diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..86b5602 --- /dev/null +++ b/.gitignore @@ -0,0 +1,16 @@ +bloco7_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte +bloco7_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte.gz +bloco7_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte +bloco7_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte.gz +bloco7_autoenconders/data/MNIST/raw/train-images-idx3-ubyte +bloco7_autoenconders/data/MNIST/raw/train-images-idx3-ubyte.gz +bloco7_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte +bloco7_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte.gz +bloco6_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte +bloco6_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte.gz +bloco6_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte +bloco6_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte.gz +bloco6_autoenconders/data/MNIST/raw/train-images-idx3-ubyte +bloco6_autoenconders/data/MNIST/raw/train-images-idx3-ubyte.gz +bloco6_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte +bloco6_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte.gz diff --git a/README.md b/README.md index 46b1f44..4785d21 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,26 @@ -# RedesNeurais -Disciplina de Redes Neurais SCC0270 +# Redes Neurais e Aprendizado Profundo / Neural Networks and Deep Learning (2022) + +Compilado de programas, anotações e atividades da disciplina de SCC0270 - Redes Neurais e Aprendizado Profundo oferecida pelo ICMC-USP. Todos os programas desenvolvidos na disciplina foram feitos em linguagem Python com o framework Pytorch e possuem apenas fins educacionais. + +Compiled from programs, notes and activities from the subject SCC0270 - Neural Networks and Deep Learning offered by ICMC-USP. All programs developed in the course were written in Python with the Pytorch framework and are for educational purposes only. + +## A disciplina/ The discipline + +### Objetivos / Goals + +Apresentar ao aluno os conceitos básicos de Redes Neurais Artificiais e os principais modelos existentes. Analisar o comportamento destes modelos, suas capacidades fundamentais e limitações, possibilitando a utilização destas técnicas na resolução de problemas práticos. + +To present to the students the basic concepts of Artificial Neural Networks and the current most important models. To analyze the behavior of these models, their fundamental capabilities and limitations, allowing the use of these techniques to solve practical problems. + +### Programa resumido / Summary program + +Definição de modelos conexionistas. +Aprendizado em modelos conexionistas: aprendizado supervisionado, não-supervisionado, competitivo. +Arquiteturas básicas: Perceptron, Adaline, Perceptron Multi-Camadas, Redes RBF. +Aprendizado profundo: arquiteturas convolucionais (CNN), encoder-decoder, redes adversárias, transfer learning, redes recorrentes e modelos de atenção. +Sistemas de auto-organização: PCA, LDA e rede de Kohonen. Memórias Associativas: Redes de Hopfield. Aplicações. + +Definition of connectionist models. +Learning in connectionist models: supervised, unsupervised, and competitive learning. +Basic architectures: Perceptron, Adaline, Multi-Layer Perceptron, RBF Networks. Deep learning: convolutional architectures (CNN),encoder-decoder, adversarial networks, transfer learning, recurrent networks and attention models. +Self-organization systems: PCA, LDA and Kohonen network. Associative Memories: Hopfield Networks. Applications. diff --git a/Trabalho1/SCC0270-T1-11800910-11800584.ipynb b/Trabalho1/SCC0270-T1-11800910-11800584.ipynb index abd09a3..c3facd9 100644 --- a/Trabalho1/SCC0270-T1-11800910-11800584.ipynb +++ b/Trabalho1/SCC0270-T1-11800910-11800584.ipynb @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 557, + "execution_count": 54, "id": "d6a6358b", "metadata": {}, "outputs": [], @@ -85,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 558, + "execution_count": 55, "id": "7538835c", "metadata": {}, "outputs": [ @@ -102,7 +102,7 @@ "device(type='cpu')" ] }, - "execution_count": 558, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -143,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 559, + "execution_count": 56, "id": "a567d63e", "metadata": {}, "outputs": [], @@ -177,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 560, + "execution_count": 57, "id": "9be98bd0", "metadata": {}, "outputs": [ @@ -187,7 +187,7 @@ "60000" ] }, - "execution_count": 560, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -199,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 561, + "execution_count": 58, "id": "c00177e0", "metadata": {}, "outputs": [ @@ -209,7 +209,7 @@ "torch.Size([100, 1, 28, 28])" ] }, - "execution_count": 561, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -222,7 +222,7 @@ }, { "cell_type": "code", - "execution_count": 562, + "execution_count": 59, "id": "3a096b21", "metadata": {}, "outputs": [ @@ -253,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": 563, + "execution_count": 60, "id": "df314fc6", "metadata": {}, "outputs": [], @@ -283,7 +283,7 @@ }, { "cell_type": "code", - "execution_count": 564, + "execution_count": 61, "id": "644bacf0", "metadata": {}, "outputs": [ @@ -346,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": 565, + "execution_count": 62, "id": "2facaa06", "metadata": {}, "outputs": [], @@ -398,7 +398,6 @@ " total += len(labels)\n", " \n", " ### INÍCIO DO CÓDIGO ### (≈ 1 linha)\n", - " #! não tenho certeza dessa parte não, mas acho que é isso\n", " outputs = model.forward(images) # propagação para frente\n", " \n", " ### FIM DO CÓDIGO ###\n", @@ -449,7 +448,7 @@ }, { "cell_type": "code", - "execution_count": 566, + "execution_count": 63, "id": "444c110e", "metadata": {}, "outputs": [], @@ -458,33 +457,40 @@ "\n", " def __init__(self):\n", " \n", - " ### INÍCIO DO CÓDIGO ### (≈ 5 linhas)\n", - " pass\n", - " #self.fc1 = # ...\n", - " # ...\n", - " \n", - " ### FIM DO CÓDIGO ###\n", + " # Inicialização da classe pai\n", + " super(NetworkDense, self).__init__()\n", + "\n", + " self.fc1 = nn.Linear(28*28, 1024) # 28*28 = tamanho da imagem\n", + " self.fc2 = nn.Linear(1024, 512) # 1024 = número de neurônios da camada anterior\n", + " self.fc3 = nn.Linear(512, 256) # 512 = número de neurônios da camada anterior\n", + " self.fc4 = nn.Linear(256, 128) # 256 = número de neurônios da camada anterior\n", + " self.fc5 = nn.Linear(128, 10) # 128 = número de neurônios da camada anterior\n", " \n", " def forward(self, x):\n", " \n", - " ### INÍCIO DO CÓDIGO ### (≈ 5 linhas)\n", - " \n", - " #x = # ...\n", - " # ...\n", + " x = torch.flatten(x,1) # achatando a imagem\n", + " x = F.relu(self.fc1(x)) # camada fully connected 1 + ReLU\n", + " x = F.relu(self.fc2(x)) # camada fully connected 2 + ReLU\n", + " x = F.relu(self.fc3(x)) # camada fully connected 3 + ReLU\n", + " x = F.relu(self.fc4(x)) # camada fully connected 4 + ReLU\n", + " x = F.relu(self.fc5(x)) # camada fully connected 5 + ReLU \n", "\n", - " ### FIM DO CÓDIGO ###\n", - " \n", " return x\n" ] }, { - "cell_type": "code", - "execution_count": 567, + "cell_type": "markdown", "id": "d9816ce8", "metadata": {}, - "outputs": [], "source": [ - "# Justifique a escolha da arquitetura" + "### Justifique a escolha da arquitetura\n", + "\n", + "\n", + "**Resposta:** A rede possui 4 camadas lineares simples, com dimensões que inicialmente crescem (em relação ao tamanho da camada anterior) e posteriormente converge para um número menor de neurônios. \n", + "\n", + "Isso tem como objetivo tentar aumentar inicialmente a de aumentar a quantidade de representações internas (como se fosse um \"upsampling\" de informação útil) e logo depois comprime-se a informação, de forma a possibilitar maior assimilação de padrões. Isso mostrou-se (em algumas pesquisas feitas) como sendo o padrão para redes densas simples. \n", + "\n", + "O uso de funções de ativação ReLU tem como objetivo simplificar o uso dos gradientes (por terem uma derivada simples), apesar de, em casos extremos, poder gerar _gradient vanishing_ (não preocupante nesse caso pela rede pouco profunda)." ] }, { @@ -497,34 +503,72 @@ }, { "cell_type": "code", - "execution_count": 568, + "execution_count": 64, "id": "2eba9050", "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NetworkDense(\n", + " (fc1): Linear(in_features=784, out_features=1024, bias=True)\n", + " (fc2): Linear(in_features=1024, out_features=512, bias=True)\n", + " (fc3): Linear(in_features=512, out_features=256, bias=True)\n", + " (fc4): Linear(in_features=256, out_features=128, bias=True)\n", + " (fc5): Linear(in_features=128, out_features=10, bias=True)\n", + ")\n" + ] + } + ], "source": [ "### INÍCIO DO CÓDIGO ### (≈ 4 linhas)\n", - "#model_dense = # ...\n", - "#criterion = # ...\n", - "#learning_rate = # ...\n", - "#optimizer = # ...\n", + "model_dense = NetworkDense() # instanciando o modelo\n", + "criterion = nn.CrossEntropyLoss() # função de custo\n", + "learning_rate = 0.001 # taxa de aprendizado\n", + "optimizer = torch.optim.Adam(model_dense.parameters(), lr=learning_rate) # otimizador\n", "### FIM DO CÓDIGO ###\n", "\n", - "#print(model_dense)" + "print(model_dense)" ] }, { "cell_type": "code", - "execution_count": 569, + "execution_count": 65, "id": "0d77c184", "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/15 .. Train Loss: 1.11607 .. Test Loss: 0.90469 .. Test Accuracy: 64.840%\n", + "Epoch 2/15 .. Train Loss: 0.82012 .. Test Loss: 0.86708 .. Test Accuracy: 66.500%\n", + "Epoch 3/15 .. Train Loss: 0.78215 .. Test Loss: 0.83248 .. Test Accuracy: 67.390%\n", + "Epoch 4/15 .. Train Loss: 0.75789 .. Test Loss: 0.81102 .. Test Accuracy: 68.100%\n", + "Epoch 5/15 .. Train Loss: 0.73733 .. Test Loss: 0.84752 .. Test Accuracy: 67.090%\n", + "Epoch 6/15 .. Train Loss: 0.72379 .. Test Loss: 0.82449 .. Test Accuracy: 67.400%\n", + "Epoch 7/15 .. Train Loss: 0.71129 .. Test Loss: 0.78819 .. Test Accuracy: 68.850%\n", + "Epoch 8/15 .. Train Loss: 0.69998 .. Test Loss: 0.79574 .. Test Accuracy: 69.180%\n", + "Epoch 9/15 .. Train Loss: 0.68863 .. Test Loss: 0.80602 .. Test Accuracy: 68.530%\n", + "Epoch 10/15 .. Train Loss: 0.67874 .. Test Loss: 0.79421 .. Test Accuracy: 69.190%\n", + "Epoch 11/15 .. Train Loss: 0.66780 .. Test Loss: 0.79976 .. Test Accuracy: 69.420%\n", + "Epoch 12/15 .. Train Loss: 0.66252 .. Test Loss: 0.80903 .. Test Accuracy: 69.170%\n", + "Epoch 13/15 .. Train Loss: 0.65285 .. Test Loss: 0.80288 .. Test Accuracy: 69.200%\n", + "Epoch 14/15 .. Train Loss: 0.64323 .. Test Loss: 0.81542 .. Test Accuracy: 69.270%\n", + "Epoch 15/15 .. Train Loss: 0.63782 .. Test Loss: 0.83457 .. Test Accuracy: 69.300%\n", + "{'train_losses': [1.116069377064705, 0.8201207951704661, 0.7821544888615608, 0.7578929339845976, 0.7373255743583044, 0.7237914708753427, 0.7112923920651277, 0.6999761442343394, 0.6886283854643503, 0.6787449027597904, 0.6677950521806876, 0.6625166069467863, 0.6528512297074, 0.6432256892323494, 0.6378171909848849], 'test_losses': [0.9046910208463669, 0.867082913517952, 0.8324845147132873, 0.8110221964120865, 0.8475247311592102, 0.8244914597272873, 0.7881929975748062, 0.7957364851236344, 0.8060213947296142, 0.794206055700779, 0.7997610390186309, 0.8090307354927063, 0.8028797155618668, 0.8154192233085632, 0.8345729041099549], 'accuracy_list': [64.83999633789062, 66.5, 67.38999938964844, 68.0999984741211, 67.08999633789062, 67.4000015258789, 68.8499984741211, 69.18000030517578, 68.52999877929688, 69.19000244140625, 69.41999816894531, 69.16999816894531, 69.19999694824219, 69.2699966430664, 69.30000305175781]}\n" + ] + } + ], "source": [ "### INÍCIO DO CÓDIGO ### (≈ 1 linha)\n", - "#den_results = fit(# ...\n", + "dense_results = fit(model_dense, criterion, optimizer, train_loader, test_loader, num_epochs=15) # treinando o modelo\n", + "print(dense_results)\n", "### FIM DO CÓDIGO ###" ] }, @@ -544,43 +588,9 @@ "- Insira uma célula de texto, ou comentários ao longo do código com a justificativa" ] }, - { - "cell_type": "markdown", - "id": "91e66f05", - "metadata": {}, - "source": [ - "class NetworkCNN(nn.Module):\n", - " \n", - " def __init__(self):\n", - " \n", - " ### INÍCIO DO CÓDIGO ### (≈ 5 linhas)\n", - " \n", - " super(NetworkCNN, self).__init__()\n", - " # 1 input image channel, 32 output channels, 3x3 square convolution kernel\n", - " self.cnn1 = nn.Conv2d(in_channels=1, out_channels= 32, kernel_size=3, stride=1, padding=0)\n", - " self.cnn2 = nn.Conv2d(in_channels=32, out_channels= 64, kernel_size=3, stride=1, padding=0)\n", - " self.fc1 = nn.Linear(64*5*5, 120) # entrada = k*k*p, saída = 10 rotulos\n", - " self.fc2 = nn.Linear(120, 10) # entrada = k*k*p, saída = 10 rotulos\n", - "\n", - " def forward(self, x):\n", - " \n", - " ### INÍCIO DO CÓDIGO ### (≈ 5 linhas)\n", - " \n", - " x = F.relu(self.cnn1(x))\n", - " x = F.max_pool2d(x, kernel_size=2, stride=2) # Max pooling over a (2, 2) window\n", - " x = F.relu(self.cnn2(x))\n", - " x = F.max_pool2d(x, kernel_size=2, stride=2)\n", - " x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension\n", - " print(x.shape)\n", - " x = self.fc1(x)\n", - " x = self.fc2(x)\n", - "\n", - " return x" - ] - }, { "cell_type": "code", - "execution_count": 570, + "execution_count": 66, "id": "336672d4", "metadata": {}, "outputs": [], @@ -590,47 +600,44 @@ " def __init__(self):\n", " \n", " ### INÍCIO DO CÓDIGO ### (≈ 5 linhas)\n", - " \n", + " # herda da classe nn.Module\n", " super(NetworkCNN, self).__init__()\n", - " # 1 input image channel, 32 output channels, 3x3 square convolution kernel\n", + " # 1 entrada imagem, 32 saídas, 3x3 convolução\n", " self.cnn1 = nn.Conv2d(in_channels=1, out_channels= 32, kernel_size=3, stride=1, padding=0)\n", + " # 32 entrada imagem, 64 saídas, 3x3 convolução\n", " self.cnn2 = nn.Conv2d(in_channels=32, out_channels= 64, kernel_size=3, stride=1, padding=0)\n", + " # 64 entrada imagem, 128 saídas, 3x3 convolução\n", " self.cnn3 = nn.Conv2d(in_channels=64, out_channels= 128, kernel_size=3, stride=1, padding=0)\n", - " self.fc1 = nn.Linear(128*5*5, 120) # entrada = p*q*d, saída = 120 rotulos\n", - " self.fc2 = nn.Linear(120, 84) # entrada = 160, saída = 84\n", - " self.fc3 = nn.Linear(120, 10) # entrada = 84, saída = 10\n", + " # camada fully connected (128 * 3 * 3 -> 128)\n", + " self.fc1 = nn.Linear(128 * 5 * 5, 128)\n", + " # camada fully connected (128 -> 10)\n", + " self.fc2 = nn.Linear(128, 10)\n", "\n", " def forward(self, x):\n", " \n", " ### INÍCIO DO CÓDIGO ### (≈ 5 linhas)\n", - " \n", - " x = F.relu(self.cnn1(x))\n", - " print(x.shape)\n", - " x = F.max_pool2d(x, kernel_size=3, stride=2) # Max pooling over a (2, 2) window\n", - " x = F.relu(self.cnn2(x))\n", - " x = F.max_pool2d(x, kernel_size=3, stride=1)\n", - " x = F.relu(self.cnn3(x))\n", - " x = F.max_pool2d(x, kernel_size=2, stride=1)\n", - " #x = F.max_pool2d(x, kernel_size=2, stride=1)\n", - " print(x.shape)\n", - " x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension\n", - " print(x.shape)\n", - " x = self.fc1(x)\n", - " x = self.fc2(x)\n", - " x = self.fc3(x)\n", + " x = F.relu(self.cnn1(x)) # primeira camada conv + ReLU\n", + " x = F.max_pool2d(x, kernel_size=3, stride=2) # Max pooling over a (3, 3) window com stride 2\n", + " x = F.relu(self.cnn2(x)) # segunda camada conv + ReLU\n", + " x = F.max_pool2d(x, kernel_size=3, stride=1) # Max pooling over a (3, 3) window com stride 1\n", + " x = F.relu(self.cnn3(x)) # terceira camada conv + ReLU\n", + " x = F.max_pool2d(x, kernel_size=2, stride=1) # Max pooling over a (2, 2) window com stride 1\n", + " x = torch.flatten(x, 1) # comprime a entrada para um vetor\n", + " x = self.fc1(x) # primeira camada fully connected\n", + " x = self.fc2(x) # segunda camada fully connected\n", "\n", "\n", " return x" ] }, { - "cell_type": "code", - "execution_count": 571, + "cell_type": "markdown", "id": "a6952e4e", "metadata": {}, - "outputs": [], "source": [ - "# Justifique a escolha da arquitetura" + "### Justifique a escolha da arquitetura\n", + "\n", + "**Resposta:** A arquitetura utilizada foi baseada em uma rede convolucional sequencial básica, uma vez que as dimensões do problema eram relativamente baixas e o dataset por si só já apresentava uma robustez interessante. Por isso, optou-se por utilizar 3 camadas convolucionais ativadas com uma função ReLU, cada camada separada por um pooling de tamanhos de kernel e strides variados, uma vez que dessa forma foi possível compatibilizar o tamanho da saída achatada (128 * 5 * 5 = 3200) com o da primeira camada fully connected. Foram feitos testes empíricos com 2 camadas convolucionais apenas e pela acurácia final, ficou evidente que utilizar 3 camadas era mais vantajoso." ] }, { @@ -643,7 +650,7 @@ }, { "cell_type": "code", - "execution_count": 572, + "execution_count": 67, "id": "58287f52", "metadata": {}, "outputs": [ @@ -651,43 +658,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "torch.Size([10, 32, 26, 26])\n", - "torch.Size([10, 128, 5, 5])\n", - "torch.Size([10, 3200])\n" - ] - }, - { - "ename": "RuntimeError", - "evalue": "mat1 and mat2 shapes cannot be multiplied (10x84 and 120x10)", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32mc:\\Users\\felip\\Documents\\RedesNeurais\\Trabalho1\\SCC0270-T1-11800910-11800584.ipynb Célula: 31\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 5\u001b[0m optimizer \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39moptim\u001b[39m.\u001b[39mAdam(model_cnn\u001b[39m.\u001b[39mparameters(), lr\u001b[39m=\u001b[39mlearning_rate)\n\u001b[0;32m 6\u001b[0m \u001b[39m### FIM DO CÓDIGO ###\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m loss \u001b[39m=\u001b[39m criterion(model_cnn(images), labels)\n\u001b[0;32m 9\u001b[0m \u001b[39mprint\u001b[39m(loss)\n\u001b[0;32m 10\u001b[0m \u001b[39mprint\u001b[39m(model_cnn)\n", - "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\torch\\nn\\modules\\module.py:1130\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *input, **kwargs)\u001b[0m\n\u001b[0;32m 1126\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m 1127\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m 1128\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m 1129\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1130\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39m\u001b[39minput\u001b[39m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 1131\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[0;32m 1132\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n", - "\u001b[1;32mc:\\Users\\felip\\Documents\\RedesNeurais\\Trabalho1\\SCC0270-T1-11800910-11800584.ipynb Célula: 31\u001b[0m in \u001b[0;36mNetworkCNN.forward\u001b[1;34m(self, x)\u001b[0m\n\u001b[0;32m 31\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfc1(x)\n\u001b[0;32m 32\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfc2(x)\n\u001b[1;32m---> 33\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mfc3(x)\n\u001b[0;32m 36\u001b[0m \u001b[39mreturn\u001b[39;00m x\n", - "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\torch\\nn\\modules\\module.py:1130\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *input, **kwargs)\u001b[0m\n\u001b[0;32m 1126\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m 1127\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m 1128\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m 1129\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1130\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39m\u001b[39minput\u001b[39m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 1131\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[0;32m 1132\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n", - "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\torch\\nn\\modules\\linear.py:114\u001b[0m, in \u001b[0;36mLinear.forward\u001b[1;34m(self, input)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39minput\u001b[39m: Tensor) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Tensor:\n\u001b[1;32m--> 114\u001b[0m \u001b[39mreturn\u001b[39;00m F\u001b[39m.\u001b[39;49mlinear(\u001b[39minput\u001b[39;49m, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mweight, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mbias)\n", - "\u001b[1;31mRuntimeError\u001b[0m: mat1 and mat2 shapes cannot be multiplied (10x84 and 120x10)" + "tensor(2.3151, grad_fn=)\n", + "NetworkCNN(\n", + " (cnn1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))\n", + " (cnn2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))\n", + " (cnn3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))\n", + " (fc1): Linear(in_features=3200, out_features=128, bias=True)\n", + " (fc2): Linear(in_features=128, out_features=10, bias=True)\n", + ")\n" ] } ], "source": [ "### INÍCIO DO CÓDIGO ### (≈ 4 linhas)\n", - "model_cnn = NetworkCNN()\n", - "criterion = nn.CrossEntropyLoss()\n", - "learning_rate = 0.001\n", - "optimizer = torch.optim.Adam(model_cnn.parameters(), lr=learning_rate)\n", + "model_cnn = NetworkCNN() # cria modelo\n", + "criterion = nn.CrossEntropyLoss() # função de custo\n", + "learning_rate = 0.001 # taxa de aprendizado\n", + "optimizer = torch.optim.Adam(model_cnn.parameters(), lr=learning_rate) # otimizador\n", "### FIM DO CÓDIGO ###\n", "\n", - "loss = criterion(model_cnn(images), labels)\n", - "print(loss)\n", - "print(model_cnn)" + "loss = criterion(model_cnn(images), labels) # calcula a função de custo\n", + "print(loss) # imprime o valor da função de custo\n", + "print(model_cnn) # imprime a arquitetura do modelo" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "id": "0b240e9c", "metadata": {}, "outputs": [ @@ -695,145 +692,29 @@ "name": "stdout", "output_type": "stream", "text": [ - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n", - "torch.Size([100, 1600])\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[1;32mc:\\Users\\felip\\Documents\\RedesNeurais\\Trabalho1\\SCC0270-T1-11800910-11800584.ipynb Célula: 32\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[39m### INÍCIO DO CÓDIGO ### (≈ 1 linha)\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m cnn_results \u001b[39m=\u001b[39m fit(model_cnn, criterion, optimizer, train_loader, test_loader, num_epochs\u001b[39m=\u001b[39;49m\u001b[39m20\u001b[39;49m\n\u001b[0;32m 3\u001b[0m )\n\u001b[0;32m 4\u001b[0m \u001b[39mprint\u001b[39m(cnn_results)\n", - "\u001b[1;32mc:\\Users\\felip\\Documents\\RedesNeurais\\Trabalho1\\SCC0270-T1-11800910-11800584.ipynb Célula: 32\u001b[0m in \u001b[0;36mfit\u001b[1;34m(model, criterion, optimizer, train_loader, test_loader, num_epochs)\u001b[0m\n\u001b[0;32m 24\u001b[0m loss \u001b[39m=\u001b[39m criterion(outputs, labels) \u001b[39m# cálculo do erro\u001b[39;00m\n\u001b[0;32m 25\u001b[0m optimizer\u001b[39m.\u001b[39mzero_grad() \u001b[39m# inicialização dos gradiente a zero\u001b[39;00m\n\u001b[1;32m---> 26\u001b[0m loss\u001b[39m.\u001b[39;49mbackward() \u001b[39m# propagação para trás\u001b[39;00m\n\u001b[0;32m 27\u001b[0m optimizer\u001b[39m.\u001b[39mstep() \u001b[39m# atualização dos pesos\u001b[39;00m\n\u001b[0;32m 29\u001b[0m \u001b[39m### FIM DO CÓDIGO ###\u001b[39;00m\n", - "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\torch\\_tensor.py:396\u001b[0m, in \u001b[0;36mTensor.backward\u001b[1;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[0;32m 387\u001b[0m \u001b[39mif\u001b[39;00m has_torch_function_unary(\u001b[39mself\u001b[39m):\n\u001b[0;32m 388\u001b[0m \u001b[39mreturn\u001b[39;00m handle_torch_function(\n\u001b[0;32m 389\u001b[0m Tensor\u001b[39m.\u001b[39mbackward,\n\u001b[0;32m 390\u001b[0m (\u001b[39mself\u001b[39m,),\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 394\u001b[0m create_graph\u001b[39m=\u001b[39mcreate_graph,\n\u001b[0;32m 395\u001b[0m inputs\u001b[39m=\u001b[39minputs)\n\u001b[1;32m--> 396\u001b[0m torch\u001b[39m.\u001b[39;49mautograd\u001b[39m.\u001b[39;49mbackward(\u001b[39mself\u001b[39;49m, gradient, retain_graph, create_graph, inputs\u001b[39m=\u001b[39;49minputs)\n", - "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\torch\\autograd\\__init__.py:173\u001b[0m, in \u001b[0;36mbackward\u001b[1;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[0;32m 168\u001b[0m retain_graph \u001b[39m=\u001b[39m create_graph\n\u001b[0;32m 170\u001b[0m \u001b[39m# The reason we repeat same the comment below is that\u001b[39;00m\n\u001b[0;32m 171\u001b[0m \u001b[39m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[0;32m 172\u001b[0m \u001b[39m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[1;32m--> 173\u001b[0m Variable\u001b[39m.\u001b[39;49m_execution_engine\u001b[39m.