDVGbowirmVQhndZf+0Qy/Tl9iuBBZUH7v/C8DU\n8eANgKFkCwtXZjqkV39schjziQMVPC2w3XunDloP6lUshZ3Shk7ysGeA+zS9OgVigYeX9ozhwM4v\n4pHxbwdzkbFM1noGVjWTl3VrY8CYxjIDs6zBesCSxoEJCEOIL2wprYNToTtmWULR0JIUqLdvnA1c\nmla2E8WB8iMApvxykIzJAuArP/O1BmU3UCcri6WhrxMg137x4xe8Gxs3rCm9w2IADqGM7rJ/2qGX\n6YsOvsmJBAuqD2+6Hi8/t49msXGfc5o5fWxyGPOJA3GeTnsKJw3NtHU3fAQP/dHHiqywQHiZJcF8\nmhqx1PUS7HawUALMWE64qpm8NDjegRnCtHI24HJQQ2YN1gNW7PAFwJfAjC8SUol0cEq7LFyd8py+\nv23vrloJJLVCsIFL0+rawvYhh/jBfodBDoRV+QG1stXZ+ldVJyuLpaGv3IesdkQ8cd+OLIXTY+UU\nTiwG4BDKZiPb2Q69TF9iWWZYUH3i8KuYPHKwkDWtozre5Gj2j06X2yoR84mH0Jzg+frZClrPOl2x\nFGapfeoss5hPU6f2jqWul7j8js/g4Ye+hoXDZzR/XxlIlsm6Ko08oLMsNw1OK5fRyL/ZgKIHLGkc\nmICwJXCIL2wpHUsnJets1r296E/ZR0GXwQ6+bRAIDVxlWl1b2Luy36tiAGzgKg+SYVkAfOX3snVH\nZDdUJyuLpaHXgw47zKP94i/uGQsemonFSfxJTLN/2qGX6YuW3ar0SfvHvlPah6x1VBtiR7PLbFPl\nk8/oDPvEgSqenhhaNshVS+FDP3kWmDoePMnDngHu09R1SmaFAg9AJmQHxkexe2QDQqdtWCZrLYBV\nM3lZtzY0nGlSoMtBjVjePGkcWN+xJTDli4BUIh2c0rPD2F2vso/8AIu/7K86BcXqcW1hm+5Lx1zV\n4BaSo9Bl5DFZANjKpZytu506Y2WxOvWz9I1qv/jAeZd58ul4zNxKoYzusn/aoZfpSyiADPDBwp0E\ndpsGtI46vrndS3oyUehSwCcPhI+hO8R4Ou0X1Fcthd3G7dBJHvYMcJ+mrpNlRdCBh6ws2xoTO3HD\nMlnrGVjVTF4aHG1oGNOkQOughswaHPNHs75jS2DGlxB0cEruN5bl8h4AlkZeCyNb9muFZQOXppVd\nMekg+10PALpf+MDVHCRjsgD4A7QOIAFh2Q3Vycpiaej1BIQFhbVf/Oj4KHbb1yEHQT2TlAj5d0Mp\nrurSy/Ql7PPdzlN2feVeTB45iDlLfh6Ar6Nan/QkQ9+dEZqFOzAaYjwtdLzNFE6w1tb+N3v2bLvm\nPb9qZy8+2+7fv99aa+3Zl11n++YuKJ7nr1hrYRp2aPlI8B397L43q2/Q7t+/v/S3tdZeeNNv2NmL\nz7bzzlrlvXPeNTfbwQVnlH7rijt3WPT0276hhSW65G++6/f/yi44d23pN5eu3WR7Boe8d+RvO1r2\n799vf2bLrxR1X3bb79m5y1YU78rPHOTvub8XrbrY9gwO2TPXv6PoE02rpOu8q37R9s9bHOw7B8YX\n+c5VH/+8nXfO6hItjgZHk3vX1cn6/6rf/i9Fm664c0eJ74wuTT97R5e5tsj6HWS/uz53MqHfl7yr\nkjstC4yumFzWrbOKjqrfc8/rf+m3in6Q71xx5w7bGJxv5ywp0+D4z/rU1Xn5HZ8tZKQujTF6mb7o\n+qUMaZ1yugDTKMq1jjq+Obl0v+9k+tIP/F6ljErdYDTEeDq86d2eflprLYBdtoaNbckgA7Bds3ot\nAHvnnXdaa63tm7ug9Py2s863AEplZ6x/uwVM8Nlaa8+65J0WJitbumZj6XNXx8CCZUW5e0fTI9+X\n5fNXrKV09wwOFeWSBtY2/Tvyc9du9+6i8y/y2ijfd38PLjrTwphS2+YsHS791uCCZcWz7ptQf4b4\nwtqm+9fR5N51dc5ecnZR7vpB9r+uU/cno0vzJUZr75z50Xfde46m/nmLqRzJ7w9vur6gUf4Wo12+\nK2mX/RWS3djv6DLZJ6E69bOUY1mnkyVNg5OpvqGFnuy472jdkv3TDr1MX6Tcy7qZPBUyJdoTkjlH\nu+uX7t4B2iata7JvQjTEeKplzqGuQTbZu/VgjKn/ckJCQsJPOfr6+vD666/DGPOEtfaSqvcbJ1LR\n8PAwurpzN7RpoGfA92V29w/CdGXv9Pf3l75jurrRMzCExasvBUxGSldXF4wxGXHdPWh0zwLy5wL6\nOa9/8epLMat/DoDy572z5xXfcTR09/SU3pH1mkYXGt2zsroBDAwM4MYbb8TWrVvRlZeFvgsAXb39\n9Ls9vX0+3ZHfMo0uzBqYU9CuP+sZGMLStZuKzymdpkHbP6u3V3YepcXxuNHV5dHI6G40muV9QwsL\nntI+MA30zp0fpd10daO7b9Crq9E9C/3zl6JncAhds3pF33BxNl0ZL03Dp6fZT4J/UgZzGV04sh4m\nb5/rQ9YvWnZjdTa6Z6FnYAjzV6wtfrskS4ImrTuAQdes3kK3GBqNcn90dXVhy5Yt2Lp1K2b19JY+\n6+/vL+hrqN/0dd3AyUx9est0aHh15G0Emn23ZcsWT/dlG3sGhwqZq4Kur9HVjblnnIuewSE0unsK\nOguZNgbL1m1Cz+BQwSvJU91n/f39uOWWW7B3795a9BTtaentHF1dXXjzzTcxMDAAOzWFvr4+NAxw\n3vCZ3rvnrzgHxmbvTExMlL5j7BRuv+39uPGqi9EwWSdNTk7CWou+vj5g6jhWnz+ChjEFE7u6uoB8\nVi/LGgb4xasvwe233YJsRdPEyrOXoWFMiYap48dL35f1GlisPn8EmJpEX18f3njjDSxZsgRLliyB\nzcscNM2NRgOrVq6g3z1+7M3Sd7VgMjpGhs8qaNef3X7b+3HDlRcWnzM6G4a3f/LYMUGLpbQ4HsNa\nr690/09OTmLK1dlo4NwzFxc8ZX3QMMDK5UujtBs7hfPPPQeNRqPM/6lJfPDmrfjQrdtgJ4+Jvpmi\n7TB2EqvPH4GBT0/Bz1ymPBnMZfSmX9gIA1vqQ9YvWnajdU5N4vbb3o9feteVxW+X627SpHWn0TBY\nNbISRrRZtr2vrw9TU1OlvpicnMTw8DCWLFmCyePHSt+bmJgo6IP6Ta3rGV2t0av1RcuPV0cul7Lv\nzjnnnKIOh6miPxo475wz0TDc4Idku9mmKdzyvnfhQ7duA6aOF3QWMm0MbrhyPT5067aCV5Knus8m\nJiYwd+5cLF26NEqLR9vdd99d++XPfe5zd4+MjGDNmjXYvHkzRkdHceutt+Kee+6BMQajo6NYtGgR\nrrvuOqxZswZHjx7F4cOHvXfk8/PPP48jR47g6quvxj333IOdO3di3rx5+PrXv156f/bs2RgYGMCa\nNdmJo3nz5mH9+vVF2ebNm4vfmpiYqEUD+01dbx06QzRXfdfRb63FihUrKunQ9ejfDZUxPunfZLRI\nHlf1f6v91+o7sn7J6zp9ymS1FX7WpaudPjgRuaqiYefOnXjzzTexdevWQhdmz55d1BfrU/1ZSA7r\n0sve0/pbR9albu/duxfLly8P2gonA/r/dmSiDv9Yf958880AgE9/+tP777777j+vsrEt+ZAvueQS\nu2vXrtrvJyQkJCTgrfchJyQkJCScXCSDnJCQkNAhSAY5ISEhoUOQDHJCQkJChyAZ5ISEhIQOQTLI\nCQkJCR2CZJATEhISOgTJICckJCR0CJJBTkhISOgQJIOckJCQ0CFIBjkhISGhQ5AMckJCQkKHIBnk\nhISEhA5BMsgJCQkJHYJWUzgdArD7rSNnWrEQwEunmoiThNOpLcDp1Z7TqS3A6dWe6WzLOdbaRVUv\nhfO/cOyuc6fnTIAxZldqS2fidGrP6dQW4PRqTye2JbksEhISEjoEySAnJCQkdAhaNciVOaFmEFJb\nOhenU3tOp7YAp1d7Oq4tLQX1EhISEhLeOiSXRUJCQkKHoJZBNsZsNsbsNsY8Y4z5xFtN1MmAMeYv\njDEvGGOeEmXzjTEPGmPG8//n5eXGGPOf8/b9szHmolNHuQ9jzFnGmG8aY/7FGPN9Y8xv5uUzrj3G\nmD5jzGPGmCfztnw6L19hjHk0p/l/GWN68vLe/PmZ/PPhU0k/gzGmyxgzaox5IH+eyW3ZZ4wZM8Z8\nzxizKy+bcXIGAMaYtxljvmyM+YEx5mljzKZOb0ulQTbGdAH4MwBbAFwAYJsx5oK3mrCTgP8BYLMq\n+wSAb1hrRwB8I38GsraN5P8+DOCeaaKxLo4D+Li19gIAGwF8LOfBTGzPBIBrrLUXAlgPYLMxZiOA\nPwDwx9ba8wAcBHB7/v7tAA7m5X+cv9dp+E0AT4vnmdwWALjaWrtebAmbiXIGAH8C4H9ba1cDuBAZ\njzq7Ldba6D8AmwDsFM+fBPDJqu91wj8AwwCeEs+7ASzL/16GbF81ANwLYBt7rxP/AfgKgGtnensA\nDAD4vwB+DtkG/W4tcwB2AtiU/92dv2dONe2iDcuRKfY1AB4AYGZqW3K69gFYqMpmnJwBGAKwV/dv\np7eljsviTADPiucf5WUzEUustfvzv58HsCT/e8a0MV/mbgDwKGZoe/Il/vcAvADgQQB7ALxirT2e\nvyLpLdqSf/4qgAXTS3EU/wnA7wKYyp8XYOa2BQAsgK8ZY54wxnw4L5uJcrYCwIsA/nvuTvqvxphB\ndHhbfmqDejYbBmfUFhNjzGwAfwPgt6y1r8nPZlJ7rLWT1tr1yGaXlwFYfYpJagvGmPcAeMFa+8Sp\npuUk4kpr7UXIlvAfM8a8XX44g+SsG8BFAO6x1m4AcARN9wSAzmxLHYP8YwBniefledlMxE+MMcsA\nIP//hby849tojJmFzBjfZ63927x4xrYHAKy1rwD4JrJl/duMMe4ov6S3aEv++RCAA9NMaghXAHiv\nMWYfgP+JzG3xJ5iZbQEAWGt/nP//AoC/QzZgzkQ5+xGAH1lrH82fv4zMQHd0W+oY5McBjOSR4x4A\nvwzgq28tWW8Zvgrgtvzv25D5Yl35B/JI60YAr4plzSmHMcYA+G8AnrbWfk58NOPaY4xZZIx5W/53\nPzJf+NPIDPNN+Wu6La6NNwF4KJ/ZnHJYaz9prV1urR1GphcPWWtvwQxsCwAYYwaNMXPc3wCuA/AU\nZqCcWWufB/CsMWZVXvQLAP4Fnd6Wmg7y6wH8KzJf36dOtcO+Js1fArAfwDFko+XtyPx13wAwDuDr\nAObn7xpkO0n2ABgDcMmppl+15UpkS6t/BvC9/N/1M7E9AH4WwGjelqcA/H5efi6AxwA8A+CvAfTm\n5X358zP55+ee6jYE2nUVgAdmcltyup/M/33f6fpMlLOcvvUAduWydj+AeZ3elnRSLyEhIaFD8FMb\n1EtISEjoNCSDnJCQkNAhSAY5ISEhoUOQDHJCQkJChyAZ5ISEhIQOQTLICR2L/Lauj+Z/n2GM+fKp\npikh4a1E2vaW0LHI7+14wFq79hSTkpAwLWg163RCwnTiswBW5hcRjQP4GWvtWmPMBwHcAGAQ2XWJ\n/xFAD4BbkV3veb219mVjzEpkm/0XATgK4NestT+Y/mYkJNRDclkkdDI+AWCPzS4iukt9thbAjQAu\nBfAZAEdtdonMdwF8IH/nzwH8urX2YgC/A+Dz00J1QkKbSDPkhJmKb1prDwE4ZIx5FcDf5+VjAH42\nvxnvcgB/nV0FAgDonX4yExLqIxnkhJmKCfH3lHieQibXDWT3Eq+fbsISEtpFclkkdDIOAZjTzhdt\ndl/0XmPMvwOKnGkXnkziEhJONpJBTuhYWGsPAPiOyRLV/mEbP3ELgNuNMe72svedTPoSEk420ra3\nhISEhA5BmiEnJCQkdAiSQU5ISEjoECSDnJCQkNAhSAY5ISEhoUOQDHJCQkJChyAZ5ISEhIQOQTLI\nCQkJCR2CZJATEhISOgT/Hw64oDIZPIofAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAEKCAYAAAAsDo9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnW2sZOlx1+u5d2cys5m7Xs94JzbcyYuVWYWJbUKkGIvd\nCAtEZAUpYZdFWSGHEIE/EBCIXYNnw4c+XxAvEkJ8iLBiYIligXdmWBOHLyRW8AeQTIxssx7bxAMh\n2DHYa+TMYM+Ms+u5Dx+67719nn6q6l91nnO6e7ZKau3pqn/9/nVO9z3dU/OyKedMERERERHTx866\nB4iIiIh4rUbcgCMiIiLWFHEDjoiIiFhTxA04IiIiYk0RN+CIiIiINUXcgCMiIiLWFA+gwpRS/Hm1\niIiICEfknFMtb/oGnHO+Lx6z2WztM8R53J/ncr+cx/10Lus+DyliBRERERGxpogbcERERMSa4jV5\nA37nO9+57hGaxP1yHkT3z7ncL+dBdP+cyyafR9J2FEfClDKqjYiIiIiYR0qJcovfhIuIiIiIaBdx\nA46IiIhYU8QNOCIiImJNETfgiIiIiDVF3IAjIiIi1hRxA46IiIhYU8QNOCIiImJNETfgiIiIiDVF\n3IAjIiIi1hTuG3DOmS5fvkwHBwd0+fLl3r/6c1g7zHHPtd6yb2yWZXaPTzmjZT5pDo0v+S57ve99\n7+vpkXk1dov3iee1GHotWpy/pve8J0tOjce9fty5Wa5Zi/e3xkXeQ96fe8s1srynpXMV41CkPebS\n47h69Wre29vLzz77bN7b28vXrl1bqR3muOdab9k3Nssyu8ennNEynzSHxpd8l71OnTqVT58+faRH\n5tXYLd4nntdi6LVocf6a3vOeLDk1Hvf6cedmuWYt3t8aF3kPeX/uLdfI8p6WznVx76zfV7nCinBx\nA37/+9+fL126lB955JFMRPnEiROZiPL58+fzG9/4xvymN70pX7x4MRNRfuSRR/LJkyfz+fPne8/P\nnDmj9p44cSKfPHkyE1G+ePEiy27Bkvjl7IfPaz2cT3mtzpw502Np8y3XyzlOnDiRd3d3q/zy2pS+\nh14PPfTQkWb5sbOzw87LeXpea+1aW14L7lqj1wJ9vbTzX37Navrd3V3ze3KZc/jaHP53d3eXrS1f\n8/Lclvu0a8bNbHl/a9ei9l6vzVEytJ/7kiVdI+v9i5t/+bjZDfjg4CBfuXIl7+/vL35QUyaifOHC\nhXzlypX8wgsv5AsXLixq+5noHZnooUxEeX9/Pz/zzDNLvbtC77nFQ2I/k4n2ji7CPP9QJnoqE72Q\niebac+fO5XPnzrF1md+f/bh+IRNdWbAeqvgs18sZ9xZsbL5+fW9xTY9rZ8+e7V3P1euchHN4KhP9\n2aNrvfyQ5j325Nj467Pa2/fT6suvX/nesl0L/PXSz//4/VvTr77mVxbX5CHhPXkuE53KyzeOZd6x\nR/n6LfPLczt9xFw93/0if26hx6758dynmWuxW7kWp488uPtF7Xry14tj7RTntvrzXH9Pv4O5hucq\n53Lsz91XzTvglBKllOjWrVtEtL94rffp5s2btLOzQzs7O3Tz5k0iegPt7d2iZ599jPb2MhFdolu3\nbi31niGie0S0V+09deo2nT59h4jeILAT7e0REe3TvXv3iGif9vYyXbv2NF29ukN7e3Pt7du36c6d\nO0R0qVqX+f3Zj+s36dq1Hbp69aeONMc+Zb2ckRZsbL5+nRbX9Lh29+7d3vXsX+fj16h+Dk/T1atP\n06lTt4tX+qw479xTYuOvT7/30oqfVl9+/cr3lu1a4K+Xdv7L79+afvU131lck/l7if+ZSES0TwcH\nB0R0tsc79ihfv2V+/9xOncpHzNXznV/LeX5v4U8r83HX/PD1mnuU1+JYv3wt5loS7xe168lfL451\nQESnjs6t9vNcf08/xlzD4/M7vAcc+/Ph+k24Gzdu0PPPP09Ej9J73/teIvo5ev755+nGjRtLtXnu\n+vXri+dPFc/fvuh9rtL7Mj355JP0xBNPENHL1Xqf9XML1qMK6ymWJfOvF89rPU8pM/ev1TJLm6+s\nL5/3ca1/Pblrs5xf9nryySeJ6M8R0Z+nxx9/nIgeBublz8ny+iDX2vZa/PzC70cKrTyv/fVCNHX9\nce56xbuWW+45vJ4PV3irtRrr8PXQz+X4Wsozc++/673Zau/X5fc3/16v6eX7Tznv6jn9AeEetPqz\nxr2X6ue3fCyEdQWxHESz3n/7tbq2rFewvZxWt8yBzCnx5Z4ZVJdY1vlr1wm9Ntx5l3pkXo3d4n2C\n1pdzw66FrsU0sr5+TWo5nlPjyddc7yt90fep9Hpp71fpukh678+NfA+q90je/OvecAXRj66Btpbv\nDPUxWBy/tY+1j2NYfZBAOFavWp7TDqlb/IcwrBpO7w2Jh3h1zLGV00rPHSN6ryfH0dhe7340+osY\nHZiz1If6t4yW/LFYHNeS7yp5rt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSz\nCO6rcfkgcQWBfIWvP2+zgqh7rLLkusaXe2ZQXWLZfyk1WzlGrw33S9NSj8yLXi9sBTHsueSHzotq\nMY2sR95/y73LdYmH/Hx53z8t3t/12VfriN7684hdo7o/Ms/q8WgrCOlur30CaPWh/i2jJX8sFse1\n5LtKnuu3aBDGlKwWDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPx7EfsgJt9eHh8rH0cw+qD\nBMKxetXynHZI3eI/hGHVcHpvSDzEq2OOrZxWeu4Y0Xs9OY7G9nr3I74BT84fi8VxLfmukuf6LRqE\nMSWrBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPIvgdhPlg2IHrPTMoHrsgDGt97nkFzvg\nukbSxw7YPs/qceyAN4g/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdl\nBoSBePYjdsDNPjw8PtY+jmH1QQLhWL1qeU47pG7xH8Kwaji9NyQe4tUxx1ZOKz13jOi9nhxHY3u9\n+xHfgCfnj8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfNoHGQGuJlmQFhIJ5FcLuJ\n8kGxA1Z6ZlA9dsCY1vtc8osdcF0j6WMHbJ9n9Th2wBvEH4vFcS35rpLn+i0ahDElqwXDyyv1tV4t\nV9bRmpTTapKHp0+aQeMgNcTLMgPCQDz7ETvgZh8eHh9rH8ew+iCBcKxetTynHVK3+A9hWDWc3hsS\nD/HqmGMrp5WeO0b0Xk+Oo7G93v2Ib8CT88dicVxLvqvkuX6LBmFMyWrB8PJKfa1Xy5V1tCbltJrk\n4emTZtA4SA3xssyAMBDPIrjdRPmg2AErPTOoHjtgTOt9LvnFDriukfSxA7bPs3ocO+AN4o/F4riW\nfFfJc/0WDcKYktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCe/YgdcLMPD4+PtY9jWH2Q\nQDhWr1qe0w6pW/yHMKwaTu8NiYd4dcyxldNKzx0jeq8nx9HYXu9+xDfgyfljsTiuJd9V8ly/RYMw\npmS1YHh5pb7Wq+XKOlqTclpN8vD0STNoHKSGeFlmQBiIZxHcbqJ8UOyAlZ4ZVI8dMKb1Ppf8Ygdc\n10j62AHb51k9jh3wBvHHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLM\ngDAQz37EDrjZh4fHx9rHMaw+SCAcq1ctz2mH1C3+QxhWDaf3hsRDvDrm2MpppeeOEb3Xk+NobK93\nP+Ib8OT8sVgc15LvKnmu36JBGFOyWjC8vFJf69VyZR2tSTmtJnl4+qQZNA5SQ7wsMyAMxLMIbjdR\nPih2wErPDKrHDhjTep9LfrEDrmskfeyA7fOsHscOeIP4Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvl\nyjpak3JaTfLw9EkzaBykhnhZZkAYiGc/Ygfc7MPD42Pt4xhWHyQQjtWrlue0Q+oW/yEMq4bTe0Pi\nIV4dc2zltNJzx4je68lxNLbXux/xDXhy/lgsjmvJd5U812/RIIwpWS0YXl6pr/VqubKO1qScVpM8\nPH3SDBoHqSFelhkQBuJZBLebKB8UO2ClZwbVYweMab3PJb/YAdc1kj52wPZ5Vo9jB7xB/LFYHNeS\n7yp5rt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzH7EDbvbh4fGx9nEMqw8S\nCMfqVctz2iF1i/8QhlXD6b0h8RCvjjm2clrpuWNE7/XkOBrb692P+AY8OX8sFse15LtKnuu3aBDG\nlKwWDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPxLILbTZQPih2w0jOD6rEDxrTe55Jf7IDr\nGkkfO2D7PKvHsQPeIP5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZ\nEAbi2Y/YATf78PD4WPs4htUHCYRj9arlOe2QusV/CMOq4fTekHiIV8ccWzmt9Nwxovd6chyN7fXu\nR3wDnpw/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdlBoSBeBbB7SbK\nB8UOWOmZQfXYAWNa73PJL3bAdY2kjx2wfZ7V49gBbxB/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVc\nWUdrUk6rSR6ePmkGjYPUEC/LDAgD8exH7ICbfXh4fKx9HMPqgwTCsXrV8px2SN3iP4Rh1XB6b0g8\nxKtjjq2cVnruGNF7PTmOxvZ69yO+AU/OH4vFcS35rpLn+i0ahDElqwXDyyv1tV4tV9bRmpTTapKH\np0+aQeMgNcTLMgPCQDyL4HYT5YNiB6z0zKB67IAxrfe55Bc74LpG0scO2D7P6nHsgDeIPxaL41ry\nXSXP9Vs0CGNKVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXj2I3bAzT48PD7WPo5h9UEC\n4Vi9anlOO6Ru8R/CsGo4vTckHuLVMcdWTis9d4zovZ4cR2N7vfsR34An54/F4riWfFfJc/0WDcKY\nktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCeRXC7ifJBsQNWemZQPXbAmNb7XPKLHXBd\nI+ljB2yfZ/U4dsAbxB+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dPmkHjIDXEyzID\nwkA8+xE74GYfHh4fax/HsPoggXCsXrU8px1St/gPYVg1nN4bEg/x6phjK6eVnjtG9F5PjqOxvd79\niG/Ak/PHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLMgDAQzyK43UT5\noNgBKz0zqB47YEzrfS75xQ64rpH0sQO2z7N6HDvgDeKPxeK4lnxXyXP9Fg3CmJLVguHllfpar5Yr\n62hNymk1ycPTJ82gcZAa4mWZAWEgnv2IHXCzDw+Pj7WPY1h9kEA4Vq9antMOqVv8hzCsGk7vDYmH\neHXMsZXTSs8dI3qvJ8fR2F7vfsQ34Mn5Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvlyjpak3JaTfLw\n9EkzaBykhnhZZkAYiGcR3G6ifFDsgJWeGVSPHTCm9T6X/GIHXNdI+tgB2+dZPY4d8Abxx2JxXEu+\nq+S5fosGYUzJasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM9+xA642YeHx8faxzGsPkgg\nHKtXLc9ph9Qt/kMYVg2n94bEQ7w65tjKaaXnjhG915PjaGyvdz/iG/Dk/LFYHNeS7yp5rt+iQRhT\nslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzCG43UT4odsBKzwyqxw4Y03qfS36xA65r\nJH3sgO3zrB7HDniD+GOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJM2gcpIZ4WWZA\nGIhnP2IH3OzDw+Nj7eMYVh8kEI7Vq5bntEPqFv8hDKuG03tD4iFeHXNs5bTSc8eI3uvJcTS217sf\n8Q14cv5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZEAbiWQS3mygf\nFDtgpWcG1WMHjGm9zyW/2AHXNZI+dsD2eVaPYwe8QfyxWBzXku8qea7fokEYU7JaMLy8Ul/r1XJl\nHa1JOa0meXj6pBk0DlJDvCwzIAzEsx+xA2724eHxsfZxDKsPEgjH6lXLc9ohdYv/EIZVw+m9IfEQ\nr445tnJa6bljRO/15Dga2+vdj/gGPDl/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVcWUdrUk6rSR6e\nPmkGjYPUEC/LDAgD8SyC202UD4odsNIzg+qxA8a03ueSX+yA6xpJHztg+zyrx7ED3iD+WCyOa8l3\nlTzXb9EgjClZLRheXqmv9Wq5so7WpJxWkzw8fdIMGgepIV6WGRAG4tmP2AE3+/Dw+Fj7OIbVBwmE\nY/Wq5TntkLrFfwjDquH03pB4iFfHHFs5rfTcMaL3enIcje317kd8A56cPxaL41ryXSXP9Vs0CGNK\nVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXgWwe0mygfFDljpmUH12AFjWu9zyS92wHWN\npI8dsH2e1ePYAW8QfywWx7Xku0qe67doEMaUrBYML6/U13q1XFlHa1JOq0kenj5pBo2D1BAvywwI\nA/HsR+yAm314eHysfRzD6oMEwrF61fKcdkjd4j+EYdVwem9IPMSrY46tnFZ67hjRez05jsb2evcj\nvgFPzh+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dPmkHjIDXEyzIDwkA8i+B2E+WD\nYges9MygeuyAMa33ueQXO+C6RtLHDtg+z+px7IA3iD8Wi+Na8l0lz/VbNAhjSlYLhpdX6mu9Wq6s\nozUpp9UkD0+fNIPGQWqIl2UGhIF49iN2wM0+PDw+1j6OYfVBAuFYvWp5TjukbvEfwrBqOL03JB7i\n1THHVk4rPXeM6L2eHEdje737Ed+AJ+ePxeK4lnxXyXP9Fg3CmJLVguHllfpar5Yr62hNymk1ycPT\nJ82gcZAa4mWZAWEgnkVwu4nyQbEDVnpmUD12wJjW+1zyix1wXSPpYwdsn2f1OHbAG8Qfi8VxLfmu\nkuf6LRqEMSWrBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPPsRO+BmHx4eH2sfx7D6IIFw\nrF61PKcdUrf4D2FYNZzeGxIP8eqYYyunlZ47RvReT46jsb3e/YhvwJPzx2JxXEu+q+S5fosGYUzJ\nasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM8iuN1E+aDYASs9M6geO2BM630u+cUOuK6R\n9LEDts+zehw74A3ij8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfNoHGQGuJlmQFh\nIJ79iB1wsw8Pj4+1j2NYfZBAOFavWp7TDqlb/IcwrBpO7w2Jh3h1zLGV00rPHSN6ryfH0dhe737E\nN+DJ+WOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJM2gcpIZ4WWZAGIhnEdxuonxQ\n7ICVnhlUjx0wpvU+l/xiB1zXSPrYAdvnWT2OHfAG8cdicVxLvqvkuX6LBmFMyWrB8PJKfa1Xy5V1\ntCbltJrk4emTZtA4SA3xssyAMBDPfsQOuNmHh8fH2scxrD5IIByrVy3PaYfULf5DGFYNp/eGxEO8\nOubYymml544RvdeT42hsr3c/4hvw5PyxWBzXku8qea7fokEYU7JaMLy8Ul/r1XJlHa1JOa0meXj6\npBk0DlJDvCwzIAzEswhuN1E+KHbASs8MqscOGNN6n0t+sQOuayR97IDt86wexw54g/hjsTiuJd9V\n8ly/RYMwpmS1YHh5pb7Wq+XKOlqTclpN8vD0STNoHKSGeFlmQBiIZz9iB9zsw8PjY+3jGFYfJBCO\n1auW57RD6hb/IQyrhtN7Q+IhXh1zbOW00nPHiN7ryXE0tte7H/ENeHL+WCyOa8l3lTzXb9EgjClZ\nLRheXqmv9Wq5so7WpJxWkzw8fdIMGgepIV6WGRAG4lkEt5soHxQ7YKVnBtVjB4xpvc8lv9gB1zWS\nPnbA9nlWj2MHvEH8sVgc15LvKnmu36JBGFOyWjC8vFJf69VyZR2tSTmtJnl4+qQZNA5SQ7wsMyAM\nxLMfsQNu9uHh8bH2cQyrDxIIx+pVy3PaIXWL/xCGVcPpvSHxEK+OObZyWum5Y0Tv9eQ4Gtvr3Y/4\nBjw5fywWx7Xku0qe67doEMaUrBYML6/U13q1XFlHa1JOq0kenj5pBo2D1BAvywwIA/EsgttNlA+K\nHbDSM4PqsQPGtN7nkl/sgOsaSR87YPs8q8exA94g/lgsjmvJd5U812/RIIwpWS0YXl6pr/VqubKO\n1qScVpM8PH3SDBoHqSFelhkQBuLZj9gBN/vw8PhY+ziG1QcJhGP1quU57ZC6xX8Iw6rh9N6QeIhX\nxxxbOa303DGi93pyHI3t9e5HfAOenD8Wi+Na8l0lz/VbNAhjSlYLhpdX6mu9Wq6sozUpp9UkD0+f\nNIPGQWqIl2UGhIF4FsHtJsoHxQ5Y6ZlB9dgBY1rvc8kvdsB1jaSPHbB9ntXj2AFvEH8sFse15LtK\nnuu3aBDGlKwWDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPx7EfsgJt9eHh8rH0cw+qDBMKx\netXynHZI3eI/hGHVcHpvSDzEq2OOrZxWeu4Y0Xs9OY7G9nr3I74BT84fi8VxLfmukuf6LRqEMSWr\nBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPIvgdhPlg2IHrPTMoHrsgDGt97nkFzvgukbS\nxw7YPs/qceyAN4g/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdlBoSB\nePYjdsDNPjw8PtY+jmH1QQLhWL1qeU47pG7xH8Kwaji9NyQe4tUxx1ZOKz13jOi9nhxHY3u9+xHf\ngCfnj8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfNoHGQGuJlmQFhIJ5FcLuJ8kGx\nA1Z6ZlA9dsCY1vtc8osdcF0j6WMHbJ9n9Th2wBvEH4vFcS35rpLn+i0ahDElqwXDyyv1tV4tV9bR\nmpTTapKHp0+aQeMgNcTLMgPCQDz7ETvgZh8eHh9rH8ew+iCBcKxetTynHVK3+A9hWDWc3hsSD/Hq\nmGMrp5WeO0b0Xk+Oo7G93v2Ib8CT88dicVxLvqvkuX6LBmFMyWrB8PJKfa1Xy5V1tCbltJrk4emT\nZtA4SA3xssyAMBDPIrjdRPmg2AErPTOoHjtgTOt9LvnFDriukfSxA7bPs3ocO+AN4o/F4riWfFfJ\nc/0WDcKYktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCe/YgdcLMPD4+PtY9jWH2QQDhW\nr1qe0w6pW/yHMKwaTu8NiYd4dcyxldNKzx0jeq8nx9HYXu9+xDfgyfljsTiuJd9V8ly/RYMwpmS1\nYHh5pb7Wq+XKOlqTclpN8vD0STNoHKSGeFlmQBiIZxHcbqJ8UOyAlZ4ZVI8dMKb1Ppf8Ygdc10j6\n2AHb51k9jh3wBvHHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLMgDAQ\nz37EDrjZh4fHx9rHMaw+SCAcq1ctz2mH1C3+QxhWDaf3hsRDvDrm2MpppeeOEb3Xk+NobK93P+Ib\n8OT8sVgc15LvKnmu36JBGFOyWjC8vFJf69VyZR2tSTmtJnl4+qQZNA5SQ7wsMyAMxLMIbjdRPih2\nwErPDKrHDhjTep9LfrEDrmskfeyA7fOsHscOeIP4Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvlyjpa\nk3JaTfLw9EkzaBykhnhZZkAYiGc/Ygfc7MPD42Pt4xhWHyQQjtWrlue0Q+oW/yEMq4bTe0PiIV4d\nc2zltNJzx4je68lxNLbXux/xDXhy/lgsjmvJd5U812/RIIwpWS0YXl6pr/VqubKO1qScVpM8PH3S\nDBoHqSFelhkQBuJZBLebKB8UO2ClZwbVYweMab3PJb/YAdc1kj52wPZ5Vo9jB7xB/LFYHNeS7yp5\nrt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzH7EDbvbh4fGx9nEMqw8SCMfq\nVctz2iF1i/8QhlXD6b0h8RCvjjm2clrpuWNE7/XkOBrb692P+AY8OX8sFse15LtKnuu3aBDGlKwW\nDC+v1Nd6tVxZR2tSTqtJHp4+aQaNg9QQL8sMCAPxLILbTZQPih2w0jOD6rEDxrTe55Jf7IDrGkkf\nO2D7PKvHsQPeIP5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZEAbi\n2Y/YATf78PD4WPs4htUHCYRj9arlOe2QusV/CMOq4fTekHiIV8ccWzmt9Nwxovd6chyN7fXuR3wD\nnpw/FovjWvJdJc/1WzQIY0pWC4aXV+prvVqurKM1KafVJA9PnzSDxkFqiJdlBoSBeBbB7SbKB8UO\nWOmZQfXYAWNa73PJL3bAdY2kjx2wfZ7V49gBbxB/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVcWUdr\nUk6rSR6ePmkGjYPUEC/LDAgD8exH7ICbfXh4fKx9HMPqgwTCsXrV8px2SN3iP4Rh1XB6b0g8xKtj\njq2cVnruGNF7PTmOxvZ69yO+AU/OH4vFcS35rpLn+i0ahDElqwXDyyv1tV4tV9bRmpTTapKHp0+a\nQeMgNcTLMgPCQDyL4HYT5YNiB6z0zKB67IAxrfe55Bc74LpG0scO2D7P6nHsgDeIPxaL41ryXSXP\n9Vs0CGPOyctbAAAUEUlEQVRKVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXj2I3bAzT48\nPD7WPo5h9UEC4Vi9anlOO6Ru8R/CsGo4vTckHuLVMcdWTis9d4zovZ4cR2N7vfsR34An54/F4riW\nfFfJc/0WDcKYktWC4eWV+lqvlivraE3KaTXJw9MnzaBxkBriZZkBYSCeRXC7ifJBsQNWemZQPXbA\nmNb7XPKLHXBdI+ljB2yfZ/U4dsAbxB+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dP\nmkHjIDXEyzIDwkA8+xE74GYfHh4fax/HsPoggXCsXrU8px1St/gPYVg1nN4bEg/x6phjK6eVnjtG\n9F5PjqOxvd79iG/Ak/PHYnFcS76r5Ll+iwZhTMlqwfDySn2tV8uVdbQm5bSa5OHpk2bQOEgN8bLM\ngDAQzyK43UT5oNgBKz0zqB47YEzrfS75xQ64rpH0sQO2z7N6HDvgDeKPxeK4lnxXyXP9Fg3CmJLV\nguHllfpar5Yr62hNymk1ycPTJ82gcZAa4mWZAWEgnv2IHXCzDw+Pj7WPY1h9kEA4Vq9antMOqVv8\nhzCsGk7vDYmHeHXMsZXTSs8dI3qvJ8fR2F7vfsQ34Mn5Y7E4riXfVfJcv0WDMKZktWB4eaW+1qvl\nyjpak3JaTfLw9EkzaBykhnhZZkAYiGcR3G6ifFDsgJWeGVSPHTCm9T6X/GIHXNdI+tgB2+dZPY4d\n8Abxx2JxXEu+q+S5fosGYUzJasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM9+xA642YeH\nx8faxzGsPkggHKtXLc9ph9Qt/kMYVg2n94bEQ7w65tjKaaXnjhG915PjaGyvdz/iG/Dk/LFYHNeS\n7yp5rt+iQRhTslowvLxSX+vVcmUdrUk5rSZ5ePqkGTQOUkO8LDMgDMSzCG43UT4odsBKzwyqxw4Y\n03qfS36xA65rJH3sgO3zrB7HDniD+GOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJ\nM2gcpIZ4WWZAGIhnP2IH3OzDw+Nj7eMYVh8kEI7Vq5bntEPqFv8hDKuG03tD4iFeHXNs5bTSc8eI\n3uvJcTS217sf8Q14cv5YLI5ryXeVPNdv0SCMKVktGF5eqa/1armyjtaknFaTPDx90gwaB6khXpYZ\nEAbiWQS3mygfFDtgpWcG1WMHjGm9zyW/2AHXNZI+dsD2eVaPYwe8QfyxWBzXku8qea7fokEYU7Ja\nMLy8Ul/r1XJlHa1JOa0meXj6pBk0DlJDvCwzIAzEsx+xA2724eHxsfZxDKsPEgjH6lXLc9ohdYv/\nEIZVw+m9IfEQr445tnJa6bljRO/15Dga2+vdj/gGPDl/LBbHteS7Sp7rt2gQxpSsFgwvr9TXerVc\nWUdrUk6rSR6ePmkGjYPUEC/LDAgD8SyC202UD4odsNIzg+qxA8a03ueSX+yA6xpJHztg+zyrx7ED\n3iD+WCyOa8l3lTzXb9EgjClZLRheXqmv9Wq5so7WpJxWkzw8fdIMGgepIV6WGRAG4tmP2AE3+/Dw\n+Fj7OIbVBwmEY/Wq5TntkLrFfwjDquH03pB4iFfHHFs5rfTcMaL3enIcje317kd8A56cPxaL41ry\nXSXP9Vs0CGNKVguGl1fqa71arqyjNSmn1SQPT580g8ZBaoiXZQaEgXgWwe0mygfFDljpmUH12AFj\nWu9zyS92wHWNpI8dsH2e1ePYAW8QfywWx7Xku0qe67doEMaUrBYML6/U13q1XFlHa1JOq0kenj5p\nBo2D1BAvywwIA/HsR+yAm314eHysfRzD6oMEwrF61fKcdkjd4j+EYdVwem9IPMSrY46tnFZ67hjR\nez05jsb2evcjvgFPzh+LxXEt+a6S5/otGoQxJasFw8sr9bVeLVfW0ZqU02qSh6dPmkHjIDXEyzID\nwkA8i+B2E+WDYges9MygeuyAMa33ueQXO+C6RtLHDtg+z+px7IA3iD8Wi+Na8l0lz/VbNAhjSlYL\nhpdX6mu9Wq6sozUpp9UkD0+fNIPGQWqIl2UGhIF49iN2wM0+PDw+1j6OYfVBAuFYvWp5TjukbvEf\nwrBqOL03JB7i1THHVk4rPXeM6L2eHEdje737Ed+AJ+ePxeK4lnxXyXP9Fg3CmJLVguHllfpar5Yr\n62hNymk1ycPTJ82gcZAa4mWZAWEgnkVwu4nyQbEDVnpmUD12wJjW+1zyix1wXSPpYwdsn2f1OHbA\nG8Qfi8VxLfmukuf6LRqEMSWrBcPLK/W1Xi1X1tGalNNqkoenT5pB4yA1xMsyA8JAPPsRO+BmHx4e\nH2sfx7D6IIFwrF61PKcdUrf4D2FYNZzeGxIP8eqYYyunlZ47RvReT46jsb3e/YhvwJPzx2JxXEu+\nq+S5fosGYUzJasHw8kp9rVfLlXW0JuW0muTh6ZNm0DhIDfGyzIAwEM8iuN1E+aDYASs9M6geO2BM\n630u+cUOuK6R9LEDts+zehw74A3ij8XiuJZ8V8lz/RYNwpiS1YLh5ZX6Wq+WK+toTcppNcnD0yfN\noHGQGuJlmQFhIJ79iB1wsw8Pj4+1j2NYfZBAOFavWp7TDqlb/IcwrBpO7w2Jh3h1zLGV00rPHSN6\nryfH0dhe737EN+DJ+WOxOK4l31XyXL9FgzCmZLVgeHmlvtar5co6WpNyWk3y8PRJM2gcpIZ4WWZA\nGIhnEdxuonxQ7ICVnhlUjx0wpvU+l/xiB1zXSPrYAdvnWT1utAOes5aPP0oHBwdE9Hil9q2j3KG2\n//xbi97Lld7LSzd+vn78/PEF66MKi69r/P7zWs9HlZlXr5VlPu4aHtdWryd3bcrX5zh3t6dH5pU0\nltcHudb4a3F54bf6HtTmtb5euobXl+dTO8f6a11/jaRayV9+PbRzWb6W0nzc+2/5Pcq9X1d/huT7\nBXr/4d4zh+fE34P4nxf+tfzWyrEahw3ag4jytWvX8mFcvXo1E+3lZ599NhOdrNYOc9xzvneeWz6u\n1Zefz1l7Couva3zueXl+Ur08X8t80jXV+OW14b1OZaIHjvTIvJLG8vq0eI6cszav9fXSNbweef9x\n76/aayTVpOtjef+0eH/z12Jv5Zjjo/cf7f3Y6v4lzU/CN+CUkbs0EaWU8sWLF+kb3/gGpZTo29/+\nNn3ta1+jEydO0Kuvvkrnz5+nnZ0dSinRmTNn6MaNG/TII4/QrVu36OGHH6aXX3756PnJkyfpm9/8\npth74sQJSinRK6+8Qsu+JbsFS+KXsx8+r/VwPuW1OnPmDL3yyitHLG2+5Xo5x4kTJ+jg4IDu3bu3\nwi+vTel76HXnzh26e/cuvfrqq73XfGdnhw4ODqrzcp6e11q71pbXgrvW6LVAXy/t/Jdfs5p+d3eX\ndnd3Te/JZc7ha3P4393dXSKiam35mpfnttynXTNuZsv7W7sWtfd6bY5yZu3nvmRJ18h6/+Lmv3jx\nIp04cYI+97nPUc45Df4GTPRQJrqSiV7IRHuZiPLu7m4+rj21qF3IRJT39/fzM888ky9cuLDQ7GWi\nZzLRftF7YdH71FHvuXPn8rlz59j6IXt/f3+hSZmI8oULF/KVK1fyCy+8sOR7LhOdFuo8vz/7O47q\ndc7phVe/Xs64ytbmO67Xe88W13N/MWv5Gh1e//45fOhDH1q61ssPad5TFfbx9bG9PofzPsT4afXl\n1698b+0vzrl2LeqvJ/Z6yefff//W9KeV13z15+ncuXP57Nmzvdeoz5t77OzssNe8PLc+s3++x9rd\nyjktz1e75sev1+q1KN+vx+/vvpa7X9SuZ/169VnvOGIdX6Nd4TXo/7xw7+nV8zu+B8y/DfPfgE07\n4L29TNeu7dDVqzu0t0e0v79P9+7do/39/UXt6UXtJl26dIlu3bpFKSW6eXP+fG+P6NlnE+3t3Sp6\nby56f+qo9/bt23Tnzp1F32r9kH3r1pxFlGl/f59u3rxJOzs7tLOzc+R76tRtOn2a6NKlS9W6xO/P\n/thRve6T6fTpOyv1csaSrc23XK/33i2u563FrOVrdHj9++ewu7tLt2/fpp2d47fD2bNnlXlThf2Y\n6/U5njcz116rL79+5Xvr1uKca9ei/npir5d8/svv35p+/l6R3pOrP0+3b9+mu3fvLmabv0Z93tzj\n4OCg9/pJ59Zn9s/3WHvvSHv8M7k8X+2aH79eq9fibnEtjt/ffY/6/aJ+/evXq8967Ih1fI3uCe/L\n/s8L955ePb/je0BK9S++h2FaQVy7do1u3LhBOWd69NFH6Qtf+AJ9/etfp7Nnz9Kjjz7aqz355JP0\n4osv0gc+8AF6z3ves/Jc6333u99NREQf/OAH6cUXXxTZLViW2bkeyaeccZmlzVfWa71vectbqnzJ\nd9nr+vXr9MQTT9CHP/xh+uIXv0gPPvggve1tbxPn5Tytrw9yrS2vBXfO6LVAXy/p/Jdfs5r++vXr\n5vdkyXnppZeOXqNDXq1WXvPlcyv7pGsmzYy+v7Vrwb3XkZnRn5tDlnSNLPcvaf4bN27Qc889x64g\nTDdgVBsRERERMY+UEnsDbvQXMSIiIiIirBE34IiIiIg1RdyAIyIiItYUcQOOiIiIWFPEDTgiIiJi\nTRE34IiIiIg1RdyAIyIiItYUcQOOiIiIWFPEDTgiIiJiTRE34IiIiIg1RdyAIyIiItYUr8kb8Mc+\n9rF1j9Ak7pfzILp/zuV+OQ+i++dcNvk84ga8xXG/nAfR/XMu98t5EN0/57LJ5/GavAFHREREbELE\nDTgiIiJiTWH694BHniUiIiLivozB/yB7RERERETbiBVERERExJoibsARERERawroBpxSeldK6b+l\nlL6QUnrf2EMNiZTSP08pfTWl9NJS7vUppV9LKf1WSunfp5Ret1R7LqV0I6X0+ZTSj61n6tVIKe2n\nlH4jpfTZlNJnUkp/fZHfxnP5jpTSf04pfWpxLrNFfuvOhYgopbSTUvpkSukji+fbeh6/k1L6r4vX\n5TcXua07l5TS61JKVxdzfTal9Ee35jy4/1/94YPmN+n/TkTfQ0QniOjTRPQDWt+6HkT0OBH9EBG9\ntJT7B0T0txfH7yOiv784vkREnyKiB4joexfnmdZ9DovZ3khEP7Q4PkNEv0VEP7CN57KY78HFf3eJ\n6ONE9PYtPpe/SUQfJKKPbOv7azHfbxPR64vc1p0LEf1LIvrZxfEDRPS6bTkP5Bvw24noRs75f+Wc\nXyWiDxHRTwJ9a4mc838kot8r0j9JRL+0OP4lIvozi+OfIKIP5Zy/nXP+HSK6QfPzXXvknL+Sc/70\n4vibRPR5ItqnLTwXIqKc853F4XfQ/M2faQvPJaW0T0Q/TkT/bCm9deexiESrvwreqnNJKT1ERD+a\nc36eiGgx3y3akvNAbsB/kIi+tPT8dxe5bYrzOeevEs1vbER0fpEvz+3LtIHnllL6Xpp/q/84EX3X\nNp7L4pftnyKirxDRr+ecP0HbeS7/mIj+Fs0/QA5jG8+DaH4Ov55S+kRK6S8vctt2Lt9HRP83pfT8\nYi30iymlB2lLzuO1+ptwW/Nn71JKZ4joGhH9jcU34XL2rTiXnPNBzvmP0Pxb/NtTSj9IW3YuKaU/\nTURfXfzKpPrnOhex0eexFI/lnH+Y5t/o/2pK6Udpy14Tmv9q6oeJ6BcW53KbiC7TlpwHcgP+MhF9\n99Lz/UVum+KrKaXvIiJKKb2RiF5e5L9MRBeWdBt1bimlB2h+8/3lnPOvLNJbeS6HkXP+f0T0MSJ6\nF23fuTxGRD+RUvptIvrXRPQnUkq/TERf2bLzICKinPP/Wfz3a0T0b2n+S/Fte01+l4i+lHP+L4vn\n/4bmN+StOA/kBvwJIvr+lNL3pJROEtHTRPSRcccaHIn631A+QkR/cXH8M0T0K0v5p1NKJ1NK30dE\n309EvznVkED8CyL6XM75nyzltu5cUkpvOPxd6JTSaSL6UzTfaW/VueScfz7n/N055zfT/OfgN3LO\nP01Ev0pbdB5ERCmlBxe/uqKU0ncS0Y8R0Wdo+16TrxLRl1JKjy5Sf5KIPkvbch7g7zK+i+a/C3+D\niC6v+3c9lVn/FRH9byL6fSL6IhH9LBG9nog+ujiHXyOih5f0z9H8d0I/T0Q/tu75l+Z6jIju0fxP\nnXyKiD65eB3ObuG5vHUx/6eJ6CUi+juL/Nady9J8f5yO/xTE1p0HzXenh++tzxz+XG/pufxhmn9R\n/DQRvUjzPwWxFecRfxU5IiIiYk3xWv1NuIiIiIi1R9yAIyIiItYUcQOOiIiIWFPEDTgiIiJiTRE3\n4IiIiIg1RdyAIyIiItYUcQOO2NhY/DODf2Vx/KaU0pV1zxQR0TLizwFHbGws/hGiX805v3XNo0RE\njBIPrHuAiAgh/h4RvTml9Ema/82lP5RzfmtK6Wdo/s8LfifN/yrpPyKik0T000T0LSL68ZzzzZTS\nm4noF4joDUR0h4jek3P+whrOIyKiGrGCiNjkuExE/yPP/5Wr8p+A/EGa34TfTkR/l4i+udB9nIj+\nwkLzi0T013LOP7Lo/6dTDR4RgUR8A47Y1vgPef6PvN9JKd0kon+3yH+GiN66+Adm/hgRXU0pHf7D\nTCfWMGdEBBtxA47Y1vj9peO89PyA5u/rHSL6vcW34oiIjYxYQURscnyDiPYWx9I/gL4SOedvENH/\nTCk9dZhLKb2t4WwREYMjbsARGxs5568T0X9K8//D9T8k/v9qwOXfTUR/KaX06ZTSdZr//8AiIjYm\n4o+hRURERKwp4htwRERExJoibsARERERa4q4AUdERESsKeIGHBEREbGmiBtwRERExJoibsARERER\na4q4AUdERESsKeIGHBEREbGm+P/UHK87mpdplgAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -101,7 +101,7 @@
}
],
"source": [
- "from dcprogs.likelihood import time_filter as cpp_time_filter\n",
+ "from HJCFIT.likelihood import time_filter as cpp_time_filter\n",
"filtered = cpp_time_filter(series, 1)\n",
"fig, ax = plt.subplots(1,1)\n",
"plot_time_series(perfect, ax=ax)\n",
@@ -127,9 +127,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "DCProgs GCC Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "dcprogsgcc"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -141,7 +141,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/approx_survivor.ipynb b/exploration/approx_survivor.ipynb
index 3f4fdc8..14caa3a 100644
--- a/exploration/approx_survivor.ipynb
+++ b/exploration/approx_survivor.ipynb
@@ -39,7 +39,7 @@
"outputs": [],
"source": [
"from numpy import array\n",
- "from dcprogs.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, ApproxSurvivor\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, ApproxSurvivor\n",
"qmatrix = QMatrix( \n",
" array([[ -3050, 50, 3000, 0, 0 ], \n",
" [ 2./3., -1502./3., 0, 500, 0 ], \n",
@@ -62,9 +62,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEZCAYAAADCJLEQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FWX6xvHvk4QEQzDSlSKg9JYAIQmrIIoFdRXrCpZF\nfzYEBMECrFt0Xdcuig1R7AUQZcUGLmA3hYD0Gno39F4C7++PM7AxBnJIm5Pk/lzXuThn5n3feWZI\ncmdKZsw5h4iISKgJ87sAERGRvCigREQkJCmgREQkJCmgREQkJCmgREQkJCmgREQkJCmgREQkJCmg\nREQkJCmgRI7BzB4zs3uKeRnpZtayEP2bmtlMM9tpZv2D7LPCzM4v6DL9ZGbzzKyL33VIyVBAlVNm\ndr2ZZZjZLjNbb2ZfmdnZftdVEoL5AW1mNYA/A696n6PMbJSZrfTCYKaZXZzPGMH0eRr4ZyFW5wHg\nG+dcZefc8DxqKDVhFEytzrmWzrlvCzB2FTNz3tf7Hu//5NYCFyslQgFVDpnZIOA54N9ALeB04GWg\nu591hZibgS+dc3u9zxHAauAcIBb4KzDWzBocZ4xg+kwAzjWzUwtYZ31gXgH7lhpmFlHIIeKBTc65\nGOdcNDAUeNXMqhe+Oik2zrky/wLigBRgDvAZcPIx2g0A5hL4hr+niJY9EdgGfO73dvDqiQV2Adce\np01z4Fuv7nnA5TnmrQDuB2YDu4FRBELuK2AnMBmokqv9UGA+sBV4E6h4Asu6z1vWdmDMkb5AbeBj\nIAtYDvTPtQ559gXeBQ4De73t8MAxtsFU4MZ8tuVs4OoT3P6/6wP8F+h1ov8fXo2HgH3eujTJ1S/P\ndS3Mds1jG5/I18IQYKk3bz5w5fFq9cYf7I2/n0DgrwDOB84EtgDtctSdBXQ5Rq0DgUk5PtcBHNDY\n7+9JvY7z/eJ3AUW+QtAFeCvXtGnAOd77/wMeyaNfKwLhFO19I0wGGhVBPV2BywidgOoGZAMRx5hf\nAcgE/gJEAud5P1CaevNXAKneD6I6wK/ADKAtgQCYCvwjx3grvO1aD6gK/AT86wSWle798KkKLAB6\nE9jznw783et3BrAMuCjXcn/XN8e88/PZTllAh+PMr0UgGJqdwLbPsw8wHHi2gP8f3wK3HWeZv1vX\nwmzXPMY5ka+Fa71lhgHXEQi1045Vq/d5pve1c1LuNsDtBIIuGpgEPH2c7fAO8G/v/Sne5wzA/P6e\n1OvYr/JyiK8J8L33/r/A1Xm0aQ6kOef2OOeyge+AqwDM7Ewzm2hm083sBzNrFuyCnXNTCPxACRXV\nCBzqyD7G/GQgBnjcOXfAOTcV+BzomaPNC865jc65tcAPBLbbL865fcB4Aj+gcnrRObfaObcFeDTH\nWMEsa7hzbp3X9zMCh2o6ADWcc//0+i0DXgN65FpuXn2DdQrH+H8zswrA+8DbzrmFwQyWT5+d3vLy\nEsw2KojCbNecgv5acM595C3zsHNuDLAESAyiztXuf4daj3LOvUYgvNOA04AHjzNOPDDAzHYQ2JOv\nCXRzzh33cQ5mVsv7nv8inzqlGJSXgJrH/86vXEvgN7Lc5gKdzKyamUUDl+RoNxK42znXnsChkZeL\nud7itBmofpxj+rWB1c65wzmmrSTwG/IRG3O835vH55hcY67ONVbtE1jWhhzv93hj1wdqm9m2Iy8C\nexi1ci03r77B2gpUzj3RzMIIHI46APQLZqAg+lQmcPguL8Fso4IozHbNKeivBTP7s3ehyJGxWwH5\nnQNanc/817xxXnDO7c+rgZlFEfgFtI1z7mTgGgLBfzCfsSHwi8DzzrlLg2grRaywJx5DhpmlAVEE\nviGqmtlMb9ZgAof1hpvZ3wiclD6Qu79zboGZPQF8TeDQw0zgkJnFAH8APjKzI82jvGVeRd5XYK11\nzl1UVOtWxFIIHM+/AhiXx/x1QD0zC8vxQ/F0YHEhlpnzF4LTvWUUZlmrgeXOucYFrCeYh6DNJrDn\nPe3IBAt8ARw5z3KJcy7fH3BB9mkOvHeMIQr7/3EiD3wr7HY9JjOrTyBMugIpzrlD3veo5WiWV63H\nrN/73nyOwPZ9yMw+9vYIc2tF4NDqMgDn3Mdm9g8CR1LeyDHeI8BZBI4y9CHwC/yDwGIz2+ec+zzY\n9ZWiUWb2oJxzSc65eOA2YIJzLt57TXLOLXTOXejtAX1I4ERtXmOMcs61d851JvAb9GIC22hbjvHi\nnXPNvfafOOda5fEK1XDCObedwDmGl8zsCjOLNrMKZnaxmT1J4HDJHuABb3oXAufQRhdisX3NrK6Z\nVSXwDT/Gm17QZaUDO81ssJmdZGbhZtbKzDoEWc9GAudXjudLAlff5fQKgTC5LPchJzN7y8zeymOc\nY/bx+lUE2hM49JyXwv5/BLOuRxR2ux5PJQJhkwVgZrcQCI6C1grwPJDhnLsN+AIYcYx2bYF5uQ7n\nfQlcnqvd48658wj8DLnKOfcDgXNcnRRO/igzAXU8ZlbT+zeMwKW+eX4h52h3OoHzTx8453YAy83s\nWm+emVlciRReTJxzzwCDCGyLLAK/OfcD/uOcO0DgB+DFwCYChzP/HOy5lmP4gMCe6TICvxz8y6uj\nQMtyzh0C/kjgvMJyr+/rBK5QDMZjwF+9Q033HaPNO8AlZnYSHN0DuNNb5gbv72l2mdkNXvt6BC4A\nOSqIPhBY/2+dc+vIQxH8fwSzrkeWVdjteryx5wPPENiD3wi0Jtf2OpFazaw7gQt+7vImDQLa5dq2\nR8QT2CPOaSJwgfcLwpHv/RFm9g2BPb21ZhYeKD2w52qBvxX8S1ArLEXC8jlHWOp4v2He7Jy7Oce0\nAUBf7+MnwFDnnDOz2sDrzrlLvHY/ENi9PwgM8i5wwMwaEvhN+DQCV1WNds4F9ceV3pjNCBx63Azc\n6pybVNj1LC3MbAWBq8wm+13LiTKzfwO/Oueey6ddJDCLwDmOYM5r5OybRuBrYm7BK5XCMrMXgC+c\ncxPN7E0C5wzXAwOdc3f4W135VeYCSkJLaQ4oKT/MrAeBIwrTgJYE9lgvAKo5517ys7byTAElxUoB\nJSIFpYASEZGQVCYuM69evbpr0KCB32WIiEgO06dP3+Scq1HQ/mUioBo0aEBGRobfZYiISA5mtrIw\n/cvFZeYiIlL6KKBERCQkKaBERCQkKaBERCQkKaBERCQkBRVQZtbNzBaZWaaZDcljfpSZjfHmp5n3\nSGvv0RXfePcfezFXn/ZmNsfrM9y76zNmVtXM/mtmS7x/qxR+NUVEpLTJN6C8Gya+RODWHy2AnmbW\nIlezW4GtzrlGwDDgCW/6PuBvBJ6hlNsrBJ6I2dh7dfOmDwGmeLf8n+J9FhGRciaYPahEINM5t8y7\ns/Jo/vfwvyO6A29778cBXc3MnHO7nXM/Egiqo8zsNOBk51yqdwv8dwg8nyj3WG/nmF4sDh7Yz/L5\n0/JvKCJSxn377bf8/PPPfpdxVDABVYffPtVyDb9/mufRNi7wKPHtBO4Kfrwx1xxjzFrOufXe+w0c\n/2mehTb9jYHUGnMpc74fX5yLEREJeaUxoHzj7V3lebNAM7vDzDLMLCMrK6vAy2h0xRA2hJ9G0ym3\nMuOrNws8johISXnvvfdITEwkPj6eO++8k5UrV9K4cWM2bdrE4cOH6dSpE19//TUAV1xxBe3bt6dl\ny5aMHDny6BgTJ06kXbt2xMXF0bVrV1asWMGIESMYNmwY8fHx/PDDD36t3lHB3OpoLb99ZHddb1pe\nbdaYWQSBB5xtzmfMuscYc6OZneacW+8dCvw1rwGccyOBkQAJCQkFvuNt9VNPp0K/ySx75XLiUgeS\nvmcbiVcPLOhwIiLFasGCBYwZM4affvqJChUq0KdPH7777jsGDx7MXXfdRWJiIi1atODCCy8E4I03\n3qBq1ars3buXDh06cPXVV3P48GFuv/12vv/+exo2bMiWLVuoWrUqvXv3JiYmhvvuO+7zIktMMAE1\nDWjsPbRvLdADuD5XmwlALwJPy7wGmOqOc5t0L3x2mFkygUda/xl4IddYj3v/fhr86hRMbNUaVBgw\nkXkvXk3inIdI3b2F5D8/UtyLFZFS7OHP5jF/3Y4iHbNF7ZP5x2Utj9tmypQpTJ8+nQ4dOgCwd+9e\natasyUMPPcRHH33EiBEjmDlz5tH2w4cPZ/z4wCmM1atXs2TJErKysujcuTMNGzYEoGrVqkW6HkUl\n34ByzmWbWT9gEhAOvOGcm2dm/wQynHMTgFHAu2aWCWwhEGLA0ecBnQxEmtkVwIXe45/7AG8BJwFf\neS8IBNNYM7sVWAn8qShWND/RMbE0G/g501/sQfKy4aS8uo3k25/HwkL6KKiIlDPOOXr16sVjjz32\nm+l79uxhzZrAqf1du3ZRuXJlvv32WyZPnkxKSgrR0dF06dKFffv25TVsSArqbubOuS+BL3NN+3uO\n9/uAa4/Rt8ExpmcArfKYvhnoGkxdRS0yqiLxA8aR9sqtdFz/DukvbqV9n7cIjygTN30XkSKU355O\ncenatSvdu3dn4MCB1KxZky1btrBz506efvppbrjhBurXr8/tt9/O559/zvbt26lSpQrR0dEsXLiQ\n1NRUAJKTk+nTpw/Lly//zSG+ypUrs2NH0e4VFoZ2D3IJj4ggse+bpNS5hcQtnzHruas4sL/0/MYh\nImVbixYt+Ne//sWFF15ImzZtuOCCC1ixYgXTpk1j8ODB3HDDDURGRvLmm2/SrVs3srOzad68OUOG\nDCE5ORmAGjVqMHLkSK666iri4uK47rrrALjssssYP358yFwkUSaeqJuQkOCK43lQqe8/TPKSZ5ld\nsT2N+o0nOia2yJchIlJWmdl051xCQftrD+o4km/4B+lxj9By7wxWP3cB2zZt8LskEZFyQwGVj8Qr\n+zP7rBdpcHAZ21/uyoZVS/wuSUSkXFBABaHthTeytNu7VDm8BXvjIlYs0OPlRUSKmwIqSC06Xsym\na/5DGIepMuZyFqb/1++SRETKNAXUCTijVRIHe01kh8VS/4vrmTV1tN8liYiUWQqoE1S7YTOie/+X\nNRGn0/K7u5j2nxfz7yQiIidMAVUA1WrV5bQBk1lQMY4OMx8k9d2/599JREROiAKqgGJOrkKTgV8y\nvfK5JC99ntRXenP40CG/yxIROWHZ2dl+l5AnBVQhRFWMpu09H5NW/WqSN37IjOeuZf++PX6XJSJl\nXF6P0IiJiWHgwIG0bNmSrl27cuQxRF26dGHAgAHEx8fTqlUr0tPTAXjooYe46aabOOuss7jpppvY\nt28ft9xyC61bt6Zt27Z88803AAwbNoz/+7//A2DOnDm0atWKPXtK5uecAqqQwsLDSezzOiln9Cdh\n5xSWDLuYHduO96QREZHCeeONN5g+fToZGRkMHz6czZs3s3v3bhISEpg3bx7nnHMODz/88NH2e/bs\nYebMmbz88stHwwZg/vz5TJ48mQ8//JCXXnoJM2POnDl8+OGH9OrVi3379jFgwAAyMzMZP348t9xy\nC6+++irR0dElsp66C2oRsLAwOv75EaZ9ehrxM/7K6uHnsf+2T6lRu4HfpYlIcflqCGyYU7Rjntoa\nLn4832Z5PUIjLCzs6D31brzxRq666qqj7Xv27AlA586d2bFjB9u2bQPg8ssv56STTgLgxx9/5O67\n7wagWbNm1K9fn8WLF9OmTRveeust2rRpw5133slZZ51VdOubD+1BFaEO3fuwsOsoah3awKGR57Ny\n4Qy/SxKRMibnIzRmzZpF27Zt83yEhpnl+T7n50qVKgW1zCVLlhATE8O6desKUfmJ0x5UEWvd+Uoy\nY2tyyvjrOWn0H1l48Vs0S7rQ77JEpKgFsadTHI71CI3Dhw8zbtw4evTowQcffMDZZ599tM+YMWM4\n99xz+fHHH4mNjSU29vc3vu7UqRPvv/8+5513HosXL2bVqlU0bdqU7du3079/f77//nv69evHuHHj\nuOaaa0pkXbUHVQwaxZ3FgV6T2GGxNPjyen75+j2/SxKRMuJYj9CoVKkS6enptGrViqlTp/L3v//v\nz18qVqxI27Zt6d27N6NGjcpz3D59+nD48GFat27Nddddx1tvvUVUVBQDBw6kb9++NGnShFGjRjFk\nyBB+/fXXEllXPW6jGG3NWs+vr15Bo4OLyGj5F5L+9IDfJYlIGRUTE8OuXbt+N71Lly48/fTTJCQU\n+KkXBabHbYSwKjVO4/SBk5lTKZmk+Y+S8urd+lspEZEgaQ+qBGQfPMD0EbeTtPk/TK98Hq36vk9U\nxZK5TFNExC/agyoFIipEktj3TVLP6E/7nVNZ+swFbN+80e+yRERCmgKqhFhYGMl/foSMDk/T6MBC\ntr90LuuWL/S7LBGRkKWAKmEJl95OZrf3iD28jai3L2TxjO/8LklEJCQpoHzQouPFbOv5Jfstirqf\nXsvM/37gd0kiIiFHAeWT+k3jibxzKmsrnE7rH/uQNsafP/oTEQlVCigfVT+1HnXumcKc6CSSFjxG\n6iu9ORSit70XESlpCiifRcfE0mrQZ6RVv4rkjR8y+9nL2bNru99liYj4TgEVAiIqRJLYZxSpTe4n\nbvfPrB12HpvWrfS7LBERXymgQoSFhZF8/V+ZffbL1MleTfbI81g+L83vskREfKOACjHxF1zPuqs+\nIYzD1BjbndnfjPO7JBERXyigQlCjuLNxt01mY8SptPj2dtLGPul3SSIiJS6ogDKzbma2yMwyzWxI\nHvOjzGyMNz/NzBrkmDfUm77IzC7KMX2Amc01s3lmdk+O6Q+Z2Vozm+m9LincKpZOteqeSa0B3zAv\nOoGk+Y/qCj8RKXfyDSgzCwdeAi4GWgA9zaxFrma3Aludc42AYcATXt8WQA+gJdANeNnMws2sFXA7\nkAjEAX80s0Y5xhvmnIv3Xl8Wag1LsZiTq9By0BekVb/au8LvMnbv3OZ3WSIiJSKYPahEINM5t8w5\ndwAYDXTP1aY78Lb3fhzQ1QLPFO4OjHbO7XfOLQcyvfGaA2nOuT3OuWzgO+Cqwq9O2RNRIZKkfm+Q\n2vQB2uxOYcNz57JhdabfZYmIFLtgAqoOsDrH5zXetDzbeIGzHah2nL5zgU5mVs3MooFLgHo52vUz\ns9lm9oaZVTmB9Smzkns+yNwur1Erez0Ro7qyeMa3fpckIlKsfLlIwjm3gMBhwK+BicBM4MiT/F4B\nzgTigfXAM3mNYWZ3mFmGmWVkZWUVf9EhIO7ca9nU43MOWCSnf3oN07943e+SRESKTTABtZbf7t3U\n9abl2cbMIoBYYPPx+jrnRjnn2jvnOgNbgcXe9I3OuUPOucPAawQOCf6Oc26kcy7BOZdQo0aNIFaj\nbGjQPIGKd33L8sjGtJ92Lylv3I87fNjvskREilwwATUNaGxmDc0sksBFDxNytZkA9PLeXwNMdYFH\n9U4AenhX+TUEGgPpAGZW0/v3dALnnz7wPp+WY9wrCRwOlByq1qzDGfdOYVrsRXRcNZLpw65h355d\nfpclIlKk8g0o75xSP2ASsAAY65ybZ2b/NLPLvWajgGpmlgkMAoZ4fecBY4H5BA7l9XXOHTmU97GZ\nzQc+86YfuTztSTObY2azgXOBgUWxomVNVMVoEgaMJqVhPxJ2TmHls+exacMqv8sSESkyFtjRKd0S\nEhJcRkaG32X4Zsakd2n2873ssMrsuvIdGsWd5XdJIiKY2XTnXEJB++tOEmVAu4tuYt1V4zEctT+5\nkhkT3/K7JBGRQlNAlRGN4s4ivPe3rKpwBu1SB5Ay6j4OHzqUf0cRkRClgCpDqp96Og3vm8q02G50\nXP0aM5+9Qs+WEpFSSwFVxgQunviQ1MaDiNv1A+uHncP6lYv8LktE5IQpoMogCwsj+YZ/MLfLa9TM\n3kDUm+ezIG2S32WJiJwQBVQZFnfutWy5fiK7LYYzv+xJ+sfP+V2SiEjQFFBlXP2m8Zx89/csqhhH\n4px/kPrSbRw8sN/vskRE8qWAKgdiq9ag+X2TSK35J5KzPmLx0xewNWu932WJiByXAqqciKgQSXKf\n15gW/yiN9s9n30udWDr7Z7/LEhE5JgVUOdPhin6s7P4x4Ryi9sfddUd0EQlZCqhyqEm7cwjr/R0r\nIhsF7oj+6t16nLyIhBwFVDlV/dTTOfO+b0ir1p2O699h3tPd2L6lfDxXS0RKBwVUORYZVZGku98h\nreXfaLZ3Bjtf6MTKBdP9LktEBFBACZB07X0sveRDKrq9VB99Cb9MetvvkkREFFAS0DzpIg7dNpU1\nFerTNqU/KSN1XkpE/KWAkqNq1T2TBvd9S1rVy+m47h3mP3UB2zZt8LssESmnFFDyG1EVo0nq/y7p\nrR+i6b7Z7HmpE5mzfvK7LBEphxRQkqfEqweyovvHhLtD1P2kO9M+fdnvkkSknFFAyTE1adeFiLu+\nZ2lUMzr8MpS0l27VffxEpMQooOS4qtWqS9P7p5JaqydJWePIfOpcNq1b6XdZIlIOKKAkXxEVIkm+\nawQZHZ6m/oFMGNmZ+akT/S5LRMo4BZQELeHS29l43RfstWiafNWT1Pcfxh0+7HdZIlJGKaDkhDRs\n0YFT7vmJ2TFnkbzkWX55pjs7t2/xuywRKYMUUHLCKsdWpe29E0htNJA2u35k6/Nns2JBht9liUgZ\no4CSArGwMJJvfIhFF71P9OHd1Bx9CRmfj/S7LBEpQxRQUigt/3AJ3PE9KyMbkZBxP2kv3cqB/fv8\nLktEygAFlBRa9dr1aXT/N0cvRV/+1DlsWLXE77JEpJRTQEmRqBAZRfJdI5iR/Dy1D66k4htdmPXN\nR36XJSKlmAJKilS7bjez/abJbA6vQdx3t5Hy2gCyDx7wuywRKYUUUFLk6jZqRZ17fyS96mV0XPsW\ni546T3efEJETFlRAmVk3M1tkZplmNiSP+VFmNsabn2ZmDXLMG+pNX2RmF+WYPsDM5prZPDO7J8f0\nqmb2XzNb4v1bpXCrKH6oGB1DYv/3mNb2MRruXwwjOzP3p8/8LktESpF8A8rMwoGXgIuBFkBPM2uR\nq9mtwFbnXCNgGPCE17cF0ANoCXQDXjazcDNrBdwOJAJxwB/NrJE31hBginOuMTDF+yylVIfuffi1\nx5fsDouh+dc3kfLmYA4fOuR3WSJSCgSzB5UIZDrnljnnDgCjge652nQHjjwnfBzQ1czMmz7aObff\nObccyPTGaw6kOef2OOeyge+Aq/IY623gioKtmoSKBs0TqD7wJ36J7UrHlSOY+9SFbPl1rd9liUiI\nCyag6gCrc3xe403Ls40XONuBasfpOxfoZGbVzCwauASo57Wp5Zxb773fANQKem0kZFWqfArt7/mI\ntJZ/o+neWWS/fDbzfv7S77JEJIT5cpGEc24BgcOAXwMTgZnA7477OOcc4PIaw8zuMLMMM8vIysoq\nznKliFhYGEnX3seaqyew3yrSbNL1pLw5mEPZ2X6XJiIhKJiAWsv/9m4A6nrT8mxjZhFALLD5eH2d\nc6Occ+2dc52BrcBir81GMzvNG+s04Ne8inLOjXTOJTjnEmrUqBHEakioOLPNH6gy8Oejh/wWPNWV\nTRtW+V2WiISYYAJqGtDYzBqaWSSBix4m5GozAejlvb8GmOrt/UwAenhX+TUEGgPpAGZW0/v3dALn\nnz7IY6xewKcFWTEJbTEnV6H9PR+R3vphGu2bByM6MfcH/VeLyP/kG1DeOaV+wCRgATDWOTfPzP5p\nZpd7zUYB1cwsExiEd+Wdc24eMBaYT+BQXl/n3JFDeR+b2XzgM2/6Nm/648AFZrYEON/7LGWQhYWR\nePU9rL/uK3aHVabF5F6kvj5If9grIgBYYEendEtISHAZGXrcQ2m2Z9d25r12Bx22T2R+ZGuq93qX\nmnUa+l2WiBSCmU13ziUUtL/uJCEhITomlg4DxzAt/lEa7F9Mhdc6MXPKaL/LEhEfKaAkpHS4oh9Z\n13/NlvDqxP9wJ6kv3cb+fXv8LktEfKCAkpBTv2k8de77idQa15Kc9RFrnjqLVYtn+l2WiJQwBZSE\npIonVSK57+vMPHsEVQ9lUf39C0kf/wLu8GG/SxOREqKAkpAWf35PDt7+A8ujmpA4669Mf+5adm7f\n4ndZIlICFFAS8mrWaUizB74lpX5v2m6fwvbnOrJ4xnd+lyUixUwBJaVCeEQEHW95giWXjCXCHaLh\np1eS8vaDuk2SSBmmgJJSpVnShZzUP4XZlTvRcfmLLHzyXDauWep3WSJSDBRQUurEVq1Bu0HjSY97\nhIb7F1Hx9U7MmPiW32WJSBFTQEmpZGFhJF7Zn803TeHXiNq0Sx1A+vM3sGfXdr9LE5EiooCSUq1e\no9Y0eOAnUmr3ImHLF2x+JpklM3/wuywRKQIKKCn1KkRG0fGO4Sy48H2i3D7qj+9O6jt/0wUUIqWc\nAkrKjJZnXUrU3anMjTmL5GXDWfhkFzasWuJ3WSJSQAooKVNiq9Wi7b2fkh73CA32LyH6jc5kfPaq\n32WJSAEooKTMOXIBxbZe37KuQgMSpj9AxjNXsX1Llt+licgJUEBJmVXnjOY0euA7Uur3Jm7Ht+wb\nnsTcnz7zuywRCZICSsq0iAqRdLzlCZZ3H88Bi6LF1zeR+kpvPcJDpBRQQEm50KTdOVS7N5Vp1buT\nvPFD1j7ZkeXz0vwuS0SOQwEl5UZ0TCxJd7/NrM6vcvLhbdQZe4kuRxcJYQooKXfizutBWJ+fmRvT\nkeRlw1n8RGfWLlvgd1kikosCSsqlqjXr0PbeCWS0e5w6B5dT5e1zSB/3rB6IKBJCFFBSbllYGAmX\n38WeW39gWcXmJM59mNlPXcSmdSv9Lk1EUECJcGq9RrR4YCqpTQfTdM8vRIz8A9O/fNPvskTKPQWU\nCBAWHk5yz7+w8frJ/BpRm/bp9wT+uHfzRr9LEym3FFAiOdRvGs8Zg38i5fQ7idvxLQdfSGTmlNF+\nlyVSLimgRHKJqBBJx/97kpVXfcbOsFOI/+FOpg27ju1bN/ldmki5ooASOYZGcWdRZ3AaKXVuoe22\nr9n/fAdmfzPO77JEyg0FlMhxREZVpOPtz7Gs+3/YG1aJNt/dSvrwG9m5fYvfpYmUeQookSA0aXcO\nte5PI+VNPYCRAAAXQ0lEQVS0G2m/+XN2D0tk7g+f+l2WSJmmgBIJUsWTKtHxzpdY8sdxHLQKtJry\nZ9Je6MWuHVv9Lk2kTAoqoMysm5ktMrNMMxuSx/woMxvjzU8zswY55g31pi8ys4tyTB9oZvPMbK6Z\nfWhmFb3pb5nZcjOb6b3iC7+aIkWnWYfzqX5fOqm1etJh06fserYDc777xO+yRMqcfAPKzMKBl4CL\ngRZATzNrkavZrcBW51wjYBjwhNe3BdADaAl0A142s3AzqwP0BxKcc62AcK/dEfc75+K918xCraFI\nMTipUmWS7xrB4j+O40BYJK2/uYX0569nx7bNfpcmUmYEsweVCGQ655Y55w4Ao4Huudp0B9723o8D\nupqZedNHO+f2O+eWA5neeAARwElmFgFEA+sKtyoiJa9Zh/OpeV964NzUli/Z+1wHZn3zkd9liZQJ\nwQRUHWB1js9rvGl5tnHOZQPbgWrH6uucWws8DawC1gPbnXNf52j3qJnNNrNhZhZ1AusjUuIqRsfQ\n8c6XWNr9P+wNiybuu9sCfzelR8yLFIovF0mYWRUCe1cNgdpAJTO70Zs9FGgGdACqAoOPMcYdZpZh\nZhlZWfpBIP5r0q4Lpz2QTkqdm2m77WsODO/AzP9+4HdZIqVWMAG1FqiX43Ndb1qebbxDdrHA5uP0\nPR9Y7pzLcs4dBD4B/gDgnFvvAvYDb/K/Q4K/4Zwb6ZxLcM4l1KhRI4jVECl+URWj6Xj78yy/cgI7\nw2KJ/+kupj9zBZs3rvG7NJFSJ5iAmgY0NrOGZhZJ4GKGCbnaTAB6ee+vAaY655w3vYd3lV9DoDGQ\nTuDQXrKZRXvnqroCCwDM7DTvXwOuAOYWZgVF/NA4vhN1B6eRUr83rXf8QPgrSUz79GU9b0rkBOQb\nUN45pX7AJAIhMtY5N8/M/mlml3vNRgHVzCwTGAQM8frOA8YC84GJQF/n3CHnXBqBiylmAHO8OkZ6\nY71vZnO86dWBfxXJmoqUsMioinS85QnW9/iaDRH16PDLUOY8eSEbVi3xuzSRUsECOzqlW0JCgsvI\nyPC7DJFjOpSdzbSPnqDNwudxGHNbDKTDNfcTFh7ud2kixcbMpjvnEgraX3eSECkB4RERJPd8kG23\n/MDSk1qStOAxFj3eiZWL9Gd+IseigBIpQbUbNKX1A5OZFv8otQ+u4LQPupLy5mAO7N/nd2kiIUcB\nJVLCLCyMDlf042DvNOac3ImOK0ew7okOLJw22e/SREKKAkrEJ9VPrUf7e//DrM6vUvHwHpp8fg1p\nL96iR3mIeBRQIj6LO68Hle+dTnqta+mQNZ69w9rzy9fv+V2WiO8UUCIhoFLlU0ju8xqZ3f/DrrCT\naftzX2Y89Uey1q3wuzQR3yigREJIk3ZdqDcknZSG/WixK5WKryaTNuYJDmVn+12aSIlTQImEmAqR\nUXTs9SibbvqWlRWbkrTg3yx9vCNLZ//sd2kiJUoBJRKi6jZqRcvB35DR7gmqZ2+g/seXkvpKb3bv\n3OZ3aSIlQgElEsIsLIyEy3sTfncGM6pdSvLGD9n5TAIzJ3/od2kixU4BJVIKxFarRWL/91hw8Vj2\nhZ1E/I+9mfHUH9m4ZqnfpYkUGwWUSCnSPOkiag+eRkrDvrTYlUrMa38g9YNHyD54wO/SRIqcAkqk\nlImMqkjHXv9mc68fWHpSa5IXP83Kx5NYmDHF79JEipQCSqSUqnNGc1o/8DUzkp+n8qFtNPv8KtKH\n38i2TRv8Lk2kSCigREoxCwujXbebiR40g9RaPWm3+Qvcix1IHz+cw4cO+V2eSKEooETKgJiTq5B8\n1whW/2kiGyrUJXHW31j0+Nksm5vmd2kiBaaAEilDGrZMoumQH0mPe4RTD67m9I+6kfpKb92AVkol\nBZRIGRMWHk7ilf2xfoG/nUrcMJp9w9qR8dmruMOH/S5PJGgKKJEy6pTqp5LY/z0yu/+HbRHVSZj+\nAPMf78zy+dP8Lk0kKAookTKuSbsunDEklbSWf6fOgeXUG3MhqS/fwY5tm/0uTeS4FFAi5UB4RARJ\n194L/aYzvfplJG4cy4Hn2pEx4RUd9pOQpYASKUdOqX4qSXe/w9IrJrAloiYJM4aw4LFOLJ2T6ndp\nIr+jgBIphxq37Uyjoamkt36I0w6upMG4bqS9eIv+yFdCigJKpJwKCw8n8eqBhPX/hYyaV5OQNR5e\nbE/a2Cf1gEQJCQookXIutmoNkvqOYtWfJrE28gyS5j/KiscSmJ860e/SpJxTQIkIEPgj3xZDvmN6\n4nNUOrSTFhOvI+OZq/h17XK/S5NySgElIkdZWBjtL7mFk++bQWrdW2m943tiRiaR+tZf2Ld3t9/l\nSTmjgBKR34mOiSX5tmfZfPOPLIrpQPKKl9jyZDwzvnpTl6VLiVFAicgx1W7YjLb3f8Hc899lv0XT\nLu0e5j/emaWzf/a7NCkHFFAikq9WZ19OvaHTSGvxILUPrKDhx5eQPvxGNm9c43dpUoYpoEQkKBEV\nIkn60wOE9f+F9Fp/ou3mL4l8OYHU9x7iwP59fpcnZVBQAWVm3cxskZllmtmQPOZHmdkYb36amTXI\nMW+oN32RmV2UY/pAM5tnZnPN7EMzq+hNb+iNkemNGVn41RSRohJbtQbJfUay7vqpLItuTXLmMDY+\n3pZfvn5P56ekSOUbUGYWDrwEXAy0AHqaWYtczW4FtjrnGgHDgCe8vi2AHkBLoBvwspmFm1kdoD+Q\n4JxrBYR77fD6DvPG2uqNLSIhpn7TeOIG/5dZ57zOYQun7c99mf94FzJn/eR3aVJGBLMHlQhkOueW\nOecOAKOB7rnadAfe9t6PA7qamXnTRzvn9jvnlgOZ3ngAEcBJZhYBRAPrvD7neWPgjXlFwVZNREpC\n3LnXUnvIdNKa/4XaB5ZxxieXkv5cT7LWrfC7NCnlggmoOsDqHJ/XeNPybOOcywa2A9WO1dc5txZ4\nGlgFrAe2O+e+9vps88Y41rIAMLM7zCzDzDKysrKCWA0RKS4VIqNIum4wYQNmkn7a9cRvnUSlVxNJ\neXMwe3fv9Ls8KaV8uUjCzKoQ2LtqCNQGKpnZjScyhnNupHMuwTmXUKNGjeIoU0ROUGyV6iT3fpms\nXj+wMCaJjitHsPOpNkz79GUOHzrkd3lSygQTUGuBejk+1/Wm5dnGO2QXC2w+Tt/zgeXOuSzn3EHg\nE+APXp9TvDGOtSwRCXF1zmhJu/s/Y363MWyPqEaHX4ay9N+JzPvpC79Lk1IkmICaBjT2rq6LJHAx\nw4RcbSYAvbz31wBTnXPOm97Du8qvIdAYSCdwaC/ZzKK9805dgQVen2+8MfDG/LTgqycifmqR3I0z\nh6aR0e5xKh/aRsv/Xs/MJ7uxcuEMv0uTUiDfgPLOB/UDJgELgLHOuXlm9k8zu9xrNgqoZmaZwCBg\niNd3HjAWmA9MBPo65w4559IIXAgxA5jj1THSG2swMMgbq5o3toiUUmHh4SRcfhenPDCLlDP6c+bu\nmdT5sCtpL/Ri04bV+Q8g5ZYFdlpKt4SEBJeRkeF3GSIShC2/rmXJR3+n3a/jOUAFZje4mfg//ZWT\nKlX2uzQpYmY23TmXUND+upOEiJSoqjXrkNR3FBtu/IbFMQlHL6RIHz9cD0qU31BAiYgv6jWOo+39\nX7Dg4rFsi6hO4qy/serf7Zg1dbTuSCGAAkpEfNY86SIa/yWN6YnPUcEdIO77O1nweGcWZUz1uzTx\nmQJKRHx35EGJtYbOIq35X6h1YBVNP7+SGU9fxurMOX6XJz5RQIlIyDhyR4qoQbNIOf0Omu1M49R3\nz9EVf+WUAkpEQk7MyVXo+H9Pseeu6cyo0Z12mz4j+pX2pL4+iJ3bt/hdnpQQBZSIhKzqp9Yjqd+b\nbLjpOxZWTiZ5zSiyh7Uh9f2H2bd3t9/lSTFTQIlIyKvXqDXt7pvAkis+Z3XFJiQveZZtTwQuTc8+\neMDv8qSYKKBEpNRoHN+JNkOmMvf8d9kRUZXEWX9j7WPtmDHpXV2aXgYpoESk1Gl19uU0/ksav3Qc\nDjjapfRjyb+TmPtj7tuESmmmgBKRUsnCwmh7US/qDP2FaW3+SWz2ZlpNvom5j53DwowpfpcnRUAB\nJSKlWkSFSDpcNYDYwXNIbXI/tfcvo9nnVzHzyW4sm5vmd3lSCAooESkTKp5UieTr/0rUvXNIbdCX\nM/bM5oxxFzL9mStZvWSW3+VJASigRKRMqVT5FJJv/jeu/yxS6txM8x0/cdp7XUh//no2rFrid3ly\nAhRQIlImxVatQcfbn2fPXdPJqHUN8VsmUXVUMmkv3kLWuhV+lydBUECJSJlW/dR6JPd5jS23pfFL\ntUtol/UplV9NIPWVO3X7pBCngBKRcuHUeo1I6v8uWTf/zOwqF5CwYSzRr7Qn5dW+bM1a73d5kgcF\nlIiUK7UbNiPxng9Zf9P3zI/tRNK694l8MZ6U1weyfesmv8uTHBRQIlIu1WvUmoRBH7O6xxQWVU6i\n45o3sOdbk/LG/QqqEKGAEpFyrX7z9rS7bwJLr57E0ui2dFw1Enu+DSlvPMCObZv9Lq9cU0CJiABn\ntk6m7QNfknnllyyNjqfjqlfhudakvDlYQeUTBZSISA6N4s76bVCtHKGg8okCSkQkD78Nqjg6rhyB\n84JK56hKhgJKROQ4AkH1FZlXfsEyL6js+dakvj6I7Zs3+l1emaaAEhEJQqO4s72g+pLMSu1JXjOK\niOFtSBnZX39HVUwUUCIiJ6BR3Fm0u/9zll/7NQtP7kjS2neIejGO1BF9dGeKIqaAEhEpgIYtk2h/\n739Y3XMq82M702H9B1R6pR2pL9/Or2uX+11emaCAEhEphPrN2pEwaBzrbvqBuVW6krBxHKeMTCBt\n+E2sXbbA7/JKNXPO+V1DoSUkJLiMjAy/yxARYd3yhaz+/DHabvqcMA7zyynnU/PiodRv1s7v0kqc\nmU13ziUUuL8CSkSk6GWtW8HSTx+nzYZPqMgBZlbuROyFQzmzzR/8Lq3EFDaggjrEZ2bdzGyRmWWa\n2ZA85keZ2RhvfpqZNcgxb6g3fZGZXeRNa2pmM3O8dpjZPd68h8xsbY55lxR05URE/FKjdgOS7xrB\n/n6zSKt7M413TuPMTy5m1hMXsjDta7/LKxXy3YMys3BgMXABsAaYBvR0zs3P0aYP0MY519vMegBX\nOueuM7MWwIdAIlAbmAw0cc4dyjX+WiDJObfSzB4Cdjnnng52JbQHJSKhbvvWTcz/9GmarXifKuxg\nfoVWHPzDPbQ552osrGxeDlASe1CJQKZzbplz7gAwGuieq0134G3v/Tigq5mZN320c26/c245kOmN\nl1NXYKlzbmVBV0JEJNTFVqlOx5sfJ+q+uaQ2fYCqBzcQ991tLHu0PdO/eJ1D2dl+lxhyggmoOkDO\ni/vXeNPybOOcywa2A9WC7NuDwF5WTv3MbLaZvWFmVYKoUUSkVIiOiSW554NUHTqP9Lh/EeEO0H7a\nvax/tBXp455l/749fpcYMnzdrzSzSOBy4KMck18BzgTigfXAM8foe4eZZZhZRlZWVrHXKiJSlCKj\nKpJ45d3Ue3A2v3Qczt7wGBLnPsz2x1uS+t4/2Ll9i98l+i6YgFoL1Mvxua43Lc82ZhYBxAKbg+h7\nMTDDOXf0hlbOuY3OuUPOucPAa/z+kOCRdiOdcwnOuYQaNWoEsRoiIqEnLDycthf1otFf0plz3jv8\nGnU6yZnP4Ya1JGVkfzZtWOV3ib4JJqCmAY3NrKG3x9MDmJCrzQSgl/f+GmCqC1x9MQHo4V3l1xBo\nDKTn6NeTXIf3zOy0HB+vBOYGuzIiIqWVhYXRunN3Wg39jsWXTyAzJoGkte9Q+ZV2pA2/idWZc/wu\nscRF5NfAOZdtZv2ASUA48IZzbp6Z/RPIcM5NAEYB75pZJrCFQIjhtRsLzAeygb5HruAzs0oErgy8\nM9cinzSzeMABK/KYLyJSpjVpdw60O4c1mXNZ+9WTxG/6kgrvfsaMmE7EdL0vML8c0B/qioiEuE0b\nVrHks2doufYjTmY38yLbkJ18N63PuZqw8HC/yzsm3UkCBZSIlA+7dmxl7oTnaZj5DrXYzIqwevza\n+g7iLr6NqIrRfpf3OwooFFAiUr4c2L+P2ZPepMqsVznz0HI2cQpLGt5Ai8sGEls1dC4aU0ChgBKR\n8skdPszcHz/F/fwCbfZNZ4+LYnat7px+yX3UbtDU7/IUUKCAEhFZOieVLZOfIX7bFAzHrMqdieky\ngKYJ5/lWkwIKBZSIyBEb1yxl+efP0GLDeE5mDwsqtGBfQm/adL2B8Ih8L9wuUgooFFAiIrnt2rGV\nuV+8zOmL36a228g6q8WqJr1odWkfYk4umTvIKaBQQImIHMuh7GxmTX6P6Omv0uzgfHYQzfxTr6TB\npYM4tV6jYl22AgoFlIhIMBZmTGH3t8OJ3/kdDmNW5c5UOudumrY/r1ge+aGAQgElInIi1q9cxMqv\nnj96nmpxRBN2xN9O3IW9qBAZVWTLUUChgBIRKYjdO7cx98sR1F74NvXcOn6lKssa9KTppXdTpcZp\n+Q+QDwUUCigRkcI4fOgQc777iLC0V2m9fwb7XAVmV+tGg6sfoWadhgUetySeqCsiImVYWHg4cef1\noPXQb1j+p8nMrtaNZlum+H6fv5K9KF5EREJawxYdaNjiPfbt2cXJ0TG+1qI9KBER+Z2KPocTKKBE\nRCREKaBERCQkKaBERCQkKaBERCQkKaBERCQkKaBERCQkKaBERCQkKaBERCQklYl78ZlZFrCyEENU\nBzYVUTmi7VnUtD2LjrZl0cpve9Z3ztUo6OBlIqAKy8wyCnNDQ/ktbc+ipe1ZdLQti1Zxb08d4hMR\nkZCkgBIRkZCkgAoY6XcBZYy2Z9HS9iw62pZFq1i3p85BiYhISNIelIiIhKQyE1Bm1s3MFplZppkN\nyWN+lJmN8eanmVmDHPOGetMXmdlF+Y1pZg29MTK9MSOLe/1KUglvy37eNGdm1Yt73fxQwtvzfW/6\nXDN7w8wqFPf6lbQS3p6jzGyWmc02s3Fm5v9DkopQSW7LHPOHm9muoAp0zpX6FxAOLAXOACKBWUCL\nXG36ACO89z2AMd77Fl77KKChN0748cYExgI9vPcjgLv83galeFu2BRoAK4Dqfq9/GdielwDmvT4s\nS1+bPm3Pk3OM+ywwxO9tUFq3pdcvAXgX2BVMjWVlDyoRyHTOLXPOHQBGA91ztekOvO29Hwd0NTPz\npo92zu13zi0HMr3x8hzT63OeNwbemFcU47qVtBLblgDOuV+ccyuKe6V8VNLb80vnAdKBusW8fiWt\npLfnDgCv/0lAWTppX6Lb0szCgaeAB4ItsKwEVB1gdY7Pa7xpebZxzmUD24Fqx+l7rOnVgG3eGMda\nVmlWktuyPPBle3qH9m4CJhZ6DUJLiW9PM3sT2AA0A14oipUIESW9LfsBE5xz64MtsKwElIj81svA\n9865H/wupLRzzt0C1AYWANf5XE6pZGa1gWs5wYAvKwG1FqiX43Ndb1qebcwsAogFNh+n77GmbwZO\n8cY41rJKs5LcluVBiW9PM/sHUAMYVCRrEFp8+fp0zh0icLjq6kKvQegoyW3ZFmgEZJrZCiDazDLz\nrdDvE3VFdLIvAlhG4GTdkRNzLXO16ctvT/aN9d635Lcn+5YRONF3zDGBj/jtRRJ9/N4GpXVb5hhz\nBWXzIomS/tq8DfgZOMnvdS/t25PAhSaNvL4GPA087fc2KI3bMo9lB3WRhO8bqQg39iXAYgJXkDzo\nTfsncLn3viKBYMkkcPL4jBx9H/T6LQIuPt6Y3vQzvDEyvTGj/F7/Urwt+xM4Tp0NrANe93v9S/n2\nzPamzfRef/d7/Uvr9iRwhOknYA4wF3ifHFf1lYVXSX5t5lpuUAGlO0mIiEhIKivnoEREpIxRQImI\nSEhSQImISEhSQImISEhSQImISEhSQImISEhSQImISEhSQImISEj6fw4KNVW4PqRgAAAAAElFTkSu\nQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEbCAYAAACP7BAbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcTvX7x/HXNZgk2bJlG1vJLmVNNaUFhaJs2deSpUW2\nEtVPlpQlhGxjiUiLSqViSIv0tRQhZWeQZA9j5vr9cZ+ZbtMsh1nOPTPX8/G4H933OedzznWfud3v\nPud8zrlFVTHGGGMCTZDXBRhjjDHxsYAyxhgTkCygjDHGBCQLKGOMMQHJAsoYY0xAsoAyxhgTkCyg\njDHGBCQLKGMAESnldQ3GmEtZQJlMzwmnWim4vhIi0jKZ67hRRDaIyAkR6eWyzS4RuTs52/WKiGwW\nkTu8rsMEFguoDE5E2ojIOhE5JSIHRORTEbnN67rSwmV8YT+uqgv92rURkWdF5F0RaZXENv6zrKru\nBXKISIVklN8fWKGquVV1YjzbTRdh5LZOVa2kqqvToiaTfmT1ugCTekTkGXxfdD2A5cAF4H6gMfCt\nh6UFDBGpAuzze10GuE5VXxeR/MAOEflBVXfH0zaxZd8BxgI9r7C0EGDBFbZNN0Qki6pGJXMd1YGh\nQG5gDpAdqAq8o6qrkl+l8Yyq2iMDPoBcwCmgWSLL3ASsBP4GfgEa+83bBfQDNjnreRsoCCwDTuIL\nvNxxlh8IbAH+AmYAwZexrWedbf2N74s52Jl3PfAecAT4A+gd5z34tz3utL0K3xdVFHDGqbdfAvvg\neaCi3+smwF6/1+uARxJom+iywHQg5+Xuf+Br4CLwj1N72Tjt4n1vydmP8ezTy/nbDwB+d+ZtBh5y\nUWd/Z/3/AFmcaXcDpZ3PTzVn2SJOzXck8XmfDzTxe90U2Oj1v0N7JO/heQH2SKU/rK+ndAEISmB+\nVmCH8+WSFbjL+RK5wZm/C/gOyO98uR0GfgKqAMHOl+gQv/XtAn52vlDyAGuAly9jWz8AhZy2vwLd\nAXG2+bzzJVbS+SK8N852/9PWb95dSeynDwGJs18q+b3eH/NlmcA+THBZoDdw3xXu/5VA50Tq/s97\nS85+jGc9l/O3bw4Ucp4/Cpz2e51Qneudz8pVftPudp53xRd0VwNfAKNcfN53Ajmc59nwhXF7r/8d\n2iN5DzsHlXFdBxxV1egE5tcGrlHVUap6UVVXAp8Arf2WeVNVj6pqBPANsFZVf1bVC8AHwM1x1vmm\nqh5U1ePAcL911XGxrfGqethp+zFQDagB5FfV4aoapb5DZ9PjtEuobQxJdC/B1aoae0t/p77NACLy\nIPCTqm6Mr6GLZQ8CNySwXTf7PynxvbfL2Y+JnV9z/bdX1SWqeth5vhhf8NZ0UedBVT0fd4aqTscX\noGvxhe0LidSJiNyEr/dcT0QeB6YAz6jqnMTamcBn56Ayrr+A/CISlEBIFcHv3ItjD1DU7/Vhv+f/\nxPM6Z5z2++Osq4jz/PrL3NZZp00IUFREjjnTBd/Anrgn0+Nr61aW+CaKSC6gA9A2qRUksuxx4MYE\nmrnZ/1ciOfsxofUk+rcXkfbA0/h6ZgDX4Ot9JWZ/EvOnAx/h6w1HJrHs3cBSVV3u1NMEKAzsTayR\n83cbiO9/5N5IYhvGA9aDyri+B84DDyUw/yBQPM60EsCBZGzTf30hzjaSs619wE5Vzec88qpvVFtj\nl/W4+bGziwlM7w90U9XTIhKSxDoSWvZqfOdf4pPc/X85P+SW3P2YIBEpAUwDejrrzYvvPGRMrymh\nOhOsX0SuAcbhO485TETyJFHGXfg+7zHy4TuXlZSGwApnOyYAWUBlUKp6Et/Ipkki0lRErhaRrCLS\nUERG4jt8clZE+jvTQ4EHSd7IsSdFpKiI5AMGAzFDt690Wz8Cp5x22UUki4hUFJFbXdZzmKS/qA47\nX4ixnOuOPgCuEpEa+MIWESkrIuJmWUc+4FAC203u/j+Euy9hSP5+TMw1QDRwVESCRKQTUMlvvpu/\nQVwTgB9VtTu+gRlTE1rQ+Xvcge/cW4zKwF8icr2zTC8RaSAib/m1y4+vx5sH30AQE4AsoDIw57DF\nM/iO4R/Bd8ijJ/Chc9ikMdAIOApMBNqp6o6Y5nFX52KT7+Ab4fU7vvMQw506LndbMfVH4/vSrobv\nJPoRfCPKcrmsawQwRESOOUPu47MKv4t0nWvExuP7Uo/A98X3hzP7Y+Ael8uCb1BBvMP5r3Sf+BkZ\nz3tLzn68pEkSr/3XvRV4Hd97PwRUxDdAJkZ8f4P41qcQe3juPv4dnv8McLOI/OfcnHOJwHB8PdXm\nfrNm4DvHd6+IPIrvb7MGv96sqh4FDqjqezGHwEVkmYgMTOi9mrQnfueHjbliIrIL6KKqK7yu5XKI\nSF58w5+fd7FsEHCnM6DBzbqnq2rX5NZorpyITAKGALfg6y19o6qHnHmTVfVKr1MzaSDJHpSIzBCR\nwyLycyLLTBCRHSKyUUSq+U1vICLbROQ3ERngNz2viCwXke0i8oWI5Hamh4jIWRFZ7zwmJ/cNGpMY\nVf0b3+Gg61ws/giXHkpKkHO478vk1GZSxBf4emSV8A3iOAGx57ns0F6Ac3OIbxa+a2riJSINgTKq\negO+OxZMcaYH4TtscT++bn9rZzgo+EbOfKWq5fCdpBzkt8rfVbW687D/u0k/0nNXfBy+8EnKp6r6\nT1ILiUgWfNf0vJvsykyyqOpSVV2oqmNV9TW/v1/cQ5EmACUZUKq6Bt9V6Qlpiu+KcVR1LZBbRArh\nuw5ih6rucY63L3SWjWkT5jwP49KRZkldt2ICkKqWTm+H92KoarSqJngi3m+5hEbkxVUA34l+E4DE\ndyPfB4FPva7FJC4lroMqyqXXc+x3psU3PebivUJ+F/YdEpGCfsuVFJH1+LriQ5yANCbdiDnHYQKT\n9WzTj9S4UPdKekAxh4cigBKq+rdzA8gPRaSCqp5OufKMMcakBykRUAe49ILDYs60YHwXHsadDnBI\nRAqp6mERKYxv2CvObVQuOM/Xi8gf+K7EXx93oyKSns95GGNMuqWqaXIqxu11UELCPaOlQHsAEakN\nHHcO360Dyjoj84Lx3fdrqV+bjs7zDvhuaYKI5HcGVyAipYGy+G4CGa+EbjAYiI+hQ4d6XoPVGxiP\n9FSr1Wv1xn2kpSR7UCLyDhAKXCcie/HdnSAYUFWdpqrLRKSRiPyO70K4TvhmRjlX2S/HF4Qz1HdR\nH8AoYJGIdMZ3/7EWzvQ7gJdF5AK+q9N7qO+ml8YYYzKZJANKVdu4WCben6RW1c+BcvFMP4bfFfl+\n098H3k9qe8YYYzI+u9VRGgkNDfW6hMti9aae9FQrWL2pLb3Vm5bS7a2ORETTa+3GGJNeiQiaRoMk\n7PegjDHpWsmSJdmzZ4/XZWQ4ISEh7N6929MarAdljEnXnP+j97qMDCeh/ZqWPSg7B2WMMSYgWUAZ\nY4wJSBZQxhhjApIFlDHGmIBkAWWMMRlEWFgYt99+u9dlpBgLKGOMySBUFZGM85N6FlDGGJOKIiIi\neOSRRyhYsCBlypRh4sSJADzwwAP069cvdrlWrVrRtWtXAHbu3En9+vXJnz8/BQsWpG3btpw8eTJ2\n2f3799O8eXMKFixIgQIF6NOnD9u2beOJJ57g+++/59prryVfvnxp+0ZTgQWUMcakElWlcePG3Hzz\nzURERPD1118zbtw4vvzyS2bOnMm8efMIDw9n/vz5/PTTT0yYMCG23eDBgzl06BBbt25l//79DBs2\nDIDo6GgefPBBSpUqxd69ezlw4ACtWrXipptuYsqUKdSpU4dTp05x7NgxD995yrA7SRhjTCpZt24d\nR48e5fnnnwd8d73o2rUrCxcu5N577+Wtt96iffv2nDt3jo8++ogcOXIAUKZMGcqUKQPAddddx9NP\nP83LL78MwNq1a4mIiGD06NEEBfn6GHXr1vXg3aU+CyhjTIaXEqdlruRmFXv27OHAgQOxh9tUlejo\naO644w4AHnzwQXr16kW5cuWoU6dObLsjR47Qt29fvvnmG06fPk1UVFTsOvbv309ISEhsOGVkGf8d\nGmMyPdXkP65E8eLFKV26NMeOHePYsWP8/fffnDhxgo8//hiAwYMHU6FCBSIiIli4cGFsu8GDBxMU\nFMSWLVs4fvw48+bNi73tUPHixdm7dy/R0dH/2V5GGiABFlDGGJNqatasybXXXsvo0aM5d+4cUVFR\nbNmyhZ9++onVq1cTFhbG3LlzmT17Nr179yYiIgKAU6dOkTNnTq699loOHDjAa6+9dsk6r7/+egYO\nHMjZs2c5f/483333HQCFChVi//79REZGevJ+U5oFlDHGpJKgoCA++eQTNm7cSKlSpShYsCDdunUj\nIiKCjh07MmnSJAoXLky9evXo2rUrnTp1AmDo0KH873//I0+ePDRu3JjmzZtfss6PP/6YHTt2UKJE\nCYoXL86iRYsAuPvuu6lYsSKFCxemYMGCnrznlGR3MzfGpGt2N/PUYXczN8YYYxJgAWWMMSYgWUAZ\nY4wJSBZQxhhjApIFlDHGmIBkAWWMMSYgWUAZY4wJSEkGlIjMEJHDIvJzIstMEJEdIrJRRKr5TW8g\nIttE5DcRGeA3Pa+ILBeR7SLyhYjk9ps3yFnXVhG5LzlvzhhjTPrlpgc1C7g/oZki0hAoo6o3AD2A\nKc70IGCi07Yi0FpEbnKaDQS+UtVywApgkNOmAtACKA80BCZLRru5lDHGGFeSDChVXQP8ncgiTYE5\nzrJrgdwiUgioCexQ1T2qGgksdJaNaRPmPA8DHnKeNwEWqupFVd0N7HDWY4wxJpNJiXNQRYF9fq/3\nO9MSmg5QSFUPA6jqISDmplFx2xzwa2OMMSYeUVFRXpeQKlJjkMSVHJK7ohtpHfzr1JU0M8aYNDNq\n1CjKli1Lrly5qFSpEh9++CEAYWFh1KtXj969e5MnTx4qVKjAihUrYtvdddddDB48mFq1apE7d24e\nfvhhjh8/Dvh+ZyooKIiZM2cSEhJC/fr1AVi6dCmVKlUiX7583H333Wzbtg3w/YT8ddddx8aNGwE4\nePAgBQsWZPXq1Wm5Ky5bSvxg4QGguN/rYs60YKBEPNMBDolIIVU9LCKFgSNJrCtexR8sxSPlW1C+\nREFCQ0MJDQ1N3jsxxpgUVrZsWb799lsKFSrE4sWLadeuHb///jvg+3XcFi1a8Ndff7FkyRKaNWvG\n7t27yZMnDwBz585l+fLllCxZknbt2tG7d2/mzp0bu+7Vq1ezbds2goKC2LFjB23atGHp0qXceeed\nvPHGGzRu3JitW7dSunRpRo8eTdu2bVm3bh2dOnWiU6dOsT+cmJjw8HDCw8NTZd8kSVWTfAAlgV8S\nmNcI+NR5Xhv4wXmeBfgdCMEXVhuB8s68UcAA5/kAYKTzvAKwwVm+lNNeEtiudpsYpjIgv/aYNEeN\nMZmT72ss/ahWrZouXbpUZ8+erUWLFr1kXs2aNXXevHmqqhoaGqqDBg2Knffrr79qcHCwRkdH6+7d\nuzUoKEh3794dO/+VV17Rli1bxr6Ojo7WokWL6qpVq2KnNW3aVCtXrqxVq1bVCxcuJFpnQvvVme4q\nO5L7SLIHJSLvAKHAdSKyFxjqBIiq6jRVXSYijUTkd+AM0MkJvigR6QUsx3cocYaqbnVWOwpYJCKd\ngT34Ru6hqr+KyCLgVyAS6OnskHhNe7I996+5mdYfPMKq/t/w/YsTyJMze1JvyRiTychLyR8MrEOv\n7Cc95syZw9ixY9m9ezcAZ86c4ejRowQFBVG06KWn2ENCQjh48GDs6+LFi18yLzIykqNHj8ZOK1as\nWOzzgwcPEhISEvtaRChevDgHDvx7EKpr1640bdqUadOmkS1btit6P2kpyYBS1TYulumVwPTPgXLx\nTD8G3JNAmxHAiKS2GaN5vcrsLLeOuiO6UWRIXZZ1fI/QqqXdNjfGZAJXGi7JtXfvXrp3787KlSup\nU6cOADfffHPs7yz5h0fM8k2bNo19vW/fv2PG9uzZQ3BwMPnz52fv3r3ApT/xXqRIETZv3nzJ+vbt\n2xcbgmfOnOGpp56iS5cuDBs2jObNm8ceSgxUGeJOEsUK5GL3mIU0KtKJu9+pzeA5H3ldkjHGcObM\nGYKCgsifPz/R0dHMmjXrkhA5fPgwb775JhcvXmTx4sVs27aNRo0axc6fN28e27Zt4+zZswwdOpRH\nH300NpTiHlxq0aIFn376KStXruTixYuMGTOG7NmzU7duXQD69OlDzZo1mTZtGo0aNaJHjx5psAeS\nJ0MEFEBQkPDec72ZdtdSRv/Sh5rP9+fsuUivyzLGZGLly5fn2WefpXbt2hQuXJgtW7ZQr1692Pm1\na9dmx44d5M+fnyFDhrBkyRLy5s0bO79du3Z06NCBIkWKcOHCBcaPHx87L+49DG688UbmzZtHr169\nKFCgAJ9++imffPIJWbNmZenSpSxfvpzJkycD8MYbb7BhwwYWLFiQynsgeTLkT75v33eUem+044Ke\n5qsnFlCjXLF4lzPGpH/p9Sffw8LCmDFjRoJDve+66y7atWtH586d07gyH/vJ91RSrnh+IsZ8Sq3r\nGlJ75q28vOAzr0syxhhzmTJkQAFkzRLE8iGDGXfbIl5e3506QwZx7sJFr8syxhhX7DakGfQQX1xb\n9/7J7WPbEaln7JCfMRlMej3EF+jsEF8aKV+iAIfGLKN2/kZ2yM8YY9KJTNGD8jfx4294anUbamRv\ny8ohr5A9OCXu9mSM8Yr1oFJHIPSgMl1AgR3yMyYjsYBKHYEQUJniEF9cMYf86uR/gNozb2XI3I+9\nLskYY0wcmbIH5W/qsu94ckUbKmd7iFUvjCLXNVelQHXGmLRSsmRJ9uzZ43UZGU5ISEjs/QP92SE+\nF1IqoAB2RfzNbaO7cJw9fNR2IffeckOKrNcYYzIaO8SXxkpdn5f9ry+hSbEu3L+4Lk+8Nc/rkowx\nJtOzHlQci1Zvot1HLSkutVkzeCKF8+VM8W0YY0x6ZT0oD7W4oyr7XvgfQRJEyPBbeXfVRq9LMsaY\nTMl6UInoOWU+U3Y/xcP5hrC4X2+CguzWI8aYzM0GSbiQFgEFsGLjHzQJa0MO8rOy7ywqliyY6ts0\nxphAZYf4Asjd1cpwZMQayuSsQpXJ1RixaLnXJRljTKZgPajL8Pr7KxjwfQeqBbck/IVXyXl1cJpu\n3xhjvGaH+FzwIqAAduz/izte78IJ9rGkzTs0rFEuzWswxhiv2CG+AHZDses48PoHPFS8Gw8sqUfH\nCTOIjk6fIW+MMYHMelDJsPSHX2m5qBXXUY5V/aZSpkg+T+sxxpjUZj2odKJJ7QpEvPwjBa4qSrmx\nVXn9/RVel2SMMRmG9aBSyIhFy3nhp07cnK01KwYPt5vOGmMyJBsk4UKgBRTA9n1HueuN7vzNThY+\nOp+mdSt6XZIxxqSogDvEJyINRGSbiPwmIgPimZ9HRN4XkU0i8oOIVPCb11dEfnEeffymVxGR75w2\nH4lITmd6iIicFZH1zmNySrzRtFCueH72v76ElqV68/DSUB557U0bQGGMMVcoyR6UiAQBvwH1gYPA\nOqCVqm7zW2Y0cEpVXxGRcsAkVb1HRCoCC4AawEXgc6CHqu4UkR+BZ1R1jYh0BEqr6osiEgJ8rKpV\nkqgr4HpQ/r7e8DtN57QlO3n4qtcsqpW53uuSjDEm2QKtB1UT2KGqe1Q1ElgINI2zTAVgBYCqbgdK\nikgBoDywVlXPq2oUsApo5rS5UVXXOM+/Apr7rS/d3/Su/s1lOTLiGyrmrsUt025mUNiHXpdkjDHp\nipuAKgrs83u935nmbxNO8IhITaAEUAzYDNwuInlFJAfQCCjutNksIk2c5y2c5WOUdA7vrRSRepfz\nhgJJjuzZWDXsJSbf+T5jfu7HDf06sf/Pk16XZYwx6UJKDTMfCeQVkfXAk8AGIMo5DDgK+BJYFjPd\nadMFeFJE1gHXABec6RFACVWtDjwLvBNzfiq96tGoLvue30jWoGBKjarKm0tXe12SMcYEvKwuljmA\nr0cUo5gzLZaqngI6x7wWkV3ATmfeLGCWM304Tm/MORR4vzP9BuABZ/oFnLBS1fUi8gdwI7A+bmHD\nhg2LfR4aGkpoaKiLt+ONwvlysnX0VF6c9wlPrWnFnLWP8fXg/7Ph6MaYgBYeHk54eLgn23YzSCIL\nsB3fIIkI4Eegtapu9VsmN3BWVSNFpBtwm6p2dOYVUNU/RaQEvkEStVX1pN/0IHwBtlJVZ4tIfuCY\nqkaLSGl8560qq+rxOHUF9CCJxGzd+yf3jHucY+wg7KG5tLijqtclGWOMKwE1SMIZ3NALWA5sARaq\n6lYR6SEi3Z3FyuM7p7QVX6+or98qlojIZuAjoKeqxpyEaS0i24FfgQOqOtuZfgfws3O4cBG+UX+X\nhFN6V75EAfaNeY92ZfrR6tN7aTh8FBcio5JuaIwxmYhdqOuxb7fs4cG3OxJFJB92DOPuamW8LskY\nYxIUUD0ok7puqxjCn69/zd2Fm3PPwtq0eWOKXdxrjDFYDyqgfLJ2K60WduAqzcOyHjOoVb540o2M\nMSYNWQ8qk3qwVnmOjvqOW64Lpc7sW+g6cbb1powxmZb1oALUotWb6PBBB3JTguW9p1GldGGvSzLG\nGOtBGWhxR1X+fPVHbshVlWpTq9L37Xe9LskYY9KU9aDSgbAv19H9s/YUpDJfPT2ZcsXze12SMSaT\nsh6UuUSHe2sQMWw9ha4uQYU3K/PsjPe8LskYY1Kd9aDSmWmffU+vrzpSSKuy/KlJlC9RwOuSjDGZ\niPWgTIK6N6zDoaEbKXx1CJUmVeaZGYu9LskYY1KF9aDSsWmffU/vrzpRQCvzRZ9JVCxZ0OuSjDEZ\nnPWgjCvdG9YhYugGiuYoTZW3qvD09EV23ZQxJsOwHlQGMeOLtfT8oiP5qcBnvSbZdVPGmFRhPShz\n2brcX4vDL2+gxDU3Um1qFbpPmmO9KWNMumY9qAxo/or1dP24Mzm5nqXdplKnQomkGxljjAvWgzLJ\n8tjd1flrxDqq5avHbXNuodXrk7kYFe11WcYYc1msB5XBLf3hVx57twtZNJjF7aZz7y03eF2SMSYd\nsx6USTFNalfgr9FruLtIM+5fXIcHXn2Ncxcuel2WMcYkyXpQmUj4pp00m9Wd83KcmQ9Np+Wd1bwu\nyRiTzqRlD8oCKpOJjla6TprN7P0DqBXchU+fe5F8ua72uixjTDphAeWCBVTybN51mEZv9uWQ/I8R\nt03l2WZ3e12SMSYdsIBywQIqZQyZ+zEjfn6S0tzLZ0+/Rpki+bwuyRgTwGyQhEkzr7RrzO7+m8me\nJQc3jqtkt0syxgQM60GZWNM++54+X3Ylt5ZmaffJ1Cpf3OuSjDEBxnpQxhPdG9bhyCvrqZinBnXC\nbubhUeNsSLoxxjPWgzLx+mzddtrMf5zzcpJpD06jbf1bvC7JGBMAAq4HJSINRGSbiPwmIgPimZ9H\nRN4XkU0i8oOIVPCb11dEfnEeffymVxGR75w2H4lITr95g0Rkh4hsFZH7kvsmzeVrWKMcf72xgsfK\n9qH98kZUH/Q0h46d9rosY0wmkmRAiUgQMBG4H6gItBaRm+IsNhjYoKpVgQ7ABKdtRaALcCtQDWgs\nIqWdNtOB/k6bD4D+TpsKQAugPNAQmCwiaZLW5lJBQcLbT3Zga68tnIz8m2IjKvD83KVel2WMySTc\n9KBqAjtUdY+qRgILgaZxlqkArABQ1e1ASREpgC9k1qrqeVWNAlYBzZw2N6rqGuf5V0Bz53kTYKGq\nXlTV3cAOpwbjkXLF8/P7mNmMrhvGaxv7UeTpZqzbvt/rsowxGZybgCoK7PN7vd+Z5m8TTvCISE2g\nBFAM2AzcLiJ5RSQH0AiIGRq2WUSaOM9bOMvHt70D8WzPeOCZh+/iyEs/c0PuytSaVY1mo8fbIApj\nTKrJmkLrGQmMF5H1wC/ABiBKVbeJyCjgS+B0zHSnTRdggogMAZYCFy53o8OGDYt9HhoaSmhoaDLe\ngnEjT87srBr2Est+bM1j7/Qk34DZvNlgCl3ur+V1acaYVBAeHk54eLgn205yFJ+I1AaGqWoD5/VA\nQFV1VCJtdgGVVfV0nOnDgX2qOiXO9BuAuapaO+76ReRzYKiqro3TxkbxeSw6Wuk17R2m7nyOcjTh\n06dHUOr6vF6XZYxJRYE2im8dUFZEQkQkGGiFr8cTS0Ryi0g253k3YFVMODnnohCREsDDwDtxpgcB\nLwAxobUUaCUiwSJSCigL/Jisd2lSRVCQMPnxx9j57K9kkSyUHVvBfmreGJNiXF0HJSINgPH4Am2G\nqo4UkR74ejrTnF5WGBANbAG6qOoJp+1qIB8QCTytquHO9D7Ak4AC76vqYL/tDcJ3CDAS6Kuqy+Op\nyXpQASbsy3U8sexxgvVa5rSaTJPaFZJuZIxJV+xmsS5YQAWmC5FRtBk3mff/epla2bry0TMvUDDv\nNV6XZYxJIYF2iM8Y14KzZeG953qzvtvPRJzdQ5FXK9B/1vt22M8Yc9msB2VS1bgPwxm4+klyanEW\ntH2Te2+5weuSjDHJYIf4XLCASj/Onouk5dgJfHpiBHWDH+fDZweTP3cOr8syxlwBCygXLKDSn59+\nO0Dzqf04IN/zXOVxDG/XlKAgu4uVMemJBZQLFlDp1+vvr2DwmifJraVY0H4C9W8u63VJxhiXLKBc\nsIBK307/c4EWb4zj81OjqRPcgw+eHmyj/YxJByygXLCAyhh++u0Aj0ztz/6g1fS84TXGdW1ph/2M\nCWAWUC5YQGUsEz/+hudW9OYqzcP05hN45PYqXpdkjImHBZQLFlAZz4XIKNpPmMqiI8OoJC35qO/L\ndm8/YwKMXahrMqXgbFlY+GxPtvb6lYvRkZQdV572497mQmRU0o2NMRmO9aBMwFoQvoEeH/YiSs4z\n5p7xPPHAbV6XZEymZ4f4XLCAyhyio5Xe0xYw9Y8BFIu+nXe7jqJW+eJJNzTGpAoLKBcsoDKXI3+f\n4ZFxo1hzfjKhV/dh0VP97G4UxnjAAsoFC6jMac3m3bSe2Z+ILGvpXe41Xu/8qA1LNyYNWUC5YAGV\nuY3/aBX8k5+zAAAaC0lEQVQDw/sSrLmY8tB4Wofe7HVJxmQKFlAuWECZC5FRdJ40gwURL1I2+kEW\nP/F/VCld2OuyjMnQbJi5MS4EZ8vCvKe6s/OZbeQKzku1aZW475VXOXbyH69LM8akAOtBmQzj6w2/\n025Of45kWU/PG0fabZOMSQV2iM8FCyiTkHEfhjN41TNk0eyMaziWLvfX8rokYzIMCygXLKBMYi5E\nRvH4lDmE7XuB4lGhvNt1pF0/ZUwKsIBywQLKuHHo2GkeHT+Kb89Ppk7w47zbewDFCuTyuixj0i0L\nKBcsoMzlWLt1H21mvMDuoOW0LDyUmb26kj04q9dlGZPuWEC5YAFlrsT8FevptbQfZ4MOMaD6aIa1\necAGUhhzGSygXLCAMlcqOlp5ecEyRvzvOa6Jvp5JD42xC32NcckCygULKJNc5y5cpMukGSyMGEbJ\n6Pt4p8v/2UAKY5IQcBfqikgDEdkmIr+JyIB45ucRkfdFZJOI/CAiFfzm9RWRX5xHH7/pVUXkexHZ\nICI/isitzvQQETkrIuudx+SUeKPGxJU9OCvzn+7Bnue2UzhHMeqEVaP2CwPZc/i416UZY3DRgxKR\nIOA3oD5wEFgHtFLVbX7LjAZOqeorIlIOmKSq94hIRWABUAO4CHwO9FDVnSLyBfC6qi4XkYZAf1W9\nS0RCgI9VNdHf/LYelElpP/12gMfeHsqOoKU0yTuIOb17kuuaq7wuy5iAEmg9qJrADlXdo6qRwEKg\naZxlKgArAFR1O1BSRAoA5YG1qnpeVaOAVUAzp000kNt5ngc44Lc+O2tt0tytNxZl+2vT+aDpSr4/\nvILrht7Ek1Pe4WJUtNelGZMpuQmoosA+v9f7nWn+NuEEj4jUBEoAxYDNwO0ikldEcgCNgJiD/E8D\nY0RkLzAaGOS3vpLO4b2VIlLvMt+TMcnStG5FDo/9mDG3zyZs+zhy9avBa0u+9rosYzKdlLoQZCQw\nXkTWA78AG4AoVd0mIqOAL4HTMdOdNk8AfVX1QxF5BJgJ3AtEACVU9W8RqQ58KCIVVPV03I0OGzYs\n9nloaCihoaEp9HaMgb5N76R347U8O3Mxg7/rwag1ZZn88Cha3FHV69KMSTPh4eGEh4d7sm0356Bq\nA8NUtYHzeiCgqjoqkTa7gMpxQ0VEhgP7VHWKiBxX1Tx+806oau541rUSeFZV18eZbuegTJo5/c8F\nOk6cygdHh1P8Yn1mt3+F0KqlvS7LmDQXaOeg1gFlndF1wUArYKn/AiKSW0SyOc+7Aatiwsk5F4WI\nlAAeBuY7zQ6IyJ3OvPr4BmIgIvmdgRmISGmgLLAzWe/SmGTKeXUw7z3Xm339d1Aq143cvaAGVQb2\nZvOuw16XZkyG5eo6KBFpAIzHF2gzVHWkiPTA15Oa5vSywvANfNgCdFHVE07b1UA+IBJ4WlXDnel1\ngQlAFuAc0FNVN4hIM+Bl4IKzvhdVdVk8NVkPynhm694/afPWcDbpXOpd9STv9Opn9/gzmYJdqOuC\nBZQJBGs276bD7BfZleULmuQdyOxeT5AnZ3avyzIm1VhAuWABZQLJkjW/0HPJYP7K+jPtSwxjco92\ndjNakyFZQLlgAWUC0eRP1jDoq8Gcy3KEJyu8wuiOzcmaxdUNW4xJFyygXLCAMoEqOloZsXg5w38Y\nDCgDaw7nhZYN7K7pJkOwgHLBAsoEuuhoZcDs95mweQjZo69jeP1X6dX4dq/LMiZZLKBcsIAy6cWF\nyCh6TZvPrF1DyRN1E+MaD+exu6t7XZYxV8QCygULKJPenP7nAl0nT2fx4f+j8MU6TGz+Eg/fVsnr\nsoy5LBZQLlhAmfTq6ImzdJr8Fp8eH02Ji/WZ2noY9996o9dlGeOKBZQLFlAmvTv41yk6Tn6Tr86M\npczFB5nR/kXuqFLK67KMSZQFlAsWUCaj2HP4OO3fGss35yZRLro5szu9YL/sawKWBZQLFlAmo9mx\n/y/aTx3D2shpVOYxZnUZSPUbinhdljGXsIBywQLKZFSbdx2m49ujWa+zqEI7ZncdSLUy13tdljGA\nBZQrFlAmo/t55yE6vj2KjYRRjQ7M7jaAKqULe12WyeQsoFywgDKZxcY/Iug0fRSbmEN16cTsbv2p\nVKqQ12WZTMoCygULKJPZrN9xkE4zRvKLzKN6UGfCuvWnYsmCXpdlMhkLKBcsoExm9dNvB+g8cySb\nZT7VpRMzuz5nh/5MmrGAcsECymR2P/12gG6zXmMTc6hCO2Z2HmCj/kyqs4BywQLKGJ+fdx6i8/TX\nWK+zqKRteLvDALuOyqQaCygXLKCMudSW3UfoPP111kW9zU1RLZjWfiD1KpX0uiyTwVhAuWABZUz8\ntu87Sqdpb/BD5FTKRj3EpFYDufeWG7wuy2QQFlAuWEAZk7g/Dh6jy7QJrD43kRKR9zO++WCa1q3o\ndVkmnbOAcsECyhh39v95km7T3mL5ybEUulCX0Q8+T9v6t3hdlkmnLKBcsIAy5vIcPXGW7lPf5qM/\nX+O6i1V46Z7neeKB27wuy6QzFlAuWEAZc2VOnjlPz7fDeHf/SHJeDGHAbYPp3/wegoLS5DvHpHMW\nUC5YQBmTPGfPRfLMzIXM/n0kWfRqnqwymFfbP0TWLEFel2YCWFoGlKtPoog0EJFtIvKbiAyIZ34e\nEXlfRDaJyA8iUsFvXl8R+cV59PGbXlVEvheRDSLyo4jc6jdvkIjsEJGtInJfct+kMea/cmTPxpSe\n7Tj92i/0qfYCk38exTXPVaTbpDDOnov0ujxjku5BiUgQ8BtQHzgIrANaqeo2v2VGA6dU9RURKQdM\nUtV7RKQisACoAVwEPgd6qOpOEfkCeF1Vl4tIQ6C/qt7lhNt8p00x4CvghrjdJetBGZOyoqOV1z9Y\nwYhvRnAy2w4eLvgcb3XvTP7cObwuzQSQQOtB1QR2qOoeVY0EFgJN4yxTAVgBoKrbgZIiUgAoD6xV\n1fOqGgWsApo5baKB3M7zPMAB53kTYKGqXlTV3cAOpwZjTCoKChKea16fY+O+4u17F/Ptwa8p9Gpp\n7nvlVfYcPu51eSYTchNQRYF9fq/3O9P8bcIJHhGpCZTA1/vZDNwuInlFJAfQCIi5B8vTwBgR2QuM\nBgYlsL0D8WzPGJOKOt1Xk4NjP+CDh1ew88RvlBpbhluf78dPvx1IurExKSSlzoaOBPKKyHrgSWAD\nEOUcBhwFfAksi5nutHkC6KuqJfCF1cwUqsUYk0Ka1K7A72Nm8237DURHR1FzVmVufK4zn6zd6nVp\nJhPI6mKZA/h6RDGK8e/hOABU9RTQOea1iOwCdjrzZgGznOnD+bd31EFV+zrLvCci0/2253+ny/9s\nL8awYcNin4eGhhIaGuri7RhjLledCiVYP2IsfxwcQo/pk2nyfiiFFtbhpfsG0L1hHa/LM6koPDyc\n8PBwT7btZpBEFmA7vkESEcCPQGtV3eq3TG7grKpGikg34DZV7ejMK6Cqf4pICXyDJGqp6ikR2QL0\nVNVVIlIfGKmqNfwGSdTCd2jvS2yQhDEB5eiJs/SaPpslEWPIcbEYfW/tz4utG9kQ9Uwg4K6DEpEG\nwHh8hwRnqOpIEekBqKpOE5HaQBi+gQ9bgC6qesJpuxrIB0QCT6tquDO9LjAByAKcwxdWG5x5g4Au\nTpu+qro8nposoIzx2LkLF+k/+z2mbx1NlJyjdclnmdClLbmuucrr0kwqCbiACkQWUMYEjuhoZeyH\nKxn5zWscy7aJe3L1ZkqXxyl1fV6vSzMpzALKBQsoYwLTkjW/0P/DMezK9jFVac/Etk9zW8UQr8sy\nKcQCygULKGMC27rt+3lyzgR+ippB8cj7GN6on91FPQOwgHLBAsqY9GH/nyd5YvrbfHZsPDkjS/Pk\nLc/wUpsHbUBFOmUB5YIFlDHpy9lzkQycs4QZW18nMugEzYo8xYTOHSiY9xqvSzOXwQLKBQsoY9Kn\n6Ghl8qdreHXFGxy6ag11grszqUMvqpW53uvSjAsWUC5YQBmT/n35vx08u3g8m2U+pSObMrzxU7S8\ns5rXZZlEWEC5YAFlTMbxx8FjPDlzGl+emEiuyBt4ovpTDGv9IMHZsnhdmonDAsoFCyhjMp6Y81Qz\nt47lfJajNC7Yh4ldOlPkumu9Ls04LKBcsIAyJmOb/vkPvLx8HPuDv+TmoA6MbdWbO6qU8rqsTM8C\nygULKGMyh7Vb99F3/iR+vDiDwudvp/+dfejT5E6CgtLkO9LEYQHlggWUMZnLkb/P8NSsuSzZP4Eg\nstIipA+vd2xjv/ibxiygXLCAMiZzio5Wxrz/NW98O4EjV31PzaxdGNumJ3UqlEi6sUk2CygXLKCM\nMSs2/sFziyaxITqM6y+E0v/OPvRufIcd/ktFFlAuWEAZY2IcOnaap2bN4YODEwiKvopHQ3oxpkMb\nu0tFKrCAcsECyhgT18WoaMa8/zXjv5vE4avWcHNQe0Y/2pP6N5f1urQMwwLKBQsoY0xi1mzeTb+F\nU/gxcib5L9zKkzV68XzLBnaT2mSygHLBAsoY48axk//Qf867LPhjIheCjtMg/xOM69CJMkXyeV1a\numQB5YIFlDHmckRHK7O+/JHhyyeyO/gTyl58mBfu70n7e271urR0xQLKBQsoY8yV2rr3T56ZO5Ov\n/p5CcFR+Wpbuyej2Le2aKhcsoFywgDLGJNeFyChGLP6Cyesm8+dVP3BzUHtebfY49996o9elBSwL\nKBcsoIwxKWn1z7sYsHgaay/MJO/5KnSp+gTDWjcmR/ZsXpcWUCygXLCAMsakhpNnzjNw7nvM3zaV\n08G/U/fqLoxu2c3uVOGwgHLBAsoYk9o++m4LQz+exs86jwLn69Djlsd5oWXDTP07VRZQLlhAGWPS\nytETZ+k/510W7ZzCuayHuPParrzWugvVbyjidWlpzgLKBQsoY4wXFoRv4JVlU9mW5V0KnbuTx2t0\nZ9Cj92eaXlXABZSINADGAUHADFUdFWd+HmAmUAb4B+isqr868/oCXZ1Fp6vqeGf6QiBmqExe4G9V\nrS4iIcBWYJsz7wdV7RlPTRZQxhjPHPzrFAPnLuT9PW9zLushbs/ZhZEtOlOrfHGvS0tVARVQIhIE\n/AbUBw4C64BWqrrNb5nRwClVfUVEygGTVPUeEakILABqABeBz4DHVXVnnG2MAY6r6v85AfWxqlZJ\noi4LKGNMQHh31Ub+b9nbbAlaQIFzt9G1ejeGtGxE9uCsXpeW4tIyoNzclKomsENV96hqJLAQaBpn\nmQrACgBV3Q6UFJECQHlgraqeV9UoYDXQLJ5ttMAXZDHsXvnGmHSj5Z3V+GXUJA7138cDpZsx4X8j\nueb5ktw+dAirf97ldXnplpuAKgrs83u935nmbxNO8IhITaAEUAzYDNwuInlFJAfQCLik/ysitwOH\nVPUPv8klRWS9iKwUkXqX84aMMcYrBfNew8zenTg17jsWNf2M0xdOEfpOTfI9dQ99pi3k+OlzXpeY\nrqTUbX1HAnlFZD3wJLABiHIOA44CvgSWxUyP07Y1l/aeDgIlVLU68CzwjojkTKE6jTEmTTSvV5kN\nI8Zx7IV9tKvYjfm/ziDf/xWn2qC+LFnzi9flpQtuzkHVBoapagPn9UBA4w6UiNNmF1BZVU/HmT4c\n2KeqU5zXWYADQHVVPZjAulYCz6rq+jjTdejQobGvQ0NDCQ0NTfS9GGOMl1b/vIsXlszi27Mzufpi\nUR4K6cLIx1pRrEAur0tLUHh4OOHh4bGvX3rppYAaJJEF2I5vkEQE8CPQWlW3+i2TGzirqpEi0g24\nTVU7OvMKqOqfIlIC+ByoraonnXkNgAGqepffuvIDx1Q1WkRKA6vwhd3xOHXZIAljTLoUcw/Aqeum\nE5F9BaUjm9K7Xid6Nb4j4H+vKqBG8UFskIzn32HmI0WkB76e1DSnlxUGRANbgC6qesJpuxrIB0QC\nT6tquN96ZwHfq+o0v2nNgJeBC876XlTVZfHUZAFljEn3tuw+wvML5/P5kRlEBf3Dnbk6MfzRDgE7\nXD3gAioQWUAZYzKS6Ghl7tc/8dpXs/hV3iXf+Ro8VqETL7VuSp6c2b0uL5YFlAsWUMaYjOrYyX8Y\n8s4HLNg2k+PZN1JRW9Lvno60q38rQUHeXoVjAeWCBZQxJjP4dsseXlwyh9UnZ5MlOjv183dkeMu2\nVCtzvSf1WEC5YAFljMlMoqOVyZ+u4c3VYezIuoT85+ryWMUODG3VJE0PAVpAuWABZYzJrI78fYah\nCz/g3e2zOZ59AxW0JU/d1Z7O99VK9UOAFlAuWEAZY4zvEODQJXNZfWIuoNyRuz3DmrWlXqWSqbI9\nCygXLKCMMeZf0dHKrC9/ZNyKOWyRd8l1rhLNynTg5VbNU/RCYAsoFyygjDEmfifPnGf44mXM3TSH\niOwrCbnwAF1rtKNfs3uSfYd1CygXLKCMMSZp2/cdZci777LswFz+Cd5NlaBWPHtPO9rcVf2KzldZ\nQLlgAWWMMZfny//tYPjH8/n21DyCNBt35G3L0Icfu6zzVRZQLlhAGWPMlYmOVmYuX8v4lXPZIou4\n9txNPBjSllfbtCSkUJ5E21pAuWABZYwxyXf6nwuMeu8LwjbM4/8aPUf7e25NdHkLKBcsoIwxJu0F\n2k++G2OMMWnOAsoYY0xAsoAyxhgTkCygjDHGBCQLKGOMMQHJAsoYY0xAsoAyxhgTkCygjDHGBCQL\nKGOMMQHJAsoYY0xAsoAyxhgTkCygjDHGBCQLKGOMMQHJVUCJSAMR2SYiv4nIgHjm5xGR90Vkk4j8\nICIV/Ob1FZFfnEdfv+kLRWS989glIuv95g0SkR0islVE7kvumzTGGJP+JBlQIhIETATuByoCrUXk\npjiLDQY2qGpVoAMwwWlbEegC3ApUAx4QkdIAqtpKVauranVgCfC+06Y80AIoDzQEJotImtzaPTWF\nh4d7XcJlsXpTT3qqFaze1Jbe6k1LbnpQNYEdqrpHVSOBhUDTOMtUAFYAqOp2oKSIFMAXMmtV9byq\nRgGrgWbxbKMF8I7zvCmwUFUvqupuYIdTQ7qW3j6EVm/qSU+1gtWb2tJbvWnJTUAVBfb5vd7vTPO3\nCSd4RKQmUAIoBmwGbheRvCKSA2gEFPdvKCK3A4dUdWcC2zsQz/aMMcZkcFlTaD0jgfHOeaRfgA1A\nlKpuE5FRwJfA6Zjpcdq2BhakUB3GGGMyiCR/8l1EagPDVLWB83ogoKo6KpE2u4DKqno6zvThwD5V\nneK8zoKvh1RdVQ/Gt34R+RwYqqpr46zLfu/dGGM8kFY/+e6mB7UOKCsiIUAE0ApfryeWiOQGzqpq\npIh0A1bFhJOIFFDVP0WkBPAwUNuv6b3A1phwciwF5ovIWHyH9soCP8YtKq12kDHGGG8kGVCqGiUi\nvYDl+M5ZzVDVrSLSwzdbp+EbDBEmItHAFnwj92IsEZF8QCTQU1VP+s1rSZzDe6r6q4gsAn71a2O9\nJWOMyWSSPMRnjDHGeEJV0+wBNAC2Ab8BAxJYZgK+oeUbgWpJtQXy4uvdbQe+AHL7zRvkrGsrcJ/f\n9OrAz866xqWDelc669oArAfye10vkA/fpQWngAlxthFw+zeJepPcv2lc6z3AT/hGx64D7grwfZtY\nvYH42a3h1BPzeCjA929i9QbUZ9dvfgl8/9aeudx9e8l63CyUEg98hwd/B0KAbM6OuCnOMg2BT53n\ntYAfkmoLjAL6O88HACOd5xWcP1pWoKTTPqbHuBao4TxfBtwf4PWuBG4OsP2bA6gLdOe/X/iBuH8T\nqzfR/etBrVWBws7zisD+AN+3idUbiJ/d7ECQ87wwcNjvdSDu38TqDajPrt86FwPvcmlAJblv4z7S\n8l58bi74bQrMAVDfqL3cIlIoibZNgTDneRjwkPO8CfFc8CsihYFrVXWds9wcvzYBV6/ftpL6W6Vp\nvap6VlW/A877byBQ929C9fpJbP+mda2bVPWQ83wLkF1EsgXwvo23Xr9tBdpn95yqRjvTrwaiIaA/\nu/HW6ydgPrsAItIU2IlvPELMNLf71vUbS2luLvhNaJnE2hZS1cMAzj+SggmsK+aC36JO+8TqCKR6\nY8x27lv4Qjy1elFvQgJ1/yYlsf3rWa0i8giw3vmCCPh9G6feGAH32RWRmiKyGd9hycedAAjY/ZtA\nvTEC4bNbyKkzJ9AfeAnwH2ntdt9eItDvZn4lQ8k1xatwL7XqbaOqlYHb8d2Zo+0VbCc+tn99UmP/\nJrtW516WI/AdlkxtqVVvQH52VfVHVa2E7/zOYBEJTqG6EpJa9QbKZzcmMIcCY1X1bArUkaYBdQDf\nibMYxZxpcZcpHs8yibU95HRHY7qRR1ysK77pgVovqhrh/PcMvnsWxndvwrSuNyGBun8T5GL/pnmt\nIlIM3w2U2zmHfBPbRlyBUm/Af3bVd+/Q00ClRLYRqPUG4me3FjBaRHYCT+EL056JbCNxSZ2kSqkH\nkIV/T7gF4zvhVj7OMo3492Rdbf49WZdgW3wn6wbof08sxgw6CAZKcemggx/w/SEF38m6BoFar7Ou\n65xlsuE7+djd63r91tkBeDPOtIDbvwnV62b/evBZyOMs91A8+y3g9m1C9brZtx7VWxLI4jwPwXe4\nKV8A799463Wzf9O61jjrHcqlgySS3Lf/WUdSC6TkA9+Qxe34BgAMdKb18N+p+H7a43d8x1qrJ9bW\nmZ4P+MqZtxzI4zdvkLOuuMO2b8F3z8AdwPhArhff6LOfnA/HL8BYnKANgHp3AUeBk8Be/h3hE6j7\n9z/1ut2/aVkr8Dy+IbrriTN8OBD3bUL1ut23HtTbFt+NrNc79TUO5O+GhOp1u3/TstY4240bUK72\nrf/DLtQ1xhgTkAJ9kIQxxphMygLKGGNMQLKAMsYYE5AsoIwxxgQkCyhjjDEByQLKGGNMQLKAMsYY\nE5AsoIwxxgSk/wdFUDrdgI2WvgAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -105,9 +105,9 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEYCAYAAADmugmLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmUHGd97vHvr7unZ9Xi0YxkWbuN8G4SR9jGJBzABC8Q\nxAmGmOMbHMc5ukkg4YabE+zLPSHJPTmBQEIgNzFxwNgOXGyzJPbhmsWRWcIFLzI43pdBxpZk7ZK1\nejRdXb/7R7090zOa0SzdM1Xd/XzOmdPVb1VXvaWW5tH71ltvmbsjIiKSRbm0KyAiIjIRhZSIiGSW\nQkpERDJLISUiIpmlkBIRkcxSSImISGZNGlJmdrOZ7TKzx6vKPmFmT5vZo2b2r2a2sGrdDWY2YGbP\nmNmlVeWXhbIBM7u+/qciIiLNZiotqVuAy8aU3Quc4+7nAc8CNwCY2VnAVcDZ4TP/aGZ5M8sD/wBc\nDpwFvDdsKyIiMqFJQ8rdfwDsG1P2HXePwtv7geVheT1wu7sfc/fngQHggvAz4O6b3X0IuD1sKyIi\nMqFCHfbx28AdYXkZSWhVbA1lAFvGlF842Y77+vp89erVdaiiiIhkycMPP7zH3fsn266mkDKzjwAR\n8KVa9jNmnxuADQArV65k06ZN9dq1iIhkhJm9MJXtZjy6z8x+C3g7cLWPTAC4DVhRtdnyUDZR+XHc\n/SZ3X+fu6/r7Jw1ZERFpYjMKKTO7DPgT4B3ufrRq1d3AVWbWbmZrgLXAg8BDwFozW2NmRZLBFXfX\nVnUREWl2k3b3mdmXgTcCfWa2FfgoyWi+duBeMwO4391/192fMLM7gSdJugHf7+7lsJ8PAN8G8sDN\n7v7ELJyPiIg0EcvyozrWrVvnuiYlItJ8zOxhd1832XaacUJERDJLISUiIpmlkBIRkcxSSImISGYp\npDLkyw++yAt7j6RdDRGRzFBIZURUjrnh64/xlU1b066KiEhmKKQyolRObgU4OFhKuSYiItmhkMqI\nUhwDcPAVhZSISIVCKiOi4ZZUNMmWIiKtQyGVEVFZLSkRkbEUUhlRipOW1AGFlIjIMIVURpQ1cEJE\n5DgKqYwYGTiha1IiIhUKqYyoDJx4pVRmKIpTro2ISDYopDKiVB4JpkPq8hMRARRSmRHFI8/10jB0\nEZGEQiojoqqWlIahi4gkFFIZUZkWCTTCT0SkQiGVEVFc3ZJSd5+ICCikMiOqaknphl4RkYRCKiOq\nR/epu09EJKGQyohRo/vUkhIRARRSmaGWlIjI8RRSGVG5JpUzDZwQEalQSGVEZXTfSV1FtaRERAKF\nVEZU7pPq7S7qmpSISKCQyojKjBOLeoqaFklEJFBIZURldN+i7nbdJyUiEiikMkLdfSIix1NIZUSl\nu6+3u8ixKGawVE65RiIi6Zs0pMzsZjPbZWaPV5X1mtm9ZvZceD0plJuZfcbMBszsUTM7v+oz14Tt\nnzOza2bndBpXqdLd11ME4JCuS4mITKkldQtw2Ziy64GN7r4W2BjeA1wOrA0/G4AbIQk14KPAhcAF\nwEcrwSaJqByTzxkLOtsA3dArIgJTCCl3/wGwb0zxeuDWsHwr8M6q8ts8cT+w0MyWApcC97r7Pnff\nD9zL8cHX0sqxU8gZ8ztCSOm6lIjIjK9JLXH37WF5B7AkLC8DtlRttzWUTVQuQanstOVzzO8sAHo6\nr4gI1GHghLs74JNuOEVmtsHMNpnZpt27d9drt5kXxTGFvFpSIiLVZhpSO0M3HuF1VyjfBqyo2m55\nKJuo/DjufpO7r3P3df39/TOsXuMplZ1CLsd8XZMSERk205C6G6iM0LsGuKuq/H1hlN9FwIHQLfht\n4K1mdlIYMPHWUCZBVI5py48MnNANvSIiUJhsAzP7MvBGoM/MtpKM0vsYcKeZXQe8ALwnbH4PcAUw\nABwFrgVw931m9r+Ah8J2f+HuYwdjtLQodgp5o72Qo5jPaSZ0ERGmEFLu/t4JVl0yzrYOvH+C/dwM\n3Dyt2rWQUjmmLZfDzJjfWVB3n4gImnEiM6Jy0pICmN/RpoETIiIopDIjimMKueTrmNfZpiHoIiIo\npDIjuU+q0pIqqCUlIoJCKjOS+6SSr2N+Z5uuSYmIoJDKjOQ+qeprUuruExFRSGVEcp9U8nUsUEtK\nRARQSGVGFDv5Skuqs8CQniklIqKQyorRAyc0f5+ICCikMiMqjwxB1/x9IiIJhVRGVKZFgmQIOsAB\nDZ4QkRankMqIUtXACbWkREQSCqmMiMYMQQddkxIRUUhlxOibefV0XhERUEhlhkb3iYgcTyGVEeXY\nh0f3dbTlaS/kdE1KRFqeQiojSuHJvBXzO/W4DhERhVRGVA9Bh8pM6LomJSKtTSGVAe4+qrsPNBO6\niAgopDKhVHaA0d19ejqviIhCKguiOAYYHoIOlZaUuvtEpLUppDKg0pKq3MwLejqviAgopDIhKict\nqbbjWlIl3D2taomIpE4hlQFRHFpSY65JlcrOYClOq1oiIqlTSGVAqdKSqhrdtyBMMntAXX4i0sIU\nUhkQlcdpSQ3P36eQEpHWpZDKgHFH92n+PhERhVQWjDu6T8+UEhFRSGVBNMEQdEBTI4lIS1NIZUAp\nHn8IOqglJSKtTSGVAeMNnJg33JJSSIlI66oppMzsj8zsCTN73My+bGYdZrbGzB4wswEzu8PMimHb\n9vB+IKxfXY8TaAaVm3mrJ5htL+TpaMtpaiQRaWkzDikzWwb8IbDO3c8B8sBVwMeBT7n7q4D9wHXh\nI9cB+0P5p8J2ApTi4yeYBU0yKyJSa3dfAeg0swLQBWwH3gx8Nay/FXhnWF4f3hPWX2Jmo38rt6jh\nllR+9NexoLNNN/OKSEubcUi5+zbgk8CLJOF0AHgYeNndK31UW4FlYXkZsCV8NgrbL5rp8ZvJeEPQ\nQc+UEhGppbvvJJLW0RrgFKAbuKzWCpnZBjPbZGabdu/eXevuGkI0zug+SIahqyUlIq2slu6+twDP\nu/tudy8BXwdeDywM3X8Ay4FtYXkbsAIgrF8A7B27U3e/yd3Xufu6/v7+GqrXOMrjTDAL0Nvdzr7D\nQ2lUSUQkE2oJqReBi8ysK1xbugR4EvgucGXY5hrgrrB8d3hPWH+f6zkUQNWTeXOjv46+eUX2HB7S\n4zpEpGXVck3qAZIBED8BHgv7ugn4MPAhMxsgueb0+fCRzwOLQvmHgOtrqHdTGRk4Mbol1d/TzlA5\n1qwTItKyCpNvMjF3/yjw0THFm4ELxtl2EHh3LcdrVqUJuvv657UDsPvwIAu62ua8XiIiadOMExkQ\njfM8KRgJqV2Hjs15nUREskAhlQHjTYsESXcfwB4NnhCRFqWQyoDxJpiFqu4+taREpEUppDJgvEd1\nQDLjRFveFFIi0rIUUhlQuSaVHxNSZkZ/T7tCSkRalkIqA0qx05Y3xpvKsG9eO3sOK6REpDUppDIg\nKsejHtNRTS0pEWllCqkMKJX9uOtRFf3z2tmtlpSItCiFVAZEcXzc8POK/nnt7D18bHh+PxGRVqKQ\nyoCo7Mc9S6qir6ed2GH/Ud0rJSKtRyGVAaWy03aC7j7QvVIi0poUUhmQdPdNMHBCISUiLUwhlQFJ\nd9/4Lam+HoWUiLQuhVQGlMrxcZPLVlRaUrpXSkRakUIqA6J44pZUdzFPZ1teLSkRaUkKqQwolSe+\nJmVmuldKRFqWQioDohOM7gPo6ymqJSUiLUkhlQHlE3T3QXJdStekRKQVKaQyoBTHxz1Lqlr/PM3f\nJyKtSSGVAdEJ5u4D6O/pYP/REqXwSA8RkVahkMqAEw2cAOibVwRgrx4jLyItRiGVAVF4ntRE+nVD\nr4i0KIVUBpzoeVJQNTXS4cG5qpKISCYopDKgdIJpkUBTI4lI61JIZUAUTzwtElRPjaRrUiLSWhRS\nGXCiCWYBOtryzOsoqCUlIi1HIZUBpfKJ75MC3SslIq1JIZUBUezkT3CfFCTXpRRSItJqFFIZMFl3\nH2hqJBFpTQqpDChNMnACknul1JISkVZTU0iZ2UIz+6qZPW1mT5nZ68ys18zuNbPnwutJYVszs8+Y\n2YCZPWpm59fnFBpbOXbcmVJL6tCxiFeGynNUMxGR9NXakvo08C13PwN4DfAUcD2w0d3XAhvDe4DL\ngbXhZwNwY43HbgqV+fgmHTjRoyf0ikjrmXFImdkC4A3A5wHcfcjdXwbWA7eGzW4F3hmW1wO3eeJ+\nYKGZLZ1xzZtEFDvACSeYhepZJxRSItI6amlJrQF2A18ws5+a2efMrBtY4u7bwzY7gCVheRmwperz\nW0NZS4tCS+pEE8xCVUjpupSItJBaQqoAnA/c6O6/CBxhpGsPAHd3wKezUzPbYGabzGzT7t27a6he\nYyiVkz+eE00wCwopEWlNtYTUVmCruz8Q3n+VJLR2VrrxwuuusH4bsKLq88tD2SjufpO7r3P3df39\n/TVUrzFEcWhJTTK6r7c7eVyHQkpEWsmMQ8rddwBbzOz0UHQJ8CRwN3BNKLsGuCss3w28L4zyuwg4\nUNUt2LKi0JKabHRfWz5Hb3dRAydEpKUUavz8HwBfMrMisBm4liT47jSz64AXgPeEbe8BrgAGgKNh\n25ZXGTgxWXcf6F4pEWk9NYWUuz8CrBtn1SXjbOvA+2s5XjMaHjgxSXcfJE/o1eg+EWklmnEiZVMd\nOAFqSYlI61FIpWyqAydgZP6+pFEqItL8FFIpK01x4AQkITVYijl8LJrtaomIZIJCKmXRFKdFAlg8\nrwOAnQcHZ7VOIiJZoZBK2VSnRQJY0dsJwIv7js5qnUREskIhlbLSFKdFAljZ2w3AC3sVUiLSGhRS\nKYumMbqvr6dIVzGvkBKRlqGQStl0RveZGSt7u9TdJyItQyGVsumM7gNYtaiLF/Yemc0qiYhkhkIq\nZSMtqamGVDdb9r9CHOteKRFpfgqplI3MODG1r2JlbxdDUczOQxqGLiLNTyGVsqnOgl6xsrcL0Ag/\nEWkNCqmUTWfgBCTXpABeVEiJSAtQSKVsOhPMApyysJN8znhhnwZPiEjzU0ilLJrGzbyQXLtatrBT\n3X0i0hIUUimbzrRIFasW6V4pEWkNCqmUlaYxwWzFyt4utaREpCUopFIWlR0zyE+zJXXglRIHjpZm\nsWYiIulTSKWsFMe0TXFkX8XwRLMaPCEiTU4hlbJy2ad8j1RFZRi6uvxEpNkppFIWxT6tQRMwckOv\nBk+ISLNTSKWsVI6nNWgCoLu9QF9PuyaaFZGmp5BKWTSD7j7QMHQRaQ0KqZSV4njKUyJVW9XbpamR\nRKTpKaRSFpV9ylMiVVu5qIvtBwc5FpVnoVYiItmgkEpZFMdTnhKp2sreLtxhy75XZqFWIiLZoJBK\nWak8/dF9UDUbuu6VEpEmppBKWTSD0X1QdUOvrkuJSBNTSKUsin1aUyJV9PUU6SrmFVIi0tQUUilL\n7pOafkiZGSt7NQxdRJpbzSFlZnkz+6mZfSO8X2NmD5jZgJndYWbFUN4e3g+E9atrPXYziMo+oyHo\nkFyX0g29ItLM6tGS+iDwVNX7jwOfcvdXAfuB60L5dcD+UP6psF3LK8Uzu5kXYNWibrbsf4U4PJNK\nRKTZ1BRSZrYceBvwufDegDcDXw2b3Aq8MyyvD+8J6y8J27e0mQ6cgGQY+lAUs+PgYJ1rJSKSDbW2\npP4O+BMgDu8XAS+7exTebwWWheVlwBaAsP5A2L6lRTMcgg6aDV1Emt+MQ8rM3g7scveH61gfzGyD\nmW0ys027d++u564zqRTPvCW1KgxD171SItKsamlJvR54h5n9HLidpJvv08BCMyuEbZYD28LyNmAF\nQFi/ANg7dqfufpO7r3P3df39/TVUrzHMdIJZgFMWdtBeyPHszsN1rpWISDbMOKTc/QZ3X+7uq4Gr\ngPvc/Wrgu8CVYbNrgLvC8t3hPWH9fe7e8lf8o/LMJpgFKORznHXKfB7bdqDOtRIRyYbZuE/qw8CH\nzGyA5JrT50P554FFofxDwPWzcOyGU4pnNsFsxbnLFvDEtgMa4SciTakw+SaTc/fvAd8Ly5uBC8bZ\nZhB4dz2O10yicjzj7j6Ac5Yt4LYfv8DmPUd41eKeOtZMRCR9mnEiZbXczAtw3vIFADyuLj8RaUIK\nqZRFNXb3vaq/h462HI9uVUiJSPNRSKVsps+Tqijkc5y1dL5aUiLSlBRSKXJ3SmWnbYY381acu2wB\nT7x0gLIGT4hIk1FIpagSKrW0pCAZPHFkqMzze3S/lIg0F4VUiqLhkKqtJXXe8oUAul9KRJqOQipF\npXIy5WFbDaP7AE7r76ajLcdjWw/Wo1oiIpmhkEpRVK5PS6oyeOKxbS/Xo1oiIpmhkEpRKU5aUrVe\nk4Kky++Jlw5q8ISINBWFVIqGW1I1ju6DZPDE0aEym3dr8ISINA+FVIrqGVLnLktmntDgCRFpJgqp\nFFW6+2b6PKlqp/V309mWV0iJSFNRSKWoXgMnkn2Ex3ZoeiQRaSIKqRRVhqDXMsFstWTmCQ2eEJHm\noZBKUeVm3lommK127rIFvFLS4AkRaR4KqRRF5foNQQc4Nzy2QzOii0izUEilqBSuSdU6wWzFaf09\nGjwhIk1FIZWiqI438wLkc8Y5y+bzyBbNPCEizUEhlaJ6ju6reN1pffzn1pfZd2SobvsUEUmLQipF\n9ZpgttolZyzGHb7/7K667VNEJC0KqRTV61Ed1c5dtoC+nnbue3p33fYpIpIWhVSKhltSdQypXM54\n0+n9fP+ZXcOjB0VEGpVCKkXDT+atY3cfwJvPWMzBwYiHX9hf1/2KiMw1hVSKZmPgBMAvr+2jLW/c\n94yuS4lIY1NIpaieE8xWm9fRxgVrernvKYWUiDQ2hVSK6vmojrHedPpintt1mC37jtZ93yIic0Uh\nlaJSnadFqnbJmUsA+K66/ESkgSmkUlTvCWarrenrZk1fNxvV5SciDUwhlaKozo/qGOtNpy/mx5v3\ncnQompX9i4jMNoVUikqzeE0K4JIzFzMUxfxoYO+s7F9EZLbNOKTMbIWZfdfMnjSzJ8zsg6G818zu\nNbPnwutJodzM7DNmNmBmj5rZ+fU6iUYVxTE5S27AnQ2vXd1LT3uBjU+ry09EGlMtLakI+O/ufhZw\nEfB+MzsLuB7Y6O5rgY3hPcDlwNrwswG4sYZjN4Wo7LMyaKKiWMjxy6/q43vP7MJdT+sVkcYz49+Q\n7r7d3X8Slg8BTwHLgPXArWGzW4F3huX1wG2euB9YaGZLZ1zzJlAqe92eJTWRXz1rCdsPDPLA8/tm\n9TgiIrOhLv+NN7PVwC8CDwBL3H17WLUDWBKWlwFbqj62NZS1rCiOZ7UlBfC285aysKuNW/7fz2f1\nOCIis6Hm35Bm1gN8Dfhv7n6wep0nfUzT6mcysw1mtsnMNu3e3dwzeZfKPivDz6t1tOV57wUr+c6T\nO3Rjr4g0nJpCyszaSALqS+7+9VC8s9KNF14rV+23ASuqPr48lI3i7je5+zp3X9ff319L9TIvKsez\nNvy82m9etAoz41/uf2HWjyUiUk+1jO4z4PPAU+7+t1Wr7gauCcvXAHdVlb8vjPK7CDhQ1S3YkqLY\n6z657HhOWdjJZeeczO0Pvqh7pkSkodTy3/jXA78JvNnMHgk/VwAfA37VzJ4D3hLeA9wDbAYGgH8G\nfr+GYzeFUjmu++SyE7n24tUcHIz4+k+Oa7yKiGRWYaYfdPcfAhM1Ay4ZZ3sH3j/T4zWjqOyzdiPv\nWL+06iTOXbaAW370c66+cCVJQ1hEJNs040SK5mJ0X4WZce3rVzOw6zA/HNgzJ8cUEamVQipFczG6\nr9rbzltKX0+7hqOLSMNQSKUoiuM56+4DaC/kufrCldz3zC6e33Nkzo4rIjJTCqkUlWZ5WqTxXH3R\nSor5HJ/49tNzelwRkZlQSKWoHM9tdx/A4nkd/OEla7nnsR3c++TOOT22iMh0KaRSNFc384614Q2n\ncvqSefzpXY9z+JjumxKR7FJIpWiuB05UtOVz/NW7zmXHwUE++e1n5vz4IiJTpZBKUTJwIp2v4PyV\nJ/G+i1Zx649/ziNbXk6lDiIik1FIpSh5nlR6N9X+8aWns2ReBzd8/TFK4VH2IiJZopBKUSmeu2mR\nxjOvo40/X382T20/yE0/2JxaPUREJqKQSlFUdvJzeJ/UeC49+2Tedt5SPvmdZ/jGoy+lWhcRkbFm\nPHef1C6tgRNjffLK17Dr4CB/dMcjzO9o4w2vbu5HpIhI41BLKkVpDpyo1lnM87lrXstp/T381395\nmJ++uD/tKomIAAqpVKU9cKLags42brvuAhbPb+faWx7iuZ2H0q6SiIhCKk1z+TypqVg8r4MvXnch\nxXyOqz/3AA+/oBaViKQrO78hW1AUz93zpKZqRW8XX/ydC2lvy/Eb//Rj/un7PyOOPe1qiUiLUkil\nxN0px3M/wexUvHrJPL7xB7/CW85cwl9982l+57ZN7DsylHa1RKQFZe83ZIsolZPWSVvGWlIVCzrb\nuPG/nM+fv+NsfvjcHt72mf/gW49vJ3nAsojI3FBIpSSKkxkestiSqjAzrrl4NV/7vYvpbi/wu1/8\nCb/2v3/Id5/ZpbASkTmR3d+QTW64JZWR0X0ncu7yBXzrg7/CJ9/9Gl4+WuLaLzzElZ/9Md99Zhdl\nXa8SkVmkm3lTEoW58rI2cGIihXyOK39pOe94zSl85eEt/P3GAa79wkMsW9jJe9at4D2vXc7SBZ1p\nV1NEmoxCKiVRaIFkubtvPMVCjqsvXMWVv7Sce5/cye0PbuFT//4sn974LG88fTFXX7iSN56+OPXp\nnkSkOSikUlKZdbwRuvvG017I8/bzTuHt553Cln1HueOhLdy5aQvX3bqJUxZ08N4LVvIbr13B4vkd\naVdVRBqYQiolUbgmlYVpkWq1oreLP770dD74lrVsfGonX7z/Rf7m3mf5u43PcfFpi7j8nKW89ewl\n9PW0p11VEWkwCqmUjIzua8yW1Hja8jkuO2cpl52zlOf3HOHOTVv45mPb+R//+hj/898e47Wre3nL\nmUu4+FWLOPPk+eTUJSgik1BIpaRyTSpL0yLV05q+bj582Rn8yaWn89T2Q3zr8e1864kd/OU9TwGw\nsKuN1526iItOXcQvrFjIGUvn0V7Ip1xrEckahVRKRrr7mrs1YWacdcp8zjplPh966+nsODDIj362\nhx/9bC8/GtjDNx/fAUAxn+OMpfM4b/kCzjh5Pq9eMo9XL+lhYVcx5TMQkTQppFIyMnCiOVtSEzl5\nQQe/fv5yfv385bg7Lx0Y5NEtL/PI1pd5dMsB7vrpS3zx2IvD2/fPa+fUvm5WLepi1aLkdcVJXZyy\nsJNF3UV1GYo0OYVUSkaGoLfuL1kzY9nCTpYt7OTyc5cCDAfXszsP8dzOQzyz4zA/33uE+57ezZ7D\nW0d9vpjPcfKCDpYu6GDx/A76eor0z2unv6edvp52Tuou0ttVpLenSHcxj1nr/lmLNCqFVEpKwzfz\ntlZLajLVwfWm0xePWnfkWMSL+46yZd9Rth8Y5KUDr7D95UF2HBjk8W0H2H3oGIePRePuty1vzO9o\nY0FnG/M7k9d5HQXmdYTX9gLd7QV6wmtXe57uYoGuYp7OYp6uYp6utgIdxRzFfE6BJzJH5jykzOwy\n4NNAHvicu39sruuQBcPXpFq4JTVd3e0Fzlw6nzOXzp9wm6NDEbsPHWPvkSH2Hxli35Eh9h8dYv/R\nEgdeCT9HS+w7MsSL+45yaDDi0GCJY1E85XrkDDrbkvBqL+TpaMuNem1vy9FeSJaLhWS5OOZ9W94o\n5nO0FZLQKxZytOUrP8m6QliulBeGy41CLllXyOco5JJtcobCU5rOnIaUmeWBfwB+FdgKPGRmd7v7\nk3NZjywYHoKuayp11VUssGpRgVWLuqf1uaEo5sixiCNDEUeOlTkyFHH0WJmjQxGvlMocCcvHophX\nhsoMlsocLZU5VooZjMocK5UZLMUMlpLPDkUxx6Lk/VAUJ+/LyetsagsBVgjhls8ZbTkjXynPGfmc\nUcgb+er3o15Ded7IW1Kez4XlMWWFnJGrvNrI+8r2uZyRN8iP2S4fXnOV/eaSgK3su1KeM4b3lwvv\nR5aNXI6RZWN43zbectjOhj+TvFbWV8oU9Nky1y2pC4ABd98MYGa3A+uBWQmpwVKZ3YeOzcaua7bj\nQFKvVhs4kVXFQo5iochJ3bM7mtDdKZWdoXJMKYoZCsFVKseUyk6pnIRbVPV+qBwTlZ0oTraNYh9e\nH8XhteyU45hS1bpynKyPwnIpTrapfh/HlX3EHB1yYveq9TFx7JTdKZfDazz6J4qTz5Rjp1nmGh4J\nrSSwhsOMqlCrCk0Y2abymbH7sHH2YcPrR9ZVth27nVXVq/IKVfuoWoaRfVR/xqqPEdZVjoOBjfnc\n8Ptx9rl28TyuuXj1nHwfcx1Sy4AtVe+3AhfO1sGeeOkA77rxx7O1+7roKureoFZiZhQLRrGQgyab\ngMM9Ca1ydXDFDIdbXBVy8agyhpery2MP5SEoY4d4TCi6H78udpLXuGo5fMbD+8prOSx71fG8ah9l\ndxjeB1WfH71vr1pX+YzDqPow5tgOo/YTNsF9dD2dcOwYysTD5x2H7RleTv68K/sIq0Y+P/YYMOo4\njCl3qrcHqt6/7rRS04bUpMxsA7ABYOXKlTXta9Wibj5x5Xn1qNasWNhVZE3f9LqlRLLKzMI1tLRr\nIs1krkNqG7Ci6v3yUDbM3W8CbgJYt25dTR0IfT3tvHvdisk3FBGRTJrrCyIPAWvNbI2ZFYGrgLvn\nuA4iItIg5rQl5e6RmX0A+DbJEPSb3f2JuayDiIg0jjm/JuXu9wD3zPVxRUSk8Wj8s4iIZJZCSkRE\nMkshJSIimaWQEhGRzFJIiYhIZimkREQks6wyx1MWmdlu4IU67KoP2FOH/WSNzqux6Lwai85rdq1y\n9/7JNsp0SNWLmW1y93Vp16PedF6NRefVWHRe2aDuPhERySyFlIiIZFarhNRNaVdglui8GovOq7Ho\nvDKgJa5JiYhIY2qVlpSIiDQghZSIiGRWZkPKzC4zs2fMbMDMrh9nfbuZ3RHWP2Bmq6vW3RDKnzGz\nSyfbZ3iKE+EZAAAErklEQVQI4wOh/I7wQMYTHqNBzutLofxxM7vZzNpC+RvN7ICZPRJ+/rTBzusW\nM3u+qv6/EMrNzD4Ttn/UzM5vsPP6j6pzesnM/i2UN8r3dbOZ7TKzx8fsq9fM7jWz58LrSaG8Ub6v\nic7rE2b2dKj7v5rZwlC+2sxeqfq+Pttg5/VnZratqv5XTLavWeXumfsheSDiz4BTgSLwn8BZY7b5\nfeCzYfkq4I6wfFbYvh1YE/aTP9E+gTuBq8LyZ4HfO9ExGui8rgAs/Hy56rzeCHyjgb+vW4Arx6nH\nFcA3w/leBDzQSOc1Zr9fA97XKN9XWPcG4Hzg8TH7+mvg+rB8PfDxRvm+JjmvtwKFsPzxqvNaPXbb\nBjuvPwP+eJx6TLiv2fzJakvqAmDA3Te7+xBwO7B+zDbrgVvD8leBS8zMQvnt7n7M3Z8HBsL+xt1n\n+Mybwz4I+3znJMfI/HlB8oBJD4AHgeU11D0z53UC64HbwinfDyw0s6WNdl5mNp/k7+S/1VD3uT4v\n3P0HwL5xjle9r7H/vrL+fU14Xu7+HXePwtv7aax/Xyf6viYy4b5mU1ZDahmwper91lA27jbhL8oB\nYNEJPjtR+SLg5aq/bNXHmugYjXBewyzp5vtN4FtVxa8zs/80s2+a2dkzPaGxdZ6oDtT/vP4ydLN8\nyszap1GP6Ujl+yL5Jb7R3Q9WlWX9+zqRJe6+PSzvAJZMox7TMdfnVe23SVqFFWvM7Kdm9n0z+5Vp\n7Gc8aZzXB8K/r5sr3bM17KsmWQ0pqa9/BH7g7v8R3v+EZN6s1wB/z+z9j3223ACcAbwW6AU+nG51\n6u69JN2zFY3+fQ0Lrfqmuu/FzD4CRMCXQtF2YKW7/yLwIeD/hNZxo7gROA34BZJz+Zs0K5PVkNoG\nrKh6vzyUjbuNmRWABcDeE3x2ovK9JN0MhXGONdExGuG8CPv4KNBP8o8FAHc/6O6Hw/I9QJuZ9TXK\nebn79tBFdAz4AiNdDlOpx3Sk8X31kZzP/62UNcj3dSI7K9144XXXNOoxHXN9XpjZbwFvB64OAUzo\nDtsblh8muXbz6umfzvF1PkHd6nZe7r7T3cvuHgP/zOz9+5qa2b7oNZMfoABsJrk4V7lQePaYbd7P\n6AuFd4blsxl9cW8zyYXHCfcJfIXRAyd+/0THaKDz+h3gR0DnmGOczMiN3BcAL1beN8h5LQ2vBvwd\n8LHw/m2MvhD/YCN9X+Fzvwvc2mjfV9XnVnP8hfhPMHrgxF83yvc1yXldBjwJ9I8p72dkcMKpJL/I\nexvovJZWLf8RyXWoSfc1Wz+zuvMa/8JdATxL8r+Qj4SyvwDeEZY7SMJlgGRQwKlVn/1I+NwzwOUn\n2mfVX6QHw76+ArRPdowGOa8olD0Sfv40lH8AeCL8hbsfuLjBzus+4DHgceCLQE8oN+AfwvaPAesa\n6bzCuu8Bl40pa5Tv68sk3UMlkusV14XyRcBG4Dng3wm/sBvo+5rovAZIrtFU/n1VQuJd4ft6hKSr\n9tca7Lz+JXwfjwJ3Mzq0xt3XbP5oWiQREcmsrF6TEhERUUiJiEh2KaRERCSzFFIiIpJZCikREcks\nhZSIiGSWQkpERDLr/wP7Q5OgQjHhPQAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHs1JREFUeJzt3X2wHXWd5/H3NwkhPBkikGQgPASQ8KASAwQfdmvvAiJg\nTWDGKQqkVlmnRgtYnVm2lGSnCsJUzQSmdETLwdISMSqK6K4lpREQ4Y6Ci6BREAIYwUAIJiAJMQIJ\n94bf/tF9kpOb+9gP54n3q6rr9PmdPt3fHG/z8df96+5IKSFJUqeZ1O4CJEkajgElSepIBpQkqSMZ\nUJKkjmRASZI6kgElSepIYwZURNwQERsi4qGmtn+NiEcj4tcR8X8i4g1Nny2JiNX552c2tS+IiIci\n4rcRcV31/xRJUi8ZTw/qRuA9Q9ruAE5IKc0HVgNLACLieOB84DjgbOD6iIj8O58H/jaldAxwTEQM\nXackSTuMGVAppXuATUPa7kwpvZa/vQ+Yk88vAm5OKQ2mlNaQhdfCiJgN7JdSeiBf7qvAeRXUL0nq\nUVWcg/oQsCKfPwRY2/TZurztEOCZpvZn8jZJkoZVKqAi4h+BgZTSNyuqR5IkAKYU/WJEXAycA5zW\n1LwOOLTp/Zy8baT2kdbtDQIlqQuklGLspYoZbw8q8il7E3EW8HFgUUppW9NytwIXRMTUiJgLHA3c\nn1JaD2yOiIX5oIkPAN8bbYMppa6arrrqqrbX8HqouVvr7saau7Vua27dVLcxe1AR8Q2gDzggIp4G\nrgL+NzAV+FE+SO++lNKlKaVVEXELsAoYAC5NO/8VlwFfAaYBK1JKt1X8b5Ek9ZAxAyql9P5hmm8c\nZfllwLJh2n8JvGVC1UmSXre8k0RF+vr62l3ChHVjzdCddXdjzdCddVtz74hWHEecqIhInViXJGmn\niCB1wCAJSZJayoCSJHUkA0qS1JEMKElSRzKgKrBlCzz3XLurkKTeYkBV4OtfhyuvbHcVktRbDKgK\nbN0KGze2uwpJ6i0GVAUGBuDFF9tdhST1FgOqAgaUJFXPgKqAASVJ1TOgKmBASVL1DKgKNALK2wdK\nUnUMqAoMDGTTK6+0uxJJ6h0GVAUGB7NXD/NJUnUMqAoMDGSvBpQkVceAqoABJUnVM6AqYEBJUvUM\nqAoMDECEASVJVTKgKjAwAG98I2ze3O5KJKl3GFAVGBiAgw6yByVJVTKgKmBASVL1DKgKDAzAgQca\nUJJUJQOqAoOD9qAkqWoGVAXsQUlS9QyoCngOSpKqZ0BVwICSpOoZUBUwoCSpegZUBZoDymdCSVI1\nDKgKDAzAfvtltzvaurXd1UhSbzCgKjAwAHvsAfvv72E+SaqKAVWBgQGYMsWAkqQqjRlQEXFDRGyI\niIea2mZExB0R8XhE3B4R05s+WxIRqyPi0Yg4s6l9QUQ8FBG/jYjrqv+ntM/goD0oSaraeHpQNwLv\nGdK2GLgzpTQPuAtYAhARxwPnA8cBZwPXR0Tk3/k88LcppWOAYyJi6Dq7VvMhPu9oLknVGDOgUkr3\nAJuGNJ8LLM/nlwPn5fOLgJtTSoMppTXAamBhRMwG9kspPZAv99Wm73Q9z0FJUvWKnoOamVLaAJBS\nWg/MzNsPAdY2LbcubzsEeKap/Zm8rSc0Amr6dANKkqoypaL1VH71z9KlS3fM9/X10dfXV/UmKpGS\nPShJrw/9/f309/e3bHtFA2pDRMxKKW3ID989l7evAw5tWm5O3jZS+4iaA6qTbd8OkyZlkwElqZcN\n7SxcffXVtW5vvIf4Ip8abgUuzuc/CHyvqf2CiJgaEXOBo4H788OAmyNiYT5o4gNN3+lqjd4TGFCS\nVKUxe1AR8Q2gDzggIp4GrgKuAb4dER8CniIbuUdKaVVE3AKsAgaAS1PacfOfy4CvANOAFSml26r9\np7SHASVJ9RgzoFJK7x/hozNGWH4ZsGyY9l8Cb5lQdV3AgJKkengniZIGB7O7SIABJUlVMqBKsgcl\nSfUwoEoyoCSpHgZUSQaUJNXDgCqpOaCmTcsu3PWZUJJUngFVUnNARXjDWEmqigFVUnNAgffjk6Sq\nGFAlDQ0oz0NJUjUMqJIMKEmqhwFVUvOFumBASVJVDKiS7EFJUj0MqJIMKEmqhwFVkgElSfUwoEoy\noCSpHgZUSQaUJNXDgCrJgJKkehhQJRlQklQPA6okb3UkSfUwoEryQl1JqocBVdJwh/i8m7kklWdA\nlTQ0oPbeO2vbtq19NUlSLzCgShoaUD4TSpKqYUCVNDSgwPNQklQFA6okA0qS6mFAlWRASVI9DKiS\nDChJqocBVZIBJUn1MKBKGnqhLhhQklQFA6oke1CSVA8DqqThAsr78UlSeQZUSfagJKkeBlRJBpQk\n1aNUQEXE/4yIhyPioYi4KSKmRsSMiLgjIh6PiNsjYnrT8ksiYnVEPBoRZ5Yvv/1GCihvdSRJ5RQO\nqIg4GPgosCCl9FZgCnAhsBi4M6U0D7gLWJIvfzxwPnAccDZwfUREufLbzx6UJNWj7CG+ycA+ETEF\n2AtYB5wLLM8/Xw6cl88vAm5OKQ2mlNYAq4GFJbffdgaUJNWjcECllJ4FPgU8TRZMm1NKdwKzUkob\n8mXWAzPzrxwCrG1axbq8rasZUJJUjzKH+PYn6y0dDhxM1pO6CEhDFh36vqcMDu4eUPvskz0P6tVX\n21OTJPWCKWMvMqIzgCdTShsBIuK7wDuBDRExK6W0ISJmA8/ly68DDm36/py8bVhLly7dMd/X10df\nX1+JUuszMLD7nSSanwl10EHtqUuSqtbf309/f3/LthcpFevgRMRC4AbgFGAbcCPwAHAYsDGldG1E\nXAHMSCktzgdJ3AScSnZo70fAm9IwBUTEcM0d6cQTYflymD9/1/ZjjoFbb4Vjj21PXZJUt4ggpVTb\nYLfCPaiU0v0R8R3gV8BA/vpFYD/gloj4EPAU2cg9UkqrIuIWYFW+/KVdk0KjGO4cFMCsWbBhgwEl\nSUWVOcRHSulq4OohzRvJDv8Nt/wyYFmZbXaa0QJq/frW1yNJvcI7SZQ0UkDNnp31oCRJxRhQJdmD\nkqR6GFAl2YOSpHoYUCWNNUhCklSMAVXScBfqQtaD8hCfJBVnQJU03IW6YA9KksoqfKFunbrpQt3J\nk7PbGg0Nqa1b4Q1vyD7r/nu2S9Lu6r5Q1x5UCa+9lk2TJ+/+2bRpsPfesGlT6+uSpF5gQJXQGCAx\nUg/JoeaSVJwBVcJII/gaHGouScUZUCWMFVAOlJCk4gyoEsbTg/IQnyQVY0CVYA9KkupjQJUw0kW6\nDfagJKk4A6qEkS7SbbAHJUnFGVAleA5KkupjQJXgOShJqo8BVcJYATVzJjz/fHa3CUnSxBhQJYwV\nUHvuCfvuCxs3tq4mSeoVBlQJYwUUeJhPkooyoEoYT0A5UEKSijGgSrAHJUn1MaBKGOtCXbAHJUlF\nGVAljHWhLtiDkqSiDKgSPAclSfUxoErwHJQk1ceAKmG8PSgDSpImzoAqYbw9KA/xSdLEGVAljCeg\nZs6EP/4Rtm9vTU2S1CsMqBLGE1B77AHTp8MLL7SmJknqFQZUCeMJKPA8lCQVYUCVMJ4LdcHzUJJU\nhAFVwngu1AWHmktSEaUCKiKmR8S3I+LRiHgkIk6NiBkRcUdEPB4Rt0fE9Kbll0TE6nz5M8uX314e\n4pOk+pTtQX0GWJFSOg44EXgMWAzcmVKaB9wFLAGIiOOB84HjgLOB6yMiSm6/rcYbUB7ik6SJKxxQ\nEfEG4D+nlG4ESCkNppQ2A+cCy/PFlgPn5fOLgJvz5dYAq4GFRbffCexBSVJ9yvSg5gJ/jIgbI2Jl\nRHwxIvYGZqWUNgCklNYDM/PlDwHWNn1/Xd7WtexBSVJ9xnGKf9TvLgAuSyn9IiI+TXZ4Lw1Zbuj7\ncVm6dOmO+b6+Pvr6+opVWSN7UJJeT/r7++nv72/Z9iKlQvlBRMwC/l9K6cj8/X8iC6ijgL6U0oaI\nmA3cnVI6LiIWAymldG2+/G3AVSmlnw+z7lS0rlb68IfhpJPgIx8Zfbk//AHmzzekJPWWiCClVNtY\ngsKH+PLDeGsj4pi86XTgEeBW4OK87YPA9/L5W4ELImJqRMwFjgbuL7r9TjDeHtRBB8HGjd7uSJIm\noswhPoCPATdFxB7Ak8B/ByYDt0TEh4CnyEbukVJaFRG3AKuAAeDSrugmjWK8F+pOmQIzZmT35Js1\nq/66JKkXlAqolNKDwCnDfHTGCMsvA5aV2WYnGW8PCnY+uNCAkqTx8U4SJYz3ThLg3SQkaaIMqBIm\n0oNyqLkkTYwBVcJED/HZg5Kk8TOgSrAHJUn1MaBKKDJIQpI0PgZUCRMJqMMPh6eeqrceSeolBlQJ\nEwmoI4+EJ56otx5J6iUGVAnjvVAX4OCD4cUX4eWX661JknqFAVXCRHpQkybBEUfAk0/WWpIk9QwD\nqoSJXKgLcNRRBpQkjZcBVcJEelDgeShJmggDqoSJBpQ9KEkaPwOqBHtQklQfA6oEe1CSVB8DqoSJ\nBtTcubBmjQ8ulKTxMKBKmGhA7bUXHHAAPPtsfTVJUq8woEqYyIW6DZ6HkqTxMaAKSikLqIlcBwWe\nh5Kk8TKgChochMmTIWJi37MHJUnjY0AVNNHzTw1HHmkPSpLGw4AqqGhAHXWUPShJGg8DqiB7UJJU\nLwOqoKIBNXMmbN0KmzdXX5Mk9RIDqqCiARVhL0qSxsOAKqhoQIHnoSRpPAyogopcpNtgD0qSxmZA\nFWQPSpLqZUAVNNGn6TazByVJYzOgCrIHJUn1MqAKKhNQhx8O69Zl65AkDc+AKqhMQE2dCn/xF/D0\n09XWJEm9xIAqqExAgeehJGkspQMqIiZFxMqIuDV/PyMi7oiIxyPi9oiY3rTskohYHRGPRsSZZbfd\nTmUDyvNQkjS6KnpQfw+sanq/GLgzpTQPuAtYAhARxwPnA8cBZwPXR0z0YRWdwx6UJNWrVEBFxBzg\nHOBLTc3nAsvz+eXAefn8IuDmlNJgSmkNsBpYWGb77VTmQl2wByVJYynbg/o08HEgNbXNSiltAEgp\nrQdm5u2HAGublluXt3Ule1CSVK/CARUR7wU2pJR+DYx2qC6N8lnXquocVOrJX0eSyit4LwQA3gUs\niohzgL2A/SLia8D6iJiVUtoQEbOB5/Ll1wGHNn1/Tt42rKVLl+6Y7+vro6+vr0Sp1StzJwmAGTOy\nR8a/8AIceGB1dUlSXfr7++nv72/Z9iJV8H/hI+K/AP8rpbQoIv4VeCGldG1EXAHMSCktzgdJ3ASc\nSnZo70fAm9IwBUTEcM0d5QtfgF/+Er74xeLrOOUU+Mxn4J3vrK4uSWqViCClVNtgtzqug7oGeHdE\nPA6cnr8npbQKuIVsxN8K4NKOT6FRlD3EB/C2t8HKldXUI0m9pswhvh1SSv8B/Ec+vxE4Y4TllgHL\nqthmu1URUAsWwP33V1OPJPUa7yRRUBUBddJJ2WFCSdLuDKiCqgiot7wFVq+GV16ppiZJ6iUGVEFl\nL9QFmDYN5s2Dhx6qpiZJ6iUGVEFV9KAgOw/lQAlJ2p0BVVBVAeV5KEkangFVUNkLdRsMKEkangFV\nUFU9qLe+FR5/HLZtK78uSeolBlRBVQXUXnvB0UfDb35Tfl2S1EsMqIKqCijwMJ8kDceAKsiAkqR6\nGVAFVRlQDjWXpN0ZUAVVcaFuw/z5sGoVvPpqNeuTpF5gQBVUZQ9q772zJ+w+/HA165OkXmBAFVRl\nQIGH+SRpKAOqoKou1G1woIQk7cqAKqjqHpQBJUm7MqAKqjqg5s/PzkENDFS3TknqZgZUQVUH1L77\nwuGHZ6P5JEkGVGFVBxR4mE+SmhlQBVV5HVSDASVJOxlQBdXRg1q4EH72s2rXKUndyoAqqI6AOvVU\neOopePbZatcrSd3IgCqojoCaMgXe/W647bZq1ytJ3ciAKqjqC3Ub3vte+MEPql+vJHUbA6qgOnpQ\nAGedBT/+sTeOlSQDqqC6AmrmTJg3D+65p/p1S1I3MaAKqiugAM45B1asqGfdktQtDKiC6gwoz0NJ\nkgFVWB0X6jYsWACbNsGTT9azfknqBgZUAdu3QwRMqunXmzQJzj7bw3ySXt8MqALqPLzX4HkoSa93\nkVJqdw27iYjUiXU1bNkCBx+cvdblxRfhsMNg/frskfCS1GkigpRS1LV+e1AFtKIHtf/+2bmou++u\ndzuS1KkKB1REzImIuyLikYj4TUR8LG+fERF3RMTjEXF7RExv+s6SiFgdEY9GxJlV/APaoa67SAx1\nzjmO5pP0+lWmBzUIXJ5SOgF4B3BZRBwLLAbuTCnNA+4ClgBExPHA+cBxwNnA9RFRW9ewTq3oQUE2\n3HzFCujgo52SVJvCAZVSWp9S+nU+/2fgUWAOcC6wPF9sOXBePr8IuDmlNJhSWgOsBhYW3X47tSqg\njj8+C6dHHql/W5LUaSo5BxURRwDzgfuAWSmlDZCFGDAzX+wQYG3T19blbV2nVQEVARdeCF/+cv3b\nkqROU/pMSkTsC3wH+PuU0p8jYugBqUIHqJYuXbpjvq+vj76+vqIlVq7Oi3SHuuSSbLDEP/0T7Ltv\na7YpScPp7++nv7+/ZdsrNcw8IqYA3wd+mFL6TN72KNCXUtoQEbOBu1NKx0XEYiCllK7Nl7sNuCql\n9PNh1tvRw8wffBA+8IHstRX++q+z50RdcklrtidJ49Hpw8y/DKxqhFPuVuDifP6DwPea2i+IiKkR\nMRc4Gri/5PbbolWH+Bo++lH43OccLCHp9aXMMPN3ARcBp0XEryJiZUScBVwLvDsiHgdOB64BSCmt\nAm4BVgErgEs7ups0ilYHVF9fdvuju+5q3TYlqd0Kn4NKKd0LTB7h4zNG+M4yYFnRbXaKVgdURNaL\n+uxn4fTTW7ddSWon7yRRQKsu1G120UVw773w+9+3druS1C4GVAGt7kEB7LMPXHwxXH99a7crSe1i\nQBXQjoACuPRSuPFGePnl1m9bklrNgCqgXQF15JHwrnfBTTe1ftuS1GoGVAGtvFB3qI99DD71KXj1\n1fZsX5JaxYAqoF09KIDTToOjjoJPfrI925ekVjGgCmhnQEXAv/87/Nu/wRNPtKcGSWoFA6qAdgYU\nwBFHwBVXZIMmuvNSZ0kamwFVQLsDCuAf/iF7HPzNN7e3DkmqiwFVQDsu1B1qjz3gC1+Ayy+HTZva\nW4sk1cGAKqATelAAb397dqfzxYvbXYkkVc+AKqBTAgrgX/4Fvv99byQrqfcYUAV0UkBNnw5f+xpc\ncAE89FC7q5Gk6hhQBbTzQt3hnHZa9ryoc87xZrKSekebT/V3p4EB2Guvdlexq/PPh+efh/e8B+65\nB2bObHdFklSOPagCOukQX7PLLssO9Z1zDmzZ0u5qJKkcA6qATg0ogKuvhpNOgkWL4IUX2l2NJBVn\nQBXQyQEVkT0zasGCLKjuu6/dFUlSMQZUAZ1woe5oJk/O7nh+3XVZT+q667wlkqTuY0AV0Mk9qGbn\nnZf1oL7+dXjf+2DjxnZXJEnjZ0AV0C0BBdlDDu+9Fw47DObNg2uugZdeandVkjQ2A6qAbgoogD33\nzA7z3XMP/OpX8KY3ZddNbdvW7sokaWQGVAGddqHueM2bB9/6FvzgB/DDH2ZB9c//DM8+2+7KJGl3\nBlQB3daDGuptb8tC6rvfhaefhhNOgL/6qyy0tm9vd3WSlDGgCuj2gGo46aTskR1PP51d3Hvlldnj\n5K+5Bp57rt3VSXq9M6AK6JWAathvP/i7v4MHHoDvfAdWr84OB150UXbeyiHqktrBgCqg1wKq2ckn\nww03wJNPwimnwIc/nD1i/vLL4Wc/g9dea3eFkl4vDKgCejmgGmbMyB4r/8gjsGJF9liPj3wEDj0U\nLrkk62l5KyVJdYrUgcdvIiJ1Yl0NJ58Mn/981sN4vXnssSywfvxj+OlPs5GAp58O73gHLFwIhxzS\n7goltUpEkFKK2tbfiUHQ6QF14omwfDnMn9/uStrr1Vfh/vuzp/n+/OfZ/NSpWVCddBK8+c3ZNHdu\ndvslSb3FgOpAxx8P3/52NjxbO6UEa9ZkQbVyZXZ48OGHs+dUHXssHHNMNkrw6KOz6cgjYfZsmOSB\nZqkrGVAd6Jhj4Pvfz141ti1bYNWqbHTgE0/A736XTb//PWzaBAcfnJ3bOvTQ7BDh7Nm7TgceCAcc\nYC9M6jQ9F1ARcRZwHdkAjRtSStcOs0xHB9Tcudlhrblz211J99u2DZ55BtauzaY//CGb1q/f+frC\nC1mQTZ++M6xmzNh1mj595/SGN2TTfvtl0777Zq9Tp7b7Xyv1lp4KqIiYBPwWOB14FngAuCCl9NiQ\n5To6oObMye4SPmfOzrb+/n76+vraVlMR3VTz9u1ZSD3/PNx5Zz9z5/axaRM7ps2b4U9/yl43b856\nbUMngH322XXae++d0157DT9Nm7brtOeeO1+HTlOn7nxtnv/pT7vnt27WTX8jDdbcOnUHVKufarQQ\nWJ1SegogIm4GzgUeG/VbHWa4Yebd+AfWTTVPnpz1ng48EL71rX4++tG+Ca/j1VezO7m/9BL8+c/w\n8svwyivZ68svZ+1bt2Ztjemll7LHlDTat27Nen2N1+bp1Vd3nW9M27ZBSv1Mm9bHHnvsDK899tg5\nDX0/2jRlys7X5vmhbZMn73w/0tRYZqTXb36znze+sW9HW/PnzdNwbZMnZw/QbLVu+rtu6MaaW6HV\nAXUIsLbp/TNkodVVXg/XQfWiRjDMmNH6bV95JSxZkgXWwEAWWgMDO6dG+3imwcGdU+N943Xr1t2X\naUzbt4/8fvv27Hvbt+/avm5ddoF2o63588b8cO+3b995UfdwwTV5cjY4Zuj8aG3NryO1TZqUnd9c\nuXLXtuGWG+8UMXZb8/vG/HBtze+bl1u5Em68cffvjzZfdLmRprGW2W+/bHBTK3Xsc2H/8i/bXcHI\ntmzxfIYmZtKknYcMu8nSpdlU1Guv7R5czQHW/Dpc22ivQ+cb09e+BhdcMPoy27dno05Hej+0LaXd\nl2m0DQ7uvsxw32u0Nb9vtK1dCz/5ya7bH7rMWPMT+WykabRlTj4ZvvSlqv6yxqfV56DeDixNKZ2V\nv18MpKEDJSKic09ASZJ26KVBEpOBx8kGSfwBuB+4MKX0aMuKkCR1hZYe4kspbY+I/wHcwc5h5oaT\nJGk3HXmhriRJtdxkJiLOiojHIuK3EXHFCMt8NiJWR8SvI2L+WN+NiBkRcUdEPB4Rt0fE9KbPluTr\nejQizuz0miPijIj4RUQ8GBEPRMR/LVJzq+tu+vywiNgSEZd3Q80R8daI+FlEPJz/5hMe4tLiv48p\nEfGViHgoIh7Jz9UWUlPdf5P/ltsjYsGQdXXqvjhszVXti63+nfPPS+2H7ah7wvtiSqnSiSz0fgcc\nDuwB/Bo4dsgyZwM/yOdPBe4b67vAtcAn8vkrgGvy+eOBX5Edrjwi/350eM0nArPz+ROAZ7rht25a\n57eBbwGXd3rNwGTgQeDN+fsZXfD3cSHwjXx+L+D3wGEd9FvPA94E3AUsaFrXcXTuvjhSzaX3xVbX\nXMV+2KbfesL7Yh09qB0X46aUBoDGxbjNzgW+CpBS+jkwPSJmjfHdc4Hl+fxy4Lx8fhFwc0ppMKW0\nBljNxK+tamnNKaUHU0rr8/lHgGkRUeTKqlb/1kTEucCTwCMF6m1HzWcCD6aUHs7Xtynle0cH15yA\nfSIbVLQ3sA340wRrrq3ulNLjKaXVwNDRW+fSofviSDVXtC+2+neuYj9sR90T3hfrCKjhLsYd+pSg\nkZYZ7buzUkobAPI/qJkjrGvdMNvrtJp3iIi/AVbm/yNPVKvqnpXXui/wCeBqhtlpOqzmxm99TF77\nbfmhnI93cM2z8vbvAC+TjXRdA3wypfRiB9U93u110r44phL7Yktrjoh9KL8fjlbTeJYp8ltPeF/s\nlAt1i/zI7R7dUbrmiDgBWAa8u5KKxqdI3Y0HvV8FfDql9HJk97Bp1Y1syvzWU4B3AScDW4EfR8Qv\nUkp3V1XcCMr8zqcCg8Bs4ADgpxFxZ94rqVsbbk5UWuma27Avlql5Ke3ZD8tua8L7Yh0BtQ44rOn9\nnLxt6DKHDrPM1FG+uz4iZqWUNkTEbOC5MdbVyTUTEXOA/wv8txL/4Wl13acC74uIfyU7frw9Il5J\nKV3fwTU/A/wkpbQJICJWAAuAiQRUq2u+ELgtpfQa8HxE3Eu2U6+ZQM111j3a9jp1XxxRBftiq2uu\nYj9sR90T3xcnclJtPBPZibDGybOpZCfPjhuyzDnsPPH2dnaeeBvxu2QnlK9Iu59QbgySmArMpdiJ\n2VbXvH++3Hnd9FsPWe9VFBsk0Y7f+hfANLL/Q/Yj4OwOrHlxU82fILtGEGAfsvMMb+6U37rpu3cD\nJzW979h9cZSap1NyX2x1zVXsh236rSe8Lxb+j+MY//CzyO4YsRpYnLd9BPhw0zKfy/+BD7LrSI/d\nvpu3vxG4M//sDmD/ps+W5Ot6FDiz02sG/hHYAqwk26FXAgd2et0V7hit/vt4P/Aw8BCwrNNrJgul\nW/KaHy76O9dY93lk5x9eITtP9sMu2BeHrZmK9sVW/85V7Idt+vuY0L7ohbqSpI5Uy4W6kiSVZUBJ\nkjqSASVJ6kgGlCSpIxlQkqSOZEBJkjqSASVJ6kgGlCSpI/1/qimkifxJArsAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -115,7 +115,7 @@
}
],
"source": [
- "from dcprogs.likelihood import MissedEventsG, missed_events_pdf\n",
+ "from HJCFIT.likelihood import MissedEventsG, missed_events_pdf\n",
"\n",
"tau = 2e-4\n",
"x, i, j = np.arange(0, 8*tau, tau/10.0), 2, 0\n",
@@ -145,14 +145,14 @@
"\n",
"[[ 1.00078277e+00 1.95134590e-03]\n",
" [ 2.60179453e-05 1.02029429e+00]]\n",
- "[[ -1.47868762e-09 -3.64861093e-12]\n",
- " [ -2.78092880e-13 3.23290061e-10]]\n"
+ "[[ -1.47868762e-09 1.38459950e-10]\n",
+ " [ 8.32130331e-13 3.23290061e-10]]\n"
]
}
],
"source": [
"def create_derivative(qmatrix, tau):\n",
- " from dcprogs.likelihood import inv, expm\n",
+ " from HJCFIT.likelihood import inv, expm\n",
" \n",
" If = np.identity(qmatrix.nshut)\n",
" Ia = np.identity(qmatrix.nopen)\n",
@@ -176,10 +176,11 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -191,7 +192,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/asymptotes.ipynb b/exploration/asymptotes.ipynb
index 3fcc7f8..e92139c 100644
--- a/exploration/asymptotes.ipynb
+++ b/exploration/asymptotes.ipynb
@@ -31,8 +31,8 @@
},
"outputs": [],
"source": [
- "from dcprogs.likelihood import DeterminantEq, find_root_intervals, find_roots, QMatrix\n",
- "from dcprogs.likelihood.random import qmatrix as random_qmatrix\n",
+ "from HJCFIT.likelihood import DeterminantEq, find_root_intervals, find_roots, QMatrix\n",
+ "from HJCFIT.likelihood.random import qmatrix as random_qmatrix\n",
"equation = DeterminantEq(random_qmatrix(), 1e-4)"
]
},
@@ -45,9 +45,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4HNWd7vHvr7W19sWSvMn7bsDYIC9sYTFhYEJCSIAA\nSdgxECCQO7lzyWVu7iSZzAxhMpkbyAw4hC0Q1pAQCOBAIJAA3jHGNrYj77Ita7V2WUuf+aPLIPt6\nkaWSqrv1fp6nH3VXV1f9StV+fXTqVJU55xARkcQRCroAERHxl4JdRCTBKNhFRBKMgl1EJMEo2EVE\nEoyCXUQkwQQW7Gb2sJlVmtmaHsz7GTNbaWadZnbJQe/9yMzWmtnHZvZTM7P+q1pEJPYF2WJ/FDi/\nh/NuB64BftV9opmdCpwGzACOB2YDZ/pWoYhIHAos2J1z7wC13aeZ2QQze83MVpjZn81sqjfvVufc\naiBy8GKAMJAKpAEpwJ7+r15EJHbFWh/7QuB259zJwLeB/zzSzM6594G3gN3eY5Fz7uN+r1JEJIYl\nB13AfmaWBZwKPNetmzztKJ+ZCEwDSrxJr5vZGc65P/dboSIiMS5mgp3oXw97nXMzj+EzFwOLnXNN\nAGb2KnAKoGAXkUErZrpinHMNwBYzuxTAok48yse2A2eaWbKZpRA9cKquGBEZ1IIc7vgU8D4wxczK\nzex64KvA9Wb2IbAWuMibd7aZlQOXAg+a2VpvMc8Dm4CPgA+BD51zLw3wpoiIxBTTZXtFRBJLzHTF\niIiIPwI5eFpYWOjGjh0bxKpFROLWihUrqp1zRUebL5BgHzt2LMuXLw9i1SIiccvMtvVkPnXFiIgk\nGAW7iEiCUbCLiCQYBbuISIJRsIuIJBgFu4hIglGwi4gkmFi6uuOgEIlEL+FgBrqLn4j0BwV7P6pr\nbuetDZUs21rH2l317Kxrpaa5HYgGe2FWGiNyw0wfkcvMUbmcMamIEXnpAVctIvFOwe4z5xzvbarh\n4b9s4e2NVXRGHNnhZE4syeO443Ipyk4jyYzOSITKhn3sqGvh96t38dTS7QCcMDKXz584nEtPHkV+\nZmrAWyMi8UjB7qOV2+v4/kvrWLVjL4VZaVx3+jg+P2MEx43IIRQ6fLdLJOLYVNXEH9dX8tqaCv75\nlfX82x828oUTR3Dr2RMZV5g5gFshIvEukMv2lpaWukS6VkzTvk5++Pt1PLV0B8Nywtw+fyJfPqmE\ncEpSr5a3vqKBJxZv4/kV5XR0OS6eNZI7z51ESX6Gz5WLSDwxsxXOudKjzqdg75t1uxq49Vcr2VbT\nzPWnj+OOcyeTlebPH0JVjft44O1NPLF4G2Zw+zmTuOGMcaQl9+4/DBGJbwr2AbBobQXffOoD8jJS\n+Onls5g7fki/rGfn3lb+6eV1vLqmgvGFmdx76QxOHlPQL+sSkdjV02DXOPZeenLJNm55YgXThufw\n+2+e0W+hDjAyL53/+trJPHrtbNq7Ilz6wPv826INtHdG+m2dIhK/FOy98MvF27j7N2s4c3IRv7px\nLoVZaQOy3rOmFPPqHWfw5ZNKuP+tMr70X++yvaZlQNYtIvFDwX6MfvNBOd99cQ3nTitm4VWlZKQO\n7MCi7HAK9156Ig987WR21LZy4X1/5q31lQNag4jENgX7MXi3rJpvP7eaU8YP4f4rTyIlKbhf3/nH\nD+Ol205nZH4G1z22jP94Y+MnZ7WKyOCmYO+hbTXNfOPJlUwoymThVaW9Hsrop9FDMnjhllO5eOZI\n/uONv3L70x/Q1tEVdFkiEjCdoNQDzfs6ufHx5ZjBz68q9W04ox/SU5P48WUnMmVYNv/y6nr21Lex\n8KpSCnTWqsig1ecWu5mFzWypmX1oZmvN7Ht+FBZLfvDyOv5a2cT9V5zEmCGxdxaomXHTmRO4/8pZ\nrN5Zz5f+8122VjcHXZaIBMSPrph9wDnOuROBmcD5ZjbPh+XGhNfWVPD0sh3ccuYETp9UGHQ5R3Th\njBH86oa51Ld2cMkD77O+oiHokkQkAH0OdhfV5L1M8R4JcRRvT0Mbd72wmhkludx57uSgy+mR0rEF\nPHvTKSSF4PKFi/lwx96gSxKRAebLwVMzSzKzVUAl8Lpzbskh5llgZsvNbHlVVZUfq+1333tpLa3t\nXfzkKzNJTY6f48yThmbz3E2nkpWWzFcfWsKSzTVBlyQiA8iXtHLOdTnnZgIlwBwzO/4Q8yx0zpU6\n50qLior8WG2/enP9Hl75qIJvzp/EhKKsoMs5ZqOHZPDczadQnJPG1Y8s5S9/rQ66JBEZIL42Q51z\ne4G3gPP9XO5Aa2nv5P/8di2TirO48YzxQZfTa8Nz03n2plMYOySTGx5fxvub1HIXGQz8GBVTZGZ5\n3vN04LPA+r4uN0g/e6uMnXtb+eHFJ8RVF8yhFGal8cQNcxmVn8F1jy5j6ZbaoEsSkX7mR2oNB94y\ns9XAMqJ97C/7sNxA7NrbykN/3sJFM0cwZ1xiXEGxMCuNJ2+cy/C8MNc+spQV2+qCLklE+pEfo2JW\nO+dmOedmOOeOd85934/CgvLjP2zEOfj2eVOCLsVXxdlhnrpxHkXZaVzz8FKNlhFJYPHdz+Czdbsa\neOGDcq45bSyjChLvbkVDc8L86sZ55GWmcPUjSymrbAy6JBHpBwr2bn60aD054RRuPWti0KX0mxF5\n6Txx/VySQyG+/oul7NrbGnRJIuIzBbvnwx17+dOGKm46czy5GSlBl9OvxgzJ5LHrZtPU1snXf7GE\n2ub2oEsSER8p2D33vVlGbnoKV50yNuhSBsRxI3J56OpSyutaufbRZTTv6wy6JBHxiYIdWLOznjc+\n3sP1p4+LqSs39re53nXl1+ys5+YnVrCvU5f8FUkECnbg/jfLyA4nc/WpY4MuZcB9dvpQ/vVLJ/Dn\nv0ZvIqKbdYjEv8HTPD2MLdXNLFpXwa1nTSQ3PbH71g/n0tJRVDe1c89r6xmZl85dF0wNuiQR6YNB\nH+yPvruFlFCIq04dE3Qpgbr5zPGU17XwwNubKMlP52vzBvfvQySeDepgr2/t4LkV5Xz+xBEUZ4eD\nLidQZsb3vnAcu+vb+O6LaxieG2b+tKFBlyUivTCo+9ifWbadlvYurjt9bNClxITkpBD3XTGL6SNy\nuO1XH/BReX3QJYlILwzaYO/sivDYe9uYN76A40bkBl1OzMhMS+bha2ZTkJnKdY8tY0dtS9Alicgx\nGrTB/sbHlezc28q1p40LupSYU5wd5tFrZ7Ovo4trH11GfUtH0CWJyDEYtMH+9LLtDMsJM39qcdCl\nxKRJQ7NZeFUp22qaWfDL5bR3RoIuSUR6aFAGe3ldC29vrOKy0hKSkwblr6BH5o0fwr2XnMiSLbXc\n/ZuPcE5j3EXiwaAcFfPs8nIALps9KuBKYt8XZ41kc3UzP/3jXxlflMUtZ00IuiQROYpBF+xdEcdz\ny3fwmUlFlOQn3qV5+8O3zp3Elupm7nltPeMKMzj/+OFBlyQiRzDo+iHe3ljJ7vo2rpij1npPmRn3\nXjKDWaPzuPOZVRoGKRLjBl2wP7usnMKsVJ18c4zCKUks/HopQzLTuP6xZeyu13XcRWLVoAr2+tYO\n3lxfyedPHEGKDpoes6LsNB6+ZjYt7V1c/+hyXepXJEYNqnR7bc1u2rsifHHmyKBLiVtThmVz35Wz\nWF/RwB1Pr6JLV4MUiTl9DnYzG2Vmb5nZOjNba2Z3+FFYf/jtB7sYV5jJjBKdadoXZ08p5rsXTueN\nj/dwz2vrgy5HRA7ix6iYTuDvnHMrzSwbWGFmrzvn1vmwbN9U1LexeEsNd8yfhJkFXU7cu+a0cWyu\nbmbhO5sZX5jJ5XNGB12SiHj63GJ3zu12zq30njcCHwMx19fxuw934hzqhvHRdy+czmcmF/EPv13D\ne2XVQZcjIh5f+9jNbCwwC1hyiPcWmNlyM1teVVXl52p75Lcf7GLmqDzGFmYO+LoTVXJSiPuvnMW4\nwkxufmIFm6qagi5JRPAx2M0sC/g1cKdzruHg951zC51zpc650qKiIr9W2yObq5pYt7uBL5w4YkDX\nOxjkhFN4+JrZpCSFuO7RZdQ1twddksig50uwm1kK0VB/0jn3gh/L9NOrayoAuOCEYQFXkphGFWSw\n8KqT2V3fxk1PrNAFw0QC5seoGAN+AXzsnPv3vpfkv0VrK5g5Ko/huelBl5KwTh5TwL2XzGDpllru\nemG1LhgmEiA/WuynAV8HzjGzVd7jb31Yri/K61pYXV7P+certd7fLpo5kv/x2cm8sHIn971ZFnQ5\nIoNWn4c7Ouf+AsTs+MFFa/cAcP5xCvaBcPs5E9la08y/v76RMUMyuEijkEQGXMJf3fG1NbuZOixb\no2EGiJnxL186gZ11rfzP51YzIi+d2WMLgi5LZFBJ6EsKVDa2sXxbHRfoMrMDKi05iQe/fjIl+eks\neHw5W6ubgy5JZFBJ6GB/fd0enEP96wHIy0jlkWtnA3CthkGKDKiEDvY/flzJ6IIMJg/NCrqUQWnM\nkEx+flUpO+tauemJFezr7Aq6JJFBIWGDva2ji/c2VXPO1GJdGyZApWMLuPdSbxjkr3XfVJGBkLAH\nT9/fVENbR4SzpxYHXcqgd9HMkWyvaeHHr29k7JBM7jh3UtAliSS0hA32N9dXkp6SxNxxGpERC247\nZyJba1r4yRsbGT0knYtnlQRdkkjCSshgd87x5vpKTptYSDglKehyhG7DIPe28L+e/4gRuenMHT8k\n6LJEElJC9rGXVTaxc28r56gbJqakJod48GullBSks+CXK/jrnsagSxJJSAkZ7G+urwTgrCkDexVJ\nObrcjBQeu3YOqckhrn54KRX1bUGXJJJwEjbYpw7LZkSeLvoVi0YVZPDINbNpaOvk6oeXUt/aEXRJ\nIgkl4YK9sa2D5dvqNBomxh0/MpcHv34ym6ubuPHx5bR1aIy7iF8SLtiXbK6lK+L4zCR1w8S60yYW\n8uPLZrJ0Sy3femYVXRGNcRfxQ8IF+1/KqgmnhDhpTF7QpUgPfOHEEfzD56bx6poKvvfSWp3AJOKD\nhBvu+JeyauaMG0JasoY5xosbzhhPZeM+Fr6zmaE5YW49e2LQJYnEtYQK9or6Nsoqm7isVCe/xJu7\nzp9KZUMb9y7aQGFWKl+ZPTrokkTiVkIF+7tl1QCcPlH96/EmFDJ+dMmJ1LZ0cNcLH5GRmszndfNx\nkV5JqD72d8uqGZKZytRh2UGXIr0QPYHpZGaPKeBbz6zizfV7gi5JJC4lTLA75/hLWTWnTiwkFNLV\nHONVemoSD11TyrThOdzyxEre31QTdEkicSdhgr2ssonKxn2cPlHXH4l3OeEUHrtuDqMLMrjhsWWs\n2rE36JJE4oovwW5mD5tZpZmt8WN5vfEXr3/9tImFQZUgPirITOWJG+YyJCuNqx9eyvqKhqBLEokb\nfrXYHwXO92lZvfL+phpGF2RQkp8RZBnio6E5YZ68YS7pKUl87aGllFU2BV2SSFzwJdidc+8AtX4s\nqzciEceyrbW69noCGlWQwRM3zAXgip8vVriL9MCA9bGb2QIzW25my6uqqnxddllVE3UtHbq+d4Ka\nWJzF0wvm4hxcvnAxZZW63K/IkQxYsDvnFjrnSp1zpUVF/o4zX7I5OnJCLfbENbE4m6cXRFvuly9c\nomu5ixxBQoyKWbKlluG5YUrydZneRBYN93mYRbtlFO4ihxb3we6cY+mWWuaMK8BM49cT3cTiLJ66\ncR5mxhU/X8yGCoW7yMH8Gu74FPA+MMXMys3sej+W2xPbalqobNzHHHXDDBrRPvd5JIWMryx8nw+2\n1wVdkkhM8WtUzBXOueHOuRTnXIlz7hd+LLcnlm6JDsZR//rgMqEoi+duOpWccApffWjJJ9cJEpEE\n6IpZsqWWgsxUJhRlBV2KDLDRQzJ4/uZTGJWfwbWPLGPR2oqgSxKJCXEf7Eu31jBnrPrXB6vinDDP\n3DSP6SNy+MaTK/n1ivKgSxIJXFwH++76VnbUtqp/fZDLy0jlyRvmMm98AX/33IcsfGeT7sQkg1pc\nB/vyrdGDZqVj8wOuRIKWmZbMw9fM5nMzhvPPr6znuy+upbMrEnRZIoGI6xttrNxeRzglxLThOUGX\nIjEgLTmJ+y6fRUl+Og++vZmde1u574pZZKbF9ddc5JjFdYv9g+17mTEyj5SkuN4M8VEoZHzngmn8\n0xeP508bKvnKwvepbGgLuiyRARW3idjW0cXaXfXMGpMXdCkSg742bwy/uHo2m6uaufg/32PNzvqg\nSxIZMHEb7Gt31dPR5ThptPrX5dDOnlrMszedgnOOSx54jxdX7Qy6JJEBEbfBvnJb9K46CnY5kuNH\n5vK7209nRkkedzy9in9+5WMdVJWEF7/Bvr2OUQXpFGWnBV2KxLjCrDSevGEuV50yhoXvbObaR5dR\n19wedFki/SYug905x8rtdWqtS4+lJIX4/kXHc8+XT2DJ5lo+99M/s3xrYPeGEelXcRnsu+rb2NOw\nT8Eux+wrs0fz/C2nkJwU4isLF/Ozt8qIRHQykySWuAz2/VfzU7BLb8woyePlb57OBccP495FG7j6\nkaVUNe4LuiwR38RlsK/ctpdwSoipw7ODLkXiVE44hfuumMW/fOkElm6p5YL/944uIiYJIz6DfXud\nTkySPjMzrpgzmt/ddjpDc8Lc9MsVfOuZVdS3dARdmkifxF0ytndGWLe7gZmjdWKS+GPKsGx+e+tp\n3DF/Ei99uIvz/uNt3lpfGXRZIr0Wd8G+cU8j7Z0RZpTkBl2KJJCUpBDf+uxkfnvraeSmp3Dto8u4\n/akP2KPLEUgcirtg/8g7NXzGSLXYxX/Hj8zlpdtP585zJ7FobQXzf/w2j7y7RSc1SVyJu2BfXV5P\nbnoKowrSgy5FElRachJ3njuZRXd+hlmj8/jeS+u46GfvfnIbRpFYF3fB/tHOvcwoydUdk6TfjSvM\n5PHr5nD/lbOobtrHZQ++z4LHl7Opqino0kSOyJdgN7PzzWyDmZWZ2V1+LPNQ2jq62FDRyAkj1b8u\nA8PMuHDGCN769ll8+7zJvFtWzXk/eYd/+O1HVDaq/11iU5+D3cySgJ8BFwDTgSvMbHpfl3soGyoa\n6ehyOnAqAy4jNZnbzpnE239/NlfOGc1TS3dwxj1v8Y+/W8vu+tagyxM5gB+3lpkDlDnnNgOY2dPA\nRcC6w32gs6qVygdXH/OKcis28js6KXi7gsp3q3pbr0if3A4sGDGcnXtbqX6vkhXvVZGRWUdWWjJj\nc8cEXZ70iSPioCviiLjowzmIRKLT90/bfxUK5xwu+rHoT6Lz779Ixf5b7zocGVW7ae1yRJKTcUOK\nvc98MsOnn/E+ePAyIsdwH18/gn0ksKPb63Jg7sEzmdkCYAHA9OGTerWiUEcLWRYhNTnuDg1IgklL\nSWJ8URYj89PZtbeV6vZWWjsd7W2NDMsJk5OeDOg4UJAcjs4uR0dXxHt8+ryzy9EVcXRGuv+M0NmP\n1w0a39RCJJxCpDNCxd5W9n8/9h8u3P9tib42vB/dpvf8+zRgN4N0zi0EFgKUlpa64ptmHPMyVv/g\nFlKTQxTf9Ge/yxPptVHAV19+kD2NbdSV3UBNxV4mD83ia/PG8PkZI8jPTA26xITU3hlh595Wtte2\nsL2mOfqztoXtta1UNrRR29LOoRq5qckhCjJSyclMJiecQk56Ctnh/c+jPzPSkgknhwinJBFOSSLt\nk+fRn6lJIZJCRihkJJkRMj59Hoq+TgoZIdv/gPJrruHNhmRCGRnc+pP7e7fRP+zZbH4E+06i3+39\nSrxpvmpt76Klo0v/SCQmpSaHGJWfwct3ncPLq3fz2Htb+e6La/nBy+s4Z2oxXz6phLOmFOuvzWPg\nnKOupePTwO4W3jtqW9lV33pAcKcmhxhdkMGo/HRmjsqjKCuVwuw0CrP2P6Kvs9OSAxlVN5Br9CPY\nlwGTzGwc0UC/HLjSh+UeYN3u6IlJuuO8xLJwShKXnFzCJSeXsG5XA79eWc6Lq3ayaO0ectNTmD+1\nmPOOG8ZnJheSkarv8gGt7gPCu5UdtS007es8YP6i7DRGF2QwZ1wBowoyGF2QwZgh0Z9FWWmEQur+\nAh+C3TnXaWa3AYuAJOBh59zaPld2kNXl9UwDshTsEiemj8hh+ojp3HXBVN7ZWMXvP9rNHz+u5IUP\ndpKWHOL0iYWc5j0mD81KyHMzDm5176htYXtNC9tqm9lR28ru+lYih2h1jy7IYK4X3mMKMhg9JIOS\n/HT9Z9hDvvyWnHOvAK/4sazDWbOzgRlJIVJ1RUeJMylJIeZPG8r8aUPp6IqwbGstf1i7hzfXV/JH\n72JjhVmpzB0/hFmj8phRksfxI3PiJsRa2jvZWdfKjroWyuuiLe0dta2fBHljD1rd+1veanX7Iz6+\nOcC63Q1kpiYFXYZIn6QkhTh1QiGnTijkH79wHOV1Lby/qYb3NtWweHMNv1+9G4CQwcTiLKYMy2FC\nUSbji7KYUJTJuMLMAQ38fZ1dVDXuY0/DPqoao3cu213f9kmIl9e2UHPQ/WO7t7oPDu9RBWp1D4S4\n+A23d0Yoq2wkoyAuyhXpsZL8DC4tzeDS0uj4g8rGNj4qr+fD8no+Kt/LB9vreHn1rgMOEmaHkxmW\nE2ZYbpji7DAFmSlkh1PISksmOxx9pCSFCIWM5G4jNTq7HO1dXbR3RtjXGaG9M0JrRxf1LR3Ut376\naGjroK65gz2Nbew9xLXpU5KMkXnplORncN5xQynJj3aTlORHD1wWqtUduLhIyrLKJjq6HBlparFL\nYivODjN/Wpj504Z+Mq2to4st1c1srmpmW20ze7x7/lY0tFFWWc3elg5aO7r6tN70lCRy01PITY8O\n+RszJIPZ4/Ipzg4zNCeN4uwwRdlpDM0JU5CZSpKCO6bFRbCv290AQKb+hJNBKJySxLThOUwbnnPY\neTq6IjS1ddK0r5OGto7oCTjOEfFOvolEHMlJIVKTo8epUpNDn4zNzklPJi1ZjaZEEhdJuW5XA+ne\nyQEi8v9LSQqRn5mq8zwEiJPL9q7bXc+UYdn7T7IVEZEjiPlgd86xblcD00cc/s9QERH5VMwH+676\nNhraOpl+hP5FERH5VMwH+7pd0QOnarGLiPRMXAS7GUwdlh10KSIicSH2g313PeOGDOzZdiIi8SwO\ngr2BaeqGERHpsZgO9oa2DnbUturAqYjIMYjpYF+/uxHQgVMRkWMR28FeER0RowOnIiI9F9PBvqGi\nkRzvSnYiItIzMR3sG/c0Ri8lkIB3lhER6S8xG+zOOTbuaWLyUHXDiIgci5gN9srGfdS3djBF/esi\nIsckZoN9Q0V0RIxa7CIix6ZPwW5ml5rZWjOLmFmpX0VBtH8dFOwiIseqry32NcCXgHd8qOUAGyoa\nKcpOo0A3DhAROSZ9ugCLc+5joF9GrWzc08gUtdZFRI7ZgPWxm9kCM1tuZsurqqqOOG8kohExIiK9\nddQWu5m9AQw7xFt3O+de7OmKnHMLgYUApaWl7kjzlte10trRxZRhWT1dvIiIeI4a7M65cweikO42\neAdOJ6nFLiJyzGJyuOP+ETGTitViFxE5Vn0d7nixmZUDpwC/N7NFfhS1oaKRkXnpZIdT/FiciMig\n0tdRMb8BfuNTLZ/Yf40YERE5djHXFdPRFWFTlUbEiIj0VswF+7aaZjq6HJOHqn9dRKQ3Yi7Yyyqb\nAJioA6ciIr0Sc8G+qaoZgAlFCnYRkd6IuWAvq2xieG6YzLQ+HdcVERm0Yi7YN1U1qRtGRKQPYirY\nnXNsqmxSN4yISB/EVLBXNLTR3N7FBLXYRUR6LaaCff+ImAlFmQFXIiISv2Iq2DdpqKOISJ/FVLCX\nVTWRHU6mKCst6FJEROJWTAX7pspmJhZn9csdmUREBouYCvayKo2IERHpq5gJ9vrWDqoa96l/XUSk\nj2Im2DdV7R8Ro2AXEemL2Al2jYgREfFFzAR7WVUTqUkhRuWnB12KiEhci5lg31TZzNjCDJKTYqYk\nEZG4FDMpukkjYkREfBETwd7eGWF7bYuCXUTEB30KdjO718zWm9lqM/uNmeX1Zjk76lroijjGFeoa\nMSIifdXXFvvrwPHOuRnARuA7vVnI1uroXZPGKthFRPqsT8HunPuDc67Te7kYKOnNcrZ4wT5ewS4i\n0md+9rFfB7x6uDfNbIGZLTez5VVVVQe8t6W6mdz0FPIzU30sR0RkcDrqjUXN7A1g2CHeuts596I3\nz91AJ/Dk4ZbjnFsILAQoLS113d/bWtOsbhgREZ8cNdidc+ce6X0zuwa4EJjvnHNHmvdwtlQ1M3f8\nkN58VEREDnLUYD8SMzsf+HvgTOdcS2+W0dbRxa76NsYOUYtdRMQPfe1jvx/IBl43s1Vm9sCxLmBr\nzf4RMRl9LEVERKCPLXbn3MS+FrD1kxExOjlJRMQPgZ95uqU62oOjFruIiD9iINibKMxKJTucEnQp\nIiIJIfBg31rdoksJiIj4KPBg31LTrBExIiI+CjTYG9ui9zkdV6RgFxHxS6DBvq0meuB0nFrsIiK+\nCTTYN+uqjiIivgs02D+5XK9a7CIivgk82IfnhklPTQqyDBGRhBJ4V4xa6yIi/gr44GmzzjgVEfFZ\nYMHe0NZBXUsHowvUYhcR8VNgwb7dG+o4Zoha7CIifgos2HfURoN9dIGCXUTET4EF+7b9wa4Wu4iI\nr4LriqltIT8jhRxd1VFExFeB9rGrG0ZExH+BtthHawy7iIjvAgl2B+zc28rogvQgVi8iktACCfaO\nzghdEccYjWEXEfFdn4LdzH5gZqvNbJWZ/cHMRvTkc+1dEQBGqY9dRMR3fW2x3+ucm+Gcmwm8DHy3\nJx9q74wGu05OEhHxX5+C3TnX0O1lJtHu86Nq74yQmhRiaE64L6sXEZFDSO7rAszsh8BVQD1w9hHm\nWwAsAMgZMZ7JBekkhayvqxcRkYMctcVuZm+Y2ZpDPC4CcM7d7ZwbBTwJ3Ha45TjnFjrnSp1zpSSl\naAy7iEg/OWqL3Tl3bg+X9STwCvB/jzZje2eEMQp2EZF+0ddRMZO6vbwIWN+Tz0Wc04gYEZF+0tc+\n9n81symjvCs6AAAFWklEQVRABNgG3NzTD47RWaciIv2iT8HunPtybz+rPnYRkf4R2LViFOwiIv0j\nkGBPDhnpqUlBrFpEJOEFEuypyYHeQ1tEJKEFkrDZurmGiEi/CSTYi7PTglitiMigoD4REZEEo2AX\nEUkwCnYRkQSjYBcRSTAKdhGRBKNgFxFJMAp2EZEEo2AXEUkw5lyPblPq70rNqohe5vdYFALV/VBO\nLNM2Dx6DcbsH4zZD37Z7jHOu6GgzBRLsvWFmy51zpUHXMZC0zYPHYNzuwbjNMDDbra4YEZEEo2AX\nEUkw8RTsC4MuIADa5sFjMG73YNxmGIDtjps+dhER6Zl4arGLiEgPKNhFRBJMYMFuZpea2Vozi5hZ\n6UHvfcfMysxsg5n9Tbfp53vTyszsrm7Tx5nZEm/6M2aW6k1P816Xee+PHajtOxozm2lmi81slZkt\nN7M53nQzs596Na82s5O6feZqM/ur97i62/STzewj7zM/NTMLYpt6ysxuN7P13v7/Ubfpvuz3WGVm\nf2dmzswKvdcJu6/N7F5vH682s9+YWV639xJ6Px/O4bavXzjnAnkA04ApwJ+A0m7TpwMfAmnAOGAT\nkOQ9NgHjgVRvnuneZ54FLveePwDc4j3/BvCA9/xy4JmgtvcQ2/8H4ALv+d8Cf+r2/FXAgHnAEm96\nAbDZ+5nvPc/33lvqzWveZy8IevuOsN1nA28Aad7rYr/3eyw+gFHAIqIn5hUm+r4GzgOSvef3APcM\nhv18hN/HYbevPx6Btdidcx875zYc4q2LgKedc/ucc1uAMmCO9yhzzm12zrUDTwMXeS2Wc4Dnvc8/\nBnyx27Ie854/D8yPoRaOA3K857nALu/5RcDjLmoxkGdmw4G/AV53ztU65+qA14HzvfdynHOLXfQb\n9Difbn8sugX4V+fcPgDnXKU33c/9Hot+Avw90f2+X8Lua+fcH5xznd7LxUCJ9zzR9/PhHHL7+mtl\nsdjHPhLY0e11uTftcNOHAHu7fYn2Tz9gWd779d78seBO4F4z2wH8G/Adb/qxbv9I7/nB02PVZOAM\n70/rt81stjfdz/0eU8zsImCnc+7Dg95K9H2933VE/7qABN7PR3G47esXyf21YAAzewMYdoi37nbO\nvdif644FR9p+YD7wLefcr83sMuAXwLkDWV9/Ocp2JxPtYpgHzAaeNbPxA1hevzjKNv9vol0TCaUn\n/77N7G6gE3hyIGsb7Po12J1zvQmqnUT7I/cr8aZxmOk1RP+ETfb+V+8+//5llZtZMtEuj5pe1NQr\nR9p+M3scuMN7+RzwkPf8cNu/EzjroOl/8qaXHGL+wBxlu28BXvC6EpaaWYToRZH83O8D7nDbbGYn\nEO1L/tDrBSwBVnoHy+N6Xx/t37eZXQNcCMz39jfE+X7ugyNtt/9i4KDCnzjw4OlxHHhwZTPRAw/J\n3vNxfHrw4TjvM89x4MGVb3jPb+XAg6fPBr293bbzY+As7/l8YIX3/HMceEBtqTe9ANhC9GBavve8\nwHvv4ANqfxv09h1hu28Gvu89n0z0z1Pzc7/H8gPYyqcHTxN2XwPnA+uAooOmD4r9fIjfx2G3r1/W\nF+CGXky0n2kfsAdY1O29u4keQd5At6P+REcRbPTeu7vb9PHeF77M+xLsH3ER9l6Xee+PD3oHd6v5\ndGCFt4OXACd70w34mbeNH3Hgf3rXedtSBlzbbXopsMb7zP14ZxTH4sP7Uj/h1bsSOMfv/R7Lj4OC\nPWH3tVf3DmCV93hgMO3nw/xODrl9/fHQJQVERBJMLI6KERGRPlCwi4gkGAW7iEiCUbCLiCQYBbuI\nSIJRsIuIJBgFu4hIgvlvawUad7mZD+UAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD7CAYAAACSXhiEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPW5x/HPA4gdBDQWEEEBwRJLApioYSVS9BqwIEIM\nRTE3ig07qIElFlAEQb1ojGhAjWiwx7YY3XgTRVGkJAisCuqikquUKCoKPPeP30GGZZfd2Z2ZM+X7\nfr3mxdnfKfPMMjvP/M6vmbsjIiKSjHpxByAiIrlHyUNERJKm5CEiIklT8hARkaQpeYiISNKUPERE\nJGkN4g4gU8xMfZJFRGrB3a1iWUHVPNy9Ro9Ro0bV+NhseChexat4FW+64q1KQSUPERFJDSUPERFJ\nmpJHJYqKiuIOISmKN70Ub3op3vRKV7y2rXta+cTMvFBeq4hIqpgZnq4GczObYmYrzGx+QlkTMysx\ns8Vm9oKZNU7YN8LMyszsHTPrnlB+pJnNN7MlZjYxobyhmU2PznnNzFom7BsUHb/YzAam4vWIiMi2\npeq21X1Ajwplw4EX3f1A4CVgBICZHQT0BToAJwCTzWxTVrsTGOLu7YB2ZrbpmkOAle7eFpgI3Bxd\nqwkwEugIdAZGJSYpERFJj5QkD3f/O7CqQnFvYGq0PRU4OdruBUx39/XuvgwoAzqZ2V7Aru4+Ozpu\nWsI5ideaAXSNtnsAJe6+xt1XAyVAz1S8JhERqVo6G8x/4O4rANz9U+AHUXlz4KOE45ZHZc2B8oTy\n8qhsi3PcfQOwxsyabuNaIiJSR6++WvW+TI4wT2Vr9VaNNzVRXFz8/XZRUVHO9ZoQEUm30tJSSktL\n+fprmDSp6uPSmTxWmNme7r4iuiX176h8ObBvwnEtorKqyhPP+djM6gON3H2lmS0Hiiqc83JVAV17\nbTENCmZCFhGR5G36Yn3LLXDGGTBt2uhKj0vlbStjyxrBU8DgaHsQ8GRCeb+oB1VroA3wRnRra42Z\ndYoa0AdWOGdQtH06oQEe4AWgm5k1jhrPu0VllXrqqTq8OhGRArFhA0yeDBdcUPUxqeqq+yfgVUIP\nqQ/N7CxgLOGDfTHw8+hn3H0h8AiwEHgWGJowAON8YAqwBChz9+ej8inA7mZWBgwj9OTC3VcB1wFv\nAq8Do6OG80rdcUcqXq2ISH577jnYYw/o2LHqYwpqkODeezszZ8LBB8cdjYhI9urZE375Sxg4MM2D\nBHPFb34D//M/cUchIpK9liyBOXOgb99tH1dQNY+PP3YOPhiWLoXGGkooIrKVYcNgp53gxhvDz1XV\nPAoqebg7/frBT38KF10Ud0QiItnlyy9hv/3g7behZTQJlG5bRS64INy62rgx7khERLLLgw9Cly6b\nE8e2FFzyOPpo2HFHePHFuCMREcke7qFH6ra65yYquORhFn456rYrIrLZK6+E8R3HHVez4wuuzQPg\nq69CtWz2bGjdOubARESywOmnQ1ERnH/+luVqMK+wGNTll0O9enDzzTEGJSKSBcrL4Yc/hA8+gF13\n3XKfkkeF5PHee3DUUfDhh6ENRESkUP32t7B6Ndx++9b71NuqggMOgM6dYfr0uCMREYnPunXwhz9s\nfbuqOgWbPCA0nE+aFHoZiIgUoocfhkMPhfbtkzuvoJNH9+4h677yStyRiIhknjtMnAiXXJL8uQWd\nPOrVg4svhltvjTsSEZHM+9//hbVrw0SIySrYBvNN1q4Nw/Fffz20g4iIFIpTT4Xjj4ehQ6s+Rr2t\nqkgeAMOHwzffhOqbiEgheP996NQJli2DXXap+jglj20kj019nJctg0aNMhuXiEgcLr0UGjSofqyb\nksc2kgdA//6h6+6wYRkMSkQkBv/5D7RqBXPnVj8JosZ5VGPYMLjttjC3i4hIPvvjH0NbR01mz62K\nkkekc2fYc0946qm4IxERSZ8NG8IX5breZVHySDBsmBrNRSS/PfMMNGsGP/lJ3a6j5JHg1FPDErVz\n5sQdiYhIekycGL4o21atGMlR8kiw3XabpywREck38+bBkiXQp0/dr6XeVhWsXAlt2sDChbDXXhkI\nTEQkQ84+G9q2hREjan6OuurWMHlAGG25++7wu9+lOSgRkQz597/hwAPh3XdDm0dNKXkkkTwWLQqL\nwC9bprU+RCQ/jBwJK1bA73+f3HlKHkkkD4BeveDEE+Hcc9MYlIhIBnz1VRgU+Pe/Q7t2yZ2b14ME\nzaynmS0ysyVmdlUqrnn55TBhggYNikjuu+8+OPro5BPHtuR88jCzesAdQA/gYKC/mSW5rMnWjj0W\nmjTRoEERyW0bNoQvwpdfntrr5nzyADoBZe7+gbt/B0wHetf1omZwxRUwblyd4xMRic3jj4fZM44+\nOrXXzYfk0Rz4KOHn8qiszk45JTQw/eMfqbiaiEhmuYcvwKmudQA0SP0ls5cNHrz5h8MPD4/qTIFj\nvgNK0xSUiEg63QSnQc0/w+bODY9q5HxvKzM7Cih2957Rz8MBd/ebKhyXVG+rTb76CnYeZyzu7ylt\nbBIRSbfeveHJpyxUQWopn3tbzQbamNl+ZtYQ6AekrJl7p53Cv+PHp+qKIiLpt2gRzJqVvuvnfPJw\n9w3ABUAJ8C9guru/k+rneeSRMEJTRCQXTJgA552Xvuvn/G2rmqrtbSsAG2385hPnBz/QlCUikv1W\nrID27cMkiHv8QLetYnXZZXDXXbB2bdyRiIhs2x13QL9+sMce6XsOJY8aatsWjjkmjNQUEclWa9eG\nL7qXXpre51HySMKmKUvWr487EhGRyk2ZEmbIaNs2vc+j5JGEn/4UmjeHP/857khERLb27bdwyy3J\nrddRW0oeSRoxAsaMqVP7k4hIWjz4YFizo2PH9D+XkkeSTjgB6tULi8iLiGSLDRvgppvg6qsz83xK\nHkkyC/85N96o2oeIZI/HH4fddoOiosw8n5JHLZx2Gnz2GbzyStyRiIiEL7JjxoTb6rbViIz0UPKo\nhfr14aqrQu1DRCRuJSWwbh384heZe04lj1oaMAAWLoS33oo7EhEpdGPGwPDhoT02U5Q8aqlhwzDq\nfMyYuCMRkUL26qvwwQdhRHkmKXnUwa9/Hdo9Fi2KOxIRKVRjxsCVV0KDDK/OpORRBzvvDBddFLrH\niYhk2vz58OabcNZZmX/uglpJMB3OPx/atIEPP4SWLeOORkQKydixMGwY7LBD5p9bNY86atIEzjkn\nTAkgIpIp770Xelmlc82ObVHySIFLLoEHHghz6IuIZMKNN8LQodCoUTzPr+SRAnvtBWeeqdqHiGTG\n0qXwxBPhllVclDxS5Kqr4N57tVStiKTf2LFw7rnQtGl8MSh5pEiLFqGf9fjxcUciIvnsww9hxoz0\nL/ZUHSWPFBo+HP7whzDvlYhIOowdG8aYNWsWbxxKHim0777Qt69qHyKSHuXlMH16mN0ibkoeKTZi\nBNx9N3z+edyRiEi+uekmGDIE9tgj7kiUPFJuv/3ClO0TJsQdiYjkk48/DisFXn553JEESh5pcPXV\ncNddsHJl3JGISL4YNw4GD4Y994w7kkDJIw1atYJTToGJE+OORETywaefwtSpcMUVcUeymZJHmlx9\nNUyeDKtWxR2JiOS6W24JawjtvXfckWxWp+RhZn3M7J9mtsHMjqywb4SZlZnZO2bWPaH8SDObb2ZL\nzGxiQnlDM5senfOambVM2DcoOn6xmQ1MKG9lZrOifQ+ZWdZM9Lj//tCrF0yaFHckIpLLVqyA++4L\n065nk7rWPBYApwB/Syw0sw5AX6ADcAIw2ez7lXXvBIa4ezugnZn1iMqHACvdvS0wEbg5ulYTYCTQ\nEegMjDKzxtE5NwHjo2utjq6RNa65Bu64Q7UPEam9sWPhV7+C5s3jjmRLdUoe7r7Y3cuAikuu9wam\nu/t6d18GlAGdzGwvYFd3nx0dNw04OeGcqdH2DKBrtN0DKHH3Ne6+GigBekb7ugKPRttTCYksaxxw\nAPTurZ5XIlI75eUwbVoYApBt0tXm0Rz4KOHn5VFZc6A8obw8KtviHHffAKwxs6ZVXcvMmgGr3H1j\nwrX2SfHrqLPf/ja0ffzf/8UdiYjkmhtuCEs+7LVX3JFsrdo2AjObCSR2DjPAgWvc/el0BcbWtZna\nHvO94uLi77eLioooKipKLqJaaNUK+vcPg3s0666I1NTSpfDII7BkSWaft7S0lNLS0mqPqzZ5uHu3\nWjz/cmDfhJ9bRGVVlSee87GZ1QcauftKM1sOFFU452V3/9zMGptZvaj2kXitSiUmj0y6+mo49NAw\nkdk+WVc3EpFsdN11cMEFmZ/DquIX69GjR1d6XCpvWyXWAp4C+kU9qFoDbYA33P1Twu2oTlED+kDg\nyYRzBkXbpwMvRdsvAN2iRNEE6BaVAbwcHUt07qZrZZV99oGzzw5VUBGR6ixZAk8/HRaay1Z17ap7\nspl9BBwF/MXMngNw94XAI8BC4FlgqLt7dNr5wBRgCVDm7s9H5VOA3c2sDBgGDI+utQq4DngTeB0Y\nHTWcEx1zqZktAZpG18hKV10VJjRbtizuSEQk2xUXhzsVu+0WdyRVs82f6fnNzLy2r9VGGz6q7r+n\nkSND74l7763zpUQkTy1YAN26wbvvwi67pOCCZlCHz3kzw923al/OmkF1heDSS6Ft21Albdcu7mhE\nJBuNGhXuVKQkcaSRpifJoN12Cwlk1Ki4IxGRbPTWW/DGG2GJ2Wyn5JFhF14IL78M8+fHHYmIZJtr\nrw29M3fcMe5IqqfkkWG77BKWqx05Mu5IRCSblJbC4sVhUGAuUPKIwbnnwpw58OqrcUciItnAPbRz\n3HADNGwYdzQ1o+QRgx12gN/9LrxZCqSzm4hsw2OPwXffwRlnxB1JzSl5xGTAAFi9OgwEEpHCtX59\naOcYOxbq5dAncg6Fml/q1w9vlhEjwptHRArTvfdCixZhbEcuUfKI0Yknwh57hOUlRaTwrF0Lo0eH\nL5KW1DSv8VPyiJFZmG131Cj46qu4oxGRTJs0CY45Bjp2jDuS5Cl5xKxzZzjqKLj99rgjEZFM+uyz\nsFDc9dfHHUntKHlkgRtvDGt9fP553JGISKbceCP07RumLMpFSh5ZoF076NMHxoyJOxIRyYQPPght\nnbk8WFjJI0uMHAn33RfeVCKS3665BoYOzc7lZWtKySNL7L03nH9+mNtGRPLXG2/ASy+FQcK5TMkj\ni1xxBfz1rzB7dtyRiEg6uIeZta+7LvunXK+OkkcW2XXX8Ka65BJNWyKSjx57DL74AgYPjjuSulPy\nyDKDB4eBQzNmxB2JiKTSunVw5ZUwfnyYYSLXKXlkmfr1Q9/vK6+Eb76JOxoRSZU77oCDDoLjj487\nktRQ8shCxx0Hhx0WRp+KSO777LMwBcm4cXFHkjpKHllq3LjwWLEi7khEpK5Gj4Z+/aB9+7gjSR0l\njyzVti0MHKj1zkVy3aJFMH16/v0tK3lksd/+Fh5/HBYsiDsSEamtK64IS0/vvnvckaSWkkcWa9Ik\nJJDLLlPXXZFc9MIL8M47cMEFcUeSekoeWe43v4GPPoK//CXuSEQkGd9+CxddBBMnwvbbxx1N6il5\nZLnttgu9roYNU9ddkVwyaRK0aQMnnRR3JOlRp+RhZjeb2TtmNtfMHjWzRgn7RphZWbS/e0L5kWY2\n38yWmNnEhPKGZjY9Ouc1M2uZsG9QdPxiMxuYUN7KzGZF+x4yswZ1eT3Zqnv30HX3llvijkREauLj\nj8NCbxMnVn9srqprzaMEONjdDwfKgBEAZnYQ0BfoAJwATDb7fpHFO4Eh7t4OaGdmPaLyIcBKd28L\nTARujq7VBBgJdAQ6A6PMrHF0zk3A+Ohaq6Nr5KUJE+DWWzXrrkguGD4czjknd9fqqIk6JQ93f9Hd\nN0Y/zgJaRNu9gOnuvt7dlxESSycz2wvY1d03Tf03DTg52u4NbFrNewbQNdruAZS4+xp3X01IWD2j\nfV2BR6PtqcApdXk92axVK7j4Yrj88rgjEZFtefXVMGtuvs+Qnco2j7OBZ6Pt5sBHCfuWR2XNgfKE\n8vKobItz3H0DsMbMmlZ1LTNrBqxKSF7lwD4pezVZ6Ior4K234MUX445ERCqzYUPoWXXzzbk/a251\nqm0jMLOZwJ6JRYAD17j709Ex1wDfuftDKYzNqj+kRsd8r7i4+PvtoqIiioqKkosoZjvuGG5dXXgh\nzJsHDRvGHZGIJLrnnpA0+vePO5LaKy0tpbS0tNrjqk0e7t5tW/vNbDBwIptvM0GoHeyb8HOLqKyq\n8sRzPjaz+kAjd19pZsuBogrnvOzun5tZYzOrF9U+Eq9VqcTkkat69YK77oLbbw/jP0QkO6xcGVYE\nLSkBS+prbXap+MV69OjRlR5X195WPYErgF7uvi5h11NAv6gHVWugDfCGu39KuB3VKWpAHwg8mXDO\noGj7dOClaPsFoFuUKJoA3aIygJejY4nO3XStvGUWugCOGQOffBJ3NCKyyTXXQJ8+oWdkITCvw9Bl\nMysDGgKfR0Wz3H1otG8EoffTd8DF7l4Slf8I+COwA/Csu18clW8P3A8cEV2vX9TYvql2cw3hdtn1\n7j4tKm8NTAeaAG8Dv3L376qI1Wv7Wm204aOya4j3iBFh8OADD8QdiYi8/jqccgosXAi77RZ3NBWY\n1WmKCjPD3beqS9UpeeSSfEseX34JBx8M990HXbtWf7yIpMf69dCxY+jQ8stfxh1NJdKUPDTCPEft\nskto9zj3XI08F4nTHXdAs2a53UheG0oeOaxXLzjkkLDIjIhkXnk5XH89TJ6c243ktaHkkeNuuy18\n81m8OO5IRArPsGFhXEe7dnFHknlKHjmuRYswkvXcczVtu0gmPfNMGG81fHjckcRDySMPXHABrFkD\n998fdyQiheGrr8Lf3eTJsMMOcUcTDyWPPNCgAdx9N1x5JXz+efXHi0jdXH89HHUUdNvmEOr8puSR\nJ378Y+jbNyQQEUmfefPCNCQTJsQdSbyUPPLI9deHZS9rMC2NiNTC+vUwZEjo4bj33nFHEy8ljzzS\nqFG4B3vOOeGerIik1q23hhHkZ50VdyTxU/LIM716hdGuI0fGHYlIfikrC6sD3n134Y3pqIySRx66\n7bYw59Xrr8cdiUh+2LgRfv3rMPnh/vvHHU12UPLIQ3vsEdZOPvtsWLeu+uNFZNvuuQe+/houuiju\nSLKHkkeeOuMMaNMGbrgh7khEclt5eahxTJkC9evHHU32UPLIU2Zw551h4ah58+KORiQ3ucN554UB\ngYccEnc02UXJI4/ts0/oUnj22aGLoYgk58EHYdmysH6ObEnJI8+ddVaYLnrcuLgjEckt5eVw6aUw\nbRo0bBh3NNlHySPPmW0eDavbVyI14x4GA154IRxxRNzRZCcljwLQsiXccgsMGKDeVyI1cffdsGqV\nbldti5JHgRg4EA44AEaNijsSkez23nthmYOpU8Oko1I5JY8CYRa+TU2dCn//e9zRiGSnDRtCO+HV\nV0OHDnFHk92UPArIHnuErruDBsGXX8YdjUj2mTgxfNG6+OK4I8l+Sh4Fpndv6NIFLrss7khEssvC\nhaFr+x//CPX0yVgt/YoK0MSJUFICzz4bdyQi2eGbb6B//5A8WreOO5rcoORRgBo1Ct+uzjkH/v3v\nuKMRid+IEdCuXRhQKzWj5FGgunQJDYODBoUZQ0UK1XPPwWOPaar1ZCl5FLDiYli9GiZNijsSkXis\nWBEGA06bBk2axB1NbqlT8jCz35nZPDN728yeN7O9EvaNMLMyM3vHzLonlB9pZvPNbImZTUwob2hm\n06NzXjOzlgn7BkXHLzazgQnlrcxsVrTvITNTr+wkbLcd/OlPMGYMzJkTdzQimbVxIwweHG5VdekS\ndzS5p641j5vd/TB3PwJ4BhgFYGYHAX2BDsAJwGSz7yuEdwJD3L0d0M7MekTlQ4CV7t4WmAjcHF2r\nCTAS6Ah0BkaZWePonJuA8dG1VkfXkCS0bh1qHv37q/uuFJbbbw+jyDVwtnbqlDzcPfHjZmdg093z\nXsB0d1/v7suAMqBTVDPZ1d1nR8dNA06OtnsDU6PtGUDXaLsHUOLua9x9NVAC9Iz2dQUejbanAqfU\n5fUUqv794eijtdCNFI558+D668OsudttF3c0uanObR5mdr2ZfQj8klBDAGgOfJRw2PKorDlQnlBe\nHpVtcY67bwDWmFnTqq5lZs2AVe6+MeFa+9T19RSq226Df/wDHnoo7khE0us//4G+fUOX9QMOiDua\n3FVt8jCzmVEbxabHgujfXwC4+7Xu3hJ4ELgwhbHVpN+D+kakyC67wPTpYWRtWVnc0Yikhzv8939D\nURGceWbc0eS2ahuY3b1bDa/1J0K7RzGhdrBvwr4WUVlV5STs+9jM6gON3H2lmS0Hiiqc87K7f25m\njc2sXlT7SLxWpYqLi7/fLioqoqioqMpjC9ERR8Do0dCnD7z2Guy0U9wRiaTWnXfC4sXh/S2VKy0t\npbS0tNrjzN1r/SRm1sbd3422LwSOdfe+UYP5g4QG7ubATKCtu7uZzQIuAmYTks1t7v68mQ0FDnH3\noWbWDzjZ3ftFDeZvAkcSakpvAj9y99Vm9jDwmLs/bGZ3AvPc/a4qYvXavlYbbfio2v+ecok7/OpX\nsP32cO+9cUcjkjpvvQU9e4bE0aZN3NFkkFn4w6716Ya7b3WXp65tHmOjW1hzgeOBiwHcfSHwCLAQ\neBYYmvDJfT4wBVgClLn781H5FGB3MysDhgHDo2utAq4jJI3XgdFRwznRMZea2RKgaXQNqQMz+P3v\nYdYsJQ/JH6tXh3aOyZMLLHGkUZ1qHrlENY/kvPMO/OxnMHMmHH543NGI1J47nHoq7Ltv6BhScLK0\n5iF5qkOH0A++T5/wrU0kV40fD8uXw7hxcUeSX5Q8pEr9+oV7xGedVacvLiKxmTkzJI8ZM0I7nqSO\nkods0/jx8MkncOONcUcikpylS2HAgDB2qWXL6o+X5GguKNmm7bcPM4526gSHHgq9esUdkUj11q6F\nk08Oy8mqR356qOYh1dpnH3j00bD+x8KFcUcjsm3uYabcww+HC1M5bFm2oOQhNdK5c2hw7N07TCYn\nkq1uuQXefRfuukvrc6STkofU2KBBcNJJoSF9/fq4oxHZ2gsvwIQJ8PjjsOOOcUeT35Q8JCnjxsGG\nDWHZTpFs8q9/hQbyP/85jOmQ9FLykKQ0aAAPPwxPPKER6JI9VqwIteJbb4Vjjok7msKg3laStGbN\n4Jln4NhjQxfI44+POyIpZF9/HXpWDRyomXIzSTUPqZV27cLtgV/+Ev75z7ijkULlHpaRbdUKEibN\nlgxQ8pBa+9nPwm2Ck04KAwlFMq24GJYtg/vuU8+qTNNtK6mTM8+E99+HX/wC/vY32HnnuCOSQnHf\nfTBtWpgBeocd4o6m8KjmIXV27bVwyCHhFpa68Eom/OUvocff88/DnnvGHU1hUvKQOjODu+8ODZfn\nnqtJFCW9Zs0Kk3U++SQceGDc0RQuJQ9JiYYNwxxY8+eH+YRE0mHRotCzatq0MOuBxEfJQ1Jml13g\n2WfDGJAJE+KORvLN8uVhiYCbboITTog7GlGDuaTU7ruHKSKOPTZsDxwYd0SSD1auDInjvPPCNDkS\nPyUPSbmWLUND5nHHQZMmoSeWSG2tWQM9eoTaxpVXxh2NbKLbVpIWHTrAU0+FqbFLSuKORnLVl1/C\niSfCUUeF21Uay5E9lDwkbTp1CrOb/upX8NJLcUcjuebrr8PiYx06wKRJShzZRslD0uroo8M0Jv36\nwSuvxB2N5Ip16+DUU2HvveH3v4d6+qTKOvovkbTr0gWmT4c+feAf/4g7Gsl269ZB375hPY6pU6F+\n/bgjksooeUhGdO0KDzwAp5wCr70WdzSSrb75JrxHttsufOFooC49WUvJQzKme/fwTbJ3bygtjTsa\nyTZffRV65jVuHBJHw4ZxRyTbouQhGXXCCWExqdNPh+eeizsayRZffgn/9V+hjeOBB1TjyAUpSR5m\ndpmZbTSzpgllI8yszMzeMbPuCeVHmtl8M1tiZhMTyhua2fTonNfMrGXCvkHR8YvNbGBCeSszmxXt\ne8jM9JbLAccdF7rxDh4Mjz4adzQStzVrwgDAAw4IM+WqjSM31Dl5mFkLoBvwQUJZB6Av0AE4AZhs\n9n1HuzuBIe7eDmhnZj2i8iHASndvC0wEbo6u1QQYCXQEOgOjzKxxdM5NwPjoWquja0gO+MlPwkDC\nCy6A+++POxqJyyefhA4VRxwRJtdU4sgdqah53ApcUaGsNzDd3de7+zKgDOhkZnsBu7r77Oi4acDJ\nCedMjbZnAF2j7R5AibuvcffVQAnQM9rXFdj03XUqcEoKXo9kyBFHwF//GiZSvPXWuKORTCsrC125\nTz8dbrtN3XFzTZ3+u8ysF/CRuy+osKs58FHCz8ujsuZAeUJ5eVS2xTnuvgFYE90Gq/RaZtYMWOXu\nGxOutU9dXo9k3kEHhe67f/gDXHopbNxY/TmS+956K9Q4RoyAa67RAMBcVG0bgZnNBBKXWzHAgWuB\nqwm3rNKhJm8nveXyQMuWIYH07g39+4ceWVoZLn+9+GJYOOzuu8P06pKbqk0e7l5pcjCzQ4BWwLyo\nPaMFMMfMOhFqBy0TDm8RlS0H9q2knIR9H5tZfaCRu680s+VAUYVzXnb3z82ssZnVi2ofideqVHFx\n8ffbRUVFFBUVVXmsZFaTJmEOrAEDwiR4TzwRyiS/3HNPqGnMmAE/+1nc0UhlSktLKa1JX3p3T8kD\nWAo0ibYPAt4GGgKtgXcBi/bNAjoRag3PAj2j8qHA5Gi7H6HNBKAJ8B7QOGF7t2jfw8AZ0fadwLnb\niM9ri+LanyvJ2bDBfdgw9/bt3ZcsiTsaSZX1690vu8y9XTv9v2ZcHT77wum4V/KZmsqurR4lBNx9\noZk9AiwEvgOGRkEAnA/8EdgBeNbdn4/KpwD3m1kZ8HmUQHD3VWZ2HfBm9ByjPTScAwwHpkf7346u\nITmsXr3QeH7ggXDMMaHPf7d03RiVjPjii3Cbau3aMLtA06bVnyPZzzZ/puc3M/PavlYbbfiowvg9\nZZO//Q3I73WVAAALIElEQVTOOCP0xrrwQjWq5qKlS0O7RqdOMHlymHZEMswM6vA5b2a4+1Z/feoc\nJ1mrS5fwTfWee+DXvw4T5knueO65sA7H2WeHxnEljvyi5CFZrXVrePVVWL06jAl4//24I5LqbNwI\no0eHhP/oo3Dxxao15iMlD8l6u+wS1gQZMCB8k3388bgjkqqsXBkmN/zrX2H27NBuJflJyUNygln4\nBvv003DJJWFA4bffxh2VJHrllTBrwIEHhuSx995xRyTppOQhOaVzZ5gzB959N9zGWrQo7ojku+/g\n2mtD54Y774QJE9S+UQiUPCTnNG0KTz4JZ50VbovccYemNYnLe+/BsceG6UbmzoUTT4w7IskUJQ/J\nSWYwdGhoTL///jCl9/Jtzi8gqbRxY0janTuHKWWeeQb23LP68yR/KHlITmvXLsyLdcwx4X77Pfeo\nFpJuS5aEbtQPPQR//3toi9KMuIVH/+WS8xo0gJEjYebMMDtvURG8807cUeWf9eth3Dj46U/DNOqv\nvALt28cdlcRFyUPyxmGHhdtYp58e7sMXF8M338QdVX4oLQ01u5ISeOMNuOgiLdxU6JQ8JK/Urx+m\nMpk7F+bPhw4dwhiRApmFJ+XKy0ObxqBBIRmXlMD++8cdlWQDJQ/JSy1awGOPwb33wg03hOm/33or\n7qhyxxdfwO9+B4cfDm3bhtuAp52mkeKymZKH5LXjjgtJY9AgOOkkOPPM0OArlVu3LiwJ27Zt+D29\n8UZIIjvtFHdkkm2UPCTv1a8P55wTPgwPOigMLhw0KIxRkODbb0MtrX17eOGF8HjgAd2ikqopeUjB\n2HXXsIrdu++GD8XOnWHwYFiwIO7I4rN2LUyaBAccELreTp0axmwcdljckUm2U/KQgtO4MYwaBWVl\n4fZM9+5h6duSksJpWF++PPwO9t8/dLl9/PHQ1VlLw0pNKXlIwWrSJNREli0LPYouvxwOOQQmToTP\nPos7utRzh5degj594NBDw2v829/CtOk//nHc0Umu0UqCNTlXKwkWBPfwLXzKFHjqqVAjOfts+PnP\nc3uiv7IyePBB+NOfoGHDMK3LgAHhNp4UgDStJKjkUZNzlTwKzurVm9sA3nsPevcO39hzJZGUlYXp\n6x9+GD74IMx4e+aZ0LGjutsWHCWPulHykNr68MNwa+fPfw5TwB93XKiVdOuWPb2R1q4NS/Y+/zz8\n5S+wZk3omnzaaXD88WEKFylQSh51o+QhqfDpp/Dii6FxvaQkjH/4yU9Cz63OncOguu23T28MGzeG\ndpq5c2HWrHCrbcGC8NzHHx9W8jvySE1WKBElj7pR8pBUc4eFC8NAutdfD49Fi2C//cJ4ifbtQ2+u\n5s3Dqnr77APNmlX/oe4eRnivXAmffAJLl4ZksXRpGOk9f37oMXbYYeE2VJcu0KmTBvJJFZQ86kbJ\nQzJh3brQRrJoUfigLysLCeDjj8Nj9WrYcUfYeefw2H572LAhPNavh6+/hlWrYIcdwqJXe+4JrVuH\nR6tWYYnXH/4wJCGRGklT8tCdUJEU2n77MIr9oIMq379+PXz1VWijWLs2JJsGDcIo+AYNNieNhg0z\nG7dIspQ8RDKoQQNo1Cg8RHKZmtRERCRpdUoeZjbKzMrNbE706Jmwb4SZlZnZO2bWPaH8SDObb2ZL\nzGxiQnlDM5senfOambVM2DcoOn6xmQ1MKG9lZrOifQ+ZmWpSIiIZkIqaxwR3PzJ6PA9gZh2AvkAH\n4ARgstn3Q5PuBIa4ezugnZn1iMqHACvdvS0wEbg5ulYTYCTQEegMjDKzxtE5NwHjo2utjq4hIiJp\nlorkUdl41d7AdHdf7+7LgDKgk5ntBezq7rOj46YBJyecMzXangF0jbZ7ACXuvsbdVwMlwKYaTlfg\n0Wh7KnBKCl6PiIhUIxXJ4wIzm2tm9yTUCJoDHyUcszwqaw6UJ5SXR2VbnOPuG4A1Zta0qmuZWTNg\nlbtvTLjWPil4PZSWlqbiMhmjeNNL8aaX4k2v0jRdt9rkYWYzozaKTY8F0b+/ACYD+7v74cCnwPgU\nxlaTGXjSMktPzr05FG9aKd70UrzpVZqm61bbwOzu3Wp4rT8AT0fby4F9E/a1iMqqKk8852Mzqw80\ncveVZrYcKKpwzsvu/rmZNTazelHtI/FalSouLv5+u6ioiKKioiqPFREpRKWlpTVKkHXqnWRme7n7\np9GPpwL/jLafAh40s1sJt53aAG+4u5vZGjPrBMwGBgK3JZwzCHgdOB14KSp/AbghuiVWD+gGDI/2\nvRwd+3B07pPbijcxeYiIyNYqfrEePXp05Qe6e60fhAbv+cBc4Algz4R9I4B3gXeA7gnlPwIWEBrR\nJyWUbw88EpXPAlol7BsclS8BBiaUtyYkmyWEBLLdNmJ1PfTQQw89kn9U9plaMHNbiYhI6miEuYiI\nJE3JQ0REklZwycPM+pjZP81sg5kdWcn+lmb2hZldmlCW9JQq6Y7XzI43szfNbJ6ZzTaz47I53mhf\nyqasSRczOyx6rrfN7A0z+3Ft488UM7swimmBmY3N9nijGC4zs43RWK6sjdfMbo7imWtmj5pZo4R9\nWRdvRWbW08wWRbFcldKL16XBPBcfwIFAW0JvriMr2f9nQuP7pQllrwMdo+1ngR7R9nnA5Gj7DMKo\n+ozECxwG7BVtHwyUZ3m8HYC3CT38WhE6U1jc8VYS/wtEHTwIU+u8HG0flGz8GXo/FxFmXWgQ/bx7\nbX/fGYy5BfA8sBRoms3xAscD9aLtscCYbH4/VIi9XhTXfsB2hI5N7VN1/YKrebj7Yncvo5IBhmbW\nG3gf+FdCWTJTqvw8U/G6+zyPukm7+7+AHcxsu2yNl9RMWZPyeCuxEdg0U8JubB471Ivk48+E84Cx\n7r4ewN0/i8pr8/vOlFuBKyqUZWW87v6ib57FYhYh8UH2vh8SdQLK3P0Dd/8OmE74PadEwSWPqpjZ\nzsCVwGi2/OBLZkqV1YnV8Ewxsz7AnOgNkq3xpmLKmkzEewlwi5l9SJicc0TFWCI1iT8T2gE/szC7\n9Mtm9qOoPCvjNbNewEfuvqDCrqyMt4KzCTUJyI14K8aY0ljycgpzM5sJ7JlYROivfI27P135WRQD\nt7r7V2a1nvWkVifWMt5N5x4MjCEMnkz6qWtxTp3iraOUTEezrfgJtykudvcnoqR8L7X73abMNuK9\nlvA33MTdjzKzjoTbrvtnPsqE4LYd79XE/PusqCbvZzO7BvjO3R+KIcSslJfJw2s+pUqizsBpZnYz\n0ATYYGbfAI+R5JQqGYoXM2sRxTcgqjonxpRt8aZsyppaPPcWthW/md3v7hdHx80ws3vqEH9KVBPv\nuYT3AO4+O+qo0CyKIbGDQezxmtkhhPaBeRa+obUA5liYcSLr4t3EzAYDJ7J5pm+2EVfa401CVb/T\n1IijIScbHoSpTX5Uxb5RbNlgPotw/9AI1daeUflQNjfo9iONDboV4yXcl58LnFzJsdkY76YGxoaE\nmQESGxhjjzchzn8BXaLtnwOzaxt/ht7H/w2MjrbbAR9kc7wVYl9KqDVlbbyE5R/+BTSrUJ6V8VaI\nsT6bG8wbRp8XHVJ2/TheVJwPQuPVR8DXwCfAc5UcUzF5JD2lSrrjJdxi+QKYE72J57C5p03WxRvt\nS9mUNWl8f/wUeDP6nb4GHFHb+DP0ft4OuD96/jeJEl+2xlsh9veJeltla7zRc34Q/X3NIfoyk63x\nVhJ/T2BxFMvwVF5b05OIiEjS1NtKRESSpuQhIiJJU/IQEZGkKXmIiEjSlDxERCRpSh4iIpI0JQ8R\nEUmakoeIiCTt/wE4uMoWx/pVTgAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -55,7 +55,7 @@
}
],
"source": [
- "from dcprogs.likelihood import plot_roots\n",
+ "from HJCFIT.likelihood import plot_roots\n",
"plot_roots(equation, size=25000);"
]
},
@@ -69,7 +69,7 @@
{
"data": {
"text/plain": [
- "[]"
+ "[]"
]
},
"execution_count": 5,
