-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathserver.py
534 lines (438 loc) · 26.5 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
import sys
import traceback
import multiprocessing
torch_dml_device = None
if __name__ == '__main__':
server = None
multiprocessing.freeze_support()
PROD = 'xVASynth.exe' in os.listdir(".")
# Saves me having to do backend re-compilations for every little UI hotfix
with open(f'{"./resources/app" if PROD else "."}/javascript/script.js', encoding="utf8") as f:
lines = f.read().split("\n")
APP_VERSION = lines[1].split('"v')[1].split('"')[0]
# Imports and logger setup
# ========================
try:
import python.pyinstaller_imports
import numpy
import logging
from logging.handlers import RotatingFileHandler
import json
from http.server import BaseHTTPRequestHandler, HTTPServer
from socketserver import ThreadingMixIn
from python.audio_post import run_audio_post, prepare_input_audio, mp_ffmpeg_output, normalize_audio, start_microphone_recording, move_recorded_file
import ffmpeg
except:
print(traceback.format_exc())
with open("./DEBUG_err_imports.txt", "w+") as f:
f.write(traceback.format_exc())
# Pyinstaller hack
# ================
try:
def script_method(fn, _rcb=None):
return fn
def script(obj, optimize=True, _frames_up=0, _rcb=None):
return obj
import torch.jit
torch.jit.script_method = script_method
torch.jit.script = script
import torch
import tqdm
import regex
except:
with open("./DEBUG_err_import_torch.txt", "w+") as f:
f.write(traceback.format_exc())
# ================
CPU_ONLY = not torch.cuda.is_available()
try:
logger = logging.getLogger('serverLog')
logger.setLevel(logging.DEBUG)
server_log_path = f'{os.path.dirname(os.path.realpath(__file__))}/{"../../../" if PROD else ""}/server.log'
fh = RotatingFileHandler(server_log_path, maxBytes=2*1024*1024, backupCount=5)
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
formatter = logging.Formatter('%(asctime)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info(f'New session. Version: {APP_VERSION}. Installation: {"CPU" if CPU_ONLY else "CPU+GPU"} | Prod: {PROD} | Log path: {server_log_path}')
logger.orig_info = logger.info
def prefixed_log (msg):
logger.info(f'{logger.logging_prefix}{msg}')
def set_logger_prefix (prefix=""):
if len(prefix):
logger.logging_prefix = f'[{prefix}]: '
logger.log = prefixed_log
else:
logger.log = logger.orig_info
logger.set_logger_prefix = set_logger_prefix
logger.set_logger_prefix("")
except:
with open("./DEBUG_err_logger.txt", "w+") as f:
f.write(traceback.format_exc())
try:
logger.info(traceback.format_exc())
except:
pass
if CPU_ONLY:
try:
import torch_directml
torch_dml_device = torch_directml.device()
logger.info("Successfully got the torch DirectML device")
except Exception as e:
# I've implemented support for DirectML, but at the time of writing (08/04/2023, v0.1.13.1.dev230301), it's hella broken...
# Not a single model can successfully .forward() when switching to DirectML device from cpu. I'm leaving in the code however,
# as I'd still like to add support for it once things are more stable. This try/catch should run ok when it's installed
torch_dml_device = torch.device("cpu")
logger.exception("Failed to get torch DirectML; falling back to cpu device")
# ========================
try:
from python.plugins_manager import PluginManager
plugin_manager = PluginManager(APP_VERSION, PROD, CPU_ONLY, logger)
active_plugins = plugin_manager.get_active_plugins_count()
logger.info(f'Plugin manager loaded. {active_plugins} active plugins.')
except:
logger.info("Plugin manager FAILED.")