\u001b[39;49mrun_backward( \u001b[39m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[0;32m 174\u001b[0m tensors, grad_tensors_, retain_graph, create_graph, inputs,\n\u001b[0;32m 175\u001b[0m allow_unreachable\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m, accumulate_grad\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n", - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + "Epoch 1/15 .. Train Loss: 0.59016 .. Test Loss: 0.45081 .. Test Accuracy: 83.670%\n", + "Epoch 2/15 .. Train Loss: 0.37382 .. Test Loss: 0.37704 .. Test Accuracy: 86.430%\n", + "Epoch 3/15 .. Train Loss: 0.32217 .. Test Loss: 0.35318 .. Test Accuracy: 87.110%\n", + "Epoch 4/15 .. Train Loss: 0.29193 .. Test Loss: 0.33348 .. Test Accuracy: 87.880%\n", + "Epoch 5/15 .. Train Loss: 0.26599 .. Test Loss: 0.31793 .. Test Accuracy: 88.530%\n", + "Epoch 6/15 .. Train Loss: 0.24747 .. Test Loss: 0.30698 .. Test Accuracy: 88.930%\n", + "Epoch 7/15 .. Train Loss: 0.23126 .. Test Loss: 0.29816 .. Test Accuracy: 89.510%\n", + "Epoch 8/15 .. Train Loss: 0.21699 .. Test Loss: 0.30631 .. Test Accuracy: 89.340%\n", + "Epoch 9/15 .. Train Loss: 0.20506 .. Test Loss: 0.31194 .. Test Accuracy: 89.510%\n", + "Epoch 10/15 .. Train Loss: 0.19544 .. Test Loss: 0.33229 .. Test Accuracy: 89.110%\n", + "Epoch 11/15 .. Train Loss: 0.18296 .. Test Loss: 0.34901 .. Test Accuracy: 89.210%\n", + "Epoch 12/15 .. Train Loss: 0.17363 .. Test Loss: 0.36742 .. Test Accuracy: 89.280%\n", + "Epoch 13/15 .. Train Loss: 0.16094 .. Test Loss: 0.38934 .. Test Accuracy: 89.110%\n", + "Epoch 14/15 .. Train Loss: 0.15766 .. Test Loss: 0.39360 .. Test Accuracy: 88.960%\n", + "Epoch 15/15 .. Train Loss: 0.14830 .. Test Loss: 0.42078 .. Test Accuracy: 89.120%\n", + "{'train_losses': [0.5901596974829832, 0.37382099010050296, 0.3221676551798979, 0.291927493562301, 0.26598713057736556, 0.24747193014870086, 0.23126275199155014, 0.21699232185880343, 0.20506147284060716, 0.19544484636435905, 0.18296170733248193, 0.17363256953656672, 0.1609382898422579, 0.15766116745149095, 0.14829858073033392], 'test_losses': [0.45080779522657394, 0.3770428079366684, 0.35317881882190705, 0.33348373234272005, 0.31793396174907684, 0.3069762958586216, 0.29816236078739167, 0.30631334699690344, 0.311940198764205, 0.3322942493855953, 0.3490136744081974, 0.36742441944777965, 0.3893440547585487, 0.393603297919035, 0.4207809980213642], 'accuracy_list': [83.66999816894531, 86.43000030517578, 87.11000061035156, 87.87999725341797, 88.52999877929688, 88.93000030517578, 89.51000213623047, 89.33999633789062, 89.51000213623047, 89.11000061035156, 89.20999908447266, 89.27999877929688, 89.11000061035156, 88.95999908447266, 89.12000274658203]}\n" ] } ], "source": [ "### INÍCIO DO CÓDIGO ### (≈ 1 linha)\n", - "cnn_results = fit(model_cnn, criterion, optimizer, train_loader, test_loader, num_epochs=20\n", - ")\n", + "cnn_results = fit(\n", + " model_cnn, criterion, optimizer, train_loader, test_loader, num_epochs=15) # treina o modelo\n", "print(cnn_results)\n", "### FIM DO CÓDIGO ###" ] @@ -849,11 +730,35 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 69, "id": "87df2a6a", "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Numero de parâmetros treináveis para rede densa = 1494154 \n", + "\n", + "Numero de parâmetros treináveis para rede convolucional = 503690 \n", + "\n" + ] + } + ], "source": [ - "(Escreva sua resposta)" + "# Mapeamento do número de parâmetros\n", + "total_params_dense = sum(\n", + " param.numel() for param in model_dense.parameters() if param.requires_grad\n", + ")\n", + "\n", + "# Mapeamento do número de parâmetros\n", + "total_params_cnn = sum(\n", + " param.numel() for param in model_cnn.parameters() if param.requires_grad\n", + ")\n", + "\n", + "print('Numero de parâmetros treináveis para rede densa = ', total_params_dense,'\\n')\n", + "print('Numero de parâmetros treináveis para rede convolucional = ', total_params_cnn,'\\n')" ] }, { @@ -868,25 +773,39 @@ "Utilize o gráfico para auxiliar na análise. Insira uma célula de texto com a sua resposta" ] }, + { + "cell_type": "markdown", + "id": "9268344a", + "metadata": {}, + "source": [ + "O modelo de redes convolucionais obteve melhor desempenho. Isso se deve principalmente por conta de fatores cruciais no poder representativo de cada arquitetura.\n", + "\n", + "Redes CNN tem como viés indutivo de função o fato de a localidade na entrada (pixeis próximos) corresponderem a informações mais relevantes como um todo (para a tarefa). Isso corresponde bem à classificação em mãos, dado que traços, cores e texturas são _features_ importantes para a detecção da classe, e são melhor capturadas por este tipo de função (convolução).\n", + "\n", + "Redes simples (profundas completamente conexas) possuem não somente mais parâmetros (espaço de busca de funções ótimas é mais extenso, o que leva mais tempo e recursos computacionais) como também são menos próprias para estas tarefas. Como a função de ativação fora a ReLU, tem-se a suspeita que o baixo desempenho do modelo como um todo tenha sido por conta de gradientes muito pequenos. " + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 70, "id": "82a9a2fe", "metadata": {}, "outputs": [ { - "ename": "SyntaxError", - "evalue": "invalid syntax (1610989410.py, line 7)", - "output_type": "error", - "traceback": [ - "\u001b[1;36m Input \u001b[1;32mIn [18]\u001b[1;36m\u001b[0m\n\u001b[1;33m plt.xlabel(\"Epoch\")\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPrUlEQVR4nO3deXQT9d4G8CdJ0zTd942lG6UgVGSXRVwAoSLKfvEii6i4oGyKLAqKiAgqekEF8UXkagGvCogLcKFsotiCUKAXKKWUnW50Sdc0Teb9Y9q0oS22Jel02udzzpwkM5PJNznYefwtMwpBEAQQERERyZBS6gKIiIiI6otBhoiIiGSLQYaIiIhki0GGiIiIZItBhoiIiGSLQYaIiIhki0GGiIiIZItBhoiIiGSLQYaIiIhki0GGiIiIZItBhojq5bPPPoNCoUDPnj2lLoWImjEF77VERPXRp08fXL9+HRcvXkRSUhLatGkjdUlE1AyxRYaI6iwlJQV//PEHVqxYAR8fH0RHR0tdUrUKCgqkLoGIbIxBhojqLDo6Gh4eHhgyZAhGjRpVbZDJycnBzJkzERwcDI1Gg5YtW2LChAnIzMw071NcXIy33noLbdu2hYODAwICAjBixAgkJycDAPbv3w+FQoH9+/dbHPvixYtQKBT46quvzOsmTZoEZ2dnJCcn45FHHoGLiwvGjRsHAPjtt98wevRotG7dGhqNBq1atcLMmTNRVFRUpe6zZ89izJgx8PHxgVarRUREBF5//XUAwL59+6BQKLB169Yq79u4cSMUCgUOHz5c59+TiOrPTuoCiEh+oqOjMWLECNjb2+OJJ57A6tWrceTIEXTv3h0AkJ+fj/vuuw9nzpzB5MmT0aVLF2RmZmL79u24evUqvL29YTQa8eijjyImJgZjx47F9OnTkZeXh927dyMhIQFhYWF1rqu0tBSDBg1C37598cEHH8DR0REA8N1336GwsBAvvPACvLy8EBcXh1WrVuHq1av47rvvzO8/efIk7rvvPqjVakyZMgXBwcFITk7GTz/9hCVLluCBBx5Aq1atEB0djeHDh1f5TcLCwtCrV687+GWJqM4EIqI6OHr0qABA2L17tyAIgmAymYSWLVsK06dPN++zcOFCAYCwZcuWKu83mUyCIAjCl19+KQAQVqxYUeM++/btEwAI+/bts9iekpIiABDWr19vXjdx4kQBgDB37twqxyssLKyybunSpYJCoRAuXbpkXtevXz/BxcXFYl3legRBEObNmydoNBohJyfHvC49PV2ws7MT3nzzzSqfQ0S2xa4lIqqT6Oho+Pn54cEHHwQAKBQK/OMf/8DmzZthNBoBAD/88AM6depUpdWifP/yfby9vfHyyy/XuE99vPDCC1XWabVa8/OCggJkZmaid+/eEAQBx48fBwBkZGTg4MGDmDx5Mlq3bl1jPRMmTIBer8f3339vXvftt9+itLQUTz75ZL3rJqL6YZAholozGo3YvHkzHnzwQaSkpOD8+fM4f/48evbsibS0NMTExAAAkpOT0bFjx9seKzk5GREREbCzs14Pt52dHVq2bFll/eXLlzFp0iR4enrC2dkZPj4+uP/++wEAubm5AIALFy4AwN/W3a5dO3Tv3t1iXFB0dDTuvfdeztwikgDHyBBRre3duxc3btzA5s2bsXnz5irbo6Oj8fDDD1vt82pqmSlv+bmVRqOBUqmssu/AgQORlZWFOXPmoF27dnBycsK1a9cwadIkmEymOtc1YcIETJ8+HVevXoVer8eff/6JTz75pM7HIaI7xyBDRLUWHR0NX19ffPrpp1W2bdmyBVu3bsWaNWsQFhaGhISE2x4rLCwMsbGxMBgMUKvV1e7j4eEBQJwBVdmlS5dqXfOpU6dw7tw5bNiwARMmTDCv3717t8V+oaGhAPC3dQPA2LFjMWvWLGzatAlFRUVQq9X4xz/+UeuaiMh62LVERLVSVFSELVu24NFHH8WoUaOqLC+99BLy8vKwfft2jBw5EidOnKh2mrJQdg3OkSNHIjMzs9qWjPJ9goKCoFKpcPDgQYvtn332Wa3rVqlUFscsf/6vf/3LYj8fHx/069cPX375JS5fvlxtPeW8vb0RFRWFb775BtHR0Rg8eDC8vb1rXRMRWQ9bZIioVrZv3468vDw89thj1W6/9957zRfH27hxI77//nuMHj0akydPRteuXZGVlYXt27djzZo16NSpEyZMmIB///vfmDVrFuLi4nDfffehoKAAe/bswYsvvojHH38cbm5uGD16NFatWgWFQoGwsDD8/PPPSE9Pr3Xd7dq1Q1hYGF599VVcu3YNrq6u+OGHH5CdnV1l35UrV6Jv377o0qULpkyZgpCQEFy8eBG//PIL4uPjLfadMGECRo0aBQBYvHhx7X9IIrIuKadMEZF8DB06VHBwcBAKCgpq3GfSpEmCWq0WMjMzhZs3bwovvfSS0KJFC8He3l5o2bKlMHHiRCEzM9O8f2FhofD6668LISEhglqtFvz9/YVRo0YJycnJ5n0yMjKEkSNHCo6OjoKHh4fw3HPPCQkJCdVOv3Zycqq2rtOnTwsDBgwQnJ2dBW9vb+HZZ58VTpw4UeUYgiAICQkJwvDhwwV3d3fBwcFBiIiIEBYsWFDlmHq9XvDw8BDc3NyEoqKiWv6KRGRtvNcSEVE9lJaWIjAwEEOHDsW6deukLoeo2eIYGSKieti2bRsyMjIsBhATUcNjiwwRUR3Exsbi5MmTWLx4Mby9vXHs2DGpSyJq1tgiQ0RUB6tXr8YLL7wAX19f/Pvf/5a6HKJmjy0yREREJFtskSEiIiLZYpAhIiIi2WryF8QzmUy4fv06XFxc7uiOukRERNRwBEFAXl4eAgMDq9xDrbImH2SuX7+OVq1aSV0GERER1cOVK1eqvat9uSYfZFxcXACIP4Srq6vE1RAREVFt6HQ6tGrVynwer0mTDzLl3Umurq4MMkRERDLzd8NCONiXiIiIZItBhoiIiGSLQYaIiIhkS9Igk5eXhxkzZiAoKAharRa9e/fGkSNHzNsFQcDChQsREBAArVaLAQMGICkpScKKiYiIqDGRNMg888wz2L17N77++mucOnUKDz/8MAYMGIBr164BAJYvX46VK1dizZo1iI2NhZOTEwYNGoTi4mIpyyYiIqJGQrJ7LRUVFcHFxQU//vgjhgwZYl7ftWtXREVFYfHixQgMDMQrr7yCV199FQCQm5sLPz8/fPXVVxg7dmytPken08HNzQ25ubmctURERCQTtT1/S9YiU1paCqPRCAcHB4v1Wq0Whw4dQkpKClJTUzFgwADzNjc3N/Ts2ROHDx+u8bh6vR46nc5iISIioqZJsiDj4uKCXr16YfHixbh+/TqMRiO++eYbHD58GDdu3EBqaioAwM/Pz+J9fn5+5m3VWbp0Kdzc3MwLr+pLRETUdEk6Rubrr7+GIAho0aIFNBoNVq5ciSeeeOK291T4O/PmzUNubq55uXLlihUrJiIiosZE0iATFhaGAwcOID8/H1euXEFcXBwMBgNCQ0Ph7+8PAEhLS7N4T1pamnlbdTQajfkqvryaLxERUdPWKK4j4+TkhICAAGRnZ2PXrl14/PHHERISAn9/f8TExJj30+l0iI2NRa9evSSsloiIiBoLSe+1tGvXLgiCgIiICJw/fx6zZ89Gu3bt8NRTT0GhUGDGjBl45513EB4ejpCQECxYsACBgYEYNmyYlGUTERFRIyFpkMnNzcW8efNw9epVeHp6YuTIkViyZAnUajUA4LXXXkNBQQGmTJmCnJwc9O3bFzt37qwy04mIpJFVUAKVQgEXBzsolbe/sVtTU2o0IbfIADulEm6OaqnLIWq2JLuOTEPhdWSIrOdKViFiU7IQe+EmYlOycDmrEACgVABuWjXcHe3hplXDw1F87u6ohru27LF8nVYND0d7uDmq4epg97d3trU1o0mArsiA7MIS5BQZkFNYgpxCQ9kirssue55bvl+hAXnFpeZj+Lho0NbPGW39XMoWZ4T7ucDVgQGHqL5qe/6WtEWGiBovQRBw8WahObTEpWThWk5RtfuaBCC7UDzh14VKqRADkLZS0KkUfjwc1XBztBeDUaVA5KypGoBMJgG6YjGAlIeS3MKK4JFjDiqVAkpBCXSVAkl9ZeTpkZGnx+/nb1qsD3BzQLifC9r6OqOtvxhywn2d4aThn14ia+F/TUQEQAwu59Pz8WdZi0tcShbS8/QW+9gpFYhs6YaeIV7oGeqJrkEe0NgpkWsOCGJwyC00IKeopKwlo1IrR6UWjyKDEUaTgKyCEmQVlNSpVjulAu6Oarhp1TCaBDG0FBlwJ+3LLho7uJUFJQ9zy5K9RUtS5bDl4WgPVwc7FJeacD49H+dS83AuLQ/nyp6n6opxI1dcDp7LsPisFu5aRPi7INzPGW19XRDh74I2vs5wUKvq/wWImil2LRE1UyaTgLOpeYhNEUNLXEoWbt4SKOxVStzTyh09Qz3RI0QMLo721vn/n2KD0aKrxrIrpywMlQejsnXZhQaUlJpue1wne1VFy84tLTnlAcW9vJXHsaI7TK2y7iTO3CIDzqfnITE1H+fS8pBU9jwzX1/t/goF0NrT0dw1Vd5NFerjBI1d4ww4giBAX2oqW4zQG0woMZoqPRqhLzWhpGyfEqO4T8U6o3lb5eNUXldSKh7DfMzK2w0mGIwmaO1VfxtAy7szPcrWuWrVUDWzcV1yU9vzN4MMUTNRajThzA0xuPx5IQtHLmYht8iyK8hBrUSX1h7oEeKJniFe6NzavdG1EhQbjObwk11YAjul0hxU3LTqRnvSL5ddUCK23KTl4Vxavvl5Td1yKqUCQV6OiPBzEbupykJOiLdTrcJXSakJRQYjikqMKCwpRWGJEUUGo/hYYkSRodT8vHybxb637F9oKBXXlRhRaDDeUSuYlBQKwNXh1rFbNYzzqjS2qzkObJcKg0wZBhlqrgxGE05dy0XshSzEptzE0YvZyNdbjgdxtFeha5AH7g31Qs8QT9zd0h32do3i8lLNiiAIyMwvQVJZqElMyzc/r2kMj1qlQIi3E1p5OKLEaEJhWRApNliGkFJTw/yJVygAjZ0S9iolNGpV2aMSGjsV7O2U0FRaxNeqSs+rW2f5vlvXOaiVsFepoLZToLDEaDFIO/uWgdk5ZV2d5c9v/e+gLqob2O6mFRdXrRquDmq4au3E1w4V69y0ajg72MmiFajUaIKuuLSsy1j8Lc1LYcXz8i5dXZEBMwe2xaAONV+stj442JeomdGXGnHiSq55cO5fl7JRZDBa7OOisUP3EE/0DPFEz1AvdAh0tXqXCtWdQqGAj4sGPi4a9G7jbV4vCALSdPpKLThiK05SWh4KSoxlLTr5tfoMlVIBR7UKWnsVHO1V0NrbwbHsuYNaZX6uVduVbVdBq1aZnzva20Fb6f2V99HYqaBWKSSfgVZbBqMJOYUG5BaVt+xVHsdlGX6yCwzmE3pBibHeA9vLuWjs4KpVw8XB7m/CT6XtZa+rG+ReE5NJQJ6+FLqy8WsV4aOk+lBSWBFK8uoR9FJzi+v8HmthkCGSqeyCEpy+oTNPhz5+JafK+BF3RzV6BIuhpWeIJ9oHuMri/whJpFAo4O/mAH83B/Rr62NeLwgCruUUISktHzdyi+GgVlqEE4vAobaD1l7FlrZK1CqlOTjWhb7UaDGwvTz85BYZoCsWQ4D4XAwQuuLycFBq/p+KPH1pvYICILYGVRd8VEqFZatJWSC508Y4Z42dubWpfCnvwnWt9NxNq0ZbP5c7+7A7wCBD1Mjpig1l3Qz5Fv9XnpFXddCot7M9eoZ4iWNcQj3R1teF/flNkEKhQEsPR7T0cJS6lGZFY6eCr4sKvi51vyhrSakJecUGc5eNzhx+Si2CUHXbdUUGlBhNMAkwh6jaclAr4a61rwgjlcKH+y2vK8KKOCPPTiattQwyRI1Egb4USellYSVVnMablJaHG7dpsm3hrkXXIA/0DBUH54b5OMmmeZ+oObG3U8LLWQMv57q1AgEVs8MqWnlKKwUdAwxGwaK1pHJgaeyD362BQYaogRUbjDifno/E1DycS89DUllLy9Xs6i82BwD+rg7iNUf8XMpmr4hXjnXmhdWImjyFQgEHtTiWydeVt+i5Ff8KEtmIvtSICxkFVabaXs4qrHHKqrdz9Ze6d9PyUvdERNVhkCG6QwajCSmZBRYzShLT8nDpZiGMNYy283BUVwkrbf1c4Olk38DVExHJG4MMUR3lFhnwx/lMHEzKxF+XspCSWQCDsfrA4uJgZ3Ehs/Ln3s72HMtCRGQFDDJEf6PUaMKJqzk4eC4TvyVlIP5KTpVpjU72KourrpYvfq4aBhYiIhtikCGqxpWsQvyWlImD5zLwe3Im8m65umobX2fcF+6N3mHeaB/gghbuWgYWIiIJMMgQQZz6fDj5Jn5LysDBpEykZBZYbHfTqtG3jTf6tfVG33AftHDXSlQpERFVxiBDzZLJJOB/13U4mJSBg+cycOxytsU4F5VSgS6t3XFfuA/6tfVBZAs3XhGXiKgRYpChZiM1t9jc4nIoKaPKvVJaezqiX1tv3Bfug15hXnB14JRnIqLGjkGGmqxigxGxKVn47VwGDiZlVLm5nrPGDr3CvNCvrQ/6hXsjyMtJokqJiKi+GGSoyRAEAYlpeTh4LgO/JWUiNiXL4iaKCgVwd0t39Av3Rr+2PrinlTvv/ExEJHMMMiRrmfl6/H4+EwfKwsutN1IMcHNAv3Af3NfWG33CvOHBC84RETUpDDIkOxczC7AjIRU7E27gxNVci20OaiXuDfVCv3Af9GvrjTAfZ06LJiJqwhhkSBaS0vKwIyEVOxJSceaGzmLbXQGuuK+tN+4P90HXYI9mcbdXIiISMchQoyQIAs7cyMOOhBvYkZCK8+kVA3VVSgV6hXohKtIfA+/yg68L7wZLRNRcMchQoyEIAk5ezcWvCTewMyEVl24WmrepVQr0beONqMgADGzvx7EuREQEgEGGJGYyCTh2ORu/nkrFrv+l4lpOkXmbxk6J+9v64JHIADzU3pfXdSEioioYZKjBlRpNiLuYhR1l4SW90kwjR3sVHmzni0c6BuCBCB84afhPlIiIasazBDUIg9GEP5JvYsepG/jv6TRkFZSYt7k42GFAez9EdfRHv7Y+cFBzsC4REdUOgwzZTLHBiENJmfg14Qb2nE6DrtIdpN0d1Xj4Lj9ERQagT5g37O14YToiIqo7BhmyqsKSUhxIzMCvCanYeyYNBSVG8zZvZw0GdfBDVMcA9Az15FV1iYjojjHI0B3LKzZg79l07ExIxb7EdBQbKm4LEODmgEEd/BHV0R/dgj15B2kiIrIqBhmql4w8PfYnpmPX/1Jx8FwmSowV4aWVpxZRHQMwuKM/7mnpDiXDCxER2QiDDNWK0SQg/koO9iemY39iBk5ds7w1QKi3E6Ii/RHVMQAdAl15WwAiImoQDDJUo5v5ehxMysC+sxk4mJSBnEKDxfbIFm7o394XUR0D0NaP9zQiIqKGxyBDZiaTgJPXcrE/MR37EjNw8moOBKFiu6uDHe5r64MHI3xxf1sf+LhopCuWiIgIDDLNXnZBCQ4mZeBAYgYOnMvAzUrXdwHEGzI+2M4HD0T4onMrd9hxphERETUiDDLNjMkk4PQNHfadTce+xHTEX8mBqVKri4vGDn3DvcVWlwgf+LnyhoxERNR4Mcg0A7lFBvyWlIH9ieKSma+32N7O3wX3R4hdRl2DPHh9FyIikg0GmSZIEAScuZGHfYnpOJCYgb8uZ8NYqdnFyV6FPm288UCELx6I8EGgu1bCaomIiOqPQaaJyCs24Pfzmdh3NgP7z6UjTWfZ6hLu64wHylpdugV78pYARETUJDDIyNj59HzEnEnDvsR0HL2YjdJKrS5atQp92njh/ghfPNDWB608HSWslIiIyDYYZGRqU9xlzN96ymJ6dKi3k7m7qEeIJ+8iTURETR6DjAwdOJeBN7YlQBCAPm288PBd/nggwgdBXk5Sl0ZERNSgGGRkJjE1D1Ojj8FoEjCyS0t8MPpuXlGXiIiaLY74lJH0vGJM/uoI8vWl6BniiaUjIhliiIioWWOQkYmiEiOe3XAU13KKEOrthM/Hd+XMIyIiavZ4JpQBk0nAjG+P48TVXHg4qrH+qe5wd7SXuiwiIiLJMcjIwHs7z2LX/9Jgr1Ji7YRuHNRLRERUhkGmkdsYexlrD14AALw/+m50D/aUuCIiIqLGg0GmETt4LgMLfkwAAMwa2BaP39NC4oqIiIgaFwaZRioxNQ8vlk2zHtGlBV5+qI3UJRERETU6DDKNEKdZExER1Q6DTCNT3TRrjR1vNUBERFQdBplGxGQSMPPbePM06y8ncZo1ERHR7TDINCLLdp7Fzv+lmqdZB3tzmjUREdHtMMg0EhtjL+NzTrMmIiKqEwaZRqDyNOuZAzjNmoiIqLYkDTJGoxELFixASEgItFotwsLCsHjxYgiCYN5n0qRJUCgUFsvgwYMlrNq6Kt/NekTnFpjWn9OsiYiIastOyg9ftmwZVq9ejQ0bNqBDhw44evQonnrqKbi5uWHatGnm/QYPHoz169ebX2s0GinKtbryadZ5+lL0CPHE0pGcZk1ERFQXkgaZP/74A48//jiGDBkCAAgODsamTZsQFxdnsZ9Go4G/v78UJdpM5WnWId5O+PxJTrMmIiKqK0m7lnr37o2YmBicO3cOAHDixAkcOnQIUVFRFvvt378fvr6+iIiIwAsvvICbN2/WeEy9Xg+dTmexNDYmk4BZ/xGnWbuXTbP2cOI0ayIiorqStEVm7ty50Ol0aNeuHVQqFYxGI5YsWYJx48aZ9xk8eDBGjBiBkJAQJCcnY/78+YiKisLhw4ehUlVtwVi6dCkWLVrUkF+jzpbtOosdCWXTrMd3QwinWRMREdWLQqg8sraBbd68GbNnz8b777+PDh06ID4+HjNmzMCKFSswceLEat9z4cIFhIWFYc+ePejfv3+V7Xq9Hnq93vxap9OhVatWyM3Nhaurq82+S21tiruMeVtOAQA+/sc9GNaZM5SIiIhupdPp4Obm9rfnb0lbZGbPno25c+di7NixAIDIyEhcunQJS5curTHIhIaGwtvbG+fPn682yGg0mkY7GPi3pAy8sU2cZj1jQDhDDBER0R2SdIxMYWEhlErLElQqFUwmU43vuXr1Km7evImAgABbl2dV59Ly8OI34jTr4Z1bYHr/cKlLIiIikj1JW2SGDh2KJUuWoHXr1ujQoQOOHz+OFStWYPLkyQCA/Px8LFq0CCNHjoS/vz+Sk5Px2muvoU2bNhg0aJCUpddJRp4eT62vmGb9HqdZExERWYWkQWbVqlVYsGABXnzxRaSnpyMwMBDPPfccFi5cCEBsnTl58iQ2bNiAnJwcBAYG4uGHH8bixYsbbffRrYpKjHjm35xmTUREZAuSDvZtCLUdLGQLJpOAqRuPYUdCKtwd1dj6Yh/OUCIiIqqF2p6/ea8lG+I0ayIiIttikLGRTXGX8fkB8W7Wy0ZFokcI72ZNRERkbQwyNnDrNOvhnVtKXBEREVHTxCBjZZxmTURE1HAYZKzIYpp1MKdZExER2RqDjJVUmWY9ntOsiYiIbI1BxgrMd7O+ksO7WRMRETUgBhkrWL4rETsSUqFWKfD5k105zZqIiKiBMMjcoU1xl7HmQDIAYPmou9Ez1EviioiIiJoPBpk7cCgp0zzNenp/TrMmIiJqaAwy9XQuLQ8vfPMXjCYBw+4JxIwBnGZNRETU0Bhk6kEQBMz94STy9KXoHuyBZaPu5jRrIiIiCTDI1INCocCqf3bBw3f5Ye34bpxmTUREJBE7qQuQqxbuWqyd0E3qMoiIiJo1tsgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbDHIEBERkWwxyBAREZFsMcgQERGRbEkaZIxGIxYsWICQkBBotVqEhYVh8eLFEATBvI8gCFi4cCECAgKg1WoxYMAAJCUlSVg1ERERNRaSBplly5Zh9erV+OSTT3DmzBksW7YMy5cvx6pVq8z7LF++HCtXrsSaNWsQGxsLJycnDBo0CMXFxRJWTkRERI2BQqjc/NHAHn30Ufj5+WHdunXmdSNHjoRWq8U333wDQRAQGBiIV155Ba+++ioAIDc3F35+fvjqq68wduzYv/0MnU4HNzc35ObmwtXV1WbfhYiIiKyntudvSVtkevfujZiYGJw7dw4AcOLECRw6dAhRUVEAgJSUFKSmpmLAgAHm97i5uaFnz544fPhwtcfU6/XQ6XQWCxERETVNdlJ++Ny5c6HT6dCuXTuoVCoYjUYsWbIE48aNAwCkpqYCAPz8/Cze5+fnZ952q6VLl2LRokW2LZyIiIgaBUlbZP7zn/8gOjoaGzduxLFjx7BhwwZ88MEH2LBhQ72POW/ePOTm5pqXK1euWLFiIiIiakwkbZGZPXs25s6dax7rEhkZiUuXLmHp0qWYOHEi/P39AQBpaWkICAgwvy8tLQ333HNPtcfUaDTQaDQ2r52IiIikJ2mLTGFhIZRKyxJUKhVMJhMAICQkBP7+/oiJiTFv1+l0iI2NRa9evRq0ViIiImp8JG2RGTp0KJYsWYLWrVujQ4cOOH78OFasWIHJkycDABQKBWbMmIF33nkH4eHhCAkJwYIFCxAYGIhhw4ZJWToRERE1ApIGmVWrVmHBggV48cUXkZ6ejsDAQDz33HNYuHCheZ/XXnsNBQUFmDJlCnJyctC3b1/s3LkTDg4OElZOREREjYGk15FpCLyODBERkfzI4joyRERERHeCQYaIiIhki0GGiIiIZKvOQSY4OBhvv/02Ll++bIt6iIiIiGqtzkFmxowZ2LJlC0JDQzFw4EBs3rwZer3eFrURERER3Va9gkx8fDzi4uLQvn17vPzyywgICMBLL72EY8eO2aJGIiIiomrd8fRrg8GAzz77DHPmzIHBYEBkZCSmTZuGp556CgqFwlp11hunXxMREclPbc/f9b4gnsFgwNatW7F+/Xrs3r0b9957L55++mlcvXoV8+fPx549e7Bx48b6Hp6IiIjob9U5yBw7dgzr16/Hpk2boFQqMWHCBHz00Udo166deZ/hw4eje/fuVi2UiIiI6FZ1DjLdu3fHwIEDsXr1agwbNgxqtbrKPiEhIeY7WhMRERHZSp2DzIULFxAUFHTbfZycnLB+/fp6F0VERERUG3WetZSeno7Y2Ngq62NjY3H06FGrFEVERERUG3UOMlOnTsWVK1eqrL927RqmTp1qlaKIiIiIaqPOQeb06dPo0qVLlfWdO3fG6dOnrVIUERERUW3UOchoNBqkpaVVWX/jxg3Y2dV7NjcRERFRndU5yDz88MOYN28ecnNzzetycnIwf/58DBw40KrFEREREd1OnZtQPvjgA/Tr1w9BQUHo3LkzACA+Ph5+fn74+uuvrV4gERERUU3qHGRatGiBkydPIjo6GidOnIBWq8VTTz2FJ554otpryhARERHZSr0GtTg5OWHKlCnWroWIiIioTuo9Ovf06dO4fPkySkpKLNY/9thjd1wUERERUW3U68q+w4cPx6lTp6BQKFB+8+zyO10bjUbrVkhERERUgzrPWpo+fTpCQkKQnp4OR0dH/O9//8PBgwfRrVs37N+/3wYlEhEREVWvzi0yhw8fxt69e+Ht7Q2lUgmlUom+ffti6dKlmDZtGo4fP26LOomIiIiqqHOLjNFohIuLCwDA29sb169fBwAEBQUhMTHRutURERER3UadW2Q6duyIEydOICQkBD179sTy5cthb2+PtWvXIjQ01BY1EhEREVWrzkHmjTfeQEFBAQDg7bffxqOPPor77rsPXl5e+Pbbb61eIBEREVFNFEL5tKM7kJWVBQ8PD/PMpcZEp9PBzc0Nubm5cHV1lbocIiIiqoXanr/rNEbGYDDAzs4OCQkJFus9PT0bZYghIiKipq1OQUatVqN169a8VgwRERE1CnWetfT6669j/vz5yMrKskU9RERERLVW58G+n3zyCc6fP4/AwEAEBQXBycnJYvuxY8esVhwRERHR7dQ5yAwbNswGZRARERHVnVVmLTVmnLVEREQkPzaZtURERETUmNS5a0mpVN52qjVnNBEREVFDqXOQ2bp1q8Vrg8GA48ePY8OGDVi0aJHVCiMiIiL6O1YbI7Nx40Z8++23+PHHH61xOKvhGBkiIiL5afAxMvfeey9iYmKsdTgiIiKiv2WVIFNUVISVK1eiRYsW1jgcERERUa3UeYzMrTeHFAQBeXl5cHR0xDfffGPV4oiIiIhup85B5qOPPrIIMkqlEj4+PujZsyc8PDysWhwRERHR7dQ5yEyaNMkGZRARERHVXZ3HyKxfvx7fffddlfXfffcdNmzYYJWiiIiIiGqjzkFm6dKl8Pb2rrLe19cX7777rlWKIiIiIqqNOgeZy5cvIyQkpMr6oKAgXL582SpFEREREdVGnYOMr68vTp48WWX9iRMn4OXlZZWiiIiIiGqjzkHmiSeewLRp07Bv3z4YjUYYjUbs3bsX06dPx9ixY21RIxEREVG16jxrafHixbh48SL69+8POzvx7SaTCRMmTOAYGSIiImpQ9b7XUlJSEuLj46HVahEZGYmgoCBr12YVvNcSERGR/NT2/F3nFply4eHhCA8Pr+/biYiIiO5YncfIjBw5EsuWLauyfvny5Rg9erRViiIiIiKqjToHmYMHD+KRRx6psj4qKgoHDx60SlFEREREtVHnIJOfnw97e/sq69VqNXQ6nVWKIiIiIqqNOgeZyMhIfPvtt1XWb968GXfddZdViiIiIiKqjToP9l2wYAFGjBiB5ORkPPTQQwCAmJgYbNy4Ed9//73VCyQiIiKqSZ2DzNChQ7Ft2za8++67+P7776HVatGpUyfs3bsXnp6etqiRiIiIqFr1vo5MOZ1Oh02bNmHdunX466+/YDQarVWbVfA6MkRERPJT2/N3ncfIlDt48CAmTpyIwMBAfPjhh3jooYfw559/1ukYwcHBUCgUVZapU6cCAB544IEq255//vn6lkxERERNTJ26llJTU/HVV19h3bp10Ol0GDNmDPR6PbZt21avgb5HjhyxaMFJSEjAwIEDLa5H8+yzz+Ltt982v3Z0dKzz5xAREVHTVOsWmaFDhyIiIgInT57Exx9/jOvXr2PVqlV39OE+Pj7w9/c3Lz///DPCwsJw//33m/dxdHS02IfdQ0RERFSu1kFmx44dePrpp7Fo0SIMGTIEKpXKqoWUlJTgm2++weTJk6FQKMzro6Oj4e3tjY4dO2LevHkoLCy06ucSERGRfNW6a+nQoUNYt24dunbtivbt22P8+PEYO3as1QrZtm0bcnJyMGnSJPO6f/7znwgKCkJgYCBOnjyJOXPmIDExEVu2bKnxOHq9Hnq93vyaF+kjIiJquuo8a6mgoADffvstvvzyS8TFxcFoNGLFihWYPHkyXFxc6l3IoEGDYG9vj59++qnGffbu3Yv+/fvj/PnzCAsLq3aft956C4sWLaqynrOWiIiI5KO2s5buaPp1YmIi1q1bh6+//ho5OTkYOHAgtm/fXufjXLp0CaGhodiyZQsef/zxGvcrKCiAs7Mzdu7ciUGDBlW7T3UtMq1atWKQISIikhGbT78GgIiICCxfvhxXr17Fpk2b6n2c9evXw9fXF0OGDLntfvHx8QCAgICAGvfRaDRwdXW1WIiIiKhpuuML4t0pk8mEkJAQPPHEE3jvvffM65OTk7Fx40Y88sgj8PLywsmTJzFz5ky0bNkSBw4cqPXxeUE8IiIi+ant+bvOtyiwtj179uDy5cuYPHmyxXp7e3vs2bMHH3/8MQoKCtCqVSuMHDkSb7zxhkSVEhERUWMjeYuMrbFFhoiISH4aZIwMERERkZQYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhIthhkiIiISLYYZIiIiEi2GGSIiIhItiQNMsHBwVAoFFWWqVOnAgCKi4sxdepUeHl5wdnZGSNHjkRaWpqUJRMREVEjImmQOXLkCG7cuGFedu/eDQAYPXo0AGDmzJn46aef8N133+HAgQO4fv06RowYIWXJRERE1IgoBEEQpC6i3IwZM/Dzzz8jKSkJOp0OPj4+2LhxI0aNGgUAOHv2LNq3b4/Dhw/j3nvvrdUxdTod3NzckJubC1dXV1uWT0RERFZS2/N3oxkjU1JSgm+++QaTJ0+GQqHAX3/9BYPBgAEDBpj3adeuHVq3bo3Dhw9LWCkRERE1FnZSF1Bu27ZtyMnJwaRJkwAAqampsLe3h7u7u8V+fn5+SE1NrfE4er0eer3e/Fqn09miXCIiImoEGk2LzLp16xAVFYXAwMA7Os7SpUvh5uZmXlq1amWlComIiKixaRRB5tKlS9izZw+eeeYZ8zp/f3+UlJQgJyfHYt+0tDT4+/vXeKx58+YhNzfXvFy5csVWZRMREZHEGkWQWb9+PXx9fTFkyBDzuq5du0KtViMmJsa8LjExEZcvX0avXr1qPJZGo4Grq6vFQkRERE2T5GNkTCYT1q9fj4kTJ8LOrqIcNzc3PP3005g1axY8PT3h6uqKl19+Gb169ar1jCUiIiJq2iQPMnv27MHly5cxefLkKts++ugjKJVKjBw5Enq9HoMGDcJnn30mQZVERETUGDWq68jYAq8jQ0REJD+1PX9L3iJDREQyUVoCFKQDeWlAfiqQlwoUZQFaT8C1BeAaALgEAo5egLJRDMGkZoBBhoiouSspEENJflrNj/lpQOHN2h1PqQZcAsqCTQDgGnjLY1ngUTvY9ntRs8AgQ0TUFAkCUJR9+3CSlwrkpwMlebU/rlINOPsBLn6Asz+g9RBbZXTXAN0NoCADMBmA3MvicjtaDzHQuJaHnMCKkGNu3fEEFIo7+y0aO0EAjAbAqAdK9UBpcdmj/pZ1JeKjseSWfUoAwQiYyhbz81JAMFVaV1rpuals+63vqc37TZW2l+3bfyEQOUqSn49BhojkSZ8PZF8UT3Sud3YhTVkSBCDtf8D1Y2IguTWc5KeJJ8HaUjtVhJPyR2dfwMW/LLj4VwSX23UbGQ1l9dwAdNdvebwB5F0XH0uLxKBVlA2k/6/m46k04mfX1KrjGgCo7K1z4q7xZF72/pqOaTJUhIrqgoZFIKm8X6XXkPlwVb10V9FnkCGixqswC8hKAbJTgKwLZUvZ84L0iv182gFh/YGwh4Cg3oC9o3Q121JhFpC8V1zOx4jjVP6O1sMynLj4icGkcjhx8QM0LtapUaUG3FuJS00EASjOEQON7npFuLn1sTBTPNnnXBKX5kJlLwY4Ow1g5wDY2YuPKnvL13YacT+VvRgulXaAQgUoVRWPFs/LtyvLHu0qbb/D93sESfZzcdYSEUlHEMTWg6wL1YeV4pzbv1/rARTlwOL/ZlUaIKiXGGrC+gN+HeTbNWEsBa79BSTHAOf3ANeOweK7qh2BVj0A99a3tKBUCix2GsnKv2Ol+tu37uiuiS1PJqPlCVehvOUkfcsJ2XwSVt5+XZUTdw3rVPYVocIcPjTVrCsPJJqK7eXbVJXCCgdKA6j9+ZtBhohsy2QSTzjVhpUUwFBw+/e7BAAeIYBnKOAZUraEiuu07mIrRcqBslaKvYDuquX7nf2A0AeBNv2B0AfEk31jlntVbG1JjgEu7AeKcy23+3YA2jwEtBkAtO4l76BCdBsMMmUYZIgagNEA5FyuphvoApB96fZjNRRKwK1lpbASWimsBAP2TrWvQxCAzKSy7pcY4OIhwFBouY9/ZEU3VOt7pQ8ChmLg0u9lQWwPkHHWcruDOxD2oBhcwh5qnuOBqFlikCnDIENkI9ePAwfeFwdq5lwRBz/WRGkHuAdVCiqVwop7a9uFiVI9cCW2rIVjL5B60nK72hEI7lvRDeUdbvtuKHPYKusuuvi7OPC1nEIJtOgmtiCF9QdadBG7L4iaGQaZMgwyRFZWnAvsfQc48n/iDJFydg63dAFVenRtCagawdyC/HSxu6Z8wGx+muV215ZlrR/9gZD7xRlR1lCcC6QcFIPL+b1VpyW7BFZ0F1nzc4lkjEGmDIMMkZUIApDwA7BrfkUA6DgK6DoJ8AoTB5jKaZBi+fTl8lBz6Q/LLjCFEgjsUtZa8xDQsps4I6c2TCbgRnxZq0sMcCXOssVKZS/OrmozQGx18W0v3wHJRDbCIFOGQYbICjLPA7/MEgfVAoBXG+CRD8TWi6aipBC4/AeQvE8MHxlnLLdrXIGQfuJ3DusvtjZVlp9eMc4leZ84dbgyr3CxpafNACCoT9OdIk5kJQwyZRhkiO6AoQj4bQXw+8fiRb5UGqDfq0Cf6dIPkrU13XUxkCTHiI9FWZbbPULElhoHVzH43Dr+xt4FCL2/YqyLhNfZIJIjBpkyDDJE9ZS0B/j1FfHquYDYkvDI++KYl+bG3FW0Vww1V/4Ur+h6q4B7KlpdWnavfVcUEVXBu18TUf3orgM75wKnfxRfuwQCUe8B7R9rvuM4lEpx9lCLLmKLlD5PnNqdvFfskgq9X7xWjbOP1JUSNTsMMkQkMpYCcZ8D+94FSvLFq5be+wLwwFzrXb6+qdC4ABFR4kJEkmKQISJxVs3Ps4C0U+Lrlj2AR1eIF48jImrEGGSImrPCLGDPW8CxDeJrrQcwYBHQeby8plITUbPFIEPypLsBnN8tXgukwzDAwU3qiuRFEID4jcDuBUDhTXHdPU8CAxcBTt7S1kZEVAcMMiQPgiDOGkncCZzbKT4vt2s+0OkJoMcUwKetVBXKR9pp8Zowlw+Lr33ai91IQb2lrYuIqB4YZKjxMhQBFw4A53YA53YBeTcqbVQALboCeh2QeQ448oW4hD0E9HgOCH+YXSO3KikADiwDDn8qTh1WO4oDee99kdOEiUi2GGSocdHdAJJ2iS0vF/Zb3kxP7SReVbXtYKDtIMDZV2ypubAfiFsLJO6ouNy8RwjQ41ngnnGA1l2iL9OInP0F+PU1QHdVfN3uUWDwe4B7K2nrIiK6Q7wgHklLEIAbJ8TuosQdll1GgHgTv4jBQNso8S7Faoeaj5WVIt7I8PjX4k36ADH8dBordjv5trPZ12i0si8BO+aIrVoA4NYaeGQ5pw0TUaPHK/uWYZBphAxF4p2AE8u7jK5X2ljWZdR2sBhg/DrW/SJsJQXAyW+B2LWW98sJuR/o+Zx4bKXKKl+l0SotAQ6vAg68L7ZqKe2A3tOAfrN5jx8ikgUGmTIMMo1EXmpZq0t1XUaO4tiWyl1G1iAIwMXfgNjPgcRfAcEkrndvDXR/FugyXpxu3NSk/Ab88gqQmSi+DuoLDPmwebZIEZFsMciUYZCRiLnLaJfYrXH9uOV215ZiaImIAoLvu32XkTVkXwKOrgP+2gAU54jr1I7A3WPEwcF+d9n28xtCfgbw3zeAk5vF147ewKAlwN3/aL63FiAi2WKQKcMg04Bu22WEsi6jqPp3GVlDSSFw6jtxcHBaQsX64PvKup2iAJXMxsCbTMBf64GYRWVjgxRAt6eA/gubZosTETULDDJlGGRsLC+1rNVlp3hX4Fu7jEIfFINL+CDAxU+6Om8lCMCl38Vup7O/AIJRXO/WCuj+DNBlAuDoKW2NtXHjBPDzTODaX+Jr/7uBRz8CWnaTti4iojvEIFOGQcYGirKBhB+A+E3AtaOW21xblA3UbaAuI2vIvQocWQf89RVQlCWus3MAIkeLrTRS3m9IEMQr72ZfrFhyLpU9vwTkXAYgAPYuwENviCFMbi1KRETVYJApwyBjJSaj2OIS/w1w9lfAqK/YFthFDC5tB4snfbmOxzAUiQEt9nMg9WTF+qA+4vTtdo/aJiSUFIqBxCKkXBSDSvZFwFBw+/d3GAEMehdwDbB+bUREEmGQKcMgc4cyzgHx0eJ05spX1vXtAHQeB3QcCbj4S1efLQgCcPlPIO5z4PT2im4n15ZA98lAl0mAk1ftj2cyArrrli0plVtX8tP+/hgugYBHEOARLC7uZc89QxtXlx0RkZUwyJRhkKmHohzgf1vEmwpePVKxXusBRI4RA4z/3fJteamL3GvA0S/FbqfCTHGdSlPW7TQFCOgkrivKrj6kZF8Ecq4AJsPtP0fjWhFU3CsFFo9gcdyOHLroiIisiEGmDINMLZmM4vVd4jcCZ38GSovF9QoVED4QuOefYteRnUbSMiVjKAb+txWIXWN59WHPUKDgJqDPvf37lXZiIDEHlFtCi9ajeQRDIqJaqu35m6MCm7ubyWLX0YnNgO5axXqfduJ9iu7+B7suALFF5J4nxNsdXD0ijqM5vQ3IulCxj5Nv9d0/HkHiIOimfjVhIiIJMMg0R8U6sXUhfiNw5c+K9Q7uYpfJPf8EAjuzhaA6CgXQqoe45C0Rr0Xj2kK8WrC9k9TVEVEzlpqaiiVLluCXX37BtWvX4Ovri3vuuQczZsxA//79ERwcjEuXLuHw4cO49957ze+bMWMG4uPjsX//fgDAW2+9hUWLFuG5557DmjVrzPvFx8ejc+fOSElJQXBwcAN/u5oxyDQXJhNw8aAYXk5vr7jei0IJhPUXx720jeJYjLpw8W96A52JSJYuXryIPn36wN3dHe+//z4iIyNhMBiwa9cuTJ06FWfPngUAODg4YM6cOThw4MBtj+fg4IB169bhlVdeQXh4eEN8hXpjkGnqsi6I13s5sQnIvVKx3rttRdcRp+0SEcnaiy++CIVCgbi4ODg5VbQOd+jQAZMnTza/njJlCtasWYNff/0VjzzySI3Hi4iIgK+vL15//XX85z//sWntd4pBpinS54vjN+I3ilevLadxAyJHigGmRVd2HRER3YYgCCgyGCX5bK1aBUUt/0ZnZWVh586dWLJkiUWIKefu7m5+HhISgueffx7z5s3D4MGDoVQqazzue++9h+7du+Po0aPo1q3xXi2cQaapMJnE0BK/ETj9Y6WLqCnEO0vf80+g3RBArZW0TCIiuSgyGHHXwl2SfPbptwfB0b52p+jz589DEAS0a1e7O9y/8cYbWL9+PaKjozF+/Pga9+vSpQvGjBmDOXPmICYmplbHlgKDjNxlXxK7jeI3itctKefVRgwvd48F3FpIVx8REdlUXa+i4uPjg1dffRULFy7EP/7xj9vu+84776B9+/b473//C19f3zsp02YYZOQqNQHYNR9IqTRgy94F6DhC7Dpq1YNdR0REd0CrVuH024Mk++zaCg8Ph0KhMA/orY1Zs2bhs88+w2effXbb/cLCwvDss89i7ty5WLduXa2P35AYZOTGZAL+/BSIeRswlgBQAKH3i+Gl3aOAvaPUFRIRNQkKhaLW3TtS8vT0xKBBg/Dpp59i2rRpVcbJ5OTkWIyTAQBnZ2csWLAAb731Fh577LHbHn/hwoUICwvD5s2brV26VdQ8yocan9yrwL8fA/77hhhiIh4BZpwEJvwI3D2GIYaIqJn69NNPYTQa0aNHD/zwww9ISkrCmTNnsHLlSvTq1ava90yZMgVubm7YuHHjbY/t5+eHWbNmYeXKlbYo/Y4xyMjFqe+B1b2Bi78Bakdg6L+AsRvFC7EREVGzFhoaimPHjuHBBx/EK6+8go4dO2LgwIGIiYnB6tWrq32PWq3G4sWLUVxc/LfHf/XVV+Hs7Gztsq2C91pq7IpygF9nA6fK5vG36AqM+ALwCpO0LCIiIlvivZaagpTfgK3PA7qr4s0b+80G+r0KqNRSV0ZERNQoMMg0RqV6YN8S4PeVAATAIwQYsVaciURERERmDDKNTfoZYMuzQOop8XWXCcCgpYCmcfZNEhERSYlBprEwmYC4tcDuhYBRDzh6AUNXAu0flboyIiKiRotBpjHQ3QC2vQBc2Ce+bjMQePxTwMVP2rqIiIgaOQYZqZ3+EfhpOlCUDdg5AA+/A3R/hlflJSIiqgUGGakU64Cdc4H4aPF1QCdgxP8BPm2lrYuIiEhGGGSkcOkwsHUKkHMZgAK4bxZw/1zAzl7qyoiIiGSFQaYhGQ3A/veAQysAwQS4tQZGfA4E9Za6MiIiIllikGkomUnitOrrx8XXnZ4AopYBDm7S1kVERCRjvNeSrQkCcOT/gDX3iSHGwR0Y/RUwfA1DDBER3bFJkyZBoVBAoVBArVbDz88PAwcOxJdffgmTySR1eTbHIGNLeWnAxjHAL68ApUVA6APAi4eBDsOlroyIiJqQwYMH48aNG7h48SJ27NiBBx98ENOnT8ejjz6K0tJSqcuzKcmDzLVr1/Dkk0/Cy8sLWq0WkZGROHr0qHl75aRZvgwePFjCimvp7C/A6l5A0n8BlQYY/B7w5FbANVDqyoiIqInRaDTw9/dHixYt0KVLF8yfPx8//vgjduzYga+++goAkJOTg2eeeQY+Pj5wdXXFQw89hBMnTpiP8dZbb+Gee+7B119/jeDgYLi5uWHs2LHIy8sz7/P9998jMjISWq0WXl5eGDBgAAoKCszb/+///g/t27eHg4MD2rVrh88++8zm313SMTLZ2dno06cPHnzwQezYsQM+Pj5ISkqCh4eHxX6DBw/G+vXrza81Gk1Dl1p7+nxg13zg2AbxtV9H8W7VfndJWxcREdWNIACGQmk+W+14x9cTe+ihh9CpUyds2bIFzzzzDEaPHg2tVosdO3bAzc0Nn3/+Ofr3749z587B09MTAJCcnIxt27bh559/RnZ2NsaMGYP33nsPS5YswY0bN/DEE09g+fLlGD58OPLy8vDbb79BEAQAQHR0NBYuXIhPPvkEnTt3xvHjx/Hss8/CyckJEydOvOOfpCaSBplly5ahVatWFiElJCSkyn7lSbPRu3JEnFaddQGAAuj9EvDQAsCuEQcvIiKqnqEQeFeiVvT51wF7pzs+TLt27XDy5EkcOnQIcXFxSE9PNzcGfPDBB9i2bRu+//57TJkyBQBgMpnw1VdfwcXFBQAwfvx4xMTEmINMaWkpRowYgaCgIABAZGSk+bPefPNNfPjhhxgxYgQA8Xx++vRpfP755zYNMpJ2LW3fvh3dunXD6NGj4evri86dO+OLL76ost/+/fvh6+uLiIgIvPDCC7h586YE1d6GsVScVv3lIDHEuLYAJm4Xr9LLEENERBIRBAEKhQInTpxAfn4+vLy84OzsbF5SUlKQnJxs3j84ONgcYgAgICAA6enpAIBOnTqhf//+iIyMxOjRo/HFF18gOzsbAFBQUIDk5GQ8/fTTFsd/5513LI5vC5K2yFy4cAGrV6/GrFmzMH/+fBw5cgTTpk2Dvb29Ob0NHjwYI0aMQEhICJKTkzF//nxERUXh8OHDUKlUVY6p1+uh1+vNr3U6nW2/xM1kYMsU4FrZuJ6Oo4AhHwBaj9u/j4iIGje1o9gyItVnW8GZM2cQEhKC/Px8BAQEYP/+/VX2cXd3r/hYtdpim0KhMM98UqlU2L17N/744w/897//xapVq/D6668jNjYWjo5ivV988QV69uxpcYzqztXWJGmQMZlM6NatG959910AQOfOnZGQkIA1a9aYg8zYsWPN+0dGRuLuu+9GWFgY9u/fj/79+1c55tKlS7Fo0SLbFy8IwLF/AzvnAYYCQOMGDPkQuHu07T+biIhsT6GwSveOVPbu3YtTp05h5syZaNmyJVJTU2FnZ4fg4OB6H1OhUKBPnz7o06cPFi5ciKCgIGzduhWzZs1CYGAgLly4gHHjxlnvS9SCpEEmICAAd91lOQi2ffv2+OGHH2p8T2hoKLy9vXH+/Plqg8y8efMwa9Ys82udTodWrVpZr2hADDE/PA0klNUZ1Fe8Loy7lT+HiIioFvR6PVJTU2E0GpGWloadO3di6dKlePTRRzFhwgQolUr06tULw4YNw/Lly9G2bVtcv34dv/zyC4YPH45u3br97WfExsYiJiYGDz/8MHx9fREbG4uMjAy0b98eALBo0SJMmzYNbm5uGDx4MPR6PY4ePYrs7GyL87K1SRpk+vTpg8TERIt1586dMw8iqs7Vq1dx8+ZNBAQEVLtdo9HYflaTQgG0uhc4vR3ovwDo9RKgtG3TGRERUU127tyJgIAA2NnZwcPDA506dcLKlSsxceJEKJXicNhff/0Vr7/+Op566ilkZGTA398f/fr1g5+fX60+w9XVFQcPHsTHH38MnU6HoKAgfPjhh4iKigIAPPPMM3B0dMT777+P2bNnw8nJCZGRkZgxY4atvjYAQCGUz5uSwJEjR9C7d28sWrQIY8aMQVxcHJ599lmsXbsW48aNQ35+PhYtWoSRI0fC398fycnJeO2115CXl4dTp07VKrDodDq4ubkhNzcXrq6u1iteEMTxMd5trHdMIiIiAlD787eks5a6d++OrVu3YtOmTejYsSMWL16Mjz/+2Ny/plKpcPLkSTz22GNo27Ytnn76