-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
270 lines (204 loc) · 9.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# This is the training file to train the GAN model
# To run this in colab use command -> !python train.py --data_set=="flowers" epochs==10
# Import necessary packages
import tensorflow as tf
import numpy as np
import argparse
import pickle
from os.path import join
import h5py
import scipy.misc
import random
import json
import os
import shutil
import imageio
# model is the python file which contains generated and discriminator architecture.
import model
# Utils is another folder in main project directory which contains helper functions.
# image_processing file is imported for image manipulations before training.
from Utils import image_processing
def main():
# argunment parser variable.
parser = argparse.ArgumentParser()
# add the following as possible arguments that can be passed while running the file.
# [
# d_dim (Noise dimension)
# t_dim (Text feature dimension)
# batch_size (No of images used in training during iterations)
# gf_dim (neurons in generators first layer)
# df_dim (neurons in discriminators first layer)
# data_dir (Path to data directory)
# learning rate
# beta1 (momentum value for adam update)
# epochs (Number of epochs) **10 epoch take around 6-7 hours**
# save_every (number of iterations over which the model is saved)
# resume_model (to resume the training of a model from file)
# data_set (which data set to train on)
# ]
parser.add_argument('--z_dim', type=int, default=100, help='Noise dimension')
parser.add_argument('--t_dim', type=int, default=256, help='Text feature dimension')
parser.add_argument('--batch_size', type=int, default=64, help='Batch Size')
parser.add_argument('--image_size', type=int, default=64, help='Image Size a, a x a')
parser.add_argument('--gf_dim', type=int, default=64, help='Number of conv in the first layer gen.')
parser.add_argument('--df_dim', type=int, default=64, help='Number of conv in the first layer discr.')
parser.add_argument('--gfc_dim', type=int, default=1024, help='Dimension of gen untis for for fully connected layer 1024')
parser.add_argument('--caption_vector_length', type=int, default=2400, help='Caption Vector Length')
parser.add_argument('--data_dir', type=str, default="Data", help='Data Directory')
parser.add_argument('--learning_rate', type=float, default=0.0002, help='Learning Rate')
parser.add_argument('--beta1', type=float, default=0.5, help='Momentum for Adam Update')
parser.add_argument('--epochs', type=int, default=600, help='Max number of epochs')
parser.add_argument('--save_every', type=int, default=30, help='Save Model/Samples every x iterations over batches')
parser.add_argument('--resume_model', type=str, default=None, help='Pre-Trained Model Path, to resume from')
parser.add_argument('--data_set', type=str, default="flowers", help='Which data set?')
args = parser.parse_args()
# Dict defining the model properties depending upon the command line arguments.
model_options = {
'z_dim' : args.z_dim,
't_dim' : args.t_dim,
'batch_size' : args.batch_size,
'image_size' : args.image_size,
'gf_dim' : args.gf_dim,
'df_dim' : args.df_dim,
'gfc_dim' : args.gfc_dim,
'caption_vector_length' : args.caption_vector_length
}
# Call the model.GAN function from the model file and pass the above dictionary to create a model based on those properties.
gan = model.GAN(model_options)
# "gan" is the handle to that model for rest of the code
# Unpacking the values sent by build_model() function
input_tensors, variables, loss, outputs, checks = gan.build_model()
# Based on loss recieved from gan.build_model() use adam optimizer to minimize the loss
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
d_optim = tf.train.AdamOptimizer(args.learning_rate, beta1 = args.beta1).minimize(loss['d_loss'], var_list=variables['d_vars'])
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
g_optim = tf.train.AdamOptimizer(args.learning_rate, beta1 = args.beta1).minimize(loss['g_loss'], var_list=variables['g_vars'])
# Initialize all variables
sess = tf.InteractiveSession()
tf.initialize_all_variables().run()
# If resuming a trained model for further training
saver = tf.train.Saver()
if args.resume_model:
saver.restore(sess, args.resume_model)
loaded_data = load_training_data(args.data_dir, args.data_set)
j=0 #To keep track of iterations
# For "args.epochs" number of epochs---
for i in range(args.epochs):
batch_no = 0
print("Batch size: ",args.batch_size)
print("loaded_data['data_length']: ",loaded_data['data_length']) #6000
while batch_no*args.batch_size < loaded_data['data_length']:
print("batch_no:",batch_no+1,"iteration_no:",j+1,"epoch:",i+1)