logger.info(traceback.format_exc())
plugin_manager.run_plugins(plist=plugin_manager.plugins["start"]["pre"], event="pre start", data=None)
# ======================== Models manager
modelsPaths = {}
try:
from python.models_manager import ModelsManager
models_manager = ModelsManager(logger, PROD, device="cpu")
except:
logger.info("Models manager failed to initialize")
logger.info(traceback.format_exc())
# ========================
print("Models ready")
logger.info("Models ready")
# Server
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):
pass
class Handler(BaseHTTPRequestHandler):
def _set_response(self):
self.send_response(200)
self.send_header("Content-Type", "text/html")
self.end_headers()
def do_GET(self):
returnString = "[DEBUG] Get request for {}".format(self.path).encode("utf-8")
logger.info(returnString)
self._set_response()
self.wfile.write(returnString)
def do_POST(self):
global modelsPaths
post_data = ""
try:
content_length = int(self.headers['Content-Length'])
post_data = json.loads(self.rfile.read(content_length).decode('utf-8')) if content_length else {}
req_response = "POST request for {}".format(self.path)
print("POST")
print(self.path)
# For headless mode
if self.path == "/setAvailableVoices":
modelsPaths = json.loads(post_data["modelsPaths"])
if self.path == "/getAvailableVoices":
models = {}
for gameId in modelsPaths.keys():
models[gameId] = []
modelJSONs = sorted(os.listdir(modelsPaths[gameId]))
for fname in modelJSONs:
if fname.endswith(".json"):
with open(f'{modelsPaths[gameId]}/{fname}', "r") as f:
jsons = f.read()
metadata = json.loads(jsons)
models[gameId].append({
"modelType": metadata["modelType"],
"author": metadata["author"] if "author" in metadata else "",
"emb_size": metadata["emb_size"] if "emb_size" in metadata else 1,
"voiceId": metadata["games"][0]["voiceId"],
"voiceName": metadata["games"][0]["voiceName"],
"gender": metadata["games"][0]["gender"] if "gender" in metadata["games"][0] else "other",
"emb_i": metadata["games"][0]["emb_i"] if "emb_i" in metadata["games"][0] else 0
})
req_response = json.dumps(models)
if self.path == "/setVocoder":
logger.info("POST {}".format(self.path))
logger.info(post_data)
vocoder = post_data["vocoder"]
modelPath = post_data["modelPath"]
hifi_gan = "waveglow" not in vocoder
if vocoder=="qnd":
req_response = models_manager.load_model("hifigan", f'{"./resources/app" if PROD else "."}/python/hifigan/hifi.pt')
elif not hifi_gan:
req_response = models_manager.load_model(vocoder, modelPath)
req_response = "" if req_response is None else req_response
if self.path == "/stopServer":
logger.info("POST {}".format(self.path))
logger.info("STOPPING SERVER")
server.shutdown()
sys.exit()
if self.path == "/normalizeAudio":
input_path = post_data["input_path"]
output_path = post_data["output_path"]
req_response = normalize_audio(input_path, output_path)
if self.path == "/customEvent":
logger.info("POST {}".format(self.path))
plugin_manager.run_plugins(plist=plugin_manager.plugins["custom-event"], event="custom-event", data=post_data)
if self.path == "/setDevice":
logger.info("POST {}".format(self.path))
logger.info(post_data)
if post_data["device"] == "cpu":
logger.info("Setting torch device to CPU")
device = torch.device("cpu")
elif CPU_ONLY:
logger.info("Setting torch device to DirectML")
device = torch_dml_device
else:
logger.info("Setting torch device to CUDA")
device = torch.device("cuda:0")
models_manager.set_device(device)
if self.path == "/loadModel":
logger.info("POST {}".format(self.path))
logger.info(post_data)
ckpt = post_data["model"]
modelType = post_data["modelType"]
instance_index = post_data["instance_index"] if "instance_index" in post_data else 0
modelType = modelType.lower().replace(".", "_").replace(" ", "")
post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
n_speakers = post_data["model_speakers"] if "model_speakers" in post_data else None
base_lang = post_data["base_lang"] if "base_lang" in post_data else None