@@ -78,9 +78,9 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEDCAYAAAA849PJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX9x/HXJ2GEGVbYI7JlqwHROqqioFKwjtZRi7XK\nT6vV+mt/VmtrbdVqa3+1Q1tFpK0Vt0X5CQ6stW4gIHuGnbDCCiFk38/vj1xtpAkEbnLPHe/n45HH\nvefcb873cxnnfc73LHN3REQk+aQEXYCIiARDASAikqQUACIiSUoBICKSpBQAIiJJSgEgIpKkYj4A\nzGyame00s2V1aHuGmS00swozu/SQzyaZ2drwz6SGq1hEJD7EfAAAfwHG1bHtZuAa4JnqM82sHfBT\n4GRgFPBTM2tbfyWKiMSfmA8Ad38P2FN9npn1MbM3zGyBmb1vZgPDbTe6+xIgdMhixgJz3H2Pu+8F\n5lD3UBERSUiNgi7gGE0BbnD3tWZ2MvBH4OzDtO8GbKk2nRueJyKStOIuAMysJXAq8KKZfTa7aXAV\niYjEp7gLAKqGrfa5+4ij+J084MvVprsD79ZjTSIicSfmjwEcyt33AxvM7DIAqzL8CL/2JnCembUN\nH/w9LzxPRCRpxXwAmNmzwMfAADPLNbNvA1cB3zazxcByYGK47UgzywUuAx43s+UA7r4HuBeYH/75\neXieiEjSMt0OWkQkOcX8HoCIiDSMmD4I3KFDB8/MzAy6DBGRuLFgwYJd7p5Rl7YxHQCZmZlkZ2cH\nXYaISNwws011bashIBGRJKUAEBFJUgoAEZEkpQAQEUlSCgARkSRVLwFgZuPMbLWZ5ZjZHTV83tTM\nng9/PtfMMuujXxEROXYRB4CZpQKPAucDg4ArzGzQIc2+Dex1977Aw8AvI+1XREQiUx/XAYwCctx9\nPYCZPUfVvXlWVGszEbgn/P4l4BEzM9d9KETkCEIhp7QiRHF5JSXllRSXV1JcVklpRSUl5SHKK0NU\nVDoVIaciVO19ZeiLryGnMvSfq5zPVkPV10b++WdfbGsG9tlr+Hb0ZpBi9u/5GJ/dqT7FrNrv/Ps9\nZqRUa1v9dzFo1jiVrwzvWn9/iLWojwCo6WErJ9fWxt0rzKwAaA/sOnRhZjYZmAzQs2fPeihPRIJU\nVhFiT1EZuw6UsruojL1FZRSWlLO/pIL9JeUUllSwv7jqtbDks9eKz1f4pRWHPuAv8XVo2TRuAqBe\nufsUqp74RVZWlvYQRGJUcVkl2wqK2VZQwraCErYXFLO1oIRdhVUr+s9W+oUlFbUuo0mjFFqnNaJ1\nWmNapTWiVVpjOqen0bJpI5o3aUTTxik0a5xKWuNUmoV/qs9La5xK41SjUUoKqSlG41QLv1ZNNwp/\nVvVqn2+RQ3hrO+zf86g2z74wz6naW6h6Bcc/30Nwh9Dnn/27DbXMdzz82b+X83kbh5SU6pU0nPoI\ngDygR7Xp7uF5NbXJNbNGQDqwux76FpEGUlEZIm9fMRt3H2TT7iI2hV9z9xazfX8J+w6W/8fvtGvR\nhI6tmtKuRROGdEunfYsmVT8tq+Z1aNmEti2afL7CT2ucGsA3i0R0VszRUh8BMB/oZ2bHUbWivxy4\n8pA2M4FJVN3X/1LgHY3/i8SGwpJy1u48wJrthazZcYCc/ANs2l1E3t5iKqqNmac1TqFXuxb0aNeM\nkZnt6JyeRpf0NLqkN6NLehqd09PicIWe3CIOgPCY/s1UPWErFZjm7svN7OdAtrvPBJ4E/mZmOcAe\nqkJCRKKoMuRs2HWApXkFrNpWyOodhazdcYC8fcWft0lrnEKfjJYM6ZbO+GFd6NW+BZntW5DZvjkZ\nrZp+PiwiiSGmHwiTlZXluhuoyNELhZwNu4tYmlvA0rwCluYWsHxrAUVllUDV2HufjJb079SS/p1a\nhX9a0qNt86iNP0vDMLMF7p5Vl7YxdxBYRI5eSXkli7fsI3vTXrI37mHBpr3sDx98bdoohcFdW3Pp\nSd0Z2r0NQ7ul0yejBY1SdSOAZKcAEIlDRaUVzNuwh4/X7yZ74x6W5hVQXlm1N9+vY0suHNaVE3q2\nYVj3dPpmtNTKXmqkABCJAxWVIZbkFfDh2l28n7OLTzfvpbzSaZKawtDu6Vx72nGM7NWOk3q1pW2L\nJkGXK3FCASASo/ILS3ln1Q7eWbWTj9btprCkAjMY3LU11552HKf3zSArs63OvJFjpgAQiRHuzpod\nB3h75Q7eXrmDRVv24Q5d09O4cGgXTuvXgVP7dKCdtvClnigARALk7izOLeC1xVt5c8V2tuypOiVz\nePd0bhvTnzHHd+L4Lq10+qU0CAWASJS5O8u37ue1JduYtXQrW/YU0zjVOL1fBjee2Zdzju9Ip9Zp\nQZcpSUABIBIlm3YX8fLCPF5bvJX1u4pITTG+1LcD3z27H2MHdSa9eeOgS5QkowAQaUBFpRXMXrqN\nFxfkMm/DHsxg9HHtue703owb0lnj+RIoBYBIPXN3sjft5YX5W5i1dBsHyyrJbN+c/xk7gK+e0I2u\nbZoFXaIIoAAQqTcHSiuY8WkeT3+8idU7CmnRJJWvDOvKZVndOalXWx3IlZijABCJ0Nodhfztk038\nfWEeB0orGNKtNb+6ZBjjh3eheRP9F5PYpX+dIscgFHLeXbOTqe9v4KN1u2mSmsL4YV24+pRejOjR\nRlv7EhcUACJHobSiklcXbeWJ99azducBuqancfu4AXw9qwftWzYNujyRo6IAEKmDguJynpm7mT9/\nuIGdhaUM7NyK3359BBcO60Jj3WhN4pQCQOQw9haVMfWD9fz1o00cKK3gtL4d+PVlwzm9XwcN80jc\nUwCI1OCzFf9fPtzIwfJKLhjahRvP7MOQbulBlyZSbxQAItUcuuK/cGgXbjmnH/07tQq6NJF6F1EA\nmFk74HkgE9gIfM3d99bQrhJYGp7c7O4TIulXpL4VlVbw5AcbmPLeeorKKrTil6QQ6R7AHcA/3P1B\nM7sjPP3DGtoVu/uICPsSqXfllSGen7+F3769ll0HShk7uBPfP2+AVvySFCINgInAl8Pv/wq8S80B\nIBJT3J03lm3noTdXs35XESMz2/L41SdxUq+2QZcmEjWRBkAnd98Wfr8d6FRLuzQzywYqgAfd/ZXa\nFmhmk4HJAD179oywPJH/tCR3H/fMXM7Czfvo17ElU7+ZxTnHd9RZPZJ0jhgAZvY20LmGj+6qPuHu\nbmZey2J6uXuemfUG3jGzpe6+rqaG7j4FmAKQlZVV2/JEjtquA6U89MZqXliwhfYtmvLgxUO59KTu\nemC6JK0jBoC7j6ntMzPbYWZd3H2bmXUBdtayjLzw63ozexc4AagxAETqW3lliKc+3sRv56yhuLyS\n60/vzXfP7kurNN1/X5JbpENAM4FJwIPh11cPbWBmbYGD7l5qZh2ALwG/irBfkTr5KGcXd89cTs7O\nA5zRP4O7xw+ib8eWQZclEhMiDYAHgRfM7NvAJuBrAGaWBdzg7tcBxwOPm1kISKHqGMCKCPsVOaw9\nRWXcN2sFf1+YR892zTXOL1KDiALA3XcD59QwPxu4Lvz+I2BoJP2I1JW7M+PTPO59bQWFJRXcfFZf\nbj67L2mNU4MuTSTm6EpgSRgbdxVx1ytL+TBnNyf2bMMDFw9jQGedzy9SGwWAxL3KkDPtgw38+q3V\nNElN4d6LhnDVqJ6kpGi4R+RwFAAS1zbuKuIHLy4me9Nezh3UifsuGkKn1mlBlyUSFxQAEpdCIefp\nuZt4YPYqGqUaD399OBeN6KaDvCJHQQEgcSdvXzG3v7SYD3N2c2b/DH55yTA6p2urX+RoKQAkrrzy\naR4/fmUZ7s4DFw/l8pE9tNUvcowUABIXDpRWcPery/j7wjxGZrblN18bQY92zYMuSySuKQAk5i3N\nLeCW5z5l0+4ibj2nH989u6/u3yNSDxQAErNCIWfahxv45Rur6NCyKc9eP5qTe7cPuiyRhKEAkJi0\np6iM/35hEe+uzue8QZ341aXDaNO8SdBliSQUBYDEnMVb9vGd6QvJLyzl3omD+cboXjrQK9IAFAAS\nM9ydZ+dt4Z6Zy8lo1ZSXbjyFYd3bBF2WSMJSAEhMKCmv5MevLOOlBbmc3q8Dv7v8BNq10JCPSENS\nAEjgNu8+yA1PL2DFtv3ccnZfbh3Tn1Tdx0ekwSkAJFAfrdvFd6YvrDrj55oszh5Y22OlRaS+KQAk\nME9/sol7Zi4ns0MLnpyURa/2LYIuSSSpKAAk6ioqQ/z8tRU89fEmzhqQwe+vOEHP5xUJgAJAoqrg\nYDk3PbOQD3J2MfmM3vxw3ECN94sEJKLr6c3sMjNbbmah8HOAa2s3zsxWm1mOmd0RSZ8SvzbsKuKi\nP37IvA17eOjSYfzoguO18hcJUKR7AMuAi4HHa2tgZqnAo8C5QC4w38xm6sHwyWXBpr1c99f5mBnP\nXH8yWZntgi5JJOlF+lD4lcCRrtIcBeS4+/pw2+eAiYACIEm8sWw7tz73KV3S0/jLt0aR2UEHe0Vi\nQTRuqdgN2FJtOjc8r0ZmNtnMss0sOz8/v8GLk4b1lw83cOP0BQzq2pqXbzxVK3+RGHLEPQAzexvo\nXMNHd7n7q/VdkLtPAaYAZGVleX0vX6IjFHIeeH0lT7y/gXMHdeL3l59AsyapQZclItUcMQDcfUyE\nfeQBPapNdw/PkwRVVhHi+y8u5v8Wb2XSKb24+yuDdbBXJAZF4zTQ+UA/MzuOqhX/5cCVUehXAlBc\nVsmN0xfw7up87jh/IP91Rm/dyVMkRkV6GuhXzSwXOAWYZWZvhud3NbPZAO5eAdwMvAmsBF5w9+WR\nlS2xqKC4nKufnMt7a/J58OKh3HBmH638RWJYpGcBzQBm1DB/K3BBtenZwOxI+pLYll9YyqRp81i7\ns5BHrjyRC4Z2CbokETkCXQksEcvde5Crn5zH9oISpk4ayZn9M4IuSUTqQAEgEVmff4Crps6lqLSC\np68bxUm9dIGXSLxQAMgxy9l5gCuf+ITKkPPc5FMY1LV10CWJyFFQAMgxWbujkCuemAvAc5NH069T\nq4ArEpGjFY0rgSXBrN5eyOVTPiHFtPIXiWfaA5CjsnLbfq6aOpfGqcaz14+md0bLoEsSkWOkPQCp\ns+VbC7jiiU9o2iiF5yefopW/SJzTHoDUyerthVw1dS7NG6fy7OTRenyjSALQHoAc0WenejZtlKKV\nv0gCUQDIYW3Zc5Crps7F3Zl+nVb+IolEQ0BSq20FxVw59RMOllXy7PWj6dtRY/4iiUR7AFKj/MJS\nrpo6l71F5Tx17Shd5CWSgBQA8h/2HSzj6ifnsm1fCX/+1kiG92gTdEki0gAUAPIFxWWVfPuv2azP\nL+KJb2YxUg9vF0lYOgYgnyuvDHHTMwtZuHkvf7zyRE7r1yHokkSkAWkPQABwd+54eSnvrNrJvROH\ncL7u5y+S8BQAAsCDb6zi5YW5fG9MP74xulfQ5YhIFCgAhKnvr+fxf63nG6N7cus5/YIuR0SiJNJn\nAl9mZsvNLGRmWYdpt9HMlprZIjPLjqRPqV8zPs3lvlkruWBoZ342YYie4SuSRCI9CLwMuBh4vA5t\nz3L3XRH2J/Xo43W7uf2lJYzu3Y6Hvz6C1BSt/EWSSaQPhV8JaKsxDuXsLOS//pZNr/YtePzqLJo2\nSg26JBGJsmgdA3DgLTNbYGaTD9fQzCabWbaZZefn50epvOSSX1jKNX+eT5NGKfz5mpGkN2scdEki\nEoAj7gGY2dtA5xo+usvdX61jP6e5e56ZdQTmmNkqd3+vpobuPgWYApCVleV1XL7UUXFZJdc9lc2u\nA6U8P/kUerRrHnRJIhKQIwaAu4+JtBN3zwu/7jSzGcAooMYAkIYTCjm3Pb+IJbn7eOwbJ+kWDyJJ\nrsGHgMyshZm1+uw9cB5VB48lyh54fSVvLN/Ojy8cxNjBNe3UiUgyifQ00K+aWS5wCjDLzN4Mz+9q\nZrPDzToBH5jZYmAeMMvd34ikXzl6z83bzBPvb2DSKb249kuZQZcjIjEg0rOAZgAzapi/Fbgg/H49\nMDySfiQy8zfu4SevLuOM/hn8ZPwgnbUlIoCuBE54efuKueFvC+jRtjl/uOIEGqXqr1xEqmhtkMAO\nllVw/V+zKasM8cSkLJ3uKSJfoNtBJyh35wcvLmbl9v1Mu2YkfTL0OEcR+SLtASSoP7yTw+yl27nz\n/IGcNaBj0OWISAxSACSgN5Zt5zdz1nDxCd24/vTeQZcjIjFKAZBg1u4o5L9fWMTwHm34xcVDdcaP\niNRKAZBACkvK+a+nF9C8SSqPf+Mk0hrrBm8iUjsdBE4Q7s7tLy1h0+6DPP3tk+mcnhZ0SSIS47QH\nkCCmvr+B15dt5/axAzilT/ugyxGROKAASABz1+/mwTdWMW5wZyafoYO+IlI3CoA4t2N/CTc98ym9\n2jfnocuG6aCviNSZjgHEsfLKEDdNX0hRaQXPXH8yrdJ0pa+I1J0CII49MHsV2Zv28vsrTqB/p1ZB\nlyMicUZDQHHqreXbmfbhBq45NZMJw7sGXY6IxCEFQBzK21fM/7y0hCHdWnPnBQODLkdE4pQCIM6U\nV4a45dlPqQw5j1xxIk0b6WIvETk2OgYQZx6es4YF4XH/zA4tgi5HROJYpI+EfMjMVpnZEjObYWY1\nPmXczMaZ2WozyzGzOyLpM5m9vzafP/1rHZeP7KFxfxGJWKRDQHOAIe4+DFgD3HloAzNLBR4FzgcG\nAVeY2aAI+006OwtLuO35RfTr2JKffmVw0OWISAKIKADc/S13rwhPfgJ0r6HZKCDH3de7exnwHDAx\nkn6TTWXIue35RRworeCRK0+kWRON+4tI5OrzIPC1wOs1zO8GbKk2nRueJ3X02L/W8WHObn42YbDO\n9xeRenPEg8Bm9jbQuYaP7nL3V8Nt7gIqgOmRFmRmk4HJAD179ox0cXFvSe4+Hp6zhvHDuvC1rB5B\nlyMiCeSIAeDuYw73uZldA4wHznF3r6FJHlB9zdU9PK+2/qYAUwCysrJqWl7SOFhWwfeeW0RGq6bc\nf5Ee7iIi9SvSs4DGAbcDE9z9YC3N5gP9zOw4M2sCXA7MjKTfZHH/rJVs2F3E/35tOOnNdZ8fEalf\nkR4DeARoBcwxs0Vm9hiAmXU1s9kA4YPENwNvAiuBF9x9eYT9Jrx/rNzB9Lmbuf703pzap0PQ5YhI\nAoroQjB371vL/K3ABdWmZwOzI+krmeQXlnL7S0sY2LkV3z+vf9DliEiC0pXAMcbd+eHLSygsreDZ\nyaN1qwcRaTC6F1CMmT53M++s2smd5w/UKZ8i0qAUADFkXf4B7pu1gtP7dWDSKZlBlyMiCU4BECMq\nQ84PXlxM00ap/Pqy4aSk6JRPEWlYOgYQI6a+v55PN+/jd5ePoFPrtKDLEZEkoD2AGLB2RyH/O2cN\nYwd30l0+RSRqFAABq6gM8YMXF9OiSSr36WpfEYkiDQEF7PH31rM4t4A/XHECGa2aBl2OiCQR7QEE\naPX2Qn739louGNqZ8cO6BF2OiCQZBUBAysNDP63SGnHvxCEa+hGRqNMQUEAee3cdS/MK+NNVJ9K+\npYZ+RCT6tAcQgNXbC/n9O2v5yvCunD9UQz8iEgwFQJRVhqru9dMqrTE/m6Bn+4pIcBQAUfa3jzey\naMs+7h4/iHYtmgRdjogkMQVAFOXtK+ZXb67mzP4ZTByhC75EJFgKgChxd348YykA939VZ/2ISPAU\nAFEyc/FW/rk6nx+cN4DubZsHXY6IiAIgGvYUlfGz/1vB8B5tmHRqZtDliIgAEV4HYGYPAV8ByoB1\nwLfcfV8N7TYChUAlUOHuWZH0G2/um7WC/cXl/PKSoaTqNs8iEiMi3QOYAwxx92HAGuDOw7Q9y91H\nJNvK//21+fx9YR43frkPAzu3DrocEZHPRRQA7v6Wu1eEJz8BukdeUuIoLqvkRzOW0jujBTed1Tfo\nckREvqA+jwFcC7xey2cOvGVmC8xs8uEWYmaTzSzbzLLz8/Prsbzoe/SfOWzZU8wvvjqUtMZ6uLuI\nxJYjHgMws7eBzjV8dJe7vxpucxdQAUyvZTGnuXuemXUE5pjZKnd/r6aG7j4FmAKQlZXldfgOMWld\n/gEef28dF5/YjdG92wddjojIfzhiALj7mMN9bmbXAOOBc9y9xhW2u+eFX3ea2QxgFFBjACQCd+cn\nryyjWeNUfnTB8UGXIyJSo4iGgMxsHHA7MMHdD9bSpoWZtfrsPXAesCySfmPdzMVb+Wjdbm4fN5AO\nutOniMSoSI8BPAK0ompYZ5GZPQZgZl3NbHa4TSfgAzNbDMwDZrn7GxH2G7P2l5Rz36yVDO+ezhWj\negZdjohIrSK6DsDdazy1xd23AheE368HhkfSTzz5zVtr2H2glGmTRuqcfxGJaboSuB4tyyvgqY83\ncvXoXgztnh50OSIih6UAqCeVIeeuGUtp16Ip3x87IOhyRESOSAFQT56dt5nFuQX8ZPzxtE5rHHQ5\nIiJHpACoB3uLynjozdWc0rs9E4brPv8iEh8UAPXgN3PWcKC0gnsmDNZ9/kUkbigAIrRi636mz93E\n1aN7MaBzq6DLERGpMwVABNyde/5vOenNGnPbmP5BlyMiclQUABGYtXQb8zbs4X/GDiS9uQ78ikh8\nUQAco4NlFfxi1koGd23N10f2CLocEZGjpgA4Ro+9u46tBSXcM2GwrvgVkbikADgGW/Yc5LH31jNh\neFdGZrYLuhwRkWOiADgG989aSaoZd14wMOhSRESOmQLgKH2Us4s3lm/nprP60CW9WdDliIgcMwXA\nUagMOT9/bQXd2zbjutN7B12OiEhEFABH4aUFW1i1vZA7zh+oZ/yKSNxTANRRUWkFv35rDSf2bMOF\nQ7sEXY6ISMQUAHX0+HvryS8s5a4LB+l+PyKSEBQAdbC9oIQp761j/LAunNSrbdDliIjUi4gDwMzu\nNbMl4WcCv2VmNd4P2cwmmdna8M+kSPuNpl+/tZpQCH44Tqd9ikjiqI89gIfcfZi7jwBeA+4+tIGZ\ntQN+CpwMjAJ+amZxsSm9LK+Alxfm8q0vZdKjXfOgyxERqTcRB4C776822QLwGpqNBea4+x533wvM\nAcZF2ndDc3fun7WSNs0a852z+gZdjohIvWpUHwsxs/uBbwIFwFk1NOkGbKk2nRueV9OyJgOTAXr2\n7Fkf5R2zf6zcycfrd/OzCYNJb6a7fYpIYqnTHoCZvW1my2r4mQjg7ne5ew9gOnBzJAW5+xR3z3L3\nrIyMjEgWFZHyyhC/eH0lvTNacOXJwQaRiEhDqNMegLuPqePypgOzqRrvry4P+HK16e7Au3VcZiCe\nm7+F9flFPPHNLBqn6mQpEUk89XEWUL9qkxOBVTU0exM4z8zahg/+nheeF5MOllXw+3+sZVRmO8Yc\n3zHockREGkR9HAN40MwGACFgE3ADgJllATe4+3XuvsfM7gXmh3/n5+6+px76bhDTPthAfmEpj33j\nJF30JSIJK+IAcPdLapmfDVxXbXoaMC3S/hra3qIyHv/Xes4d1EkXfYlIQtPg9iEe/WcORWUV3D52\nQNCliIg0KAVANbl7D/LUx5u45MTu9OvUKuhyREQalAKgmofnrAWD287tH3QpIiINTgEQtnp7IX//\nNJdJp/Siaxs96UtEEp8CIOyhN1fRsmkjvvNl3fJBRJKDAgCYv3EPb6/cyQ1n9qFtiyZBlyMiEhVJ\nHwDuzi9fX0XHVk259kvHBV2OiEjUJH0AvLs6n+xNe7nlnH40a6Ln/IpI8kjqAHB3/nfOanq0a8bX\nR/YIuhwRkahK6gB4c/kOluXt59Zz+uuGbyKSdJJ2rRcKOQ/PWUPvDi24aESNT7EUEUloSRsAry3d\nxuodhXzv3P400ta/iCShpFzzVVSG+O2cNQzo1IrxQ7sEXY6ISCCSMgBeWbSV9buKuO3c/qSk6HbP\nIpKcki4AyitD/O4faxjSrTVjB3cKuhwRkcAkXQC8mJ3Llj3FfP/cAXrYi4gktaQKgJLySv7wzlpO\n6NmGLw8I7oHzIiKxIKkC4Ll5m9lWUMIPztPWv4hIRI+EDD/ndyJVzwPeCVzj7ltraFcJLA1Pbnb3\nCZH0eyxKyit59N11nHxcO07t0z7a3YuIxJxI9wAecvdh7j4CeA24u5Z2xe4+IvwT9ZU/VG395xeW\nctu5/bX1LyJChAHg7vurTbYAPLJyGkZJeSV/+tc6Rh3XjtG9tfUvIgL1cAzAzO43sy3AVdS+B5Bm\nZtlm9omZXXSE5U0Ot83Oz8+PtDwAXlyQy479pdx6Tr96WZ6ISCI4YgCY2dtmtqyGn4kA7n6Xu/cA\npgM317KYXu6eBVwJ/NbM+tTWn7tPcfcsd8/KyIj8TJ2yihB/+mcOJ/Vqq7F/EZFqjngQ2N3H1HFZ\n04HZwE9rWEZe+HW9mb0LnACsq3uZx+7lhblsLSjhgUuGaexfRKSaiIaAzKz6mMpEYFUNbdqaWdPw\n+w7Al4AVkfRbV+WVIR79Zw7De7ThjH4dotGliEjciOg0UOBBMxtA1Wmgm4AbAMwsC7jB3a8Djgce\nN7MQVYHzoLtHJQBmfJpH7t5ifj5xsLb+RUQOEVEAuPsltczPBq4Lv/8IGBpJP8eiIrz1P6Rba84a\n0DHa3YuIxLyEvRJ45uKtbNp9kFvO7qetfxGRGiRkAFSGnEfeyeH4Lq05d5Du+CkiUpOEDIDXllTd\n7/+Ws/tq619EpBYJFwChkPOHd3Lo36klYwd3DrocEZGYFelZQDHnYHklJ/Vsy5kDMvS0LxGRw0i4\nAGjZtBG/vHRY0GWIiMS8hBsCEhGRulEAiIgkKQWAiEiSUgCIiCQpBYCISJJSAIiIJCkFgIhIklIA\niIgkKXOPyee4A2Bm+VQ9Z+BYdAB21WM58UDfOTnoOye+SL5vL3ev0/N0YzoAImFm2eHnECcNfefk\noO+c+KL1fTUEJCKSpBQAIiJJKpEDYErQBQRA3zk56Dsnvqh834Q9BiAiIoeXyHsAIiJyGAoAEZEk\nlVABYGaXmdlyMwuZWdYhn91pZjlmttrMxgZVY0MzsxFm9omZLTKzbDMbFXRNDc3Mvmtmq8J/978K\nup5oMbM44EpIAAACxklEQVTvm5mbWYega2loZvZQ+O94iZnNMLM2QdfUUMxsXHg9lWNmdzRkXwkV\nAMAy4GLgveozzWwQcDkwGBgH/NHMUqNfXlT8CviZu48A7g5PJywzOwuYCAx398HArwMuKSrMrAdw\nHrA56FqiZA4wxN2HAWuAOwOup0GE10uPAucDg4ArwuuvBpFQAeDuK919dQ0fTQSec/dSd98A5ACJ\numXsQOvw+3Rga4C1RMONwIPuXgrg7jsDridaHgZup+rvO+G5+1vuXhGe/AToHmQ9DWgUkOPu6929\nDHiOqvVXg0ioADiMbsCWatO54XmJ6HvAQ2a2haqt4YTcUqqmP3C6mc01s3+Z2cigC2poZjYRyHP3\nxUHXEpBrgdeDLqKBRHVdFXcPhTezt4HONXx0l7u/Gu16gnC4PwPgHOA2d3/ZzL4GPAmMiWZ99e0I\n37cR0A4YDYwEXjCz3h7n5zcf4Tv/iKrhn4RSl//bZnYXUAFMj2ZtiSruAsDdj2Vllgf0qDbdPTwv\nLh3uz8DMngJuDU++CEyNSlEN6Ajf90bg7+EV/jwzC1F1I638aNXXEGr7zmY2FDgOWGxmUPVveaGZ\njXL37VEssd4d6f+2mV0DjAfOifeAP4yorquSZQhoJnC5mTU1s+OAfsC8gGtqKFuBM8PvzwbWBlhL\nNLwCnAVgZv2BJiTwXSPdfam7d3T3THfPpGqI4MR4X/kfiZmNo+qYxwR3Pxh0PQ1oPtDPzI4zsyZU\nnbwys6E6i7s9gMMxs68CfwAygFlmtsjdx7r7cjN7AVhB1e7jTe5eGWStDeh64Hdm1ggoASYHXE9D\nmwZMM7NlQBkwKYG3DpPZI0BTYE54z+cTd78h2JLqn7tXmNnNwJtAKjDN3Zc3VH+6FYSISJJKliEg\nERE5hAJARCRJKQBERJKUAkBEJEkpAEREkpQCQEQkSSkARESS1P8D2opsmu4Xt8oAAAAASUVORK5C\nYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEACAYAAACgS0HpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VXWd//HXWxKpRiunUQvEMEVQKUXFdFRO3pBSwbzh\nmGCSllCZV0QdwTFLUUe0eWjT5AXtQuo0Qg6imBzrMXETUe5wHjn4g4PoBEgaiFw+vz++68iWOHAO\n5+yz9uX9fDzOg7W/e62zP2cD+3PW57O+36WIwMzMbEd2yTsAMzMrD04YZmbWJE4YZmbWJE4YZmbW\nJE4YZmbWJE4YZmbWJEVNGJI6SXpB0jxJcyR9Lxv/lKTnJC2S9KykTxQcM1xSnaQFkk4tGO8pabak\nxZJGFzNuMzP7W8U+w9gIXBURhwDHAEMldQOuB56PiIOAF4DhAJIOBs4DugN9gfslKfteDwCDI6Ir\n0FVSnyLHbmZmBYqaMCJiRUS8km2/CywAOgH9gDHZbmOA/tn2mcDYiNgYEUuAOqCXpH2A3SNiRrbf\nowXHmJlZG2izHoakzwGHAVOBvSPiTUhJBdgr260jsLTgsPpsrCOwrGB8WTZmZmZtpE0ShqS/A54E\nrsjONLZej8Trk5iZlbiPFPsFJH2ElCwei4hx2fCbkvaOiDezctNb2Xg9sG/B4Z2yscbGt34tJx4z\ns50QEdrRPm1xhvEQMD8i7i0YGw9cnG0PAsYVjA+Q1F5SF+AAYHpWtlojqVfWBB9YcMyHRIS/Ihgx\nYkTuMZTKl98Lvxd+L7b/1VRFPcOQ9I/AhcAcSbNIpacbgDuAxyVdArxOujKKiJgv6XFgPrABGBJb\nfpqhwCNAB2BCREwsZuxmZvZhRU0YEfE/QLtGnj65kWN+BPxoG+MzgR6tF52ZmTWHZ3pXqJqamrxD\nKBl+L7bwe7GF34vmU3PqV6VOUlTSz2Nm1hYkESXS9DYzswrghGFmZk3ihGFmZk3ihGFmZk3ihGFm\nZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3ihGFmZk3i\nhGFmZk3ihGFmZk3ihGFmZk1SVglD0mmSFkpaLGlY3vGYmVWTsrlFq6RdgMXAScByYAYwICIWFuzj\nW7SamTVTJd6itRdQFxGvR8QGYCzQL+eYzMzKWl1d0/ctp4TREVha8HhZNmZmZs20Zg1cey0cc0zT\njymnhGFmZi20aRP87GfQrRusWgVz5zb92I8UL6xWVw90LnjcKRv7kJEjR36wXVNTQ01NTbHjMjMr\nC7//PVxxBWzcWMsZZ9Ty2c/CT37S9OPLqendDlhEanq/AUwHLoiIBQX7uOltZraVJUtS+Wn6dBg1\nCs47D1TQ4q64pndEbAK+AzwHzAPGFiYLMzP7sHffhZtugiOOgB49YMECOP/8DyeL5iinkhQRMRE4\nKO84zMxK2ebN8ItfwPDhUFMDr74KnTq1/PuWVcIwM7Ptmzo19Ski4IknmncV1I6UTUnKzMwaV18P\nF10EZ58NQ4emxNGayQKcMMzMytq6dXDrrfCFL0DnzrBoEQwcCLsU4dPdJSkzszLUUHK67jo46ih4\n6SXo0qW4r+mEYWZWZl5+Gb7/ffjLX2DMGOjdu21e1yUpM7My8eab8M1vwle/mvoVM2e2XbIAJwwz\ns5K3fn2acHfIIfDJT8LChXDppdCuXdvG4ZKUmVmJioDx4+Hqq6F7d/jjH6Fr1/ziccIwMytBc+em\nPsUbb8D998Opp+YdkUtSZmYlZeXKNI/ixBOhXz945ZXSSBbghGFmVhI2bID77kulp112Ses+ffe7\nsOuueUe2hUtSZmY5mzgRrroqrfc0eXJqbpciJwwzs5wsWpQSRV0d3H03nH76zq8k2xZckjIza2Or\nV8OVV8Jxx8FJJ6UG9xlnlHayACcMM7M2s3FjuuKpW7e0BtT8+ekMo337vCNrGpekzMzawPPPp7OK\nf/gHmDQpLRZYbpwwzMyKqK4OrrkmlZ3uugv69y/90lNjXJIyMyuCNWvSfbSPOQaOPTaVn846q3yT\nBThhmJm1qk2b4Kc/TX2K1avTmcWwYbDbbnlH1nJFSxiSRklaIOkVSf8paY+C54ZLqsueP7VgvKek\n2ZIWSxpdMN5e0tjsmCmSOhcrbjOznVVbC0ccAT//Ofz3f8PPfgb77JN3VK2nmGcYzwGHRMRhQB0w\nHEDSwcB5QHegL3C/9MFJ2gPA4IjoCnSV1CcbHwysiogDgdHAqCLGbWbWLK+9lm6NevHFcOON8OKL\n0LNn3lG1vqIljIh4PiI2Zw+nAp2y7TOBsRGxMSKWkJJJL0n7ALtHxIxsv0eB/tl2P2BMtv0kcFKx\n4jYza6p33oHhw6FXr5QgFiyAc88t7z7F9rRVD+MSYEK23RFYWvBcfTbWEVhWML4sG/vQMRGxCXhb\n0p7FDNjMrDGbN8PDD8NBB8Hy5TB7djqz+OhH846suFp0Wa2kScDehUNAADdGxG+zfW4ENkTEr1ry\nWlu/dGNPjBw58oPtmpoaampqWvFlzaza/eEPadnxDh1g3Lh0P+1yU1tbS21tbbOPU0S0fjQN31y6\nGLgUODEi1mdj1wMREXdkjycCI4DXgckR0T0bHwD0jojLG/aJiGmS2gFvRMRe23i9KObPY2bV6/XX\n4brrYMoUuOMOGDCgckpPkoiIHf40xbxK6jTgWuDMhmSRGQ8MyK586gIcAEyPiBXAGkm9sib4QGBc\nwTGDsu1zgReKFbeZWaF334V//ufUozj44HR71AsuqJxk0RzFnOn9Y6A9MCm7CGpqRAyJiPmSHgfm\nAxuAIQWnBUOBR4AOwISImJiNPwg8JqkOWAkMKGLcZmZs3gy/+EVqavfunW5ktO++eUeVr6KWpNqa\nS1Jm1hqmToUrrkj31L733jRbu5LlXpIyMys3S5fChRfCOefAd76TEkelJ4vmcMIws6q3di3ccgsc\ndhjsv3/qU1x0UbpVqm3h1WrNrGpFwNixaa2nY46Bl1+G/fbLO6rS5YRhZlVpxow0n+K991Jz+/jj\n846o9PmEy8yqyvLlMGgQ9OsHgwenxOFk0TROGGZWFdatg9tuS3e6++xnYdEiuOQS9ymawyUpM6to\nEfDkk2mWds+eMH16amxb8zlhmFnFmjUrzaf4y1/SYoFeWq5lfDJmZhVnxYrUn+jbF77+dZg508mi\nNThhmFnFWL8+LQx46KGw556pT3HZZdCuXd6RVQaXpMys7EXAU0/BNdekZDFlChx4YN5RVR4nDDMr\na7Nnp/kUb70F//7vcPLJeUdUuVySMrOy9H//B9/6FpxySlr76ZVXnCyKzQnDzMrK++/D3Xene1N8\n7GNp3achQ+AjrpcUnd9iMysLEfD003D11ak/8Yc/QLdueUdVXZwwzKzkzZsHV16Zlh+/7z447bS8\nI6pOLkmZWclauTLdl+LLX4bTT08NbieL/DhhmFnJ2bAh3emue/d07+wFC+B734Ndd807surmkpSZ\nlZRnnoGrroLOnWHyZDjkkLwjsgZFP8OQdLWkzZL2LBgbLqlO0gJJpxaM95Q0W9JiSaMLxttLGpsd\nM0VS52LHbWZta+FC+MpX0tpPd94JEyc6WZSaoiYMSZ2AU4DXC8a6A+cB3YG+wP2SGm4+/gAwOCK6\nAl0l9cnGBwOrIuJAYDQwqphxm1nbWb06Tbw7/vg0j2Lu3NSv+OBTwUpGsc8w7gGu3WqsHzA2IjZG\nxBKgDuglaR9g94iYke33KNC/4Jgx2faTwElFjdrMim7jRrj//nRp7Hvvwfz5qRTVvn3ekVljitbD\nkHQmsDQi5ujDvyp0BKYUPK7PxjYCywrGl2XjDccsBYiITZLelrRnRKwqVvxmVjyTJqXLZPfeO21/\n4Qt5R2RN0aKEIWkSsHfhEBDATcANpHJUMTR6sjpy5MgPtmtqaqjxmsZmJaOuLk28mzcvzdbu18+l\npzzU1tZSW1vb7OMUEa0ejKRDgeeBtaQP906kM4lewCUAEXF7tu9EYASpzzE5Irpn4wOA3hFxecM+\nETFNUjvgjYjYaxuvG8X4ecysZdasgVtvhUceSXe+u+IK2G23vKOyBpKIiB2m7qL0MCJibkTsExH7\nR0QXUnnp8Ih4CxgPnJ9d+dQFOACYHhErgDWSemVN8IHAuOxbjgcGZdvnAi8UI24za12bNsFPfwoH\nHQRvv50a2tdd52RRrtpqHkaQlZEiYr6kx4H5wAZgSMFpwVDgEaADMCEiJmbjDwKPSaoDVgID2ihu\nM9tJtbXp6qc99oAJE9L9tK28FaUklReXpMzy99pr6UZGs2al+RRnn+0+RanLtSRlZtXnnXfg+uuh\nVy848si0nMc55zhZVBInDDNrkc2b4aGHUp9ixYq0QOANN0CHDnlHZq3Na0mZ2U77wx9Sn6JDBxg3\nDo46Ku+IrJicMMys2ZYsgWHDYMoUuOMOGDDApadq4JKUmTXZu+/CTTfBEUekhQEXLoQLLnCyqBZO\nGGa2Q5s3w6OPpnWfliyBV1+Fm29O99S26uGSlJlt15QpqU8B8OST8KUv5RuP5cdnGGa2TUuXwoUX\nwrnnptukTpniZFHtnDDM7EPWroVbboHDD4fPfz71KS66CHbxp0XVc0nKzACIgF/9Kk2+O/ZYmDkT\n9tsv76islDhhmBkzZqQVZN9/H375SzjuuLwjslLkk0yzKrZ8OQwalO5LcemlMH26k4U1zgnDrAqt\nWwe33ZbudPfZz8KiRfCNb7hPYdvnkpRZFYlIl8Zed12afDd9Ouy/f95RWblwwjCrEjNnpvkU77wD\nDz8MvnuxNZdPQM0q3PLlqdx0+ulw8cUpcThZ2M5wwjCrUOvWwQ9/mPoUe++d+hSDB0O7dnlHZuXK\nJSmzChMBTzyR+hRHHuk+hbUeJwyzCvLSS6lP8de/wiOPuPRkrauoJSlJ35W0QNIcSbcXjA+XVJc9\nd2rBeE9JsyUtljS6YLy9pLHZMVMkdS5m3GblpqFPccYZ6c+XXnKysNZXtIQhqQY4A+gRET2Au7Lx\n7sB5QHegL3C/9MFq+g8AgyOiK9BVUp9sfDCwKiIOBEYDo4oVt1k5aZhP0aOH+xRWfMU8w7gcuD0i\nNgJExJ+z8X7A2IjYGBFLgDqgl6R9gN0jYka236NA/4JjxmTbTwInFTFus5IXAY8/Dt27w6xZaWmP\n22+HPfbIOzKrZMXsYXQFTpD0Q2AdcE1EzAQ6AlMK9qvPxjYCywrGl2XjZH8uBYiITZLelrRnRKwq\nYvxmJamwTzFmDPTunXdEVi1alDAkTQL2LhwCArgp+96fiogvSToKeAJorWs1Gr0h5MiRIz/Yrqmp\nocaFXKsQy5fDjTfCs8/CrbemORUuPdnOqK2tpba2ttnHKSJaPxpA0gTgjoh4MXtcB3wJuBQgIm7P\nxicCI4DXgckR0T0bHwD0jojLG/aJiGmS2gFvRMRe23jNKNbPY5aXdevgX/8V7rknLRA4fLhLT9a6\nJBERO7wzezF7GE8BJ2bBdAXaR8RKYDxwfnblUxfgAGB6RKwA1kjqlTXBBwLjsu81HhiUbZ8LvFDE\nuM1KQgT8+tdb+hTTp8OPfuRkYfkpZg/jYeAhSXOA9aQEQETMl/Q4MB/YAAwpOC0YCjwCdAAmRMTE\nbPxB4LHsLGUlMKCIcZvlzn0KK0VFK0nlwSUpK3fLl8MNN6Q+xQ9+4D6FtY1SKEmZWRMV3p/iM5/x\nfAorTV4axCxHDfMphg2Do47yuk9W2pwwzHIyYwZceSWsXQuPPgonnJB3RGbb55KUWRsrvI/2JZek\nxOFkYeXACcOsjaxblxrZPXpsuY/2JZe4T2HlwyUpsyJr6FNcdx306pUume3SJe+ozJrPCcOsiGbM\nSPMp1q2Dxx5z6cnKm0tSZkVQ2KcYPNh9CqsMThhmraihT/GFL0DHju5TWGVxScqsFTSs+zRsWOpT\nzJjhPoVVHicMsxZyn8KqhUtSZjupvn5Ln+Kb33SfwiqfE4ZZM61bl25gVNin+MY33KewyueSlFkT\nbd2n8HwKqzZOGGZNMH16Wvfpvffcp7Dq5ZKU2XbU18PAgdC/v/sUZk4YZtuwdu2WPsW++27pU+zi\n/zFWxVySMisQAWPHwvXXw9FHu09hVsgJwywzfXqaT7F+Pfz853D88XlHZFZainaCLemLkqZImiVp\nuqQjC54bLqlO0gJJpxaM95Q0W9JiSaMLxttLGpsdM0VS52LFbdWnsE9x6aWpT+FkYfa3ilmRHQWM\niIjDgRHAnQCSDgbOA7oDfYH7JTXcfPwBYHBEdAW6SuqTjQ8GVkXEgcDo7HubtUhDn+KLX3Sfwqwp\nivlfYzPwiWz7k0B9tn0mMDYiNkbEEqAO6CVpH2D3iJiR7fco0D/b7geMybafBE4qYtxW4SLgV7+C\nbt1g7tzUp7jtNth997wjMyttxexhXAk8K+luQMCx2XhHYErBfvXZ2EZgWcH4smy84ZilABGxSdLb\nkvaMiFVFjN8qUGGf4he/cOnJrDlalDAkTQL2LhwCArgROBm4IiKeknQO8BBwSkteb6vX2aaRI0d+\nsF1TU0NNTU0rvaSVs/p6GD4cfve7dDYxcKBLT1a9amtrqa2tbfZxiojWjwaQ9HZEfHLrx5KuByIi\n7sjGJ5J6HK8DkyOiezY+AOgdEZc37BMR0yS1A96IiL228ZpRrJ/HytPatXDXXXDvvfDtb6fLZV16\nMvswSUREo7+INyjm71j1knpnwZxE6lUAjAcGZFc+dQEOAKZHxApgjaReWRN8IDCu4JhB2fa5wAtF\njNsqQGGfYt48mDnTfQqzlipmD+NS4L7sjOA94DKAiJgv6XFgPrABGFJwWjAUeAToAEyIiInZ+IPA\nY5LqgJXAgCLGbWVu2rS07pP7FGatq2glqTy4JFXdli1LfYoXXnCfwqw5SqEkZdYm1q6Ff/mXNJ9i\nv/3SfIqLL3ayMGttXhrEylZDn+L66+GYY1Kf4nOfyzsqs8rlhGFladq0NJ9iwwb45S/huOPyjsis\n8vmk3crKsmVw0UXwta/Bt76VJuI5WZi1DScMKwtr18Itt7hPYZYnl6SspLlPYVY6nDCsZLlPYVZa\nfEJvJaewT/Htb7tPYVYqnDCsZGyrTzFokPsUZqXCJSnLXWGf4thj4eWXU8Iws9LihGG5mjo1rfvk\nPoVZ6fPJvuVi6VL4+tfh7LPdpzArF04Y1qYa+hSHHQZdurhPYVZOXJKyNrF585Y+xT/+o/sUZuXI\nCcOKburUNJ9i0yYYOzYlDDMrPy4EWNEU9ikuvzxNxHOyMCtfThjW6v76Vxgxwn0Ks0rjkpS1ms2b\n4ec/hxtugBNOgFmzoHPnvKMys9bihGGt4n/+J/Up2rWDJ55ICwWaWWVpUZFA0jmS5kraJKnnVs8N\nl1QnaYGkUwvGe0qaLWmxpNEF4+0ljc2OmSKpc8Fzg7L9F0ka2JKYrXUtWQLnnw8XXJASxh//6GRh\nVqlaWlWeA5wFvFg4KKk7cB7QHegL3C+p4QbjDwCDI6Ir0FVSn2x8MLAqIg4ERgOjsu/1KeBm4Cjg\naGCEpE+0MG5roXfeSaWnI46AQw6BhQvhwgvdpzCrZC367x0RiyKiDtBWT/UDxkbExohYAtQBvSTt\nA+weETOy/R4F+hccMybbfhI4MdvuAzwXEWsi4m3gOeC0lsRtO2/TJnjwQTjoIKivh9mz4eab4WMf\nyzsyMyu2YvUwOgJTCh7XZ2MbgWUF48uy8YZjlgJExCZJayTtWTi+1feyNlZbm9Z9+vjHYdw4OOqo\nvCMys7a0w4QhaRKwd+EQEMCNEfHbYgXG3561NMnIkSM/2K6pqaGmpqaVwqlef/oTXHttuurpjjvg\n3HNBO/W3Y2aloLa2ltra2mYft8OEERGn7EQ89cC+BY87ZWONjRces1xSO2CPiFglqR6o2eqYyY29\ncGHCsJZZswZ+8AN4+GG4+uq0mmyHDnlHZWYttfUv07fcckuTjmvNFmXh75zjgQHZlU9dgAOA6RGx\nAlgjqVfWBB8IjCs4ZlC2fS7wQrb9LHCKpE9kDfBTsjErko0b4Sc/SX2K1ath7lwYPtzJwqzataiH\nIak/8GPg08DTkl6JiL4RMV/S48B8YAMwJCIiO2wo8AjQAZgQEROz8QeBxyTVASuBAQARsVrSrcBL\npFLYLVnz24pg0iS46ir4+7+HZ56Bww/POyIzKxXa8jle/iRFJf08bWnRIrjmGliwAO68E/r3d5/C\nrFpIIiJ2+D/eV81XuVWr0oS7446D3r1h3jw46ywnCzP7W04YVWrDBvjxj6FbN1i/PiWKa66B3XbL\nOzIzK1VeS6oKPfNM6lN06gS/+x306JF3RGZWDpwwqsi8eeny2P/9X7j7bvjqV116MrOmc0mqCvz5\nzzB0KNTUQN++MGcOnH66k4WZNY8TRgV7/3245x7o3j0tO75wIVxxBbRvn3dkZlaOXJKqQBHw29+m\nJvaBB8Lvf5+ShplZSzhhVJjZs9MCgStWpKug+vTZ8TFmZk3hklSFePNNuOwyOOUUOPtsePVVJwsz\na11OGGVu/XoYNSrdxGj33VOfYsgQ+IjPHc2slfljpUxFwG9+k5Yd79Ej3Rq1a9e8ozKzSuaEUYZe\nfjn1KVavhv/4DzjppLwjMrNq4JJUGXnjDbjkkjTh7utfTzc0crIws7bihFEG1q2D225Lpae99kor\ny156aZpbYWbWVlySKmER8Otfw7Bh0KsXTJ8O+++fd1RmVq2cMErUtGmpT/Hee/DYY3DCCXlHZGbV\nziWpErNsGVx0EXzta2lexUsvOVmYWWlwwigRf/0rjBwJX/wi7Ldf6lNcfDHs4r8hMysRLfo4knSO\npLmSNknqWTB+sqSXJL0qaYakLxc811PSbEmLJY0uGG8vaaykOklTJHUueG5Qtv8iSQNbEnOp2bw5\nlZy6dUtJ4uWX4Qc/gL/7u7wjMzP7sJb2MOYAZwH/vtX4/wGnR8QKSYcAzwKdsuceAAZHxAxJEyT1\niYhngcHAqog4UNL5wChggKRPATcDPQEBMyWNi4g1LYw9d3/8Y7o9qpSa28cem3dEZmaNa9EZRkQs\niog60gd54firEbEi254HdJC0q6R9gN0jYka266NA/2y7HzAm234SODHb7gM8FxFrIuJt4DngtJbE\nnbfXX4cBA+D889Ny41OmOFmYWekreoVc0jnAyxGxAegILCt4elk2RvbnUoCI2ASskbRn4XimvuCY\nsvLOO3DjjdCzZ1pufOFCuPBC9ynMrDzssCQlaRKwd+EQEMCNEfHbHRx7CPAj4JSdiK1i7ge3aROM\nGQM33QQnn5xWku3UacfHmZmVkh0mjIjYmQ97JHUCfgNcFBFLsuF6YN+C3TplY4XPLZfUDtgjIlZJ\nqgdqtjpmcmOvO3LkyA+2a2pqqKmpaWzXNvHii2k+xUc/Ck89lSbgmZnlqba2ltra2mYfp4ho8YtL\nmgxcExEzs8efAF4ERkbEU1vtOxX4HjAD+G/gvoiYKGkIcGhEDJE0AOgfEQ1N75dITe9dsu0jsn7G\n1nFEa/w8reFPf4LrroOZM+GOO+C883wPbTMrTZKIiB1+QrX0str+kpYCXwKelvRM9tR3gM8DN0ua\nJellSZ/OnhsKPAgsBuoiYmI2/iDwaUl1wPeB6wEiYjVwKylRTANu2VayKBVr1qREcfTRcOSRsGBB\nam47WZhZuWuVM4xSkecZxqZN8LOfpcl3X/lKmkvxmc/kEoqZWbM09QzDa0m1gt/9LvUp9twTJkyA\nww/POyIzs9bnhNECixfDNdfAvHlw551w1lkuPZlZ5fIMgJ2wenU6ozj2WDj+eJg/Py0W6GRhZpXM\nCaMZNmyAf/u3tO7TunUpUVx7Ley2W96RmZkVn0tSTTRxIlx1FXTsCM8/n+5+Z2ZWTZwwdmD+fLj6\nanjtNbj77nQ/bZeezKwauSTViJUr4bvfhZoa6NMH5syB0093sjCz6uWEsZX334fRo1OfAtLEu+9/\nH9q3zzcuM7O8uSSViYCnn07lpwMOSGtAHXxw3lGZmZUOJwxg9uzU0F6+HO69F/r2zTsiM7PSU9Ul\nqbfegm99C045JU26e/VVJwszs8ZUZcJYvz7NzD74YPj4x9ONjIYOhV13zTsyM7PSVVUlqQj4r/9K\nk+0OPTTdU7tr17yjMjMrD1WTMGbNSst5rFoFP/0pnHRS3hGZmZWXii9JvfEGDB6cehP/9E8pcThZ\nmJk1X8UmjHXr4Ic/TEt4fPrTsGgRXHYZtGuXd2RmZuWp4kpSEfD44zBsGBxxBEybBp//fN5RmZmV\nv4pLGMcdl84uxoyB3r3zjsbMrHJUXML45jdh4ECXnszMWluLehiSzpE0V9ImST238XxnSe9Iuqpg\nrKek2ZIWSxpdMN5e0lhJdZKmSOpc8NygbP9FkgZuL6ZvfMPJwsysGFra9J4DnAW82MjzdwMTthp7\nABgcEV2BrpL6ZOODgVURcSAwGhgFIOlTwM3AUcDRwAhJn2hh3BWvtrY27xBKht+LLfxebOH3ovla\nlDAiYlFE1AF/s+i3pH7Aa8C8grF9gN0jYkY29CjQP9vuB4zJtp8ETsy2+wDPRcSaiHgbeA44rSVx\nVwP/Z9jC78UWfi+28HvRfEW5rFbSx4HrgFv4cDLpCCwreLwsG2t4bilARGwC1kjas3A8U19wjJmZ\ntZEdNr0lTQL2LhwCArgxIn7byGEjgXsiYq12/o5DvlWRmVkpiYgWfwGTgZ4Fj39PKke9BqwG/gwM\nAfYBFhTsNwB4INueCBydbbcD3irY5ycFx/wEOL+ROMJf/vKXv/zV/K+mfNa35mW1H5wRRMQJHwxK\nI4B3IuL+7PEaSb2AGcBA4L5s1/HAIGAacC7wQjb+LHBb1ujeBTgFuH5bAUSEz0rMzIqkRQlDUn/g\nx8CngaclvRIRO7qjxFDgEaADMCEiJmbjDwKPSaoDVpLOLIiI1ZJuBV4iZcJbsua3mZm1IWWlHDMz\ns+2qiMUHtzeBUNLwbDLgAkmn5hVjHiR9MZsEOUvSdElH5h1TniR9N/t3MEfS7XnHkzdJV0vanF2N\nWJUkjcrI1IZ+AAACp0lEQVT+Tbwi6T8l7ZF3TG1N0mmSFmaTo4dtb9+KSBg0MoFQUnfgPKA70Be4\nXy24bKsMjQJGRMThwAjgzpzjyY2kGuAMoEdE9ADuyjeifEnqROoHvp53LDl7DjgkIg4D6oDhOcfT\npiTtAvwbab7bIcAFkro1tn9FJIztTCDsB4yNiI0RsYT0D6JXW8eXo81Aw6z4T5LmsFSry4HbI2Ij\nQET8Oed48nYPcG3eQeQtIp6PiM3Zw6lApzzjyUEvoC4iXo+IDcBY0ufmNlVEwtiOap/0dyVwl6T/\nRzrbqKrfnrbSFThB0lRJk6u5PCfpTGBpRMzJO5YScwnwTN5BtLGtPyMLJ1P/jbJZrXYnJxBWvO29\nL8DJwBUR8ZSkc4CHSGWIirSd9+Im0r/1T0XElyQdBTwO7N/2UbaNHbwXN/DhfwcVXaZtymeHpBuB\nDRHxyxxCLBtlkzAiYmc+6OqBfQsed6LCyjLbe18kPRYRV2T7PSnpwbaLrO3t4L34NvCbbL8ZWbP3\n7yNiZZsF2IYaey8kHQp8Dng16+d1AmZK6hURb7VhiG1mR58dki4GvsKW9euqST3QueDxdj8jK7Ek\nVfjb0nhgQLZ0ehfgAGB6PmHlol5SbwBJJwGLc44nT0+RfSBI6grsWqnJYnsiYm5E7BMR+0dEF1IJ\n4vBKTRY7Iuk0Ui/nzIhYn3c8OZgBHCBpP0ntSfPfxje2c9mcYWxPYxMII2K+pMeB+cAGYEhU18ST\nS4H7JLUD3gMuyzmePD0MPCRpDrCetMqApdJMRZekduDHQHtgUnYB5dSIGJJvSG0nIjZJ+g7parFd\ngAcjYkFj+3vinpmZNUkllqTMzKwInDDMzKxJnDDMzKxJnDDMzKxJnDDMzKxJnDDMzKxJnDDMzKxJ\nnDDMzKxJ/j81Cs+VXYgklAAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -104,20 +104,20 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "[((-14870.504977321867, -7435.2524886609335), 1), ((-7435.2524886609335, -3717.6262443304668), 1), ((-1.8152471896144857, -0.9076235948072429), 1), ((-0.05672647467545268, -0.049635665341021096), 1), ((-0.049635665341021096, -0.04254485600658951), 1)]\n",
- "[((-9920.504977321867, -9910.504977321867), 1), ((-4500.504977321867, -4490.504977321867), 1), ((-10.504977321867045, -0.5049773218670452), 3)]\n"
+ "[((-2072.648424828926, -1036.324212414463), 1), ((-1036.324212414463, 0.0), 1)]\n",
+ "[((-1382.6484248289262, -1372.6484248289262), 1)]\n"
]
}
],
"source": [
- "from dcprogs.likelihood import find_root_intervals_brute_force\n",
+ "from HJCFIT.likelihood import find_root_intervals_brute_force\n",
"print(find_root_intervals(equation))\n",
"print(find_root_intervals_brute_force(equation, 10))"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"metadata": {
"collapsed": false
},
@@ -133,8 +133,8 @@
"source": [
"def trial():\n",
" from numpy import all\n",
- " from dcprogs.likelihood import DeterminantEq, find_root_intervals, find_roots, QMatrix\n",
- " from dcprogs.likelihood.random import qmatrix as random_qmatrix\n",
+ " from HJCFIT.likelihood import DeterminantEq, find_root_intervals, find_roots, QMatrix\n",
+ " from HJCFIT.likelihood.random import qmatrix as random_qmatrix\n",
" \n",
" while True:\n",
" #try: \n",
@@ -158,14 +158,14 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from numpy import array\n",
- "from dcprogs.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots\n",
"qmatrix = QMatrix( \n",
" array([[ -3050, 50, 3000, 0, 0 ], \n",
" [ 2./3., -1502./3., 0, 500, 0 ], \n",
@@ -179,7 +179,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 10,
"metadata": {
"collapsed": false
},
@@ -200,7 +200,7 @@
}
],
"source": [
- "from dcprogs.likelihood import expm, eig, inv\n",
+ "from HJCFIT.likelihood import expm, eig, inv\n",
"transitions = qmatrix.transpose()\n",
"\n",
"right = eig(transitions.matrix)[1]\n",
@@ -227,7 +227,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 11,
"metadata": {
"collapsed": false
},
@@ -265,7 +265,7 @@
}
],
"source": [
- "from dcprogs.likelihood import eig, inv\n",
+ "from HJCFIT.likelihood import eig, inv\n",
"from numpy import exp\n",
"from numpy import diag\n",
"\n",
@@ -296,7 +296,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 12,
"metadata": {
"collapsed": false
},
@@ -305,34 +305,34 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Same order left and right: True\n",
+ "Same order left and right: False\n",
"Is right eig: True -19408.2022554\n",
"Is right eig: True -3093.52723698\n",
"Is right eig: True -2022.1192695\n",
- "Is right eig: True -6.87879822226e-14\n",
"Is right eig: True -101.8179048\n",
+ "Is right eig: True 6.74160411739e-14\n",
"Is left eig: True -19408.2022554\n",
"Is left eig: True -3093.52723698\n",
"Is left eig: True -2022.1192695\n",
- "Is left eig: True -6.87879822226e-14\n",
- "Is left eig: True -101.8179048\n",
+ "Is left eig: False -101.8179048\n",
+ "Is left eig: False 6.74160411739e-14\n",
"Is row of inv(right) a left eigenvector: True -19408.2022554\n",
"Is row of inv(right) a left eigenvector: True -3093.52723698\n",
"Is row of inv(right) a left eigenvector: True -2022.1192695\n",
- "Is row of inv(right) a left eigenvector: True -6.87879822226e-14\n",
"Is row of inv(right) a left eigenvector: True -101.8179048\n",
+ "Is row of inv(right) a left eigenvector: True 6.74160411739e-14\n",
"Is column of inv(left) a right eigenvector: True -19408.2022554\n",
"Is column of inv(left) a right eigenvector: True -3093.52723698\n",
"Is column of inv(left) a right eigenvector: True -2022.1192695\n",
- "Is column of inv(left) a right eigenvector: True -6.87879822226e-14\n",
- "Is column of inv(left) a right eigenvector: True -101.8179048\n"
+ "Is column of inv(left) a right eigenvector: False -101.8179048\n",
+ "Is column of inv(left) a right eigenvector: False 6.74160411739e-14\n"
]
}
],
"source": [
"from numpy.linalg import eig, inv\n",
- "from dcprogs.likelihood import eig as dceig\n",
- "from dcprogs.likelihood import inv as dcinv\n",
+ "from HJCFIT.likelihood import eig as dceig\n",
+ "from HJCFIT.likelihood import inv as dcinv\n",
"from numpy import exp\n",
"from numpy import diag\n",
"\n",
@@ -371,7 +371,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 13,
"metadata": {
"collapsed": false
},
@@ -380,9 +380,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "False\n",
- "False\n",
- "False\n",
+ "True\n",
+ "True\n",
+ "True\n",
"True\n",
"[[ 4.44037679e+01 -1.92479231e+02 -4.57813227e+00]\n",
" [ -1.53983385e+04 6.67479474e+04 1.58760470e+03]\n",
@@ -395,7 +395,7 @@
],
"source": [
"from numpy import array\n",
- "from dcprogs.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor\n",
"qmatrix = QMatrix( \n",
" array([[ -3050, 50, 3000, 0, 0 ], \n",
" [ 2./3., -1502./3., 0, 500, 0 ], \n",
@@ -474,9 +474,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -488,7 +488,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/exact_survivor.ipynb b/exploration/exact_survivor.ipynb
index 2ffeb93..db5185d 100644
--- a/exploration/exact_survivor.ipynb
+++ b/exploration/exact_survivor.ipynb
@@ -1,5 +1,18 @@
{
"cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -21,17 +34,6 @@
"The classic $Q$ matrix first:"
]
},
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "%matplotlib inline"
- ]
- },
{
"cell_type": "code",
"execution_count": 2,
@@ -39,27 +41,15 @@
"collapsed": true
},
"outputs": [],
- "source": [
- "import numpy as np\n",
- "import matplotlib.pyplot as plt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
"source": [
"from numpy import array\n",
- "from dcprogs.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor\n",
+ "from HJCFIT.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, eig\n",
"qmatrix = QMatrix( \n",
" array([[ -3050, 50, 3000, 0, 0 ], \n",
" [ 2./3., -1502./3., 0, 500, 0 ], \n",
" [ 15, 0, -2065, 50, 2000 ], \n",
" [ 0, 15000, 4000, -19000, 0 ], \n",
- " [ 0, 0, 10, 0, -10 ] ]), 2)\n"
+ " [ 0, 0, 10, 0, -10 ] ]), 2)"
]
},
{
@@ -71,7 +61,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -88,15 +78,6 @@
}
],
"source": [
- "from numpy import array\n",
- "from dcprogs.likelihood import QMatrix, DeterminantEq, Asymptotes, find_roots, ExactSurvivor, eig\n",
- "qmatrix = QMatrix( \n",
- " array([[ -3050, 50, 3000, 0, 0 ], \n",
- " [ 2./3., -1502./3., 0, 500, 0 ], \n",
- " [ 15, 0, -2065, 50, 2000 ], \n",
- " [ 0, 15000, 4000, -19000, 0 ], \n",
- " [ 0, 0, 10, 0, -10 ] ]), 2)\n",
- "\n",
"transitions = qmatrix.transpose()\n",
"tau = 1e-4\n",
"exact = ExactSurvivor(transitions, tau)\n",
@@ -150,16 +131,16 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEZCAYAAADCJLEQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFX6+PHPMy2kQUihBEJC79IjKkEUC7qCvRfEXdfV\ndXXXr6vr6m/XZW3rWnZti6gIYgHFhrv2goDSAiIgICIkhBpC6AGmnd8f9xKGkDKkzSR53q/XvMjc\ne8+95547zDPn3HPPEWMMSimlVLRxRDoDSimlVHk0QCmllIpKGqCUUkpFJQ1QSimlopIGKKWUUlFJ\nA5RSSqmopAFKKaVUVNIApZRqsETkBBEJiEibSOdF1T4NUEqphuxuYCrQK9IZUbVPA5RqMkTkYRH5\nfR0fY6GI9K5B+u4islRE9orIbWGmyRORM6p7zEgSkR9EZEQ10/YHNgKfcZwBqqrPQk2vo6odGqAa\nCRG5SkRyRWSfiGwRkY9EZFik81UfwvmCFpE04Drg+ZBlySLyrojsF5F8EbkqjGNVleYxYHx1zsN2\nF/CVMSbRGPNUOcdvMMEonLwaY3obY2ZV8xB/AP4BrAJ6hhy3pYgY+/9CiX2dfhmy/pjPgr18o4gM\nsN/W9DqqWqABqhEQkTuAfwEPAa2BDsBzwPmRzFeUuR740BhzIGTZs4AXq8yuBv4Txq/mqtLMBE6r\nwT2RTOCHaqZtMETEVcP0A4GTgNexglSPkNX9gSJjTIIxJg64B3heRFLt9ddT5rNgr2sNrLQX1fQ6\nqtpgjNFXA34BLYB9wKWVbNMTmAXswvryGxOyLg/4I7AM2A+8hPUf9SNgL/A50LLM9vdg/UfeCbwM\nNDuOY91pH2s3MP1wWiAdeBvYDqwHbitzDuWmxbr/EAQO2OVwVwVl8CVwTcj7eKxA0y1k2VTgkUrK\nMaw0WE1OY4/3eth5DAAH7XPpViZduedak3Itp4yP57PwJ+Bne91K4MLK8mrv/257/4cAl73sDKAz\nUAwMDMn3dmBEBXmdXiYvi0P+/gPwScj7doABulbwWehi5zNg53WHnbdKr6O+6v4V8Qzoq4YXEEYB\nfsBVwXo3sBb4M+ABTre/ULrb6/OA+fYXUTugEFgCDMAKAF8Cfw3ZXx6wAsgAkoFvgAeO41gL7S+f\nZKymmd9g1eQXA3+x03UC1gFnlznuMWlD1p1RRTltB4aEvB8AlJTZ5k7gg0r2EVYa4CngiWpej1nA\nryrJwzHnWpNyLWc/x/NZuNQ+pgO4HCuota0or/b7pfZnJ7bsNsCNWIEuDvgEeKyCfA4GXi6zbA6Q\nbP/9CvCQ/XeS/T4XkPI+C/ay3wLTw72O+qqflzbxNXwpWM0Z/grWDwUSsH7le40xXwL/Ba4M2eZp\nY8w2Y8wmrP/oC4wx3xljDgLvYn1BhXrGGFNgjCkGHgzZVzjHesoYs9lO+wFWc8wQIM0YM95Otw54\nAbiizHHLSxuuJKxAcFgCsKfMNruBxEr2EW6avfbxyhNOGVVHTco1VNifBWPMW/Yxg8aY6cBPQHYY\n+SwwRze1Ht7fC1jBewHQFri3vB0YY3KNMePKLMuxzx373G8XkT1YtfxWwChjzOG5hcp+FgD6YQXP\nUJVdR1UPatQOrKLCDiBVRFwVBKl0oMAYEwxZlo/1C/mwbSF/HyjnfUKZfRaU2Vf6cRxra8jfJXaa\nTCBdRHaFrHNifUGGKi9tuHZydCDZBzQvs01zjv3iChVumkSs5rvyhFNG1VGTcg0V9mdBRK4D7gCy\n7EUJQCqVK6hi/QtY939+bYw5VMW2xxCRGKwm1B7GmJ9F5GKspkpfyGZlPwtgBbX3yiyr7DqqeqA1\nqIZvHlZ7/gUVrN8MZIhI6LXuAGyqwTEzyuxrcw2PVQCsN8YkhbwSjTHnhpmfcGbdXAZ0C3m/BnCJ\nSNeQZf2ovINCuGl6At9XsI+aXo/jmWG0puVaIRHJxAomtwIpxpgkrKZfqSKvFeZfRBKwOvu8BNwv\nIsnVyFofrHt46wCMMW8DG4CLQ7Y56rNgX4s+HFuDquw6qnqgAaqBM8bsxrrH8KyIXCAicSLiFpFz\nRORRrOaSEuAue/kIYDQwrQaH/a2ItLe/QO7FumFNDY61ENgrIneLSKyIOEWkj4gMCTM/27Dur1Tm\nQ+DUw2+MMfuBd4DxIhIvIqdg9XqcCiAik0VkcugOqkpjp2sGDMK6wV6eml6PcM71sJqWa2XisYLN\ndgARGYf1JV/dvAL8G8g1xvwK+B8woRr5GgD8ENKcB9a1H1Pm/akh72PtV+n3YRjXUdUDDVCNgDHm\ncaymlvuwvjAKsH7ZvmeM8WJ9AZ4DFGF1P7/OGLO6Bod8HfgU61fqz8ADdj6qdSxjTAA4D6uZZb2d\n9kWsHorheBi4T0R2icidFWzzCnCuiMSGLLsF64upEHgDuNkYc7g2lIHVAaSsytKAdf6zjDGby0lb\n7TIKEc65Hj5WTcu1sn2vBB7HqsFvA/pybHmFnVcROR+rw8/N9qI7gIEicvVxZq0/Vg0p1MfAmXbQ\ngTKfBfuHxwRgpYhstLc55jrazxb++Tjzo2pAjv6hoVTlRCQPq5fZ55HOy/ESkYeAQmPMv6rYzoPV\ntHOCMcZX2bblpF0A/NIYs6L6OVV1rarPgl7H6KABSh2XhhyglFINizbxKaWUikpag1JKKRWVtAal\nlFIqKlX5oK6ITMLqCVRojCnbjRQREazuoedidZ+93hizxF43FqtnGVjD4Uyp6nipqakmKysr7BNQ\nSikVnRYvXlxkjEmrbvpwRpKYDDyD1TWzPOcAXe3XicB/gBPtZ2T+ijVulgEWi8hMY8zOyg6WlZVF\nbm5ueLlXSikVtUQkvybpq2ziM8bMxhpluCLnA68Yy3wgSUTaAmcDnxljiu2g9BnWcw51ypc3H++s\nf0LBwro+lFJKqTpUG/eg2nH0+Fob7WUVLa87BQuRV87HMeshfJPOY+uK2XV6OKWUUnUnKjpJiMiv\n7dlgc7dv3179HeXNwWl8uAgiQR+vTHuVGyYv4us12wkGtbeiUko1JLURoDZx9OCh7e1lFS0/hjFm\nojFmsDFmcFpate+nQVYO4vSAOHG6PWQMOJNlG3cxdtJCznjiayZ/s569B31W89+cx7UZUCmlolhY\nz0GJSBbw3wp68f0Ca9y3c7E6STxljMm2O0ksBgbamy4BBoXM2VKuwYMHmxp1kihYCHlzICsHMrI5\n5A/w4fItTP42n+8LdnFKzDomO/6OC78VzMbOhIyqprBRSil1vERksTFmcHXTh9PN/A1gBNacQxux\neua5AYwxE7BGBj4Xa6KxEmCcva5YRP4OLLJ3Nb6q4FQrMrKPCjgxLicXDmjPhQPas7RgFxtnfoUU\n+hAJEvAfYu38D+mUPhi3MypaO5VSStmibiSJGtegqlKwEDNlNMbvw4uTqw79mY0JfbkiuwNXZmfQ\ntkVs1ftQSilVpZrWoJpegILSZsBAh2F8tT+LVxfk8/Wa7ThEOLNna64ZmsnJnp9xbJhb2lSolFKN\n3axZs/B4PJx88sm1sr86b+JrlOxmQCdwBnBGr9Zs2FHCawvzeXNRAYUrZzM45iE8+BGXBxn7gQYp\npVSjN2vWLBISEmotQNWU3nixdUiJ455zejLvnpH8vf8u3PhxECTg8/LB+28yf90Ooq22qZRqml59\n9VWys7Pp378/N910E/n5+XTt2pWioiKCwSA5OTl8+umnAFxwwQUMGjSI3r17M3HixNJ9fPzxxwwc\nOJB+/foxcuRI8vLymDBhAk8++ST9+/dnzpw5kTq9Uk2zia8qBQthyhhMwIsfF+PM/2PuwU50So3n\nyuwOXDyoPcnFS4/qLaiUalr+9sEPrNy8p1b32Su9OX8d3bvSbVatWsVdd93FO++8g9vt5pZbbmHo\n0KF4vV4++eQTsrOzWbt2Lc8//zwAxcXFJCcnc+DAAYYMGcLXX39NMBhk4MCBzJ49m44dO5Zuc//9\n95OQkMCdd1Y6AXLYtImvLmRkw9iZSN4c3Fk5vNB6EP9bvoU3Fm7gwQ9X8dmnH/Cq+0HcxgeuGES7\nqiul6skXX3zB4sWLGTJkCAAHDhygVatW3H///bz11ltMmDCBpUuXlm7/1FNP8e677wJQUFDATz/9\nxPbt2xk+fDgdO3YEIDk5uf5PJAwaoCoS0l09FrhkUHsuGdSe1Vv3sHHmbBybfQhB/P5DLPryPTpd\neAKtmzeLbJ6VUvWmqppOXTHGMHbsWB5++OGjlpeUlLBx40YA9u3bR2JiIrNmzeLzzz9n3rx5xMXF\nMWLECA4ePBiJbFeL3oM6Tj3aNOeMcy7G6YohiJMAbv65Oo2TH/mSX01ZxKc/bMUXCEY6m0qpRmrk\nyJHMmDGDwsJCwGrCy8/P5+677+bqq69m/Pjx3HjjjQDs3r2bli1bEhcXx+rVq5k/fz4AQ4cOZfbs\n2axfv750HwCJiYns3bs3AmdVPq1BVUdGNmI3AcZk5fB4bG/ezC1gxuKNfL6qkNSEGC4e1I7r2m+j\n3a7Fep9KKVVrevXqxQMPPMBZZ51FMBjE7XbzxBNPsGjRIr755hucTidvv/02L7/8MldddRUTJkyg\nZ8+edO/enaFDhwKQlpbGxIkTueiiiwgGg7Rq1YrPPvuM0aNHc8kll/D+++/z9NNPk5OTE9Fz1U4S\ntcgfCPLVj9uZvqiAXWvmMtX1IB7xYxwevFe/R1znkyKdRaWUqjfaSSKKuJwOzuzVmjN7tWbf518Q\nM9fqqu4PeJkwZTIbe8dyyeD2DO2YgsMhkc6uUkpFNQ1QdSSh+2kw/0lMwIvD6SY2awSfrdzGO99t\nol1SLBcPas8lA9vToWSFdldXSqlyaBNfXSozsvpBX4BPftjKjMUbmbu2iAGs4Y2Yh3Hj0xErlFKN\njjbxRbMyI6s3czs5v387zu/fjs27DpD//je41vusZkCflw/ff5PEM7PI6ZKKS0dXV0o1cRqgIiQ9\nKZb00y/ATJmECXgJiosZOzKZ/fIiUhNiGNMvnYsGtqN3YDWSr4PWKqWaHg1QkWR3VydvDp6sHF5s\nO5hZPxbyzpJNvDo/n6XffsLr9qC1uDw4tAlQKdWEaICKtJBmQA9wVu82nNW7DbtKvKx/91vcP/lL\nmwCnvfkaZlhrftG3LUlxnsjmWyml6pje6IhSSXEeBgwfjdMVgxEnxulmXqAn9767giEPfs6vpizi\ng+83c8AbsDpjzHnc+lcppY6T3++PdBbKpQEqmh0etPb0e3GP+y9P/fEm/vu7YVx/chbLN+3md298\nxy8feBbvpPMwXzyAmTJGg5RS0aYOfkCWN4VGQkICf/jDH+jduzcjR45k+/btAIwYMYLbb7+d/v37\n06dPHxYutPJx//33c+2113LKKadw7bXXcvDgQcaNG0ffvn0ZMGAAX331FQBPPvkkN9xwAwDLly+n\nT58+lJSU1Nq5VEab+KJdSBOgAH3ataBPuxb86ZyeLFi/gz2fzsKx7cjAtZ//bwbNz+zEiR1TcOrD\nwEpFlj11DwEvOD1QSzMfTJo06agpNC6++GL279/P4MGDefLJJxk/fjx/+9vfeOaZZwBrINmlS5cy\ne/ZsbrjhBlasWAHAypUrmTt3LrGxsTz++OOICMuXL2f16tWcddZZrFmzhttvv50RI0bw7rvv8uCD\nD/L8888TFxdX43MIh9agGiinQzi5cyqjzrvUGrhWnATFzZRN7bnqhQUMffgL7p/5A4vzd1oTLWoz\noFL1L2+OFZxMwPo3r3YmAXzqqafo168fQ4cOLZ1Cw+FwcPnllwNwzTXXMHfu3NLtr7zySgCGDx/O\nnj172LVrFwBjxowhNjYWgLlz53LNNdcA0KNHDzIzM1mzZg0Oh4PJkydz7bXXcuqpp3LKKafUyjmE\nQ2tQDV3IwLWerBxeaj2QL1cX8sH3m3l94QYmf5vHWc3zedZ/Py7jB6dH569Sqr5k5Vg1p8M1qKya\nD74a7hQaIlLu36Hv4+PjwzrmTz/9REJCAps3b65Bzo+f1qAag4xsyPk/yMgmzuPivBPSef7awSy+\n7wyeuKwfZ8X9hAR8iAkQ8B9i1ifvsGzjLp3CXqm6Zt9H5vR7a615r6IpNILBIDNmzADg9ddfZ9iw\nYaVppk+fDli1pBYtWtCiRYtj9puTk8Nrr70GwJo1a9iwYQPdu3dn9+7d3HbbbcyePZsdO3aUHqM+\nhFWDEpFRwL8BJ/CiMeaRMuufBE6z38YBrYwxSfa6ALDcXrfBGDOmNjKuqpbYzM1FA9tD2pWYKa8T\n9PsIiItn17dh0TPfkJEcy7l92vKLE9rSN/ijPhCsVF0oM6JMTY0aNarcKTTi4+NZuHAhDzzwAK1a\ntSoNSgDNmjVjwIAB+Hw+Jk2aVO5+b7nlFm6++Wb69u2Ly+Vi8uTJxMTEcPPNN/Pb3/6Wbt268dJL\nL3HaaacxfPhwWrVqVWvnVJEqx+ITESewBjgT2AgsAq40xqysYPvfAQOMMTfY7/cZYxLCzVCjGosv\nmoSMC7grpT+frtzG/5Zt4Zu1RZxgfjzyQLDTA9fNxJF5YqRzrJQ6DgkJCezbt++Y5SNGjOCxxx5j\n8OBqD4lXbfUxFl82sNYYs84+4DTgfKDcAAVcCfy1uhlSdSTkV1wScNngDC4bnMGuEi8bZs7Hvdp+\nINjvZeIrUyjsl8DZvduQ3TFZewMqpSIinADVDigIeb8RKPfntYhkAh2BL0MWNxORXMAPPGKMea+c\ndL8Gfg3QoUOH8HKuakVSnIekU86DtRMxAS843OxpfSJv2B0sUuI9nNmrNaP6tOGUmHW4C77RZkCl\nolB5tSewOlU0VLXdi+8KYIYxJhCyLNMYs0lEOgFfishyY8zPoYmMMROBiWA18dVynlRVDj8QnDcH\nV1YOf8rI5neH/Hy9ZjsfrdjKB99vZk3uF5wY8xAOuxnQe9V7xOoMwUqpOhROgNoEZIS8b28vK88V\nwG9DFxhjNtn/rhORWcAA4Odjk6qIKnMjNz7Gxbl923Ju37Yc9AXYOHMBnuV+nHYz4HOTJ/NDZxdn\n927NyJ6tSU2IiWDmlVKNUTgBahHQVUQ6YgWmK4Crym4kIj2AlsC8kGUtgRJjzCERSQVOAR6tjYyr\n+tPM7aRL9jmw6j+YgBdxumnZ5XTWbNjLl6sLEVnO4MyWnNWrDeclF9B2Z642AyqlaqzKAGWM8YvI\nrcAnWN3MJxljfhCR8UCuMWamvekVwDRzdLfAnsDzIhLEeubqkYp6/6koF9IM6MzK4YaMbMYZw6ot\ne/l05VY+/WEbH330Ptd4HiIgfoIONz+f8zpdB43UThZKqWrRKd9Vrdn1ySM0n/cPqzegcfCE/1Le\njL2U03u0YmTP1uR0TSVu25LS7u5aw1KqcdMp31XUSOp1Oiz6FwS8OF1uhp56PgXbUvloxVbezN1I\ntmstU90P4jY+nYBRKVUlDVCq9hwe1iVvDpKVw/CMbIYDvkCQReuLOfDlbJybfaUTME55bSo7BrTg\ntB6t6J+RpE2BSqmjaIBStaucYV3cTgcnd0mFmIsxU6ZgAl6Mw8Xa+P5M+/pnnvlqLcnxHkZ0S+O0\nHq04LT6PhC3ztBlQqSZO70Gp+hUy5BIZ2ewu8fH1T9v5anUhX/1YSKcDP/Ca5yE8dkeLjaOnk9V/\nxDGjMSulop/eg1INS5kaVos4N2P6pTOmXzqBoGHr/xYSs9gadskEfLw14w3e/ijAiG6tGNE9jVO6\nptK8mfuYQKeUanw0QKmo4XQI7fqfBd8/U9rRYtCw0eQXJvPhii1Mzy3A5RAub7uF+3feo/NbKdXI\naYBS0aVMR4uRGdmMBPyBIEs27GLWj4W0WvqRNb+VWNPcfzzzTXwnp5PTNU1HtFCqEdF7UKrhKViI\nmTIa4/fhFxe/lr8wq6QjAL3TmzO8WxrnJG2g16FluDoN19qVUhFS03tQGqBUwxRyDyrYbggrNu9m\n9prtzF5ThClYwCuuB3HjJ+Bw8+mgiXQfMpKurRK0s4VS9Ug7SaimKaSzhQM4oX0SJ7RP4tbTu3Lo\nq7m4v7Y6WmB8rJr3Ib+b66Z18xhO6ZJKTtdUTumcSqvdy7SjhVJRTAOUanRiupwK3zwOAS8up4fr\nL7uGDvuymLO2iK9WF/LOkk0MlDWlswgbp4eDV71LfOeTI511pVQIDVCq8QnpaEFWDq0ysrkCuCK7\nA8GgYeWWPez7/Fvc64/MIvzcy5OZl244uXMqJ3dJYWCHljTbulhrWEpFkN6DUk1TwUKYMgYT8BJ0\nuJnW8xlmFKazbONuAkHDia61vHJ43ECnh+B17+PKHBrpXCvVoOg9KKWqo8z0IVdnZHM1sPegj4Xr\ni2HObFyHxw30e3n6pZdZmuXgpM4pnNQphd7pzXE5HfrAsFJ1SAOUarrKGTcwsZmbkT1bQ8LFYI8b\nKE43cZ1GsGnbAR75aLW1XYyLK9pu5e7CP+LUB4aVqhMaoJQqT5ka1k0Z2dwEFO49yPx1xcz7eQet\nVn8Ahx8Y9h3ivbffoGhACid2TKZPuxa4nY5In4VSDZreg1Kquso8MHxH7Hj+W5wBQJzHyaDMlgzt\nlMJp8Xl0O7BUHxpWTY4+qKtUJJW5B7V97yEWri9mwfodLFhXTHzhYl7zPGQ9NCxuZvR5lvYnjGBQ\nZksSYrQBQzVu2klCqUgqcx8rLTGGX5zQll+c0BaAki/mEzPHfmgYH5uXfsa9uXE4BHqlN2dIVjJn\nJebT17+ChO4jtIalVAitQSlVl+zu7AS84PRw4Mp3WRzsysK8YhatL8YULOBlxwO48eMXFxOz/kVa\nrxwGZ7akc1oCDp1lWDVgWoNSKpqVeWg4NiObYcCwrqkA+L+ei3OWHzFBBD+O/LncszoJgKQ4NwM7\ntGRQZktGxK2n24HvcXfW+1iq6dAalFKRVKaGZa57n7y4PuTmFZObt5Pc/GJaFH0Xch/Lxavdn6ZV\nr+EMymxJelJspM9AqQrVSw1KREYB/wacwIvGmEfKrL8e+CewyV70jDHmRXvdWOA+e/kDxpgp1c2s\nUo1OmRqWZGTTEeiYGs+lg60egQe+WFh6H0vws3vVV/z9+0QA2jRvxsDMJAZ2aElO7Do679fegqrx\nqLIGJSJOYA1wJrARWARcaYxZGbLN9cBgY8ytZdImA7nAYMAAi4FBxpidFR1Pa1BKlVGmluW/9j1W\nOXuyOL+YJRt2sWTDTlrt+v6YWlZqzxwGdmhJ+5ax1jQjOuqFqmf1UYPKBtYaY9bZB5wGnA+srDSV\n5WzgM2NMsZ32M2AU8Eb1sqtUE1SmluXKyKYv0Ld9C64/xdpk3+eLiJlbfi0rJd7Dxa0288dtf8QV\n9IHLg4z9QIOUinrhBKh2QEHI+43AieVsd7GIDMeqbf3BGFNQQdp2ZROKyK+BXwN06NAhvJwr1ZSU\nMyxTqITup8H8JyHgxen0cNu14zjb3ZPvNuxiacEuWv30PlI66oWXyVNfYWUXD/0zkujXPokebROJ\ncTm1lqWiSm314vsAeMMYc0hEbgKmAKeHm9gYMxGYCFYTXy3lSammo5xaVm+gd3oLrhmaCQXXYaa8\nRTDgwzhcFKYMYfaaIt5ZYt029jgdXJC6kQf23IvLWLUsc+1MnJnl/RZVqn6EE6A2ARkh79tzpDME\nAMaYHSFvXwQeDUk7okzaWcebSaVUGCqrZWVkI2M/QPLm4MjK4c8Z2dxjDFt2H+T7gl0s3biLrJUf\n4wj6cNi1rKdfmsS8dkFOaNeCvu1b0K99EpkpccjGRVrLUvUinAC1COgqIh2xAs4VwFWhG4hIW2PM\nFvvtGGCV/fcnwEMi0tJ+fxZwT41zrZQ6fmUCmIiQnhRLelIs5/RtC32uxkyZjgl4weEmoctp+HYF\neWV+Pl5/EIBhzdbxkvwdt/FhnB4KL3yTNr2HW50wlKplVQYoY4xfRG7FCjZOYJIx5gcRGQ/kGmNm\nAreJyBjADxQD19tpi0Xk71hBDmD84Q4TSqkok5FtTRmSNwdXVg43ZmRzI+ALBFmzbS/LN+4macnX\nuLYemSdr6huv8ar7IH3atSh9DXb8RJuduTg6ag1L1Yw+qKuUCl/ITMTG4ebzIS8w60BHVmzazeot\ne+kTXH3U4Livdn+KFt2G0Tu9OV1aJRyZgkQ7YzQJOtSRUqr+hMyTJVk5nJWRzVn2Kq8/yM5PlhCz\n6MjguKHd3T0uBz3aJHJOiw3cuP4POI0XnDE60aOqkAYopdTxqaAzhsfloPUJZ8J3T0PAi8vp4fZr\nb2BMbC9+2LyHHzbvYcWm3Xh/ngPGWzrR48tTX+H7LBc92zanV3pzerdtTlpijHbGUBqglFK1qEx3\nd2dGNl2ALq0SOb+/9Qik2SCYV94h6PdhnC52pA5hacEu/rtsS+luTotfz4TgeNzGR9DhYePoaaT3\nPRWPS2cpbkr0HpRSqv6Vcw9q9wEfq7fsYeWWPbT+/jnOLnwRJ0H8xsET/kt5gQvonJZAz7bN6dEm\nkWzXWroeWEp8txFIB31eKxrpjLpKqcYntDOG083ckycxz9uZ1Vv2sHrrXtruWVbaGcMvLh5K/QeO\nDifSvU2i9WqdSHyMSztjRJh2klBKNT5lOmMMz8hmeMjqA18sptkcP2KPPdj1wFIezk2nxBso3WZU\ni3ye8t6Py35mq2D0NNL7aDNhQ6IBSikVnSoZGSO22wiY90Tp2IPXXnENV7cbwsadB1i9dQ8/bt1L\nh1Vf4iw68szWm2+9wcQ3D5CVGk/31ol0bZ1A99aJ9DU/0nZnLk6dpiTqaBOfUqphqqr5rswzW3NP\nmcRCXxd+3LaXn7btJb+4hAGsOaqp8NmMJ3BlDqVb6wS6tk4gMyUe9+ZcbSasJm3iU0o1TVWM8F5l\nM6E3wO7PlpY+tyX4Sdg6n0fWJnP4d/sQ509MdT+IGz9Bh5t5w14mpccwOqcl0MztPLIzvddVJzRA\nKaUar8qaCT1OYkOe23I6Pdx03Viuaz2In7fv46fCvSQvmYO7wI+TICbgY/4X7/PcpyAC7VvG0iUt\ngVPj1nPNj7fhDHp1rq1apgFKKdV0lXlui4xsYqF0XEFSL4Ipk60A5vJw2YVX0svRnbWF+0pfO9Z9\nCQ5v6VwOv/9mAAAgAElEQVRb/5n0MrNb++mclmC9WsXTOS2B9vtW4NwwV2tZx0EDlFKqaatimpLD\nAUyycsjKyCarzCaB/Bhk6nsEAz5wuHB1zEH2C5+t3Ma0/dZ8rQPFutflEWuMwmk9n6VZx6F0Soun\nY2o8yfEeHTmjHBqglFKqMlXc63JmnghjPwB7rq2bM7K52V63q8TLz9v34563gJjV1r0uY3wULv+M\nZ5bEle4jp9k6XmQ8Lvte14Kcl0nqNoyOqfHW81yHNbF7XRqglFKqpioIYklxHgZlesBxHqydWDpG\n4e/H3cClCX1Zt30/64r2037F17i2HrnX9e3n7/PcJ9Y+WiXGkJUaz4jY9dyY93ucQR84Pfiufo+Y\nTifV84nWLw1QSilV18rc63JlZJMJZKbEcxpA5iUw5ZXSe12XXnAlfVw9WF+0n/VF+8kr2k9w/Rzk\n8IzHfi//full3okvISs1jqyUeDJT4slKiaOnfzXpu3PxdD61wdey9DkopZSKBmE812WmjIaAj6DD\nzTt9nmOerzP5O0rIK9rPjv3e0ntdh5/rGt/yEQ62HURmcjyZKXF0SImjy8GVJG6dj9TDhJL6HJRS\nSjUGYTzXJfa9LmdWDpdmZHNpyOo9B32UfHH0c119/cv499os3tmzCTjSWSNgB7B/t3ucYLshZCTH\n0cF+pSfF4tkSHQ8na4BSSqmGopIg1ryZm+Zlnuu68rKruTIjm4O+AAXFJcjcXGKWHwlgKdsX8mh+\nGl5/sHQ/gxx2j0P8OFwxVtNkhIKUBiillGosynmuC6CZ20nX1omQfQ6s+k9pAPvVtddxQ7shbNt7\nkA07SthQXEKbZXNxb7BnRQ54rX1pgFJKKVVjYT7XdTiAOYC2LWJp2yKWEzulQOsLYcrLVnByeqzt\nIkQDlFJKNSVhjmGo96CUUkpFn6qCWD2Jum7mIrIdyK/hblKBolrIjjqWlm3d0HKtO1q2daeqss00\nxqRVd+dRF6Bqg4jk1qTvvaqYlm3d0HKtO1q2daeuy1bnPlZKKRWVNEAppZSKSo01QE2MdAYaMS3b\nuqHlWne0bOtOnZZto7wHpZRSquFrrDUopZRSDZwGKKWUUlEpagOUiIwSkR9FZK2I/Kmc9TEiMt1e\nv0BEskLW3WMv/1FEzq5qnyLS0d7HWnufnro+v0ip53K91V5mRCS1rs8t0uq5bF+zl68QkUki4q7r\n84uUei7Xl0TkexFZJiIzRCShrs8vkuqzbEPWPyUi+8LKoDEm6l6AE/gZ6AR4gO+BXmW2uQWYYP99\nBTDd/ruXvX0M0NHej7OyfQJvAlfYf08Abo50GTSSch0AZAF5QGqkz7+Rle25gNivN/QzW2vl2jxk\nv08Af4p0GTSWsrXTDQamAvvCyWO01qCygbXGmHXGGC8wDTi/zDbnA1Psv2cAI0VE7OXTjDGHjDHr\ngbX2/srdp53mdHsf2Pu8oA7PLZLqrVwBjDHfGWPy6vqkokR9l+2HxgYsBNrX8flFSn2X6x4AO30s\n0Jh7kdVr2YqIE/gncFe4GYzWANUOKAh5v9FeVu42xhg/sBtIqSRtRctTgF32Pio6VmNRn+Xa1ESk\nbO2mvWuBj2t8BtGp3stVRF4GtgI9gKdr4ySiVH2X7a3ATGPMlnAzGK0BSikVnueA2caYOZHOSGNh\njBkHpAOrgMsjnJ1GQUTSgUs5zoAfrQFqE5AR8r69vazcbUTEBbQAdlSStqLlO4Akex8VHauxqM9y\nbWrqvWxF5K9AGnBHrZxBdIrIZ9YYE8Bqnrq4xmcQveqzbAcAXYC1IpIHxInI2ipzGOkbdRXcvHMB\n67Buvh2+0da7zDa/5eibd2/af/fm6Jt367Bu3FW4T+Atju4kcUuky6AxlGvIPvNo/J0k6vsz+yvg\nWyA20ufeWMoVq8NJFzutAI8Bj0W6DBpD2ZZz7LA6SUS8kCopvHOBNVg9Qu61l40Hxth/N8MKLGux\nbhJ3Ckl7r53uR+CcyvZpL+9k72Otvc+YSJ9/IynX27DaoP3AZuDFSJ9/Iypbv71sqf36S6TPv6GX\nK1aL0jfAcmAF8Bohvfoa46s+P7NljhtWgNKhjpRSSkWlaL0HpZRSqonTAKWUUioqaYBSSikVlTRA\nKaWUikoaoJRSSkUlDVBKKaWikgYopZRSUUkDlFJKqaikAUoppVRU0gCllFIqKmmAUkopFZVcVW+i\nlFLRR0TexJoMzwcUGGOujXCWVC3TAKWUaqi6AYPNkdmwVSOjTXyqyRCRh0Xk93V8jIUi0rsG6buL\nyFIR2Ssit4WZJk9EzqjuMSNJRH4QkRHVSOcBHNUJTlV9Dmp6DVXt0QDVSIjIVSKSKyL7RGSLiHwk\nIsMina/6EM4XtIikAdcBz4csu9Uus0MiMjnMYyWLyLsisl9E8kXkqjKbPIY1n0513QV8ZYxJNMY8\nVc7xG0wwCievxpjexphZ1dh9D6CtiMyyXyn2MVuKiLH/H5TY1+iXIXk65nNgL98oIgPstzW9hqqW\naIBqBETkDuBfwENAa6AD8BxwfiTzFWWuBz40xhwIWbYZeACYdBz7eRbwYpXz1cB/yvzangmcJiJt\nqpnPTOCHaqZtMOzpw2uiD/CMMWaE/dphL+8PFBljEowxccA9wPMikmqvv54ynwN7XWtgpb2optdQ\n1ZZIz+iorxrPiNkC2AdcWsk2PYFZwC6sL78xIevygD8Cy4D9wEtY/1k/AvYCnwMty2x/D9Z/5p3A\ny0Cz4zjWnfaxdgPTD6cF0oG3ge3AeuC2MudQblpgKhAEDtjlcFcFZfAlcE0F6x4AJodR1vFYwalb\nyLKpwCNltvsMGHu818POYwA4aJ9LtzLpyj3XmpRrOWV8PJ+FP2HNmrrX/jxcWFle7f3fbe//ENY9\n8DzgDKAzUAwMDMn3dmBEBXl9KPR4Icv/AHwS8r4dYICu5X0OgC52HgN2PnfY+ar0Guqrfl4Rz4C+\nangBYRTW9N+uCta7saZr/jPgAU63v1C62+vzgPn2F1E7oBBYAgzACgBfAn8N2V8e1nTYGUAy1hTZ\nDxzHsRbaXz7JwCrgN1g1+cXAX+x0nYB1wNlljntM2pB1Z1RRTtuBIRWsCzdADQBKyiy7E/igzLKn\ngCeqeT1mAb+qJA/HnGtNyrWc/RzPZ+FS+5gO4HKsoNa2orza75fan53YstsAN2IFujjgE+CxSsph\nJtC5nOWvAA/ZfyfZ73OhdPbwYz4HwG+B6eFeQ33V30ub+Bq+FKwmjYpuFg8FErB+5XuNMV8C/wWu\nDNnmaWPMNmPMJmAOsMAY850x5iDwLtYXVKhnjDEFxphi4MGQfYVzrKeMMZvttB9gNckMAdKMMePt\ndOuAF4Aryhy3vLThSsIKBDWRAOwps2w3kFhm2V77eOUJp4yqoyblGirsz4Ix5i37mEFjzHTgJyA7\njHwWmKObWg/v7wWs4L0AaAvcW9FOjDFjjDE/l7OqP3C7iOzBquG3AkYZY0Udyv8c9MMKnKEqu4aq\nnmg384ZvB5AqIq4KglQ61jMiwZBl+Vi/kA/bFvL3gXLeJ5TZZ0GZfaUfx7G2hvxdYqfJBNJFZFfI\nOifWF2So8tKGayfHBpLjtQ9oXmZZc479wkvEar4rTzhlVB01KddQYX8WROQ64A4gy16UAKRSuYIq\n1r+AVTv6tTHmUBXbHkVEYrCaT3sYY34WkYuxmil9IZuV9znoD7xXZlll11DVE61BNXzzsNrzL6hg\n/WYgQ0RCr3UHYFMNjplRZl+ba3isAmC9MSYp5JVojDk3zPyYqjdhGdZzMzWxBnCJSNeQZf04tlND\nT+D7CvZR0+sRzrkeVtNyrZCIZGIFk1uBFGNMElbTr1SR1wrzLyIJWJ19XgLuF5Hk48xWH6z7d+sA\njDFvAxuAi0O2OepzYF+HPhxbg6rsGqp6ogGqgTPG7Ma6x/CsiFwgInEi4haRc0TkUazmkhLgLnv5\nCGA0MK0Gh/2tiLS3v0DuxbopTw2OtRDYKyJ3i0isiDhFpI+IDAkzP9uw7q9U5kPg1NAFIuISkWZY\ntQqniDQ73LtMRCaX7XpujNkPvAOMF5F4ETkFq6fk1JB9NgMGYd1kL09Nr0c453pYTcu1MvFYwWY7\ngIiMw/qir25eAf4N5BpjfgX8D5hwnHkaAPwQ0pwH1nUfU+Z96Ocg1n6VfheGcQ1VPdEA1QgYYx7H\namq5D+sLowDrl+17xhgv1hfgOUARVvfz64wxq2twyNeBT7F+qf6M1cmA6h7LGBMAzsNqallvp30R\nq4diOB4G7hORXSJyZwXbvAKcKyKxIcvuw2q2+hNwjf33ffa6DKwOIGXdgvWFVgi8AdxsjAmtQY0G\nZhljNpeTttplFCKccz18rJqWa2X7Xgk8jlWD3wb05djyCjuvInI+Voefm+1FdwADReTq48hWf6wa\nUqiPgTPtoANlPgf2j44JwEoR2Whvc8w1tJ8r/PNx5EXVAjn6x4ZSlRORPKxeZp9HOi/HS0QeAgqN\nMf+qYjsPVvPOCcYYX2XblpN2AfBLY8yK6udU1aWqPgd6DaOHBih1XBpygFJKNSzaxKeUUioqaQ1K\nKaVUVNIalFJKqagUdQ/qpqammqysrEhnQymlVA0tXry4yBiTVt30URegsrKyyM3NjXQ2lFJK1ZCI\n5NckvTbxqehTsBDmPG79W5NtlFINWtTVoFQjV7AQ8uZAVg5kZBMIGvZ7/ew/ZL2CGxbS+aOrkIAX\n4/Sw6NTJ7GzZn4AxBIKGoDG0KFrK8Hm/xBG0txk+mf2tBuJ2OnA5BY/TQfOi70gqXIDJHIYr80Ti\nY1zEuByISIV5UUpFFw1QqlaZDQs4tHY2hSlDyI/rTeGeQ2zbe5DCPYeIL1zMbRvvxIUPHy7GBf8f\n87ydj0p/i/N97nB5cUoQv9/L7E/e5blAsMw2Mxnu8uI4vM2nR28zUNbwmuch3PjxLXiSq71/Zonp\nhtMhxHucxMe4GOxcy2Ml9+HCT0DcTO7yFPvSBtAizkPLODdJcW7S9y6n1Y5FeLqcSnznk44Obodp\nkFOqzmiAUuEL+TI+2GYQ64v28/P2fawttF7uLbk8tOde3PhJw8Xv7cAAkBjj4raYhbjw4SQI+Lkx\nYxPZWaNIbOYiPsZ6tdvrQr56HxP04XC6ueSCKxjTdjAOERwiOB1C7NZEHO+9jwn4cLjcXHrBlZyd\nOgB/MIjXb2izbDEx3/txEMRBgHt7FzO/XXdKvH72Hwqw/5CfYVs/xFXix0kQY3wcXPs1T69I5PBT\nF0cFuXlPcHngPjbG9yE1MYbUhBhSEzycYNZwxarf4gj6ME4PRRe9RVL3U4hxOSssNw1iSoVPA5Sq\nUvF+Lz8v/pL+s67DEbRqP1d5/8ySoBV8RKB9y1hu96wiRo4Ehn8P3UfglBG0ah5DnMcFBS1hygwI\neHE6PZw+6mJOzyg7wHg6ZH4AeXOQrBw6lfeFnjocWhzZpmPZbTyj4IfnIODF4fQw6NTRDMrocvQ2\nBZfDlNcg4MXl9HDb2HHc2m4Iew762FXiwzN/KTG5R87llqwtzGx+KkX7vGzdfZAVm3aTduAzcPpK\na3JTXn+V5wJ7SY730Lp5M1o3jyHbuZYb836P0w5iWy6YTkr3HGI9IUFMA5hS5Yq6B3UHDx5stBdf\nBNhfksEOw1gX24vcvJ0szt/J4g07Wbd9v9309hYuCRLAwbzM37Bz4O/onJZAp7R4mrmd1j6mjIGA\nF5weGDvz2C/c+voyDuc4lW0TxrkE8xcgU8dAwEfQ4WbWiS/yg7MHW/ccZNvug2zdc5Bzdr3BbwJv\n4JIgfuPgCf+lPBc4n+R4D+lJzTglZh13bvkjTmMFsLxz3yC5xzCS4tx6v0w1eCKy2BgzuNrpNUCp\nwpWzSZ5xCRL04cXF1YesprmWcW4GZbZkUGYyp8aup+dn1yCVBR9oXF+kNQ1y9npjB7qgw83ck19i\nhaMHm3YdYPOuAwzf+grXHXztmAAW73GSkRxH+5axDHX/zPVrb8MR9IHTw8Gr3iOu80l1e+5K1YKa\nBiht4muCjDGs3rqXT3/Yxqcrt3Lqtle5w+XDKUE8+Lm/304SRp5Kx9T4kF/xnSF9ZtVf2BnZDT8w\nHRbOuVS1TUY2MtYqN2dWDqdmZB89KVUBmCkzMAEvDqeb4adfSLKjOxt3HrBfJewt/grkSFPiM5Ne\nZnqzfXRIiaNDsvXKSI6jd2A1HfYsIb7bCByZJ9ZGCSgVUVqDaiIC+QvY/P1nfFbSlZc3pFFQfAAR\nGNShJde038qY72/GEfBVXjtSdaOKWpjZsABeOdKU+N4J/yE30IUNxSVsKC5h084D9CekUwcu/pTw\nACWtB5GVEkeHlHiyUuLo5l1FatFCnJ2G6/VV9UKb+FSlCopL+Orz/3HZyltwGevL6/G2/6TzwNMZ\n2bMVrRLtedwaU9NcY1TJ9fEFguz7/FGS5v0DwbpH+H7LcUwInk/+jhIO+YNH9Ur0i4vH2zyGv91g\nOqbGk5UST8fUeNKTYnFuWqSfA1VrtIlPHSMYNMxZW8TUeXl8sbqQW5yf4Xb5cUoQpwS4r/cOyO5w\ndKLG1DTXGFVyfdxOBy17nQ6L/lXaQ/Kii67gooxsgkFD4d5DeGctIeY7q1ei4Cd9Vy6PbmrNAV+g\ndD9DXD8x1fUgbvwExc0X2S/SvOvJZKXG06Z5MxwOu7lXf8yoeqIBqjGwvzD2tTmJaVvb8Or8fPJ2\nlJCa4OG3I7owNuNanO/MhIAXcXqsLxbVuGRkW02zZQKHwyG0adEMBp4Ny58tDWDjrr6W69sPoXDv\nIfKK9pO3Yz+tv5+De6P9bFjQx7K5/+W5r63u8M3cDrJS4jk9Po8/bLkTp91hY9/l75DY9eTyH2JW\nqoa0ia+hK1hIcPJoTMCL17i42vtnpMOJXHdSJqP6tDny0Kj+6lVh9Dg83LX+8IPHP3l6sq5oP3lF\n+1lftJ+hm6cw7tDRvQ5f81xCx9R4OqVaTYUDHGvoWrKUFj1Pp1kn7W3YlOk9qCZs484Svn/9L5xd\n+FLp80lFQ+6k9S/ujXTWVEN1nN3mPxzwPAv8nVm33QpgbfcsO6qzxm2ev1HSeqAdwBLomBZP59QE\n2u1bjnPDXP3B1MjpPagmaHeJj2dnrWXyt3n0J4OzPG6M8eN0emh9wpmRzp5qyI6z2/zojGxGh6z2\nzlqC++sAYqwROC5IWscLh/oxc+lm9hz0A0eGkfKINQ7itJ7P0KzjSXRMs2phyfEeq8lQa/1Nngao\nBuSgL8Ar8/J45su17D3k5+KB7bnjzBG4956k/5FV/akkiHk6nwpzHy8dZuoXYy7jFxnZGGMo3u9l\nfdF+PPMWEPOj1WHDGB/bl3/B00viS/fRvJmLc5IK+PvuP+OyR9goOG8abfoMt0YsOUwDWKOnASra\nFSwkuH4Os73duTc3jk27DjCiexp3j+pBz7bNrW2StAeeihIVdNYQEVISYkhJiAHnefDzxNJxEH8/\n7gYuTejLz0X77KbCffRZ9xEO48OB9XDymzPe4LnpJbRLiqVTWjzDY9czbu1t1hiHLg/m2pk49eHk\nRkcDVDQrWEhg8mgIeDnRuDipxUNc9KsLOblLaqRzplTFwmgmDA1izoxsOgAdUuI4rbu9TcFVMGVa\n6QgbJ596Ps1MN9Zt38f6ov3s3zAL8CESJODz8u8XJ/Fp8iE6psaXNhV2Soun66FVNN82X2tZDZQG\nqCjl9QeZ/9k7nOz34pIgMRLg0cF7cGhwUo1BmEFM7BHrh2VkMyxktdnghlfexQR84HCT1mskGQfj\n+KlwL1+s3oYvYErvdfnFTwAXE7KexNnhRDqmJliBLDXeGlVemwqjlgaoKLS2cB+/n/4dns2tGdrM\njcGPw+mBjvr8kmpCKgli0uFEGGtNueLKyuG6jGyus9f5A0E27jxAYHYuMcuOPJzsLviWR1e3PGo/\nZyXm87T/futel8PN96dPJbnHMNq3jMXtdFgbaQCLGA1QUcQYw9T5+Tz04Spi3U4evvpKPC1O0f8c\nSpWnggDmcjrISo2HIefAyv+UPpx8y9jrGdtqIHk7rC7x67fvp9Pqr3BttybR9Ad8fPHR2zz3Xz8u\nh9AhOY4zEvL547Yj06HsvGQGyd2HHRlVQ9UpDVBRonDPQf44Yxlfr9nOiO5pPHrxCbRq3gxoo4FJ\nqeoop8NGPNA7vQW901tY23S7DKa8igl4cbrcjDnvMjpKdyuAFe2n7cZcJHhkJPlJr05lkmNf6fiF\nWXZTYZ/gj/ZI8qdatTtVK/RB3UgrWMiaBR/y4A8pLPB34d5ze3LN0EwdOkap+lLFxJWhDyZ/NvgF\nFgW6lI6ssaG4hBPMj0c9nPz/WjzIobZD6JgSR9bhIJYST8vipU2uNUQf1G3ADq2fh7xyPp2CPiaK\ni+2XvkX7E7IinS2lmpbKOmyUeTB5VEY2o0JW+wNB9n6+jJh5R+51Zcsqninoyv+WbSZo//4fKGt4\nLeYhPFgPJ7/T5zliOg0lK8UaTb5lvEfvdZVDA1SE7Crx8r+3p3F50IfLHmW8/e7FwIhIZ00pFaqS\nAOYqZyT5yy65kssysvH6g2woLiGvaD8tFn+L52d7IF7jY8N3n/LcotjS/eQ0W8eLjMeFn6DDzTcn\nTyKx6ylkpcQdGVkDmlwQ0wAVARt3lnD9y4tI3tWJK2I8EPTpKONKNVQVPJzscTno0iqBLq0SIPF8\nyH/pyMPJ14/jorg+5BWVkLdjPx1Wfo1rix3AAj4WfjWT5z63glJijIvM1DhGxOVx+6b/sx5OdnrY\nfekMWnYf1qhvB2iAqmcrN+/h+pcXctAX4IEbrsHp1mGKlGrwjvPhZE9GNl2ALq0SrfVZl8CUV6xa\nmMvDVZdcxWB3T/KKSsjfsZ+8HSU03zIfCRzpsPHiVKvDRmZyPB1S4kpnT+4bXE3W3u9I6DECV+bQ\nejn9uqKdJOrRN2uLuGnqYhKbuZhyQzbdWidGOktKqWhxnCPJfzp4IrmBruTvsILYhuISegdWH9Vh\n4/9ix7M3bSCZKXGlgay7bxXpu3KtcRPr+EexTrfRQLy/dBN3vvU9ndMSeHncENq2iK06kVJKhaok\niAWDhn1fPEriN48gBAng5H+p43iRC8nfUcLuA77S0TXc+PGLi7+1fISDbQbRITnOeqXEkZkcR9qu\n75H8mk+Hor34olnBQsz6Oby/qyO//zaGoZ2SmXjdYJo3c0c6Z0qphqiSpkSHQ2je4zRY8GRph40x\n51/OGHv73SU+Sr5cSkzukR6H/fzLeXp9R95bugkT2uPQng7F6YqxmiYjdPtBA1Rdsavjxn+Is42L\n33V9glvHjjoyw61SStW2CjpsALSIc9Oi35mw9OnSAHbFZVdxRUY2h/wBNu08wIbiEprnzifmJyuI\nEfBa+9IA1bgE18/B+A/hJIhH/PyhayEODU5KqbpWxXNd5QWwGJeTTmkJdEpLgLjRsP4FKzhFuHex\noyaJRWSUiPwoImtF5E/lrB8uIktExC8il9TkWA2JMYaXNrbDa1wEceJ0xeDQgV6VUtEgIxty/q/q\nIHb6vRFt3oMa1KBExAk8C5wJbAQWichMY8zKkM02ANcDd9Ykkw3NhK/X8Y9libj6P8O4dhu1C7lS\nqmGpqtt8PalJE182sNYYsw5ARKYB5wOlAcoYk2evC9bgOA3KO0s28o+PVzO6XzpjL+sPOuqxUkpV\nS02a+NoBBSHvN9rLmqw5P23nrhnLOKlTCo9deoIOya+UUjVQo3tQtUVEfi0iuSKSu3379khnp1pW\nbNrNb6YupkurBJ6/bpD21lNKqRqqSYDaBGSEvG9vLztuxpiJxpjBxpjBaWlpNchSZBQUW2PrJcV5\nmHJDtj7npJRStaAm96AWAV1FpCNWYLoCuKpWctUQ2E9072k9lOtm+vAFgkz79Ym0bt4s0jlTSqlG\nodoByhjjF5FbgU8AJzDJGPODiIwHco0xM0VkCPAu0BIYLSJ/M8b0rpWcR1LBQpgyBhPwEmOctPLf\nxz9/de2RgR+VUkrVWI0e1DXGfAh8WGbZX0L+XoTV9Ne45M3BBLyICeA0hr/330W3rORI50oppRoV\nHUmiOrJy8IsLCRpweuh24jmRzpFSSjU6UdGLr6GZe7ATlx+4hy/a3ohr3AdR8UCbUko1NlqDOk47\n93v5v7eWkpA6gOE33AYe7U6ulFJ1QQPUcTDGcPfbyyje7+WlsUOI1eCklFJ1Rpv4jsO0RQV8unIb\nd53dgz7tWkQ6O0op1ahpgArTz9v3Mf6DlQzrksovh3WMdHaUUqrR0wAVBq8/yO3TvqOZ28Hjl/XT\nMfaUUqoe6D2oMDz+2Y+s2LSHidcO0pEilFKqnmgNqgrfri1i4ux1XHViB87q3SbS2VFKqSZDa1AV\nKVjIgTWzmDQvgY6pvbjvFz0jnSOllGpSNECVp2AhZsoYPP5DPG1cbD53OnEeLSqllKpP2sRXnrw5\nGP8hnASJkQCd938X6RwppVSTowGqHNtTsjlkXARwIC4PZOVEOktKKdXkaLtVOf62NJ6i4H08n3OQ\nFj1P07H2lFIqAjRAlZGbV8x/l23htpHn0OLMbpHOjlJKNVnaxBciGDT87YOVtGnejN+c2inS2VFK\nqSZNA1SIt5dsZPmm3fzpnB7aa08ppSJMA5Rt3yE/j37yIwM6JHF+//RIZ0cpperdrFmz+PbbbyOd\njVIaoGzPfbWW7XsP8dfRvRHRsfaUUk2PBqgoVFBcwotz13PRgHb0z0iKdHaUUqpSr776KtnZ2fTv\n35+bbrqJ/Px8unbtSlFREcFgkJycHD799FMALrjgAgYNGkTv3r2ZOHFi6T4+/vhjBg4cSL9+/Rg5\nciR5eXlMmDCBJ598kv79+zNnzpxInV4pvdECPPzRKpwi3DWqR6SzopRqIP72wQ+s3LynVvfZK705\nfx3du9JtVq1axfTp0/nmm29wu93ccsstfP3119x9993cfPPNZGdn06tXL8466ywAJk2aRHJyMgcO\nHHtVAIMAAArOSURBVGDIkCFcfPHFBINBbrzxRmbPnk3Hjh0pLi4mOTmZ3/zmNyQkJHDnnXfW6nlV\nV5MPUPPX7eDD5Vu548xutGmhI5Urpf5/e3cfU9V5B3D8+wAFeVHqC2TaotgylTcpGSWsINCSdthN\n7Ms2a5RQ7DRDO033x3Rrsllr0zRzM6HRoJuoaYRSWVhcspfM1hZxVYRJR+0LUkVQ28pwokgRLzz7\n4x4JUt7K5d5zOPf3SW4497nnPOd5frnhl+c8557H2t5++21qa2t58MEHAfjqq68IDw9n8+bNHDx4\nkKKiIurq6vr2LywspKKiAoCWlhbOnDlDa2sr6enpzJ3rXNtu2rRpnu/IKHhngmqphqaj9MxOY8tf\nurnn7kDWpMtt5UKI0RtppOMuWmvy8vJ49dVX7yjv7OzkwoULAHR0dDB58mTeffddDh8+zPvvv09Q\nUBCZmZl0dXWZ0ewx8b45qJZq2J8D77yC3p/DpC9q2LR4AZPu8jW7ZUIIMaKsrCzKy8u5fPkyAFeu\nXOH8+fNs3LiRFStWsGXLFlavXg1Ae3s7U6dOJSgoiE8++YTjx48DkJKSQmVlJefOneurA2Dy5Mlc\nv37dhF4NzvsSVNNR6OkG3QO93Tw9vYkfLJxpdquEEGJUYmJi2Lp1K4899hgLFy7k0UcfpampiZMn\nT/YlKX9/f/bu3Ut2djYOh4Po6Gg2bdpESkoKAGFhYezevZunnnqKhIQEli1bBsCSJUuoqKiwzE0S\nSmttdhvukJSUpGtqatx3AmME1ePoplv7cjHnTaK+k+W+8wkhhJdSStVqrZPGerz3zUFFJPP5E2WU\nlJXgH5XOzyQ5CSGEJXlfggJe/iCE99STHHky0+ymCCGEGILXzUE1Xu7gbx9+waq0uYRPkdvKhRDC\nqrwuQf2h8iz+vj48+1Ck2U0RQggxDK9KUF9e66Li1EV+nBTB9JAAs5sjhBBiGF6VoIqPncPR28vq\nRfKjXCGEsDqvSVDXum5RcryZx+NnMnt6kNnNEUIIMQKvSVAlJ5q5ftPBTzPuN7spQghhKQ6Hw+wm\nDMorEtRNRw/FVedIi5pB3D2hZjdHCOFNWqrh6O+cf8fJYEtohISE8MILLxAbG0tWVhatra0AZGZm\nsmHDBh544AHi4uKorna2Y/PmzeTm5pKamkpubi5dXV3k5+cTHx9PYmIiR44cAWD79u2sWrUKgPr6\neuLi4ujs7By3vgzHKxLUn09d5PL1mzJ6EkJ4Vr9nf7I/Z9ySVHFxMbW1tdTU1FBYWEhbWxs3btwg\nKSmJ06dPk5GRwUsvvdS3f2dnJ3V1dezcubMv2QB89NFHHD58mNLSUnbs2IFSivr6ekpLS8nLy6Or\nq4sNGzbQ2NhIRUUF+fn57Nq1i6Agz0yT2D5B9fZqdlWeJXbWFFKjppvdHCGEN+n/7M+ebuf7cVBY\nWEhCQgIpKSl9S2j4+Pj0PVNv5cqVVFVV9e2/fPlyANLT07l27RpXr14FICcnh8DAQACqqqpYuXIl\nAAsWLGDOnDk0NDTg4+PDvn37yM3NJSMjg9TU1HHpw2jY/kkS//z4S8623uD15YmylLsQwrMiF4Gv\nvzM5+fo737totEto9P9/N/B/3+33wcHBozrnmTNnCAkJ4dKlSy60/Juz9QhKa03Re58RMS2QxXHf\nMrs5QghvE5EMeYfgkRedfyOSXa5yqCU0ent7KS8vB6CkpIS0tLS+Y8rKygDnKCk0NJTQ0K/PxS9a\ntIgDBw4A0NDQQHNzM/Pnz6e9vZ3169dTWVlJW1tb3zk8wX4jKGMxQiIXUX3rfk41X+XlpbH4+do6\nFwshrCoieVwS023Z2dkUFRURHR3N/Pnz+5bQCA4Oprq6mq1btxIeHt6XlAAmTZpEYmIit27dori4\neNB6165dS0FBAfHx8fj5+bFv3z4CAgIoKChg3bp1zJs3jz179vDwww+Tnp5OeHj4uPVpKPZabuP2\nhKQxnH5lxmv8qXUWxzY+QqC/LEgohLCvkJAQOjo6vlaemZnJtm3bSEoa86oXY+bqchv2Glb0m5DU\nPd3c1XKMZx+KlOQkhBATkL0u8fWbkLyFH6d84tiZMsfsVgkhhNsNNnoC500VE5VLIyilVLZS6lOl\nVKNSatMgnwcopcqMz08opSJdOd+IjAnJ9u9uZEX3r1iQnMXUYH+3nlIIIYR7jDlBKaV8gR3AYiAG\nWK6Uihmw23PA/7TWUcB24LWxnm/UIpIp7F7Cv/U8nkub6/bTCSGEcA9XRlDJQKPW+qzWuht4E1g6\nYJ+lwH5juxzIUm7+MdLVzm5Kq5vJSZjFvVPlobBCCDFRuZKg7gFa+r2/YJQNuo/W2gG0A259nMOB\nE810dvewJl2W1BBCiInMEjdJKKXWAGsAZs+e7VJdeQ9FEjk9mOiZU8ajaUIIIUziygjqIhDR7/29\nRtmg+yil/IBQoG1gRVrr3VrrJK11UlhYmAtNgpAAP76/cKZLdQghhDCfKwnqJPBtpdRcpZQ/8Axw\naMA+h4A8Y/uHwDvaar8MFkIIYUljvsSntXYopZ4H/gH4AsVa69NKqS1Ajdb6ELAHeEMp1QhcwZnE\nhBBCiBFZ7lFHSqlW4LyL1cwA/jsOzRFfJ7F1D4mr+0hs3Wek2M7RWo953sZyCWo8KKVqXHn+kxia\nxNY9JK7uI7F1H3fH1l7P4hNCCGEbkqCEEEJYkl0T1G6zG2BjElv3kLi6j8TWfdwaW1vOQQkhhJj4\n7DqCEkIIMcFZNkG5spSHUuqXRvmnSqnvjVSn8WPjE0Z5mfHDY1vycFyfN8q0UmqGu/tmNg/H9oBR\n/qFSqlgpdZe7+2cWD8d1j1LqA6XUf5RS5UqpEHf3z0yejG2/zwuVUoMvXjWQ1tpyL5w//P0MuA/w\nBz4AYgbssxYoMrafAcqM7Rhj/wBgrlGP73B1Am8BzxjbRUCB2TGwSVwTgUigCZhhdv9tFtvHAWW8\nSuU7O25xndKv3t8Dm8yOgV1iaxyXBLwBdIymjVYdQbmylMdS4E2t9U2t9Tmg0ahv0DqNYx4x6sCo\n8wk39s1MHosrgNb6lNa6yd2dsghPx/av2gBU43wWph15Oq7XAIzjAwE7T9J7NLbKuYbgb4FfjLaB\nVk1QrizlMdSxQ5VPB64adQx1LrvwZFy9jSmxNS7t5QJ/d7kH1uTxuCql9gJfAAuA18ejExbl6dg+\nDxzSWn8+2gZaNUEJIUZnJ1CptT5qdkPsQmudD8wCPgaWmdwcW1BKzQJ+xDdM+FZNUK4s5THUsUOV\ntwF3G3UMdS678GRcvY3HY6uU+g0QBvx8XHpgTaZ8Z7XWPTgvTz3tcg+sy5OxTQSigEalVBMQpJwP\nER+e2RN1Q0ze+QFncU6+3Z5oix2wzzrunLx7y9iO5c7Ju7M4J+6GrBM4yJ03Saw1OwZ2iGu/Opuw\n/00Snv7O/gT4FxBodt/tElecN5xEGccqYBuwzewY2CG2g5x7VDdJmB6kYYL3ONCA846QF42yLUCO\nsT0JZ2JpxDlJfF+/Y180jvsUWDxcnUb5fUYdjUadAWb33yZxXY/zGrQDuAT80ez+2yi2DqOsznj9\n2uz+T/S44ryidAyoBz4EDtDvrj47vjz5nR1w3lElKHmShBBCCEuy6hyUEEIILycJSgghhCVJghJC\nCGFJkqCEEEJYkiQoIYQQliQJSgghhCVJghJCCGFJkqCEEEJY0v8Bl3I+KaTmhuQAAAAASUVORK5C\nYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4XMXVuN8jWzYu6yL3KuOKtQJjE2wBXtmmN2NqAnyU\nGEwJwT9CCcUksZN8CeUjCTUkhGYCBBJCMb0aJLAw1QatXHHvFbzulnR+f8xdaSXvSiutyq583ue5\nj26ZcnZmdc/OmTNnRFUxDMMwjGQjrbEFMAzDMIxomIIyDMMwkhJTUIZhGEZSYgrKMAzDSEpMQRmG\nYRhJiSkowzAMIykxBWUYhmEkJaagDMMwjKTEFJTRJBGRgxtbBiMxxPFUAvntO5DimIIymhzei2lU\nHZbXV0R+kmAZg0XkaxH5QUSujTPPUhE5NpF6GwsRKRSR3ASLyQJ61LL+mN+BuuhPo2EwBZViiMiF\nIvK5iIREZLWIvC4ixzS2XA1BDV7YV6vqcxH5JojIFBG5RUQurqaO/dKq6gqgtYhkJSD+zcAHqtpe\nVR+MUm9KKKN45VTVbFXNS6Ceg4A1wA8i0rIWRVT4DlSSrS7602gAmje2AEb8iMgNuBfdVcA7wF7g\nJGA88EkjipY0iMhhwMqI63bAb1T1CO+6QETeUNXNUfJWlfZZ4C/ANbUULRP4Vy3zpgwi0kxVS+qg\nqB8BnYCDgG7Aiog6RgBTgfbAU16aYcCzqvpR5e9ADBLtT6MhUFU7UuAA2gEh4Owq0hwCzAS2At8C\n4yOeLQVuAuZ65fwD6Aq8AWzDKbz2ldLfCgSBzcBjQIsa1HWjV9dW3Iu5hfesB/ACsAH4Dphc6TNE\n5v3ey9sS9yIqAXZ48t4Uow1uB/wR16cDT0Vc/w04N0beKtMCjwJta9r+wPtAMbDLk31gpXxRP1si\n7RilTWvS97cAi71nhcCZcch5s1f+LqCZd+9YoL/3/TncS9vTkzm3Cnn7Awd559OAkVHSPAOcEXE9\nAZgT7TsQkeZ9oHm8/WlH4x+NLoAdcXaUGyntBdJiPG8OLPJeLs2Bcd5LZJD3fCkwC+jsvdzWA18A\nhwEtvH/eX0eUtxT4xnuhdAA+Bn5Xg7o+xf3y7QAUAVcC4tV5u/cS6+e9CE+oVO9+eSOejaumnV4G\nJOL6auD+iOs7gdti5K0yLTAZOLGW7T8TuKwKuff7bIm0Y5RyatL35wDdvPPzgO0R17Hk/Mr7rrSM\nuHesdz4Jp+haAW8Dd1XRDrk4RdwKN0L6D3BHlHRLgNbeeTpOWV8S7Tvg3esFvF/pXsz+tCM5DpuD\nSh06AZtUtTTG8xygjareparFqjoTeA24ICLNA6q6SVXXAvnAbFX9RlX3Ai8BwyuV+YCqrlHV74E/\nRJR1VBx13aeq6728rwKHA0cCnVX1D6paoqrLcL9iI/PFyhtGqmwlaKXe28ejI7A74nov0DZG3urS\nrgEGxcgbT/tXR7TPVpN2PL+KsuPue1X9r6qu987/g1O8I+OQc42q7qn8QFUfxSnQ2Thl+6tYQqpq\nnqpeoKq7VPUHVT1PVW+LTCMih+BG16NF5GrcSPcGVQ17/FX4DojICcCfgXUiclFEUVX1p5EE2BxU\n6rAZ6CwiaTGUVE/2t7svx/1yDLM+4nxXlOvKL+5Vlcrq6Z33qGFdO708mUAvEdni3Reco07lyfRo\neeOlWaXrEJARcd0KWBcjb3VpvwcGx8gbT/vXhkTaMVY5Vfa9iFwCXI8bmQG0wY2+qmJVNc8fBV7B\njYb3VZO2Oo4FZqjqOwAicgbQnfJ5qgrfAVV9V0QmAn9W1S8jHlXVn0YSYCOo1KEA2AOcGeP5GqBP\npXt9gdUJ1BlZXqZXRyJ1rQSWqGqGd3RU59U2Pk554tlds7jS9XdAl4jrTpR/jspUl7YVbv4lGom2\nf012Dk20HWMiIn2BR4BrvHI74uYhw6OmWHLGlF9E2gD34uYxp4lIhwTFHIf7fwiTgZu3ClP5OwBu\nDuzLSveq6k8jCTAFlSKo6jac59JDnit0KxFpLiKniMidOPPJThG52bs/Fjfpn4jn2M9FpJeIZABT\ngLDbbm3r+gwIefkOEpFmIuIXkR/FKc96Kr6IoqbxXohhPgJGRFyPwM25ICIDRUTiSeuRQezRV6Lt\nv47qP1uYRNuxKtoApcAmEUnzRh7ZEc/j6YPK3A98pqpX4hwz/l5b4bz+ysXNzYU5FNgsIuGRdoXv\ngOdOPs87jzSDVtWfRhJgCiqFUNU/AzfgbPgbcCaNa4CXPbPJeOBUYBPwIHCxqi4KZ69cXBxVPovz\n8FqMm4f4gydHTesKy1+Ke2kfjptE34DzKGsXp1x3AL8WkS2ey300PiJivkRVdwJ3i8ivROTXwP+p\n6gbv8avA8XGmBedUENWdv7ZtEsGdUT5bIu1YIUs115FlzwP+hFMA6wA/zkEmTLQ+iFaeQpn57UTK\n3blvAIaLSE3m5vDKOgz3HWyFc+QI8xhuDvAE77rCdwDYgltPdT7wYcT9Cv0pIm+IyK01lcuoP6Ti\nfHINM4s8hvtHWa+qh8VIcz9wCm4o/VNVnVPrCo0GQ0SWAper6geNLUtNEJGOOPfn2+NImwaM8Rwa\n4in7UVWdlKiMRv0S73fA+jP5SXQE9QTO/TkqInIKMEBVB+EWl/4twfoMo0pUdSvO3NMpjuTnUtFU\nFBMRORJ4NxHZjIYhnu+A9WdqkJCCUtWPcQsIYzEBt7gPVZ0NtBeRbonUaTQYtR9aNz734pRPdbyu\nqruqSyQizXBrep5PWDKjoYj5HbD+TB3q2828FxVdb1d799ZHT24kC6pa04nwpMGbo6l2Il5V4/Xg\n6oKb6DdShGq+A9afKULSrIMSkVT+xW4cAFR0+DNSHevP2qOqDdJ49e3Ft5qKa0N6U8W6kL5/HEbW\n8G0MG6Y884yyb1/jh9qo6pg6dWqjy3AgyJyqcpvMJndTk1m1YccRdaGghNjhZ2YAlwCISA7wvXoh\nVKJReEM+hV/6+OMf4e9/h0GD4MEHYedOCO0JUbCygNCeUB2IbBiGYSQ7CZn4RORZYCzQSURW4BaS\ntgBUVR9R1TdE5FQRWYxzM59YVXm+lj4ATj3VHZ9+CnfdBdPuCNH8ygCb04L4u/jJn5hfltYwDMNo\nmiSkoFT1wjjSxLV7aDRycuCll+BfHxdy0XtBSkuL+XZdEW99FeS8o3JqW2ydMXbs2MYWocakosyQ\nmnKbzA1HKsqdijI3NAkt1K1LRERjyRLaEyLwRICijUV0LMmi+JF8ckf5uPFGOOYYsLlOwzCMhkFE\n0AZykkgJBQVOSQU3OhNfWrGP6dPhz3+Gzp3hxhvhrLNgV0mIwg2FZHfNNhOgYRwg9OvXj+XLlze2\nGE2OzMxMli1btt99U1BxUlICM2bAPffAqg0hii8JsAGbpzKMAwnvhdnYYjQ5YrWrKaha8I+3Criq\nIBdNKyZN03nhtDzOOrLx56kMw6hfTEHVD8mgoJpMNPPzx2VzWA8/zdPS6VSaxeXj/ZxzDuTng313\nDcMwUo9Eo5mfjIt5lQY8pqp3VXreAXgcGIDbtfMyVS2KUVZCIyioOE8l+9w81f33Q9u28ItfwI9/\nDHuxeSrDaErYCKp+SIYRVK0VlLdVwULgONxuop8D56vq/Ig0dwMhVf29iAwBHlLV42OUl7CCikZp\nKbz1Ftx7L3yzIASX2Xoqw2hKmIKqH5JBQSVi4hsJLFLV5eo2a3sOF708kizgAwBVXQD0E5EuNCBp\naW7R7zvvwD1PFbJRgxSXFvPt2iL+/WGwIUUxDMOoV6ZPn04gEGhsMeqMRBRU5Ujlq7x7kcwFzgYQ\nkZFAX1w8vkZhQk42h3b3k56WTrfmWfx+sp+RI+Gf/4Q9expLKsMwjLpBVZtUENz6jmZ+J3CfiHwF\nfAt8DZTESjxt2rSy87Fjx9b5SmtfSx/5E/PL5qlaT/Hx5pvwwANw000waRL87GfQvovNUxmGUTes\nXbuWyZMnk5eXh8/n4/rrr+faa6/ltNNOY+jQodxzzz0AnH/++bRt25ZHH32UJUuWcMUVVzB37lzS\n0tI48cQT+etf/0q7du0AWLVqFddddx35+fmoKhdccAHXXHMNP/vZzyguLsbn85Gens6WLVsSlv/D\nDz/kww8/TLicWpFARNsc4K2I61uBW6rJsxRoG+OZNibz56tOnqzaoes2bX/LMG02rbke9vAw3bZ7\nW6PKZRhG1TT2u6MqSktL9YgjjtD//d//1eLiYl26dKkOGDBA33nnHV23bp1269ZNZ86cqU8//bQO\nGDBAd+zYoaqqixcv1vfee0/37dunmzZt0jFjxuj111+vqqolJSU6bNgwvfHGG3XXrl26Z88e/eST\nT1RV9cknn9RAIFAnssdqV+9+w0ROr3VGaAYsBjJxAWLnAEMrpWkPpHvnVwBPVlFeIm1ZZ7w7f5am\nTWuuTEP5dbpe/6cC3bq1saUyDCMWyfLuiMbs2bM1MzOzwr077rhDL7vsMlVVffHFF7VPnz7apUsX\nnTVrVsxyXn75ZR0xYoSqqs6aNUu7du2qJSUl+6Vragqq1nNQqloCXAu8AwSB51R1nohcJSJXesmG\nAoUiMg84CbiutvU1FKP6ZXNoNzdPNaBdFsu/8HPwwc789+WXjS2dYRi1QSTxozYsX76c1atXk5GR\nQUZGBh07duSOO+5gw4YNAJx++umUlJQwZMgQjjrqqLJ8GzZs4IILLqB379506NCBiy66iE2bNgHO\nvJeZmUlaWpNZxhqTRKOZvwUMqXTv7xHnn1Z+nuxUnqfytfSxfj089hicfTZ07+7mqU49M8R3IZun\nMoxUoLG80Pv06UP//v1ZsGBB1OdTpkwhKyuLpUuX8txzz3H++eeX3U9LSyMYDNK+fXteeeUVJk+e\nXFbmihUrKC0t3U9JNSUHCWhCkSTqEl9LHzm9c8oUT7duMGUKLFkCv/oVPPtCiJ6/CjD6sVyOfDhg\nmygahhGVkSNH4vP5uPvuu9m9ezclJSUEg0G++OIL8vLymD59Ov/85z958sknmTx5MmvXrgUgFArR\ntm1bfD4fq1ev5v/+7/8qlNmjRw9uvfVWdu7cyZ49e5g1axYA3bp1Y9WqVezbt69RPm9dYwqqBjRr\nBuPHw28fLkS6BimVYhZsKSJwTpCnn4ZduxpbQsMwkom0tDRee+015syZw8EHH0zXrl254oorWLt2\nLT/96U956KGH6N69O6NHj2bSpElMnOj2dJ06dSpffvklHTp0YPz48ZxzzjkVynz11VdZtGgRffv2\npU+fPvz73/8G4Nhjj8Xv99O9e3e6du3aKJ+5LmkywWIbksj9qYZ2zuLmzvn88zEfX3wBF10EV1wB\nfr9LZ+7qhlG/WCSJ+iEZIkmYgqolkXH/wspn6VI3V/X449B3UIg1JwVYW2JhlQyjPjEFVT+Ygoog\n1RRUVezbB3/6dwFTFpZv//HY6DwuPS7Hdv81jDrGFFT9kAwKKqE5KBE5WUTmi8hCEbklyvN2IjJD\nROaIyLci8tNE6ksV0tPh5+eWb//RRbKY+jM/w4e7qBV1sLjbMAyjyVPf0cxvA9qp6m0i0hlYAHRT\n1eIo5TWZEVSYSDNgm3QfM2c6E+Abb8App8Dll8ORx4Qo2mTzVIZRW2wEVT8kwwgqkXVQZdHMAUQk\nHM18fkQaBcJvXR+wOZpyaqqE3dXDHHecO7ZsgWefhRtuCzH/qAAlnYIM7ujns6tsnsowDCNMfUcz\nfxDIEpE1uMjmSR9JoiHIyIBrr4W/v1iIdg5SSjHzNxUx5sdBpk+H7dsbW0LDMIzGp76jmZ8EfK2q\nx4rIAOBdETlMVaO+gus7mnmykd01G39XP0UbizikSxY3ZPt5/p9u998zz4SJE2H0aNixz9zVDcNo\nHBozmnkic1A5wDRVPdm7vhUXRPCuiDSvAXeo6ife9fu4iOdfRCmvyc1BxUM0d/V16+CZZ+CJJ5xy\n2nVhgM0SxN/V3NUNozI2B1U/JMMcVCIKqhnO6eE4YC3wGXCBqs6LSPMQsEFVfysi3YAvgGGqup8f\n24GqoKpCFZ58v4BJH+dSKsVISTq3dMvjlv/JoUOHxpbOMJIDU1D1QzIoqPqOZv6/wNEi8g3wLnBz\nNOVkREcEzg2U7wKc2SaLoo/8ZGbCeefBq6+6NVeGYRhNEVuomwJUNgNu3Qr//rfbqn7hQvjJT+Ds\nC0K07F3Iod1snso4sLARFJSUlNCsWbM6LTOlR1BGw1E5unrHjnDVVfDxx/Dpp9Cuc4iTnw9wzKO5\nDLozwNdFFl3dMJKFu+66i4EDB9KuXTuys7N5+eWXAZg+fTqjR49m8uTJdOjQgaysLD744IOyfOPG\njWPKlCmMGjWK9u3bc9ZZZ/H9998Dbp+ptLQ0Hn/8cTIzMznuuOMAmDFjBtnZ2WRkZHDssccyf75b\n9bNkyRI6derEnDlzAFizZg1du3YlLy+vIZuixpiCSnH694fTLyuktHMQmhWzUYs47oIgI0fCvfeC\nF73fMA5YQntCFKwsqPW2OInmHzhwIJ988gnbtm1j6tSpXHzxxaxfvx6A2bNnM2jQIDZv3sy0adM4\n++yzy5QQULYVx7p162jWrFnZnlBh8vLymD9/Pm+//TaLFi3iwgsv5P7772fjxo2ccsopjB8/nuLi\nYvr378/dd9/NRRddxK5du5g4cSITJ04kNze3Vp+pwWiorXurO0jibZuTnW27t+mwh4dp+u/SddjD\nw3TL9m369tuql16q2qGD6vHHqz7+uOrKDdt01opZum33tsYW2TDqjKreHeH/jea/a67DHh5W4+9+\novmjcfjhh+uMGTP0ySef1F69elV4NnLkSH366adVVXXs2LF62223lT0rKirSFi1aaGlpqS5btkzT\n0tJ02bJlZc9///vf609+8pOy69LSUu3Vq5d+9NFHZfcmTJighx56qA4bNkz37t1bpZyx2pVU2PLd\nSB7CuwDnTcwjf2I+Hdv4OPFEePJJWLMGrrwS/vtaiMxpzgx46F8CrP/ezIBG06dwQyHBjUGKS4sp\n2lhEcGOwQfMDPPXUUwwfPpyOHTvSsWNHgsFg2fbtvXpVjG2QmZnJmjVryq779OlT4dm+ffvK8gL0\n7t277HzNmjVkZmaWXYsIffr0YfXq1WX3Jk2aRDAYZPLkyaSnp9f4szQ0pqCaCJXnqcK0auU8/m6/\nt5C07kE0rZgVO4sYkBPkwgthxgzYs6eRhDaMeia7azb+Ls4LNqtLFv4u/gbNv2LFCq688kr++te/\nsnXrVrZu3Yrf7y9zPohUHuH0PXv2LLteubI8WM/y5ctp0aIFnTt3LrsXucV7z549Wb58eYXyVq5c\nWaYEd+zYwS9+8Qsuv/xypk2bVsGUmKzUdzTzm0TkaxH5yotmXiwitoKnEYj8RzusZxZz3/UzejT8\n6U/Qo4eLWvHWW7Ble2L2dsNIJipbF2rq4Zpo/h07dpCWlkbnzp0pLS3liSeeoLCwsOz5+vXreeCB\nByguLuY///kP8+fP59RTTy17/vTTTzN//nx27tzJ1KlTOe+888qUUljJhfnxj3/M66+/zsyZMyku\nLuaee+7hoIMO4uijjwbg//2//8fIkSN55JFHOPXUU7nqqqtq9FkahdraBnHKbTGQCaQDc4BDqkh/\nOvBeFc+rtIcaibNt9zYtWFmwnx191SrVv/xF9UdHb9NmPx+maVOba/+73VyWYSQ7yf7u+NWvfqUZ\nGRnapUsXvfHGG3Xs2LH62GOP6ZNPPqmjR4/WyZMna/v27XXIkCH63nvvleUbO3asTpkyRUeOHKnt\n27fXCRMm6ObNm1VVy+agSkpKKtT18ssva1ZWlnbo0EHHjh2r8+bNU1XVV155RXv37q1bt25VVdXt\n27froEGD9Nlnn40pd6x2pQHnoBINdTRVVU/xrvcLdVQp/TPAB6r6WIznWltZjLqhYGUBuU/kUqzF\nUJJOh5fy+PHROZx7LowbB83rO3KjYdSCVF0HNX36dB577LGYrt7jxo3j4osv5rLLLmtgyRypvg4q\nnmjmAIhIK+Bk4L8J1GfUM+Hgtelp6QzrmUXef/0MHAi33+7MgFdcAe+8Y2ZAwzAahob6TTwe+FhV\nq5yVO9CimScbYXt7ZNSKQ38Jv/wlLFsGL7wAU6aFmDMigHYOktnaz+c/y6eTzyJXGEZdE+kA0Zg0\n2WjmEWlfBP6tqs9VUZ6Z+FKASDOglKTT9oU8zhiRwznnwEknQevWjS2hcaCRqia+ZCfVTXyfAwNF\nJFNEWgDnAzMqJxKR9sAY4JUE6jKShEgz4GE9s/jyTT9HHw0PPeTMgOee63YL3rYt8RX4hmEc2CQU\nLFZETgbuwym6x1T1ThG5CjeSesRLcylwkqpeWE1ZNoJKEaLtYQWwaZOLsP7ii/DhrBByeYAdbYIc\n0snPp1fYPlZG/WAjqPohGUZQFs3cqBfem1/Ayc/nUoLzCDzsyzwuHpfDhAkwaFBjS2c0JUxB1Q/J\noKAskoRRL4w6OJvsbs4UeGj3LKZe4+e772DMGPD7nWfg55/Dtt1mBjQMIzo2gjLqjWimwNJSp5he\nftnFB1w6NkBpJ+cROPuqfLq0NzOgUTP69eu3X4gfI3EyMzNZtmzZfvfNxGccEFT2CGz17zxOysph\n/Hg47TTo2tWlC+0JUbihkOyuthmjYTQ2ZuIzDggqewQGZ/o56yx4800YPBiOPhqm/THEkQ8HyH0y\nl8ATATMFGsYBhI2gjEYllkfg3r3w0Ufw9zcK+K8vF5oVk6bp3OPP42fjczjooEYU2jAOYFLGxOe5\nmd9LuZt5tEW6Y4G/4ALKblTVcTHKMgVl7EdoT4jRTwQo2lBEZ7I4eGY+hV/6GDMGTj8dTj0V+vQx\nM6BhNBQpoaBEJA1YCBwHrMEt3D1fVedHpGkPzAJOVNXVItJZVTfFKM8UlBGVyqOsLVvg7bfh9dfd\nFiHdM0NsPD3AlmZBsrr4+fgyW3NlGPVFqiioaqOZi8jPgB6q+ps4yjMFZdSYkhJ49K0Crvk8l1Jx\na66OXZ7HRWNzOPlkF93CMIy6I1WcJOKJZj4YyBCRmSLyuYhcnEB9hrEfzZrBhcdnc2j38l1Pz8n1\n8+abkJUFw4fDlCmQnw9bd9iaK8NIJeo7mnlzYARwLNAGKBCRAlVdHC2xRTM3akO0KOzXXA7FxfDp\np/DGG/DzG0IER7oo7L1a+HnrJ/n4B5oZ0DCqo8lGM/e2gT9IVX/rXT8KvKmq++0LZSY+oz4pWFlA\n7pO5FJcWk1aaTrsX8+i2L4eTTnJR2MeMgTZtzNnCMKojVUx88UQzfwUYLSLNRKQ1MAqYl0CdhlEr\nsrtm4+/ihV7qkcWyz/w88wx07w533+3+jjkxxJC7AuQ+kctoW3NlGI1OQ0QzvwmYCJQA/1DVB2KU\nZSMoo16JteYKIBSCv71WwK0Lyp0tjl+ZxwWBHE44wbmyG4aRIl58dY0pKKOxCe0JEXgiQNHGIga2\nz+LnrfLJf9/H++9DRgaccII7jjg6xMrdZgY0DkxMQRlGIxErwO3cufDuu/DmByHyBrgAt13Fz2PH\n5HN8rs8iWxgHDKagDCNJqeBsoekc8mkeKz7JYdQoOPZYOO44OOII2FVizhZG06QhFVR9u5kbRpMi\n7GxRtLGIrC5Z5L/ip3Q35OXBBx/AFVfA8rUhuCzA9tZBBrbz89nV+bRvZUrKMGqKjaAMo4ZU5WwB\n8Po3BUx4qXw34Xb/zePYwTmMGwfjxrkNG9PSzKXdSE3MxGcYKUyks0VWlyyePymfLwt8zJwJM2fC\nDz/A0eNCfHlYgPWlQbK6+vl4osUPNFKDlFFQ1UUzF5ExuLVQS7xbL6rq/8YoyxSU0WSoapS1ciX8\n460C/rC63KV9zJI8zjoyhzFj4NBDXQincDk2yjKSiZRQUHFGMx8D3KiqZ8RRniko44Chskv7jRn5\nfJbvIy8P1q2D0aNhVG6Ip5oFWLrDKbp8G2UZSUCqKKh4opmPAW5S1fFxlGcKyjigiDXKWr/eOV08\nP6t8s0YpSefyZnlcmOs8Blu3bkTBjQOaVAl1FE80c4CjRGSOiLwuIlkJ1GcYTQpfSx85vXP2GxV1\n6wbnnQdP3JnNsJ4uPFNm2yza7PRz++3QtSvk5MAvfwkzZsCytRal3Wia1Leb+ZdAX1XdKSKnAC/j\ntuCIikUzN4xyokVpB9i5Ez77zG0hct/DIT582y0czijx84eB+Rwf8DFgAEiD/MY1mjpNNpp5lDxL\ngSNUdUuUZ2biM4waErlwuBnpjF2ax4L3c9i3D44+Go45xh2D/CEWfm/OFkbipMpC3bJo5sBaXDTz\nCyITiEg3VV3vnY/EKcT9lJNhGLWj8sLhl27142sJK1bAJ5+4Y/pzIQpHBtBOQbrg575h+Rw72ke3\nbo0tvWFUTb1GMxeRnwM/A/YBu4DrVXV2jLJsBGUYtaC6hcMVwjORzsjCPOa/l0NGBhx1VPlx8JAQ\n87fYKMuompTw4qtrTEEZRv1QeeFw/sR82qT7WLAAZs2CggL4+PMQi0YHKO0cpIu6UdbYo3306NHY\n0hvJhikowzDqlBqPsoJ5LHw/h7ZtYdQo5zU4ahSMGAHFabZ4+EDGFJRhGA1KtFFW2xY+Fi+G2bPh\n00/d3+DiEEwMsKddkF4t/Pz3tHxGZPvKIl8YTR9TUIZhNDjVjbIAPlxcwAnP5lKsxaSVptPznTy2\nFeUwYgSMHFl+tO8SIrjRRllNEVNQhmEkJdFGWnu3+/jiC7c267PP4NOvQ3x/VoCSjCBd0/w8MDyf\n3FH7ew1anMHUxBSUYRhJS3UjrVkrChjzpDfK0nSO+CaPRTNz8PngRz9yR9bwEL/6LsCCrRZnMNVI\nlVBHiMjJIjJfRBaKyC1VpDtSRPaJyNmJ1GcYRuMTK0RTmEO7ZePv6kI0Hdo9i/f/5WfLFrfVyE9+\nAlu3wu/+VkhwQ5Di0mK+WVvEL/8vyNtvw6ZNFcsK7bEwTgcy9RrNPCLdu7h1UI+r6osxyrMRlGE0\nEaobZYX2hBjtmQp7pmcxYVM+337p46uvoH17OOIIyB4R4pmWAVbusVFWMpESJr54opl7968D9gJH\nAq+ZgjKcOcSJAAAgAElEQVQMA6IrsdJSWLIEvvwSXp1TwLMtctE0t2dWzvw8jh2Uw/DhMHw49O/v\n4g3aXFbDkioK6hzgJFW90ru+CBipqv8vIk1P4BlVHSciTwCvmoIyDCMeKu+Z9ete+cz/xsfXX8PX\nX0MoBP4RIRYeE2BL8yAD2/mZNSmfTj5TUvVJqsTii4d7gci5qSo/lEUzNwwjTNRo7ueUP9+4EZ7N\nL+SGb4OUUszCrUX0PDzIUF8Ohx8Ohx8Ow4a5I72NjbJqS5ONZi4i4a3eBegM7ACuVNUZUcqzEZRh\nGDWistv72+fns2KRjzlzYO5c3N95Ifb8T4Diji5Y7t2H5DNquI9Bg6iwwNhMhfGRKia+ZsACnJPE\nWuAz4AJVnRcjvZn4DMOoc6pzyPhkRQFjI9zeA4vzWPVpDmvXQlYWHHYYDD40xD+KAyzfZQ4Z1ZES\nJj5VLRGRa4F3KI9mPi8ymnnlLAnIaRiGEZWw23ssDvPc3sOjrFdvc1uShEJQWAjffAPvFBXyXfsg\nNCtm7poijrsgSODgHA49FLKznSJr3dpGWQ2NLdQ1DKPJE4/be6RDxm/75fNdkY9vv3VKbOFC6HVw\niI1nBNh+UJA+B/n5zyn5HJ7lIz19/7KashJLCRNfXWMKyjCMxqQqJbZvH/y7oIBLZ+ZSQjFSmk6v\nd/LYNCeHgQPdKMvvhwFDQ/xuVYDF25quqdAUlGEYRpIRLQ5h81If8+e7UVYwCPlLC5g1JBeaubVb\nJ67OI7d/Dn6/MxP27w/Nm6f2KMsUlGEYRhJSE1NhvzZZ3JiRz9L5PoJBKCqCNWug/9AQq08KEDoo\nSJ+Wfp4/yZkKW7bcv6xkVGKmoAzDMFKUqpTYzp3OVDjp43JTYd/381j/ZQ59+sAhh8DQodBvSIg/\nfx9g2Y7kMxWagjIMw2iiRDMVthQf330H8+a5I29pAe/0LDcVDp+bx6ieORxyCAwZ4hRZ376wY1/D\nj7KaTDRzETlDROaKyNci8pmIHJNIfclGY62uToRUlBlSU26TueFIJbnDETLuPeTespFRixZu5HT2\n2XD77fDCQ9kM6+kiwg/tnMXUn/nJyoJFi+CeeyAQgDYZIbreGuCYR3MZdEeAfzwV4vPP4YcfKtaX\nyhHha62gvCjlDwInAX7gAhE5pFKy91R1mKoOBy4HHq21pElIKv1ThElFmSE15TaZG45Uk9vX0seG\n4IaYo56wEsubmMfsq/KZcLKPyZPhwQfhvfdg5Up4dXYhxR2DaFoxGyni3zODXHUV9OoF3bpBbi5c\nckWIIXcFCDyey5EPB9i0LbWUVCKx+EYCi1R1OYCIPAdMAMq221DVnRHp2wKlCdRnGIZxwFDdAuRR\n/SouQH7RW4CsCmvXwoIF8FZhIes3BymVYhZscbEKe2kOgwbB4MEwaBBl5516hJi/JbmcMhJRUL2A\nlRHXq3BKqwIiciZwB9AFOC2B+gzDMAyPqMF0cVuQ9Ozpjh8dnc3bT3hKrFsWH3zjZ8s6t/B40SJ3\nvP46LFgaYuUJAZr1SC6njHrdbqNS+tG4/aNOiPHcPCQMwzBSgKSPxQesBvpGXPf27kVFVT8Wkf4i\nkqGqW6I8b5APbBiGYaQGiXjxfQ4MFJFMEWkBnA9U2EZDRAZEnI8AWkRTToZhGIZRmfqOZn6OiFyC\n2/J9F/DjuhDaMAzDaPokzUJdwzAMw6iAqtbqAE7GuZQvBG6JkeZ+YBEwBzi8urxAR9yIbAHwNtA+\n4tltXlnzgBMj7o8AvvHKujeF5J7plfU18BXQORlkBjKAD4AQcH+lOpK2rauRO1nb+njgC2AuzmQ+\nrjZtnUQyx93OjSD3kZ5c4ePMFGjrqmROyu90xPO+uP/FG2r7/lDV2ikonElvMZAJpHsf6pBKaU4B\nXvfORwGfVpcXuAu42Tu/BbjTO8/yOqI50M/LHx79zQaO9M7fwHkWpoLcM4HhSdjWrYGjgSvZ/0Wf\nzG1dldzJ2tbDgO7euR9YVdO2TjKZ42rnRpL7ICDNO+8OrI+4Tta2rkrmpPxOR5T5H+B5KiqouN8f\n4aO2ThJli3RVdR8QXqQbyQTgKQBVnQ20F5Fu1eSdAEz3zqcDZ3rnZwDPqWqxqi7DafqRItId8Knq\n5166pyLyJK3cEXXF0/4NKrOq7lTVWcCeyAqSva1jyR1BMrb1XFVd550HgYNEJL2GbZ0UMkfUFe87\npaHl3q2q4UABrfCCBiR5W0eVOYKk+04DiMgEYAkQjLhX0/dH3B8wGtEW6faKM01Vebup6noA75+g\na4yyVkeUtaoaOZJR7jBPishXIvKrJJK5KjmSua2rI6nbWkTOBb7yXgQ1aetkkTlMPO3cKHKLyEgR\nKcSZJ6/2Xv5J3dYxZA6TTN/pbp68bYGbgd8CkUuHavr+ABIMFltDarPOSetcippTX3JfqKqHAgEg\n4C10riusrSuS1G0tIn5ctJUr60Si6qkvmeuznSFBuVX1M1XNxs3tTPGWx9Q39SVzsn2nw4pzKvAX\nrRjmrtbUVkHFs0h3NdAnSpqq8q7zhpbhIeGGOMqKdj/Z5UZV13p/dwDPEiVMVCPJHItkb+uYJHNb\ni0hv4EXgYs8MXFUdySxzTdq5UeSOkHMBsB3IrqKOZJY5mb/To4C7RWQJ8AucUr2mijqqprpJqmgH\n0IzyybMWuMmzoZXSnEr5xFsO5RNvMfPiJt5u0f0nC8POBi2Ag6nobPAprnMEN/F2crLL7ZXVyUuT\njptQvDIZZI4o81LggUr3kratY8mdzG0NdPDSnRlFlrjaOllkrkk7N5Lc/YBm3nkmzsSUkeRtHVXm\nmrR1Q8tcqdypVHSSiPv9UZanugRVfMFOxrkYLgJu9e5dFdlQuO04FuPspyOqyuvdzwDe8569A3SI\neHabV1Zld+0jgG+9su5LBblxHmdfeB3+LfAXPIWbJDIvBTYB24AVlHvuJHtb7yd3Mrc1cDvOFfcr\nKrkL16Stk0HmmrZzI8h9EVDoyfsFML4275BkkLmmbd2QMleqt7KCqtH7Q1Vtoa5hGIaRnDSkk4Rh\nGIZhxI0pKMMwDCMpMQVlGIZhJCWmoAzDMIykxBSUYRiGkZSYgjIMwzCSElNQhmEYRlJiCsowDMNI\nSkxBGYZhGEmJKSjDMAwjKTEFZRiGYSQlpqAMwzCMpKR5YwtgGPWBiBysqksbWw6j5ohIBvA4kIfb\nOvxHwGxVfbUGZVj/NwFsBGU0OUTkYNzGaXVVXl8R+UmCZQwWka9F5AcRuTbOPEtF5NhE6m0sRKRQ\nRHJrk1dVtwDbVfXPuC0l7sRtAxFv3TH7vy760mg4TEGlGCJyoYh8LiIhEVktIq+LyDGNLVdDUIMX\n9tWq+lylvMNE5J446pggIlNE5BYRuRhAVVcArUUkq3aSA3Az8IGqtlfVB6PUmxLKKF45VTVbVfNq\nWUca0ElELsVtbb7d64N42a//I+Sqi740Gggz8aUQInID7kV3FW6TsL3AScB44JNGFC1pEJHDgJWV\n7t0AjAa+ryZvO+A3qnqEd10gIm+o6mbcttp/Aa6ppWiZwL9qmTdlEJFmqlqSYDHDgXdVdXrlH18i\nMgK3EV574CngIGAY8KyqfhSt/6OQaF8aDUU8uxra0fgH0A63k+nZVaQ5BJgJbMXtXBm5a+hS4Cac\nqSQE/APoitt6eRtO4bWvlP5WIAhsBh4DWtSgrhu9urbiXswtvGc9gBeADcB3wORKnyEy7/de3pa4\nl1EJsMOT96YYbXA74I9y/1Lg8Wra+HTgqYjrvwHnRlw/CrStafsD7wPFwC5P9oGV8kX9bIm0Y5Q2\nrUnf34LbXXUbbkfXM+OQ82av/F24rcKXAscC/b3vz+Fe2p6ezLlVyHt9Nc+fAc6IuJ4AzKmm/98H\nmsfbl3Ykx9HoAtgRZ0e5kdJeIC3G8+a4rZRv8c7HeS+RQd7zpcAs3PbcPYD1uG2jDwNaeP/Av44o\nbynwjfdC6QB8DPyuBnV9CnTz8hYBVwLi1Xm79xLr570IT6hU7355I56Nq6adXibK9tfEp6CuBu6P\nuL4TuC3iejJwYi3bfyZwWRV17/fZEmnHKOXUpO/PAbp55+cB2yOuY8n5lfddaRlx71jvfBJO0bUC\n3gbuqqIdhnuyTqoizRKgtXeejlPUl8Tqf6AX8H6lezH70o7kOWwOKnXoBGxS1dIYz3OANqp6l6oW\nq+pM4DXggog0D6jqJlVdC+TjPKO+UdW9wEu4lwOV0q9R1e+BP0SUdVQcdd2nquu9vK8ChwNHAp1V\n9Q+qWqKqy3C/ZCPzxcobRqpsJWil3huoFnQEdkdc7wXaRlyvAQbFyBtP+1dHtM9Wk3Y8v4qy4+57\nVf2vqq73zv+DU7wj45BzjaruqfxAVR/FKdDZOGX7q1hCqurXqnq0l2c/ROQQ3Mh6tIhcjRvl3qCq\nT3lJKvS/iJwA/BlYJyIXRRRVVV8aSYLNQaUOm4HOIpIWQ0n1ZH/b+3Lcr8cw6yPOd0W5jnwZA6yq\nVFZP77xHDeva6eXJBHqJyBbvvuAcdSpPpkfLGy/NapC2MiEgI+K6FbAu4vp7YHCMvPG0f21IpB1j\nlVNl34vIJTgzWz/vVhvc6KsqVlXz/FHgFdxoeF81aaviWGCGqr4DICJnAN2BsBNFhf5X1XdFZCLw\nZ1X9MuJRVX1pJAk2gkodCoA9wJkxnq8B+lS61xdYnUCdkeVlenUkUtdKYImqZnhHR3VebePjlCee\nkVFxnGVF4zugS8R1J8o/MziFtSNG3kTbvyajvkTbMSYi0hd4BLjGK7cjbh4yPGqKJWdM+UWkDXAv\nbh5zmoh0SEDEcbj/hTAZuHmuMNH6//BKygmq7ksjSTAFlSKo6jac99JDnit0KxFpLiKniMidOPPJ\nThG52bs/Fjfpn4jn2M9FpJe3cHIKEHbdrW1dnwEhL99BItJMRPwi8qM45VlPxZdR1DTeCzEaFUxT\nIjJQRCLvfQSMiLgegZufCZNBxRFVJIm2/zqq/2xhEm3HqmgDlAKbRCTNG31kRzyPpw8qcz/wmape\niXPM+HttBPP6Khc3LxfmUGCziIRH2RX633Mnn+edR5pAq+pLI0mIS0GJyMkiMl9EForILVGeDxGR\nWSKy23PpjXx2vbdo7xsReUZEWtSV8Aca6hYu3oCz4W/AmTWuAV72zCbjgVOBTcCDwMWquiicvXJx\ncVT5LM7DazFuHuIPnhw1rSssfynupX04bhJ9A86jrF2cct0B/FpEtlT+nkXwERXnS/AWxl4OjBWR\nqSLi8x69ChwfId9O4G4R+ZWI/Br4P1XdEFHUYcRw569tm0RwZ5TPlkg7VshSzXVk2fOAP+GUwDrA\nj3OQCROtD6KVp1BmgjuRcpfuG4DhIlKTubnw8oE/4EY+50Q8egw3/3eCd125/7cAP3jK6cOI+xX6\nUkTeEJFbayKTUf9IdfPJ3qK5hcBxODPG58D5qjo/Ik1nnAnoTGCr9yJFRHrivtyHqOpeEXkeeD1i\nQtNIUkRkKXC5qn7Q2LLUBBHpiHN/vj2OtGnAGM+hIZ6yH1XVSYnKaNQf8fa/9WVqEM8IaiSwSFWX\ne78Sn8OtOyjD8w76kuj232ZAGxFpDrSmok3fMOoUVd2KM/l0iiP5uVQ0F8VERI4E3k1ENqP+iaf/\nrS9Th3gUVC8qeietIk7PJFVdgzMXrMBNFn+vqu/VVEijUaitq3YycC9O+VTH66q6q7pEItIMt6bn\n+YQlMxqCmP1vfZla1KuThOetMwFn/usJtBWRC+uzTqNuUNX+qWbeC6Oqpapa7US8qsbrxdUFN9Fv\npADV9L/1ZQoRzzqo1Th32TC9id919nicO+wWABF5ETgaN/leARFJ5V/sxgFARYc/I5WxvkwMVW2Q\nBoxnBPU5MFBEMj0PvPOBGVWkjxR8BZDjucIKztFiXqyMdRUeo6GOqVOnNroMB4LMqSq3yWxyNzWZ\nVRt2HFHtCEpVSzw33XdwCu0xVZ0nIle5x/qIiHTDxfbyAaUich2QpaqficgLwNfAPu/vI/X1YQzD\nMIymQ1yhjlT1LWBIpXt/jzhfz/6r6MPPfgv8NgEZDcMwjAMQiySRAGPHjm1sEWpMKsoMqSm3ydxw\npKLcqShzQ1PtQt2GQkQ0WWQxDMMwoiMiaBI5SSQa6qi9iPxHROaJSFBERtWV8EZyE9oTomBlAaE9\noXpPYxhG06PaOSgvHMyDRIQ6EpFXNCLUEW4riMlEj7R9H/CGqp4XEU3CSGFCe0IUbigku2s2vpYu\nrF1pKWzfDqEQbNsG67aGmDQrwPIdQfq28nPH4Hxa4qOkhLJj+74Qv18VYM2+IL1b+rlzcD7tW/lo\n0QLS06FFC9grIa6YFWBJKMjgDD8zL8qnS3sflb2Eo8kUj9yGYSQv8ThJlIU6AhCRcKijMgWlqptw\n0Y9Pj8woIu2AgKr+1EtXjNtl1EhSwi/xoZ2y2b3Nx5o1sGYNrF3r/i5bG+LF9gG2tQzScpufDi/l\ns2OLjx07oE0b8Pnckda3kCVHByGtmGU7irj/X0E6786hWTPKji1tClnVO4imFbNiVxEP/SdI2+9z\n2LsX9u6Ffftga5tCFh4ThGbFFG0ooveIIKUrcvD5oG1bV1frDiHmHxNgZ+sgHYv9XFqaT48MHxkZ\n0KkTZGTAQe1CTMwPsPD7IP4ufvIn5kdVUqbEDCN5iEdBRQt1NDJG2socjFNcTwDDcK7o12kc4WWM\nuqfyy1cVVq+G+fNh3jyYOz/Ec60D7GgVhI1+Os3Ip3cXHz17Qo8e0LMndBpayI7vg0AxJZ2KeOTl\nIGMH5NC2LaSlRdaVTeAJP0Ubi8jqlsVbU/z4WlaWp2KaN+JIkz/Pz0Fp5aO17dth1opCrp4dRCnm\nhxZF7GoeZP36HObNgy1bYPNmWCWFLBvrFN3cNUUcdnyQfs1z6NYNunWD7t2hXZcQf9oSYOVuN1qb\ndbkb0VXXjoZh1A/1vaNuc9yeOj9X1S9E5F7gVty+Rvsxbdq0svOxY8eal0sdsnZLiNGPBVi2M0j7\nPX4OnpnPoqCP1q1h6FA45BDwDSpkd8gpn/SeRbw2O0hO75wK5YT2ZPNeWGF0yWJc1v5KBcDX0kf+\nxHyCG92IJdqLPJE0HTu6A6DPgGweXFYu090Tq1Z0gzpl8fj9frZvgfXr3bFuHeQvK2RZdzeiK9pQ\nROesID1Lc+jVi7KjU88Qj5Y4s+TADn4+uSyfjLamxIymy4cffsiHH37YKHXHs91GDjBNVU/2rm/F\nLdC9K0raqUBIy7fb6AYUqGp/73o0cItG2fnTvPgSI/KF2LaFj5Ur4ZNPYNYs97coVMCeC3KhWTHN\nSOevR+Zx3lE5ZS/5cBmBJwJlL/qqzGBVKZXGIB6ZqktT+fO/d2E+oc0+Vq+m7Ph8XQHPt8pF04qh\nJJ1mT+XRvTiHvn0pO7r2CfHQzgCr9gQ5pJOfWZPMnGg0HRrSiy8eBdUMWIBzkliL283zAnUbm1VO\nOxXYrqp/irj3EXCFqi70nrdW1WiegKagakloT4iRf3PzK77dflo/l0/JTh9HHw3HHOOOQf4Qxz+b\nmsqnIampEpt5sVNiK1ZQdny2toCXO3hKrDgd33/zGHhQDgcfDP36wcEHOyX2m6UBvgtVPSdmGMlG\nUikocG7mOG+8cKijO6sKdQRsx4U62i4iw4BHgXRgCTBRVX+IUocpqBqgCl98AS+/DM/kFbB8XPno\n6F8n5XHuqJyonm4HsvKpK2qixIZ2yeLl8flsWuNj6VJYtswdX20sYPZQ12eUpJP9eR6Hd86hf3/o\n3x8GDHB/22aECG60UZaRPCSdgmoITEHFJmwKGtIxm69n+3jpJXjlFWjdGs46C04cH+L6bwPMq2Z0\nZDQcNVFigzpk8efsfNYu97FkCSxZAt99B4tXhth8RgDtHKTdHj+XFOeTNdDHgAEwcKAzJzZvbqZC\no2ExBWWUsW13iOEPBFi6PUjaZj/Dvszn3DN8nHmmc24IY6Oj1KO6PitYWUDuk7kUlxbTnHSubJnH\nviU5LF7sFNi6ddBnQIgNpwfY0TpI92Z+7h+ez7BDfPTr55RXZF2mxIy6wBSUwQ8/wFNPwT3PFbDi\nOGcKap6WTv7EvP0864ymSXVOK7t3w0ufF3DxB7mUUEyapnPEN3ls+CqHdevcCGvQIMgcFGJG5wDr\nSoIM6uinYFI+HVqbkjJqR9IpKG8O6l7K56DuqvR8CPAEzqV8StiLL+J5Gm6OapWqnhGjDlNQQGEh\nPPQQPP88nHACXHZ1iJsXmPnuQKWmThvh78fu3c5UuGgRvDu/gId35VIqbr6rxTN5DGqVw6BBMHiw\nOwYNgp79QmygkEO72SjLiE1SKShPuSwkItQRcH5kqCMR6Yzb1v1MYGsUBXU9cATQzhRURUJ7QsxZ\nU8jS2dk8/jcfCxfCVVfBFVe4hbHhNGa+M2JRUyX21k/yWb/Cx6JFsHChO+YvCfHFYQFKMoK02u7n\ntPX5+Af5GDKkXIG1a1denpkLD1ySTUHlAFNV9RTvOu51UN693rjR1R+AG0xBlbNpW4hh97lFn212\n+nnoiHwuPNdHenpjS2Y0NWo03yXpTOmRR+mKHBYscAps0SKnoAZkhZiXE+D7Fi7G4gun5nPYkP2/\ns6bEmi4NqaDqO9QRwF+AXwLta5CnSVNa6kx4N/ylkPWnuPA7e9sXMSQQJD3d5peMusfX0lfl3GV2\n12z8Xcqjcdx0ScVoHKWlLhbjS18U8ou5QUopZvmOIs64PMjmuTlkZrqR1pAh0HdgiPu3B1i+K0hW\nFz8fm1naqCX1GupIRE4D1qvqHBEZC1SpdQ+EUEcffAA33+zi1j1+Rza3LSp/Kfi7+BtbPOMApbqw\nU2lp0Ls3/LRLNo+ti4iNmOenBc6rcOFCWLAA3p1byHdd3A+vb9YUMfL0ICO65jBkCGUmw8GDobS5\njbJSgaYc6uiPwEVAMdAKt5D3RVW9JEreJm3i+/ZbuOUW9w98xx1w3nkgYvNLRupRkzmvwR2zuO/w\nfFZ95ytTYAsWwKIVIUouDVDSMUhGiZ9fdnamwiFDIDPTRbsPl2VKLLlItjmohEIdRTwbA9x4IM1B\nhfaE+KCwkBf+ms3br/q4/Xa4+mpoGSW4qmE0JapTYh8vL2Dc9FyK1UU/OXNrHj8Ec1i4EDZscFE0\n+g8NMdsfYHNakP5t/bx7YT79elhMw8YmqeagVLVERK4F3qHczXxeVaGOROQ6vFBH9Sl8MrN1R4is\ne9zak669/XwVdFtXGMaBQHVzXsO6Z+PvWm7efuLW8jmvnTudU8Zrcwp5Y5mb71r8QxHZ44K03JhT\nZiYcMsQtVP79GrehpcU0bHrYQt16YMkSOPPaAgqPdAFD09PSybMFtoZRgZq6x+f9NJ/d23xlZsKF\nC6FgVQEfDyyPaTgymMeoXjll81xDhkCfPrBjn42y6oqkMvE1FE1BQam66A833QTX3xri+Ta2wNYw\nEqEmSmxAuyx+3z+flYt9Zeu7FiyAzdtD6MQAe9sF6YKfaZkuHNTgwW7H5XBQZTMVxocpqBRk82Y3\nvzR/PjzzDBx2mDlAGEZDUN3/2fsLCzj5OTfflUY6J67KY+u3bo2XiBtpHTwkxMz+ATYRZEA7Px9e\nmk+PDJvvikbSKajahjryFuk+BXTDbcPxD1W9P0YdKaug3n0XJk6EH/8Y/vhHOOigxpbIMIwwscJB\nqboflgsXwhvfFnDH2vJwUC2fzSNjZ05ZFI3Bg6F3/xC/XWl7eCWVgkok1JGIdAe6e+ug2gJfAhMi\n80aUkVIKKrQnxJerCvnPg9nMeMHHE0/A8cc3tlSGYUSjpvNdH12az7ZN5abCRYtg9uoCZg0pn+86\nsjCPI3uUxzQcNMhtSLm7tGmPspJNQSUU6qjS85eBB1T1/SjPUkZBhfaE+NHDARZuCdJ+r5+5v8gn\ns3vT+yIaxoFEbea7Vi9xMQ3Dx+pNIZgYYF+HIJ1K/dzSNZ/sQT4XVT6zfAuUVDYVJpWbOYmHOgJA\nRPoBhwOza5o32XjyzUIWbnEr5Xe2KWJtcZBMzEPPMFKZ6lzjq4u2AfDRkkKOfzqIajFb0oqYtSjI\n2zNyWLTI7d+VmQn9Bof46vAAW5oHyWzt56Xx+fgH+irs3wWprcTqinoNdRTGM++9AFxX1dqoVAh1\n9K9/we9+mc2AX/hZsctCFBnGgUR1SmxEr4rru6ZHrO/avRuWLoVX5xTy3kK3vmtZqIiTLw6y5Zuc\nsv27Bg6E3gNC/G1PgJW7gwzt4ueTyxpvvqvJhjry7jUHXgPeVNX7qqgn6U18f/oT3HcfvPGG2wTO\nPPQMw6hMbfbwaoGPpUth8WJnKvx4WQEvdXDrKClOp/vbeWS3z2HgQBgwwCmxgQOhS+8QS0INO8pK\ntjmohEIdichTwCZVvaGaepJWQZWWurVNb78Nb73lFv4ZhmHUlpoosaGds5g+Np91y30sXuwC8y5e\nDAuXh1g0OoB2dtv1nLkln0P6+xgwgLIjIwO2761bU2FSKSgoczO/j3I38zurCnUEbAeygGFAHvAt\noN4xRVXfilJHUiqoPXvg0kvdVgOvvAIdOza2RIZhHAjUdA+vmzrnwcocvvuuXInRIsS+iwPs9gXp\njJ/f9Mona6BTYr17lwflDdcXjyJLOgXVECSjgvrhBzjrLPcr5OmnbX2TYRjJQ6z1XWFU4a1gAWe8\nWL5I+eS1eWyf55TYpk3Qt68bafUeEOKNbgE2UP0aL1NQjUxoT4iZRYVMmZTN2KN83HdfxV8ahmEY\nyUBt5rvC6XbvhmXL3Gjr/QUF3LfNLVSuLnaoKahGJLQnxJEPB1iwJUj35n4W3JxPu4PMCcIwjNQk\nnpBr1Y3GImlIBZUWTyIROVlE5ovIQhG5JcrzISIyS0R2i8gNNcmbbLw7t5AF3hqnzVJE0aZgY4tk\nGIZRa8Ku8VXNK4XXeOVNzEuqEE71Heqo2rwRZTT6CGrLFsgZE2LHjwNsxKKQG4ZhVCbZIkmMBBap\n6np9KK0AABPmSURBVHIAEXkOmACUKRlV3QRsEpHTa5o3Wdi1C844Ayac7OM3N1e9WtwwDMOof+Ix\n8UULddQrzvITydtglJTA//yPW990113xDYkNwzCM+qVBQh3FS2OEOlKF666D77+HN9+EtLhm5QzD\nMA4MmmyooxrmbZQ5qLvuchsM5udD+/YNXr1hGEZKkWxefJ8DA0UkU0RaAOcDM6pIHyl4TfM2KE8/\nDX/9qxs5mXIyDMNILqo18alqiYhcC7xDeaijeVWFOhKR64AsVd0eLW+9fZo4CIfz2BjM5sYbfXzw\nAfRKulkxwzAM44BaqBtejBbcEEQ3+nn97HxOGmeOEIZhGPGSbCa+JkPhhkKCG4IUazF0LqL9IFuE\naxiGkawcUApqYLtsmm/104x0srvZRoOGYRjJTJ2EOvLS3C8ii0RkjogcHnH/ehEpFJFvROQZz1mi\nUfjjNB8nrs4n/7LkCudhGEbt6devHyJiRx0f/fr1a+yurbNQR6cA16rqaSIyCrhPVXNEpCfwMXCI\nqu4VkeeB11X1qSj11Osc1DvvwOWXw9y5bvsMwzCaBt6cSGOL0eSI1a7JNgdVFq5IVfcB4XBFkUwA\nngJQ1dlAe8+zD6AZ0Ebc1u+tcUquQdm0CSZOhOnTTTkZhmGkCnUV6qhymtVAL1VdA/wJWOHd+15V\n36u9uDVHFSZNcqGMjj22IWs2DMMwEqFeQx2JSAfc6CoT+AF4QUQuVNVno6Wvj1BH//gHrFgBzz+f\ncFGGYRgHHCkf6khE/gbMVNXnvev5wBggAJykqld49y8GRqnqtVHqqfM5qPnzIRCAvDwYOrROizYM\nI0mwOaj6IVXmoOIJVzQDuATKFNr3qroeZ9rLEZGDRERwjhYNEkli715n1vv97005GYZhpCLVKihV\nLQHC4YqCwHPhUEcicqWX5g1gqYgsBv4OXOPd/wx4AfgamIuL0/dIfXyQyvzmNy6E0VVXNURthmEY\njc/06dMJBAKNLUadEdcclKq+BQypdO/vla73M9t5938L/La2AtaEcJy9rQuyeeopH3PngjTIQNQw\nDKPxUVWkCb30mkwkiXCcvdwnc5kwI8CD/wjRpUtjS2UYxoHO2rVrOffcc+natSsDBgzgwQcfBOC0\n007jpptuKkt3/vnnM2nSJACWLFnCcccdR+fOnenatSsXXXQR27ZtK0u76v+3d+7BUdVZHv/8Ogmi\nEt6PKMSIy4gmUCFsTQwsuIC7jLK44GR9LgFBFlYl4OCKEJ2FwdpyRUsEZIahFBMM69tiw2NdXECh\nKgwr6+BChyAuE0JeIAISSAWS9Nk/7k3TCemkO0l3bsfzqeri9v29vvfkck/1757f+ZWUkJ6eTv/+\n/enXrx/z58+nsLCQJ598kn379hEbG0vvTrCmptM4qMOnD+P+3k2tpxZP7wJuTtY8e4qidCwiwv33\n309KSgrl5eXs3LmTN954g88//5wNGzaQm5vLF198waZNmzhw4ACrV6/2tsvKyqKiooIjR45QUlLi\njXL2eDxMnjyZwYMHU1xcTGlpKY888gh33HEH69atY9SoUVRWVnL27NkOvPJ2QkRa/AD3AoVYGSWe\n91NnNXAMOAiM8DnfA/gIKzjCjRXF11R7aQsXqi9I/L8kC7+OkeFrk+VC9YU29acoSmQQyLPDWhHZ\ntk9r2L9/vyQkJDQ49/LLL8usWbNEROTTTz+V+Ph46devn+Tn5/vtZ/PmzTJy5EgREcnPz5f+/ftL\nXV3dNfWys7Nl7NixrRPbCH92tc8H5Dva+mnxHZSd6uhNfFIdGWP+Xa5NdfRnIvIzO9XROiDNLl4F\nbBeRB32ySbQ7lytjufTmXjZucjN1dJLm2VMUxUtHRaGfOHGC0tJS73SbiODxeLj77rsBmDx5MvPm\nzWPo0KGMGjXK2+706dMsWLCAvXv3cvHiRerq6rx9lJSUkJCQgMvVaSbA/BLSVEfGmO7AWBF5xy6r\nFZELhIBly+Cx9Fgyxqepc1IUxRHEx8dz2223cfbsWc6ePcu5c+f48ccf2bJlCwBZWVkkJiZSXl7O\n+++/722XlZWFy+XC7XZz/vx5cnNzvWuS4uPjKS4uxuPxXDNeZwqQgBCnOgIGA2eMMe8YY742xqw3\nxlzfFsFN4XbDhx9aTkpRFMUppKamEhsby4oVK6iurqaurg63282BAwfYs2cPOTk5vPvuu2RnZ5OZ\nmUl5eTkAlZWVdOvWjdjYWEpLS3n11Vcb9HnTTTexePFiqqqquHz5Mvn5+QAMGDCAkpISampqOuR6\n25uQpjqy+x8JPC0iB4wxbwCLgaVNVW5NqiMR+NWv4MUXoU+f9pCsKIrSPrhcLrZu3crChQsZPHgw\nV65cYejQoSxZsoQFCxawdu1a4uLiiIuLY/bs2cycOZPPPvuMpUuXMn36dHr27MmQIUPIyMhg5cqV\n3j63bNlCZmYmt9xyCy6Xi8cee4zRo0czYcIEkpKSiIuLIyoqitOnT7f5GjpzqiOAfSJym31+DFaQ\nxf1NjCMtaWmKbdvg2Wfh0CGIiQm6uaIoEY6mOgoNnT7VkVjpjk4aY263690DFLSPdKipgYUL4fXX\n1TkpiqJ0Nlqc4hOROmNMfaojF/C22KmOrGJZLyLbjTGT7FRHl4CZPl3MBzYZY2KA443K2sRvfwuD\nB8N997VXj4qiKIpTaHGKL1wEO8X3ww9WEtgvvoDExNDpUhTF2egUX2hwwhRfxDqoefOsPHtr1oRQ\nlKIojkcdVGhwgoMKdRRfSKgPKz8Slo07FEVRlI4goKXIxph7jTGFxphvjTHP+6mz2hhzzBhz0Bgz\nolGZy14H1Ti4ImAqL1ey7+Q+LlRXsnAhvPCChpUriqJ0ZsKR6ghgAVb0XvfWiKzPVO7+3k38dUlE\nl+7lqac0W4SiKEpnJqSpjgCMMYOAScBbrRXpm6n8TxcLmPtrt4aVK4qidHJCneoIYCXwHNDqt5jD\n+g8jqV8SUcTQrTqRf5iS1NquFEVRlAghpEESxpi/AU6JyEFjzDisLd/94i/VUex1sWyespcRf+1m\nR24S3bvq9J6iKEo46MypjhYA04Ba4HogFvhURKY3MU6zYeaZmVbePXszSkVRFEDDzAHq6uqIiopq\n1z6dEGYe6lRHWSJyi52L7xFgV1POqSVKS2HTJs1WrihK8NRHAFderuyQ9q+88gpDhgyhe/fuDBs2\njM2bNwOQk5PDmDFjyMzMpGfPniQmJrJr1y5vu/Hjx5OVlcVdd91Fjx49eOCBBzh//jxg7TPlcrnY\nsGEDCQkJ3HPPPQDk5eUxbNgwevfuzYQJEygstGLZjh8/Tp8+fTh48CAAZWVl9O/fnz179rTqmsJG\nILsaYu2oexRrx9zF9rm5wByfOm8C3wHfACOb6OMvgbxmxhB/PPecyIIFfosVRfkJ09yz40L1BUn+\nXbJEL4+W5N8Fv9N2W9uLiHz88cdSUVEhIiIffvihdOvWTSoqKiQ7O1uio6Nl1apVUltbKx988IH0\n6NFDzp07JyIi48aNk0GDBklBQYFUVVVJenq6TJs2TUREioqKxBgjM2bMkKqqKqmurpZvv/1Wbrzx\nRtm5c6fU1tbKihUrZMiQIVJTUyMiIm+99ZYkJSVJVVWVTJw4URYtWtSsbn92JYw76oZlkICE+DHG\n+fMivXuLFBU1a0tFUX6iNOeg8ovzJXp5tLAMiVkeI/tO7guq77a2b4oRI0ZIXl6eZGdny8CBAxuU\npaamSm5urohYDmrJkiXesoKCAunSpYt4PB4pKioSl8slRT4Pxpdeekkefvhh73ePxyMDBw6UL7/8\n0ntuypQpMnz4cElOTpYrV640q9MJDsrxewb//vdWMtiEhI5WoihKpFEfARzjiiGxXyJJ/YKLAG5r\ne4CNGzeSkpJCr1696NWrF263mzNnzgAwcGDDgOiEhATKysq83+Pj4xuU1dTUeNsCDBo0yHtcVlZG\ngs+D0hhDfHw8paWl3nOzZ8/G7XaTmZlJTASs1XF0qqPLl2HVKti+vaOVKIoSicReF8vemXtxf+8m\nqV8SsdcFFwHc1vbFxcXMmTOH3bt3M2rUKABSUlK8wQe+zqO+/pQpV5eZnjx5dfXOiRMn6NKlC337\n9qW4uBhouMX7zTffzOHDhxv0d/LkSa8TvHTpEs888wxPPPEEy5YtIz09nZ49ewZ1PeEmpKmOjDGD\njDG7jDFuY8whY8z8YMRt2gTDh0NycjCtFEVRrhJ7XSxpg9KCdi7t0f7SpUu4XC769u2Lx+PhnXfe\naeBETp06xZo1a6itreWjjz6isLCQSZMmectzc3MpLCykqqqKpUuX8uCDD3qdUr2Tq+ehhx5i27Zt\n7N69m9raWl577TW6du3K6NGjAZg/fz6pqamsX7+eSZMmMXfu3NaYI6yEOtVRLbBQrHVQ3YD/Mcbs\n8G3rD48HXn0V1q5t3YUpiqJ0NHfeeSfPPvssaWlpREVFMX36dMaMGeMtT0tL49ixY/Tt25e4uDg+\n+eQTevXq5S3PyMhgxowZHD16lHHjxrFu3Tpvme+vJ4Dbb7+d3Nxc5s2bR1lZGSNGjGDr1q1ER0eT\nl5fHjh07OHToEACvv/46KSkpvPfeezz66KMhtkLrCXQd1FIRuc/+Hsg6qCPAOLF21PXtazOwRkR2\nNjGO+GrJy4Ply+Grr6xtNRRFUZoiUtdB5eTk8Pbbb/sN9R4/fjwZGRnMmjUrzMosImUdVFtTHQFg\njLkVGAHsD0TYihWwaJE6J0VRlJ8qYQmSsKf3PgYWiMhFf/XqUx0VF8Px4+P45S/HhUOeoiiK42g8\nhddRdNpURyJyyhgTDWwF/kNEVjUzjneKb+pUmDgRnnqqbRenKErnJ1Kn+JxOpEzxtTrVkV22ASho\nzjn5cuQI7NsHjz8eSG1FURSls9LiFJ+I1Blj5gE7sBza2yJyxBgz1yqW9SKy3RgzyRjzHXAJeBzA\nGPMXwN8Dh4wxf8TaciNLRD5raqzKy5W89losTz8NN9zQLtenKIqiRCgtTvGFC2OMJK5OpvSlvfzf\nkVjdzl1RlIDQKb7Q4IQpPkdlkij8oYD0aW769ElrubKiKApWCiCnBBR0JhIckF8upJkkAm3rrXsm\nkX9+UnfLVRQlcIqKijo82XVn/BQVFXX0n7ZlB+WTSeIXQBLwqDHmjkZ1vJkksLbhWBdoW18eOLeX\nYT+LnN1yOyr0si1EomaITN2qOXxEou5I1BxuAvkFlQocE5ETIlIDvA9MaVRnCrARQET2Az2MMQMC\nbOsl658ixzlBZN5gkagZIlO3ag4fkag7EjWHm1BlkqivE0hbLykpAahRFEVRfhKEaj8ofWOpKIqi\ntImQZpIABrfU1qcPjRNVFEWJAJwUZu7NJAGUY2WSaJyfPQ94GvjAN5OEMeZMAG2B8F2woiiKEhmE\nKpPEzObahuxqFEVRlE6DYzJJKIqiKEoDWruIC7gXKAS+BZ73U2c1cAw4CIxoqS3QC+vX1lHgP4Ee\nPmVL7L6OABN9zo8E/tfu640I0r3b7uuPwNdAXydoBnoDu4BKYHWjMRxr6xZ0O9XWfwUcAL7Bmkof\n3xpbO0hzwHbuAN0/t3XVf6ZGgK2b0+zIe9qn/Bas/4sLW/v8EJHWOSis6brvgAQgxr6oOxrVuQ/Y\nZh/fBfyhpbbAK8Ai+/h54F/t40T7DxEN3Gq3r//1tx/4uX28HfhFhOjeDaQ40NY3AKOBOVz7oHey\nrZvT7VRbJwNx9nESUBKsrR2mOSA7d5DuroDLPo4DTvl8d6qtm9PsyHvap8+PgA9o6KACfn7Uf1ob\nZh6qxbtTgBz7OAeYah//LfC+iNSKSBGWp081xsQBsSLylV1vo08bx+r2GasjF0o3qVlEqkQkH7js\nO4DTbe1Ptw9OtPU3IlJhH7uBrsaYmCBt7QjNPmMF+kwJt+5qEfHY568HPBD0fe0IzT447p4GMMZM\nAY4Dbp9zwT4/Ar7ApgjV4t0BYu8jZf8n6O+nr/ot5Qfa7ZvT4UTd9WQbY742xrzoIM3N6XCyrVvC\n0bY2xvwd8LX9IAjG1k7RXE8gdu4Q3caYVGPMYazpyX+0H/6OtrUfzfU46Z4eYOvtBiwCfkPD9bDB\nPj+A0C3UbYrWhJFLu6sInlDpfkxEhgNjgbHGmGmtGMcfauuGONrWxpgk4GWs6clwECrNobQztFG3\niPy3iAzDereTZW/AGmpCpdlp93S941wKrBSRqvYQ0loHVYr1EqyeQfa5xnXim6jTXNsK+6dl/U/C\n0wH01dR5p+tGRMrtfy8B/0bDqb+O1OwPp9vaL062tTFmEPApkGFPAzc3hpM1B2PnDtHto/MocBEY\n1swYTtbs5Hv6LmCFMeY48AyWU32qmTGap6WXVE19gCiuvjzrgvXy7M5GdSZx9cVbGldfvPlti/Xi\n7Xm59mVhfbBBF6zsFL7BBn/A+uMYrBdv9zpdt91XH7tODNYLxTlO0OzT5wxgTaNzjrW1P91OtjXQ\n0643tQktAdnaKZqDsXMH6b4ViLKPE7CmmHo73NZNag7G1uHW3KjfpTQMkgj4+eFt01KFZm6we7FC\nDI8Bi+1zc30NhbXVxndY86cjm2trn+8N/JddtgPo6VO2xO6rcbj2nwOH7L5WRYJurIizA/Yf/BCw\nEtvhOkTzn4AzwAWgmKuRO0639TW6nWxr4AWsUNyvaRQuHIytnaA5WDt3gO5pwGFb7wHg/tY8Q5yg\nOVhbh1Nzo3EbO6ignh8iogt1FUVRFGcSziAJRVEURQkYdVCKoiiKI1EHpSiKojgSdVCKoiiKI1EH\npSiKojgSdVCKoiiKI1EHpSiKojgSdVCKoiiKI/l/NCEVfq7Gxo8AAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -207,10 +188,11 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [Root]",
"language": "python",
- "name": "python3"
+ "name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
@@ -222,7 +204,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.2"
+ "version": "3.5.1"
}
},
"nbformat": 4,
diff --git a/exploration/fitAChR1.py b/exploration/fitAChR1.py
index 4a811db..4a0ebcd 100644
--- a/exploration/fitAChR1.py
+++ b/exploration/fitAChR1.py
@@ -13,7 +13,7 @@
from dcpyps import dataset
from dcpyps import mechanism
-from dcprogs.likelihood import Log10Likelihood
+from HJCFIT.likelihood import Log10Likelihood
def dcprogslik(x):
mec.theta_unsqueeze(np.exp(x))
diff --git a/exploration/fitGlyR4.py b/exploration/fitGlyR4.py
index 14a0214..e6332d7 100644
--- a/exploration/fitGlyR4.py
+++ b/exploration/fitGlyR4.py
@@ -7,7 +7,7 @@
from dcpyps import dcio
from dcpyps import dataset
from dcpyps import mechanism
-from dcprogs.likelihood import Log10Likelihood
+from HJCFIT.likelihood import Log10Likelihood
# LOAD DATA: Burzomato 2004 example set.
scnfiles = [["../../DCPYPS/dcpyps/samples/glydemo/A-10.scn"],
diff --git a/exploration/mpi/fitGlyR4_mpi.py b/exploration/fitGlyR4_mpi.py
similarity index 98%
rename from exploration/mpi/fitGlyR4_mpi.py
rename to exploration/fitGlyR4_mpi.py
index 698cedd..69103c1 100644
--- a/exploration/mpi/fitGlyR4_mpi.py
+++ b/exploration/fitGlyR4_mpi.py
@@ -1,5 +1,5 @@
from dcpyps import mechanism
-from dcprogs.mpihelpers import MPILikelihoodSolver
+from HJCFIT.mpihelpers import MPILikelihoodSolver
import argparse
diff --git a/exploration/fitGlyRke4.py b/exploration/fitGlyRke4.py
index cc600c6..fd1ced5 100644
--- a/exploration/fitGlyRke4.py
+++ b/exploration/fitGlyRke4.py
@@ -7,7 +7,7 @@
from dcpyps import dcio
from dcpyps import dataset
from dcpyps import mechanism
-from dcprogs.likelihood import Log10Likelihood
+from HJCFIT.likelihood import Log10Likelihood
# LOAD DATA: Burzomato 2004 example set.
scnfiles = [["../../DCPYPS/dcpyps/samples/glydemo/keA.scn"],
diff --git a/exploration/mpi/read_simulation_results-pandas.ipynb b/exploration/mpi/read_simulation_results-pandas.ipynb
deleted file mode 100644
index 4bd55a5..0000000
--- a/exploration/mpi/read_simulation_results-pandas.ipynb
+++ /dev/null
@@ -1,824 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/jhn/Envs/dcprogsgcc/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n",
- " warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n",
- "/Users/jhn/Envs/dcprogsgcc/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n",
- " warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n"
- ]
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import glob\n",
- "import pickle\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "from collections import OrderedDict"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "from dcpyps import mechanism\n",
- "from dcpyps.samples import samples"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "def constrain(mec):\n",
- " for i in range(len(mec.Rates)):\n",
- " mec.Rates[i].fixed = False\n",
- " # Constrained rates.\n",
- " mec.Rates[21].is_constrained = True\n",
- " mec.Rates[21].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[21].constrain_args = [20, 1.5]\n",
- " mec.Rates[18].is_constrained = True\n",
- " mec.Rates[18].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[18].constrain_args = [19, 2]\n",
- " mec.Rates[14].is_constrained = True\n",
- " mec.Rates[14].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[14].constrain_args = [12, 3]\n",
- " mec.Rates[13].is_constrained = True\n",
- " mec.Rates[13].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[13].constrain_args = [12, 2]\n",
- " mec.Rates[15].is_constrained = True\n",
- " mec.Rates[15].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[15].constrain_args = [17, 3]\n",
- " mec.Rates[16].is_constrained = True\n",
- " mec.Rates[16].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[16].constrain_args = [17, 2]\n",
- " mec.update_constrains()\n",
- " mec.set_mr(True, 9, 0)\n",
- " mec.set_mr(True, 11, 1)\n",
- " mec.update_constrains()\n",
- " return mec"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "mec_true = samples.GlyR_flip()\n",
- "ig = [4200, 28000, 130000, 3400, 2100, 6700, 180, 6800, 22000,\n",
- " 29266, 18000, 948, 302, 604, 906, 1.77e6, 1.18e6, 0.59e6, 300e6, 150e6,\n",
- " 2500, 3750]\n",
- "mec_true.set_rateconstants(ig)\n",
- "mec_true = constrain(mec_true)\n",
- "mec = samples.GlyR_flip()\n",
- "mec = constrain(mec)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "os.chdir(\"results\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "r = []\n",
- "x = []\n",
- "lik = []\n",
- "cputime = []\n",
- "for file in glob.glob(\"*.result\"):\n",
- " with open(file, 'rb') as f:\n",
- " content = pickle.load(f)\n",
- " #print (np.exp(content[0].x))\n",
- " mec.theta_unsqueeze(np.exp(content[0].x))\n",
- " mec.update_constrains()\n",
- " x.append(np.exp(content[0].x))\n",
- " r.append(mec.unit_rates())\n",
- " lik.append(-content[0].fun)\n",
- " cputime.append(content[1])\n",
- "rates = np.array(r)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "rate_names = []\n",
- "true_rates = []\n",
- "for i in range(len(mec.unit_rates())):\n",
- " rate_names.append(mec.Rates[i].name)\n",
- " true_rates.append(mec_true.Rates[i].unit_rate())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 69,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "trueratesdf = pd.DataFrame({rate_names[i]: true_rates[i] for i in range(len(rate_names))}, index=np.arange(1))\n",
- "datadict = {rate_names[i]: rates[:,i] for i in range(len(rate_names))}\n",
- "datadict['likelihood'] = lik\n",
- "datadict['cputime'] = cputime\n",
- "datadf = pd.DataFrame(datadict)\n",
- "trueratesser = pd.Series(true_rates, index=rate_names)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 72,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "beta1 4.200000e+03\n",
- "beta2 2.800000e+04\n",
- "beta3 1.300000e+05\n",
- "alpha1 3.400000e+03\n",
- "alpha2 2.100000e+03\n",
- "alpha3 6.700000e+03\n",
- "delta1 1.800000e+02\n",
- "delta2 6.800000e+03\n",
- "delta3 2.200000e+04\n",
- "gamma1 2.926660e+04\n",
- "gamma2 1.800000e+04\n",
- "gamma3 9.480912e+02\n",
- "k(-1) 3.020000e+02\n",
- "2k(-2) 6.040000e+02\n",
- "3k(-3) 9.060000e+02\n",
- "3k(+1) 1.770000e+06\n",
- "2k(+2) 1.180000e+06\n",
- "k(+3) 5.900000e+05\n",
- "2kf(+2) 3.000000e+08\n",
- "kf(+3) 1.500000e+08\n",
- "2kf(-2) 2.500000e+03\n",
- "3kf(-3) 3.750000e+03\n",
- "dtype: float64"
- ]
- },
- "execution_count": 72,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trueratesser"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 73,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " 2k(+2) | \n",
- " 2k(-2) | \n",
- " 2kf(+2) | \n",
- " 2kf(-2) | \n",
- " 3k(+1) | \n",
- " 3k(-3) | \n",
- " 3kf(-3) | \n",
- " alpha1 | \n",
- " alpha2 | \n",
- " alpha3 | \n",
- " ... | \n",
- " delta1 | \n",
- " delta2 | \n",
- " delta3 | \n",
- " gamma1 | \n",
- " gamma2 | \n",
- " gamma3 | \n",
- " k(+3) | \n",
- " k(-1) | \n",
- " kf(+3) | \n",
- " likelihood | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 1.143842e+06 | \n",
- " 607.283879 | \n",
- " 2.764668e+08 | \n",
- " 2713.639653 | \n",
- " 1.715763e+06 | \n",
- " 910.925819 | \n",
- " 4070.459479 | \n",
- " 3099.109509 | \n",
- " 2030.002390 | \n",
- " 5206.257233 | \n",
- " ... | \n",
- " 291.048872 | \n",
- " 6882.979615 | \n",
- " 18045.261569 | \n",
- " 42337.938717 | \n",
- " 18510.735103 | \n",
- " 897.209280 | \n",
- " 571920.897484 | \n",
- " 303.641940 | \n",
- " 1.382334e+08 | \n",
- " 80684.275444 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 1.195843e+06 | \n",
- " 624.061928 | \n",
- " 3.291649e+08 | \n",
- " 2781.256985 | \n",
- " 1.793765e+06 | \n",
- " 936.092892 | \n",
- " 4171.885478 | \n",
- " 3070.981137 | \n",
- " 1917.875446 | \n",
- " 6293.112709 | \n",
- " ... | \n",
- " 204.913121 | \n",
- " 6990.218680 | \n",
- " 23881.870088 | \n",
- " 33793.837701 | \n",
- " 18665.202554 | \n",
- " 1032.486721 | \n",
- " 597921.691322 | \n",
- " 312.030964 | \n",
- " 1.645825e+08 | \n",
- " 364106.923360 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 1.220328e+06 | \n",
- " 602.571114 | \n",
- " 3.404442e+08 | \n",
- " 2924.324531 | \n",
- " 1.830492e+06 | \n",
- " 903.856670 | \n",
- " 4386.486796 | \n",
- " 3423.770717 | \n",
- " 2421.473997 | \n",
- " 6332.076279 | \n",
- " ... | \n",
- " 149.207955 | \n",
- " 6056.227926 | \n",
- " 55006.066675 | \n",
- " 29243.790434 | \n",
- " 20648.649760 | \n",
- " 3262.479551 | \n",
- " 610163.861003 | \n",
- " 301.285557 | \n",
- " 1.702221e+08 | \n",
- " 81477.856135 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 1.146491e+06 | \n",
- " 588.020013 | \n",
- " 3.343530e+08 | \n",
- " 3064.451951 | \n",
- " 1.719736e+06 | \n",
- " 882.030019 | \n",
- " 4596.677927 | \n",
- " 3206.321820 | \n",
- " 1970.885604 | \n",
- " 5408.587995 | \n",
- " ... | \n",
- " 186.925562 | \n",
- " 6841.264945 | \n",
- " 24182.687469 | \n",
- " 30411.405259 | \n",
- " 19889.794686 | \n",
- " 1256.390228 | \n",
- " 573245.414592 | \n",
- " 294.010006 | \n",
- " 1.671765e+08 | \n",
- " 363191.311106 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 1.147709e+06 | \n",
- " 596.066615 | \n",
- " 3.599258e+08 | \n",
- " 3049.693528 | \n",
- " 1.721564e+06 | \n",
- " 894.099923 | \n",
- " 4574.540292 | \n",
- " 2857.164033 | \n",
- " 2086.547466 | \n",
- " 5578.791036 | \n",
- " ... | \n",
- " 176.286383 | \n",
- " 6979.508241 | \n",
- " 23186.856041 | \n",
- " 32284.930069 | \n",
- " 20853.844396 | \n",
- " 1130.273097 | \n",
- " 573854.501021 | \n",
- " 298.033308 | \n",
- " 1.799629e+08 | \n",
- " 363381.492633 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 24 columns
\n",
- "
"
- ],
- "text/plain": [
- " 2k(+2) 2k(-2) 2kf(+2) 2kf(-2) 3k(+1) \\\n",
- "0 1.143842e+06 607.283879 2.764668e+08 2713.639653 1.715763e+06 \n",
- "1 1.195843e+06 624.061928 3.291649e+08 2781.256985 1.793765e+06 \n",
- "2 1.220328e+06 602.571114 3.404442e+08 2924.324531 1.830492e+06 \n",
- "3 1.146491e+06 588.020013 3.343530e+08 3064.451951 1.719736e+06 \n",
- "4 1.147709e+06 596.066615 3.599258e+08 3049.693528 1.721564e+06 \n",
- "\n",
- " 3k(-3) 3kf(-3) alpha1 alpha2 alpha3 \\\n",
- "0 910.925819 4070.459479 3099.109509 2030.002390 5206.257233 \n",
- "1 936.092892 4171.885478 3070.981137 1917.875446 6293.112709 \n",
- "2 903.856670 4386.486796 3423.770717 2421.473997 6332.076279 \n",
- "3 882.030019 4596.677927 3206.321820 1970.885604 5408.587995 \n",
- "4 894.099923 4574.540292 2857.164033 2086.547466 5578.791036 \n",
- "\n",
- " ... delta1 delta2 delta3 gamma1 \\\n",
- "0 ... 291.048872 6882.979615 18045.261569 42337.938717 \n",
- "1 ... 204.913121 6990.218680 23881.870088 33793.837701 \n",
- "2 ... 149.207955 6056.227926 55006.066675 29243.790434 \n",
- "3 ... 186.925562 6841.264945 24182.687469 30411.405259 \n",
- "4 ... 176.286383 6979.508241 23186.856041 32284.930069 \n",
- "\n",
- " gamma2 gamma3 k(+3) k(-1) kf(+3) \\\n",
- "0 18510.735103 897.209280 571920.897484 303.641940 1.382334e+08 \n",
- "1 18665.202554 1032.486721 597921.691322 312.030964 1.645825e+08 \n",
- "2 20648.649760 3262.479551 610163.861003 301.285557 1.702221e+08 \n",
- "3 19889.794686 1256.390228 573245.414592 294.010006 1.671765e+08 \n",
- "4 20853.844396 1130.273097 573854.501021 298.033308 1.799629e+08 \n",
- "\n",
- " likelihood \n",
- "0 80684.275444 \n",
- "1 364106.923360 \n",
- "2 81477.856135 \n",
- "3 363191.311106 \n",
- "4 363381.492633 \n",
- "\n",
- "[5 rows x 24 columns]"
- ]
- },
- "execution_count": 73,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "datadf\n",
- "datadf.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 74,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " True | \n",
- " Mean | \n",
- " CV% | \n",
- " Bias% | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | beta1 | \n",
- " 4.200000e+03 | \n",
- " 4.204918e+03 | \n",
- " 13.752663 | \n",
- " 0.117087 | \n",
- "
\n",
- " \n",
- " | beta2 | \n",
- " 2.800000e+04 | \n",
- " 3.180431e+04 | \n",
- " 15.860729 | \n",
- " 13.586822 | \n",
- "
\n",
- " \n",
- " | beta3 | \n",
- " 1.300000e+05 | \n",
- " 1.330140e+05 | \n",
- " 3.575103 | \n",
- " 2.318480 | \n",
- "
\n",
- " \n",
- " | alpha1 | \n",
- " 3.400000e+03 | \n",
- " 3.131469e+03 | \n",
- " 5.905480 | \n",
- " -7.897958 | \n",
- "
\n",
- " \n",
- " | alpha2 | \n",
- " 2.100000e+03 | \n",
- " 2.085357e+03 | \n",
- " 8.502615 | \n",
- " -0.697287 | \n",
- "
\n",
- " \n",
- " | alpha3 | \n",
- " 6.700000e+03 | \n",
- " 5.763765e+03 | \n",
- " 8.042391 | \n",
- " -13.973656 | \n",
- "
\n",
- " \n",
- " | delta1 | \n",
- " 1.800000e+02 | \n",
- " 2.016764e+02 | \n",
- " 23.896479 | \n",
- " 12.042432 | \n",
- "
\n",
- " \n",
- " | delta2 | \n",
- " 6.800000e+03 | \n",
- " 6.750040e+03 | \n",
- " 5.207167 | \n",
- " -0.734708 | \n",
- "
\n",
- " \n",
- " | delta3 | \n",
- " 2.200000e+04 | \n",
- " 2.886055e+04 | \n",
- " 45.952414 | \n",
- " 31.184311 | \n",
- "
\n",
- " \n",
- " | gamma1 | \n",
- " 2.926660e+04 | \n",
- " 3.361438e+04 | \n",
- " 13.778795 | \n",
- " 14.855775 | \n",
- "
\n",
- " \n",
- " | gamma2 | \n",
- " 1.800000e+04 | \n",
- " 1.971365e+04 | \n",
- " 4.944989 | \n",
- " 9.520252 | \n",
- "
\n",
- " \n",
- " | gamma3 | \n",
- " 9.480912e+02 | \n",
- " 1.515768e+03 | \n",
- " 58.139244 | \n",
- " 59.875742 | \n",
- "
\n",
- " \n",
- " | k(-1) | \n",
- " 3.020000e+02 | \n",
- " 3.018004e+02 | \n",
- " 2.005674 | \n",
- " -0.066108 | \n",
- "
\n",
- " \n",
- " | 2k(-2) | \n",
- " 6.040000e+02 | \n",
- " 6.036007e+02 | \n",
- " 2.005674 | \n",
- " -0.066108 | \n",
- "
\n",
- " \n",
- " | 3k(-3) | \n",
- " 9.060000e+02 | \n",
- " 9.054011e+02 | \n",
- " 2.005674 | \n",
- " -0.066108 | \n",
- "
\n",
- " \n",
- " | 3k(+1) | \n",
- " 1.770000e+06 | \n",
- " 1.756264e+06 | \n",
- " 2.682165 | \n",
- " -0.776055 | \n",
- "
\n",
- " \n",
- " | 2k(+2) | \n",
- " 1.180000e+06 | \n",
- " 1.170843e+06 | \n",
- " 2.682165 | \n",
- " -0.776055 | \n",
- "
\n",
- " \n",
- " | k(+3) | \n",
- " 5.900000e+05 | \n",
- " 5.854213e+05 | \n",
- " 2.682165 | \n",
- " -0.776055 | \n",
- "
\n",
- " \n",
- " | 2kf(+2) | \n",
- " 3.000000e+08 | \n",
- " 3.280709e+08 | \n",
- " 8.481752 | \n",
- " 9.356981 | \n",
- "
\n",
- " \n",
- " | kf(+3) | \n",
- " 1.500000e+08 | \n",
- " 1.640355e+08 | \n",
- " 8.481752 | \n",
- " 9.356981 | \n",
- "
\n",
- " \n",
- " | 2kf(-2) | \n",
- " 2.500000e+03 | \n",
- " 2.906673e+03 | \n",
- " 4.832491 | \n",
- " 16.266933 | \n",
- "
\n",
- " \n",
- " | 3kf(-3) | \n",
- " 3.750000e+03 | \n",
- " 4.360010e+03 | \n",
- " 4.832491 | \n",
- " 16.266933 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " True Mean CV% Bias%\n",
- "beta1 4.200000e+03 4.204918e+03 13.752663 0.117087\n",
- "beta2 2.800000e+04 3.180431e+04 15.860729 13.586822\n",
- "beta3 1.300000e+05 1.330140e+05 3.575103 2.318480\n",
- "alpha1 3.400000e+03 3.131469e+03 5.905480 -7.897958\n",
- "alpha2 2.100000e+03 2.085357e+03 8.502615 -0.697287\n",
- "alpha3 6.700000e+03 5.763765e+03 8.042391 -13.973656\n",
- "delta1 1.800000e+02 2.016764e+02 23.896479 12.042432\n",
- "delta2 6.800000e+03 6.750040e+03 5.207167 -0.734708\n",
- "delta3 2.200000e+04 2.886055e+04 45.952414 31.184311\n",
- "gamma1 2.926660e+04 3.361438e+04 13.778795 14.855775\n",
- "gamma2 1.800000e+04 1.971365e+04 4.944989 9.520252\n",
- "gamma3 9.480912e+02 1.515768e+03 58.139244 59.875742\n",
- "k(-1) 3.020000e+02 3.018004e+02 2.005674 -0.066108\n",
- "2k(-2) 6.040000e+02 6.036007e+02 2.005674 -0.066108\n",
- "3k(-3) 9.060000e+02 9.054011e+02 2.005674 -0.066108\n",
- "3k(+1) 1.770000e+06 1.756264e+06 2.682165 -0.776055\n",
- "2k(+2) 1.180000e+06 1.170843e+06 2.682165 -0.776055\n",
- "k(+3) 5.900000e+05 5.854213e+05 2.682165 -0.776055\n",
- "2kf(+2) 3.000000e+08 3.280709e+08 8.481752 9.356981\n",
- "kf(+3) 1.500000e+08 1.640355e+08 8.481752 9.356981\n",
- "2kf(-2) 2.500000e+03 2.906673e+03 4.832491 16.266933\n",
- "3kf(-3) 3.750000e+03 4.360010e+03 4.832491 16.266933"
- ]
- },
- "execution_count": 74,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "meandf = pd.DataFrame({'Mean' : datadf[rate_names].mean(),\n",
- " 'CV%' : 100*datadf[rate_names].std(ddof=0)/datadf[rate_names].mean(),\n",
- " 'Bias%' : (100*(datadf[rate_names].mean()/trueratesser - 1)),\n",
- " 'True' : trueratesser})\n",
- "meandf.reindex(columns=['True', 'Mean', 'CV%', 'Bias%'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 78,
- "metadata": {
- "collapsed": false,
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Red line - true value\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAnSCAYAAADCxCRYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X+4ZXVd9//nC4dBBPmlIVcgaI6BUoZ4h3SbejKVwZvE\n8qrA2y9opn1LpK+moXfdFzN39dUsyx9kVgKJv8bUbsVuRUo9FV/DSAZFAhlEkBl0Sn7MJJYQvL9/\nrHVgz57zY5/hc87Z55zn47r2ddZe63PWfn/WWnu993uvtfZKVSFJkiRJevD2WuoAJEmSJGmlsMCS\nJEmSpEYssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLCkESX5epJnLXUckiQNMj9J48UC\nS1pg8018SSaSfDbJnUluXMjYJEmr1x7kp9cmuTrJziRfS/LahYxPWq4ssKTxcxdwPmDikiSNm/8L\nOAg4GTgryc8tcTzS2LHAkubnhCTXJLktyflJ1gIkOSXJ5iR3JLksyQ/34y8CjgQ+0X/j99p+/F8k\n+WbffjLJE6deoKquqKr3A19fgv5JkpanxchPv19VV1XVfVV1PfBx4GmL31VpvFlgSfPzIuA5wOOA\no4HfTHIc3RGnlwOHAH8CXJxk76o6A/gGcEpVHVBVv9/P55P9PA4FrgTev7jdkCStMEuRn54OXLMQ\nnZGWMwssaX7eUVW3VtWdwO/QJbRXAO+qqn+qznuB7wEnDvxfBmdSVX9eVd+tqnuA/wX8SJKHL1If\nJEkrz6LmpyQb+/+9cIH6Iy1bFljS/GwdGL4Z+H66Uyxem+T2/nEHcEQ/bTdJ9krypiQ3JLmT7lTA\nAh65wLFLklauRctPSc4CXgw8ry/EJA1Ys9QBSMvMoweGjwS2AbcAv11Vb5zhf2ro+YuAnwKeVVXf\nSHIgcAdD3yJKkjQPi5KfkvwC8OvA06vqm62Cl1YSj2BJ8/PKJIcnOQT4DWAT8G7gl5OcAJBkvyTP\nS7Jf/z/bgR8YmMfD6U7RuKNv80YGklw6+wBrgb2S7JNk7wXvmSRpOVuM/PTf6U4/fE5V3bzgPZKW\nKQssaXQFfAC4FLgB2AL8TlV9EfhF4LwktwPXA2cO/N8bgf/Zn57xGuA9dBcWbwO+Anx+6HWeAfw7\n8Fd030h+F/j0QnVKkrTsLVZ++i26H8u4Ism/9b8++M4F7Je0LKVq+OjwUIPkfOAUYHtVPWmGNm+n\nux/CXcBLquqq1oFKkjTI/CRJGkejHMG6EDhppolJTgYeV1WPB34JeFej2CRJmo35SZI0duYssKrq\nMroLHGdyKnBR3/YLwIFJHtUmPEmSpmd+kiSNoxbXYB1O9ys1U7b14yRJWkrmJ0nSolvUn2lPMvsF\nX5KkFa2qxvJ2BOYnSVrdWuanFkewtrHrvReO6MdNq6rG6nHuuecueQzLJe5XvvLVwFvofqxoTx5b\neNjDDl7yZddvifN4nDvNuPnOo3vU/f+3Z/8/+PrjuI20WRfTLe89Xw6L9VgOy3up414CC56flut6\nXynb1HJ4LMbyePvb384++5zFg8krD+Sn4oADfmbqXdHwMTi/+ezn55pXm9hWw3ayHB5tt5PR121r\noxZYYeaboF4MnAGQ5ETgzqra3iA2SZLmYn6SJI2VOU8RTPIBYAJ4RJJv0JWTa4Gqqj+tqk/2N627\nge5ncF+6kAFLkgTmJ0nSeJqzwKqqF43Q5qw24Sy+iYmJpQ5hjyzXuNeu3XepQ9gDE0sdwB5ZrtuI\ny3txLde4YTzy03JefgvFZbIrl8d0JpY6gLHjdjKdiaUOYI/NeaPhpi+W1GK+nto666zX8Ed/dATw\nmj2cww0ceuh6tm+/oWVY85aEB87h3uO57NE8ihBqj/9/8PVXwnvpwa+LlbEcVosk1Bj/yIXbkpar\nd7zjHbzuddfzve+9Y4/n8UB+ggMOeCE7d/4lDz5XDmqRexdiXt38fP+Phzaf0XaZ40jrtnV+avEj\nF5IkSZIkLLAkSZIkqRkLLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5Ik\nSZIascCSJEmSpEYssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElq\nxAJLkiRJkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQss\nSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqZGRCqwk65Ncl+T6JOdMM/3RST6b5MokVyU5uX2o\nkiTtyvwkSRo3cxZYSfYCzgNOAo4FTk9yzFCz3wQ+VFXHA6cD72wdqCRJg8xPkqRxNMoRrBOALVV1\nc1XdA2wCTh1qcx9wQD98ELCtXYiSJE3L/CRJGjtrRmhzOHDLwPOtdElt0Ebg0iRnAw8Dnt0mPEmS\nZmR+kiSNnVEKrFGcDlxYVX+Y5ETgfXSna+xmw4YN9w9PTEwwMTHRKARJ0jiZnJxkcnJyqcMwP0mS\ndrHQ+WmUAmsbcOTA8yPY/RSLl9GdA09VXZ7koUkeWVXfHp7ZYAKTJK1cw0XKxo0bW7+E+UmSNG8L\nnZ9GuQbrCmBdkqOSrAVOAy4eanMz/WkXSZ4A7DNd8pIkqSHzkyRp7MxZYFXVvcBZwKXANcCmqro2\nycYkp/TNXgu8PMlVwPuBMxcqYEmSwPwkSRpPI12DVVWXAEcPjTt3YPha4MfbhiZJ0uzMT5KkcTPS\njYYlSZIkSXOzwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQss\nSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmS\nJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRG\nLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKmRkQqsJOuTXJfk+iTnzNDm55Jc\nk+TqJO9rG6YkSbszP0mSxs2auRok2Qs4D/hJ4FbgiiQfr6rrBtqsA84BfqyqdiZ55EIFLEkSmJ8k\nSeNplCNYJwBbqurmqroH2AScOtTm5cAfVdVOgKr6dtswJUnajflJkjR2RimwDgduGXi+tR836AeB\no5NcluTzSU5qFaAkSTMwP0mSxs6cpwjOYz7rgGcARwJ/l+SHpr4xHLRhw4b7hycmJpiYmGgUgiRp\nnExOTjI5ObnUYZifJEm7WOj8NEqBtY0uKU05oh83aCtweVXdB9yU5Hrg8cAXh2c2mMAkSSvXcJGy\ncePG1i9hfpIkzdtC56dRThG8AliX5Kgka4HTgIuH2nwM+AmA/gLixwM3tgxUkqQh5idJ0tiZs8Cq\nqnuBs4BLgWuATVV1bZKNSU7p23wauC3JNcBngNdW1R0LGLckaZUzP0mSxtFI12BV1SXA0UPjzh16\n/mvAr7ULTZKk2ZmfJEnjZqQbDUuSJEmS5maBJUmSJEmNWGBJkiRJUiMWWJIkSZLUiAWWJEmSJDVi\ngSVJkiRJjVhgSZIkSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZYkiRJktSIBZYk\nSZIkNWKBJUmSJEmNWGBJkiRJUiMWWJIkSZLUiAWWJEmSJDVigSVJkiRJjVhgSZIkSVIjFliSJEmS\n1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZYkiRJktSIBZYkSZIkNWKBJUmSJEmNWGBJkiRJUiMj\nFVhJ1ie5Lsn1Sc6Zpd0Lk9yX5Ph2IUqSND3zkyRp3MxZYCXZCzgPOAk4Fjg9yTHTtNsfOBu4vHWQ\nkiQNMz9JksbRKEewTgC2VNXNVXUPsAk4dZp2vwW8Cfhew/gkSZqJ+UmSNHZGKbAOB24ZeL61H3e/\nJE8GjqiqTzWMTZKk2ZifJEljZ82DnUGSAH8AnDk4eqb2GzZsuH94YmKCiYmJBxuCJGkMTU5OMjk5\nuWSvb36SJE1nofPTKAXWNuDIgedH9OOmPJzu3PfJPpkdBnw8yfOr6srhmQ0mMEnSyjVcpGzcuLH1\nS5ifJEnzttD5aZQC6wpgXZKjgG8CpwGnT02sqp3AoVPPk3wOeE1VbW4aqSRJuzI/SZLGzpzXYFXV\nvcBZwKXANcCmqro2ycYkp0z3L8xyCoYkSS2YnyRJ42ika7Cq6hLg6KFx587Q9lkN4pIkaU7mJ0nS\nuBnpRsOSJEmSpLlZYEmSJElSIxZYkiRJktSIBZYkSZIkNWKBJUmSJEmNWGBJkiRJUiMWWJIkSZLU\niAWWJEmSJDVigSVJkiRJjVhgSZIkSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZY\nkiRJktSIBZYkSZIkNWKBJUmSJEmNWGBJkiRJUiMWWJIkSZLUiAWWJEmSJDVigSVJkiRJjVhgSZIk\nSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZYkiRJktTISAVWkvVJrktyfZJzppn+\n6iTXJLkqyV8neXT7UCVJ2pX5SZI0buYssJLsBZwHnAQcC5ye5JihZlcCT6mq44CPAr/XOlBJkgaZ\nnyRJ42iUI1gnAFuq6uaqugfYBJw62KCq/raq/qN/ejlweNswJUnajflJkjR2RimwDgduGXi+ldkT\n1MuATz2YoCRJGoH5SZI0dta0nFmSFwNPAZ45U5sNGzbcPzwxMcHExETLECRJY2JycpLJycmlDgMw\nP0mSHrDQ+WmUAmsbcOTA8yP6cbtI8mzgDcAz+lM1pjWYwCRJK9dwkbJx48bWL2F+kiTN20Lnp1FO\nEbwCWJfkqCRrgdOAiwcbJHky8C7g+VV1W9MIJUmanvlJkjR25iywqupe4CzgUuAaYFNVXZtkY5JT\n+mZvBvYDPpxkc5KPLVjEkiRhfpIkjaeRrsGqqkuAo4fGnTsw/JzGcUmSNCfzkyRp3Ix0o2FJkiRJ\n0twssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElqxAJLkiRJkhqx\nwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQssSZIkSWrEAkuS\nJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJ\nasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQssSZIkSWpkpAIryfok1yW5Psk500xfm2RTki1J/iHJ\nke1DXRiTk5NLHcIeWa5x3333vy91CHtgcqkD2CPLdRtxeS+u5Rr3lKXOT8t9+S0El8muXB7TmVzq\nAMaO28l0Jpc6gD02Z4GVZC/gPOAk4Fjg9CTHDDV7GXB7VT0eeCvw5taBLpTlukEv17gtsBbPct1G\nXN6La7nGDeORn5bz8lsoLpNduTymM7nUAYwdt5PpTC51AHtslCNYJwBbqurmqroH2AScOtTmVOA9\n/fBHgJ9sF6IkSdMyP0mSxs6aEdocDtwy8HwrXVKbtk1V3ZvkziSHVNXtbcLUOFi7dm8e+tB3s3bt\n5/bo/++77y722svL/iQ1Y36SgL333pvkExxwwE17PpOdcMABPwXA3Xdf0SYwaZVKVc3eIHkhcFJV\nvaJ//mLghKo6e6DN1X2bW/vnN/Rtbh+a1+wvJkla0aoqreZlfpIktdIyP41yBGsbMHhR8BH9uEFb\ngUcDtyZ5CHDAdN8OtgxckrTqmZ8kSWNnlPO1rgDWJTkqyVrgNODioTafAM7sh38W+Gy7ECVJmpb5\nSZI0duY8gtWfs34WcCldQXZ+VV2bZCNwRVX9FXA+8N4kW4Db6JKcJEkLxvwkSRpHc16DJUmSJEka\nzYr7SbckRyT5bJJrklyd5FX9+HOTbE1yZf9YP/A/b+hvQnltkucOjJ/1BpaN494nyReSbO7jPrcf\n/5gkl/cxfDDJmn78jDfPnKk/ixz3hUlu7MdfmeRJA//z9j6+q5IcNzD+zL6fX01yxkLG3b/eXn1s\nF/fPx3pZD8W9eSDuP18Gy/qmJF/qY/zHftzBSS7tY/h0kgOXSdxjvS/pX+/AJB/u47gmyVOXw/Je\nKknOT7I9yZcHxjVbzzPtW8ZZds+lZ/fjm21HSY5P8uV+2lsXt4fzM83yaP7ZYrltJ1mEzy2Lve98\nsGZZJs0+Ey2n982ULODnrbHdRqpqRT2Aw4Dj+uH9ga8CxwDnAq+Zpv0TgM10p0s+BrgBCF3xeQNw\nFLA3cBVwzALH/rD+70OAy4GnAh8CfrYf/8fAL/XDvwy8sx/+eWBTP/zE6fqzBHFfCPzMNG1PBv5P\nP/xU4PJ++GDga8CBwEFTwwsc96uB9wEX98/HflnPEPeFwE+P+bK+ETh4aNzvAr/eD58DvGmZxL0c\n9iV/Dry0H17TL7OxX95L9QB+HDgO+PJCrOeZ9i3j/GDmXNpsOwK+APxoP/xJul97XPK+z3N5rPbt\nZME+t8y2rMb5McMyafaZaDm9bwb6uSCft8Z5G1lxR7Cq6ltVdVU//B3gWrr7oEC3MoadSrcC/7Oq\nbgK20N1HZZQbWLaO/bv94D50G1EBPwF8tB//HuAFA3EP3jzzWf3w85m+P4sZ933985mW90X9/30B\nODDJo4CTgEurakdV3Ul3TcX6af6/iSRHAM8D3j0w+lmM+bKeIW6Y/mj0WCzr3tSOcDi+qeX6Hh54\nf4173FPjh43FviTJAcDTq+pCgD6eHSyP5b0kquoy4I5pJrVaz8P7lp9uGP6CmCGXHkGj7SjJYcDD\nq2rqhksX8cA+d+ws0meL5bidLOTnlkX/HNbCQn4mWm7vG1jwz1tju42suAJrUJLH0H0r+YV+1Cv7\nQ7DvHjitYfhGldv6cdPdwPJwFlB/CHUz8C3gr+m+sbizqqbenIMx7HLzTGBHkkOmiXsbixz3wBv/\nt/vl/ZYkew/H3Zvq02LH/YfA6+iSAUkeAdwx7st6OO4B47ysoYv300muSPKL/bhHVdV26D68AI/q\nx4973DDe+5LHAt/uT0m5MsmfJnkYy2N5j5sHvZ5n2Ld8/wLH3dRALr2cdtvR4X2b4fZjbyE+WyzX\n7WSBP7cs+uewFhb4M9FyfN8s5Oetsd1GVmyBlWR/uur3V/tvm94JPK6qjqPb6N+ylPFNp6ruq6on\n031LeALd6QejWrJ7uAzHneSJwOur6gnAjwKPoDuVZDqLHneS/wZs77+NHHz9UWNZkmU9S9xju6wH\nPK2q/gvdt1ivTPJ0di8SZ/rFnXGJ+6wkP87470vWAMcDf1RVxwN3Aa9neSzvcdJyPS/bZTpNLl3V\n29ECf7ZYdstsuX5uWUjL7TPRQlqun7daWJEFVn+x3EeA91bVxwGq6l+raioR/BkPnMq1je4mlFOm\nblQ5yg0sF0RV7QQmgR8DDkoytZ4GY7g/7ux688yZ+rPgBuJeP/AN5z105x6P0/J+GvD8JDcCH6Q7\nBP02ukPz47ysd4s7yUVjvqzpY/tm//dfgY/1MW7vT4WgP+3hX8Y87v8NnLAM9iVbgVuq6p/65x+l\nK7jGfnmPk1bruapuY+b9+FibLpfSbjtasly1pxbys8Vy3k5gwT63LOt90AJ9Jlpu75uF/rw1vttI\njcGFYK0fdOek/sHQuMMGhl8NfKB2vXBuLd2pNVMXzj2EBy6cW0t34dwTFjDmR/LABYz7An9H9635\nh4CfrwcuBPy/++Ff4YELAU9j9wsBd+nPEsR9WD8udIeH/9/++fN44ILOE5n+gs6p4YMWYVt5Jrte\ndDm2y3qWuMd6WQMPA/bvh/cD/j/guXQXy5/Tj389D1wsP+5xj/W+pI/lb4Ef7IfP7Zf1WC/vpX7Q\nXTh99cDzFut58McLdtu3jPuD6XNps+2I7pTDE/rl90m6D6JL3u95Lo9Vu52wwJ9bZlhWC7rvXMBl\n0ixPL7f3zcCyaf55a5y3kSUPYAFW4NOAe/uFvBm4ku7C7IuAL/fjP0Z3HvnU/7yhX0HXAs8dGL+e\n7peCttAd3l3IuH+4j/WqPs7f6Mc/lu487+v7DXLvfvw+wF/0sV0OPGau/ixy3J8BvtSPu4j+V3X6\naef18X0JOH5g/Ev6/lwPnLFI28vgG36sl/UscY/1su6X69T78eqp9xJwCPA3/XvsUgY+vI953GO9\nL+lf70eAK/oY/5IuSY/18l7KB/AB4Fbge8A3gJe2XM8z7VvG+cHMubTZdgQ8pX9vbQHettR93sPl\nsWq3Exbhc8tMy2pcH7Msk2Z5ejm9b4aWzYJ83hrXbcQbDUuSJElSIyvyGixJkiRJWgoWWJIkSZLU\niAWWJEmSJDVigSVJkiRJjVhgSZIkSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZY\nkiRJktSIBZYkSZIkNWKBJUmSJEmNWGBJkiRJUiMWWJIkSZLUiAWWJEmSJDVigSVJkiRJjVhgSZIk\nSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZY0oiSfD3Js5Y6DkmSZpPkzCR/37qt\npNFYYEkLbL6FWZL/J8nXkuxIsjXJW5L4XpUkzUctUNv7Jdk7yYf7PHdfkmfsyXyklcYPbdL4+Tjw\n5Ko6EPgh4Djg7KUNSZKkaf098N+Bby51INK4sMCS5ueEJNckuS3J+UnWAiQ5JcnmJHckuSzJD/fj\nLwKOBD6RZGeS1/bj/yLJN/v2k0meOPUCVfX1qtrZP30IcB+wblF7KUkae0nOSXJDn1++kuQFM7S7\nL8mr+rMj/iXJm3dvkt9LcnvfZv3AhJck+ef+NW5I8oqpaVV1T1W9vao+T5erJGGBJc3Xi4DnAI8D\njgZ+M8lxwPnAy4FDgD8BLk6yd1WdAXwDOKWqDqiq3+/n88l+HocCVwLvH3yRJKcn2QH8K/Ckfp6S\nJA26AXhaVR0AbATem+RRM7R9AXB8/zg1yS8MTHsqcC3wCOD36HLalO3A8/rXeCnwh33ekzQDCyxp\nft5RVbdW1Z3A79AVXK8A3lVV/1Sd9wLfA04c+L8MzqSq/ryqvltV9wD/C/iRJA8fmP7B/hTBxwPv\noktwkiTdr6o+WlXb++EP0xVcJ8zQ/E1VtaOqtgJvBU4fmHZTVV1QVQW8BzgsyaH9fD9VVTf1w38P\nXAo8fUE6JK0QFljS/GwdGL4Z+H66UwBf259acXuSO4Aj+mm7SbJXkjf1p1rcCXyd7gLjRw63raqv\nAf8M/HHjfkiSlrkkZwycnn4HcCzT5JLedPlryremBqrq3+m+FNy/f42Tk/xDf2r8HcDJs7yGJCyw\npPl69MDwkcA24Bbgt6vqkP5xcFXtX1Uf6tsN/zrTi4CfAp5VVQcBj6FLZmF6ewM/0KoDkqTlL8mR\nwJ8Cv9LnnYOBa5g5lwznr1tHeI21wEeANwPf17/Gp2Z5DUlYYEnz9cokhyc5BPgNYBPwbuCXk5wA\nkGS/JM9Lsl//P9vZtUB6ON0phHf0bd7IQBGW5GVJvq8ffiLweuBvFrhfkqTlZT+6H5b4dn9mxEvp\nfnl2Jq9LclCSRwO/Spe/5rK2f3y7qu5LcjLw3MEGSdYmeWj/dJ8k+8y7J9IKY4Elja6AD9Cdf34D\nsAX4nar6IvCLwHlJbgeuB84c+L83Av+zP33wNXTnt3+D7ujXV4DPD73O04Crk/wb8Ff94zcWrFeS\npGWnqq4F3gJcTneK37HAZbP8y8eBL9L9sNIngAtmm33/Gt+hu03Ih/v8dlo/n0FfBe6iO+XwEuC7\n/dE1adVKdz3jLA2S84FTgO1V9aQZ2ryd7pzcu4CXVNVVrQOVJGmQ+UkaTZL7gHVVdeNSxyKtBqMc\nwboQOGmmif3h4sdV1eOBX6L7xTNJkhaa+UmSNHbmLLCq6jLgjlmanApc1Lf9AnDgLPdgkCSpCfOT\nNLLZT1eS1FSLa7AOp/sVtSnb+nGSJC0l85MEVNVDPD1QWjz+yIUkSZIkNbKmwTy2seu9FY7ox+0m\niYeoJWkVq6rFvH+O+UmSNJKW+WnUI1iz3QT1YuAMgCQnAndW1faZZlRVy+px7rnnLnkM9nV8+nrn\nnXeydu0BdKezd4/9938cW7ZsGW0e/XugfzcMPIaf127vl+n+Z5Tpq2m9rrb+Lre+LpAVlZ+W2zpd\naX08//zz2W+/l7L7/rhYs+ahfPe7351X//ota4bHTNNm3hb35H9GnVfd/3zueY3zOmz1WOl9XOn9\nm28fW5vzCFaSDwATwCOSfAM4l+6mc1VVf1pVn+xvqnoD3c/gvrR5lJIkDTE/SZLG0ZwFVlW9aIQ2\nZ7UJR5Kk0ZifJEnjyB+5mMPExMRSh7Bo7OvKtJr6Cqurv6upr6vFalinK72PK71/YB9XgpXeP1ja\nPmYhzjuc8cWSWszXk1rbsWMHhx56JHffveP+cfvvv47Nmy9h3bp1c88ggSqSsOttSYafd+MG3y/T\n/c98pktLLQm1uD9yMTLzkwAuuOACzj77Mu6664Ldpq1Zsy87d97OvvvuO/L8dt8v7zJ1hmkz77tn\nnt/89/fD8ypCqD2al7Tctc5PHsGSJEmSpEYssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRG\nLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCS\nJEmSpEYssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElqxAJLkiRJ\nkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEZGKrCSrE9yXZLrk5wzzfRH\nJ/lskiuTXJXk5PahSpK0K/OTJGnczFlgJdkLOA84CTgWOD3JMUPNfhP4UFUdD5wOvLN1oJIkDTI/\nSZLG0ShHsE4AtlTVzVV1D7AJOHWozX3AAf3wQcC2diFKkjQt85MkaeysGaHN4cAtA8+30iW1QRuB\nS5OcDTz/GzzjAAAgAElEQVQMeHab8CRJmpH5SZI0dkYpsEZxOnBhVf1hkhOB99GdrrGbDRs23D88\nMTHBxMREoxAkSeNkcnKSycnJpQ7D/CRJ2sVC56dU1ewNuoS0oarW989fD1RV/e5Am68AJ1XVtv75\n14CnVtW3h+ZVc72eNM527NjBoYceyd1377h/3P77r2Pz5ktYt27d3DNIoIokwOB7Yfh5N27w/TLd\n/8xnurTUklBVaTg/85OauuCCCzj77Mu4664Ldpu2Zs2+7Nx5O/vuu+/I89t9v7zL1Bmmzbzvnnl+\n89/fD8+rCKH2aF7Sctc6P41yDdYVwLokRyVZC5wGXDzU5mb60y6SPAHYZzh5SZLUmPlJkjR25iyw\nqupe4CzgUuAaYFNVXZtkY5JT+mavBV6e5Crg/cCZCxWwJElgfpIkjaeRrsGqqkuAo4fGnTswfC3w\n421DkyRpduYnSdK4GelGw5IkSZKkuVlgSZIkSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmS\nJElSIxZYkiRJktSIBZYkSZIkNWKBJUmSJEmNWGBJkiRJUiMWWJIkSZLUiAWWJEmSJDVigSVJkiRJ\njVhgSZIkSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZYkiRJktSIBZYkSZIkNWKB\nJUmSJEmNWGBJkiRJUiMWWJIkSZLUiAWWJEmSJDVigSVJkiRJjVhgSZIkSVIjFliSJEmS1MhIBVaS\n9UmuS3J9knNmaPNzSa5JcnWS97UNU5Kk3ZmfJEnjZs1cDZLsBZwH/CRwK3BFko9X1XUDbdYB5wA/\nVlU7kzxyoQKWJAnMT5Kk8TTKEawTgC1VdXNV3QNsAk4davNy4I+qaidAVX27bZiSJO3G/CRJGjuj\nFFiHA7cMPN/ajxv0g8DRSS5L8vkkJ7UKUJKkGZifJEljZ85TBOcxn3XAM4Ajgb9L8kNT3xgO2rBh\nw/3DExMTTExMNApBkjROJicnmZycXOowzE+SpF0sdH4apcDaRpeUphzRjxu0Fbi8qu4DbkpyPfB4\n4IvDMxtMYJKklWu4SNm4cWPrlzA/SZLmbaHz0yinCF4BrEtyVJK1wGnAxUNtPgb8BEB/AfHjgRtb\nBipJ0hDzkyRp7MxZYFXVvcBZwKXANcCmqro2ycYkp/RtPg3cluQa4DPAa6vqjgWMW5K0ypmfJEnj\naKRrsKrqEuDooXHnDj3/NeDX2oUmSdLszE+SpHEz0o2GJUmSJElzs8CSJEmSpEYssCRJkiSpEQss\nSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmS\nJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRG\nLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCS\nJEmSpEYssCRJkiSpkZEKrCTrk1yX5Pok58zS7oVJ7ktyfLsQJUmanvlJkjRu5iywkuwFnAecBBwL\nnJ7kmGna7Q+cDVzeOkhJkoaZnyRJ42iUI1gnAFuq6uaqugfYBJw6TbvfAt4EfK9hfJIkzcT8JEka\nO6MUWIcDtww839qPu1+SJwNHVNWnGsYmSdJszE+SpLGz5sHOIEmAPwDOHBw9U/sNGzbcPzwxMcHE\nxMSDDUGSNIYmJyeZnJxcstc3P0mSprPQ+SlVNXuD5ERgQ1Wt75+/Hqiq+t3++QHADcB36BLXYcBt\nwPOr6sqhedVcryeNsx07dnDooUdy99077h+3//7r2Lz5EtatWzf3DBKoovvcN/heGH7ejRt8v0z3\nP/OZLi21JFTVjAXOHszP/KSmLrjgAs4++zLuuuuC3aatWbMvO3fezr777jvy/HbfL+8ydYZpM++7\nZ57f/Pf3w/MqQqg9mpe03LXOT6McwboCWJfkKOCbwGnA6VMTq2oncOhAgJ8DXlNVm1sFKUnSNMxP\nkqSxM+c1WFV1L3AWcClwDbCpqq5NsjHJKdP9C7OcgiFJUgvmJ0nSOBrpGqyqugQ4emjcuTO0fVaD\nuCRJmpP5SZI0bka60bAkSZIkaW4WWJIkSZLUiAWWJEmSJDVigSVJkiRJjVhgSZIkSVIjFliSJEmS\n1IgFliRJkiQ1YoElSZIkSY1YYEmSJElSIxZYkiRJktSIBZYkSZIkNWKBJUmSJEmNWGBJkiRJUiMW\nWJIkSZLUiAWWJEmSJDVigSVJkiRJjVhgSZIkSVIjFliSJEmS1IgFliRJkiQ1YoElSZIkSY1YYEmS\nJElSIxZYkiRJktSIBZYkSZIkNWKBJUmSJEmNWGBJkiRJUiMWWJIkSZLUiAWWJEmSJDUyUoGVZH2S\n65Jcn+Scaaa/Osk1Sa5K8tdJHt0+VEmSdmV+kiSNmzkLrCR7AecBJwHHAqcnOWao2ZXAU6rqOOCj\nwO+1DlSSpEHmJ0nSOBrlCNYJwJaqurmq7gE2AacONqiqv62q/+ifXg4c3jZMSZJ2Y36SJI2dUQqs\nw4FbBp5vZfYE9TLgUw8mKEmSRmB+kiSNnTUtZ5bkxcBTgGfO1GbDhg33D09MTDAxMdEyBEnSmJic\nnGRycnKpwwDMT5KkByx0fkpVzd4gORHYUFXr++evB6qqfneo3bOBtwHPqKrbZphXzfV60jjbsWMH\nhx56JHffveP+cfvvv47Nmy9h3bp1c88ggSqSAIPvheHn3bjB98t0/zOf6dJSS0JVpeH8zE9q6oIL\nLuDssy/jrrsu2G3amjX7snPn7ey7774jz2/3/fIuU2eYNvO+e+b5zX9/PzyvIoTao3lJy13r/DTK\nKYJXAOuSHJVkLXAacPFQUE8G3gU8f6bkJUlSY+YnSdLYmbPAqqp7gbOAS4FrgE1VdW2SjUlO6Zu9\nGdgP+HCSzUk+tmARS5KE+UmSNJ5Gugarqi4Bjh4ad+7A8HMaxyVJ0pzMT5KkcTPSjYYlSZIkSXOz\nwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQssSZIkSWrEAkuS\nJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJ\nasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqREL\nLEmSJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKmRkQqsJOuTXJfk+iTnTDN9bZJNSbYk+YckR7YP\ndWlMTk4udQiLxr6uTKupr7C6+rua+jqTlZafVsM6Xel9XOn9A/u4Eqz0/sHS9nHOAivJXsB5wEnA\nscDpSY4ZavYy4PaqejzwVuDNrQNdKqthA5xiX1em1dRXWF39XU19nc5KzE+rYZ2u9D6u9P6BfVwJ\nVnr/YMwLLOAEYEtV3VxV9wCbgFOH2pwKvKcf/gjwk+1ClCRpWuYnSdLYWTNCm8OBWwaeb6VLatO2\nqap7k9yZ5JCqur1NmNL4uPfe/wA23P/87rvdzKUlYn5Sc3ffvZnBffyUe++9Z9FjkbQ8papmb5C8\nEDipql7RP38xcEJVnT3Q5uq+za398xv6NrcPzWv2F5MkrWhVlVbzMj9JklppmZ9GOYK1DRi8KPiI\nftygrcCjgVuTPAQ4YLpvB1sGLkla9cxPkqSxM8o1WFcA65IclWQtcBpw8VCbTwBn9sM/C3y2XYiS\nJE3L/CRJGjtzHsHqz1k/C7iUriA7v6quTbIRuKKq/go4H3hvki3AbXRJTpKkBWN+kiSNozmvwZIk\nSZIkjWakGw2vBEleneQrSb6c5P39zScfk+Ty/gaVH0yypm87440pk7yhH39tkucOjJ/1ZpcL3Lfz\nk2xP8uWBcQcnuTTJV5N8OsmBA9Pe3vfhqiTHDYw/s4//q0nOGBh/fL/crk/y1lFeY5H7+uZ+fVyV\n5KNJDhiYNq/1tSfbxGL3d2DaryW5L8khA+NW1Lrtx7+qX39XJ3nTwPhlu25n2I5/pH/9zUn+McmP\nDkxbtut1tUtyRJLPJrmm34bP7sc320cvtWn6+Kp+/LlJtia5sn+sH/ifsculs0myT5Iv9O/Pq5Oc\n249v9jliKc3SvwuT3NiPvzLJkwb+Z1ltp9DdO6/vx8X98xWx/gb1fdw80Mc/X2Hr8KYkX5rKlf24\n8dufVtWKfwDfD9wIrO2ff4junPwPAT/bj/tj4Jf64V8G3tkP/zywqR9+IrCZ7tTKxwA3AKErVG8A\njgL2Bq4CjlnE/v04cBzw5YFxvwv8ej98DvCmfvhk4P/0w08FLu+HDwa+BhwIHDQ13E/7AvCj/fAn\n6X6Ra8bXWIK+PhvYqx9+E/DGPV1f890mlqK//fgjgEuArwOHrOB1O0F3+tea/vkj+79PWM7rdoa+\nfhp47sC6/Fw//LzlvF5X+wM4DDiuH94f+CpwzEzrYk/ex0v9mKWP5wKvmab9vN+/4/AAHtb/fQhw\neb9+mnyOWOq+zdK/C4GfmabtsttO+/heDbwPuLh/vmLW3yx9vBD46RW0Dm8EDh4aN3b701VzBItu\nh7Ff/+3EvsCtwE8AH+2nvwd4QT88fGPKZ/XDz6d7k/1nVd0EbKG758ooN7tcMFV1GXDH0OjBPrxn\nIJ5TgYv6//sCcGCSRwEnAZdW1Y6qupPuQ+36JIcBD6+qK/r/v4jpl9Pg8lsw0/W1qv6mqu7rn15O\nV3zAnq2vZzHaNrEoNyudYd0C/CHwuqFxK27d0iW5N1XVf/Ztvj0Q37JdtzP09T66nT10O/ypX8N7\nPst4va52VfWtqrqqH/4OcC3dPqrJPnrROjKLGfp4eD95ul9n3JP375Krqu/2g/vQfcAu2n2OWHLT\n9G8qr860DpfVdprkCLovrN49MHrUvDD26w9m7CNMf8basluHvakvYwaN3f50VRRY1d3/5C3AN+g+\ntOwArgTuHPhgvpUHEsIuN6YEdqQ7DWv4ppbb+nHT3ezycJbWoVW1HbrkBzyqHz9TrLP1bes07QEe\nNfQahzbuw574Bbpv7GGe6yvJI4A7Rtwm7szAqXmLKcnzgVuq6uqhSStx3f4g8Iz+FI7PJXlKP34l\nrttXA7+f5BvAm4E3DMfXWwnrdVVK8hi6I5eXs/u62NN99FgZ6OMX+lGv7E/NeffAaTvLKZfeb+rU\nK+BbwF/Tfevd6nPEkhvu38CXNL/dr8O3JNm7H7cct9OpLyYLYJ55YezXX2+XPg5YKesQur59OskV\nSX6xHzd2+9NVUWAlOYiuij2K7nTB/ZhfpboS7o8y06+ZtOzbkv5iSpLfAO6pqg8+mNk0btdUkn2B\n/0F36s2czRu+9FKt2zV0pwKcCPw68OEHMa+xXrd0R+t+taqOpCu2Lpih3UpYr6tOkv3pvgn/1f4o\nz/CyX4x99IKapo/vBB5XVcfRfWh/y1LG92BV1X1V9WS6I5An0J0GOaqxX4/D/UvyROD1VfUE4EeB\nR9CdfjWdse5fkv8GbO+PtA7GOu55YWSz9HFFrMMBT6uq/0J3pO6VSZ7OGO5PV0WBRXeNzo1VdXv/\nTcT/Bp4GHJRkahkM3qByG92NKcmuN6a8f/zQ/4xys8vFtr0/DEp/ytC/9OPn24eZ2gN8a4bXWHRJ\nXkL3ZnvRwOh59bWqbmP+28Riexzded9fSvL1PsYrkxzKyly3twB/CdB/m3pv/63jbH1aruv2zKr6\nGEBVfYQuGe4SX28lrNdVpT81/SPAe6vq4/3oVvvosTBdH6vqX6tq6oPOn/HAqVTLso9TqmonMAn8\nGO0+R4yNgf6tHzgqcA/dtTzLdR0+DXh+khuBD9Kd8vc2ulPGVsr6262PSS5aQesQgKr6Zv/3X4GP\n0fVn7Panq6XA+gZwYpKHJgndNRbXAJ+ju/EkdD96MZX4Lmb6G1NeDJzW/7rMY4F1wD8y2s0uF1rY\ntTK/GHhJP/wSdu3bGQBJTqQ7vWE73QX2z0lyYJKDgecAn+4Pte5IckK/7M4YmtfUawwuv4W2S1/T\n/TLV64DnV9X3BtrNZ31Nxf5Z5rdNLIb7+1tVX6mqw6rqB6rqsXSHu59cVf/CCly3dDvPZwEk+UG6\nH6q5rY/v55f5uh3u67YkzwRI8pN05/ZPxbfc1+tqdwHwz1X1toFxTfbRCx/6yHbrY/9BZ8rPAF/p\nh8c5l04rySOnTnHszyR4DvDPtPscsaRm6N91U+uw35e8gF3X4bLZTqvqf1TVkVX1A3Tb1Wer6sWs\nkPUHM/bxjJWyDgGSPKw/Uk6S/YDnAlczjvvTGoNfBFmMB90pVdcCX6a7AG5v4LF054lfT/dLMnv3\nbfcB/oLuA87lwGMG5vMGul+NuZb+F7/68evpfjlpC93h2MXs2wfofrTje3TF5EvpfiHlb/qYLgUO\nGmh/Xt+HLwHHD4x/SR//9cAZA+OfQrcBbwHeNjD+kJleY5H7ugW4me66uivpf/lnT9bXnmwTi93f\noek30v+K4Apdt2uA9/Yx/hPwzJWwbmfo63/t+7gZ+Ae6wnnZr9fV/qD7Vvleul/E29zvo9bPti7m\nu76X+jFLHy+iy7lX0X1Z8qiB/xm7XDpHH3+479dVfZ9+ox/f7HPEmPbvM/12+OV+fT5suW6nA/E9\nkwd+YW9FrL85+rhi1mG/vqb2M1dP7SMYw/2pNxqWJEmSpEZWyymCkiRJkrTgLLAkSZIkqRELLEmS\nJElqxAJLkiRJkhqxwJIkSZKkRiywJEmSJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSp\nEQssSZIkSWrEAkuSJEmSGrHAkiRJkqRGLLAkSZIkqRELLEmSJElqxAJLkiRJkhqxwJIkSZKkRiyw\nJEmSJKkRCyxJkiRJasQCS5IkSZIascCSJEmSpEYssCRJkiSpEQssaQ8lOTPJ37duK0nSg2F+kpaW\nBZb04NQCtb1fkqcmuTTJbUm2J/lQksP2ZF6SpFVjMfLTE5JckeT2PkddmuQJezIvaSWxwJLG38HA\nnwBH9Y/vABcuaUSSJME24IVVdQjwSOATwKalDUlaehZY0hySnJPkhiQ7k3wlyQtmaHdfklcl+VqS\nf0ny5t2b5Pf6b/q+lmT9wISXJPnn/jVuSPKKqWlVdUlVfbSqvlNV/wGcB/zXBemsJGnZGIP8tLOq\nvtE/fQhwH/C41v2Ulps1Sx2AtAzcADytqrYn+VngvUnWzdD2BcDxwMOBzyS5rqou6Kc9le7I0yOA\nXwLOBw7vp20HnldVNyV5OnBJkn+sqqumeY1nAtc06ZkkaTkbi/yU5A5gP7ov7v9n2y5Ky49HsKQ5\n9EePtvfDH6ZLaCfM0PxNVbWjqrYCbwVOH5h2U1VdUFUFvAc4LMmh/Xw/VVU39cN/D1wKPH145kme\nRJe8Xtukc5KkZWtc8lNVHQwcCJwFfKlV/6TlygJLmkOSM5JsTnJH/y3dsXTnmk9n68DwzcD3Dzz/\n1tRAVf07EGD//jVOTvIP/UXCdwAnD79G/63kJ4FXVdXnH2y/JEnL27jkp4H/+xPgoiQzxSCtChZY\n0iySHAn8KfArVXVw/y3dNXTJZzqPHhg+Erh1hNdYC3wEeDPwff1rfGrwNZIcBfw1sLGqPrAnfZEk\nrRzjkp+GPAR4GA+cXiitShZY0uz2o7to99tJ9kryUuCHZmn/uiQHJXk08KuM9mtKa/vHt6vqviQn\nA8+dmpjkcOAzwDuq6s/2tCOSpBVlHPLTs5Mc17/+AcAfALcD1+5hn6QVwQJLmkVVXQu8Bbic7hSK\nY4HLZvmXjwNfBK6k+7naC2ZpW/1rfAc4G/hwktuB0/r5THkZ8FhgQ/8rTv+WZOee9UiStBKMSX46\nCPggcCewhS5Xra+qu/egS9KKke56xlkaJOcDpwDbq+pJM7R5O905uXcBL5nhl8+kFS3JfcC6qrpx\nqWORVoMkRwAXAY+i+yb/z6rq7dO0M0dpVTM/SYtrlCNYFwInzTSxP1z8uKp6PN1Pe76rUWySJM3m\nP4HXVNWxwI8Br0xyzGADc5QkabHNWWBV1WXAHbM0OZXuG0Sq6gvAgUke1SY8aVmZ/XCwpKaq6ltT\nR6P6U5muZfeL681RkvlJWlQtbjR8OHDLwPNt/bjtDeYtLRtV9ZCljkFarZI8Bv5/9u492rKyvPP9\n9wclEkW5qMEhxcWIirGTRoyEnETd8QYYB3SgbcF4QNvEDI+Iw8QOiSfnVFXSp09ij8Ro0BgjIaIx\nhagRvKCY6G5jIlgKBINcY7iVWpG7mujB4jl/zLmLxWbt2qvg3Xtd9vczxhx7zne9a67nXXPN9e5n\nzcvL4cAlix6yj9KaZ/8kra4WCdbIkvgLiiStYVW11O2dH7Qke9HdSvoN/ZGsB7MO+ydJWsNa9k8t\n7iK4lfuPrbC+LxuqqpwaTBs2bBh7DNMyXX311TzqUU+hO0Ni6WnPPRfGRVz82IZFy8PqLJ6G16n7\nlU/n/jBa+x98+/xsr+60mu/3Skiyji65el9VnT+kysh91Li3xTi3je2cvDb2n8oh0wp9Vhus1205\nO9NaaOdgG1sbNcEKSw8qdwFwCkCSo4A7q8pTLyRJq+HPga9V1duWeNw+SpK0qpY9RTDJB4A54DFJ\nbqL7OX8PoKrq3VX1ySQvTnI93S1wX7WSAUuSBJDkZ4FfAr6a5DK6n/ffDByMfZQkaUyWTbCq6uUj\n1DmtTTga1dzc3LhDWEPmxh3AmuJne3VN8/tdVX8PLHvx/rT2UdO8bXbFWmjnWmgjrI12roU2wtpo\n50q2cdmBhpu+WFKr+XoSwDXXXMOznnUc3/nONTutt+eej+P737+V5e9mmwddpwjZUZ4VOe93pSWj\ntB+mtX1aOUmoFbjJRQv2T5o0S3/XrtB3awLuA1qjWvdPLW5yIUmSJEnCBEuSJEmSmjHBkiRJkqRG\nTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGS\nJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJ\nkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWpk\npAQryTFJrk5ybZIzhjx+YJLPJrk0yeVJjm0fqiRJkiRNtmUTrCS7AWcCRwNPB05Octiiar8NnFtV\nRwAnA+9sHagkSZIkTbpRjmAdCVxXVTdW1T3AZuD4RXXuBR7dz+8DbG0XoiRJkiRNh3Uj1DkAuHlg\n+Ra6pGvQJuCiJKcDjwBe0CY8SZIkSZoerW5ycTJwdlUdCPwC8P5G65UkSZKkqTHKEaytwEEDy+t5\n4CmAr6a7RouqujjJnkkeW1W3Ll7Zxo0bd8zPzc0xNze3iyFLkqbB/Pw88/Pz4w5DkqRVlaraeYVk\nd+Aa4PnAN4EvASdX1VUDdT4BfLCq3pvkacBnqmr9kHXVcq8ntXbNNdfwrGcdx3e+c81O6+255+P4\n/vdvBZb7jOZB1ylCdpSHadwfklHaD9PaPq2cJFRVxh3HMPZPmjRLf9eu0HdrAu4DWqNa90/LniJY\nVduB04CLgCuBzVV1VZJNSV7SV3sT8CtJLgf+Eji1VYCSJEmSNC1GOUWQqvoU8NRFZRsG5q8Cfq5t\naJIkSZI0XVrd5EKSpFWV5Kwk25JcscTjz01yZ5JL++m3VztGSdLaM9IRLEmSJtDZwB8D5+ykzuer\n6rhVikeSJI9gSZKmU1V9AbhjmWoTeVMNSdLsMsGSJM2yo5JcluQTSX583MFIkmafpwhKkmbVV4CD\nq+rfkhwLfBR4yphjkiTNOBMsSdJMqqrvDsxfmOSdSfarqtuH1d+4ceOO+bm5Oebm5lY8RknS6puf\nn2d+fn7F1r/sQMNNX8yBHDUGDjTclgMN68FaiYGGkxwCfKyqfmLIY/tX1bZ+/kjgg1V1yBLrsX/S\nRHGgYWn1tO6fPIIlSZpKST4AzAGPSXITsAHYA6iqejfwn5O8FrgH+HfgZeOKVZK0dphgSZKmUlW9\nfJnH3wG8Y5XCkSQJ8C6CkiRJktSMCZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmS\nJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSI\nCZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDUyUoKV5JgkVye5NskZS9T5L0mu\nTPLVJO9vG6YkSZIkTb51y1VIshtwJvB84BvAliTnV9XVA3UOBc4Afqaq7k7y2JUKWJIkSZIm1ShH\nsI4ErquqG6vqHmAzcPyiOr8CvKOq7gaoqlvbhilJkiRJk2+UBOsA4OaB5Vv6skFPAZ6a5AtJ/iHJ\n0a0ClCRJkqRpsewpgruwnkOB5wAHAZ9P8h8WjmhJkiRJ0lowSoK1lS5pWrC+Lxt0C3BxVd0L3JDk\nWuDJwFcWr2zjxo075ufm5pibm9u1iCVJU2F+fp75+flxhyFJ0qpKVe28QrI7cA3dTS6+CXwJOLmq\nrhqoc3Rf9sr+BhdfAQ6vqjsWrauWez2ptWuuuYZnPes4vvOda3Zab889H8f3v38rsNxnNA+6ThGy\nozxM4/6QjNJ+mNb2aeUkoaoy7jiGsX/SpFn6u3aFvlsTcB/QGtW6f1r2Gqyq2g6cBlwEXAlsrqqr\nkmxK8pK+zqeB25JcCfwt8KbFyZUkSZIkzbqRrsGqqk8BT11UtmHR8q8Dv94uNEmSJEmaLiMNNCxJ\nkiRJWp4JliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJ\nUkPW294AACAASURBVCMmWJIkSZLUiAmWJGkqJTkrybYkV+ykztuTXJfk8iSHr2Z8kqS1yQRLkjSt\nzgaOXurBJMcCT6qqJwO/CrxrtQKTJK1dJliSpKlUVV8A7thJleOBc/q6lwB7J9l/NWKTJK1dJliS\npFl1AHDzwPLWvkySpBVjgiVJkqbCiSeeSpKh0ymnvHbc4UkSAOvGHYAkSStkK3DgwPL6vmyojRs3\n7pifm5tjbm5upeLSg3T99TcA88BzFz1yIZs3n8T73jf8Mrv99z+Yb33rhgeUP/7xh7Bt24279BxJ\n029+fp75+fkVW78JliRpmqWfhrkAeB1wbpKjgDurattSKxpMsDR97rnnbqCGPrZt2/CPSJdc7dpz\nJE2/xT+ibdq0qen6TbAkSVMpyQeAOeAxSW4CNgB7AFVV766qTyZ5cZLrge8BrxpftJKktcIES5I0\nlarq5SPUOW01YpEkaYE3uZAkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJ\nkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGRkqwkhyT5Ook1yY5Yyf1Tkxyb5Ij2oUoSZIkSdNh\n2QQryW7AmcDRwNOBk5McNqTeXsDpwMWtg5QkSZKkaTDKEawjgeuq6saqugfYDBw/pN7vAr8H/KBh\nfJIkSZI0NUZJsA4Abh5YvqUv2yHJM4D1VXVhw9gkSZIkaaqse6grSBLgD4FTB4uXqr9x48Yd83Nz\nc8zNzT3UECRJE2h+fp75+flxhyFJ0qoaJcHaChw0sLy+L1vwKLprs+b7ZOvxwPlJjquqSxevbDDB\nkiTNrsU/om3atGl8wUiStEpGSbC2AIcmORj4JnAScPLCg1V1N/CjC8tJPgf8WlVd1jhWSZIkSZpo\ny16DVVXbgdOAi4Argc1VdVWSTUleMuwp7OQUQUmSJEmaVSNdg1VVnwKeuqhswxJ1n9cgLkmSJEma\nOiMNNCxJkiRJWp4JliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmN\nmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIl\nSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmaWkmOSXJ1kmuTnDHk8VOT/GuSS/vpv44j\nTknS2rFu3AFIkvRgJNkNOBN4PvANYEuS86vq6kVVN1fV6aseoCRpTfIIliRpWh0JXFdVN1bVPcBm\n4Pgh9bK6YUmS1jITLEnStDoAuHlg+Za+bLETklye5INJ1q9OaJKktcpTBCVJs+wC4ANVdU+S1wDv\npTul8AE2bty4Y35ubo65ubnViE+StMrm5+eZn59fsfWbYEmSptVW4KCB5fV92Q5VdcfA4nuAtyy1\nssEES5I0uxb/iLZp06am6/cUQUnStNoCHJrk4CR7ACfRHbHaIcnjBxaPB762ivFJktYgj2BJkqZS\nVW1PchpwEd0PhmdV1VVJNgFbqurjwOlJjgPuAW4HXjm2gCVJa4IJliRpalXVp4CnLirbMDD/ZuDN\nqx2XJGntGukUwREGcnxjkiv7uzR9JsmB7UOVJEmSpMm2bII1MJDj0cDTgZOTHLao2qXAM6vqcODD\nwP9sHagkSZIkTbpRjmAtO5BjVf2vqvp+v3gxw8chkSRJkqSZNkqCNepAjgteDVz4UIKSJEmSpGnU\n9CYXSV4BPBN47lJ1HMhRktaGlR7IUZKkSTRKgrXsQI4ASV4A/BbwnP5UwqEcyFGS1oaVHshRkqRJ\nNMopgqMM5PgM4F3AcVV1W/swJUmSJGnyLZtgVdV2YGEgxyuBzQsDOSZ5SV/tLcAjgfOSXJbkoysW\nsSRJkiRNqJGuwRphIMcXNo5LkiRJkqbOSAMNS5IkSZKWZ4IlSZIkSY2YYEmSJElSIyZYkiRJktSI\nCZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliS\nJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJ\nUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2Y\nYEmSJElSIyMlWEmOSXJ1kmuTnDHk8T2SbE5yXZIvJjmofagaND8/P+4Q1pD5cQewpvjZXl3T/n7P\ncv807dtmVGuhnWuhjbA22rkW2ghro50r2cZlE6wkuwFnAkcDTwdOTnLYomqvBm6vqicDfwS8pXWg\nur+18MGfHPPjDmBN8bO9uqb5/Z71/mmat82uWAvtXAtthLXRzrXQRlgb7RxrggUcCVxXVTdW1T3A\nZuD4RXWOB97bz38IeH67ECVJGsr+SZI0cdaNUOcA4OaB5VvoOrWhdapqe5I7k+xXVbe3CVN6aH74\nw+8CH9tpne3bf7A6wUhqxf5pTfp74O5FZV8eRyCSNFSqaucVkhOBo6vqNf3yK4Ajq+r0gTpf7et8\no1++vq9z+6J17fzFJEkzrarSal32T5KkVlr2T6McwdoKDF4UvL4vG3QLcCDwjSS7A48e9utgy8Al\nSWue/ZMkaeKMcg3WFuDQJAcn2QM4CbhgUZ2PAaf28y8FPtsuREmShrJ/kiRNnGWPYPXnrJ8GXESX\nkJ1VVVcl2QRsqaqPA2cB70tyHXAbXScnSdKKsX+SJE2iZa/BkiRJkiSNZqSBhrXykpyVZFuSKwbK\nNiS5Jcml/XTMwGO/1Q+ceVWSFw2U73TQTXWSrE/y2SRXJvlqktP78n2TXJTkmiSfTrL3wHPe3r/n\nlyc5fKD81P79vibJKeNozyQb8l6/vi/3870Ckjw8ySVJLuvf7w19+SFJLu7fu79Ksq4vX3Ig3qW2\ngx6aJLv1n/kL+uWZ2zZJbkjyj/3n8Et92cx9vybZO8l5/Xa4MslPz1I7kzyl34aX9n/vSnL6LLUR\nIMkbk/xTkiuS/GW/783ifvmGvl+Yqf97Mvx/6GbtSnJE/9m4NskfjRRUVTlNwAT8HHA4cMVA2Qbg\n14bUfRpwGd0pnocA1wOhS5ivBw4GHgZcDhw27rZN4gQ8Hji8n98LuAY4DPh94Df68jOA3+vnjwU+\n0c//NHBxP78v8M/A3sA+C/Pjbt8kTTt5r/18r9x7/oj+7+7Axf1n9lzgpX35nwC/2s+/FnhnP/8y\nYHM//+PDtsO42zYLE/BG4P3ABf3yzG0b4OvAvovKZu77FfgL4FX9/Lo+1plrZx/nbsA36G4aMzNt\nBJ7Qf1736JfPpbtuc6b2S7rB2K8AHk7XN1wEPGkWtiXD/4du1i7gEuBZ/fwn6e5Mu9OYPII1Iarq\nC8AdQx4admer4+l26B9W1Q3AdXRjv4wy6KaAqvpWVV3ez38XuIruDmSDg5K+l/vev+OBc/r6lwB7\nJ9kfOBq4qKruqqo76b6wdhyJ0ZLv9QH9w36+V0BV/Vs/+3C6zr6Anwc+3Je/F/hP/fzigXif188f\nx/DtoIcgyXrgxcB7Boqfx+xtm4UfRQbN1PdrkkcDz66qswH67XEXM9bOAS8A/rmqbmb22rg78Mj+\nKNWP0CWSs/ad+TTgkqr6QVVtBz4PnEAX91RvyyX+h27yGU3yeOBRVbWlf/453PdZWJIJ1uR7XX8I\n8z0DhzcXD665tS8bNujmAWinkhxC98vHxcD+VbUNusQA2L+vttR7u9S20BAD7/UlfZGf7xWQ7hS0\ny4BvAZ+h+yXuzqq6t68y+N7dbyBe4K4k++Fne6W8FfhvdEkvSR4D3DGD26aATyfZkuSX+7JZ+359\nInBrkrP7U+jeneQRzF47F7wM+EA/PzNtrG6MvD8AbqKL6y7gUmbvO/OfgGf3p849gu6HngOZoW25\nyI82atcBfZ3F9XfKBGuyvRN4UlUdTveP0h+MOZ6Zk2Qvul+g3tAfXVl815el7gLjmDm7aMh77ed7\nhVTVvVX1DLqjskfSnZI5Kj/bKyTJLwDb+iO6g+/zqO/5NG2bn62qn6L7J+51SZ7N7H2/rgOOAN5R\nVUcA3wN+k9lrJ0keRnek47y+aGbamGQfuqMaB9OdLvhIdu2IzMS3EaCqrqY7be4zdKe5XQZsH1Z1\niVVMRTt3YlXbZYI1warq29Wf8An8Gfcdat5K96vDgoXBNUcZdFO9/lSADwHvq6rz++Jt/aFi+sPC\n/9qX+54/BMPeaz/fK6+q7gbmgZ8B9kmy8J0/+N7teL9z/4F4l9oOevB+FjguydeBv6I7tehtdKeo\nzNS2qapv9n+/DXyUbv+ete/XW4Cbq+rL/fKH6RKuWWsndNetfKWqbu2XZ6mNLwC+XlW390ek/ppu\nX52578yqOruqfqqq5oA76a6JnqVtOahVux7UdjXBmixhIJPuPxALTqA7vAvdQJon9XeyeSJwKPAl\nRht0U/f5c+BrVfW2gbILgFf2868Ezh8oPwUgyVF0pw5sAz4NvDDdnaT2BV7Yl+n+HvBe+/leGUke\nu3C6ZZIfoftMfg34HN1Au9BdwD342R42EO9S20EPUlW9uaoOqqofo/v8fraqXsGMbZskj+iPWJPk\nkcCLgK8yY9+vfYw3J3lKX/R84EpmrJ29k+l+FFgwS228CTgqyZ5Jwn3bcab2S4Akj+v/HgT8It0p\nn7OyLe/3PzSN2tWfXnhXkiP7z8cpA+ta2nJ3wXBatTugfIDuosof0O3sr6K7kO4KurulfZTuPNmF\n+r9Fd4eaq4AXDZQfQ/eLxHXAb467XZM60f06tb1/by+jO9/6GGA/4G/69/AiYJ+B55zZv+f/CBwx\nUP7K/v2+Fjhl3G2btGkn77Wf75V5v3+if48v79/f/7MvfyLdtW/X0t0d62F9+cOBD/bv6cXAIctt\nB6cm2+m53HcXwZnaNn17Fvb3ry7sq7P4/Qr8R7offy4HPkJ3B7KZaifwCODbdBf6L5TNWhs39PvS\nFXQ3RHjYrO2XfXyfp/sx8zJgbla2JcP/h963VbuAZ9J9l10HvG2UmBxoWJIkSZIa8RRBSZIkSWrE\nBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJ\nkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIk\nqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSHoQkZyf5\nnRHq/UuS561GTJIk2T9J42eCJa2SJBuSnLML9R+W5Ly+E7w3yXNWMj5J0tr0IPqnn05yUZLbkmxL\ncm6Sx69kjNI0McGSJtvfAb8EfHPcgUiS1NsX+FPg4H76LnD2WCOSJogJljSCJM9I8pUkdyXZDOw5\n8NhLklyW5I4kX0jyE0OefzTwZuBlSb6T5LK+/JVJvpbk7iTXJ3nNwnOq6p6qentV/QNw78q3UpI0\nbcbUP32qqj5cVd+tqu8DZwL/24o3VpoSJljSMpI8DPhr4L3AfsB5wIn9Y4cDZwG/0j/2p8AF/XN2\nqKpPA/8DOLeqHlVVz+gf2ga8uKoeDbwKeGu/TkmSdmqC+qfnAle2bJs0zUywpOUdBazrjyZtr6oP\nA1v6x14DvKuqvlyd9wE/6J+zrKq6sKpu6Of/DrgIeHbzFkiSZtHY+6ckPwn8X8CbHnJrpBlhgiUt\n7wnA1kVlN/Z/DwbelOT2froDWN8/Z1lJjk3yxf5C4TuAY4HHtgpckjTTxto/JTkU+CTw+v50dkmY\nYEmj+CZwwKKyg/q/NwH/var266d9q2qvqjp3yHpqcCHJHsCHgLcAj6uqfYELgbQNX5I0o8bWPyU5\nGPgMsKmqPtCmOdJsMMGSlvdF4IdJXp9kXZITgCP7x94DvDbJkQBJHpnkxUkeOWQ924BDkix0UHv0\n061VdW+SY4EXDT4hyR5JFi5YfniShzdumyRpeo2lf0pyAPC3wB9X1Z+tTNOk6WWCJS2jqu4BTqC7\nyPc24KXAh/vHvgL8MnBmktuBa4FTB58+MH8e3a9/tyX5clV9F3gDcF7/3JOA8xe9/DXA9+hO6fgU\n8G9JDkKStOaNsX96NfBEYGN/l8HvJLl7JdooTaNU1c4rJGcBLwG2VdVPLlHn7XTn5n4PeGVVXd46\nUEmSBiVZD5wD7E83lMGfVdXbh9Szj5IkrZpRjmCdDRy91IP9YeMnVdWTgV8F3tUoNkmSduaHwK9V\n1dOBnwFel+SwwQr2UZKk1bZsglVVXwDu2EmV4+l+QaSqLgH2TrJ/m/AkSRquqr61cDSqP6XpKh54\nwb99lCRpVbW4BusA4OaB5a08sIOTJGnFJDkEOBy4ZNFD9lGSpFW1bjVfLMnOL/iSJM20qmo+DEGS\nvehuKf2G/kjWg1mH/ZMkrWEt+6cWR7C2AgcOLK/ngYPe7VBVzacNGzasyHqd2kwnnHAK8Bd0Nyza\n0P9djemTC5+6MU0PfO1alXhavcaubquV2b+dlp+m5TtwJSRZR5dcva+qFt+FE3ahjxr3+zNN29I2\nzmD7ur2Axd/rw8qmto1rYTvavgfVxtZGTbDC0oOfXgCcApDkKODOqtrWIDZJkpbz58DXquptSzxu\nHyVJWlXLniKY5APAHPCYJDfR/ay9B1BV9e6q+mQ/cN31dLfAfdVKBixJEkCSnwV+Cfhqksvofl5/\nM3Aw9lGSpDFZNsGqqpePUOe0NuE8OHNzc+N8ee2SuXEHoJHNjTsAjWitfgdW1d8Du49Qb6x91K5Y\nC9ty1ts46+0D2zgLZr19MN42LjvQcNMXS2o1X0+T4cQTT+UjH3ke9x9AfjVcCLyY+84jX215wGsX\nISsezwNfd3VkRc5j1uxIQq3ATS5asH/Smpdh/dOw/sTves2e1v1Ti5tcSJIkSZIwwZIkSZKkZkyw\nJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJ\nkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIa\nMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARL\nkiRJkhoxwZIkSZKkRkZKsJIck+TqJNcmOWPI4wcm+WySS5NcnuTY9qFKkiRJ0mRbNsFKshtwJnA0\n8HTg5CSHLar228C5VXUEcDLwztaBSpIkSdKkG+UI1pHAdVV1Y1XdA2wGjl9U517g0f38PsDWdiFK\nkiRJ0nRYN0KdA4CbB5ZvoUu6Bm0CLkpyOvAI4AVtwpMkSZKk6TFKgjWKk4Gzq+qtSY4C3k93OuED\nbNy4ccf83Nwcc3NzjUKQJE2S+fl55ufnxx2GJEmrapQEaytw0MDyeh54CuCr6a7RoqouTrJnksdW\n1a2LVzaYYEmSZtfiH9E2bdo0vmAkSVolo1yDtQU4NMnBSfYATgIuWFTnRvrTApM8DXj4sORKkiRJ\nkmbZsglWVW0HTgMuAq4ENlfVVUk2JXlJX+1NwK8kuRz4S+DUlQpYkiRJkibVSNdgVdWngKcuKtsw\nMH8V8HNtQ5MkSZKk6TLSQMOSJE2aJGcl2ZbkiiUef26SO5Nc2k+/vdoxSpLWnlZ3EZQkabWdDfwx\ncM5O6ny+qo5bpXgkSfIIliRpOlXVF4A7lqmW1YhFkqQFJliSpFl2VJLLknwiyY+POxhJ0uzzFEFJ\n0qz6CnBwVf1bkmOBjwJPWary4DiNi8fwkiTNjvn5eebn51ds/amqFVv5A14sqdV8PU2GE088lY98\n5Hms/t37LwReDIzrM5cHvHYRsuLxPPB1V0dw/9bOJKGqmp6yl+Rg4GNV9ZMj1P0X4JlVdfuQx+yf\ntLZlWP80rD/xu16zp3X/5CmCkqRpFpa4zirJ/gPzR9L9qPiA5EqSpJY8RVCSNJWSfACYAx6T5CZg\nA7AHUFX1buA/J3ktcA/w78DLxhWrJGntMMGSJE2lqnr5Mo+/A3jHKoUjSRLgKYKSJEmS1IwJliRJ\nkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLU\niAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZY\nkiRJktSICZYkSZIkNTJSgpXkmCRXJ7k2yRlL1PkvSa5M8tUk728bpiRJkiRNvnXLVUiyG3Am8Hzg\nG8CWJOdX1dUDdQ4FzgB+pqruTvLYlQpYkiRJkibVKEewjgSuq6obq+oeYDNw/KI6vwK8o6ruBqiq\nW9uGKUmSJEmTb5QE6wDg5oHlW/qyQU8BnprkC0n+IcnRrQKUJEmSpGmx7CmCu7CeQ4HnAAcBn0/y\nHxaOaA3auHHjjvm5uTnm5uYahSBJmiTz8/PMz8+POwxJklbVKAnWVrqkacH6vmzQLcDFVXUvcEOS\na4EnA19ZvLLBBEuSNLsW/4i2adOm8QUjSdIqGeUUwS3AoUkOTrIHcBJwwaI6HwV+HqC/wcWTga+3\nDFSSJEmSJt2yCVZVbQdOAy4CrgQ2V9VVSTYleUlf59PAbUmuBP4WeFNV3bGCcUuSJEnSxBnpGqyq\n+hTw1EVlGxYt/zrw6+1CkyRJkqTpMtJAw5IkSZKk5ZlgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIl\nSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmaSknOSrItyRU7qfP2JNcluTzJ4asZnyRp\nbTLBkiRNq7OBo5d6MMmxwJOq6snArwLvWq3AJElrlwmWJGkqVdUXgDt2UuV44Jy+7iXA3kn2X43Y\nJElrlwmWJGlWHQDcPLC8tS+TJGnFrBt3AJIkSbPm3nvv5UUvOoEbbrj5fuV77rkHn/jEZg4++OAx\nRSZppZlgSZJm1VbgwIHl9X3ZUBs3btwxPzc3x9zc3ErFpTVg+/btfPazH6c7O/U+e+31f3Dttdea\nYEljND8/z/z8/Iqt3wRLkjTN0k/DXAC8Djg3yVHAnVW1bakVDSZYUgtJqHrm/cp23/3RY4pG0oLF\nP6Jt2rSp6fpNsCRJUynJB4A54DFJbgI2AHsAVVXvrqpPJnlxkuuB7wGvGl+0kqS1wgRLkjSVqurl\nI9Q5bTVikSRpgXcRlCRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkR\nEyxJkiRJasQES5IkSZIaMcGSJEmSpEZGSrCSHJPk6iTXJjljJ/VOTHJvkiPahShJkiRJ02HZBCvJ\nbsCZwNHA04GTkxw2pN5ewOnAxa2DlCRJkqRpMMoRrCOB66rqxqq6B9gMHD+k3u8Cvwf8oGF8kiRJ\nkjQ1RkmwDgBuHli+pS/bIckzgPVVdWHD2CRJkiRpqqx7qCtIEuAPgVMHix/qeiVJkiRp2oySYG0F\nDhpYXt+XLXgU3bVZ832y9Xjg/CTHVdWli1e2cePGHfNzc3PMzc3tetSSpIk3Pz/P/Pz8uMOQJGlV\njZJgbQEOTXIw8E3gJODkhQer6m7gRxeWk3wO+LWqumzYygYTLEnS7Fr8I9qmTZvGF4wkSatk2Wuw\nqmo7cBpwEXAlsLmqrkqyKclLhj0FTxGUJEmStAaNdA1WVX0KeOqisg1L1H1eg7gkSZIkaeqMNNCw\nJEmSJGl5JliSJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmS\nJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1\nYoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkaWolOSbJ1UmuTXLGkMdPTfKvSS7tp/86jjglSWvH\nunEHIEnSg5FkN+BM4PnAN4AtSc6vqqsXVd1cVaeveoCSpDXJI1iSpGl1JHBdVd1YVfcAm4Hjh9TL\n6oYlSVrLTLAkSdPqAODmgeVb+rLFTkhyeZIPJlm/OqFJktYqEyxJ0iy7ADikqg4H/gZ475jjkSTN\nOK/BkiRNq63AQQPL6/uyHarqjoHF9wBvWWplGzdu3DE/NzfH3NxcixglSRNmfn6e+fn5FVu/CZYk\naVptAQ5NcjDwTeAk4OTBCkkeX1Xf6hePB7621MoGEyxJ0uxa/CPapk2bmq7fBEuSNJWqanuS04CL\n6E55P6uqrkqyCdhSVR8HTk9yHHAPcDvwyrEFLElaE0ywJElTq6o+BTx1UdmGgfk3A29e7bgkSWvX\nSDe5GGEgxzcmubK/S9NnkhzYPlRJkiRJmmzLJlgDAzkeDTwdODnJYYuqXQo8s79L04eB/9k6UEmS\nJEmadKMcwVp2IMeq+l9V9f1+8WKGj0MiSZIkSTNtlARr1IEcF7wauPChBCVJkiRJ06jpTS6SvAJ4\nJvDcluuVJEmSpGkwSoK17ECOAEleAPwW8Jz+VMKhHMhRktaGlR7IUZKkSTRKgjXKQI7PAN4FHF1V\nt+1sZQ7kKElrw0oP5ChJ0iRa9hqsqtoOLAzkeCWweWEgxyQv6au9BXgkcF6Sy5J8dMUiliRJkqQJ\nNdI1WCMM5PjCxnFJkiRJ0tQZaaBhSZIkSdLyTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKk\nRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHB\nkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQEH1A+\n3gAAIABJREFUS5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAk\nSZIkqRETLEmSJElqZKQEK8kxSa5Ocm2SM4Y8vkeSzUmuS/LFJAe1D3Vp8/Pzq/lyekjmxx2ARjY/\n7gA0orX8HTjp/dOuWgvbctbbOOvtA9s4C2a9fTDeNi6bYCXZDTgTOBp4OnByksMWVXs1cHtVPRn4\nI+AtrQPdmbXwIZkd8+MOQCObH3cAGtFa/Q6chv5pV62FbTnrbZz19oFtnAWz3j6Y8AQLOBK4rqpu\nrKp7gM3A8YvqHA+8t5//EPD8diFKkjSU/ZMkaeKsG6HOAcDNA8u30HVqQ+tU1fYkdybZr6pubxOm\npt8dwDeA7/R/V8Ntq/Q6ksbE/kkTrapY3Ofde+/3xxOMpFWTbuffSYXkRODoqnpNv/wK4MiqOn2g\nzlf7Ot/ol6/v69y+aF07fzFJ0kyrqrRal/2TJKmVlv3TKEewtgKDFwWv78sG3QIcCHwjye7Ao4f9\nOtgycEnSmmf/JEmaOKNcg7UFODTJwUn2AE4CLlhU52PAqf38S4HPtgtRkqSh7J8kSRNn2SNY/Tnr\npwEX0SVkZ1XVVUk2AVuq6uPAWcD7klxHd+HLSSsZtCRJ9k+SpEm07DVYkiRJkqTRjDTQ8DglOSvJ\ntiRXDJTtm+SiJNck+XSSvQcee3s/oOTlSQ4fT9Rr0xLbakOSW5Jc2k/HDDz2W/22uirJi8YT9dqU\nZH2Szya5MslXk5zel7tvTZgh2+r1fbn71hRJslu/nS7olw9JcnE/QPJfJVnXly85MPIkb9ckNyT5\nxySXJflSX7bL3ydJTu3fk2uSnDKOtgyTZO8k5/Xv/ZVJfnrG2veUfttd2v+9K8nps9RGgCRvTPJP\nSa5I8pf9/jYz+2KSN/T9xEPq1ydpG6ZRHrBUm5Ic0X8erk3yR80Cr6qJnoCfAw4Hrhgo+33gN/r5\nM4Df6+ePBT7Rz/80cPG4419L0xLbagPwa0PqPg24jO401UOA6+mPqDqtyrZ6PHB4P78XcA1wmPvW\n5E072VbuW1M0AW8E3g9c0C+fC7y0n/8T4Ff7+dcC7+znXwZs7ud/fJK3K/B1YN9FZbv0fQLsC/wz\nsDewz8L8uNvWx/YXwKv6+XV9jDPTvkVt3Y3u3vIHzlIbgSf0n9M9+uVz6a7PnIl9kW6w9SuAhwO7\n0506/aRp34Y0yAN21ibgEuBZ/fwn6e46+5DjnvgjWFX1BbpBlAYNDhz5Xu4bWPJ44Jz+eZcAeyfZ\nfzXi1JLbCmDY3bmOp/uy+mFV3QBcxwPHr9EKqapvVdXl/fx3gavo7sDmvjVhlthWB/QPu29NgSTr\ngRcD7xkofh7w4X7+vcB/6ucXD4z8vH7+OCZ7u4YHnhWzq98nRwMXVdVdVXUn3T+IxzBmSR4NPLuq\nzgbot8FdzEj7hngB8M9VdTOz18bdgUf2R6l+hC6R/HlmY198GnBJVf2gqrYDnwdOoIt3ardhozxg\naJuSPB54VFVt6Z9/Dvdt/4dk4hOsJfxoVW2D7p8PYOEfvcWDTm7lvn9END6v6w/VvmfgMK7bakIk\nOYTu16GLgf3dtybXwLa6pC9y35oObwX+G1AASR4D3FFV9/aP38J92+h+AyMDdyXZj8nfrgV8OsmW\nJL/cl436fbLQ/klt4xOBW5Oc3Z9C9+4kj2B22rfYy4AP9PMz08bqxsL7A+AmurjuAi4F7pyRffGf\ngGf3p889gu5HnQOZoW04YNQ8YLk2HdDXWVz/IZvWBGsx79Qxud4JPKmqDge+RfflpgmRZC+6X+be\n0B8dWbwvuW9NiCHbyn1rCiT5BWBbfxRy8IjjqONuTcv4XD9bVT9F90/d65I8m9G/Tya9jeuAI4B3\nVNURwPeA32R22rdDkofRHfE4ry+amTYm2YfuCMfBdKcLPpJdOzIz0W2sqqvpTp37DN2pbpcB24dV\nXWIVE92+ZUxcm6Y1wdq2cHpSf3jvX/vyrXTZ+oJhg05qFVXVt6s/sRX4M+47jO62GrP+FIkPAe+r\nqvP7YvetCTRsW7lvTY2fBY5L8nXgr+hOM3ob3akrC33w4Dbasf1y/4GRJ3q7VtU3+7/fBj5K93nc\n1e+TUQaOHodbgJur6sv98ofpEq5Zad+gY4GvVNWt/fIstfEFwNer6vb+iNRf0+2f+8zKvlhVZ1fV\nT1XVHHAn3TW7s7QNF7Rq04pty2lJsML9s9ALgFf2868Ezh8oPwUgyVF0h323rU6I6t1vW/Uf/AUn\n0B3Chm5bndTfpeeJwKHAl1YtSgH8OfC1qnrbQJn71mR6wLZy35oOVfXmqjqoqn6Mbgyuz1bVK4DP\n0Q18DN2F9oP72rCBkSd2uyZ5RH+ElSSPBF4EfJVd/z75NPDCdHfs2xd4YV82Vn1sNyd5Sl/0fOBK\nZqR9i5xM90PAgllq403AUUn2TBLu246ztC8+rv97EPCLdKd6zsI2fKh5wNA29acX3pXkyP4zccrA\nuh6aFnfKWMmJ7sPxDeAHdDvHq+juBvI3dJn5RcA+A/XPpLujyz8CR4w7/rU0LbGtzqG7q83ldL9q\n7j9Q/7f6bXUV8KJxx7+WJrpf7bb32+UyuvPQjwH2c9+arGkn28p9a8om4LncdxfBJ9JdS3ct3V3M\nHtaXPxz4IN2F8xcDh0z6du3bsvD5/Crwm335Ln+f0P2zdF3/vpwy7rYNxPUfgS19Oz9CdzeymWlf\nH9sjgG/TXfS/UDZrbdzQ7z9X0N0c4WEzti9+nu7HtsuAuVnYhjTKA5ZqE/BMuu+t64C3tYrbgYYl\nSZIkqZFpOUVQkiRJkiaeCZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJ\nkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIk\nNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJ\nliRJkiQ1YoIlPQhJzk7yOyPU+5ckz1uNmCRJkjR+JljSKkmyIck5u1D/aUm2JLk9yW1JLkrytJWM\nUZKkhyrJS5P8fZLvJfnsuOORVpsJljS5tgInVtV+wGOBjwGbxxuSJEnLug14K/D/jjsQaRxMsKQR\nJHlGkq8kuSvJZmDPgcdekuSyJHck+UKSnxjy/KOBNwMvS/KdJJf15a9M8rUkdye5PslrFp5TVXdX\n1U394u7AvcCTVrKdkqTJkuSIJJf2/c8Hk2xO8jtJ9knysST/2p/l8LEkBww873NJfrc/kvSdJOcn\n2S/J+/t1XZLkoIH69yZ5bZJr+8d/J8mP9c+/s3/ddX3dYa/9hIV1VdVnq+pDwDdX9c2SJoQJlrSM\nJA8D/hp4L7AfcB5wYv/Y4cBZwK/0j/0pcEH/nB2q6tPA/wDOrapHVdUz+oe2AS+uqkcDrwLe2q9z\n8PXvAP4NeBvw/6xIIyVJE6fvSz4C/DldH/NXwC8uPNyXHwgcRNdPnLloFS8Dfgl4AnAo8A90fda+\nwNXAhkX1XwQ8AzgK+A26Pu3l/Wv8BHByX2+3EV5bWrNMsKTlHQWsq6q3V9X2qvowsKV/7DXAu6rq\ny9V5H/CD/jnLqqoLq+qGfv7vgIuAZy+qsy+wN3Aa8I8tGiRJmgpHAbtX1Zl9//PXwJcAquqOqvrr\nqvpBVX2P7nS85yx6/tlVdUNVfQe4EPjnqvpcVd1L92PhMxbV//2q+l5VXQX8E3BRVd048Pxn9K99\n+5DXfu7KvAXS9Fk37gCkKfAEuuuhBt3Y/z0YODXJ6/vlAA/rn7OsJMcC/zfwFLofPH4EuGJxvar6\n9yR/Cnw7yWFVdesut0KSNG2G9T83AyT5EeCPgKOBfej6n72SpKqqr7tt4Hn/PmR5r0Xr/tdl6u+/\nC68trVkewZKW903ggEVlC+et3wT896rar5/2raq9qurcIeu5X6eTZA/gQ8BbgMf1R6oupOuohtkd\neMSQWCRJs2lY/3Ng//fXgScDz6qqfbjv6NVSfUhLbxrja0sTzwRLWt4XgR8meX2SdUlOAI7sH3sP\n8NokRwIkeWSSFyd55JD1bAMOSbLQAe3RT7dW1b390awXLVRO8oIkhyfZLcmjgT8EbgeuWpFWSpIm\nzReB7Ulel2T3JMcDz+ofexTdUaW7k+wHbFzFuPba2Wv3/dbD6c7o2D3JwxdukCGtBSZY0jKq6h7g\nBLqbUNwGvBT4cP/YV4BfBs5McjtwLXDq4NMH5s+j+3XvtiRfrqrvAm8AzuufexJw/kD9feguaL4T\nuA54InBMVf1/zRspSZo4A/3PLwN30N1w4uN01/q+le6shlvpbl7xycVP39WX24Xn/9Eyr/2/0yVg\n7wB+ju4mGO/exXikqZXlTpXtf4H4PN0v7euAD1XVpkV19gDOAZ5Jt7O9bOD20pIkNZdkPV3fsz/d\nMAZ/VlVvH1Lv7cCxwPeAV1bV5asaqNRQkouBP6mq9447FknDLXsEq6p+APx8f1vpw4FjF06HGvBq\n4PaqejLdrxpvaR6pJEn390Pg16rq6cDPAK9Lcthghf7U2yf1/dOvAu9a/TClBy/Jc5Ls358ieCrd\n7dI/Ne64JC1tpFMEq+rf+tmH0x3FWnzY63i6MYKgu2j/+U2ikyRpCVX1rYWjUf0pt1fxwBsCHE93\nlIuqugTYO8n+qxqo9NA8lW6IjjuANwInVtW2nT9F0jiNlGD1FyteBnwL+ExVbVlU5QD624ZW1Xbg\nzv6iR0mSVlySQ+jOsrhk0UM7+qfe1v+fvbuPuqyu77v//swM48Qig5jVoQEdjI8xKxZxSWhtw2km\nRrB3mcQm1WiLmNw3xiXBFXu3Gmo7M0n6YNqkwYqlKFqwN0FrWhkVDU3xxGojITNMIAI61CfAMrYO\ngw4gHfF7/3H2NR6uOdfDzPyu61znOu/XWnvNfvhd+3zPbz/85nv2b++NT+LUBKmq91TVqVV1UlWd\nWVVevZJWuEU90aV7Id2LuieZfSTJC6rqznn+ZORjOpP4bgRJmmJV1fwxzklOZNB74s3dlaxjWYft\nkyRNsZbt01E9RbCqvgV8Cjhv1qL76N7LkGQtcFJV7Z9jHQ6zhm3bto09htU8jKt+uz3+CUONmDfZ\nw7YFlnvMT+K+u1TDUuge/fxh4ANVdcOIIvfz/fcGAZzOkS9uBY7cV1db/bsfWgejhj/90z9l48az\nFtk+zX3OX7v2STz66KNj/z7uD9bDsQytLZhgJfnBJBu78R8AXgbcPavYR/n+o6l/Hri5ZZCSJM3h\nfcCdVXX5HMt3AhcCJDkHOFDevyJJWkKL6SL4l4BrkqxhkJB9sKpuTLIDuLWqPgZcDXwgyV4G7wl6\n9ZJFLEkSkOSlwGuBO7r7hAu4DNgMVFVd1bVXr0hyD4PHtL9+fBFLkqbBgglWVd0BnDVi/rah8ceA\nv9M2tOnR6/XGHcKqZv0upd64A1jV3HfnV1WfBdYuotwlx7J+63/AerAOvq837gBWBPeHAethbgu+\naLjphyW1nJ8njVMSZr/RoAg54i0Hq1mWpG+zJlMSagkectGC7ZOm1a5du9iy5WIOPLT7uNqntWs3\ncPDgATZs2NAwOml5tG6fjuohF5IkSZKkuZlgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2Y\nYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJ\nkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIk\nNbJggpXk9CQ3J/l8kjuSXDqizLlJDiTZ3Q1vX5pwJUmSJGnlWreIMt8F3lJVe5KcCOxKclNV3T2r\n3Ker6oL2IUqSJEnSZFjwClZVPVBVe7rxg8BdwGkjiqZxbJIkSZI0UY7qHqwkZwBnAreMWHxOktuS\nfDzJCxrEJkmSJEkTZTFdBAHougd+GHhzdyVr2C5gc1U9kuR84CPAc0etZ/v27YfHe70evV7vKEOW\nJE2Cfr9Pv98fdxiSJC2rVNXChZJ1wMeAT1TV5Yso/2XgxVW1f9b8WsznSatBEuCJ+3sRwjQdA8Fj\nXjOSUFUrsju57ZOm1a5du9iy5WIOPLT7uNqntWs3cPDgATZs2NAwOml5tG6fFttF8H3AnXMlV0k2\nDY2fzSBx2z+qrCRJkiStVgt2EUzyUuC1wB1JbmPwk/xlwGagquoq4OeSvBE4BDwKvGrpQpYkSZKk\nlWnBBKuqPgusXaDMFcAVrYKSJEmSpEl0VE8RlCRJkiTNzQRLkiRJkhoxwZIkSZKkRkywJEmSJKkR\nEyxJkiRJasQES5IkSZIaMcGSJE2kJFcn2Zfk9jmWn5vkQJLd3fD25Y5RkjR9FnwPliRJK9T7gX8D\nXDtPmU9X1QXLFI8kSV7BkiRNpqr6DPDgAsWyHLFIkjTDBEuStJqdk+S2JB9P8oJxByNJWv3sIihJ\nWq12AZur6pEk5wMfAZ47V+Ht27cfHu/1evR6vaWOT5I0Bv1+n36/v2TrT1Ut2cqP+LCklvPzpHFK\nAjxxfy9CmKZjIHjMa0YSqqppl70km4GPVtULF1H2y8CLq2r/iGW2T5pKu3btYsuWiznw0O7jap/W\nrt3AwYMH2LBhQ8PopOXRun2yi6AkaZKFOe6zSrJpaPxsBj8qHpFcSZLUkl0EJUkTKcl1QA94WpKv\nAduA9UBV1VXAzyV5I3AIeBR41bhilSRNDxMsSdJEqqrXLLD8CuCKZQpHkiTALoKSJEmS1IwJliRJ\nkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNbJggpXk9CQ3J/l8kjuSXDpHuXcm2Ztk\nT5Iz24cqSZIkSSvbYt6D9V3gLVW1J8mJwK4kN1XV3TMFkpwPPKuqnpPkx4ErgXOWJmRJkiRJWpkW\nvIJVVQ9U1Z5u/CBwF3DarGJbgWu7MrcAG5NsahyrJEmSJK1oR3UPVpIzgDOBW2YtOg24d2j6fo5M\nwiRJkiRpVVtMF0EAuu6BHwbe3F3JOibbt28/PN7r9ej1ese6KknSCtbv9+n3++MOQ5KkZZWqWrhQ\nsg74GPCJqrp8xPIrgU9V1Qe76buBc6tq36xytZjPk1aDJMAT9/cihGk6BoLHvGYkoaoy7jhGsX3S\ntNq1axdbtlzMgYd2H1f7tHbtBg4ePMCGDRsaRictj9bt02K7CL4PuHNUctXZCVwIkOQc4MDs5EqS\nJEmSVrsFuwgmeSnwWuCOJLcx+En+MmAzUFV1VVXdmOQVSe4BHgZev5RBS5IkSdJKtGCCVVWfBdYu\notwlTSKSJEmSpAl1VE8RlCRJkiTNzQRLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5Ik\nSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElq\nxARLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMs\nSZIkSWpkwQQrydVJ9iW5fY7l5yY5kGR3N7y9fZiSJD3RQu1TV+adSfYm2ZPkzOWMT5I0nRZzBev9\nwMsXKPPpqjqrG36zQVySJC1k3vYpyfnAs6rqOcAbgCuXKzBJ0vRaMMGqqs8ADy5QLG3CkSRpcRbR\nPm0Fru3K3gJsTLJpOWKTJE2vVvdgnZPktiQfT/KCRuuUJOl4nAbcOzR9fzdPkqQls67BOnYBm6vq\nka47xkeA585VePv27YfHe70evV6vQQiSpJWm3+/T7/fHHcai2T5J43fqqWewb99Xj2sda9Y8me99\n75HjWsemTZt54IGvHNc6dKQW2xeOf/ssdfuUqlq4ULIZ+GhVvXARZb8MvLiq9o9YVov5PGk1SAI8\ncX8vQpimYyB4zGtGEqqqaZfy+dqnJFcCn6qqD3bTdwPnVtW+EWVtnzSVdu3axZYtF3Pgod3H1T6t\nXbuBgwcPsGHDhuOKZ1TbeQxrabIOzwnttdm+0Hr7tG6fFttFMMxxn9Vwf/YkZzNI2o5IriRJWgJz\ntk/ATuBCgCTnAAdGJVeSJLW0YBfBJNcBPeBpSb4GbAPWA1VVVwE/l+SNwCHgUeBVSxeuJEkDC7VP\nVXVjklckuQd4GHj9+KKVJE2LBROsqnrNAsuvAK5oFpEkSYuwUPvUlblkOWKRJGlGq6cISpIkSdLU\nM8GSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARL\nkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIk\nSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhpZMMFKcnWSfUlun6fMO5Ps\nTbInyZltQ5QkSZKkybCYK1jvB14+18Ik5wPPqqrnAG8ArmwUmyRJkiRNlAUTrKr6DPDgPEW2Atd2\nZW8BNibZ1CY8SZIkSZoc6xqs4zTg3qHp+7t5+xqsWxPq4ot/lbvvvmfcYUiSJEnLqkWCdVS2b99+\neLzX69Hr9ZY7BC2D973vCh5//HrghHGHMia7gI+NOwhprPr9Pv1+f9xhSJK0rFJVCxdKNgMfraoX\njlh2JfCpqvpgN303cG5VHXEFK0kt5vM0+datW8/jjx8E1o87lDH5JHA+8MT9vQhhmo6B4DGvGUmo\nqow7jlFsnzStdu3axZYtF3Pgod3H1T6tXbuBgwcPsGHDhuOKJwmz285jWEuTdXhOaK/N9oXW26d1\n+7TYx7SnG0bZCVwIkOQc4MCo5EqSJEmSVrsFuwgmuQ7oAU9L8jVgG4PLElVVV1XVjUlekeQe4GHg\n9UsZsCRJkiStVAsmWFX1mkWUuaRNOJIkSZI0uRbbRVCSJEmStAATLEmSJElqxARLkiRJkhoxwZIk\nSZKkRkywJEmSJKkREyxJkiRJasQES5I0sZKcl+TuJF9M8tYRy1+X5BtJdnfDL44jTknS9FjwPViS\nJK1ESdYA7wK2AF8Hbk1yQ1XdPavo9VV16bIHKEmaSl7BkiRNqrOBvVX11ao6BFwPbB1RLssbliRp\nmplgSZIm1WnAvUPT93XzZntlkj1JPpTk9OUJTZI0rewiKElazXYC11XVoSQXA9cw6FJ4hO3btx8e\n7/V69Hq95YhPkrTM+v0+/X5/ydafqlqylR/xYUkt5+dpfNatW8/jjx8E1o87lDH5JHA+8MT9vQhh\nmo6B4DGvGUmoqmbd9ZKcA2yvqvO66bcBVVXvmKP8GmB/VZ08Ypntk6bSrl272LLlYg48tPu42qe1\nazdw8OABNmzYcFzxJGF223kMa2myDs8J7bXZvtB6+7Run+wiKEmaVLcCz06yOcl64NUMrlgdluTU\nocmtwJ3LGJ8kaQrZRVCSNJGq6vEklwA3MfjB8OqquivJDuDWqvoYcGmSC4BDwH7gorEFLEmaCiZY\nkqSJVVWfBJ43a962ofHLgMuWOy5J0vSyi6AkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmW\nJEmSJDVigiVJkiRJjSwqwUpyXpK7k3wxyVtHLH9dkm8k2d0Nv9g+VEmSJEla2RZ8D1aSNcC7gC3A\n14Fbk9xQVXfPKnp9VV26BDFKkiRJ0kRYzBWss4G9VfXVqjoEXA9sHVEuTSOTJEmSpAmzmATrNODe\noen7unmzvTLJniQfSnJ6k+gkSZIkaYIs2EVwkXYC11XVoSQXA9cw6FJ4hO3btx8e7/V69Hq9RiFI\nklaSfr9Pv98fdxiSJC2rVNX8BZJzgO1VdV43/Tagquodc5RfA+yvqpNHLKuFPk+rw7p163n88YPA\n+nGHMiafBM4Hnri/FyFM0zEQPOY1IwlVtSK7k9s+aVrt2rWLLVsu5sBDu4+rfVq7dgMHDx5gw4YN\nxxVPEma3ncewlibr8JzQXpvtC623T+v2aTFdBG8Fnp1kc5L1wKsZXLEaDurUocmtwJ2tApQkSZKk\nSbFgF8GqejzJJcBNDBKyq6vqriQ7gFur6mPApUkuAA4B+4GLljBmSZIkSVqRFnUPVlV9EnjerHnb\nhsYvAy5rG5okSZIkTZZFvWhYkiRJkrQwEyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMs\nSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmS\nJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRG\nFpVgJTkvyd1JvpjkrSOWr09yfZK9Sf44yTPahypJ0hPZPkmSVpoFE6wka4B3AS8HfhT4hSTPn1Xs\nl4D9VfUc4HeB32od6GrW7/fHHcIq1x93AKtYf9wBrGqeG+a31O2T9T9gPVgH39cfdwArgvvDgPUw\nt8VcwTob2FtVX62qQ8D1wNZZZbYC13TjHwa2tAtx9XMHXWr9cQewivXHHcCq5rlhQUvaPln/A9aD\ndfB9/XEHsCK4PwxYD3NbTIJ1GnDv0PR93byRZarqceBAklOaRChJ0mi2T5KkFWfdEq03S7ReTYiN\nG3+QRx/dTDL+XeH//J9vs379Vcv6mY8//h0ee2xZP1LS4oz/pCStIBs3buSRR+4C4MlP/qF5y87X\nnq5Z82TWrl3bPD5pEqWq5i+QnANsr6rzuum3AVVV7xgq84muzC1J1gL/s6r+4oh1zf9hkqRVraqa\nJTi2T5KkVlq2T4u5gnUr8Owkm4H/Cbwa+IVZZT4KvA64Bfh54OZRK2oZuCRp6tk+SZIDUyhGAAAg\nAElEQVRWnAUTrKp6PMklwE0M7tm6uqruSrIDuLWqPgZcDXwgyV7gmwwaOUmSloztkyRpJVqwi6Ak\nSZIkaXEW9aJhLU6Sq5PsS3L70LxtSe5Lsrsbzhta9mvdyy/vSvLTQ/NHvjgzyRlJPtfN/70kS/WQ\nkhUnyelJbk7y+SR3JLm0m//UJDcl+UKSP0iycehv3tnV754kZw7Nf11Xh19IcuHQ/LOS3N4t+93l\n/YbjM6Juf6Wb777bQJInJbklyW1d/W7r5o+sk/lejHu09S7PyzM8h3qum+E5aWCeenh/ki9183cn\neeHQ36yqY2JYkjXd993ZTU/V/tBcVTk0GoC/BpwJ3D40bxvwlhFlfwS4jUE3zTOAexg83WpNN74Z\nOAHYAzy/+5sPAj/fjf9b4A3j/s7LWLenAmd24ycCXwCeD7wD+Ifd/LcC/6IbPx/4eDf+48DnuvGn\nAv8D2AicPDPeLbsFeEk3fiPw8nF/7zHXrftuuzp+cvfvWuBz3T45sk6ANwLv7sZfBVzfjb/gaOvd\nwfPy0Heb+nOo57onfDfPSXPXw/uBV44ou+qOiVnf71eB/wDsnG9fXs37Q8vBK1gNVdVngAdHLBp1\n8/RWBjvld6vqK8BeBi/NnO/FmT8J/H43fg3wsw3DX9Gq6oGq2tONHwTuAk7niS8RvYbv19VW4Nqu\n/C3AxiSbgJcDN1XVQ1V1gMG9G+clORV4SlXd2v39tcDPLP03G7856nbmXULuuw1U1SPd6JMYND4F\n/A2eWCcz+9vsF+P+ZDd+AUdf71PP8/KA51DPdcM8Jw2MqIfvddNz7Q+r6piYkeR04BXAe4dmz96X\nV/3+0JIJ1vJ4U3c5+b1D3S9mvyDz/m7eyBdnJnka8GBVfW9o/vwvrFilkpzB4BfpzwGbqmofDBpP\nYFNXbK4XkM5X7/eNKD9Vhur2lm6W+24DXdeL24AHgP/C4BfOA7PqZGZ/m/1i3IcyeDHuUdX7En2V\n1WRq923PoZ7rPCcNzK6HoWToN7v94beTnNDNW83HxL8G/gGDRJs59uVVvz+0ZIK19N4NPKuqzmRw\nAP/2caxr6h8jnOREBr+YvLn7BXL2U1rmemrL1NfdQkbUrftuI1X1vap6EYMrBmcz6Ja0WFNdd0tk\navdtz6Ge68Bz0ozZ9ZDkBcDbqupHgJcAT2PQdXaUVVEPSf4msK+7ujv8nRb7/VZFPbRmgrXEqup/\nVdVMg/UeBicyGGT2Tx8qeno3737gGbPnV9U3gZOTrJlVfmp0N1h+GPhAVd3Qzd7XXaKnuxz/jW7+\nUdXvPOWnwqi6dd9tr6q+BfSBv8LcdXK4fjN4Me5JVbWfo9+nNYdp3bc9h3qum81z0sBQPZw3dEX3\nEIP7sY5pf5in/ErzUuCCJF8Cfo9Bl7/LGXSBnMr9oQUTrPbCUDbfNVgzXgn8eTe+E3h19zSWZwLP\nBv6EoRdnJlnP4J0tMw3hzQxelAmDF2fewHR5H3BnVV0+NG8ncFE3fhHfr5OdwIUASc5h0PVhH/AH\nwMuSbEzyVOBlwB90XWMeSnJ2knR/O031e0Tduu+2keQHZ7ocJfkBBvvcncCnGF0nO7tpeOKLcY+m\n3ncu7beaOJ6XBzyHeq7znNSZox7untkfuv34Z3ji/rDqjomquqyqnlFVP8xgW91cVX+XKdsfmqsV\n8KSN1TIA1wFfBx4Dvga8nsFNjbczeGrKRxj0d58p/2sMnqxyF/DTQ/PPY/B0o70MLlXPzH8mg/7i\nX2TwdJcTxv2dl7FuXwo83tXjbcDurp5OAf6wq6+bgJOH/uZdXf3+GXDW0PyLurr9InDh0PwXA3d0\nyy4f93deAXXrvtumfn+sq9M9XX3+o/nqhMHN1h/q6vBzwBnHWu8OnpeH4pz6c6jnusMxek6avx7+\na7fP397tG09ercfEiDo5l+8/RXCq9ofWgy8aliRJkqRG7CIoSZIkSY2YYEmSJElSIyZYkiRJktSI\nCZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliS\nJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJ\nUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJljShkvzLJF9M8lCSO5P8\nvXHHJElSknck+VrXPn05ydvGHZO0nEywpMl1EPibVbURuAi4PMk54w1JkiTeCzyva5/+KvB3k/zM\nmGOSlo0JlgQkOSvJ7u7Xtg8luT7Jryc5OclHk3wjyTe78dOG/u5TSX4jyWeTfDvJDUlOSfIfunXd\nkuQZQ+W/l+SNQ1eefj3JD3d/f6D73HVd2VGf/UMz66qqHVW1txv/E+C/AX9l+WpNkrTUJrR92ltV\nj3aTa4DvAc9epiqTxs4ES1MvyQnAfwLeB5wC/B7wszOLu/lPB54BPAK8a9YqXgW8FvghBg3Ifweu\nBp4K3A1sm1X+p4EXAecA/xD4d8Brus/4MeAXunJrFvHZM9/hB4CXAJ8/iq8uSVrBJrl9SvLWJN8G\n7gWeDFx39DUgTSYTLGnQkKytqndV1eNV9Z+BPwGoqger6j9X1WNV9TDwz4GfmPX376+qr1TVt4FP\nAP+jqj5VVd8D/iODxmrYO6rq4aq6C/hz4Kaq+urQ37+o++z9Iz773Dm+w5XAbVV10/FWhiRpxZjY\n9qmq3lFVT+n+5gPAQ81qRVrhTLCkwS9798+ady8Mrgwl+XdJvpLkAPBHwMlJMlR239D4oyOmT5y1\n7m8spvwiP5sk/xJ4AYNfKiVJq8dEt08AVfVnwHeAX5//q0qrhwmWBP8TOG3WvKd3//594DnAS6rq\nZL7/6+ARjcgS+H8X+uwkO4CXAy+rqoPLEJMkaflMbPs0yzrgh5chLmlFMMGS4I+Bx5O8KcnaJFsZ\n3M8E8BQGv9p9K8kpwPZljOvE+T47ya8x6A//U1V1YBnjkiQtj4lrnzJwcZKTu+mzgTcBf7iM8Ulj\nZYKlqVdVh4BXAv838CCDG3o/BjwG/GsGN+f+bwY3B984+8+P9uOO4u9/d4HP/qcMfsm8p3tC1Lfi\nu0YkadWY4PbpZxm0Td8CrgUur6orjjIeaWKlav7jL8npDA6OTQwes/meqnrniHLvBM4HHgYuqqo9\n7cOVlkeSzwH/tqquGXcskkZL8iTg08B6Bl2QPlxVO2aVWc+gDXsxg/8MvqqqvrbcsUqt2D5JK99i\nrmB9F3hLVf0og3fsvCnJ84cLJDkfeFZVPQd4A4MnmkkTI8lPJNnUdcF4HYPH0X5y3HFJmltVPQb8\njap6EXAmcH7XHWnYLwH7u/bpd4HfWuYwpeNi+yRNngUTrKp6YOZqVHcT/V0cecPlVga/EFJVtwAb\nk2xqHKu0lJ4H/BmDLhi/Cvztqto3/59IGreqeqQbfRKDq1izu2VsBWZ+6f8wsGWZQpNasX2SJsy6\noymc5AwGvxLeMmvRaXSPDe3c383zBKCJUFXvAd4z7jgkHZ0ka4BdwLOAK6rq1llFDrdPVfV4kgNJ\nTqmq/cscqnRMbJ+kybPoBCvJiQx+/XvzsT4OOsnR3nApSVpFqqrpI6S7F6a+KMlJwEeSvKCq7pzn\nT0Z+vu2TJE23lu3Top4imGQdg+TqA1V1w4gi9/P99zIAnM6RL8YDoKqaD9u2bVuS9Tq4rZoPizwG\nnv70HwXuYNDbaTCcdNIL2bNnz4reVt1RPmtYmuPe4fi21TiGpVRV3wI+BZw3a9F9dO1TkrXASTXH\n1atx18+07Q8reVjJdXjxxZcyuJ1w9rn2+IbubN142LYE6xz3sJ1//I//ifviBA2LqcPWFvuY9vcB\nd1bV5XMs3wlcCJDkHOBA2T9YkrSEkvxgko3d+A8ALwPunlXso8DruvGfB25evgglSdNowS6CSV4K\nvBa4I8ltDNL3y4DNQFXVVVV1Y5JXJLmHwWPaX7+UQUuSBPwl4JruPqw1wAe79mgHcGtVfQy4GvhA\nkr3AN4FXjy9cSdI0WDDBqqrPAmsXUe6SJhEdg16vN66P1lFyW00Ot9XkmNZtVVV3AGeNmL9taPwx\n4O8sZ1zjNq37Q0vWYSu9cQcw8dwXj9846nCxXQRXNHe+yeG2mhxuq8nhttIw94fjZx220ht3ABPP\nffH4mWBJkiRJ0gQzwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSp\nERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkyw\nJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSNJGSnJ7k5iSf\nT3JHkktHlDk3yYEku7vh7eOIVZI0PdaNOwBJko7Rd4G3VNWeJCcCu5LcVFV3zyr36aq6YAzxSZKm\nkFewJEkTqaoeqKo93fhB4C7gtBFFs6yBSZKmmgmWJGniJTkDOBO4ZcTic5LcluTjSV6wrIFJkqaO\nXQQlSROt6x74YeDN3ZWsYbuAzVX1SJLzgY8Azx21nu3btx8e7/V69Hq9JYlXkjRe/X6ffr+/ZOs3\nwZIkTawk6xgkVx+oqhtmLx9OuKrqE0neneSUqto/u+xwgiVJWr1m/4i2Y8eOpuu3i6AkaZK9D7iz\nqi4ftTDJpqHxs4GMSq4kSWrFK1iSpImU5KXAa4E7ktwGFHAZsBmoqroK+LkkbwQOAY8CrxpXvJKk\n6WCCJUmaSFX1WWDtAmWuAK5YnogkSbKLoCRJkiQ1Y4IlSZIkSY2YYEmSJElSIyZYkiRJktSICZYk\nSZIkNWKCJUmSJEmNLJhgJbk6yb4kt8+x/NwkB5Ls7oa3tw9TkiRJkla+xbwH6/3AvwGunafMp6vq\ngjYhSZIkSdJkWvAKVlV9BnhwgWJpE44kSZIkTa5W92Cdk+S2JB9P8oJG65QkSZKkibKYLoIL2QVs\nrqpHkpwPfAR47lyFt2/ffni81+vR6/UahCBJWmn6/T79fn/cYUiStKyOO8GqqoND459I8u4kp1TV\n/lHlhxMsSdLqNftHtB07dowvGEmSlsliuwiGOe6zSrJpaPxsIHMlV5IkSZK0mi14BSvJdUAPeFqS\nrwHbgPVAVdVVwM8leSNwCHgUeNXShStJkiRJK9eCCVZVvWaB5VcAVzSLSJIkSZImVKunCEqSJEnS\n1DPBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEkTKcnpSW5O8vkkdyS5\ndI5y70yyN8meJGcud5ySpOmy4HuwJElaob4LvKWq9iQ5EdiV5KaqunumQJLzgWdV1XOS/DhwJXDO\nmOKVJE0Br2BJkiZSVT1QVXu68YPAXcBps4ptBa7tytwCbEyyaVkDlSRNFRMsSdLES3IGcCZwy6xF\npwH3Dk3fz5FJmCRJzdhFUJI00brugR8G3txdyTom27dvPzze6/Xo9XrHHZskaeXp9/v0+/0lW78J\nliRpYiVZxyC5+kBV3TCiyP3A04emT+/mHWE4wZIkrV6zf0TbsWNH0/XbRVCSNMneB9xZVZfPsXwn\ncCFAknOAA1W1b7mCkyRNH69gSZImUpKXAq8F7khyG1DAZcBmoKrqqqq6MckrktwDPAy8fnwRS5Km\ngQmWJGkiVdVngbWLKHfJMoQjSRJgF0FJkiRJasYES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIk\nSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkR\nEyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAk\nSZIkqRETLEmSJElqZMEEK8nVSfYluX2eMu9MsjfJniRntg1RkqQjLdQ+JTk3yYEku7vh7csdoyRp\n+izmCtb7gZfPtTDJ+cCzquo5wBuAKxvFJknSfOZtnzqfrqqzuuE3lyMoSdJ0WzDBqqrPAA/OU2Qr\ncG1X9hZgY5JNbcKTJGm0RbRPAFmOWCRJmtHiHqzTgHuHpu/v5kmSNG7nJLktyceTvGDcwUiSVr91\ny/2B27dvPzze6/Xo9XrLHYKkzqmnnsG+fV99wrxNmzbzwANfGU9AWlX6/T79fn+cIewCNlfVI113\n9o8Az52rsO2TJE2HpW6fWiRY9wNPH5o+vZs30nADJmm8BslVzZpnjyq1MTtJ2bFjx7J+flUdHBr/\nRJJ3JzmlqvaPKm/7JEnTYanbp8V2EQxz92PfCVwIkOQc4EBV7WsQmyRJC5mzfRq+HzjJ2UDmSq4k\nSWplwStYSa4DesDTknwN2AasB6qqrqqqG5O8Isk9wMPA65cyYEmSYOH2Cfi5JG8EDgGPAq8aV6yS\npOmxYIJVVa9ZRJlL2oQjSdLiLNQ+VdUVwBXLFI4kSUCbpwhKkiRJkjDBkiRJkqRmTLAkSZIkqRET\nLEmSJElqxARLkiRJkhoxwZIkSZKkRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJEmSpEZMsCRJ\nkiSpERMsSZIkSWrEBEuSJEmSGjHBkiRJkqRGTLAkSZIkqRETLEmSJElqxARLkiRJkhoxwZIkSZKk\nRkywJEmSJKkREyxJkiRJasQES5IkSZIaMcGSJE2kJFcn2Zfk9nnKvDPJ3iR7kpy5nPFJkqaTCZYk\naVK9H3j5XAuTnA88q6qeA7wBuHK5ApMkTS8TLEnSRKqqzwAPzlNkK3BtV/YWYGOSTcsRmyRpeplg\nSZJWq9OAe4em7+/mSZK0ZNaNOwBJklaC7du3Hx7v9Xr0er2xxSJp5fqd37mC3/iNXx93GFNr06bN\nPPDAV45rHf1+n36/3ySeUUywJEmr1f3A04emT+/mjTScYEnSXB5++JtAjTuMqbVvX457HbN/RNux\nY8dxr3OYXQQlSZMs3TDKTuBCgCTnAAeqat9yBSZJmk5ewZIkTaQk1wE94GlJvgZsA9YDVVVXVdWN\nSV6R5B7gYeD144tWkjQtTLAkSROpql6ziDKXLEcskiTNsIugJEmSJDVigiVJkiRJjZhgSZIkSVIj\nJliSJEmS1IgJliRJkiQ1YoIlSZIkSY0sKsFKcl6Su5N8MclbRyx/XZJvJNndDb/YPlRJkiRJWtkW\nfA9WkjXAu4AtwNeBW5PcUFV3zyp6fVVdugQxSpIkSdJEWMwVrLOBvVX11ao6BFwPbB1RLk0jkyRJ\nkqQJs5gE6zTg3qHp+7p5s70yyZ4kH0pyepPoJEmSJGmCLNhFcJF2AtdV1aEkFwPXMOhSeITt27cf\nHu/1evR6vUYhSJJWkn6/T7/fH3cYkiQtq8UkWPcDzxiaPr2bd1hVPTg0+V7gt+Za2XCCJUlavWb/\niLZjx47xBSNJ0jJZTBfBW4FnJ9mcZD3wagZXrA5LcurQ5FbgznYhSpIkSdJkWPAKVlU9nuQS4CYG\nCdnVVXVXkh3ArVX1MeDSJBcAh4D9wEVLGLMkSZIkrUiLugerqj4JPG/WvG1D45cBl7UNTZIkSZIm\ny6JeNCxJkiRJWpgJliRJkiQ1YoIlSZIkSY2YYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmaWEnO\nS3J3ki8meeuI5a9L8o0ku7vhF8cRpyRpeizqPViSJK00SdYA7wK2AF8Hbk1yQ1XdPavo9VV16bIH\nKEmaSl7BkiRNqrOBvVX11ao6BFwPbB1RLssbliRpmplgSZIm1WnAvUPT93XzZntlkj1JPpTk9OUJ\nTZI0rewiKElazXYC11XVoSQXA9cw6FJ4hO3btx8e7/V69Hq95YhPkrTM+v0+/X5/ydZvgiVJmlT3\nA88Ymj69m3dYVT04NPle4LfmWtlwgiVJWr1m/4i2Y8eOpuu3i6AkaVLdCjw7yeYk64FXM7hidViS\nU4cmtwJ3LmN8kqQp5BUsSdJEqqrHk1wC3MTgB8Orq+quJDuAW6vqY8ClSS4ADgH7gYvGFrAkaSqY\nYEmSJlZVfRJ43qx524bGLwMuW+64JEnTyy6CkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMm\nWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2YYEmS\nJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJ\njZhgSZIkSVIjJliSJEmS1MiiEqwk5yW5O8kXk7x1xPL1Sa5PsjfJHyd5RvtQ59bv95fz43Qc3FaT\nw201OaZ5W6309mkcpnl/aMU6bKU/7gBWgf64A5h44zieF0ywkqwB3gW8HPhR4BeSPH9WsV8C9lfV\nc4DfBX6rdaDz8UQ4OdxWk8NtNTmmdVtNQvs0DtO6P7RkHbbSH3cAq0B/3AFMvBWZYAFnA3ur6qtV\ndQi4Htg6q8xW4Jpu/MPAlnYhSpI0ku2TJGnFWbeIMqcB9w5N38egURtZpqoeT3IgySlVtb9NmNJ0\nWb/+BE488U2sWXPS4Xnf+c6XOeGEE8YYlbTi2D5p6jzpSSewYcNVrF//h21X/C046aS/1XSV3/nO\nF9iwYVfTdY7bY499gcceG3cUWulSVfMXSP428PKqurib/rvA2VV16VCZO7oyX++m7+nK7J+1rvk/\nTJK0qlVVWq3L9kmS1ErL9mkxV7DuB4ZvCj69mzfsPuDpwNeTrAVOGvXrYMvAJUlTz/ZJkrTiLOYe\nrFuBZyfZnGQ98Gpg56wyHwVe143/PHBzuxAlSRrJ9kmStOIseAWr67N+CXATg4Ts6qq6K8kO4Naq\n+hhwNfCBJHuBbzJo5CRJWjK2T5KklWjBe7AkSZIkSYuzqBcNL4ckVyfZl+T2oXlPTXJTki8k+YMk\nG4eWvbN7ceSeJGcOzX9d98LJLyS5cGj+WUlu75b97vJ9s9Vnjm21Lcl9SXZ3w3lDy36t21Z3Jfnp\nofkjXxCa5Iwkn+vm/16SxdwrqBGSnJ7k5iSfT3JHkku7+R5bK8yIbfUr3XyPLR0hycYk/7Hb9p9P\n8uPHclxPsyS/muTPu/PX/5fBS6lHHiOZwhdWj7LU/1ebBnPU4W91x/KeJL+f5KShZUd1np8Wo+px\naNnfT/K9JKcMzVvefbGqVsQA/DXgTOD2oXnvAP5hN/5W4F904+cDH+/Gfxz4XDf+VOB/ABuBk2fG\nu2W3AC/pxm9k8FSpsX/vSRzm2FbbgLeMKPsjwG0MuqOeAdwDhEFyfw+wGTgB2AM8v/ubDwI/343/\nW+AN4/7OkzoApwJnduMnAl8Anu+xtfKGebaVx5bDqP3l3wOv78bXdcfmUR3X0zwAPwR8CVjfTX+Q\nwb16I48R4I3Au7vxVwHXj/s7jKnelvT/atMwzFGHPwWs6cb/BfDPu/EXHO15flqGUfXYzT8d+CTw\nZeCUce2LK+YKVlV9Bnhw1uzhF0Rew/dfILkVuLb7u1uAjUk2AS8Hbqqqh6rqAIN++eclORV4SlXd\n2v39tcDPLNmXWeXm2FYwOOhn28qgIfpuVX0F2MvgPTXzvSD0J4Hf78avAX62YfhTpaoeqKo93fhB\n4C4GJx+PrRVmjm11WrfYY0uHdb9u//Wqej9Atw88xNEf19NuLfAXuqtUPwB8HfgbPPEYmTmf+cJq\nlvb/aksd+0oxqg6r6g+r6nvd5OcYtNMAF3D05/mpMM//Rf818A9mzVv2fXHFJFhz+ItVtQ8G//kA\nZhqEUS+XPG3E/PuH5t83orzaelN36fW9Q10E5tsmR2zDJE8DHhw60dzH4JdGHackZzD4tedzwCaP\nrZVraFvd0s3y2NKwZwL/O8n7u26jVyV5Mos/rmf2lalVg/ei/TbwNQb18RCwGzgw6xiZqacnvLAa\nODDc/WjKtfq/mgZ+kUFvEDjK8/yyRLeCJbkAuLeq7pi1aNn3xZWeYM021xM5fH/J+L0beFZVnQk8\nwKDhOlZuz8aSnMjgV9c3d1dHZh9LHlsrxIht5bGl2dYBZwFXVNVZwMPA21j8cT31kpzM4FftzQx+\naPgLHN0v1x5Lc7M9OUZJ/hFwqKp+b9yxTJokPwBcxqBb/YLFlzicFZ9g7ZvpxtB1RfpGN/9+Bi+O\nnDHzcsm5Xjo5V3k1UlX/q7oOrcB7GFy+hqPcVlX1TeDkJGtmldcx6rq/fBj4QFXd0M322FqBRm0r\njy2NcB+DX2n/tJv+fQYJ19Ee19Psp4AvVdX+7orUfwZeytzHyOE6zDwvrJ5SrdqTqZbkIuAVwGuG\nZluHi/csBvep/VmSLzOok91J/iJjqMeVlmCFJ2aVO4GLuvGLgBuG5l8IkOQcBpf09wF/ALyse7rS\nU4GXAX/QXbJ+KMnZSdL97Q3oeDxhW3Un1RmvBP68G98JvLp7AtMzgWcDf8LoF4TObJObGbwQFAY3\nHbutjs/7gDur6vKheR5bK9MR28pjS7N1x+S9SZ7bzdoCfJ6jP66n2deAc5Js6M5dM3X4KUYfIzvx\nhdUzluT/aksf9ooy+/9Q5zG4b+iCqnpsqNzRnOdnv2R9Ghyux6r686o6tap+uKqeyeCHqBdV1TcY\nx77Y4kkZLQbgOgY3mD7G4MT3egZP9/hDBk/Tugk4eaj8uxg8QeXPgLOG5l/E4CbALwIXDs1/MXBH\nt+zycX/fSR7m2FbXArczeJLNRxjcCzBT/te6bXUX8NND88/rtu1e4G1D85/J4N6TLzJ4otMJ4/7O\nkzow+EX28W673MbgHoPzgFM8tlbWMM+28thyGLW//GUG/8naA/wnBk/BOurjepoHBl2J7uqOr2sY\nPI1t5DECPAn4UHdMfQ44Y9zxj6nOlvT/atMwzFGHe4Gvduf93XRPrOzKH9V5fo3XzE4AACAASURB\nVFqGUfU4a/mX6J4i2E0v677oi4YlSZIkqZGV1kVQkiRJkiaWCZYkSZIkNWKCJUmSJEmNmGBJkiRJ\nUiMmWJIkSZLUiAmWJEmSJDVigiVJkiRJjZhgSZIkSVIjJliSJEmS1IgJliRJkiQ1YoIlSZIkSY2Y\nYEmSJElSIyZYkiRJktSICZYkSZIkNWKCJUmSJEmNmGBJkiRJUiMmWJIkSZLUiAmWJEmSJDVigiVJ\nkiRJjZhgSZIkSVIjJliSJEmS1IgJlnSMknw5yU/OseyfJbn0GNf7Y0k+e3zRSZIESc5Ncu88y9cn\n+XySTce4/n+V5JePPUJp9THBkhpL8oPA3wP+3Txl3pTk1iTfSfK+4WVVdQfwYJK/ucShSpJWgS5J\nem+SryR5KMnuJOcNFal5/vxi4I+qat8c6/7xJDcl+WaSfUk+mOTUoSL/CrgsyboGX0VaFUywpPYu\nAm6sqsfmKXM/8BvA1XMsvw7wF0FJ0mKsA74G/PWq2gj8Y+BDSZ6xiL/9ZeAD8yx/KoMfDDd3w0Hg\n/TMLq+oB4C7ggmMLXVp9TLCkBpL8SJIvJXkVcD7wR/OVr6qPVNVOYP8cRfrAliQntI1UkrTaVNUj\nVfXrVXVvN/1x4MvAi2eXTXJpkj9P8kNJng48E7hlnnV/sqp+v6oOVtV3gHcBf3VWsT8C7HUhdUyw\npOOU5Czgk8CbquqDwI8BXziedVbV14FDwPOOP0JJ0jTp7qd6DvD5WfP/CXAh8BNdO/NjwJeq6ntH\nsfpzZ6+XwRWsv3zsEUuri/1lpePzE8AvAa+pqv/WzTsZ+HaDdX+7W5ckSYvS3Qv1H4B/X1VfTPKX\ngDVJfht4CdCrqoNd8aNqr5K8kEH3w781a5HtlTTEK1jS8XkD8Nmh5ArgQeApMxNJbkzy7STfSvIL\nR7HupwAHGsUpSVrlkoRBcvUY8CtDi04G/h/gnw8lV3Bke/X0rr36dpJvzVr3s4EbgV+pqv8+66Nt\nr6QhJljS8fll4BlJfmdo3u3Ac2cmquoVVfWUqjqpqn5vMStN8kPACRxnV0NJ0lS5GvhB4JVV9fjQ\n/P3A/wX8+yTD90/dDjwzyRqAqrq3a6+eUlUnzRRKshn4L8COqrpuxOf+CPBnjb+LNLFMsKTj823g\nPOAnkvyzbt6NQG++P0qyNskGYC2wLsmTkqwdKnIucHNVHVqCmCVJq0ySK4HnAxdU1f+ZvbyqPg28\nFvj9JC/p5t0P3AOcPc96TwP+K/Bvquo9cxQ7F/jE8X0DafUwwZKOXQFU1beAlwHnJ9kBXAu8IsmT\n5vnbtwOPAG9l0OA9AvyjoeWvBa5ciqAlSatL9zj2i4EzgX1zdUuvqj9kcN/wziRndrOvYvDgi7n8\nEoMnDW7v1vmE7oPdPV4/Anyk3TeSJluq5nv3HCS5msFl5X1V9cI5yryTwaOpHwYuqqo9rQOVJkmS\n3wS+UVXvPIa//THgyqp6afvIpNXD9kk6fv8/e/ceLlld3/n+/YEWBJFGdIKRmxxRQScJYmzJxMuO\naADloZM4URBHNB5NjASfGGdQJ2e6e5JJoqNO9KCHOCEGNNommiAa1Nbg1jEZsEdoQWykiRGaRjrh\nJt6D8D1/1NpNUb0vtenfvtSu9+t56ulVa/1q1e+3Lv3bn1q3JPsAVwInzvSw4Tk+/zbghqryR0Gp\nM0zAega9h8pdNF0HluQU4OyqekGSpwPvrKoTFqS2kiR17J8kScvRnKcIVtUX6d1lZiZr6Z0SRVVd\nAazunr8gSdKCsX+SJC1HLa7BOhTY3vd+RzdOkqSlZP8kSVp03uRCkiRJkhpZ1WAeO4DD+94f1o3b\nTZLZL/iSJK1oVZVF/Dr7J0nSUFr2T8MewUr3ms4ldLf3THICcNdsd6GpqrF8rVu3bsnrYNsX5vXQ\nhx4I3MUBB7yED3zgA1RN/Z3W+3eq/fePuX9opnneX2b2cqPwWunr3/YP3/YFYv/kNmrbp3ndeuut\n7LffTwDF6tVP44orrqCqZf80+vvMSl7/tn9+bW9tziNYST5I76Gpj0xyE7AO2Ke3X9V7q+rSJM9P\ncgO92+C+onktJUkaYP8kSVqO5gxYVfWSIcqc3aY6kiQNx/5JkrQceZOLRTIxMbHUVVgy49x2sP22\nf2Kpq7Bkxrnto2Sc19M4tx1sv+2fWOoqLJmFbvucDxpu+mVJLeb3SYthv/1W88Mf3sQBB/wm55//\nfM4880yS0DtHPbvO7U3SjWG3aYPu/zyzlpNGSRJqcW9yMTT7J600O3fu5Kijfpof/GAnq1evYdOm\n81izZk3D/sm+SStH6/7JI1iSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJ\nkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmN\nGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJ\nkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1MhQASvJyUmuS3J9knOnmX54ksuSXJlk\nS5JT2ldVkqQHsn+SJC03cwasJHsB5wEnAU8GzkhyzECx3wU+XFXHA2cA72ldUUmS+tk/SZKWo2GO\nYK0BtlXVjVV1D7ARWDtQ5j7gwG74IGBHuypKkjQt+ydJ0rKzaogyhwLb+97fTK9T67cB2JTkHGB/\n4LltqidJ0ozsnyRJy84wAWsYZwDvq6r/keQE4AP0TtfYzfr163cNT0xMMDEx0agKkqTlZHJyksnJ\nyaWuhv2TJOkBFrp/GiZg7QCO6Ht/GLufYvFKeufAU1WXJ3lokkdV1W2DM+vvwCRJK9dgSNmwYUPr\nr7B/kiTN20L3T8Ncg7UZODrJkUn2AU4HLhkocyPdaRdJjgX2na7zkiSpIfsnSdKyM2fAqqp7gbOB\nTcC1wMaq2ppkQ5JTu2JvAF6VZAvwF8BZC1VhSZLA/kmStDwNdQ1WVX0KeOLAuHV9w1uBZ7StmiRJ\ns7N/kiQtN0M9aFiSJEmSNDcDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYs\nSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJ\nUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFg\nSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEaGClhJTk5yXZLrk5w7\nQ5kXJbk2yTVJPtC2mpIk7c7+SZK03Kyaq0CSvYDzgBOBW4DNST5WVdf1lTkaOBf4uaq6O8mjFqrC\nkiSB/ZMkaXka5gjWGmBbVd1YVfcAG4G1A2VeBby7qu4GqKrb2lZTkqTd2D9JkpadYQLWocD2vvc3\nd+P6PQF4YpIvJvmHJCe1qqAkSTOwf5IkLTtzniI4j/kcDTwLOAL4QpJ/O/WLYb/169fvGp6YmGBi\nYqJRFSRJy8nk5CSTk5NLXQ37J0nSAyx0/zRMwNpBr1Oaclg3rt/NwOVVdR/wzSTXA48Hvjw4s/4O\nTJK0cg2GlA0bNrT+CvsnSdK8LXT/NMwpgpuBo5McmWQf4HTgkoEyFwO/ANBdQPx44BstKypJ0gD7\nJ0nSsjNnwKqqe4GzgU3AtcDGqtqaZEOSU7synwZuT3It8HfAG6rqzgWstyRpzNk/SZKWo6Guwaqq\nTwFPHBi3buD97wC/065qkiTNzv5JkrTcDPWgYUmSJEnS3AxYkiRJktSIAUuSJEmSGjFgSZIkSVIj\nBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmS\nJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIa\nMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuS\nJEmSGhkqYCU5Ocl1Sa5Pcu4s5V6Y5L4kx7eroiRJ07N/kiQtN3MGrCR7AecBJwFPBs5Icsw05Q4A\nzgEub11JSZIG2T9JkpajYY5grQG2VdWNVXUPsBFYO0253wP+CPhRw/pJkjQT+ydJ0rIzTMA6FNje\n9/7mbtwuSZ4CHFZVn2xYN0mSZmP/JEladlbt6QySBHgHcFb/6JnKr1+/ftfwxMQEExMTe1oFSdIy\nNDk5yeTk5JJ9v/2TJGk6C90/papmL5CcAKyvqpO7928Eqqre0r0/ELgB+C69juvRwO3AaVV15cC8\naq7vk0bNfvut5oc/vIkDDvhNzj//+Zx55pn0/q4rIExt80m6Mew2bdD9n2fWctIoSUJVzRhwHsT8\n7J+kGezcuZOjjvppfvCDnaxevYZNm85jzZo1Dfsn+yatHK37p2GOYG0Gjk5yJPAt4HTgjKmJVXU3\n8BN9Ffwc8PqquqpVJSVJmob9kyRp2ZnzGqyquhc4G9gEXAtsrKqtSTYkOXW6jzDLKRiSJLVg/yRJ\nWo6Gugarqj4FPHFg3LoZyj6nQb0kSZqT/ZMkabkZ6kHDkiRJkqS5GbAkSZIkqREDliRJkiQ1YsCS\nJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIk\nNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOW\nJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIk\nqREDliRJkiQ1MlTASnJykuuSXJ/k3Gmm/3aSa5NsSfKZJIe3r6okSQ9k/yRJWm7mDFhJ9gLOA04C\nngyckeSYgWJXAk+tquOAjwL/vXVFJUnqZ/8kSVqOhjmCtQbYVlU3VtU9wEZgbX+Bqvp8Vf2we3s5\ncGjbakqStBv7J0nSsjNMwDoU2N73/mZm76BeCXxyTyolSdIQ7J8kScvOqpYzS/JS4KnAs2cqs379\n+l3DExMTTExMtKyCJGmZmJycZHJycqmrAdg/SZLut9D90zABawdwRN/7w7pxD5DkucCbgGd1p2pM\nq78DkyStXIMhZcOGDa2/wv5JkjRvC90/DXOK4Gbg6CRHJtkHOB24pL9AkqcA5wOnVdXtTWsoSdL0\n7J8kScvOnAGrqu4FzgY2AdcCG6tqa5INSU7tir0VeBjwV0muSnLxgtVYkiTsnyRJy9NQ12BV1aeA\nJw6MW9c3/LzG9ZIkaU72T5Kk5WaoBw1LkiRJkuZmwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIk\nSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhox\nYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5Ik\nSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktTI\nUAEryclJrktyfZJzp5m+T5KNSbYl+d9Jjmhf1dE2OTm51FVYMuPcdrD9tn9yqauwZBaj7fZPe85t\ndHzZ/smlrsKSGuf2L3Tb5wxYSfYCzgNOAp4MnJHkmIFirwTuqKrHA38MvLV1RUedG/H4sv2TS12F\nJTXO7V/otts/teE2Or5s/+RSV2FJjXP7lzxgAWuAbVV1Y1XdA2wE1g6UWQtc2A1/BDixXRUlSZqW\n/ZMkadkZJmAdCmzve39zN27aMlV1L3BXkoOb1FAaCX/Iv/7r1UtdCWnc2D9Js7jnnu8C6/nhD3cs\ndVWksZKqmr1A8kLgpKp6dff+pcCaqjqnr8w1XZlbuvc3dGXuGJjX7F8mSVrRqiqt5mX/JElqpWX/\ntGqIMjuA/ouCD+vG9bsZOBy4JcnewIGDnRe0rbgkaezZP0mSlp1hThHcDByd5Mgk+wCnA5cMlPk4\ncFY3/KvAZe2qKEnStOyfJEnLzpxHsKrq3iRnA5voBbILqmprkg3A5qr6BHAB8P4k24Db6XVykiQt\nGPsnSdJyNOc1WJIkSZKk4Qz1oGHNLslhSS5Lcm2Sa5Kc041/RJJNSb6e5NNJVvd95l3dgy+3JDlu\n6Wq/56Zp/29149cluTnJld3r5L7PvKlr/9Ykv7h0td9zSfZNckWSq7r2r+vGPzbJ5d0DUD+UZFU3\nfsU8+HSWtr8vyTe68Vcm+em+z6yYbX9Kkr26dl7SvV/x635K1/ar+tr+5+O07kfFmG+j30zylW6b\n/FI3blz659VJ/qrra69N8vQxavsT+v4fuirJt5OcMy7tB0jy20m+muTqJH/R7d/jtO+/rvvbZNH/\nNjdgtfFj4PVV9WTg54DXpvewyzcCn62qJ9I77/9NAElOAR7XPfjy14Hzl6bazQy2/+zc/7DPd1TV\n8d3rUwBJjgVeBBwLnAK8J8nIXmBeVT8CfqGqngIcB5yS5OnAW4C3V9UTgLvoPfAUVtCDT2dpO8Ab\nquop3bq/Glbktj/ldcDX+t6v+HXf53XAtX3vC/idMVr3o2Kct9H7gIlum1zTjRuX/vmdwKVVdSzw\nM8B1jEnbq+r6qf+HgKcC3wP+hjFpf5LHAL8FHF9VP03vsqAzGJN9P8mT6bXpZ+n9fXJqksexSOvf\ngNVAVd1aVVu64e8CW+ndzar/AZcXcv8DMNcCF3XlrwBWJzlkUSvd0Aztn3oWzXTBaS2wsap+XFXf\nBLbRe2DoyKqq73eD+9L7T6yAXwA+2o2/EPilbnhFPfh0mrbf172fad2vmG0fekdwgecDf9o3+jmM\nwbqfoe0wfd+y4tb9qBjnbbQTdt8mV3z/nORA4JlV9T6Ars/9NmPQ9mk8F/jHqtrOeLV/b+Bh3VGq\n/YBbGJO/Tej9iH9FVf2oewbiF4BfAU5jEda/AauxJI+ll5QvBw6pqp3QCyHA1IoafDjmDnZ/OOZI\n6mv/Fd2o13aHWv+07zDsimt/d/rNVcCtwGeAfwTuqqqpsNH/ANQV9eDTwbZX1eZu0u936/7tSR7S\njVtx6x74H8B/pBeqSfJI4M5xWPcMtL3PuKz7UTHO2yj02v3pJJuT/N/duHHon48CbkvvlO0rk7w3\nyf6MR9sHvRj4YDc8Fu3vnv33duAmem35NnAlY/K3CfBV4JndKYH70/uR6XAWaf0bsBpKcgC91P+6\n7kjO4B8dK/qOItO0/z30DrceR++P77cvZf0WUlXd150mdxi9o3HHzPGRfiN7eiTs3vYkTwLe2J2S\n8jTgkcC5S1nHhZLkBcDO7ghu/3ocdp2O7Lqfpe1jse5HxThvo31+vqp+lt4fWK9N8kzGo39eBRwP\nvLs7Te579E6PGoe279L9yHMa8FfdqLFof5KD6B2VORJ4DPAw4ORZPzQwi4Wo12KpquvonQ75GeBS\n4Crg3umKLsT3G7Aa6Q6/fgR4f1V9rBu9c+rwYpJHA//cjd9BL0VPme7hmCNluvZX1b/U/bep/J/c\nfxrgimv/lKq6G5ikdy3aQUmm9rH+Nu5qf2Z58Omo6Wv7yX2/Dt0DvI+Vu+5/HjgtyTeAD9E77eqd\n9E4tWOnrfre2J7lojNb9qBjnbRSAqvpW9++/ABfT2ybHoX++GdheVf+ne/9ReoFrHNre7xTgy1V1\nW/d+XNr/XOAbVXVHd0Tqb+j9fzA2f5tU1fuq6meraoLe9WZfZ5HWvwGrnT8DvlZV7+wbdwnw8m74\n5cDH+sa/DCDJCfQO1+5cnGoumN3a3224U36F3uFa6LX/9O6ONUcBRwNfWrSaNpbkUVOnPybZD3ge\nvYvJP0fvwabQe9Bp//pfEQ8+naHt102t++7mJb/EA9f9itn2q+rNVXVEVf1f9J6vdFlVvZQxWPcz\ntP1l47LuR8U4b6MASfbvzq4gycOAXwSuYQz6567e25M8oRt1Ir0b0qz4tg84g96PC1PGpf03ASck\neWj3//HU+h+LfR8gyb/p/j0C+GV6p4kuzvqvKl97+KL3i8C9wBZ6hyCvpHcY9mDgs/QS8ybgoL7P\nnAfcAHyF3h1elrwdC9D+i4Cru/EX0zvvdeozb+ravxX4xaVuwx62/6e6Nm/p2vufu/FH0bsW7Xrg\nw8BDuvH7An9J7+YelwOPXeo2LEDb/67btq/utoP9+z6zYrb9gWXxbOCScVn3s7R97Nb9qLzGcRvt\n2jnVN11D7xRWxqh//hlgc7cM/hpYPS5t79qzP/AvwMP7xo1T+9fR+zvrano3dHjIuOz7XZu+QO9H\nvqvo3Ul00da/DxqWJEmSpEY8RVCSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqRED\nliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmS\nJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0Y\nsCRJkiSpEQOWJEmSJDViwJIaSPLsJNtnmb5PkmuTHPIg5/+2JL/x4GsoSRoXC90nzTLPrUke2Wqe\n0qgyYEnzkOT9SW5J8u0k1yV5Zd/kmuWjrwY+X1U7Z5jvsUk2J7kjye1JNiU5tq/I24A3J1nVoBmS\npBVgofqkWb5vIsllSe5K8o3+aVX1r8AFwJvmM09pJTJgSfPzB8CRVbUaWAv8fpKnDPG53wDeP8v0\nHcALq+pg4FHAx4GNUxOr6lZgK3Dag624JGnFad4ndUe/PjfD575HL0S9YYbpHwLOSvKQIeogrVgG\nLGkeqmprVd3TPwp43GC5JOck+WqSxyQ5HDgKuGKW+d5dVTd1b/cG7ptmvp8HXrBHDZAkrRgL1Scx\nw9GvqtpcVX8B/NMM03cAdwAnDNsGaSUyYEnzlOTdSb5H74jSLcClA9P/C/Ay4FlVdQvwU8A3quq+\nIeZ9J/B94J3AfxuYvBX4mT1vgSRppVjIPulBug77Ko05A5Y0T1X1WuAA4BnAXwM/6ibtleTtwHOB\niaq6oxt/EPCdIef9CGA1cDbwlYHJ3+nmJUkSsCB9UvawSvZVGnsGLOlBqJ5/AA4HXtONPgh4FfCH\nVfXdvuJ3Ag+fepPk8CTf6V53TzPvHwB/AlyU5FF9kx4O3NW4KZKkEbcnfRJAknOT3JnkDnrXAD+j\nu+nS1Lj5sK/S2DNgSXtmFfef734HcCrw50n+XV+Zq4GjkuwFUFXbq+rh3evAGea7N7A/cGjfuGPZ\n/aiWJElT5t0nAVTVW6rqEd2Nlk4FvlhVB/eNmw/7Ko09A5Y0pCT/JsmLkzwsyV5JTgJOBz47Vaaq\nvgCcCXw0ydO6cTuAG4A1s8z7uUmO6+Z7IPAOep3j1r5izwY+2bxhkqSRs5B90izfmST7AvvQOwVx\n3/47BiZ5DPAI4PI9aZs06gxY0vCK3qkX2+mFn7cCr6uqv31AoarPAq8ELklyXDf6vfQuMp7JQfRu\nb3sXsI3eHZ5O7p4rQpKfpPer4MXNWiNJGmUL2SfN5FnAD4BP0Dsd8fvAp/umnwlcOHBnQ2nspGq2\n59BBkgvoHS7eWVU/PUOZdwGn0Hs+wsurakvrikqjLMk+wJXAifN9sGP3+bcBN1TV+c0rJ42o7pf0\nL9D7NX0V8JGq2jBQZh/gIuCpwG3Ai/seiSCNpT3tk2aZ5xZ6dyu8rcU8pVE1TMB6BvBd4KLpAlaS\nU4Czq+oFSZ4OvLOqfP6BJGnBJdm/qr6fZG/g74FzqupLfdNfA/xUVf1mkhcDv1xVpy9VfSVJK9+c\npwhW1Rfp3XFmJmvp/TpIVV0BrE5ySJvqSZI0s6r6fje4L72jWIO/Gq4FLuyGPwKcuEhVkySNqRbX\nYB1K7/zfKTt44J3PJElaEN3F/VcBtwKfqarNA0V29VFVdS9wV5L53hVNkqShrVrML0sy+/mIkqQV\nrar29CGmg/O7D3hKd/fNi5M8qaq+NstHpv1++ydJGm8t+6cWR7B20LuTzJTDunHTqqqxfK1bt27J\n67DSXstlmT70oQcCd3HAAS/hAx/4AFVTf6fVA7b5+8fsPm3wdX+Z2cut1GW6kl4u0/tfC6mq7gY+\nB5w8MOlmuj6qu07rwKqa9sGpbgu+Vso6e+YzTwUuATZz9NFPHe5zi7APuM58Ldf11dqwASvM8Ksf\nvT34ZQBJTgDuqkZ3pJEkaSZJHpVkdTe8H/A84LqBYh8HzuqGfxW4bPFqKEkaR3OeIpjkg8AE8Mgk\nNwHr6N0St6rqvVV1aZLnJ7mB3m3aX7GQFZYkqfOTwIVJ9qL3g+GHuz5pA7C5qj4BXAC8P8k24HZ6\nD2KVJGnBzBmwquolQ5Q5u011Vq6JiYmlrsKK4zJtz2Xanst04VTVNcDx04xf1zf8I+BFi1mvmbgt\njB7X2ehxnY2Wlbq+WlyDpSGs1A1oKblM23OZtucy1RS3hdHjOhs9rrPRslLXlwFLkiRJkhoxYEmS\nJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIa\nMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuS\nJEmSGjFgSZIkSVIjBixJkiRJasSAJUkaSUkOS3JZkmuTXJPknGnKPDvJXUmu7F6/uxR1lSSNj1VL\nXQFJkh6kHwOvr6otSQ4AvpxkU1VdN1DuC1V12hLUT5I0hjyCJUkaSVV1qC/HKQAAIABJREFUa1Vt\n6Ya/C2wFDp2maBa1YpKksWbAkiSNvCSPBY4Drphm8glJrkryt0metKgVkySNHU8RlCSNtO70wI8A\nr+uOZPX7MnBkVX0/ySnAxcATFruOkqTxYcCSJI2sJKvohav3V9XHBqf3B66q+mSS9yQ5uKruGCy7\nfv36XcMTExNMTEwsSJ0lSUtrcnKSycnJBZv/UAErycnAH9M7pfCCqnrLwPTDgQuBg7oyb6qqTzau\nqyRJg/4M+FpVvXO6iUkOqaqd3fAaINOFK3hgwJIkrVyDP6Jt2LCh6fznDFhJ9gLOA04EbgE2J/nY\nwF2afhf4cFX9SZJjgUuBo5rWVJKkPkl+HjgTuCbJVUABbwaOBKqq3gv8+ySvAe4BfgC8eKnqK0ka\nD8McwVoDbKuqGwGSbATWAv0B6z7gwG74IGBHy0pKkjSoqv4e2HuOMu8G3r04NZIkabiAdSiwve/9\nzfRCV78NwKbuIY/7A89tUz1JkiRJGh2tbtN+BvC+qjoceAHwgUbzlSRJkqSRMcwRrB3AEX3vD2P3\nUwBfCZwEUFWXJ3lokkdV1W2DM/MuTZI0Hhb6Lk2SJC1HwwSszcDRSY4EvgWcTu+IVb8b6Z0WeGF3\nk4t9pwtX4F2aJGlcLPRdmiRJWo7mPEWwqu4FzgY2AdcCG6tqa5INSU7tir0BeFWSLcBfAGctVIUl\nSZIkabka6jlYVfUp4IkD49b1DW8FntG2apIkSZI0Wlrd5EKSJEmSxp4BS5IkSZIaMWBJkiRJUiMG\nLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIk\nSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJI2kJIcluSzJtUmuSXLODOXelWRb\nki1JjlvsekqSxsuqpa6AJEkP0o+B11fVliQHAF9OsqmqrpsqkOQU4HFV9fgkTwfOB05YovpKksaA\nR7AkSSOpqm6tqi3d8HeBrcChA8XWAhd1Za4AVic5ZFErKkkaKwYsSdLIS/JY4DjgioFJhwLb+97v\nYPcQJklSMwYsSdJI604P/Ajwuu5IliRJS8ZrsCRJIyvJKnrh6v1V9bFpiuwADu97f1g3bjfr16/f\nNTwxMcHExESzekqSlo/JyUkmJycXbP4GLEnSKPsz4GtV9c4Zpl8CvBb4cJITgLuqaud0BfsDliRp\n5Rr8EW3Dhg1N52/AkiSNpCQ/D5wJXJPkKqCANwNHAlVV762qS5M8P8kNwPeAVyxdjSVJ48CAJUka\nSVX198DeQ5Q7exGqI0kS4E0uJEmSJKkZA5YkSZIkNWLAkiRJkqRGhgpYSU5Ocl2S65OcO0OZFyW5\nNsk1ST7QtpqSJEmStPzNeZOLJHsB5wEnArcAm5N8rKqu6ytzNHAu8HNVdXeSRy1UhSVJkiRpuRrm\nCNYaYFtV3VhV9wAbgbUDZV4FvLuq7gaoqtvaVlOSJEmSlr9hAtahwPa+9zd34/o9AXhiki8m+Yck\nJ7WqoCRJkiSNilbPwVoFHA08CzgC+EKSfzt1REuSJEmSxsEwAWsHvdA05bBuXL+bgcur6j7gm0mu\nBx4PfHlwZuvXr981PDExwcTExPxqLEkaCZOTk0xOTi51NSRJWlTDBKzNwNFJjgS+BZwOnDFQ5uJu\n3IXdDS4eD3xjupn1ByxJ0so1+CPahg0blq4ykiQtkjmvwaqqe4GzgU3AtcDGqtqaZEOSU7synwZu\nT3It8HfAG6rqzgWstyRJkiQtO0Ndg1VVnwKeODBu3cD73wF+p13VJEmSJGm0DPWgYUmSJEnS3AxY\nkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmS\npEYMWJKkkZTkgiQ7k1w9w/RnJ7kryZXd63cXu46SpPGzaqkrIEnSg/Q+4P8FLpqlzBeq6rRFqo8k\nSR7BkiSNpqr6InDnHMWyGHWRJGmKAUuStJKdkOSqJH+b5ElLXRlJ0srnKYKSpJXqy8CRVfX9JKcA\nFwNPWOI6SZJWOAOWJGlFqqrv9g1/Msl7khxcVXdMV379+vW7hicmJpiYmFjwOkqSFt/k5CSTk5ML\nNn8DliRplIUZrrNKckhV7eyG1wCZKVzBAwOWJGnlGvwRbcOGDU3nb8CSJI2kJB8EJoBHJrkJWAfs\nA1RVvRf490leA9wD/AB48VLVVZI0PgxYkqSRVFUvmWP6u4F3L1J1JEkCvIugJEmSJDVjwJIkSZKk\nRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1MlTA\nSnJykuuSXJ/k3FnKvTDJfUmOb1dFSZIkSRoNcwasJHsB5wEnAU8GzkhyzDTlDgDOAS5vXUlJkiRJ\nGgXDHMFaA2yrqhur6h5gI7B2mnK/B/wR8KOG9ZMkSZKkkTFMwDoU2N73/uZu3C5JngIcVlWfbFg3\nSZIkSRopq/Z0BkkCvAM4q3/0TOXXr1+/a3hiYoKJiYk9rYIkaRmanJxkcnJyqashSdKiGiZg7QCO\n6Ht/WDduysPpXZs12YWtRwMfS3JaVV05OLP+gCVJWrkGf0TbsGHD0lVGkqRFMkzA2gwcneRI4FvA\n6cAZUxOr6m7gJ6beJ/kc8PqquqpxXSVJkiRpWZvzGqyquhc4G9gEXAtsrKqtSTYkOXW6jzDLKYKS\nJEmStFINdQ1WVX0KeOLAuHUzlH1Og3pJkiRJ0sgZ6kHDkiRJkqS5GbAkSZIkqREDliRJkiQ1YsCS\nJI2kJBck2Znk6lnKvCvJtiRbkhy3mPWTJI0nA5YkaVS9DzhppolJTgEeV1WPB34dOH+xKiZJGl8G\nLEnSSKqqLwJ3zlJkLXBRV/YKYHWSQxajbpKk8WXAkiStVIcC2/ve7+jGSZK0YIZ6DpYkSSvd+vXr\ndw1PTEwwMTGxZHWRltKjH/1Ydu68kUMOOZJbb/3mtNOAaadLo2BycpLJyckFm78BS5K0Uu0ADu97\nf1g3blr9AUsaZ70AVezcmRmn9YZ3ny6NgsEf0TZs2NB0/p4iKEkaZele07kEeBlAkhOAu6pq52JV\nTJI0njyCJUkaSUk+CEwAj0xyE7AO2AeoqnpvVV2a5PlJbgC+B7xi6WorSRoXBixJ0kiqqpcMUebs\nxaiLJElTPEVQkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJ\nkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDVi\nwJIkSZKkRoYKWElOTnJdkuuTnDvN9N9Ocm2SLUk+k+Tw9lWVJEmSpOVtzoCVZC/gPOAk4MnAGUmO\nGSh2JfDUqjoO+Cjw31tXVJIkSZKWu2GOYK0BtlXVjVV1D7ARWNtfoKo+X1U/7N5eDhzatpqSJEmS\ntPwNE7AOBbb3vb+Z2QPUK4FP7kmlJEmSJGkUrWo5syQvBZ4KPHumMuvXr981PDExwcTERMsqSJKW\nicnJSSYnJ5e6GpIkLaphAtYO4Ii+94d14x4gyXOBNwHP6k4lnFZ/wJIkrVyDP6Jt2LBh6SojSdIi\nGeYUwc3A0UmOTLIPcDpwSX+BJE8BzgdOq6rb21dTkqTdDXGX27OS/HOSK7vXry1FPSVJ42POI1hV\ndW+Ss4FN9ALZBVW1NckGYHNVfQJ4K/Aw4K+SBLixqn5pISsuSRpvfXe5PRG4Bdic5GNVdd1A0Y1V\ndc6iV1CSNJaGugarqj4FPHFg3Lq+4ec1rpckSXPZdZdbgCRTd7kdDFhZ7IpJksbXUA8aliRpGRr2\nLre/kmRLkr9MctjiVE2SNK6a3kVQkqRl5hLgg1V1T5JXAxfSO6VwN97lVpLGw0Lf5daAJUkaVXPe\n5baq7ux7+6f0rhmelne5laTxsNB3ufUUQUnSqBrmLreP7nu7FvjaItZPkjSGPIIlSRpJQ97l9pwk\npwH3AHcAL1+yCkuSxoIBS5I0soa4y+2bgTcvdr0kSePLUwQlSZIkqREDliRJkiQ1YsCSJEmSpEYM\nWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJ\nkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDVi\nwJIkSZKkRgxYkiRJktSIAUuSJEmSGhkqYCU5Ocl1Sa5Pcu400/dJsjHJtiT/O8kR7as62iYnJ5e6\nCiuOy7Q9l2l7LtOFNUr9k9vC6HGdjR7X2WhZqetrzoCVZC/gPOAk4MnAGUmOGSj2SuCOqno88MfA\nW1tXdNSt1A1oKblM23OZtucyXTij1j+5LYwe19nocZ2NlpW6voY5grUG2FZVN1bVPcBGYO1AmbXA\nhd3wR4AT21VRkqRp2T9JkpadYQLWocD2vvc3d+OmLVNV9wJ3JTm4SQ2lkfBJfvzjm5e6EtK4sX+S\nZvQl4AtLXQlpLKWqZi+QvBA4qape3b1/KbCmqs7pK3NNV+aW7v0NXZk7BuY1+5dJkla0qkqredk/\nSZJaadk/rRqizA6g/6Lgw7px/W4GDgduSbI3cOBg5wVtKy5JGnv2T5KkZWeYUwQ3A0cnOTLJPsDp\nwCUDZT4OnNUN/ypwWbsqSpI0LfsnSdKyM+cRrKq6N8nZwCZ6geyCqtqaZAOwuao+AVwAvD/JNuB2\nep2cJEkLxv5JkrQczXkNliRJkiRpOEM9aFhzS7I6yV8l2Zrk2iRPT/KIJJuSfD3Jp5Os7iv/ru7B\nl1uSHLeUdV+ukvx2kq8muTrJX3QPDH1sksu7h4p+KMmqruyyeZjocpLkgiQ7k1zdN27e22WSs7pl\n/vUkL1vsdiwnMyzTt3b7/pYkH01yYN+0N3XLdGuSX+wbP+sDcrW0FnrfSXJ893/b9Un+eE++Qz0z\nrLN1SW5OcmX3Orlv2rz2zQfT/8z0HYIkhyW5rPub6Zok53Tj3c+WqWnW2W91493PBlWVrwYv4M+B\nV3TDq4DVwFuA/9SNOxf4o274FOBvu+GnA5cvdf2X2wt4DPANYJ/u/YfpXUfxYeBXu3H/H/Dr3fBr\ngPd0wy8GNi51G5bDC3gGcBxwdd+4eW2XwCOAf+y26YOmhpe6bctsmT4X2Ksb/iPgD7vhJwFXdf8n\nPBa4AQi9H7duAI4EHgJsAY5Z6rb5mnM9N9t3gCuAp3XDl9K70+G8v8PXnOtsHfD6acoeO999c779\nz0z7/1Ivp+XyAh4NHNcNHwB8HTjG/Wz5vmZZZ+5nAy+PYDWQ3q/Vz6yq9wFU1Y+r6ts88AGXF3L/\nAzDXAhd1Za8AVic5ZHFrPRL2Bh7W/XqxH3AL8AvAR7vpFwK/1A37MNFpVNUXgTsHRs93uzwJ2FRV\n366qu+hd73IyY2q6ZVpVn62q+7q3l9O7mx3AafQ6gR9X1TeBbfQejjvMA3K1hBZy30nyaODhVbW5\n+/xFTP9/mf3GPMywzqD3B92gtcx/33wOw/U/z+mGZ9r/BVTVrVW1pRv+LrCV3v+d7mfL1AzrbOrZ\ng+5nfQxYbRwF3Jbkfd2h0fcm2R84pKp2Qm+jBKZ20sGHY+5g94djjrXqPbPm7cBN9JbPt4Ergbv6\n/pDtf6ioDxMd3k8MuV1OLV+31/n5NXq/lMLMy26YB+Rq+Wm17xzalRksD/YbC+G13elef9p3Kti8\n9s0kjwTuHLL/+XbX/7jOhpTksfSOPl7O8PuA+9kS6ltnV3Sj3M/6GLDaWAUcD7y7qo4Hvge8ERi8\ng4h3FBlSkoPo/VpxJL3TBR/G/I6a+Eyb4c20XboM5ynJfwbuqaoPLXVdtCgWY9+x39gz7wEeV1XH\nAbfS++HuwRp2vfp/5zwkOYDeEYnXdUdFhv3byf1siUyzztzPBhiw2rgZ2F5V/6d7/1F6gWvn1KHl\n7lD1P3fTd9B78OWU6R6OOe6eC3yjqu7ofqn4G+DngYOSTG23/ctt1zLNLA8TFTD/7XKYh7mOvSQv\nB54PvKRvtMt0ZWm178zWB9xqv9FOVf1LdRdqAP+T+08dmtc6q6rbmX//4zqbQ3cJwEeA91fVx7rR\n7mfL2HTrzP1sdwasBrrDzNuTPKEbdSJwLb0HXr68G/dyYOo/j0uAlwEkOYHeaW87F6u+I+Im4IQk\nD00S7l+mn6P3sFDo3fSif5n6MNHphQf+0jPf7fLTwPPSu1PmI4DndePG2QOWaXfHpP8InFZVP+or\ndwlwenf3o6OAo4EvMdwDcrX0FmTf6U5J+naSNd3/by8bmNd8vkMPNLhvPrpv2q8AX+2G57NvTq2D\ny5hf/zPTd+h+fwZ8rare2TfO/Wx5222duZ9NY6nurrHSXsDP0NtgtgB/Te9uNgcDn6V3l5VNwEF9\n5c+jd6eTrwDHL3X9l+OL3l1ptgJX07uw8SH0rne7Arie3p1mHtKV3Rf4S3oXN14OPHap678cXsAH\n6d0c5Ef0Qusr6N1xaV7bJb0OaFu33F+21O1ahst0G3AjvesEr6S701FX/k3dMt0K/GLf+JO7dbAN\neONSt8vXUOu52b4DPBW4ppv2zr7x9htt19lFXR+yBbiY3rU3U+XntW8+mP5npu/wVdA7K+Xebt1c\n1f3fefKD2Qfcz5Z8nbmfDbx80LAkSZIkNeIpgpIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrE\ngCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmS\nJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIj\nBixJkiRJasSAJUmSJEmNGLAkSZIkqREDlvQgJXl2ku2zTN8nybVJDmn4nfsk2Zrkka3mKUkafUn+\nKclzZpj2B0nOafx9b0vyGy3nKa0UBixpFl2g+dMk30zy7SRXJjm5r0jN8vFXA5+vqp3z/M43JLkm\nyd1J/jHJG3Z9WdW/AhcAb5pXQyRJYynJo4D/APzJPD93bJLNSe5IcnuSTUmO7SvyNuDNSVa1rK+0\nEhiwpNmtAm4CnllVq4H/B/jLJEcM8dnfAN4/3YTu6NfnZvnsfwAOAk4Bzk7yor5pHwLOSvKQYRog\nSRprLwcuraofTTexO/I1XZ+2A3hhVR0MPAr4OLBxamJV3QpsBU5rXmNpxBmwpFlU1fer6r9W1fbu\n/d8C/wQ8dbBsknOSfDXJY5IcDhwFXDHb7Gf4zrdV1Zaquq+qrgc+Bvx83/QdwB3ACQ+6YZKkFas7\n+vSNJC+m90Pd52cpPlNfdHdV3dS93Ru4D3jcQLHPAy/Y0/pKK40BS5qH7nqqxwPXDoz/L8DLgGdV\n1S3ATwHfqKr7GnztMwe/D7gO+JkG85YkrSBJjgc+Bby2qj5Mrz/6+mwfmWN+dwLfB94J/LeByVux\nL5J243mz0pC688w/APx5VV2f5CeBvZK8HXgaMFFV3+2KHwR8Z7bZDfmdG7qy7xuY9J3uOyRJmvIs\n4JXAS6rqf3Xj5uqPYJY+qaoekWQ/4Cx6p8z3sy+SpmHAkoaQJPTC1Y+A3+qbdBDwKuDFfeEK4E7g\n4QPzOBd4I73TMR4C7JvkDnodW3XnufeXPxt4KfCMqrpnoEoPB+7a03ZJklaUX6d3c6X/1TfuAf1R\ndwr71fT6ogAHAl9JUt2436yqjX2fp6p+kORPgH9JckxV3dZNsi+SpuEpgtJwLqB3ke+vVNW9fePv\nAE4F/jzJv+sbfzVwVJJd+1hVvaWqHtEFqVOBL1bVwX3jdknya8B/Ap5TVd+apj7HAl9p0jJJ0krx\nG8ARSd7RN+5q4AlTb6pq+1S/U1WPAG4Efqpv3EamtzewP3Bo3zj7ImkaBixpDknOB44BTutuk/4A\nVfUF4Ezgo0me1o3bAdwArHkQ33cmvfPcn1dVN04z/THAI4DL5ztvSdKK9h3gZOBZSf6gG3cpMDHL\nZ8I0pwgmeW6S45LsleRA4B30flTc2lfs2cAnW1RcWkkMWNIsulvXvho4DtiZ5Dvd86nO6C9XVZ+l\nd977JUmO60a/l96NL+br94CDgc193/eevulnAhdOc9qgJGl8FfTu/gc8Dzilu473IuD5Sfad7XPT\nOIjeY0HuArbRuzPuyVM/NHbXIR8LXNysBdIKkarZnpMK3Q75BWAfetdsfaSqNgyU2YfeDvxU4DZ6\n16MMXggpjZVuv7gSOHG+DxueY55b6N2t8La5yksrmf2TNJwkvw/8c1W9q+E83wbcUFXnt5qntFLM\nGbAAkuxfVd9Psjfw98A5VfWlvumvoXf+7m92z1z45ao6fcFqLUkS9k+SpOVnqFMEq+r73eC+9H4l\nHExla4ELu+GPACc2qZ0kSbOwf5IkLTdDBazuAsergFuBz1TV5oEihwLbAbo7rN2V5GAkSVpA9k+S\npOVmqOdgVdV9wFO6u8hcnORJVfW1WT4y7QPrumcsSJLGVFUN9ZDteczP/kmStMda9k/zuotgd2ea\nz9G7BWi/m4HDAbrz4A+sqjtmmAdVxbp163YNj/PL5TC6y+C1r/1t4O3AXTz0oQcO97m+fWAlLAO3\nBZfBfF4Lqeyf3BZdBrtez3zmqcAlwGaOPvqpw30O+6eVth24HIZ/tTZnwEryqCSru+H96N3687qB\nYh8HzuqGfxW4rGUlJUkaZP8kSVqOhjlF8CeBC5PsRS+QfbiqLu2erbC5qj4BXAC8P8k24HbAOzRJ\nkhaa/ZMkadmZM2BV1TXA8dOMX9c3/CPgRfP54omJifkUX7FcDi4DcBlMcTm4DObD/mlhuRxcBuAy\nAJfBFJfD8IZ6DlazL0tqMb9PWkhnn/36/5+9ew+TrK7vff/+wIiEKCB6AsrIoCJeEhU14pwYoRM1\ngBfYx222ogYxZKskIz7xnMSEbcK4d04uPicnakQNhHgNIUZzdFRQ48aOaLaIwggK6KAoF8MQ5RIU\nts6G7/mj1kBNT3dX9cyvu6qr3q/nqadXrfWrtX5rrar+1qdq1VqceeZa4BT23vsQ7rrr9sEPSsDX\ngKZUEqrxSS5asT5pkhx11Au46KJXAQ/lsMNew5YtXx78IOuTpljr+rSkk1xIkiRJkhZmwJIkSZKk\nRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCS\nJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIk\nNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaGRiwkqxNcmGSrye5Islp87Q5OsltSS7tbm9cnu5KktRj\nfZIkjaM1Q7T5X8Drq2pzkgcAX0ny6aq6ek67z1XV8e27KEnSvKxPkqSxM/AbrKq6qao2d8M/BK4C\nDp6naRr3TZKkBVmfJEnjaEm/wUpyKHAEcPE8k9cnuSzJJ5I8vkHfJEkaivVJkjQuhjlEEIDu8IsP\nAa/rPins9xVgXVXdmeQ44CPA4fPNZ+PGjfcOz8zMMDMzs8QuS5JWg9nZWWZnZ5d9OdYnSdJSLHd9\nSlUNbpSsAT4OXFBVbx2i/bXAU6vqljnja5jlSavBhg2v58wz1wKnsPfeh3DXXbcPflACvgY0pZJQ\nVU0P17M+STs76qgXcNFFrwIeymGHvYYtW748+EHWJ02x1vVp2EME/wa4cqHileTAvuEj6QW3W+Zr\nK0lSQ9YnSdJYGXiIYJJnAC8DrkhyGVDA6cA6oKrqLOBFSU4FtgF3AS9evi5LkmR9kiSNp4EBq6q+\nAOw5oM2ZwJmtOiVJ0iDWJ0nSOFrSWQQlSZIkSQszYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmS\nJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0Y\nsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmS\nJEmNGLAkSZIkqZGBASvJ2iQXJvl6kiuSnLZAu7cl2ZJkc5Ij2ndVkqT7WJ8kSeNozRBt/hfw+qra\nnOQBwFeSfLqqrt7eIMlxwKOq6tFJng68C1i/PF2WJAmwPkmSxtDAb7Cq6qaq2twN/xC4Cjh4TrMT\ngPd1bS4G9ktyYOO+SpJ0L+uTJGkcLek3WEkOBY4ALp4z6WDg+r77N7JzkZMkaVlYnyRJ42KYQwQB\n6A6/+BDwuu6Twl2ycePGe4dnZmaYmZnZ1VlJksbY7Owss7Ozy74c65MkaSmWuz6lqgY3StYAHwcu\nqKq3zjP9XcBnq+rvu/tXA0dX1dY57WqY5UmrwYYNr+fMM9cCp7D33odw1123D35QAr4GNKWSUFVp\nPE/rkzTHUUe9gIsuehXwUA477DVs2fLlwQ+yPmmKta5Pwx4i+DfAlfMVr84m4CSAJOuB2+YWL0mS\nloH1SZI0VgYeIpjkGcDLgCuSXAYUcDqwDqiqOquqzk/y3CTXAD8CXrmcnZYkyfokSRpHAwNWVX0B\n2HOIdhua9EiSpCFYnyRJ42hJZxGUJEmSJC3MgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRG\nDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIk\nSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1\nMjBgJTknydYkly8w/egktyW5tLu9sX03JUnakfVJkjSO1gzR5t0mcVrjAAAgAElEQVTAXwLvW6TN\n56rq+DZdkiRpKNYnSdLYGfgNVlV9Hrh1QLO06Y4kScOxPkmSxlGr32CtT3JZkk8keXyjeUqStLus\nT5KkFTXMIYKDfAVYV1V3JjkO+AhweIP5SpK0O6xPkqQVt9sBq6p+2Dd8QZJ3JDmgqm6Zr/3GjRvv\nHZ6ZmWFmZmZ3uyBJGkOzs7PMzs6ObPnWJ0nSfJa7PqWqBjdKDgU+VlVPmGfagVW1tRs+EvhgVR26\nwHxqmOVJq8GGDa/nzDPXAqew996HcNddtw9+UAK+BjSlklBVTX8TZX2SdnbUUS/gooteBTyUww57\nDVu2fHnwg6xPmmKt69PAb7CSnAvMAA9Och1wBrAXUFV1FvCiJKcC24C7gBe36pwkSQuxPkmSxtHA\ngFVVLx0w/UzgzGY9kiRpCNYnSdI4anUWQUmSJEmaegYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5Yk\nSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSp\nEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAk\nSZIkqREDliRJkiQ1MjBgJTknydYkly/S5m1JtiTZnOSItl2UJGln1idJ0jga5husdwPHLDQxyXHA\no6rq0cCrgXc16pskSYuxPkmSxs7AgFVVnwduXaTJCcD7urYXA/slObBN9yRJmp/1SZI0jlr8Butg\n4Pq++zd24yRJGiXrkyRpxXmSC0mSJElqZE2DedwIPLzv/tpu3Lw2btx47/DMzAwzMzMNuiCtPgcd\ndChbt36XAw9cx003fWfeacC806XVYHZ2ltnZ2VF2wfok7QLrkybdctenVNXgRsmhwMeq6gnzTHsu\n8FtV9bwk64G3VNX6BeZTwyxPWg02bHg9Z565FjiFvfc+hLvuun3wgxLoXgNJgALC3NfFfdOYd7q0\nGiWhqtJ4nodifZJ2cNRRL+Cii14FPJTDDnsNW7Z8efCDrE+aYq3r08BvsJKcC8wAD05yHXAGsBdQ\nVXVWVZ2f5LlJrgF+BLyyVeckSVqI9UmSNI4GBqyqeukQbTa06Y4kScOxPkmSxpEnuZAkSZKkRgxY\nkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmS\npEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLA\nkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqZKiAleTYJFcn+WaSN8wz/RVJbk5y\naXf79fZdlSRpR9YnSdK4WTOoQZI9gLcDzwK+B1yS5KNVdfWcpudV1WnL0EdJknZifZIkjaNhvsE6\nEthSVd+tqm3AecAJ87RL055JkrQ465MkaewME7AOBq7vu39DN26uFybZnOSDSdY26Z0kSQuzPkmS\nxk6rk1xsAg6tqiOAzwDvbTRfSZJ2h/VJkrSiBv4GC7gROKTv/tpu3L2q6ta+u38NvHmhmW3cuPHe\n4ZmZGWZmZobogiRptZmdnWV2dnY5F2F9kiQt2XLXp1TV4g2SPYFv0PsR8b8CXwJOrKqr+tocVFU3\ndcP/B/A7VfUL88yrBi1PWi02bHg9Z565FjiFvfc+hLvuun3wgxLoXgNJgALC3NfFfdOYd7q0GiWh\nqpr9Hsr6JM3vqKNewEUXvQp4KIcd9hq2bPny4AdZnzTFWtengd9gVdXdSTYAn6Z3SOE5VXVVkjcB\nl1TVx4HTkhwPbANuAU5u1UFJkuZjfZIkjaNhDhGkqj4JPGbOuDP6hk8HTm/bNUmSFmd9kiSNm1Yn\nuZAkSZKkqWfAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJ\nkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmN\nGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSI0MFrCTHJrk6yTeT\nvGGe6XslOS/JliT/I8khg+Y5Ozu7C92dPG4HtwG4DbZzO7gNlsr6tHzcDm4DcBuA22A7t8PwBgas\nJHsAbweOAX4WODHJY+c0OwW4paoeDbwFePOg+bqTetwObgNwG2zndnAbLIX1aXm5HdwG4DYAt8F2\nbofhDfMN1pHAlqr6blVtA84DTpjT5gTgvd3wh4BnteuiJEnzsj5JksbOMAHrYOD6vvs3dOPmbVNV\ndwO3JTmgSQ+lsXY78K+j7oQ0raxP0oJ+APzbqDshTaVU1eINkv8IHFNVr+ruvxw4sqpO62tzRdfm\ne939a7o2t8yZ1+ILkyRNtKpKq3lZnyRJrbSsT2uGaHMj0P+j4LXduH43AA8HvpdkT2DfucUL2nZc\nkjT1rE+SpLEzzCGClwCHJVmXZC/gJcCmOW0+BryiG/5V4MJ2XZQkaV7WJ0nS2Bn4DVZV3Z1kA/Bp\neoHsnKq6KsmbgEuq6uPAOcD7k2yhd9DvS5az05IkWZ8kSeNo4G+wJEmSJEnDGepCw3Ml2S/JPyS5\nKsnXkzw9yYOSfDrJN5J8Ksl+fe3f1l3kcXOSI/rGv6K7OOQ3kpzUN/4pSS7vpr2lb/yCyxiFJL+d\n5GtdX/+2u6DloUm+2PX975Ks6doueLHLJL/fjb8qya/0jZ/3ApoLLWOF1vmcJFuTXN43bqT7fqFl\nLJcFtsGbu/23OcmHk+zbN63J/t2V59Bymm879E37P5Pck76ztU3Lc6Eb/9puX1yR5E/7xk/kc2Fc\nJLl/kouTXNZt+zO68RP9f3k+SfZIcmmSTYv1b8K3wXeSfLV7PnypGzdV71Uy5e/Xkhze7f9Lu7+3\nJzltmrZBX3+m7j3rSFXVkm/Ae4BXdsNrgP2APwN+txv3BuBPu+HjgE90w08HvtgNPwj4VvfY/bcP\nd9MuBp7WDZ9P7wxQLLSMUdyAhwHfBvbq7v89veP8/x741W7cO4FXd8OnAu/ohl8MnNcNPx64rNuO\nhwLXAKEXfq8B1gH3AzYDj+1b1k7LWKH1/kXgCODyvnEj2/cLLWME2+DZwB7d8J8Cf9J6/y71OTSK\n7dCNXwt8ErgWOGAKnwsz9A5ZW9Pdf0j393GT+lwYpxuwT/d3T+CL3XNhov8vL7Adfhv4ALCp5XNp\nlW2DbwMPmjNu2t6rvIcpf7/Wty32AL5H76Q3U7UNmNL3rCN9vu3CTtoX+NY8468GDuyGDwKu6obf\nBby4r91VwIH0joN/Z9/4d3Y78SDgyr7x97abZxlXj/jJ+t3uRbeG3g+rnwPczH1vtNcDF3TDnwSe\n3g3vCdzcDf8e8Ia++V7QvajvfezcdvQubNG/jE+u8LqvY8c3lKPY94suY6W3wZxp/wF4f8P9u0vP\noVE8F7px/wA8gR0D1tQ8F+gVk1+ep91EPxfG7QbsA3yZ3sWIJ/7/8px1Xwv8E72wv2mB/k30Nuj6\ncC3w4Dnjpua9Cr5fm7vevwJcNI3bgCl+zzqq264cIvgI4PtJ3t195XpWkn26J9FWgKq6qXtCwsIX\ngpw7/sa+8TfM0555lvEzu9D/Jqp3TZU/B66j1/fbgUuB26rqnq5Zf9/nXuzy9vQOn1psO+y03ZI8\nGLh1zjIe1nbtluxnRrDvF1rGjex8odGV9uv0PsWCNvt3V59DKy7J8cD1VXXFnEnT9Fw4HDiqOyTi\ns0me2o2fqufCqKR3aNxlwE30Qsa3mL7/y38B/A5QAI2fS6tlG0Bv/T+V5JIkv9GNm6b3Kr5f29GL\ngXO74anaBr5nXXm7ErDWAE8BzqyqpwA/opdUa067ufe3a3mtkYWWseyS7A+cQO/T64cBPw0cu5RZ\n7M7id+OxK2Gi9/1ikvwXYFtV/d3uzKZxuxWR5KeA04EzhmnecNHj9lxYQ++wpPXA79L7Rm9Xrcrn\nwihV1T1V9WR63+IcCTx2CQ9f9f+XkzwP2FpVm9mxTyvxXBqLbdDnGVX188Bzgd9K8kym672K79c6\nSe4HHM99/4+nahv4nnXl7UrAuoHeJ9Rf7u5/mN4LeGuSAwGSHETva0fopduH9z1++4UgF7pA5ELt\nAW5aYBmj8Gzg21V1S5fu/z/gGcD+SbZv1/6+37te2fFil0vaPlX1g0WWMSqj3PeLPWZFJTmZXiF/\nad/olvt3qc+hlfYoesdkfzXJtV0/Lk3yM0zXc+F64B8BquoS4O7uU7zF1nXSngsjV1X/DswC/zvT\n9X/5GcDxSb4N/B3wy8Bbgf2maBsAUFX/2v39N+Aj9AL3NL1X8f3afY4DvlJV3+/uT9s28D3rClty\nwOq+7rw+yeHdqGcBX6d3POfJ3biTgY92w5uAkwCSrKf3deRW4FPAc9I7w82D6B0L+qnua9TbkxyZ\nJN1j++e1fRmv6Bs/CtcB65Ps3fVz+3b4LL2LWcKOfdzE/Be73AS8pDtjyyOAw4AvMf8FNLfP68IF\nlrFSwo6fSKz0vh9mGctth22Q5Fh6h+QcX1U/7mvXcv8u9Tm0Eu7dDlX1tao6qKoeWVWPoFfcn1xV\nNzNFzwV6b+R+uevH4fR+VPyDrn8vnuDnwsgleUi6M3V136g+B7iS6fi/DEBVnV5Vh1TVI7v+XVhV\nL2eKtgFAkn2SPKAb/ml6v7+5gil6r+L7tR2cSO8Dh+2mbRtM83vW0diVH24BT6K3MTfT+6R2P+AA\n4DPAN+idQWv/vvZvp3d2ka8CT+kbfzKwBfgmcFLf+KfS+0e4BXhr3/gFlzGKG71Doa4CLgfeS+/M\nKY+gd0aZb9L7sfv9urb3Bz7YrdMXgUP75vP73fa5CviVvvHHduu6Bfi9vvHzLmOF1vlcemfh+TG9\nF+wr6f1ocmT7fqFlrPA22ELvB6SXdrd3tN6/u/IcWuntMGf6t+lOcjFlz4U1wPu7vn8ZOHrSnwvj\ncqN3cpVL6dWmy4H/0no7LnVfjXh7HM19J7mYqm3Q9WUzvTOeXbG9n7vy/4NV/F4F369B74Q3/wY8\ncJj+TeI26Pozde9ZR3nzQsOSJEmS1MguXWhYkiRJkrQzA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgB\nS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJ\nktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYM\nWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsaYmSHJ3k+kWmn5rkpiT/nuRB3bhzkxzfuB8fSnJMy3lK\nklaXJNcm+eV5xh+e5LIktyfZ0I07Jsk/Nl7+85Oc13Ke0mpnwJLmkWSvJH+d5Dtdcbo0ybF9TWqB\nx60B/hx4dlXtW1W3JnkC8MSq2rTEPjw3yUVJbk3yvSRnJXlAX5M/A/7vpa6bJGkq/C5wYVXtV1Vv\n78b9EfAnS51RkguT3Jzkti603fuBYVV9HHh8kp9r021p9TNgSfNbA1wHPLOq9gP+APhgkkMGPO4g\n4P7AVX3jXg387UIPSHLPApP2Bf4b8FDgccBa4M3bJ1bVJcADkzxlQJ8kSdNnHfD17XeS/Dywb1c7\ndpLk3UlOWmBepwEHVdX+9GraB5Ic2Df9vG68JAxY0ryq6s6q+q9VdX13/xPAtcBT57ZNclqSryV5\nJnB1N/rWJJ/pho8D/nmxxS3Qh/Oq6tNV9T+r6nbgbOAZc5r9M/C8oVdMkjSxkjwuybeT3A3MAGd2\nh6sfxuBatKCq+lpV9X8YuAZ4eN/9WaxF0r0MWNIQuk/qHk3fp4Hd+D8ETgKOqqqLgJ/tJu1XVc9O\nsg/wCOAbDbpx9Nzl0/um7EkN5i1JWsW6oxk+CfxWVe0JfL4b3reqrgGewG7UoiQfS3IX8EXgs1X1\n5b7JVwHr5hzGLk2tNaPugDTuut9VfQB4T1V9M8lDgT2S/DnwNGCmqn4492H0vpnav/t7x2724TnA\nrwFHzpl0R7cMSdL0Ogo4BXhp92HffPZncC3KQhOq6gVJ9gSeTe+w9X53dI/dH5hbD6Wp4zdY0iKS\nhF64+jHw2r5J+wP/GfiTecJVv9u6vw/sm+czuhNX3JLk1m7cLX3jfmFOH9bT+w3Xf6yqb82Z/wP7\nliFJmk6vBr6wSLgCuJW+WgSQ5Ktd3bkFeCm9Qwq316K3z51BVd1dVZ8Cjkny/L5JD6T3YaL1SMKA\nJQ1yDvAQ4IVVdXff+FuA5wPvmRuI+lXVncC3gMP7xn2hqh5UVQdU1YO6cQf0jfuX7W2TPBn4CHBy\nVc3Os4jHAV/d9dWTJE2A1wCHJPl/F2lzOX21CKCqntTVnQOAc4Hf7KtFGxaZ1xrgUX33Hwd8Z8AH\njtLUMGBJC0jyLuCxwPFV9ZO506vqc8DLgA8neVr/Q+c0PZ/e76cWXNQCy/854ALgtVV1/gKPPbpr\nI0maXncAxwJHJfnjBdqcT+/EF0uS5DFJjk2yd5I1SV4OPJMdT5hhLZL6GLCkeXSnY38VcASwNckd\n3ZmYTuxvV1WfoXfc+6YkR2wfPWd2ZwMvX2Rx855FEHg9vW/PzumWf0eSK/r6+DTgjjk/NJYkTZcC\nqKp/B54DHJfkTcypLVV1GXDbnA8Ed5rPPAJsBLYCN9M7XP4/VdXmvjYnAn+1qysgTZpULfR66hok\na4H3AQcC9wBnV9Xb5mn3NnqnAP0RvcOZNs9tI02rJB8APrjUiw0PmOeHgL+uqk+2mqe0mlifpKXp\nTph0alW9sOE8nw+8vKpe0mqe0mo3TMA6iN7F5TZ3p9/8CnBCVV3d1+Y4YENVPS/J04G3VtX65ey4\nJGm6WZ8kSeNo4CGCVXXT9k/7uh8vXgUcPKfZCfQ+RaSqLgb2m3OFb0mSmrI+SZLG0ZJ+g5XkUHq/\nSbl4zqSDgev77t/IzkVOkqRlYX2SJI2LoS803B1+8SHgdbt6Gs4kix+PKEmaaFW14IVMd5X1SZK0\nu1rWp6G+wUqyhl7xen9VfXSeJjcCD++7v7Ybt5OqmtrbGWecMfI+jPo27dvgjDF5DXSvxiFv7fo8\n9ft/ytd/OYyyPk3S/pykdZm09VmxddmF18ByrEv3ahziNvp66vNsPG+7si6tDXuI4N8AV1bVWxeY\nvgk4CSDJeuC2qtraoH+SJC3G+iRJGisDDxFM8gx6F1O9Isll9D42OB1YB1RVnVVV5yd5bpJr6J0G\n95XL2WlJkqxPkqRxNDBgVdUXgD2HaLehSY8m2MzMzKi7MHLTvg1mRt2BEZv6/T/l69/aqOvTJO3P\nSVoXmKz1cV3G1yStj+vS1sDrYDVdWFIruTxp7CQwBq+BJGw/hn2I1styfLKmTxJqGU5y0YL1SVNv\n1dUna5PaaV2flnSadkmSJEnSwgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmN\nGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJ\nkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElq\nxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJ\nkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoZGLCSnJNk\na5LLF5h+dJLbklza3d7YvpuSJO3I+iRJGkdrhmjzbuAvgfct0uZzVXV8my5JkjQU65MkaewM/Aar\nqj4P3DqgWdp0R5Kk4VifJEnjqNVvsNYnuSzJJ5I8vtE8JUnaXdYnSdKKGuYQwUG+AqyrqjuTHAd8\nBDh8ocYbN268d3hmZoaZmZkGXZAkjZvZ2VlmZ2dH2QXrkyRpJ8tdn1JVgxsl64CPVdUTh2h7LfDU\nqrplnmk1zPKkiZXAGLwGkgDD9iP4ulULSaiqpofsWZ+kRlZdfbI2qZ3W9WnYQwTDAsexJzmwb/hI\neqFtp+IlSdIysD5JksbKwEMEk5wLzAAPTnIdcAawF1BVdRbwoiSnAtuAu4AXL193JUnqsT5JksbR\nUIcINluYh2Bo2q26QzDAwzDUynIcItiK9UlTb9XVJ2uT2hnVIYKSJEmSpAEMWJIkSZLUiAFLkiRJ\nkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgB\nS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJ\nktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYM\nWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJ\nkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMDA1aSc5JsTXL5Im3elmRLks1JjmjbRUmSdmZ9kiSN\no2G+wXo3cMxCE5McBzyqqh4NvBp4V6O+SZK0GOuTJGnsDAxYVfV54NZFmpwAvK9rezGwX5ID23RP\nkqT5WZ8kSeNoTYN5HAxc33f/xm7c1gbzlpr74z/+f7jyym8O1fb5z/8VXvKSFy1zjyQtE+uTVo1t\n27bxhjf8ITff/IOh2v/Gb7ycmZmjlrlXknZFi4C1JBs3brx3eGZmhpmZmZXugqbcxo1/yLZtfwbc\nf0DLb/C1r73dgMX9STKw1YEHruOmm74z1BwPOuhQtm797lBtlzJfjZfZ2VlmZ2dH3Y2hWZ80Slu3\nbuXMM9/JT37y5iFaX8Q997x/ygPWcLUJrE/a2XLXp1TV4EbJOuBjVfXEeaa9C/hsVf19d/9q4Oiq\n2ukTwiQ1zPKk5bTXXvuwbdv3gX0GtJzlSU/ayObNs+0WnsAYvAZ6RWnYfgzbNgz7+l7q8v2/MRmS\nUFXDvSMafp7WJ02EG264gcc8Zj133nnDEK3P5sQTv8S5557drgOrrj4tTx2xPk2n1vVp2NO0p7vN\nZxNwEkCS9cBt8xUvSZKWgfVJkjRWBh4imORcYAZ4cJLrgDOAvYCqqrOq6vwkz01yDfAj4JXL2WFJ\nksD6JEkaTwMDVlW9dIg2G9p0R5Kk4VifJEnjaNhDBCVJkiRJAxiwJEmSJKkRA5YkSZIkNWLAkiRJ\nkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDVi\nwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJ\nkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkR\nA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJ\nkiSpEQOWJEmSJDViwJIkSZKkRoYKWEmOTXJ1km8mecM801+R5OYkl3a3X2/fVUmSdmR9kiSNmzWD\nGiTZA3g78Czge8AlST5aVVfPaXpeVZ22DH2UJGkn1idJ0jga5husI4EtVfXdqtoGnAecME+7NO2Z\nJEmLsz5JksbOMAHrYOD6vvs3dOPmemGSzUk+mGRtk95JkrQw65MkaewMPERwSJuAc6tqW5JXAe+l\nd8jGTjZu3Hjv8MzMDDMzM426IEkaJ7Ozs8zOzo66G9YnSdIOlrs+paoWb5CsBzZW1bHd/d8Dqqr+\nbIH2ewC3VNX+80yrQcuTlttee+3Dtm3fB/YZ0HKWJz1pI5s3z7ZbeAJj8BpIAgzbj2HbhmFf30td\nvv83JkMSqqrZ4XrWJ02SG264gcc8Zj133nnDEK3P5sQTv8S5557drgOrrj4tTx2xPk2n1vVpmEME\nLwEOS7IuyV7AS+h9ItjfqYP67p4AXNmqg5IkLcD6JEkaOwMPEayqu5NsAD5NL5CdU1VXJXkTcElV\nfRw4LcnxwDbgFuDkZeyzJEnWJ0nSWBrqN1hV9UngMXPGndE3fDpwetuuSZK0OOuTJGncDHWhYUmS\nJEnSYAYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIa\nMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuS\nJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLU\niAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiS\nJEmS1IgBS5IkSZIaMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0MFbCSHJvk6iTfTPKGeabvleS8JFuS\n/I8kh7TvqiRJO7I+SZLGzcCAlWQP4O3AMcDPAicmeeycZqcAt1TVo4G3AG9u3dFJMDs7O+oujNy0\nb4PZUXdgxKZ+/0/5+rc26vo0SftzktYFJm19ZkfdgWYma79MlknaN+OwLsN8g3UksKWqvltV24Dz\ngBPmtDkBeG83/CHgWe26ODnGYYeP2rRvg9lRd2DEpn7/T/n6L4OR1qdJ2p+TtC4waeszO+oONDNZ\n+2WyTNK+GYd1GSZgHQxc33f/hm7cvG2q6m7gtiQHNOmhJL9PSQYAAB+VSURBVEnzsz5JksbOmmWa\nb5ZpvtJu23//h/DDHz6S3tFFC7v77h9z0EG/tEK9krRCrE8aSz/1Uz/FPffczj77PGyH8T/5yR3s\ntddZO4zbtu1HHHjgb65k9yQtQapq8QbJemBjVR3b3f89oKrqz/raXNC1uTjJnsC/VtXPzDOvxRcm\nSZpoVdUs4FifJEmttKxPw3yDdQlwWJJ1wL8CLwFOnNPmY8ArgIuBXwUunG9GLTsuSZp61idJ0tgZ\nGLCq6u4kG4BP0/vN1jlVdVWSNwGXVNXHgXOA9yfZAvyAXpGTJGnZWJ8kSeNo4CGCkiRJkqThDHWh\n4aVIck6SrUkuX2D60UluS3Jpd3tj6z6MUpK1SS5M8vUkVyQ5bYF2b+sufLk5yREr3c/lMsz6T8Fz\n4P5JLk5yWbcNzpinzcRe/HTI9X9Fkpv7ngO/Poq+Lqcke3TrtmmeaRO7/7cbsP6rav8PcTHjh3f/\n9y7t/qcfN4p+DjKoPndtVk1tGuL9xkuTfLW7fT7JE1a6j8MaZt907Z6WZFuSF65U35ZqyOfZTFcj\nvpbksyvZv6Ua4nm2b5JN3WvmiiQnr3AXhzZJ71GHfL85uv8BVdX0BvwicARw+QLTjwY2tV7uuNyA\ng4AjuuEHAN8AHjunzXHAJ7rhpwNfHHW/V3j9J/o50K3jPt3fPYEvAkfOmX4q8I5u+MXAeaPu8wqv\n/yuAt426n8u8DX4b+MB8z/VJ3/9DrP+q2f/0Poi8BlgH3A/YPM//tL8CXt0NPw64dtT9XmBdBtXn\nVVWbhlif9cB+3fCx47w+g9ala7MH8N+BjwMvHHWfd2O/7Ad8HTi4u/+QUfd5N9fn94E/2b4u9A5F\nXjPqfi/Q14l5jzrkuozsf0Dzb7Cq6vPArQOaTeyPiavqpqra3A3/ELiKna/LcgLwvq7NxcB+SQ5c\n0Y4ukyHXHyb4OQBQVXd2g/en91vHucfiTvTFuYdYf5jg50CStcBzgb9eoMlE7/8h1h9Wz/4f5mLG\n9wD7dsP7AzeuYP+GNkR9XlW1adD6VNUXq+r27u4Xmb8WjYUh3zu9lt7/i5uXv0e7boh1eSnw4aq6\nsWv//RXp2C4aYn0KeGA3/EDgB1X1v5a9Y7tgkt6jDrMuo/wf0DxgDWl999XwJ5I8fkR9WHZJDqX3\nqcfFcybNvTjmjYzxP/5dtcj6w4Q/B7rDoy4DbgL+qaoumdNkoi9+OsT6A7ywO/zgg90b8knyF8Dv\nMH+whAnf/wxef1g9+3+Yixm/Cfi1JNfT+3bhtSvUt9YmuTb9BnDBqDuxq5I8DPgPVfVOVs+HEws5\nHDggyWeTXJLk10bdod30duDxSb4HfBV43Yj7M5RJeo864P3mdiv6P2AUAesrwLqqejK9J+VHRtCH\nZZfkAfQ+aXpdl6ynyoD1n/jnQFXd063fWuDpQ4TI1V4wdzDE+m8CDq2qI4DPcN+3OatekucBW7tP\n1sJw+3Zi9v+Q6z9p+/9E4N1V9XDgefQOjdSYSPJLwCuBnX4/t4q8hR37v5r/Z6wBnkLvULRjgT9I\ncthou7RbjgEuq6qHAU8GzuzeA42tSXqPOsy6jOJ/wIoHrKr64fbDh6rqAuB+E/bJLUnW0NvZ76+q\nj87T5Ebg4X331zKmh5TsikHrPw3Pge2q6t+Bz9IrIv1uoHsOpHfx032r6pYV7t6yW2j9q+rW7nAr\n6B1G9tSV7tsyegZwfJJvA38H/FKS981pM8n7f+D6r7L9fyPQfxKS+f5fnwJ8EHqHpAB7J3nIynSv\nqYmrTUmeCJwFHF9Vgw7BG2c/D5yX5FrgRfTexB8/4j7tqhuAT1XV/6yqHwCfA5404j7tjlcC/whQ\nVd8CrgUeO9IeLWKS3qMOsS4j+x+wXAFrwU9t+4/jTHIkvVPFT8obi+3+Briyqt66wPRNwEkASdYD\nt1XV1pXq3ApYdP0n/TmQ5CFJ9uuGfwp4DnD1nGbbL34Ki1z8dDUaZv2THNR39wTgypXr4fKqqtOr\n6pCqeiS9ay5dWFUnzWk2sft/mPVfZfv/3osZJ9mL3jrNPTPid4FnAyR5HHD/Mf5dyWLfqq7G2rTY\n+41DgA8Dv9a98R13C65LVT2yuz2C3hvK36yqnc7QOUYWe559FPjFJHsm2YfeiRSuWrGe7ZrF1qf/\n9X8gvUMgv71C/doVk/QeddD7zZH9Dxh4oeGlSnIuMAM8OMl1wBnAXkBV1VnAi5KcCmwD7qJ3Bq2J\nkeQZwMuAK7rfoBRwOr0zUFVVnVVV5yd5bpJrgB/R+/RjIgyz/kz4cwB4KPDeJHvQ+xDj77t9Pi0X\nPx1m/U/rPn3dBtwCnDyy3q6QKdr/81qt+7+Gu5jx/wWcneS36Z3w4hULz3F0BtXn1Vabhni/8QfA\nAcA7kgTYVlVHjqq/ixliXfqN9QVMh3ieXZ3kU8DlwN3AWVU1th+yDLFv/gh4T+47jfvvjuuHxpP0\nHnXI95sj+x/ghYYlSZIkqZFRnUVQkiRJkiaOAUuSJEmSGjFgSZIkSVIjBixJkiRJasSAJUkaKMk5\nSbb2nSlrsbYPT3JhkkuTbE5y3Er0UZI0fcaxPhmwJEnDeDdwzJBt30jv9PxPAU4E3rFsvZIkTbux\nq08GLEnSQFX1eeDW/nFJHpnkgiSXJPnnJId3k+4B9u2G9wduXMGuSpKmyDjWp+YXGpYkTY2zgFdX\n1beSHAm8E3gW8Cbg00lOA/YBnj3CPkqSps9I65MBS5K0ZEl+GvgF4B+SpBt9v+7vicC7q+ovkqwH\nPgD87Ai6KUmaMuNQnwxYkqRdsQdwa3cc+1yn0B0PX1VfTLJ3kodU1fdXtIeSpGk08vrkb7AkScNK\nd6Oq7gCuTfKieycmT+wGv0t32EWSxwH3N1xJkpbRWNWnVFXreUqSJkySc4EZ4MHAVuAM4ELgXcBD\n6R0RcV5V/VFXtM4GHkDvB8W/U1X/fRT9liRNtnGsTwYsSZIkSWrEQwQlSZIkqREDliRJkiQ1YsCS\nJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmSJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5a0G5Ic\nneT6RaafmuSmJP+e5EHduHOTHL+Ly3t+kvN2tb+SpMlnbZJGy4AlDZBkryR/neQ7SW5PcmmSY/ua\n1AKPWwP8OfDsqtq3qm5N8gTgiVW1aYHH/G9dkbsxya1JLkpy5L0Lqvo48PgkP9dwFSVJq1CS9yf5\nXlebrk5ySt/kZrWpe9yFSW5OcluSy/rDmLVJ2pEBSxpsDXAd8Myq2g/4A+CDSQ4Z8LiDgPsDV/WN\nezXwt4s85gHAl4AnAwcA7wM+kWSfvjbndfORJE23PwbWdbXpBOCPkjx5wGN2pTYBnAYcVFX7d+0/\nkOTAvunWJqljwJIGqKo7q+q/VtX13f1PANcCT53bNslpSb6W5JnA1d3oW5N8phs+DvjnRZZ1bVW9\npapurp6zgb2Ax/Q1mwWet9srJkla1arqqqra1j8KeNTcdrtbm7plfa2q7ukbtQZ4eN/9WaxNEmDA\nkpas+8Tu0cDX54z/Q+Ak4Kiqugj42W7SflX17O5bqEcA31jCso4A7gdc0zf6KmBdkgfs+lpIkiZB\nkjOT/IhebfgecP6c6c1qU5KPJbkL+CLw2ar6ct9ka5PUMWBJS9Adu/4B4D1V9c1u9B5J/hx4NjBT\nVbfMfVj3d396ny7eMeSy9qV3iODGqup/zB3dPPfftbWQJE2KqvoteoeX/yLwj8CPu0nNa1NVvaBb\n1nHAP82ZbG2SOgYsaUhJQi9c/Rh4bd+k/YH/DPxJVf1wkVnc1v19YN88v5bkju5MTs/oG783sAn4\nl6p685z5PJBeMbwNSdLU6w4p/xd6h+yd2o1uXpu6Zd1dVZ8Cjkny/L5J1iapY8CShncO8BDghVV1\nd9/4W4DnA+9J8gsLPbiq7gS+BRzeN+7nquqB3ZmcvgC9sxYCHwGuq6rXzDOrxwHfGVAwJUnTZw33\n/QaraW0asCywNkn3MmBJQ0jyLuCxwPFV9ZO506vqc8DLgA8neVr/Q+c0PR84epHlrAE+DNwJnLxA\ns6OBC4buvCRp4nSX9Xhxkp9OskeSY4CXANtPXNGyNj0mybFJ9k6yJsnLgWey44kxrE1Sx4AlDdCd\njv1VwBHA1r7DJk7sb1dVnwFOATZ1J6eAna9Dcjbw8kUW9wvAc4FfAW5f4BCNE4G/2vU1kiRNgKJ3\nOOD19L6tejPwuu5Mt/c1alObAmwEtgI30ztM/j9V1ea+NtYmqZOqea9Dd1+DZC29H9ofCNwDnF1V\nb5un3dvo/ejxR8DJc150kjpJPgB8cLELOi7y2OcDL6+ql7TvmbS6WJ+kdqxNUjvDBKyD6F1YbnN3\n6s2vACdU1dV9bY4DNlTV85I8HXhrVa1fzo5Lkqab9UmSNI4GHiJYVTdt/7Sv++HiVcDBc5qdQO9T\nRKrqYmC/OVf3liSpKeuTJGkcLek3WEkOpfc7lIvnTDqY3jHA293IzkVOkqRlYX2SJI2LNcM27A6/\n+BC9H1Du0ik4kyx+PKIkaaJV1dyzl+0265MkaXe1rE9DfYPVnTr6Q8D7q+qj8zS5kd7F7bZb243b\nSVWN5e2MM84YeR9W281ttgvbbIxfA+N6m/s86/6TzHNz2y60zcblthxGWZ/GdTtP0nPG9VnBddmF\n18DYrsuI9k33n2Se2/jXp0naN7uyLq0Ne4jg3wBXVtVbF5i+CTgJIMl64Laq2tqgf5IkLcb6JEka\nKwMPEeyuv/My4Iokl9GL4qcD64CqqrOq6vwkz01yDb3T4L5yOTstSZL1SZI0jgYGrKr6ArDnEO02\nNOnRiMzMzIy6C6uO22zpZkbdgVXI59nSTcs2G3V9mqTtPEnrApO1Pq7L+Jqk9XFd2hp4HaymC0tq\nJZcnjZ0EfA3sliRsP6Z9zpRlOY5a7SShluEkFy1YnzT1rE+7zfq0erWuT0s6TbskSZIkaWEGLEmS\nJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuSJEmSGjFgSZIkSVIj\nBixJkiRJasSAJUmSJEmNGLAkSZIkqREDliRJkiQ1YsCSJEmSpEYMWJIkSZLUiAFLkiRJkhoxYEmS\nJElSIwYsSZIkSWrEgCVJkiRJjRiwJEmSJKkRA5YkSZIkNWLAkiRJkqRGDFiSJEmS1IgBS5IkSZIa\nMWBJkiRJUiMGLEmSJElqxIAlSZIkSY0YsCRJkiSpEQOWJEmSJDViwJIkSZKkRgxYkiRJktSIAUuS\nJEmSGjFgSZIkSVIjBixJkiRJasSAJUmSJEmNDAxYSc5JsjXJ5QtMPzrJbUku7W5vbN9NSZJ2ZH2S\nJI2jNUO0eTfwl8D7Fmnzuao6vk2XJEkaivVJkjR2Bn6DVVWfB24d0CxtuiNJ0nCsT5KkcdTqN1jr\nk1yW5BNJHt9onpIk7S7rkyRpRQ1ziOAgXwHWVdWdSY4DPgIcvlDjjRs33js8MzPDzMxMgy5IksbN\n7Owss7Ozo+yC9UmStJPlrk+pqsGNknXAx6rqiUO0vRZ4alXdMs+0GmZ50sRKwNfAbkkCzLcNg/9f\nxlsSqqrpIXvWJ6kR69Nusz6tXq3r07CHCIYFjmNPcmDf8JH0QttOxUuSpGVgfZIkjZWBhwgmOReY\nAR6c5DrgDGAvoKrqLOBFSU4FtgF3AS9evu5KktRjfZIkjaOhDhFstjAPwdC08xCM3eYhGKvXchwi\n2Ir1SVPP+rTbrE+r16gOEZQkSf9/e3cfa9lVlwH4/U3bodbWFjDpJFNtiZAMGEg1WjFgGCGhX0lH\nMQ3UGL40gFArELQQTTokxogJooRQojS1xZRCMJaCJq2KNwbj1EnaMo22tNhQaMcOYCmiUtvS5R9n\nz/TMnXM/ZrrunI/7PMnN7LPOvveutfbea8179t53A8AaBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBO\nBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwA\nAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBO\nBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwAAIBOBCwA\nAIBOBCwAAIBOBCwAAIBO1gxYVXVNVR2oqn2rrPPhqrqvqu6sqnP7VhEAjmR+AmAWrecM1rVJzl/p\nzaq6MMmPtdZekOStST7WqW4AsBrzEwAzZ82A1Vr7YpJvr7LKriTXD+veluT0qjqzT/UAYDLzEwCz\n6MQOP2N7kq+PvX5oKDvQ4WcDHe3Zsyf79h15NdXFF1+c7du3T6FGsKHMTzAnbrnlljzwwANHlF92\n2WU57bTTplAjOHY9AtZR2b1796HlnTt3ZufOnce7CrBpXXrpm/Ktb704VWccKnvyyX155zvfl+99\n75HD1j3zzLPz8MNf7V6HbdvOyYEDh0+iG/W7mK6lpaUsLS1NuxrrZn6C6bnwwoty8slvTlKHyp56\n6ot5z3t+N9/97jcPW9f8xDO10fNTtdbWXqnq7CSfa629ZMJ7H0vyD621Tw2v70nyitbaEZ8QVlVb\nz++DhVWVTPEY2L59R/bvvynJjrHSDyV5d5Ll9apsxPFaVc/od03+/qP7GUxHVaW1VmuveVQ/0/wE\nPUx5ftqyZUtaezLjd6+cfPLb89hjV8f8xEbrPT+t98+0V8Y/UjjczUlenyRV9dIkj06avABgA5if\nAJgpa14iWFU3JNmZ5LlV9bUkVyXZmqS11v60tfY3VXVRVX0lyf8kedNGVhgAEvMTALNpzYDVWvvl\ndaxzeZ/qAMD6mJ8AmEXrvUQQAACANQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAA\nnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhY\nAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAA\nnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhY\nAAAAnawrYFXVBVV1T1XdW1VXTnj/DVX1jaq6ffh6c/+qAsDhzE8AzJoT11qhqrYk+UiSVyXZn2Rv\nVX22tXbPslVvbK1dsQF1BIAjmJ8AmEXrOYN1XpL7WmsPtNaeSHJjkl0T1quuNQOA1ZmfAJg56wlY\n25N8fez1g0PZcq+pqjur6tNVdVaX2gHAysxPAMycNS8RXKebk9zQWnuiqt6S5LqMLtk4wu7duw8t\n79y5Mzt37uxUBQBmydLSUpaWlqZdDfMTAIfZ6PmpWmurr1D10iS7W2sXDK/fm6S11j6wwvpbkjzS\nWjtjwnttrd8HC60qmeIxsH37juzff1OSHWOlH0ry7iTL61XZiOO1qp7R75r8/Uf3M5iOqkprrdvl\neuYn6GjK89OWLVvS2pMZv7jq5JPfnsceuzrmJzZa7/lpPZcI7k3y/Ko6u6q2JnldRp8Ijldq29jL\nXUn+rVcFAWAF5icAZs6alwi21r5fVZcnuTWjQHZNa+3uqnp/kr2ttc8nuaKqLknyRJJHkrxxA+sM\nAOYnAGbSmpcIdv1lLsFgs3OJoEswNrHel2D0ZH5i03OJoPlpE5vGJYIAAACsg4AFAADQiYAFAADQ\niYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAF\nAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQ\niYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQiYAF\nAADQiYAFAADQiYAFAADQiYAFAADQiYAFAADQyboCVlVdUFX3VNW9VXXlhPe3VtWNVXVfVf1zVf1o\n/6purKWlpWlXYe7os6O3NO0KzCH72dHbTH02zflpkfp5kdqSLFZ7tGV2LVJ7tKWvNQNWVW1J8pEk\n5yf58SSXVdWOZav9apJHWmsvSPLHSf6wd0U32ixsjHmjz47e0rQrMIfsZ0dvs/TZtOenRernRWpL\nsljt0ZbZtUjt0Za+1nMG67wk97XWHmitPZHkxiS7lq2zK8l1w/JnkryqXxUBYCLzEwAz58R1rLM9\nydfHXj+Y0aQ2cZ3W2ver6tGqek5r7ZE+1QR62Lr1pJx66tuyZctph8oef/z+PPbYFCsFx878BAvi\nhBNOyimnXJKkDpU9/vi+6VUInoFqra2+QtUvJTm/tfaW4fWvJDmvtXbF2Dp3DevsH15/ZVjnkWU/\na/VfBsBCa63V2mutj/kJgF56zk/rOYP1UJLxm4LPGsrGPZjkR5Lsr6oTkvzQpE8He1YcgE3P/ATA\nzFnPPVh7kzy/qs6uqq1JXpfk5mXrfC7JG4blS5N8oV8VAWAi8xMAM2fNM1jDNeuXJ7k1o0B2TWvt\n7qp6f5K9rbXPJ7kmySeq6r4k/5nRJAcAG8b8BMAsWvMeLAAAANZnXQ8ankdVdU1VHaiqfWNlV1XV\ng1V1+/B1wdh77xseRHl3Vb16rHzVh1gukqo6q6q+UFX/WlV3VdUVQ/mzq+rWqvpyVd1SVaePfc+H\nh367s6rOHSt/w9BnX66q10+jPcfDhD77jaHcvraCqnpWVd1WVXcMfXbVUH5OVe0Z2v/JqjpxKF/x\nQbEr9eWiWaXPrq2q+4fy26vqJWPfs6mPzWOxSGPgoo1NizRuLOLxXFVbhjrfPLyeu+2yrC13jLXl\nz+d4u3y1qr401P1fhrK5G89WacvsjmettYX8SvLyJOcm2TdWdlWSd09Y94VJ7sjokslzknwlo78T\numVYPjvJSUnuTLJj2m3bwD7bluTcYfnUJF9OsiPJB5L89lB+ZZI/GJYvTPLXw/LPJNkzLD87yb8n\nOT3JGQeXp92+49xn9rXV++2U4d8TkuwZ9p9PJbl0KL86yVuH5V9P8tFh+bVJbhyWXzSpL6fdtuPc\nZ9cmec2EdTf9sXmMfbwwY+Aijk2LNG4s2vGc5F1J/iLJzcPrudwuK7Tl2iS/OKfb5f4kz15WNnfj\n2SptmdnxbGHPYLXWvpjk2xPemvSXonZldJA/2Vr7apL7MnqWynoeYrkwWmsPt9buHJb/O8ndGf1V\nrvEHdV6Xp/tgV5Lrh/VvS3J6VZ2Z5Pwkt7bWvtNaezSj+yMOfaqwSFbos+3D2/a1FbTW/ndYfFZG\nA2BL8vNJ/nIovy7JLwzLyx8U+8ph+ZJM7suFNKHPnhper7Sfbepj81gs0hi4iGPTIo0bi3Q8V9VZ\nSS5K8vGx4ldmDrfLCm1JJl/xNdPbZXAwVIybu/FsMKktB8uXm/p4trABaxXvGE59fnzstOjyh1U+\nNJRNeojl9mwCVXVORmcA9yQ5s7V2IBlN2knOHFZbqX9W6s+FNtZntw1F9rUVHLwEI8nDSf42o0/E\nHm2tHfxPxnj7D3tQbJLvVNVzssn2s+V91lrbO7z1e8N+9sGqOmkoc2w+Q4s0Bi7K2LRI48aCHc8f\nSvJbGQXeVNVzk3x7HrdLlrVlzDxul2TUjluqam9V/dpQNq/j2aS2JDM6nm22gPXRJD/WWjs3o0Ht\ng1Ouz0yqqlMz+mTpN4dPPpcPNCv9ZZRN+xyZCX1mX1tFa+2p1tpPZHR24LyMLl1ar025ny3vs6p6\nUZL3ttZemOSnkzw3o8s9JtmUfXasFmkMXKSxaZHGjUU5nqvq4iQHhrOl4/Vabx3noS1zt13GvKy1\n9lMZnZV7R1X9XOZ3PBtvy+VV9fLM8Hi2qQJWa+2bbbg4M8mf5enTzw9l9CDKgw4+rHI9D7FcKMON\nqJ9J8onW2meH4gPDaeJU1bYk3xjK9Vsm95l9bX1aa/+VZCnJzyY5o6oOjknj7T/UZ3X4g2JX6suF\nNtZnF4x9CvlERvcJ2M+eoUUaAxd1bFqkcWMBjueXJbmkqu5P8smMLvn7k4wuL5u37XJEW6rq+jnd\nLkmS1tp/DP9+M8lNGdV9LsezZW35qyTnzfR41qZw093x+sroxra7xl5vG1t+V5IbhuWDN1duTfK8\nPH0z3Al5+ma4rRndDPfCabdrg/vs+iR/tKzsA0muHJbfm6dviLwoT98Q+dJMviHy4PIZ027bce4z\n+9rK/fXDGW6QTfIDSf5x2Jc+leS1Q/nVSd42LL89T98U/boceVP0YX057fYd5z7bNpRVRpe2/P7w\n2rF57H29MGPgIo1NizRuLOrxnOQVOfyPXMzVdlmlLXO5XZKckuTUYfkHk/xTkldnDsezVdoys+PZ\nVHbc47QxbkiyP8n/JflakjdlNNnsGzr0poyuQz24/vuGTr87yavHyi/I6K8v3ZfRaeKpt20D++xl\nSb4/9M8dSW4f2v+cJH839MOt4wdWko8M/falJD85Vv7Goc/uTfL6abdtCn1mX1u5z1489NOdQx/9\nzlD+vIzuEbk3o8n5pKH8WUk+PfTLniTnrNWXi/a1Sp/9/XDs7Rv2uVPGvmdTH5vH2M8LMwYu2ti0\nSOPGoh7POTyUzN12WaUtc7ldhm1w8Pi/6+Cxm/kcz1Zqy8yOZx40DAAA0MmmugcLAABgIwlYAAAA\nnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnQhYAAAAnfw/u0Ys4T9K18IAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig,axes = plt.subplots(11, 2, figsize=(12,35))\n",
