Skip to content

Latest commit

 

History

History
159 lines (117 loc) · 4.23 KB

README.md

File metadata and controls

159 lines (117 loc) · 4.23 KB

HRNet-lite-seg

DeepVAC-compliant HRNet-lite implementation for segmentation.

简介

本项目实现了符合DeepVAC规范的HRNet-lite-seg 。

项目依赖

  • deepvac >= 0.5.7
  • pytorch >= 1.8.0
  • torchvision >= 0.7.0
  • opencv-python
  • numpy

如何运行本项目

1. 阅读DeepVAC规范

可以粗略阅读,建立起第一印象。

2. 准备运行环境

使用Deepvac规范指定Docker镜像

3. 准备数据集

  • TODO

  • 在config.py中修改如下配置:

config.train_txt = './data/train.txt'
config.val_txt = './data/val.txt'
config.sample_path_prefix = 'your train images dir'

4. 训练相关配置

  • dataloader相关配置
config.datasets.FileLineCvSegWithMetaInfoDataset = AttrDict()
config.datasets.FileLineCvSegWithMetaInfoDataset.cached_data_file = 'data/clothes.p'
config.datasets.FileLineCvSegWithMetaInfoDataset.classes = config.cls_num
config.datasets.FileLineCvSegWithMetaInfoDataset.norm_val = 1.10
config.data = FileLineCvSegWithMetaInfoDataset(config, config.train_txt, config.sample_path_prefix)()
config.datasets.FileLineCvSegDataset = AttrDict()
config.datasets.FileLineCvSegDataset.composer = LiteHRNetTrainComposer(config)


config.batch_size = 8
config.num_workers = 3
config.core.LiteHRNetTrain.train_dataset = FileLineCvSegDataset(config, config.train_txt, config.delimiter, config.sample_path_prefix)
config.core.LiteHRNetTrain.train_loader = torch.utils.data.DataLoader(config.core.LiteHRNetTrain.train_dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=config.pin_memory)

5. 训练

5.1 单卡训练

执行命令:

python3 train.py

5.2 分布式训练

在config.py中修改如下配置:

#dist_url,单机多卡无需改动,多机训练一定要修改
config.core.LiteHRNetTrain.dist_url = "tcp://localhost:27030"

#rank的数量,一定要修改
config.core.LiteHRNetTrain.world_size = 2

然后执行命令:

python train.py --rank 0 --gpu 0
python train.py --rank 1 --gpu 1

6. 测试

  • 测试相关配置
config.core.LiteHRNetTest = config.core.LiteHRNetTrain.clone()
config.core.LiteHRNetTest.test_sample_path = 'your test image dir'
config.core.LiteHRNetTest.model_path = 'your trained model path'
  • 加载模型(*.pth)
config.core.LiteHRNetTest.model_path = <trained-model-path>
  • 运行测试脚本:
python3 test.py

7. 使用trace模型/script模型

如果训练过程中开启config.cast.TraceCast(或者config.cast.ScriptCast)开关,可以在测试过程中转化torchscript模型

  • 转换torchscript模型(*.pt)
# trace
config.cast.TraceCast = AttrDict()
config.cast.TraceCast.model_dir = "./trace.pt"

# script
config.cast.ScriptCast = AttrDict()
config.cast.ScriptCast.model_dir = "./script.pt"

按照步骤6完成测试,torchscript模型将保存至model_dir指定文件位置

  • 加载torchscript模型
config.core.LiteHRNetTrain.jit_model_path = <torchscript-model-path>
config.core.LiteHRNetTest.jit_model_path = <torchscript-model-path>

8. 使用静态量化模型

如果训练过程中未开启config.cast.TraceCast开关,可以在测试过程中转化静态量化模型

  • 转换静态模型(*.sq)
# trace
config.cast.TraceCast.static_quantize_dir = "./trace.sq"

# script
config.cast.ScriptCast.static_quantize_dir = "./script.sq"

按照步骤6完成测试,静态量化模型将保存至config.static_quantize_dir指定文件位置

  • 加载静态量化模型
config.core.LiteHRNetTrain.jit_model_path = <static-quantize-model-path>
config.core.LiteHRNetTest.jit_model_path = <static-quantize-model-path>
  • 动态量化模型对应的配置参数为config.cast.TraceCast.dynamic_quantize_dir(或者config.cast.ScriptCast.dynamic_quantize_dir)

9. 更多功能

如果要在本项目中开启如下功能:

  • 预训练模型加载
  • checkpoint加载
  • 使用tensorboard
  • 启用TorchScript
  • 转换ONNX
  • 转换NCNN
  • 转换CoreML
  • 开启量化
  • 开启自动混合精度训练

请参考DeepVAC