-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
140 lines (109 loc) · 4.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import math
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchsummary import summary
import argparse
import logging
import os
import sys
import h5py
from torch import optim as optim
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, random_split
from dataloader import ATLASDataset
from eval import eval_net
from losses import EMLLoss
from model import VCANet
checkpoint_dir = 'checkpoints/'
def train_net(net, dataset, device, epochs=200, batch_size=8, lr=0.001, val_percent=0.1, save_checkpoints=True, restore_checkpoint=False, restore_path="INTERRUPTED_model.pt"):
dataset = dataset
num_val = int(len(dataset) * val_percent)
num_train = len(dataset) - num_val
print(f"num_train, val: {num_train}, {num_val}")
train, val = random_split(dataset, [num_train, num_val])
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, pin_memory=True)
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, pin_memory=True, drop_last=True)
writer = SummaryWriter(comment=f'LR_{lr}_BS_{batch_size}')
global_step = 0
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {num_train}
Validation size: {num_val}
Checkpoints: {save_checkpoints}
Device: {device.type}
''')
optimizer = optim.SGD(net.parameters(), lr=lr, weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2)
criterion1 = EMLLoss().cuda()
criterion2 = nn.BCEWithLogitsLoss().cuda()
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=num_train, desc=f'Epoch {epoch+1}/{epochs}', unit='image') as pbar:
for batch in train_loader:
imgs = batch['image']
masks = batch['mask']
imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32
masks = masks.to(device=device, dtype=mask_type)
masks_pred = net(imgs)
loss_eml = criterion1(masks_pred, masks)
loss_bce = criterion2(masks_pred, masks)
loss = loss_eml + loss_bce
epoch_loss += loss.item()
writer.add_scalar('Loss/eml_loss', loss_eml.item(), global_step)
writer.add_scalar('Loss/bce_loss', loss_bce.item(), global_step)
writer.add_scalar('Loss/total_loss', loss.item(), global_step)
pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
writer.add_images('images', imgs, global_step)
writer.add_images('masks/true', masks, global_step)
writer.add_images('masks/pred', masks_pred > 0.5, global_step)
writer.add_images('masks/pred_whole', masks_pred, global_step)
global_step += 1
if global_step % (num_train // (10 * batch_size)) == 0:
for tag, value in net.named_parameters():
tag = tag.replace('.', '/')
writer.add_histogram('weights/' + tag, value.data.cpu().numpy(), global_step)
if value.grad is not None:
writer.add_histogram('grads/' + tag, value.grad.cpu().numpy(), global_step)
val_score = eval_net(net, val_loader, device)
scheduler.step(val_score)
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], global_step)
logging.info('Validation Dice Coeff: {}'.format(val_score))
writer.add_scalar('Dice/Validate', val_score, global_step)
if save_checkpoints:
try:
os.mkdir(checkpoint_dir)
logging.info('Checkpoint directory created')
except OSError:
pass
torch.save(net.state_dict(), checkpoint_dir + f'CP_epoch{epoch+1}.pth')
logging.info(f'Checkpoint {epoch+1} saved!')
writer.close()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
h5_train = h5py.File('../../../Datasets/ATLAS_R1.1/train_210.h5', 'r')
train_dataset = ATLASDataset(h5_train, 189, 43281)
model = VCANet(in_channels=1, out_channels=1)
model.to(device=device)
summary(model, (1, 224, 192))
try:
train_net(model, train_dataset, device=device)
except KeyboardInterrupt:
torch.save(model.state_dict(), 'INTERRUPTED_VCA.pth')
logging.info('Interrupted model saved')
try:
sys.exit(0)
except SystemExit:
os._exit(0)