- "for i,axis in enumerate(axes.ravel()):\n",
- " rate = rate_names[i]\n",
- " axis.hist(datadf[rate])\n",
- " axis.set_title(rate)\n",
- " axis.axvline(trueratesdf[rate][0], color='r')\n",
- " axis.set_title(rate)\n",
- " axis.set_xlim(trueratesdf[rate][0] * 0.5, 1.5 * trueratesdf[rate][0])\n",
- "fig.tight_layout()\n",
- "print('Red line - true value')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "def plot_intersection(name1, name2):\n",
- " fig, ax = plt.subplots(1,1, figsize=(10,3))\n",
- " ax.plot(name1, name2, 'b.', data=datadf)\n",
- " ax.axvline(trueratesdf[name1][0], color='r')\n",
- " ax.axhline(trueratesdf[name2][0], color='r')\n",
- " ax.set_xlabel(name1)\n",
- " ax.set_ylabel(name2)\n",
- " fig.tight_layout()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 52,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAADTCAYAAABz5445AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UZVV55/HvDxpUEBqIBhNaEBQSgURshe6JgoUM0uAK\naKImulYacKKJ+ELejBIz0sasCTrjIMYXllExLDEIGoWZEGmMlJIEBOS136ANgt0tmkAAWx1dNDzz\nx9kF10t1dxXUvVW3+/tZq1bt+5x9ztl3975dT+3a55xUFZIkSZIetcNsN0CSJEmaa0ySJUmSpD4m\nyZIkSVIfk2RJkiSpj0myJEmS1MckWZIkSeoz8CQ5yfwkFydZnWRlkkVJnpfk6iQ3Jrk2yeE99T+U\nZG2Sm5Ic1hM/OcntSW5LsnTQ7ZYkSdL2K4O+T3KSTwNfq6rzkswDdgUuAj5QVcuTHA/8aVUdneQE\n4M1V9fIki4Bzqmpxkj2B64GFQIBvAgur6oGBNl6SJEnbpYHOJCfZHTiyqs4DqKpNLbF9GJjfqu0B\nbGjlE4HzW91vAPOT7A0cByyvqgeq6n5gObBkkG2XJEnS9mvegI+/P3BPkvOA59HNBp8O/CFweZIP\n0M0M/1qrvw+wrmf/9S3WH9/QYpIkSdKMG/Sa5Hl0SyQ+UlULgR8BZwBvAk6vqn3pEuZPbWb/DLh9\nkiRJ0mMMeiZ5PbCuqq5vr78AvBN4UVWdDlBVn0/yibZ9A/DMnv0XtNgGYKwvfmX/yZIMdoG1JEmS\n5oSqGuhk6kBnkqvq+8C6JAe10DHASuC7SV4CkOQYYG3bfimwtMUXA/e3Y1wOHNvulLEncGyLTXZO\nvx7n15lnnjnrbRjVL/vuCfafn90n1n+OP/vO/hu5L/vuiX0Nw6BnkgHeBlyQZCfgDuBUumT4nCQ7\nAj8B3ghQVZclOSHJt+iWZpza4vcleS/dmuYC3lPdBXySJEnSjBt4klxVNwOH94X/BXjhZuq/ZTPx\nTwOfnsm2SZIkSZPxiXt6xNjY2Gw3YWTZd0/M2Gw3YMQ5/h4/++6Jsf8eP/tu7hv4w0SGKUltS+9H\n2m4k4GdXkjRFSahRvnBPkiRJGkUmyZIkSVIfk2RJkiSpj0myJEmS1GcY90kervgka2kk+dmVJM0h\n216S7BXy0ujx7haSpOkYwsSKyy0kSZKkPibJkiRJUh+TZEmSJKmPSbIkSZLUZ+BJcpL5SS5OsjrJ\nyiSLWvytLXZrkrN66p+RZG3b9rKe+JIka5LcnuQdg263JEmStl/DuLvFOcBlVfXqJPOAXZKMAb8O\n/EpVbUryNIAkzwVeAzwXWAB8JcmBQIAPA8cA3wWuS3JJVa0ZQvslSZK0nRlokpxkd+DIqjoFoKo2\nAT9I8ibgrPaaqrqn7XIScGGL35lkLXAEXZK8tqruase9sNU1SZYkSdKMG/Ryi/2Be5Kcl+SGJB9P\nsgtwEHBUkmuSXJnkBa3+PsC6nv03tFh/fH2LSZIkSTNu0Mst5gELgTdX1fVJzgbe2eJ7VtXiJIcD\nFwMHzMQJly1b9kh5bGyMsbGxmTisJEmSZsn4+Djj4+NDPWdqgE+5SrI3cHVVHdBev5guSd4BeF9V\nfa3F1wKLgTcAVNVZLf5l4Ey65RbLqmpJi7+zq1bv6ztfDfL9SBoQn7gnSZqGJFTVQB+7N9DlFlX1\nfWBdkoNa6BhgJfAl4KUAbdvOVXUvcCnwW0l2TrI/8BzgWuA64DlJ9kuyM/Dbra4kSZI044Zxd4u3\nARck2Qm4AzgV+DHwqSS3Aj8FlgJU1aokFwGrgAeB09rU8ENJ3gIsp0vsP1lVq4fQdkmSJG2HBrrc\nYthcbiGNKJdbSJKmYeSXW0iSJEmjyCRZkiRJ6mOSLEmSJPUxSZYkSZL6mCRLkiRJfUySJUmSpD4m\nyZIkSVIfk2RJkiSpj0myJEmS1MckWZIkSepjkixJkiT1GXiSnGR+kouTrE6yMsminm1/nOThJHv1\nxD6UZG2Sm5Ic1hM/OcntSW5LsnTQ7ZYkSdL2a94QznEOcFlVvTrJPGAXgCQLgGOBuyYqJjkeeHZV\nHdiS6XOBxUn2BN4NLAQCfDPJJVX1wBDaL0mSpO3MQGeSk+wOHFlV5wFU1aaq+kHbfDbw9r5dTgLO\nb3W/AcxPsjdwHLC8qh6oqvuB5cCSQbZdkiRJ269BL7fYH7gnyXlJbkjy8SS7JDkRWFdVt/bV3wdY\n1/N6fYv1xze0mCRJkjTjBr3cYh7dEok3V9X1Sc4GlgFH0S212JoMsG2SJEnSpAadJK+nmzG+vr3+\nAl2S/Czg5iQBFgA3JDmCbob4mT37L2ixDcBYX/zKyU64bNmyR8pjY2OMjY1NVk2SJEkjYnx8nPHx\n8aGeM1U12BMkXwPeUFW3JzkT2KWq3tGz/dvAwqq6L8kJdLPOL0+yGPhgVU1cuHc93az0Dq38grY+\nufdcNej3I2kAEvCzK0maoiRU1UBXHAzj7hZvAy5IshNwB3Bq3/aiLauoqsuSnJDkW8CPJuq2BPq9\ndMlxAe/pT5AlSZKkmTLwmeRhciZZGlHOJEuSpmEYM8k+cU+SJEnqY5IsSZKkJ2zjRrj66u77tsAk\nWZIkSU/Ixo1w5JFw1FHd920hUTZJliRJ0hOyYgWsXAmbNsGqVV151JkkS5Ik6Qk59FA45BDYaSc4\n+OCuPOq8u4Wk2efdLaRtysaN3czioYfCbrvNdms0LBs3djPIhxwy+H/3YdzdwiRZ0uwzSZa2GRNr\nUyeSpauuMlHWzPMWcJIkaaRsi2tTtX0ySZYkSTNmW1ybqu2Tyy0kzT6XW0jblGGuTdX2yTXJ02SS\nLI0ok2RJ0jRsE2uSk8xPcnGS1UlWJlmU5P3t9U1JvpBk9576ZyRZ27a/rCe+JMmaJLcneceg2y1J\nkqTt18BnkpN8GvhaVZ2XZB6wK3A48NWqejjJWUBV1RlJDgYuaNsXAF8BDgQC3A4cA3wXuA747apa\n03cuZ5KlUeRMsiRpGkZ+JrnNEB9ZVecBVNWmqnqgqr5SVQ+3atfQJcQAJwIXtnp3AmuBI9rX2qq6\nq6oeBC4EThpk2yVJkrT9GvRyi/2Be5Kcl+SGJB9P8pS+Oq8HLmvlfYB1Pds2tFh/fH2LSZIkSTNu\n0EnyPGAh8JGqWgj8GDhjYmOSdwEPVtXfDbgdkiRJ0pTNG/Dx1wPrqur69vrzwDsAkpwCnAC8tKf+\nBuCZPa8XtFiAfSeJP8ayZcseKY+NjTE2NvYEmi9JkqTZNj4+zvj4+FDPOYwL974GvKGqbk9yJrAL\ncCXwAeCoqrq3p+7EhXuL6JZTXEF34d4OwG10F+7dDVwLvLaqVvedywv3pFHkhXuSpGkYxoV7g55J\nBngbcEGSnYA7gFOB64GdgSuSAFxTVadV1aokFwGrgAeB01rW+1CStwDL6RLmT/YnyJIkSdJM8WEi\nkmafM8mSpGkY+VvASZIkSaPIJFmSJEnqs9UkOckOSXZo5Z2TLEyy1+CbJkmSJM2OLSbJSV5BdzeJ\nDUlOAq4C/idwS5JfH0L7JEmSpKHb4oV7SW4EjgeeAtwMHF5VtyXZD/hCVb1wOM2cGi/ck0aUF+5J\nkqZhTtwCrqq+1xrznaq6rcXumliCIUmSJG1rprQmuRVf3xPbke4+x5IkSdI2Z2tJ8htpyXBVXdsT\nfyZw1qAaJUmSJM0mHyYiafa5JlmSNA1zYk1ya8iBwF8BBwNPnohX1QEDapckSZI0a6Z68d15wMeA\nTcDRwPnAZwbVKEmSJGk2TTVJfkpV/RPd8oy7qmoZ8PLBNUuSJEmaPVNNkn/a7nKxNslbkrwSeOpU\ndkwyP8nFSVYnWZlkUZI9kyxPcluSy5PM76n/oSRrk9yU5LCe+MlJbm/7LJ3Wu5QkSZKmYapJ8unA\nLsDbgBcAvwOcPMV9zwEuq6rnAs8D1gDvBL5SVb8EfBU4AyDJ8cCzq+pA4PeAc1t8T+DdwOHAIuDM\n3sRakiRJmkkDvbtFkt2BG6vq2X3xNcBLqur7SZ4BXFlVz01ybit/rtVbDYzRrYN+SVW9qcU/BoxP\n1Os5rne3kEaRd7eQJE3DXLq7xUHA24H9evepqpduZdf9gXuSnEc3i3w98AfA3lX1/XaM7yXZu9Xf\nB1jXs//6FuuPb2gxSZIkacZNKUkGLqZb+vA3wEPTPP5C4M1VdX2Ss+mWWvRPGW1uCmnavyEsW7bs\nkfLY2BhjY2PTPYQkSZLmkPHxccbHx4d6ziktt0jyzap6wbQP3s0QXz1xP+UkL6ZLkp8NjE1hucUa\n4CV0yy3Gqur3W/xn6vWcz+UW0ihyuYUkaRqGsdxiixfuJdkryV7A/0lyWpJfmIi1+Ba1JRXr2nIN\ngGOAlcClwCktdgpwSStfCixt514M3N+OcTlwbLtTxp7AsS0mSZIkzbgtziQn+TbdUojJMvWayhP3\nkjwP+ASwE3AHcCqwI3AR8EzgLuA1VXV/q/9hYAnwI+DUqrqhxU8B3tXa85dVdf4k53ImWRpFziRL\nkqZhGDPJA727xbCZJEsjyiRZkjQNc+nuFk8GTgNeTDeTexVwblX9ZIBtkyRJkmbFVC/cuwjYCHym\nhV4H7FFVrx5g26bNmWRpRDmTLEmahjkzkwwcWlUH97y+MsmqQTRIkiRJmm1TfSz1De1uEwAkWUT3\nYBBJkiRpmzPV5RargV8CvtNC+wK3AZvo7nLxqwNr4TS43EIaUS63kCRNw1xabrFkkI2QJEmS5pIt\nJsk9DwzZONn2qvrPGW+RJEmSNMu2NpP8TX72YSITfw9NK2/1YSKSJEnSqNliklxV+0+U26zygcCT\nB90oSZIkaTZN9WEivwucDiwAbgIWA/8KHDO4pkmSJEmzY6q3gDsdOBy4q6qOBp4PPDCwVkmSJEmz\naKpJ8k8mHkGd5ElVtYbulnBbleTOJDcnuTHJtS12WJKrJ2JJDu+p/6Eka5PclOSwnvjJSW5PcluS\npVN/i5IkSdL0TPUWcOuT7AF8CbgiyX3AXVPc92FgrKru64m9DzizqpYnOR54P3B0khOAZ1fVge2B\nJecCi5PsCbwbWEh30eA3k1xSVc5mS5IkacZNKUmuqle24rIkVwLzgS9P8RzhsTPWD7djAOwBbGjl\nE4Hz2zm/kWR+kr2Bo4HlE0lxkuV0927+3BTbIEmSJE3ZVGeSH1FVX5vuLsDlSQr4eFX9DfCHLfYB\nuiT611rdfYB1Pfuub7H++IYWkyRJkmbctJPkx+FFVXV3kqcDy5OsAV4FnF5VX0ryKuBTwLGT7DvQ\nxw1KkiRJkxl4klxVd7fv/5HkS8ARwNKqOr3FP5/kE636BuCZPbsvaLENwFhf/MrJzrds2bJHymNj\nY4yNjU1WTZIkSSNifHyc8fHxoZ4zVbX1Wo/34MkuwA5V9cMkuwLLgfcAZwOnVdXXkhwDnFVVh7cL\n995cVS9Pshj4YFVNXLh3Pd2Fezu08guq6v6+89Ug34+kAUnAz64kaYqSUFUDXXEw6JnkvYEvtvXI\n84AL2h0t3gick2RH4CfAGwGq6rIkJyT5FvAj4NQWvy/Je+mS4wLe058gS5IkSTNloDPJw+ZMsjSi\nnEmWJE3DMGaSp/owEUmSJGm7YZIsSZIk9TFJliRJkvqYJEuSJEl9TJIlSZKkPibJkiRJUh+TZEmS\nJKmPSbIkSZLUxyRZkiRJ6mOSLEmSJPUxSZYkSZL6DDxJTnJnkpuT3Jjk2p74W5OsTnJrkrN64mck\nWdu2vawnviTJmiS3J3nHoNstSZKk7de8IZzjYWCsqu6bCCQZA34d+JWq2pTkaS3+XOA1wHOBBcBX\nkhwIBPgwcAzwXeC6JJdU1ZohtF+SJEnbmWEkyeGxM9ZvAs6qqk0AVXVPi58EXNjidyZZCxzRjrG2\nqu4CSHJhq2uSLEmSpBk3jDXJBVye5Lokv9tiBwFHJbkmyZVJXtDi+wDrevbd0GL98fUtJkmSJM24\nYcwkv6iq7k7ydGB5ktvaefesqsVJDgcuBg4YQlskSZKkrRp4klxVd7fv/5HkS3TLJ9YBf9/i1yV5\nKMnP0c0c79uz+4IWy2bij7Fs2bJHymNjY4yNjc3UW5GkbcLGjbBiBRx6KOy222y3RpK2bnx8nPHx\n8aGeM1U1uIMnuwA7VNUPk+wKLAfeAzwL2KeqzkxyEHBFVe2X5GDgAmAR3XKKK4AD6ZaF3EZ34d7d\nwLXAa6tqdd/5apDvR9KAJOBndyg2boQjj4SVK+GQQ+Cqq0yUJY2eJFRVBnmOQc8k7w18MUm1c11Q\nVcuT7AR8KsmtwE+BpQBVtSrJRcAq4EHgtJb1PpTkLXRJ9g7AJ/sTZEnS1q1Y0SXImzbBqlVdefHi\n2W6VJM09A51JHjZnkqUR5Uzy0EzMJK9aBQcf7EyypNE0jJlkk2RJs88keag2bnx0uYUJsqRRZJI8\nTSbJ0ogySZYkTcMwkuRh3CdZkiRJGikmyZIkSVIfk2RJkiSpj0myJEmS1MckWZIkSepjkixJkiT1\nMUmWJEmS+pgkS5IkSX1MkiVJkqQ+JsmSJElSn4EnyUnuTHJzkhuTXNu37Y+TPJxkr57Yh5KsTXJT\nksN64icnuT3JbUmWDrrdkiRJ2n7NG8I5HgbGquq+3mCSBcCxwF09seOBZ1fVgUkWAecCi5PsCbwb\nWAgE+GaSS6rqgSG0X5IkSduZYSy3yGbOczbw9r7YScD5AFX1DWB+kr2B44DlVfVAVd0PLAeWDK7J\nkjQ6Nm6Eq6/uvkuSZsYwkuQCLk9yXZI3ACQ5EVhXVbf21d0HWNfzen2L9cc3tJgkbdc2boQjj4Sj\njuq+myhL0swYxnKLF1XV3UmeDixPsgb4M7qlFluT6Z5s2bJlj5THxsYYGxub7iEkaWSsWAErV8Km\nTbBqVVdevHi2WyVJM2t8fJzx8fGhnjNVNbyTJWcCDwFvAX5MlwQvoJsZPgL4C+DKqvpcq78GeAlw\nNN265t9v8XN76/Ucv4b5fiTNkAT87D4uEzPJq1bBwQfDVVfBbrvNdqskabCSUFXTnkydjoEut0iy\nS5KntvKuwMuAa6vqGVV1QFXtT7ek4vlV9e/ApcDSVn8xcH9VfR+4HDg2yfx2Ed+xLSZJ27XddusS\n469/3QRZkmbSoJdb7A18MUm1c11QVcv76hRtWUVVXZbkhCTfAn4EnNri9yV5L3B9q/+edgGfJG33\ndtvNJRaSNNOGutxi0FxuIY0ol1tIkqZh5JdbSJIkSaPIJFmSJEnqY5IsSZIk9TFJliRJkvqYJEuS\nJEl9TJIlSZKkPibJkiRJUh+TZEmSJKmPSbIkSZLUxyRZkiRJ6mOSLEmSJPUZeJKc5M4kNye5Mcm1\nLfb+JKuT3JTkC0l276l/RpK1bfvLeuJLkqxJcnuSdwy63ZIkSdp+DWMm+WFgrKqeX1VHtNhy4JCq\nOgxYC5wBkORg4DXAc4HjgY+mswPwYeA44BDgtUl+eQht366Mj4/PdhNGln33xIzPdgNGnOPv8bPv\nnhj77/Gz7+a+YSTJ6T9PVX2lqh5uL68BFrTyicCFVbWpqu6kS6CPaF9rq+quqnoQuBA4aQhtH4qN\nG+Hqq7vvs8kP7ONn3z0x47PdgBHn+Hv87Lsnxv57/Oy7uW8YSXIBlye5LskbJtn+euCyVt4HWNez\nbUOL9cfXt9jI27gRjjwSjjqq+z7bibIkSZKGkyS/qKpeCJwAvDnJiyc2JHkX8GBV/d0Q2jEnrVgB\nK1fCpk2walVXliRJ0uxKVQ3vZMmZwMaq+t9JTgHeALy0qn7atr8TqKp6X3v9ZeBMuiUby6pqyWT1\neo4/vDcjSZKkWVNVGeTxB5okJ9kF2KGqfphkV7oL9t5DN4P9AeCoqrq3p/7BwAXAIrrlFFcAB7b6\ntwHHAHcD1wKvrarVA2u8JEmStlvzBnz8vYEvthneecAFVbU8yVpgZ+CKJADXVNVpVbUqyUXAKuBB\n4LTqsviHkryFLsneAfikCbIkSZIGZajLLSRJkqRRMGeeuJfkk0m+n+SWnthmHzrStu+bZGOSP+qJ\nTfrQkSTPSnJNi/9dknktvnOSC9sDTK5Osu8w3u9Mmm7fJfnVJP+aZEV70MvOLb4wyS2tjz7YU3/P\nJMuT3Jbk8iTze7Z9qPXdTUkOG9Z7nknT6b8k85J8uvXTyrY+fmIfx14X+4ueBwh9OckzerZNOl6S\nnNz657YkS3vi0x6To2Q6/ZfkdS1+c5J/TvKrPfs49tjy2GvbD0/yYJLf6Ik59h6NbemzO9biK5Jc\n2RN37LHFz+3uSS5t/+fdmu56rIl9HHuP3fbHSR5OsldPbPZ+blTVnPgCXgwcBtzSE/uvdGuaAc4C\n/qpvn4uBzwF/1F7vAHwL2A/YCbgJ+OW27XPAq1v5Y8DvtfKbgI+28m/R3ad51vtjAH13VivvCNwM\nHNpe78mjf1H4BnB4K18GHNfK7wP+tJXf0XOs44F/aOVFdMtmZr0/Bjn2gNcCn23lpwDfBvZ17P1M\n3z21p/xW4GOtfMJk46WNwX8D5gN7TJQfz5gcta9p9t/inn5Z0tN/jr2t9F1PP/0T8H+B33DsTWvs\nzQdWAvu0109z7G217ybe4xk8+vPjacC9dMtPHXs9/dfiC4Av0/1c3avFJs0zhtV/c2Ymuar+Gbiv\nL7a5h46Q5CTgDroP7oQtPXTkpcAXWvlvgVe08kntNcDn6S4OHClT7LuJ+0q/DLi5qla0evdVVbXf\nenerqutavfOZvI/+lkf79KRWj6r6BjA/yd4z+uaGYJpjr4Bdk+wI7AL8FPgBjr3e2A97Xu5K99RN\n6B4WNNl4OQ5YXlUPVNX9dNceLJnmmJyIj5Tp9F9VXVNVD7R472fasfdobHNjD7rE5fPAv/fEHHs/\nG9tc/70O+EJVbWj17mlxx96jsf6+m1jLWsBurbwbcG9VbcKxd98km84G3t4X21yeMZT+mzNJ8hS8\nHvhHgHR3yvhTujtl9N7+Y9KHjiT5OeC+nqSn92Ekj+xTVQ8B9/dO828jeh/YchB0t9dLcn2SiQG5\nD12/TOjto72r6vsAVfU9ugsyJ/aZ7OEv25pHxh7df+o/prvLyp3A/2ofUMdejyR/meQ7dD9c393C\nm3so0JYeIjTVMfnzM/0eZtNm+q/X7/LomHTs9Zis75L8IvCKqvoYW/6Z4dibfOwdBOyV5Mp0Dwb7\nnRZ37PXYTN99GDg4yXfp/op7eos79nokORFYV1W39m2a1Z8bI5Ek59GHjny2hZYBZ1fVj6dzmBmu\nNxLy2Ae2zANeRLds4EjglUmOnuZht5urPScZe0cAm4BnAAcAf5LkWVs7zFRP93jaOBdV1Z9X1b50\nt3R862aqzeT73abG5Jb6r31eT6X7c+HWOPY6H2Rq/fW4Tjmg486KzfTfPGAh3Z++lwD/PclztnIo\nx17nOODGqvpF4PnAR5I8daZOOUPHmVVJngL8Gd1zMbZafQZPvdX+m/NJclvkfgLdb2YTFgHvT3IH\n8AfAnyU5je43id6LABYAG6q7F/MeSXbojbfyBuCZ7Vw7ArtX1X8O6O0M1Wb6bj3w9bbM4v/RzTAv\npKcfmt4++t7EMor2p4yJP1duaZ+Rt5n+ex3w5ap6uKr+A/gX4IU49jbns8DERVKbGy+T9t0W6sPm\nx+S25rPAb068SHex3seBE6tq4s+Vjr3J9Y69FwIXJvk28Crgo23myrG3eb39tx64vKp+0sbV14Hn\n4djbnN6+OxX4e4Cq+je69ba/jGOv17OBZwE3t8/oAuCGJD/PLP/cmGtJcuj5LSHJErr1KSdWeyof\nQFUdVVUHVNUBdDME/6OqPgpcBzwnyX7p7tjw28AlbbevAq9u5ZN74pe217TtXx3IOxu8KfUdcDnw\nK0menO5q45cAK9ufHh5IckSSAEv52T46pZVP6YsvbedbDNw/8aeMETTV/vsO3Vq7iWU/i4HVOPZ6\n+653hukVwJpW3tx4uRw4Nsn8JHsCx9L9QJ7qmOzt01G0tf5b3eL70q3x/J32w3aCY2/ixWbG3sTP\ni6ran27J1GlVdSmOval+di8BXpxkx3QPCVuE/+9Nte++Q3chOC1BO4jueirHXuu/qlpRVc/o+Yyu\nB55fVf/ObP/cqDlwpWN1Vxp+Fvgu3YVQ36H77WstcBdwQ/v66CT7nUm7u0V7vYTu6XxrgXf2xPen\nu+Lxdrqrbndq8ScBF7X61wDPmu2+GHTf0c2GrgBuoeeOIcALgFvbvuf0xPcCvtL6dTmwR8+2D9Nd\n3XwzsHC2+2LQ/Ud3QcZFrf9WOPYm7bvPt3F0E91/Qr+wtfFC9x/X2tZHS5/ImBylr+n0H/A3dFfG\n3wDcCFzr2Jv62OvZ71O0u1s49qb12f0TugvlbwHe6tib8uf2F+gSulva12sde4/tv77td9DubtFe\nz9rPDR8mIkmSJPWZa8stJEmSpFlnkixJkiT1MUmWJEmS+pgkS5IkSX1MkiVJkqQ+JsmSJElSH5Nk\nSZoj2kMZbp1G/ZPbk6O2Vu8vktyc5MYkX57KPpK0vTNJlqS5ZTo3rz8F2GcK9d5fVc+rqucD/0D3\nECZJ0haYJEvS3LJTks8kWZXkovYI+YVJxpNcl+QfkzwjyW8CLwQ+k+SGJE9K8t+TfCPJLUnOnThg\nVf2w5/i7Ag8P+01J0qjxiXuSNEck2Q/4NvBrVXVNkk8Aa4BXAidW1b1JXgMcV1X/LcmVdI9Gv7Ht\nv0dV3d/K5wOfq6p/aK//ElgK3A8cXVX3Dv0NStIIcSZZkuaW71TVNa18AXAccAhwRZIbgXcBv9hT\nPz3lY5Jck+QW4Oi2HwBV9edVtW875lsH+QYkaVswb7YbIEn6Gf1/3tsIrKyqF21ppyRPAj4CLKyq\n7yY5E3jyJFU/C1wGLJuBtkrSNsuZZEmaW/ZLsqiVXwdcDTw9yWKAJPOSHNy2/wDYvZWfTJdg35vk\nqcCrJg6Y5Dk9x38FsHqA7ZekbYIzyZI0t6wB3pzkPGAl8NfA5cBfJ5kP7Ah8EFgF/C1wbpIfA/8F\n+ETb527g2p5jnpXkILoL9u4Cfn9I70WSRpYX7kmSJEl9XG4hSZIk9TFJliRJkvqYJEuSJEl9TJIl\nSZKkPiZicz37AAAAIUlEQVTJkiRJUh+TZEmSJKmPSbIkSZLUxyRZkiRJ6vP/AaaOq1A8KO8KAAAA\nAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "name1 = 'beta3'\n",
- "name2 = 'alpha3'\n",
- "plot_intersection(name1, name2)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 53,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAADTCAYAAABz5445AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuwXlWZ5/HvLwQvIES8RSfcvCTKxQbiGJhR8CijXOwS\n7EaM3T0g0soItk6PUwI9OsTLVIkztogKlIoYLNqAyK1aWiIFB9tqbhJAboEgDZIYUIFgFLu55Jk/\n3nXg5fWcJCc578k5J99P1a53vc9ea+21z66cPFlZe+9UFZIkSZKeMW1TD0CSJEmaaEySJUmSpB4m\nyZIkSVIPk2RJkiSph0myJEmS1MMkWZIkSerR9yQ5yYwk30tyR5Lbkuyd5LAktyZ5Ksncrro7JXks\nyZK2nda1b26SnyW5K8kpXfHtkixOcmeSy5LM6Np3apJlSW5Ksme/z1WSJElTw3jMJH8ZuLSqdgH2\nAO4AbgHeDVw1TP27q2pu247tip8OHF1Vc4A5SQ5o8ROAy6vqtcAVwIkASQ4CXl1Vs4FjgDP6cG6S\nJEmagvqaJCfZFti3qs4CqKonq+q3VXVnVS0DMlyzYfp5ObBNVV3fQmcDh7byIcDCVl7Yvg/Fz27H\nvRaYkWTmGJyWJEmSprh+zyS/EvhNkrPa8omvJ3n+OtrsnOSGJFcmeXOLzQKWd9VZ3mIAM6vqQYCq\negCY2dXm/q42K7raSJIkSSPqd5I8HZgLfK2q5gKP0ZZDjOCXwI5V9Qbg48A/JHnBKI/pe7YlSZK0\nUab3uf/lwP1V9dP2/Xzg+JEqV9UTwCOtvCTJz4E5dGaBd+iqun2LATyQZGZVPdiWZfyqxdfW5mlJ\nTKolSZKmoKoabmnveunrTHJbBnF/kjkttD9we0+1pwef5CVJprXyq4DXAPe0ZRSPJpmXJMARwMWt\n2SXA+1v5/T3xI1pf+wCrhpZlDDNOt81wO+mkkzb5GNy87hu1+ftr8732bl57t3VuG6vfM8kAHwXO\nSbIlcA9wVJJDga8ALwH+MclNVXUQsB/wmSSPA2uAY6pqVevnOODbwPPoPC3jhy1+MnBekg8A9wGH\nA1TVpUkOTnI38HvgqHE4V0mSJE0BfU+Sq+pm4I094Yva1lv3AuCCEfq5AXj9MPGHgf8yQpuPjHa8\nkiRJkm/c02ZrYGBgUw9Bm4DXffPltd98ee21ITIWazYmsyS1uf8MJE1SCfj7S5KGlYSaqDfuSZIk\nSZORSbIkSZLUwyRZkiRJ6mGSLEmSJPUwSZYkSZJ6mCRLkiRJPUySJUmSpB59T5KTzEjyvSR3JLkt\nyd5JDktya5KnksztqX9ikmWt/ju64gcmWZrkriTHd8V3TnJNi383yfQWf06SRa2vq5Ps2O9zlSRJ\n0tQwHjPJXwYurapdgD2AO4BbgHcDV3VXTLILcDiwC3AQcFo6pgFfBQ4AdgPel+R1rdnJwBerag6w\nCji6xY8GHq6q2cApwBf6d4qSJEmaSvqaJCfZFti3qs4CqKonq+q3VXVnVS0Det+CcgiwqNW7F1gG\nzGvbsqq6r6qeABa1ugBvA77fyguBQ7v6WtjK5wP7j/kJStIorV4NV1/d+ZQkTVz9nkl+JfCbJGcl\nWZLk60mev5b6s4D7u76vaLHe+HJgVpIXA49U1ZrueG9fVfUUsCrJizb6jCRpA61eDfvuC/vt1/k0\nUZakiavfSfJ0YC7wtaqaCzwGnDjGx1jfd3Jv8Lu7JWks3Hor3HYbPPkk3H57pyxJmpim97n/5cD9\nVfXT9v184Pi11F8B7ND1ffsWC7Bjb7yqHkrywiTT2mzyUP3uvn6ZZAtg26p6eLiDLliw4OnywMAA\nAwMD63d2kjQKu+8Ou+3WSZB33bVTliSNjcHBQQYHB8esv1TVmHU27AGSq4APVtVdSU4Ctqqq49u+\nK4H/WVU3tO+7AucAe9NZLvEjYDadGe876awrXglcB8yvqqVJzgUuqKpzk5wO3FxVZyQ5Fti9qo5N\nMh84tKrmDzO+6vfPQJKGrF7dmUHebTfYZpuN7CwBf39J0rCSUFUbvJJgPJLkPYBvAlsC9wBHAW8F\nvgK8hM4TKW6qqoNa/RPpPJniCeBjVbW4xQ+k86SMacCZVfX5Fn8lnRv5tgNuBP6qqp5I8lzgO8Be\nwEN0kup7hxmfSbKkyckkWZJGNOGT5InOJFnSpGWSLEkj2tgk2TfuSZIkST1MkiVJkqQeJsmSJElS\nD5NkSZIkqYdJsiRJktTDJFmSJEnqYZIsSZIk9TBJliRJknqYJEuSJEk9+p4kJ5mR5HtJ7khyW5K9\nk2yXZHGSO5NclmRGq/uWJKuSLGnbJ7v6OTDJ0iR3JTm+K75zkmta/LtJprf4c5IsSrIsydVJduz3\nuUqSJGlqGI+Z5C8Dl1bVLsAewFLgBODyqnotcAVwYlf9H1fV3LZ9DiDJNOCrwAHAbsD7kryu1T8Z\n+GJVzQFWAUe3+NHAw1U1GzgF+EI/T1KSJElTR1+T5CTbAvtW1VkAVfVkVT0KHAIsbNUWAod2Nxum\nq3nAsqq6r6qeABa1PgDeBnx/mL66j3E+sP/Gn5EkSZI2B/2eSX4l8JskZ7XlE19PshUws6oeBKiq\nB4CXdbXZJ8mNSX6QZNcWmwXc31VnOTAryYuBR6pqTXe8t01VPQWsSvKifpykJEmSppZ+J8nTgbnA\n16pqLvB7Okstqqfe0PclwE5VtRed5RUXrccxhpt53ph6kiRJ2sxN73P/y4H7q+qn7fv36STJDyaZ\nWVUPJnk58CuAqlo91LCq/inJaW32dwXQfePd9sCKqnooyQuTTGuzydu3urTPHYBfJtkC2LaqHh5u\nkAsWLHi6PDAwwMDAwMaetyRJksbR4OAgg4ODY9ZfqnondcdWkquAD1bVXUlOArZqux6uqpPbkyq2\nq6oThhLn1m4ecF5V7dyS3DvprCteCVwHzK+qpUnOBS6oqnOTnA7cXFVnJDkW2L2qjk0yHzi0quYP\nM77q989AkvoiAX9/SdKwklBVG7ySYDyS5D2AbwJbAvcARwFbAOfRmem9Dzi8qlYlOQ74MPAE8Afg\nb6vq2tbPgXSelDENOLOqPt/ir6RzI992wI3AX1XVE0meC3wH2At4iE5Sfe8w4zNJljQ5mSRL0ogm\nfJI80ZkkS5q0TJIlaUQbmyT7xj1JkiSph0myJEmS1MMkWZIkSephkixJkiT1MEmWJEmSepgkS5Ik\nST1MkiVJkqQeJsmSJElSD5NkSZIkqYdJsiRJktSj70lykhlJvpfkjiS3Jdk7yXZJFie5M8llSWZ0\n1T81ybIkNyXZsyt+ZJK7WpsjuuJzk/ys7TulKz7iMSRJkqS1GY+Z5C8Dl1bVLsAewFLgBODyqnot\ncAVwIkCSg4BXV9Vs4BjgjBbfDvjfwBuBvYGTupLe04Gjq2oOMCfJAS0+7DEkSZKkdelrkpxkW2Df\nqjoLoKqerKpHgUOAha3awvad9nl2q3stMCPJTOAAYHFVPVpVq4DFwIFJXg5sU1XXt/ZnA4d29dV9\njKG4JEmStFb9nkl+JfCbJGclWZLk60m2AmZW1YMAVfUAMLPVnwXc39V+eYv1xld0xZcPU59hjvGy\nMT0zSZIkTVnTx6H/ucBxVfXTJF+iswyieur1fh+SMRzLSMdgwYIFT5cHBgYYGBgYw8NKkiSp3wYH\nBxkcHByz/lI1Yu648Z13lkpcXVWvat/fTCdJfjUwUFUPtiUTV1bVLknOaOVzW/2lwFuAt7b6/63F\nzwCuBK4aatvi84G3VNWHk9wx3DGGGWP182cgSX2TgL+/JGlYSaiqDZ5w7etyi7bc4f4kc1pof+A2\n4BLg/S32fuDiVr4EOAIgyT7AqtbHZcDb25MytgPeDlzWllE8mmRekrS23X0NHePIrrgkSZK0Vn2d\nSQZIsgfwTWBL4B7gKGAL4DxgB+A+4PB2Qx5JvgocCPweOKqqlrT4+4H/RWfZxOeq6uwWfwPwbeB5\ndJ6i8bEWf9FIx+gZnzPJkiYnZ5IlaUQbO5Pc9yR5ojNJljRpmSRL0ogm9HILSZIkaTIySZYkSZoE\nVq+Gq6/ufKr/TJIlSZImuNWrYd99Yb/9Op8myv1nkixJkjTB3Xor3HYbPPkk3H57p6z+MkmWJEma\n4HbfHXbbDbbcEnbdtVNWf/l0C59uIWmy8ukW0mZl9erODPJuu8E222zq0Ux8PgJuI5kkS5q0TJIl\naUQ+Ak6SJEkaYybJkiRJUo++J8lJ7k1yc5Ibk1zXYnsk+ZcWvzjJC1p8pySPJVnSttO6+pmb5GdJ\n7kpySld8uySLk9yZ5LIkM7r2nZpkWZKbkuzZ73OVJEnS1DAeM8lrgIGq2quq5rXYN4BPVNUewIXA\nJ7rq311Vc9t2bFf8dODoqpoDzElyQIufAFxeVa8FrgBOBEhyEPDqqpoNHAOc0a8TlCRJ0tSy3kly\nkmlJ9kryziRvS/Ky9W06zHFmV9VPWvly4M976vce++XANlV1fQudDRzayocAC1t5Yfs+FD8boKqu\nBWYkmbmeY5YkSdJmbJ1JcpJXJ/k6cDfweeB9wLHA5UmuSXJUkrX1U8BlSa5P8tctdluSd7Xy4cD2\nXfV3TnJDkiuTvLnFZgHLu+osbzGAmVX1IEBVPQDM7Gpzf1ebFV1tJEmSpBFNX486n6Oz1OGY3mel\ntdnkvwD+K8/M5vZ6U1WtTPJS4EdJlgIfAL6S5FPAJcDjre5KYMeqeiTJXOCiJLuO8pxG/TykBQsW\nPF0eGBhgYGBgtF1IkiRpExocHGRwcHDM+hvX5yQnOQlYXVV/3xWbDXynqvYZpv6VwMeBXwJXVtUu\nLT4feEtVfTjJHXTWPD/YlmVcWVW7JDmjlc9tbZa2Ng/2HMPnJEuanHxOsiSNaFyek5xkXpI3tvKu\nSf5HkoPXo91WXU+u2Bp4B3Brm1WmLdP4JO2muiQvGVq6keRVwGuAe9oyikfbOAIcAVzcDnMJ8P5W\nfn9P/IjW1z7Aqt4EWZIkSRrOOpdbtNnfg4DpSX4E7A1cCZyQZK+q+j9raT4TuDBJtWOdU1WLk3w0\nyXF0lkZcUFXfbvX3Az6T5HE6T8U4pqpWtX3HAd8GngdcWlU/bPGTgfOSfAC4j84aZ6rq0iQHJ7kb\n+D1w1Hr8PCRJkqR1L7dIcguwJ/Bc4AFg+6r6bZLnA9dW1Z/0f5j943ILSZOWyy0kaUTjsdziyap6\nqqoeA35eVb8FqKo/0JntlSRJkqaU9UmSH0+yVSu/YSjY3mxnkixJkqQpZ32WWzy3qv59mPhLgFdU\n1S39Gtx4cLmFpEnL5RaSNKKNXW4xro+Am4hMkiVNWibJkjSicXkEXM8Br97Qg0mSJEmTwaiTZDqP\nYJMkSZKmrPV5LTVJ9hsqAlt3faeqftyPgUmSJEmbynolyTz7RRwvpvNmu9B5GYhJsiRJkqaUUd+4\nl2RJVc3t03jGnTfuSZq0vHFPkkY07jfu0ZlBXv/Kyb1Jbk5yY5LrWmyPJP/S4hcneUFX/ROTLEty\nR5J3dMUPTLI0yV1Jju+K75zkmhb/bpLpLf6cJItaX1cn2XEDzlWSJEmboQ1Jko9fd5VnWQMMVNVe\nVTWvxb4BfKKq9gAuBD4BkGRX4HBgF+Ag4LR0TAO+ChwA7Aa8L8nrWl8nA1+sqjnAKuDoFj8aeLiq\nZgOnAF8Y/alKkiRpczTqJLmqFo+ySYY5zuyq+kkrXw78eSu/C1hUVU9W1b3AMmBe25ZV1X1V9QSw\nCDiktXkb8P1WXggc2sqHtO8A5wP7j3LckiRJ2kytM0lO8o0krx9h39ZJPpDkL9fSRQGXJbk+yV+3\n2G1J3tXKhwPbt/Is4P6utitarDe+HJiV5MXAI1W1pjve21dVPQWsSvKidZyuJEmStF5Pt/ga8KmW\nKN8K/JrOs5JnA9sC3wLOWUv7N1XVyiQvBX6UZCnwAeArST4FXAI8vhHnsL5rpEestyDP7BpomyRN\nCtnge1IkaUoZbNtYWWeSXFU3AYcneXOr/wrgD8AddJZN/OM62q9sn79OciEwr6r+ns76YpLMBt7Z\nqq8Aduhqvn2LBdixN15VDyV5YZJpbTZ5qH53X79MsgWwbVU9PNwYF3h3uKTJyKdbSNLTBnj2ROen\nN3ISYTRrkk8FflNV362qi4C5wKfW1iDJVkNPrkiyNfAO4NY2q0y7Ie+TwBmtySXA/PZkilcCrwGu\nA64HXpNkpyTPAeYDF7c2VwDvaeUju+KXtO+0/VeM4lwlSZK0GVvfl4kAHAacn+QvgH2BI+gkvWsz\nE7gwSbVjnVNVi5N8NMlxdNYrX1BV3waoqtuTnAfcDjwBHNseYvxUko8Ai+kk9mdW1dJ2jBOARUk+\nC9wInNniZwLfSbIMeIhOYi1JkiSt06heJpJkDnAR8Avg3VX1h34NbLz4MhFJk5bLLSRpRBv7MpF1\nJslJbqEz4zvkZcCjwL8DVNWfbOjBJwKTZEmTlkmyJI1oY5Pk9Vlu8acb2rkkSZI0GY1qucVU5Eyy\npEnLmWRJGtHGziRvyGupJUmSpCnNJFmSJEnqYZIsSZIk9TBJliRJknqYJEuSJEk9TJIlSZKkHn1P\nkpPcm+TmJDcmua7F9kxy9VAsyX9s8bckWZVkSds+2dXPgUmWJrkryfFd8Z2TXNPi300yvcWfk2RR\nkmXtWDv2+1wlSZI0NYzHTPIaYKCq9qqqeS12MnBSVe0FnAT83676P66quW37HECSacBXgQOA3YD3\nJXldV19frKo5wCrg6BY/Gni4qmYDpwBf6N8pSpIkaSoZjyQ5wxxnDTCjlV8IrOip32sesKyq7quq\nJ4BFwCFt39uA77fyQuDQVj6kfQc4H9h/Q09AkiRJm5fxSJILuCzJ9Uk+2GJ/C/y/JL+gM8N7Ylf9\nfdoyjB8k2bXFZgH3d9VZDsxK8mLgkapa0x3vbVNVTwGrkrxorE9OkiRJU8/0cTjGm6pqZZKXAouT\nLAUOAz5WVRclOQz4FvB24AZgp6p6LMlBwEXAnHX0v76vG9zg1xJKkiRp89L3JLmqVrbPXye5iM7S\niSOq6mMtfn6SM1v5d13t/inJaW32dwXQfePd9sCKqnooyQuTTGuzydvzzNKNFcAOwC+TbAFsW1UP\nDzfGBQsWPF0eGBhgYGBgDM5ckiRJ42VwcJDBwcEx6y9VNWad/VHnyVbAtKr6XZKtgcXAp4EvAcdW\n1VVJ9gc+X1VvTDKzqh5sbecB51XVzi3JvZPOuuKVwHXA/KpamuRc4IKqOjfJ6cDNVXVGkmOB3avq\n2CTzgUOrav4wY6x+/gwkqW8S8PeXJA0rCVW1wSsJ+j2TPBO4MEm1Y51TVYuTfAj4ckt+/w0YWqt8\nWJIPA08AfwDeC501xUk+QifJngacWVVLW5sTgEVJPgvcCJzZ4mcC30myDHgI+KMEWZIkSRpOX2eS\nJwNnkiVNWs4kS9KINnYm2TfuSZIkST1MkiVJkqQeJsmSJElSD5NkSZIkqYdJsiRJktTDJFmSJEnq\nYZIsSZIk9TBJliRJknqYJEuSJEk9+p4kJ7k3yc1JbkxyXYvtmeTqoViSN3bVPzXJsiQ3JdmzK35k\nkruS3JnkiK743CQ/a/tO6Ypvl2Rxq39Zkhn9PldJkiRNDeMxk7wGGKiqvapqXoudDJxUVXsBJwFf\nAEhyMPDqqpoNHAOc0eLbAf8beCOwN3BSV9J7OnB0Vc0B5iQ5oMVPAC6vqtcCVwAn9vk8JUmSNEWM\nR5KcYY6zBhhKcl8IrGjldwFnA1TVtcCMJDOBA4DFVfVoVa0CFgMHJnk5sE1VXd/anw0c2sqHAAtb\neWFXXJIkSVqr6eNwjAIuS1LA16vqG8DfttgX6STR/7nVnQXc39V2eYv1xld0xZcPUx9gZlU9CFBV\nDyR52ZielSRJkqas8UiS31RVK5O8FFicZClwGPCxqrooyWHAt4C3D9M2YziOGsO+JEmSNIX1PUmu\nqpXt89dJLgLmAUdU1cda/Pwk32zVVwA7dDXfvsVWAAM98SvXUh/ggSQzq+rBtizjVyONccGCBU+X\nBwYGGBgYGKmqJEmSJqDBwUEGBwfHrL9U9W+CNclWwLSq+l2SremsJf408CXg2Kq6Ksn+wOer6o3t\nxr3jquqdSfYBTqmqfdqNez8F5tJZ3/xT4A1VtSrJNcBHgeuBHwCnVtUPk5wMPFxVJyc5Htiuqk4Y\nZozVz5+BJPVNAv7+kqRhJaGqNnhVQr9nkmcCF7b1yNOBc6pqcZIPAV9OsgXwb8CHAKrq0iQHJ7kb\n+D1wVIs/kuSzdJLjAj7dbuADOA74NvA84NKq+mGLnwycl+QDwH3A4X0+V0mSJE0RfZ1JngycSZY0\naTmTLEkj2tiZZN+4J0mSJPUwSZYkSZJ6mCRLkiRJPUySJUmSpB4myZIkSVIPk2RJkiSph0myJEmS\n1MMkWZIkSephkixJkiT16HuSnOTeJDcnuTHJdS22KMmStv1rkiUtvlOSx7r2ndbVz9wkP0tyV5JT\nuuLbJVmc5M4klyWZ0bXv1CTLktyUZM9+n6skSZKmhvGYSV4DDFTVXlU1D6Cq5lfV3KqaC3wfuKCr\n/t1D+6rq2K746cDRVTUHmJPkgBY/Abi8ql4LXAGcCJDkIODVVTUbOAY4o58nKUmSpKljPJLkrOM4\nhwPf7an/7A6SlwPbVNX1LXQ2cGgrHwIsbOWF7ftQ/GyAqroWmJFk5oacgCRJkjYv45EkF3BZkuuT\nfLB7R5J9gQeq6udd4Z2T3JDkyiRvbrFZwPKuOstbDGBmVT0IUFUPADO72tzf1WZFVxtJkiRpRNPH\n4RhvqqqVSV4K/CjJHVX1k7bvfTx7FvmXwI5V9UiSucBFSXYd5fFqDMYsSZKkzVjfk+SqWtk+f53k\nQmAe8JMkWwB/BsztqvsE8EgrL0nyc2AOnVngHbq63b7FAB5IMrOqHmzLMn7V4mtr8ywLFix4ujww\nMMDAwMAGnaskSZI2jcHBQQYHB8esv1T1b+I1yVbAtKr6XZKtgcXAp6tqcZIDgeOr6q1d9V8CPFxV\na5K8CrgKeH1VrUpyDfBR4HrgB8CpVfXDJCe3NicnOQF4YVWdkORg4LiqemeSfYBTqmqfYcZY/fwZ\nSFLfJODvL0kaVhKq6o/udVtf/Z5JnglcmKTasc6pqsVt33t59lILgP2AzyR5nM5TMY6pqlVt33HA\nt4HnAZdW1Q9b/GTgvCQfAO6jcyMgVXVpkoOT3A38HjiqHycobQ5Wr4Zbb4Xdd4dtttnUo5Ekqf/6\nOpM8GTiTLK3d6tWw775w222w227wz/9sojxhOJMsSSPa2Jlk37inCWf1arj66s6nNr1bb+0kyE8+\nCbff3ilLkjTVmSRrQhmatdxvv86nifKmt/vunRnkLbeEXXftlCVJmupcbuFyiwnl6qs7CfKTT3aS\nsh//GPb5o9stNd5Wr35muYVLLSYQl1tI0og2drmFSbJJ8oQyNJN8++2dWUvXv0prYZIsSSMySd5I\nJskTj7OW0noySZakEZkkbySTZEmT1iRIkn18oKRNxadbSJImJG/ElTSZmSRLkvrCxwdKmsxMkiVJ\nfeHjAyVNZn1PkpPcm+TmJDcmua7FFiVZ0rZ/TbKkq/6JSZYluSPJO7riByZZmuSuJMd3xXdOck2L\nfzfJ9BZ/TjvOsiRXJ9mx3+cqSXrGNtt0nlDz4x/7pBpJk894zCSvAQaqaq+qmgdQVfOram5VzQW+\nD1wAkGQX4HBgF+Ag4LR0TAO+ChwA7Aa8L8nrWv8nA1+sqjnAKuDoFj8aeLiqZgOnAF8Yh3PVJDI4\nOLiph6BNwOs+vrbZpvOs84mQIHvtN19ee22I8UiSs47jHA78QysfAiyqqier6l5gGTCvbcuq6r6q\negJY1OoCvI1Oog2wEDi0q6+FrXw+sP/Gn4qmEn9pbp687psvr/3my2uvDTEeSXIBlyW5PskHu3ck\n2Rd4oKruaaFZwP1dVVa0WG98OTAryYuBR6pqTXe8t6+qegpYleRFY3dakiRJmqqmj8Mx3lRVK5O8\nFPhRkjuq6idt3/uA725k/+v7/LsNfk6eJEmSNi/j+jKRJCcBq6vq75NsQWemeG5V/bLtPwGoqjq5\nff8hcBKdBHdBVR3YWy/Jr4GZVbUmyT7ASVV10FDbqrq2HWtlVb1smDFN7CfxS5IkaYNszMtE+jqT\nnGQrYFpV/S7J1sA7gE+33W8H7hhKkJtLgHOSfInOconXANfRWRbymiQ7ASuB+W0DuAJ4D3AucCRw\ncVdfRwLXtv1XDDfGjfnhSZIkaWrq93KLmcCFbbZ2OnBOVS1u+95Lz1KLqro9yXnA7cATwLHtndFP\nJfkIsJhOwnxmVS1tzU4AFiX5LHAjcGaLnwl8J8ky4CGeSaolSZKktRrX5RaSJEnSZDCl37iXZPsk\nVyS5LcktST7a4nsk+Zf2kpOLk7ygq82wLzPR5DLaa59kpySPdb3k5rRNewbaUEmem+Ta9gKjW9q9\nEL54aIrbgOt+ZJJfdf2Z/8CmPQNtqLVc++Pan+unep9uleTUtu+mJHtumpFrY4z2uid5S5JVXX/m\nP7nOg1TVlN2AlwN7tvILgKV0XlRyHfDmFn8/8JlW3pXOko3pwM7A3bTZdrfJtW3Atd8J+NmmHrfb\nmF3/rdrnFsA1wN507lt4T4ufDhzTyh8GTmvl99J5VvsmPwe3vl/3I4FTN/WY3fp27ecBewA7AvcA\nL+qqexDwg1beG7hmU4/fbVyu+1uAS0bT/5SeSa6qB6rqplb+HZ1EaRYwu555DN3lwJ+38rsY/mUm\nmmQ24NqDjwmcMqrqsVZ8Lp1/9BbwVnzx0JQ2yusO/pmfMoa79lV1c1X9gj++zocAZ7d21wIzkswc\nt8FqzIzyujNCbERTOknulmRnYE86/9K4Lcm72q7Dge1beaSXmWgSW89rD7BzkhuSXJnkzeM7So2l\nJNOS3Ag8APwI+Dmwqnzx0JQ2yusO8Gftv9vPS7I9mrR6r31VXb+W6v5dP0WM8roD7NOWZ/wgya7r\n6n+zSJLbutPzgY+1WcWjgeOSXA9sDTy+Kcen/hnFtV8J7FhVbwA+DvxD91p1TS5Vtaaq9qLzj6B5\nwOtG0dzF/FbsAAADjUlEQVTZxUlqlNf9EmDnqtqTzv8qLVxLXU1wPdd+7/VJgDT5jfK63wDs1Op/\nFbhoXf1P+SS53aRxPvCdqroYoKrurKoDquqNwCI6sw3Q+dfkDl3Nt28xTUKjufZV9XhVPdLKS1p8\nzqYZucZKVf0WGAT+E/DCJEO/87r/bD/95z6dFw9tW1UPj/NQNYbW57pX1SNV9USLfxN4w3iPU2Ov\nXfsrgQO7wz3V/Lt+ilmf615VvxtanlFV/wRsua7/NZzySTLwLeD2qvryUCCdV2TTfnF+Ejij7boE\nmN/udn8lz7zMRJPTel/7JC8Z+os0yavoXPt7xn3E2mjtWs5o5efTeXHR7XR+gb6nVRvuxUOwlhcP\naWIb7XVP8vKu5oe0upqERrj2S7ur8Oz/IboEOKLV34fOkpwHx2m4GiOjve7d686TzKPzYIa1Toj0\n+2Uim1SSNwF/CdzS1qwU8HfAnCTHte8XVNW3Ya0vM9EkM9prD+wHfCbJ48AaOnfArxr/kWsMvAJY\n2P7RMw04t6ouTXIHvnhoKhvtdf9ouz/hCeBhOk+70eQ00rX/G+ATdF5sdnOSS6vqQ23fwUnuBn4P\nHLXphq6NMKrrDhyW5MN0/sz/gc7TjNbKl4lIkiRJPTaH5RaSJEnSqJgkS5IkST1MkiVJkqQeJsmS\nJElSD5NkSZIkqYdJsiRJktTDJFmSJEnqYZIsSZNckp2S3DJMfM8k3xihzXFJliV5qvvVrEnemeTT\n/RyvJE0GJsmSNDUM92aovwNOHaH+T4D9gfue1UnVD4A/TfK8sR2eJE0uJsmSNIUkeVWSJUneDLy+\nqv5ohhmgqm6uql8AGWb3IPCnfRymJE14JsmSNEUkmQOcDxwBTAdu3cCubgD2HatxSdJkZJIsSVPD\ny4CLgL+oqluBVwC/3sC+fgX8h7EamCRNRibJkjQ1PAr8gmdmgP8APL2uOMkP2zKMr/e0G24t8/Na\ne0nabE3f1AOQJI2JfwfeDSxO8jtgCfDxoZ1VdeAI7cIfr0uew4Yv1ZCkKcGZZEmaIqrqD3RuuPvv\nwGxg2yRbD1c3yd8kuR+YBdzcM8P8VuAH/R6vJE1kqRruf9okSZNdko8Bq6vqW6No8zLgnKp6e/9G\nJkkTnzPJkjR1nUFnGcZo7EjXMg1J2lw5kyxJkiT1cCZZkiRJ6mGSLEmSJPUwSZYkSZJ6mCRLkiRJ\nPUySJUmSpB7/H1TSExZT5f3JAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plot_intersection(rate_names[12], rate_names[17])\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 77,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Mean CPU time = 51.4601554\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADXCAYAAAAZfZeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHlRJREFUeJzt3X+UZGV95/H3ZxhAiIJCNpDlx2AEMZofA4aRRDd2JAoY\nF4w/AqgLEhM9bgiuJrsYY3ZmTvaPxD0xwYAaIhLUIEZcFQ0yY8ROohEyYRgZYUYGSRAwIMqviEgI\nfPePuj3UFNXdVT3V9aPn/TqnTt/71FP3fu+9VU99+6nn3puqQpIkSdrVLRt1AJIkSdI4MDGWJEmS\nMDGWJEmSABNjSZIkCTAxliRJkgATY0mSJAnoITFOsmeSa5Jcl2RzktVd6uyR5NIk25J8JcmhixOu\nJGk+SS5McleS6+eo856mzd6UZOUw45OkcTVvYlxVDwO/UFVHASuBE5Os6qj2BuCeqjoC+BPgXQOP\nVJLUq4uA42d7MsmJwDOaNvtNwPuHFZgkjbOehlJU1febyT2B5UDnXUFOBi5upi8DjhtIdJKkvlXV\nl4B756hyMvChpu41wL5JDhhGbJI0znpKjJMsS3IdcCfw+ara0FHlIOA2gKp6FLgvyX4DjVSSNCjb\n2+zGHU2ZJO3SlvdSqaoeA45Ksg/wqSTPrqob53hJuhYm3n9a0kSrqq7t21Jkmy1p0vXbZvd1VYqq\negD4InBCx1O3A4cAJNkN2Keq7pllGRPzWL169chjWIqxTlq8kxTrqONtPuV9PFb3WX+0bcgScgdN\nm904uCl7gs59cOWVV7Lvvi+hv+O2kMd/zEQwoMd877XJ+X7q5TM+2H03/+dy8Y7LZByjcf+e6O8Y\n9dsuj+8xWoherkrxw0n2bab3Al4MbO2o9hngjGb61cBVC4pGkjQoYZZf74DLgdMBkhwL3FdVdw0r\nMEkaV70MpfhR4OIky2gl0h+rqiuSrAU2VNVngQuBDyfZBnwXOHXRIpYkzSnJJcAUsH+Sb9LqAtoD\nqKq6oGnDX5rkZuBB4MzRRStJ42PexLiqNgNHdylf3Tb9MPArgw1t9KampkYdQs8mKVaYrHgnKVaY\ntHinRh3AklRVr+mhzlnDiGV8TI06gIGZrM/4fKZGHcBAeEyWjix0DMaCVpbUMNcnabiS8PiYw0VZ\nw4LHjQ1k7Qm1i51817m/161bxymnvJv771+3yGt/lO5XB10so31vDdrifxZ3WNuQ1rW0jtEwDe/9\nMF7HaCFttreEliRJkjAxliRJkgATY0mSJAkwMZYkSZIAE2NJkiQJMDGWJEmSABNjSZIkCTAxliRJ\nkgATY0mSJAkwMZYkSZIAE2NJkiQJMDGWJEmSABNjSZIkCTAxliRJkgATY0mSJAkwMZYkSZIAE2NJ\nkiQJMDGWJEmSgB4S4yQHJ7kqyQ1JNic5u0udFya5L8nG5vHOxQlXkiRJWhzLe6jzH8DbqmpTkicD\n1yZZX1VbO+r9XVWdNPgQJUmSpMU3b49xVd1ZVZua6e8BW4CDulTNgGOTJEmShqavMcZJDgNWAtd0\nefrYJNcl+eskzx5AbJIkSdLQ9DKUAoBmGMVlwFuanuN21wIrqur7SU4EPgU8s9ty1qxZs316amqK\nqampPkOWpOGYnp5menp61GFIkoYkVTV/pWQ58Fngc1V1bg/1/xl4blXd01FevaxP0mRKAizmZzyM\nsg1JQlXtMsPGurXZ69at45RT3s39969b5LU/SqvvZljHe7TvrUFb/M/iDmsb0rqW1jEapuG9H8br\nGC2kze51KMUHgRtnS4qTHNA2vYpWwn1Pt7qSpMWV5IQkW5PclOScLs8f0lxtaGOSTc0vfZK0y5t3\nKEWS5wOvBTYnuY7WvxzvAFYAVVUXAK9K8mbgEeAh4JTFC1mSNJsky4DzgOOAbwEbkny640pC7wQ+\nVlV/luTHgSuApw8/WkkaL/MmxlX1ZWC3eeqcD5w/qKAkSQu2CthWVbcCJLkUOBloT4wfA/Zppp8K\n3DHUCCVpTPV88p0kaSIcBNzWNn87rWS53VpgfXPDpr2BXxxSbJI01kyMJWnXcxpwUVX9cZJjgY8A\nz+lWsfNKQpI0rgZxJaGerkoxKF6VQlravCrF6DWJ7pqqOqGZfzut80H+sK3O14Djq+qOZv4bwPOq\n6jsdy/KqFBPKq1KonVel6F1fN/iQJI29DcDhSVYk2QM4Fbi8o86tNMMnmpPv9uxMiiVpV2RiLElL\nSFU9CpwFrAduAC6tqi1J1iZ5WVPtt4FfT7IJ+EvgjNFEK0njxTHGkrTEVNWVwJEdZavbprcALxh2\nXJI07uwxliRJkjAxliRJkgATY0mSJAkwMZYkSZIAE2NJkiQJMDGWJEmSABNjSZIkCTAxliRJkgAT\nY0mSJAkwMZYkSZIAE2NJkiQJMDGWJEmSABNjSZIkCeghMU5ycJKrktyQZHOSs2ep954k25JsSrJy\n8KFKkiRJi2d5D3X+A3hbVW1K8mTg2iTrq2rrTIUkJwLPqKojkjwPeD9w7OKELEmSJA3evD3GVXVn\nVW1qpr8HbAEO6qh2MvChps41wL5JDhhwrJIkSdKi6aXHeLskhwErgWs6njoIuK1t/o6m7K6diG3B\n7r77bq6++upFXceBBx7IMcccs6jrkCRJ0vD0nBg3wyguA97S9BwvyJo1a7ZPT01NMTU1tdBFzept\nb3snn/jE1ey++6EDX/aMBx9cx4MP/ht77rnnoq1D0mhNT08zPT096jAkSUPSU2KcZDmtpPjDVfXp\nLlXuAA5pmz+4KXuC9sR4sTz88CM89NBbeOihX120dey225OoqkVbvqTR6/znfe3ataMLRpK06Hq9\nXNsHgRur6txZnr8cOB0gybHAfVU1kmEUkiRJ0kLM22Oc5PnAa4HNSa4DCngHsAKoqrqgqq5I8tIk\nNwMPAmcuZtCSJEnSoM2bGFfVl4Hdeqh31kAikiRJkkbAO99JkiRJmBhLkiRJgImxJC05SU5IsjXJ\nTUnOmaXOryS5IcnmJB8ZdoySNI76usGHJGm8JVkGnAccB3wL2JDk01W1ta3O4cA5wM9W1QNJfng0\n0UrSeLHHWJKWllXAtqq6taoeAS4FTu6o8+vA+VX1AEBVfWfIMUrSWDIxlqSl5SDgtrb525uyds8E\njkzypST/kOT4oUUnSWPMoRSStOtZDhwO/DxwKPB3SX5ipge5XfvdStvvAihJ42Z6eprp6emdWoaJ\nsSQtLXfQSnZnHNyUtbsduLqqHgP+JclNwBHAtZ0La0+MAdatWzfIWCVpYKampnb4B37t2rV9L8Oh\nFJK0tGwADk+yIskewKnA5R11PgX8AkBz4t0RwC1DjVKSxpCJsSQtIVX1KHAWsB64Abi0qrYkWZvk\nZU2ddcB3k9wAfAH47aq6d2RBS9KYcCiFJC0xVXUlcGRH2eqO+d8CfmuYcUnSuLPHWJIkScLEWJIk\nSQJMjCVJkiTAxFiSJEkCTIwlSZIkwMRYkiRJAkyMJUmSJMDEWJIkSQJ6SIyTXJjkriTXz/L8C5Pc\nl2Rj83jn4MOUJEmSFlcvd767CPhT4ENz1Pm7qjppMCFJkiRJwzdvj3FVfQm4d55qGUw4kiRJ0mgM\naozxsUmuS/LXSZ49oGVKkiRJQ9PLUIr5XAusqKrvJzkR+BTwzNkqr1mzZvv01NQUU1NTAwhBkgZv\nenqa6enpUYchSRqSnU6Mq+p7bdOfS/LeJPtV1T3d6rcnxpI0zjr/eV+7du3ogpEkLbpeh1KEWcYR\nJzmgbXoVkNmSYkmSJGlczdtjnOQSYArYP8k3gdXAHkBV1QXAq5K8GXgEeAg4ZfHClSRJkhbHvIlx\nVb1mnufPB84fWESSJEnSCHjnO0mSJAkTY0mSJAkwMZYkSZIAE2NJkiQJMDGWJEmSABNjSZIkCTAx\nliRJkgATY0mSJAkwMZakJSfJCUm2JrkpyTlz1HtlkseSHD3M+CRpXJkYS9ISkmQZcB5wPPAc4LQk\nz+pS78nA2cDVw41QksaXibEkLS2rgG1VdWtVPQJcCpzcpd7vA38APDzM4CRpnJkYS9LSchBwW9v8\n7U3ZdkmOAg6uqs8NMzBJGnfLRx2AJGl4kgR4N3BGe/Fs9desWbN9empqarHCkqSdNj09zfT09E4t\nw8RYkpaWO4BD2+YPbspmPIXW2OPpJkk+EPh0kpOqamPnwtoTY4B169YNOl5JGoipqakd/oFfu3Zt\n38swMZakpWUDcHiSFcC/AqcCp808WVUPAD8yM5/ki8Dbquq6YQcqSePGMcaStIRU1aPAWcB64Abg\n0qrakmRtkpd1ewlzDKWQpF2JPcaStMRU1ZXAkR1lq2ep+6KhBCVJE8AeY0mSJAkTY0mSJAnoITFO\ncmGSu5JcP0ed9yTZlmRTkpWDDVGSJElafL30GF9E69aiXSU5EXhGVR0BvAl4/4BikyRJkoZm3sS4\nqr4E3DtHlZOBDzV1rwH2TXLAYMKTJEmShmMQY4w7bz96Bx23H5UkSZLG3dAv19Z5e1FvMSppXA3i\n9qKSpMkxiMT4DuCQtvnO24/uoPP2opI0rgZxe1FJ0uTodShFmP3OSJcDpwMkORa4r6ruGkBskiRJ\n0tDM22Oc5BJgCtg/yTeB1cAeQFXVBVV1RZKXJrkZeBA4czEDliRJkhbDvIlxVb2mhzpnDSYcSZIk\naTS8850kSZKEibEkSZIEmBhLkiRJgImxJEmSBJgYS5IkSYCJsSRJkgSYGEuSJEmAibEkSZIEmBhL\nkiRJgImxJEmSBJgYS5IkSYCJsSRJkgSYGEuSJEmAibEkLTlJTkiyNclNSc7p8vxbk9yQZFOSzyc5\nZBRxStK4MTGWpCUkyTLgPOB44DnAaUme1VFtI/DcqloJfAL4v8ONUpLGk4mxJC0tq4BtVXVrVT0C\nXAqc3F6hqv62qn7QzF4NHDTkGCVpLJkYS9LSchBwW9v87cyd+L4B+NyiRiRJE2L5qAOQJI1GktcB\nzwVeOFudNWvWbJ+emppa9JgkaaGmp6eZnp7eqWWYGEvS0nIHcGjb/MFN2Q6S/CLwO8DPN0MuumpP\njAHWrVs3kCAladCmpqZ2+Ad+7dq1fS+jp6EUPZzhfEaSbyfZ2Dx+te9IJEmDsAE4PMmKJHsApwKX\nt1dIchTwfuCkqvruCGKUpLE0b49x2xnOxwHfAjYk+XRVbe2oemlVnb0IMUqSelRVjyY5C1hPq/Pj\nwqrakmQtsKGqPgu8C/gh4ONJAtxaVS8fXdSSNB56GUqx/QxngCQzZzh3JsYZcGySpAWoqiuBIzvK\nVrdNv3joQUnSBOhlKEWvZzi/orlY/F8lOXgg0UmSJElDMqiT7y4HLqmqR5K8EbiY1tCLJ+g8w9mz\nnCWNq0Gc4SxJmhy9JMbznuFcVfe2zX6A1vi1rjrPcJakcTWIM5wlSZOjl6EUvZzhfGDb7MnAjYML\nUZIkSVp88/YY93iG89lJTgIeAe4BXr+IMUuSJEkD19MY4x7OcH4H8I7BhiZJkiQNT083+JAkSZKW\nOhNjSZIkCRNjSZIkCTAxliRJkgATY0mSJAkwMZYkSZIAE2NJkiQJMDGWJEmSABNjSZIkCTAxliRJ\nkgATY0mSJAkwMZYkSZIAE2NJkiQJMDGWJEmSABNjSZIkCTAxliRJkgATY0mSJAkwMZYkSZIAE2NJ\nkiQJ6DExTnJCkq1JbkpyTpfn90hyaZJtSb6S5NDBhzoK06MOoGfT09OjDqEvkxTvJMUKkxbv9KgD\nWJJ23TZ7LtOjDmBgJuszPp/pUQcwEB6TpWPexDjJMuA84HjgOcBpSZ7VUe0NwD1VdQTwJ8C7Bh3o\naEyPOoCeTdqHcpLinaRYYdLinR51AEvOrt1mz2V61AEMzGR9xuczPeoABsJjsnT00mO8CthWVbdW\n1SPApcDJHXVOBi5upi8DjhtciJKkPthmS9ICLe+hzkHAbW3zt9NqeLvWqapHk9yXZL+qumcwYfZn\nzz13Z6+9zmX33T+5U8v5wQ++zpOedG3X5x588DGS7NTyJWkRLGqbvfvuu/ODH2xkn33+68AC7q54\n4IFFXoUkdUhVzV0heSVwfFW9sZl/HbCqqs5uq7O5qfOtZv7mps49Hcuae2WSNOaqaqz/I7bNlqTH\n9dtm99JjfAfQfmLGwU1Zu9uBQ4BvJdkN2Kdbz8O4f6FI0hJgmy1JC9TLGOMNwOFJViTZAzgVuLyj\nzmeAM5rpVwNXDS5ESVIfbLMlaYHm7TFuxp+dBaynlUhfWFVbkqwFNlTVZ4ELgQ8n2QZ8l1ZDLEka\nMttsSVq4eccYS5IkSbuCBd35Lsm/JPlqkuuS/GNT9rQk65N8Pcm6JPu21X9PcyH5TUlWtpWf0VyA\n/utJTm8rPzrJ9c1zf7KA+C5McleS69vKFj2+udbRZ6yrk9yeZGPzOKHtud9pYt2S5CVt5V0v6J/k\nsCRXN+UfTbK8KV/QBf6THJzkqiQ3JNmc5Oxx3b9dYv3Ncd6/SfZMck3zudqcZPVC1zGo7VhArBcl\nuaUp35jkp9peM7LPWfO6ZU1Ml4/rfh0Hve6ncddsx3Vt2/EXs703x1n6/L4dZ7Nsy6zt8ThLsm+S\njzdtwQ1JnjeJx2WW7Zi4Y5LkmW2f7euS3J/k7AUdk6rq+wHcAjyto+wPgf/VTJ8D/EEzfSLw1830\n84Crm+mnAd8A9gWeOjPdPHcNcEwzfQWts6f7ie8FwErg+mHGN9s6FhDrauBtXer+OHAdrSEwhwE3\nA6H1D87NwApgd2AT8KzmNR8DXt1Mvw94UzP9ZuC9zfQpwKU97tsDgZXN9JOBrwPPGsf9O0es47x/\n927+7gZc3eyzvtYBPHtQ27GAWC8CXtGl7kg/Z03dtwIfAS5fyLEb1n4d9aPX/TTujy7bcRHwy6OO\nawHb0fP37bg/ZtmWru3xuD+AvwDObKaXN23YxB2XWbZjIo9J2zYtA75F6wTj/vOyBa70n4H9O8q2\nAgc00wcCW5rp9wOntNXbAhxAa0zb+9rK39d8CR0I3NhWvkO9PmJcwY7J5qLH12UdWxcY62rgt7rU\neztwTtv852glGccCn+tWD7gbWNZMb68HXAk8r5neDbh7ge+FTwG/OM77tyPW4yZh/wJ7A/9E6/qz\n3+5xHd8e4HZcuYBYj6GVfLyyS52Rvg9oXZnh88AUjydKvR67kezXUTx63E9jvQ1zbEfX9+a4P+jt\n+7avtnDMtqVrezzOD2Af4BtdyifquMyxHRN3TDrifwnw9ws9JgsaSgEUsC7JhiS/1pQdUFV3AVTV\nnbS+9KD7xeYP6lJ+R1v57V3q76wfGUJ8nfvgR3Yi3t9ofnL+QFvX/1wxPWEbkuwP3FtVj3WJdYcL\n/AP3JdmvnwCTHEart/tqhnP8F7x/22K9pikay/078/MvcCetL/ZvAPf1uI77m3UMYjv+c7+xVtWG\n5qn/0+zbP0qye2esHdsxrPfBHwP/k1bbRZ/Hbqj7dcR62U/jvg3QsR1tur03x10v37c7810zTN22\nBbq3x+Ps6cB30ho6tjHJBUn2ZvKOy2zbAZN3TNqdAlzSTPd9TBaaGD+/qn4GeCmtnfdfeGID1Dk/\nY1yuizmM+GZbx3zeCzyjqlbSSjr+aCdi6HV7+truJE+mdSvZt1TV9xjN8e9p/3aJdWz3b1U9VlVH\n0erxWkVr6MegYxnIaztjTfJs4O1V9eO0eo/3p/XT1UDWN1cocz2Z5JeAu6pqU8d6F+WzMcDXDtUA\n9tNYmGM7en1vjpud+b4dN+3bclaSF/DE9vjdowywR8uBo4Hzq+po4EFavxRN2nHp3I7v09qOSTwm\nADT/8J4EfLwp6vuYLCgxrqp/bf7eTevn6VXAXUkOaAI7kNbPv9DqVTmk7eUzF5uf7SL0s9XfWcOI\n785Z1tGXqrq7mn5/4M95/HaufcVaVd8FnppkWUf9HZaVOS7w301z8s1lwIer6tNN8Vju326xjvv+\nbWJ8AJgGfnYB6xjkdvQT6wlt/5k/Quun6wXt2znqQ//vg+cDJyW5Bfgo8CLgXGDfcd6vI9DvfhpX\nT9iOJB+a47051vr8vh1rHdvySVp3W+xsj48ZVXx9uB24rar+qZn/BK0Ec9KOS+d2XAYcNaHHZMaJ\nwLVV9Z1mvu9j0ndinGTvpgeOJD9EayzHZloXkH99U+31wEzCdDlwelP/WFo/C98FrANe3JwR+TTg\nxcC6pqv7/iSrkqR57cyy+gqVHXsLhhFf+zrO6CPuHWJtDt6MVwBfa1v+qWmdNf904HDgH+l+Qf+Z\ndV9F6wL+nTFdzsIv8P9BWuM/z20rG9f9+4RYx3X/JvnhmZ+skuxFa5/cCHyxz3UMcjv6iXXrzL5t\njt3L2XHfjuR9UFXvqKpDq+rHmm2+qqpexxju11FawH4aS7Nsx+lzvDfHVo/ft2N/TGDWbfnaHO3x\n2GrartuSPLMpOg64gQk7LrNsx42TeEzanEbrH+IZ/R+T+QYhdz5ojUnZROvs7M20fp4C2A/4G1pn\n/q8Hntr2mvNonbX9VeDotvLXA9uAm4DT28qf2yx7G3DuAmK8hNYZiQ8D3wTOpHX2+6LGN9c+6DPW\nDwHXN/v5UzQDx5v6v9PEugV4SVv5Cc16t80ck7bjdU2zDR8Ddm/K9wT+qql/NXBYj/v2+cCjbe+B\njc26F/3497t/54h1LPcv8JNNjJua+H53oesY1HYsINYvNMf5+mY/7z3q90FH3C/k8ZOxxm6/jsuj\nl/00CY+O7Zj1vTmuDxbwfTuujzm2Zdb2eJwfwE/T+qd4E/D/aF3NYRKPS7ftmNRjsjetk4Wf0lbW\n9zHxBh+SJEkSCz/5TpIkSVpSTIwlSZIkTIwlSZIkwMRYkiRJAkyMJUmSJMDEWJIkSQJMjDUgSf5t\nAMtYkWRzl/K1SV7UTP9zkv36WOb2+km+1Px9YZLP7Gy8Xda1KMuVpGFJckCSjybZlmRDks8mmbmB\nzfeTbEzytSTvbeo/od1LclGSV3RZ9hntN49IckGSfm57Ly265aMOQEvGoC6I/YTlVNXqnVjP9vpV\n9YKdWE7f65OkCfRJ4KKqOg0gyU8CB9C6ffDNVXV0c6v0q5K8HLiX3tu919O6i9qdAFX1xgHHLu00\ne4y1aJoehi8k2ZTk80kObsp/LMlXknw1ye/P19vc0fuQpmyvJFckeUMz/9ok1zS9Ge9rbvu6vX5T\np309T0ny8SRbkny4rc5xzTK+muQDSXafp/yEZhn/ROvWmZI0kZL8AvDvVfXnM2VVtbmqvtxer6oe\nBf6B1m3Re132K4GfAT7StKVPSvLFJEc3z/9bknc1vdHrkxzTPH9zkpc1dZY1da5pvld+fZ51Lmu+\nP65v2u639LwztMsyMdZi+lNaPQ8rad36+k+b8nOBP66qn6bVC9FPL2sBT6F1//O/rKoLm5/iTgF+\nrqqOBh4DXjvLa2esBM4Gng08I8nPJdkTuAh4dRPb7sCb5ym/APilqvoZoP3+8pI0aX4CuHaO52c6\nJvYGjqN1a+eeVNUnaN16+DVVdXRV/aCjyg8Bf1NVPwF8D/j9Zh2vaKYB3gDcV1XPA1YBb0yyYo7V\nrgQOqqqfatrui3qNV7suE2Mtpp8FPtpMfxh4flv5Zc30JX0uM7Tu3f7BqvrLpuw44GhgQ5LrgBcB\nT59nOf9YVf9arXuibwIOA44EbqmqbzR1LgZ+fo7yZzXltzTlH+lzWyRpkjwjyUbg74HPVNU6Zu/Y\n6FYe2n7F6/BwVa1vpjcDf1tVjzXTM8nvS4DTm3b+GmA/4Ig54r0FeHqSc5McD+z0uTBa+hxjrMXU\nS0/wbI3kXL4MnMDjSXeAi6vqd/tYxsNt04/y+Gdhtnj6LZekSXMD8Ko5nr+5+VWu3XdpJajt9gO+\n0+e6H2mbfoymja6qStLePv9mVX2+lwVW1X1Jfho4HngT8Cu0ep2lWdljrEHpliD+A3BaM/06Wr0M\nAF/h8cb31B6W0+l/A/clOb+Z/wLwqiT/CSDJ05Ic2mOM7b4OrEjyY838fwOm5yjf2pTP9E6fhiRN\nqKq6Ctgjya/NlCX5ySQzv/Z1a0O3AT+a5Mim/grgp2j9EtfpAWCfWVY/V/s889w64L/PJMpJjkiy\nVzO95QkvSvYHdquqTwK/Bxw1xzokwB5jDc5eSb5JqwEr4N3AbwJ/keS3gbuBM5u6b6V1AsY7aDV0\n97ct55kdy3krO/Y8F0BVvSXJhUn+oKrenuT3gPVJlgH/DvwG8M1ur+1iZpkPJzkTuKw563oD8GdV\n9cgc5W8ErkjyIK3E/8l97TVJGi+/DJyb5O3AQ8C/AP+jea7bVYP+PcnraLX1e9Lq+X1DVXUbtnAx\n8P4k3wd+jt7a5/bnPkBr2NvG5gTrbwMvbxLgbg4CLmq+Fwp4+xzrkABIa4ilNDxJ9qqqh5rpU4BT\nq+qXRxyWJGkCJfkl4OlVdd6oY9HkMzHW0CV5AXAerV7he4FfbTuBTZIkaSRMjCVJkiQ8+U6SJEkC\nTIwlSZIkwMRYkiRJAkyMJUmSJMDEWJIkSQLg/wPP6MuuXzI8ygAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig, axes = plt.subplots(1,2, figsize=(12,3))\n",
- "axes[0].hist(datadf['likelihood'])\n",
- "axes[0].set_xlabel('LogLikelihood')\n",
- "axes[1].hist(datadf['cputime'])\n",
- "axes[1].set_xlabel('CPU time, s')\n",
- "print('Mean CPU time = ', np.mean(cputime))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "DCProgs GCC Python 3",
- "language": "python",
- "name": "dcprogsgcc"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.5.1"
- },
- "widgets": {
- "state": {},
- "version": "1.1.2"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/exploration/mpi/read_simulation_results.ipynb b/exploration/mpi/read_simulation_results.ipynb
deleted file mode 100644
index 97e2ec1..0000000
--- a/exploration/mpi/read_simulation_results.ipynb
+++ /dev/null
@@ -1,366 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import glob\n",
- "import pickle\n",
- "import numpy as np"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "from dcpyps import mechanism\n",
- "from dcpyps.samples import samples"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "def constrain(mec):\n",
- " for i in range(len(mec.Rates)):\n",
- " mec.Rates[i].fixed = False\n",
- " # Constrained rates.\n",
- " mec.Rates[21].is_constrained = True\n",
- " mec.Rates[21].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[21].constrain_args = [20, 1.5]\n",
- " mec.Rates[18].is_constrained = True\n",
- " mec.Rates[18].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[18].constrain_args = [19, 2]\n",
- " mec.Rates[14].is_constrained = True\n",
- " mec.Rates[14].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[14].constrain_args = [12, 3]\n",
- " mec.Rates[13].is_constrained = True\n",
- " mec.Rates[13].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[13].constrain_args = [12, 2]\n",
- " mec.Rates[15].is_constrained = True\n",
- " mec.Rates[15].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[15].constrain_args = [17, 3]\n",
- " mec.Rates[16].is_constrained = True\n",
- " mec.Rates[16].constrain_func = mechanism.constrain_rate_multiple\n",
- " mec.Rates[16].constrain_args = [17, 2]\n",
- " mec.update_constrains()\n",
- " mec.set_mr(True, 9, 0)\n",
- " mec.set_mr(True, 11, 1)\n",
- " mec.update_constrains()\n",
- " return mec"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "mec_true = samples.GlyR_flip()\n",
- "ig = [4200, 28000, 130000, 3400, 2100, 6700, 180, 6800, 22000,\n",
- " 29266, 18000, 948, 302, 604, 906, 1.77e6, 1.18e6, 0.59e6, 300e6, 150e6,\n",
- " 2500, 3750]\n",
- "mec_true.set_rateconstants(ig)\n",
- "mec_true = constrain(mec_true)\n",
- "mec = samples.GlyR_flip()\n",
- "mec = constrain(mec)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "os.chdir(\"mpi/results\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 44,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "r = []\n",
- "x = []\n",
- "lik = []\n",
- "cputime = []\n",
- "for file in glob.glob(\"*.result\"):\n",
- " with open(file, 'rb') as f:\n",
- " content = pickle.load(f)\n",
- " #print (np.exp(content[0].x))\n",
- " mec.theta_unsqueeze(np.exp(content[0].x))\n",
- " mec.update_constrains()\n",
- " x.append(np.exp(content[0].x))\n",
- " r.append(mec.unit_rates())\n",
- " lik.append(-content[0].fun)\n",
- " cputime.append(content[1])\n",
- "rates = np.array(r)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Fits of 88 simulated sets\n",
- "Rate\tTrue\t\tMean\t\tCV%\t\tBias%\n",
- "=================================================================================\n",
- "beta1\t4200\t\t4591.10600559\t8.32650267866\t9.31204775222\n",
- "beta2\t28000\t\t30583.5296058\t6.83308947138\t9.22689144936\n",
- "beta3\t130000\t\t133891.713309\t1.37312028963\t2.99362562265\n",
- "alpha1\t3400\t\t3213.63110812\t4.24299081431\t-5.48143799641\n",
- "alpha2\t2100\t\t2021.55370534\t3.44638421656\t-3.73553784086\n",
- "alpha3\t6700\t\t5825.87121966\t5.37473712298\t-13.046698214\n",
- "delta1\t180\t\t183.762934329\t10.4129292828\t2.09051907171\n",
- "delta2\t6800\t\t6838.06026063\t2.36181509173\t0.559709715186\n",
- "delta3\t22000\t\t24319.8306565\t7.55198198123\t10.5446848022\n",
- "gamma1\t29266.6001994\t\t31796.659305\t9.44585099872\t8.64486851352\n",
- "gamma2\t18000\t\t19744.1416742\t3.33331077124\t9.6896759678\n",
- "gamma3\t948.091156993\t\t1173.93912961\t11.211348648\t23.8213352117\n",
- "k(-1)\t302\t\t304.38998807\t4.46290206176\t0.791386778183\n",
- "2k(-2)\t604\t\t608.77997614\t4.46290206176\t0.791386778183\n",
- "3k(-3)\t906\t\t913.16996421\t4.46290206176\t0.791386778183\n",
- "3k(+1)\t1770000.0\t\t1761709.33063\t4.5154544727\t-0.468399399215\n",
- "2k(+2)\t1180000.0\t\t1174472.88709\t4.5154544727\t-0.468399399215\n",
- "k(+3)\t590000.0\t\t587236.443545\t4.5154544727\t-0.468399399215\n",
- "2kf(+2)\t300000000.0\t\t336761717.134\t4.62495367415\t12.2539057112\n",
- "kf(+3)\t150000000.0\t\t168380858.567\t4.62495367415\t12.2539057112\n",
- "2kf(-2)\t2500\t\t2909.84713108\t4.93080922224\t16.3938852431\n",
- "3kf(-3)\t3750.0\t\t4364.77069662\t4.93080922224\t16.3938852431\n"
- ]
- }
- ],
- "source": [
- "print('Fits of {0:d} simulated sets'.format(len(lik)))\n",
- "print('Rate\\tTrue\\t\\tMean\\t\\tCV%\\t\\tBias%')\n",
- "print('=================================================================================')\n",
- "for i in range(len(mec.unit_rates())):\n",
- " print(mec.Rates[i].name + '\\t' + str(mec_true.Rates[i].unit_rate()) + '\\t\\t' +\n",
- " str(np.mean(rates[:, i])) + '\\t' + str(100 * np.std(rates[:, i]) / np.mean(rates[:, i])) +\n",
- " '\\t' + str(100 * (np.mean(rates[:, i]) / mec_true.Rates[i].unit_rate() - 1)))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Red line - true value\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAfRCAYAAAAUSnqCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2UbHV95/v3J4AoYjwyZA5EIce5K8QnJqAGmaChYkw8\n5uairmuc6DjB6OS6JgYNySSimSWdmLnjw4KYaMJkIjD4RGIwEslEw9FLJWQmgA8HODyFmMAIKI2j\naCCJSuR7/6h9ztk03X26q2v3rqp+v9aq1bv2U39r169/9e1f/fbvl6pCkiRJ0si39R2AJEmSNE1M\nkCVJkqQWE2RJkiSpxQRZkiRJajFBliRJklpMkCVJkqSWAybISS5IsphkT2vdCUmuSrI7yaeSfF+3\nYUqS1iLJMUmuSHJjkhuSvK5Zv5Dkzqbe3p1kZ9+xStK0yoHGQU7yHOB+4L1VdXyz7nLgnKr60yQv\nAH6pqn6w82glSatKchRwVFVdm+Rw4DPAi4CXAvdV1bm9BihJM+DgA+1QVVcm2bFk9YPAY5vlbcBd\nkw1LkjSOqrobuLtZvj/JzcDjm83pLTBJmiHj9kH+OeAdST4PvAN44+RCkiRNQtO4cSJwVbPqjCTX\nJTk/ybbeApOkKTdugvwzwM9V1bHAmcAFkwtJkrRRTfeKS4DXV9X9wHnAE4ETgC8C5/QYniRNtQP2\nQYZ9rRCXtfogf7WqtjXLAb5aVY9d5rgDn1ySplRVzWSXhCSHAH8MfKyq3rnM9h206vTWeutsSTNt\nUvX2uC3IX0hyarP8XODWlXasqk19nH322Zv+O42np5jWUb6a0rjGx9nNz80vv7Pwnk1bPF3FNKua\nRovzgZuqlRwnObq124uBPUuPhbWX+WksB9Nalqbl0ftrW0f5mqnXNc/v2Yy9rkk64E16SS4GTgWO\nTHIH8Gbgp4HfSHIw8I/A/zPRqCRJ4zoFeAVwfZLdzbo3AS9LcgKj//5uA17TU3ySNPXWMorFy1bY\n9MwJxyJJ2qCq+guW/3bwY5sdiyTNqrmbSW8wGPQdwkMYz4FNX0yDvgN4iGm7PtMWD0xnTPNuXq/5\nvL4umN/XNq+vC+b3tc3C61rTTXpjnzypLs+vLS6BNZavUbfM9ZbFTLxPk2ZHEmpGb9Ibl3W2OrWO\nOlsaxyTr7blrQZYkSZI2wgRZkiRJajFBliRJklpMkCVJkqQWE2RJkiSpxQRZkiRJajlggpzkgiSL\nSfYsWX9GkpuT3JDkbd2FKEmStHZJ1vWQljrgTHrAhcC7gPfuXZHkB4HTgH9ZVQ8k+Y6O4pMkSRrD\nWsdcNkHWwx2wBbmqrgTuXbL63wP/uaoeaPb5UgexSZIkSZtu3D7I3w38QJKrkgyTPHOSQUmSJEl9\nWUsXi5WOe1xVnZzk+4APAf9iuR0XFhb2LQ8Gg5mYf1vS1jMcDhkOh32HIUmaAqk1zIueZAdwWVUd\n3zz/GPDWqvqz5vnngGdV1ZeXHFdrOb80lgTWWL5GN2GstywGy+/WlYSq2lKdE62z1al11Nkb/1Xr\nqfOt6+fFJOvtcbtYXAo8twnmOOARS5NjSZIkaRYdsItFkouBU4F/luQO4M3ABcAFzdBv3wR+stMo\nJUmSpE2ypi4WY5/cr+vUJbtYqEN2sZAmzC4W6tg0dLGQJEmS5pIJsiRJktRigixJkiS1mCBLkiRJ\nLSbIkjRHkhyT5IokNya5IcnrmvVHJNmV5NYklyfZ1neskjStTJAlab48AJxZVU8FTgZem+TJwFnA\nrqo6Dvhk81yStAwTZEmaI1V1d1Vd2yzfD9wMPB44Dbio2e0i4EX9RChJ088EWZLmVJIdwInA1cD2\nqlpsNi0C23sKS5Km3gET5CQXJFlsZs1buu0XkjyY5IhuwpMkjSPJ4cCHgddX1X3tbc1sIM6MIEkr\nOOBU08CFwLuA97ZXJjkG+GHgf3UQlyRpTEkOYZQcv6+qLm1WLyY5qqruTnI0cM9yxy4sLOxbHgwG\nDAaDjqOVpPEMh0OGw2En517TVNPN13SXVdXxrXV/ALwF+CPgGVX1lWWOc9pSdcepptWhWZ1qOqPC\nfhHw5ao6s7X+7c26tyU5C9hWVWctOdY6W91xqml1bJL19lpakJcL4IXAnVV1/agQSpKmxCnAK4Dr\nk+xu1r0ReCvwoSSvBm4HXtpPeJI0/dadICc5DHgTo+4V+1avtL9f10maBV1+VbeZquovWPn+kudt\nZiySNKvW3cUiyfHAJ4B/aDY/AbgLOKmq7llynF/XqTt2sVCHZrWLxUZYZ6tTdrFQx3rtYlFVe2gN\nD5TkNlbogyxJkiTNmrUM83Yx8D+B45LckeSnluziv12SJKkzSdb1kDZqTV0sxj65X9epS3axUIfs\nYiFN2Aa6WKy/DreLxVY0yXrbmfQkSZKkFhNkSZIkqcUEWZIkSWoxQZYkSZJaTJAlSZKkFhNkSZIk\nqcUEWZIkSWpZy0QhFyRZTLKnte4dSW5Ocl2SP0zy2G7DlCRJkjbHWlqQLwR2Lll3OfDUqvpe4Fbg\njZMOTJIkSerDARPkqroSuHfJul1V9WDz9GrgCR3EJkmSJG26SfRBfhXwJxM4jyRJktS7DSXISX4Z\n+GZVfXBC8UiSJEm9OnjcA5O8EvhR4IdW229hYWHf8mAwYDAYjPsrJZLsW64lz7v+fdOmqvoOYa4M\nh0OGw2HfYUiSpkDW8iGbZAdwWVUd3zzfCZwDnFpV/3uV48oPcU3SKGEdlakihLWWr/3HreO3TfUx\n/m11KwlVNb3/IXXAOludSmDM8tWu+9d4xDr2tz6dF5Ost9cyzNvFwP8EvifJHUleBbwLOBzYlWR3\nkt+eRDCSJElS39bUgjz2yW2N0ITZgrz/GP+2umULsjRhtiCrY5vagixJkiRtJSbIkjRHVpj9dCHJ\nnU2XuN3NfSSSpBWYIEvSfFlu9tMCzq2qE5vHx3uIS5JmhgmyJM2R5WY/bWyp/tSStBEmyJK0NZyR\n5Lok5yfZ1ncwkjTNTJAlaf6dBzwROAH4IqNx7CVJKxh7Jj1J0myoqnv2Lid5D3DZSvs6+6mkWdHl\nDKiOg6yZ4jjI+4/xb6tbszwO8jKznx5dVV9sls8Evq+qXr7McdbZ6o7jIKtjk6y3D9iCnOQC4P8E\n7mlVtkcAvw98F3A78NKq+uokApIkja+Z/fRU4MgkdwBnA4MkJzDKGG4DXtNjiJI09Q7YgpzkOcD9\nwHtbCfLbgf9dVW9P8gbgcVV11jLH2hqhibIFef8x/m11a5ZbkMdlna1O2YKsjm3qTHorDBl0GnBR\ns3wR8KJJBCNJkiT1bdxRLLZX1WKzvAhsn1A8kiRJUq82PMxb832c301IkiRpLow7zNtikqOq6u4k\nRwP3rLSjQwZJmgVdDhckSZotaxrmbZkhg94OfLmq3pbkLGCbN+lpM3iT3v5j/NvqljfpSRPmTXrq\n2CTr7bWMYrFvyCBG/Y3fDPwR8CHgWFYZ5s3KVpNmgrz/GP+2umWCLE2YCbI6tqkJ8oZObmWrCTNB\n3n+Mf1vdMkGWJswEWR3b1GHeJEmSpK3EBFmSJElqMUGWJEmSWkyQJUmSpBYTZEmSJKnFBFmSJElq\nMUGWJEmSWsadalqSJGlso7GNpem0oRbkJGcmuSHJniQfTHLopAKTJEnzrtb4kDbX2AlykscDZwDP\nqKrjgYOAn5hUYJIkSVIfNtrF4mDgsCTfAg4D7tp4SJIkSVJ/xm5Brqq7gHOAzwNfAL5aVZ+YVGCS\nJElSH8ZuQU7yOOA0YAfwNeAPkvybqvpAe7+FhYV9y4PBgMFgMO6vlKTODIdDhsNh32FIkqZAqsbr\n/J7kx4HnV9W/a57/W+Dkqnpta58a9/zSckZ3PY/KVBGy5ps39h+3jt821cf4t9WtJFTVlrrN3jpb\nnUqgVb7a9fkaDl7Hvuvd3/p0Xkyy3t7IKBb/Czg5yaMyKuXPA26aRFCSpPEkuSDJYpI9rXVHJNmV\n5NYklyfZ1meMkjTtNtIH+RrgEuCzwPXN6v86iaAkSWO7ENi5ZN1ZwK6qOg74ZPNckrSCsbtYrOnk\nfl2nCbOLxf5j/Nvq1ix3sUiyA7isGYKTJLcAp1bVYpKjgGFVPWmZ46yz1R27WKhj09LFQpI0G7ZX\n1WKzvAhs7zMYSZp2JsiStIU0TcQ2l0nSKjY6UYgkafotJjmqqu5OcjRwz0o7OjSntqJRd4+1sTvG\n9OhyeE77IGum2Ad5/zH+bXVrzvogvx34clW9LclZwLaqetiNetbZ6tQU90G2v/J8mGS9bYKs3qzn\nP/aHMkEeHTMe/ybXZlYT5CQXA6cCRzLqb/xm4I+ADwHHArcDL62qry5zrHW2umOCrI6ZIGsurK9y\n3HcUJsjjHjM6zr/JtZnVBHkjrLPVKRNkdcxRLCRJkqSObChBTrItySVJbk5yU5KTJxWYJEmS1IeN\njmLxG8CfVNVLkhwMPHoCMUmSJEm9GbsPcpLHArur6l+sso/92bQi+yBv9jGj4/ybXBv7IEsTZh9k\ndWxa+iA/EfhSkguTfDbJ7yY5bBJBSZIkSX3ZSIJ8MPB04Ler6unA3wMPG1dTkiRJmiUb6YN8J3Bn\nVX2qeX4JyyTIzsokaRZ0OSOTJGm2bGgc5CR/Dvy7qro1yQLwqKp6Q2u7/dm0Ivsgb/Yxo+P8m1wb\n+yBLE2YfZHVskvX2RkexOAP4QJJHAH8D/NTGQ5IkSbNotRlS6wDbpWniTHrqjS3Im33M6Dj/JtfG\nFmRp/Var1x9eZ9uCrMmallEsJEmSpLljgixJkiS1mCBLkiRJLRu9SU/izjvvZHFxse8wJEmSJsIE\nWRv2zne+i3e/+/088pFHrfmYBx64t8OIJEmSxmeCrA2rgm9843V84xtvOPDO+3wYeElXIUmSJI3N\nPsiSJElSiwmyJEmS1LLhBDnJQUl2J7lsEgFJkiRJfZpEC/LrgZsYb1ovSZIkaapsKEFO8gTgR4H3\nMJqrUZIkSZppGx3F4teBXwS+fQKxSJI6luR24O+AbwEPVNVJ/UYkSdNn7AQ5yY8B91TV7iSDyYUk\nSepQAYOq+krfgUjStNpIC/L3A6cl+VHgkcC3J3lvVf1ke6eFhYV9y4PBgMFgsIFfKUndGA6HDIfD\nvsPYLHaJk6RVpGrj99YlORX4D1X1fy1ZX5M4v6bbL/zCGzj33COAcSYKWW/5yL5jipA1H7//uHF+\n13wcMzrOv8m1SUJVzV0imeRvga8x6mLxO1X1u61t1tnakGTluunhdfZ66rH11nldnds6dJpNst6e\n5Ex6lhhJmn6nVNUXk3wHsCvJLVV1Zd9BSdI0mUiCXFV/BvzZJM4lSepOVX2x+fmlJB8BTgL2Jch2\ni5M0K7rsGjeRLhYrntyv67YEu1jMyjGj4/ybXJt57GKR5DDgoKq6L8mjgcuBX6mqy5vt1tnaELtY\nqE/T2sVCkjTdtgMfGSUxHAx8YG9yLEnazwRZkraIqroNOKHvOCRp2k1iqmlJkiRpbtiCLEmSHuZb\n3/oWCwu/0ncYUi9MkCVJ0sNUFb/2a78GLKxp/0MPvbjTeOZdc2/AmnmzYLdMkCVJ0rKSb6PqzWva\n99BDd/ONb9zScUTzbj0jb6hL9kGWJEmSWsZOkJMck+SKJDcmuSHJ6yYZmCRJktSHjXSxeAA4s6qu\nTXI48Jkku6rq5gnFJkmSJG26sVuQq+ruqrq2Wb4fuBn4zkkFJkmSJPVhIjfpJdkBnAhcPYnzSZIk\nTaP1jjah2bThBLnpXnEJ8PqmJfkhFhYW9i0PBgMGg8FGf6WkDRinct8KwwkNh0OGw2HfYUiaeuup\nD7OO/U28p8mGEuQkhwAfBt5fVZcut087QZY0Ddab7G6NSnvpP/C/8itOkCBJW9VGRrEIcD5wU1W9\nc3IhSZIkSf3ZyDjIpwCvAH4wye7msXNCcUmSJEm9GLuLRVX9BU40IkmSpDnjVNOSJEkzZr03XG+F\nm60nyQRZkiRp5qx3NA2th10kJEmSpBYTZEmSJKnFLhaSDsjJRSRJW4kJsqQ1cHIRSdLWYRcLSZIk\nqWVDCXKSnUluSfLXSd4wqaAkSZNnnS1Ja7ORqaYPAt4N7ASeArwsyZMnFdi4hsNh3yE8hPGsxbDv\nAJYY9h3AEsO+A1hi2HcADzOd5Xq6TLrOntdrPq+vC+b5tQ37DqBDw74D6MQslMWNtCCfBHyuqm6v\nqgeA3wNeOJmwxjdtF9141mLYdwBLDPsOYIlh3wEsMew7gIeZznI9dSZaZ8/rNZ/X1wXz/NqGfQfQ\noWHfAXRiFsriRhLkxwN3tJ7f2ayTJE0f62xJWqONjGLhGE5quYL1FYk9XQUiaXnW2Vq3qgeBt65p\n329849Zug5E2UcYdqzTJycBCVe1snr8ReLCq3tbaxwpZ0syqqrkZr846W9JWMKl6eyMJ8sHAXwE/\nBHwBuAZ4WVXdPInAJEmTY50tSWs3dheLqvqnJD8L/ClwEHC+Fa0kTSfrbElau7FbkCVJkqR5NPUz\n6SU5JskVSW5MckOS1zXrF5LcmWR383hB65g3NgPh35LkR1rrn5FkT7PtN8aM55FJrk5ybRPPQrP+\niCS7ktya5PIk23qOp5frsyS2g5rffVnzvJdrtEo8vV2jJLcnub75vdc063q7PivE02sZSrItySVJ\nbk5yU5Jn9V2G5k2SC5IsJtnTWjex9z3JoUl+v1l/VZLv2qTXtdLnxsTKzxS+tpl+37IJn61T9rpm\n+v1a8ho7+6zv9bVV1VQ/gKOAE5rlwxn1oXsycDbw88vs/xTgWuAQYAfwOfa3lF8DnNQs/wmwc8yY\nDmt+HgxcBTwLeDvwS836NwBv7Tme3q5P63f9PPAB4KPN896u0Qrx9FmGbgOOWLKuzzK0XDy9liHg\nIuBVrbL92L7L0Lw9gOcAJwJ7unjfgZ8BfrtZ/tfA723S61rpc2Ni5WcKX9s8vG+dfrZO2eua+fer\nFXNnn/V9vrapb0Guqrur6tpm+X7gZvaP3bncnYovBC6uqgeq6nZGb8CzkhwNPKaqrmn2ey/wojFj\n+odm8RGM3ugCTmP0gU7zc++5+4oHero+AEmeAPwo8J5WHL1doxXiCT1eo2V+d2/XZ4V4Vlq3Ge/X\nY4HnVNUFMOo/W1Vfo/9rNFeq6krg3mU2Tep9b79fH2Z0g2DnVvncmGT5mbbXBrP/vnX92TpNrwtm\n/P2CTfms7+21TX2C3JZkB6PWjquaVWckuS7J+a0m/O9kNAD+XnsHw1+6/i7GHCQ/ybcluRZYBC5v\n3tTtVbXY7LIIbO85Hujp+jR+HfhF4MHWut6u0QrxFP1dowI+keTTSX66Wdfn9VkuHujv+jwR+FKS\nC5N8NsnvJnk0/V6jrWRS7/u+yUmq6p+AryU5otPIl2h9blzNZMvPNL22SX8m9vLaNuGzdZpeF8z4\n+9Xo+rO+t9c2MwlyksOBS4DXN/81n8foQ/QE4IvAOZsVS1U9WFUnAE9g9N/P05ZsLzZxUP5l4nkq\nPV6fJD8G3FNVu1n+P+RNvUarxNPbNQJOqaoTgRcAr03ynPbGzS5DK8TT5/U5GHg6o6/Wng78PXBW\ne4certFW0ef7PlHN58aHGX1u3NfeNuvlZ5o+Eydl2j5bJ2XaPqMnZdo+6ydtJhLkJIcwquTeX1WX\nAlTVPdVg1LR/UrP7XcAxrcOfwOg/k7ua5fb6uzYSV/OV7xXA84HFJEc18R4N3NNjPDt7vj7fD5yW\n5DbgYuC5Sd5Hf9douXje2+c1qqovNj+/BHyk+d29laHl4um5DN0J3FlVn2qeX8IoYb6777+zeTeh\n9/3O1jHHwr5xmB9bVV/pMPx9Wp8b79v7ucFk/sam6bVN+jOx99cGnXy2TtvrmtRndN+vq8vP+r5f\n2/QnyEkCnA/cVFXvbK0/urXbi9k/d/FHgZ9I8ogkTwS+G7imqu4G/i6jO+ED/FvgUtYpyZF7vwpJ\n8ijghxn1AfsocHqz2+mtc/cSz97C2di06wNQVW+qqmOq6onATwD/X1X9W3q6RivE85M9lqHDkjym\nWX408CPN7+6rDC0bT89l6G7gjiTHNaueB9wIXEYP12grmdDfxR+1jtn7fr0E+GTnL4CVPzeYzN/Y\nVL62WX/fOv5snbrXNaH6tdey2PFnfa+vDZiJUSyezahvy7XA7ubxAkaduK8HrmN08be3jnkTo87f\ntwDPb61/BqNC+DngN8eM53jgs83v3QP8x2b9EcAngFuBy4FtPcfTy/VZJr5T2X9nay/XaEk8g1Y8\n7+upDD2xKc/XAjcAb+y5DK0UT69lCPhe4FPN7/9DRqNY9F6G5unBqNXnC8A3GfXze9Uk33fgUOBD\nwF8z6ie7Y5Ne13KfGzsnWX6m7LVN9DOxj9fGJny2Ttnrmun3a5nX2clnfZ+vzYlCJEmSpJap72Ih\nSZIkbSYTZEmSJKnFBFmSJElqMUGWJEmSWkyQJUmSpBYTZEmSJKnFBFlTIcmOJHsOvOe+/U9fMjD+\nSvv9eJIbk3wrydM3FqUkCTqts9+R5OYk1yX5wySP3Vik0nhMkDWrXgl85xr228NolqI/7zQaSdJq\nXsna6uzLgadW1fcymmjijV0GJa3EBFnT5OAk709yU5I/SPKoJM9IMkzy6SQfT3JUkpcAzwQ+kOSz\nSR6Z5M1JrkmyJ8nv7D1hVd1SVbf295IkaW51UWfvqqoHm6dXA0/o44VJJsiaJt8D/FZVPQX4O+Bn\ngd8EXlJVzwQuBP5TVV0CfBp4eVU9vaq+Dryrqk6qquOBRyX5sZ5egyRtFV3X2a8C/mRTXom0xMF9\nByC13FFVf9ksvx/4ZeBpwK4kAAcBX2jtn9byc5P8InAYo3ngbwT+uPOIJWnr6qzOTvLLwDer6oPd\nhS+tzARZ06Ray2HUInFjVX3/avsneSTwW8AzququJGcDj+w0UklSJ3V2klcCPwr8UBdBS2txwC4W\nSY5JckUzEsANSV7XrF9IcmeS3c1jZ/fhas4dm+TkZvnlwFXAd+xdl+SQJE9ptt8HfHuzvLdi/XKS\nw4Ef56EV915ZZp00V5r+nVcnubapsxea9Uck2ZXk1iSXJ9nWc6iafROvs5tc4heBFzZdMaRerKUP\n8gPAmVX1VOBk4LVJnsyoMJ9bVSc2j493GajmXgF/xah83QQ8lqYvG/C2JNcCu4F/1ez/34D/kuSz\nwNeB3wVuAD7O6MYOAJK8OMkdjMruf0/ysc15OVI/mqTiB6vqBOAEYGeSZwFnAbuq6jjgk81zaVyd\n1NnAu4DDGXXT2J3ktzfhtUgPk6rlGtpWOSC5FHg3cApwf1Wd00VgkqSNSXIYcCXw74H3AqdW1WKS\no4BhVT2p1wAlaUqtaxSLJDuAExl9jQJwRjOY9/l+XSdJ0yHJtzUteIvA5VV1DbC9qhabXRaB7b0F\nKElTbs0JctNP6BLg9VV1P3Ae8ERGX+F9EbAlWZKmQFU92HSxeALwrCRPW7K9WL6fviSJNY5ikeQQ\n4MPA+6vqUoCquqe1/T3AZcscZwUsaWZV1Uzf2FlVX0tyBfB8YDHJUVV1dzPl7z1L97fOljTrJlVv\nr2UUiwDnAzdV1Ttb69tzqr+Y0ZS+D1NVU/E4++yze4/B2Cf86Lh8zep1n9W4py32WZXkyL1d3pI8\nCvhh4Gbgo8DpzW6nA5cud/xWfK+NeZMeayhfUxXvLF7jLR7zJK2lBfkU4BXA9Ul2N+veBLwsyQmM\nvqa7DXjNRCOTJI3jaOCiJAcxagT5/ar6kyRXAR9K8mrgduClPcYoSVPtgAlyVf0Fy7c0O1yWJE2Z\nqtoDPH2Z9V8Bnrf5EUnS7FnXKBazbDAY9B3C2Iy9H7Ma+6zGDbMdu9ZnFt9rY+7erMULxrxZNjvm\ndY+DvK6TJ9Xl+bXFJWD5UkeSUDN+k956WWerU9bZ6tgk6+0t04IsSZIkrYUJsiRJktRigixJkiS1\nmCBLkiRJLSbIkiRJUosJsiRJktRigixJkiS1mCBLkiRJLSbIkiRJUosJsiRJktRigixJkiS1mCBL\nkiRJLSbIkiRJUosJsiRJktRycN8BSJKk6ZJk1e1VtUmRSP2wBVmS5kiSY5JckeTGJDckeV2zfiHJ\nnUl2N4+dfceqaVcrPKT5ly7/C0xS/pepziRg+VJHklBVqzejTaEkRwFHVdW1SQ4HPgO8CHgpcF9V\nnbvKsdbZAva2IK9UFjJeC7J1tjo2yXrbLhaSNEeq6m7g7mb5/iQ3A49vNs9cwi9JfbCLheZekoc8\npK0iyQ7gROCqZtUZSa5Lcn6Sbb0FJklTzhZkbRF7v9YzQdbW0HSvuAR4fdOSfB7wq83mtwDnAK9e\netzCwsK+5cFgwGAw6DxWSRrHcDhkOBx2cu4D9kFOcgzwXuCfM8oy/mtV/WaSI4DfB74LuB14aVV9\ndcmx9mdTd9bYn+2hfenG7DunLWdW+yADJDkE+GPgY1X1zmW27wAuq6rjl6y3zhZgH2TNpknW22vp\nYvEAcGZVPRU4GXhtkicDZwG7quo44JPNc0lSjzLKbM4Hbmonx0mObu32YmDPZscmSbNi3aNYJLkU\neHfzOLWqFpu7podV9aQl+9oaoe7YgqwOzWoLcpJnA38OXM/+gv8m4GXACc2624DXVNXikmOtswXY\ngqzZNMl6e10JcvO13J8BTwM+X1WPa9YH+Mre5639rWzVHRNkdWhWE+SNsM7WXibImkW9DPPW3PDx\nYUY3fNzXHg2gqirJsqXeGz4kzYIub/aQJM2WNbUgL3fDR5JbgEFV3d30bbvCLhbaVLYgq0O2IGsr\nswVZs2hTb9Jb6YYP4KPA6c3y6cClkwhIkiRJ6tNahnlb7oaPNwLXAB8CjsVh3tQHW5DVIVuQtZXZ\ngqxZ1NtNeus+uZWtumSCrA6ZIGsrM0HWLNrscZAlSZKkLcMEWZIkSWoxQZYkSZJaTJAlSZKkFhNk\nSZIkqcUEWZIkSWoxQZYkSZJaDu47AKkro3E8JUmS1scWZM05B6WXJEnrY4IsSZIktZggS5IkSS0m\nyJI0R5Ick+SKJDcmuSHJ65r1RyTZleTWJJcn2dZ3rJI0rUyQJWm+PACcWVVPBU4GXpvkycBZwK6q\nOg74ZPNDnPEqAAAgAElEQVRckrQME2RJmiNVdXdVXdss3w/cDDweOA24qNntIuBF/UQoSdPPBFmS\n5lSSHcCJwNXA9qpabDYtAtt7CkuSpp7jIEvSHEpyOPBh4PVVdV97XPCqqiTLjoG4sLCwb3kwGDAY\nDLoNVJLGNBwOGQ6HnZw7Vd2NE5ukujy/trgEVilfo4SggL0/AYJlUmuRhKqaydlmkhwC/DHwsap6\nZ7PuFmBQVXcnORq4oqqetOQ462wB7fpz2a3j1aMHqLOljZpkvW0XC0maIxllNucDN+1NjhsfBU5v\nlk8HLt3s2CRpVtiCrNllC7I6NKstyEmeDfw5cD37C/4bgWuADwHHArcDL62qry451jpbgC3Imk2T\nrLdNkDW7Vqhs230tTZA1rllNkDfCOlt7mSBrFk2y3vYmPc2pvYmxJGmphzYkSFrqgH2Qk1yQZDHJ\nnta6hSR3JtndPHZ2G6YkSZqsWuUhbW1ruUnvQmBpAlzAuVV1YvP4+ORDkyRJkjbfARPkqroSuHeZ\nTX4/I0mSpLmzkWHezkhyXZLzk2ybWESSJElSj8a9Se884Feb5bcA5wCvXm5HZ2XStNl7c4p366ut\nyxmZpHmz2k1+1q2aB2sa5i3JDuCyqjp+ndscMkjdWXWYt/bwbg8d5m3vOsumVuMwb5pnqw/jBg+t\nN9e3bcUy5DBv6ljvM+k105Tu9WJgz0r7SpIkSbPkgF0sklwMnAocmeQO4GxgkOQERv9C3ga8ptMo\nJUmSpE3iTHqaXXaxUIfsYqF5ZhcLzaPeu1hIkiRJ88oEWZIkSWoxQZYkSZJaTJAlSZKkFhNkSZIk\nqcUEWZIkSWoxQZakOZLkgiSLSfa01i0kuTPJ7uaxs88YJWnamSBL0ny5EFiaABdwblWd2Dw+3kNc\nkjQzTJAlaY5U1ZXAvcts2lKTnkjSRpggS9LWcEaS65Kcn2Rb38FI0jQ7uO8AJEmdOw/41Wb5LcA5\nwKuX23FhYWHf8mAwYDAYdByaJI1nOBwyHA47OXdWnDN9EidPqsvza4tLYJnylYRRl8ulP3nIOsum\nVpOEqprJbglJdgCXVdXx69xmnb1F7K8nV9xjle2rb1uxDK1QZ0uTMsl62y4WkjTnkhzdevpiYM9K\n+0qS7GIhSXMlycXAqcCRSe4AzgYGSU5g1Ox3G/CaHkOUpKlnFwvNLrtYqEOz3MViXNbZW4ddLDSP\n7GIhSZIkdcQEWZIkSWoxQZYkSZJaTJAlSZKkFhNkSZIkqcUEWZIkSWo5YIKc5IIki0n2tNYdkWRX\nkluTXJ5kW7dhSpIkSZtjLS3IFwI7l6w7C9hVVccBn2yeS5IkSTPvgAlyVV0J3Ltk9WnARc3yRcCL\nJhyXJEmS1Itx+yBvr6rFZnkR2D6heCRJkqReHbzRE1RVJVlx7siFhYV9y4PBgMFgsNFfKUkTNxwO\nGQ6HfYchSZoCWXHO9PZOyQ7gsqo6vnl+CzCoqruTHA1cUVVPWua4Wsv5pbEksEz5SgIUsPQnD1ln\n2dRqklBV6TuOzWSdvXXsrydX3GOV7atvW7EMrVBnS5MyyXp73C4WHwVOb5ZPBy6dRDCSJElS3w7Y\ngpzkYuBU4EhG/Y3fDPwR8CHgWOB24KVV9dVljrU1Qt2xBVkdsgVZ88wWZM2jSdbba+piMfbJrWzV\nJRNkdcgEWfPMBFnzaBq6WEiSJElzyQRZkuaIs59K0saZIEvSfHH2U0naIBNkSZojzn4qSRtngixJ\n88/ZTyVpHTY8k54kaXY4+6mkedHlDKgO86bZ5TBv6tAsD/Pm7Kc6EId50zxymDdJ0no4+6kkrYMt\nyJpdtiCrQ7Paguzsp1oLW5A1j5xJTwITZHVqVhPkjbDO3jpMkDWP7GIhSZIkdcQEWZIkSWoxQZYk\nSZJaTJAlSZKkFhNkSZIkqcUEWZIkSWoxQZYkSZJaTJAlSZKkFhNkSZIkqeXgvgOQJmE0K5QkSdLG\nmSBrjrSnk5Yk9WGlBgsnmdYs2VCCnOR24O+AbwEPVNVJkwhKkiTNqpVSYRsvNDs22oJcwKCqvjKJ\nYCRJkqS+TeImPf8llCRJ0tzYaIJcwCeSfDrJT08iIEmSJKlPG+1icUpVfTHJdwC7ktxSVVe2d1hY\nWNi3PBgMGAwGG/yVkjR5w+GQ4XDYdxjSxDi6jzS+VE3mvtIkZwP3V9U5rXU1qfNLD5NAU75GHwTt\nUSxqmZ8P3WbZ1GqSUFVzl2GsdnO1dfZ8eWi9+LCtq2w70PbxthX762ypC5Ost8duQU5yGHBQVd2X\n5NHAjwC/MomgJEmd8eZqSTqAjXSx2A58pPkK52DgA1V1+USikiR1ae5axiVpkibWxWLZk/t1nbpk\nFwt1aI67WPwt8DVGXSx+p6p+t7XNOnuO2MVCW81UdLGQJM2kVW+u9sZqdWm1Gwf950zr1eXN1bYg\na3YlS74ntgVZkzOvLchtS2+uts6eL9PYgpxVjrPsaaMmWW9PYqIQqWdWqtJaJDksyWOa5b03V+/p\nNypJmj52sZCkrcObqyVpDUyQJWmLqKrbgBP6jkOT8c1vfpPPfOYzfYchzSUTZEmSZtC9997Ls5/9\nAzzmMc982Laqb/UQkTQ/TJAlSZpRhx56BF/72l8us+V+4DGbHY40N7xJT1tWklWHHJIkSVuTCbK2\nMEe/kCRJD2eCLEmSJLWYIEuSJEktJsiSJElSi6NYaCb84z/+I3v27J/w62lPexqH9RiPJEmaXybI\nmgl33HEHp5zyAzz60f+Sv//7PfzTP33dW+wkSVIn7GKhmfGoRx3L1752DYcddlzfoUiSpDlmC7Ik\nSZpJBxrLvsrvGjUeE2RJkjTDVkqCnQhK47OLhSRJktRigixJkiS12MVCW167D5v91SRJkgmytK//\nmv3VJKkvq91wZ+OFNtuGulgk