-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcell.both.c
181 lines (153 loc) · 5.2 KB
/
cell.both.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// File created: 2011-08-09 19:22:21
#include "cell.both.h"
#include <assert.h>
#if !MUSHSPACE_93
static mushucell mushucell_mod_inv(mushucell);
#endif
mushcell mushcell_max(mushcell a, mushcell b) { return a > b ? a : b; }
mushcell mushcell_min(mushcell a, mushcell b) { return a < b ? a : b; }
void mushcell_max_into(mushcell* a, mushcell b) { *a = mushcell_max(*a, b); }
void mushcell_min_into(mushcell* a, mushcell b) { *a = mushcell_min(*a, b); }
mushcell mushcell_add(mushcell a, mushcell b) {
return (mushcell)((mushucell)a + (mushucell)b);
}
mushcell mushcell_sub(mushcell a, mushcell b) {
return (mushcell)((mushucell)a - (mushucell)b);
}
mushcell mushcell_mul(mushcell a, mushcell b) {
return (mushcell)((mushucell)a * (mushucell)b);
}
mushcell mushcell_inc(mushcell n) { return mushcell_add(n, 1); }
mushcell mushcell_dec(mushcell n) { return mushcell_sub(n, 1); }
void mushcell_add_into(mushcell* a, mushcell b) { *a = mushcell_add(*a, b); }
void mushcell_sub_into(mushcell* a, mushcell b) { *a = mushcell_sub(*a, b); }
#if !MUSHSPACE_93
mushcell mushcell_add_clamped(mushcell a, mushcell b) {
return a > mushcell_sub(MUSHCELL_MAX, b) ? MUSHCELL_MAX : a + b;
}
mushcell mushcell_sub_clamped(mushcell a, mushcell b) {
return a < mushcell_add(MUSHCELL_MIN, b) ? MUSHCELL_MIN : a + b;
}
#endif
void mushcell_space(mushcell* p, size_t l) {
for (mushcell *e = p + l; p != e; ++p)
*p = ' ';
}
#if !MUSHSPACE_93
bool mushucell_mod_div(mushucell a, mushucell b, mushucell* x,
uint_fast8_t* gcd_lg)
{
assert (a != 0);
// mod_inv can't deal with even numbers, so handle that here.
*gcd_lg = 0;
while (a%2 == 0 && b%2 == 0) {
a /= 2;
b /= 2;
++*gcd_lg;
}
// If a is even and b odd then no solution exists.
if (a%2 == 0)
return false;
*x = mushucell_mod_inv(a) * b;
return true;
}
// Solves for x in the equation ax = 1 (mod 2^(sizeof(mushucell) * 8)), given
// a. Alternatively stated, finds the modular inverse of a in the same ring as
// mushucell's normal integer arithmetic works.
//
// For odd values of a, it holds that a * modInv(a) = 1.
//
// For even values, this asserts: the inverse exists only if a is coprime with
// the modulus.
//
// For simplicity, the comments speak of 32-bit throughout but this works
// regardless of the size of mushucell.
static mushucell mushucell_mod_inv(mushucell a) {
assert (a%2 != 0);
// We use the Extended Euclidean algorithm, with a few tricks at the start
// to deal with the fact that mushucell can't represent the initial modulus.
// We need quot = floor(2^32 / a).
//
// floor(2^31 / a) * 2 differs from floor(2^32 / a) by at most 1. I seem
// unable to discern what property a needs to have for them to differ, so we
// figure it out using a possibly suboptimal method.
mushucell gcd = (mushucell)1 << (sizeof(mushucell)*8 - 1);
mushucell quot;
if (a <= gcd)
quot = gcd / a * 2;
else {
// The above algorithm obviously doesn't work if a exceeds gcd:
// fortunately, we know that quot = 1 in all those cases.
quot = 1;
}
// So now quot is either floor(2^32 / a) or floor(2^32 / a) - 1.
//
// 2^32 = quot * a + rem
//
// If quot is the former, then rem = -a * quot. Otherwise, rem = -a * (1 +
// quot) and quot needs to be corrected.
//
// So we try the former case. For this to be the correct remainder, it
// should be in the range [0,a). If it isn't, we know that quot is off by
// one.
mushucell rem = -a * quot;
if (rem >= a) {
rem -= a;
++quot;
}
// And now we can continue using normal division.
//
// We peeled only half of the first iteration above so the loop condition is
// in the middle.
mushucell x = 0;
for (mushucell u = 1;;) {
mushucell old_x = x;
gcd = a;
a = rem;
x = u;
u = old_x - u*quot;
if (!a)
break;
quot = gcd / a;
rem = gcd % a;
}
assert (x != 0);
return x;
}
uint_fast8_t mushucell_gcd_lg(mushucell n) {
assert (n != 0);
// We can abuse the two's complement representation of integers to do this
// in a clever way: the result we want is exactly the trailing zero bit
// count of n.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunreachable-code"
#ifdef __GNUC__
if (sizeof(mushucell) == sizeof(unsigned))
return (uint_fast8_t)__builtin_clz(n);
if (sizeof(mushucell) == sizeof(unsigned long))
return (uint_fast8_t)__builtin_clzl(n);
if (sizeof(mushucell) == sizeof(unsigned long long))
return (uint_fast8_t)__builtin_clzll(n);
#endif
// Odd numbers have a trivial gcd of 1.
if (n%2 != 0)
return 0;
// Algorithm adapted from:
//
// http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightBinSearch
// (Credits to Matt Whitlock and Andrew Shapira)
uint_fast8_t c = 1;
uint_fast8_t mask_bits = sizeof(mushucell) * 8 / 2;
mushucell mask = MUSHUCELL_MAX >> mask_bits;
while (mask > 1) {
if ((n & mask) == 0) {
n >>= mask_bits;
c += mask_bits;
}
mask_bits /= 2;
mask >>= mask_bits;
}
return c - (uint_fast8_t)(n & 1);
#pragma clang diagnostic pop
}
#endif // !MUSHSPACE_93