aXTt2hW//fab9NeSUSgYYoiIiCQmaYtMQ7BZiwwRERHZjCxaZIiIiIjuBIMMERERyRaDDBEREckWgwwRERHJFoMMERERyRaDDBEREckWgwwRERHJFoMMERERyRaDDBEREckWgwwRERHJFoMMERERyRaDDBEREcmWndQF2Fr5PTF1Op3ElRAREVFtlZ+3/+7e1k0+yOTl5QEAWrVqJXElREREVFd5eXlwc3OrcbtC+LuoI3MmkwnXr1+Hi4sLFAqF1Y6r0+nQqlUrXLly5ba3F2/Kmvtv0Ny/P8DfoLl/f4C/Ab+/7b6/IAjIy8tDYGAglMqaR8I0+RYZpVKJli1b2uz4rq6uzfIfb2XN/Tdo7t8f4G/Q3L8/wN+A39823/92LTHlONiXiIiIZItBhoiIiGSLQaaeNBoN3nzzTWg0GqlLkUxz/w2a+/cH+Bs09+8P8Dfg95f++zf5wb5ERETUdLFFhoiIiGSLQYaIiIhki0GGiIiIZItBhoiIiGSLQaaePv30UwQHB8PBwQE9e/ZEXFyc1CU1iKVLl6J79+5wcXGBr68vhg0bhsTERKnLktR7770HhUKBGTNmSF1Kg7l27RqefPJJeHl5QavVIjIyEkePHpW6rAZjNBqxYMEChISEQKvVIiwsDIsXL/7be8LI1cGDBzF06FAEBgZCoVBg27ZtFtsFQcDChQsREBAArVaLAQMGICkpSZpibeR2v4HBYMCcOXMQGRkJJycnBAYGYsKECbh+/bp0BVvZ3/0bqOz555+HQqHAxx9/3CC1McjUw7fffotZs2bhzTffxLFjx9CpUycMGjQI6enpUpdmcwcOHMDUqVPx559/Yvfu3TAYDHj44YdRUFAgdWmSOHLkCD7//HPcfffdUpfSYLKzs9GnTx+o1Wrs2LEDp0+fxocffggPDw+pS2swy5Ytw+rVq/HJJ5/gzJkzWLZsGZYvX45Vq1ZJXZpNFBQUoFOnTvj000+r3b58+XKsXLkSa9asQWxsLJycnDBo0CAUFxc3cKW2c7vfoLCwEMeOHcOCBQtw7NgxbNmyBYmJiXjsscckqNQ2/u7fQLmtW7fizz//RGBgYANVBkCgOuvRo4cwdepU82uj0SgEBgYKS5culbAqaaSnpwsAhAMHDkhdSoPLy8sTwsPDhd27dwv333+/MH36dKlLahBz5swR+vbtK3UZkhoyZIgwefJki3UjRowQxo0bJ1FFDQeAsHXrVvNrk8kk+Pv7C++//755XU5OjqDRaIRNmzZJUKHt3fobVCcuLk4AIFy6dKlhimpANX3/q1evCi1atBASEhKEoKAg4aOPPmqQetgiU0clJSX466+/MGDAAPM6pVKJAQMG4PDhwxJWJo3c3FwAgKenp8SVNLypU6diyJAhFv8WmoPt27ejW7duGD16NHx9fdG5c2d88cUXUpfVoHr37o2YmBicO3cOAHDixAkcOnQIUVFRElfW8FJSUpCammrx34Gbmxt69uzZLP8mlsvNzYVCoYC7u7vUpTQIk8mE8ePHY/bs2ejQoUODfnaTv2mktWVmZsJoNMLPz89ivZ+fH86ePStRVdIwmUyYMWMG+vTpg44dO0pdToPavHkzjh07hiNHjkhdSoO7cOECVq9ejVmzZmH+/Pk4cuQIpk2bBnt7e0ycOFHq8hrE3LlzodPp0K5dO6hUKhiNRixZsgTjxo2TurQGl5qaCgDV/k0s39bcFBcXY86cOXjiiSeazY0kly1bBjs7O0ybNq3BP5tBhupt6tSpSEhIwKFDh6QupUFduXIF06dPx+7du+Hg4CB1OQ3OZDKhW7duePfddwEAnTt3RkJCAtasWdNsgsx//vMfREdHY+PGjejQoQPi4+MxY8YMBAYGNpvfgKpnMBgwZswYCIKA1atXS11Og/jrr7/wr3/9C8eOHYNCoWjwz2fXUh15e3tDpVIhLS3NYn1aWhr8/f0lqqrhvfTSS/j555+xb98+tGzZUupyGtRff/2F9PR0dOnSBXZ2drCzs8OBAwewcuVK2NnZwWg0Sl2iTQUEBOCuu+6yWNe+fXtcvnxZoooa3uzZszF37lyMHTsWkZGRGD9+PGbOnImlS5dKXVqDK/+719z/JgIVIebSpUvYvXt3s2mN+e2335Ceno7WrVub/yZeunQJr7zyCoKDg23++QwydWRvb4+uXbsiJibGvM5kMiEmJga9evWSsLKGIQgCXnrpJWzduhV79+5FSEiI1CU1uP79++PUqVOIj483L926dcO4ceMQHx8PlUoldYk21adPnypT7s+dO4egoCCJKmp4hYWFUCot/3yqVCqYTCaJKpJOSEgI/P39Lf4m6nQ6xMbGNou/ieXKQ0xSUhL27NkDLy8vqUtqMOPHj8fJkyct/iYGBgZi9uzZ2LVrl80/n11L9TBr1ixMnDgR3bp1Q48ePfDxxx+joKAATz31lNSl2dzUqVOxceNG/Pjjj3BxcTH3gbu5uUGr1UpcXcNwcXGpMibIyckJXl5ezWKs0MyZM9G7d2+8++67GDNmDOLi4rB27VqsXbtW6tIazNChQ7FkyRK0bt0aHTp0wPHjx7FixQpMnjxZ6tJsIj8/H+fPnze/TklJQXx8PDw9PdG6dWvMmDED77zzDsLDwxESEoIFCxYgMDAQw4YNk65oK7vdbxAQEIBRo0bh2LFj+Pnnn2E0Gs1/Gz09PWFvby9V2Vbzd/8Gbg1uarUa/v7+iIiIsH1xDTI3qglatWqV0Lp1a8He3l7o0aOH8Oeff0pdUoMAUO2yfv16qUuTVHOafi0IgvDTTz8JHTt2FDQajdCuXTth7dq1UpfUoHQ6nTB9+nShdevWgoODgxAaGiq8/vrrgl6vl7o0m9i3b1+1/91PnDhREARxCvaCBQsEPz8/QaPRCP379xcSExOlLdrKbvcbpKSk1Pi3cd++fVKXbhV/92/gVg05/VohCE30UpRERETU5HGMDBEREckWgwwRERHJFoMMERERyRaDDBEREckWgwwRERHJFoMMERERyRaDDBEREckWgwwRNTsKhQLbtm2TugwisgIGGSJqUJMmTYJCoaiyDB48WOrSiEiGeK8lImpwgwcPxvr16y3WaTQaiaohIjljiwwRNTiNRgN/f3+LxcPDA4DY7bN69WpERUVBq9UiNDQU33//vcX7T506hYceegharRZeXl6YMmUK8vPzLfb58ssv0aFDB2g0GgQEBOCll16y2J6ZmYnhw4fD0dER4eHh2L59u22/NBHZBIMMETU6CxYswMiRI3HixAmMGzcOY8eOxZkzZwAABQUFGDRoEDw8PHDkyBF899132LNnj0VQWb16NaZOnYopU6bg1KlT2L59O9q0aWPxGYsWLcKYMWNw8uRJPPLIIxg3bhyysrIa9HsSkRU0yK0piYjKTJw4UVCpVIKTk5PFsmTJEkEQxDusP//88xbv6dmzp/DCCy8IgiAIa9euFTw8PIT8/Hzz9l9++UVQKpVCamqqIAiCEBgYKLz++us11gBAeOONN8yv8/PzBQDCjh07rPY9iahhcIwMETW4Bx98EKtXr7ZY5+npaX7eq1cvi229evVCfHw8AODMmTPo1KkTnJyczNv79OkDk8mExMREKBQKXL9+Hf37979tDXfffbf5uZOTE1xdXZGenl7fr0REEmGQIaIG5+TkVKWrx1q0Wm2t9lOr1RavFQoFTCaTLUoiIhviGBkianT+/PPPKq/bt28PAGjfvj1OnDiBgoIC8/bff/8dSqUSERERcHFxQXBwMGJiYhq0ZiKSBltkiKjB6fV6pKamWqyzs7ODt7c3AOC7775Dt27d0LdvX0RHRyMuLg7r1q0DAIwbNw5vvvkmJk6ciLfeegsZGRl4+eWXMX78ePj5+QEA3nrrLTz//PPw9fVFVFQU8vLy8Pvvv+Pll19u2C9KRDbHIENEDW7nzp0ICAiwWBcREYGzZ88CEGcUbd68GS+++CICAgKwadMm3HXXXQAAR0dH7Nq1C9OnT0f37t3h6OiIkSNHYsWKFeZjTZw4EcXFxfjoo4/w6quvwtvbG6NGjWq4L0hEDUYhCIIgdRFEROUUCgW2bt2KYcOGSV0KEckAx8gQERGRbDHIEBERkWxxjAwRNSrs7SaiumCLDBEREckWgwwRERHJFoMMERERyRaDDBEREckWgwwRERHJFoMMERERyRaDDBEREckWgwwRERHJFoMMERERydb/A5xHGF+5X8NOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ "### INÍCIO DO CÓDIGO ### (≈ 2 linhas)\n", - "plt.plot(cnn_results[#...insira seu codigo...#], label='CNN')\n", - "plt.plot(den_results[#...insira seu codigo...#], label='Dense')\n", + "plt.plot(cnn_results['accuracy_list'], label='CNN') # plotando a acurácia da CNN\n", + "plt.plot(dense_results['accuracy_list'], label='Dense') # plotando a acurácia da rede densa\n", "### FIM DO CÓDIGO ###\n", "\n", "plt.legend(frameon=False)\n", @@ -916,13 +835,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "id": "98b72e6a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjwElEQVR4nO3dd3hUddrG8e9Mek8oaZDQO6FDpAgWFCwoNlBZQGy7ClhQF30VRV1l7aiwouwqa0ddUWwgREFp0qtUgSSUJJT0QMrMvH+cZCACQwiTOSn357rmMjlzzplnok7u/KrF4XA4EBEREaklrGYXICIiIuJOCjciIiJSqyjciIiISK2icCMiIiK1isKNiIiI1CoKNyIiIlKrKNyIiIhIraJwIyIiIrWKwo2IiIjUKgo3IiIiUqso3IhItTJr1iwsFgurV682uxQRqaEUbkRERKRWUbgRERGRWkXhRkRqnHXr1nHFFVcQGhpKcHAwl156KStWrCh3TnFxMU8//TStWrXC39+f+vXr069fPxYsWOA8Jy0tjTFjxtC4cWP8/PyIiYnh2muvZe/evR5+RyLiTt5mFyAici62bNnChRdeSGhoKH//+9/x8fHh7bff5qKLLmLx4sUkJiYCMHnyZKZMmcKdd95Jr169yMnJYfXq1axdu5bLLrsMgBtuuIEtW7Ywfvx4mjZtSkZGBgsWLCAlJYWmTZua+C5F5HxYHA6Hw+wiRETKzJo1izFjxrBq1Sp69OhxyvPXXXcd33//PVu3bqV58+YAHDx4kDZt2tC1a1cWL14MQJcuXWjcuDHffvvtaV8nKyuLiIgIXnrpJR5++OGqe0Mi4nHqlhKRGsNms/Hjjz8ydOhQZ7ABiImJ4dZbb2XJkiXk5OQAEB4ezpYtW9i5c+dp7xUQEICvry+LFi0iMzPTI/WLiGco3IhIjXHo0CEKCgpo06bNKc+1a9cOu91OamoqAM888wxZWVm0bt2ahIQEHnnkETZu3Og838/PjxdeeIEffviBqKgo+vfvz4svvkhaWprH3o+IVA2FGxGplfr3788ff/zBu+++S8eOHfn3v/9Nt27d+Pe//+0854EHHmDHjh1MmTIFf39/Jk2aRLt27Vi3bp2JlYvI+VK4EZEao2HDhgQGBrJ9+/ZTntu2bRtWq5W4uDjnsXr16jFmzBg++eQTUlNT6dSpE5MnTy53XYsWLXjooYf48ccf2bx5M0VFRbzyyitV/VZEpAop3IhIjeHl5cXll1/O119/XW66dnp6Oh9//DH9+vUjNDQUgCNHjpS7Njg4mJYtW1JYWAhAQUEBx48fL3dOixYtCAkJcZ4jIjWTpoKLSLX07rvvMm/evFOOT548mQULFtCvXz/uvfdevL29efvttyksLOTFF190nte+fXsuuugiunfvTr169Vi9ejVffPEF48aNA2DHjh1ceumlDBs2jPbt2+Pt7c2cOXNIT0/n5ptv9tj7FBH301RwEalWyqaCn0lqaiqHDh3iscceY+nSpdjtdhITE3nuuefo3bu387znnnuOuXPnsmPHDgoLC2nSpAkjR47kkUcewcfHhyNHjvDUU0+RlJREamoq3t7etG3bloceeoibbrrJE29VRKqIwo2IiIjUKhpzIyIiIrWKwo2IiIjUKgo3IiIiUqso3IiIiEitonAjIiIitYrCjYiIiNQqdW4RP7vdzoEDBwgJCcFisZhdjoiIiFSAw+EgNzeX2NhYrFbXbTN1LtwcOHCg3N4zIiIiUnOkpqbSuHFjl+fUuXATEhICGD+csj1oREREpHrLyckhLi7O+XvclToXbsq6okJDQxVuREREapiKDCnRgGIRERGpVRRuREREpFYxPdxMnz6dpk2b4u/vT2JiIitXrnR5flZWFmPHjiUmJgY/Pz9at27N999/76FqRUREpLozdczN7NmzmTBhAjNmzCAxMZGpU6cyaNAgtm/fTmRk5CnnFxUVcdlllxEZGckXX3xBo0aNSE5OJjw83PPFi4iISLVkcTgcDrNePDExkZ49ezJt2jTAWIMmLi6O8ePH8+ijj55y/owZM3jppZfYtm0bPj4+lXrNnJwcwsLCyM7O1oBiERGRGuJcfn+b1i1VVFTEmjVrGDhw4IlirFYGDhzI8uXLT3vN3Llz6d27N2PHjiUqKoqOHTvy/PPPY7PZzvg6hYWF5OTklHuIiIhI7WVauDl8+DA2m42oqKhyx6OiokhLSzvtNbt37+aLL77AZrPx/fffM2nSJF555RX+8Y9/nPF1pkyZQlhYmPOhBfxERERqN9MHFJ8Lu91OZGQk77zzDt27d2f48OE8/vjjzJgx44zXPPbYY2RnZzsfqampHqxYREREPM20AcUNGjTAy8uL9PT0csfT09OJjo4+7TUxMTH4+Pjg5eXlPNauXTvS0tIoKirC19f3lGv8/Pzw8/Nzb/EiIiJSbZnWcuPr60v37t1JSkpyHrPb7SQlJdG7d+/TXtO3b1927dqF3W53HtuxYwcxMTGnDTYiIiJS95jaLTVhwgRmzpzJf//7X7Zu3co999xDfn4+Y8aMAWDUqFE89thjzvPvuecejh49yv3338+OHTv47rvveP755xk7dqxZb0FERISmTZsyderUCp+/aNEiLBYLWVlZVVYTwKxZs+rkcimmrnMzfPhwDh06xJNPPklaWhpdunRh3rx5zkHGKSkp5bY1j4uLY/78+Tz44IN06tSJRo0acf/99zNx4kSz3oKIiNQgZ9uX6KmnnmLy5MnnfN9Vq1YRFBRU4fP79OnDwYMHCQsLO+fXkrMzdZ0bM1TlOjdH84s4kldIq6iz71gqIiKed/Js3NmzZ/Pkk0+yfft257Hg4GCCg4MBcDgc2Gw2vL1r7h7Ts2bN4oEHHqjyFiJPqBHr3NQ2SVvT6fbsAh78bL3ZpYiIyBlER0c7H2FhYVgsFuf327ZtIyQkhB9++IHu3bvj5+fHkiVL+OOPP7j22muJiooiODiYnj17snDhwnL3/XO3lMVi4d///jfXXXcdgYGBtGrVirlz5zqf/3O3VFn30fz582nXrh3BwcEMHjyYgwcPOq8pKSnhvvvuIzw8nPr16zNx4kRGjx7N0KFDz+ln8NZbb9GiRQt8fX1p06YNH3zwgfM5h8PB5MmTiY+Px8/Pj9jYWO677z7n8//6179o1aoV/v7+REVFceONN57Ta3uKwo2btC5trdmelktRif0sZ4uI1D4Oh4OCohJTHu7shHj00Uf55z//ydatW+nUqRN5eXlceeWVJCUlsW7dOgYPHsyQIUNISUlxeZ+nn36aYcOGsXHjRq688kpGjBjB0aNHz3h+QUEBL7/8Mh988AG//PILKSkpPPzww87nX3jhBT766CPee+89li5dSk5ODl999dU5vbc5c+Zw//3389BDD7F582b++te/MmbMGH7++WcA/ve///Haa6/x9ttvs3PnTr766isSEhIAWL16Nffddx/PPPMM27dvZ968efTv3/+cXt9Tam5bWzXTOCKAsAAfso8VsyM9l46N1I8qInXLsWIb7Z+cb8pr//7MIAJ93fMr7ZlnnuGyyy5zfl+vXj06d+7s/P7ZZ59lzpw5zJ07l3Hjxp3xPrfddhu33HILAM8//zxvvPEGK1euZPDgwac9v7i4mBkzZtCiRQsAxo0bxzPPPON8/s033+Sxxx7juuuuA2DatGnnvHH0yy+/zG233ca9994LGBN7VqxYwcsvv8zFF19MSkoK0dHRDBw4EB8fH+Lj4+nVqxdgjIMNCgri6quvJiQkhCZNmtC1a9dzen1PUcuNm1gsFjo2MvoAtxzINrkaERGprB49epT7Pi8vj4cffph27doRHh5OcHAwW7duPWvLTadOnZxfBwUFERoaSkZGxhnPDwwMdAYbMNZ2Kzs/Ozub9PR0Z9AA8PLyonv37uf03rZu3Urfvn3LHevbty9bt24F4KabbuLYsWM0b96cu+66izlz5lBSUgLAZZddRpMmTWjevDkjR47ko48+oqCg4Jxe31PUcuNGHWPDWLrrCJv35zC8p9nViIh4VoCPF78/M8i013aXP896evjhh1mwYAEvv/wyLVu2JCAggBtvvJGioiKX9/nzBs8Wi6XcOm0VOd/Tc37i4uLYvn07CxcuZMGCBdx777289NJLLF68mJCQENauXcuiRYv48ccfefLJJ5k8eTKrVq2qdtPN1XLjRh1Ku6I2q+VGROogi8VCoK+3KY+zTfE+H0uXLuW2227juuuuIyEhgejoaPbu3Vtlr3c6YWFhREVFsWrVKucxm83G2rVrz+k+7dq1Y+nSpeWOLV26lPbt2zu/DwgIYMiQIbzxxhssWrSI5cuXs2nTJgC8vb0ZOHAgL774Ihs3bmTv3r389NNP5/HOqoZabtyoY6zRLbX1YA4lNjveXsqOIiI1XatWrfjyyy8ZMmQIFouFSZMmuWyBqSrjx49nypQptGzZkrZt2/Lmm2+SmZl5TsHukUceYdiwYXTt2pWBAwfyzTff8OWXXzpnf82aNQubzUZiYiKBgYF8+OGHBAQE0KRJE7799lt2795N//79iYiI4Pvvv8dut9OmTZuqesuVpnDjRk3rBxHk60V+kY0/DuXTJlrr3YiI1HSvvvoqt99+O3369KFBgwZMnDiRnJwcj9cxceJE0tLSGDVqFF5eXtx9990MGjSo3H6LZzN06FBef/11Xn75Ze6//36aNWvGe++9x0UXXQRAeHg4//znP5kwYQI2m42EhAS++eYb6tevT3h4OF9++SWTJ0/m+PHjtGrVik8++YQOHTpU0TuuPC3i52bDZixn5d6jvHJTZ27o3tjt9xcREQFjP8Z27doxbNgwnn32WbPLqXJaxM9EHUpnTGncjYiIuFNycjIzZ85kx44dbNq0iXvuuYc9e/Zw6623ml1ataNw42YJpYOKt+z3fJOliIjUXlarlVmzZtGzZ0/69u3Lpk2bWLhwIe3atTO7tGpHY27crGzxvi0HsrHbHVitVTeCX0RE6o64uLhTZjrJ6anlxs2aNwjC38dKfpGNvUfyzS5HRESkzlG4cTNvLyvtYsrG3ahrSkRExNMUbqpAx9iycTcaVCwiIuJpCjdVoGyPqU0KNyIiIh6ncFMFOpS23Gzen+3xfUFERETqOoWbKtA6KgRfLys5x0vYl3nM7HJERETqFIWbKuDrbXVuvbBZXVMiIrXORRddxAMPPOD8vmnTpkydOtXlNRaLha+++uq8X9td93Fl8uTJdOnSpUpfoyop3FSRjlqpWESk2hkyZAiDBw8+7XO//vorFouFjRs3nvN9V61axd13332+5ZVzpoBx8OBBrrjiCre+Vm2jcFNFToy70XRwEZHq4o477mDBggXs27fvlOfee+89evToQadOnc75vg0bNiQwMNAdJZ5VdHQ0fn5+HnmtmkrhpoqUrVSsQcUiItXH1VdfTcOGDZk1a1a543l5eXz++efccccdHDlyhFtuuYVGjRoRGBhIQkICn3zyicv7/rlbaufOnfTv3x9/f3/at2/PggULTrlm4sSJtG7dmsDAQJo3b86kSZMoLi4GYNasWTz99NNs2LABi8WCxWJx1vznbqlNmzZxySWXEBAQQP369bn77rvJy8tzPn/bbbcxdOhQXn75ZWJiYqhfvz5jx451vlZF2O12nnnmGRo3boyfnx9dunRh3rx5zueLiooYN24cMTEx+Pv706RJE6ZMmQKAw+Fg8uTJxMfH4+fnR2xsLPfdd1+FX7sytP1CFWkbHYKX1cKR/CLScwqJDvM3uyQRkarlcEBxgTmv7RMIlrNvd+Pt7c2oUaOYNWsWjz/+OJbSaz7//HNsNhu33HILeXl5dO/enYkTJxIaGsp3333HyJEjadGiBb169Trra9jtdq6//nqioqL47bffyM7OLjc+p0xISAizZs0iNjaWTZs2cddddxESEsLf//53hg8fzubNm5k3bx4LFy4EICws7JR75OfnM2jQIHr37s2qVavIyMjgzjvvZNy4ceUC3M8//0xMTAw///wzu3btYvjw4XTp0oW77rrrrO8H4PXXX+eVV17h7bffpmvXrrz77rtcc801bNmyhVatWvHGG28wd+5cPvvsM+Lj40lNTSU1NRWA//3vf7z22mt8+umndOjQgbS0NDZs2FCh160shZsq4u/jRavIYLal5bJpf7bCjYjUfsUF8HysOa/9fwfAN6hCp95+++289NJLLF68mIsuuggwuqRuuOEGwsLCCAsL4+GHH3aeP378eObPn89nn31WoXCzcOFCtm3bxvz584mNNX4ezz///CnjZJ544gnn102bNuXhhx/m008/5e9//zsBAQEEBwfj7e1NdHT0GV/r448/5vjx47z//vsEBRnvf9q0aQwZMoQXXniBqKgoACIiIpg2bRpeXl60bduWq666iqSkpAqHm5dffpmJEydy8803A/DCCy/w888/M3XqVKZPn05KSgqtWrWiX79+WCwWmjRp4rw2JSWF6OhoBg4ciI+PD/Hx8RX6OZ4PdUtVoZPXuxERkeqhbdu29OnTh3fffReAXbt28euvv3LHHXcAYLPZePbZZ0lISKBevXoEBwczf/58UlJSKnT/rVu3EhcX5ww2AL179z7lvNmzZ9O3b1+io6MJDg7miSeeqPBrnPxanTt3dgYbgL59+2K329m+fbvzWIcOHfDy8nJ+HxMTQ0ZGRoVeIycnhwMHDtC3b99yx/v27cvWrVsBo+tr/fr1tGnThvvuu48ff/zRed5NN93EsWPHaN68OXfddRdz5syhpKTknN7nuVLLTRXq2CiU/601dggXEan1fAKNFhSzXvsc3HHHHYwfP57p06fz3nvv0aJFCwYMGADASy+9xOuvv87UqVNJSEggKCiIBx54gKKiIreVu3z5ckaMGMHTTz/NoEGDCAsL49NPP+WVV15x22uczMfHp9z3FosFu93utvt369aNPXv28MMPP7Bw4UKGDRvGwIED+eKLL4iLi2P79u0sXLiQBQsWcO+99zpbzv5cl7uo5aYKnRhUrBlTIlIHWCxG15AZjwqMtznZsGHDsFqtfPzxx7z//vvcfvvtzvE3S5cu5dprr+Uvf/kLnTt3pnnz5uzYsaPC927Xrh2pqakcPHjQeWzFihXlzlm2bBlNmjTh8ccfp0ePHrRq1Yrk5ORy5/j6+mKz2c76Whs2bCA/P995bOnSpVitVtq0aVPhml0JDQ0lNjaWpUuXlju+dOlS2rdvX+684cOHM3PmTGbPns3//vc/jh49CkBAQABDhgzhjTfeYNGiRSxfvpxNmza5pb7TUctNFWofE4rFAmk5xzmUW0jDEE3dExGpDoKDgxk+fDiPPfYYOTk53Hbbbc7nWrVqxRdffMGyZcuIiIjg1VdfJT09vdwvclcGDhxI69atGT16NC+99BI5OTk8/vjj5c5p1aoVKSkpfPrpp/Ts2ZPvvvuOOXPmlDunadOm7Nmzh/Xr19O4cWNCQkJOmQI+YsQInnrqKUaPHs3kyZM5dOgQ48ePZ+TIkc7xNu7wyCOP8NRTT9GiRQu6dOnCe++9x/r16/noo48AePXVV4mJiaFr165YrVY+//xzoqOjCQ8PZ9asWdhsNhITEwkMDOTDDz8kICCg3Lgcd1PLTRUK8vOmeQOjH1RdUyIi1csdd9xBZmYmgwYNKjc+5oknnqBbt24MGjSIiy66iOjoaIYOHVrh+1qtVubMmcOxY8fo1asXd955J88991y5c6655hoefPBBxo0bR5cuXVi2bBmTJk0qd84NN9zA4MGDufjii2nYsOFpp6MHBgYyf/58jh49Ss+ePbnxxhu59NJLmTZt2rn9MM7ivvvuY8KECTz00EMkJCQwb9485s6dS6tWrQBj5teLL75Ijx496NmzJ3v37uX777/HarUSHh7OzJkz6du3L506dWLhwoV888031K9f3601nsziqGOLsOTk5BAWFkZ2djahoaFV/nr3f7qOr9cf4JFBbRh7ccsqfz0REZHa6Fx+f6vlpop11IwpERERj1K4qWIdSveY2qRwIyIi4hEKN1WsbK2bfZnHyCpw3zRCEREROT2FmyoWFuBDfD1j/YUtBzQlXEREpKop3HhAx9KuKY27ERERqXoKNx7gXMxPLTciIiJVTuHGA8pmTG1Ry42IiEiVU7jxgA6xRrfU7sP55B4vNrkaERGR2k3hxgPqB/sRG+YPwNaDuSZXIyIiUrsp3HhIh0ZazE9ERMQTFG48RCsVi4iIeIbCjYc4p4NrA00REZEqpXDjIWXTwXdl5HGsyGZyNSIiIrWXwo2HRIX60zDED7sDtqZpvRsREZGqonDjQR1Lp4RrvRsREZGqo3DjQc6Viver5UZERKSqKNx4UNkO4RpULCIiUnUUbjyobMbUjvRcCks0qFhERKQqKNx4UKPwAMIDfSi2OdiRlmd2OSIiIrWSwo0HWSyWE4v5qWtKRESkSijceFiHssX8NGNKRESkSijceNiJlhvNmBIREakKCjcellA6HXzrwRyKbXaTqxEREal9FG48LL5eICF+3hSV2PnjkAYVi4iIuJvCjYdZrRbax5aNu1HXlIiIiLsp3JjgxErFGlQsIiLibgo3JuioGVMiIiJVRuHGBGUzpn4/mIPN7jC5GhERkdpF4cYEzRsG4+9jpaDIxp7D+WaXIyIiUqso3JjAy2qhfYzRNbVFKxWLiIi4lcKNSRI0qFhERKRKKNyYpIMz3Gg6uIiIiDsp3Jjk5A00HQ4NKhYREXEXhRuTtIoKxtfLSu7xElKPHjO7HBERkVpD4cYkPl5W2saEALBJ425ERETcplqEm+nTp9O0aVP8/f1JTExk5cqVZzx31qxZWCyWcg9/f38PVus+HU7qmhIRERH3MD3czJ49mwkTJvDUU0+xdu1aOnfuzKBBg8jIyDjjNaGhoRw8eND5SE5O9mDF7qOVikVERNzP9HDz6quvctdddzFmzBjat2/PjBkzCAwM5N133z3jNRaLhejoaOcjKirKgxW7T9mg4i0HcjSoWERExE1MDTdFRUWsWbOGgQMHOo9ZrVYGDhzI8uXLz3hdXl4eTZo0IS4ujmuvvZYtW7ac8dzCwkJycnLKPaqLNtEheFstHM0v4mD2cbPLERERqRVMDTeHDx/GZrOd0vISFRVFWlraaa9p06YN7777Ll9//TUffvghdrudPn36sG/fvtOeP2XKFMLCwpyPuLg4t7+PyvL38aJVlDGoWF1TIiIi7mF6t9S56t27N6NGjaJLly4MGDCAL7/8koYNG/L222+f9vzHHnuM7Oxs5yM1NdXDFbvWMbZ03M2B6tOiJCIiUpOZGm4aNGiAl5cX6enp5Y6np6cTHR1doXv4+PjQtWtXdu3addrn/fz8CA0NLfeoTjqWrlS8RS03IiIibmFquPH19aV79+4kJSU5j9ntdpKSkujdu3eF7mGz2di0aRMxMTFVVWaVKpsxpbVuRERE3MPb7AImTJjA6NGj6dGjB7169WLq1Knk5+czZswYAEaNGkWjRo2YMmUKAM888wwXXHABLVu2JCsri5deeonk5GTuvPNOM99GpbWLCcVigYzcQjJyjhMZWjPX7BEREakuTA83w4cP59ChQzz55JOkpaXRpUsX5s2b5xxknJKSgtV6ooEpMzOTu+66i7S0NCIiIujevTvLli2jffv2Zr2F8xLo602LhsHsyshjy4EchRsREZHzZHHUsQVWcnJyCAsLIzs7u9qMv3ng03V8tf4AD13WmvGXtjK7HBERkWrnXH5/17jZUrVR2aBibcMgIiJy/hRuqgFnuNmv6eAiIiLnS+GmGmhfutbN/qxjZOYXmVyNiIhIzaZwUw2E+vvQtH4gYOwzJSIiIpWncFNNdCjtmtJ6NyIiIudH4aaaKNshXIOKRUREzo/CTTVRtlKxtmEQERE5Pwo31USH0pabvUcKyDlebHI1IiIiNZfCTTVRL8iXRuEBAPyuQcUiIiKVpnBTjXQonRK+WV1TIiIilaZwU40klM6Y0nRwERGRylO4qUZOrFSslhsREZHKUripRjqUzpj641AeBUUlJlcjIiJSMyncVCORIf5Ehvhhd8DWg+qaEhERqQyFm2pGm2iKiIicH4WbaqajZkyJiIicF4WbaqZsj6nNmjElIiJSKQo31UxZt9TO9FyOF9tMrkZERKTmUbipZmLD/KkX5EuJ3cGO9FyzyxEREalxFG6qGYvFctJKxeqaEhEROVcKN9VQWdfUJg0qFhEROWcKN9VQx9iybRgUbkRERM6Vwk011LF0peJtB3MpttlNrkZERKRmUbiphuLrBRLi702Rzc7O9DyzyxEREalRFG6qoXKDitU1JSIick4Ubqop57gbDSoWERE5Jwo31VRCY61ULCIiUhkKN9VUh9KWm98P5GCzO0yuRkREpOZQuKmmmjUIItDXi2PFNvYc1qBiERGRilK4cafDOyFtk1tu5WW10D7GGFSsxfxEREQqTuHGXbbMgX9dAF+PA7t71qYpW6lY2zCIiIhUnMKNuzTpC94BcHA9bPjELbc8sceUWm5EREQqSuHGXYIjYcAjxtdJT0Ph+e/oXdZy8/uBHOwaVCwiIlIhCjfulPg3iGgGeenw66vnfbuWkcH4elvJLSwh5WiBGwoUERGp/RRu3MnbDwY9Z3y9fDpk7j2v2/l4WWkXHQJopWIREZGKUrhxtzZXQrMBYCuEHyed9+00qFhEROTcKNy4m8UCg6eAxQpb58LeJed1u7Jws0UtNyIiIhWicFMVojpA9zHG1z88CnZbpW9VtsfUpv3ZOBwaVCwiInI2CjdV5eLHwT8M0jfBug8qfZvW0cF4Wy1kFRSzP+uYGwsUERGpnRRuqkpQfRjwqPF10rNwvHLdSn7eXrSOKh1UrHE3IiIiZ6VwU5V63QX1W0HBYfjlpUrfpmMjYzE/jbsRERE5O4WbquTlA4OeN75eMQOO/FGp25yYMaVwIyIicjYKN1Wt9eXQciDYi+HHJyp1iw6lg4o3H1C3lIiIyNko3HjCoOfB4gXbv4c/fj7ny9vHhGK1wKHcQjJyjldBgSIiIrWHwo0nNGxjjL8BmPcY2ErO6fIAXy9aRgYDWqlYRETkbBRuPGXARAiIgENbYc1753y5c72bfeqaEhERcUXhxlMC6xlr3wD8/DwcyzynyzuUDSpWy42IiIhLCjee1H0MNGwHx47CohfO6dKOsaXTwTVjSkRExCWFG0/y8obBpVPDV82EQzsqfGn70nBzIPs4R/IKq6I6ERGRWkHhxtNaXAKtrwB7Ccz/vwpfFuLvQ7MGQQBs0ZRwERGRM1K4McOg58DqA7sWwM4FFb6sQ2nrjcbdiIiInJnCjRnqt4DEvxpfz/8/sBVX6LKylYq3aI8pERGRM1K4McuAv0NgAzi8A1b9u0KXJGjGlIiIVGcOB6z/GA6sM7UMhRuz+IfBJaXbMSyaAvlHznpJWbdU8pECso9VrLVHRETEIzL3wgfXwVf3wNfjK9wrURUUbszUbRREJcDxbFj0/FlPDw/0pXFEAKAdwkVEpJqwlcCyafCv3rD7Z/D2h4QbAItpJSncmMnqBYOnGF+vfhfSfz/rJWUrFWvcjYiImC5tE/xnIPz4OBQXQNML4Z5l0O9BY/kTkyjcmK3ZhdBuCDjsMP8xo7/ShY6NNGNKRERMVnwckp6Bdy4yxtf4hcGQN2D0N8akGZMp3FQHlz0LXr6wexFs/8Hlqc5tGLRSsYiImGHvEpjRF359xVizrd01MG4ldB8NFvO6ok6mcFMd1GsGvccaX//4OJSceQXism6p3YfzyS88t93FRUREKu14NnxzP8y6Co7sguBoGP4hDP8AQqLNrq4chZvq4sKHIDgKju6G394+42kNQ/yICvXD4YCtBzXuRkREPGDrtzCtF6yZZXzf/TYY+5sxrKIaUripLvxC4NInja9/eQnyDp3x1AR1TYmIiCfkpsHskTB7BOSlQb0WcNt3MOR1CAg3u7ozUripTjrfCjFdoDAHfnr2jKd1KO2a2qQZUyIiUhUcDlj7PkzvBVvngsUL+k2Ae5ZC035mV3dWCjfVidUKg/9pfL32fTi48bSnObdh0IwpERFxtyN/wH+HwNzxxjibmC7w18Uw8CnwCTC7ugpRuKlumvSGDtcDDph3+qnhZdPBd2bkcbzY5uECRUSkVrKVwJLX4K0+sPdX8A6Ay5+DO5MgOsHs6s6Jwk11dNkzxgqPyUuM5sA/iQ71p36QLza7g21puSYUKCIitcqB9TDzYlg4GUqOQ/OL4N7l0GecqYvxVVa1CDfTp0+nadOm+Pv7k5iYyMqVKyt03aefforFYmHo0KFVW6CnhcdBn/uMr398wlgs6SQWi0Xr3YiIyPkrKoAfJ8HMSyBtI/iHw9C3YORXxjIlNZTp4Wb27NlMmDCBp556irVr19K5c2cGDRpERkaGy+v27t3Lww8/zIUXXuihSj2s3wMQEgtZKbBi+ilPdyzdRFPjbkREpFJ2Lza6oJa9AQ6bMSRi3Crocmu1WYyvskwPN6+++ip33XUXY8aMoX379syYMYPAwEDefffdM15js9kYMWIETz/9NM2bN/dgtR7kGwQDJxtf//KKMR3vJB2dLTeaMSUiIufgWCZ8PRbevwYy90BoI7jlU7jpPQiONLs6tzA13BQVFbFmzRoGDhzoPGa1Whk4cCDLly8/43XPPPMMkZGR3HHHHZ4o0zwJN0GjHlCcb+zhcZKylYq3p+VSVGI3ozoREalJHA7YMsdYjG/dh8axnnfBvSugzRXm1uZmpoabw4cPY7PZiIqKKnc8KiqKtLS0016zZMkS/vOf/zBz5swKvUZhYSE5OTnlHjWG1QpXvGB8vf4j2L/W+VRcvQBC/b0pstnZka5BxSIi4kLOAfh0BHx+G+RnQIPWcPt8uOpl8A81uzq3M71b6lzk5uYycuRIZs6cSYMGDSp0zZQpUwgLC3M+4uLiqrhKN2vcAzoNN74+aWq4xWLRejciIuKa3Q6r/gPTE2H7d2D1gQET4W9LIP4Cs6urMqaGmwYNGuDl5UV6enq54+np6URHn7oJ1x9//MHevXsZMmQI3t7eeHt78/777zN37ly8vb35448/TrnmscceIzs72/lITU2tsvdTZQZOBp9ASF0Bm//nPKxxNyIickaHdxqbXH43wVj5vlEP+OsvcPH/gbef2dVVKVPDja+vL927dycpKcl5zG63k5SURO/evU85v23btmzatIn169c7H9dccw0XX3wx69evP22rjJ+fH6GhoeUeNU5oLPR70Ph6wVPG1D2gQ+mMqc1quRERkTIlRcYehW/1gZRl4BMEg1+AO36EqPZmV+cRpq/MM2HCBEaPHk2PHj3o1asXU6dOJT8/nzFjxgAwatQoGjVqxJQpU/D396djx47lrg8PDwc45Xit02e8sSVDdiosexMumuhsudl6MIcSmx1vrxrVyygiIpXlcBitMbnpkHvQmFGbexDy0uGPn+HQVuO8lgPh6tcgPN7cej3M9HAzfPhwDh06xJNPPklaWhpdunRh3rx5zkHGKSkpWK36pY1PAFz2NHxxOyydCl3/QrP6sQT5epFfZGP34XxaR4WYXaWIiJyvwtwTYeV04aXs++KCM98joJ4xISXhphq/Zk1lWByO02xeVIvl5OQQFhZGdnZ2zeuicjjgvSsgZTkkDIMbZnLTjGWs2pvJq8M6c323xmZXKCIiZ1KYVz6cOP+ZVj68FOVV/J5+oRASXfqIgeAoCIuDjtdDUMUm3tQU5/L72/SWGzkHFgsMngLvXAybPoNed9MhNoxVezPZvD+H67uZXaCISB135A/YMR9yD/wpuKRB0Tks2+EbclJo+VN4CYk5ccw3qOreSw2mcFPTxHaFLiNg/YcwbyIJXWcB2mNKRMRUWanwy4uw7iNjK4Mz8Qk6EVT+HFxCoiE4GkKiwE/DDM6Hwk1NdOmT8PtXsH8NfdokAZFsOZCN3e7Aaq17fasiIqbJTYNfX4E1s8BWZBxr1h+iEk4KLSe1tii0eITCTU0UEgUXPgRJTxO96gUivKeQWeTL3iP5NG8YbHZ1IiK1X8FRWPIarJwJJceMY836w8VPQHyiubVJzVqhWE5ywb0Q3gRL7kEeC50HwOYDWsxPRKRKHc+Gn5+HqZ2M3bRLjkHjXjBqLoz+RsGmmqhUuElNTWXfvn3O71euXMkDDzzAO++847bC5Cx8/OHyfwBw3bEvacQhtmjcjYhI1SjKh19fNULN4heMwcHRneDWz43F8ZoPMLtCOUmlws2tt97Kzz//DEBaWhqXXXYZK1eu5PHHH+eZZ545y9XiNu2GQNML8XEU8ZjPJ1qpWETE3YqPw4q34PXOkPQ0HM+CBm1g2Ptw92JofXmdXEemuqtUuNm8eTO9evUC4LPPPqNjx44sW7aMjz76iFmzZrmzPnGldGq4w2Llaq8V+Oz7jTq2bJGISNWwFcPq9+DNbjDvUcg/BBFN4bp34N7l0P5a0AKz1ValBhQXFxfj52dsurVw4UKuueYawNj76eDBg+6rTs4uOgF7l5F4rfsvD9nfZd/RO4irr0HFIiKVYrfBps9h0RTI3GscC20EA/5uLMPh5WNqeVIxlYqdHTp0YMaMGfz6668sWLCAwYMHA3DgwAHq16/v1gLl7LwunUS+JZAE616yls0yuxwRkZrHboctX8G/esOcvxrBJijS2HBy/FrofpuCTQ1SqXDzwgsv8Pbbb3PRRRdxyy230LlzZwDmzp3r7K4SDwpuyKIoY6PRVuv/CWv+a/z1ISIirjkcsH0evNMfPh8Nh7eDfzgMnAz3r4cL/mZM4JAapdJ7S9lsNnJycoiIiHAe27t3L4GBgURGRrqtQHer0XtLufDRsl10nHcTna27jQNRHWHQc9D8IlPrEhGptnYvgp/+AftWGd/7hkDvsdD7XvAPM7U0OVWV7y117NgxHA6HM9gkJyczZ84c2rVrx6BBgypzSzlP7RvX58aiyfw14Cce8puDJX0zvH8ttB4Mlz0LDVubXaKISPWQ8hv89Czs/dX43jsAEu+Gvg9AYD1TSxP3qFS31LXXXsv7778PQFZWFomJibzyyisMHTqUt956y60FSsW0iwnF6u3LtGOX83GvryHxb2D1hh3z4K3e8P3fjRU1RUTqqgPr4aOb4N3LjWDj5Qu9/gr3b4DLnlGwqUUqFW7Wrl3LhRdeCMAXX3xBVFQUycnJvP/++7zxxhtuLVAqxt/Hi78PbgvApAUH+KXFw3DvCmhzJdhLYOXb8EYXWDYNSorMLVZExJMytsLskfDOANj5I1i8oNsoY6DwlS8aW9pIrVKpcFNQUEBIiLH5148//sj111+P1WrlggsuIDk52a0FSsXd3rcpN3ZvjN0B4z5eyx5i4ZZPYNTXxiZux7Phx8dhei/Y+o0xkE5EpLY68gf87y5jBtTWuYAFEobBuFVwzZsQHmd2hVJFKhVuWrZsyVdffUVqairz58/n8ssvByAjI6NWDdKtaSwWC89d15Fu8eHkHC/hzv+uIud4sTGo+K+L4ZppEBwFmXtg9l9g1lVwYJ3ZZYuIuFdWKswdD9N6wqbPAAe0u8ZYfO+GmVC/hdkVShWrVLh58sknefjhh2natCm9evWid+/egNGK07VrV7cWKOfGz9uLGSO7ExPmzx+H8rn/k3XY7A6wekG3kUYzbP+/g7c/JC+Fdy6COX+DnANmly4icn4O74RvJxirCq99Hxw2aHU53L0Ihn8Ake3MrlA8pNJTwdPS0jh48CCdO3fGWroE9cqVKwkNDaVt27ZuLdKdautU8D/btC+bG2cso7DEzl8HNOexK/70P3X2Pkh6BjbONr73DoC+90Pf+8A3yPMFi4hUhsMBfyQZ+z/tWnjieNML4ZInIP4C82oTtzqX39+VDjdlynYHb9y48fncxmPqSrgBmLvhAPd9YnQ7vTa8M9d1Pc2/o31rYP7/QeoK4/uQGLhkEnS+RfumiEj1VZQPGz6B396GwztKD1qgzRVwwb3Q7EJTyxP3O5ff35X67WW323nmmWcICwujSZMmNGnShPDwcJ599lnsdnulihb3u6ZzLGMvNvqWJ/5vE+tTs049qXF3uH0e3PRfCG8CuQfh63uNWQV7fvVswSIiZ5OVAj9OglfbwXcPGcHGNwQS74H71hqTKBRs6rxKtdw89thj/Oc//+Hpp5+mb9++ACxZsoTJkydz11138dxzz7m9UHepSy03AHa7g7s/WM3CrRlEhvjxzfh+RIWeYSnxkkLjr6BfXoLCHONY26uN9R80AE9EzOJwQMoKWPEv2PYtOEr/iI5oZqzp1eVW8K/9n+d1XZV3S8XGxjJjxgznbuBlvv76a+699172799/rrf0mLoWbgByjxdzw1vL2JGeR+e4cGbffQH+Pl5nviD/sLEj7ur3jAF5Vm/odbexK25AxJmvExFxp5JC2Pwl/PYWHNxw4nizAXDBPcZgYauLzzKpVao83Pj7+7Nx40Zaty6/pP/27dvp0qULx44dO9dbekxdDDcAyUfyuXb6UrIKirm+ayNeGdYZi8Xi+qKMbbBgkrHoFRjBZsCj0PMO7Y4rIlUnLwNWvwur/gP5GcYxb3/oNMxoqYnqYG59YooqH3PTuXNnpk2bdsrxadOm0alTp8rcUqpYk/pB/OvWbnhZLXy5bj8zf9199osi28KIz+EvX0LDdnAsE+ZNhH9dANu+1yKAIuJeBzfAnHvgtQ5G63F+xolJDg/+biy8p2AjFVCplpvFixdz1VVXER8f71zjZvny5aSmpvL99987t2aojupqy02Z/y7by1Nzt2CxwLuje3Jx2wru4G4rgXUfwM/PQf4h41iz/nD5cxCjQCsilWQrge3fwYoZkLLsxPHGPY1WmvbXqqVYAA+03AwYMIAdO3Zw3XXXkZWVRVZWFtdffz1btmzhgw8+qFTR4hmjejfhll5xOBxw3yfr2JWRV7ELvbyhxxhjEcB+D4KXH+z5Bd7uD1+Phdy0qi1cRGqXY5mw9A14oyt8NsoINlZv6Hgj3JkEdy6EhBsVbKRSznudm5Nt2LCBbt26YbPZ3HVLt6vrLTcARSV2Rvx7Bav2ZtKsQRBf3duXsMBz/ADJTIakp2Hz/4zvfYKg3wPQexz4Brq9ZhGpJQ7tgN9mGGvUFBcYxwLqQY/bjfF8obHm1ifVlkcX8TuZwk3NcTivkGunLWV/1jEubNWA927ribdXJRryUlfCvMdg/2rj+5BY6DPe2HHXL9i9RYtIzXSmVYQjO8AFf4OEm8AnwLz6pEZQuHFB4eaELQeyufGt5RwrtnFHv2ZMurp95W7kcBgtOAsnQ3aqccw/3Jg+nvhXCGrgrpJFpCZxtYpw4t+McXtnm7UpUkrhxgWFm/J+2HSQez5aC8CLN3ZiWI+4yt+s+LjxQbbsDThaOhvLOwC6/gX6jIOIpudfsIhUf1kpsHImrP0vHM82jvmGGJ8FiXdDvebm1ic1UpWFm+uvv97l81lZWSxevFjhpoZ5bcEOXk/aia+XlU/uTqR7k3rnd0O7DbZ+A0unwgFjbyssXtDhOmNcTnTC+ZYsItWN3Q67f4I1s2Dbd1pFWNyuysLNmDFjKnTee++9V9FbepzCzansdgf3frSWeVvSaBDsx9xxfYkNd0P/t8NhzKhaOhX++OnE8RaXGiGn6YVqkhap6XIOwLoPYe0HkJ1y4rhWERY3M61bqiZQuDm9/MISbnhrGdvSckloFMZnf+1NgK8bP5AOboClr8OWOSf+oovtZoSctlfrw0+kJrGVGCuXr30fds4/8f+0fxh0Gg7dx0BUJcfwiZyBwo0LCjdnlnq0gGunL+VofhFDOsfyxs1dzr5Fw7k6ugeWTzP+0is5bhyr39KYYdX5FvD2c+/riYj7ZCYbi3mu+xByD544Ht8Huo82FtzTrCepIgo3LijcuLZi9xH+8u/fKLE7eGRQG8Ze3LJqXijvEKx82xh0eDzLOBYcZTRj97jd+AtQRMxXUgTbvzcGB//xM1D6KyOwvvEHSbfR0LC1y1uIuIPCjQsKN2f30W/JPD5nMxYLvDOyB5e1j6q6FyvMNZq2l02D3APGMb9QYzXkC+6FkOiqe20RObPDu4xAs+GTE1uuADS/yAg0ba9SS6t4lMKNCwo3FTPpq818sCKZIF8v5oztS+uokKp9wZIi2PS5MS7n8HbjmJcvdL4Z+twPDaqoBUlETig+Dlvnwpr/QvKSE8eDo6HrCOg6Euo1M68+qdMUblxQuKmYYpudkf/5jRW7jxJfL5Cvx/YlIsi36l/Ybocd84wZVqm/lR60QLshxuDjRt2rvgaRuib999JWmk9PdBNbrNDyMmMsTatBxv5yIiZSuHFB4abijuYXce30JaQePUbv5vV5/45e+FRmi4bKSl5uhJwd804ca3qhEXJaXKpp5CLnoyjfmL245r+wb+WJ42FxRgtN1xEQ1ti8+kT+ROHGBYWbc7M9LZfr/7WU/CIbo3s34elrO3q+iPTfjVWPN30O9hLjWHQC9H0A2g/VX5Qi5+LAeqOVZtMXUJhjHLN6Q+vB0P02aHGJlmaQaknhxgWFm3P345Y07v5gDQDPX5fArYnx5hSSlQor/mX8pVmcbxwLb2JMI+8yQruRi5zJ8Rzjj4O1/zXWnCoT0czY5LbLCAipwokDIm6gcOOCwk3lTPtpJy//uANvq4WP7kwksXl984opOAqr/g2/zYCCI8axwPrGEu8974TA89w+QqQ2cDhg3yrjj4EtX0JxgXHcy9cYw9ZttNHNa/VgV7PIeVC4cUHhpnIcDgfjP1nHtxsPUi/Il7nj+tI4wuSWkqICWP+R0WWVVbrsu08QdBhqzLJq0k8f3FL3FByFjbONUHNo64njDdoYg4M73QxBJv5xIlJJCjcuKNxU3rEiGzfOWMaWAzm0jQ7hy3v7EOhbDca72Erg969gyVRI33TieGhj6Dzc+DDXImNS22WlGkF/7fsnVv/2DjA2rO0+GuISNQhfajSFGxcUbs7P/qxjXDttCYfziriiYzTTb+2G1VpNPjAdDkhZARs/hc1zoDD7xHONuhurqXa8Qd1WUrsc3gVLXjP+uy8bcB+VYASahJsgINzU8kTcReHGBYWb87d671FumbmCYpuDBwe25v6Brcwu6VTFx2HHD8a6HTsXgMNmHLf6QOtBRrdVq8u1wqrUXGmb4ddXjFbLso0rm/WHCx82/qlWGqllFG5cULhxj89WpfL3/20EYMZfujG4Y4zJFbmQdwg2f2EsI3/yTJGACKMlp/MtRsuOfhlITbBvNfzyshHey7QebISauJ7m1SVSxRRuXFC4cZ+nv9nCe0v3EuDjxf/u6UP72Brw80z/3Wi+3/hZ+V2N67c0WnM6DYdwk6a6i5yJwwF7l8CvL8PuRaUHLcbg+QsfMtZ9EqnlFG5cULhxnxKbndveW8WSXYdpFB7A3HF9qR9cQ7p57DbYs9jottr6zYlpsmBMj+18M7S7Bvz134iYyOEwulV/ffnEdiRWbyOE93sQGlTDLmGRKqJw44LCjXtlFRQxdPpS9h4poFezenx4RyK+3jVs+nVhrhFwNnwCe34FSv+X8A6AdlcbQaf5xVq1VTzHbjM2sPz1FUgrnQHo5QfdRkLf+9W6KHWSwo0LCjfutysjl6HTl5FXWMItveJ5/rqOWGrq+JWsVNj0Gaz/BI7sPHE8OBo63WSMz4nqYF59UrvZio1tEZa8Cod3GMd8gqDn7dB7HIREm1ufiIkUblxQuKkaP21L547/rsbhgCs6RjPl+gTCAz2wi3hVcTjgwFqj22rTF3Ds6InnohOMkJNwEwRHmlej1B7Fx40FKZdOPbEgpX+Ysep24t+0fIEICjcuKdxUnY9+S+apr7dQYncQHerPq8M706dFA7PLOn8lRbBrgdFttX0e2IuN4xYvaHmp0W3V5krwCTC3Tql5ivJh9Xuw7E3ISzOOBTWE3mOhxx0a8yVyEoUbFxRuqtamfdnc/+k6dh/Ox2KBv/ZvwYTLWte8cThnUnDU2Kdnw6fGvj1l/EJLt324BeIu0LYP4tqxLFg509gItqxVMLSRMZ6m60htAityGgo3LijcVL2CohKe/fZ3PlmZCkBCozBev7kLzRsGm1yZmx3eZUwr3zAbslNOHA+IMGZcNesPzS8yppnX1DFI4l75h2H5dGPj18Ic41i95sbMp043g3cN7soVqWIKNy4o3HjOvM0HefTLTWQVFBPg48VTQ9ozvGdczR1sfCZ2O6QsM7qtfp974pdWmZAYI+g06w/NBkB4nDl1inmy9xtdT2tmQckx41hke2ONmvZDwasa7NEmUs0p3LigcONZadnHmfDZepb9cQSoJYONXbEVw4F1xho6e36BlN/AVlj+nIhmJ4Wd/hqUXJsd3W1s6Lr+4xNjtWK7Qf+HofUV6r4UOQcKNy4o3Hie3e5g5q+7efnH7RTbatlg47MpPgapK42gs+cX2L/mxD5XZSLbnwg6Tfpqo8PaIGMr/Pqqse1H2b5PTfpB/4eMNZNqW+uliAco3LigcGOeWj/YuCIKcyF5WWnYWXxigbYyFivEdDa6r5r1h/gLwDfInFqlYooKICsZMvcaj71LYNu3J55veZnR/dSkt1kVitQKCjcuKNyY63SDjafe3IUWtW2wcUXlH4HkJbC7tBvr5IUDwdjFvHFPaF4adhr10KBTT7PbjWnaZeHlz4+89NNcZIF2Q4xQE9vFc7WK1GIKNy4o3FQP8zan8eiXG2v/YONzlXPA2AJiz2Ij8OTsK/+8T6DRmlPWshPTWdtCuENhLmQmnz68ZKWcOm7qz/zDIKKp8ajXwtj7KbJtFRctUrco3LigcFN9/Hmw8eAOxmDjiCC1TADGKsmZe06M19nzC+QfKn+OXxg07XeiZadhW43nOB27zQiOZ2p9KTjs+nqLlzHLrSzA/PkREFF1tYsIoHDjksJN9XLawcbDOtOnZR0YbHyuHA5joGpZ0Nm7BAqzy58T1BDie0OjbsasnNguRqtCXWC3w9E/jJ/R6VpfymYrnUlAxJnDS2hjTdcWMZnCjQsKN9XTnwcb392/OQ9d1qZuDTY+V3YbHFx/IuwkLz+xhsrJGrQ2gk6jbtCoO0R1BB9/j5frViVFcGgbHNwAaRvh4EZjcHZx/pmvsXobu2mfLryEN9EsNZFqrsaFm+nTp/PSSy+RlpZG586defPNN+nVq9dpz/3yyy95/vnn2bVrF8XFxbRq1YqHHnqIkSNHVui1FG6qLw02Pk8lhcZU832rjX8eWHtiE8aTWb2Nnc1jS8NOo25Gd1Z1HbtTlA9pm0tDzHojyGRsPX1LjHeAMdalXvPTtL40qr7vUUTOqkaFm9mzZzNq1ChmzJhBYmIiU6dO5fPPP2f79u1ERp66uNmiRYvIzMykbdu2+Pr68u233/LQQw/x3XffMWjQoLO+nsJN9ffnwcZPDmnPzRpsXDn5h2H/WiPo7F9rhJ7TjS/xCYSYLqXdWV2Nf0Y08/z4nYKjpSFmQ2lrzEY4vBM4zceUfxhEdzIGVUd3gphOUL+Vuo9EaqkaFW4SExPp2bMn06ZNA8ButxMXF8f48eN59NFHK3SPbt26cdVVV/Hss8+e9VyFm5rhz4ONB3WI4p/Xd9Jg4/PlcEB26omgc2AdHFgPRbmnnhsQUb47K7YbhES5r46cAye6lMq6l7JTT39+cLQRXk4OMuFNNHhapA6pMeGmqKiIwMBAvvjiC4YOHeo8Pnr0aLKysvj6669dXu9wOPjpp5+45ppr+Oqrr7jsssvO+poKNzWHBht7iN1urK+zf82JVp60TWArOvXc0EalLTvdT7TynG3Ast1uzPoq61IqCzRnmqEU0cwIL9GdjNakmE7aokJEzun3t6ntt4cPH8ZmsxEVVf6vwaioKLZt23bG67Kzs2nUqBGFhYV4eXnxr3/964zBprCwkMLCE2tU5OTknPY8qX6sVgt/HdCCvi0bcN+n69h9KJ8R//mNuy9szkOXa7Cx21it0LCN8ehyq3GspAjSN5/UnbXWGMCbs994nLwCb/1WJ2ZnNeoGPgEnhZgNxniZ07UMWbyMsT7OINMJohPqzuwuEakyNbJzOiQkhPXr15OXl0dSUhITJkygefPmXHTRRaecO2XKFJ5++mnPFylu07FRGN+O78ez327lk5UpvP3Lbpb+cZjXb+6qwcZVxdu3tDuqG/QsPVaYa4SVk8fwZCUbrT5HdsLG2S7u528MYj65WymyvRGERETcrEZ3S5W58847SU1NZf78+ac8d7qWm7i4OHVL1VAabFzN5B82xu04A88aozsrutOJwb4a6CsiblBjuqV8fX3p3r07SUlJznBjt9tJSkpi3LhxFb6P3W4vF2BO5ufnh5+fnzvKlWpgcMdousaHM+Gz9SzddYTHvtzEou0ZGmxslqAG0Ooy4yEiUk2YPmhhwoQJzJw5k//+979s3bqVe+65h/z8fMaMGQPAqFGjeOyxx5znT5kyhQULFrB79262bt3KK6+8wgcffMBf/vIXs96CeFhUqD8f3J7I/13ZFh8vC/O3pDP49V9YuussS+iLiEidYHo78fDhwzl06BBPPvkkaWlpdOnShXnz5jkHGaekpGC1nshg+fn53Hvvvezbt4+AgADatm3Lhx9+yPDhw816C2ICq9XC3f1b0KfFicHGfykdbDzh8tb4eWuxNhGRusr0dW48TVPBa5+CohL+8d1WPv7NWI23eYMgnh3akb6aMi4iUmucy+9v07ulRM5XoK83z1+XwNsju9MwxI/dh/MZ8e/fuO+TdWTkHDe7PBER8TCFG6k1BnWIJumhAdzWpylWC8zdcIBLX1nMrKV7sNnrVAOliEidpm4pqZU27cvmia82sWFfNgAdG4Xy3NAEOseFm1uYiIhUirqlpM5LaBzGl/f25dmhHQnx92bz/hyG/mspT3y1ieyC0+wmLSIitYbCjdRaXlYLIy9owk8PXcT1XRvhcMCHK1K49NVFfLl2H3Ws0VJEpM5QuJFar2GIH68O78Ind11Ay8hgDucVMeGzDdwycwW7Mk6z55GIiNRoCjdSZ/RuUZ/v77uQRwa1wd/HyordR7ni9V95cd42jhXZzC5PRETcROFG6hRfbytjL27JggcHMLBdJMU2B/9a9AcDX13Mwt/TzS5PRETcQOFG6qS4eoH8e3RP3hnZnUbhAezPOsad76/mrvdXsz/rmNnliYjIeVC4kTrt8g7RLJjQn78NaIG31cKC39MZ+MpiZiz+g2Kb3ezyRESkErTOjUipHem5PPHVZlbuOQpAq8hg/jG0I4nN65tcmYiIaJ0bkUpoHRXC7Lsv4OWbOlMvyJedGXkMf2cFD322gSN5hWaXJyIiFaRwI3ISi8XCjd0b89NDA7g1MR6LBf63dh+XvLKYj35Lxq5tHEREqj11S4m4sDYlkyfmbOb3gzkAdIkL5x9DO9KxUZjJlYmI1C3qlhJxk27xEcwd15cnr25PsJ8361OzuGbaEp7+Zgu5x7WNg4hIdaRwI3IW3l5Wbu/XjKSHBnB1pxjsDnhv6V4ufWUx32w4oG0cRESqGYUbkQqKCvVn2q3deP/2XjStH0hGbiHjP1nHqHdXsudwvtnliYhIKYUbkXPUv3VD5j3QnwcGtsLX28qvOw8zaOovvLZgB8eLtY2DiIjZNKBY5DzsPZzPk3O38MuOQwA0qR/IQ5e34YqO0fh46W8HERF3OZff3wo3IufJ4XDw/aY0nvl2C+k5xno4MWH+jOrdlFt6xREe6GtyhSIiNZ/CjQsKN1JV8gpL+Pevu/lwRTKH84oA8PexckO3xozp25SWkSEmVygiUnMp3LigcCNVrbDExjcbDvLukj3O9XEABrRuyO39mtG/VQMsFouJFYqI1DwKNy4o3IinOBwOfttzlHeX7GHB1nTK/k9r0TCIMX2bcX23RgT6eptbpIhIDaFw44LCjZgh5UgB/12+l9mrUskrLAEgLMCHW3rFM6p3E2LDA0yuUESkelO4cUHhRsyUe7yYL9bs472le0k5WgCAl9XCFR2jub1fM7rFR5hcoYhI9aRw44LCjVQHNruDn7Zl8O6SPSzffcR5vEtcOLf3a6ap5CIif6Jw44LCjVQ3vx/I4b2le/h6/QGKbHYAokP9Gdm7Cbf2iiciSFPJRUQUblxQuJHq6nBeIR+tSOGDFckczjPWy/H3sXJd18bc3rcpraI0lVxE6i6FGxcUbqS6Kyyx8e2Gg7y7dA9bDpyYSn5hqwbc3q8ZA1o1xGrVVHIRqVsUblxQuJGawuFwsGpvJu8u2cOPv6dhL/0/tXnpVPIbNJVcROoQhRsXFG6kJko9WsB/lxlTyXNLp5KH+nsbU8n7NKWRppKLSC2ncOOCwo3UZHmFJXyxOpX3lu0l+ciJqeSDO0Rze7+mdIuP0OrHIlIrKdy4oHAjtYG9bCr50j0s++PEVPLOjcMY2bspVyZEq8tKRGoVhRsXFG6kttl6MIdZS/cyZ/1+ikqMqeTBft4M6RzDTT3i6BoXrtYcEanxFG5cULiR2upIXiGfrEzhs9X7nKsfA7SMDGZYj8Zc17UxDUP8TKxQRKTyFG5cULiR2s5uNzbs/Hx1Kt9vPsjxYqM1x9tq4eK2kQzrEcfFbRrirRWQRaQGUbhxQeFG6pKc48V8u+Egn61OZX1qlvN4wxA/ru/aiJt6xNEyMti8AkVEKkjhxgWFG6mrdqTn8vnqVL5cu58j+UXO493iwxnWI46rOsUQ4u9jYoUiImemcOOCwo3UdcU2Oz9vy+Cz1fv4eXsGttLVAQN8vLgyIYZhPRrTq1k9DUIWkWpF4cYFhRuREzJyj/Pl2v18tjqV3Yfynceb1g/kph5x3NCtMdFh/iZWKCJiULhxQeFG5FQOh4O1KZl8tmof3248QH6RDQCrBfq3bsiwHnFc2i4SP28vkysVkbpK4cYFhRsR1/ILS/h+00E+X72PlXuPOo9HBPowtGsjhvWIo12M/t8REc9SuHFB4Uak4vYczueLNal8sWYf6TmFzuMJjcIY1qMx13RuRFigBiGLSNVTuHFB4Ubk3JXY7Py66zCfr05lwe/pFNuMjw1fbyuDO0QzrEccfVrUx2rVIGQRqRoKNy4o3Iicn6P5RXy1zhiEvC0t13m8UXgAN3ZvzI3dGxNXL9DECkWkNlK4cUHhRsQ9HA4Hm/fn8NnqVL5av5/c4yXO57rEhXN1pxiuTIghNjzAxCpFpLZQuHFB4UbE/Y4X25i/JY3PV+9j2R+HsZ/0qdItPpyrO8VyZUKMppWLSKUp3LigcCNStTJyjzN/cxrfbDzIqr1HOfkTpmfTCK5KMFp0IkMVdESk4hRuXFC4EfGc9Jzj/LDpIN9uPMjq5EzncYsFejWtx9WdYhjcMUa7lYvIWSncuKBwI2KOg9nH+H5TGt9tPMDalCzncasFEpvV5+rOMQzuEE39YAUdETmVwo0LCjci5tuXWcAPm9L4dtNBNpy0W7mX1ULv5vW5qpMRdCKCfM0rUkSqFYUbFxRuRKqX1KMFfLfpIN9tPMim/dnO415WC31bNuDqhBgGdYjWYoEidZzCjQsKNyLVV/KRfL7bdJBvNxzk94M5zuM+Xhb6tWzAVZ1iuax9FGEBCjoidY3CjQsKNyI1w+5DeXxfOhj55MUCfb2s9G/dgKs6xTCwXRQh/go6InWBwo0LCjciNc+ujFy+25jGd5sOsCM9z3nc19vKgNYNubpTDJe2iyLYz9vEKkWkKincuKBwI1Kz7UjP5duNB/l24wF2H8p3HvfztnJxm0iu7BTDgFYNNUZHpJZRuHFB4UakdnA4HGxPz+XbDUbQ2XukwPmc1QJd4yMY0LohA1o3JKFRmDb1FKnhFG5cULgRqX0cDge/H8zh240HWfh7Ojsz8so9Xy/IlwtbNWBA64Zc2KqhFg0UqYEUblxQuBGp/fZnHeOXHYdYvP0QS3cdJrewpNzzCY3CjFadNg3pGheOt5fVpEpFpKIUblxQuBGpW4ptdtYmZ7J4xyEW7zjElgM55Z4P8femX0ujVad/64baxVykmlK4cUHhRqRuy8g9zq87DrN4xyF+3XmIzILics+3jgouHasTSc9mEfh5e5lUqYicTOHGBYUbESljszvYtD+bxdsPsXhHButTs7Cf9IkY4ONFnxb1GdDGGJjcpH6QecWK1HEKNy4o3IjImWQVFPHrzsPOLqxDuYXlnm9aP9A5VueC5vUJ9NW6OiKeonDjgsKNiFSEw+Fg68Hc0qCTweq9mZSc1Kzj620lsVk953TzlpHBWCyabi5SVRRuXFC4EZHKyD1ezPI/jrB4xyEWbT/E/qxj5Z6PDfNnQJuG9G/VkF7N6lE/WNPNRdypxoWb6dOn89JLL5GWlkbnzp1588036dWr12nPnTlzJu+//z6bN28GoHv37jz//PNnPP/PFG5E5Hw5HA7+OJTv7L5asfsIRSX2cuc0axBEt/gIujcxHq0ig7WQoMh5qFHhZvbs2YwaNYoZM2aQmJjI1KlT+fzzz9m+fTuRkZGnnD9ixAj69u1Lnz598Pf354UXXmDOnDls2bKFRo0anfX1FG5ExN2OFdn4bY/RqrN01+Fy+1+VCfH3pmt8BN3jI+jRNILOceHaC0vkHNSocJOYmEjPnj2ZNm0aAHa7nbi4OMaPH8+jjz561uttNhsRERFMmzaNUaNGnfV8hRsRqWrZBcWsTc1kbXIma5IzWZ+aRUGRrdw5Vgu0jQ51tux0bxJB44gAjdsROYNz+f1t6p8NRUVFrFmzhscee8x5zGq1MnDgQJYvX16hexQUFFBcXEy9evWqqkwRkXMSFujDxW0iubiN0fpcYrOzLS2XtSlG2FmTnMm+zGP8fjCH3w/m8MGKZAAahvjRvbQrq1uTCDo2CtU6OyKVYGq4OXz4MDabjaioqHLHo6Ki2LZtW4XuMXHiRGJjYxk4cOBpny8sLKSw8MR0zpycnNOeJyJSVby9rHRsFEbHRmGM6t0UgPSc486gsyY5ky0HsjmUW8i8LWnM25IGGDOyOjUKc4adbvER2hdLpAJqdIfvP//5Tz799FMWLVqEv7//ac+ZMmUKTz/9tIcrExFxLSrUnysTYrgyIQaA48U2Nu3PdoadtcmZHMkvYnVyJquTM53XNakfSPd4I+z0aBpBq8gQvDRQWaQcU8fcFBUVERgYyBdffMHQoUOdx0ePHk1WVhZff/31Ga99+eWX+cc//sHChQvp0aPHGc87XctNXFycxtyISLXmcDhIPlLAmtJwszY5kx0Zufz5EzvEz5su8eHOcTtd4sIJ8fcxp2iRKlRjxtz4+vrSvXt3kpKSnOHGbreTlJTEuHHjznjdiy++yHPPPcf8+fNdBhsAPz8//PzUjCsiNYvFYqFpgyCaNgjihu6NAcg+Vsz61Cxny866lExyC0v4dedhft15uPQ66Nw4nEvbRnJx20g6xIZqkLLUOabPlpo9ezajR4/m7bffplevXkydOpXPPvuMbdu2ERUVxahRo2jUqBFTpkwB4IUXXuDJJ5/k448/pm/fvs77BAcHExwcfNbX02wpEaktbHYH29NyWZOSyZq9R1mTkknq0fKLC0aH+nNx24Zc0jaKvi21ZYTUXDVqKjjAtGnTnIv4denShTfeeIPExEQALrroIpo2bcqsWbMAaNq0KcnJyafc46mnnmLy5MlnfS2FGxGpzQ5mH2PR9kP8tC2DJTsPc6z4xBR0X28rvZvX55K2kVzSNpK4eoEmVipybmpcuPEkhRsRqSuOF9v4bc9Rftqazk/bM05p1WkVGewMOt2bRODtZTWpUpGzU7hxQeFGROoih8PBrow8ftqWwU/bMlidnIntpI1AQ/29GdAmkkvaNmRA60jqBfmaWK3IqRRuXFC4ERExVlH+ZafRfbVoewaZBcXO56wW6Bof4WzVaRsdokHJYjqFGxcUbkREyrPZHaxPzeSnbRkkbc1gW1puuedjw/y5uDTo9GnRgABfrZosnqdw44LCjYiIa/uzjvHztgx+3pbB0j8Oc7z4xI7nft5W+rSozyXtorikbSSNwgNMrFTqEoUbFxRuREQq7nixjeV/HCFpWzo/bzvE/qzyg5LbRodwcdtILm0bSdf4CK2WLFVG4cYFhRsRkcpxOBxsT8/lp9JWnTXJmZw0JpnwQB8GtG5Iv5YN6NYkguYNgjRWR9xG4cYFhRsREffIzC/il52HSNqaweIdh8g+Vlzu+bAAH7rGh9M1LoKu8eF0iQ8nVFtDSCUp3LigcCMi4n4lNjtrU7L4eXsGq/ceZeO+bApL7OXOsVigZcNgusUbYadrfAStIoOxqitLKkDhxgWFGxGRqldUYmdbWg7rUrJYm5LJupQsUo4WnHJeiJ83nePC6VYadrrEhROhNXbkNBRuXFC4ERExx6HcQtanZrEuJZO1KZls3JdNQZHtlPOaNwiiS2nY6RYfTpuoEK2eLAo3rijciIhUDyU2O9vTc1mXklX6yGT34fxTzgv09aJT4zC6xkfQNc4IPQ1D/EyoWMykcOOCwo2ISPWVmV/E+n1ZrEvOZF1qFutTssgtLDnlvLh6AXSNi3B2Z7WLCcXXW607tZnCjQsKNyIiNYfd7mDXoTyjKys5i3WpmezMyOPPv7n8vK0kNAqja3w4PZvWo2/LBgT5eZtTtFQJhRsXFG5ERGq2nOPFbEjNKjdY+c/T0H29rPRuUZ9L20VyabsoraRcCyjcuKBwIyJSuzgcDvYczmdtadhZsvPwKTOz2kaHMLBdFJe0i6RL43BNP6+BFG5cULgREandHA4HuzLyWLg1g5+2pZ+yknKDYF8ubhPJpe0iubBVQ3Vf1RAKNy4o3IiI1C1H84tYtD2DpG0Z/LL9ULkByr5eVi5oUZ+B7YxdzxtHBJpYqbiicOOCwo2ISN1VVGJn1d6jJG3NIGlbOslHTu2+Khun07lxuDYCrUYUblxQuBERETC6r/44VNp9tTWD1clHy3Vf1Q/y5eK2kQxsF0m/Vg0JVveVqRRuXFC4ERGR08nML2LRjgznRqC5x8t3XyU2r8fAdlFc2k7dV2ZQuHFB4UZERM6m2GZn1Z6jLHTRfXVJW6P7qkucuq88QeHGBYUbERE5F0b3VT5JW9NJctF9dWnbSC5sre6rqqJw44LCjYiInI+sgiIWbT9E0rYMFm3POKX7qmt8ONFh/kQE+lIvyJeIIF8iAn2oF2h8XS/Il/BAH/y8vUx8FzWPwo0LCjciIuIuxbaTZl9tTWfvn7qvXAny9XKGHWcQCjSC0KnHfQgP9K3T+2cp3LigcCMiIlXlj0N5rE/JIrOgiMyCIo7mF5OZX8TRgiIy84tKjxdjs1fuV2+In7fREnSa1iAjCPlQL8iPtjEhhPr7uPndmetcfn+rY1BERMRNWjQMpkXDYJfn2O0OcgtLyoWeo/lFZBUUl/u+LAiVhSK7A3ILS8gtLDlle4k/s1igZcNgusVH0K2JsXN6y4bBdWbbCbXciIiIVHN2u4Oc48UnQk/+SUHIGYiKySoo4mD2cfZnHTvlHiF+3nSJN4JO1/hwusVFEBZYc1p31HIjIiJSi1itFsIDfQkP9K3Q+YdyC1mfWrZreiYbUrPJLSzh152H+XXnYed5LRoG0TU+gm6lgad1VEitmNaulhsREZFarsRmZ1taLutSs1iXnMm61Cz2HM4/5bxgP286x4XRNc7ozuoSF0G9oIoFqqqmAcUuKNyIiIgYG4quS8lkXYrRwrMhNYv8Itsp5zVrEETXuHC6NomgW3w4baJC8Pby/KwthRsXFG5EREROZbM72JGeW9qVZQSe3YdObd0J9PWiU+Owct1ZDYL9qrw+hRsXFG5EREQqJqugqFxX1vqULHILS045L75eIN1KByt3i4+gbUwIPm5u3VG4cUHhRkREpHJsdmMn9bXJmc4Wnp0Zeaec16xBED8/fJFbX1uzpURERMTtvKwWWkeF0DoqhJt7xQOQfayYDaUzs9amZLE+JZN2MSGm1qlwIyIiIpUWFuBD/9YN6d+6IWCsyZNXdGrXlSfV3U0qRERExO2sVovpWz8o3IiIiEitonAjIiIitYrCjYiIiNQqCjciIiJSqyjciIiISK2icCMiIiK1isKNiIiI1CoKNyIiIlKrKNyIiIhIraJwIyIiIrWKwo2IiIjUKgo3IiIiUqso3IiIiEit4m12AZ7mcDgAyMnJMbkSERERqaiy39tlv8ddqXPhJjc3F4C4uDiTKxEREZFzlZubS1hYmMtzLI6KRKBaxG63c+DAAUJCQrBYLG69d05ODnFxcaSmphIaGurWe9cEdf39g34Gev91+/2DfgZ1/f1D1f0MHA4Hubm5xMbGYrW6HlVT51purFYrjRs3rtLXCA0NrbP/UYPeP+hnoPdft98/6GdQ198/VM3P4GwtNmU0oFhERERqFYUbERERqVUUbtzIz8+Pp556Cj8/P7NLMUVdf/+gn4Hef91+/6CfQV1//1A9fgZ1bkCxiIiI1G5quREREZFaReFGREREahWFGxEREalVFG5ERESkVlG4cZPp06fTtGlT/P39SUxMZOXKlWaX5DFTpkyhZ8+ehISEEBkZydChQ9m+fbvZZZnmn//8JxaLhQceeMDsUjxq//79/OUvf6F+/foEBASQkJDA6tWrzS7LI2w2G5MmTaJZs2YEBATQokULnn322QrtgVNT/fLLLwwZMoTY2FgsFgtfffVVuecdDgdPPvkkMTExBAQEMHDgQHbu3GlOsVXA1fsvLi5m4sSJJCQkEBQURGxsLKNGjeLAgQPmFexmZ/v3f7K//e1vWCwWpk6d6rH6FG7cYPbs2UyYMIGnnnqKtWvX0rlzZwYNGkRGRobZpXnE4sWLGTt2LCtWrGDBggUUFxdz+eWXk5+fb3ZpHrdq1SrefvttOnXqZHYpHpWZmUnfvn3x8fHhhx9+4Pfff+eVV14hIiLC7NI84oUXXuCtt95i2rRpbN26lRdeeIEXX3yRN9980+zSqkx+fj6dO3dm+vTpp33+xRdf5I033mDGjBn89ttvBAUFMWjQII4fP+7hSquGq/dfUFDA2rVrmTRpEmvXruXLL79k+/btXHPNNSZUWjXO9u+/zJw5c1ixYgWxsbEeqqyUQ85br169HGPHjnV+b7PZHLGxsY4pU6aYWJV5MjIyHIBj8eLFZpfiUbm5uY5WrVo5FixY4BgwYIDj/vvvN7skj5k4caKjX79+Zpdhmquuuspx++23lzt2/fXXO0aMGGFSRZ4FOObMmeP83m63O6Kjox0vvfSS81hWVpbDz8/P8cknn5hQYdX68/s/nZUrVzoAR3JysmeK8qAzvf99+/Y5GjVq5Ni8ebOjSZMmjtdee81jNanl5jwVFRWxZs0aBg4c6DxmtVoZOHAgy5cvN7Ey82RnZwNQr149kyvxrLFjx3LVVVeV+2+hrpg7dy49evTgpptuIjIykq5duzJz5kyzy/KYPn36kJSUxI4dOwDYsGEDS5Ys4YorrjC5MnPs2bOHtLS0cv8vhIWFkZiYWKc/Fy0WC+Hh4WaX4hF2u52RI0fyyCOP0KFDB4+/fp3bONPdDh8+jM1mIyoqqtzxqKgotm3bZlJV5rHb7TzwwAP07duXjh07ml2Ox3z66aesXbuWVatWmV2KKXbv3s1bb73FhAkT+L//+z9WrVrFfffdh6+vL6NHjza7vCr36KOPkpOTQ9u2bfHy8sJms/Hcc88xYsQIs0szRVpaGsBpPxfLnqtLjh8/zsSJE7nlllvqzGaaL7zwAt7e3tx3332mvL7CjbjV2LFj2bx5M0uWLDG7FI9JTU3l/vvvZ8GCBfj7+5tdjinsdjs9evTg+eefB6Br165s3ryZGTNm1Ilw89lnn/HRRx/x8ccf06FDB9avX88DDzxAbGxsnXj/cmbFxcUMGzYMh8PBW2+9ZXY5HrFmzRpef/111q5di8ViMaUGdUudpwYNGuDl5UV6enq54+np6URHR5tUlTnGjRvHt99+y88//0zjxo3NLsdj1qxZQ0ZGBt26dcPb2xtvb28WL17MG2+8gbe3NzabzewSq1xMTAzt27cvd6xdu3akpKSYVJFnPfLIIzz66KPcfPPNJCQkMHLkSB588EGmTJlidmmmKPvsq+ufi2XBJjk5mQULFtSZVptff/2VjIwM4uPjnZ+JycnJPPTQQzRt2tQjNSjcnCdfX1+6d+9OUlKS85jdbicpKYnevXubWJnnOBwOxo0bx5w5c/jpp59o1qyZ2SV51KWXXsqmTZtYv36989GjRw9GjBjB+vXr8fLyMrvEKte3b99Tpv/v2LGDJk2amFSRZxUUFGC1lv849fLywm63m1SRuZo1a0Z0dHS5z8WcnBx+++23OvO5WBZsdu7cycKFC6lfv77ZJXnMyJEj2bhxY7nPxNjYWB555BHmz5/vkRrULeUGEyZMYPTo0fTo0YNevXoxdepU8vPzGTNmjNmlecTYsWP5+OOP+frrrwkJCXH2qYeFhREQEGBydVUvJCTklPFFQUFB1K9fv86MO3rwwQfp06cPzz//PMOGDWPlypW88847vPPOO2aX5hFDhgzhueeeIz4+ng4dOrBu3TpeffVVbr/9drNLqzJ5eXns2rXL+f2ePXtYv3499erVIz4+ngceeIB//OMftGrVimbNmjFp0iRiY2MZOnSoeUW7kav3HxMTw4033sjatWv59ttvsdlszs/FevXq4evra1bZbnO2f/9/DnM+Pj5ER0fTpk0bzxTosXlZtdybb77piI+Pd/j6+jp69erlWLFihdkleQxw2sd7771ndmmmqWtTwR0Oh+Obb75xdOzY0eHn5+do27at45133jG7JI/Jyclx3H///Y74+HiHv7+/o3nz5o7HH3/cUVhYaHZpVebnn38+7f/3o0ePdjgcxnTwSZMmOaKiohx+fn6OSy+91LF9+3Zzi3YjV+9/z549Z/xc/Pnnn80u3S3O9u//zzw9FdzicNTiJTRFRESkztGYGxEREalVFG5ERESkVlG4ERERkVpF4UZERERqFYUbERERqVUUbkRERKRWUbgRERGRWkXhRkTqPIvFwldffWV2GSLiJgo3ImKq2267DYvFcspj8ODBZpcmIjWU9pYSEdMNHjyY9957r9wxPz8/k6oRkZpOLTciYjo/Pz+io6PLPSIiIgCjy+itt97iiiuuICAggObNm/PFF1+Uu37Tpk1ccsklBAQEUL9+fe6++27y8vLKnfPuu+/SoUMH/Pz8iImJYdy4ceWeP3z4MNdddx2BgYG0atWKuXPnVu2bFpEqo3AjItXepEmTuOGGG9iwYQMjRozg5ptvZuvWrQDk5+czaNAgIiIiWLVqFZ9//jkLFy4sF17eeustxo4dy913382mTZuYO3cuLVu2LPcaTz/9NMOGDWPjxo1ceeWVjBgxgqNHj3r0fYqIm3hsi04RkdMYPXq0w8vLyxEUFFTu8dxzzzkcDmPX+b/97W/lrklMTHTcc889DofD4XjnnXccERERjry8POfz3333ncNqtTrS0tIcDofDERsb63j88cfPWAPgeOKJJ5zf5+XlOQDHDz/84Lb3KSKeozE3ImK6iy++mLfeeqvcsXr16jm/7t27d7nnevfuzfr16wHYunUrnTt3JigoyPl83759sdvtbN++HYvFwoEDB7j00ktd1tCpUyfn10FBQYSGhpKRkVHZtyQiJlK4ERHTBQUFndJN5C4BAQEVOs/Hx6fc9xaLBbvdXhUliUgV05gbEan2VqxYccr37dq1A6Bdu3Zs2LCB/Px85/NLly7FarXSpk0bQkJCaNq0KUlJSR6tWUTMo5YbETFdYWEhaWlp5Y55e3vToEEDAD7//HN69OhBv379+Oijj1i5ciX/+c9/ABgxYgRPPfUUo0ePZvLkyRw6dIjx48czcuRIoqKiAJg8eTJ/+9vfiIyM5IorriA3N5elS5cyfvx4z75REfEIhRsRMd28efOIiYkpd6xNmzZs27YNMGYyffrpp9x7773ExMTwySef0L59ewACAwOZP38+999/Pz179iQwMJAbbriBV1991Xmv0aNHc/z4cV577TUefvhhGjRowI033ui5NygiHmVxOBwOs4sQETkTi8XCnDlzGDp0qNmliEgNoTE3IiIiUqso3IiIiEitojE3IlKtqedcRM6VWm5ERESkVlG4ERERkVpF4UZERERqFYUbERERqVUUbkRERKRWUbgRERGRWkXhRkRERGoVhRsRERGpVRRuREREpFb5fx8/ra9h7bKIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "plt.plot(cnn_results['train_losses'], label='Training loss')\n", - "plt.plot(cnn_results['test_losses'], label='Validation loss')\n", + "plt.plot(cnn_results['train_losses'], label='Training loss') # plotando a função de custo da CNN\n", + "plt.plot(cnn_results['test_losses'], label='Validation loss') # plotando a função de custo da CNN\n", "\n", "plt.legend(frameon=False)\n", "plt.xlabel(\"Epoch\")\n", @@ -933,13 +863,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 72, "id": "71da0c86", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfuUlEQVR4nO3dd3RUdf7G8fek94T0BEJJQDqhIyKKgoK6KFiwAva1YFls6yqK+nNZxYKKC1hZOzbsgoCAgtIJRakmQCCEEEIS0svM74+bDATCQCAzN5k8r3PmwNy5M/czcyDz5FstNpvNhoiIiIib8DC7ABEREZH6pHAjIiIibkXhRkRERNyKwo2IiIi4FYUbERERcSsKNyIiIuJWFG5ERETErSjciIiIiFtRuBERERG3onAjIiIibkXhRkQalJkzZ2KxWFi1apXZpYhII6VwIyIiIm5F4UZERETcisKNiDQ6a9eu5aKLLiIkJISgoCAGDx7MsmXLapxTXl7OU089Rbt27fDz8yMiIoKzzz6befPm2c/JzMzkpptuokWLFvj6+hIXF8dll13Gjh07XPyORKQ+eZldgIhIXfzxxx8MHDiQkJAQHn74Yby9vZkxYwaDBg1i8eLF9OvXD4CJEycyadIkbr31Vvr27Ut+fj6rVq1izZo1XHDBBQBcccUV/PHHH9xzzz20bt2arKws5s2bx65du2jdurWJ71JETofFZrPZzC5CRKTazJkzuemmm1i5ciW9e/c+5vGRI0fyww8/sGnTJhITEwHYu3cv7du3p0ePHixevBiA7t2706JFC7777rtar5Obm0uzZs2YPHkyDz74oPPekIi4nLqlRKTRqKys5KeffmLEiBH2YAMQFxfHddddx5IlS8jPzwcgLCyMP/74g23bttX6Wv7+/vj4+LBo0SIOHjzokvpFxDUUbkSk0di/fz9FRUW0b9/+mMc6duyI1WolPT0dgKeffprc3FzOOOMMunbtykMPPcT69evt5/v6+vLcc8/x448/EhMTwznnnMPzzz9PZmamy96PiDiHwo2IuKVzzjmHv/76i3feeYcuXbrw1ltv0bNnT9566y37Offffz9bt25l0qRJ+Pn5MWHCBDp27MjatWtNrFxETpfCjYg0GlFRUQQEBLBly5ZjHtu8eTMeHh4kJCTYj4WHh3PTTTfx8ccfk56eTrdu3Zg4cWKN5yUlJfHAAw/w008/sXHjRsrKynjxxRed/VZExIkUbkSk0fD09OTCCy/k66+/rjFde9++fXz00UecffbZhISEAHDgwIEazw0KCqJt27aUlpYCUFRURElJSY1zkpKSCA4Otp8jIo2TpoKLSIP0zjvvMGfOnGOOT5w4kXnz5nH22Wdz11134eXlxYwZMygtLeX555+3n9epUycGDRpEr169CA8PZ9WqVXz++eeMGzcOgK1btzJ48GBGjRpFp06d8PLyYvbs2ezbt49rrrnGZe9TROqfpoKLSINSPRX8eNLT09m/fz+PPvooS5cuxWq10q9fP5599ln69+9vP+/ZZ5/lm2++YevWrZSWltKqVStGjx7NQw89hLe3NwcOHODJJ59kwYIFpKen4+XlRYcOHXjggQe46qqrXPFWRcRJFG5ERETErWjMjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbfS5Bbxs1qtZGRkEBwcjMViMbscEREROQk2m41Dhw4RHx+Ph4fjtpkmF24yMjJq7D0jIiIijUd6ejotWrRweE6TCzfBwcGA8eFU70EjIiIiDVt+fj4JCQn273FHmly4qe6KCgkJUbgRERFpZE5mSIkGFIuIiIhbUbgRERERt6JwIyIiIm5F4UZERETcisKNiIiIuBWFGxEREXErCjciIiLiVhRuRERExK0o3IiIiIhbUbgRERERt6JwIyIicppat27NlClTTvr8RYsWYbFYyM3NdVpNADNnziQsLMyp12iIFG5ERKTJsFgsDm8TJ048pddduXIlt99++0mff9ZZZ7F3715CQ0NP6XriWJPbONOZ8orKycwvoX3siXcsFRER19u7d6/977NmzeKJJ55gy5Yt9mNBQUH2v9tsNiorK/HyOvFXZVRUVJ3q8PHxITY2tk7PkZOnlpt6snXfIZKf/omrpv+GzWYzuxwREalFbGys/RYaGorFYrHf37x5M8HBwfz444/06tULX19flixZwl9//cVll11GTEwMQUFB9OnTh/nz59d43aO7pSwWC2+99RYjR44kICCAdu3a8c0339gfP7pbqrr7aO7cuXTs2JGgoCCGDRtWI4xVVFRw7733EhYWRkREBI888ghjx45lxIgRdfoMpk2bRlJSEj4+PrRv357333/f/pjNZmPixIm0bNkSX19f4uPjuffee+2P//e//6Vdu3b4+fkRExPDlVdeWadru4rCTT1pGR6AxQL5JRVkF5SZXY6IiMvZbDaKyipMudXnL5X//Oc/+c9//sOmTZvo1q0bBQUFXHzxxSxYsIC1a9cybNgwhg8fzq5duxy+zlNPPcWoUaNYv349F198Mddffz05OTnHPb+oqIgXXniB999/n19++YVdu3bx4IMP2h9/7rnn+PDDD3n33XdZunQp+fn5fPXVV3V6b7Nnz+a+++7jgQceYOPGjfz973/npptuYuHChQB88cUXvPzyy8yYMYNt27bx1Vdf0bVrVwBWrVrFvffey9NPP82WLVuYM2cO55xzTp2u7yrqlqonft6etGjmT3pOMan7C4gK9jW7JBERlyour6TTE3NNufafTw8lwKd+vtKefvppLrjgAvv98PBwkpOT7fefeeYZZs+ezTfffMO4ceOO+zo33ngj1157LQD//ve/efXVV1mxYgXDhg2r9fzy8nKmT59OUlISAOPGjePpp5+2P/7aa6/x6KOPMnLkSACmTp3KDz/8UKf39sILL3DjjTdy1113ATB+/HiWLVvGCy+8wHnnnceuXbuIjY1lyJAheHt707JlS/r27QvArl27CAwM5G9/+xvBwcG0atWKHj161On6rqKWm3qUFGX01f61v9DkSkRE5FT17t27xv2CggIefPBBOnbsSFhYGEFBQWzatOmELTfdunWz/z0wMJCQkBCysrKOe35AQIA92ADExcXZz8/Ly2Pfvn32oAHg6elJr1696vTeNm3axIABA2ocGzBgAJs2bQLgqquuori4mMTERG677TZmz55NRUUFABdccAGtWrUiMTGR0aNH8+GHH1JUVFSn67uKWm7qUVJUEIu27Oev/QVmlyIi4nL+3p78+fRQ065dXwIDA2vcf/DBB5k3bx4vvPACbdu2xd/fnyuvvJKyMsdDELy9vWvct1gsWK3WOp3v6jGcCQkJbNmyhfnz5zNv3jzuuusuJk+ezOLFiwkODmbNmjUsWrSIn376iSeeeIKJEyeycuXKBjfdXC039SgxyvgPkapwIyJNkMViIcDHy5SbxWJx2vtaunQpN954IyNHjqRr167ExsayY8cOp12vNqGhocTExLBy5Ur7scrKStasWVOn1+nYsSNLly6tcWzp0qV06tTJft/f35/hw4fz6quvsmjRIn7//Xc2bNgAgJeXF0OGDOH5559n/fr17Nixg59//vk03plzqOWmHqlbSkTE/bRr144vv/yS4cOHY7FYmDBhgsMWGGe55557mDRpEm3btqVDhw689tprHDx4sE7B7qGHHmLUqFH06NGDIUOG8O233/Lll1/aZ3/NnDmTyspK+vXrR0BAAB988AH+/v60atWK7777jtTUVM455xyaNWvGDz/8gNVqpX379s56y6dM4aYeVYeb9INFlJRX4lePzaQiImKOl156iZtvvpmzzjqLyMhIHnnkEfLz811exyOPPEJmZiZjxozB09OT22+/naFDh+LpefLfNSNGjOCVV17hhRde4L777qNNmza8++67DBo0CICwsDD+85//MH78eCorK+natSvffvstERERhIWF8eWXXzJx4kRKSkpo164dH3/8MZ07d3bSOz51FpuJi7L88ssvTJ48mdWrV7N3715mz57tcL7+3r17eeCBB1i1ahXbt2/n3nvvrdNy1wD5+fmEhoaSl5dHSEjI6b2Bo9hsNro99ROHSiqYe/85WsxPREScxmq10rFjR0aNGsUzzzxjdjlOV5fvb1PH3BQWFpKcnMzrr79+UueXlpYSFRXF448/XmNaXkNhsViO6JrSuBsREak/O3fu5M0332Tr1q1s2LCBO++8k7S0NK677jqzS2twTO2Wuuiii7joootO+vzWrVvzyiuvAPDOO+84q6zTkhQVREp6Ln9lKdyIiEj98fDwYObMmTz44IPYbDa6dOnC/Pnz6dixo9mlNThuP+amtLSU0tJS+31n95PaZ0xla1CxiIjUn4SEhGNmOknt3H4q+KRJkwgNDbXfEhISnHo9dUuJiIiYy+3DzaOPPkpeXp79lp6e7tTrtY02Wm7+yirQBpoiIiImcPtuKV9fX3x9XbfPU8vwQDw9LBSWVZJ1qJSYED+XXVtERESaQMuNq/l4edAyPABAg4pFRERMYGq4KSgoICUlhZSUFADS0tJISUmxb0b26KOPMmbMmBrPqT6/oKCA/fv3k5KSwp9//unq0h1KqhpUrHE3IiIirmdqt9SqVas477zz7PfHjx8PwNixY5k5cyZ79+49ZtfVI7dXX716NR999BGtWrVy+T4fjiRGBcGmLG3DICIiYgJTW24GDRqEzWY75jZz5kzA2ONi0aJFNZ5T2/kNKdiAWm5ERNzdoEGDuP/+++33W7dufcIV8y0WC1999dVpX7u+XseRiRMn0r17d6dew5k05sYJqqeDp6rlRkSkQRk+fDjDhg2r9bFff/0Vi8XC+vXr6/y6K1eu5Pbbbz/d8mo4XsDYu3dvnRbAbYoUbpwgsSrc7Mktpris0uRqRESk2i233MK8efPYvXv3MY+9++679O7dm27dutX5daOioggICKiPEk8oNjbWpbOAGyOFGycID/ShWYA3AKnZ6poSEWko/va3vxEVFWUf/lCtoKCAzz77jFtuuYUDBw5w7bXX0rx5cwICAujatSsff/yxw9c9ultq27ZtnHPOOfj5+dGpUyfmzZt3zHMeeeQRzjjjDAICAkhMTGTChAmUl5cDxrCMp556inXr1mGxWLBYLPaaj+6W2rBhA+effz7+/v5ERERw++23U1Bw+LvnxhtvZMSIEbzwwgvExcURERHB3Xffbb/WybBarTz99NO0aNECX19funfvzpw5c+yPl5WVMW7cOOLi4vDz86NVq1ZMmjQJMIaTTJw4kZYtW+Lr60t8fDz33nvvSV/7VLj9OjdmSYoKYtXOg/y1v5DO8aFmlyMi4nw2G5QXmXNt7wCwWE54mpeXF2PGjGHmzJk89thjWKqe89lnn1FZWcm1115LQUEBvXr14pFHHiEkJITvv/+e0aNHk5SURN++fU94DavVyuWXX05MTAzLly8nLy+vxvicasHBwcycOZP4+Hg2bNjAbbfdRnBwMA8//DBXX301GzduZM6cOcyfPx+A0NBjv0sKCwsZOnQo/fv3Z+XKlWRlZXHrrbcybty4GgFu4cKFxMXFsXDhQrZv387VV19N9+7due222074fgBeeeUVXnzxRWbMmEGPHj145513uPTSS/njjz9o164dr776Kt988w2ffvopLVu2JD093b5o7hdffMHLL7/MJ598QufOncnMzGTdunUndd1TpXDjJIlRgazaeZBUDSoWkaaivAj+HW/Otf+VAT6BJ3XqzTffzOTJk1m8eDGDBg0CjC6pK664wr5Vz4MPPmg//5577mHu3Ll8+umnJxVu5s+fz+bNm5k7dy7x8cbn8e9///uYcTKPP/64/e+tW7fmwQcf5JNPPuHhhx/G39+foKAgvLy8iI2NPe61PvroI0pKSnjvvfcIDDTe/9SpUxk+fDjPPfccMTExADRr1oypU6fi6elJhw4duOSSS1iwYMFJh5sXXniBRx55hGuuuQaA5557joULFzJlyhRef/11du3aRbt27Tj77LOxWCy0atXK/txdu3YRGxvLkCFD8Pb2pmXLlif1OZ4OdUs5yeE9pjSoWESkIenQoQNnnXUW77zzDgDbt2/n119/5ZZbbgGgsrKSZ555hq5duxIeHk5QUBBz5849ZmmS49m0aRMJCQn2YAPQv3//Y86bNWsWAwYMIDY2lqCgIB5//PGTvsaR10pOTrYHG4ABAwZgtVrZsmWL/Vjnzp3x9PS034+LiyMrK+ukrpGfn09GRgYDBgyocXzAgAFs2rQJMLq+UlJSaN++Pffeey8//fST/byrrrqK4uJiEhMTue2225g9ezYVFRV1ep91pZYbJzk8Y0otNyLSRHgHGC0oZl27Dm655RbuueceXn/9dd59912SkpI499xzAZg8eTKvvPIKU6ZMoWvXrgQGBnL//fdTVlZWb+X+/vvvXH/99Tz11FMMHTqU0NBQPvnkE1588cV6u8aRvL29a9y3WCxYrdZ6e/2ePXuSlpbGjz/+yPz58xk1ahRDhgzh888/JyEhgS1btjB//nzmzZvHXXfdZW85O7qu+qKWGydJrFrrJnV/IVarNtAUkSbAYjG6hsy4ncR4myONGjUKDw8PPvroI9577z1uvvlm+/ibpUuXctlll3HDDTeQnJxMYmIiW7duPenX7tixI+np6ezdu9d+bNmyZTXO+e2332jVqhWPPfYYvXv3pl27duzcubPGOT4+PlRWOp5x27FjR9atW0dh4eFegqVLl+Lh4UH79u1PumZHQkJCiI+PZ+nSpTWOL126lE6dOtU47+qrr+bNN99k1qxZfPHFF+Tk5ADg7+/P8OHDefXVV1m0aBG///47GzZsqJf6aqOWGydJCA/A29NCcXkle/NLaB7mb3ZJIiJSJSgoiKuvvppHH32U/Px8brzxRvtj7dq14/PPP+e3336jWbNmvPTSS+zbt6/GF7kjQ4YM4YwzzmDs2LFMnjyZ/Px8HnvssRrntGvXjl27dvHJJ5/Qp08fvv/+e2bPnl3jnNatW9u3JWrRogXBwcHHTAG//vrrefLJJxk7diwTJ05k//793HPPPYwePdo+3qY+PPTQQzz55JMkJSXRvXt33n33XVJSUvjwww8BeOmll4iLi6NHjx54eHjw2WefERsbS1hYGDNnzqSyspJ+/foREBDABx98gL+/f41xOfVNLTdO4u15eANNdU2JiDQ8t9xyCwcPHmTo0KE1xsc8/vjj9OzZk6FDhzJo0CBiY2MZMWLESb+uh4cHs2fPpri4mL59+3Lrrbfy7LPP1jjn0ksv5R//+Afjxo2je/fu/Pbbb0yYMKHGOVdccQXDhg3jvPPOIyoqqtbp6AEBAcydO5ecnBz69OnDlVdeyeDBg5k6dWrdPowTuPfeexk/fjwPPPAAXbt2Zc6cOXzzzTe0a9cOMGZ+Pf/88/Tu3Zs+ffqwY8cOfvjhBzw8PAgLC+PNN99kwIABdOvWjfnz5/Ptt98SERFRrzUeyWKz2ZpUn0l+fj6hoaHk5eUREhLi1Gvd/t4qfvpzHxOHd+LGAW2cei0RERF3Vpfvb7XcOFFStGZMiYiIuJrCjRMlRlYNKtYqxSIiIi6jcONE9pabLLXciIiIuIrCjRMlRRrhJjO/hIJS5y5YJCIiIgaFGycKDfAmMsgHgDSNuxEREXEJhRsnS7Rvw6BxNyIiIq6gcONkSQo3IiIiLqVw42RJR2zDICIiIs6ncONkarkRERFxLYUbJ7PvDp5dSKU20BQREXE6hRsna97MHx8vD8oqrGTkFptdjoiIiNtTuHEyTw8LbSKMcTfb1TUlIiLidAo3LpAUbYSbv7IUbkRERJxN4cYFEiMPj7sRERER51K4cQG13IiIiLiOwo0LHJ4OrpYbERERZ1O4cYE2kUbLTXZBKXnF5SZXIyIi4t4Ublwg2M+bmBBfAFI1Y0pERMSpFG5cRF1TIiIirqFw4yKJ9j2m1HIjIiLiTAo3LqI9pkRERFxD4cZF1C0lIiLiGgo3LlLdLbXzQCEVlVaTqxEREXFfCjcuEh/qj5+3B+WVNtIPagNNERERZ1G4cREPD4t9GwatVCwiIuI8CjcuZJ8xla1wIyIi4iwKNy5kH1ScpUHFIiIizqJw40LVLTeaDi4iIuI8CjcuVN1yk5qtlhsRERFnUbhxoeqWm5zCMnIKy0yuRkRExD0p3LhQgI8X8aF+gLZhEBERcRaFGxdLiq7qmtJKxSIiIk6hcONi2mNKRETEuRRuXOzwjCm13IiIiDiDwo2L2WdMqeVGRETEKRRuXKw63OzMKaKsQhtoioiI1DeFGxeLCfEl0MeTSquNXTlFZpcjIiLidhRuXMxisZCoQcUiIiJOo3BjgiRtwyAiIuI0CjcmSIzSWjciIiLOonBjAq11IyIi4jwKNyZIiq7qlsoqwGazmVyNiIiIe1G4MUHriEAsFsgvqeCANtAUERGpVwo3JvDz9qRFM3/AaL0RERGR+qNwY5LD4240qFhERKQ+KdyYJDFS2zCIiIg4g8KNSeyDihVuRERE6pXCjUnULSUiIuIcpoabX375heHDhxMfH4/FYuGrr7464XMWLVpEz5498fX1pW3btsycOdPpdTpDYtUqxbsPFlFSXmlyNSIiIu7D1HBTWFhIcnIyr7/++kmdn5aWxiWXXMJ5551HSkoK999/P7feeitz5851cqX1LyrIl2A/L6w22HlAG2iKiIjUFy8zL37RRRdx0UUXnfT506dPp02bNrz44osAdOzYkSVLlvDyyy8zdOhQZ5XpFBaLhaSoIFLSc/lrfwHtY4PNLklERMQtNKoxN7///jtDhgypcWzo0KH8/vvvx31OaWkp+fn5NW4NRXXXlGZMiYiI1J9GFW4yMzOJiYmpcSwmJob8/HyKi4trfc6kSZMIDQ213xISElxR6knRoGIREZH616jCzal49NFHycvLs9/S09PNLskuKUrTwUVEROqbqWNu6io2NpZ9+/bVOLZv3z5CQkLw9/ev9Tm+vr74+vq6orw6q265Sd1fiM1mw2KxmFyRiIhI49eoWm769+/PggULahybN28e/fv3N6mi09MyIgBPDwsFpRVkHSo1uxwRERG3YGq4KSgoICUlhZSUFMCY6p2SksKuXbsAo0tpzJgx9vPvuOMOUlNTefjhh9m8eTP//e9/+fTTT/nHP/5hRvmnzdfLkwRtoCkiIlKvTA03q1atokePHvTo0QOA8ePH06NHD5544gkA9u7daw86AG3atOH7779n3rx5JCcn8+KLL/LWW281umngR7IPKs7WoGIREZH6YOqYm0GDBmGz2Y77eG2rDw8aNIi1a9c6sSrXSooOYsHmLLXciIiI1JNGNebGHSVGasaUiIhIfVK4MVlS9OEZUyIiInL6FG5MVj3mZk9uMcVl2kBTRETkdCncmCw80IewAG8AUrPVNSUiInK6FG4agCMX8xMREZHTo3DTAGgbBhERkfqjcNMAJGoDTRERkXqjcNMAHO6WUsuNiIjI6VK4aQCqu6VS9xditR5/UUMRERE5MYWbBiAhPAAvDwvF5ZXszS8xuxwREZFGTeGmAfD29KBVRACgrikREZHTpXDTQNg30NQeUyIiIqdF4aaBqJ4xlardwUVERE6Lwk0DobVuRERE6ofCTQNRvYHmX1lquRERETkdCjcNRFKkEW4y80soKK0wuRoREZHGS+GmgQgN8CYyyAeANK1ULCIicsoUbhqQw9swaNyNiIjIqVK4aUAOr1SscCMiInKqFG4akCRtoCkiInLaFG4akCR1S4mIiJw2hZsGJLGqWyotu5BKbaApIiJyShRuGpAWzQLw8fSgtMJKRm6x2eWIiIg0Sgo3DYinh4XWkcYGmtvVNSUiInJKFG4amOpxN6kaVCwiInJKFG4aGA0qFhEROT0KNw1M9aDiv7IUbkRERE6Fwk0DY++Wyla3lIiIyKlQuGlgqltu9h8qJa+43ORqREREGh+FmwYm2M+b6GBfQNswiIiInAqFmwZIM6ZEREROncJNA5QUXTWoWC03IiIidaZw0wAlRmo6uIiIyKlSuGmAkqLVLSUiInKqFG4aoKSqGVM7DhRSUWk1uRoREZHGReGmAYoP9cfP24PyShvpB7WBpoiISF0o3DRAHh4W2kRWd01p3I2IiEhdKNw0UNVdUxpULCIiUjcKNw1UYvUGmlkaVCwiIlIXCjcNVHXLTWq2Wm5ERETqQuGmgapepfgvTQcXERGpE4WbBqp6A82cwjIOFpaZXI2IiEjjoXDTQAX4eBEf6geoa0pERKQuFG4asOqVijWoWERE5OQp3DRgiZGaDi4iIlJXCjcNmL3lRoOKRURETprCTQNWPWNKqxSLiIicPIWbBqx6xtTOnCLKKrSBpoiIyMlQuGnAYkP8CPDxpNJqY1dOkdnliIiINAoKNw2YxWI5YjE/dU2JiIicDIWbBq66aypVg4pFREROisJNA6eWGxERkbpRuGngqltuFG5EREROjsJNA3d4OnghNpvN5GpEREQaPoWbBq5NZCAWC+QVl3NAG2iKiIickMJNA+fn7UnzMH8A/spS15SIiMiJKNw0AvauqWzNmBIRETkRhZtGwD5jSi03IiIiJ6RwU5+cNOBXM6ZEREROXoMIN6+//jqtW7fGz8+Pfv36sWLFiuOeW15eztNPP01SUhJ+fn4kJyczZ84cF1Z7HDYbzL4Dfn2p3kOOuqVEREROnunhZtasWYwfP54nn3ySNWvWkJyczNChQ8nKyqr1/Mcff5wZM2bw2muv8eeff3LHHXcwcuRI1q5d6+LKj/LXAlj/CSx4Cr64FcqL6+2lk6KNlpv0nCJKyivr7XVFRETckenh5qWXXuK2227jpptuolOnTkyfPp2AgADeeeedWs9///33+de//sXFF19MYmIid955JxdffDEvvviiiys/StshcMmLYPGEjZ/DO8Mgb0+9vHRUkC/Bvl5YbbDzgDbQFBERccTUcFNWVsbq1asZMmSI/ZiHhwdDhgzh999/r/U5paWl+Pn51Tjm7+/PkiVLnFrrSelzK4z5CvzDYW8KvHkepK887Ze1WCwkRlcv5qdxNyIiIo6YGm6ys7OprKwkJiamxvGYmBgyMzNrfc7QoUN56aWX2LZtG1arlXnz5vHll1+yd+/eWs8vLS0lPz+/xs2p2pwDt/0M0Z2gYB/MvBhSPjrtl03SoGIREZGTYnq3VF298sortGvXjg4dOuDj48O4ceO46aab8PCo/a1MmjSJ0NBQ+y0hIcH5RYa3gVt+gvaXQGUZfHUnzH0MrKc+XubwBpoaVCwiIuKIqeEmMjIST09P9u3bV+P4vn37iI2NrfU5UVFRfPXVVxQWFrJz5042b95MUFAQiYmJtZ7/6KOPkpeXZ7+lp6fX+/uolW8wXP0BnPOQcf/3qfDRKCjOPaWXq265UbeUiIiIY6aGGx8fH3r16sWCBQvsx6xWKwsWLKB///4On+vn50fz5s2pqKjgiy++4LLLLqv1PF9fX0JCQmrcXMbDA85/HK58B7z8Yft8eGswZG+r80sd2XKjDTRFRESOz/RuqfHjx/Pmm2/yv//9j02bNnHnnXdSWFjITTfdBMCYMWN49NFH7ecvX76cL7/8ktTUVH799VeGDRuG1Wrl4YcfNustnFiXK+DmORDSHA5shzcHG0GnDlpGBOBhgYLSCrIOlTqpUBERkcbvlMJNeno6u3fvtt9fsWIF999/P2+88UadX+vqq6/mhRde4IknnqB79+6kpKQwZ84c+yDjXbt21RgsXFJSwuOPP06nTp0YOXIkzZs3Z8mSJYSFhZ3KW3Gd+O5w+yJI6AelefDhVfDb1JNe8M/Xy5OW4QGABhWLiIg4YrGdQh/HwIEDuf322xk9ejSZmZm0b9+ezp07s23bNu655x6eeOIJZ9RaL/Lz8wkNDSUvL8+1XVTVKkrhu/GQ8oFxP/k6+NvL4O3n+HnALTNXsmBzFs+M6MLoM1s5uVAREZGGoy7f36fUcrNx40b69u0LwKeffkqXLl347bff+PDDD5k5c+apvGTT4eULl02FYf8Biwes+wj+9zc4VPvU9yPZ95jSBpoiIiLHdUrhpry8HF9fXwDmz5/PpZdeCkCHDh2Ou96MHMFigTPvhOs/B79Q2L0S3jgP9qxx+DTtMSUiInJipxRuOnfuzPTp0/n111+ZN28ew4YNAyAjI4OIiIh6LdCttR0Mty2EyDPgUAa8exFs+Py4pydVrVKslhsREZHjO6Vw89xzzzFjxgwGDRrEtddeS3JyMgDffPONvbtKTlJEEtw6H9pdCBUl8MUtsOBpsFqPOTUx0uiW2pNbTHGZNtAUERGpjdepPGnQoEFkZ2eTn59Ps2bN7Mdvv/12AgIC6q24JsMvFK6t2lF86Svw64uw70+4/A3wOzxoKjzQh7AAb3KLyknLLqRTvAkDokVERBq4U2q5KS4uprS01B5sdu7cyZQpU9iyZQvR0dH1WmCT4eEJFzwNI98AT1/Y+iO8fSHkpNpPsVgsRyzmp64pERGR2pxSuLnssst47733AMjNzaVfv368+OKLjBgxgmnTptVrgU1O8tVw048QFAv7N8Gb50PqYvvD1V1TCjciIiK1O6Vws2bNGgYOHAjA559/TkxMDDt37uS9997j1VdfrdcCm6QWvYwF/+J7QvFBeH8krHgTbDb7oOJUbaApIiJSq1MKN0VFRQQHBwPw008/cfnll+Ph4cGZZ57Jzp0767XAJiskDm76AbpdDbZK+OFB+O5+ksK9AbXciIiIHM8phZu2bdvy1VdfkZ6ezty5c7nwwgsByMrKMmfVX3fl7Q8jZxhjcbDA6pmc/dutRJBH6v5CrFZtoCkiInK0Uwo3TzzxBA8++CCtW7emb9++9h28f/rpJ3r06FGvBTZ5FgsMuA+u+xR8Q/Dfu5xvfCfQpuIvMvNLzK5ORESkwTmlvaUAMjMz2bt3L8nJyXh4GBlpxYoVhISE0KFDh3otsj6ZvrfU6di/BT6+BnJSKbL5suOcF+k0eLTZVYmIiDhdXb6/TzncVKveHbxFixan8zIu06jDDUDxQf549Qo6F6827p/7Tzj3EfA4pUY4ERGRRsHpG2darVaefvppQkNDadWqFa1atSIsLIxnnnkGay0r60o98m/Gd11f5a2Ki4z7i/8Dn42BUg0wFhERgVNcofixxx7j7bff5j//+Q8DBgwAYMmSJUycOJGSkhKeffbZei1SamoTHcrDFaOpjOrI3/OnwqZvIScNrvkImrUyuzwRERFTnVK3VHx8PNOnT7fvBl7t66+/5q677mLPnj31VmB9a/TdUsDqnQe5YtpvxIb4seyGIJh1AxRmQUAEXP0BtDrL7BJFRETqldO7pXJycmodNNyhQwdycnJO5SWlDpKijFWKM/NLKIjpBbcvhLhkKDoA/xsOv78OpzeUSkREpNE6pXCTnJzM1KlTjzk+depUunXrdtpFiWNhAT5EBPoAkLa/EEJbwE1zoMsVYK2Auf8yWnOKD5pcqYiIiOud0pib559/nksuuYT58+fb17j5/fffSU9P54cffqjXAqV2SVFBHCjMITW7gK4tQsEnAK54G1r2N8LN5u8gcz1c9T9o3tPsckVERFzmlFpuzj33XLZu3crIkSPJzc0lNzeXyy+/nD/++IP333+/vmuUWiRFV22gmXXELCmLBfreBrf8BGGtIHeXsbP48hnqphIRkSbjtNe5OdK6devo2bMnlZWV9fWS9c4dBhQDvPlLKs/+sIlLusbx+vW1tMwU58LXdxstOACdLoNLXwO/UJfWKSIiUh+cPqBYzGdvuTneBpr+YcbMqWH/AQ9v+PNrmHEu7F3nuiJFRERMoHDTSCVFBQGQll1I5fE20LRY4Mw74ea5ENoSDqbBWxfAyrfVTSUiIm5L4aaRatEsAB9PD0orrGTkFp/g5F7w98VwxkVQWQrfj4cvboXSQ64pVkRExIXqNFvq8ssvd/h4bm7u6dQideDpYaF1ZABb9xXw1/4CEsIDHD8hIByu/Rh+ew3mT4SNn8PeFBj1HsR0dkXJIiIiLlGnlpvQ0FCHt1atWjFmzBhn1SpHqe6a+mt/4ck9wWKBAffCTT9CSHM4sB3ePB/WvK9uKhERcRt1arl59913nVWHnILEqBMMKj6elv3g77/C7L/D9nnwzTjYuRQueRF8Ap1QqYiIiOtozE0jVt1yk1rXcAMQGAHXfQqDnwCLB6z72GjFydpcz1WKiIi4lsJNI1bnbqmjeXjAwAdg7HcQFAv7N8Ob50HKx/VYpYiIiGsp3DRi1d1S+w+Vkl9Sfuov1HoA3LEEEgdBeRF8dQd8PQ7KTzALS2qyVsKGz2HParMrERFp0hRuGrFgP2+ig30BSD3V1ptqQVFww5cw6F+ABda+D28Ohuxtp19oU1CUAx9eBV/cYnTvfXAl7FbIERExg8JNI2fvmso6hXE3R/PwhEGPwJivITAasv6ANwYZrRFyfJkbje68vxaApy9YPI2B2m+dbwQeteSIiLiUwk0jd8ozphy+6LlGN1XrgVBWYLRGfPcPKC+pv2u4i41fwNsXwMEdxmalty2Ae1ZB9+uNkLPtJ6Ml58NRsGeN2dWKiDQJCjeN3OEZU6fZLXW04BijBeechwELrHoH3h4CB/6q3+s0VpUV8NPj8PnNxjilxPPg9kUQ2xXCE2HEf2HcSki+zpiNtm2u0brz0TWQsdbs6kVE3JrCTSOXFF09Y6oeW26qeXjC+Y/BDV9AQARkbjA23/zjq/q/VmNSeAA+uNxY7RlgwP1Vn1F4zfMikmDkNBi3CpKvNULO1h+Nrr6Pr4WMFBcXLiLSNCjcNHKJkUa31I4DhVRUWp1zkbaDjW6qlv2h7BB8NhZ+eAgqSp1zvYZs7zojnKQtBu9AuGomXPCUEQSPJyIJRk6Hu1dCt6uNkLPlB3jjXPj4Oti73lXVi4g0CQo3jVzzMH98vTwor7Sx+6ATp26HxBvr4Zz9D+P+ijfgnaHGWJOmYv2n8PaFkLcLmrWBW+dD55En//zItnD5G3D3Cug6qirkfA8zBsIn1xstYyIictoUbho5Dw8LbSKdMKi4Np5eMGQiXPcZ+Dczxo7MOAc2f+/c65qtshzmPApf3gYVJdD2Arh9IcR0OrXXi2wHV7wJdy2HrlcBFtj8HUw/G2bdYMy+EhGRU6Zw4wacOu6mNmdcaOxN1aIvlOTBJ9fBnH9BRZlrru9KBfvh/ZGw7L/G/XMegutmGeHudEWdAVe8BXcvhy5XAhbY9C1MHwCzRsO+P07/GiIirmSthK1zjZmkJlK4cQNOmzHlSFgC3PQD9B9n3F/2Orx7EeSmu64GZ9uzxhhfs+NX8AmCqz+A8x93PL7mVES1hyvfhruWQefLMULONzDtLPh0DOz7s36vJyJS34pyYOkr8GoP+GgUzH3cmFVqEoUbN5DkjLVuToanNwx9Fq75CPxCYc8qo2tlyRQoyXdtLfVt7YfwzjDI3w0R7eC2n6HjcOdeM7oDXPUu3PV71VgeC/z5tRFyPrsRsjY59/oiInW1Zw18dRe81BHmPQG5O43vgy6XG8tkmMRis9lspl3dBPn5+YSGhpKXl0dISIjZ5dSLjXvy+NtrSwgP9GHNhAvMKeLgDvjsJsioWqjONxT63AJn3glB0ebUdCoqymDuv2Dlm8b99hcbM538Ql1fy74/YfFz8OdXVQcsRug59xEjCImImKG8BP74Ela+VXMF9thu0Pc2o5vdJ6DeL1uX72+FGzdQWFpB5yfnArB2wgU0C/Qxp5DKctjwmdFyk73FOObpCz1ugLPugfA25tR1sg7tM6a57/rduD/oX8YYGw+TGzj3/VEVcr6uOmAxfis69xGjS0tExBUO7jQWdF3zHhTnGMc8faDTCOh7O7ToDRaL0y6vcOOAO4YbgP6TFrA3r4Qv7uxPr1bhJ36CM1mtxmJ1S16G3SuNYxYPo9VhwP0Q183U8mqVvhI+HQ2H9oJvCFz+JrQfZnZVNWVuNELOpm+qDligyxVVIecMU0sTETdltcJfPxutNFvnAFWRITQBet8EPcYYGy+7gMKNA+4abm54azlLtmfz/BXdGNUnwexyDDYb7PzNCDnb5x0+3naIsV5OqwFOTfknbfX/4IcHobIMItsbY4gi25pd1fFlboBF/zGmj4MRHLtcCec+bEwzFxE5XcUHjbGHq96GnNTDxxPPM7qe2g01lgdxobp8f7u2MnGapKhAlmzP5q9sFw8qdsRigdYDjNve9cZI+j++hO3zjVuLPkZLTvuLzen6qSiFHx+G1TON+x2Hw4hp4Bvs+lrqIrYrXPOh8Zkufs4IORs+hY2fG+vmnPuIsSqyiEhd7V0HK96EDZ9DRdXCsL6h0P06YxxlI/kFSi03buJ/v+3gyW/+YEjHGN4a29vsco4vJ83Yk2ntB1BZtX1D5BlGyOl6FXi5aLxQ/l6jG2r3SsACgyfA2eMbRktSXe1dB4ueM1Y7BvDyh+GvQPLV5tYlIo1DRakxpm/Fm7B7xeHjMV2gz63QbRT4BJpXXxV1SzngruFmybZsbnh7OYmRgfz84CCzyzmxgixYPh1WvAWlecaxkObGujk9x4BvkPOuvWuZsX5MwT5jFtQV70C7Ic67nqtkpBhTMdMWG/f73QEX/p8xZV9E5Gi56bD6XWOAcOF+45iHF3S6DPrcBi3PbFC/8CncOOCu4WZvXjH9J/2Ml4eFTc8Mw9uzkSxhVJJv/Of6/XUjbAD4hUG/v0Pfv0NgRP1dy2Yz+o9/fASsFRDdGa75AMIT6+8aZrNaYdEk+OV5436rAcbmno1pOr6IOI/NBqmLjAHCW34AW9WGy8HxxgDhnmMhOMbUEo9H4cYBdw03NpuNzk/Opaiskqcu7czYs1qbXVLdlJfA+k9g6auQ85dxzDvAaMXpP85YEfl0X/+HB4zuMDBWAr5saoNoanWKzd/Dl383dnEPjoNR70NCH7OrEhGzlORBysdGqDmw7fDx1gONAcLtL27wrbwKNw64a7gBeOa7P3l7SRoAN57Vmscv6YhXY2nBqWatNPZXWvKSMZYEjGbSrlfBgPsgumPdXzNvt7FXU8YaY2bRkKeMdXcaUHOrU2RvM3Ybz94CHt5w8WTjNzMRaToyNxqLkq7/9PCKwT7BkHyNMZ6mES0IqnDjgDuHG5vNxusLt/PCT1sBGNgukqnX9iQ0oGGn8VpVN50uefnwGBKAMy4yppG37Hdyr7NjCXw6Foqyjc0ur3wXks5zSskNUukhY2n06rVxeo6BiyaDt5+5dYmI81SUGf/nV751eFFSgKgORqBJvqbhzwqthcKNA+4cbqrN2ZjJ+E9TKCqrJDEykLfG9iYxyokDdJ1tz2pj1eNN32JfQKrlWUbIaXdB7S0wNhssn2FspWCrNKZPX/0hNGvlysobBpvNCIk/P2P0rzfvBaPeg9AWZlcmIvWlMNv4hfCvn2HbT4cHCFs8oePfjAHCrc9u1C3WCjcONIVwA/BnRj63vbeKPbnFhPh5MfW6npxzhmtWkXSa7G3w26tGv7G13DgW3dkIOZ1HHl5QqrwYvr3fGMMD0HWUMTXaCXudNCrbF8AXtxiLcwVEGgON2ww0uyoRORUVpZC+3Agzf/18uBu/WlAM9LrRuIXEm1FhvVO4caCphBuA7IJS7nh/Nat2HsTDAhP+1okbz2qNpREndwDyM2DZf2HVu1BWtWhhWEs4615oc67xBZ653viNZeizxpToxv6e68vBHTDrBmOVY4snXPgMnHmXPh+Rhs5mg+yth8PMjiXH7rod09Xodk86D1qd7bp1w1xE4caBphRuAEorKnls9kY+X70bgGv7JvDUpV3w8WpkA41rU3zQ6FNeNt0YU3MktUwcX1kRfHc/rJ9l3O96VVXLlpvOHBNprAoPQNqiqkCzEPL31Hw8MBqSzjduiYMa7BTu+qJw40BTCzdgDDR+69c0/v3jJmw26NsmnOk39CLcrN3D61tZEaR8aHRZ5e6CuO5w9QenP33cndlssOINY0yStcJYifTq991rzR9pegqzjcUsC7OMjR2btTa6ZDw8za7s5FSUGSsEV7fOZKRgH2cI4OkLrc46HGhiOjepVleFGweaYriptnBzFvd8vJaC0goSwv15a0wf2sc2vhHzx1VZYfQ7x3Z1u+ZYp9mxFD670fgycKfVmsX9FeVAxlrYm2L8mZECeenHnufpY3RbN2tjhJ1mrSG86u9hrZy7GvqJ2GxwYPvhMJP2K5QX1jwnunNVV9P5RrDx9jen1gZA4caBphxuALbtO8Qt/1vFrpwiAn08efXaHgzu6N5NmXIC+RnGdhTV+2yd/xic/YA5m5k2dkU5kPUnhCdBSJzZ1biP4tyaISZjLeTurP3ciHZGa01eutGSa61w/NqB0ceGnmatjTAUFFP//w+KcozlLaq7mo4OZAGRNbua9O/ITuHGgaYebgAOFpZx54erWZaag8UC/xzWgdvPSWz8A43l1FWUGttSrH7XuN/+Ehg5Hfya5v+Rk2KthP2bIX2FEQzTlxu/hVeLPAPanGPcWg+EgHDzam1MSvKNFtiMtYdbZnJSaz83PBHiexhd0fE9IK6b0QJZrbLCGKdycEfVLe3w33PSoCTXcS1efkbrztGhp1lrY1mJk2lFqSw3/n1Ut87sWUPNriYfaNn/iK6mLvrF4jgaXbh5/fXXmTx5MpmZmSQnJ/Paa6/Rt2/f454/ZcoUpk2bxq5du4iMjOTKK69k0qRJ+PmdeGEyhRtDeaWVJ7/5g4+W7wLg8p7N+ffIrvh5N5K+aXGONe/B9w9AZZnxG/A1H0JUe7OrahiKc2HPKkivCjJ7VkNp/rHnhbSoGvh55I9WC8R2MWbztTnH+DJTcITSAmNmY3WQyVhbMyAeKayVEWDie0B8d4hLNhbmPB3FB+HgzmNDz8EdxsrmtkrHzw+OqyX0tDYWyNu59HBXU9mhms+L6ng4zLQ6S8tUnKRGFW5mzZrFmDFjmD59Ov369WPKlCl89tlnbNmyhejoYzf7++ijj7j55pt55513OOuss9i6dSs33ngj11xzDS+99NIJr6dwc5jNZuP9ZTt56ts/qbTa6NEyjBmjexEdrNVrm7Q9q43tKvL3gE8QjJgGnS41uyrXstmMdZV2rzBaZtJXGK00HPXj0icImveEhH7Qoi+06G200BQfhJ2/Qdovxi3rz5rPs3gaz6tu2Uno5/5jKcqKjCUIjgwy2Vs55jMFYzBwfPfDYSauu+tbvirLjS6jo0NP9a22YHs8ARGQWDVuJuk8t1l3xtUaVbjp168fffr0YerUqQBYrVYSEhK45557+Oc//3nM+ePGjWPTpk0sWLDAfuyBBx5g+fLlLFmy5ITXU7g51pJt2dz14WrySyqIC/XjzTG96dI89MRPFPdVsB8+vwl2/GrcP3s8nP9445l1UlelBUaoqw4zu1caAeVozdoYQSShjxFmojsdXjzSkYIs47OsDjtHd7N4+hivWx124ns27kHx5cXGnkb2cTJrjXBYvQP1kUKaH+5Wqm6VCYx0ccF1ZLNVtfqkHRt6Du4wZm216H24dSa2m7qa6kGjCTdlZWUEBATw+eefM2LECPvxsWPHkpuby9dff33Mcz766CPuuusufvrpJ/r27UtqaiqXXHIJo0eP5l//+tcx55eWllJaWmq/n5+fT0JCgsLNUVL3F3Dre6tI3V+Iv7cnL41K5qKuGsjWpFVWwPwn4XfjFw+Szocr3m78Y0dsNuNLqbp7afcK2PfHsV+8Xn7GVhUt+kBCXyPMBNXTKt+56YfDTupiOJRR83HvQGjV//B4nbjkhhUsrZXGQPS8dOO95O2q+rPqfk5q7V06QTFGcKtulYnr7vZrs0j9aTThJiMjg+bNm/Pbb7/Rv39/+/GHH36YxYsXs3z58lqf9+qrr/Lggw9is9moqKjgjjvuYNq0abWeO3HiRJ566qljjivcHCuvuJx7Pl7LL1uNPUn+MeQM7h3cVgONm7oNn8PX46Ci2JhSe/WHxsDNxqK82Gg5SF9uBJrdKw7vu3Ok0ITDISahr7GkgKcLNp212YwwkLb4cMtO0YGa5/iFGivOVrfsRHd07vom5SVGt2TuLuNmDzFVf+bvOfF4lMComt1K8T0080dOi1uHm0WLFnHNNdfwf//3f/Tr14/t27dz3333cdtttzFhwoRjzlfLTd1UVFr59w+beWdpGgCXdIvjhSuT8fdpQL81iutlboRZ1xtN7l7+cOmr0G2U2VUdy2YzBoIeOVYmc/2x04E9fYwv3IS+hwNNQ/nitVph/6bDQWfHkmPHdwRGGS061WEnPLFuYack/6jAclSAKdh34tfw8DK6lMJaGsEwrKWxcGZoAkQkGY/pFyOpR40m3JxKt9TAgQM588wzmTx5sv3YBx98wO23305BQQEeJ+jX1Jibk/PJil1M+Hoj5ZU2ujYP5c0xvYkN1UDjJq34IHxxG2yfZ9zvd6exN5UrWjeOZrMZ3SL7N8H+LcZ4juo/S/KOPT8o9nCQSehndPN4+bq+7lNRWQGZ6w6HnZ2/G61oRwppcTjotBlorGR7dFfRkV1ItX1GR/MOqAotCUf8eUSACY5tWF1l4vbq8v19EiPhnMfHx4devXqxYMECe7ixWq0sWLCAcePG1fqcoqKiYwKMp6fxH6wBzGp3G9f0bUmbyEDu/HANG/bkcenUJbwxpjfdE8LMLk3M4t8MrpsFiybBL5Nh+TSjVeSqmRB07MzGemG1Gl/KRweY/VuOnV5bzeJpdJtVdy8l9DW+jBtrK4KnlzH2p3kvOPsfxppEe1YfDjvpKyB/N6z7yLidLP9mh1tcagsxAeGN9zOTJs/02VKzZs1i7NixzJgxg759+zJlyhQ+/fRTNm/eTExMDGPGjKF58+ZMmjQJMMbQvPTSS7zxxhv2bqk777yTXr16MWvWrBNeTy03dZOeU8St/1vFln2H8PHyYPKV3bise3OzyxKzbfoOZt9hBIzgOBj1vjGD6FRZK40VZ48ML1mbjKnCR+98XM3DCyLaGuvwRHU4/GdE28bTKlMfyoogfdnhsJOx1hgcHRRbM7CEtTyi5aWFsRaLSCPSaFpuAK6++mr279/PE088QWZmJt27d2fOnDnExBgj6Hft2lWjpebxxx/HYrHw+OOPs2fPHqKiohg+fDjPPvusWW/BrSWEB/DFXWdx/ydrmb8pi/s+SWFL5iEevLA9Hh76ra7J6vg3iFoIn1wP2Vtg5sVw0fPQ+ybHz6usMMbt7N9UsyUmextUlNT+HE8fY0HBo0NMeGLjni5dX3wCDk85BigrNIJfUwp4IkcxveXG1dRyc2oqrTZe+GkL0xb9BcAFnWJ4+eruBPmano/FTKWH4Ks7YdO3xv2eY+CiyWDxMGYAHd2VdGCbsfpxbbz8ILJdzQAT1dFY8fVk1pIREbfWaAYUm0Hh5vR8uWY3//xiA2WVVjrEBvPmmN4khGvp8CbNZoMlL8OCpwGbsRprSd7xNyz0DjD2XYruWLM1JqyVBqiKyHEp3DigcHP61uw6yO3vrSa7oJTwQB9mjO5Fn9aNfGE3OX3bF8DnNx/ejNAn+NiupKj2xhgQrdYqInWkcOOAwk39yMgt5rb3VvFHRj7enhaeHdGVUX0SzC5LzFaUY6z2G95G65yISL2qy/e3fn2SUxIf5s9nd/Tnoi6xlFfaePiL9fzfd8YGnNKEBYQb66yEtlCwERHTKNzIKQvw8eL163py3+B2ALy1JI2bZ65kX/5xZr2IiIi4gMKNnBYPDwv/uOAMpl7XAz9vDxZv3c+5kxcy6cdN5BYdZ1aMiIiIEyncSL34W7d4Pr/jLHq3akZJuZUZi1MZ+PxCXl+4naKy48yaERERcQINKJZ6ZbPZ+HlzFpPnbmFzprE8fmSQL/cObss1fVri46U8LSIidafZUg4o3LhGpdXGt+syeHHeFtJzjE3+EsL9GX/BGVya3BxPrW4sIiJ1oHDjgMKNa5VVWJm1chevLNhOdkEpAB1ig3nwwvYM7hiNRTNqRETkJCjcOKBwY46isgreXbqD6Yv/4lCJMQanV6tmPDy0Pf0SI0yuTkREGjqFGwcUbsyVW1TG9MWpvLs0jdIKKwCD2kfx0ND2dI4PNbk6ERFpqBRuHFC4aRj25Zfw6oJtzFqZTkXVwn/Dk+MZf8EZtIkMNLk6ERFpaBRuHFC4aVh2ZBfy0rytfLMuAwBPDwtX90ngvsHtiAnxM7k6ERFpKBRuHFC4aZj+yMjjhblbWLhlPwC+Xh7cOKA1d56bRFiAj8nViYiI2RRuHFC4adhWpOXw/JzNrNp5EIBgPy/uODeJmwa0JsDHy+TqRETELAo3DijcNHw2m42FW7J4fk7NhQDvOb8t1/bVQoAiIk2Rwo0DCjeNh9Vq49v1Gbz401Z25RQBWghQRKSpUrhxQOGm8aleCPDVn7ez/5CxEGD7mGAeGqqFAEVEmgqFGwcUbhqvorIKZv62g+mL/iK/aiHAni3DeHhYB87UQoAiIm5N4cYBhZvGL6+onOm//MW7S9MoKTcWAjz3DGMhwC7NtRCgiIg7UrhxQOHGfdS2EODfusVx7+B2nBETbHJ1IiJSnxRuHFC4cT87sgt5ef5Wvk7JsB8794wobh3YhrPbRmpMjoiIG1C4cUDhxn39mZHPaz9vY+4fmVQ15NAhNphbByZyaXK8ppCLiDRiCjcOKNy4v50HCnl36Q4+XZVOUVklANHBvow9qzXX92upFY9FRBohhRsHFG6ajryicj5csZP//baDffnGFHJ/b09G9W7BzWe3oVWENugUEWksFG4cULhpesoqrHy7LoM3f021r3hsscCFnWK4bWAivVo107gcEZEGTuHGAYWbpstms/HbXwd489dUFlVt0AnQPSGM2wYmMrRzDF6eGpcjItIQKdw4oHAjANv2HeKtX9OYvXYPZZXGWjktmvlz04A2XN0ngSBfbdIpItKQKNw4oHAjR9p/qJT3l+3kg2U7ySksA4ydyK/r25IbB7QmLtTf5ApFRAQUbhxSuJHalJRX8sWa3bz9axqp2YUAeHlY+Fu3OG4dmKiVj0VETKZw44DCjThitdr4eXMWby1JZVlqjv34mYnh3DYwkfPaR+Oh3chFRFxO4cYBhRs5WRt25/HWklS+W7+XyqpVAZOiArnl7EQu79kcP29PkysUEWk6FG4cULiRusrILWbmbzv4ePkuDpUau5GHB/pww5mtGNO/FZFBviZXKCLi/hRuHFC4kVN1qKScT1ft5p0laezJLQbAx8uDy3s059aBbWgbrc06RUScReHGAYUbOV0VlVbm/JHJm7+msS491378vPZR3DYwkf5JEVoUUESknincOKBwI/XFZrOxaudB3vwllXmb9lH9P6lleADnd4jm/A7R9EsMx9dLY3NERE6Xwo0DCjfiDDuyC3lnaRqfrdpNcXml/XiAjydnt41kcMdozmsfTXSIn4lViog0Xgo3DijciDMVllawZHs2Czdn8fPmLLIOldZ4vGvzUM7rEM3gDtF0bR6qaeUiIidJ4cYBhRtxFavVxp9781mwKYuft2TVGJ8DEBnky3ntoxjcMZqz20VpywcREQcUbhxQuBGzZB0qYdGW/SzcnMUvW/dTWHa4+8rb00K/NhH2sTqtIwNNrFREpOFRuHFA4UYagrIKKyt35BitOpv3seNAUY3HE6MCOb99NOd3jKZP63C8tVu5iDRxCjcOKNxIQ5S6v4Cfq8bprEjLocJ6+L9lsK8X55wRxfkdohnUPooILRooIk2Qwo0DCjfS0OWXlLNkWzYLNmWxaEsWB6p2KwewWKB7Qpi9VadTXIjW1BGRJkHhxgGFG2lMrFYb63bn2lt1/sjIr/F4bIifffbVgLaR+PtoTR0RcU8KNw4o3EhjtjevmIWb9/Pz5iyWbs+usaaOj5cHZyVFcF77aAa2i6RNZKBadUTEbSjcOKBwI+6ipLySZakH7K06uw8W13i8eZg/55wRydltoxjQNoKwAB+TKhUROX0KNw4o3Ig7stlsbMsyBiX/snU/q3YcpKzSan/cYoFuLcI4p10kA9tF0aNlmGZgiUijonDjgMKNNAVFZRUsT8vh163Z/LptP9uyCmo8HujjSf+kCAa2i1IXlog0Cgo3DijcSFOUmVfCr9v28+u2bJZszybniBlYYHRhDaxq1VEXlog0RAo3DijcSFNXvS3Er9uMVh1HXVhnt42kR8tm+HipC0tEzKVw44DCjUhNRWUVrEjLsYedrfvUhSUiDY/CjQMKNyKOVXdhLdmezZJt2TUWEQR1YYmIORRuHFC4ETl5J9WF1TzU3qqjLiwRcRaFGwcUbkROXXFZJcvTDjjswuqXGMGZieH0axNB5/gQvDTlXETqgcKNAwo3IvUnM6+EJduNoFNbF1aQrxe9WzejX5sI+iWG07V5qNbXEZFTonDjgMKNiHNUd2H9/tcBlqcdYEVaDvklFTXOCfDxpFerZpyZGEG/NuF0axGmbiwROSkKNw4o3Ii4RqXVxubMfJan5rAs9QArduSQW1Re4xw/bw96tjwcdpITwvDz1uafInIshRsHFG5EzGG12tiadYjlqTksTzvA8tScY7qxfLw86JEQZh+307NlM4UdEQEaYbh5/fXXmTx5MpmZmSQnJ/Paa6/Rt2/fWs8dNGgQixcvPub4xRdfzPfff3/CaynciDQMNpuN7VkFLEvLYXnqAZan5bD/UGmNc3w8PUhOCLWP2enVqhkBPl4mVSwiZmpU4WbWrFmMGTOG6dOn069fP6ZMmcJnn33Gli1biI6OPub8nJwcysoO/7Z34MABkpOTeeutt7jxxhtPeD2FG5GGyWazkZpdWKNlJzO/pMY5Xh4WurUIpV9VN1bv1uEE+SrsiDQFjSrc9OvXjz59+jB16lQArFYrCQkJ3HPPPfzzn/884fOnTJnCE088wd69ewkMDDzh+Qo3Io2DzWZjV04Ry1IPVAWeHPbkFtc4x9PDQpfmoZzZJpx+iUbYCfHzNqliEXGmRhNuysrKCAgI4PPPP2fEiBH242PHjiU3N5evv/76hK/RtWtX+vfvzxtvvFHr46WlpZSWHm7qzs/PJyEhQeFGpBFKzylieZoxQHl52gHSc2qGHQ8LdI4PpV+bcPolRtC3dTihAQo7Iu6gLuHG1Pbc7OxsKisriYmJqXE8JiaGzZs3n/D5K1asYOPGjbz99tvHPWfSpEk89dRTp12riJgvITyAhPAAruzVAoCM3GJ7F9ay1APsOFDEhj15bNiTx1tL0rBYoGNsiDEbKzGcfm3CtV2ESBPQqDur3377bbp27XrcwccAjz76KOPHj7ffr265EZHGLz7Mn5E9WjCyhxF29uWXVLXqGGEndX8hf+7N58+9+byzNA2ADrHB9qnnfduEExHka+ZbEBEnMDXcREZG4unpyb59+2oc37dvH7GxsQ6fW1hYyCeffMLTTz/t8DxfX198ffXDS6QpiAnx47Luzbmse3MAsg6VsKK6Gys1h21ZBWzOPMTmzEPM/G0HAGfEBNGvTQRnJkbQt004UcH6eSHS2Jkabnx8fOjVqxcLFiywj7mxWq0sWLCAcePGOXzuZ599RmlpKTfccIMLKhWRxig62I+/dYvnb93iAcguKGVF1dTzZak5bNl3iK37Cti6r4D3l+0EoG10kH3MzpltwokO8TPzLYjIKTB9ttSsWbMYO3YsM2bMoG/fvkyZMoVPP/2UzZs3ExMTw5gxY2jevDmTJk2q8byBAwfSvHlzPvnkkzpdT7OlRKRaTmEZK9KMoLM8LYfNmfkc/RMxMTKQfonhVV1ZEcSGKuyImKHRDCgGuPrqq9m/fz9PPPEEmZmZdO/enTlz5tgHGe/atQsPj5p7z2zZsoUlS5bw008/mVGyiLiJ8EAfhnWJY1iXOAByi8qMlp2qrqw/9+aTml1IanYhH69IB6B1RIB9UcEzEyOID/M38y2ISC1Mb7lxNbXciMjJyisuZ9WOHPsg5Y178rAe9RMzIdzfPmanX5twEsIDzClWxM01mnVuzKBwIyKnKr+knNU7DrKsqitr4548Ko9KO83D/OnZqhk9EsLo3jKMTnEh2h9LpB4o3DigcCMi9aWgtILVOw9WzcY6wPrdeVQcFXa8PS10iguhe1XY6ZHQjFYRAVgsFpOqFmmcFG4cULgREWcpKqtgzc5cUtIPkpKeS0p6LtkFZcec1yzAm+SEMCPwVN20uKCIYwo3DijciIir2Gw2dh8sZm16Lim7jNCzMSOfsgrrMecmRgbaW3e6J4TRITYEHy+PWl5VpGlSuHFA4UZEzFRWYWXT3nx7y05Kei5p2YXHnOfj5UHX5qE1WndaNPNXd5Y0WQo3DijciEhDc7CwjJTd1a07xi2vuPyY8yKDfOieEEaPls3onhBGtxahBGsXdGkiFG4cULgRkYbOZrOx40ARa3cdHrvzZ0b+MYOVLRZoGxVUY7DyGTFBeHmqO0vcj8KNAwo3ItIYlZRX8kdGfo3As/tg8THn+Xt70j0hjD5twunbOpweLcMI9DV9vVaR06Zw44DCjYi4i/2HSlmXnsvaqtlZ69PzOFRaUeMcTw8LXeJD6NPa2AW9T+twmgVqZpY0Pgo3DijciIi7slptbN9fwModOaxMy2HljoPsyT22dadddJC9ZadPm3CaawsJaQQUbhxQuBGRpmT3wSJW7shhRdpBVu7IYXtWwTHnNA/zp0/rZvRtE0HfNs1IigrSrCxpcBRuHFC4EZGmLKew7IiWnRw2ZuQfs4VEeKAPvVs1s3djdY4P0SBlMZ3CjQMKNyIihxWWVrBm10FWpuWwYkcOa3flUnrUIoMBPp70atWMPq2NsNOjZZj2yxKXU7hxQOFGROT4yiqsbNiTV9WVlcOqHTnkl9QcpOztaaFr81D7uJ3ercIJDdB6O+JcCjcOKNyIiJw8q9XGln2H7GFn5Y4c9uWX1jjHYoH2McH2bqyuzUOJC/PD10utO1J/FG4cULgRETl1NpuNXTlF9qCzcsfBWrePAIgM8iU+zI/4UH/iwvxoHuZPXKi/cSzMn6ggXzw8NHBZTo7CjQMKNyIi9SvrUAmrdhxkRZrRupOaXUBJ+bGbgx7N29NCTIgRdOJDjT/jwvxpHuZXFYL8CfHz0swtARRuHFK4ERFxLpvNxsGicjJyi8nILWZvXonx96o/9+YWk5lfgvUkvn0CfTxrDT3VYSg21E+Dm5uIunx/a01uERGpVxaLhfBAH8IDfejSPLTWcyoqrWQdKj0m9OzJLWFvnhGIcgrLKCyrZFtWAdtqWZ+nWmSQj727Ky7Un5bhAXRrEUrn+FD8fRR8miKFGxERcTkvTw+jBcbB6sjFZZXszSsmI7eEjLyqVqAj/p6RW0JxeSXZBWVkF5SxYU9ejed7elhoHxNMckIY3RNCSU4Io110MJ4a5+P21C0lIiKNks1mI6+4nD01Qk8J27MKWLc7l/2HSo95ToCPJ12ah9I9IYzkFmEkJ4TSPMxf43oaAY25cUDhRkTE/dlsNjLzS1iXnktKeh7r0nNZvzuXwrLKY86NDPKpCjpVtxahhAVoc9GGRuHGAYUbEZGmqdJqI3V/ASnpuazbncu69Dw27c2nopaRza0jAqqCjhF4OseHaOCyyRRuHFC4ERGRaiXllfy5N5916bnGbXderev2eHlY6BAXbISdqsDTNjpI43dcSOHGAYUbERFxJLeojPW786rCjtGtlV1w7PidwCPH71Td4kP9NH7HSRRuHFC4ERGRurDZbGTkldhbd1LSc9mwJ4+iWsfv+Bozs6pad7pp/E69UbhxQOFGREROV6XVZszKSs8lZbcRejZnHqLyhON3jPV3NH6n7hRuHFC4ERERZygpr+SPjHxSqmZmrUvPZceBomPO8/Kw0D62av2dFmF0SwjV+jsnQeHGAYUbERFxlZMdv3Pk+jvdWhjdWi2aaf2dIyncOKBwIyIiZrHZbOytGr9T3Z21YXderevvRAT62MftVHdrhQc23fE7CjcOKNyIiEhDcvT6O+t3G+vvlFce+/VcvW9W9QytLk1o/yyFGwcUbkREpKErKa9kU9X6O+t355GyO5fU/ceuv+PpYaFddNDh6egtwjgjJggvTw8TqnYuhRsHFG5ERKQxyisuZ8PuvKrVlY1Wnn35x47f8fP2oGV4gH1j0uZVN+O+H7Ehfo0y/CjcOKBwIyIi7iIzr6RG2Fmfnseh0gqHz/GwQGyInz38xIf507yZP83DDh8L8fN20Ts4eQo3DijciIiIu7JabezMKWL3wSIycovZk1vCnoPFZOQWk5Fn7J5eVmk94esE+3rRvNnh1p6jW4Cig31d3vpTl+9vLxfVJCIiIk7m4WGhTWQgbSIDa33carWRXVhaFXhKqgJQcY0/DxaVc6i0gs2Zh9iceajW1/H0sBAb4lcVdvxqdoFVhaIgX/MihsKNiIhIE+HhYSE62I/oYD96tKz9nKKyCjJyS+xh5+gAtDe3hAqrjT1V92vj7+3Jn08PNW2dHoUbERERsQvw8aJtdBBto4NqfbzSaiO7oPRw4DlYbO8Cq+7+igzyNXUBQoUbEREROWmeHhZiQvyICfGjZ8tmtZ5TWnHsooSu1PjmgomIiEiD5utl7sKCCjciIiLiVhRuRERExK0o3IiIiIhbUbgRERERt6JwIyIiIm5F4UZERETcisKNiIiIuBWFGxEREXErCjciIiLiVhRuRERExK0o3IiIiIhbUbgRERERt6JwIyIiIm7Fy+wCXM1mswGQn59vciUiIiJysqq/t6u/xx1pcuHm0KFDACQkJJhciYiIiNTVoUOHCA0NdXiOxXYyEciNWK1WMjIyCA4OxmKx1Otr5+fnk5CQQHp6OiEhIfX62o1BU3//oM+gqb9/0Geg99+03z847zOw2WwcOnSI+Ph4PDwcj6ppci03Hh4etGjRwqnXCAkJabL/qEHvH/QZNPX3D/oM9P6b9vsH53wGJ2qxqaYBxSIiIuJWFG5ERETErSjc1CNfX1+efPJJfH19zS7FFE39/YM+g6b+/kGfgd5/037/0DA+gyY3oFhERETcm1puRERExK0o3IiIiIhbUbgRERERt6JwIyIiIm5F4aaevP7667Ru3Ro/Pz/69evHihUrzC7JZSZNmkSfPn0IDg4mOjqaESNGsGXLFrPLMs1//vMfLBYL999/v9mluNSePXu44YYbiIiIwN/fn65du7Jq1Sqzy3KJyspKJkyYQJs2bfD39ycpKYlnnnnmpPbAaax++eUXhg8fTnx8PBaLha+++qrG4zabjSeeeIK4uDj8/f0ZMmQI27ZtM6dYJ3D0/svLy3nkkUfo2rUrgYGBxMfHM2bMGDIyMswr2AlO9G/gSHfccQcWi4UpU6a4pDaFm3owa9Ysxo8fz5NPPsmaNWtITk5m6NChZGVlmV2aSyxevJi7776bZcuWMW/ePMrLy7nwwgspLCw0uzSXW7lyJTNmzKBbt25ml+JSBw8eZMCAAXh7e/Pjjz/y559/8uKLL9KsWTOzS3OJ5557jmnTpjF16lQ2bdrEc889x/PPP89rr71mdmlOU1hYSHJyMq+//nqtjz///PO8+uqrTJ8+neXLlxMYGMjQoUMpKSlxcaXO4ej9FxUVsWbNGiZMmMCaNWv48ssv2bJlC5deeqkJlTrPif4NVJs9ezbLli0jPj7eRZUBNjltffv2td199932+5WVlbb4+HjbpEmTTKzKPFlZWTbAtnjxYrNLcalDhw7Z2rVrZ5s3b57t3HPPtd13331ml+QyjzzyiO3ss882uwzTXHLJJbabb765xrHLL7/cdv3115tUkWsBttmzZ9vvW61WW2xsrG3y5Mn2Y7m5uTZfX1/bxx9/bEKFznX0+6/NihUrbIBt586drinKxY73GezevdvWvHlz28aNG22tWrWyvfzyyy6pRy03p6msrIzVq1czZMgQ+zEPDw+GDBnC77//bmJl5snLywMgPDzc5Epc6+677+aSSy6p8W+hqfjmm2/o3bs3V111FdHR0fTo0YM333zT7LJc5qyzzmLBggVs3boVgHXr1rFkyRIuuugikyszR1paGpmZmTX+L4SGhtKvX78m/XPRYrEQFhZmdikuY7VaGT16NA899BCdO3d26bWb3MaZ9S07O5vKykpiYmJqHI+JiWHz5s0mVWUeq9XK/fffz4ABA+jSpYvZ5bjMJ598wpo1a1i5cqXZpZgiNTWVadOmMX78eP71r3+xcuVK7r33Xnx8fBg7dqzZ5TndP//5T/Lz8+nQoQOenp5UVlby7LPPcv3115tdmikyMzMBav25WP1YU1JSUsIjjzzCtdde26Q203zuuefw8vLi3nvvdfm1FW6kXt19991s3LiRJUuWmF2Ky6Snp3Pfffcxb948/Pz8zC7HFFarld69e/Pvf/8bgB49erBx40amT5/eJMLNp59+yocffshHH31E586dSUlJ4f777yc+Pr5JvH85vvLyckaNGoXNZmPatGlml+Myq1ev5pVXXmHNmjVYLBaXX1/dUqcpMjIST09P9u3bV+P4vn37iI2NNakqc4wbN47vvvuOhQsX0qJFC7PLcZnVq1eTlZVFz5498fLywsvLi8WLF/Pqq6/i5eVFZWWl2SU6XVxcHJ06dapxrGPHjuzatcukilzroYce4p///CfXXHMNXbt2ZfTo0fzjH/9g0qRJZpdmiuqffU3952J1sNm5cyfz5s1rUq02v/76K1lZWbRs2dL+c3Hnzp088MADtG7d2unXV7g5TT4+PvTq1YsFCxbYj1mtVhYsWED//v1NrMx1bDYb48aNY/bs2fz888+0adPG7JJcavDgwWzYsIGUlBT7rXfv3lx//fWkpKTg6elpdolON2DAgGOm/2/dupVWrVqZVJFrFRUV4eFR88epp6cnVqvVpIrM1aZNG2JjY2v8XMzPz2f58uVN5udidbDZtm0b8+fPJyIiwuySXGr06NGsX7++xs/F+Ph4HnroIebOnev066tbqh6MHz+esWPH0rt3b/r27cuUKVMoLCzkpptuMrs0l7j77rv56KOP+PrrrwkODrb3qYeGhuLv729ydc4XHBx8zPiiwMBAIiIimsy4o3/84x+cddZZ/Pvf/2bUqFGsWLGCN954gzfeeMPs0lxi+PDhPPvss7Rs2ZLOnTuzdu1aXnrpJW6++WazS3OagoICtm/fbr+flpZGSkoK4eHhtGzZkvvvv5//+7//o127drRp04YJEyYQHx/PiBEjzCu6Hjl6/3FxcVx55ZWsWbOG7777jsrKSvvPxfDwcHx8fMwqu16d6N/A0YHO29ub2NhY2rdv7/ziXDInqwl47bXXbC1btrT5+PjY+vbta1u2bJnZJbkMUOvt3XffNbs00zS1qeA2m8327bff2rp06WLz9fW1dejQwfbGG2+YXZLL5Ofn2+677z5by5YtbX5+frbExETbY489ZistLTW7NKdZuHBhrf/vx44da7PZjOngEyZMsMXExNh8fX1tgwcPtm3ZssXcouuRo/eflpZ23J+LCxcuNLv0enOifwNHc+VUcIvN5sZLaIqIiEiTozE3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsREcBisfDVV1+ZXYaI1AOFGxEx3Y033ojFYjnmNmzYMLNLE5FGSHtLiUiDMGzYMN59990ax3x9fU2qRkQaM7XciEiD4OvrS2xsbI1bs2bNAKPLaNq0aVx00UX4+/uTmJjI559/XuP5GzZs4Pzzz8ff35+IiAhuv/12CgoKapzzzjvv0LlzZ3x9fYmLi2PcuHE1Hs/OzmbkyJEEBATQrl07vvnmG+e+aRFxCoUbEWkUJkyYwBVXXMG6deu4/vrrueaaa9i0aRMAhYWFDB06lGbNmrFy5Uo+++wz5s+fXyO8TJs2jbvvvpvbb7+dDRs28M0339C2bdsa13jqqacYNWoU69ev5+KLL+b6668nJyfHpe9TROqBS7bnFBFxYOzYsTZPT09bYGBgjduzzz5rs9mMnefvuOOOGs/p16+f7c4777TZbDbbG2+8YWvWrJmtoKDA/vj3339v8/DwsGVmZtpsNpstPj7e9thjjx23BsD2+OOP2+8XFBTYANuPP/5Yb+9TRFxDY25EpEE477zzmDZtWo1j4eHh9r/379+/xmP9+/cnJSUFgE2bNpGcnExgYKD98QEDBmC1WtmyZQsWi4WMjAwGDx7ssIZu3brZ/x4YGEhISAhZWVmn+pZExCQKNyLSIAQGBh7TTVRf/P39T+o8b2/vGvctFgtWq9UZJYmIE2nMjYg0CsuWLTvmfseOHQHo2LEj69ato7Cw0P740qVL8fDwoH379gQHB9O6dWsWLFjg0ppFxBxquRGRBqG0tJTMzMwax7y8vIiMjATgs88+o3fv3px99tl8+OGHrFixgrfffhuA66+/nieffJKxY8cyceJE9u/fzz333MPo0aOJiYkBYOLEidxxxx1ER0dz0UUXcejQIZYuXco999zj2jcqIk6ncCMiDcKcOXOIi4urcax9+/Zs3rwZMGYyffLJJ9x1113ExcXx8ccf06lTJwACAgKYO3cu9913H3369CEgIIArrriCl156yf5aY8eOpaSkhJdffpkHH3yQyMhIrrzySte9QRFxGYvNZrOZXYSIiCMWi4XZs2czYsQIs0sRkUZAY25ERETErSjciIiIiFvRmBsRafDUey4idaGWGxEREXErCjciIiLiVhRuRERExK0o3IiIiIhbUbgRERERt6JwIyIiIm5F4UZERETcisKNiIiIuBWFGxEREXEr/w8yeQ6BwZyqfwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "plt.plot(den_results['train_losses'], label='Training loss')\n", - "plt.plot(den_results['test_losses'], label='Validation loss')\n", + "plt.plot(dense_results['train_losses'], label='Training loss') # plotando a função de custo da rede densa\n", + "plt.plot(dense_results['test_losses'], label='Validation loss') # plotando a função de custo da rede densa\n", "\n", "plt.legend(frameon=False)\n", "plt.xlabel(\"Epoch\")\n", @@ -947,14 +888,6 @@ "plt.title(\"Loss\")\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8176bf25", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/Trabalho2/SCC0270-T2-11800910-11800584 (2).zip b/Trabalho2/SCC0270-T2-11800910-11800584 (2).zip new file mode 100644 index 0000000..ed6b3e8 Binary files /dev/null and b/Trabalho2/SCC0270-T2-11800910-11800584 (2).zip differ diff --git a/Trabalho2/SCC0270-T2-11800910-11800584.ipynb b/Trabalho2/SCC0270-T2-11800910-11800584.ipynb new file mode 100644 index 0000000..1db61d1 --- /dev/null +++ b/Trabalho2/SCC0270-T2-11800910-11800584.ipynb @@ -0,0 +1,1037 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "A3crojigg7YT" + }, + "source": [ + "# SCC0270 - Redes Neurais e Aprendizado Profundo\n", + "\n", + "## Trabalho Prático 2 - Previsão do valor de ações utilizando LSTM" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iQ6e4jDlhVQ6" + }, + "source": [ + "NOME: Felipe Andrade Garcia Tommaselli \n", + "\n", + "NUSP: 11800910\n", + "\n", + "---\n", + "\n", + "\n", + "NOME: Diego Fleury Corrêa De Moraes\n", + "\n", + "NUSP: 11800584" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3eYT3dgUhfRh" + }, + "source": [ + "Neste trabalho os alunos deverão implementar redes neurais recorrentes do tipo LSTM para tarefa de previsão do valor de ações. Utilizaremos um histórico de ações da empresa Apple negociada na Bolsa de Valores americana NASDAQ, disponibilizada em um arquivo txt.\n", + "\n", + "Será fornecida toda a etapa de prepação dos dados. Os objetivos dos alunos são:\n", + "1. Complementar as lacunas deste notebook com códigos próprios a fim de se criar um modelo preditivo básico. Este modelo deverá ser treinado no conjunto de treino e sua performance deverá ser avaliada no conjunto de teste utilizando a métrica RSME.\n", + "2. Adaptar o modelo básico com quaisquer técnicas que façam parte do escopo da disciplina visto até aqui (módulos 1 a 8) com intuito de reduzir o RSME obtido com o modelo básico. Você também pode alterar quaisquer parâmetros da rede, inclusive sua arquitetura e a função de perda e o algoritmo de otimização utilizados no treinamento.\n", + "\n", + "Referência sobre como melhorar a performance de redes neurais: https://arxiv.org/abs/2109.02752" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcAsyqS7opKd" + }, + "source": [ + "Ao implentar com sucesso o modelo básico você deverá ter um resultado semelhante ao da imagem abaixo, com RMSE de 53.39 obtido no conjunto de teste. Vamos denominar esse RMSE como __BASE__.\n", + "\n", + "__RMSE BASE__ = 53.39" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eLLd-PEOPhAR" + }, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u90qNnj1pMsk" + }, + "source": [ + "Alguns ajustes no modelo podem prozudir resultados bem melhores, como o exibido abaixo. Este modelo ajustado produziu RMSE de 3.83 no conjunto de teste. Vamos chamar esse RMSE de __REFERÊNCIA__.\n", + "\n", + "__RMSE REFERÊNCIA__: 3.83" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LTYHlIjNnSN8" + }, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3yPyXkC5qHHH" + }, + "source": [ + "## Avaliação\n", + "\n", + "A avaliação deste trabalho consiste em três critérios:\n", + "1. Implementação do modelo base: **3 pontos**;\n", + "2. Qualidade do código implementado em todo o notebook (estrutura, comentários, legibilidade e justificativas das escolhas realizadas): **3 pontos**;\n", + "3. Melhora apresentada no RMSE obtido com seu modelo adaptado (objetivo 2) medido no conjunto de dados de teste em comparação com o __RMSE BASE__. Essa melhora será medida em termos percentuais, sendo que o __RMSE REFERÊNCIA__ representa 100%: **4 pontos**;\n", + "\n", + "### Apuração da nota do critério 3:\n", + "\n", + "```\n", + "NOTA = (1 - (RMSE REFERÊNCIA - RMSE aluno)/(RMSE REFERÊNCIA - RMSE BASE)) * 4\n", + "```\n", + "\n", + "\n", + "* Se RMSE aluno < RMSE BASE -> NOTA = 0\n", + "* SE RMSE aluno > RMSE REFERÊNCIA -> NOTA = 4\n", + "\n", + "\n", + "\n", + "Ex.1: Se o RMSE do seu modelo foi de 45.0, então sua nota neste critério será: 0.67\n", + "\n", + "Ex.2: Se o RSME do seu modelo foi de 4.50, então sua nota neste critério será: 3.95" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-AmYffYszdKK" + }, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4sN1QKe6wBFm" + }, + "source": [ + "Essa primeira célula não precisa ser executada se você não estiver trabalhando com o Colab." + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pa9m9mY-jQgk", + "outputId": "66b4e7c3-33b1-4b07-af83-98d73c802a9f" + }, + "outputs": [], + "source": [ + "# mount Google Drive\n", + "# from google.colab import drive\n", + "# drive.mount('/content/gdrive')" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": { + "id": "IOx_kT_kv3CL" + }, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "# pacotes padrão para manipulação, operações e visualização de dados \n", + "import pandas as pd\n", + "import numpy as np\n", + "import os\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import math\n", + "\n", + "# pacotes para estruturação das redes\n", + "import torch\n", + "import torch.nn as nn\n", + "\n", + "# pacotes complementares\n", + "from sklearn.preprocessing import MinMaxScaler # normalização dos dados\n", + "from sklearn.metrics import mean_squared_error # cálculo do erro quadrático médio" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d0pXgUZAv5aX" + }, + "source": [ + "## Preparação dos dados\n", + "\n", + "Rode todas as células a seguir executando os ajustes necessários" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": { + "id": "4PT0MCT-zVO4" + }, + "outputs": [], + "source": [ + "# Ajuste essa parte do código para fazer a leitura do arquivo txt fornecido de forma adequada ao IDE que está utilizando\n", + "\n", + "path = './' # seu caminho aqui\n", + "aapl_file = 'aapl.us.txt'\n", + "\n", + "df_aapl = pd.read_csv(path+aapl_file, index_col='Date', parse_dates=True, usecols=['Date', 'Close'], na_values=['nan'])" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 255 + }, + "id": "m-TjMOv-zvqv", + "outputId": "3e390eec-8641-4d4e-c6c7-13c4b86eedb8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(8364, 1)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Close