# Create a training batch which is fed into the dicriminator in the current batch.
real_images, wrong_images, caption_vectors, z_noise, image_files = get_training_batch(batch_no, args.batch_size,
args.image_size, args.z_dim, args.caption_vector_length, 'train', args.data_dir, args.data_set, loaded_data)
# DISCR UPDATE
check_ts = [ checks['d_loss1'] , checks['d_loss2'], checks['d_loss3']]
# Feed in input from the training batch using feed_dict to the placeholders
_, d_loss, gen, d1, d2, d3 = sess.run([d_optim, loss['d_loss'], outputs['generator']] + check_ts,
feed_dict = {
input_tensors['t_real_image'] : real_images,
input_tensors['t_wrong_image'] : wrong_images,
input_tensors['t_real_caption'] : caption_vectors,
input_tensors['t_z'] : z_noise,
})
# Print the discriminator losses
print("d1", d1)
print("d2", d2)
print("d3", d3)
print("D", d_loss)
# GEN UPDATE
# Feed in input from the training batch using feed_dict to the placeholders
_, g_loss, gen = sess.run([g_optim, loss['g_loss'], outputs['generator']],
feed_dict = {
input_tensors['t_real_image'] : real_images,
input_tensors['t_wrong_image'] : wrong_images,
input_tensors['t_real_caption'] : caption_vectors,
input_tensors['t_z'] : z_noise,
})
# GEN UPDATE TWICE, to make sure d_loss does not go to 0
_, g_loss, gen = sess.run([g_optim, loss['g_loss'], outputs['generator']],
feed_dict = {
input_tensors['t_real_image'] : real_images,
input_tensors['t_wrong_image'] : wrong_images,
input_tensors['t_real_caption'] : caption_vectors,
input_tensors['t_z'] : z_noise,
})
# Print final loss of current batch
print("LOSSES", d_loss, g_loss, batch_no, i, len(loaded_data['image_list'])/ args.batch_size,"\n")
batch_no += 1
j+=1
# Regularly save the network
if (batch_no % args.save_every) == 0:
print("Saving Images, Model","\n\n")
save_for_vis(args.data_dir, real_images, gen, image_files)
save_path = saver.save(sess, "Data/Models/latest_model_{}_temp.ckpt".format(args.data_set))
if i%5 == 0:
save_path = saver.save(sess, "Data/Models/model_after_{}_epoch_{}.ckpt".format(args.data_set, i))
# Load training data from the image-text embeddings
def load_training_data(data_dir, data_set):
if data_set == 'flowers':
h = h5py.File(join(data_dir, 'flower_tv.hdf5'))
flower_captions = {}
for ds in h.items():
flower_captions[ds[0]] = np.array(ds[1])
image_list = [key for key in flower_captions]
image_list.sort()
img_75 = int(len(image_list)*0.75)
training_image_list = image_list[0:img_75]
# Shuffle all images to get diversity in training examples
random.shuffle(training_image_list)
return {
'image_list' : training_image_list,
'captions' : flower_captions,
'data_length' : len(training_image_list)
}
else:
with open(join(data_dir, 'meta_train.pkl')) as f:
meta_data = pickle.load(f)
# No preloading for MS-COCO
return meta_data
# Function to save the images produced by generator in an batch
def save_for_vis(data_dir, real_images, generated_images, image_files):
shutil.rmtree( join(data_dir, 'samples') )
os.makedirs( join(data_dir, 'samples') )
for i in range(0, real_images.shape[0]):
real_image_255 = np.zeros( (64,64,3), dtype=np.uint8)
real_images_255 = (real_images[i,:,:,:])
imageio.imwrite( join(data_dir, 'samples/{}_{}.jpg'.format(i, image_files[i].split('/')[-1] )) , real_images_255)
fake_image_255 = np.zeros( (64,64,3), dtype=np.uint8)
fake_images_255 = (generated_images[i,:,:,:])
imageio.imwrite(join(data_dir, 'samples/fake_image_{}.jpg'.format(i)), fake_images_255)
# To randomly generate a training batch from the input data set
def get_training_batch(batch_no, batch_size, image_size, z_dim,
caption_vector_length, split, data_dir, data_set, loaded_data = None):
if data_set == 'flowers':
real_images = np.zeros((batch_size, 64, 64, 3))
wrong_images = np.zeros((batch_size, 64, 64, 3))
captions = np.zeros((batch_size, caption_vector_length))
cnt = 0
image_files = []
for i in range(batch_no * batch_size, batch_no * batch_size + batch_size):
idx = i % len(loaded_data['image_list'])
image_file = join(data_dir, 'flowers/jpg/'+loaded_data['image_list'][idx])
image_array = image_processing.load_image_array(image_file, image_size)
real_images[cnt,:,:,:] = image_array
# Improve this selection of wrong image
wrong_image_id = random.randint(0,len(loaded_data['image_list'])-1)
wrong_image_file = join(data_dir, 'flowers/jpg/'+loaded_data['image_list'][wrong_image_id])
wrong_image_array = image_processing.load_image_array(wrong_image_file, image_size)
wrong_images[cnt, :,:,:] = wrong_image_array
random_caption = random.randint(0,4)
captions[cnt,:] = loaded_data['captions'][ loaded_data['image_list'][idx] ][ random_caption ][0:caption_vector_length]
image_files.append( image_file )
cnt += 1
z_noise = np.random.uniform(-1, 1, [batch_size, z_dim])
return real_images, wrong_images, captions, z_noise, image_files
# To call the function from main driver
def startTraining():
main()
def temp():
print("In train.py")
if __name__ == '__main__':
main()
print("Training complete!")