Skip to content

branch: LTS_b2_soc 应用于人像训练会导致手臂细节消失 #28

Open
@MHGL

Description

@MHGL

损失配置

# soc semantic loss
        downsampled_fusion = F.interpolate(pred_fusion, scale_factor=1/8, mode='nearest')
        downsampled_pseudo_gt_fusion = downsampled_fusion.max(1)[1]
        pseudo_gt_semantic = pred_semantic.max(1)[1]
        soc_semantic_loss = F.cross_entropy(pred_semantic, downsampled_pseudo_gt_fusion.detach()) + \
                            F.cross_entropy(downsampled_fusion, pseudo_gt_semantic.detach())

        backup_fusion, backup_detail, _ = self.config.output_backup
        # sub-objectives consistency between `pred_detail` and `pred_backup_detail` (on boundaries only)
        backup_detail_loss = boundaries * F.cross_entropy(pred_detail, backup_detail.max(1)[1], weight=self.config.classes_weight, reduction='none')
        backup_detail_loss = torch.mean(backup_detail_loss)

        # sub-objectives consistency between pred_matte` and `pred_backup_matte` (on boundaries only)
        backup_fusion_loss = boundaries * F.cross_entropy(pred_fusion, backup_fusion.max(1)[1], reduction='none')
        backup_fusion_loss = torch.mean(backup_fusion_loss)

        self.config.loss = 5 * soc_semantic_loss + backup_detail_loss + backup_fusion_loss

模型表现

  • 原模型手臂部分完整检测,但存在部分误检
  • soc 模型0eps 误检消除,但是手臂部分未检测到

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions