-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDevashish_Tripathi_maincode.py
161 lines (115 loc) · 4.66 KB
/
Devashish_Tripathi_maincode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
Author: Devashish Tripathi
Description:Main code for classification. Loads and Displays the datasets.
"""
from sklearn.impute import KNNImputer, SimpleImputer
from Devashish_Tripathi_classifications import classification_selection
from Devashish_Tripathi_classifications import classification_methods
from Devashish_Tripathi_classifications import final_classifier
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
warnings.filterwarnings('ignore')
""" Function to display the datasets"""
def disp_df(df, state):
print("*"*80)
print(f"Currently showing info of {state} data")
print(df.info())
print("*"*80)
if state == 'label':
plt.figure()
ax = df.value_counts().plot(kind='bar',)
plt.xlabel("Label")
plt.ylabel("Count")
plt.title('Label info')
ax.bar_label(ax.containers[-1], label_type='edge')
plt.show()
else:
if state == 'train' or state == 'test':
disp_df = df.drop([' Income ', 'Dt_Customer'], axis=1)
for col in disp_df.columns:
counts = disp_df[col].value_counts()
vis_df = pd.DataFrame()
vis_df[col] = counts
print(vis_df)
else:
disp_df = df.drop([' Income '], axis=1)
for col in disp_df.columns:
counts = disp_df[col].value_counts()
vis_df = pd.DataFrame()
vis_df[col] = counts
print(vis_df)
print("Duplicated information")
df_dups = df[df.duplicated()]
print("No. of duplicates:", df_dups.shape[0])
""" Function to clean the datasets"""
def clean_df(df, state):
df[' Income '] = df[' Income '].str.replace('$', '')
df[' Income '] = df[' Income '].str.replace(',', '')
df[' Income '] = df[' Income '].astype('float64')
k = 5
strat = 'mean'
# strat = 'median'
# kimp = KNNImputer(missing_values=np.nan, n_neighbors=k)
# kimp.set_output(transform='pandas')
simp=SimpleImputer(missing_values=np.nan,strategy=strat,)
simp.set_output(transform='pandas')
Dt_Cst = df['Dt_Customer']
df = df.drop(['Dt_Customer'], axis=1)
df = pd.get_dummies(df)
Dt_Cst = pd.to_datetime(Dt_Cst)
df['Dt_Cst_year'] = Dt_Cst.dt.year
df['Dt_Cst_month'] = Dt_Cst.dt.month
df['Dt_Cst_day'] = Dt_Cst.dt.day
print("Using mean for impute")
# print("Using median for impute")
# print("Using KNN-Imputer with k=", k)
# df = kimp.fit_transform(df)
df = simp.fit_transform(df)
if state == 'train':
df = df.drop(['Marital_Status_Absurd', 'Marital_Status_YOLO'], axis=1)
return df
""" Loading, Cleaning and Displaying the data"""
trn_data = pd.read_csv('marketing_trn_data.csv')
trn_labels = pd.read_csv(
'marketing_trn_class_labels.csv', names=['idx', 'label'])
tst_data = pd.read_csv('marketing_tst_data.csv')
df = trn_data.copy()
df_test = tst_data.copy()
disp_df(df, 'train')
# disp_df(df_test, 'test')
X = clean_df(df, 'train')
y = trn_labels['label']
# disp_df(X, 'cleaned train')
disp_df(y, 'label')
"""Running all classifiers on all features and no scaling"""
# classifiers=["DecTree","LogRes","GNBay","MNBay","KNN","LSVC","RanFor","SVC"]
# for classifier in classifiers:
# classify=classification_methods(classifier,X,y)
# classify.eval_model()
"""Running all classifiers with class weights balanced on all features and no scaling"""
# weight_classifiers=["DecTree","LogRes","LSVC","RanFor","SVC"]
# for classifier in weight_classifiers:
# classify=classification_methods(classifier,X,y)
# classify.eval_model()
"""Running Gradient Boost and AdaBoosts"""
# #Gradient Boosting
# classify=classification_methods('GradB',X,y)
# classify.eval_model()
# AdaBoost
# classify=classification_methods('AdaB',X,y)
# classify.eval_model()
"""Choosing best possible model out of LogRes, DecTree, MNBay, Adaboost and GradBoost by doing feature selection etc."""
# sel_classifiers=["DecTree","LogRes","MNBay","AdaB","GradB"]
# for classifier in sel_classifiers:
# classify=classification_selection(classifier,X,y)
# classify.eval_classifier()
""" After evaluation, the best model turned out to be Adaboost with Logistic Regression base estimator
With no scaling and no feature selection"""
df_test = clean_df(df_test, 'test')
# disp_df(df_test, 'clean test')
"""Evaluating results on the final classifier and finding labels of the test data"""
f_clf = final_classifier(X, y)
f_clf.final_eval()
f_clf.eval_test(df_test)