plugin_manager.run_plugins(plist=plugin_manager.plugins["load-model"]["pre"], event="pre load-model", data=post_data)
models_manager.load_model(modelType, ckpt+".pt", instance_index=instance_index, n_speakers=n_speakers, base_lang=base_lang)
plugin_manager.run_plugins(plist=plugin_manager.plugins["load-model"]["post"], event="post load-model", data=post_data)
if (
modelType=="fastpitch1_1"
or modelType=="xvapitch"
):
models_manager.models_bank[modelType][instance_index].init_arpabet_dicts()
if self.path == "/getG2P":
text = post_data["text"]
base_lang = post_data["base_lang"]
model = models_manager.models("xVAPitch", instance_index=0)
returnString = model.getG2P(text, base_lang)
req_response = returnString
if self.path == "/synthesizeSimple":
logger.info("POST {}".format(self.path))
text = post_data["sequence"]
instance_index = post_data["instance_index"] if "instance_index" in post_data else 0
out_path = post_data["outfile"]
base_lang = post_data["base_lang"] if "base_lang" in post_data else None
base_emb = post_data["base_emb"] if "base_emb" in post_data else None
useCleanup = post_data["useCleanup"] if "useCleanup" in post_data else None
model = models_manager.models("xvapitch", instance_index=instance_index)
req_response = model.infer(plugin_manager, text, out_path, vocoder=None, \
speaker_i=None, editor_data=None, pace=None, old_sequence=None, \
globalAmplitudeModifier=None, base_lang=base_lang, base_emb=base_emb, useSR=False, useCleanup=useCleanup)
if self.path == "/synthesize":
logger.info("POST {}".format(self.path))
post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
instance_index = post_data["instance_index"] if "instance_index" in post_data else 0
# Handle the case where the vocoder remains selected on app start-up, with auto-HiFi turned off, but no setVocoder call is made before synth
continue_synth = True
if "waveglow" in post_data["vocoder"]:
waveglowPath = post_data["waveglowPath"]
req_response = models_manager.load_model(post_data["vocoder"], waveglowPath, instance_index=instance_index)
if req_response=="ENOENT":
continue_synth = False
device = post_data["device"] if "device" in post_data else models_manager.device_label
device = torch.device("cpu") if device=="cpu" else (torch_dml_device if CPU_ONLY else torch.device("cuda:0"))
models_manager.set_device(device, instance_index=instance_index)
if continue_synth:
plugin_manager.set_context(post_data["pluginsContext"])
plugin_manager.run_plugins(plist=plugin_manager.plugins["synth-line"]["pre"], event="pre synth-line", data=post_data)
modelType = post_data["modelType"]
text = post_data["sequence"]
pace = float(post_data["pace"])
out_path = post_data["outfile"]
base_lang = post_data["base_lang"] if "base_lang" in post_data else None
base_emb = post_data["base_emb"] if "base_emb" in post_data else None
pitch = post_data["pitch"] if "pitch" in post_data else None
energy = post_data["energy"] if "energy" in post_data else None
emAngry = post_data["emAngry"] if "emAngry" in post_data else None
emHappy = post_data["emHappy"] if "emHappy" in post_data else None
emSad = post_data["emSad"] if "emSad" in post_data else None
emSurprise = post_data["emSurprise"] if "emSurprise" in post_data else None
editorStyles = post_data["editorStyles"] if "editorStyles" in post_data else None
duration = post_data["duration"] if "duration" in post_data else None
speaker_i = post_data["speaker_i"] if "speaker_i" in post_data else None
useSR = post_data["useSR"] if "useSR" in post_data else None
useCleanup = post_data["useCleanup"] if "useCleanup" in post_data else None
vocoder = post_data["vocoder"]
globalAmplitudeModifier = float(post_data["globalAmplitudeModifier"]) if "globalAmplitudeModifier" in post_data else None
editor_data = [pitch, duration, energy, emAngry, emHappy, emSad, emSurprise, editorStyles]
old_sequence = post_data["old_sequence"] if "old_sequence" in post_data else None
model = models_manager.models(modelType.lower().replace(".", "_").replace(" ", ""), instance_index=instance_index)