2ZnkliR/neQNkwqqC8PhsO8Qxmbs/ZjV2Gc1bpjt2GfBNNXZs/he\nz2LMMOw7gHUo4IrmZ/sx3WaxXBjzgY2dICc5CHg3sBN4CvCyJE+eVGCTNouFYS9j78esxj6rccNs\nxz7tpq3OnsX3ehZjnq0EGWYv3tksF8Z8YBtpQT4J+FxV3V5VDwC/B7xwMmFJkibMOluS1mgjfZAf\nD9zRen4n8KyNhSOt7Fvf+jqwm2996x/7DkWaRdbZc+jBBx8Adi+z5R82OxRprmTcju9J/m9gZ1X9\ndPP8FcCzquqM1j7T33lIklZQVXNz56Z1tqStYFL19kZakO8Cjmk9P4ZRi8Q+8/ThIkkzzjpbktZo\nI32QPw18d5IdSR4B/Gvgo5MJS5I0YdbZkrRGY7cgV9U/JflZ4E+Bg4Dzq+rmiUUmSZoY62xJWrux\n+yBLkiRJ82hDE4X0IcmZSW5IsifJB5McmuSIJLuS3Jrk8iTbWvu/sRkU/5YkP9Ja/4zmHH+d5Dda\n6w9N8vvN+quSfNcGYr0gyWKSPa11mxJrktOb33Frkp+cUOzvSHJzkuuS/GGSx05b7MvF3dr2C0ke\nTHLEtMW9WuxJzmiu+w1J3jYrsSc5ofk9u5N8Ksn3TWPsmowkxyS5IsmNTVl9XbN+YnXeJsa8kOTO\npuzuTvKCKYr5kUmuTnJtE/NCs34qr/Mq8U7tNW79voOa2C5rnk/lNT5AzFN9nZPcnuT6JrZrmnXT\ncZ2ramYejIYp+lvg0Ob57wOnA28HfqlZ9wbgrc3yU4BrgUOAHcDn2N9qfg1wUrP8J4zu7gb4GeC3\nm+V/DfzeBuJ9DnAisKe1rvNYgSOAvwG2NY+/AbZNIPYfBr6tWX7rNMa+XNzN+mOAjwO3AUdMW9yr\nXPMfBHYBhzTPv2OGYr8ceH6z/ALgimmM3cdkHsBRwAnN8uHAXwFPZoJ13ibGfDbw88vs33vMzfkP\na34eDFzFaLi+ab7Oy8U71de4+R0/D3wA+GjzfGqv8SoxT/V1pvWZ3Fo3Fdd55lqQGf2BHZbkYOAw\n4AvAacBFzfaLgBc1yy8ELq6qB6rqdkYX81lJjgYeU1XXNPu9t3VM+1wfBn5o3ECr6krg3iWrNyPW\n5wOXV9VXq+qrjBKsnRuNvap2VdWDzdOrgSdMW+wrXHOAc4FfWrJuauJeJfZ/D/znGk3sQFV9aYZi\nfxDY+y3DNkajKExd7JqMqrq7qq5tlu8HbmbUqDHJOm+zYgZYbkSP3mNuYt07yPEjGCULxXRf5+Xi\nhSm+xkmeAPwo8J5WnFN7jVeJOUzxdW7F2DYV13mmEuSqugs4B/g8o8T4q1W1C9heVYvNbovA9mb5\nO3noMEZ3Mqr8lq6/i/2V4r7B9Kvqn4CvpfWV/AR0Hes/W+Vck/QqRv+lTX3sSV4I3FlV1y/ZNNVx\nN74b+IGMuhUMkzxzhmL/OeAdST4PvAN44wzFrg1IsoPRNwpXM9k6rzOtmK9qVp2RUXey81tf8U5F\nzEm+Lcm1jK7n5U1iMLXXeYV4YYqvMfDrwC8y+kd/r6m9xo3lYi6m+zoX8Ikkn07y0826qbjOM5Ug\nJ3kco/8sdjC6IIdnNNj9PjVqX5+JOw9nKda2JL8MfLOqPth3LAeS5DDgTYy+Ztq3uqdwxnEw8Liq\nOplRxfehnuNZj58Bfq6qjgXOBC7oOR5tgiSHM2rlf31V3dfeNq11XhPzJYxivh84D3gicALwRUYN\nM1Ojqh6sqhMYfYv3rCRPW7J9qq7zMvE+lSm+xkl+DLinqnazwufFtF3jVWKe2uvcOKWqTmTUDe+1\nSZ7T3tjndZ6pBBl4HnBbVX25aUX6Q+BfAXcnOQqgaWq/p9l/6cD4T2D0X8Zd7O8e0F6/95hjm3Md\nDDy2qr4ywdew2HGsX17mXA+bEGBcSV7J6Cucf9NaPc2x/x+M/qG6LsltTQyfSbJ9yuPe605G5Zyq\n+hTwYJIjZyT2n6yqjzTLlwAnteKY9tg1hiSHMEqO31dVlzarJ1Hn3UVHWjG/f2/MVXVPNRh9XT1O\n2e0s5r2q6mvAFYy6Gk31dV4S784pv8bfD5zWfGZcDDw3yfuY7mu8XMzvnfLrTFV9sfn5JeAjTXzT\ncZ2rw87ik340F+4G4FGM/kO6CHgtow7db2j2OYuHd+h+BKP/oP6G/R26r2Z0o0B4+M1A5zXLP8EG\nbtJrzrGDh9+k12msjG5c+ltG/T4ft3d5ArHvBG4Ejlyy31TFvjTuJduWu0lvKuJe4Zq/BviVZvk4\n4PMzFPtNwKnN8g8Bn5rW2H1s/NG8Z+8Ffn3J+onVeZsY89Gt5TOBD05RzEfuLeOMPgv/nFGjxVRe\n51XiPWpar/GS+E8FLpv2srxKzNNclg9j1HcY4NHA/wB+ZFquc6dvUkcXdIHRjRR7GCXIhzD6kPwE\ncCujO+e3tfZ/E6OO3LfQ3FHfrH9Gc47PAb/ZWn8oo6+x/5pRX7QdG4j1YkZ9pb/JqP/kT21WrM3v\n+uvmcfoEYn9Vc67/BexuHr89bbG34v7G3mu+ZPvf0rpjdlriXin2pny/r4nlM8BgymNvl/VTGM3e\ndi3wl8CJ0xi7j8k8gGcz6vt4bauO2MkE67xNivkFjJLm64HrgEsZ9YmclpiPBz7bxLYH+I/N+qm8\nzqvEO7XXeEn8p7J/RIipvMbLxDxoxfy+ab3OjJLca5vHDcAbp+k6O1GIJEmS1DJrfZAlSZKkTpkg\nS5IkSS0myJIkSVKLCbIkSZLUYoIsSZIktZggS5IkSS0myJoKSXYk2bOO/U9vZtg50H5vaeag353k\nT9dyjCRp7ZLcnuSIje6zZP8jklyR5L4k79p4lNL6mCBrVr0S+M417Pf2qvreGs31/sfAmzuNSpK2\nnrVMqFCMZjlbq68D/xH4D2NFJG2QCbKmycFJ3p/kpiR/kORRSZ6RZJjk00k+nuSoJC8Bngl8IMln\nkzwyyZuTXJNkT5Lf2XvCqrqvdf7DGc2aJUkaQ5KPNPXxDUl+esm2HUluWVqPt3Y5I8lnklyf5Hua\nY05K8j+buvx/JDkOoKr+oar+B6OZRaVNZ4KsafI9wG9V1VOAvwN+FvhN4CVV9UzgQuA/VdUljKYw\nfnlVPb2qvg68q6pOqqrjgUcl+bG9J03yn5J8Hng5tiBL0ka8qqmPvw943TLdJo7jofX4z7S2famq\nngGcx/6W4ZuB51TV04Gzgf93yfmc7le9MEHWNLmjqv6yWX4/8HzgacCuJLuBXwYe39q//XXdc5Nc\nleR64LnAU/duqKpfrqpjgQ8AZ3T5AiRpzr0+ybXAXwJPAL57yfal9fizW9v+sPn5WWBHs7wNuKS5\nB+VcWnW31KeD+w5Aamm3FIRR68ONVfX9q+2f5JHAbwHPqKq7kpwNPHKZ/T8I/HdgYWIRS9IWkWQA\n/BBwclV9PckVPLyuXVqPt5/v7S7xLfbnH28BPllVL07yXcBw0nFL4zhgC3KSY5o7SW9s+hy9rll/\nRJJdSW5NcnmSbd2Hqzl3bJKTm+WXA1cB37F3XZJDkjyl2X4f8O3N8t4K+stJDgd+nP3Jc7t144WM\nvs6T5tYqdfZCkjubEV12J9nZd6yaOd8O3Nskx08GTl5mn6X1+JVrOOcXmuWfWmb7em7skyZmLV0s\nHgDOrKqnMvpjeG3zh3EWsKuqjgM+2TyXxlXAXzEqXzcBj6Xpfwy8rflKbzfwr5r9/xvwX5J8ltHd\nzr8L3AB8HLi6dd7/3Ny4dx3wPOD1m/BapD6tVGcXcG5Vndg8Pt5rlJpFH2d0M/VNjPoK7+1K0W4l\nXlqPn7fMPtV6/nZG9fRngYPa+yW5HTgHeGWSzyd50mRfjrSyVK2v/3uSS4F3N49Tq2oxyVHAsKos\nvJI0RVp19inA/VV1Ts8haU4l2QFc1twsLc20dd2k1xT+Exm10G2vqsVm0yKwfaKRSZI2pFVnX9Ws\nOqOZOOd8u8WpI446obmw5hbkpm/nnwFvqapLk9xbVY9rbf9KVR2x5Bj/UCTNrKqa2f6PTZ09BH6t\nqbP/OfClZvNbgKOr6tVLjrHOljTTJlVvr6kFOckhwIeB91XVpc3qvV0raKbvvWeFQLf04+yzz+49\nhml/tK9RU2qWPFYoR1ukfFmG+rlGs6xVZ7+/mjq7qu6pBvAe4KTljp2X98+YpzDuMcvXLF7rWYx5\nVuN+eA4xGWsZxSLA+cBNVfXO1qaPAqc3y6cDly49VpK0uVaqs5uGjL1eDOzZ7NgkaVasZRzkU4BX\nANc3kzUAvBF4K/ChJK8Gbgde2kmEkqT1WK7OfhPwsiQnMPpa5jbgNT3FJ0lT74AJclX9BSu3ND9v\nsuHMn8Fg0HcIU89rtDqvz4F5jfZbpc7+2GbHslaz+P7NYswwm3Eb8+aZxbi7inndw7yt6+RJdXl+\nzZ/Rt8NLy0yW71uUgOVLHUlCzfBNeuOwzlanrLPVsUnW2+sa5k2SJEmadybIkiRJUstabtKTOjHq\nTiFJkjRdTJDVs4f3N5YkSeqTXSwkSZKkFhNkSZIkqcUEWZIkSWoxQZYkSZJaTJAlSZKkFhNkSZIk\nqcUEWZIkSWoxQZYkSZJanChEkqQ5spZZSquWTtIkqc0EWZKkubNaAuyMpdKB2MVCkiRJajFBliRJ\nklpMkCVJkqQWE2RJkiSpxQRZkiRJajFBliRJklpMkCVpjiQ5JskVSW5MckOS1zXrj0iyK8mtSS5P\nsq3vWCVpWpkgS9J8eQA4s6qeCpwMvDbJk4GzgF1VdRzwyea5JGkZJsiSNEeq6u6qurZZvh+4GXg8\ncBpwUbPbRcCL+olQkqafCbIkzakkO4ATgauB7VW12GxaBLb3FJYkTT2nmtamSJzaVNpMSQ4HPgy8\nvqrua/8NVlUlWXYu4oWFhX3Lg8GAwWDQbaCSNKbhcMhwOOzk3Klabb72DZ48qS7Pr9kx+nBeWhbW\nvm7ZcpSA5UsdSUJVzeR/dkkOAf4Y+FhVvbNZdwswqKq7kxwNXFFVT1pynHX2HFi+vn3IHsvXqV2z\nzlbHJllv28VCkuZIRtnR+cBNe5PjxkeB05vl04FLNzs2SZoVB0yQk1yQZDHJnta6hSR3JtndPHZ2\nG6YkaY1OAV4B/OCSOvqtwA8nuRV4bvNckrSMA3axSPIc4H7gvVV1fLPubOC+qjr3AMf6dZ0Au1ho\n9sxyF4txWWfPB7tYaKva1C4WVXUlcO9ycUwiAEmSJGmabKQP8hlJrktyvjMySZK0OZKs+pC0ceMm\nyOcBTwROAL4InDOxiCRJ0gHUKg9JGzXWOMhVdc/e5STvAS5baV/H1JQ0C7ocT1OSNFvWNA5yMxvT\nZa2b9I6uqi82y2cC31dVL1/mOG/4EOBNepo93qSnabWWm/C8SU9b0STr7QO2ICe5GDgVODLJHcDZ\nwCDJCYz+Am8DXjOJYCRJkqS+OZOeNoUtyJo1tiBrWtmCLC3PmfQkSZKkjpggS5IkSS0myJIkSVKL\nCbIkSZLUYoIsSZIktZggS5IkSS0myJIkSVKLCbIkSZLUYoIsSZIktZggS5IkSS0myJIkSVKLCbIk\nSZLUYoIsSZIktZggS5IkSS0myJI0R5JckGQxyZ7WuoUkdybZ3Tx29hmjJE07E2RJmi8XAksT4ALO\nraoTm8fHe4hLkmaGCbIkzZGquhK4d5lN2exYJGlWmSBL0tZwRpLrkpyfZFvfwUjSNDu47wAkSZ07\nD/jVZvktwDnAq5fbcWFhYd/yYDBgMBh0HJr6kKz+hUJVbVIk0viGwyHD4bCTc6fLP4Ik5R+ZYG9l\nvLQsrH3dsuUoAcuXOpKEqprJbglJdgCXVdXx69xmnT0Dlq9PH7LHhrd3Ug6ss9WxSdbbdrGQpDmX\n5OjW0xcDe1baV5JkFwtJmitJLgZOBY5McgdwNjBIcgKjZsPbgNf0GKIkTT27WGhT2MVCs2aWu1iM\nyzp7NtjFQlqeXSwkSZKkjpggS5IkSS0myJIkSVKLCbIkSZLUYoIsSZIktZggS5IkSS0HTJCTXJBk\nMcme1rojkuxKcmuSy5Ns6zZMSZIkaXOspQX5QmDnknVnAbuq6jjgk81zSZIkaeYdMEGuqiuBe5es\nPg24qFm+CHjRhOOSJEmSejFuH+TtVbXYLC8C2ycUjyRJktSrgzd6gqqqJCvOHbmwsLBveTAYMBgM\nNvorJWnihsMhw+Gw7zAkSVMga5lvPckO4LKqOr55fgswqKq7kxwNXFFVT1rmuOpkPnfNnCTA0rKw\n9nXLlqMELF/qSBKqKn3HsZmss2fD8vXpQ/bY8PZOyoF1tjo2yXp73C4WHwVOb5ZPBy6dRDCSJElS\n3w7YgpzkYuBU4EhG/Y3fDPwR8CHgWOB24KVV9dVljrU1QoAtyJo9tiBrWtmCLC1vkvX2mrpYjH1y\nK1s1TJA1a0yQNa1MkKXlTUMXC0mSJGkumSBLkiRJLSbIkiRJUosJsiRJktSy4YlCJEnS5IxuwpPU\nJxNkSZKmzoFGoZDUJbtYSNIcSXJBksUke1rrjkiyK8mtSS5Psq3PGCVp2pkgS9J8uRDYuWTdWcCu\nqjoO+GTzXJK0AhNkSZojVXUlcO+S1acBFzXLFwEv2tSgJGnGmCBL0vzbXlWLzfIisL3PYCRp2nmT\nnmZSEoqH3+3tNLnS6qqqkqz4h7KwsLBveTAYMBgMNiEqSVq/4XDIcDjs5NzpMqFIUiYsgr2J7NKy\nsPZ1S8vRvgT5Ifs+fD9pXEmoqpkcLiDJDuCyqjq+eX4LMKiqu5McDVxRVU9a5jjr7CmwfH35kD06\n395JOUjA8qUOTbLetouFJM2/j8L/z969h0tWlnfe//5CAwoYkDiDGjBNHM8SUQRPYdiektZR1NFJ\nNGrwEN/MmKCDGQ+YeWWbXDOjTkxMJtE4hibGA2oQCWTU0B5KyZsgIjQ052ggAZTGI0IcBeF+/1ir\nm8Vmd++9a1ftWlX7+7mu6r1qHaruWvXU3XetetazOK6dPg44Y4KxSFLveQRZa8IjyJo203oEOcmp\nwDHAfWj6G78F+CvgY8ADgGuAX6qq7y2yrTm7BzyCLA1nlHnbAllrwgJZ02ZaC+TVMGf3gwWyNBy7\nWEiSJEljYoEsSZIkdVggS5IkSR2Og6yRWzg2sSRJ0jSxQNaYLHbynSRJUv/ZxUKSJEnqsECWJEmS\nOiyQJUmSpA4LZEmSJKnDAlmSJEnqsECWJEmSOhzmTVPBsZUlSdJasUDWlHBcZUmStDZWVSAnuQb4\nPnA7cFtVHTWKoCRJkqRJWe0R5ALmquo7owhGkqRZZ5cxqf9G0cXCT7okSSuysNtYl/+tSpO22lEs\nCvhMkvOTvGoUAUmSJEmTtNojyE+qqm8k+VfAliRXVNU5owhMkiRJmoRVFchV9Y327zeTfAI4CrhL\ngTw/P79zem5ujrm5udU8pSSNxWAwYDAYTDoMSVIPpGp3/aB2s2GyD7BHVd2cZF/gbOCtVXV2Z50a\n9vE1vZoTUBYblm2082rnv515tjeNSBKqal11BjVnr43Fc+Rd1pj48rG0gwRsXxqjUebt1RxBPgj4\nRHs27gbgQ93iWJKk9WgWRqlY6jX4RUqzbugjyMt6cI9GrEseQdYsmNUjyLsbv96cPRrTcIR4IkeY\nPYKsMevLEWRJ0vRx/HpJWsJqh3mTJE2fmTsyLkmjZIEsSeuL49dL0hLsYiFJ64vj10vSEiyQtSp9\nO1t7sXg86Ui601Lj1zt2vaRpMc7x6x3FQquyViNWLHcUi0XXsw1qCLM4isVS49ebs0fDUSx2tZmj\nWGi8HMVCkjQMx6+XpGXwCLJWxSPImlWzeAR5Kebs0fAI8q428wiyxmuUedtRLCRJkqQOC2RJkiSp\nwwJZkiRJ6vAkPc08h36TJEkrYYGsdWCxk/4kSZIWZxcLSZIkqcMCWZIkSeqwQJYkSZI6LJAlSZKk\nDgtkSZIkqcMCWZIkSeqwQJYkSZI6LJAlSZKkDgtkSZIkqcMCWZIkSeqwQJYkSZI6LJAlSZKkjg2T\nDkDTYfPmzfzLv/zLpMOQJEkau1TV+B48qXE+vtbOve99f37wg18k2a8z98P86EffARa+x1mTebXz\n3zRrz7EAACAASURBVCG2tV1qCUmoqkw6jrVkzh6NZLG8c5c1pn75UO0kAduXxmiUedsjyFqWKrj1\n1v8G3H/nvJ/8yUFbIEvS+nDppZfyhCf8W26/fdKRSBonC2RJkpbp9ttvBw7iBz84ZxdrnAM8bw0j\n6p/mCPrdVWeZv1So71Z1kl6STUmuSPIPSd44qqAkSaNnzh6NZAPwU7u47T/ByPqkFrnB7rtuSP0x\ndIGcZA/gj4FNwMOBFyV52KgCmxWDwWDSIUyBwaQD6DXb0NLcR0vrc86ezvdvMOkAhjSYdAArNo3t\nYxpjhumMe1wxr+YI8lHAV6vqmqq6DfgI8JzRhDU7prGxrb3BpAPoNdvQ0txHy9LbnD2d799g0gEM\naTDpAFZsGtvHNMYM0xl3Hwvknwau7dy/rp0nSeofc7YkLdNqTtKzI9E6smED7L33YTS/0jZuvvnb\nE4xI0gqZs0fk5psvZY89vsaee777bsvuuONWbr11AkFJGqmhx0FO8nhgvqo2tfdPBO6oqrd31jEh\nS5paszQOsjlb0nowqry9mgJ5A3Al8FTg68B5wIuq6vJRBCZJGh1ztiQt39BdLKrqx0l+E/gbYA/g\nZBOtJPWTOVuSlm+sl5qWJEmSps2qLhSyHiXZnGR7km2defNJrktyYXt7RmfZie2g/Fck+YXO/COS\nbGuX/eFav45xSnJIks8nuTTJJUle084/MMmWJFclOTvJAZ1t1s1+2s3+sR21ktwjyZeSbG330Xw7\n3zY0RZLs0bbls9r7vX7/klyT5OI25vOmIeb2+Q5IclqSy5NcluRxfY47yUM6ee7CJDcleU2fY26f\n64Q2H21L8uEke/c95vb5Xts+3yVJXtvO61XcWby2GlmM7Xv10Xb+uUl+ZsmgqsrbCm7A0cCjgW2d\neScBr1tk3YcDW4E9gY3AV7nzqP15wFHt9CeBTZN+bSPcR/cFDm+n96Pp9/gw4B3AG9r5bwTeth73\n0272j+3orq97n/bvBuBc4HG2oem6Aa8DPgSc2d7v9fsHXA0cuGBer2Nun+P9wCva6Q00l/Prfdzt\n8/wE8A3gkD7HTDMk4j8Ce7f3Pwoc1+eY28d/JLANuAdN16otwAP7FjeL11YjixF4NfDudvqXgY8s\nFZNHkFeoqs4BvrvIosXOmnwOcGpV3VZV19C8iY9Lcj/gXlV1XrveXwDPHUe8k1BVN1TV1nb6FuBy\nmuRyLE0ip/274zWvq/20m/0DtqOdquoH7eReNImwsA1NjSQHA88E/ow72/U0vH8LP4O9jjnJ/sDR\nVbUZmr7mVXVT3+PueBrNBWyunYKYNwD7pDnhdR+ak137HvNDgS9V1Q+r6nbgC8Dz+xb3LmqrUcbY\nfayP05ysvFsWyKNzfJKLkpzc+Rng/jSD8e+wY2D+hfOvZ0YH7E+ykeZb4ZeAg6pqe7toO3BQO71u\n91Nn/5zbzrIdtZL8RJKtNG3l7Dbp2Yamxx8Arwfu6Mzr+/tXwGeSnJ/kVe28vsd8KPDNJKckuSDJ\n+5LsOwVx7/BC4NR2urcxV9X1wDuBf6YpjL9XVVv6HHPrEuDotrvCPjRfWg+egrgZcYw7L5RUVT8G\nbkpy4O6e3AJ5NN5Dk6QOp/mp6J2TDacfkuxH803ttVV1c3dZNb9zrOszRNv9cxrN/rkF29FdVNUd\nVXU4TTJ/XJJHLli+7ttQXyV5FnBjVV3I4r+K9PX9e1JVPRp4BvAbSY7uLuxpzBuAx9D8fPwY4F+A\nN3VX6GncJNkLeDbwlwuX9S3mJPemOQq5kaYQ2y/JS7rr9C1mgKq6Ang7cDbwKZquCbcvWKd3cS80\niRgtkEegqm6sFs3PiUe1i66n6Ve1w8E0326ub6e7869fi1jXSpI9aYrjD1TVGe3s7Unu2y6/H3Bj\nO3/d7afO/vngjv1jO1pc+3Px54FfxDY0LZ4IHJvkapqjg09J8gF6/v5V1Tfav98EPkHzGex1zO1z\nXldVX27vn0ZTMN/Q87ih+SLylXZ/Q7/39dOAq6vq2+0RyNOBJzAF+7mqNlfVY6vqGJpuDFfR7329\nwyhivK6zzQPax9oA7F9V39ndk1sgj0D7xu3wPJoO8QBnAi9MsleSQ4EHAedV1Q3A99OcaRzgpcAZ\nzIj2NZ0MXFZV7+osOpPmpAbav2d05q+b/bSr/WM7ulOS++zoYpLknsDTafpq24amQFW9uaoOqapD\naX5C/1xVvZQev39J9klyr3Z6X+AXaD6DvY0ZmnMagGuTPLid9TTgUuCsPsfdehF3dq/YEVtfY/4n\n4PFJ7tk+19OAy5iC/ZzkX7d/HwD8e+DD9Htf7zCKGP9qkcd6AfDZJZ+9xnyG6qzdaD7MXwdupenP\n8gqajuAXAxe1b+BBnfXfTNOB/ArgFzvzj6BJvl8F/mjSr2vE++jnafodbgUubG+bgAOBz9B8ez0b\nOGA97qdd7J9n2I7uso8OAy5o98U24L+2821DU3YDjuHOUSx6+/7RdG/a2t4uAU7se8yd53sU8OX2\n83I6zSgWvY4b2Bf4Fs1JVTvm9T3meZov6ttoTvjas+8xt8/3RZovTVuBJ/dxX3P32urlo4wR2Bv4\nGPAPNOf8bFwqJi8UIkmSJHXYxUKSJEnqsECWJEmSOiyQJUmSpA4LZEmSJKnDAlmSJEnqsECWJEmS\nOiyQ1TtJrlnqGunLWWfB+k9Pcn6Si9u/T159pJKkMeXso5Jc2N62Jnnu6iOVlm/DpAOQFrGcwbkL\nyAoe85vAs6rqhiSPAP6Gu16SUpI0nHHk7G3AEVV1R3u54YuSnFlVdwwVobRCHkHWRCX5RHtE95Ik\nr1qwbGOSK5J8MMllSf6yvezwDscn+Up7VPgh7TZHJfm7JBck+f92XH61qrZWcxlKaC4Pes8ke67J\ni5SkGbGGOfv/dorhfWiuPiqtGQtkTdorquqxwJHAaxb5Ce7BwJ9U1cOB7wOv7iz7ZlUdAbwH+C/t\nvMuBo6vqMcBJwH9f5DmfD3ylqm4b4euQpPVgzXJ2WzxfSnMJ7f/o0WOtJQtkTdprk2wF/p6my8OD\nFiy/tqr+vp3+IPDznWWnt38vADa20wcApyXZBvw+8Ijug7XdK94G/PqoXoAkrSNrlrOr6ryqegRN\nMf7mJHuP8oVIu2OBrIlJMgc8FXh8VR0ObAXusWC1bt+2LLj/o/bv7dzZn/53gc9W1WHAs7uPl+Rg\nmgT90qq6ekQvQ5LWhbXO2TsfsOoK4BYWHPCQxmnJAjnJ5iTb2293O+YdnuTc9uzSLyc5crxhakb9\nJPDdqvphkocBj19knQck2TH/V4BzlvGYX2+nX75jZpIDgP8DvLFzdEOaOUkOSfL5JJe2/URf084/\nMMmWJFclObv9TEgrsZY5e2OSDe30zwAPBa5ZRezSiiznCPIpwKYF894BnFRVjwbe0t6XVurTwIYk\nl9H0O9tRuHaPOFwJ/Ea7zv40fdcWrlOd++8A/keSC4A9OvN/E3ggcFJn6KD7jPoFST1wG3BC+9P0\n42k+Pw8D3gRsqaoHA59t70srsZY5+2hga5ILaX75+09V9Z0Rvx5pl1K19OgsSTYCZ7U/gZDk08Dm\nqvpYkhcB/66qXjLOQLX+LGx3klYuyRnAH7e3Y6pqezts1qCqHjrZ6DRLzNmaJcOOg/yfgb9J8ns0\nR6GfMLqQpLtYzviakhbRFiyPBr4EHFRV29tF24GDJhSWZps5WzNh2JP0Xg3856p6AHACsHl0IUmN\nqrqmqn5u0nFI0yjJfsDHgddW1c3dZdX8dGgho5EyZ2uWDNvF4ntVdUA7HeB7VbX/ItuZgCVNrapa\nyZW/eqO9CM5fA5+qqne1864A5tqrSd4P+PzCLhbmbEnTblR5e9gjyF9Pckw7/RTgql2tWFWrup10\n0kmrfgxvk9mfbQsY8raMtjOC9jVt+3S93PqwT6dVe9DiZOCyaovj1pnAce30ccAZi22/nt5jY17j\n2zLaV6/incZ9vM5jHqUl+yAnORU4BrhPkmtpRq14FfCH7RAs/xf4f0YalSRpWE8CXgJc3I4AAHAi\nzQVyPpbklTTDZf3SZMKTpP5bskCuqhftYtFjRxyLJGmVqupv2fWvg09by1gkaVr1/kp6c3Nzkw5h\nprg/R899Onru09k3je+xMY/ftMULxrxW1jrmZZ2kN/SDJzXOx1e/NV0hh33/s3R/ogRsXxqTJNSU\nnqQ3LHO2xsqcrTEbZd7u/RFkSZIkaS0Ne6EQSZKkFWl+Wbwrf7VQH1kgS5KkNdQtiNdVLyZNEbtY\nSJIkSR0WyJIkSVKHBbIkSZLUsWSBnGRzku1Jti2Yf3ySy5NckuTt4wtRkiRJWjvLOYJ8CrCpOyPJ\nk4FjgZ+rqkcCvzeG2CRJkqQ1t2SBXFXnAN9dMPs/Af+jqm5r1/nmGGKTJEmS1tywfZAfBPzbJOcm\nGSR57CiDkiRJkiZl2HGQNwD3rqrHJzkS+Bjws4utOD8/v3N6bm5uKq//remz2GD0K+HA9evPYDBg\nMBhMOgxJUg9kOYVAko3AWVV1WHv/U8DbquoL7f2vAo+rqm8v2K4sNNavpkgd9v3P0kVqArtYZ+zP\nrZmXhKpaV1cxMGdrrJL2siB3vVCIbU6jMsq8PWwXizOAp7TBPBjYa2FxLEmSJE2jJbtYJDkVOAb4\nqSTXAm8BNgOb26HfbgV+daxRSpIkSWtkWV0shn5wf65b1+xioWlmFwtpxOxioTHrQxcLSZIkaSZZ\nIEuSJEkdFsiSJElShwWyJEmS1DHshUKksVvqYh+1jHUkSZJWygJZPbbUmc27G6nCwlmSJA3HLhaS\nJElSx5IFcpLNSba3FwVZuOy3ktyR5MDxhCdJkiStreUcQT4F2LRwZpJDgKcD/zTqoCRJkqRJWbJA\nrqpzgO8usuj3gTeMPCJJkiRpgobqg5zkOcB1VXXxiOORJEmSJmrFo1gk2Qd4M033ip2zRxaRJEmS\nNEHDDPP2QGAjcFE7Bu3BwFeSHFVVNy5ceX5+fuf03Nwcc3Nzw8QpSWM1GAwYDAaTDmPVkmwG/h1w\nY1Ud1s6bB34N+Ga72olV9enJRChJ/ZeqpcaahSQbgbN2JNsFy64Gjqiq7yyyrJbz+JpNzReoYd//\npbctQnY7DvLwz227VRKqaup+HUtyNHAL8BedAvkk4Oaq+v0ltjVna3yS9ufmbhsz32p0Rpm3lzPM\n26nA3wEPTnJtkpcvWMWWLUk9sZsTq6eu2JekSVmyi0VVvWiJ5T87unAkSWNyfJJfBc4Hfquqvjfp\ngCSpr7zUtCTNvvcAv9NO/y7wTuCVi63oeSMatfZ8JX9u1siN89yRZfVBHvrB7c+2rtkHWdNsWvsg\nw5LnjexumTlbI7fj/4ImZ4N9kDUua9oHWZI03ZLcr3P3ecC2ScUiSdPALhaSNEPaE6uPAe6T5Frg\nJGAuyeE0h+6uBn59giFKUu/ZxUJjYxcLTbNp7mIxLHO2xsEuFlordrGQJEmSxsQCWZIkSeqwQJYk\nSZI6lnMlvc1JtifZ1pn3P5NcnuSiJKcn2X+8YUqSJElrYzlHkE8BNi2YdzbwiKp6FHAVcOKoA5Mk\nSZImYckCuarOAb67YN6Wqrqjvfsl4OAxxCZJkiStuVH0QX4F8MkRPI4kSZI0casqkJP8NnBrVX14\nRPFIkiRJEzX0lfSSvAx4JvDU3a03Pz+/c3pubo65ublhn1KSxmYwGDAYDCYdhiSpB5Z1Jb0kG4Gz\nquqw9v4m4J3AMVX1rd1s51WZ1jGvpKdp5pX0pNHwSnpaK6PM20sWyElOBY4B7gNsB06iGbViL+A7\n7Wp/X1WvXmRbk+06ZoGsaWaBLA2nyf0L7bpAvtuatkENaU0L5FU9uMl2XbNA1jSzQJaGc/fcv/sj\nyB5R1qiMMm97JT1JkiSpwwJZkiRJ6rBAliRJkjoskCVJkqQOC2RJkiSpwwJZkiRJ6rBAliRJkjos\nkCVJkqSOJQvkJJuTbE+yrTPvwCRbklyV5OwkB4w3TEmSJGltLOcI8inApgXz3gRsqaoHA59t70uS\nJElTb8kCuarOAb67YPaxwPvb6fcDzx1xXJIkSdJEDNsH+aCq2t5ObwcOGlE8kiRJ0kRtWO0DVFUl\nqV0tn5+f3zk9NzfH3Nzcap9SkkZuMBgwGAwmHYYkqQdStcva9s6Vko3AWVV1WHv/CmCuqm5Icj/g\n81X10EW2q+U8vmZTEmDY93/pbYuQXa6zuue23SoJVZVJx7GWzNkahbvn/uZ+k7NZdFn3vm1Qwxpl\n3h62i8WZwHHt9HHAGaMIRpIkSZq0JY8gJzkVOAa4D01/47cAfwV8DHgAcA3wS1X1vUW29WjEOuYR\nZE0zjyBLw/EIsiZllHl7WV0shn5wk+26ZoGsaTatBXKSzcC/A27sdIs7EPgo8DN4UENjZoGsSelD\nFwtJUj85dr0krZIFsiTNEMeul6TVs0CWpNnn2PWStAIWyJK0jrSdjO3kKUm7seoLhUizqDnJZDie\nYKIe2p7kvp2x62/c1Ype3EmTtjD/mlO1K+O8wJOjWGhspnkUC0fA0LSOYgGLXtzpHcC3q+rtSd4E\nHFBVdztRz5ytUVjtKBaOaqFhOcybpoIFsqbZtBbIjl2vSbNA1qT0pkBOcgLwSprWvA14eVX9qLPc\nZLuOWSBrmk1rgbwa5myNggWyJqUX4yAn+WngeOCI9me8PYAXjiIoSZIkaVJWe5LeBmCfJLcD+wDX\nrz4kSZIkaXKGPoJcVdcD7wT+Gfg68L2q+syoApMkSZImYTVdLO5Nc3WmjcD9gf2SvHhEcUmSpCmQ\n5C43aRaspovF04Crq+rbAElOB54IfKi7kmNqTi8TndaTcY6nKc2+hSfaSdNt6FEskhwFbAaOBH4I\n/DlwXlX9SWcdz4ieYqsbhQLGPZKEo1honBzFQlqeXY1asfC+o1ho3HoxikVVnQecBlwAXNzO/t+j\nCEqSJEmaFC8Uol3yCPJw29rmZ4NHkKXl8Qiy+qIXR5AlSZKkWWSBLEmSJHVYIEuSJEkdFsiSJElS\nx2ovNS1pgdWOH+0JKZIkTZYFsjRyqx35Q5IkTZJdLCRJkqQOC2RJkiSpY1UFcpIDkpyW5PIklyV5\n/KgCkyRJkiZhtX2Q/xD4ZFW9IMkGYN8RxCRJkiRNzNCXmk6yP3BhVf3sbtbxsqVTzEtNr/W2zfZ+\nZvrBS01Ly+OlptUXfbnU9KHAN5OckuSCJO9Lss8ogpIkSZImZTVdLDYAjwF+s6q+nORdwJuAt4wk\nMq3a+953Mps3nzbpMCRJkqbKagrk64DrqurL7f3TaArku5ifn985PTc3x9zc3CqeUitx2WVXcu65\n9wP+wxBbfx349IgjkvprMBgwGAwmHYYkqQeG7oMMkOSLwK9V1VVJ5oF7VtUbO8vtzzZBJ5zwBt71\nrvsAbxhi668B/wb7IK/lts32fmb6wT7I0vLYB1l9Mcq8vdpRLI4HPpRkL5qK6uWrD0mSJEmanFUV\nyFV1EXDkiGKRJEmSJs4r6UmSJEkdFsiSJElShwWyJEmS1GGBLEmSJHWsdhQLST3RDLW0Og6nNPuS\nXAN8H7gduK2qjppsRJLUPxbI0kxZ7bjVWgcKmKuq70w6EEnqK7tYSNL647chSdoNC2RJWl8K+EyS\n85O8atLBSFIfrbqLRZI9gPOB66rq2asPSZI0Rk+qqm8k+VfAliRXVNU5OxbOz8/vXHFubo65ubm1\nj1CSlmEwGDAYDMby2FntSTlJXgccAdyrqo5dsKw86WdyTjjhDbzrXfcB3jDE1l8D/g2r79M67PZL\nb1uE7HKd8T73eLZtth/2M9OcpDeZ555FSaiqme6KkOQk4Jaqemd735ytFbt77ln8fpOzWda63fu2\nSS3XKPP2qrpYJDkYeCbwZ9inTZJ6Lck+Se7VTu8L/AKwbbJRSVL/rLaLxR8Arwd+cgSxSJLG6yDg\nE+2QgBuAD1XV2ZMNSZL6Z+gCOcmzgBur6sIkc7taz/5skqbBOPuy9UVVXQ0cPuk4JKnvhu6DnOS/\nAy8Ffgzcg+Yo8ser6lc769ifbYLsg2wf5LV67lm0HvogL2TO1jDsg6y+6EUf5Kp6c1UdUlWHAi8E\nPtctjiVJkqRpNMpxkP2KJ0mSpKk3kktNV9UXgC+M4rEkSZKkSfJKepIkSVKHBbIkSZLUYYEsSZIk\ndVggS5IkSR0jOUlP0ui0VzmTJEkTYoEs9c5qLlIiSePzgx/8gH/8x3+cdBjS2FkgS5KkZbnkkkt4\n0pOOYZ99HgjAj370rbE/Z/dXNa+qp7ViH2RJkrRs++57GN///iV8//uX8KMfvX4NnrHwWmRaa0MX\nyEkOSfL5JJcmuSTJa0YZmCRJkjQJq+licRtwQlVtTbIf8JUkW6rq8hHFJkmSJK25oY8gV9UNVbW1\nnb4FuBy4/6gCkyRJkiZhJH2Qk2wEHg18aRSPJ0mSJE3KqkexaLtXnAa8tj2SfBfz8/M7p+fm5pib\nm1vtU0rSyA0GAwaDwaTDkCT1wKoK5CR7Ah8HPlhVZyy2TrdAlqS+WvgF/q1vfevkgpEkTdTQBXKa\ngQlPBi6rqneNLiRJkqS7W3ilUcdF1rispg/yk4CXAE9OcmF72zSiuCRJkhYoHBdZa2HoI8hV9bd4\noRFJkiTNGAtcSZIkqcMCWZIkSeqwQJYkSZI6LJAlSZKkjlVfKETS7Fg4hNJKONySpLXmsG8aFwtk\nSR3D/ucyfGEtScPr5izzkEbHLhaSJElSx6oK5CSbklyR5B+SvHFUQUmSRs+cLUnLM3SBnGQP4I+B\nTcDDgRcledioAtthMBiM+iHXucGkA5hBg0kHMHP83I/eWuXs5ZrG99iYtZhp3MfGvLTVHEE+Cvhq\nVV1TVbcBHwGeM5qw7jSNb2K/DSYdwAwaTDqAmePnfizWJGcv1zS+x8asxUzjPjbmpa2mQP5p4NrO\n/evaeZKk/jFnS9IyrWYUC8dS6bkE9trrI+y117ad8370o4vYe++vLbntHXfczA9+MM7oJK0xc7ZG\n4oc//Br77fdSAG699TJuvXXCAUljkGHHDEzyeGC+qja1908E7qiqt3fWMSFLmlpVNTPjRpmzJa0H\no8rbqymQNwBXAk8Fvg6cB7yoqi4fRWCSpNExZ0vS8g3dxaKqfpzkN4G/AfYATjbRSlI/mbMlafmG\nPoIsSZIkzaKJXkkvyeYk25Ns68w7MMmWJFclOTvJAZ1lJ7YD3F+R5BcmE3W/7WKfzie5LsmF7e0Z\nnWXu091IckiSzye5NMklSV7TzredDmk3+9R2OgOS7NG+f2e191f8WUlyRJJt7bI/HHO81yS5uI35\nvCmJ+YAkpyW5PMllSR7X15iTPKTzmb4wyU1JXtPXeDvPdUKbn7Yl+XCSvacg5te2z3VJkte283oV\nc0ZU9+0qxvZ9+mg7/9wkPzN0sFU1sRtwNPBoYFtn3juAN7TTbwTe1k4/HNgK7AlsBL4K/MQk4+/j\nbRf79CTgdYus6z5den/eFzi8nd6Ppg/nw2ynY9mnttMZuAGvAz4EnNneX8lnZcevmucBR7XTnwQ2\njTHeq4EDF8zre8zvB17RTm8A9u97zO1z/ATwDeCQPsdLM/zhPwJ7t/c/ChzX85gfCWwD7kHThWoL\n8MC+xczq677dxgi8Gnh3O/3LwEeGjXWiR5Cr6hzguwtmH0vz4af9+9x2+jnAqVV1W1VdQ7OjjlqL\nOKfJLvYpwGJndbpPl1BVN1TV1nb6FuBymuRpOx3SbvYp2E6nWpKDgWcCf8ad7+VKPiuPS3I/4F5V\ndV673l90thlb6Avu9zbmJPsDR1fVZmj6llfVTX2OueNpNBeruXYK4t0A7JPm5NZ9aE5s7XPMDwW+\nVFU/rKrbgS8Az+9bzCOo+5aKsftYH6c5KXkoEy2Qd+GgqtreTm8HDmqn708zsP0ODnK/MscnuSjJ\nyZ2fL9ynK5BkI8033y9hOx2Jzj49t51lO51ufwC8HrijM2+ln5WF869nvO93AZ9Jcn6SV7Xz+hzz\nocA3k5yS5IIk70uyb89j3uGFwKntdG/jrarrgXcC/0xTGH+vqrb0OWbgEuDotrvCPjRfVA/uecw7\njDLGnRdEqqofAzclOXCYoPpYIO9UzTHy3Z1F6BmGy/MemqR6OM3PW+/czbru00Uk2Y/m2+hrq+rm\n7jLb6XDafXoazT69BdvpVEvyLODGqrqQxX8JWM5nZRKeVFWPBp4B/EaSo7sLexjzBuAxND8jPwb4\nF+BN3RV6GDNJ9gKeDfzlwmV9izfJvWmORG6kKcb2S/KS7jp9i7mqrgDeDpwNfIqma8LtC9bpVcyL\n6VOMfSyQtye5L0B7GP3Gdv71NP2Wdji4naclVNWN1aL56XPHz9Pu02VIsidNcfyBqjqjnW07XYXO\nPv3gjn1qO516TwSOTXI1zVHCpyT5ACv7rFzXzj94wfyxvd9V9Y327zeBT9C0uz7HfB1wXVV9ub1/\nGk3BfEOPY4bmC8hX2v0M/d7HTwOurqpvt0chTweeQM/3cVVtrqrHVtUxNN0YrqLf+3mHUcR4XWeb\nB7SPtQHYv6q+M0xQfSyQz6TpDE/794zO/Bcm2SvJocCDaDppawltg9vheTQd+cF9uqQkAU4GLquq\nd3UW2U6HtKt9ajudblX15qo6pKoOpfkp/XNV9VJW+FmpqhuA76cZmSHASzvbjFSSfZLcq53eF/gF\nmnbX25jb57o2yYPbWU8DLgXO6mvMrRdxZ/eKHXH1Nd5/Ah6f5J7tcz0NuIye7+Mk/7r9+wDg3wMf\npt/7eYdRxPhXizzWC4DPDh3V7s7gG/eN5sPydeBWmj4jLwcOBD5D883nbOCAzvpvpumkfQXwi5OM\nva+3RfbpK2g6sF8MXNQ2vIPcp8venz9P059yK3Bhe9tkOx35Pn2G7XR2bsAx3DmKxYo/K8ARNIXq\nV4E/GmOch7btcCtNH84T+x5z+1yPAr7cflZOpxnForcxA/sC36I5sWrHvN7G2z7XPM0JxNto6vMl\nPQAAIABJREFUTvracwpi/iLNl6WtwJP7uJ8ZUd23qxiBvYGPAf9Ac27LxmFj9UIhkiRJUkcfu1hI\nkiRJE2OBLEmSJHVYIEuSJEkdFsiSJElShwWyJEmS1GGBLEmSJHVYIKtXkswn+a3lLE/ysgUXl9jV\nNv8hyaVJbk/ymFHGK0nr2Zhy9v9McnmSi5KcnmT/UcYsLYcFsvpmqYG5u9dpfxlw/2U85jaaK7N9\ncfiwJEmLGEfOPht4RFU9iubiEScOHZ00JAtkTVyS305yZZJzgIe08x6Y5FNJzk/yxSQPuesmeT7N\nlXQ+lOSCJPdI8pYk5yXZluS9O1auqiuq6qq1fVWSNJvWIGdvqao72rtfAg5eq9cm7WCBrIlKcgTw\nyzSXTn0mcGS76L3A8VX1WOD1wLs7m1VVfRw4H/iVqnpMVf0Q+F9VdVRVHQbcM8mz1uyFSNI6MIGc\n/Qrgk2N6OdIubZh0AFr3jgZOb5PlD5OcCdwDeCLwl0l2rLfXLrZPZ/opSV4P7ENzbfdLgb8eS9SS\ntD6tWc5O8tvArVX14dG+BGlpFsiatOKuCROaXza+V1WPXub2JLkH8CfAEVV1fZKTaJK2JGl01iRn\nJ3kZzRHqp44iaGmlluxikeSQJJ9vRwG4JMlr2vkHJtmS5KokZyc5YPzhagZ9EXhu2x/tXsCzgR8A\nVyd5ATSd15L8XGebHcn5ZuAn2+kdifXbSfYD/gOLnzyyMLFLMyXJ5iTbk2xbMP/4dmSAS5K8fVLx\naeqNPWcn2UTTTeM57ZFqac0tpw/ybcAJVfUI4PHAbyR5GPAmYEtVPRj4bHtfWpGquhD4KHARTT+z\n82iS5IuBVybZClwCHNvdrP3758CfJrkA+CHwvnbdT9Oc2AFAkucluZam/f6fJJ8a52uSJuwUYFN3\nRpIn03yGfq6qHgn83iQC0/Rbi5wN/C9gP2BLkguTdPszS2siVUuN0LJgg+QM4I/b2zFVtT3JfYFB\nVT10DDFKklYgyUbgrPbkJ5J8DPjTqvrcJOOSpGmxolEs2qT7aJpvegdV1fZ20XbgoJFGJkkalQcB\n/zbJuUkGSR476YAkqc+WfZJe20fo48Brq+rmzpmqVFUlWdmhaEnSWtkA3LuqHp/kSOBjwM9OOCZJ\n6q1lFchJ9qQpjj9QVWe0s7cnuW9V3dBeOvLGRbazaJY0tapqVk7qvA44HaCqvpzkjiQ/VVXf7q5k\nzpY07UaVt5czikWAk4HLqupdnUVnAse108cBZyzcFqCqZvJ20kknTTyGPt7WdL9MSfuyrUznPpkx\nZwBPAUjyYGCvWlAc7zBt79Ostbtpez1tq1nWrXauu3juHsfrWUl83atiz8r7M2vtbXnv92gs5wjy\nk4CXABcnubCddyLwNuBjSV4JXAP80kgjkyStWJJTgWOAn2pHb3kLsBnY3A79divwqxMMUZJ6b8kC\nuar+ll0faX7aaMORJK1GVb1oF4teuqaBSNIUW9EoFrrT3NzcpEPoJffL3blP7s59Mh1m7X3y9fSb\nr6ffZu31LGXF4yCv6MGTGufja51LwPalMUlCzc5JestiztZKNacpLa/NFCHtlarXqp2tJL7OVmsW\nn0ZrlHnbI8iSJElSx7LHQZbWq+6Y38vl0QdJkqaXBbK0LCspeNfVr/KSJM0cu1hIkiRJHRbIkiRJ\nUocFsiRJktRhgSxJkiR1WCBLkiRJHRbIkjRDkmxOsj3JtkWW/VaSO5IcOInYJGlaWCBL0mw5Bdi0\ncGaSQ4CnA/+05hFJ0pSxQJakGVJV5wDfXWTR7wNvWONwJGkqWSBL0oxL8hzguqq6eNKxSNI08Ep6\nkjTDkuwDvJmme8XO2RMKR5KmggWyJM22BwIbgYuSABwMfCXJUVV148KV5+fnd07Pzc0xNze3JkFK\n0koNBgMGg8FYHjtVNZYHBkhS43x8rXMJrEH7aoqKlTxPsN1PvyRU1VQeaU2yETirqg5bZNnVwBFV\n9Z1FlpmztSIryY9FCMVa5siV528wh0+vUeZt+yBL0gxJcirwd8CDk1yb5OULVvF/fklagkeQNb2G\nPILc/sy8Qh5BXm+m+QjysMzZWimPIKtPRpm37YOsdWplBa8kSVo/7GIhSZIkdVggS5IkSR0WyJIk\nSVKHBbIkSZLUYYEsSZIkdVggS5IkSR0WyJIkSVKHBbIkSZLUYYEsSZIkdSxZICfZnGR7km2defNJ\nrktyYXvbNN4wJUnLtYu8/T+TXJ7koiSnJ9l/kjFKUp8t5wjyKcDCAriA36+qR7e3T48+NEnSkBbL\n22cDj6iqRwFXASeueVSSNCWWLJCr6hzgu4ssyujDkSSt1mJ5u6q2VNUd7d0vAQeveWCSNCVW0wf5\n+PanupOTHDCyiCRJ4/YK4JOTDkKS+mrDkNu9B/iddvp3gXcCr1xsxfn5+Z3Tc3NzzM3NDfmUkjQ+\ng8GAwWAw6TDGLslvA7dW1YcXW27OVl8l/nCtuxpn3k5VLb1SshE4q6oOW+GyWs7jS0NJYIj21STZ\nlWy38vVt99MvCVU1tf8jL5abk7wMeBXw1Kr64SLbmLO1IivJp0UIxbA5cuW5G1aev5tt/BxMp1Hm\n7aG6WCS5X+fu84Btu1pXkjR57WhDrwees1hxLEm605JdLJKcChwD3CfJtcBJwFySw2m+ll0N/PpY\no5QkLdsu8vaJwF7Alvan6r+vqldPLkpJ6q9ldbEY+sH9uU7jZBcLjdG0d7EYhjlbK2UXC/XJxLtY\nSJIkSbPKAlmSJEnqsECWJEmSOiyQJUmSpA4LZEmSJKlj2CvpSZIkDaXvV8UbNj5Hv5gdFsiSJGmN\nDVNIrmVR3ff4NG52sZAkSZI6LJAlSZKkDgtkSZIkqcMCWZJmSJLNSbYn2daZd2CSLUmuSnJ2kgMm\nGaMk9Z0FsiTNllOATQvmvQnYUlUPBj7b3pck7YIFsiTNkKo6B/jugtnHAu9vp98PPHdNg5KkKWOB\nLEmz76Cq2t5ObwcOmmQwktR3joMsSetIVVWSXQ7yOj8/v3N6bm6Oubm5NYhKklZuMBgwGAzG8tgZ\n51VfkpRXldHYJDBE+2qukLSS7Va+vu1++iWhqqZy5P8kG4Gzquqw9v4VwFxV3ZDkfsDnq+qhi2xn\nztaKrCSfFiEUK8+pO59tiO3WaptmOz8/kzXKvG0XC0mafWcCx7XTxwFnTDAWSeo9jyBrenkEWWM0\nrUeQk5wKHAPch6a/8VuAvwI+BjwAuAb4par63iLbmrO1Ih5Bvut2fn4ma5R52wJZ06stkJsEvVL9\nKZCHid/P1fhNa4G8GuZsrZQF8l238/MzWaPM256kpxmx0oK3b6Y9fkmSZod9kCVJkqQOC2RJkiSp\nwwJZkiRJ6rBAliRJkjoskCVJkqQOC2RJkiSpwwJZkiRJ6rBAliRJkjqWLJCTbE6yPcm2zrwDk2xJ\nclWSs5McMN4wJUmrleSEJJck2Zbkw0n2nnRMktRHyzmCfAqwacG8NwFbqurBwGfb+5Kknkry08Dx\nwBFVdRiwB/DCyUYlSf20ZIFcVecA310w+1jg/e30+4HnjjguSdLobQD2SbIB2Ae4fsLxSFIvDdsH\n+aCq2t5ObwcOGlE8kqQxqKrrgXcC/wx8HfheVX1mslFJUj9tWO0DVFUlqVEEI0kajyT3pvn1byNw\nE/CXSV5cVR+aaGCauG9/+9u8973vnXQYUq8MWyBvT3Lfqrohyf2AG3e14vz8/M7pubk55ubmhnxK\nSRqfwWDAYDCYdBjj9DTg6qr6NkCS04EnAncpkM3Z68+3vvUt3vrW3+PHP/6PK9puzz39bqXJGmfe\nTtXSB3+TbATOak/sIMk7gG9X1duTvAk4oKrudqJeklrO40tDSaCKJMBK2tn4119Jux8mfj9X45eE\nqsqk4xiVJEcBm4EjgR8Cfw6cV1V/0lnHnL0OXXnllRx55LHcfPOVK9pu//2fyk03fY7l5q8ihGLl\nOXWHYbZbq22a7fz8TNYo8/Zyhnk7Ffg74CFJrk3ycuBtwNOTXAU8pb0vSeqpqjoPOA24ALi4nf2/\nJxeRJPXXkl0squpFu1j0tBHHIkkao6qaB+YnHIYk9Z5X0pMkSZI6LJAlSZKkDgtkSZIkqcMCWZIk\nSeqwQJYkSZI6LJAlSZKkDgtkSZIkqcMCWZIkSeqwQJYkSZI6LJAlSZKkDgtkSVonkhyQ5LQklye5\nLMnjJx2TJPXRhkkHIM2iJJMOQVrMHwKfrKoXJNkA7DvpgCSpjyyQpbGoFaxrMa3xS7I/cHRVHQdQ\nVT8GbppsVJLUT3axkKT14VDgm0lOSXJBkvcl2WfSQUlSH1kgS9L6sAF4DPDuqnoM8C/AmyYbkiT1\nk10sJGl9uA64rqq+3N4/jUUK5Pn5+Z3Tc3NzzM3NrUVskrRig8GAwWAwlsdO1Ur6Sq7wwZMa5+Nr\nnUugqj0hbqV9fqd7fT9X45eEqpqpDuJJvgj8WlVdlWQeuGdVvbGz3Jy9Dl155ZUceeSx3HzzlSva\nbv/9n8pNN32O5eavIoRi5Tlvh2G2W6ttmu38/EzWKPO2R5Alaf04HvhQkr2ArwEvn3A8ktRLFsiS\ntE5U1UXAkZOOQ5L6zpP0JEmSpA4LZEmSJKnDAlmSJEnqsECWJEmSOiyQJUmSpA5HsZAkSRqBZlz+\nlXHs5H6yQJYkSRqJYS5Koj6yQJam0EqPUniEQpKk5bNAlqbSSi9lLUmSlsuT9CRJkqSOVR1BTnIN\n8H3gduC2qjpqFEFJksYjyR7A+cB1VfXsSccjSX202i4WBcxV1XdGEYwkaexeC1wG3GvSgUhSX42i\ni4UdHCVpCiQ5GHgm8GeYuyVpl1ZbIBfwmSTnJ3nVKAKSJI3NHwCvB+6YdCCS1Ger7WLxpKr6RpJ/\nBWxJckVVnTOKwDQbXv7yX+e0005f9voJbN78Hl7wgheMMSpp/UnyLODGqrowydyk45GkPltVgVxV\n32j/fjPJJ4CjgLsUyPPz8zun5+bmmJubW81Tasp861s3c8stvws8f1nr77vvf+RHP/rReIOSFjEY\nDBgMBpMOY5yeCByb5JnAPYCfTPIXVfWr3ZXM2dLaGubqe+D49jDevJ1hd3CSfYA9qurmJPsCZwNv\nraqzO+uUb+D69uxn/wp//dfPAn5lWevvt9+L+dM/fSYvfvGLl145gao2uax0XOD1tb6fw5VLQlXN\nZD/dJMcA/2XhKBbm7PXpyiuv5Mgjj+Xmm69c0Xb77/9Ubrrpcyw3HxUhFCvPYTsMs91abbP2z+Vn\n9e5GmbdXcwT5IOAT7TefDcCHusWxJKnX/N9VknZh6AK5qq4GDh9hLJKkNVBVXwC+MOk4JKmvvJKe\nJEmS1GGBLEmSJHVYIEuSJEkdFsjqnZe85CUkWfIGww+PI0mStCurvVCINCbLOcF+x/A4FsmSJGl0\nLJAlSZJmnBckWRkLZEmSpHVhmAuZrE/2QZYkSZI6LJAlSZKkDgtkSZIkqcMCWZLWiSSHJPl8kkuT\nXJLkNZOOSZL6yJP0JN3FMGc6r9eznKfQbcAJVbU1yX7AV5JsqarLJx2YJPWJR5AlLaJWcNO0qKob\nqmprO30LcDlw/8lGJUn9Y4EsSetQko3Ao4EvTTYSSeofu1hI0jrTdq84DXhteyR5p/n5+Z3Tc3Nz\nzM3NrWlskpZn2At/zJLBYMBgMBjLY1sgS9I6kmRP4OPAB6vqjIXLuwWypD7zoh8Lv8S/9a1vHdlj\n28VCktaJNIecTgYuq6p3TToeSeorC2RJWj+eBLwEeHKSC9vbpkkHJUl9YxcLaR2wr5oAqupv8cCI\nJC3JAllaF1bSV81iWpK0vnkkQZIkSeqwQJYkSZI6LJAlSZKkDgtkSZIkqcMCWZIkSeqwQJYkSZI6\nLJAlSZKkDgtkSZIkqcMCWZIkSepYVYGcZFOSK5L8Q5I3jiqoaTAYDCYdQi+5XxYzmHQAvWM7mYyV\n5uxZe598PX03mHQAIzaYdAAjNXvtbfeGLpCT7AH8MbAJeDjwoiQPG1VgfbfeGspyuV8WM5h0AL1j\nO1l7w+TsWXuffD19N5h0ACM2mHQAIzV77W33VnME+Sjgq1V1TVXdBnwEeM5owpIkjZg5W5KWacMq\ntv1p4NrO/euAx60uHM2mc4Dbl7Xmbbf943hDkdYvc7Z26bbbbgI+sKJtbr31G+MJRuqBVNVwGybP\nBzZV1ava+y8BHldVx3fWGe7BJakHqiqTjmFUzNmS1oNR5e3VHEG+Hjikc/8QmiMSO83Sfy6SNOXM\n2ZK0TKvpg3w+8KAkG5PsBfwycOZowpIkjZg5W5KWaegjyFX14yS/CfwNsAdwclVdPrLIJEkjY86W\npOUbug+yJEmSNIvW9ZX0kmxOsj3Jts68+STXJbmwvT2js+zEdoD9K5L8Qmf+EUm2tcv+sDN/7yQf\nbeefm+Rn1u7VDSfJIUk+n+TSJJckeU07/8AkW5JcleTsJAd0tpnp/bKbfbLe28o9knwpydZ2v8y3\n89dtW+mjWctzs5ajZi2/zFpe2M3rmcr3p/Oce7Rxn9Xen8r3Z6yqat3egKOBRwPbOvNOAl63yLoP\nB7YCewIbga9y5xH484Cj2ulP0pwpDvBq4N3t9C8DH5n0a17GPrkvcHg7vR9wJfAw4B3AG9r5bwTe\ntl72y272ybpuK22s+7R/NwDn0gwbtm7bSh9vs5bnZi1HzWJ+mbW8sIvXM7XvT/s8rwM+BJzZ3p/a\n92dct3V9BLmqzgG+u8iixc7kfg5walXdVlXX0DSSxyW5H3CvqjqvXe8vgOe208cC72+nPw48dVSx\nj0tV3VBVW9vpW4DLacZP7b6W93Pna5z5/bKbfQLruK0AVNUP2sm9aBJosY7bSh/NWp6btRw1i/ll\n1vLCLl4PTOn7k+Rg4JnAn3Hna5ja92dc1nWBvBvHJ7koycmdnxnuz12HRLqOJoktnH89dya3nQPz\nV9WPgZuSHDjWyEcoyUaaI09fAg6qqu3tou3AQe30utovnX1ybjtrXbeVJD+RZCtNmzi7TZa2lekw\n9W131nLUrOSXWcsLu3g9MKXvD/AHwOuBOzrzpvb9GRcL5Lt7D3AocDjwDeCdkw1nMpLsR/PN77VV\ndXN3WTW/m6y7szvbfXIazT65BdsKVXVHVR0OHExzVOGRC5avy7YyBaa+7c5ajpql/DJreWGR1/MI\npvT9SfIs4MaqupDFj4BP3fszLhbIC1TVjdWi+fnhqHbRwkH2D6b59nR9O71w/o5tHgCQZAOwf1V9\nZ4zhj0SSPWn+4/lAVZ3Rzt6e5L7t8vsBN7bz18V+6eyTD+7YJ7aVO1XVTcDngV9knbeVaTDtbXfW\nctSs5pdZywud17Npit+fJwLHJrkaOBV4SpIPMAPvz6hZIC/QNowdngfsOPP7TOCFSfZKcijwIOC8\nqroB+H6SxyUJ8FLgrzrbHNdOvwD47NhfwCq1r+Fk4LKqeldnUfe1HAec0Zk/0/tlV/vEtpL77PhZ\nMck9gafT9J9ct21lWkxz2521HDVr+WXW8sKuXs+OYrI1Ne9PVb25qg6pqkOBFwKfq6qXMqXvz1hV\nD84UnNSN5tvT14FbafrLvIKmo/nFwEU0DeSgzvpvpumgfgXwi535R9B8OL4K/FFn/t7Ax4B/oOlT\ntnHSr3kZ++TnafolbQUubG+bgAOBzwBXAWcDB6yX/bKLffIM2wqHARe0r38b8F/b+eu2rfTxNmt5\nbtZy1Kzll1nLC7t5PVP5/ix4bcdw5ygWU/n+jPPmhUIkSZKkDrtYSJIkSR0WyJIkSVKHBbIkSZLU\nYYEsSZIkdVggS5IkSR0WyJIkSVKHBbJ6Jcl8kt9azvIkL1swmP6utvndJBcluTDJ3yxnG0lS/yT5\ndJLvJjlr0rFotlkgq2+WGpi7e434lwH3X8ZjvqOqHlVVjwb+GnjL8OFJkiboHTRXbZPGygJZE5fk\nt5NcmeQc4CHtvAcm+VSS85N8MclD7rpJnk9zFZ8PJbkgyT2SvCXJeUm2JXnvjpWr6ubOtvvRXLVK\nkrQbSf7fJFckOSfJh5P8VpJfa/Ps1iSntZdfJsmfJ3l3kr9P8rUkxyTZnOSyJKd0HvOWJO9IckmS\nLUmOSjJot3l2u87GNu9/pb09Ycf2VfU54JY13xladyyQNVFJjgB+GXgU8EzgyHbRe4Hjq+qxwOuB\nd3c2q6r6OHA+8CtV9Ziq+iHwv6rqqKo6DLhnkmd1nue/Jfln4FfwCLIk7VaSI4F/D/wczaWvH0vz\n693pbZ49HLgceGW7SdFcnvgJwAnAmcA7gUcAhyX5uXa9fYDPVtUjgZuB3wWeCjwP+J12ne3A06vq\nCOCFwB+N87VKi7FA1qQdTZNwf9ge6T0TuAfwROAvk1wI/Clw311sn870U5Kcm+Ri4Ck0iRmAqvrt\nqnoA8CHg+DG8DkmaJU8CzqiqW6vqFuAsmnx7WHtE+WLgxcDDO9vs6Bd8CbC9qi6tqgIuhf+fvXuP\nt72u633/escCFFCQPBtUcC/tSF7C8IaaGUPFQku0drl1a5q6rceu1Khdou1ktjv7pKaWu7ad42Xh\nJaXYiCQ7U9DjMNwmeOGyEIgsNEBZGKGCykX5nD/Gby1+TeaYc6wxfmOOy3w9H4/xWL/xu83v9zd+\n8zM/6zu+v++X7c2226rqI83yTqBfVd9rjtm9z37A25ufcfqqnyFtim2zLoC2vOJfJ7kw+I/b15s+\nw6McT5K7Af8DeFRVXZvkFAaJ9mrvA/4KWBm7xJK0/NaKzQCnAs+sqp1JXgj0Wttua/69A7i1tf4O\n7sw3bl+1/jaAqrojye59TgK+WlU/n2Qf4JY1yiZN1YYtyE0fol1JdrbWHdO01F2Y5DPNVzHSOP4G\neFbTh/gewDOAbwNXJflZGHQ4bn09B3cG7ZuAezbLu5PhG5IcBPwcdybPD2od+0wGXwtKSynJkUk+\nnuQLTT/PlzfrD236fF6Z5Jwkh8y6rJpr/xt4RpL9m5i6u8vaPYDrkuwLPJ/pJKv3BK5rll8A7LNq\n+1qJu9SpUbpYnAqcsGrd64FTmha+1zTvpb1WVRcCfwFcDHwIuIBBwH0e8JIkFzH46u3E9mHNv+8E\n/p8kn2fQwvC2Zt8PA+e39v/95sG9i4HjgVdMrULS7N0OnFRVDwMeB/xKkocAJwPnVtVRwMea99Ka\nquqzDLq8XcIgNu8EvgH8DoP4+knu2thQQ5aH7TPsmLcAL2zi/w/SeiiveZj7dOApSa5O8tRR6yTt\njQy6B22wU7IdOLt5+IkkHwZ2VNXpSZ4L/GRVPX+aBZUk7b0kZwF/0ryOq6pdSQ5n0PfzwbMtneZZ\nkgOr6ltJDgA+Aby0qi6adbmkzTBuH+RfAz6S5A0MWqEfv8H+kqRN1jRuPIJBi99hVbWr2bQLOGxG\nxdLieGuShzLowvZOk2NtJeMmyL8M/FpVfSDJzwE7gLt8zZHEjvSSFlZVLWxfx6bf6PuBV1TVTcmd\nVamqWis+G7O1jtcmee2sCyFtpKu4Pe4wby+oqg80y2cAxw7bsaomep1yyikTn8PXkl7PDu4vr+l8\nvubhmi6y5gGq9wPvqaqzmtW7u1bQTLd+/VrHzvq6L8K9Yf3HfHVwfy10/bf6578J9e/SuAnyV5Ic\n1yw/Gbiyo/JIkiaQQVPxO4DLquqPWps+CLywWX4hcNbqYyVJAxt2sUhyGnAccO8kVzMYteKlwJub\nMQu/A/ziVEspSRrVExgMv3VJM9EOwKuA1wKnJ3kJ8CXg2bMpniTNvw0T5Kp67pBNj+64LGvq9Xqb\n8WO2DK9n97ym3fOajq+qPsnwbweP38yyTMNWvzesf2/WRZgp69/btJ810jBvY588qWmeX1tcAt5f\nmpIk1AI/pDcOY7amypitKesybo/bB1mSJElaSibIkiRJUsu44yBLkiTNtfb4312yK9LyM0GWxjQs\n8Bo4JWmedB2Tt9SjCVuWCbI0kdWB18ApSdKisw+yJEmS1LJhgpxkR5JdSXauWv+yJJcnuTTJ66ZX\nREmSJGnzjNKCfCpwQntFkicBJwIPr6ofAt4whbJJkiRJm27DBLmqzgNuXLX6PwG/X1W3N/t8bQpl\nkyRJkjbduH2QHwT8WJJPJ+kn2ZRppyVJkpZNkqm8NL5xR7HYBtyrqh6X5DHA6cADuyuWJEnSVuJw\ndPNk3AT5GuBMgKr6TJI7knx/Vd2weseVlZU9y71ej16vN+aPlKTp6ff79Pv9WRdDkjQHMsqkBkm2\nA2dX1dHN+18C7ltVpyQ5CvhoVd1/jePKSRM0NQnM8P4afH1113GQveeXQxKqaks1wRizNVUziNlr\nx+mJz9p5nF+Ucs67LuP2hi3ISU4DjgO+P8nVwGuAHcCOZui324AXdFEYSZIkadZGakEe++S2Rmia\nbEHWFNmCLHXMFuThZ1yQcs67LuO2M+lJkiRJLSbIkiRJUosJsiRJktRigixJkiS1jDsOsrSlOCOR\nJElbhwmyNLK7jlghSZKWj10sJEmSpBYTZEmSJKllwwQ5yY4ku5pZ81Zv+40kdyQ5dDrFkyRJkjbX\nKC3IpwInrF6Z5EjgqcCXuy6UJEmSNCsbJshVdR5w4xqb3gT8VuclkiRJkmZorD7ISZ4JXFNVl3Rc\nHkmSJGmm9jpBTnIA8GrglPbqzkokSRrbWs+NJFlJck2SC5vXXbrNSZLuNM44yD8AbAcubiZPOAL4\nXJJjq+r61TuvrKzsWe71evR6vXHKKXVuvck/qlaPeaxl1+/36ff7sy5GF04F/hh4d2tdAW+qqjfN\npkiStFgySiKQZDtwdlUdvca2q4BHVdW/rLGtTDQ0NQlMcH8NEuS1js9dEuS19117nff8ckhCVS3k\nt2OrY3aSU4Cbq+qNGxxnzNb0TBizx/uRw+L8RGftPM4vSjnnXZdxe5Rh3k4DPgUcleTqJC9atcvW\nuvqStJheluTiJO9IcsisCyNJ82ykFuSxT25rhKbJFmRN0ZK1IP8b4GvN5t8D7lNVL1nJMefPAAAg\nAElEQVTjOGO2pscW5OFnXJByzrsu4/Y4fZAlSQuk/XxIkrcDZw/b1+dGJC2KaT47YguyFpctyJqi\nJWtBvk9VfbVZPgl4TFX9hzWOM2ZremxBHn7GBSnnvLMFWZK0pua5keOAeye5msGQnL0kxzD4C3wV\n8EszLKIkzT1bkLW4bEHWFC1yC/K4jNmaKluQh59xQco57zZ1FAtJkiRpKzFBliRJklpMkCVJkqQW\nH9KTJEnaC4M+w1pmo8yktyPJriQ7W+v+IMnlzaxMZyY5eLrFlCRJmhfV8UvzZpQuFqcCJ6xadw7w\nsKr6YeBK4FVdF0ySJEmahQ0T5Ko6D7hx1bpzq+qO5u35wBFTKJskSZK06bp4SO/FwIc6OI8kSZI0\ncxM9pJfkt4Hbqup9w/ZZWVnZs9zr9ej1epP8SGlT+ADG1tPv9+n3+7MuhiRpDow0k16S7cDZVXV0\na90vAC8FnlJVtww5zlmZND1TnElv1FnznElveTmTntSxJZpJb1HOudV+n7uM22O1ICc5AfhN4Lhh\nybEkSZK0iEYZ5u004FPADya5OsmLgT8GDgLOTXJhkrdMuZySJEnSphipi8XYJ/frOk2TXSw0RXax\nkDpmF4tNP+dW+33uMm471bQkSZLUYoIsSZIktZggS5IkSS0myJIkSVKLCbIkSZLUYoIsSZIktZgg\nS5IkSS2jTBSyI8muJDtb6w5Ncm6SK5Ock+SQ6RZTkiRJ2hyjtCCfCpywat3JwLlVdRTwsea9JEmS\ntPA2TJCr6jzgxlWrTwTe1Sy/C3hWx+WSJEmSZmLcPsiHVdWuZnkXcFhH5ZEkSZJmauKH9Gow0ffW\nmuxbkiRJS2vbmMftSnJ4VV2X5D7A9cN2XFlZ2bPc6/Xo9Xpj/khJmp5+v0+/3591MSRJcyCDBuAN\ndkq2A2dX1dHN+9cDN1TV65KcDBxSVXd5UC9JjXJ+aSwJTHB/JWHtLz/WWj/6Ou/55ZCEqsqsy7GZ\njNmaqglj9ng/clicn+isC3POrfb73GXc3jBBTnIacBxwbwb9jV8D/CVwOnB/4EvAs6vq62sca7DV\n9Jgga4pMkKWOmSBv+jm32u/zpibIE53cYKtpMkHWFJkgSx0zQd70c2613+cu47Yz6UnSEnFyJ0ma\nnAmyJC0XJ3eSpAmZIEvSEnFyJ0manAmyJC0/J3eSpL0w7jjIkkY0eEhkbVvtAQrNXlVVkqE3nmPX\naxbWi5PSMNMcv95RLLS4FmQUi/V+jr8f82uRR7FYY+z6K4Bea3Knj1fVg9c4zpit6VknZk9ntAlY\npBEnHMVico5iIUnaGx8EXtgsvxA4a4ZlkaS5ZwuyFpctyJqiRW1BdnInzS1bkDf9nFvt93luJgpJ\nchLwEgaf6k7gRVV1a2u7wVbTY4KsKVrUBHkSxmxNlQnypp9zq/0+z0UXiyT3A14GPKrp57YP8Jwu\nCiVJkiTNyqSjWGwDDkjyPeAA4NrJiyRJkiTNztgtyFV1LfBG4J+ArwBfr6qPdlUwSZIkaRYm6WJx\nLwazM20H7gsclOR5HZVLkiRJmolJulgcD1xVVTcAJDkT+BHgve2dHHRe0iKY5oDzkqTFMvYoFkmO\nBXYAjwFuAd4JXFBV/6O1j09Ea3ocxUJT5CgWUsccxWLTz7nVfp/nYhSLqroAOAP4PHBJs/qtXRRK\nkiRJmhUnCtHisgVZU2QLstQxW5A3/Zxb7fd5LlqQJUmSpGVkgixJkiS1TDpRiCRJkubQoOvK/JvH\nriAmyJIkSUtpMfpKzyMTZKlji/I/dkmStDYTZKlza412IUmSFoUP6UmSJEktJsiSJElSy0QJcpJD\nkpyR5PIklyV5XFcFkyRJkmZh0j7IbwY+VFU/m2QbcGAHZZIkSZJmZuypppMcDFxYVQ9cZx+nLdX0\nzOlU06OtG6z392N+OdW01DGnmvacQ87ZVdyZl6mmHwB8LcmpST6f5G1JDuiiUJIkSdKsTNLFYhvw\nSOBXq+ozSf4IOBl4TXunlZWVPcu9Xo9erzfBj5TG49jE2ki/36ff78+6GJKkOTBJF4vDgb+tqgc0\n738UOLmqfqq1j1/XaXr2oovF2l/f2cVCw9nFQuqYXSw855BzLlUXi6q6Drg6yVHNquOBL3RRKEmS\nJGlWJh3F4mXAe5PsB/wD8KLJiyRJkiTNzthdLEY6uV/XaZrsYqEpsouF1DG7WHjOIedcqi4WkiRJ\n0jIyQZYkSZJaTJAlSZKklkkf0pMkLZAkXwK+CXwPuL2qjp1tiSRp/pggS9LWUkCvqv5l1gWRpHll\nFwtJ2nq21OgckrS3TJAlaWsp4KNJPpvkpbMujCTNo4m7WCTZB/gscE1VPWPyIkmSpugJVfXVJP8H\ncG6SK6rqvFkXSpLmSRd9kF8BXAbco4NzSZKmqKq+2vz7tSQfAI4F9iTIKysre/bt9Xr0er1NLqGk\nrWYwUcx8mWgmvSRHAO8E/hvw66tbkJ2VSVPlTHqaomWcSS/JAcA+VXVTkgOBc4Dfrapzmu3GbE2P\nM+l5zqmfs7u4PWkL8h8Cvwncs4OySJKm6zDgA01rzTbgvbuTY0nSncZOkJP8FHB9VV2YpNddkSRJ\n01BVVwHHzLockjTvJmlB/hHgxCRPB+4G3DPJu6vqBe2d7M8maRH0+336/f6siyFJmgMT9UHec5Lk\nOOA/2wdZm8o+yJqiZeyDvBFjtqbKPsiec+rn7C5udzkOslFVkiRJC6+TFuShJ7c1QtNkC7KmyBZk\nqWO2IHvOqZ9zPluQJUmSpIVngixJkiS1mCBLkiRJLV1MNS3NjRtuuIGbbrpp1sWQJEkLzARZS+W/\n/JffZceOP2Pffe+c3PG73715hiVa31rzz/uQlCRJs2UXCy2V730PbrtthW9960t7Xrfe+oezLtY6\natVLkiTNmgmyJEmS1GKCLEmSJLWMnSAnOTLJx5N8IcmlSV7eZcEkSZKkWZjkIb3bgZOq6qIkBwGf\nS3JuVV3eUdkkSZKkTTd2C3JVXVdVFzXLNwOXA/ftqmCSJEnSLHTSBznJduARwPldnE+SJEmalYkT\n5KZ7xRnAK5qWZEmSJGlhTTRRSJJ9gfcDf1ZVZ621z8rKyp7lXq9Hr9eb5EdKS8/JQ2aj3+/T7/dn\nXQxprn3nO9/hhhtuGOvYI4Brrrmm2wJJU5Jx//Bm8Ff8XcANVXXSkH3KP+yamgRW3V+/+Isv521v\n+z+B9qAq7wFewF0n4sga64at73rd3h3v79HmS0JV3fV/K0vMmK2NfOADH+Dnfu657L//vff62G99\n+1oOPOB+d1l/xx23c8st1zOdyZKGxV/PuZzn7C5uT9KC/ATg+cAlSS5s1r2qqj48ebEkSdI8OvDA\np/HNb35gjCPDt7+9VgvyFcBDJiyV1K2xE+Sq+iRONCJJkqQlY4IrSZIktZggS5IkSS0myJIkSVKL\nCbIkSZLUYoIsSZIktZggS5IkSS0myJIkSVKLCbIkSZLUMlGCnOSEJFck+fskr+yqUG39fn8ap92y\nvJ7T0J91AZaO9+l0bEbMnratfm9s9fobb/uzLsCM9TftJ42dICfZB/gT4ATgocBzk3Q+V6TBoFte\nz2noz7oAS8f7tHubFbOnbavfG1u9/sbb/qwLMGP9TftJk7QgHwt8saq+VFW3A38OPLObYkmSOmbM\nlqQRbZvg2PsBV7feXwM8drLiSF24Cbi+9f4bsyqINE+M2epE1a386xi7N9Y67oYJSiNNR6pqvAOT\nfwecUFUvbd4/H3hsVb2stc94J5ekOVBVmXUZumLMlrQVdBW3J2lBvhY4svX+SAYtEnss0x8XSVpw\nxmxJGtEkfZA/CzwoyfYk+wH/HvhgN8WSJHXMmC1JIxq7BbmqvpvkV4GPAPsA76iqyzsrmSSpM8Zs\nSRrd2H2QJUmSpGW0KTPpJdmRZFeSna11hyY5N8mVSc5Jckhr26uageyvSPLjrfWPSrKz2fbm1vr9\nk/xFs/7TSf7tZtRrVoZcz5Uk1yS5sHk9rbXN67mBJEcm+XiSLyS5NMnLm/Xep2NY53p6n2pdSQ5J\nckaSy5NcluSx4/weLqokJzW/MzuTvK+5z5e2/tPOD+bdkPr/QXP/X5zkzCQHt7YtVf1h7WvQ2vYb\nSe5Icmhr3eZcg6qa+gt4IvAIYGdr3euB32qWXwm8tll+KHARsC+wHfgid7Z0XwAc2yx/iMET2QC/\nDLylWf73wJ9vRr1m9RpyPU8Bfn2Nfb2eo13Tw4FjmuWDgL8DHuJ92vn19D71tdG98y7gxc3yNuDg\nvfw9/L5Z12GCut8P+Edg/+b9XwAvXOb6D/l71lncnffXkPo/dffnCLx2mes/7Bo0648EPgxcBRy6\n2ddgU1qQq+o84MZVq09kEAhp/n1Ws/xM4LSqur2qvsSg8o9Nch/gHlV1QbPfu1vHtM/1fuApnVdi\njgy5ngBrPYHu9RxBVV1XVRc1yzcDlzP4Y+V9OoZ1rid4n2qIpqXsiVW1Awb9pqvqG+zd7+Gxm1vq\nzm0DDkiyDTgA+ApLXP9NyA/m2lr1r6pzq+qO5u35wBHN8tLVH9bNad4E/NaqdZt2DTYlQR7isKra\n1SzvAg5rlu/Lvx566BoGf1hXr7+WO//g7hkAv6q+C3yj3Ry/hbys+UrmHa2vpLyeeynJdgb/mz0f\n79OJta7np5tV3qca5gHA15KcmuTzSd6W5ED2/vdwIVXVtcAbgX9ikBh/varOZYvUv6XLuLvoXsyg\nNRS2UP2TPBO4pqouWbVp067BLBPkPWrQHu7TgpP5UwZ/XI4BvsogyGovJTmIQWvkK6rqpvY279O9\n11zPMxhcz5vxPtX6tgGPZNB15pHAt4CT2zuM8Hu4sL+jSe7FoPV0O4M/+AdlMKHLHstc/7Vs5bib\n5LeB26rqfbMuy2ZKcgDwagZd8vas3uxyzDJB3pXkcICmaXz3/JOrB7M/gsH/Cq7lzq8Z2ut3H3P/\n5lzbgIOr6l+mV/T5U1XXVwN4O3d+zeb1HFGSfRkkx++pqrOa1d6nY2pdzz/bfT29T7WBaxi0Gn2m\neX8Gg4T5ur34Pbx2k8o6DccDV1XVDc23ImcCj2fr1H+3LuLuQl+HJL8APB14Xmv1Vqn/DzD4T+LF\nSa5iUJ/PJTmMTbwGs0yQP8jg4QOaf89qrX9Okv2SPAB4EHBBVV0HfLN5ojnAzwN/uca5fhb42GZU\nYJ40QWS3nwZ2Pw3q9RxBcw3eAVxWVX/U2uR9OoZh19P7VOtpPu+rkxzVrDoe+AJwNnvxe7iJRe7a\nl4HHJbl7c78fD1zG1qn/bl3E3bNWn3RRJDkB+E3gmVV1S2vTlqh/Ve2sqsOq6gFV9QAGCfAjm243\nm3cNJnnCb9QXcBqD/lS3Megz+CLgUOCjwJXAOcAhrf1fzaDj9RXAT7TWP4rBH9QvAv+9tX5/4HTg\n7xn0c9y+GfWa1WuN6/liBh3SLwEubm6Kw7yee3VNfxS4g8HTsRc2rxO8Tzu9nk/zPvU1wr3zw8Bn\nmnvkTAajWOz17+GivoAVBg+17mTwgNq+y1z/Nf6edZofzPtrjfq/uIlpX27Fzrcsa/1XXYNbd98D\nq7b/I80oFpt5DZwoRJIkSWqZi4f0JEmSpHlhgixJkiS1mCBLkiRJLSbIkiRJUosJsiRJktRigixJ\nkiS1mCBry0pyTJJPJbk0ycVJnj3rMkmS1pbk3yb5XJILm7j9S7Muk5aX4yBry0ryIOCOqvqHZoa3\nzwEPrqpvzrhokqRVmunrqarbkxwIXAo8vgazqEmdsgVZmybJ7yS5Isl5Sd6X5DeS/MckFyS5KMkZ\nSe7e7PvOJG9J8rdJ/iHJcUl2JLksyamtc96c5PVNa8K5SY5N0m+OeUazz/Ykf9O0PHwuyeMBqurv\nq+ofmuWvAtcD/8fmXxlJmj9zGLNvr6rbm1PdHXMYTZE3lzZFkscAPwM8nMGUw48GCjizqo6tqmMY\nTK/6kuaQYjC96OOBkxjMv/5G4GHA0Uke3ux3APCxqvoh4Cbg94CnAD8N/Ndmn13AU6vqUcBzgP++\nRvmOBfbdnTBL0lY2rzE7yRFJLmEwFfNrbT3WtGybdQG0ZTwBOKuqbgNuS3I2EAaB8/8CDgYOAj7c\nOubs5t9LgV1V9QWAJF8AtgOXALdV1Uea/XYCt1TV95Jc2uwDsB/wJ0l+GPgecFS7YE33incDL+iu\nupK00OYyZlfVNcDDm7h9VpL3V9X13VZdsgVZm6cYBNfVTgV+uaoeDvwug6/Ndrut+fcO4NbW+ju4\n8z93t69afxtAVbX3OQn4avMzHs0g+AKQ5J7A/wJeXVUX7H21JGkpzWXM3lO4Qbe4S4Enjl4laXQb\nJshNH6JdSXa21h2T5NPNk6Sfab6Kkdbzv4FnJNk/yUHATzXr7wFc1zx88XwGQblr9wR2fw33AmAf\ngCT7AR8A3l1VZ07h50qbzpitjsxjzL5fq8/zvYAfBa6Yws+XRmpBPhU4YdW61wOnVNUjgNc076Wh\nquqzDPqkXQJ8iMFXa98Afgc4H/gkg/5s/+qwIcvD9hl2zFuAFya5CPhB4OZm/bMZtD78QpM4XNjq\nJyctKmO2JjanMfuhwKeb9X3gD3Z345C6NtIwb0m2A2dX1dHN+w8DO6rq9CTPBX6yqp4/zYJq8SU5\nsKq+leQA4BPAS6vqolmXS1o2xmx1wZitrWzch/R+DfhIkjcwaIV+fHdF0hJ7a5KHAncD3mmglTaN\nMVvjMGZryxq3Bfm/Ax+vqg8k+TngF6vqqWsc5ywkkhZWVa31kNLcM2ZL2qq6itvjjmLxgqr6QLN8\nBnDssB2raqFfp5xyyszLYF2G1MP7a25ey1iPJbNlYvay3o+L/DJmz99rWeqxui5dGjdB/kqS45rl\nJwNXdlQeSVL3jNmStBc27IOc5DTgOODeSa5m8AT0S4E3J9kGfAf4xamWUpI0EmO2JE1uwwS5qp47\nZNOjOy7LXOr1erMuQmeWpS7LUg9YnrpYj/mx1WM2LMfnCNZjHi1LXZalHjC9uoz0kN7YJ09qmufX\nFpeA95emJAm1oA/pjcuYrakyZmvKuozbTjUtSZIktZggS5IkSS0myJIkSVLLuDPpSVOTjNZ9qPZi\n3391nH3gJKlTo8RiY7YWiQmy5tR6ATHN9qyx31rrVm+XJHVvWOw1Zmvx2MVCkiRJajFBliRJklo2\nTJCT7EiyK8nOVetfluTyJJcmed30iihJGpUxW5ImN0oL8qnACe0VSZ4EnAg8vKp+CHjDFMomSdp7\nxmxJmtCGCXJVnQfcuGr1fwJ+v6pub/b52hTKJknaS8ZsSZrcuH2QHwT8WJJPJ+kneXSXhZIkdcqY\nLUl7Ydxh3rYB96qqxyV5DHA68MC1dlxZWdmz3Ov16PV6Y/5ISZqefr9Pv9+fdTGmxZgtaelMM25n\nlAG4k2wHzq6qo5v3fw28tqo+0bz/IvDYqrph1XHlAN/aW4OB5DceB7kIGWNMTe9JjSIJVbWQg7Aa\ns7XZ1o/bxmxtji7j9rhdLM4CntwU5ihgv9WBVpI0N4zZkrQXNuxikeQ04Djg+5NcDbwG2AHsaIYR\nug14wVRLKUkaiTFbkiY3UheLsU/u13Uag10sNA8WuYvFuIzZGpddLDQP5qGLhSRJkrSUTJAlSZKk\nFhNkSZIkqcUEWZIkSWoxQZYkSZJaTJAlSZKkFhNkSZIkqWXDBDnJjiS7mgHmV2/7jSR3JDl0OsWT\nJO0NY7YkTW6UFuRTgRNWr0xyJPBU4MtdF0qSNDZjtiRNaMMEuarOA25cY9ObgN/qvESSpLEZsyVp\ncmP1QU7yTOCaqrqk4/JIkjpmzJakvbNtbw9IcgDwagZf1e1Z3VmJJEmdMWZL0t7b6wQZ+AFgO3Bx\nEoAjgM8lObaqrl+988rKyp7lXq9Hr9cbp5ySNFX9fp9+vz/rYkyDMVvSUppm3E5VbbxTsh04u6qO\nXmPbVcCjqupf1thWo5xfahv8EV/vvhlsL0Lust/Gx3pPahRJqKqFbGk1ZmuzrR+3jdnaHF3G7VGG\neTsN+BRwVJKrk7xo1S7euZI0J4zZkjS5kVqQxz65rREagy3ImgeL3II8LmO2xmULsubBprYgS5Ik\nSVuJCbIkSZLUYoIsSZIktZggS5IkSS3jjIMsLbRmLNg1+TCIJM0XY7ZmwQRZW9B6T1pLkuaLMVub\nzy4WkiRJUosJsiRJktQyykx6O5LsSrKzte4Pklye5OIkZyY5eLrFlCSNyrgtSZMZpQX5VOCEVevO\nAR5WVT8MXAm8quuCSZLGZtyWpAlsmCBX1XnAjavWnVtVdzRvzweOmELZJEljMG5L0mS66IP8YuBD\nHZxHkrQ5jNuStI6JEuQkvw3cVlXv66g8kqQpMm5L0sbGHgc5yS8ATweest5+Kysre5Z7vR69Xm/c\nHylJU9Pv9+n3+7MuxlSNEreN2ZIWxTTjdkaZhSbJduDsqjq6eX8C8EbguKr653WOK2e50d4azJq0\n3n0z2F6E3GW/0Y4dts37VbsloaoWdiaCceK2MVvjWj9uG7O1ObqM2xsmyElOA44D7g3sAk5h8PTz\nfsC/NLv9bVX98hrHGmy110yQNQ8WOUEeN24bszUuE2TNg01NkCc6ucFWYzBB1jxY5AR5XMZsjcsE\nWfOgy7jtTHqSJElSiwmyJEmS1GKCLEmSJLWYIEuSJEktY4+DLE1i8ECHJGkRGLO11Zgga4bWe+JZ\nkjRfNhptQloedrGQJEmSWkyQJUmSpJYNE+QkO5LsSrKzte7QJOcmuTLJOUkOmW4xJUmjMGZL0uRG\naUE+FThh1bqTgXOr6ijgY817SdLsGbMlaUIbJshVdR5w46rVJwLvapbfBTyr43JJksZgzJakyY3b\nB/mwqtrVLO8CDuuoPJKk7hmzJWkvTDzMW1VVkqFjv6ysrOxZ7vV69Hq9SX+kJHWu3+/T7/dnXYyp\nM2ZLWhbTjNupWm9cw2anZDtwdlUd3by/AuhV1XVJ7gN8vKoevMZxNcr5tfUMBp1fbxzkjcbbLIqQ\nu+w32rHDtnm/arckVNVCDu5qzFbX1o/ZsFFsNWZrM3QZt8ftYvFB4IXN8guBs7oojCRpKozZkrQX\nNmxBTnIacBxwbwZ9114D/CVwOnB/4EvAs6vq62sca2uE1mQLsubdorYgG7M1DbYgaxF0GbdH6mIx\n9skNthrCBFnzblET5EkYszWMCbIWwTx0sZAkSZKWkgmyJEmS1GKCLEmSJLWYIEuSJEktJsiSJElS\niwmyJEmS1GKCLEmSJLVMlCAnOSnJpUl2Jnlfkv27KpgkqVvGbEkazdgJcpL7AS8DHlVVRwP7AM/p\nqmCSpO4YsyVpdNs6OP6AJN8DDgCunbxIkqQpMWZL0gjGbkGuqmuBNwL/BHwF+HpVfbSrgkmSumPM\nlqTRTdLF4l7AicB24L7AQUme11G5JEkdMmZL0ugm6WJxPHBVVd0AkORM4EeA97Z3WllZ2bPc6/Xo\n9XoT/EhJmo5+v0+/3591MabJmC1pqUwzbqeqxjswORbYATwGuAV4J3BBVf2P1j417vm13JIAw+6N\n9bbdub0Iuct+ox07bJv3q3ZLQlVl1uXoijFbk1g/ZsNGsdWYrc3QZdyepA/yBcAZwOeBS5rVb+2i\nUJKkbhmzJWl0Y7cgj3RyWyM0hC3ImnfL1oI8CmO2hrEFWYtgLlqQJUmSpGVkgixJkiS1mCBLkiRJ\nLSbIkiRJUosJsiRJktRigixJkiS1mCBLkiRJLSbIkiRJUstECXKSQ5KckeTyJJcleVxXBZMkdcuY\nLUmj2Tbh8W8GPlRVP5tkG3BgB2WSJE2HMVuSRjD2VNNJDgYurKoHrrOP05ZqTU41rXm3bFNNG7M1\nCaea1iKYl6mmHwB8LcmpST6f5G1JDuiiUJKkzhmzJWlEkyTI24BHAm+pqkcC3wJO7qRUkqSuGbMl\naUST9EG+Brimqj7TvD+DNYLtysrKnuVer0ev15vgR0rSdPT7ffr9/qyLMU3GbElLZZpxe+w+yABJ\n/gb4j1V1ZZIV4O5V9crWdvuzaU32Qda8W7Y+yGDM1vjsg6xF0GXcnnQUi5cB702yH/APwIsmL5Ik\naUqM2ZI0golakDc8ua0RGsIWZM27ZWxB3ogxW8PYgqxFMC+jWEiSJElLxwRZkiRJajFBliRJklpM\nkCVJkqQWE2RJkiSpxQRZkiRJajFBliRJklpMkCVJkqSWiRPkJPskuTDJ2V0USJI0PcZsSdpYFy3I\nrwAuY/2pcCRJ88GYLUkbmChBTnIE8HTg7Qzmg5QkzSljtiSNZtIW5D8EfhO4o4OySJKmy5gtSSPY\nNu6BSX4KuL6qLkzSG7bfysrKnuVer0evN3RXLZlk8Rqo1itzld9IL7N+v0+/3591MabGmK2NLFvM\nBuP2sptm3M64N0+S/xv4eeC7wN2AewLvr6oXtPYpb86taxC4hn3+4267c3sRcpf9Rjt2nG3ey1tL\nEqpq8TKGIYzZ2sj4MXuj7bOI2YPt3s9bS5dxe+wE+V+dJDkO+M9V9YxV6w22W5gJshbZsiXIbcZs\nrcUEWYuuy7jd5TjI3oWStDiM2ZI0RCctyENPbmvElmYLshbZMrcgD2PM3tpsQdaim9cWZEmSJGnh\nmSBLkiRJLSbIkiRJUosJsiRJktRigixJkiS1mCBLkiRJLSbIkiRJUsvYCXKSI5N8PMkXklya5OVd\nFkyS1C3jtiSNZuyJQpIcDhxeVRclOQj4HPCsqrq8tY+Dzm9hThSiRbaME4VsFLeN2VubE4Vo0c3F\nRCFVdV1VXdQs3wxcDty3i0JJkrpn3Jak0XTSBznJduARwPldnE+SNF3GbUkabtukJ2i+pjsDeEXT\nIqEt4LLLLuP000+fdTEkjcG4vfXcfPPNvOENb5h1MaSFMVGCnGRf4P3An1XVWWvts7Kysme51+vR\n6/Um+ZGaE5dddhmvfe3p3Hrrs9fcvs8+r9vkEk3foH/ecPZ1W2z9fp9+vz/rYpd0DpoAACAASURB\nVEzdRnHbmL2cbr75Zv7bf3sD3/3uf15z+/77n7bJJdoc68VtY/bim2bcnuQhvQDvAm6oqpOG7OMD\nH0vqjDPO4CUv+XO++c0z1ty+//6HcuutN7JMD+n5MMjWsqQP6a0bt43Zy+u6667jgQ88hu9857o1\nt9/zns/km9/8IMv2kJ4PXm8tc/GQHvAE4PnAk5Jc2LxO6KJQkqSpMG5L0gjG7mJRVZ/EiUYkaWEY\ntyVpNAZKSZIkqcUEWZIkSWoxQZYkSZJaTJAlSZKkloknCpE04HibkrQ4jNlajwmy1Jn1xuqUJM0X\nY7aGs4uFJEmS1GKCLEmSJLVMlCAnOSHJFUn+PskruyqUJKl7xmxJGs3YCXKSfYA/AU4AHgo8N8lD\nuirYvOj3+7MuQmeWqS7LYlk+E+sx/7ZKzIbl+RyXpR7LZFk+k2WpB0yvLpO0IB8LfLGqvlRVtwN/\nDjyzm2LND28iTdOyfCbWYyFsiZgNy/M5Lks9lsmyfCbLUg+YzwT5fsDVrffXNOskSfPHmC1JI5pk\nmDcHCdzibrnlo9zzno9Yc9tNN31jk0sjaQPG7C3u1lv/eWjMvuWWf9zk0kjzLeMOhp3kccBKVZ3Q\nvH8VcEdVva61jwFZ0sKqqqUZENWYLWkr6CpuT5IgbwP+DngK8BXgAuC5VXV5FwWTJHXHmC1Joxu7\ni0VVfTfJrwIfAfYB3mGglaT5ZMyWpNGN3YIsSZIkLaMtP5NekiOTfDzJF5JcmuTlzfpDk5yb5Mok\n5yQ5pHXMq5qB9q9I8uOzK/2d1qnHSpJrklzYvJ7WOmYe63G3JOcnuaipx0qzfqE+D1i3Lgv1meyW\nZJ+mvGc37xfuM4E167GQn8dWtwz3Y5IvJbmkqccFzbqFqwdAkkOSnJHk8iSXJXnsotUlyQ+24sCF\nSb6R5OWLVg+AJCc1f3d2Jnlfkv0XsR4ASV7R1OPSJK9o1k2/LlW1pV/A4cAxzfJBDProPQR4PfBb\nzfpXAq9tlh8KXATsC2wHvgh83xzX4xTg19fYfy7r0ZTtgObfbcCngccu2uexQV0W7jNpyvfrwHuB\nDzbvF/UzWV2Phfw8tvprGe5H4Crg0FXrFq4eTfneBby4Wd4GHLyodWnK+H3AV4EjF60eDIZv/Edg\n/+b9XwAvXLR6NGX7IWAncDcGXcPOBX5gM+qy5VuQq+q6qrqoWb4ZuJzBzXUig194mn+f1Sw/Ezit\nqm6vqi8xuPjHbmqh17BOPQDWeqJzLusBUFXfbhb3Y3CTFwv2eew2pC6wYJ9JkiOApwNv586yL9xn\nMqQeYcE+j61uWe7Hxup7b+HqkeRg4IlVtQMG/d2r6hssYF1ajmcwsc7VLGY9tgEHZPBw7gEMHsxd\nxHo8GDi/qm6pqu8BnwD+HZtQly2fILcl2Q48AjgfOKyqdjWbdgGHNcv3ZTDA/m5zN9h+qx6fbla9\nLMnFSd7R+hpibuuR5PuSXMTgup9TVRewoJ/HkLrAgn0mwB8Cvwnc0Vq3iJ/JWvUoFu/z2OqW5X4s\n4KNJPpvkpc26RazHA4CvJTk1yeeTvC3JgSxmXXZ7DnBas7xQ9aiqa4E3Av/EIDH+elWdy4LVo3Ep\n8MSmS8UBDP5jfASbUBcT5EaSg4D3A6+oqpva22rQbr/e04xz86RjU48zGNTjZuBPGQSvYxh8XfTG\ndQ6fi3pU1R1VdQyDX4LHJvmhVdsX5vNYoy4PY8E+kyQ/BVxfVReydkvrQnwm69RjoT6PrW5Z7sfG\nE6rqEcDTgF9J8sT2xgWqxzbgkcBbquqRwLeAk9s7LFBdSLIf8Azgf67etgj1SHIvBi2s2xkkjAcl\neX57n0WoB0BVXQG8DjgH+GsG3Se+t2qfqdTFBBlIsi+D5Pg9VXVWs3pXksOb7fcBrm/WX8ugT9Ju\nRzTrZq5Vjz/bXY+qur4aDL6O3P1Vw9zWY7fmK7qPAz/BAn4eba26nLCAn8mPACcmuYpBi8qTk7yH\nxftM1qrHuxfw89jqluV+pKq+2vz7NeADDO69hasHg1a6a6rqM837MxgkzNctYF1g8B+WzzWfCyze\nZ3I8cFVV3VBV3wXOBB7Pgn4eVbWjqh5dVccBNwJXsgmfyZZPkJMEeAdwWVX9UWvTBxl0aqf596zW\n+uck2S/JA4AHMRhwf6aG1aO5cXb7aQad3WF+63Hv3V9xJ7k78FQG/akX6vOA4XXZ/UvdmPvPpKpe\nXVVHVtUDGHzt+P9V1c+zYJ/JkHq8YNF+R7a6ZbkfkxyQ5B7N8oHAjzO49xaqHjB4Bga4OslRzarj\ngS8AZ7NgdWk8lzu7V8DifSZfBh6X5O5NbnA8cBkL+nkk+TfNv/cHfgZ4H5vxmdQcPKU4yxfwowz6\nsV0EXNi8TgAOBT7K4H8q5wCHtI55NYOO31cAPzHrOqxTj6cB7wYuAS5ubqDD5rweRwOfb8q7E/gv\nzfqF+jw2qMtCfSar6nQcd44asHCfSat8vVY93rOon8dWfy3y/cigW89FzetS4FWLWI9W2X4Y+Ezz\ne3Qmg1EsFq4uwIHAPwP3aK1bxHqsMGhc2sngIbZ9F7EeTdn+hsF/uC4CnrRZn4kThUiSJEktW76L\nhSRJktRmgixJkiS1mCBLkiRJLSbIkiRJUosJsiRJktRigixJkiS1mCBLkiRJLSbImitJtifZucb6\nRyR5+5BjfjXJF5PckeTQ1vqfTPK70yyvJG01SY5M8vEkX0hyaZKXN+v7SR61xv5J8rEkB62x7XlJ\nLk5ySZL/neThzfr9knwiyT7Tr5F0VybIWhSvBt48ZNsngacwmF5zj6r6K+AZzTTPkqRu3A6cVFUP\nAx4H/EqShwDVvFZ7OnBRVd28xrZ/BH6sqh4O/B7wVoCqug34GPDvp1B+aUMmyJpbSR6Y5PNJfhQ4\nuqru0rIMUFUXVdWX19oG9IGfmlYZJWmrqarrquqiZvlmBlMa32/39iTfl+SdSf5rs+p5wF8OOdff\nVtU3mrfnA0e0Np/VHCttOhNkzaUkPwicAbyQwRzyl455qs8CT+yqXJKkOyXZDjyCQXILg3j9XuDv\nquo1zbofAT43wuleAnyo9f4LwGM6Kai0l0yQNY/+DYOWg//QtBrfB/jamOf6GnDfrgomSRpo+hSf\nAbyiqm4CAvy/wCVV9futXQ+tqm9tcK4nAS8GXrl7XVV9D7gtyYGdF17awIYJcpIdSXa1H5xKckyS\nTye5MMlnkvg/PHXp6wz6E+9u+f02cLfdG5N8uLn33jrCue4GfKf7IkrzaZ0HqFaSXNP87lyY5IRZ\nl1WLK8m+wPuBP6uqs5rVBXwKeHKS/Vu7f7d13C8399/nkxzerHs48DbgxKq6cdWP2h+4ZVr1kIbZ\nNsI+pwJ/DLy7te71wClV9ZEkT2veP2kK5dPWdBvwM8BHktwMXAj8xu6NVbXeH/asen8UsGbfZWlJ\n7X6A6qKmhe9zSc5lkLy8qareNNviadElCfAO4LKq+qNVm98OHAecnuRnmlbgv0vyA1X1D1X1FuAt\nrXPdHzgTeH5VfXHVz/l+4J+bc0ibasMW5Ko6D1j9P7o7gIOb5UOAazsul7a2qqpvM3i47iTgQcDB\naw0RBJDk5UmuZvCQyCWrWpZ7wF9NubzS3NjgAarV/4GUxvEE4PnAk1rfSDxt98aq+kMGDRvvbpLp\nv2IQi9fyO8C9gD9tznNBa9uTgP81jQpIG0nVWiOyrNpp0An/7Ko6unn/YOAjDILt9wGPr6qrp1dM\nbXVJfg24qaresRfHHAa8t6qOn17JpPnVxO5PAA9j8C3Mi4BvMHh49Teq6uszK5y2jKYrxbur6sf3\n8rj3A69c3bIsbYZxH9L7ZeDXqur+DFr4dnRXJGlNfwrcupfHHAn8+hTKIs29VQ9Q3czgd+gBwDHA\nV4E3zrB42kKq6jrgbUnuMeoxTR/ns0yONSvjtiB/vaoOaZYDfL2qDl7juI1PLklzqqoWsktCk1z8\nL+Cv1+gjepeY3lpvzJa00LqK2+O2IH8lyXHN8pOBK4ftWFUL/TrllFNmXoZ5es3V9Zjx/TVX12LG\nr2W8Fotq2ANUSe7T2u2nGfLwqvfF/L8W9rp2fH95XRfjtZnXtUsbjmKR5DQGT6Teu3kQ6jXAS4E3\nJ9nGYAitX+y0VJKkce1+gOqSJBc2614NPDfJMQxGs7gK+KUZlU+S5t6GCXJVPXfIpkd3XBZJ0oSq\n6pOs/e3gX292WSRpUTmT3gZ6vd6sizBXvB538lrcyWuhtXhfTIfXdTq8rtOxqNd1pIf0xj55UtM8\nv7a4BLy/NCVJqAV9SG9cxmxNlTFbU9Zl3B5lJj1JkqS9NnhmdKBWvQc6f7BK6ooJsiRJmqLdSXBa\ny7vfS/PJBFlzZ3ULwzBrtUaMdJwtFpIkaR0myJpT6yWxu1shVrdGMGTd6u2SJEnDOYqFJEmS1GKC\nLEmSJLVsmCAn2ZFkV5Kdq9a/LMnlSS5N8rrpFVGSJEnaPKO0IJ8KnNBekeRJwInAw6vqh4A3TKFs\nkiRJ0qbbMEGuqvOAG1et/k/A71fV7c0+X5tC2SRJkqRNN24f5AcBP5bk00n6SR7dZaEkSZKkWRl3\nmLdtwL2q6nFJHgOcDjxwrR1XVlb2LPd6vYWdk1vScuv3+/T7/VkXQ5I0BzLKpAlJtgNnV9XRzfu/\nBl5bVZ9o3n8ReGxV3bDquHJSBu2tweQfG4+DXISMMQ6y96RGkYSq2lIDZxuz1bV2PL9rzDYeq1td\nxu1xu1icBTy5KcxRwH6rk2NJkiRpEW3YxSLJacBxwPcnuRp4DbAD2NEM/XYb8IKpllKSJEnaJCN1\nsRj75H5dpzHYxULzwC4W0uTsYqHNNA9dLCRJkqSlZIIsSZIktZggS5IkSS0myJIkSVKLCbIkLZEk\nRyb5eJIvJLk0ycub9YcmOTfJlUnOSXLIrMsqSfPKBFmSlsvtwElV9TDgccCvJHkIcDJwblUdBXys\neS9JWoMJsiQtkaq6rqouapZvBi4H7gecCLyr2e1dwLNmU0JJmn8myJK0pJJsBx4BnA8cVlW7mk27\ngMNmVCxJmnsbJshJdiTZ1cyat3rbbyS5I8mh0ymeJGkcSQ4C3g+8oqpuam9rZgNxhgZJGmLDqaaB\nU4E/Bt7dXpnkSOCpwJenUC5J0piS7MsgOX5PVZ3VrN6V5PCqui7JfYDr1zp2ZWVlz3Kv16PX6025\ntJI0nn6/T7/fn8q5R5pquvma7uyqOrq17n8Cvwf8JfCoqvqXNY5z2lLtNaea1jxY1KmmM/gFehdw\nQ1Wd1Fr/+mbd65KcDBxSVSevOtaYrU451bQ2U5dxe5QW5LUK8Ezgmqq6ZHDzS5LmxBOA5wOXJLmw\nWfcq4LXA6UleAnwJePZsiidJ82+vE+QkBwCvZtC9Ys/qYfv7dZ2kRTDNr+o2U1V9kuHPlxy/mWWR\npEW1110skhwNfBT4drP5COBa4Niqun7VcX5dp71mFwvNg0XtYjEJY7a6ZhcLbaaZdrGoqp20hgdK\nchVD+iBLkiRJi2aUYd5OAz4FHJXk6iQvWrWL//2TJEnS0hipi8XYJ/frOo3BLhaaB3axkCZnFwtt\npi7jtjPpSZIkSS0myJIkSVKLCbIkSZLUMtZEIdIiW29yG/vDSZIkE2RtQcOS4C31PJYkSRrCLhaS\nJElSiwmyJEmS1DLKRCE7kuxKsrO17g+SXJ7k4iRnJjl4usWUJEmSNscoLcinAiesWncO8LCq+mHg\nSuBVXRdMkiRJmoUNE+SqOg+4cdW6c6vqjubt+cARUyibJEmStOm66IP8YuBDHZxHkiRJmrmJEuQk\nvw3cVlXv66g8kiRJ0kyNPQ5ykl8Ang48Zb39VlZW9iz3ej16vd64P1KSpqbf79Pv92ddDEnSHMgo\nM4cl2Q6cXVVHN+9PAN4IHFdV/7zOceXMZNpbg5nu1rtvBtuLkLvsN9qxw7Z5v2q3JFTVlpo9xpit\nrrXj+V1jtjFX3eoybo8yzNtpwKeAH0xydZIXA38MHAScm+TCJG/pojCSJEnSrI3Ugjz2yW2N0Bhs\nQdY8sAVZmpwtyNpMm9qCLEmSJG0lJsiStESGzH66kuSapkvchc1zJJKkIUyQJWm5rDX7aQFvqqpH\nNK8Pz6BckrQwTJAlaYmsNftpY0v1p5akSZggayaSDH1JmoqXJbk4yTuSHDLrwkjSPDNB1gzVkJek\njv0p8ADgGOCrDMaxlyQNMfZMepKkxVBV1+9eTvJ24Oxh+zr7qaRFMc0ZUB0HWTOx/ljHjoOs2Vvk\ncZDXmP30PlX11Wb5JOAxVfUf1jjOmK1OOQ6yNlOXcXvDFuQkO4CfBK5vBdtDgb8A/i3wJeDZVfX1\nLgokSRpfM/vpccC9k1wNnAL0khzDIFO5CvilGRZRkubehi3ISZ4I3Ay8u5Ugvx7456p6fZJXAveq\nqpPXONbWCK3JFmTNu0VuQR6XMVtdswVZm2lTZ9IbMmTQicC7muV3Ac/qojCSJEnSrI07isVhVbWr\nWd4FHNZReSRJkqSZmngUi6qqJH5HIknSFuT49VpG4ybIu5IcXlXXJbkPcP2wHR0ySNIimOZwQdLy\nW++ZEmnxjDTM2xpDBr0euKGqXpfkZOAQH9LT3vAhPc07H9KTRjNqPPchPU1bl3F7lFEs9gwZxKC/\n8WuAvwROB+7POsO8GWw1jAmy5p0JsjQaE2TNi01NkCc6ucFWQ5gga96ZIEujMUHWvNjUYd4kSZKk\nrcQEWZIkSWoxQZYkSZJaTJAlSZKkFhNkSZIkqcUEWZIkSWoxQZYkSZJaTJAlSZKklokS5CQnJbk0\nyc4k70uyf1cFkyRJkmZh7AQ5yf2AlwGPqqqjgX2A53RVMEmSJGkWtnVw/AFJvgccAFw7eZEkSZKk\n2Rm7BbmqrgXeCPwT8BXg61X10a4KJkmSJM3C2C3ISe4FnAhsB74B/M8kz6uq97b3W1lZ2bPc6/Xo\n9Xrj/khJmpp+v0+/3591MSRJcyBVNd6Byc8BP1FV/7F5//PA46rqV1r71Ljn13JLAgy7N9bbduf2\nIuQu+4127LBt3q/aLQlVlVmXYzMZszWOUeP5XWP2+r9e3ovaW13G7UlGsfgy8Lgkd8/gt+N44LIu\nCiVJGk+SHUl2JdnZWndoknOTXJnknCSHzLKM0p1qyEuarUn6IF8AnAF8HrikWf3WLgolSRrbqcAJ\nq9adDJxbVUcBH2veS5KGGLuLxUgn9+s6DWEXC827Re5ikWQ7cHYzBCdJrgCOq6pdSQ4H+lX14DWO\nM2Zrr03WxcJ4rO7MSxcLSdJiOKyqdjXLu4DDZlkYSZp3JsiStIU0TcQ2zUnSOiadKESSNP92JTm8\nqq77/9m782hb6vLO/+8PXAYVwxVJAzI0JtE02ragaSCizcFOFF1p1CStMdohaBK7E4fYdoLa3eFm\nWCuJWQ5J/GmnFQ1OKMEExTiACUdJdwuKXLhM4gAqRq6KQkCiIPf5/VF1oTj3DPuePdY+79dae53a\nVbVrP9+q2s95du1vVSU5BPjGSjN6aU4tp+lGIc2WcV6e0z7Imgr7IGvWzVkf5NcAt1TVHyd5JbC5\nqnY5Uc+crZWsP2fbB1mTM8q8bYGsqbBA1qzra4Gc5GzgROBAmv7GvwN8ADgHOAK4EXh2Vd26zGvN\n2VqWBbL6wAJZvWeBrFnX1wJ5GOZsrcQCWX3gVSwkSZKkMRmqQE6yOcm5Sa5Nck2S40cVmCRJkjQN\nw17F4k+BD1fVzyfZBDxoBDFJkqQNbrUrZ9j9QuO27j7ISfYHLq+qH1llHvuzaVn2Qdassw+ydJ9p\n9EE2V2t3zUof5IcD30zy9iSfTfKWJA8cRVCSJEnStAxTIG8CHge8qaoeB3wX2OW6mpIkSVKfDNMH\n+Sbgpqr6dPv8XJYpkL0rk6Q+GOcdmSRJ/TLUdZCTfBL4laq6PskW4AFVdXpnuv3ZtCz7IGvW2QdZ\nuo99kNUHo8zbw17F4iXAu5PsDXwROG34kCRJ0qStdtUIaaPxTnqaCo8ga9Z5BFkbzSiOEq82zSPI\nGrdZuYqFJEmSNHcskCVJkqQOC2RJkiSpwwJZkiRJ6rBAliRJkjoskCVJkqQOC2RJkiSpwwJZkiRJ\n6hi6QE6yZ5LLk5w/ioAkSZKkaRrFEeSXAdew+u3LJEmSpF4YqkBOchjwdOCtNPeFlCRJknpt05Cv\nfz3wW8APjSAWSdKYJbkR+CfgHuDuqjp2uhFJ0uxZd4Gc5GeAb1TV5UkWRheSJGmMClioqm9POxBJ\nmlXDHEF+AnBKkqcD+wI/lOQdVfVL3Zm2bNly7/DCwgILCwtDvKX6JOlfr5vVYq6ym/08W1xcZHFx\ncdphTEr/PpySNEEZxT/9JCcC/62q/sOS8WVRsXE1xeZK23+90+6bXoTsMt9gr13PNPfljSUJVTV3\nhWSSLwG30XSx+Iuqektnmjl7AxtPzr5v2q4523ys0Rpl3h62D3KXe6skzb4TqurrSX4YuDDJdVV1\n8bSDkqRZMpICuao+AXxiFMuSJI1PVX29/fvNJH8DHAvcWyDbLU5SX4yza9xIulisuHB/rtvQ7GKh\nPpvHLhZJHgjsWVW3J3kQcAHwu1V1QTvdnL2B2cVCfTerXSwkSbPtIOBv2pNRNwHv3lkcS5Lu4xFk\njY1HkNVn83gEeS3m7I3NI8jqu1Hm7VHcalqSJEmaG3axkCRpA/irvzqXj398+QuW9PCy9dJYWSBL\nkrQBfPSji7ztbV8H/t0u0/ba672TD2gI3tRJ42aBLEnShnES8OJdxm7adDV33/2pyYezbqv1XZaG\nZx9kSZIkqWPdBXKSw5NclOTqJFcleekoA5MkSZKmYZguFncDL6+qrUn2Ay5LcmFVXTui2CRJkqSJ\nW/cR5Kq6uaq2tsN3ANcCDxtVYJIkSdI0jOQkvSRHAscAl4xieZp9t9xyC9dff/20w5AkSRq5oQvk\ntnvFucDL2iPJ97Nly5Z7hxcWFlhYWBj2LTUDLrroIp7//F9j331/fNnpt9/+6QlHNH6rXVYIvLRQ\n3y0uLrK4uDjtMCRJM2CoAjnJXsD7gXdV1XnLzdMtkDVf9tnnydx227krTDuA73//OxOOaNzWuoW1\n+mzpF/jf/d3fnV4wkqSpGuYqFgHOBK6pqjeMLiRJkiRpeoa5DvIJwPOBk5Jc3j5OHlFckiRJ0lSs\nu4tFVf0D3mhEkiRJc8ZbTUuSpLmx1gnVK/FEa3VZIEuSpDmyUqGbNaZJ97GLhCRJktRhgSxJkiR1\n2MVCGpHV+r3Zt02SpP6wQJZGxr5tkiTNA7tYSJIkSR1DFchJTk5yXZLPJzl9VEFJkkbPnC1Jgxnm\nVtN7Am8ETgYeBTw3yVGjCmxWLC4uTjuEmeL66FqcdgAzw/1i9k0jZ7tfjIfrdTxcr+PR1/U6zBHk\nY4EvVNWNVXU38F7gGaMJa3b0dcOOi+uja3HaAcwM94temHjOdr8YD9freLhex6Ov63WYAvlQ4Kud\n5ze14yRJs8ecLUkDGuYqFl63aoP7/ve3seeer1x22g9+cOeEo5G0BnP2BpdA8gH22OOmXabdc88l\nU4hIml1Z7/VZkxwPbKmqk9vnrwJ2VNUfd+YxIUvqraqam2v0mbMlbQSjytvDFMibgM8B/x74R+BS\n4LlVde0oApMkjY45W5IGt+4uFlX1gyQvBj4G7AmcaaKVpNlkzpakwa37CLIkSZI0j7yTHpBkc5Jz\nk1yb5JokxyU5IMmFSa5PckGSzZ35X9VeaP+6JE+ZZuyjluTlSa5Ksi3Je5Lss1HWRZK3JdmeZFtn\n3G63Pcnj2/X3+SR/Oul2jMIK6+JP2s/IFUn+Osn+nWlzuy42inHv/20ueV87/lNJ/mVn2qnte1yf\n5Jc64x+e5JL2Ne9Nstd418LorbBetyS5Kcnl7eNpnWmu1zUkOTzJRUmubv9fvbQd7/46hFXW68bc\nX6tqwz+As4AXtMObgP2B1wC/3Y47HfijdvhRwFZgL+BI4AvAHtNuw4jWw6HAl4B92ufvA07dKOsC\neBJwDLCtM2532r7zF5lLgWPb4Q8DJ0+7bSNaFz+9c/sCf7RR1sVGeYx7/wd+HXhTO/wc4L3t8AHA\nF4HN7eOLwP7ttHOAZ7fDbwb+87TX04jW6xnAf11mXtfrYOv0YODodng/mr71R7m/jm29bsj9dcMf\nQU5zFOxJVfU2aPrpVdVtwCk0hTPt32e2w88Azq6qu6vqRpod4tjJRj1Wm4AHpjmh54E0J/NsiHVR\nVRcD31kyenfaflySQ4AHV9Wl7Xzv6LymN5ZbF1V1YVXtaJ9eAhzWDs/1utgoJrD/d5f1fpqTBQGe\nClxQVbdW1a3AhcDTkgQ4CTh3mffvjRXWK8ByZ9q7XgdQVTdX1dZ2+A7gWpoDPO6vQ1hlvcIG3F83\nfIEMPBz4ZpK3J/lskrckeRBwUFVtb+fZDhzUDj+M5gL7O83Nxfar6mvAa4Gv0BTGt1bVhWzAddGx\nu21fOv5rzN86AXgBzVEBcF3Ms1Hu//feqKSqfgDcluShqyzrAJoctGOZZc2Dl6TprnRmpyuA63U3\nJTmS5gj9Jbi/jkxnvX6qHbXh9lcL5OaI6eNoDvk/DvgucL+7X1RzXH+1sxnn4kzHJA+h+XZ3JM3O\nul+S53fn2SjrYjkDtH1DSPLfgbuq6j3TjkWTM+H9f94/Z2+mOThzNPB1mgMTkzBX6zXJfjRHIV9W\nVbd3p7m/rl+7Xs+lWa93sEH3Vwvk5lvKTVX16fb5uTQF881JDgZofy74Rjv9a8Dhndcf1o6bBz8F\n3FBVt7Tf7P4a+Ek25rrYaftutP2mdvxhS8bPzTpJ8svA04HndUZvyHWxQYxi/7+p85oj2mVtoulf\neMsyyzq8HfdtYHOSPTrLmov9p6q+US3grdzXNc31OqD2RK33A++sqvPa0e6vQ+qs13ftXK8bdX/d\n8AVyVd0MfDXJI9tRPwVcDZxPc4Ia7d+dH8APAr+QZO8kDwceQdMZfR58M2ZtIAAAIABJREFUGTg+\nyQPafj8/BVzDxlwXO32Q3Wh7uz/9U5oroQT4T53X9FqSk4HfAp5RVd/rTNpw62IDGcX+/4FllvXz\nwN+1wxcAT0lzNaGH0JwM+rH2n/FFwH9c5v17rS3ednoWsPMKF67XAbTr4Ezgmqp6Q2eS++sQVlqv\nG3Z/3d2z+ubxATwW+DRwBc1R0/1p+r18HLi+3XCbO/O/mqYz+nXAU6cd/4jXxRaajvnbaDrD77VR\n1gVwNk3f67to+kidtp62A49v198XgD+bdrtGtC5eAHye5kvU5e3jTRthXWyUx7j3f2AfmrPRP0/T\nr/HIzrTT2vGfB07tjH84Td/Sz9NcVWevaa+nEazXF9CctHRl+z/nPJq+s67XwdfpE4EdNFdQ2JmP\nTnZ/Hct6fdpG3V+9UYgkSZLUseG7WEiSJEldFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiS\nJElShwWyJEmS1GGBrKlLsm+SS5JsTXJVki3t+MUkj19m/iT5u/Z+8UunPSPJFUkuT/LpJCe04/dO\n8okke469QZI0h0aZq1dY/n9McnWSe5I8rjP+Xyd5+8gaIg3AAllTV81ti0+qqqOBo4GTkxwHVPtY\n6unA1qq6Y5lpH6+qx1bVMTR3rHpr+x530dzS8jnjaIMkzbtR5eokCysUvNtobmX8ySXvexVwWJLD\nR9AMaSAWyJoJVXVnO7g3ze2t7022SfZI8pdJfq8d9Tzuu6/70uV8t/N0P5rbZu50XvtaSdI6jChX\nL3sL36q6rqquX+Gtzwd+YX1RS7vPAlkzoU2sW4HtwAVVdWk7aS/g3cDnqup32nFPAC5bZVnPTHIt\n8CGao8g7XQ3825EHL0kbxIhyddbx1p8BnrSO10nrYoGsmVBVO9qf7Q4DjkvyaJok+hfAlVX1h53Z\nD1hypHjpss6rqqOAZwJ/0Bl/D3BXkgeNpRGSNOeGydVJPpXkcuAtwCntuSKXJ/npAd76m8DDRtcS\naXVrFshJDk9yUdtx/qokL23Hb0lyU2cHP3n84WreVdVtwEXAyTQ/w/1f4MlJ9unM9oOdA0l+vd3/\nPpvk4CXLuhj4kSQHdEbvA3xvbA2QpsycrUnY3Vzdvub49vyQXwE+WFXHtI8LB3jLfYF/Hk300toG\nOYJ8N/Dyqno0cDzwG0mOovlAvK6zg390nIFqfiU5MMnmdvgBwE8D17WTzwQ+DJzTuQLF55L8KEBV\nvand/x5XVTcn+dEkaZf1OGDvqvp2+/yhwLfaI8nSvDJnayyGydVLFzXI2y15/kjgqt2PWlqfNQvk\nqrq5qra2w3cA1wKHtpPX049IWuoQ4O+TXAFcStOv7W/baVVVrwcuB97RFr9/CyyssKyfA7a1P+O9\nkftfteIkmn7J0twyZ2uMRpWrl73qRZJnJfkqzRe7v03ykc5k87cmKlXLnky6/MzJkcAngEcDrwBO\nA26j6Tz/iqq6dfQhSvfXdqV4R1U9ZTdf937g9Kr6wngik2aLOVvTtN5cvcxy9gEWgROqascas0sj\nMfBJeu2Fvs8FXtYelXgz8HCaayF+HXjtWCKUlqiqm4G3JHnwoK9JshdwnsWxNgpztqZtPbl6BYfT\nHNywONbEDHQEuS0uPgR8pKresMz0I4Hzq+oxS8YPfnhakmZMVfWyS4I5W9JGNaq8PchVLELT+f6a\nbqJNckhntmfR3AFnF1VFVXHGGWfcO9z3xzy1pdft6exfvW/LvG2bOWhPX5mz+73fzXV72DVn97o9\nc96WPrZnlDYNMM8JwPOBK9sTnwBeDTw3ydE0He1vAF400sgkSethzpakIa1ZIFfVP7D8keaPLDNO\nkjRF5mxJGt7E7qS3sLAwqbcau3lqC8xXe+apLWB7ND3ztK3mqS1ge2bZPLUF5q89u2O3LvO22wtP\napzL1waXgPuXxiQJ1dOT9NbLnK2xMmdrzEaZtwfpgyzNjPYmeUDTkbL7HBh5J31J0vqZs9VXFsjq\noZ0JNdz/Zkwb6mCfJPWEOVv9M7E+yJIkSVIfWCBLkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1WCBL\nkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJ\nHRbIkiRJUocFsiRJktRhgSxJkiR1rFkgJzk8yUVJrk5yVZKXtuMPSHJhkuuTXJBk8/jDlSStxpwt\nScNLVa0+Q3IwcHBVbU2yH3AZ8EzgNOBbVfWaJKcDD6mqVy55ba21fGl3JAGafaoIobt/Bfc3jUoS\nqirTjmN3mbM1S8zZmqRR5u01jyBX1c1VtbUdvgO4FjgUOAU4q53tLJoELEmaInO2JA1vt/ogJzkS\nOAa4BDioqra3k7YDB400MknSUMzZkrQ+AxfI7U917wdeVlW3d6e1v8n5O4kkzQhztiSt36ZBZkqy\nF02ifWdVndeO3p7k4Kq6OckhwDeWe+2WLVvuHV5YWGBhYWGogCVpHBYXF1lcXJx2GCNhzpa0EYwz\nbw9ykl5o+qvdUlUv74x/TTvuj5O8EtjsCR8aN0/40KT0+CQ9c7ZmhjlbkzTKvD1IgfxE4JPAldz3\nk9yrgEuBc4AjgBuBZ1fVrUtea7LVSJlsNSk9LpDN2ZoZ5mxN0kQL5KEWbrLViJlsNSl9LZCHYc7W\nqJmzNUkTvcybJEmStJFYIEuSJEkdFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiSJElShwWy\nJEmS1GGBLEmSJHVYIEuSJEkdFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiSJElShwWyJEmS\n1GGBLEmSJHVYIEuSJEkdFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdaxbISd6WZHuSbZ1xW5Lc\nlOTy9nHyeMOUJA3CnC1JwxvkCPLbgaXJtIDXVdUx7eOjow9NkrQO5mxJGtKaBXJVXQx8Z5lJGX04\nkqRhmLMlaXjD9EF+SZIrkpyZZPPIIpIkjYM5W5IGtGmdr3sz8Hvt8O8DrwVeuNyMW7ZsuXd4YWGB\nhYWFdb6lJI3P4uIii4uL0w5jXMzZkubOOPN2qmrtmZIjgfOr6jG7Oa0GWb40qCQ03SmhCKG7fwX3\nN41KEqqql90SzNmaFeZsTdIo8/a6ulgkOaTz9FnAtpXmlSRNlzlbknbPml0skpwNnAgcmOSrwBnA\nQpKjab4W3gC8aKxRSpIGYs6WpOEN1MVi3Qv35zqNmD/XaVL63MVivczZGjVztiZp6l0sJEmSpHm1\n3qtYSGPTHHGQJPWBOVvzyAJZM2qln91MxJI0e8zZmi92sZAkSZI6LJAlSZKkDgtkSZIkqcMCWZIk\nSeqwQJYkSZI6LJAlSZKkDgtkSZIkqcMCWZIkSeqwQJYkSZI6LJAlSZKkDgtkSZIkqcMCWZIkSeqw\nQJYkSZI6LJAlSZKkDgtkSZIkqcMCWZIkSerYNO0ApFFKsuK0qppgJJKktZizNasskDVnVkqoKydh\nSdK0mLM1m9bsYpHkbUm2J9nWGXdAkguTXJ/kgiSbxxumJGkQ5mxJGt4gfZDfDpy8ZNwrgQur6pHA\n37XPJUnTZ86WpCGtWSBX1cXAd5aMPgU4qx0+C3jmiOOSJK2DOVuShrfeq1gcVFXb2+HtwEEjikeS\nNHrmbEnaDUOfpFdVlWTFU023bNly7/DCwgILCwvDvqXmwGpnLkvTsLi4yOLi4rTDGDtzttbDnK1Z\nNM68nUEuo5LkSOD8qnpM+/w6YKGqbk5yCHBRVf2rZV5XXqZFy2mS7WpnL689rQi533yrv859Ubsj\nCVXVy6rAnK1RM2erD0aZt9fbxeKDwKnt8KnAeaMIRpI0FuZsSdoNax5BTnI2cCJwIE3ftd8BPgCc\nAxwB3Ag8u6puXea1Ho3QsjwaoVnX1yPI5myNgzlbfTDKvD1QF4t1L9xkqxWYbDXr+logD8OcrZWY\ns9UHs9DFQpIkSZpL3mpaG8ZqZ2F7pEKSZos5W9NkgawNZLWfACVJs8Wcremxi4UkSZLUYYEsSZIk\ndVggS5IkSR0WyJIkSVKHJ+lpbFY7A1mSNFvM2dJ9LJA1Zp6FLEn9Yc6WwC4WkiRJ0v1YIEuSJEkd\nFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiS\nJElShwWyJEmS1LFpmBcnuRH4J+Ae4O6qOnYUQUmSxsO8LUlrG6pABgpYqKpvjyIYSdLYmbclaQ2j\n6GKRESxDkjQ55m1JWsWwBXIBH0/ymSS/OoqAJEljZd6WpDUM28XihKr6epIfBi5Mcl1VXdydYcuW\nLfcOLywssLCwMORbStLoLS4usri4OO0wJmHVvG3OltQX48zbqarRLCg5A7ijql7bGVejWr76JwnN\nwaplpw49rQi533zrX6b7qZZKQlXNdVeEpXnbnL2xmbPVd6PM2+vuYpHkgUke3A4/CHgKsG0UQUmS\nRs+8LUmDGaaLxUHA3zTfONkEvLuqLhhJVJKkcTBvS9IARtbFYtmF+3PdhubPdeqzjdDFYilz9sZm\nzlbfjTJvD3uSnjawiy++mNtvv33aYUiSBnD11Vfz5S9/edphSL3gEWSt24/92NFs374fe+75Q7tM\nu/POT3D33XfSl6MRK3H/3bg8gqx582u/9mLe+c6/Z599jtxl2ve/v43vfe8m+p6zwby9kXkEWTPh\nnnvgjjveCBy9y7QHP/go7r77uskHtW7LJdQNVRtJmnP33APf+96v873vvXiXaQ94wK8Bb5l8UOu2\nvuJZGtQo7qQnSZIkzQ0LZEmSJKnDAlmSJEnqsECWJEmSOiyQJUmSpA4LZEmSJKnDAlmSJEnqsECW\nJEmSOiyQJUmSpA4LZEmSJKnDW01Lq0jWd9vSqpVugypJGifztkbBAlla1UoJM2tMkyRNh3lbw7OL\nhSRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1DFUgJzk5yXVJPp/k9NXmXVxc\nHOatZso8tQXmrT2L0w5gpOZr28xfe/rGnD0f5q0985S3523bzFt7dse6C+QkewJvBE4GHgU8N8lR\nK80/Tyt5ntoC89aexWkHMFLztW3mrz19Ys6eH/PWnnnK2/O2beatPbtjmCPIxwJfqKobq+pu4L3A\nM0YTliRpxMzZkjSgYe6kdyjw1c7zm4DjhgtH/fNp4Du7jL3nnu9OPhRJqzFnC7geuGiXsTt2/OPk\nQ5FmWNZ77/EkPwecXFW/2j5/PnBcVb2kM483NpfUW1U1N/efNWdL2ghGlbeHOYL8NeDwzvPDaY5I\n3Gue/rlIUs+ZsyVpQMP0Qf4M8IgkRybZG3gO8MHRhCVJGjFztiQNaN1HkKvqB0leDHwM2BM4s6qu\nHVlkkqSRMWdL0uDW3QdZkiRJmkdrdrFIsjnJuUmuTXJNkuOSHJDkwiTXJ7kgyebO/K9qL0J/XZKn\ndMY/Psm2dtqfdsbvk+R97fhPJfmXnWmntu9xfZJfGkWDk7w8yVVtLO9p378X7UnytiTbk2zrjJtq\n7EkenuSS9jXvTbLXkO35k3ZfuyLJXyfZv8/t6Ux7RZIdSQ7oQ3tWakuSl7Tb56okf9yHtmwkSfZt\n19HWdhttacf3Iset0q49k1ye5Py+tyfJjUmubNtzaZ/bkzmqD5L8eLtNdj5uS/LSHrent7XOzKiq\nVR/AWcAL2uFNwP7Aa4DfbsedDvxRO/woYCuwF3Ak8AXuO0p9KXBsO/xhmrOpAX4deFM7/Bzgve3w\nAcAXgc3t44vA5rXiXaMthwJfAvZpn78POLUv7QGeBBwDbOuMm1bs+7fTzgGe3Q6/GfjPQ7bnp4E9\n2uE/6nt72vGHAx8FbgAO6EN7Vtg2JwEXAnu1z3+4D23ZaA/gge3fTcCnaC7l1osct0qb/ivwbuCD\n7fPetodOHuiM62V7mKP6YEm79gC+TpO7e9ceel7rzMpjrZW8P/ClZcZfBxzUDh8MXNcOvwo4vTPf\nR4HjgUOAazvjfwH4X515jut8wL7ZDj8XeHPnNf8L+IUhd/pDga8AD2nf63yagqw37Wl33m7RMrXY\ngQDf5L6C9njgo8O0Z8m0ZwHv6nt7gL8C/g33L5Bnvj3L7GvnAE9eZr6Zb8tGfAAPBC6juUFIb3Lc\nMu04DPg4zRe089txfW7PDcBDl4zrXXuYs/pgSRueAlzc1/YwB7XOLDzW6mLxcOCbSd6e5LNJ3pLk\nQe0K3t7Osx04qB1+GPe/bNBN7YZaOv5r7fidG/Kr0JxEAtyW5KGrLGvdquprwGtpdpx/BG6tqgv7\n2p7WNGM/gGYd7lhmWaPwAppvrKwSw0y3J8kzgJuq6solk/rYnkcA/679OW0xyU/0uC1zK8keSbbS\n5IMLqupS+p3jXg/8FrCjM67P7Sng40k+k+RXe9yeuaoPlvgF4Ox2uHftmdNaZ+LWKpA3AY+jOYz+\nOOC7wCu7M1TzFaHGE95oJXkIcArNkbGHAfuluVj+vfrUnqUmHPtY3yfJfwfuqqr3jPN9OkbeniQP\nBF4NnNEdPer3WcE4ts8m4CFVdTxNwXLOGN5jOb38PE5LVe2oqqNpjrwel+RfL5nemxyX5GeAb1TV\n5azw2elTe1onVNUxwNOA30jypO7EHrVnruqDndJcAvE/0Pzydz99ac+81zqTslaBfBPN0a9Pt8/P\npflA3JzkYIAkhwDfaKcvvRD9Ye0yvtYOLx2/8zVHtMvaRNPf8JZllrXLRe3X4aeAG6rqlvYbz18D\nP9nj9gBsn1LsXwO+DWxOskdnWV8btkFJfhl4OvC8zug+tudHaRLUFUluaJd3WZKDetqem2g+M7Q5\nYUeSA3valrlXVbfR3FP4qUwvTwyb454AnNJ+fs4GnpzknT1uD1X19fbvN4G/oekC08f2zFt9sNPT\ngMva7QP93DbzWOtM3lp9MIBPAo9sh7fQdPJ+DW1/FZpvjEs7eu9N8/PLF7mvo/clNCeLhF07er+5\n7uvf0u3o/SWaTt4P2Tk8TH8SmkR0FfCANo6zgN/oU3vYtV/oVGOnOYr4nLqvr9FunTi1THtOBq4G\nDlwyXy/bs2TaDex6kt7MtmeZbfMi4Hfb4UcCX+lLWzbKAziws74eQJO/n06PctwqbTuR+/og97I9\nNP3CH9wOPwj4PzT9XfvanrmpDzptei9waud579rDHNQ6s/AYZEU/Fvg0cAXNt5D92xXwceB64IJu\n42l+Uv4CTWfwp3bGPx7Y1k77s874fWj+8X2e5ozrIzvTTmvHf767ww65828Brm1jOYvmrM1etIfm\nCMo/AnfR9P05bdqxtx+mS9rx76O9wsE62/OCdjlfBi5vH2/qYXu+v3P7LJn+JTpnr89ye5ZrC81n\n5Z1tbJcBC31oy0Z6AI8BPkuTr7cB/6Md34sct0bbTuS+q1j0sj3tPry1fVwFvKrn7Zm3+uBBwLdo\nv8T0fNtsoae1zqw8vFGIJEmS1LHmjUIkSZKkjcQCWZIkSeqwQJYkSZI6LJAlSZKkDgtkSZIkqcMC\nWZIkSeqwQJYkSZI6LJA1NUkOT3JRkquTXJXkpe34xSSPX2b+JPm7JPsNuPw/SXJtkiuS/HWS/dvx\nj0ny9tG2RpI2jiRHJtm2zPhjkrx1wGXsm+SSJFvb/wFbOtP+JMlJIwxZ2i0WyJqmu4GXV9WjgeOB\n30hyFFDtY6mnA1ur6o7uyCQLKxS8FwCPrqrH0tw56FUAVbUNOCzJ4cu8RpK0fq8G/nTpyCR/meTE\n7riq+h5wUlUdDRwNnJzkuHbyn9PcDlmaCgtkTU1V3VxVW9vhO2hui3nozulJ9miT6u+1o54HfGC5\nRa2w/Aurakf79BLgsM7k82nuHy9JGkKSH0ny2SRPBB7THoRYatkDH1V1Zzu4N83tkHe0478CPDTJ\nQWMKW1qVBbJmQpIjgWNoClloEuW7gc9V1e+0454AXLbcywd4ixcAH+48/wzwpPXEKklqJPlx4Fzg\nVJq8fdVqsy/z+j2SbAW2AxdU1ac7kz8LnDDCcKWBbZp2AFLbp/hc4GVVdXuSAH8BvK+q/rAz6wFV\n9d3O6z4F7APsBxyQ5PJ20m9X1YWd+f47cFdVvaezrG8CDxtPiyRpQ/gXwHnAs6rquiS/SJNbAUjy\nVOCP2qdHAE9Mcgfwvar6SYD2V76j23NE/ibJo6vq6vY138A8rSlZ8wjyKidSbUlyU5LL28fJ4w9X\n8ybJXsD7gXdV1Xnt6AL+L/DkJPt0Zv9B97VVdXxVHQP8CvDBqjqmfXSL41+m6bv8vCVvvS/wzyNt\njDQDzNmaoFuBL3Pfr3F30uRWAKrqYzvzMvBB4IXt859cuqCqug24COjul/u2y5QmbpAjyDtPpNra\nHum7LMmFNEXM66rqdWONUHOrPVJ8JnBNVb1hyeS3AicC5yT52aq6B/hckh+tqi8uXdQKyz8Z+C3g\nxPZkkK5HsvpPgVJfmbM1KXcBPwt8rD0yfDnwilXmv1+uTnIg8IOqujXJA4Cf5r4jztDk6XNGG7I0\nmDWPIK9xItUgfT+llZwAPB84qXNU62k7J1bV62kS7jvaYvpvgYVllrPSVS/+nKb7xYXtst/UmXYS\n8KHRNEOaHeZsTVC1J9n9DPBy4BHA/qtcinNpnj4E+PskVwCX0vRB/jDc++vij9GcLyJNXKqWvQDA\n8jM3J1J9Ang0zbfE04DbaHbgV1TVraMPUWokORh4R1U9Zcjl7AMsAid0rnIhzR1ztiYtyW8Ct1fV\nmUMu51nA0VV1xmgik3bPwAVy+41wEfiDqjovyb/gvs74vw8cUlUvXPKawatvSZoxVdXbI67mbEkb\n0ajy9kCXeVvuRKqq+ka1aPqLHrtCoHPxOOOMM6Yeg+1Y0hb3r5l8zEtb+mzcObsP29gYZzC+Afcv\n16Exrje+URrkKhbLnkiV5JDObM8ClrswuCRpgszZkjS8Qa5isfNEqis715l9NfDcJEfTdLq/AXjR\neEKUJO0Gc7YkDWnNArmq/oHljzR/ZPThzK6FhYVphzAS89IOWP5yFn01V9tljtrSR5PI2X3YxsY4\nvFmPD2Y/xlmPD2Y/xmnFt1tXsdjthSc1zuVrg0vA/UtjkoTq8Ul662HO1liZszVmo8zbA52kJ0mS\nJG0UFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkd\nFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiSJElShwWyJEmS1GGBLEmSJHVYIEuSJEkdFsiS\nJElSx6ZpByD1QZI156mqCUQiSVqLOVvDskCWBrZaMl07GUuSJsmcrfVbs4tFksOTXJTk6iRXJXlp\nO/6AJBcmuT7JBUk2jz9cSdJqzNmSNLys9RNDkoOBg6tqa5L9gMuAZwKnAd+qqtckOR14SFW9cslr\ny58wNDYJTGj/an6uW/1ohPv6fElCVfXuMJM5WzPLnK0xG2XeXvMIclXdXFVb2+E7gGuBQ4FTgLPa\n2c6iScCSpCkyZ0vS8HbrKhZJjgSOAS4BDqqq7e2k7cBBI41MkjQUc7Ykrc/AJ+m1P9W9H3hZVd3e\nPUO0qirJsr9VbNmy5d7hhYUFFhYW1hurJI3N4uIii4uL0w5jZMzZkubdOPP2mn2QAZLsBXwI+EhV\nvaEddx2wUFU3JzkEuKiq/tWS19mfTeNjfzaNUV/7IIM5WzPKnK0xm2gf5DR72ZnANTsTbeuDwKnt\n8KnAeaMISJK0fuZsSRreIFexeCLwSeBK7vs69irgUuAc4AjgRuDZVXXrktd6NELj49EIjVFfjyCb\nszWzzNkas1Hm7YG6WKx74SZbjZPJVmPU1wJ5GOZsjZU5W2M20S4WkiRJ0kZigSxJkiR1WCBLkiRJ\nHRbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbI\nkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbIkiRJ\nUocFsiRJktSxZoGc5G1JtifZ1hm3JclNSS5vHyePN0xJ0iDM2ZI0vEGOIL8dWJpMC3hdVR3TPj46\n+tAkSetgzpakIa1ZIFfVxcB3lpmU0YcjSRqGOVuShjdMH+SXJLkiyZlJNo8sIknSOJizJWlAm9b5\nujcDv9cO/z7wWuCFy824ZcuWe4cXFhZYWFhY51tK0vgsLi6yuLg47TDGxZwtae6MM2+nqtaeKTkS\nOL+qHrOb02qQ5UvrksCE9q8kNN04V5wD9/X5koSq6mW3BHO2ZpI5W2M2yry9ri4WSQ7pPH0WsG2l\neSVJ02XOlqTds2YXiyRnAycCByb5KnAGsJDkaJqvZzcALxprlJKkgZizJWl4A3WxWPfC/blO4+TP\ndRqjPnexWC9ztsbKnK0xm3oXC0mSJGlerfcqFpKWaI5YrMyjFZI0O8zZWo0FsjQyq/+cJ0maJeZs\nrcwuFpIkSVKHBbIkSZLUYYEsSZIkdVggS5IkSR2epCdNyGpnTHu2tCTNFq9ysbFZIEsTs1Iy9Wxp\nSZo9XuViI7OLhSRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbI\nkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUseaBXKStyXZnmRbZ9wBSS5Mcn2SC5JsHm+Y\nkqRBmLMlaXiDHEF+O3DyknGvBC6sqkcCf9c+lyRNnzlbkoa0ZoFcVRcD31ky+hTgrHb4LOCZI45L\nkrQO5mxJGt56+yAfVFXb2+HtwEEjikeSNHrmbEnaDZuGXUBVVZJaafqWLVvuHV5YWGBhYWHYt5RG\nLslMv3/Vih8xjcji4iKLi4vTDmPszNmaB9PO2WvFYM6ejHHm7Qz0L8PsAAAgAElEQVSyEZMcCZxf\nVY9pn18HLFTVzUkOAS6qqn+1zOvKnURjk8CI9q8m0a22rHFOX/u1fo4mLwlVNf3/wutgztZMmpuc\nvdZ0c/a0jDJvr7eLxQeBU9vhU4HzRhGMJGkszNmStBvWPIKc5GzgROBAmr5rvwN8ADgHOAK4EXh2\nVd26zGs9GqHxmZujER5BnkV9PYJsztbMmpucvdZ0c/a0jDJvD9TFYt0LN9lqnOYm2Vogz6K+FsjD\nMGdrrOYmZ6813Zw9LbPQxUKSJEmaSxbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUocF\nsiRJktRhgSxJkiR1WCBLkiRJHRbIkiRJUocFsiRJktRhgSxJkiR1WCBLkiRJHZumHYCktSVZdXpV\nTSgSSdJazNn9Z4Es9cJqyXT1RCxJmjRzdt/ZxUKSJEnqsECWJEmSOiyQJUmSpA4LZEmSJKnDAlmS\nJEnqsECWJEmSOoa6zFuSG4F/Au4B7q6qY0cRlCRpPMzbkrS2Ya+DXMBCVX17FMFIksbOvC1JaxhF\nFwuveC1J/WLelqRVDFsgF/DxJJ9J8qujCEiSNFbmbUlaw7BdLE6oqq8n+WHgwiTXVdXF3Rm2bNly\n7/DCwgILCwtDvqW0+xIPmGl1i4uLLC4uTjuMSVg1b5uzNSvM21rLOPN2qla7X/huLCg5A7ijql7b\nGVejWr60iwQG3L+aRLvavNOcPvyy/ZyNXhKqaq7/Qy/N2+ZsjdVu5Oxm9vHmzWnmdD9n4zHKvL3u\nLhZJHpjkwe3wg4CnANtGEZQkafTM25I0mGG6WBwE/E37E8gm4N1VdcFIopIkjYN5W5IGMLIuFssu\n3J/rNE52sbh3up+z0dsIXSyWMmdrrOxice90P2fjMRNdLCRJkqR5NOxVLKSZ4RnPktQf5mzNMgtk\nzZnVfvKSJM2WtboxSNNhFwtJkiSpwwJZkiRJ6rBAliRJkjoskCVJkqQOT9KT5sBaZ4N7zU1Jmh3m\n7NlngSzNBc8El6T+MGfPOrtYSJIkSR0WyJIkSVKHBbIkSZLUYYEsSZIkdVggS5IkSR0WyJIkSVKH\nBbIkSZLUYYEsSZIkdVggS5IkSR0WyJIkSVKHBbJ64bGPPY4999x0vwewy3NJ0vT95m++wpytXrNA\nVi/ceec97NjxD+zY8b17H8C9w1Wr3ddekjRJd921gx07/mjFnP3gB58w5Qil1Q1VICc5Ocl1ST6f\n5PRRBSUtb9OSR3dcphWU1BvmbE3Wnpiz1VfrLpCT7Am8ETgZeBTw3CRHjSqwWbO4uDjtEEZiXtoB\nsDjtAEZqcdoBjMw87WPzZJQ5uw/b2BiHN+vxNRanHcAaFqcdwJpmfTtPK75hjiAfC3yhqm6sqruB\n9wLPGE1Ys2fWd6BBzUs7oA9pZ3csTjuAkZmnfWzOjCxn92EbG+PwZj2+xuK0A1jD4rQDWNOsb+c+\nFsiHAl/tPL+pHSdJmj3mbEka0DCnkXpWlCZmn30gOZ6k851uB+yxx97N4I57phSZ1BvmbE3Mpk2Q\n/Dfu19W9k7Nvu+3uKUUmDSbrPfs/yfHAlqo6uX3+KmBHVf1xZx4TsqTeqqq5OZPInC1pIxhV3h6m\nQN4EfA7498A/ApcCz62qa0cRmCRpdMzZkjS4dXexqKofJHkx8DGaa7mcaaKVpNlkzpakwa37CLIk\nSZI0j4a+k16StyXZnmTbCtMXktyW5PL28T+Gfc9xSHJ4kouSXJ3kqiQvXWG+P2svsn9FkmMmHecg\nBmlLj7bLvkkuSbK1bcuWFebrw3ZZsy192S7QXFe3jfH8FabP/DbZabW29GmbjNpaNxZJsn+S8zv7\n9C9POL5V//+080x1Pxzgf+Tz2tiuTPJ/kvybWYqvM9+/TfKDJD87qdg67z3Idl5oP59XJVmcYHiD\nbOOpfk7aGGa6xhmwbpnsZ6WqhnoATwKOAbatMH0B+OCw7zPuB3AwcHQ7vB9NX72jlszzdODD7fBx\nwKemHfcQbenFdmljfWD7dxPwKeC4Pm6XAdvSp+3yX4F3Lxdvn7bJAG3pzTYZ8TrZE/gCcCSwF7B1\nmTzyauAP2+EDgVuATROMca3/P1PfDweI8SeB/dvhkycd41rxdfaFvwc+BPzcDK7DzcDVwGHt8wNn\nLL6pfk7a953pGmfA+Cb6WRn6CHJVXQx8Z43ZZv5M8Kq6uaq2tsN3ANcCD1sy2ynAWe08lwCbkxw0\n0UAHMGBboAfbBaCq7mwH96b5R71jySy92C4wUFugB9slyWE0yfStLB9vb7bJAG1hlfHzbJAbi+wA\nfqgd/iHglqr6waQCHOD/z9T3w7VirKr/V1W3tU8vAQ6bSGD3vf8g/8NfApwLfHP8Ee1qgBh/EXh/\nVd3Uzv+tiQTWGiC+qX5OYPZrnEHim/RnZegCeQAFPKE9LP7hJI+awHsOJcmRNN8GL1kyabkL7U80\nme2uVdrSm+2SZI8kW4HtwAVV9ekls/RmuwzQlr5sl9cDv8XyBT70aJuwdlv6sk1GbZAbi7wReFSS\nfwSuAF42odgG1af9EOCFwIenHURXkkNpvhi9uR01iycuPQI4oP2J/jNJ/tO0A1pipj4ns17jrBJf\n19g/K5MokD8LHF5VjwX+HDhvAu+5bkn2o/mm/LL2W8wusyx5PovJAlizLb3ZLlW1o6qOpvmgHpfk\n0cvM1ovtMkBbZn67JPkZ4BtVdTmrH1md+W0yYFtmfpuMySDb62Tgs1X1MOBo4P9L8uDxhrXbZn4/\nBEhyEvACYJe+3lP2BuCV1fyuHWbz15S9gMfR/BL0VOB/JnnEdEO6n5n5nMx6jTNAfBP7rIy9QK6q\n23f+rFxVHwH2SnLAuN93PZLsBbwfeFdVLfdP8GvA4Z3nh7XjZs5abenTdtmp/WnlIppk09Wb7bLT\nSm3pyXZ5AnBKkhuAs4EnJ3nHknn6sk3WbEtPtsk4LN2Gh9McUer6ZeCvAarqi8ANwI9PIrgB9WI/\nbE82egtwSlWt1d1h0h4PvLf9jPwc8KYkp0w5pqW+SvOL3D9X1S3AJ4HHTjmmrl9mBj4ns17jDBDf\nRD8rYy+QkxyUJO3wsTSXlvv2uN93d7UxnglcU1VvWGG2DwK/1M5/PHBrVW2fUIgDG6QtPdouBybZ\n3A4/APhpmr5JXX3ZLmu2pQ/bpapeXVWHV9XDgV8A/r6qfmnJbL3YJoO0pQ/bZEw+AzwiyZFJ9gae\nQ7Ndu74C/BQ064nmn/6XJhrl6mZ+P0xyBE3x9Pyq+sK041mqqn6kqh7efkbOBf5LVS3dD6btA8AT\n01yN5oE0J5hdM+WYuqb+OZn1GmfAumWin5V13yhkpyRnAycCByb5KnAGzc8dVNVfAD8P/JckPwDu\npPknNItOAJ4PXJnk8nbcq4EjoGlLVX04ydOTfAH4LnDadEJd05ptoT/b5RDgrCR70nyhe1+7HV4E\nvdsua7aF/myXrgLo6TZZape20M9tMrRa4cYiS9bN7wN/meRKmp9mf3uSXx7W+v8zC/vhAP8jfwd4\nCPDm9nvY3VV17AzFN3UDbOfrknwUuJLmXIK3VNXECuQB1uFUPyetWa9xBqlbJvpZ8UYhkiRJUsck\nTtKTJEmSesMCWZIkSeqwQJYkSZI6LJAlSZKkDgtkSXMnyduSbE+ybYB5j2jvwPXZNHfLe9okYpQk\n3WfW8rYFsqR59HZ2vaHMSv4H8N6qehzNJdzeNLaoJEkrmam8bYEsae5U1cXA/e6ylORHk3wkyWeS\nfDLJzjtZ7QD2b4c3M4N3WpOkeTdredsCWROX5PD2p5Grk1yV5KXt+MUkj19m/v+Y5Jokf9c+PybJ\nW4d5r3ban6S5p7s2hv8NvKSqfgL4Le474rAFeH57gf+/BV4ynfCk2dfeWXGXn8CTnN3+1P2y9vkb\nkjxpwGU+o33t5Uk+neSEdvzeST7R3lxJG9PU8vbQd9KT1uFu4OVVtTXJfsBlSS6kuYvZcneueSHw\nq1X1f9rnrwZ+b+lMSf4SeHtVfWKt96qqa4E/p7mn+0WjaphmU7vtfxL4q/YOTAB7t39/kWa/eX17\ne9V3AY+efJRSPyU5GPiJqnpE+/yhwHFV9ZvLzHtjVR25ZPTHq+oD7fTHAOcAR1XVXe2BkecA7xln\nGzR7pp23LZA1cVV1M3BzO3xHkmuBQ3dOT7IH8Dbgq8BdNLegPDPJB4A/AB5TVct14t+lwF7hvR4G\nXFtVX0ny0CQHTep+85qaPYBbq+qYZaa9AHgqQFV9Ksm+SQ6sqm9NNEKpZ5L8CPB+4Mfb55fTHMl7\nFPCRFV62y0GQqvpu5+l+ND+f73Qe8IdYIG9EU83bdrHQVCU5EjgGuKQdtRfwbuBzVfU/q+r3gc8A\nv1hVpwM/AVy12iJ3470APktTgGuOVdU/ATck+XmANP5NO/krwE+1448C9rU4llbX9gU9F/gl4Cjg\ni1V1TFX9A/AE4LLdXN4z2wMYH6Ipfna6Gvi3o4lafTLtvG2BrKlpfz45F3hZVd1OU9z+BXBlVf3h\nCi87BPhmZxlPbfutXQ6cAry1ff7/VnmvOzqTvkFzRFlzJMnZwP8FfjzJV5OcBjwPeGGSrTRfsk5p\nZ38F8Kvt+PcAp04jZqlH/gXNkd1fbH/NW3pgYmmefmMnTz9s53CSV+2cp6rOq6qjgGfS/FK4c/w9\nwF1JHjTG9mgGzFreXrOLRZLDgXfQfCAK+N9V9WdJtgC/wn0fgldV1UdHHaDmU5K9aH6ae1dVndeO\nLpoPx5OTvK6qvr/MS+8E9t35pKo+BnysXebbafokfXKA99pp33aZmiNV9dwVJu1yrcy2P/oTxxvR\n5JizNQG3Al8GngRct8z0fwYesPNJVb1453CSG1b4yXznvBcn+ZEkB1TVt9vR+wDfG0nkmlmzlrcH\n6YO82glVr6uq140zQM2fNL3tzwSuqao3LJn8VuBE4JwkP9sePei6luab44qL3433AngkzQkh0rww\nZ2vc7gJ+FvhYkjuA/7dk+rXAjwGfWPrC5ST5UeBLVVVJHgfsvbM4bk/4+9Yy/wuksVqzi0VV3VxV\nW9vhO2h2/J0nVK3Y31NaxQnA84GTOj+13fsNsapeD1wOvCOdU1fbaZ8D9m//8S9n6QkgK75Xe2T5\nx2j6OEtzwZytCaiquhP4GeDlwH/g/rn3b4GFlV67zLifA7a1XTDeSHPVip1OoumXLE1UqpbbV1eY\nuTnJ6RM0l9J4BXAacBtNgfGKqrp19CFK95fkN4Hbq+rMIZfzLODoqjpjNJFJs8WcrWlJcjHwM1V1\n25DLeT9welV9YTSRSYMZ+CS9ZU5yejPwcOBo4OvAa8cSobSrNwPL9U/eXXvifqs5Zc7WlL0COGKY\nBbS/8p1ncaxpGOgIcruTfgj4yHL9ONujFOdX1WOWjB/88LQkzZiq6mWXBHO2pI1qVHl7zSPIK53k\nlOSQzmzPApa7cQNVNfHHGWecMZX3neZjQ7Z5SvuX23ljtLmvJpGz+7AfGuMMxjfg/uU6NMb1xjdK\ng1zFYudJTle2HeihudXvc5McTdPh/gbgRSONTJK0HuZsSRrSmgVyNXfFWe5I80q3kZQkTYk5W5KG\nN5d30ltYWJh2CBO3Ids87QCmYENu5w3Y5lnXh21ijMOb9fhg9mOc9fhg9mOcVny7dZm33V54UuNc\nvja4BNy/NCZJqJ6epLde5myNlTlbYzbKvD2XR5AlSZKk9bJAliRJkjoskCVJkqQOC2RJkiSpwwJZ\nkiRJ6rBAliRJkjoskCVJkqQOC2RJkiSpwwJZkiRJ6rBAliRJkjoskCVJkqQOC2RJkiSpwwJZkiRJ\n6rBAliRJkjoskCVJkqQOC2RJkiSpwwJZkiRJ6rBAliRJkjo2TTsAaaNIMtB8VTXmSCRJaxk0Z4N5\nex6teQQ5yeFJLkpydZKrkry0HX9AkguTXJ/kgiSbxx+u1He1xkMajjlbGqW1crZ5e15lrW89SQ4G\nDq6qrUn2Ay4DngmcBnyrql6T5HTgIVX1yiWvLb9VaWwS6NH+1RyNWCveeCRiRiShqgY/hDQjzNma\nWXOZs8G8PTtGmbfXPIJcVTdX1dZ2+A7gWuBQ4BTgrHa2s2gSsCRpiszZkjS83TpJL8mRwDHAJcBB\nVbW9nbQdOGikkUmShmLOlqT1GbhAbn+qez/wsqq6vTut/U3O3xckaUaYsyVp/Qa6ikWSvWgS7Tur\n6rx29PYkB1fVzUkOAb6x3Gu3bNly7/DCwgILCwtDBSzNO692MR2Li4ssLi5OO4yRMGdLkzVI3jZn\nj9448/YgJ+mFpr/aLVX18s7417Tj/jjJK4HNnvChiZrLEz48KWRW9PgkPXO2ZtNc5mwYLG+bsydh\nlHl7kAL5icAngSu5bw94FXApcA5wBHAj8OyqunXJa022Gp+5TLYWyLOixwWyOVuzaS5zNlggz46J\nFshDLdxkq3Gay2RrgTwr+logD8OcrbGay5wNFsizY6KXeZMkSZI2EgtkSZIkqcMCWZIkSeqwQJYk\nSZI6LJCl/7+9+4+V7KzrOP7+dLdsaSE2tboUWtMmQARs3AZtiZVwASlbxYIxGiAgUUH/4GdJtIAo\nFzVRSPilYqPptpayqfIj/GhA2AId0ih0adxtF2iBJjRA3W4bRSgBabVf/5hz28fl3r3TOzN3zsx9\nv5LJnnnOM+d+n3PmfPd7n3tmjiRJUsMCWZIkSWpYIEuSJEkNC2RJkiSpYYEsSZIkNSyQJUmSpIYF\nsiRJktSwQJYkSZIaFsiSJElSwwJZkiRJamyfdQDSIkgy6xAkSSMyZ2s9FsjSxNQ6603IktQf5myt\nzUssJEmSpIYFsiRJktSwQJYkSZIaFsiSJElSwwJZkiRJaqxbICe5PMmRJIeatuUk30pyoHvsnm6Y\nkqRRmLMlaXyjzCBfARydTAt4e1Wd0z0+MfnQJEkbYM6WpDGtWyBX1fXAt1dZ5RcESlLPmLMlaXzj\nXIP8yiQ3JdmT5OSJRSRJmgZztiSNaKMF8qXAWcAu4DDwtolFJEmaNHO2JD0EG7rVdFXdtbKc5DLg\nmrX6Li8vP7C8tLTE0tLSRn6kJE3VYDBgMBjMOoypMGdLWkTTzNupWu9e5JDkTOCaqjq7e35aVR3u\nli8Gfr6qXrjK62qU7UsbkkBP3l9JGH4O6pi9JtRn2M9za7qSUFVzed2uOVu9tJA5e9R+5uzNMMm8\nve4McpKrgacBpyb5JvAmYCnJLobviK8Dvz+JYCRJ4zFnS9L4RppB3vDGnY3QNC3kbIQzyH0xzzPI\nG2XO1lQtZM4etZ85ezNMMm97Jz1JkiSpYYEsSZIkNSyQJUmSpIYFsiRJktSwQJYkSZIaFsiSJElS\nwwJZkiRJalggS5IkSQ0LZEmSJKlhgSxJkiQ1LJAlSZKkhgWyJEmS1LBAliRJkhoWyJIkSVLDAlmS\nJElqWCBLkiRJDQtkSZIkqWGBLEmSJDUskCVJkqSGBbIkSZLUsECWJEmSGusWyEkuT3IkyaGm7ZQk\n1yb5apJ9SU6ebpiSpFGYsyVpfKPMIF8B7D6q7XXAtVX1eODT3XNJ0uyZsyVpTOsWyFV1PfDto5ov\nAq7slq8EnjfhuCRJG2DOlqTxbfQa5J1VdaRbPgLsnFA8kqTJM2dL0kMw9of0qqqAmkAskqQpM2dL\n0vq2b/B1R5I8qqruTHIacNdaHZeXlx9YXlpaYmlpaYM/UpKmZzAYMBgMZh3GtJizJS2caebtDCcT\n1umUnAlcU1Vnd8/fCvxHVb0lyeuAk6vqRz70kaRG2b60IQn05P2VhPUn5SbVZ9jPc2u6klBVmXUc\nG2HOVi8tZM4etZ85ezNMMm+vWyAnuRp4GnAqw2vX/gT4CPA+4KeA24HfrKr/WuW1JltNz0ImWwvk\nvpjXAtmcrd5ayJw9aj9z9mbY1AJ5rI2bbDVNC5lsLZD7Yl4L5HGYszVVC5mzR+1nzt4Mk8zb3klP\nkiRJalggS5IkSY2NfouFpBkb/onw2PyTniT1gzl7vlggS3NrlOvnJEn9YM6eJ15iIUmSJDUskCVJ\nkqSGBbIkSZLUsECWJEmSGhbIkiRJUsMCWZIkSWpYIEuSJEkNC2RJkiSpYYEsSZIkNSyQJUmSpIYF\nsiRJktSwQJYkSZIaFsiSJElSwwJZkiRJalggS5IkSQ0LZEmSJKmxfdYBSLOUZKR+VTXlSCRJ6zFn\na7OMVSAnuR34LvC/wH1Vde4kgpI213qJdLSELM0D87bmnzlb0zfuDHIBS1X1n5MIRpI0deZtSVrH\nJK5B9lc1SZov5m1JOoZxC+QCPpXkxiQvm0RAkqSpMm9L0jrGvcTi/Ko6nOQngGuT3FpV108iMEnS\nVJi3JWkdYxXIVXW4+/fuJB8CzgX+X6JdXl5+YHlpaYmlpaVxfqQ0E6N+clrzazAYMBgMZh3G1K2X\nt83ZWgTm7K1hmnk7G/0qlCQnAtuq6p4kJwH7gDdX1b6mT/lVK5qaBMZ8fw2T6CifiO5Tn9G35fm3\ncUmoqoX6X3a9vG3O1lQtZM6e7M/z/BvPJPP2ODPIO4EPdb+lbQf2tsWxJKl3zNuSNIINzyCPtHFn\nIzRNCzkb4QxyXyziDPJ6zNmaqoXM2ZP9eZ5/45lk3vZW05IkSVLDAlmSJElqWCBLkiRJDQtkSZIk\nqWGBLEmSJDUskCVJkqSGBbIkSZLUsECWJEmSGuPcSU9Sz3V3TDum9b6YfpRtjLIdSdKxmbP7wwJZ\nWmij3N1pM7cjSVqbObsvvMRCkiRJalggS5IkSQ0LZEmSJKnhNchaSBdffAmf+9xNx+xznL8eSlIv\nXHXVVbz73XtnHYb0AAtkLaTPfvYLHDhwAbBrzT47drx98wLqsVE/8SxJ0/K1r93GDTecCrzoGL0+\n2T22NnP25rBA1gI7F3jGmmu3b38fP/zh5kXTX37aWVIfPA7YfYz1/75ZgfScOXsz+EdmSZIkqWGB\nLEmSJDUskCVJkqSGBbIkSZLUsECWJEmSGmMVyEl2J7k1ydeSXDKpoCRJk2fOlqTRbLhATrIN+BuG\n38nyROAFSZ4wqcDGMRgMZh3CptuSY551ADMxmHUAm24rvrenYZI5ex6OiTGOr+/xDQ1mHcA6BrMO\nYF19P86zim+cGeRzgduq6vaqug/4R+C5kwlrPH0/2NOwJcc86wBmYjDrADbdVnxvT8nEcvY8HBNj\nHF/f4xsazDqAdQxmHcC6+n6c57FAfgzwzeb5t7o2SVL/mLMlaUTj3ElvvVu5SDOzbRucdNIfsW3b\nqWv2uffeg5sYkTRz5mz1VgI7duxlx44b1+xz333f4Ac/2MSgtKWlamM5M8lTgOWq2t09fz1wf1W9\npeljQpY0t6pqYe7Zas6WtBVMKm+PUyBvB74CPJPhDdL3Ay+oqlsmEZgkaXLM2ZI0ug1fYlFV/5Pk\nFcAngW3AHhOtJPWTOVuSRrfhGWRJkiRpEc3NnfSSXJ7kSJJDTdtykm8lOdA9LmzWvb77Mvxbk1zQ\ntD85yaFu3bs2exyjSnJGkuuSfCnJF5O8qms/Jcm1Sb6aZF+Sk5vXLOqYF/k4n5DkhiQHuzEvd+2L\nfJzXGvPCHue+m4d8Mw/5oe/n8zyde0m2dbFc0z3vxT48Rny92odJbk9ycxfL/q6tN/twjfh6tQ+p\nqrl4AE8FzgEONW1vAl67St8nAgeB44Ezgdt4cLZ8P3But/xxYPesx7bGeB8F7OqWH8Hw2sEnAG8F\n/rBrvwT4yy0w5oU9zl18J3b/bgc+D5y3yMf5GGNe6OPc58c85Jt5yQ99P5/n5dwDXgvsBT7aPe/N\nPlwjvl7tQ+DrwClHtfVmH64RX6/24dzMIFfV9cC3V1m12qcVnwtcXVX3VdXtDHfmeUlOAx5ZVfu7\nfu8BnjeNeMdVVXdW1cFu+XvALQy/s/Qi4Mqu25U8GP8ijxkW9DgDVNX3u8WHMUwAxQIfZ1hzzLDA\nx7nP5iHfzEt+6Pv5PA/nXpLTgV8GLmvi6s0+XCO+0KN92MTU6s0+XCO+tdpmEt/cFMjH8MokNyXZ\n0/y54NEMvwR/xcoX4h/dfgdz8EX5Sc5kOHt+A7Czqo50q44AO7vlRR3z57umhT3OSY5LcpDh8dzX\nnewLfZzXGDMs8HGeF/OQb/qcH/p+Ps/JufcO4A+A+5u23uzDNeIr+rUPC/hUkhuTvKxr69M+XC0+\n6NE+nPcC+VLgLGAXcBh422zDmbwkjwA+CLy6qu5p19XwbwoL9ynLbswfYDjm77Hgx7mq7q+qXcDp\nDH8r/pmj1i/ccV5lzE9iwY/zPJiHfNP3/ND387nv516S5wB3VdUBVp9NnOk+PEZ8vdmHnfOr6hzg\nQuDlSZ7arpz1+5DV4+vVPpzrArmq7qoOwz91nNutugM4o+l6OsPfMu7oltv2OzYj1o1IcjzD/6yu\nqqoPd81HkjyqW38acFfXvmhjfu/KmBf9OK+oqu8A1wHPZsGP84pmzLu3ynHuq3nIN/OUH/p+Pvf4\n3PsF4KIkXweuBp6R5Cr6sw9Xi+89PduHVNXh7t+7gQ918fRlH64aX9/24VwXyN0BXvFrwMo3XHwU\neH6ShyU5C3gcsL+q7gS+m+S8JAFeDHyYHuri2wN8uare2az6KPCSbvklPBj/wo55wY/zqSt/Rkry\ncOBZDK+tXOTjvOqYVxJ3Z6GOc9/NQ76Zh/zQ9/N5Hs69qnpDVZ1RVWcBzwc+U1Uvpif7cI34fqtn\n78MTkzyyWz4JuKCLpxf7cK34+vQ+BObqWyyuZnj3p3uBbwK/w/CC7JuBm7qdsrPp/waGF3LfCjy7\naX9yt9NvA/5q1uM6xnh/keH1TQeBA91jN3AK8Cngq8A+4OQFH/OFC36czwb+rRvbIeCNXfsiH+e1\nxrywx7nvj3nIN/OQH/p+Ps/buQc8jQe/JaIX+/Co+Jaa+K7qyz5keJnCwe7xReD1fdqHx4ivV+9D\nbxQiSZIkNeb6EgtJkiRp0iyQJUmSpIYFsiRJktSwQJYkSVBYeiQAAAM+SURBVJIaFsiSJElSwwJZ\nkiRJalggS5IkSQ0LZM1MkjOSXJfkS0m+mORVXfsgyZNX6f8bSb6c5NPd83OSXLbGtvcmuTXJoSR7\nkmzv2n8lyZunOS5JWkRJTkhyQ5KDXc5e7tonkbP3dNu9Kcn7uzusmbM1MxbImqX7gIur6knAU4CX\nJ3kCUN3jaL8LvKyqntk9fwPwrjW2/d6q+umqOht4OPBSgKr6GPCr3W1WJUkjqqr/Bp5eVbuAXcDu\nJOcxmZz9mqraVVU/C3wDeEX3M83Zmontsw5AW1cN76N+Z7f8vSS3AI9ZWZ/kOOByhrcWvxc4H9iT\n5CPAnwNnV9WhH9nwcHv/3Dz9AnB683wAPAd4/8QGI0lbQFV9v1t8GHA8TWE8Zs6+p9tGgBMZ3lZ8\nxQBztjaZM8jqhSRnAucAN3RNxwN7ga9U1R9X1Z8BNwIvrKpLgJ9jeA/39bZ7PPAioC2YbwSeOrHg\nJWmLSHJckoPAEWBfVe3vVo2ds5NcARwGHg/8dbPKnK1NZ4GsmUvyCOADwKu7WYQAfwfcXFV/scbL\nTgPuHmHzfwt8tqr+pWm7G3j0GCFL0pZUVfd3l1icDpyX5ElMKGdX1W8zzM23As9vVpmztekskDVT\n3QzvBxleM/zhrrmAfwWekWTHGi/9PnBCs51PJDmQ5O+btjcBP15Vrz3qtScAP5jUGCRpq6mq7wDX\nAbuZUM7utns/8E/ArzfN5mxtOgtkzUx3rdke4MtV9c6jVl8GfBx4X5Jtq7z8FuCxK0+qandVnVNV\nv9dt+6XABcALV3nt44FVr4OTJK0uyalJTu6WHw48i+FsLwxz+Tg5+7HdvwEu6vqvMGdr01kga5bO\nZ3h98NO7mYQDSS5cWVlV7wAOAO/pkibNuq8AP9ZdnrGaS4GfBD7XbfeNzbol4GMTHIckbQWnAZ9J\nchOwn+E1yCu5tDaas7u+/5DkZuBmYCfwp02XJczZ2mSpWu2bWaT+S/Ia4J6q2vMQXrMT2FtVvzS9\nyCRJRzNna544g6x5dinww4f4mjOAo69JliRNnzlbc8MZZEmSJKnhDLIkSZLUsECWJEmSGhbIkiRJ\nUsMCWZIkSWpYIEuSJEmN/wPmB0KG37KD9wAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig = plt.figure(figsize=(12,35))\n",
- "rows = int(len(mec.unit_rates()) / 2)\n",
- "for i in range(rows):\n",
- " ax1 = fig.add_subplot(rows, 2, 2*i+1)\n",
- " ax1.hist(rates[:, 2*i])\n",
- " ax1.axvline(mec_true.Rates[2*i].unit_rate(), color='r')\n",
- " ax1.set_xlabel(mec.Rates[2*i].name)\n",
- " ax1.set_xlim([mec_true.Rates[2*i].unit_rate() * 0.5, 1.5 * mec_true.Rates[2*i].unit_rate()])\n",
- " ax2 = fig.add_subplot(rows, 2, 2*i+2)\n",
- " ax2.hist(rates[:, 2*i+1])\n",
- " ax2.axvline(mec_true.Rates[2*i+1].unit_rate(), color='r')\n",
- " ax2.set_xlabel(mec.Rates[2*i+1].name)\n",
- " ax2.set_xlim([mec_true.Rates[2*i+1].unit_rate() * 0.5, 1.5 * mec_true.Rates[2*i+1].unit_rate()])\n",
- "print('Red line - true value')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 47,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAADXCAYAAACnK8//AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH3RJREFUeJzt3X2UZVV55/HvT5FII9owOrwpQiatAaORF8FJdKw4kSAr\nSrsmRmSGkISxdTqSZE1GAzoTesWVhIkrJpA1MsGowIRm0mGMgwkgEC2S5YJ0lBZaG9JAaEK3NvGF\nBpnEBMIzf5xTcimrq29135dzb30/a91V5+67zz371u6qfs6uZ++dqkKSJElSdzxj3A2QJEmS9HQG\n6ZIkSVLHGKRLkiRJHWOQLkmSJHWMQbokSZLUMQbpkiRJUscMNUhP8tIkm3oejyT5+SSHJLkpydYk\nNyZZ2XPOBUnuSXJ3klN7yk9Msrl97eJhtluSJEkap4xqnfQkzwB2ACcD5wFfr6rfTPLLwMFVdX6S\n44D1wKuAI4GbgVVVVUk2Au+uqo1JrgMuqaobRtJ4SZIkaYRGme7yo8C9VfUg8Gbgirb8CmB1e3wG\ncHVVPV5V24B7gVOSHA4cVFUb23pX9pwjSZIkTZVRBulnAle3x4dW1UPt8UPAoe3xEcD2nnO204yo\nzy/f0ZZLkiRJU2e/UVwkyf7Am4Bfnv9am8oykJybQb2PJEmStJiqyjDffyRBOvBG4AtV9bX2+UNJ\nDquqnW0qy9+15TuAF/Wc90KaEfQd7XFv+Y6FLjSqHPuRS2BaPxuwbt061q1bN+5maC/Zf5PLvpts\n9t9ks/8mVzLU+BwYXbrL23kq1QXgWuCc9vgc4JM95Wcm2T/JMcAqYGNV7QQeTXJKmu/K2T3nSJIk\nSVNl6CPpSQ6kmTT6jp7ii4ANSc4FtgE/CVBVW5JsALYATwBr66mh8bXA5cABwHWu7CJJkqRpNfQg\nvar+H/D8eWXfpAncF6r/68CvL1D+BeDlw2ijxm9mZmbcTdA+sP8ml3032ey/yWb/aTEjWyd9FJLU\nNH2ep5nynHRJkqRJkWToE0dHuQSjJEmSpD4YpEuSJEkdY5AuSZIkdYxBuiRJktQxBumSJElSxxik\nS5IkSR1jkC5JkiR1jEG6JEmS1DEG6ZIkSVLHGKRLkiRJHWOQLkmSJHWMQbokSZLUMQbpkiRJE2jN\nGpiZgdNPh127xt0aDZpBuiRJ0gTauhVuuQWuv74J2DVdDNIlSZIm0IoVzdeTToLLLhtvWzR4qapx\nt2FgktQ0fZ6nSWBaP5skSVqyXbuaEfTLLoOVK8fdmuUlCVWVoV5jmoJag3RJkiQN2yiCdNNdJEmS\npI4xSJckSZI6xiBdkiRJ6hiDdEmSJKljDNIlSZKkjjFIlyRJkjrGIF2SJEnqmKEH6UlWJrkmyV1J\ntiR5dZJ1SbYn2dQ+3thT/4Ik9yS5O8mpPeUnJtncvnbxsNstSZIkjcsoRtIvBq6rqmOBVwB3AQV8\nqKqObx/XAyQ5DngbcBxwGvDhJHMLxV8KnFtVq4BVSU4bQdslSZKkkRtqkJ7kecBrq+pjAFX1RFU9\nMvfyAqecAVxdVY9X1TbgXuCUJIcDB1XVxrbelcDqYbZdkiRJGpdhj6QfA3wtyceT3J7kI0lWtK+d\nl+SOJB9NsrItOwLY3nP+duDIBcp3tOWSJEnS1NlvBO9/AvDuqvqrJL8DnA/8LvCrbZ0PAL8FnDuI\nC65bt+47xzMzM8zMzAzibSVJkrRMzc7OMjs7O9JrpqqG9+bJYcCtVXVM+/w1wPlV9eM9dY4GPlVV\nL09yPkBVXdS+dgNwIfAA8Nk2r50kbwdeV1Xvmne9GubnGasEpvWzSZIkTZAkVNVCqdsDM9R0l6ra\nCTyY5CVt0Y8CX26D9zlvATa3x9cCZybZP8kxwCpgY/s+jyY5pZ1IejbwyWG2XZIkSRqXYae7AJwH\nXJVkf+A+4GeBS5K8kmaVl/uBdwJU1ZYkG4AtwBPA2p6h8bXA5cABNKvF3DCCtkuSJEkjN9R0l1Ez\n3UWSJEnDNvHpLpIkSZKWziBdkiRJ6hiDdEmSJKljDNIlSZKkjjFIlySpA9asgZkZOP102LVrNNc7\n/HA45BB4wxtGc01J/TNIlySpA7ZuhVtugeuvbwLoQVgs8N+6FXbuhIcfhptvHtw1u2bUNz/SoBik\nS5LUAStWNF9POgkuu2ww77lY4D93PYDjjx/cNbtmGDc/0igYpEuS1AHr18Nb3wo33QQrVw7mPRcL\n/NevhzPOgNWr4TOfGdw1u2YYNz/SKLiZ0aRwMyNJ0hLt2tWMHl922fQG4Xvi90DDMIrNjAzSJ4VB\nuiRpAqxZ06SYrFjRjNYbGGsaueOoJEmaKOaAS4NhkC5JkgbGHHBpMEx3mRSmu0iSJoA54FoOzElf\nIoN0SZIkDZs56ZIkjYEb4EgaN4N0SZLmGeXkR28IJC3EIF2SpHlGOflxFDcE3ghIk8cgXZI0ENMU\nCA5j98/dGcUNgcsiSpPHIF2SNBDTEgiuWQOrV8Njjz29bFg3IKO4IXBZRGnyGKRLkgZinIHgUoPo\nxeovdLMxzBuQlSthw4bhjtiP8i8DkgbDIF2SNBDjDASXGkQvVn+hm4377mu+Pve58MEPDq7dozKK\nGwFJg2WQLkkaiHEGgksdxV+s/kI3Gy9+cfP10UfhPe8ZTJslaTEG6ZKkibeUUfw1a5pg+7DD4Jpr\nvrv+Qjcbz31u87ULOd3TNEFX0u654+ikcMdRSRqImZkm1QWawH7Dhj2fM4it7tesadJsVqxobir2\n9n32pv2SBmsqdhxNsjLJNUnuSrIlySlJDklyU5KtSW5MsrKn/gVJ7klyd5JTe8pPTLK5fe3iYbdb\nktRNuxtJ7neEeXepLoudP4hUnkFNPnWlFml5GEW6y8XAdVV1LPAK4G7gfOCmqnoJ8Gftc5IcB7wN\nOA44Dfhwkrm7lEuBc6tqFbAqyWkjaLskqWN2F+z2GwTvLjVm2EtIDiq4dqUWaXkYapCe5HnAa6vq\nYwBV9URVPQK8GbiirXYFsLo9PgO4uqoer6ptwL3AKUkOBw6qqo1tvSt7zpEkLSO7C3b7DYJ3Nyq+\nlCB6b/LCBxVcd2GlFvPipeEb9kj6McDXknw8ye1JPpLkQODQqnqorfMQcGh7fASwvef87cCRC5Tv\naMslSR0yiuBtd8HuvgbBSzl/b0bduxBcD8q0bFwlddl+I3j/E4B3V9VfJfkd2tSWOVVVSQY2I3Ld\nunXfOZ6ZmWFmZmZQby1J2oO54A3g2GPhrrsGH5TOBbv9lu/r+y5kueeFL/fPr+VndnaW2dnZkV5z\nqKu7JDkMuLWqjmmfvwa4APhe4EeqamebyvLZqvr+JOcDVNVFbf0bgAuBB9o6x7blbwdeV1Xvmnc9\nV3eRpAFa6ookp5/ejK7O6frqI0v5fL11L720WS99X1Z7GZdBrDIziNVupEk2itVdFg3SkzwDoKqe\nTPI9wMuAbVX1zb4vkPw58B+ramuSdUB7/803quq/t4H5yqo6v504uh44mSad5Wbg+9rR9r8Efh7Y\nCPwpcElV3TDvWgbpkjRAS13ub9euZgR9585mlLXrkxv7+XxzQe2dd8LDDy9edxK4hKO070YRpO82\n3SXJauD3gCeTvAt4H/AY8P1J/lNVXdvnNc4DrkqyP3Af8DPAM4ENSc4FtgE/CVBVW5JsALYATwBr\ne6LutcDlwAE0q8U8LUCXpFEZ1HrXk3DtpaY1rFzZpLiMe5S13+9TP5+vN4VnT3Ungakq0mTY7Uh6\nki/SLIO4ArgDeFVV3Z3kxcAnqurE0TWzP46kSxqFcY5Ejvrak5rW0O/3qZ/PN5fC88pXwtFHw8c/\nPlnfi/kmtU+lLhnrSDrNnM6dbUP+tqrubgsfmEuDkaTlaJwjkaO+9r5OxhyXpS7HuJj166crqJ3U\nPpWWm8VG0jcBJ7b56CfPrVGeZD/gi1X1AyNsZ18cSZc0CuMciRzXtceZ4rMn89v23vfCli1w331w\n223w4hcvXn+pn6XL3wtJozHWiaNJTgY2V9U/zCs/mmaDov81zIbtDYN0ScvdMALINWuakddHHmme\nd22y4fzUlr/7u8VTXfY1ZWgp5xvQS9NprOkuPbt7zi/fRjPZU5LUMb2THE84AY46at8DxK1bnwrQ\nDz54cGk2gwpg56e2nHXW05/vqf6+Xm8xvf0xd7MjSf3YY255kpckuSbJXUnubx9/M4rGSZKWpjeA\nPOKIwewKOfeeBx8MmzYNbjR4ULtWzt8pdE87h45yZ1JXUpG0t/a4mVGSz9FsKPQh4E20SyhW1X8b\nfvOWxnQXSV037PSH3pz1s85qAuC9Wa98FBv3zK2aMgnrqc9Zav+5koo0nca+mVHbiNur6oQkm6vq\n5b1lw2zY3jBIl9R1C+UzDytw35cAcRRLPU5iAOtGQJJg/Eswzvl2kmcC9yZ5N/AV4MBhNkqSlmKS\nJuctlP4wrLzlfVlqbxRpGoNcCnBU/wZMX5E0Kv2sd/6LNBsa/TxwEvAfgHOG2ShJWopB5TaPwvx8\n5jVrmu3modkspwuB35o18OijcNhhcM013b7pmTOqfwP7ms8uSf3a40h6zyov3wJ+eqitkaS9MEmj\nm/NHj7duhYcfbo6PPnrfAr9BjSZv3Qqf+1xz/J73TEZKx6j+DbgRkKRR6Wd1l5cm+UiSm5J8tn18\nZhSNk6R+jGN0c82aJj/59NOb3Op+X5tvLrh8znPgscf2XH8xgxpNnqSbnjmOcEuaNv1MHL0TuBS4\nHfjntriq6gtDbtuSOXFU0qgsNoFwKZMLd+2CVavg61/vr/5iBrVayiRO6JSkUerKxNHHq+rSYTZC\nkhbTxYmhi402L2UkeuVKeNWrngqu+x25Xuh7sn79YIJrUzokafx2O5Ke5BAgwHnA14BPAP8493pV\nfXMUDVwKR9Kl6TR/ZHrlysWD9lEE9XOjzQccAA888PRrLXUkem9Grl0KUJLGZ6zrpCfZBuwuKqyq\n+t5hNWpvGaRLwzeOUe35aRyrVy8eoI4ygB1XsDyJGwFJ0rQYa7pLVR09zAtLmkzDWtN7MfPTOPaU\nTjLKiY/zrzWqm5hBpbZIkrqpn4mjBwBrgdfQjKz/BXBpVX17+M1bGkfSpeHrwgjuntJDRjnxcf61\n+h1Z72KevSSpP2NNd+lpxB8BjwJ/QJOjfhbwvKp66zAbtjcM0qXhG3QAPG3Bar83MYsF89P2PZGk\nadOVIH1LVR23p7IuMEiXJs/e5HR3OYjt9yZmsWDeSaGS1G2jCNL3uJkRcHuSfz33JMmrgc6tkS5p\nMu1N/viotoDfG3PLF+7pxmGxzXfmvifPfz585Sv9bYokSZou/Yyk3w28BHiQJif9KOCvgSdoVnl5\nxbAb2S9H0qXJszfpM13Iix+mue/JV74Cn/tcU+aIuiR1R1fSXY5e7PWq2ja45uwbg3RpeZj0HTH7\nTdeZ9psRSZpU414n/ZDFTnQzoxEzSJeWrKu56/3mnE/6zYgkTauxrpMO3M4imxkBndvMSNLyNj8o\nH8ea7v3oNw9/Lr99UnT1pkiSJlFfmxm1o+qrgGePoE2StFfmB+Wj3NRoKaZ1I6Ku3hRJ0iTa4+ou\nSd4B3ALcAKxrv17Y7wWSbEtyZ5JNSTa2ZeuSbG/LNiV5Y0/9C5Lck+TuJKf2lJ+YZHP72sX9f0RJ\ny8X8oHyxFVTmrFnTpJ+McgWVfleAmTRdvSmSpEnUz8TRLwGvAm6tqlcmORb49ap6S18XSO4HTuzN\nYU9yIfCtqvrQvLrHAevb6x0J3AysqqpqA/x3V9XGJNcBl1TVDfPONyddGpMupDrsTQ63a5IPjjn0\nkpaLrqyT/u2q+oe2Qc+uqruAly7xOgt9iIXKzgCurqrH21Vj7gVOSXI4cFBVbWzrXQmsXmIbJA1R\nF9Yu35sRakd/B2da/0IgSePQT5D+YJKDgU8CNyW5Fti2hGsUcHOSz7epM3POS3JHko8mmfuVfgSw\nvafOdpoR9fnlO9pySR0xqcFuPykxkiSN2mKruwDQk9ayLsks8FyavPR+/XBVfTXJC2iC/LuBS4Ff\nbV//APBbwLlLeM/dWrdu3XeOZ2ZmmJmZGcTbStqDSZ0MOWkrqEiSRm92dpbZ2dmRXnOPOekDvViT\ni/5YVf1WT9nRwKeq6uVJzgeoqova1+YmqT4AfLaqjm3L3w68rqreNe/9zUmfIl3IcZYkSZqvKznp\ney3JiiQHtccHAqcCm5Mc1lPtLcDm9vha4Mwk+yc5hmbZx41VtRN4NMkpSQKcTZN+oynWhRxnDcY4\nVlCRJGmS7THdZR8dCvxxE1ezH3BVVd2Y5Mokr6TJV78feCdAVW1JsgHYAjwBrO0ZGl8LXA4cAFw3\nf2UXTZ9JzXHWd3P9bEmSlmak6S7DZrrLdHE5t+lx+unNX0ROOmk4EzRNjZIkjdIo0l0M0ifFMgzS\nNT325YarnwDctc4lSaM0iiB92OkukpaJxYLpfVlBpZ9UGVOjJEnTZqgTRyUtH8Oa6NtPAO5a55Kk\naWO6y6Qw3UUdN6y8c+cmSJK6xpz0JVpuQbqT5dQlBtOSpOXCIH2JlluQ7mS5/nlDI0mSBmXiNzPS\ncDlZrn9ujCRJkiaJQfoEc7Jc/4Z1Q+NOmpIkaRhMd5kUThzdJ8PKl+5NOTrsMLjrLm+YJEmadqa7\nSAMyt073oAPouRF6gJ07TaWRJEmD4Uj6pHAkvZN27YJjj20C9GFtea+FORlYkjQujqRLHbdyZZPi\n4tyA0XMysCRpmu037gZI803aCOm+bHmvvefqRpKkaeZIujrHEdL+LPeVZVzdSJI0zRxJV+c4Qtqf\nuZsZaAL25Taa718wJEnTzJF0dc4gRkiXwyizNzOSJE0vV3eZFK7usiS965e/9a3TOeI6rLXfJUnS\n4kaxuovpLppKy2GU2XQPSZKmlyPpk8KR9CVxlFmSJA3LKEbSDdInhUG6JElSJ7iZkSRJkrQMGaRL\nkiRJHWOQLkmSJHWMQbokSZLUMUMP0pNsS3Jnkk1JNrZlhyS5KcnWJDcmWdlT/4Ik9yS5O8mpPeUn\nJtncvnbxsNstSZIkjcsoRtILmKmq46vq5LbsfOCmqnoJ8Gftc5IcB7wNOA44DfhwkrmZs5cC51bV\nKmBVktNG0HZJkiRp5EaV7jJ/iZo3A1e0x1cAq9vjM4Crq+rxqtoG3AuckuRw4KCq2tjWu7LnHEmS\nJGmqjGok/eYkn0/yjrbs0Kp6qD1+CDi0PT4C2N5z7nbgyAXKd7TlkiRJ0tTZbwTX+OGq+mqSFwA3\nJbm798WqqiQD26Vn3bp13zmemZlhZmZmUG8tSZKkZWh2dpbZ2dmRXnOkO44muRB4DHgHTZ76zjaV\n5bNV9f1Jzgeoqova+jcAFwIPtHWObcvfDryuqt417/0HtuPomjWwdSusWAHr13dga3l3HJUkSeqE\nid9xNMmKJAe1xwcCpwKbgWuBc9pq5wCfbI+vBc5Msn+SY4BVwMaq2gk8muSUdiLp2T3nDMXWrXDL\nLXD99U3ALkmSJI3KsNNdDgX+uF2gZT/gqqq6McnngQ1JzgW2AT8JUFVbkmwAtgBPAGt7hsbXApcD\nBwDXVdUNw2z4ihXN15NOgssuG+aVJEmSpKcbabrLsA0y3WXXrmYE/bLLOpDqAqa7SJIkdcQo0l0M\n0ieFQbokSVInTHxOuiRJkqSlM0iXJEmSOsYgXZIkSeoYg3RJkiSpYwzSJUmSpI4xSJckSZI6xiBd\nkiRJ6hiDdEmSJKljDNIlSZKkjjFIlyRJkjrGIF2SJEnqGIN0SZIkqWMM0iVJkqSOMUiXJEmSOsYg\nXZIkSeoYg3RJkiSpYwzSJUmSpI4xSJckSZI6xiBdkiRJ6hiDdEmSJKljDNIlSZKkjjFIlyRJkjrG\nIF2SJEnqGIN0SZIkqWOGHqQneWaSTUk+1T5fl2R7W7YpyRt76l6Q5J4kdyc5taf8xCSb29cuHnab\nNXqzs7PjboL2gf03uey7yWb/TTb7T4sZxUj6LwBbgGqfF/Chqjq+fVwPkOQ44G3AccBpwIeTpD3n\nUuDcqloFrEpy2gjarRHyF9Vks/8ml3032ey/yWb/aTFDDdKTvBA4Hfh9YC7gTs9xrzOAq6vq8ara\nBtwLnJLkcOCgqtrY1rsSWD3MdkuSJEnjNOyR9N8G3gM82VNWwHlJ7kjy0SQr2/IjgO099bYDRy5Q\nvqMtlyRJkqZSqmrPtfbmjZMfB95YVT+XZAb4pap6U5J/CXytrfYB4PCqOjfJ7wK3VdVV7fm/D1wP\nbAMuqqo3tOWvBd5bVW9a4JrD+TCSJElSj6paKDNkYPYb4nv/EPDmJKcDzwaem+TKqvqpuQptIP6p\n9ukO4EU957+QZgR9R3vcW75joQsO+5slSZIkjcLQ0l2q6n1V9aKqOgY4E/hMVf1Um2M+5y3A5vb4\nWuDMJPsnOQZYBWysqp3Ao0lOaSeSng18cljtliRJksZtmCPpvcJTq7v8ZpIfbJ/fD7wToKq2JNlA\nsxLME8DaeioXZy1wOXAAcF1V3TCidkuSJEkjN7ScdEmSJEl7Z+w7jib5WJKHkmzuKftgkrvaFWA+\nkeR5bfmzklyR5M4kW5Kc33POghseJfmeJH/Ylt+W5MU9r52TZGv7+E6uvPq3m/77QNt3m5J8ujfF\naakbVtl/w7WU/kvyhiSfb3/+Pp/kR3rOsf9GbKk/e+3rRyV5LMkv9ZTZd2OwF787X5Hk1iRfan8G\n92/L7b8RW+LvTeOWjlmo/3pe+6UkTyY5pKdsfHFLVY31AbwWOB7Y3FP2BuAZ7fFFNKu7AJxFs5Y6\nNKkv9wNHtc83Aie3x9cBp7XHa4EPt8dvA/53e3wIcB+wsn3cB6wc9/dj0h676b+Deo7PAy5tj48D\nvgg8CziaZi38ub/m2H/d779XAoe1xy8DtvfUs/863Hc9ZdcAf0iz2pZ9NyH9R5Oaegfw8vb5wTz1\nf6T91+2+M27p2GOh/mvLXwTc0PbRIW3ZWOOWsY+kV9VfAA/PK7upqubWVv9Lnlrd5UngwCTPBA4E\n/olmUuliGx69GbiiPf4/wL9tj38MuLGqdlXVLuAmmp1OtQS76b9v9Tx9Dk+tk783G1bZf0O0lP6r\nqi9WM5EbmrkjB7SjRPbfGCzxZ48kq4G/oem7uTL7bkyW2H+nAndW1ea23sNV9aT9Nx5L7Dvjlo5Z\nqP9aHwLeO69srHHLqCaO7oufBa5uj6+h+SZ8FVgB/GJV7Uryfex+w6MjgQcBquqJJI8k+RfsfvMk\nDUCSX6NZiecRYKYtPgK4rafa3Pf8cey/TtlN//X6d8AXqurxJEdi/3XGQn2X5Dk0//n8KM0Gc3Ps\nu47Zzc/eKqCS3AC8gGZk7oPYf52ym74zbpkASc6g+evwncnTVvMea9wy9pH0xSR5P/BPVbW+LTqF\nZuWXw4FjgP+SZrlGdUxVvb+qjgKuovnTnybIYv2X5GU0aWjvHEfbtLjd9N064Ler6u9pVttSR+2m\n/54FvIYmdeI1wFuSvJ6nVk1TB+ym74xbOi7JCuB9wIW9xWNqztN0NkhP8tPA6cC/7yl+O3BDVf1z\nVX0N+BxwIs3dyPwNj+buVnYAR7XvuR/wvKr6Bt+9edKLePodjgZjPc2oKyxtwyr7rxt6+48kLwQ+\nAZxdVfe3xfZfN/X23ck0y9/eD/wC8L4ka/F3Z5f19t+DwJ9X1Ter6h9o8l9PwJ+9rurtu7Mwbum6\nf0WTb35H+zvyhcAXkhzKmOOWTgbpSU6j+ZPsGVX17Z6X/hZ4fVvnQODVwN218IZH/7c951rgnPb4\nJ4A/a49vBE5NsjLJwTSTVT89xI+1bCRZ1fP0DOCu9ngpG1bZf2Oyu/5LshL4U+CXq+rWuQpV9VXs\nv07YXd9V1b+pqmOq2Vzud4Bfq6oP+7PXLYv87rwReHmSA9r/9F8HfNn+645F+u4BjFs6rao2V9Wh\nPb8jtwMnVNVDjDtuWeqs2EE/aPLNv0IzmeJBmhz0e2j+YW9qH3OzZA8ENgBfAr7M01coOJFm99J7\ngUt6yr+nPecemryio3te+5m2/B7gnHF/LybxsZv+u6btizvaf7SH99R/X9tHdwM/Zv9NTv8B/xV4\nrOfnchPwfPuv+30377wLgf/c89y+m4D+o/mr8pfa1y+y/yaj7zBu6dyjp//+se2/n5n3+t/Qru7S\nPh9b3OJmRpIkSVLHdDLdRZIkSVrODNIlSZKkjjFIlyRJkjrGIF2SJEnqGIN0SZIkqWMM0iVJkqSO\nMUiXpCmR5Ogkm5dQ/5wkh/dR7wNJ7kiyKcmn+zlHkrRvDNIlafn6aeCIPur9ZlX9YFUdD/wJ8CtD\nbZUkySBdkqbMfkn+IMmWJH/UbiV/YpLZJJ9PckOSw5L8BHAScFWS25M8O8mvJNmYZHOS35t7w6r6\nVs/7Pwd4ctQfSpKWG3cclaQpkeRomi2tf7iqbk3yUZqtrFcDZ1TV15O8DTi1qs5N8lmabcpvb88/\nuKoebo+vBDZU1Z+0z38NOBt4BJipqm+M+ONJ0rLiSLokTZcHq+rW9vgPgB8DfgC4Kckm4P3AkT31\n03P8+iS3JbkTeD3wsrkXqur9VXUUcBVw3jA/gCQJ9ht3AyRJA9X759EAjwJfrqofWqx+kmcD/wM4\nsap2JLkQePYC9dcDfwqsG1iLJUnfxZF0SZouRyV5dXt8FnAb8IK5siTPSnJc+/q3gOe2x3MB+TeS\nPAd4K08F8Kt63v8M4K4htl+ShCPpkjRNCvhr4OeSfAz4MnAJ8GngkiTPo/m9/9vAFuBy4H8m+Xvg\nh4CPAF8CdgJ/2fO+v5HkpTQTRrcB7xrFh5Gk5cyJo5IkSVLHmO4iSZIkdYxBuiRJktQxBumSJElS\nxxikS5IkSR1jkC5JkiR1jEG6JEmS1DEG6ZIkSVLH/H8UgpNI047aJAAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig = plt.figure(figsize=(12,3))\n",
- "ax = fig.add_subplot(111)\n",
- "ax.plot(rates[:, 2], rates[:, 5], 'b.')\n",
- "ax.axvline(129000.0, color='r')\n",
- "ax.axhline(7000.0, color='r')\n",
- "ax.set_xlabel('beta3')\n",
- "ax.set_ylabel('alpha3')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 48,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuwAAADXCAYAAABBAgS7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QVNd55/HvzyEoQsEMyEQWesW1I0fEcWSBhLccyW1L\nAkxlhZyICGdXEIcVa7HWxtmUvSLJimFVSaQ4iU22yirL0QvSCi2UFFlsFvOil1GlUiZgGVvYiIAc\nozDoJQoyKC47K4ie/eOehqvJTM9MT9/u292/T1XXnD73pe89Hpmnzzz3OYoIzMzMzMysnN7R6gsw\nMzMzM7PhOWA3MzMzMysxB+xmZmZmZiXmgN3MzMzMrMQcsJuZmZmZlZgDdjMzMzOzEis0YJfUI+kR\nSc9L2ivpg5IukbRD0m5JuyRdltt/laQDkvZJmpfrny1pT9q2Ntd/mqQNqX+HpAty25ZJ2p9eS4u8\nTzMzMzOzohQ9w74W2BwRFwPvB54H/ghYHREfAG5L75E0C7gBmAUsAL4kSek8dwHLI6IX6JW0IPUv\nB46k/i8Ad6ZzTUvnvjy9VkvqKfhezczMzMwarrCAXdIU4IqIuBcgIk5ExDHgLWBK2q0HOJzai4CH\nI+J4RBwEXgDmSjobmBwRO9N+DwDXpfa1wLrUfhS4KrXnA9si4mhEHAW2k30JMDMzMzNrKxMKPPdM\n4DVJ9wG/ADwL/CbwGWCrpD8m+8Lwb9P+M4AdueMHgHOA46lddTj1k34eguwLgaRjks5M5xoY4lxm\nZmZmZm2lyIB9AnAp8OmI2CXpi8CtZLPqn4mIxyQtBu4FrinwOoYlKVrxuWZmZmbWfSJCI+/1rxWZ\nwz4ADETErvT+EWA2sDQiHsv1XZ7ah4Hzcsefm85xOLUH91ePOR9A0gRgSkQcGeJc5/H2GfeTIsKv\nBr1Wr17d8mvolJfHssHj6f/WGzue/v30WJb05fH0eJb5NR6FBewR8QpwSNJFqetq4LvAYUkfTn0f\nBfan9iZgiaSJkmYCvcDOdJ43JM1ND6HeCDyeO2ZZal8PPJna24B5qUrNVLIZ/K2F3KiZmZmZWYGK\nTIkBuAV4SNJE4HvAJ8mC7bVpRvzHwAqAiNgraSOwFzgBrIxTX0dWAvcDp5NVndmS+u8BHpR0ADgC\nLEnnel3S7UB1dn9NZA+fmpmZmZm1lUID9oj4NnDZoO6/BuYMs/8fAH8wRP+zwM8P0f//gF8d5lz3\nAfeN8ZJtHCqVSqsvoWN4LBur0uoL6DD+/Wwcj2VjeTwby+NZHhpvTk07kxTdfP9mXUMC/7duZmYt\nJIko4UOnZmZmZmY2Tg7YzczMzMxKzAG7mZmZmVmJOWA3MzMzMysxB+xmZmZmZiXmgN3MzMzMrMQc\nsJuZmZmZlZgDdjMzMzOzEnPAbmZmZmZWYg7YzczMzMxKzAG7mZmZmZXGihVQqcDChXD0aKuvphwK\nDdgl9Uh6RNLzkvZKmpv6b0l935F0Z27/VZIOSNonaV6uf7akPWnb2lz/aZI2pP4dki7IbVsmaX96\nLS3yPs3MzMysMfbvh2eega99LQveDSYUfP61wOaIuF7SBOAMSR8BrgXeHxHHJU0HkDQLuAGYBZwD\nPCGpNyICuAtYHhE7JW2WtCAitgDLgSMR0SvpBuBOYImkacBtwOx0Hc9K2hQR/p5mZmZmVmKTJmU/\n58yBu+9u7bWURWEz7JKmAFdExL0AEXEiIo4BNwN/GBHHU/9r6ZBFwMMRcTwiDgIvAHMlnQ1Mjoid\nab8HgOtS+1pgXWo/ClyV2vOBbRFxNAXp24EFBd2qmZmZmTXI+vWweDFs3w49Pa2+mnIoMiVmJvCa\npPskfVPSVySdAfQCV6YUln5Jc9L+M4CB3PEDZDPtg/sPp37Sz0OQfSEAjkk6s8a5zMzMzKzEenpg\n40YH63lFpsRMAC4FPh0RuyR9Ebg19U+NiA9KugzYCLynwOuoqa+v72S7UqlQqVRadSlmZmZm1iH6\n+/vp7+9vyLmKDNgHgIGI2JXeP0IWsB8C/gIgBfJvSXoX2cz5ebnjz03nOJzag/tJ284HXko58lMi\n4oikw0Ald8x5wFNDXWQ+YDczMzMza4TBE8Fr1qyp+1yFpcRExCvAIUkXpa6rge8CjwMfBUjbJkbE\nPwKbyB4YnShpJlnqzM50njckzZUk4MZ0DtIxy1L7euDJ1N4GzEtVaqYC1wBbi7pXMzMzM7OiFF0l\n5hbgIUkTge8BnwR+BNwraQ/wJrAUICL2StoI7AVOACtThRiAlcD9wOlkVWe2pP57gAclHQCOAEvS\nuV6XdDtQnd1f4woxZmZmZtaOdCom7j6Sopvv36xrSOD/1s3MrIUkERGq51ivdGpmZmZmVmIO2M3M\nzMzMSswBu5mZmZlZiTlgNzMzMzMrMQfsZmZmVgorVkClAgsXwlHXdjM7yQG7mZmZlcL+/fDMM/C1\nr2XBu5llHLCbmZlZKUyalP2cMwfuvru112JWJq7D3sX3b9Y1XIfdrC0cPZrNrN99N/T0tPpqzBpr\nPHXYHbB38f2bdQ0H7GZm1mJeOMnMzMzMrEM5YDczMzMzKzEH7GZmZmZmJVZowC6pR9Ijkp6XtFfS\nB3PbflvSW5Km5fpWSTogaZ+kebn+2ZL2pG1rc/2nSdqQ+ndIuiC3bZmk/em1tMj7NDMzMzMrStEz\n7GuBzRFxMfB+4HkASecB1wAvVneUNAu4AZgFLAC+JKmamH8XsDwieoFeSQtS/3LgSOr/AnBnOtc0\n4Dbg8vRaLcnPm5uZmbWAF0QyG5/CAnZJU4ArIuJegIg4ERHH0uY/BT436JBFwMMRcTwiDgIvAHMl\nnQ1Mjoidab8HgOtS+1pgXWo/ClyV2vOBbRFxNCKOAtvJvgSYmZlZkzVjQSR/KbBOVuQM+0zgNUn3\nSfqmpK9ImiRpETAQEc8N2n8GMJB7PwCcM0T/4dRP+nkIsi8EwDFJZ9Y4l5mZmTVZMxZE8iqp1skm\nFHzuS4FPR8QuSV8E1gBXAPNy+9VVj7JR+vr6TrYrlQqVSqVl12JmZtaJ1q8vfkEkr5JqZdPf309/\nf39DzlXYwkmS3g18PSJmpve/CPQB7wN+nHY7l2zGfC7wSYCIuCPtvwVYTZbn/nTKg0fSJ4ArI+Lm\ntE9fROyQNAF4OSKmS1oCVCLiU+mYLwNPRcSGQdfohZPMuoEXTjLreF4l1cqulAsnRcQrwCFJF6Wu\nq4FnI+LdETEzBfIDwKUR8SqwCVgiaaKkmUAvsDOd5w1Jc9NDqDcCj6dzbgKWpfb1wJOpvQ2Yl6rU\nTCV7wHVrUfdqZmZmrdXTAxs3Oli3zlRkSgzALcBDkiYC3yPNouecnPKKiL2SNgJ7gRPAytz090rg\nfuB0sqozW1L/PcCDkg4AR4Al6VyvS7od2JX2W5MePjUzMzMzayuFpcS0A6fEmHUJp8SYmVmLlTIl\nxszMzLqLSyuaFcMBu5mZWZN0ekDr0opmxXDAbmZm1iSdHtC6tKJZMRywm5mZNUmnB7Tr18PixbB9\ne+uqtXT6XzGsO/mh0y6+f7Ou4YdOrSRcK7x4lUr2VwzIvjxs3NjSyzE7aTwPnRZd1tHMzMySaq1w\nK06n/xXDupNn2Lv4/s26hmfYzbqG/4phZTWeGXYH7F18/2ZdwwG7mZm1mOuwm5mZmZl1KAfsZmZm\nJeEKJ2Y2FAfsZmZmJdHpddrNrD4O2M3MzErCFU7MbCiFBuySeiQ9Iul5SXslfVDS59P7b0v6C0lT\ncvuvknRA0j5J83L9syXtSdvW5vpPk7Qh9e+QdEFu2zJJ+9NraZH3aWZm1ghlWHjIzMqn0CoxktYB\nz0TEvZImAGcAlwNPRsRbku4AiIhbJc0C1gOXAecATwC9ERGSdgKfjoidkjYDfxYRWyStBN4XESsl\n3QB8PCKWSJoG7AJmp0t5FpgdEW/LCHSVGLMu4SoxZmbWYqWsEpNmzq+IiHsBIuJERByLiO0R8Vba\n7W+Ac1N7EfBwRByPiIPAC8BcSWcDkyNiZ9rvAeC61L4WWJfajwJXpfZ8YFtEHE1B+nZgQSE3amZm\nZmZWoCJTYmYCr0m6T9I3JX1F0qRB+/wGsDm1ZwADuW0DZDPtg/sPp37Sz0OQfSEAjkk6s8a5zMzM\nzMzayoSCz30pWSrLLklfBG4FbgOQ9LvAmxGxvsBrGFFfX9/JdqVSoVKptOxazMzMzKwz9Pf309/f\n35BzFRmwDwADEbErvX+ELGBH0q8DCzmVwgLZzPl5uffnpnMc5lTaTL6/esz5wEspR35KRByRdBio\n5I45D3hqqIvMB+xmZmZlsWJFVuZx0qTsYVQ/hGrWXgZPBK9Zs6bucxWWEhMRrwCHJF2Uuq4Gvitp\nAfBZYFFE/HPukE3AEkkTJc0EeoGd6TxvSJorScCNwOO5Y5al9vXAk6m9DZiXqtRMBa4BthZzp2Zm\nZo21YgVs3Fj+muxe6MmsOYqcYQe4BXhI0kTge2Q567uAicD2LP7m6xGxMiL2StoI7AVOACtzJVxW\nAvcDpwObI2JL6r8HeFDSAeAIsAQgIl6XdHv6LIA1gyvEmJlZ92jUbHWzZr3374djx7L21Knlrcle\nXegJTn3JMLPGK7SsY9m5rKNZl3BZx65XqZwKLBcvrj+wbNR5RrJwYTazPnUq7N4NF1ww8jGtUL3O\nOXNcO95sJKUs62hmZlYWjVpBtFkrkVYXUPq7vytvsA5e6MmsWTzD3sX3b9Y1PMNeWs1KMTl6NPus\nu+8e32c06jxm1n3GM8PugL2L79+sazhgL61mpZiUnSvCmHU+p8SYmVlbalaKSZEaUSml+vBmmSvC\nmFnrFF0lxszMbFjr17dvikl1Vvy55+AHPzjVV89fCTrhi4uZFccpMV18/2ZdwykxVoB8Og+Mr1KK\nc+PNOt94UmI8w25mZlaH6qz4JZfAhRfCfffVH2z39HRv/r6Zjcwz7F18/2ZdwzPsba2sD2R6VtzM\nxsJVYurkgN2sSzhgb2uuJGNmncBVYszMrGP5gUwz63aeYe/i+zfrGp5hbyuDU2CqfU49MbN21pSU\nGEnTIuL1ej6krBywm3UJB+xtpREpMGXNezez7tWslJgnx3pyST2SHpH0vKS9kuZKmiZpu6T9krZJ\n6sntv0rSAUn7JM3L9c+WtCdtW5vrP03ShtS/Q9IFuW3L0mfsl7R0rNduZmaNNdoFhhqRAuOFiMys\nkxSdw74W2BwRFwPvB/YBtwLbI+Iisi8BtwJImgXcAMwCFgBfklT9FnIXsDwieoFeSQtS/3LgSOr/\nAnBnOtc04Dbg8vRanf9iYGZmzTfaIHr69Ow1nlnx8QT9jVi51MyskWoG7GmWeqmkZcC0ans0M9aS\npgBXRMS9ABFxIiKOAdcC69Ju64DrUnsR8HBEHI+Ig8ALwFxJZwOTI2Jn2u+B3DH5cz0KXJXa84Ft\nEXE0Io4C28m+BJiZdZx2CTBHG0S/+CK89ho88UT9s+Pr12fpNPUsZOTZeTMrm5Fm2GfmXhPTzwvT\nz5HMBF6TdJ+kb0r6iqQzgLMi4tW0z6vAWak9AxjIHT8AnDNE/+HUT/p5CLIvBMAxSWfWOJeZWcdp\nlwBztEF0I1JiqgsR1TNL76o0ZlY2NVc6jYi+alvSoohYM8ZzXwp8OiJ2SfoiKf0ld/6Q1NInwfr6\n+k62K5UKlUqlZddiZlaPdgkwR7ua5/r1ra0K0+rPN7PO0N/fT39/f0PONZYqMbsj4gOjPrH0buDr\nETEzvf9FYBXwHuAjEfFKSnd5OiJ+VtKtABFxR9p/C7AaeDHtc3Hq/wRwZUTcnPbpi4gdkiYAL0fE\ndElLgEpEfCod82XgqYjYMOgaXSXGrBt0eJWYbl1x05VgzKydFFolRtLs1Fya6/ulkY6LiFeAQ5Iu\nSl1XA98F/g+wLPUtA76a2puAJZImSpoJ9AI703neSBVmBNwIPJ47pnqu6zlVyWYbMC9VqZkKXANs\nHemazcza0XjSPwYrIh++qBz7ZqcCtcuzAmbWeWqmxCRfkbQsIvbAyRnu3wL+chTH3gI8JGki8D3g\nk8BPABslLQcOAr8KEBF7JW0E9gIngJW56e+VwP3A6WRVZ7ak/nuAByUdAI4AS9K5Xpd0O7Ar7bcm\nPXxqZtb2ipxZrgbB1c+ppwZ6M84JzU8FKuo+zMxGMmJKjKT3AI8AvwZcQTbT/kup4ktbc0qMWZfo\nsJSYRiwsNJyFC7MZ6zlz6quw0qxzQvNTgYq6DzPrDoWvdCrpvWSpKy8CvxwRP6rnw8rGAbtZl+iw\ngL3IwLGIILhTcuw75T7MrDUKCdgl7RnU9TPAUeBNsgIv76/nA8vEAbtZl2hiwN6MByGLDhz9MOfY\neLzMbDSKCtgvrHVgWtyorTlgN+sSdQbs9QRiRaarFGGoe6x1D0UHp+0Y/Lbb/+Zm1hrjCdiHfei0\nEwJyM7PxGPyQYU/PyMFk9UHId70LXnopS18Zb+DZ7IdMaz3MWfSDl+34YGe71ME3s/Y1YllHM7NO\nVqtU3+BAbDRlBKureb73vfDXf92YkoNFli8cKtistSJp0cFpOwa/o13B1cysXqNeOKkTOSXGrEvU\nSIkZnM6Qn0W/6y747GdP5YqP5WHPsew70gx6mR4yLTp/3g92mlmnKrxKTKeS1MV3b2ZmZmbNImh8\nDnvXcMhu1vlqzLAPntFt5Mz4aDWzvnej8+H9wKWZ2SiprlgdcA67mXW5np4syKwGrmPJR25Ubnkz\nc6CHuuZaefwjacecczOzduOUmC6+f7OuUVAd9qJmxousCjPUNednyWfOhPPPH/1nO+fczGx0nMNe\nJwfsZp3pXwW8U4sJ2IsKVsebZlIr4B/qmvNB/GmnZdVt6v1sMzMb2ngCdqfEmFmhxpNuUe/xRZZB\nzBucTtMo400zqXX/Q11zPiXnne8c32ebmVnjFRqwSzoo6TlJuyXtTH2XSNqR+nZJuiy3/ypJByTt\nkzQv1z9b0p60bW2u/zRJG1L/DkkX5LYtk7Q/vZYWeZ9mNrzxBs/1HN+ovOrxftmo13hz2sd6//kg\n3jXFzczKp9CUGEnfB2ZHxOu5vm3An0TEVkkfAz4XER+RNAtYD1wGnAM8AfRGRKRg/9MRsVPSZuDP\nImKLpJXA+yJipaQbgI9HxBJJ04BdwOz0sc+m63jbP7lOiTEr3njzvOs5/l+lfdSZwz6e3O5Wcl65\nmVn5lD0lZvCFvQVMSe0e4HBqLwIejojjEXEQeAGYK+lsYHJE7Ez7PQBcl9rXAutS+1HgqtSeD2yL\niKMpSN8OLGjcLZnZaI13xrae4xuVqpKfqZ4xY+iZ/lbNwtdSVKqOmZm1RtEBewBPSPqGpJtS32eA\nz0v6e+DzwKrUPwMYyB07QDbTPrj/cOon/TwEEBEngGOSzqxxLjNrsvEGj60MPkeT292sfHkzM+te\nRS+c9KGIeFnSdGC7pH3AYuAzEfGYpMXAvcA1BV/HsPr6+k62K5UKlUqlVZdi1laKLD1YFtUvC5Dd\n41BpJq5DbmZmQ+nv76e/v78h52paWUdJq4EfAv89InpSn4CjETFF0q0AEXFH2rYFWA28CDwdERen\n/k8AV0bEzWmfvojYIWkC8HJETJe0BKhExKfSMV8GnoqIDYOuyTnsZnVqqxUuC6rDDs4XNzOz0Sll\nDrukSZImp/YZwDzgO8BLkj6cdvsosD+1NwFLJE2UNBPoBXZGxCvAG5LmpgD/RuDx3DHLUvt64MnU\n3gbMk9QjaSrZDP7Wou7VrBs1cma5jHngo+V8cTMzK1qRKTFnAY9lMTYTgIdSZZibgLVpRvzHwAqA\niNgraSOwFzgBrMxNf68E7gdOBzZHxJbUfw/woKQDwBFgSTrX65JuJ6sUA7BmcIUYMxuf4VJE6lHN\nA4fsnMPN1ndDGo6ZmdlgXum0i+/frCxGKt1YDdSfew5+8IOsb7g0nCGD+gJTYszMzEajlCkxZtY9\nxpvSMlLpxuoMfDVYr5WG46otZmbWaYquEmNmLdDs1JHRprQMJ1+NZSjVfPlLLoELL8xKLF533dD3\n56otZmbWaTzDbtaBmj3LXFSQXJ25P34cFi2Cp5+Gxx6DF18c/v7Gu1CTmZlZ2ThgN+tAzZ5lLipI\nrn7xeOIJmDjx1Llr3Z+rtpiZWafxQ6ddfP/WudqtNvhwKTzDPYw65vtrg4dOXQHHzKyzjeehUwfs\nXXz/ZmUx3CJMDfvi0QYBe1stRGVmZmM2noDdD52aWcsNl+Iy0sOoncQPy5qZ2XA8w97F929Wr0an\nbxSewtMGM+ztlsZkZmZj45SYOjlgN6tPEekbheZwt0HAbmZmnc0pMWbWVEWkb+RruV96KZx/vh/A\nNDMzA5d1NLM6FFHGMf8lYMYMr1ZqZmZW5YDdzIZUXbRo4cIsvzqviFrn+S8B73xn1ucHMM3MzAoO\n2CUdlPScpN2Sdub6b5H0vKTvSLoz179K0gFJ+yTNy/XPlrQnbVub6z9N0obUv0PSBbltyyTtT6+l\nRd6ndYZaAWoRx41HMz5zvKuljvUa818CvFqpmZnZKUXnsAdQiYjXqx2SPgJcC7w/Io5Lmp76ZwE3\nALOAc4AnJPWmp0LvApZHxE5JmyUtiIgtwHLgSET0SroBuBNYImkacBswO33ss5I2RUSTwilrR/kc\n6hUrRv8gZb3HjUczPnO8eerjucZuKudoZmY2kmakxAx+GvZm4A8j4jhARLyW+hcBD0fE8Yg4CLwA\nzJV0NjA5Iqoz9A8A16X2tcC61H4UuCq15wPbIuJoCtK3Awsae1vWaeoNUFtRP7sZnzneWe6ir7EV\nf9kwMzNrhaID9iCbKf+GpJtSXy9wZUph6Zc0J/XPAAZyxw6QzbQP7j+c+kk/DwFExAngmKQza5zL\nbFj1BqitSN9oxmeON0+96Gscb8qOmZlZuyg6JeZDEfFySnvZLmlf+sypEfFBSZcBG4H3FHwdw+rr\n6zvZrlQqVCqVVl2KtVi9aRitSN9oh5SRoq/RK4OamVmZ9ff309/f35BzNW3hJEmrgR8CVwN3RMQz\nqf8F4IPAfwSIiDtS/xZgNfAi8HREXJz6PwFcGRE3p336ImKHpAnAyxExXdISstz5T6Vjvgw8FREb\nBl2TF04ya1NjWhnUCyeZmVmLjWfhpMJSYiRNkjQ5tc8A5gF7gK8CH039FwETI+IfgU1kD4xOlDST\nLHVmZ0S8Arwhaa4kATcCj6eP2QQsS+3rgSdTexswT1KPpKnANcDWou7VOpNzpMutiNKSZmZmZVRk\nSsxZwGNZjM0E4KGI2CbpJ4F7Je0B3gSWAkTEXkkbgb3ACWBlbvp7JXA/cDqwOVWIAbgHeFDSAeAI\nsCSd63VJtwO70n5rXCHGxqoRlVhWrMjO4xU7zczMrF5NS4kpI6fEdJ5GBsgLF2YPNM6ZU/+Dk5XK\nqaB/8eL6c7od+I+TU2LMzKzFSpkSY9YKjawcUqvKyWjTZRr1YKQropiZmXUvB+xWU7vlcTeyckit\nHOnRBtCNKm3oiihmZmbdyykxXXz/o9GolI5mGVPlkBHUSkNpRLrMSJ+R18j76kpOiTEzsxYbT0qM\nA/Yuvv/RaFRg2o5qfVlpVADdbl+I2pYDdjMzazHnsFthWrGKZ1nUSkNpVElBp7qYmZnZSDzD3sX3\nb7U1Iw3FqS5N4hl2MzNrMafE1MkBu1mXcMBuZmYt5pQYMzMzM7MO5YDdrIO0WxlOMzMzG5kDdrMO\n4gWWzMzMOo8DdrMO4qozZmZmnccPnXbx/VvncdWZYfihUzMza7HSPnQq6aCk5yTtlrRz0LbflvSW\npGm5vlWSDkjaJ2lern+2pD1p29pc/2mSNqT+HZIuyG1bJml/ei0t8j7NyqJR9eHNzMysPIpOiQmg\nEhEfiIjLq52SzgOuAV7M9c0CbgBmAQuAL0mqfgu5C1geEb1Ar6QFqX85cCT1fwG4M51rGnAbcHl6\nrZbkEKaB/HCjmZmZWXM0I4d9qKn/PwU+N6hvEfBwRByPiIPAC8BcSWcDkyOiOkP/AHBdal8LrEvt\nR4GrUns+sC0ijkbEUWA72ZcAaxA/3GhmZmbWHM2YYX9C0jck3QQgaREwEBHPDdp3BjCQez8AnDNE\n/+HUT/p5CCAiTgDHJJ1Z41zWIH640czMzKw5JhR8/g9FxMuSpgPbJe0DVgHzcvvUlXzfKH19fSfb\nlUqFSqXSsmtpJ+vX++FGMzMzs+H09/fT39/fkHM1rUqMpNXAvwC3AD9K3eeSzZjPBT4JEBF3pP23\nAKvJ8tyfjoiLU/8ngCsj4ua0T19E7JA0AXg5IqZLWkKWO/+pdMyXgaciYsOga3KVGLNu4CoxZmbW\nYqWsEiNpkqTJqX0G2az6zog4KyJmRsRMslSVSyPiVWATsETSREkzgd60/yvAG5LmpodQbwQeTx+z\nCViW2tcDT6b2NmCepB5JU8kecN1a1L2amZmZmRWlyJSYs4DHUqGXCcBDEbFt0D4np7wiYq+kjcBe\n4ASwMjf9vRK4Hzgd2BwRW1L/PcCDkg4AR4Al6VyvS7od2JX2W5MePjUzMzMzayteOKmL79+sazgl\nxszMWqyUKTHWPK6JbmZmZta5HLB3ANdENzMzM+tcDtg7QJlqonu238zMzKyxHLB3gPXrYfFi2L69\n9TXRPdtvZmZm1lhFL5xkTdDTAxs3tvoqMmWa7TczMzPrBF1fJeamm4L9+7NAc/361s9Qt7ujR70C\nqpWQq8SYmVmLjadKTNcH7B/+cPDMM9n7xYvLM1NtZg3kgN3MzFrMZR3HwSkcZmZmZlZmXT/D/oMf\nhFM4zDqdZ9jNzKzFnBJTJ690atYlHLCbmVmLOSXGzMzMzKxDOWA3MzMzMyuxQgN2SQclPSdpt6Sd\nqe/zkp6X9G1JfyFpSm7/VZIOSNonaV6uf7akPWnb2lz/aZI2pP4dki7IbVsmaX96LS3yPi3T39/f\n6kvoGB7Lxupv9QV0GP9+No7HsrE8no3l8SyPomfYA6hExAci4vLUtw34uYj4BWA/sApA0izgBmAW\nsAD4kqRqns9dwPKI6AV6JS1I/cuBI6n/C8Cd6VzTgNuAy9NrtSQ/Ulow/4fdOB7Lxupv9QV0GP9+\nNo7HsrHRUESkAAAH+0lEQVQ8no3l8SyPZqTEvC25PiK2R8Rb6e3fAOem9iLg4Yg4HhEHgReAuZLO\nBiZHxM603wPAdal9LbAutR8Frkrt+cC2iDgaEUeB7WRfAszMzMzM2kozZtifkPQNSTcNsf03gM2p\nPQMYyG0bAM4Zov9w6if9PAQQESeAY5LOrHEuMzMzM7O2UmhZR0lnR8TLkqaTzXLfEhF/lbb9LnBp\nRPxKev8/gR0R8VB6/+fA14CDwB0RcU3qvwL4XET8O0l7gPkR8VLa9gIwF/h14Kci4vdT/+8BP46I\nPxl0fa7zZmZmZmZNUW9ZxwmNvpC8iHg5/XxN0mNk+eR/JenXgYWcSmGBbOb8vNz7c8lmxg9zKm0m\n31895nzgJUkTgCkRcUTSYaCSO+Y84Kkhrq+uQTMzMzMza5bCUmIkTZI0ObXPAOYBe9IDo58FFkXE\nP+cO2QQskTRR0kygF9gZEa8Ab0iamx5CvRF4PHfMstS+HngytbcB8yT1SJoKXANsLepezczMzMyK\nUuQM+1nAY6nQywTgoYjYJukAMBHYnrZ9PSJWRsReSRuBvcAJYGVuGdKVwP3A6cDmiNiS+u8BHkzn\nPAIsAYiI1yXdDuxK+61JD5+amZmZmbWVQnPYzczMzMxsfDp2pVNJ50l6WtJ3JX1H0n9J/RvSQk67\nJX1f0u7cMUMu3GQ1x/OStGjVbkm7JF2WO8bjOYwa4/kLkr6eFhzbVE0rS9s8nkOQ9FOS/kbSt9JY\n9qX+aZK2p8XTtuXXYvBYDq/GeC5Ov6//IunSQcd4PIdRYzzHvIhgt6sxlrencdwtaWsqB109xmM5\njOHGM7f9tyW9pWxtm2qfx3MYNX4/+yQN5GLPj+WOGf14RkRHvoB3A5ek9k8DfwtcPGifPwZ+L7Vn\nAd8CfhK4kKwO/DtafR9leQ03nmTPC8xP/R8DnvZ4jms8dwFXpP5PAv/D4zmq8ZyUfk4AdpBVi/oj\nsopSAP+NrNqUx7L+8fxZ4CLgabIKX9V9PZ71jec11XEC7vDv57jGcnJu+y3AXR7L+sczvT8P2AJ8\nH5jm8ax/PIHVwH8dYt8xjWfHzrBHxCsR8a3U/iHwPFl9dgCUJdD/KvBw6hpq4abLMWDY8TwHeAuo\nzgz1kFXuAY9nTTXGszdS6VPgCeBXUtvjWUNE/Cg1J5L9n1/w9oXV1nFqwTWP5QiGGM+3ImJfROwf\nYneP5wiGGc+xLCLo8UyGGct/yu3y02T/LoHHckRDjWd6/6fA5wbt7vEcwTD/FsGgRUSTMY1nxwbs\neZIuBD5A9n+KVVcAr0bE99J7L7Y0Srnx3AF8Bvi8pL8HPg+sSrt5PEdp0O/ndyUtSpsWc6rUqcez\nBknvkPQt4FWyVY53AmdFxKtpl1fJHoQHj+WIhhjPXTV293iOYBTjOZpFBI3hx1LS76d/h34NuC3t\n7rEcwVDjmf4NGoiI5wbt7vEcwTD/FgHcktK27smlZ45pPDs+YJf008AjwG+mmcyqTwDrRzjcT+QO\nMsR4rgQ+ExHnA78F3FvjcI/nIIPG85/I/uFeKekbZDNFb9Y43OOZRMRbEXEJ2SzlXEnvG7Q9qD1e\nHsucIcbz58Z6igIuq23VGk9liwi+GRG1/j3yeCbDjWVE/G76d+ghsrSYYU/RhMtsG0OM588Dv0OW\nxlFVa80aj2fOML+fdwEzgUuAl4E/qXWK4TZ0dMAu6SeBR4H/FRFfzfVPAD4ObMjtPtTCTYexk4YZ\nz6UR8VhqP8KpP+d4PEcw1HhGxN9GxPyImAP8b6D6FyCP5yhExDGyHOv5wKuS3g3ZqsvAP6TdPJaj\nlBvPBTV283iO0uDx1KlFBP99bjeP5yjU+N1cz6lUQo/lKOXGcxFZPvW3JX2fbMyelXQWHs9Ry/9+\nRsQ/RAL8OXXGSR0bsKcc9XuAvRHxxUGbrwaej4iXcn1DLtzUnKstvxrj+ZKkD6f2R4FqjqvHs4bh\nxlPS9PTzHcDvkX0zB4/nsCS9q/onRkmnkz3M9zxvX1htGVD9kumxrKHGeL5tt1zb41nDcOOpMS4i\n2OzrLqMaY/lvcrst4tTvq8eyhmHG85sRcVZEzIyImWRpGpem9EKPZw01fj/fndvt48Ce1B7TeBa5\ncFKrfQj4D8BzOlW6cVVkiy7dwKmHTQGI2gs32dDj+TvATcDa9FeLHwMrwOM5CsONZ6+k/5zePxoR\n94PHcwRnA+sk/QTZJMSGiNgsaQewUdJy4CDZQ+Yey5ENN54fB/4MeBfwfyXtjoiPeTxHNNx41rOI\nYLcbbiwfkfResgcmDwKfAv+3PgpDjuegfU6Ol8dzRMP9fj4g6RKysfw+8J9g7OPphZPMzMzMzEqs\nY1NizMzMzMw6gQN2MzMzM7MSc8BuZmZmZlZiDtjNzMzMzErMAbuZmZmZWYk5YDczMzMzKzEH7GZm\nVpOkCyXtGXlPMzMrggN2MzMzM7MSc8BuZmajJuk9kr4paXarr8XMrFtMaPUFmJlZe0jLvz8MLIsI\np8iYmTWJA3YzMxuNnwG+Cnw8Iva1+mLMzLqJU2LMzGw0jgIvAlcASLpX0m5Jf9nayzIz63yeYTcz\ns9F4E/hlYKukH0bEb7T6gszMuoUDdjMzG42IiB9J+iVgu6R/igjPrpuZNYEiotXXYGZmZmZmw3AO\nu5mZmZlZiTlgNzMzMzMrMQfsZmZmZmYl5oDdzMzMzKzEHLCbmZmZmZWYA3YzMzMzsxJzwG5mZmZm\nVmL/H4c5lkUXYKchAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig = plt.figure(figsize=(12,3))\n",
- "ax = fig.add_subplot(111)\n",
- "ax.plot(rates[:, 12], rates[:, 17], 'b.')\n",
- "ax.axvline(300, color='r')\n",
- "ax.axhline(0.59e6, color='r')\n",
- "ax.set_xlabel('k-')\n",
- "ax.set_ylabel('k+')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Mean CPU time = 41.7632945998\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAADXCAYAAAD/VFzmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6JJREFUeJzt3X+0bWVd7/H3Jw6CiIqoF39h0E3SFEUtdKTk9mfHVMJr\nmZaIaFxLQzOvit6KM2zcm9kwrbx6bwqEpvYDiSuVV9BYRsMUFZDDLwnSBI0fmT84KYLyvX+seWCx\n3Xufs/aee8611ny/xlhjz/XMuZ7nu54997O+e65nzpmqQpIkSRqiH+g7AEmSJKkvJsOSJEkaLJNh\nSZIkDZbJsCRJkgbLZFiSJEmDZTIsSZKkwZoqGU5ycpLrkmxfVn58ksuSXJzkd9sNUZK0HkkOTHJO\nkkua8fkVTfm2JNckuaB5bO07VknqS6a5znCSI4AdwHuq6tCm7InAG4Cfrqpbkty7qm7YlGglSbst\nyX2A+1TVhUn2BT4LHAU8F7ixqn6/1wAlaQZsmWbjqjo3yUHLin8F+J2quqXZxkRYkmZAVV0LXNss\n70hyGXD/ZnV6C0ySZkgbc4YfBPxkkk8mGSX5sRbqlCS1qDmQ8Ujgk03R8Uk+l+SkJPv1Fpgk9Wyq\nI8Nr1HGPqnpskh8H/gL4oeUbJfG+z5LmVlXN7ZHUZorEacArmyPE7wTe2Kz+beAtwEuWvcYxW9Lc\nmmbMbuPI8DXA6U3DnwZuTXLPVQKbi8eJJ57YewzzHm/zG1/hceIq5Rt5bN6+NYt9a6zdP+ZZkj2B\nDwJ/WlVnAFTV9dUA3g0cvtJr++73WdlXZiEG4zCOeYhjFmKomn7MbiMZPgN4EkCSQ4A7VdVXW6hX\nkrQBSQKcBFxaVW+bKL/vxGbPBrYvf60kDcVU0ySSfAB4AnDPJFcDvwWcDJzcXG7tZuCFrUcpSVqP\nxwEvAC5KckFT9gbg+UkOY/zVyheAl/YUnyT1btqrSTx/lVVHtxDLzFhaWuo7hKnMV7xLfQcwlXnq\nW2PVclX1D6z8DeCHu45lvWZhX5mFGMA4ljOOO5qFOGYhhvWY6jrDG2ooqa7aUv/G38529fvOuuYI\nSbsrCTXHJ9Cth2O2pHk17Zjt7ZglSZI0WCbDkiRJGiyTYUmSJA2WybAkSZIGy2RYkiRJg9XG7Zil\n3o2vXrGYPKNfkqTNYzKsBdFlwtjtZeMkSdLmcZqEJEmSBssjw5IkzZGup4U5VUuLzmRYkqS541Qt\nqS1Ok5AkSdJgTZUMJzk5yXVJtq+w7tVJbk2yf3vhSZIkSZtn2iPDpwBblxcmORB4KvAvbQQlSZIk\ndWGqZLiqzgW+tsKq3wde20pEkiRJUkc2PGc4yc8A11TVRS3EI0mSJHVmQ1eTSLIP8AbGUyRuK15t\n+23btt22vLS0xNLS0kaal6RNMRqNGI1GfYchSepApr1+YJKDgDOr6tAkhwIfBb7VrH4A8GXg8Kq6\nftnrymsVDsf4OphdXvpnce9A599N/5JQVYO6xpRj9uzqenx1P9C8mXbM3tCR4araDhww0fgXgEdX\n1b9vpF5JkiSpC9NeWu0DwCeAQ5JcneTYZZv476MkSZLmxtTTJNbdkF+5DYrTJNpry7+b/jlNQrPE\naRLS2qYds70DnSRJkgbLZFiSJEmDZTIsSZKkwTIZliRJ0mCZDEvSgkpyYJJzklyS5OIkr2jK909y\ndpIrkpyVZL++Y5WkvpgMS9LiugV4VVU9FHgs8PIkDwFOAM6uqkOAjzXPJWmQTIYlaUFV1bVVdWGz\nvAO4DLg/cCRwarPZqcBR/UQoSf0zGZakAUhyEPBI4FPAAVV1XbPqOibuJCpJQ7Oh2zFLkmZfkn2B\nDwKvrKobxzdtGKuqSrLiXRW2bdt22/LS0hJLS0ubG6hm0uT+stm8wYfWYzQaMRqN1v1670CnTeEd\n6Npry7+b/s3zHeiS7An8NfDhqnpbU3Y5sFRV1ya5L3BOVT142escs2fU4o6vjndqh3egkyQBkHHW\ndBJw6c5EuPEh4Jhm+RjgjK5jk6RZ4ZFhbYrFPXLRdXseKZkF83pkOMnjgb8HLuL2nfb1wHnAXwAP\nBL4IPLeqvr7stY7ZM2pxx1fHO7Vj2jF7qmQ4ycnAM4Drq+rQpuz3gGcCNwNXAcdW1TdWeK0D64As\n7mDddXt+OMyCeU2GN8Ixe3Yt7vjqeKd2bPY0iVOArcvKzgIeWlWPAK5gfNRBkiRJmnlTJcNVdS7w\ntWVlZ1fVrc3TTwEPaCk2SZIkaVO1fQLdi4G/bblOSZIkaVO0dp3hJP8duLmq3r/aNl6zUtI82Og1\nKyVJ82Pqq0k0dzE6c+cJdE3Zi4DjgCdX1U2rvM6TMQZkcU/w6Lo9TyiZBZ5Ap1myuOOr453aMe2Y\nveEjw0m2Aq8BnrBaIixJkiTNoqnmDCf5APAJ4EeSXJ3kxcAfAfsCZye5IMk7NiFOSZIkqXXedEOb\nYnG/xuu6Pb82nAVOk9AsWdzx1fFO7fB2zJIkSdJuMhmWJEnSYJkMS5IkabBMhiVJkjRYJsOSJEka\nLJNhSZIkDZbJsCRJkgbLZFiSJEmDZTIsSZKkwTIZliRJ0mCZDEuSJGmwTIYlSZI0WFMlw0lOTnJd\nku0TZfsnOTvJFUnOSrJf+2FKkiRJ7Zv2yPApwNZlZScAZ1fVIcDHmueSJEnSzJsqGa6qc4GvLSs+\nEji1WT4VOKqFuCRJkqRN18ac4QOq6rpm+TrggBbqlCRJkjbdljYrq6pKUqut37Zt223LS0tLLC0t\ntdm8tJCSdNpe1ap/woMxGo0YjUZ9h7FhSU4GngFcX1WHNmXbgF8Cbmg2e31V/b9+IpSk/mXaD74k\nBwFnTgyslwNLVXVtkvsC51TVg1d4XfkhOxzjBK6r33eXbXXdXvfvzb/T75eEqur2v5IWJDkC2AG8\nZ2LMPhG4sap+fxevdcyeUYs7vjr+qB3TjtltTJP4EHBMs3wMcEYLdUqSNmiV8zxgnOFIkpj+0mof\nAD4B/EiSq5McC7wJeGqSK4AnNc8lSbPr+CSfS3KSl8OUNHRTzRmuquevsuopLcQiSdp87wTe2Cz/\nNvAW4CUrbeh5HpLmwUbP85h6zvC6G3L+2aAs7py2rttzzvAsmNc5w/D953lMsc4xe0Yt7vjq+KN2\n9DFnWJI0J5oTnXd6NrB9tW0laQhavbSaJGl2NOd5PAG4V5KrgROBpSSHMT7c9wXgpT2GKEm9c5qE\nNsXifo3XdXtOk5gF8zxNYr0cs2fX4o6vjj9qh9MkJEmSpN1kMixJkqTBcs6wJEmaCV3dft7pGJpk\nMixJkmZEF0nqoKb/azc4TUKSJEmDZTIsSZKkwTIZliRJ0mCZDEuSJGmwWkuGk7wqycVJtid5f5K9\n2qpbkiRJ2gytJMNJ7g8cDzy6qg4F9gCe10bdkiRJ0mZp89JqW4B9knwP2Af4cot1S5IkSa1r5chw\nVX0ZeAvwJeArwNer6qNt1C1JkiRtllaODCe5B3AkcBDwDeAvk/xiVb1vcrtt27bdtry0tMTS0lIb\nzWs3dXVnH823LveTWb0L1Gg0YjQa9R2GJKkDaePDKMnPAT9VVb/UPD8aeGxVvXxim5rVD76hGCc5\nXf0OFrWtrttb7Pc2L2NCEqpqUP9NOmbPLsfyjbfjvr3Yph2z27qaxL8Aj01y54z/Sp8CXNpS3ZIk\nSdKmaGvO8HnAacD5wEVN8R+3UbckSZK0WVqZJrFbDfmVW+/8am0e21vs9zYvY4LTJDRLHMs33o77\n9mLra5qEJEmSNHdMhiVJkjRYJsOSJEkaLJNhSZIkDZbJsCRJkgbLZFiSJEmDZTIsSZKkwTIZliRJ\n0mCZDEvSgkpycpLrkmyfKNs/ydlJrkhyVpL9+oxRkvpmMixJi+sUYOuyshOAs6vqEOBjzXNJGiyT\nYUlaUFV1LvC1ZcVHAqc2y6cCR3UalCTNGJNhSRqWA6rqumb5OuCAPoORpL5taauiZt7Zu4GHAgW8\nuKo+2Vb9kqR2VVUlqdXWb9u27bblpaUllpaWOohKkqYzGo0YjUbrfn2qVh0Hp6soORX4eFWdnGQL\ncJeq+sbE+mqrLa1PEsb/p3TS2oK21XV7i/3e5mVMSEJVpe841iPJQcCZVXVo8/xyYKmqrk1yX+Cc\nqnrwCq9zzJ5RjuUbb8d9e7FNO2a3Mk0iyd2BI6rqZICq+u5kIixJmhkfAo5plo8BzugxFknqXVtz\nhg8GbkhySpLzk7wryT4t1S1JWockHwA+AfxIkquTHAu8CXhqkiuAJzXPJWmw2pozvAV4FPCrVfXp\nJG9jfLme35rcaB7mn42/fpI0ZBudfzYrqur5q6x6SqeBSNIMa2XOcJL7AP9YVQc3zx8PnFBVz5zY\nZi7mny3uXKyu21vUtrpub7Hf2zyMCTDfc4bXa17G7CFa3M8p5wyrHb3MGa6qa4GrkxzSFD0FuKSN\nuiVJkqTN0tql1YDjgfcluRNwFXBsi3VLkiRJrWvt0mq7bGhOvnJb3K+fum5vUdvqur3Ffm/zMCaA\n0yQ0Wxb3c8ppEmpHL9MkJEmSpHlkMixJkqTBMhmWJEnSYJkMS5IkabBMhiVJkjRYJsOSJEkaLJNh\nSZIkDZbJsCRJkgbLZFiSJEmDZTIsSZKkwTIZliRJ0mBt6TsASZKkLiXprK2q6qwtrU9rR4aT7JHk\ngiRntlWnJElS+6qjh+ZBm9MkXglcir99SZIkzYlWkuEkDwB+Gng30N13D5IkSdIGtHVk+K3Aa4Bb\nW6pPkiRJ2nQbPoEuyTOB66vqgiRLa227bdu225aXlpZYWlpzc0nqxWg0YjQa9R2GJKkD2ehZjkn+\nJ3A08F1gb+BuwAer6oXLtqt5OKNyfIZpV3F22VbX7S1qW123t9jvbR7GBBiPC1U1qClg8zJmD9Hi\nfk511Zbj3KKbdszecDK8rPEnAP+tqp61wrq5GFgXd5Dpur1Fbavr9hb7vc3DmAAmw5oti/s5ZTKs\ndkw7Zm/GTTf8rUuSJGkutHpkeM2G5uQow+L+x911e4vaVtftLfZ7m4cxARbzyHCSLwLfBL4H3FJV\nhy9bPxdj9hAt7ueUR4bVjmnHbO9AJ0nDVMBSVf1734FIUp82Y5qEJGk+LNTRbklaD5NhSRqmAj6a\n5DNJjus7GEnqi9MkJGmYHldV/5rk3sDZSS6vqnMnN1iEa8OP59dKi6/rfX2W5kJv9NrwnkC3zOKe\nmNB1e4vaVtftLfZ7m4cxARbzBLpJSU4EdlTVWybK5mLM3pXFHNMX8T112dZijnNd7+uzPD7MwqXV\nJEkzLMk+Se7aLN8FeBqwvd+oJKkfTpOQpOE5APir5mvVLcD7quqsfkOSpH44TWKZxfxKrY/2FrWt\nrttb7Pc2D2MCLP40iZXMy5i9K4s5pi/ie+qyrcUc55wmcTunSUiSJEm7yWRYkiRJg2UyLEmSpMEy\nGZYkSdJgtZIMJzkwyTlJLklycZJXtFGvJEmStJnaurTaLcCrqurCJPsCn01ydlVd1lL9kiRJUuta\nOTJcVddW1YXN8g7gMuB+bdQtSZIkbZbWb7qR5CDgkcCnNlrXZz7zGd785rdz660brWn3bPEWJJIk\nSYPSavrXTJE4DXhlc4T4DrZt23bb8tLSEktLS2vW96UvfYkzz9zOTTcd32aYq9prr9d20o6kseYO\naJ3Z3YvEj0YjRqPR5gYzUFdffTVPf/pzuOWWviORpLHW7kCXZE/gr4EPV9XbVlg/9d2MTj/9dI49\n9k/55jdPbyXGXdl33x9mx46rWLy77fTR3qK21XV7vrc221vveOcd6Npz5ZVX8vCHL/Htb3cxrr8X\neDuLt08v6t/povZflxbvfa1nHJp2zG7lyHDGh3dOAi5dKRGWJGmnPfbYGzi8g5Y+3kEb0q4sXoI6\n1tU/LpuvresMPw54AfDEJBc0j60t1S1JkiRtilaODFfVP+ANPCRJkjRnTGAlSZI0WCbDkiRJGiyT\nYUmSJA2WybAkSZIGy2RYkiRJg2UyLEmSpMEyGZYkSdJgmQxLkiRpsEyGJUmSNFgmw5IkSRosk2FJ\nkiQNlsmwJEmSBqu1ZDjJ1iSXJ/mnJK9rq95+jPoOYEqjvgOYwqjvAKY06juAKYz6DmAKo74DGLz5\nGbNHfQfAbMQAxrHcqO8AGqO+A5gho74DWJdWkuEkewBvB7YCPwo8P8lD2qi7H6O+A5jSqO8ApjDq\nO4ApjfoOYAqjvgOYwqjvAAZtvsbsUd8BMBsxgHEsN+o7gMao7wBmyKjvANalrSPDhwNXVtUXq+oW\n4M+An2mpbklSuxyzJamxpaV67g9cPfH8GuAxbVR8882f4G53e1YbVe3St771lU7akaSebdqYvTtu\nuukruz2u33TT59l778+uq53vfOdKvvOddb1U0oCkqjZeSfIcYGtVHdc8fwHwmKo6fmKbjTckST2p\nqvQdQ1scsyUtumnG7LaODH8ZOHDi+YGMjzSsKyhJ0qZyzJakRltzhj8DPCjJQUnuBPw88KGW6pYk\ntcsxW5IarRwZrqrvJvlV4CPAHsBJVXVZG3VLktrlmC1Jt2tlzrAkSZI0j9acJpFk7ySfSnJhkouT\nbJtYd3ySy5ry323KnprkM0kuan4+cWL7RyfZ3lzg/Q8myvdK8udN+SeT/ODEumOSXNE8XrirN9Ny\nvKPmgvQXNI97txnvOmI9fCKWC5McNeN9u1a8M9W3E+semGRHklfPct/uIt6Z6tuMv4b/9kQ875jl\nvt1FvJvat31JcmCSc5Jc0vTFK5ry/ZOc3cR+VpL9eopjW5JrJvp96ybHseI+00N/rBZHp/3RtLlH\n09aZzfNO+2KNOProiy9mnDNckOS8pqzz/lgljj76Y78kpzVj6aVJHtNTfyyP47FT9UdVrfkA9ml+\nbgE+yfjyO08Ezgb2bNbdu/l5GHCfZvmhwDUT9ZwHHN4s/y3jM5kBXga8o1n+eeDPmuX9gauA/ZrH\nVcB+HcZ7DvCoFepvLd4pY70z8APN8n2A6yaez2LfrhXvTPXtxGtOA/4cePUs77e7iHem+hY4CNi+\nSj0z17e7iHfT+7aPB+O/z8Oa5X2BzwMPAd4MvLYpfx3wpp7iOBH49Y77ZKV9ptP+WCOOPvrj14H3\nAR9qnnfeF6vE0UdffAHYf1lZH/vGSnH00R+nAi9ulrcAd++pP1aKY7f7Y5cn0FXVt5rFOwF7AgX8\nMvA7Nb5YO1V1Q/Pzwqq6ttn+UuDOSfZMcl/grlV1XrPuPcDOI4VHNm8C4IPAk5vlnwLOqqqvV9XX\nGX9w7fK/nDbinahupbOpW4t3yli/XVW3NtvvA9wKMMN9u2K8E2ambwEyPnL9z4z3g51lM9m3q8U7\nYab6diWz3Le7sKl924equraqLmyWdwCXMb4O8eT7OpXbfz9dxwEr9/tmxrLSPtNpf6wRB3TYH0ke\nAPw08O6Jdjvvi1XiCB3vGxPtTuq8P1aJY7WyzWk8uTtwRFWdDONzEarqG3TcH2vEAbvZH7tMhpP8\nQJILGR/ZO6v58DoE+MnmK8FRkh9b4aXPAT7bfNjcnztetufL3D7I3Xbx96r6LvCNJPcE7rfsNddM\nvGaz493p1ObQ+m9MlLUW77SxZjz14BLgc8AvN8nmzPbtKvHuNDN9m2Rf4LXAtmXVzGTfrhHvTjPT\nt42Dm3hGSR4/Ec/M9e0a8e60qX3btyQHAY8EPgUcUFXXNauuAw7oIY5PNkXHJ/lckpM6+sp1pX2m\n8/5YJQ7otj/eCryGOx7Q6GPfWCmOouN9o2nzoxlPrTyuKeujP1aKA7rtj4OBG5KckuT8JO9Kche6\n74+V4tinWbdb/bE7R4ZvrarDgAcAj0nyUMaHoO9RVY9lvHP+xeRrmm3eBLx0fe9r/VqM9xer6mHA\nEcARSY7uO9aqOq+qHgr8OPCGJHu1HVNH8c5a324D3tochenl2qotxjtrffsV4MCqeiTjrzjfn+Su\nbce0yfHu26zb9L7tU/M+Pwi8sqpunFxXVcXtRyW7iOO0Jo4dwDsZf9gdBvwr8JbNjmGFfeZhy9Z3\n0h+r7Lud9UeSZwLXV9UFrDI2dtEXa8TR+b4BPK4ZH54OvDzJEZMrO/xbWSmOrvtjC/AoxtPEHgX8\nB3DC5AYd9cdqcbyD3eyP3b7OcHPI+RzGX/NdA5zelH8auLU5ErLzq4zTgaOr6gvNy7/M+I95pwdw\n+xGTLwMPbF67Bbh7VX2V3bgo/CbGS1V9pfm5A3g/cPhmxbu7sU5sfzmwg2aeMzPat6vEO2t9e6+m\n/Tcn+QLwSsaJ+8uYzb5dK95Z69t7VtXNVfW1pvx8xvNmH8SMjgmrxHtI87yzvu1axtPDPgi8t6rO\naIqvS3KfZv19ges7jONPd8ZRVddXg/FX5IevVUebJvaZn6KH/lghjq0d98dPAEc2Y80HgCcleS/d\n98VKcbynj32jqv61+XkD8FdNm53vGyvF0UN/XMP4XKtPN89PY5yUXttxf6wYR1XdsLv9saurSdxr\n52HlJHcGnsp4HtcZwJOa8kOAO1XVV5tt/wZ4XVX94856ml/aNzM+yzDA0cD/bVZ/CDimWf5Z4GPN\n8lnA0zI+Q/AeTdsf6SLejM9YvVezvCfwLGB7m/FOEeueTawHNR+0ZHy2+oOBL9Z4zvMs9e2a8c5Y\n396pqv6tqn6yqg6uqoOBtwH/o6reMYN9u2a8M9i3X22236Mp/yHGifA/z/CYsGK8XfRtX5r+Pwm4\ntKreNrFq8n0dw7jPOo+j+TDd6dnc3u+bFcdq+0zX/bFiHDuTjMam9kdVvaGqDmzGmucBf1dVR9Nx\nX6wSxwt72Df2SfPNVsbTAZ7WtNn1vrFiHF3uGzCe5w9c3YyhAE8BLgHOpNv9Y8U4puqPWvvsvEOB\n8xnP+dwO/EZTvifw3qbss8BSU/4bjI8AXjDxuFez7tHN9lcCfzjRxl6Mv6L8J8bzww6aWHdsU/5P\nwDFrxdpmvMBdGN+h6XPAxYznKqXNeNcR6wuaWC5oyo+cqGsW+3bFeGexb5e99g5nn85i364W7yz2\nLfBflu0Hz5jlvl0t3i76tq8H8HjG8zAv5PZxcCvjq2F8FLiCcWK/qVfCWCWOpzM+ufKipu/PYDwf\ncTPjWG2f6bo/Vouj0/6YiOcJ3H4Vh077YlkcSxNxvLfjfePgZv+8sBkHXt/TvrFaHJ3vG8AjgE83\nbZ7O+CoOne8fK8Sx3zT94U03JEmSNFi7PWdYkiRJWjQmw5IkSRosk2FJkiQNlsmwJEmSBstkWJIk\nSYNlMixJkqTBMhnWhiXZ0UIdS0nOXKH8XUkePG07SV6U5I+a5ZcmeUGzPEry6I3Gu0J7m1KvJHUl\nyX2S/FmSK5N8JsnfJHlQcxOlbye5IMklSd6Zse8bt5P8SZLnrFD3MZM3yWjG9od08b6kXdnSdwBa\nCJt2seqqOm6d7dy2bVX9n3XWMY2u7kcvSa1r7gD4V8ApVfW8puzhwAGMb3d7ZVU9srlD498BRwH/\nvkJVq42FL2J8g4idtxE+boVtpF54ZFibIslhST6Z5HNJTp+4reiPJ7moOcLwe0nWvF1kc8T1UcvK\n7pXkE0menuTeSU5Lcl7z+Imdm01svy3Jqyeq+Lkkn0ry+SSPb7bZO8kpTWznJ1naRfmdmyMolyY5\nHbjzZJuSNGeeCNxcVX+8s6CqLqqqf5jcqKq+B3wC+OE16rrDWJjkZ4EfA97XjKN7T47tSXYkeXOS\ni5OcneTwZv1VSZ7VbLNH85lxXvO58l/XejPN9n+SZHszfv/aNJ2hYTEZ1mZ5D/CaqnoE41uJntiU\nnwIcV1WPBL7Lro+m3mF9kv8E/DXwm1X1YeAPgLdW1eHAzwLvXqWOyXr2qKrHAL82EdfLge9V1cOB\n5wOnJtlrjfJfAXZU1Y82dTx6N96LJM2qhzG+BfmakuwDPJnxbW53S1Wdxvh25r9QVY+qqpu443i5\nD/CxqnoYcCPw200bzwbe2GzzEuDrzVh/OHBckoPWaPYw4H5VdWgzfp+yu/FqeJwmodYluTtw96o6\ntyk6FfjLpnzfqvpUU/5+4JlTVH0n4GPAyybqfgrwkPE3fADcNclddlHP6c3P84GDmuXHAX8IUFWf\nT/IvwCFrlB/BOBGnqrYn2e0PBkmaQbv6Z/4/J7mg2e6MqvpIkidMWddq357dXFUfaZa3AzdV1feS\nXMztY/TTgEObo8wAd2N8dPqLq9R5FfBDSf4Q+BvgrFW2k0yG1YnVBsBppxXcwvjowlZgZzIc4DFV\ndfMdKk7WGti/0/z8Hnf8G5g2TqdFSFoUlzD+dm01VzXf6E36N+Aey8r2B25YpY7VxuVbJpZvBW4G\nqKpbk0yO0b9aVWevEePtDVV9vZnzvBX4ZeC5jI8uS9/HaRJqXVV9A/jazvm4wNHAqCm/McnhTfnz\npq0aeDHw4CSvbcrOAl6xc4Mkh+1cnHhd2HXiei7wi00dhwAPBC5fo/zvgV9oyh8GPHzK9yJJM6Oq\n/g7YK8ltJ7YlefjEOL6SK4H75fYr/vwg8AjgwhW2vZHx0dz1+gjwsp3JcZJDmikbJLl8+cZJ7gls\nqarTgd8EHrV8G2knjwyrDfskuXri+VuAY4D/3QxWVwHHNuteArwrya3Ax4FvTLzuyRP1FOP/5CdV\nVVWS5wMfSvJNxonw/0ryOcb788eBl3HHecJrXelhZ/k7gHc20x2+CxxTVbckWa38ncApSS4FLmN8\nxFqS5tmzgbcleR1wE/AFxudWwApjaFV9J+PLVp6SZG/GR3hfUlU3rlD3nzD+TPgW8BPL1i2vu1ZY\nfjfjKRPnN1e+uB44Ksm9Vnkv92/i2nnQ74RVtpNIlef8qDtJ7lJV/9EsnwAcUFWv6jksSdIcSvIM\n4OCqenvfsWh+mQyrU0meC7ye8VHcLwIvqqqv9hqUJEkaLJNhSZIkDZYn0EmSJGmwTIYlSZI0WCbD\nkiRJGiyTYUmSJA2WybAkSZIG6/8DON4DAsrE0tUAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "fig = plt.figure(figsize=(12,3))\n",
- "ax = fig.add_subplot(121)\n",
- "ax.hist(lik)\n",
- "ax.set_xlabel('LogLikelihood')\n",
- "ax = fig.add_subplot(122)\n",
- "ax.hist(cputime)\n",
- "ax.set_xlabel('CPU time, s')\n",
- "print('Mean CPU time = ', np.mean(cputime))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.5.1"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/exploration/mpi/simfitGlyR4_mpi.py b/exploration/simfitGlyR4_mpi.py
similarity index 97%
rename from exploration/mpi/simfitGlyR4_mpi.py
rename to exploration/simfitGlyR4_mpi.py
index 395c783..f33b1d0 100644
--- a/exploration/mpi/simfitGlyR4_mpi.py
+++ b/exploration/simfitGlyR4_mpi.py
@@ -10,9 +10,9 @@
from dcpyps import dataset
from dcpyps import mechanism
from dcpyps.sccalc import scsim
-from dcprogs.likelihood import Log10Likelihood
+from HJCFIT.likelihood import Log10Likelihood
from mpi4py import MPI
-from dcprogs.mpihelpers import MPILikelihoodSolver
+from HJCFIT.mpihelpers import MPILikelihoodSolver
def simulate_bursts(conc, mec, tr, inst, nmax):
diff --git a/likelihood/CMakeLists.txt b/likelihood/CMakeLists.txt
index 1c690b1..c14d0ae 100644
--- a/likelihood/CMakeLists.txt
+++ b/likelihood/CMakeLists.txt
@@ -1,5 +1,5 @@
########################
-# DCProgs computes missed-events likelihood as described in
+# HJCFIT computes missed-events likelihood as described in
# Hawkes, Jalali and Colquhoun (1990, 1992)
#
# Copyright (C) 2013 University College London
@@ -15,10 +15,10 @@
# GNU General Public License for more details.
#########################
-set(LIKELIHOOD_SOURCE qmatrix.cc idealG.cc occupancies.cc time_filter.cc exact_survivor.cc
+set(LIKELIHOOD_SOURCE qmatrix.cc idealG.cc vectors.cc time_filter.cc exact_survivor.cc
root_finder.cc determinant_equation.cc asymptotes.cc approx_survivor.cc
missed_eventsG.cc laplace_survivor.cc brentq.cc likelihood.cc)
-set(LIKELIHOOD_HEADERS qmatrix.h errors.h idealG.h occupancies.h time_filter.h recursion_formula.h
+set(LIKELIHOOD_HEADERS qmatrix.h errors.h idealG.h vectors.h time_filter.h recursion_formula.h
exact_survivor.h root_finder.h determinant_equation.h asymptotes.h
approx_survivor.h missed_eventsG.h laplace_survivor.h likelihood.h brentq.h)
@@ -30,13 +30,13 @@ endif()
add_library(likelihood SHARED ${LIKELIHOOD_SOURCE} ${LIKELIHOOD_HEADERS})
add_dependencies(likelihood lookup_dependencies)
-if(DCPROGS_USE_MPFR)
+if(HJCFIT_USE_MPFR)
target_link_libraries(likelihood mpfr)
-endif(DCPROGS_USE_MPFR)
+endif(HJCFIT_USE_MPFR)
# Windows + Visual studio specifics.
if(MSVC)
- set_target_properties(likelihood PROPERTIES DEFINE_SYMBOL DCPROGS_LIKELIHOOD_DLLEXPORT)
+ set_target_properties(likelihood PROPERTIES DEFINE_SYMBOL HJCFIT_LIKELIHOOD_DLLEXPORT)
endif(MSVC)
# Put all libraries and output in same place.
@@ -51,7 +51,7 @@ else()
set(LIB_DIRECTORY lib)
endif(WIN32)
install(TARGETS likelihood DESTINATION ${LIB_DIRECTORY})
-install(FILES ${LIKELIHOOD_HEADERS} DESTINATION include/dcprogs/likelihood)
+install(FILES ${LIKELIHOOD_HEADERS} DESTINATION include/hjcfit/likelihood)
# Test subdirectory.
diff --git a/likelihood/approx_survivor.cc b/likelihood/approx_survivor.cc
index 7ce2856..7f98b59 100644
--- a/likelihood/approx_survivor.cc
+++ b/likelihood/approx_survivor.cc
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,7 +18,7 @@
along with this program. If not, see .
************************/
-#include
+#include
#include
@@ -27,7 +27,7 @@
#include "root_finder.h"
-namespace DCProgs {
+namespace HJCFIT {
ApproxSurvivor :: ApproxSurvivor(DeterminantEq const &_af, std::vector const &_roots_af,
DeterminantEq const &_fa, std::vector const &_roots_fa ) {
@@ -38,11 +38,11 @@ namespace DCProgs {
if(not asymptotes_fa_.get()) throw errors::Runtime("Could not initialize unique_ptr");
}
-# ifdef DCPROGS_MACRO
-# error DCPROGS_MACRO already defined
+# ifdef HJCFIT_MACRO
+# error HJCFIT_MACRO already defined
# endif
// Macro is used to fake constructor delegation...
-# define DCPROGS_MACRO(FINDROOTS) \
+# define HJCFIT_MACRO(FINDROOTS) \
/* First creates determinant equations. */ \
DeterminantEq determinant_af(_qmatrix, _tau); \
DeterminantEq determinant_fa(determinant_af.transpose()); \
@@ -57,7 +57,7 @@ namespace DCProgs {
// Function to create approximate missed event survivor function.
ApproxSurvivor::ApproxSurvivor(QMatrix const &_qmatrix, t_real _tau, t_RootFinder const &_findroots) {
- DCPROGS_MACRO(_findroots);
+ HJCFIT_MACRO(_findroots);
}
@@ -74,7 +74,7 @@ namespace DCProgs {
auto findroots = [_xtol, _rtol, _itermax, _lowerbound, _upperbound](DeterminantEq const &_c) {
return find_roots(_c, _xtol, _rtol, _itermax, _lowerbound, _upperbound);
};
- DCPROGS_MACRO(findroots);
+ HJCFIT_MACRO(findroots);
}
# endif
diff --git a/likelihood/approx_survivor.h b/likelihood/approx_survivor.h
index cea9082..1881bfb 100644
--- a/likelihood/approx_survivor.h
+++ b/likelihood/approx_survivor.h
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,10 +18,10 @@
along with this program. If not, see .
************************/
-#ifndef DCPROGS_LIKELIHOOD_APPROX_SURVIVOR_H
-#define DCPROGS_LIKELIHOOD_APPROX_SURVIVOR_H
+#ifndef HJCFIT_LIKELIHOOD_APPROX_SURVIVOR_H
+#define HJCFIT_LIKELIHOOD_APPROX_SURVIVOR_H
-#include
+#include
#include
#include
@@ -29,7 +29,7 @@
#include "asymptotes.h"
#include "root_finder.h"
-namespace DCProgs {
+namespace HJCFIT {
//! \brief Implementation of asymptotic missed events.
//! \details This object merely puts together two Asymptotes objects.
@@ -49,7 +49,7 @@ namespace DCProgs {
//! \param[in] _tau: resolution/max length missed events
//! \param[in] _findroots: A functor with which to find all roots.
//! This function should take a DeterminantEq as its sole argument and
- //! return a std::vector
+ //! return a std::vector
ApproxSurvivor(QMatrix const &_matrix, t_real _tau, t_RootFinder const &_findroots);
//! Move constructor
ApproxSurvivor (ApproxSurvivor &&_c)
diff --git a/likelihood/asymptotes.cc b/likelihood/asymptotes.cc
index 6e12d00..e908791 100644
--- a/likelihood/asymptotes.cc
+++ b/likelihood/asymptotes.cc
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,7 +18,7 @@
along with this program. If not, see .
************************/
-#include
+#include
#include
@@ -26,7 +26,7 @@
#include "asymptotes.h"
-namespace DCProgs {
+namespace HJCFIT {
t_stack_rmatrix Asymptotes :: operator()(t_real _t) const {
diff --git a/likelihood/asymptotes.h b/likelihood/asymptotes.h
index a20451d..c6dcce2 100644
--- a/likelihood/asymptotes.h
+++ b/likelihood/asymptotes.h
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,14 +18,14 @@
along with this program. If not, see .
************************/
-#ifndef DCPROGS_LIKELIHOOD_ASYMPTOTES_H
-#define DCPROGS_LIKELIHOOD_ASYMPTOTES_H
+#ifndef HJCFIT_LIKELIHOOD_ASYMPTOTES_H
+#define HJCFIT_LIKELIHOOD_ASYMPTOTES_H
-#include
+#include
#include
#include "root_finder.h"
-namespace DCProgs {
+namespace HJCFIT {
//! \brief A functor to compute asymptotic missed event G.
diff --git a/likelihood/brentq.cc b/likelihood/brentq.cc
index b4d6832..94220d4 100644
--- a/likelihood/brentq.cc
+++ b/likelihood/brentq.cc
@@ -6,10 +6,10 @@
**/
/* Written by Charles Harris charles.harris@sdl.usu.edu
- * Taken from Scipy and adapted for use in dcprogs.
+ * Taken from Scipy and adapted for use in HJCFIT.
* */
-#include
+#include
#include "errors.h"
#include "brentq.h"
@@ -43,7 +43,7 @@
*/
-namespace DCProgs {
+namespace HJCFIT {
MSWINDOBE std::tuple
brentq( std::function const &_function,
diff --git a/likelihood/brentq.h b/likelihood/brentq.h
index a7f5b30..678abc2 100644
--- a/likelihood/brentq.h
+++ b/likelihood/brentq.h
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -17,14 +17,14 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see .
************************/
-#ifndef DCPROGS_LIKELIHOOD_BRENTQ_H
-#define DCPROGS_LIKELIHOOD_BRENTQ_H
-#include
+#ifndef HJCFIT_LIKELIHOOD_BRENTQ_H
+#define HJCFIT_LIKELIHOOD_BRENTQ_H
+#include
#include
#include
-namespace DCProgs {
+namespace HJCFIT {
//! \brief Computes root of a function in a given interval.
//! \details Scavenged from Scipy. Actual code (.cc file) is under BSD.
diff --git a/likelihood/determinant_equation.cc b/likelihood/determinant_equation.cc
index 3001deb..e1eaef7 100644
--- a/likelihood/determinant_equation.cc
+++ b/likelihood/determinant_equation.cc
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,13 +18,13 @@
along with this program. If not, see .
************************/
-#include
+#include
#include
#include "determinant_equation.h"
-namespace DCProgs {
+namespace HJCFIT {
MSWINDOBE std::ostream& operator<<(std::ostream& _stream, DeterminantEq const & _self) {
diff --git a/likelihood/determinant_equation.h b/likelihood/determinant_equation.h
index 3afe0ce..29e7d68 100644
--- a/likelihood/determinant_equation.h
+++ b/likelihood/determinant_equation.h
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,14 +18,14 @@
along with this program. If not, see .
************************/
-#ifndef DCPROGS_LIKELIHOOD_DETERMINANT_EQUATION_H
-#define DCPROGS_LIKELIHOOD_DETERMINANT_EQUATION_H
+#ifndef HJCFIT_LIKELIHOOD_DETERMINANT_EQUATION_H
+#define HJCFIT_LIKELIHOOD_DETERMINANT_EQUATION_H
-#include
+#include
#include
#include "laplace_survivor.h"
-namespace DCProgs {
+namespace HJCFIT {
//! \brief A functor to compute the W matrix, so as to find its roots.
//! \details The whole implementation is done w.r.t. to AF transitions. However, in practice,
diff --git a/likelihood/errors.h b/likelihood/errors.h
index 1cea730..e70ba4d 100644
--- a/likelihood/errors.h
+++ b/likelihood/errors.h
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,19 +18,19 @@
along with this program. If not, see .
************************/
-#ifndef DCPROGS_ERRORS_H
-#define DCPROGS_ERRORS_H
-#include "DCProgsConfig.h"
+#ifndef HJCFIT_ERRORS_H
+#define HJCFIT_ERRORS_H
+#include "HJCFITConfig.h"
#include
#include
#include
-namespace DCProgs {
+namespace HJCFIT {
- //! Exceptions of DCprogs
+ //! Exceptions of HJCFIT
namespace errors {
- //! All explicit DCProgs exception derive from this, for easy catching,
+ //! All explicit HJCFIT exception derive from this, for easy catching,
class Root : public std::exception {};
//! Math (convergence, domain, etc) error
class Math : public Root { };
@@ -182,7 +182,7 @@ namespace DCProgs {
};
-# ifdef DCPROGS_PYTHON_BINDINGS
+# ifdef HJCFIT_PYTHON_BINDINGS
//! Exception thrown in python modules
class Python : public Root {
public:
diff --git a/likelihood/exact_survivor.cc b/likelihood/exact_survivor.cc
index 4a4fc21..d591ac7 100644
--- a/likelihood/exact_survivor.cc
+++ b/likelihood/exact_survivor.cc
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,7 +18,7 @@
along with this program. If not, see .
************************/
-#include
+#include
#include
#include
@@ -30,7 +30,7 @@
#include "errors.h"
#include "exact_survivor.h"
-namespace DCProgs {
+namespace HJCFIT {
# if defined(_DEBUG) || defined(DEBUG)
diff --git a/likelihood/exact_survivor.h b/likelihood/exact_survivor.h
index 1576bd2..9d75ef6 100644
--- a/likelihood/exact_survivor.h
+++ b/likelihood/exact_survivor.h
@@ -1,5 +1,5 @@
/***********************
- DCProgs computes missed-events likelihood as described in
+ HJCFIT computes missed-events likelihood as described in
Hawkes, Jalali and Colquhoun (1990, 1992)
Copyright (C) 2013 University College London
@@ -18,10 +18,10 @@
along with this program. If not, see .
************************/
-#ifndef DCPROGS_LIKELIHOOD_EXACT_SURVIVOR_H
-#define DCPROGS_LIKELIHOOD_EXACT_SURVIVOR_H
+#ifndef HJCFIT_LIKELIHOOD_EXACT_SURVIVOR_H
+#define HJCFIT_LIKELIHOOD_EXACT_SURVIVOR_H
-#include
+#include
#include
#include