req_response = model.infer(plugin_manager, text, out_path, vocoder=vocoder, \
speaker_i=speaker_i, editor_data=editor_data, pace=pace, old_sequence=old_sequence, \
globalAmplitudeModifier=globalAmplitudeModifier, base_lang=base_lang, base_emb=base_emb, useSR=useSR, useCleanup=useCleanup)
plugin_manager.run_plugins(plist=plugin_manager.plugins["synth-line"]["post"], event="post synth-line", data=post_data)
if self.path == "/synthesize_batch":
post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
plugin_manager.set_context(post_data["pluginsContext"])
plugin_manager.run_plugins(plist=plugin_manager.plugins["batch-synth-line"]["pre"], event="pre batch-synth-line", data=post_data)
modelType = post_data["modelType"]
linesBatch = post_data["linesBatch"]
speaker_i = post_data["speaker_i"]
vocoder = post_data["vocoder"]
outputJSON = post_data["outputJSON"]
useSR = post_data["useSR"]
useCleanup = post_data["useCleanup"]
with torch.no_grad():
try:
model = models_manager.models(modelType.lower().replace(".", "_").replace(" ", ""))
req_response = model.infer_batch(plugin_manager, linesBatch, outputJSON=outputJSON, vocoder=vocoder, speaker_i=speaker_i, useSR=useSR, useCleanup=useCleanup)
except RuntimeError as e:
if "CUDA out of memory" in str(e):
req_response = "CUDA OOM"
else:
req_response = traceback.format_exc()
logger.info(req_response)
except:
e = traceback.format_exc()
if "CUDA out of memory" in str(e):
req_response = "CUDA OOM"
else:
req_response = e
logger.info(e)
post_data["req_response"] = req_response
plugin_manager.run_plugins(plist=plugin_manager.plugins["batch-synth-line"]["post"], event="post batch-synth-line", data=post_data)
if self.path == "/runSpeechToSpeech":
logger.info("POST {}".format(self.path))
input_path = post_data["input_path"]
style_emb = post_data["style_emb"]
options = post_data["options"]
audio_out_path = post_data["audio_out_path"]
useSR = post_data["useSR"]
useCleanup = post_data["useCleanup"]
vc_strength = post_data["vc_strength"]
removeNoise = post_data["removeNoise"]
removeNoiseStrength = post_data["removeNoiseStrength"]
final_path = prepare_input_audio(PROD, logger, input_path, removeNoise, removeNoiseStrength)
models_manager.init_model("speaker_rep")
models_manager.load_model("speaker_rep", f'{"./resources/app" if PROD else "."}/python/xvapitch/speaker_rep/speaker_rep.pt')
try:
out = models_manager.models("xvapitch").run_speech_to_speech(final_path, audio_out_path.replace(".wav", "_tempS2S.wav"), style_emb, models_manager, plugin_manager, vc_strength=vc_strength, useSR=useSR, useCleanup=useCleanup)
if out=="TOO_SHORT":
req_response = "TOO_SHORT"
else:
data_out = ""
req_response = data_out
# For use by /outputAudio
post_data["input_path"] = audio_out_path.replace(".wav", "_tempS2S.wav")
post_data["output_path"] = audio_out_path
except ValueError:
req_response = traceback.format_exc()
logger.info(req_response)
except RuntimeError:
req_response = traceback.format_exc()
logger.info(req_response)
except Exception as e:
req_response = traceback.format_exc()
logger.info(req_response)
logger.info(repr(e))
if self.path == "/batchOutputAudio":
input_paths = post_data["input_paths"]
output_paths = post_data["output_paths"]
processes = post_data["processes"]
options = json.loads(post_data["options"])
# For plugins
extraInfo = {}
if "extraInfo" in post_data:
extraInfo = json.loads(post_data["extraInfo"])
extraInfo["pluginsContext"] = json.loads(post_data["pluginsContext"])
extraInfo["audio_options"] = options
extraInfo["input_paths"] = input_paths
extraInfo["output_paths"] = output_paths
extraInfo["processes"] = processes
extraInfo["ffmpeg"] = ffmpeg
plugin_manager.run_plugins(plist=plugin_manager.plugins["mp-output-audio"]["pre"], event="pre mp-output-audio", data=extraInfo)
req_response = mp_ffmpeg_output(PROD, logger, processes, input_paths, output_paths, options)
plugin_manager.run_plugins(plist=plugin_manager.plugins["mp-output-audio"]["post"], event="post mp-output-audio", data=extraInfo)
if self.path == "/outputAudio" or (self.path == "/runSpeechToSpeech" and req_response==""):
isBatchMode = post_data["isBatchMode"]
if not isBatchMode:
logger.info("POST /outputAudio")
input_path = post_data["input_path"]
output_path = post_data["output_path"]
options = json.loads(post_data["options"])
# For plugins
extraInfo = {}
if "extraInfo" in post_data:
extraInfo = json.loads(post_data["extraInfo"])
extraInfo["pluginsContext"] = json.loads(post_data["pluginsContext"])
extraInfo["audio_options"] = options
extraInfo["input_path"] = input_path
extraInfo["output_path"] = output_path
extraInfo["ffmpeg"] = ffmpeg
plugin_manager.run_plugins(plist=plugin_manager.plugins["output-audio"]["pre"], event="pre output-audio", data=extraInfo)
input_path = post_data["input_path"]
output_path = post_data["output_path"]
req_response = run_audio_post(PROD, None if isBatchMode else logger, input_path, output_path, options)
plugin_manager.run_plugins(plist=plugin_manager.plugins["output-audio"]["post"], event="post output-audio", data=extraInfo)
if self.path == "/refreshPlugins":
logger.info("POST {}".format(self.path))
status = plugin_manager.refresh_active_plugins()
logger.info("status")
logger.info(status)
req_response = ",".join(status)
if self.path == "/getWavV3StyleEmb":
logger.info("POST {}".format(self.path))
wav_path = post_data["wav_path"]
models_manager.init_model("speaker_rep")
load_resp = models_manager.load_model("speaker_rep", f'{"./resources/app" if PROD else "."}/python/xvapitch/speaker_rep/speaker_rep.pt')
if load_resp=="ENOENT":
req_response = "ENOENT"
else:
style_emb = models_manager.models("speaker_rep").compute_embedding(wav_path).squeeze().cpu().detach().numpy()
req_response = ",".join([str(v) for v in style_emb])
if self.path == "/computeEmbsAndDimReduction":
logger.info("POST {}".format(self.path))
models_manager.init_model("speaker_rep")
load_resp = models_manager.load_model("speaker_rep", f'{"./resources/app" if PROD else "."}/python/xvapitch/speaker_rep/speaker_rep.pt')
embs = models_manager.models("speaker_rep").reduce_data_dimension(post_data["mappings"], post_data["includeAllVoices"], post_data["onlyInstalled"], post_data["algorithm"])
req_response = embs
if self.path == "/checkReady":
modelsPaths = json.loads(post_data["modelsPaths"])
device = torch.device("cpu") if post_data["device"]=="cpu" else (torch_dml_device if CPU_ONLY else torch.device("cuda:0"))
models_manager.set_device(device)
req_response = "ready"
if self.path == "/updateARPABet":
if "fastpitch1_1" in list(models_manager.models_bank.keys()):
models_manager.models_bank["fastpitch1_1"].refresh_arpabet_dicts()
if "xvapitch" in list(models_manager.models_bank.keys()):
models_manager.models_bank["xvapitch"].refresh_arpabet_dicts()
if self.path == "/start_microphone_recording":
start_microphone_recording(logger, models_manager, f'{"./resources/app" if PROD else "."}')
req_response = ""
if self.path == "/move_recorded_file":
file_path = post_data["file_path"]
move_recorded_file(PROD, logger, models_manager, f'{"./resources/app" if PROD else "."}', file_path)
self._set_response()
self.wfile.write(req_response.encode("utf-8"))
except Exception as e:
with open("./DEBUG_request.txt", "w+") as f:
f.write(traceback.format_exc())
f.write(str(post_data))
logger.info("Post Error:\n {}".format(repr(e)))
print(traceback.format_exc())
logger.info(traceback.format_exc())
try:
# server = HTTPServer(("",8008), Handler)
server = ThreadedHTTPServer(("",8008), Handler)
# Prevent issues with socket reuse
server.allow_reuse_address = True
except:
with open("./DEBUG_server_error.txt", "w+") as f:
f.write(traceback.format_exc())
logger.info(traceback.format_exc())
try:
plugin_manager.run_plugins(plist=plugin_manager.plugins["start"]["post"], event="post start", data=None)
print("Server ready")
logger.info("Server ready")
server.serve_forever()
except KeyboardInterrupt:
pass
server.server_close()