Date
1984-09-070.42388
1984-09-100.42134
1984-09-110.42902
1984-09-120.41618
1984-09-130.43927
\n", + "
" + ], + "text/plain": [ + " Close\n", + "Date \n", + "1984-09-07 0.42388\n", + "1984-09-10 0.42134\n", + "1984-09-11 0.42902\n", + "1984-09-12 0.41618\n", + "1984-09-13 0.43927" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(df_aapl.shape)\n", + "df_aapl.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "Kqce39V4zwyn", + "outputId": "4ead2bd7-bc52-45fb-a029-f72b0f557751" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAIQCAYAAABNFOMsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAADiLElEQVR4nOzdd3iT9foG8DtJ0zYdabp3aSmjUKbsvUVERMEjIEfxqODChePIUVEcBzeIcuSoPwcecIKIKEtkg0zZpbRQ6KK76W7aJO/vjyRvkyYdKWnTcX+uy+vkHXnz7SmgvXme7yMRBEEAERERERERERER2UXq7AUQERERERERERG1RQzWiIiIiIiIiIiImoDBGhERERERERERURMwWCMiIiIiIiIiImoCBmtERERERERERERNwGCNiIiIiIiIiIioCRisERERERERERERNQGDNSIiIiIiIiIioiZgsEZERERERERERNQEDNaIiIiInEAikeCVV15x9jKazdixY9GrVy+nfX50dDTuvfdep30+ERERdQwM1oiIiKhD+89//gOJRIIhQ4Y4eynXpaqqCh988AH69+8PpVIJlUqF+Ph4LFiwABcuXBDvO3jwIF555RWo1WrnLbYB9957LyQSifiPUqlE37598d5770Gj0Th7eUREREQiF2cvgIiIiMiZ1q5di+joaBw5cgTJycno0qWLs5fUJDNnzsSWLVswZ84czJ8/H9XV1bhw4QI2b96M4cOHIy4uDoAhWFu6dCnuvfdeqFQq5y66Hm5ubvjss88AAGq1GuvXr8czzzyDo0eP4ttvv23w/YmJiZBK+XfIRERE1LwYrBEREVGHlZKSgoMHD2LDhg148MEHsXbtWrz88svOXpbdjh49is2bN+ONN97Av/71L4trH330UauuTquLi4sL/v73v4vHjzzyCIYMGYLvvvsO77//PsLCwqzeIwgCKisroVAo4Obm1pLLJSIiog6Kf41HREREHdbatWvh6+uLqVOn4o477sDatWut7rly5QokEgneffddLF++HJ06dYJCocCYMWNw9uxZi3vvvfdeeHl54fLly5g8eTI8PT0RFhaGV199FYIgNLiejIwM3HfffQgODoabmxvi4+Px+eefN/i+S5cuAQBGjBhhdU0mk8Hf3x8A8Morr+DZZ58FAMTExIitlleuXAEAaLVavPbaa4iNjYWbmxuio6Pxr3/9y2b75ZYtWzBmzBh4e3tDqVRi0KBBWLduXb3r3L59Ozw8PDBnzhxotdoGvy5zUqkUY8eOBQBxvdHR0bjllluwbds2DBw4EAqFAv/973/Fa7X3WFOr1XjqqacQHR0NNzc3RERE4J577kFeXp54j0ajwcsvv4wuXbrAzc0NkZGReO6559iCSkRERDaxYo2IiIg6rLVr12LGjBlwdXXFnDlz8PHHH+Po0aMYNGiQ1b1r1qxBSUkJHn30UVRWVuKDDz7A+PHjcebMGQQHB4v36XQ63HTTTRg6dCjefvttbN26FS+//DK0Wi1effXVOteSnZ2NoUOHQiKRYOHChQgMDMSWLVtw//33o7i4GE8++WSd7+3UqZP49YwYMQIuLrb/E2/GjBm4ePEivvnmGyxfvhwBAQEAgMDAQADAAw88gK+++gp33HEHnn76aRw+fBjLli1DQkICfvrpJ/E5X375Je677z7Ex8dj8eLFUKlU+Ouvv7B161bcddddNj978+bNuOOOOzBr1ix8/vnnkMlkdX49dTEFiKagEDC0fM6ZMwcPPvgg5s+fj+7du9t8b2lpKUaNGoWEhATcd999uOGGG5CXl4dNmzYhPT0dAQEB0Ov1uPXWW7F//34sWLAAPXr0wJkzZ7B8+XJcvHgRGzdutHvNRERE1M4JRERERB3QsWPHBADCjh07BEEQBL1eL0RERAhPPPGExX0pKSkCAEGhUAjp6eni+cOHDwsAhKeeeko8N2/ePAGA8Nhjj4nn9Hq9MHXqVMHV1VXIzc0VzwMQXn75ZfH4/vvvF0JDQ4W8vDyLz589e7bg4+MjlJeX1/m16PV6YcyYMQIAITg4WJgzZ46watUq4erVq1b3vvPOOwIAISUlxeL8yZMnBQDCAw88YHH+mWeeEQAIf/zxhyAIgqBWqwVvb29hyJAhQkVFhdU6TMaMGSPEx8cLgiAI69evF+RyuTB//nxBp9PV+XWYzJs3T/D09BRyc3OF3NxcITk5Wfj3v/8tSCQSoU+fPuJ9nTp1EgAIW7dutXpGp06dhHnz5onHS5YsEQAIGzZssLrXtO6vv/5akEqlwr59+yyur169WgAgHDhwoMG1ExERUcfCVlAiIiLqkNauXYvg4GCMGzcOACCRSDBr1ix8++230Ol0VvffdtttCA8PF48HDx6MIUOG4LfffrO6d+HCheJrUwVaVVUVfv/9d5trEQQB69evx7Rp0yAIAvLy8sR/Jk+ejKKiIpw4caLOr0UikWDbtm14/fXX4evri2+++QaPPvooOnXqhFmzZjVqjzXT17Fo0SKL808//TQA4NdffwUA7NixAyUlJXj++efh7u5utY7avvnmG8yaNQsPPvgg/vvf/zZ6oEBZWRkCAwMRGBiILl264F//+heGDRtmUTkHGFpaJ0+e3ODz1q9fj759++L222+3umZa9w8//IAePXogLi7O4nswfvx4AMCuXbsatXYiIiLqONgKSkRERB2OTqfDt99+i3HjxiElJUU8P2TIELz33nvYuXMnbrzxRov3dO3a1eo53bp1w/fff29xTiqVonPnzlb3ATV7g9WWm5sLtVqNTz75BJ988onNe3Jycur9mtzc3PDCCy/ghRdewLVr17Bnzx588MEH+P777yGXy/G///2v3vdfvXoVUqnUaipqSEgIVCoVrl69CqCmHbNXr171Pg8wDIf4+9//jr/97W/48MMPG7zfnLu7O3755Rfxa4uJiUFERITVfTExMY163qVLlzBz5sx670lKSkJCQoLYGltbQ98DIiIi6ngYrBEREVGH88cff+DatWv49ttv8e2331pdX7t2rVWw1pz0ej0A4O9//zvmzZtn854+ffo0+nmhoaGYPXs2Zs6cifj4eHz//ff48ssv69x7zZytqrOmCg0NRWhoKH777TccO3YMAwcObPR7ZTIZJk6c2OB9CoXiepZoQa/Xo3fv3nj//fdtXo+MjHTYZxEREVH7wGCNiIiIOpy1a9ciKCgIq1atsrq2YcMG/PTTT1i9erVFaJOUlGR178WLFxEdHW1xTq/X4/Lly2KVmuk+AFb3mgQGBsLb2xs6na5RYVJjyeVy9OnTB0lJScjLy0NISEidwVmnTp2g1+uRlJSEHj16iOezs7OhVqvFAQmxsbEAgLNnz1pVt9Xm7u6OzZs3Y/z48bjpppuwZ88exMfHO+irs09sbKzVFFdb95w6dQoTJkxwaMBIRERE7Rf3WCMiIqIOpaKiAhs2bMAtt9yCO+64w+qfhQsXoqSkBJs2bbJ438aNG5GRkSEeHzlyBIcPH8aUKVOsPuOjjz4SXwuCgI8++ghyuRwTJkywuSaZTIaZM2di/fr1NsOf3Nzcer+mpKQkpKamWp1Xq9U4dOgQfH19xfZGT09P8Zq5m2++GQCwYsUKi/Om6q2pU6cCAG688UZ4e3tj2bJlqKystLhXEASrNfj4+GDbtm0ICgrCpEmTxFbSljZz5kycOnXKao82oGbdd955JzIyMvDpp59a3VNRUYGysrJmXycRERG1LaxYIyIiog5l06ZNKCkpwa233mrz+tChQxEYGIi1a9di1qxZ4vkuXbpg5MiRePjhh6HRaLBixQr4+/vjueees3i/u7s7tm7dinnz5mHIkCHYsmULfv31V/zrX/+qc+8uAHjzzTexa9cuDBkyBPPnz0fPnj1RUFCAEydO4Pfff0dBQUGd7z116hTuuusuTJkyBaNGjYKfnx8yMjLw1VdfITMzEytWrIBMJgMADBgwAADwwgsvYPbs2ZDL5Zg2bRr69u2LefPm4ZNPPoFarcaYMWNw5MgRfPXVV7jtttvEIQ9KpRLLly/HAw88gEGDBuGuu+6Cr68vTp06hfLycnz11VdW6wsICMCOHTswcuRITJw4Efv377cYBNESnn32Wfz444/429/+hvvuuw8DBgxAQUEBNm3ahNWrV6Nv3764++678f333+Ohhx7Crl27MGLECOh0Oly4cAHff/89tm3bZlc7KxEREbV/DNaIiIioQ1m7di3c3d0xadIkm9elUimmTp2KtWvXIj8/Xzx/zz33QCqVYsWKFcjJycHgwYPx0UcfITQ01OL9MpkMW7duxcMPP4xnn30W3t7eePnll7FkyZJ61xUcHIwjR47g1VdfxYYNG/Cf//wH/v7+iI+Px1tvvVXve0ePHo3XXnsNW7Zswfvvv4/c3Fx4e3ujf//+eOuttyw27R80aBBee+01rF69Glu3boVer0dKSgo8PT3x2WefoXPnzvjyyy/x008/ISQkBIsXL8bLL79s8Xn3338/goKC8Oabb+K1116DXC5HXFwcnnrqqTrXGB4ejt9//x2jRo3CpEmTsHfvXgQEBNT7dTmSl5cX9u3bh5dffhk//fQTvvrqKwQFBWHChAniUASpVIqNGzdi+fLlWLNmDX766Sd4eHigc+fOeOKJJyzae4mIiIgAQCLYqtknIiIiIgCGSZ4xMTF455138Mwzz9R777333osff/wRpaWlLbQ6IiIiInIm7rFGRERERERERETUBAzWiIiIiIiIiIiImoDBGhERERERERERURNwjzUiIiIiIiIiIqImYMUaERERERERERFREzBYIyIiIiIiIiIiagIXZy+gNdDr9cjMzIS3tzckEomzl0NERERERERERE4iCAJKSkoQFhYGqbT+mjQGawAyMzMRGRnp7GUQEREREREREVErkZaWhoiIiHrvYbAGwNvbG4Dh/zClUunk1RARERERERERkbMUFxcjMjJSzIvqw2ANENs/lUolgzUiIiIiIiIiImrUdmEcXkBERERERERERNQEDNaIiIiIiIiIiIiagMEaERERERERERFRE3CPNTvodDpUV1c7exnthqura4Nja4mIiIiIiIiIWisGa40gCAKysrKgVqudvZR2RSqVIiYmBq6urs5eChERERERERGR3RisNYIpVAsKCoKHh0ejpkJQ/fR6PTIzM3Ht2jVERUXx/1MiIiIiIiIianMYrDVAp9OJoZq/v7+zl9OuBAYGIjMzE1qtFnK53NnLISIiIiIiIiKyCze4aoBpTzUPDw8nr6T9MbWA6nQ6J6+EiIiIiIiIiMh+DNYaia2Kjsf/T4mIiIiIiIioLWOwRkRERERERERE1AQM1jo4iUSCjRs3OnsZRERERERERERtDoO1di4rKwuPPfYYOnfuDDc3N0RGRmLatGnYuXOns5dGRERERERERNSmcSpoO3blyhWMGDECKpUK77zzDnr37o3q6mps27YNjz76KC5cuODsJRIRERERERERtVmsWGvHHnnkEUgkEhw5cgQzZ85Et27dEB8fj0WLFuHPP/+0+Z4zZ85g/PjxUCgU8Pf3x4IFC1BaWipe3717NwYPHgxPT0+oVCqMGDECV69eFa///PPPuOGGG+Du7o7OnTtj6dKl0Gq1zf61EhERERERERG1NFas2UkQBFRU65zy2Qq5rNGTNAsKCrB161a88cYb8PT0tLquUqmszpWVlWHy5MkYNmwYjh49ipycHDzwwANYuHAhvvzyS2i1Wtx2222YP38+vvnmG1RVVeHIkSPimvbt24d77rkHK1euxKhRo3Dp0iUsWLAAAPDyyy83/QsnIiIiIiIiImqFGKzZqaJah55Ltjnls8+/Ohkero37liUnJ0MQBMTFxTX6+evWrUNlZSXWrFkjhnEfffQRpk2bhrfeegtyuRxFRUW45ZZbEBsbCwDo0aOH+P6lS5fi+eefx7x58wAAnTt3xmuvvYbnnnuOwRoRERERERERtTsM1topQRDsfk9CQgL69u1rUeE2YsQI6PV6JCYmYvTo0bj33nsxefJkTJo0CRMnTsSdd96J0NBQAMCpU6dw4MABvPHGG+L7dTodKisrUV5eDg8Pj+v/woiIiIiIiIiIWgkGa3ZSyGU4/+pkp312Y3Xt2hUSicThAwq++OILPP7449i6dSu+++47vPjii9ixYweGDh2K0tJSLF26FDNmzLB6n7u7u0PXQURERERERERUW3FlNd7acgG7E3Px0yPDEaRs3jyCwZqdJBJJo9sxncnPzw+TJ0/GqlWr8Pjjj1vts6ZWq632WevRowe+/PJLlJWVifcfOHAAUqkU3bt3F+/r378/+vfvj8WLF2PYsGFYt24dhg4dihtuuAGJiYno0qVLs399RERERERERES1rTucirWHUwEABy/l47b+4c36eZwK2o6tWrUKOp0OgwcPxvr165GUlISEhASsXLkSw4YNs7p/7ty5cHd3x7x583D27Fns2rULjz32GO6++24EBwcjJSUFixcvxqFDh3D16lVs374dSUlJ4j5rS5YswZo1a7B06VKcO3cOCQkJ+Pbbb/Hiiy+29JdORERERERERB3QHwk5AIDb+4fjxvjgZv+81l96RU3WuXNnnDhxAm+88QaefvppXLt2DYGBgRgwYAA+/vhjq/s9PDywbds2PPHEExg0aBA8PDwwc+ZMvP/+++L1Cxcu4KuvvkJ+fj5CQ0Px6KOP4sEHHwQATJ48GZs3b8arr74qDjuIi4vDAw880KJfNxERERERERF1PGkF5Th2tQAAsGhStxbpOJQITdnlvp0pLi6Gj48PioqKoFQqLa5VVlYiJSUFMTEx3CfMwfj/LRERERERERE5yvIdF/HBziSM6hqAr+8f0uTn1JcT1cZWUCIiIiIiIiIiavMu55UBAEZ3DQQAFJZVNftnMlgjIiIiIiIiIqI2L72wHAAQ4avA//68ivHv7caJ1MJm/UynBmt79+7FtGnTEBYWBolEgo0bN1rdk5CQgFtvvRU+Pj7w9PTEoEGDkJqaKl6vrKzEo48+Cn9/f3h5eWHmzJnIzs5uwa+CiIiIiIiIiIha0vGrBcgt0VicSy+sAACEqhTYcCIdheXVWLDmGKq0ejTXTmhODdbKysrQt29frFq1yub1S5cuYeTIkYiLi8Pu3btx+vRpvPTSSxb7cT311FP45Zdf8MMPP2DPnj3IzMzEjBkzWupLICIiIiIiIiKiFnQqTY2ZHx/CxPf3iOcqq3Vi0NbJzwNf3z8ESncX5JVWoduLW/DxnkvNshanTgWdMmUKpkyZUuf1F154ATfffDPefvtt8VxsbKz4uqioCP/3f/+HdevWYfz48QCAL774Aj169MCff/6JoUOHNt/iiYiIiIiIiIioxR1JMUz+LKqoRnZxJYKV7shQG6rVPF1lUHnIIZFIMLFnMDacyAAAvL01EQ+NjoVUKnHoWlrtHmt6vR6//vorunXrhsmTJyMoKAhDhgyxaBc9fvw4qqurMXHiRPFcXFwcoqKicOjQIYevhxyLA2mJiIiIiIiIyF4CavKEPy/nA6hpA43w9YBEYgjPYgO9LN53/lqxw9fi1Iq1+uTk5KC0tBRvvvkmXn/9dbz11lvYunUrZsyYgV27dmHMmDHIysqCq6srVCqVxXuDg4ORlZVV57M1Gg00mpo+3OLiuv+PdXV1hVQqRWZmJgIDA+Hq6ip+g6jpBEFAbm4uJBIJ5HK5s5dDRERERERERK3coUv5eGvrBSjkMvFcfqlh8qf54AITlYdl3pBwrRi9wn0cuqZWG6yZKsSmT5+Op556CgDQr18/HDx4EKtXr8aYMWOa/Oxly5Zh6dKljbpXKpUiJiYG165dQ2ZmZpM/k6xJJBJERERAJpM1fDMRERERERERdWhzPv3T6lxxZTXOpBdh+Y4kAJbBmq+Hq8W9f6WpcVOvEHi7O67Ap9UGawEBAXBxcUHPnj0tzvfo0QP79+8HAISEhKCqqgpqtdqiai07OxshISF1Pnvx4sVYtGiReFxcXIzIyMg673d1dUVUVBS0Wi10Ol0TvyKqTS6XM1QjIiIiIiIioib7K1WNFb8niccRvh7ia5XCMkBbdzgVO85n4/DiCQ7ba63VBmuurq4YNGgQEhMTLc5fvHgRnTp1AgAMGDAAcrkcO3fuxMyZMwEAiYmJSE1NxbBhw+p8tpubG9zc3Oxaj6llkW2LREREREREREQtq1SjtXl+z8Vci2PzVk9VrYo1AMgt0SCruBJhKoXVtaZwarBWWlqK5ORk8TglJQUnT56En58foqKi8Oyzz2LWrFkYPXo0xo0bh61bt+KXX37B7t27AQA+Pj64//77sWjRIvj5+UGpVOKxxx7DsGHDOBGUiIiIiIiIiKidSMouadR9g2P8xNe191gzuZRb6rBgzalTQY8dO4b+/fujf//+AIBFixahf//+WLJkCQDg9ttvx+rVq/H222+jd+/e+Oyzz7B+/XqMHDlSfMby5ctxyy23YObMmRg9ejRCQkKwYcMGp3w9RERERERERETkeCl5ZQ3e89k9AyEza/GsK1hbuO4vCIJg85q9JIKjntSGFRcXw8fHB0VFRVAqlc5eDhERERERERERmXl3WyI+2pVc5/VXpvXEvSNiLM4JgoCYxb/ZvH/XM2MRE+Bp85o9OZFTK9aIiIiIiIiIiIga0lDFmq391CQSCVbO6Y9/3RxndS2/VOOQdbXa4QVEREREREREREQAkF1caXEsk0qg09c0YdbV9nlr3zAAwOAYf3xzOBX7k/OQoa6AurzaIetixRoREREREREREbVqBWVVFsc3RKkQ4FVTpeZro2LNXL9IFd66ow9ig7wAAOoKBmtERERERERERNQBFJRbBmthKgWeu6mmxbOhYM1EpTBUtqlrPa+p2ApKREREREREREStVnmVFkW1KswCvdxwxw0ROHy5AOVVWkT4Khr1LF8PU7BWd8XahWvFjV4bgzUiIiIiIiIiImqVDl3Kx5xP/7Q6H+DtBqlUgvfu7GvX83yMlW3qiror1lb+kdTo57EVlIiIiIiIiIiIWqWlv5yzeT7Ay61Jz6tpBbVdsVZRpcP+pLxGP4/BGhERERERERERtUrme6eZT/7092zcnmq1mZ5Ru7XU5KH/HYfZsNEGMVgjIiIiIiIiIiIr3x9Nw8T39yAxq8Rpawj0rqlMi/b3FF97uTdtdzNTUFdoY3jBixvPYM/FXLuex2CNiIiIiIiIiIisPLf+NJJzSnHLh/sgCLbLuOo67yj+XjWVaXEh3uLrEKV7k57nU8fwAnV5Ff73ZyoAYEQX/0Y/j8MLiIiIiIiIiIjIilQC6AWgWidg06lMTO8XbnG9WqfHrR8dgKtMglAfBWYNjsS47kEOXYN5bndDlC+GdvZHqUaLSD+PJj3PtMdaUa1g7VpRpfj6n1Pi8G0jn8dgjYiIiIiIiIiIrCgVcrGy62xGkVWwdjG7BAnXigEAp9KLsPVcFs6/Ohkero6Lm6p0evH1zAERkEkl1/U8lbEVtESjRbVOj9JKLeQuUkz5YB8AQ1Vc5wCvRj+PwRoREREREREREVmo1ukt2iUrqnVW95RXWZ87frUQo7oGOmwdVVpDsPbcTd2vO1QDAB9FzQCEb4+m4aWNZy2u2zttlHusERERERERERGRhfxSy839K6v1Dd4D2A7brke1sWLNVeaYCEsmlUBpHHxQO1QDgLIqrV3PY7BGREREREREREQW8ko1FsdlGi3e3ZaIHeezcSa9CHq9gPwyjdX7NFrrAO56mCrW3FwcF2GZ2kFtKa6orvOaLWwFJSIiIiIiIiIiCzkllRbHW85mNep9Ghsto9fDFKy5OjBY8/V0RWpBucW5rkFeSMopxb9u7mHXsxisERERERERERGRqLCsCvd9ecyu9wzs5ItjVwsdUrGWVlCOWf89hFmDosThBY4M1iJ9FTiVphaP7xsRgxen9oC6ohp+nq4oLi5u9LPYCkpERERERERERKLXf00QX3cO8Gzw/hen9kC4rwKAY1pBn/vxNDKLKrH894vi81xlsut+rkmUn4f42t/TFUum9YRUKoGfZ90tonVhsEZERERERERERKKzGUXi607+HhbXls3ojd8XjcbL03qK5wZG+4l7oFU6oBX0yJUC8XVztIKaB2sqD3k9dzaMwRoREREREREREYlKNTWTMftH+YqvYwM9MXtQJLoEeWNij2Ao5DJM7BGEfpEquLkYKsqut2KtqLwaOr0gHpuCNblMcl3PNRdlFhb61jPIoDG4xxoREREREREREQEAtDo9MtQVAIClt8ajb6QK7++4CAC4IcoXEokh4Ir088DxlyZCLjPUbJkq1jTa66tY25+cZ3FsqoBrroo1pYIVa0RERERERERE5ADlZq2cswdHQiGv2dvM38vN4l4PV5eaYE1uDNaqr69iLTHLcnBAXqnG8HwHBmuhPgrx9fW2rjJYIyIiIiIiIiIiAEC5xhA0uUglcJVJ4S6viY7869nc391BraBZxZUWx8WVhrZURw4vkElr2kpLKrX13NkwtoISERERERERERGAmv3VPFxlkEgkcDerWKtvaqZYsdbEVlBBEPDe9ov4/li6zeuObAU1Zx6yNQUr1oiIiIiIiIiICABQXmUI1rzcDLVY5sFaffuRicMLmtgKevBSPj7alVzndUcHa+/c0QdB3m5Yemv8dT2HFWtERERERERERAQAKDO2gnqIwVpNoOXpWnc75vUOL7iQVWJxrPKQQ11eLR47Olj728BI/G1g5HU/hxVrREREREREREQEoKZizRSiucpqoqMgpZvN9wDmraBNq1g7m1EkvpZKgGGd/S2um6+jNWHFGhERERERERERAQDKqowVa66GyEgikWDZjN4oKKtClyDvOt93Pa2gVVo9difmADAEarMGRUJdXoUtZ7PEezzdHDe8wJEYrBEREREREREREQCg3Di8wDzImjM4qsH3XU8r6B8XclBYXo1gpRv+98AQyKQS/Hk5X7we5O0mBn2tTeusoyMiIiIiIiIiohZXu2KtsUxDDprSCrr+hGES6G39w8Upnb3Cfaye3RoxWCMiIiIiIiIiIgC2K9Yaw1SxVlFtX8WaIAg4dMlQnTatT5h43jSVFAAKy6rsemZLYrBGREREREREREQAml6x5mkMwsqMwVxj5ZZqUKrRQioBugZ7WVxbPCUOAPDGjN52PbMltc4GVSIiIiIiIiIianElldUALCvGGsN0f0mlfcHa5dwyAECEr4c4AMFkwejOuKVvGMJ83O16ZktixRoREREREREREQEACssNbZd+nq52vc/b3RCsabR6VOsav89aSp4hWIsJ8LS6JpFIEK5SQCKR2LWWlsRgjYiIiIiIiIiIAAAFxv3MfO0M1jzNKtzsaQfNKKwAAET6Kez6vNaCwRoREREREREREeHolQIk55QCAPw87AvW5DKpOMCg1I5gLbdEAwAI9m697Z71YbBGRERERERERNTBHb1SgL+tPoS8UlPFmtzuZ5jaQQ8k5zX6PbmlhmAt0NvN7s9rDRisERERERERERF1cFvPZlkc27vHGgBUVhv2Vvvn+jPYdSEHr2w6h6Lyanx96AqKyqttvsdUsdZWgzVOBSUiIiIiIiIi6uCu5pdZHPva2QoKWLaA/uPLowCALw9eAQBsOZuF/949AN7ulpVwOSWVANpusMaKNSIiIiIiIiKiDi4xu8Ti2F0uc+jzD17KR+9Xtot7uAFAeZUW2cWGirUg7rFGRERERERERERtkbrM0Kp57/BofHbPwGb7nE/2XhJfv7vtIgAgwMsNAV72V8i1BgzWiIiIiIiIiIg6MJ1eQImxjXPh+C6Y2DO4Sc95YkLXRt9bUaXDD8fSAAD/vr0XXGRtM6Jqm6smIiIiIiIiIiKHKKmsGSygdLd/GqjJkxO74qmJ3azOj+oaYHXuyJUClGi0CPNxx8QeTQvyWgMGa0RERERERERE7ZBWp69zGqe5ogrDPQq5DK4uTY+KJBIJJvQIsji39clRkEgkZmsSAABHUvIBAEM6+0MqlaCt4lRQIiIiIiIiIqJ2aMmmc/jxWDp+enQ44sN8bN6zOzEHWUWGyZw+iqZXq5nEhXhbHHcNsjze8FcGtpzNQkW1DgDQP0p13Z/pTAzWiIiIiIiIiIjakYKyKrjIJFh3OBUAsOy3C/jfA0Os7ruQVYx7vzgqHjsiWHORSeEilUCrN1SmyWxUo5lCNQDoHuxtdb0tYbBGRERERERERNROZBVVYsoHe1Fo1gKaVVxp895jVwotjpUKx8REHq4yFFdqxeOHRnfG3ou5Nu+N8vdwyGc6C/dYIyIiIiIiIiJqJz7bd9kiVAOA5JxS7EuyDrbOZRZbHLvLZQ5Zg6ebZUA3vEsA9v9zHL5/cJjVvcHe7g75TGdhsEZERERERERE1E6kFpTbPP/KpnNWgwwuZFkGa73Cbe/DZi8PV+uALsLXA4Nj/HDipUmYEFcz4KAtDy4A2ApKRERERERERNRuFFcawrN/394bQzr7wd/TFWPf3Y1LuWX4aFcSXpjaU7z3Sl4ZAGDNfYMR6uOOmABPh6yhdsWaOT9PV8wf3Rk7L+Tgxp7BDvk8Z3JqxdrevXsxbdo0hIWFQSKRYOPGjXXe+9BDD0EikWDFihUW5wsKCjB37lwolUqoVCrcf//9KC0tbd6FExERERERERG1QkUVhr3Nwn0ViA30gsrDFU9M6AoASLhWIt6XW6IRW0YHdPJF12BvuMgcExMNivar9/rQzv7Y9cxYfHhXf4d8njM5NVgrKytD3759sWrVqnrv++mnn/Dnn38iLCzM6trcuXNx7tw57NixA5s3b8bevXuxYMGC5loyEREREREREVGrVVxhCMvMJ3z2CFUCANILa9pEx7+7W3xdX4VZUyya1A0PjumMTQtH1HlPTIAn3Fwcs6ebMzm1FXTKlCmYMmVKvfdkZGTgsccew7Zt2zB16lSLawkJCdi6dSuOHj2KgQMHAgA+/PBD3HzzzXj33XdtBnFERERERERERO1VkY1gLcJXAQC4kl+OY1cKcCA5HyUaQ2Vb50DHtH+a83RzweIpPRz+3NaoVe+xptfrcffdd+PZZ59FfHy81fVDhw5BpVKJoRoATJw4EVKpFIcPH8btt99u87kajQYajUY8Li4utnkfEREREREREVFrl2YcWKB0l6PUGJgp3WsinxBlzeTNO1Yfsnjv1/cPaYEVtl+tOlh766234OLigscff9zm9aysLAQFBVmcc3FxgZ+fH7Kysup87rJly7B06VKHrpWIiIiIiIiIqKWVabQY9fYuq/NKs4o1F5kU3m4uYpWaiZ+nK8JVimZfY3vm1D3W6nP8+HF88MEH+PLLLyGROHb06uLFi1FUVCT+k5aW5tDnExERERERERG1hBTjZE9znq4yyGsNItj/z/FW95XWCtrIfq02WNu3bx9ycnIQFRUFFxcXuLi44OrVq3j66acRHR0NAAgJCUFOTo7F+7RaLQoKChASElLns93c3KBUKi3+ISIiIiIiIiJqS1Lzy3HLh/utzvt5uVqd8/GQY1rfMLiaBW5VWn2zrq8jaLXB2t13343Tp0/j5MmT4j9hYWF49tlnsW3bNgDAsGHDoFarcfz4cfF9f/zxB/R6PYYMYY8wEREREREREbVfz/xwyub5JyZ0s3n+pak9cOrlG/HFvYMgkQAv3dKzOZfXITh1j7XS0lIkJyeLxykpKTh58iT8/PwQFRUFf39/i/vlcjlCQkLQvXt3AECPHj1w0003Yf78+Vi9ejWqq6uxcOFCzJ49mxNBiYiIiIiIiKhd0OkFnE5Xw81FhtggT7i5yAAAKfnWbaC/LxqNLkHeNp8TZBxiMC4uCOeX3gSFq6z5Ft1BODVYO3bsGMaNGyceL1q0CAAwb948fPnll416xtq1a7Fw4UJMmDABUqkUM2fOxMqVK5tjuURERERERERELe7/9l/Gv3+7IB5veWIUYgI8kVuisbivc6BnnaFabQzVHEMiCILg7EU4W3FxMXx8fFBUVMT91oiIiIiIiIioVen+4hZozPZDU7q7YOaACHxx4AoUchnWzR+CreeyMHdwJ0T5ezhxpe2DPTmRUyvWiIiIiIiIiIiofl2DvXA2o1g8Lq7U4osDVwAAEgnQP8oX/aN8nbS6jq3VDi8gIiIiIiIiIiLA16NmyueknsEW12YPimrp5ZAZVqwREREREREREbVixRXVAIB/394bU3qFYNq1/fB2l+Pr+wfD39O1gXdTc2KwRkRERERERETUiqmNwVq3YC/4erpi1zNjIZVIIJNKnLwyYrBGRERERERERNSKFRmDNR+FHAAgl3Fnr9aC3wkiIiIiIiIiolboQlYxyqu0NcGah9zJK6LaWLFGRERERERERNTKbPwrA09+dxJKdxcIguGcqWKNWg9WrBERERERERERtSJ6vYAnvzsJACiu1AIw7K/m5iJz4qrIFgZrREREREREREStSGZRBSL9FOJxlyAv/PDQcCeuiOrCVlAiIiIiIiIiolYko7ACvz4+Cj8cS0d+qQYPjY2F0p1toK0RgzUiIiIiIiIiolZAEAR8fuAKXtt8Hv6ervjpkRGI8vdw9rKoHmwFJSIiIiIiIiJqBXacz8Zrm88DAEJV7hbtoNQ6MVgjIiIiIiIiImoFvj+WLr5+cWpPSCQSJ66GGoOtoERERERERERErcCZDDUAYP3DwzCgk59zF0ONwoo1IiIiIiIiIiInq9bpkVOiAQBE+Xk6eTXUWAzWiIiIiIiIiIicLKdEA0EA5DIJ/D1dnb0caiQGa0RERERERERETnZNXQEACFa6Qyrl3mptBYM1IiIiIiIiIiInu1ZUCQAI8+Ek0LaEwRoRERERERERkZOlFpQDAMJ9Gay1JQzWiIiIiIiIiIicSKcXsOXsNQBAlyAvJ6+G7MFgjYiIiIiIiIjIib44kIKzGcUAgK4M1toUBmtERERERERERE609nCq+LpbsLcTV0L2YrBGREREREREROQkgiCgsLwKADClVwiiAzydvCKyB4M1IiIiIiIiIiInuZRbCnV5NeQyCVbM7ufs5ZCdGKwRERERERERETnJhhMZAIDRXQPh5iJz8mrIXgzWiIiIiIiIiIic5EhKAQBgap9QJ6+EmoLBGhERERERERGREwiCgOTcUgBAXIjSyauhpmCwRkRERERERETkBAVlVVCXV0MiAToHcmhBW8RgjYiIiIiIiIjICS7llgEAInwVcJdzf7W2iMEaEREREREREZETJOcY2kBjA72cvBJqKgZrREREREREREROcCmXwVpbx2CNiIiIiIiIiMgJGKy1fQzWiIiIiIiInKyyWufsJRBRC9ty5hp2J+YCALoGM1hrqxisERERERFRh3LwUh5e2XSu1YRZOr2Avku3Y/iyncgpqXT2coioBQiCgIfXnhCP+0eqnLcYui4M1oiIiIiIqEO569PD+PLgFby3PbFZP2fTqUx8uvdyg/elFZRDo9Ujr7QKfyTkIK2g3KHryC3R4OPdl5BXqnHoc4mo6ap0evH1/FExcJExnmmr+J0jIiIiIqIO6bczWc32bEEQ8Pg3f+GN3xKQcK243ntNeyxV6fR4fsMZjHp7F4orqx22lmd/PIW3tl7Ao2bVMUTkXFXammDt6Ru7O3EldL0YrBERERERUYeUoa5otmeXaLTi65yS+ivFknNKrc6Z9l1yBNOzDqcUOOyZRHR9qnWC+NqV1WptGr97REREREREDlZQWiW+Lq6ov/rMVLFmLjW/zGFr4Q/tRK2PqWLNRSqBVCpx8mroevBPWCIiIiIi6jB0esHiWF/r2FHyy2qq1BpbsabykIvnzjfQPmoPH7PnmrefEZHzmH4vyhl8t3n8DhIRERERUYdRataiCQBlVdo67rw++WYVaznFdU/6rKjSicGar4ereP63M1nYds4xe8C5mFXDcOooUetgGl7g6sJYpq3jd5CIiIiIiDqM2sHataLmCZryy8yCtToq1s5mFKHHkq0ortRCKgGU7i4W1x/8+jh+P599XesQBAEFZmuprGbFGlFrYKpYY7DW9vE7SEREREREHUZJrWmbNy7fC63O8WFTfmlNmJZdR8XaoUv54uu4EKUY+nm4ysTz/9176brWUV6lg8as/bOyWnddzyMixxAr1tgK2ubxO0hERERERB1GaaV162d2A3ugNcXJNLX4uq6KtSvGAQUxAZ74v3sHipVlPz0yAvcM6wQA+CtVfV1hWO1QT6NlsEbUGlSzFbTd4HeQiIiIiIg6jBIbwdqZ9CKHbupfXqXF3qQ88dhWxVpeqQZrD6cCAB4ZG4tQHwUeGhOL+aNiEOLjjqW3xiNY6QatXsDei7nYlZjTpMq6i9mWE0fZCkrUOoitoKxYa/NcGr6FiIiIiIiofcgtta4ee+h/xzHjhnC8f2c/h3zG+cxiVGn18HSVoaxKh5JKLSqqdFCYtXh+eyRVfB0T4AkAeHBMrMVzhscG4Ke/MrDg6+MAgGl9w/DhnP52rSUxq8TiuKKKFWtErYE4FdRF0sCd1NoxGiUiIiIiog5BpxcsAi1zG05kQKcXHPI5568VAwCGdPaHu9zwI1ePJVux92KueE+GuqaKLT7Mx+ZzhsX6Wxz/cioTxWZ7xAmC0GCl3cUcy2Ctkq2gRK2ChhVr7Qa/g0RERERE1CF8ezQVJ1LVdV4/n1lscfzLqUysP55u9+ckGIO1nqFKBCvdxfP3fH4EgmAI78qrDC2pL9zcw6KSzdzwWsEaAFzNK8fB5DwkZpXgkbUnMHTZTmSqK+pcS3pBucUxW0GJWgfusdZ+sBWUiIiIiIg6hM2nromvv/zHIDz2zV8We65dzC5B7whD9Vh5lRaPffMXAGBIZz9E+Ho0+nOu5BnCrNggT/h6uOJqfk24telUJg4k5yGn2NCS6uMhr/M5Eb4eCFcpkGEWnE37aL/VfZ/svYxXbo23+QxTZVyErwLphRWcCkrUSoitoKxYa/P4HSQiIiIionZPEARcyDJUki0Y3Rljuwfh2IsT8f6dfTGpZzAAw0ABE/Mw7GyGZSVbffR6Acm5hoEB4SoPeLtb1jI88e1JfH8sHYcu5wMAfBR1B2sAMD4uqMHPPJFaaPN8ZbVO/Jo6B3qJ54jI+aqMFWturFhr85z6Hdy7dy+mTZuGsLAwSCQSbNy4UbxWXV2Nf/7zn+jduzc8PT0RFhaGe+65B5mZmRbPKCgowNy5c6FUKqFSqXD//fejtLQUREREREREJpdyy1BYXg03FymeubE7AMDNRYYZN0Sgs3F4QG6JebBWJr4+na62et7pdDW+OngFJ9Msrz39wynxOWEqd6tgrbaGgrXnbuqO8XFB9f7wfTajCEXl1VbnrxUZqtUUchlCjS2pDNaIWge2grYfTv0OlpWVoW/fvli1apXVtfLycpw4cQIvvfQSTpw4gQ0bNiAxMRG33nqrxX1z587FuXPnsGPHDmzevBl79+7FggULWupLICIiIiKiVk6j1eG5H09hap9QvH1HH6sfZAO93QAAn+1PwfvbEwEAV8wq1v6z+xLe2XbB4j3fHk3Dy5vO4bcz1/DGr+ex/VwWAOCnvzLEe4KV7vB2qz84U9XTCgoA3u5yfH7vIOx9blyd9+oF4J7PD+PFjWcshhukFxq+hjCVuzhEgXusEbUObAVtP5y6x9qUKVMwZcoUm9d8fHywY8cOi3MfffQRBg8ejNTUVERFRSEhIQFbt27F0aNHMXDgQADAhx9+iJtvvhnvvvsuwsLCmv1rICIiIiKi1m1/Uh5OpKoRrK7Ah7P7W103BWsAsPKPZPxjRAzSam36v2rXJTwwsjN8PV0BQKxy+2TvZQDAp/tSEOGrsHiPXCa97oo1k2ClO359fBSyiiqxMyEb/9l9CS9O7YETqYX47UwWTqUX4VR6ETacyMCORWMQrlLgUo6hk6dzoBfcjQMSWLFG1DpwKmj70aa+g0VFRZBIJFCpVACAQ4cOQaVSiaEaAEycOBFSqRSHDx920iqJiIiIiKg12XLWUE02pVcopFKJ1fVALzeL4/wyDXLM2kJNNp/OxDvbLiA5pwSdAz2trqcX1gwZeGBkDADAw80xwRoAhKsUGNDJF09O7IZfFo7E/SNjEFBr7eVVOizZeBaCICAxuwQA0DXIC+4uxmBNy2CNyJkqq3XYmZCN384YhqnI2Qra5rWZqaCVlZX45z//iTlz5kCpVAIAsrKyEBRkuZmni4sL/Pz8kJWVVeezNBoNNJqaf1EWFzd+M1IiIiIiImpbThn3QRvTPdDm9c6BXpBJJdDpBQBAfmmVzWDtpZ/PAQA+3ZuC7U+Nrvczn58SBwCwkeOJRncLhEIua2j5VlxdpOL0Un/PmmDN39MVxZXV2HkhB5/uu4xvjqQBALoGeyGryPD1VFSxFZTImRZ8fRx7L+aKx6xYa/vaxHewuroad955JwRBwMcff3zdz1u2bBl8fHzEfyIjIx2wSiIiIiIiam0EQRAryaL9ravMACDExx2bFo4QWzkLyqqQZyNYM6nS6a3aPhcbgzQTF+MPyxJYJ2vxYUp8ce8gfHL3AEgk9SRvjRDg7Sq+nnFDOEZ3NYSHXx64Ip4fEuMv7rG2/kS6uLcTEbW8k7Wm+OaXVTlpJeQorT5YM4VqV69exY4dO8RqNQAICQlBTk6Oxf1arRYFBQUICQmp85mLFy9GUVGR+E9aWlqzrZ+IiIiIiJynoKwKFcZ9xcJU7nXeFx/mgx6hhp818sqqxMmeT03sZvP+lzedE6vN4kK88eCYWNjKyGyd6xbsjXFxQXBvQrVabeatoH0iVOJ+cZnGiaB/HxqFMJUC0QE1oeL283V39xBR86mo0qG4UgsAcDGWs/YOV9b3FmoDWnWwZgrVkpKS8Pvvv8Pf39/i+rBhw6BWq3H8+HHx3B9//AG9Xo8hQ4bU+Vw3NzcolUqLf4iIiIiIqP0xVasFK93g5lJ/kOVvHExwJa8MVTpDVddDYzvj6UnW4draw6lYNKkbHhgZg/fv7AcAUNnYL81Wq+eATr52fQ318Tbbw61/lArKWmuI8PUAAIzrHoSbexuKD/5IsCxOIKKWkVNiCLwVchlOLJmEt+/ogzmDo5y8KrpeTt1jrbS0FMnJyeJxSkoKTp48CT8/P4SGhuKOO+7AiRMnsHnzZuh0OnHfND8/P7i6uqJHjx646aabMH/+fKxevRrV1dVYuHAhZs+ezYmgRERERESEDLUhWAtXKRq4E+LEz4Rrhj2YVR5yuLnIrMIqk2Gx/ugV7iMeqzxcUVhebXHPrMGR+OF4Gib0CMb/7UtBlU4vtms6Qpyxys7b3QXhKgWUtaaQ+nnWtIreNbgTfjuTheO1WtGIqGWY9m4MUrpB6S7HnQO5LVV74NRg7dixYxg3bpx4vGjRIgDAvHnz8Morr2DTpk0AgH79+lm8b9euXRg7diwAYO3atVi4cCEmTJgAqVSKmTNnYuXKlS2yfiIiIiIiat1M+xeZWiTrY6pYO37VEDx1Mu7J5u1u+8emLkFeFsf/vr035nz6Jx4f30U8p3SXY/tTYwAAswZGolSjRZS/h51fRd38PF2x77lx8HJzgUQisZoyGuBVE6x1Mn7utaJK6PWCzQmpRORYSdkl+PLgFUgkwP/+TAVQ82cNtQ9ODdbGjh0LQRDqvF7fNRM/Pz+sW7fOkcsiIiIiIqJ2oqjcEKypFA3/IGuq7tIYN/fvbNyXTOluXbHWI1RptUfasFh/nH7lRov2THPm+5w5UqRfTVBXu7rOz2xqaIiPOyQSoEqrx5azWZjaJ7RZ1kNEwOHL+Xh/x0WM7haItYdTLa51qmOQCrVNTg3WiIiIiIiImpPa2Jqp8rDdzmnOr1YVSUyA7Yq1qX1CsWBUZ5vPsBXCtaTan29eGSOXSWGqXXh03Qn0iRhnEcq1Fp/vT0F6YQVemNoDMlbVURv1wFfHUKLR4nBKAe4bEYPvj6XBXS7D5Phg3DcyxtnLIwdisEZERERERO2WusIQrPk0Iljz97RsF40NNLR6utWqTHvmxu5i6Nba1K5Yqy9Q/OLAFSyZ1rO5l2QXrU6PVzefBwAMjvHFTb1YVUdtz6k0NUo0WvF4dLcAPDu5O1xdpAyL26FWPRWUiIiIiIjoehQZg7XGtIL6etaEUBKJobUTAOJCvBFlVtnl79V690fyUdTUTkglgKerZS3FvcOjxdfbzmU1avudlnStqFJ8veM8p5dS27RsS4LF8fLfk+AuZ6jWXrFijYiIiIiI2q0iYyto7U39bTGvWOsa5CW2hrrLZdjz7FgkXCtBRbXO6e2e9fExCxA9XV2sBhQ8d1N3TO0Tir9/dhgZ6gqk5JWhc6BX7cc4TVpBufh6/Yl0hPsqsGhSNyeuiMg+giAg4VoJAOCb+UOx52IuHh4TC4mEoVp7xYo1IiIiIiJqt9QVxuEFjWgFVbjWtHz2iVBZXJNIJOgZpsSATr4OXZ+j+Zp9nXob1Wgeri4YFO2HuFAlAOD8teIWW1tjpBWWWxyv3JmEvFKNk1ZDZL+80ioUVVRDKgH6R6nw/JS4RrWiU9vFYI2IiIiIiNottR0VawDQyd/Q8nnXkKhmW1NzcpHV/Iin1dfd5tkz1BsAcD6zlQVrBRUADO23JjsTsp21HGrD0grK8cWBFGh1+hb93KQcQ7VapJ+H1eRgap/YCkpERERERO2SIAgoKDNUrPl6Nm5ftG8XDEV+aRV6hfs059JaRH3BWlyIoWLtYnZpSy2nQfuScvHRrmQAwO39w3ExuxTrT6SjoKzaySujtmjU27sAAAq5DLMHN09QrtcLOHApD3sv5uJfN/eARCJBco7h91SXVtRiTc2LwRoREREREbVLxRVaMVzyb2SwFuqjQKiPojmX1WJ09QRrQd6G/eTU5VUttZwG3f1/R8TXEb4e4iCDUg2DNWrY/qQ8/HA8DePjgjA4xk88fzmvzOGfdTajCB/sTELvcB+s2pUMjVaPqX3C0C9SVROsBTNY6ygYrBERERERUbuUV2bYm8vbzYUtWbWY9nxSG6emHr6cj+wSDW7tG+bMZYki/RQ4f83wPSvT6MTzV/PL8PbWRCwc3wU9jPvEEX24Mwnv7bgIAPj5ZCbCVTXhuFzm2KEBJZXVmP3JnyjVaLHjfDa6BXvhYnYpbv/PARz+1wQkZbNiraPhHmtERERERNQu5ZcaqrH8vRpXrdaRmPacKzIGa7M++ROPf/MXko37Q7W04krLqrRIXw94uhnqQEo1WvH89FUH8OuZa5jywT6k5tcMOli1Kxkj3vzDYqoodQw6vSCGaiYZ6grxtWmfRUf5+WSmxa9JUzu1IADLfruAQ5fzAQBdg71tvp/aHwZrRERERETU7giCgAy1IWQJ8HJz8mpa1tt39AEAfDinf533qDwMYWNReTUEs+mhWUUtP4Hzp7/S8cJPZ8XjzgGeUHnI4W0K1ioNIUZ5ldYiJJm6cp/4+p1tichQV+BfP51poVVTa3E1v6bVc1z3QEyOD7a47uhg7bcz1yyOuwZ5YdbASADAT39lADBMIe4VxorKjoKtoERERERE1O58svcylm25AKDjVazdOTASt/QJhYdr3T/uqYwVa1U6vTjgAQBkUse2zTVEEAQ89d0p8TjMxx2bHhsJiUQiVqyVVRmCtav5ltVoJRotFn13Ekqzia/7kvKQU1yJIKV7C6yeWoNT6WoAgLe7Cz686wa4u0jR65VtqKw2TAMtdOA+gj+fzMDBS4aKtM/vHYhLOWW4c2Akjl0twHfH0sT7ZvSPsJjQS+0bgzUiIiIiImp3TKEa0PEq1gDUG6oZrssgl0lQrRPEIQEA0MK5mhh+mIT7KuBlDNRqt4Km2mjz3GCsEKp97qExsY5eKrVCgiDgoz8Mk2T/NiBS/LWz8+mx+O5IKlb+keywijWdXsCy3wx/rswdEoXxccEYH2e41idCBakEiAnwxBu398aATr4O+UxqGxihEhERERFRu1JSa7+uvhEq5yykFZNIJPBRGCr5zPejqtbVPUm0OZTUmvhpPmSiditoY/dPyytp+XZWcryzGUX4bN/leqfbFpRV4VKuoRV04fgu4vlwlQLjexhaQh01+fb9HYnIKjaE0PeNjLG4FujthjOvTMbOp8diaGd/yFmt1qHwu01ERERERM0qOacU+aUai728mtOptCKL42Gx/i3yuW2Nj8IQXGWaBWsara6u25uFKTQz8XCtCdbEVlCNdbDWO9wHL07tYfOZhQ7eU4ucY9Z/D+H1XxOwvNZgAnM5xhDVz9MVfp6WLd/+xuO80ipodXqr99rrdLrhz5UALzd0DvC0um769UodD7/zRERERETUbARBwPw1x5CSZ6gq+fSegZjUM7iBdzXN2YwivLr5PGSSmn7Ge4dHI9LPo1k+r63zdjfsTWaqwgFqWjMFQYBE0vx9oebTFQHLFlYvd8tWUFOI8ur0eNwzLNq4TuCN3xIsnuGoCiVyrrIqQ8j71aEreGZyd5v3mH5NBHlbt3uHqxRQyGWoqNbhSn45ugR5Xdd6cooNn/X+nX1b5PcGtR2sWCMiIiIiomah1wu47T8HxVANAEo1zVdN9Oi6EziSUoBDlw2bi786PR6v3BrfbJ/X1nkbg6vc4prWyVJNNW5asRe3/+cg9PW04DlK7Yo1hVnFmrdZsFZRpRMDNtN5AOhpY/KiIzerJ+crqdTik72XsHDdCavKsxxjKBxoI1iTSiXoFuINAEjMKrmuNZzLLEJituEZwRyMQbUwWCMiIiIiomaRV6rBqTS1xblSTfO1GmaZbcIPABN7NE9lXHvhaawOyzHbk+xcZjEuZJXgZJpanLbYnEpqVawpzPZYC/RyQ7hKAb0AHLyUhxJjCOflVjMFNN5GsHYiVY3U/Mbtx0atl1xWUxX2798uYPPpa+JEThPTr926wq4exmDtbGaRzeuNdcuH+8XXIQzWqBYGa0RERERE1CxyS603kS+rFaQ4kqm1EQAeHhuLMJWi2T6rPTC1WmabtYKeyywWX+9KzG3UczafzsQtH+7Drgs5dq+hvj3WJBIJxscFAQA2nMgQK9a8zPayUnm4ItzG93nxT6ftXgu1HoIgwFbB5I7z2fjb6oO4mF0CQRCw7VwWANutoABwg3E65+HL+TavN349Na+VCu6oRZYYrBERERERUbPItTGdsTmDNaVZi2C0P/dVa4gpoDKvWDubUVPZk5TdcPtcSWU1Fq77C2czivHjiXS711B7gqt5KygAzB0aBQD47ew1XDG2FJu3ggJAj1BD1Zr55vVHrxTavRZqPTRavc1poF//eRVHrxTi5Z/P4URqoThQYEqvUJvPGdbZMLjkRKoaZ9KbVrVWXav9lPurUW0M1oiIiIiIqFnkldbsdWVqnyqpbL5gzcsscPFRuNZzJwE1wVpRRU24pdHWhAipBQ23U543q3DLt1Gh2JDawwvMW0EBIC5EiUBvNwgCoDUGLV61pi+a2kHNh1T0Cfexey3UetT+dVFbhroCh1MKAACTegajd4Tt73eknwcGRRuq1v6791KT1mIePO96ZmyTnkHtG4M1IiIiIiJqFqaKtRn9w3H3sE4AmrdirVpXU+Ey0PjDNNXN063+lrbGBGvmraPJOWXYmZBt19CD2kGrR62KNcC6Qs2r1vGILgEAgC6BXvjqvsEAGg5mqHUz/TkhkQAfzumPSD/Ldt/UgnK8vTURADCwU/2/1+cNjwYAXKu1B2NjmfZuDFcpEBPg2aRnUPvGYI2IiIiIiJrFyTRDO16gt5tYZVRW1XyBh2ni6Kq7bkCAl+09l6hG7YCqtpJKLYrK65/iah6s5ZVqcP9XxzDyrT+w5OezNlv5asup1S6scLVek/neeYB1xdrgGD/sfHoMls3oDR+FXFw7tV2mYDTAyw3T+obh8fFd67z3pl4h9T7LVC1rqzXdXFF5Nap1emw9m2URDpv2IAzx4dACso277hERERERkcOlFZRj+/lsAECvcB9UGVsM0woqkFuiQWAdm41fD9NG+N2CvRz+7PbIy826OgwA7hgQgV0XcpBfVoUMdQV8POQ27wOAczamLWYWVWLNoauIDfQSq4XqkqGuaHCdyloBoJuLdX1IbKDhe24K1szbW6ntKTNODzaFqGO6BaJnqBIxAZ749cw18b5184egk3/9VWSmP2tySzQQBMHmHmlvb72A/+yuaRWdN6wTXrqlJ1xkUlzKKQUAdPLjvo1kGyvWiIiIiIjI4RKzSiAIhvapqb1DxbbDMxlFmLR8DwrLqhp4gn0EQRCrlBqqxCIDhbzm/6fR3QLF1y/c3AP+XoY96grq+T5ptDokG0MHWw5eymtwDdeKLIO12iEaYN0KWt/m8aZgrVSjhbbWpvPUdpTVmgAbpHTHb0+Mwnt39hXvWTGrH4bHBjT4LFP1akW1DmVVOpv3fHMk1eL4q0NX8c52Q6vphSzDEI+4UG87vwrqKPhvHCIiIiIicqj0wnI8sOYYAKBXuBJSqcSifU9dXo11R1Lx6LguDvtMjVZf5+b21LBI35o9rFQecvh7ugEoRX5Z3e1zl3LKoNUL8FHIbVaI5ZfWH55WVOmQVmAI1j6c0x/Xiiowqmug1X32fD/Ng7niSq3FpFBqO0ytoJ61qird5TJ8u2AoJACGGCd+NsR8L8F3tl7AtaJKpBdW4JN7BiDC1wM6vYBis9ZhhVyGimoddpzLxuIpPXAhy9Du3D1EeZ1fFbVXrFgjIiIiIiKH+nTvZfF1uMrQPlX7B+SvD11FtQMrisw3q/e0sU8XWRsXF4hb+oRi2YzeUJsFYxKJBH7GirX6wrH0QsNwg07+tlvk8hqYEvrCT2fE11N6hWDB6FjIpNbVaFKzCrVP7h5Q7zNdZFIxiFOXO7YqklpO7Yo1c0M7+zc6VDMxBa5fHbqK7eezcf5aMVb8ngTA0CJq2g/w9v7hWDmnPwDgcl4Z8ks1SMkrAwDEhbBijWxjsEZERERERA5lvme9XjAchKssp/plFVfivNnG99erstrQ4uXmIoXURjhD1txcZPjorhswZ3AUOteadhjgadkKunzHRTz2zV/i/89Azf5o4SoFpvcLs3p+QxVrV/INgUWfCB+4yOr+0dS8fe/G+Po3qgeACGP13flrjvv15Qw6vYCNf2Xgp7/Snb2UFldTseaYkPzjv1sHsqY25Myiml/Hy2f1w6SewQgzDir4+WQm9IKhijOoGfaFpPaBwRoRERERETmMXi9gf3LN3lpjjHt3BSndERtoGd6Ypu3V9Rx7VFYbqt/c5bY35Kf6PTgmFg+PjcUvC0cCAPw8DSFCflkVTqQW4oOdSfjlVCa2ncsS35NRaAgkwlQKvH5bL8y4IRwAMGtgJACgRKO1COJqyzVWtL08Lb7etZVr7JvwOaqrYd+tPYm5dr2vtfnprww8+d1JPPXdKZtDItoz0/ACRwVrI7oEiGGZSXGFFknZJbj38yMAgDBVzfX4cB8AwKubzwMwVKvVt7cfdWwM1oiIiIiIyGHWn0gXW6f+MSIa4+KCaq49PByvTY/HoGhfAMCCr48j0bgxuLn8Ug1GvPUHlv2WgIo6NhuvTaOtqVgj+3m5ueCfN8Whd4QhUPAXW0E1FgHVhhMZ0OsFCIIgVoSFqxTwdpfj/Tv74cqbU/HmzN5wNVag5dcx/EAQBOQUG4K1hiqBTCFHYw2K9gNQs+l8W3XBrOIuvbDh6antSVlV3a2gTdW9VitncWU1vjuaJu6vNtD46wYA4sMs91OL4/5qVA/+W4eIiIiIiBzm+NVC8fWC0Z0trqk8XHH3sGiE+tS0hS7fcdHqGb+duYZrRZX4797L+PXMtUZ9rkZrqFhzk/NHHEdQGqdrllRqLQYT7LmYi/u+Oor+r+3AwUv5ACwrfQDDHm3mwZzJtaIK/HzSEMwVV2rF71lgA8HaQ2M648mJXbHliVGNWrvp11dOSd0Vka1RTkklFm84ja1nr0Gj1SHNuIcd0HBbbXsjtoI6cL/E2sMHiiuqUVhu+LU9PNYfz97YXbxWez+1Gzr5Omwd1P5wV08iIiIiInIY075b942IsQjQzDU0qXH24Chs+CsDf6WqkZxT2qjPvaY2hChuLmwFdQRTxVmVTo/iSsuJn7sTcxHl5wG1MZTw97IOxpTuclwrqkRxRU0b53M/nsa+pDw888Mp9Aw1hBze7i4Ntu96uLrgyYndGr32IKVhPdnFGuy9mIvR3awnjbZGL/x0FjvOZ+ObI2mY2CMYmeqaKrX8BgZBtHYHkvOQnFOK2/qHI79Ug86BXvXeX1bHVNDr0S3Y8jOLzULjW/qEWezNOD4uGF2DvJBk/PNnAIM1qgf/OoeIiIiIiBzmar6hymZyfHCd95hXlcnNWjcTs0qwcN0JpBWUY1qfMOPzyhr8zE/2XsKj604AANxZseYQpu9RlVaPkkrrPc48XGsCD1tBqbdxCmOJMZSrrNZhX5Jh771qnYBT6YY9wxqqVmsKf7P13GPcP6st2HuxpuX294RspBWYVazV0VLbFuj0Ah78+jhe3nQOfZdux/j39mBnQna976lvKmhTdfK33ONRpxfE8NLHWKFp4uoixdYnR2NKrxDcOTDCavgKkTlWrBERERERkUNodXqxYq32D7HmKs32TdMYN7f/4Vganv3xNABDqPCfuTcAgLhfW53Pqtbh379dEI9ZseYYbsaKNY1Wh+KKaqvr5kMJ/OsN1rTYl5SLeXUEXD1CHb93Ve0Jo3q90CYmxZpaY01KzIY2tMVgTacX8Pn+FPh7uYqtnSb3f3UMvy8agy5BtivXTGGuo4YXAMANUSrcPzIG4SqFOJTAtE9g7WANAGRSic1pokS18a9ziIiIiIjIITLVldDpBbi6SOvdkN689c80GdIUqgGGCZ+mKZ+pZlU7QM2QApMDZhNIAQ4vcBRXl5qKtWIbFWvme34p3a1DCW/jueLKavzzx9Ooa8jrwBZosSuyEQy2NkXl9a+xLbaCfnEgBW/8loBF358CYAhgzScDv/Hreav3pBeWo7iyulmGF0gkErx0S0/cNzLG6pqtYI2osZr8b52qqiokJiZCq7Vv9DEREREREbVPphAsys+j3gqhB0bVDDXIKqqEIFinLqZJlOVVOpRptBAEAY9/8xd6vLQVm05lWn2mCYM1xzBV/hlaQa1DH/NqKlvfa1PF2p6Lucgssj1EIMjbDXMGRzliuVb+eVOc+Lq1V3uVVFaj76vb672noJV/DbZ8ezTN4nhQtB9+eGi4eHzocr7F9YRrxRj51i489PVxlGkMAbojK9bqw2CNrofd/9YpLy/H/fffDw8PD8THxyM1NRUA8Nhjj+HNN990+AKJiIiIiKhtuFpgaNvs5OdR732B3m44uWQS3FykuFZUid8TcqzuqdTqxH28cks0yFBXYNOpTOgF4EhKzQ/k6gYqfahpTBVrGq3eZitoQ0wVa6Z91Wz5bN7ABgcXNNXDY2MRE2Cojmrt1V5njPvNAUBArUEQ3YMN0ynz2thU0PIqrVUbd69wJfw8XbHx0READJWpV4z3rD18FVNX7gMAHLyUXzMV1IHDC8w9c6PlMAwGa3Q97A7WFi9ejFOnTmH37t1wd68Zqzxx4kR89913Dl0cERERERG1HabqscgGgjUAUHm44m8DIwAAhy/niz/YPju5Ow48Px4fzO4vbmyfW6qx2EDfPEyr3eanravnkOxiHqyVaKy7lEwDC3qH+9h8v6lizZaeoUqE+rijmzE0ai6mNbb2ai/ziroJcUHo5F/z++cGY6tsQZkG+jb0a/tMehF0xvV6usrQK1yJf4wwtGD2i1SJk1q/OZoKQRDw9tZEi3ZhU2usrTZjR3hoTKzFcX2/XokaYnewtnHjRnz00UcYOXIkJJKakt/4+HhcunTJoYsjIiIiIqK2I9U4EdQ8GKhPbKBh4/L0wgqx3fBvZhP4TPu05ZZoUF5lO1hTl1uGJlpd2wkfWjNTS22pRgsbnboIUbpj08IRWDd/iM33K2pVopmCFAD4eeEI7HpmbLNVq5mYgrXW3gqaXVzTKvuvm3tA5VEzDGLBaEPbtF4A1G1grziTBONQgEk9g3HmlcnY9OhIi7bOOYMiAQC/nr6G9MIKq4C8SmfYY9Hfy3owhiPUHnDRFoZbUOtld7CWm5uLoKAgq/NlZWUWQRsREREREXUs5nusNYYpQLuYUyJWq5hXqJgq1nKKK8U9lwBAXVETlBSW165Ys5ysSE3jWmuvuto/6iXnlKJnqFJs+azNvErs9v7hWDTJ0Ho3oos/5DJps4dqQM200twSDVbtSsbpdDX+8cURzPnkT7GaqjXIMu5BN39UDHw85LjjhnBE+3vgwzn9ERPgKVZzFpS17pZWc+mFxunAxv0WawdXY7oHws1FivTCCry48SwAQyWj+bACd7kUHq7NX0kmlzHHoOtj96/SgQMH4tdff8Vjjz0GAGKY9tlnn2HYsGGOXR0REREREbUJgiDYXbEWZgzWLuca9llydbEMXAK9alpBg5U129CczSjG14eu4O5h0VZVPGwFdYzawZqbi1Sc1AoAEX4K5JVWIcTHvfZbAQA9w5Ti6+Wz+gEA9jw71uL72NxMgdRXh65AXV6Nd7Yliteu5JeJFZPOlmWsWDP9f3P3sGjcPSxavO7v5YqiimrklVahi3WNS6uUoTYEa+G+CpvXPVxdML1fGL4/lo49Fw2DSuLDlCiurBb3V/PzaJ5qtdp8FC3zOdR+2R2s/fvf/8aUKVNw/vx5aLVafPDBBzh//jwOHjyIPXv2NMcaiYiIiIiolVOXV4t7cUX42lexZqKstc9RnwgVborXoEuQF8qqdBbXXvr5HG7tF44itoI2i9rTVd1cZGKwNrV3KFbNvaHe998UH4J3/9YX/aNU4rlO/p4OX2d9fDwMwZqtARcZhRWtJljLKTFUogXVEToGeLrhcm6ZeF9bIAZrKtvBGgC8dlsvfH8sXTwe1S0QF7JKxGo3v2ZqA60tWOnW8E1E9bC7FXTkyJE4efIktFotevfuje3btyMoKAiHDh3CgAEDmmONRERERETUyl3OKwVg2HursW1+Kg+5xV5ctTcqnzkgAk9N6oZSjQ6/ns60ev+pNLVVK2i1jq2gjuBaaw8qd3nNcWNa56RSCe4YEOHU8Kq+SY9X88vqvNbSCo1tswGetoOkLsGG/w8f/+Yv7EzIbrF1XY+Mwvor1gBDWDs4xk88Hts9ECqPmu+Zn2fzBl4vT+sJH4Ucb83s06yfQ+1fkxqWY2Nj8emnnzp6LURERERE1IZodXpkl2gQqnTHW1sNbXa96pgSaYtEIkGYyh2XjK2g3jaCkEOX8vDKL+dtvv9CVjGKKqohk0rEPbNa095ZbZlEIoGrTCpuIu/mIrO41hbUDtY6B3qKbcdXjG3LznL8aiFW7UrGklt6otBYdelbR7B2S59QrDucCgBYfyIdE3oEt9g67XUwOQ9vbUtEflkVXKQSRDdQpbhoUjd8svcy7h7WCUp3OXzN2j/9PJpnIqjJP0bE4N7h0W3m1zO1XnYHa7/99htkMhkmT55scX7btm3Q6/WYMmWKwxZHRERERESt10e7krHi9yT0ClfibIZhCuANnVR2PSNMpRCDNV8bP0j71PPD9c6EHABAj1BvdAn0wsaTmXh0XBe7Pp/q5uZSE6y5y6Xw9ZCjsLwaE3q0jY2+agdr8WE+YrBmqqhylvu/Ogp1eTUy1RVi1aVfHcHa0Bh/dAnyQnJOKTLVlTbvaS3u+uyw+HpQtJ/FJFBbhnb2x9DO/uKxbwtWrAFtJySm1s3uVtDnn38eOp3O6rwgCHj++ecdsigiIiIiImr9VvyeBABiqAYAE+Lsq6Yx34PJ18Zm5bXbQx8dF4tZAyMBAIdTCgAAAzv54b07+2HPs2NxW/9wuz6f6mY+wMDNRYbtT43BV/cNxtTeoU5cVeOpzDalH9jJFyqzoC2nxDkB1e7EHDzx7V/ivm8XskrEKktVHSGyVCrBx8Y97ZKySyAIbaMqc1isf8M31aIyr1jzbN6KNSJHsbtiLSkpCT179rQ6HxcXh+TkZIcsioiIiIiI2pZJPYPx3p19rYKwhoQ1EKzVrjrycHWBj4chWBjYyRfDY/0xLDYAMqmkxTfHb+/MgzV3uRSB3m4Y4x3oxBXZx/zXzmMTuiK1oBw+CjmKKqqRW+qcQQDP/HAaeTY+28vNxaLdtrboAE+4y6Uoq9Jh06lMTO/X+gPkpuyv19IVa0SOYHfFmo+PDy5fvmx1Pjk5GZ6e/BcZEREREVFHUGqcAAoYfhh+e2Yfu0M1AIj0Mw/WbLSC1grWPF1l4rnOgZ5YdGP3JlXGUMPcalWstTXmv3ai/T1w99BO+GXhSABATrGmxSu/isqrxVCtX6TKYmJqXW2gJnKZFAtGxwIAPt+f0mxrvB5lZn8mAIbfn/Yy32eOFWvUVtgdrE2fPh1PPvkkLl26JJ5LTk7G008/jVtvvdWhiyMiIiIiotbpSp5hryovNxccWjyhzo3XGxLlV/PDt8rGM5S1gjVfT1fxnLrWRFByrNoVa22NUuGCqb1DcVN8CKL8PAAAQUpDFZRGq8fBS/niRM6WcMU4iTTI2w0bHx2BT+8ZiH6RKgB1Dy4wd/fQTpBIgFPpRchQO3ePOFu+PHjF4rihwQW2WLaCsmKN2ga7/3R8++234enpibi4OMTExCAmJgY9evSAv78/3n333eZYIxERERERtSKCIODj3Ya/aO8VroS7vOnVTJ38PcTXnq7Wz6ldsRbp5yGeK6pgsNacLPZYu47vsbNIJBKsmnsDVt89QNyk3l0ug7e7YUekuZ8dxsFL+S22HlOwFh1gCJwCvNzwz5viMKKLP/pFNDxNN9DbDQOifAEAexJzm2+hTfTOtkTx9cwbIqCw8fu5IZatoE0L64laWpNaQQ8ePIhff/0VjzzyCJ5++mns3LkTf/zxB1QqlV3P2rt3L6ZNm4awsDBIJBJs3LjR4rogCFiyZAlCQ0OhUCgwceJEJCUlWdxTUFCAuXPnQqlUQqVS4f7770dpaam9XxYRERERETXSplOZ+PXMNQCGSYvXw9/sh+cqrd7qeu3QLsrPQ9yEvrC85aqNOiJP15otuc3bQtu6QO+aSqiW/DWUml8OAOjkVxMmD4v1x9oHhmLp9F6NesboboY97vYlta5grbK6ZsDha9Pj8d6dfZv0HF+LijUGa9Q2NOlPR4lEghtvvBHPPvssFi5ciNGjRzfpw8vKytC3b1+sWrXK5vW3334bK1euxOrVq3H48GF4enpi8uTJqKysmeAyd+5cnDt3Djt27MDmzZuxd+9eLFiwoEnrISIiIiKihv3vz6vi627B9m9Qbk4ikeC2fmHw93TF5PiQBu/393RFbJDhMy/llqG8StvAO6ipzEOO66lKbG1W3XUDhsT4AUCLtoLmlBj2VwvxcW/yM0yto5dzyxyxJIdJLzSEhl5uLvj70E5Nfk6gtxt8FHIEGf+XqC1o1FTQlStXYsGCBXB3d8fKlSvrvffxxx9v9IdPmTIFU6ZMsXlNEASsWLECL774IqZPnw4AWLNmDYKDg7Fx40bMnj0bCQkJ2Lp1K44ePYqBAwcCAD788EPcfPPNePfddxEWFtbotRARERERUcMEQcDZjGIAQFyIN27te/3TCZfP6getXoBcZvvv/bsGeSEppxQxAZ6QSCQIVykQ5uOOzKJK/JWqxoguAde9BrLma7Z5fHuqWOsRqkS/KBUOpxSgsAX36cs1BmvmFXP2MrVXVumsqzud6UqesRrP30Nsu20Kd7kMvz0xCi5SCWTSpj+HqCU1Klhbvnw55s6dC3d3dyxfvrzO+yQSiV3BWn1SUlKQlZWFiRMniud8fHwwZMgQHDp0CLNnz8ahQ4egUqnEUA0AJk6cCKlUisOHD+P222+3+WyNRgONpmbEcXFxsUPWTERERETU3uWXVaGiWgeJBPh54QiHTIuUSCSQy+r+Ifqju27AzgvZuLFnTUXboBg//HwyE0evFDBYaybttWINqPna1M3cCioIghg05RonggZ6NT1YMwWcGrPWy9Ygs8gwTCHCV9HAnQ0LV13/M4haUqOCtZSUFJuvm1NWVhYAIDg42OJ8cHCweC0rKwtBQUEW111cXODn5yfeY8uyZcuwdOlSB6+YiIiIiKj9Sy80/AAd7O3ukFCtMbqHeKN7iLfFuXuHR+O2/uEY0Mm3RdbQEZkHa+2pYg2o2SS/OfdYO5ich0fXncDS6b1wa98wh1SsmX7PaWzsR+hMpj3WzPflI+oo7PrTsbq6GrGxsUhISGiu9bSIxYsXo6ioSPwnLS3N2UsiIiIiImoT9hs3TXdEZcr16B/li3Hdg6B05z5MzUVlNqGxvVWsqYyhYXO2gi76/hQKy6vx+Dd/QRAE5JQY9gq/nmDNNKnV1qAPZ9JUG9bjJm9fASxRY9j1q14ul1sMDmhOISGGMu/s7GyL89nZ2eK1kJAQ5OTkWFzXarUoKCgQ77HFzc0NSqXS4h8iIiIiIqpfan453t1+EQAQ7uRgjZqfyqxirWvQ9Q2paG1aohW0pLImtNudmIvKaj1kUsl1VqwZW0FbW7BmXE9LVbEStSZ2x8mPPvoo3nrrLWi1zTt9JyYmBiEhIdi5c6d4rri4GIcPH8awYcMAAMOGDYNarcbx48fFe/744w/o9XoMGTKkWddHRERERNTRfH6gZluY8XFB9dxJ7YG3e01bX3vbx87UClrQjFNBTYMGAODLg1cAAHcOjITHdbRLmoK1Kp0eer1wXetzJI3W0Ara3lqGiRrD7t/RR48exc6dO7F9+3b07t0bnp6eFtc3bNjQ6GeVlpYiOTlZPE5JScHJkyfh5+eHqKgoPPnkk3j99dfRtWtXxMTE4KWXXkJYWBhuu+02AECPHj1w0003Yf78+Vi9ejWqq6uxcOFCzJ49mxNBiYiIiIgcLDGrBADw7t/6Ynq/658GSq3bkBg/PDouFvFhPu2uFdRUNVZcqUVltc7hX58gCKioqhkwsOeioYV6Wp/Q63quq1lwVaXTw13aOr4vNRVrDNao47E7WFOpVJg5c6ZDPvzYsWMYN26ceLxo0SIAwLx58/Dll1/iueeeQ1lZGRYsWAC1Wo2RI0di69atcHd3F9+zdu1aLFy4EBMmTIBUKsXMmTOxcuVKh6yPiIiIiIhqZBUbtoVx9v5q1DIkEgmenRzn7GU0Cx+FHK4uUlRp9cgt0SDSz8Ohz79WVImyKuvJnXGh17cNkXmrpUarb1QgKAgCyqp08HJrvsECNXustY6gj6gl2f0764svvnDYh48dOxaCUHf5qkQiwauvvopXX321znv8/Pywbt06h62JiIiIiIisCYKAa0WGiaChPu4N3E3UukkkEgR6uSFDXYEcG8HaidRCrD+ejucmx8HHw/4BGX9ezrc6F65SwM/T1cbdjSeXSSCRAIJgar9seG3/2X0J72xLROdAT/zv/iEIUzk+GGcrKHVkTY6sc3JykJiYCADo3r07goK4xwIRERERUWtx16d/IlNdgc/mDUIXB2w8X1RRjUpjVUqwksEatX1BSkOwlltiPaBvxn8OAgAqq/V4786+dj1XpxfwxYErAIDb+4fjcm4pAr3d8fDYzte9ZolEAleZFBqtvtGTQX8+mQEAuJxbhlW7krFkWs/rHjKg0erww7F07E7Mwc29Q9kKSh2a3cFacXExHn30UXz77bfQ6QyptEwmw6xZs7Bq1Sr4+Pg4fJFERERERNR4giAgrbAcaQUVKDabTHg9MtSGajV/T9d2t98WdUzB3oaAOKdEU+c9f6UW2v3csxlFOJNRBAB4cmJXdPL3bOAd9nFzMQRrjZkMWlBWhYvZpeLx2sOp+MeIGHQJ8sK72xJxMbsEH97V3+6g7cfj6Xhx41kAwJGUAvSO8DGujX82UMdjd5w8f/58HD58GJs3b4ZarYZarcbmzZtx7NgxPPjgg82xRiIiIiIissPrvyYgrcAQhJVrrPd5AoD8Ug0mvr8Hy3dcbNQz/0jIAQDEhXo7ZpFEThbgbWjLzKsnWGtKMK2uMLwnLsTb4aEaULOPmWlfs/okXCsGAMQEeKKncX+31IIyqMur8NGuZGw/n43dibl2r+Fkqlp8XVypxYHkfOPaWLFGHY/dv+o3b96Mzz//HJMnT4ZSqYRSqcTkyZPx6aef4pdffmmONRIRERERUSOt3nMJ/7c/RTwuq9LavO/bo2lIzinFBzuToNfXve+xye8J2QCA2zgNlNoJLzfD/mSlGh1+O3MNqfnlVvfklVahqNy+cK1MozU+v3mGBbjKDD/GV+kaDtbSCw1fU5SfBzr5G/aRS7hWgn6v7hDvOZ2utuvzNVodfjieDgAIqdUWzlZQ6ojs/lXv7+9vs93Tx8cHvr6+DlkUERERERHZLym7BG9uuWBxrsJsMmFOSSWKKqqx43w2fjmVKZ6/nFfW4LNzjVU93YJZsUbtg6erofJr/Yl0PLL2BEa/s8vmvmUrdjauqtOk1BSsuTdPsGaqCtNU265GNZdRaKhcjfBViNVz72xLtLjnL7Pqs8b4ePcl8fX9I2Ms18ZWUOqA7A7WXnzxRSxatAhZWVniuaysLDz77LN46aWXHLo4IiIiIiJqnKv5ZZi0fC8AINrfA5N6BgOoqVjbdi4Lw5b9gb5Lt2P+mmO4kFUivvescT+o+hQaq3Z8Pa5vqiFRa+FhrCgrqqipSLv1o/1W9x1JKbDruaaKNc9mqlgzhVeN2WMt3RishfsqEO1vOfm0uzEkv2qjUq8+F7MNf3YEeLliev+wWmtjxRp1PHb/Tv/444+RnJyMqKgoREVFAQBSU1Ph5uaG3Nxc/Pe//xXvPXHihONWSkREREREdbrr08Pi6yEx/mKbWLlGh4oqHRZvOANdHS2f6vIqi2NBEHA2oxjdQrzg5iJDZbUOFcbqGJWnvJm+AqKWZapYM3chqwQ6vQC5TIJqneH3S58I+wb0ia2grs3UCmoMrxozFTTdOHQkXKVA9xDLatM3Z/bG7f85iGtFFajW6SGXNS4Uyy42VK++Nr0XAr3c4O3mghLj18w91qgjsvt3+m233dYMyyAiIiIioqa6ml8mTu0EAHe5FC4yCQBDxdqWs9dQUFZV19vxyi/nkaGuwJzBUegc6IVlWy7gk72XMbCTL75dMBRqY7Wai1QC72aqwiFqaQobwRoAFJZXQQIJAEOwVqWtew/CMo0WH+xMwi19QtEnQgXAsGcb0JwVa8ZW0EYEazWtoB7oHuwNmVQCnV5AoLcb+kaoxADx3i+O4Kb4ENw9LLre55VqtDh+1TApNUjpDolEgphAT5xOLzKuja2g1PHY/Tv95Zdfbo51EBERERFRE/x8MgNPfHtSPHaXS3H3sGh8dzQVAFBepRMnhN4UH4IjVwpQrdMj0tcD540TAwHg030p2JWYi+1PjsYney8DAI5dLcT+5DwEGzcoV3nIIZFIWugrI2pennVUlOWWaCwGA2i0de9ltnzHRXy2PwWf7L2MK29OBWA+vKB5QqaaYK3+Pda0Oj2yiisBGPZYk0gkeOXWePxyKhP/vr03pFIJgrzdkaGuwIHkfBxIzseMGyLqDQQfW1fTlRasdANgmDhaE6yxYo06Hv51ExERERFRG7bpZM0Qgg9m98O0PmGQSiXwMIYGZRottMaWtugAT7z9tz6QS6VQuMrw/o6LWLkzSXx/ck4pcoxDCkxOpxdhYLThh2UV91ejdsSjjuDLVOVlUl/L5ZEr1vuvNfcea+5yw7rLq+oP1rKKK6HTC3CVSRHoZQjB7h7aCXcP7STeM2tQJN7fUTOcIa9UU+e6T6ersSsxVzwO9DY8s1eYD342/jnEijXqiBgnExERERG1YZdySwEAax8Ygun9wiGVGirKPI2hQUWVTtyc3Uchh9JdLrbA2aqoGbpsp8Xx6fQisRXU14P7q1H7UVfFmnlbNVB/y6V56CYIhgC7wLhnYXMFa0p3w+/D4srqeu8zDS4IU7mLfy7U9viErtj33DjxOK+07pbx1zafF19H+CrEEG1cXKB4Xu7CilbqeBisERERERG1URqtDqkFhol+XYO8LK6JFWtVWotgzVxjfvA/k6FGvnF/NlasUXviWVfFWq1gbc/FXMxfcwzlVVpkG1srTcyDtZ5LtuG5H09ht7Gqy6uZgjXT7+PiCm2996UZ/2wI91XUe1+knwf6RaoAGCrW/rycj8vGwF6r06O8Sov8Ug2OXjHsrfbZPQPx7YKh4vtjA71wc+8QDInxQ7C3e5O+JqK2jK2gRERERERt1NX8cugFwNvdRWzLMjGFBtvOZYtTBGsHa/X94O/t5oKyKi2yizU4n2nYPymo1mcQtWWKOirWLueWWZ3bcT4bw9/8A+ryarxxey/MHWJopywwm6hbUa3D98fSxWNfz+YJok2/j02BeV2ScgzhWJdAr3rvA4AAY6vog18fNx674tiLk/DfvZfx/bE0jO1mqEqLC/HGxJ7BFu+VSCT4z9wB9n0RRO2I3RVrZ8+erfPaxo0br2ctRERERERkprxKK1ad2JJs/ME5NtDLaqiAeZubqapGVauV0/yem3uHoG+Ej3hcotGii7EKbmdCDgAgiNUo1I54mk0FndE/HI+MjQUA/J6QbfN+U0v00l8MLZFVWj36Gyu9ant8fBcMj/V34Gpr+CgMv2+LGwjWLmSVAAC6hygbfGaAl2UImFdahdT8cnzwexKu5pfjq0NXAQBjuwc1ZclE7ZrdwdrkyZORkpJidX79+vWYO3euQxZFRERERETAsz+exqi3d+H41UKb1y+ZBWu19Qyz/mG6vlbQJbfE4+eFI7Hklp4AgDdu74X4MEPQZhpoULsqjqgt8zALlm+MD8FzN8Xh5Wk9G3xflJ8HAMDVRYov/jEY80fFWFz/+9AoLLqxO+Sy5tl5SdnIirXELMPU3+4hja9YM7cjIRtVOj28jX9OSCXA3CFR9i6XqN2z+3f6Aw88gIkTJyIrK0s899133+Gee+7Bl19+6ci1ERERERF1aL+evgYAWPZbgs3rpsEFsUGeVtcifD2sztUO1syL3EzX/jEiGocWj8ddg6PEijUTtoJSe+LqIsXDY2MxZ3AkJhnbG+cNi8bEHoaqrLqCZL9aLZ7PT+lhUZ3WNci7mVZsIO6xVlktDkyoTV1ehexiQyDeLbjh9YyLs65EO5pimHhaYpxyOqlnMCL9rP9cIero7A7Wli5diptvvhkTJ05EQUEB1q1bh3/84x9Ys2YN/va3vzXHGomIiIiIOhzzapRjVwtxJc9y36dqnR6HLucDMOx7ZMtLt/SEu9zwn/zebi5WVSnme6yZ7pNIJAj1UUAikVgNRGDFGrU3/7wpDstm9IHMODVTKpXgs3mDsOuZsfhoTn+b7zmSUoDvj6WJoZZMKsGj47qI16P8mzd8MgVrp9OL0HfpdvzffsuOMp1ewKTlewEA4SoFvN0bnuY7oJMvvvjHILw2PV5sCz121RCsxYcpEa5S4B8jYup7BFGH1aThBR9++CHmzp2LoUOHIiMjA9988w2mT5/u6LUREREREXVYKbWCtK3nsvDQmFjx+KuDV5BdrEGAlxtGdgm0+Yz7R8bg/pExuJJXBq1egMLVcgpifJgSj43vgnCVwmqPNgBWFWshPtxjjTqGmABP6PT6Oq8/9+NpBCvdMca4qb+/2R5l0f7WFaSOZF55WlypxWubz+P+kTWh18XsEuQa27d1etsVbbaMM+6f9tWhq8grrUJeqWEww6vT49E3QiWGj0RkqVHB2qZNm6zOzZgxA/v27cOcOXMgkUjEe2699VbHrpCIiIiIqAM6Z5zEaVJQVjN9UBAE/Gf3JQDAwnGx4tTPukQH2P5BXyKR4Okbu9f5vqhabV9sBaWOxM1FVu/13Yk5YrAWbDbYI1ylaNZ1BdsIuKu0eri6SFFRpcOUD/aJ5xeM7mz381VmwZ1cJkF8mA9cmmm/OKL2oFHB2m233Vbntc8//xyff/45AMO/mHU6nUMWRkRERETUUe1MyMYLP50FYGjRrKzWWwRreaVVKCirgkQCzB7cfJuJ1/5h2lZVG1F71VBg/cWBK+gW7I3ZgyLh6+mKNfcNhrtc1uD7rpfSXY5wlQIZ6grx3MFLeUjOKbVo144L8ca84dF2P1/lUVN91ydCBXd5/QEjUUfXqGBNX08JLBEREREROda+pDzx9V2DO+HzAykoNAvWTEMLInwV/KGXqJm4NSIgW7zhDAZ08kW3YG+M7ma7Jbs5xIV4WwRr935xFADgahaGPz6ha5PaN309airWeof7XMcqiToG1nMSERE5iF4v4NfT1/CD2YbGRESNcexKAca8swsHkg2BWmG5IUQbEuOHIZ39AAD5xmBNpxcw+5M/AQBdAr1sPM2xnp7UDQDw+PguDdxJ1L6Yt4IGK93w1MRu+G7BUKx9YAhu7RsGAHh4bGyjpm46Wl0hXpXOUBSjdHfBlF4hTXq2+eRPTgElapjdwwsef/xxdOnSBY8//rjF+Y8++gjJyclYsWKFo9ZGRETUpqzYmYSVO5MAAC9uPIt9/xyHIG9u9E1Etv2VWohvj6Thhk4qvLY5AaUaLeZ+dhhX3pwqtn3+bWAk/DwNbVkn09T44VgaBnTyFZ8xPi6o2df58NhYjOkeiJ6hymb/LKLWxLyl8+beoXhiYlfxuFe4D2YOiMCoLgHOWBruHtoJnm4ukAD43+Gr+CtVbXF9bPegJrdudzKbahrh27z7xRG1B3ZXrK1fvx4jRoywOj98+HD8+OOPDlkUERFRW6PTC/i/fZfFY41Wjx+PpztxRUTU2p1MU+O7Y2n44Vg6SjVai2v5xml8/p6uYrAGAM/+eBoXs2vaQO8eFt3s63SRSdEnQsXNy6nDMW+jnNQz2OKaj0KOMd0CIXXSpEypVII7BkRg5oAIvHNHHywcZ1lR6u1udw2NKMZs2AmDNaKG2f1vx/z8fPj4WPdZK5VK5OXl2XgHERFR+5daUI6yKssBPhezSpy0GiJqC24ytmkdu1pocV6j1YkVa36erlaTOL86eAUALCrXiKh5vDWzN/55UxyGdfZ39lLq1CXIG89M7m4RiHm7y+t5R/06+ZsHa2wFJWqI3cFaly5dsHXrVqvzW7ZsQefO9o/yJSIiag8Ss4oBAL3ClVj99xsAAJfzypy5JCJq5UJ9FBjV1bqN7OClfItgzdtdjq/uG4zuxn2cDl3OBwCn7OtE1NHMGhSFh8fGtomJuAFeNdWt11Ox5qOQY8Wsfnj/zr7wUTQ9oCPqKOz+3bZo0SIsXLgQubm5GD9+PABg586deO+997i/GhERdVgXjNVp3YOV6BJk2Ez8Uk4pBEFoE/8xTkTO8cndA7Ho+5PYeSEH1To9BAFYseOiuAG5v/EH5THdAtE5wBO3rTqA/LIq+Hm64o4BEc5cOhG1MgFeNdWt1xOsAcBt/cOvdzlEHYbdv9vuu+8+aDQavPHGG3jttdcAANHR0fj4449xzz33OHyBREREbUGiMViLC/EW2ybKqnQo0WihvI52DCJqW8qrtHj91wSM6RaIyfF1T+QrKKtCTkkl4kKU+PjvA1Cl1WPPxVzMX3MMp9KLABimEHq41vzneqSfB7Y/NRoHLuWjX4QKwUoORyGiGo4M1oio8Zq0A+nDDz+M9PR0ZGdno7i4GJcvX2aoRkREHZopWOse4g13uQxebob/oDVtQE5EHcPXh65i3eFUPPj1cbGd05b1x9Nx04p9ePaHUwAM0wfDVJZBWYiN4Mzfyw239g1DlD/3PSIiSxbBmhv/Uo+opTR5tE9ubi4SExNx8uRJDi0gIqIOSxAEVFbrcCXfsJ9aXIhhzyPTFL/vj6Uhr1TjtPURUcvacjZLfP37+Wyb95xJL8IbvyUAAPpFqcTzESrLsGzh+K6OXyARtVuhZuF8r3DrgYNE1Dzsrg8tKyvDY489hjVr1kCvN+z9IJPJcM899+DDDz+Ehwf/9oyIiDqGsxlF+Pv/HcaUXqHQC4CXmwsCjdP7/L1ckVpQjo93X8JvZ65hz7PjnLxaImpugiCI1auAYVqwLS9uPCO+vqV3mPhaqaj5T/Nhnf0xqWdwM6ySiNqrqb1DkV5Qjgk9ghHiw1ZxopZid8XaokWLsGfPHvzyyy9Qq9VQq9X4+eefsWfPHjz99NPNsUYiIiKnEwQBV/PLoNcL4vEtH+6Hurwa3xxJBQCE+riLgwr8PWvaMa7m2/7hmojal9wSDSqqdeJxWqH17/20gnJxD7UPZveDj0dNu5b5oJOb+4Q240qJqD3ydHPBohu7o2+kytlLIepQ7K5YW79+PX788UeMHTtWPHfzzTdDoVDgzjvvxMcff+zI9REREbUKX/95FUt+PoeBnXzx1KRuWLzhjNU9oSqF+Np85D0RdQwv/XzW4jjNRsXa4ZQCAMCgaF9M72c9dW/d/CHYn5SHOYMim2eRRERE5FB2B2vl5eUIDrYuSw8KCkJ5Of9GnoiI2qeTqWoAwLGrhfjfn1dttniFmm007l8rWNt8OhOebi4Y1z2oWddJRM5x8FIetp2z3FPtRKoavV/ZhhuifLFiVj/4erribIahWq1PhMrmc4bHBmB4bEBzL5eIiIgcxO5W0GHDhuHll19GZWWleK6iogJLly7FsGHDHLo4IiIiZxMEAd8eScWOhJofmC/nltm813w/k5gAL4trC9f9hX98cRQ5JZW130ZE7cCGExni60WTuomvSyq12HMxF29vSwQAnDEGa725sTgREVG7YHewtmLFChw4cAARERGYMGECJkyYgMjISBw8eBAffPBBc6yRiIjIaX49cw3PbziDkkqteC4xuwQfzO5n1e4Z4VvTCmqaDlrbjjqmBBJR23YhqxgA8OGc/nh8gvU0z23nsqDV6XE+03AfJ/YRERG1D3YHa71790ZSUhKWLVuGfv36oV+/fnjzzTeRlJSE+Pj45lgjERGRUxy9UoCF6/6yeW3Jz+ew65mx8FHUbDzeJcjL5mtzJ66qHbpGInI+nV5AUnYpgJpKtGClYYBJtL8H5DIJCsqqsCsxFxXVOni4yhAT4Om09RIREZHj2L3H2t69ezF8+HDMnz/f4rxWq8XevXsxevRohy2OiIjImd7acsHqXM9QJc5fK8agaF+4y2WQy2r+jirWLExzl8tw15AorDucavH+7GK2ghK1J5/tu4zvjqZBo9VDIZchys8DAPD1/UPw/vaLWHxzHB7/5i+cSi/C/DXHAADxYUrIpJL6HktERERthN0Va+PGjUNBQYHV+aKiIowbN84hiyIiImoNFK4yi+N/3RyHlXP6Y+Wc/vjk7oGQy6QYFusvXle6yy3u//ftvbFiVj+LcwzWiNqX139NQFKOoVqtW7AXpMbArFuwN1bfPQCd/D1x/6jOFu8Z2SWwxddJREREzcPuijVBECCRWP8NW35+Pjw9WdJORETth7d7zb8mn58ShwWjYwFYtnm+OaM3VAo5hnT2s/mMIZ394C6XolonQKcXGKwRtSMlldUWx7GBtlvAb+0bhh3ns/HLqUwAwMwB4c2+NiIiImoZjQ7WZsyYAQCQSCS499574ebmJl7T6XQ4ffo0hg8f7vgVEhEROYn5wIIeoUqb93i6ueC123rV+YxQHwUO/HM89AIw6I3fUVypRUWVzqoajojantoTgpUKeR13Ai9O7YFwlQITewQhwtejuZdGRERELaTRwZqPj2EjVkEQ4O3tDYWiZvKZq6srhg4darXvGhERUVuWV1oFwFBtMrprQJOf4+/lBkEQoJDLUFGtQ3ZxJaIDPCEIAqp0eri5MGQjamsKyqowfdUB8bhbsBcWjO5c5/3BSnc8PyWuJZZGRERELajRwdoXX3wBAIiOjsYzzzzDtk8iImr38ks1AIAFozvb3AbBHhKJBCE+7kjJKxODtflrjuFkWhG2PDEKgd5uDT+EiFoN8zbQ4bH+WDd/qBNXQ0RERM5i9/CC5557zuKHi6tXr2LFihXYvn27QxdGRETkTDq9gPwyQ8VagJdjQq8gY3iWVVwJQRDwe0IO8ko1+OJAikOeT0Qtp5O/J35+dASGx/rjkbFdnL0cIiIichK7hxdMnz4dM2bMwEMPPQS1Wo3BgwfD1dUVeXl5eP/99/Hwww83xzqJiIhaVHZxJXR6AS5SicOqyYKV7gCAnGINis32b0u4VuyQ5xNRy+obqWKlGhERUQdnd8XaiRMnMGrUKADAjz/+iJCQEFy9ehVr1qzBypUrHb5AIiIiZ0gvrAAAhKkUkEmvrw3UJMTHEKy98VsC1h1OFc+nGT+LiNoGQRCw+XQmruSVQRAEZy+HiIiInMjuYK28vBze3t4AgO3bt2PGjBmQSqUYOnQorl696vAFEhEROUN6YTkAINJP0cCdjRdkVvn21tYLFp/FH86J2o60ggosXPcXbly+F9U6/t4lIiLqyOwO1rp06YKNGzciLS0N27Ztw4033ggAyMnJgVKpdPgCiYiInCGtwFBFFqHycNgzo/xsP6uyWi/u50ZErd+pdDUAoEeoN1xd7P7PaSIiImpH7P4vgSVLluCZZ55BdHQ0hgwZgmHDhgEwVK/179/f4QskIqLWTavT474vj2LIv3+Hurz9hEPHrhYAADoHOm4K9tjuQega5GXz2sDXf8eRlAKHfRYRNZ+jVwy/V/tEqJy7ECIiInI6u4O1O+64A6mpqTh27Bi2bt0qnp8wYQKWL1/u0MXpdDq89NJLiImJgUKhQGxsLF577TWLdhlBELBkyRKEhoZCoVBg4sSJSEpKcug6iIiobgu+Po4/LuQgu1iD85ltfxN+QRDwxLd/YV9SHgBgRJcAhz3b1UWK7x8cVuf1h/533GGfRUSOV6XV4+Pdl7DmkGH7k36RKucuiIiIiJyuSbXrISEh6N+/P6TSmrcPHjwYcXFxDlsYALz11lv4+OOP8dFHHyEhIQFvvfUW3n77bXz44YfiPW+//TZWrlyJ1atX4/Dhw/D09MTkyZNRWVnp0LUQEZG13BIN/riQIx6fbwfTLQ9dzsfPJzMBGPZX6xnq2G0OfD1dLZ7ZxayCraSy2qGfRUSO9d3RVHF/xLHdAzGtb5iTV0RERETO1qo3hTh48CCmT5+OqVOnIjo6GnfccQduvPFGHDlyBIChqmDFihV48cUXMX36dPTp0wdr1qxBZmYmNm7c6NzFExG1c+ryKgx643eLc6fTi5y0Gsc5Y/waugV7Yf1DwyF10ERQcyO7GqrgRncLRJ8IH/G8nnugE7VqJ1LVAIAALzd8cvdA7q9GRERErTtYGz58OHbu3ImLFy8CAE6dOoX9+/djypQpAICUlBRkZWVh4sSJ4nt8fHwwZMgQHDp0yClrJiLqKP68nG91buvZLFzOLXXCahznQlYJAODWvmEIUro3y2c8PqErvrpvMP5v3kAo3eXieR2TNaJW4+eTGTiVprY4l2Csyn1zRm+GakRERAQAcHH2Aurz/PPPo7i4GHFxcZDJZNDpdHjjjTcwd+5cAEBWVhYAIDg42OJ9wcHB4jVbNBoNNBqNeFxc3PZbl4iIWlp2cc2foyO6+EMqkWBfUh7+b38K3ri9txNX1jRbzlxDSaUWP/2VAQDoHtJ8k6693FwwplsgAMBHIW/gbiJqaceuFOCJb08CAFKW3QyJRAKNVodLxr84iAv1duLqiIiIqDVp1cHa999/j7Vr12LdunWIj4/HyZMn8eSTTyIsLAzz5s1r8nOXLVuGpUuXOnClREQdz5X8MvH10lt7Ibu4EvuS8rDtXHabC9ZS8srw8NoT4nHnAE+MdODQgvooawVrldU6uMtlLfLZRGTbObNBLFfyy/Hu9kT8evoaAMDbzQXhKoWzlkZEREStTKuuYX/22Wfx/PPPY/bs2ejduzfuvvtuPPXUU1i2bBkAwxAFAMjOzrZ4X3Z2tnjNlsWLF6OoqEj8Jy0trfm+CCKidqaovBrLd1zEoUuGVtDXb+uFLkFe6Bps2IQ/v0zT5loa/0ottDhePqsfFK4tE255u1n+HdeK3znZmshZ3tp6AW9tvYCUvJq/OFjy81kxVAOAAG83SCSO33uRiIiI2qZWXbFWXl5uMXkUAGQyGfR6PQAgJiYGISEh2LlzJ/r16wfA0NZ5+PBhPPzww3U+183NDW5ubs22biKi9uy+r47i+NWaICpMZdiHzM/DFQAgCEBheRUCvJz756wgCKio1sHDteZfdVfzy6AXgJgAT4t7z2QYBhZ4ublg6a3x6BuparF11h6OsHrPJTw/xbFTtomoYfmlGny8+5LV+X1JeRbHzNSIiIjIXKuuWJs2bRreeOMN/Prrr7hy5Qp++uknvP/++7j99tsBABKJBE8++SRef/11bNq0CWfOnME999yDsLAw3Hbbbc5dPBFRO1Sq0VqEagDg52kI0FxkUvh6GNoaC8qqWnxttX158Ap6LtmGXRdyABhaLMe8sxvj3t2Niiqdxb2mSaCvTo/HzAERLbpOWz+jV1brbJwlouakrqi2OHaX1/yZBgCDon0hlQCvT+/V0ksjIiKiVqxVV6x9+OGHeOmll/DII48gJycHYWFhePDBB7FkyRLxnueeew5lZWVYsGAB1Go1Ro4cia1bt8LdvXkmuRERdWRnjZVd5kyVagDg5+mKwvJqvLMtEUtu6YlIPw/8fDIDJZVazB0S1SLtU3q9gHVHUrH0l/MADBV2KcumIjmnZlppSl4ZeoYpkZxTggVrjuOyse2rd7hPs6+vtu4hNZuge7u7oKRSi3OZxRjQybfF10LUkRWbBWsjuvjj37f3hqebCwa+/jskEuCdO/qik78H20CJiIjIQqsO1ry9vbFixQqsWLGiznskEgleffVVvPrqqy23MCKiDkivF2wGa76eNRUd/l5uuJRbhh3ns7HjfDZOvXyjOFnPw1WGGTc0fzWYVCrBusOp4rEgAFlFlXjmh1PiuSv5hmBt5c5kMVRTyGXoHOjV7OurrVe4D1b/fQAifBVYtSsZW85m4WByHoM1ohZWZAzWeoYqsfaBoeL5P54eg9wSDaJrtZATERERAa28FZSIiFqHeZ8fwci3/sD+5Dyra15mm+8HeLlaXDMfCvD5gZTmW2At4+OCLI6HLtuJC1kl4vGexFwAgFxW86/BQTF+kEmdU4lyU68Q9Ar3wQjjJNJ9Nv5/JqLmVVypBQD41JrU2znQC0M6+ztjSURERNQGMFgjIqJ6Xckrw56LucgsqsRuYyBlzrwtytfDMljLLq4UX5/NKEZeqab5Fmrm/pEx6BJUd/XZd8fScC6zCGUaww/S3u4uWH5n3xZZW31GdglAtL8HeoYqIQhta7IqUVtnqlhTKlp1QwcRERG1MvwvByIiqteuxByrc56uMpRVWW+w7+1uWemRXWwZpF3MLmn2aaHvbU+EVCLBl/8YhNSCctz16WEAwGPju+CeYdGY9ckhXM4tw8e7LyHXGPS9PbMP/J08xRQAogM8sfvZcQCAk2lq6PR6DOjk5+RVEXUMpj3WlLX+HCMiIiKqDyvWiIioXlfzy63OPTQmFgCg8rD8AdTb3fLva3JKKi2O1eWWU/ccTRAEfHXwCj7YmQR1ebXFPmV9I1QI9HbDS7f0BABczi1DbokhWAv0dn6oZiIIAj76Iwm3rTqAuz49jPIqrbOXRNQhFFca/nyq3QpKREREVB9WrBERUb1M4VOknwJpBRXwUcjxyLguCPZxx9AYy32HlLWCtdoVawVlVc261vTCChRXaiGXSdAt2BuuLlIsn9UXF7JKxH3XTNUoJZpq5JUY1tOagjWJRIK8UsO6NFo9cks06ORv+1/XWp0er24+j84BnriUW4aHx8YiTKVoyeUStRtixRqDNSIiIrIDgzUiIqqXKVh7bHxX7E8yTKuUSSW4c2Ck1b21W0FzSiyDtcJmDtbOZRYDALoGGUI1ALi9v+UkUlP4l1ZQIZ4L8nZv1nXZ68WpPfDlwSsAgMLyanSqY9/0LWezsObQVfH46z+v4sgLE1rd10PUFpxKM0w9ZjhNRERE9mArKBER2aTXC3h983kcuVIAAOjk54GVc/pj3vDoOt9Te9Pv7CLLVtCC8uYN1s5nGn4wjg9T1nmPV62qulAfdyhcZc26Lnu5yKTi11BfGGmrTfT1zQnNti6i2o5eKcAzP5yyGFTSFqXml+P8tWK4SCWYUGuqMBEREVF9GKwREZFNf6bk47P9KeJxkLLhKiir4QW19lg7fLkAmeoKOML3R9MwfdUBHEkpEM+dNVas9Qr3afQaYwI8HbIeRzNNWP3Hl0dRVMfedKYphubOGsNFIkfQ6vT48Xg6ZvznAL4/loaKWkNLXtl0Dj8eT8fUlfuctELHyDIGg1F+HvD1dG3gbiIiIqIaDNaIiMim0krLaqjG7ENWe3iBIFheP3+tGHd8fBDVOv11rS01vxzPrT+NU2lqLPj6GLTG551rRMWah1wGiaTmOLqVBms+ZoMhnv7hpM178s2q2UZ2CQAAZKoroNcLNu8nstfLm87hmR9O4USqGs/9eBo3fbAXarPK0/RCQ1CeV1qF97cnOmuZ162y2hAYuslbV/UqERERtX4M1oiIyCbzaqhZAyPh5dbwtpy1q8FsySyqxP6kPLvXIwiCWLl1/lpNVZa6vBp3rD4EdXmVOCwhLrTuYE0qlVh8LZ1babBWrqkJNi/lltm8p8A45ODZyd3xxT8GQSaVoLJab1UpSNRUuxNzLY6v5pdjw4kM8dg8cF/5RzJ+P5993cG5M2i0hjW7ufA/jYmIiMg+/K8HIiKyyRSs3do3DG/d0adR7/FytR2+DY7xw/DYmh34D5u1b9blRGohnl9/GmkF5QCAFb8noe+r27EvKddi8AAAnExTY9u5LACAj0LeYAioNAsAW2sr6DWz/enKNNZ7qQFAobFyyNfDFXKZFBG+hk3XU/PLm3+B1GG9ufWC+GtMbQy7PY37FD6w5hiG/ntnm6uaNFWsucv5n8ZERERkH/7XAxER2WQK1lQeDVehmSgVLhjVNQCDY/zgKqv5V4yHqwxr7huM2YMMk0TzSjV1PUL03vZEfHs0DTet2AsA+GBnEgDg7v87gjMZ1vuInTRO9AtqRMuqp1tNu1drbQW9Z1i0+NrWXmpATSuon3FPKB+F4XtVZmOoAZG9Kqt1yKi1J6JEAlRp9Rj9zi6k5JWh2Phr8x8jYsR7ugV7/3979x0eVZm2AfyelkmbTHovJCEQei+hV0FFQcDuCljYVbCAu6742XVFV11x1w6KZUUUhZWiINJLaKEFQgIpkN57mWTK+f6YmZNMCqROJsn9uy6ua+Y97TnjIWYenvd9IJVKLI77/WI21h1KhmCaH15SqRVf24LaijVOBSUiIqKWYWKNiIgaZa5EcXVofmJNIpHg24fH4IelY+Gjrk1wKeVSyGVSDA92A3DjxJreIOBIYgEAoKJG36D75dZzmQCMU1TNvj+RCgDwaUaThbrf54PcHG+4f2e4e1QQ1i8ZBcD4pd9cUVNXoSmx5uFsTKzZm9aHqqrpelPxyLZU6/SIfHGn+P6PlZPwx8pJeG3uQHHs7s+iUWOa9nn7UH9xvK+vymI6qCAIWPptDN7YcQlbz2Vi+/lMDHntd/z32DUr3EnzsGKNiIiIWou/PRARUaPMVVIuLUismUkkEvi5OIjvzVUgnipjAii/vBolVVqcTSu2OK5ap8fRxHxczimzGH931+VGr7NwZCCenNbbYqx+A4XG3DkyEFIJcOtgP9jZ6JpKMqkEU/p4QWaq/Cmu0xn08JV8xGWW4oVb++P1eQPFdeIczIm1RpJwRC2hlMvg41KbHO/trUJvbxXGhrqLY7llxgS5XCpBhLezOP7V0asY/Y8/xPf55bXNDracycDyDWcAAC/+crHD4m8pVqwRERFRa9nmtwkiIup0xeJUULtWHX/nyEDxtcI0LdTT2fhF/UJGKYa8+jvmfXQEv5ytXQh97cFk3LfuOBZ9eQLyOlPJvjyS0uD8UWEeGBni1mAqZ0p+4wv917V0Ujguv3EzPrpveMtuysokEolYMWhOdOaWafDAF8dxy78PYViwK/40NgQeps/V0Y6JNWo/kyK8GoxF+KjwzwWDxWcNME5Blkgk2P7EBPx9diQAoKhSK64NmFpYu+bfyXrrK9b9+19fYUUNtpxJx0ZTNWpHYsUaERERtRZ/eyAiokYVmxbGV7eiYg0A5g0LEF+XaoxJIXNira5vomung72321iZlltWjQuvzrLoOAgA/1wwGD/9JQobl47F2kUjIZFIcPNAPzw2JVxcuH95vQq2pshlXeN/gebP3/zfo6BO9c/IN/6wmHJnrljT1DCxRm2TWlCJFTP7YGKEJ1bPH2Sx7a5RQfhnnYYmatM6jAMD1HhsSjhUpuYhWSXG9dnS6iTWKuo9m09tPNvo9X84mYrb/nMYK344h3d/b7xi9Xre3hmPWe8fbNZ6jgAr1oiIiKj1bjxfhoiIeiRzAsfTuXUVa4o6iSvzlDGPOucKcHVARnEVTqcWoapGDwc7GXp7OeNKbjkAILO4CoMC1Ngbnysec9eo2jXVzBzsZPj77EisnNkHCdllGODv0qp4bZU5aWGuIDQnAMxOXyvCmDBjx1V7UxVRJRNr1AaCIGDm+wdQrTPg4N+mItij4TqEo3rVTgnt7eVssS3AzQHx2WU4dbUI4V7OFhVrAKBSylHWRKdb8/Xf2H5J3Ce/vBrFlTXNrp7V6g34ZH8SAODro1fhq7bH+7uvYNnUcIsmC3VVs2KNiIiIWom/PRARUQOCICDPlAxrrMqspfJKNQCM1SD/d0s/LJsajsN/nwp3JzsIApCYW45jyQViUg0APtqXhGsFtdM6o0zJo6YoZFIMDFBDIpFcd7+uRpwKalpjrapO0mz/X6eISTWAa6xR+yiq1IoJ3LpNSOqq2yRkRn8fi23mLrXPbY5F6KpfEZ1UYLF9y7Lx4ppsIY0k7bJKNA0Sb3V/NtzIpaxS8XV0UgH+b8sF5JdX491dCajRNd7YgxVrRERE1FpMrBERUQOlGp3Y7a/+dMyWMFd/hNdZ2PzRSWH426xISCQS9PVRAQDis0vx8FcnLY5VKqS4u06F2l9n9Wl1HF2ZuUrHvMaaeS2oQQHqBuvLiVNBmVijNsgsNk7h9HRWXjfR9PNjUXhpTn8sHB5oMa4zCBbvo5MtE2uFFTX4xx3G6aWyRhLhv8ZmAQB6eztjch/jOm/1G5qYlWm0+GR/EjadShPHTtRZx+3UtSLxdUWNHsdTLGMx4xprRERE1FqcCkpERA2Yq9VUSjnsFa2v4Ni2fAK+PHK1yXXPIv1UiE4uwNm0You1l448Nw0Brg7QaPUI9TR+ubbV7p0dTVxjrco4NdecAHBo5L+Lg7l5QQumglbr9JBLpWL3UaKsEmOFqb+r/XX3GxHijhEh7g3Gn5oegfvXHW8wbieXokZnQHapBiHuxkq1+lObq2r0eGPHJQBAHx9nBLk74sDlPMSmlwBjGsaw5o8r+OKwsbnJmFAPBHs44tTVooY7mlzMLMXERpoysGKNiIiIWouJNSIiasC84HdbqtUAYwfB+guf1zWhtyfWH7mK/Ql5iPA2rq/m6axEgKuxEYG9QoaZ9aaZ9TTmxFpWsTHZYZ7mqWykssacBE3Ma960uQe/PIHopHxseXw8Bgao2yNc6gbMTQf81NdPrDVlfG9PpKy+Ba9vv2TR0feHpWPh7+oAT2clruQaK9DqV1fGZZWIr/8yORy5pdX4DMk4ebW2Ck2j1eOVrReRlFeOk3WSaD/FpEEhk2LnxWwAwI9/joJBEJBVUoWk3Ap8uC8RcZm100QBQKc34HBiPracMXYnZcUaERERtRQTa0RE1EBuO66vdj3jwj1hJ5cio7gK5hlhH98/vEOv2dW4mpoXbD6TgamR3mJirdGKNdNYzLUi7E/IxZS+3tc9tyAI0OoFnEsvZmKNRBnF5sSaQ6vPIZFIsGJmhEVibWiQq7gGor2pMqx+xdr5dGNibUY/bwwOdEVRhbFSMymvAgXl1XB3ssMXh1Ow8WQa6vv33kSL90OC1GIF2j5TE5St5zLx24UsrLl7GG4d7IcyjQ6L19dOQ2fFGhEREbUU/1mOiIgaMFd1hHk53WDPtnGwk6G/n7GLp2BalsnRjl9s6zJXrAHAE9+fQaJpEXeHRj6nup/dmj+u3PDcQ4NcAQDn0orbFiTZrGqdXqxAba40UxfPQLfWJ9YAQGWvwEOmLpzv3z3EorGIueKyWmdZsXYhw/izx5zodXOyQ2/TGo0j3vgDg1/5He/sShD391PbY3SvhtNRZw/wtUiS9a/TLVirF7Bsw2kxjlG93MRtchmnRBMREVHLMLFGREQAgH0JufjqSAr0BgFnUo3Tq4YFu3b4dc3JHTMnJYup6zJXrJmtP3IVQOMVa3WTAmfTinH/umMor9ddsa4hga4AgHNpJU3uQ13b85svYOQbf+Dfe65Ap2/YEVOj1eOuz6Lx/JZYcSw5z9iNN9zLucH+Lb7+LZE49OxU3DHMssGBOeml1QvQ12l2kGSaxhzhrRLHeteJw9wtNNjdEQlvzEb0qulYu2ikxbmXjO+Fl2/vbzHmrVKK3UrNtHoDRv9jD4pNHXcBIL2oqsX3SERERD0bE2tERIRvoq9iyfqTeGVbHHbEZuGMqYJpeLDb9Q9sB5G+Kov3TqxYs+Bo13iisbGmEvlllpVJRxIL8G6d6p76zBWJ5ql/1L0IgoCfT6cDAP61+zI2xaTDYBBQXFkj7nMipRAnUgqx4XgqzqcXw2AQcLXAmFgL9Wx7xapcJkWQqVFBXXXXMjNXrQmCgGRTYi3cu/baj0wMbXD8d4+MEZNzagcFxoa5QyaV4JuHRuPl2wY0mMZatwux2e0fHkF5tQ45pRoMMSX4Zw3wbcVdEhERUU/GxBoRUQ+nNwh4Z2dt8uXdXQmo0RkwJMhVnILVkXxcLBdIZ8WaJY86VTZ1kxGNTQWd2UhS4ExaMQRBaDAOAN6mz768WofKmqYr26hrulpQafF+1eZYhD3/K4a9vhsbjqcCAC5l1S7mv+1cJi7nlkGjNUAulbR5Kuj12MnqJNa0xkq6gooalGp0kEiAXh61ibWRvdzxw9Kx4vt7Rwc1SNatfXAk9j0zBZP6NOz4afbk9AhEhXmI7833Psp0/kPPTkXfeol+IiIiohvhtxcioh7uSm6ZOL0KAFJN6yvNiPS2WBOpo9RvkNDYFMeeLMJHhbfmD0KAmwPe+/0yzpqqCRv7nAJcHbDh0TG4b+1xcexydhnmfXwUHk52+GLRSPG/6c4LWZDW+e+bW1qNXp78taA7OX2tqNFxQQCe3xJrMf0TANYeSsHaQ8ZmA0ODXCGXddy/v8plUsilEugMAjSmirXL2cZOoUFujg0qMoeH1FbPmhNxdansFVDZKxqM1xUV7oGocA/8GpuFx787LY6PDfOAvULWaGUdERER0Y2wYo2IqIc738T6WsEe1vmS6aWqTazZK6SQSrl4eH33jA7GxAgviy/+TSUgB/hZdves0upxLq0Ye+NzxW6vgLF6aem3MeL73LKWLXBPtu1oUj6e2XQOAKCyb3nCdOGIwBvv1EZKuamBgSlRFpth/Fk0MMClwb4KmRT3jAqCRAIsGterTde9ZZAfvlg0EhHezpg9wBf3jw1u0/mIiIioZ2NijYioh4szTYcKrletUf99R/Fwrp3qqNU3PmWRjILda6fm2TexFp3aUdGgCtDsgilxIQgCSjXGKsUg0znzmFjrVn6NzRJfPzkt4rr77l4xCX7q2inZYZ5OuHNkUIfFZmauSqvWGRNr58XEmrrR/V+bOxDHn58urofWFtP7+WD3ysn49E8jmlzHkIiIiKg5mFgjIurhzF345gz2sxi31rQoRZ3pZnW7A1JDAa61/03cHJue9rbtifFYMr4XAlwt18gyVwRV1OjFz9rcfXHZhtPis0BdX0G5sUGBu5Md5gyp/bu9ZHwvvLNwsPh+8+PjEOGjwtHnpkHtYHymPrp/OGRWqBw1V6xptHrklVXjj7gcAMDoXu6N7m8nl8JbZd/oNiIiIqLOwsQaEVEPl5xn7AA4LdIbtw4yfgEP83KyWDS/o40wrZ80NqzxL9RkNNRUqRPs7ojpkT5N7uendsDLtw3AAH/LKXX7E/IgCAJKqrQAAIVMgtkDaxseTH/vAL48nNL+gZPVZZZoAACr5w+Cr4s9burvg1sG+eKlOf0xZ7C/uF8fU6dMiUSCHU9OwObHx6GfX8OpmB1BWadibVNMGqp1BgwJVIs/D4iIiIi6Ata+ExH1YOXVOmQUVwEAwryc8e6dQ3D/2GAMCXS1SuMCs4/vH45zacUY19vTatfsivr7u+DXJyci2MOx0a6g9bk5WiZHz6YVY8DLu/Dtw2MAAGoHBeYNDcCzP50X93ltexzuGBYANysmVqn9ZZr+Xge4OkAikeDzB0eK2xzsZNj59EQIAuBcpwtvoJsjAt2st4C/uMaaTo//nckAANw/JsSqP3uIiIiI2ooVa0REPdiW0+kAgF4ejnB3soODnQzjwj3hpLTuv7v4uNjjpgG+Fl/yqXH9/V2a/Tm5OjWcLlpZo8cn+xMBAC72CtjJpTj07FSLfaKTC9oeKDXKYBDwxeEUcb27jmCeWgnAYu20uiJ9XaxWmdYUc8VaVokGl3OM05Bn9m+6EpOIiIjIFjGxRkTUg207b1zg/IGxIZ0cCXWEuhVrL9zaD7cP8cf/3dIPRZXGqaAupjW16q/Fll9e28ggu0SDimqdFaLtGb49dg2vb4/DnP8cbnKfDcdTMeWdfUjMbd2ad9FJxsSot0oJdxuuPOzt5QwA+P5EKgAg0M2BlZJERETU5TCxRkTUQxVW1OBsWjEAYGqkd+cGQx3C1aG2Ym1ChCf+fe8wqOzliLlWBKC2WYRUKsH6xaPEffNNC9+nFVZi7Oo9mPvREStG3b3tic8VXy/85Cj+9MXxBtVrz2+JxdWCSrz3e0KrrrH1XCYAYPZAX5ueVmleU/FMajEAYKB/491AiYiIiGwZE2tERD1QbHoJhr++GzU6AzydlQjzdOrskKgDaOt0WQ31dIIgCPjxVJo4diGzNqEzNdIbT06PAAAUVhgr1radNyZoWls5RZYMBgGXs8vE96euFeHQlXz8a/dlcaxuZ9yKGn2Lr5FbqsEOUyXqHcMC2hBtx5vS1xsu9sZpzS72cjw6KayTIyIiIiJqOS5mQ0TUA+1PqK2auX2Iv01XtVDrhddJmCrlxvWsNjw6FpEv7gQATO1rWano6WychpdXVo1qnR7X8iutFGn3JwgC5n50BNmlmgbbLpoSnJdzynDT+wfFcVkr/lq++3sCavQGDA92xbBg2+6u6aVSYtsTE7AvPhdzhvjD01nZ2SERERERtRgTa0REPUSNzoA3dsRhQm9PLJvaG+lFVYhOLsAjE0M7OzTqIFHhHnjvziEWi9TbK2Q4/eJM/PfYNdw5MtBifw8nY2Jj18UczPn3YTjb89eE9pJXVo1Y05TP+cMC8MrcAYjLLMU9nx+DQmacQPD5wWSLY7JKGibhrietsBI/nzZ21/y/W/u3Q9QdL8TDCYvH82cQERERdV38jZmIqIf49tg1fBNt/HP1rVvx9sLBnR0SdTCJRIIFIwIbjLs72YnTPuvycK5dOP4Kp3+2q7rTaV+dOwAqe4XYNCKjuArZJRrU6AwWx2QUVbXoGp8dTILeIGBihCdGhNh2tRoRERFRd8E11oiIeojTpgXrAeNaT0T1eVynI6Oez0ybJOYZE2sz+nlDZW9sKuHtYqwQFARg7Oo9YtOByX28AABl1TqLz/3zg0lYtTkWVaa119KLKnEpqxSAcW21H0+lAwCWTe1thTsiIiIiIoAVa0REPUbdtZ36vbQTT06P4BdwsuBxnTWutHoDZFKZFaPpXpLzKgAA4d7O4ph53bv6npoRgQOX8wAAFTU6uNgrIAgC3vw1HgBQrdPjscnhuP3DI9AZDFg8rhdOpBSiRmfAiBA3jAl17+C7ISIiIiIzVqwREfUAgiDgSk5tN8JqnQHl1bpOjIhskauDwuL9F4tGiq9r9Ib6u1MLFFbUAAC8VfYW47cO9oPaQYEB/rXr4PXxUUFh6lxQrjH+Pa3S1nYI3Xw6AzPfP4gqrR5avYC1h1JwLt24ftvyqb3ZjISIiIjIilixRkTUA+SVV6NUY5lIu290cCdFQ7ZKKq1NyPi4KC26hmp1TKy1RUmVFgDgUq8hxIf3DkO1zgB7hQwllVqkFVXCWSmHs1KOokotKkwJ8NKqGyfCZVIJpvT1av/giYiIiKhJTKwREfUA289lia/7+bngo/uGIcjdsRMjIltnEIyJNrlUAp1BgFbPNdbawpxYU9erCpRIJLBXGKeEqh0VUDuqAQDO9sbEWpk5sabR3vAaHk52rFYjIiIisjJOBSUi6uaMazNdAgBMj/TGb09NRJiX8w2Oop7O3OBCITP+qqDlVNA2MSfGXOol1priZGf8t0/zVNCyJhJrW5ePx8z+PpBIgH/dNbTtgRIRERFRi7BijYiomyut0kFnSpKsvKlPJ0dDXYW5olEhk6BKyzXW2qq0iYq1pqhMU0brTwUdFKDG1uXj8eHeRLg52WFwoCs+e2AEyk1NDoiIiIjIulixRkTUzeWVVwMwflEf4K/u5GjI1m1cOhYTIzzxr7uGAADs5E1XrK07lIxxq/cgtaDSqjF2NYIg1K6x1szEmrPSmFhbdzgFAPB7XDYA499jiUSCJ6ZH4IGxIQCMU3aZVCMiIiLqHKxYIyLq5vJNiTUvZ2UnR0JdwdgwD4wN8xDfi1NBdZZrrBkMAt7YYZxi/MXhZLw6d6D1guxiNFqDuEZdcyvWzEvaxVwrwvHkAnx/Ig1A7X8PIiIiIrINTKwREXVz5sSaJxNr1ApymXExfK3BsmLtYmap+JoL5jdOEAToDbXVajKpBE52smYdeya1SHz98+l08XXdz52IiIiIOh//2ZOIqJvLLzMl1lR2nRwJdUW1FWuWibUTVwvF17llGqvG1BXo9Abc/MEh3PzBIfHzcTFN42yOu0YGia+3nssUX0+K8GzfQImIiIioTWw+sZaRkYEHHngAHh4ecHBwwKBBg3Dq1ClxuyAIeOmll+Dn5wcHBwfMmDEDV65c6cSIiYhsS355DQBWrFHr2IldQS2ngp5NKxZfpxVWWTOkLiE+uwzx2WW4kluO57fEAgB8XOybffyKmX0wNMgVgHEqKWBcX+2FOf3bPVYiIiIiaj2bTqwVFRVh/PjxUCgU+O233xAXF4f33nsPbm5u4j7//Oc/8e9//xuffvopjh8/DicnJ8yaNQsaDf/1nIgIAFLyKwAAAa4OnRwJdUVixVq95gUXMkrE17EZJXjxfxcgCJbJt57sdJ2pnBcyjNM3/Vvwd9BZKcdfJodbjL2zcDDcnVh5SkRERGRLbDqx9vbbbyMoKAjr16/H6NGjERoaiptuugnh4cZfNAVBwJo1a/DCCy9g7ty5GDx4ML755htkZmbif//7X+cGT0RkI+KyjF/q+/u7dHIk1BUpTGus1dRJrAmCgIxiY5Vafz/jc/XtsWtIyitv8fmzSzR47/cEZBa3repNEAT8Z88Vi2mTnSnmWlGDMV918yvWAMDbxbLKNMJH1aaYiIiIiKj92XRibevWrRg5ciTuvPNOeHt7Y9iwYVi7dq24PSUlBdnZ2ZgxY4Y4plarMWbMGERHRzd53urqapSWllr8ISLqjsqrdbhaYKxYMydAiFqisYq1okotakxrrm1ZNg5hXk4AgJ9iMhCf3fz/p+oNAhZ9eQL/2ZuIpzaeaXXFmyAIeH7LBby3+zKe/P4MiitrWnWe9mROrK19cKQ41tIWD96q2sSanUyKEHfH9giNiIiIiNqRTSfWkpOT8cknnyAiIgK7du3CY489hieffBJff/01ACA7OxsA4OPjY3Gcj4+PuK0xq1evhlqtFv8EBQU1uS8RUVd26HIeBAEIdneEB9dYo1awkzdMrGWVGKvLPJ3toJTLMGuALwDg0wNJeOl/F5t97qS8ciTklAEATl4talXFGwAcTszH9ydSxfdv/RYPjVbfqnO1h+wSDdKLqiCVAFHhHuK4bwvWWAMArzqJNS+VEnKZTf/aRkRERNQj2fRvaAaDAcOHD8ebb76JYcOGYenSpXj00Ufx6aeftum8q1atQklJifgnLS2tnSImIrItv10w/iPD7IG+nRwJdVXmirWLGaXYHZcDQRBw0bRmmHlq44jg2rVPUwsrb3jOGp0BG0+kYs+lXIvxxNzWJdYuZlpWyW08mYb3/7jc5P4duRZcVY0eY1fvAQAMCXKFs1KO/z48BveMCsLi8b1adC6lXCa+jvBxbs8wiYiIiKid2HRizc/PD/37W3a/6tevH1JTjf8q7etr/KKYk5NjsU9OTo64rTFKpRIuLi4Wf4iIuptqnR57442JCybWqLXMa6ytO5yCR785hXd/T8CzP58HAPiojIm1aZHeiHnBuCxDdqnmhtViv8Zm4bnNsXh7Z7zFeGsTa+lFxmSe2kEhju04n9VgP0EQcP+6Ywhd9SuWfXcapRptq653PT+fThdf3zbYHwAwIcITby0YDJW9oqnDmuRvSl7ePyakfQIkIiIionZl04m18ePHIyEhwWLs8uXLCAkx/nIZGhoKX19f7NmzR9xeWlqK48ePIyoqyqqxEhHZkopqHX6OyUB5tQ4+LkoMDXTt7JCoi1LUm3740b4k8fXtQ42JI6lUAncnOzjZGSusXvzfBZRUNZ20qp9AU9nLAQBJeRWtivFagTGx9n+39MOzs/sCAAyGhlVp6UVVOJJYAADYEZuFlT+ca9X1rufU1ULx9X1jgtt8vh/+HIVvHx6Nmf19brwzEREREVmdTSfWVqxYgWPHjuHNN99EYmIiNmzYgM8//xzLli0DAEgkEjz99NN44403sHXrVsTGxuLBBx+Ev78/5s2b17nBExF1kmqdHjd/cAjPb4kFAMwe4AuptKXLphMZ2dVJrEnqPEaeznaYOzSgzjYJgkyL62+KSceQV3/HvnjLqZ5m5gozABgSqMbKmX0AtK5iTRAEJJsSckHujrhzhHHd1KxSDap1xsq5Gp0BT3x/Bh/uTbQ4dk98DnJLNS2+5vWcvGpsWvDfh8fAXiG7wd43FuTuiIkRXm0+DxERERF1DHlnB3A9o0aNwpYtW7Bq1Sq89tprCA0NxZo1a3D//feL+zz77LOoqKjA0qVLUVxcjAkTJmDnzp2wt2/ZAsFERN3FjvNZFutczRni34nRUFdnbl4AAEMCXXE2rRiA5fpfZhE+KsRnl4nvl3x1ElffurXBfulFxuYHH943DHMG+4sJtaS8cgiCAImk+YngyznlyCiugp1MioEBLnBWyuFoJ0NljR6nrhbhWHIB7BUybDuXKR6zeFwvnE0rxtm0Ymw8mYYnp0c0+3rXk1lchYziKsikEgwNdm2XcxIRERGRbbPpxBoAzJkzB3PmzGlyu0QiwWuvvYbXXnvNilEREdmuXReNDQvmDPbDHcMCMKqXeydHRF2ZuUEBAAwMcBETa42to7Z0YphFAgsAErLL0NdXZTGWZqpYC3IzVriFeDhCLpWgskaPrBIN/F0dmhVbebUO/2eqzJwY4SmuYebv6oDE3HI89t8YlGp0DY6bPdAXzko5zqYV41+7L0NlL8eS8aHNumZTEnPLcM/nxwEA/f2MCT4iIiIi6v5seiooERG1zJHEfOy6aGzo8sjEMEzvx3WZqG16eTiJr3t71XambCyxNihQjR+WjrUYW38kxeJ9tU6PnNJqAECgmzGBppBJEeJhTLIl5TV/Ouh/9l7BqWvGqZcTIjzFcW+VEgAskmoKmQQKmQR9fJwxJtQdQ4NcxW2vbotr0XUb8+89icgvr24QCxERERF1b/znVCKibuJcWjHuX2esmHG0k2GgPzseU9sFmxJeANDbu7byrKmqsjFhHlhz91DsiM3C7rgcHE7MF7ftuZQDqWmap4NCBncnO3HbhN6eCPV0atG6ZJ8dSBZf163MNCfWzEaGuOH7pWOh1RuQUVQFiUSCUb3cobKXo8yUfJv+3gG8NncAHozq1ezr15VQZwrsoxPDWnUOIiIiIup6mFgjIuomrhbUdlT8y+RwyGUsSqa2q1uxFurlhO8fHYv3fk/Aa3MHNnnMvGEBiAr3wO64HGQWV6FGZ8ChK3l4+OtT4j6Bbg4Wa6m92sj5EnPLsCkmHYvH9YKfumEiL8zTCcn5xuc+ss50U696ibUvl4yCQiaFQiZFhI9xP7WjAgf+NhVxmaV44AtjQvqlXy5iSKArBgeqm73Om0arR1WNHk5KY0LwrfmDLBKGRERERNS9MbFGRNRNVFTXTs17fEp4J0ZC3Ym7kx2WTgqDTi8gwNUBAa4O+OmxcTc8zlulhL1CCo3WgIziKuyIzbLYbu4g2piC8mq4O9lhzR9XsP18Fr44lIL412c3SBbnlRmnXv6xcrLFNg9ny8Sai2nttcbubVy4h8XY3I+O4JXb+mNxM9Zc23giFe/sSkCVVi82eahb4UdERERE3R/LGYiIuokyjRYAMH9YAKvVqF09f0s/vHRb/xYdI5FIEGxKnk19dz82n86w2G5eX62+dYeSMeKNP/Dlkas4kVIIANAZBJy8WmSxX5lGi7Jq4zROf1fLTuBanUF8feL/pl83TqlUgrUPjrQYO266blOySqrw6raLeG5zLAoqalBZo0dxpfHvn6sDq9WIiIiIehJ+8yIi6ibKTUkGZ3sWI5NtCHZ3anJbVJhlpZggCFi1ORZv7LgEAHh9e5zYDAAwrs9WV1aJBgCgdlDA0c7ymb97VBACXB3wxLTe8FZZJt0aM7O/D/b9dQom9DY2HbicU3bd/Vf+cA7rj1xtdJvasfHqOCIiIiLqnphYIyLqJsyLsDsrmVgj2xDSxLRIdyc7TI30thiTSCSwk1mua2YQal+vO5yC70+kiu8ziqsANN5EwdvFHkeem4Znburb7FhDPZ3wzp2DAQBXCypRU6fqDQAKK2oAAKeuFiI6uQAA0MfHGS/OsazkUzswsUZERETUk/DbFxFRFyYIAr47ngpvlVJMrKmaWE+KyNrqJ9b+WDkZV/Mr0MdH1Wj3z5Uz++K2If54e2e8OPUzKsxDTGSt2hyLe0cHAwCyio0Va/7qG1ekNZeviz1c7OUo1egQn12KwYGuAIxJtRn/OoApfbyw+UztlNZdT0+CVi/g9e1x4piTXfO7mhIRERFR18eKNSKiLux0ahFe+N8FLP02Bj+fTgfAqaBkO4LcahNrn/9pBHp7O2NGf58mF/hXOyowspc7lpgaB4wJdccH9w5tdN+sEmPFmp9r+yXWJBIJhoe4AQBO1VnT7b3fE1BYUWORVLtjWICxyk4uxUt1qtaa202UiIiIiLoHJtaIiLqYGp0BJ1IKUa3TY9u5rAbbXZhYIxsR5F47TXNGP59mH3fzQF9seHQMPv/TSHjV6/BplmmqWPNTN94EobVG9XIHABxOzBfH9ifkNdjvrQWDxNf3jA7CsGBX/HlyWLvGQkRERES2j9++iIhuQG8Q8NTGM9h+Pgu3DPLFR/cN77SqlM8OJGH1b/EAjF0V04uqGuxTfyF3os7S21uF1+cOgJdKCam0+X9nJBIJxoV7iu9X3RyJ1b/Fw6HO9NGM4koADTuCttWsAT54Z1cC9iXkIq2wEl4qJTJN1XER3s64kluOJeN7QSmvjcXRTo4tj49v1ziIiIiIqGtgxRoR0Q1cyirF9vPGyrBfY7ORV1Z9gyM6Ro3OgI/2JYrv04uqYK+Q4t7RQRb76Q2G+ocSdZo/RfXC7IF+bTrHXSONz3iVVg+t3vh8J+ZWAADCPJ3bFmA9vb1VGBLkCkEAzqUXI7WwEoIAqOzl+GX5eLy9YBCemh7RrtckIiIioq6LiTUiohvIKtFYvC/VaDsljqNJ+Sg1NSjYunw8BgWoIZVIcPuQAHFB9wm9PTGlr/f1TkPU5ajqTG8u0+hQVFGD/HJjgjvcu30TawAQ7ukEAEgtrERynjGBF+rpBEc7Oe4eFQxXR7t2vyYRERERdU2cL0REPVapRotfzmZieqQ3/F2bXqcpu8RyumVJla6jQ2vUr7HGqrkHxgZjcKArvn5oNNIKKzEkyBVR4R5YPX/QDc5A1DXJZVI42clQUaNHaZUWOaXGZHeAqwOcle3/q0ygu7G5QlphJSQwTmENNSXbiIiIiIjqYmKNiHokQRDw+H9P43BiPj50UWLvM1Pg1MQXdFuoWLtWUCE2KrhlkHFanbuTHdydWDlDPYOLgwIVNXocuJyHl7deBAAMDXLtkGsFmxJr359Iw8z+xqYLTKwRERERUWM4FZSIeqTcsmqx619OaTXOpRU3uW92ab3EWpX1EmuCIECj1eNfuy+jSqvH2DB3jA31sNr1iWyFi70CAPD10avi2NJJHdOFM9JXJb7eHZcDgIk1IiIiImocE2tE1COlFlZavL9aUNnEnsDV/AqL92fTirHuUDLKNFpcyChBgWmtp1KNFs9vib1ukq4ldsflYOb7B7H02xjMHeqPWwf54Z2FQ1rUXZGou3B1NCbWkk1/H/8yORxDOqhibWCAGrcN8bcYa+8mCURERETUPXAqKBHZtMoaHT47kIy5Q/0R5tV+X2xT6yXSnt8SCz+1PaZGWi78r9HqcSGjFAAwJtQdx1MKsf7IVQDAGzsuAQDs5FK8OKc/PtmXiMwSDX44mYakN29pU3wx14rwxPenodEakJhbjoOX87BiRh8EmaaoEfU0Qe6OOJ5SKL5fMDygQ6/35h0Dse1cpvg+woeJNSIiIiJqiBVrRGTTnvs5Fh/suYJHvznVruetX7EGAI9/dxoard5i7Pe4HNToDfBWKTEwQN3ouWp0Brz4vwvINK3FpjcIbY7vt9gsaLQGizE/V/s2n5eoqwquk1RWyqUdPjVTZa+A2sFYJadSymGvkHXo9YiIiIioa2JijYhs2lZTxUhSXsUN9myZqwXG8905IhB2MuOPwiqtXrye2b/3XAEAzB3qL37Jbg6d3nDjnZpgMAjYFZcNAFg4IhB3jgjE2Zdm4q6RQa0+J1FXF+JRm1jr66uCXNbxv8KsXzIK/fxcsHbRyA6/FhERERF1TUysEZHNyjetXWZ28weHsLSdKtcuZhqnd94yyA+XXp+NZ2f3BQD8c2c8anTGpJhWb0CKaT2nJeND4aduWDH25yYWT88s1jQ6fiNavQGPfHMKaYVVcLST4dXbB+CdO4fA1ZHdP6lnq7vGWW9v60zLHB7sht+emoixYWwYQkRERESNY2KNiGzW0aQCi/eXskrxe1wO9iXktum8lTU6JOWVAzAuUi6TSvDIhDC42MuRX16Di5klAICsYg30BgF2cil8Xexx8yA/i/N8fP9w3Ds6GEq5FBHezoh5YQYiTF/4zRVxTckvr8Y7u+IRn12KR74+hTV/XIYgCDifXoy98cb7e3FOfzgpuRQmEQAMDHDBrAE+AIBp9dZCJCIiIiLqLPzGRkQ268iV/EbHl6w/ibMvzbxuFVdhRQ12XsjGwAAXDA50tdh2NLEAggD4utjDS6UEYGxAMKqXO/bE5yLmWhGGBbshrci4DlugmwOkUgmclXI8ND4UXx5JweBANW4xJdpiXpwJR4UMUqkEIR5OuJJbjmsFFQC8mozvHzsuYcuZDHy0LwkA8MelHIR6OkEqMXb8DPN0wr2jg5v1ORH1BBKJBJ8+MAIZxVUIcHXo7HCIiIiIiACwYo2IbFSNzoCfTqcDAO4dHSyug2aWVlh13ePf2BGH57fE4u7PjqGyRmexbePJVADA7UP9LcaHh7gBAM6ll5iuYUysBbnVru30/C2RWD1/EP65cLA45qyUQyo1JsRCPY37fnc8FeNW78GBy3kNYjt1tRBbzmQ0GP9gzxVkmxogNNUogagnk0gkCHRzhMSUgCYiIiIi6mxMrBGRTVq1ORZ6gwCFTIIX5/TDvr9NwYx+PuL23LKm1zATBAFHE43TSKu0ekSbppTmlmpQUF6Ng5eNlXALRwRaHNfHRwUASMwtN13DuMZb3bXV5DIp7h0djEhfl0avHeJh7FQYn12GzBINFn15osE+/9mbCMBYMRfk7oD7xgRDKgGS8ypwNr24wTWJiIiIiIjINnEqKBHZpPOmBNPtQwLgaCeHo50c6xaNxENfncTe+FzkmZJe6UWVeOL7M1g8rhfmDg0AAGQUVyG7tDbxtutiNi7nlOPtnfHiWJink7gempl5QfTkvHLoDQIKK2oAAO5OzW8cUP+cAJBdooGvKVFWozPgREohgNqOgwBwPLkASXkV2GdaX83HhYk1IiIiIiIiW8fEGhHZHL1BwDXTNMynZ0RYbPM2rYlmriZbezAZZ1KLcSb1LABg7tAAXMoqszhm27ksyGWWU8duGuDbYDpZkJsD7GRSVOsMyCiqQlFlyxNro3q5Y2KEJw7VWR/uXHoxfNW+AIALmSWo0urh7mSHvqYKOQDo66tCUl4FKmv0AIAAN64hRUREREREZOs4FZSIbE5mcRVqdAbYyaTwr7dIeW1izViRdsU0bRMA/rX7MgDgco4xsTZnsB/81fao0upRprFcZ232QN8G15XLpIjwMVacTXpnH345mwkAcLtOk4T6pFIJ/jI53GLsbFqxWGGXkG2MbYC/i7guGwCLBgujerlhal92PSQiIiIiIrJ1TKwRkc05Z5oGGuzhCJnUsqrMV21MtF3IKEVsegnOpBaL27JKNDialI93diUAAMK8nDHM1JCgrghvZwwJbLw5wPDghvu3pGINAKLCPPDQ+FD08jA2MvhkfxJG/eMPfH30KlZtjjXFoLI45sGoEMwb6o+oMA+sfXAk7OT88UxERERERGTr+M2NiGzO10evAgBu6u/TYNu0SG9IJcYqsNs+PIwqrR7B7sYEVo3OgGXfnRb3DXZ3xLAgVwDArAE+iHttFv5xx0Bs+ktUk10FRzSSiHNrYWJNKpXgpdv6Y9sTE+DprBTHX956UXwd4uFocYyjnRxr7hmG75eOhWsLKuSIiIiIiIio8zCxRkQ2Rac34Fx6CQDgrpFBDbb7qu3R39+yI+ddIwPh6qgAABRVagEAagcFpkV6Y0iQK/zU9vB0VsLRTo77x4RcN3F10wAf+NZrHODeykSXyl6BSX08G902pa9Xq85JREREREREtoPNC4jIpqQWVqJGZ4C9QipWotVXf82z3t7O8HWxR7EpqSaRADEvzIBcJoWboxuiV01v9vUd7eTY9sQEHE7Mw4ofzgEAPJxbX0E2KECNzaczLMaevyUSIR5OrT4nERERERER2QYm1ojIplzOMTYj6O3tbLG4f131K85CPZ3h7WKPeFNjAHdHO8hlxoLcpqZ8Xo+XSok7hgXCX+0AnUGAk7L1PyrvGxOMA5fzsD8hTxwL93Ju9fmIiIiIiIjIdnAqKJENe317HMat3oOM4qrODsVq4rNLAQB96i3uX5ebadqnWYiHIwLdaruHtqXCrK4xYR4Y37vxqZzNpZTL8OWiUVgwPFAcq9/plIiIiIiIiLomJtaIbIwgCKjRGfD7xWx8cTgFmSUabDh+zWKfrJIqLPvuNFb+eBY1OkMnRdp+yqt1eHXbRRy8nIdzacUAgEFNdO0EjNM1ze4fEwx7hQxhnrVTKz2clI0d1mmkUglWzx+ESF8VVPZyJtaIiIiIiIi6CU4FJbIxa/64gg/2XLEYO5JYgL/Nqn3/9dFr2BGbBQAYG+qBu0Y1XOS/K/m/LbH45Wwm1h+5Ko4NDnRtcv+6sztfnzsQABBaN7HWThVr7clOLsXOpyd1dhhERERERETUjlixRmRD8surLZJq5u6UFzNLxMq0kiotTl0tFPd59ufziLlWiJhrhdBo9W26/tX8ClzNr2jTOVpKqzfgl7OZDcYH1Ov8WVfdVdPM67DVTax5q+xBRERERERE1NFYsUZkQ76qU7HloJDhxz9HYc5/DqFUo8OV3DKoHRSY9f5BVNRYJtAWfBINAHh8SjienR0JANDpDfgm+hoUMglmDfCFt0vTyabcMg3e3ZWAH0+lIyrMAxseHdOqRf9b40xqcYOxUy/MgL1C1uQxKntFg7FQTycsHtcLWSVVWDQupD1DJCIiIiIiImoUE2tEVrLpVBoC3BwwLrzxxfAFQcBPMekAgOVTe2PeMH8Eeziiv78LjiUX4mJmKfLLqy2SatufmIA5/zksvv89LkdMrO26mIPXtscBAFb/Fo+vlozG6FD3Rq+9PyEPP54yXjs6uQChq35FgKsDhoe4YUY/b2QWa1BYUY3nbu4HWROdOmPTS+Dvag8P5+avbyYIAj4/mATA2AV0aJArxoV7wPMG53hgbDD2XMrB7IG+4phEIsErtw9o9rWJiIiIiIiI2oqJNSIrKCivxitbL6KiRo/vHx2LqHCPBvsk5pYju1QDpVyK5dN6ixVbA/zVSMguQ1WNHtFJBeL+T06PaDBdMrtEA0EQIJFIEJ2cL45X1ujxwBfHcfjvUxudJhmfVQYAkEkl0BsEAEBGcRUyiquw7VztNM3s0mq8d+cQ2MktZ5GvP5KCV7fFwUEhw/YnJyDcy7lZn8vFzFL8cSkXCpkEn9w/HBE+TXcCrUtlr8BPj41r1r5EREREREREHYVrrBF1MK3egGUbTqOiRo9BAWqMDTNWjVXW6PDZgSTsi8/FHR8fwcz3DwIAxoR5WEyDfHZ2X5x+cSbmDw/AoSvGZNlzN0fiqekRkEgkuHWwn7hvebUO6UVVAICTKUXi8QBQozNgk6kqrb747FIAwOo7BuFPY5ueRrntXCYOXM5rMD4s2A0SCVCl1WPhJ0dRXq274ediMAg4dbUQz87ui5fm9G92Uo2IiIiIiIjIVrBijagD5ZRqMObNPQCMa6Y9MjEUXx65iocnhOIfOy7hu+OpDY6pn9hSymUQBAFzPzwCAAhyd8CfJ4WJa6Ctnj8Icwb54a2d8bhWUImM4iqcTi1CQo6xCu3ukUHwUdnjmU3nsOF4Kv4yOdxiOqcgCIjPNu4b6afC3GH+GNnLDUm55ZgQ4YXE3HL09XXGR/uSsDc+FzHXijA4UA2DIMBP7QAAGBrkilU3R+LNX+NRVKnFplNpWDI+9LqfTUpBBV7ZFgd7hRQXXpl13X2JiIiIiIiIbBETa0Qd6LfYLPH1Y1PC8crWiyiq1EJvMGDjybQG+z87uy+mR3o3GI/NKEGyqVvnnyeFWzQWcLFX4OZBflh/9CquFVTix5Np2HwmAwAgl0rg4azErYP98Nr2OGQUV+GNHXF4dGIY/F2NSbELGaUorKiBg0KGPj4qKOUyzB0aIJ7fvC7b7AEV2Bufi08PJGHtoWQ4KmTY89fJ8HRSIia1CEsnhQMA3vw1Hoev5N8wsXYhowQA0M/PBXIZi2eJiIiIiIio62FijagDnbxmnI45vrcHnpjWG1VaPT7Zn4Q3f41vsO8H9wy1SGjVtfm0MVF2+xB/PNDEVE0vlXHBf3NSDQAWj+sFALBXyPD0jAi8ui0O649cxa+xWXjvzqG4WlCBrBLj1NEpfb2u24lzeIir+FpvEFBWrcOr2+Kw47wxeXjPqCAxtuMphdDpDU0mzCprdDhsmtY60F/d5DWJiIiIiIiIbBkTa0Qd5O2d8WLS6clpxvXQHp8Sjs8OJMHUHwDje3vgSKKxIUHdDpf13T7UHxqtHrcP8W9yH2+VZSfNJ6dH4LHJ4eL7RVG9oDcIeGPHJeSUVuOBL45b7D+1kUq5usI8GzYkMN8fAPTxUaGfnwvUDgqUVGlxLr0Yw4PdoNEa4GBXm7DTGwTc/dkxxJoq1gYGuDQ4LxEREREREVFXwMQaUQc4eDkPn+xPAgCMCHHDqF7G6ZQqewUGBqhxPt2YVLpvdAjmDwvEgAAXKOXXqRYLdsPwYLfrXtPN0c7i/f1jgi0SWlKpBI9MDINUIsFr2+MaHB8V1rBTaV1SqQQjQtwQc60IAwNccC2/EmWmJgUjQtzwYFQIZFIJosI8sPNiNhZ8Eo1x4R44mlSAr5aMwpS+3kjJr8CiL08gtbASABDs7ojZA/2ud1kiIiIiIiIim8WFjYjaWXm1Dit/PAsA8Ffb4/M/jYC0TrOA0aYkGwCEeDhiwYhARPq2vWqrbkMCoGEFm9mcIX4N9vVwskOgm8MNr/H2gsF4anoEvn90LLY+MQF+anvcNTIQPz82Tpz2ecfw2umsR5OM1XgrfzwHAHjsvzFiUm1kiBt2PDkBagdFM++QiIiIiIiIyLawYo2ojSqqdUjKK0ewuyN+j8vBtYIK5JfXwEulxB/PTIajneVfs4EBtWuKhXg4tlsc948JxsHLeaio0eFvsyItGhzU5a2yx0f3DUeZRou//XQeADAmzL3J/evq7e2MFTP7ADBW3x19blqD42YN8MWR56Zh/Ft7xbHCihqkFlSK3UcB4InpEVDZM6lGREREREREXRcTa0RtkFuqwT2fHxM7dtY1PtyjQVINAKb184af2h7+rg7tmlhydbTDD3+Oata+5vXc7BUybDieihfn9G/VNZtKxgW4OojTRs0mvbPPYp9Rva4/tZWIiIiIiIjI1kkEQRA6O4jmeuutt7Bq1So89dRTWLNmDQBAo9HgmWeewcaNG1FdXY1Zs2bh448/ho+PT7PPW1paCrVajZKSEri4cCF1aqiiWoctZzJw6EoezqWVQC6TwN/VASdSCps85uXb+mPJ+NBGt2m0esilkia7ZnYHaYWViLlWhBq9Ac+aKuPMjj43Df6uN556SkRERERERGRtLckTdZmKtZMnT+Kzzz7D4MGDLcZXrFiBHTt2YNOmTVCr1Vi+fDnmz5+PI0eOdFKkZAvSCiux62I2Fo3rBUW95JXeIOAfOy5h67kMhHk5Y+GIQCwcHmixDppZtU6P8+kluPPT6Abb0ouqAAB+anvMGeyHESFuuKm/LzaeTMOhK3mYOzSgwTFm9oqmGxV0F0Hujghyd4RGq7dIrL1waz8m1YiIiIiIiKhb6BKJtfLyctx///1Yu3Yt3njjDXG8pKQEX3zxBTZs2IBp06YBANavX49+/frh2LFjGDt2bGeFTJ1IEARMemcfBAFQyqX4U1Qvi+17LuXgyyMpAID88kKcSClEVrEGT82IAGBMvG04fg0JOWX477HUBuf3VikxNMgVzvZyeKmU+NPYEAS61a6Vdt+YYNw3JrjjbrCLsVfI4K+2R2aJBgDwyMSwTo6IiIiIiIiIqH10icTasmXLcOutt2LGjBkWibWYmBhotVrMmDFDHIuMjERwcDCio6OZWOuhzqeXwDzB+cTVogaJtUNX8hscs+tiNp6aEYEyjRZ3fXYMl7JKG+wzb6g//hQVghEh7g220fXdMzoY/9p9Ge5Odp0dChEREREREVG7sfnE2saNG3H69GmcPHmywbbs7GzY2dnB1dXVYtzHxwfZ2dlNnrO6uhrV1dXi+9LShkkU6roSc8vF19vOZeKRCaEYEuQKANDqDdgdlwMA+OxPI6DVG7B8wxkk5pVDpzfgo31JjSbVXrmtPxY3sV4a3diyqb3hYi/HuN6enR0KERERERERUbux6cRaWloannrqKezevRv29vbtdt7Vq1fj1VdfbbfzkW3JKK6yeD/3I+N6e49ODEU/Pxdkl2rg6WyHKX29oJBK4aA4jyqtHv89dg2fHkgSj1s8rhfOpRfjan4Fbh3sb9V76G5kUgkTk0RERERERNTt2HRiLSYmBrm5uRg+fLg4ptfrcfDgQXz44YfYtWsXampqUFxcbFG1lpOTA19f3ybPu2rVKqxcuVJ8X1paiqCgoA65B7K+zHqJNbO1h1LE13OHBkApNzYQGBbsiqNJBXhlW5zF/g9GhcDfNRJavQEqe0XHBUxEREREREREXZJNJ9amT5+O2NhYi7ElS5YgMjISf//73xEUFASFQoE9e/ZgwYIFAICEhASkpqYiKiqqyfMqlUoolcoOjZ06j7li7Z2Fg3HTAF98eTgFibnl2BGbJe4zta+3+Prl2wZg1pqDFueIe20WHO2Mfz16QgdPIiIiIiIiImo5m06sqVQqDBw40GLMyckJHh4e4vjDDz+MlStXwt3dHS4uLnjiiScQFRXFxgU9VE6pBqevFQEAgtwdoXZQYMXMPgCAX1ftEJsajA6tbUDQ11eFwYFqnE8vAQD8vmKSmFQjIiIiIiIiImqKtLMDaKv3338fc+bMwYIFCzBp0iT4+vpi8+bNnR0WdQKDQcCj35xCRY0e/f1cMCLEzWL7uwuHAABWzx8EO7nlo//oxDBIJICnsx3CPJ2sFjMRERERERERdV0SQTDX8PRcpaWlUKvVKCkpgYuLS2eHQ63046k0PPvTeaiUcmx/cgJCPBomyCprdE1WoyXnlUMhkyLI3bGjQyUiIiIiIiIiG9WSPFGXr1ijnudESiG+OJwCjVYvjuWUavDClgsAgCUTQhtNqgG47hTPMC9nJtWIiIiIiIiIqNm4kBR1KWUaLR7+6iTKqnWIuVaIj+8fgeLKGjz703nU6A3o66PCE9N6d3aYRERERERERNQDMLFGXYYgCPjbpvMoq9YBAH6NzcYXh1Pwa2wWYkwNC+YNC4BCxkJMIiIiIiIiIup4TKxRl3EipRA7L2ZbjL2+PU58HRXmgftGB1s7LCIiIiIiIiLqoVjaQ11CSaUWi9afAADMGeyHnU9PtNgul0rw30fGQO2o6IzwiIiIiIiIiKgHYmKNuoTTqUXQaA0AgL/e1BeRvi74YelYcbvOIEAmlXRWeERERERERETUAzGxRjbPYBDw4i/Gjp+3D/FHL09jx88xYR4Y4G9se+ulUnZafERERERERETUM3GNNWpgb3wOruSUo6+vClP6end2OPg9LgfpRVUAICbSzL5YNAr/+PUSFo8L6YzQiIiIiIiIiKgHY2Kti8orq4ZGq0eQu2O7nvfk1UI89NUp8f36xaMwNbJzk2vHkgvE19PqxeKrtsd/7h1m7ZCIiIiIiIiIiDgVtCvS6Q2Y99ERTHl3P36OScfuuBwYDEK7nPvzg8kW71/85QJOpBRCpze0y/lbSm8QcOhKHgDgg3uGIsJH1SlxEBERERERERHVx8RaFxSdXICM4iroDQKe2XQOj35zCpPe2Yeiipo2nbeyRoeDl/MsxtKLqnDXZ9HYeDKtTeduDUEQsPLHs0jKq4CTnQwTentaPQYiIiIiIiIioqYwsdYF7Y3PbTCWXlSFVZtjm32O/Qm5+GhfIkqqtOLY2bRiVOsM8FfbI2X1LVi/ZJS47URKYbPOm1lchZd+uYC0wkoAximrJZXaGxzVUI3OgE8OJOGXs5kAgNULBsPDmQ0KiIiIiIiIiMh2cI21Lig2vaTR8Z0XswEAFzJK8Nzm83j+5n4Y10iVV355Nf78bQyqdQbEZZbio/uHAwAuZpQCAAYHukIikWBqX288GBWCb6KvobCZ1XAv/O8C9sbn4tfYLAwNcsPe+BwYBKCvjwovzOmHiRFezTrPM5vOYds5Y1Jt4YhA3D7Ev1nHERERERERERFZCyvWuhid3oALmcbEWohHw8YFeoOA5zafx4WMUty37niD7RqtHp8fTEa1zrhm2qEreRAE4/pssRnG8w4MqO28efNAPwBARrGxK2dBeTWe+P4MJv5zLzadqp0eWqMz4JGvT4nVdPnlNfjjkjGpBgAJOWV45OtTyC+vvu79RScV4NFvTolJtREhbnh6RsQNPhUiIiIiIiIiIutjYq2LySzWQKM1QCmX4renJmL9klF4cU5/cfsfl3JwObtcfB+fXWpx/PcnUi0aFJRqdLhWUAlBEHA8xdh9c2iQm7g90M0BgDGxZjAI+GR/Erady0RaYRX+9tN5ZJoSbr/GZuGPSzkN4p0Y4YkZ/XwAANU6A44k5l/3/o4k5mN3nPE8fmp7/PSXKAS6tW/nUyIiIiIiIiKi9sDEWheTU6YBAPiq7eFoJ8fUvt54eEIo/jI5HADw529jUFOng+fsNYfEajODQcC30dcAAK/PHYChQa4AgFPXirD5dAZySquhlEsxsldtYs1XbQ+FTIIanQHJ+RVIyCmziOfj/YkQBAG7TNNQbx7oi11PT8KwYFd4q5RYPX8Q1i0aiXtHBwEAEnPLodMbcOBynsX6bmYx14rE11P6ekMikbTp8yIiIiIiIiIi6ihcY62LySk1JtZ8VPYW49MivfHpgSTxfainE1LyKwAAK344ix//HIW4rFIk5xs7bN4xPBC5ZdU4m1aMn2LSxHXbZg/0hb1CJp5HIZMiKtwTBy/nYdfFbCTnGc85pa8X9ifk4b/HUhGfVYZTpoTYsqm90ddXhS2Pj7eIL9zLGQDwn72J+OVsJlILKzEoQI2ty8eLybOC8mrEpBrPs+vpSQjzcmqfD42IiIiIiIiIqAOwYq2LyCyuwkNfncTH+4zJM28Xyw6ZoZ6WSaiVM/vg9bkDABg7el7JKcNlU7XZwAA1nJVyTDdN0TyWXIiKGj3CvJywev6gBte+dZAvAODLwyli9dvyqb3F7eak2s0DfTEwQN1o/L29ncXXqaaOobEZJVi8/qQ4/p+9iajRGRDm5YTe3s5QyPh4EhEREREREZHtYuaii/jX7svYG5+LuCzjmmne9SrWPJ3t4KysLUD0cLLDn6J6YVqkNwBg5vsHsfLHcwBqk1xDAtWYPcBXPGbhiEA42jUsYpw7NADeKiUKTJ1BHRQyjAhxw4VXZ+HZ2X3F/ab29W4y/qhwD4wNc28wfuByHhJzjWvCnUgpBACsmNEHMimngBIRERERERGRbWNirQuIuVaIn2LSLcYc7WQW7yUSiUXVmruzHQA0WkFmTqxJJBLcOTJQHB8c4Nro9e0VMqy5Z6j4/q+z+kIikcBZKcd9o4PF8VGhDRNnZkq5DBuXRuHnx6IwPdIbWx4fJyb9lnx1AmmFlWJF3YgQtybPQ0RERERERERkK7jGmg3bl5CL5d+dRkWNHgAwqpcb5g0LwOcHkzFvWECD/YM9HBGbYVwrzd3RmFjr5WHZUVMulSAq3EN8PzKkNhk2MMClyVjGhXti8+PjMMDfBUp5bVLP1dEO65eMQmmVtsF01MaMCHHHF4uN15wa6Y298blIK6zCxH/uA2DsBOqntr/eKYiIiIiIiIiIbAITazaoolqHF/53AVvOZIhjAwNc8H+39sfQIFfcPyak0ePMyTQAcHMyvg7xqE12vTinPxaOCITaQSGOqR0V2Lh0LATBmCS7nuHBjVeSXW8K6PVEhXlYvO/t7YzV8wexEygRERERERERdQlMrNmQyhodXt9+Cd+fSBXHgt0d8fiUcNxTZ8plU+omzMwL/9etIrtlkK/FPmZj6yW4rCXcywlPTOuNfQm5uH2IPxaN62VRDUdEREREREREZMuYWLMh30Zfs0iqvTV/ULMSamazBvjiw32JcHeqrTxzd7LDB/cMhUImhZ/aoV3jbSuJRIJnbuqLZ27qe+OdiYiIiIiIiIhsDBNrNsBgEHAsuQAf7k0EAEglwO8rJotNBpprUKAavywbDz9XyzXK5g5tuB4bERERERERERG1DRNrnaBap4cEEtjJpajRGbDoyxOITi4AAAwOVGPTX6JaPSVySJBrO0ZKRERERERERERNYWLNivQGAesOJeODPVcgl0rwz4WDcfBKvphUA4C/3tSX64wREREREREREXUBTKxZ0Tu7EvDpgSTx/V/+e9pi++wBvhgX3jmNBIiIiIiIiIiIqGWYWLOS9KJKManWz88F6YWVKKvWAQCc7GQ49PdpFk0HiIiIiIiIiIjItjGxZgU6vQEz/3UQgDGp9ttTEwEAGq0enx5IQlSYB5NqRERERERERERdDBNrdRgMgvi6pEqLtQeTcSKlEBuXjoVUKmn1eVPyK1Cl1QMA/npTH3HcXiHD0zP6NHUYERERERERERHZMGlnB2BL/v7zeexLyAUAyKQSfHX0Kk5cLcSRpPw2nfdSdhkAYHiwK6b382lznERERERERERE1PlYsVbHbxeysetKKQDgjmEBuG2IH74/kYavj17FxAivVp3z1NVC/BSTDgCI9HNpt1iJiIiIiIiIiKhzsWKtCVvOZECrN04N3ROfix9PpuH2Dw8jOqmg2efYn5CLhZ9G4+DlPADAtL7eHRIrERERERERERFZHxNrdex7ZjIGB6rF90cT8zE4UA1BAJ79+TzOp5fgo32JjR6r1Ruw80IWBKF2nbafT2eIr9fcPRQz+nMaKBERERERERFRd8GpoHV4udjj+0fHIqtEg7s/i4a7sx1c7BUW+6QWVjY4ThAEvPi/C9h4Mg0AcPfIICwe3wu7LmQDALY8Pg7Dgt06/gaIiIiIiIiIiMhqWLFWj5NSjt7ezvj1qYnYtnwCosI9LLanFVUiJb8C6w4lQ2Pq9PnBnitiUg0AfjiVhps/OIQavQETIzwxNMjVmrdARERERERERERWwIq1Jvi42AMAXB1rK9bs5FLU6AyY+u5+AEB5tQ7OSjnW/HEFAPD32ZFwtJPh5a0XxWPevXMIJBKJ9QInIiIiIiIiIiKrYGLtBm7q74t/7kzAlL5eKKrUio0IAIgJNQCYM9gPj00JBwCcTy/Bz6fT8dzNkWKCjoiIiIiIiIiIuhcm1m7AS6XE2ZdmQhCAF3+50OR+y6b2Fl+/MW8gbhvih0kRXtYIkYiIiIiIiIiIOgHXWGsGiUQCqVSCWQN8AQCDAtRwsTfmJP+5YDAS3piNfn4u4v4OdjJM6esNqZRTQImIiIiIiIiIuitWrLXApD5e+GXZePT1VSGvrBoyqQT+rg6dHRYREREREREREXUCJtZaaIipw2eQu2PnBkJERERERERERJ2KU0GJiIiIiIiIiIhagYk1IiIiIiIiIiKiVmBijYiIiIiIiIiIqBWYWCMiIiIiIiIiImoFJtaIiIiIiIiIiIhagYk1IiIiIiIiIiKiVmBijYiIiIiIiIiIqBVsPrG2evVqjBo1CiqVCt7e3pg3bx4SEhIs9tFoNFi2bBk8PDzg7OyMBQsWICcnp5MiJiIiIiIiIiKinsDmE2sHDhzAsmXLcOzYMezevRtarRY33XQTKioqxH1WrFiBbdu2YdOmTThw4AAyMzMxf/78ToyaiIiIiIiIiIi6O4kgCEJnB9ESeXl58Pb2xoEDBzBp0iSUlJTAy8sLGzZswMKFCwEA8fHx6NevH6KjozF27NgbnrO0tBRqtRolJSVwcXHp6FsgIiIiIiIiIiIb1ZI8kc1XrNVXUlICAHB3dwcAxMTEQKvVYsaMGeI+kZGRCA4ORnR0dKPnqK6uRmlpqcUfIiIiIiIiIiKiluhSiTWDwYCnn34a48ePx8CBAwEA2dnZsLOzg6urq8W+Pj4+yM7ObvQ8q1evhlqtFv8EBQV1dOhERERERERERNTNdKnE2rJly3DhwgVs3LixTedZtWoVSkpKxD9paWntFCEREREREREREfUU8s4OoLmWL1+O7du34+DBgwgMDBTHfX19UVNTg+LiYouqtZycHPj6+jZ6LqVSCaVS2dEhExERERERERFRN2bzFWuCIGD58uXYsmUL9u7di9DQUIvtI0aMgEKhwJ49e8SxhIQEpKamIioqytrhEhERERERERFRD2HzFWvLli3Dhg0b8Msvv0ClUonrpqnVajg4OECtVuPhhx/GypUr4e7uDhcXFzzxxBOIiopqVkdQIiIiIiIiIiKi1pAIgiB0dhDXI5FIGh1fv349Fi9eDADQaDR45pln8P3336O6uhqzZs3Cxx9/3ORU0Ppa0kaViIiIiIiIiIi6r5bkiWw+sWYNJSUlcHV1RVpaGhNrREREREREREQ9WGlpKYKCglBcXAy1Wn3dfW1+Kqg1FBQUAACCgoI6ORIiIiIiIiIiIrIFBQUFTKw1h7u7OwAgNTX1hh+YtYwaNQonT57s7DAs2GJMgG3GZc5u21oVpC1+VrYYE2B7cfGZahlbjMsWY7LF58oWPyeAcTWXLT5TgO19ToBtxgTYZlx8rprPFmMCbDMuPlfNZ4sxAbYXl60+U4DtfVaA7cdUUlKC4OBgMV90PUysAZBKjc1R1Wq1zfwFkMlkNhOLmS3GBNhuXADg4uJiU7HZ4mdlizEBthsXn6nmscW4bDEmM1t6rmz1c2JcLWNLzxRgm5+TLcYE2G5cAJ+r5rDFmADbjQvgc9UcthgTYLtx2dozBdjmZ9VVYjLni67nxntQp1i2bFlnh9CALcYE2G5ctsgWPytbjAmw3bhsja1+TrYYly3GZIts9XNiXF2bLX5OthgTYLtx2SJb/KxsMSbAduOyRbb4WdliTIDtxmWLbPGz6k4xsXkB2BWU2h+fKWpvfKaoI/C5ovbGZ4o6Ap8r6gh8rqi98ZnqXlry35MVawCUSiVefvllKJXKzg6Fugk+U9Te+ExRR+BzRe2NzxR1BD5X1BH4XFF74zPVvbTkvycr1oiIiIiIiIiIiFqBFWtEREREREREREStwMQaERERERERERFRKzCxRkRERERERERE1ApMrBEREREREREREbUCE2tEjVi9ejVGjRoFlUoFb29vzJs3DwkJCRb7aDQaLFu2DB4eHnB2dsaCBQuQk5Njsc+TTz6JESNGQKlUYujQoQ2uo9FosHjxYgwaNAhyuRzz5s3rwLuizmStZ2r//v2YO3cu/Pz84OTkhKFDh+K7777ryFujTmSt5yohIQFTp06Fj48P7O3tERYWhhdeeAFarbYjb486ibWeq7oSExOhUqng6urazndDtsBaz9TVq1chkUga/Dl27FhH3h51Emv+rBIEAe+++y769OkDpVKJgIAA/OMf/+ioW6NOZK3n6pVXXmn055WTk1NH3h51ECbWiBpx4MABLFu2DMeOHcPu3buh1Wpx0003oaKiQtxnxYoV2LZtGzZt2oQDBw4gMzMT8+fPb3Cuhx56CHfffXej19Hr9XBwcMCTTz6JGTNmdNj9UOez1jN19OhRDB48GD///DPOnz+PJUuW4MEHH8T27ds77N6o81jruVIoFHjwwQfx+++/IyEhAWvWrMHatWvx8ssvd9i9Ueex1nNlptVqce+992LixIntfi9kG6z9TP3xxx/IysoS/4wYMaLd74k6nzWfq6eeegrr1q3Du+++i/j4eGzduhWjR4/ukPuizmWt5+qvf/2rxc+prKws9O/fH3feeWeH3Rt1IIGIbig3N1cAIBw4cEAQBEEoLi4WFAqFsGnTJnGfS5cuCQCE6OjoBse//PLLwpAhQ657jUWLFglz585tz7DJhlnjmTK75ZZbhCVLlrRL3GTbrPlcrVixQpgwYUK7xE22raOfq2effVZ44IEHhPXr1wtqtbq9wycb1FHPVEpKigBAOHPmTEeFTjaso56ruLg4QS6XC/Hx8R0WO9kua/1udfbsWQGAcPDgwXaLnayHFWtEzVBSUgIAcHd3BwDExMRAq9VaVJlFRkYiODgY0dHRnRIjdS3WfKZKSkrE61D3Zq3nKjExETt37sTkyZPbFjB1CR35XO3duxebNm3CRx991H4Bk83r6J9Vt99+O7y9vTFhwgRs3bq1fYImm9dRz9W2bdsQFhaG7du3IzQ0FL169cIjjzyCwsLC9r0BsknW+t1q3bp16NOnD6u3uygm1ohuwGAw4Omnn8b48eMxcOBAAEB2djbs7OwarAXj4+OD7OzsToiSuhJrPlM//vgjTp48iSVLlrQlZOoCrPFcjRs3Dvb29oiIiMDEiRPx2muvtUfoZMM68rkqKCjA4sWL8dVXX8HFxaU9wyYb1pHPlLOzM9577z1s2rQJO3bswIQJEzBv3jwm13qAjnyukpOTce3aNWzatAnffPMNvvrqK8TExGDhwoXteQtkg6z1O7tGo8F3332Hhx9+uK0hUyeRd3YARLZu2bJluHDhAg4fPtzZoVA3Ya1nat++fViyZAnWrl2LAQMGdOi1qPNZ47n64YcfUFZWhnPnzuFvf/sb3n33XTz77LMddj3qfB35XD366KO47777MGnSpHY/N9mujnymPD09sXLlSvH9qFGjkJmZiXfeeQe33357u1+PbEdHPlcGgwHV1dX45ptv0KdPHwDAF198gREjRiAhIQF9+/Zt92uSbbDW7+xbtmxBWVkZFi1a1KHXoY7DijWi61i+fDm2b9+Offv2ITAwUBz39fVFTU0NiouLLfbPycmBr6+vlaOkrsRaz9SBAwdw22234f3338eDDz7Y1rDJxlnruQoKCkL//v1x77334q233sIrr7wCvV7f1vDJRnX0c7V37168++67kMvlkMvlePjhh1FSUgK5XI4vv/yyvW6DbEhn/F41ZswYJCYmtukcZNs6+rny8/ODXC4Xk2oA0K9fPwBAampq24Inm2XNn1fr1q3DnDlz4OPj05aQqRMxsUbUCEEQsHz5cmzZsgV79+5FaGioxfYRI0ZAoVBgz5494lhCQgJSU1MRFRVl7XCpC7DmM7V//37ceuutePvtt7F06dJ2iZ9sU2f+rDIYDNBqtTAYDG06D9keaz1X0dHROHv2rPjntddeg0qlwtmzZ3HHHXe02/1Q5+vMn1Vnz56Fn59fm85Btslaz9X48eOh0+mQlJQkjl2+fBkAEBIS0sa7IFtj7Z9XKSkp2LdvH6eBdnGcCkrUiGXLlmHDhg345ZdfoFKpxPnyarUaDg4OUKvVePjhh7Fy5Uq4u7vDxcUFTzzxBKKiojB27FjxPImJiSgvL0d2djaqqqpw9uxZAED//v1hZ2cHAIiLi0NNTQ0KCwtRVlYm7jN06FBr3jJ1MGs9U/v27cOcOXPw1FNPYcGCBeJ17Ozs2MCgG7LWc/Xdd99BoVBg0KBBUCqVOHXqFFatWoW7774bCoWiM26dOpC1nitzxYfZqVOnIJVKxXVsqPuw1jP19ddfw87ODsOGDQMAbN68GV9++SXWrVtn9Xumjmet52rGjBkYPnw4HnroIaxZswYGgwHLli3DzJkzLarYqHuw5vdAAPjyyy/h5+eHm2++2ar3Se2sEzuSEtksAI3+Wb9+vbhPVVWV8Pjjjwtubm6Co6OjcMcddwhZWVkW55k8eXKj50lJSRH3CQkJaXQf6l6s9UwtWrSo0e2TJ0+23s2S1Vjrudq4caMwfPhwwdnZWXBychL69+8vvPnmm0JVVZUV75asxZr/D6xr/fr1glqt7rgbo05jrWfqq6++Evr16yc4OjoKLi4uwujRo4VNmzZZ8U7Jmqz5syojI0OYP3++4OzsLPj4+AiLFy8WCgoKrHSnZE3WfK70er0QGBgoPP/881a6O+ooEkEQhBbk4YiIiIiIiIiIiAhcY42IiIiIiIiIiKhVmFgjIiIiIiIiIiJqBSbWiIiIiIiIiIiIWoGJNSIiIiIiIiIiolZgYo2IiIiIiIiIiKgVmFgjIiIiIiIiIiJqBSbWiIiIiIiIiIiIWoGJNSIiIiIiIiIiolZgYo2IiIiIiIiIiKgVmFgjIiIiIiIiIiJqBSbWiIiIiIiIiIiIWoGJNSIiIiIiIiIiolb4f388Xdx+HDyJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# esse será o range de datas que iremos utilizar\n", + "dates = pd.date_range('2010-01-02','2017-10-11', freq='B')\n", + "df = pd.DataFrame(index=dates)\n", + "df_aapl = df.join(df_aapl)\n", + "\n", + "# visualização\n", + "df_aapl[['Close']].plot(figsize=(15, 6))\n", + "plt.ylabel(\"stock price\")\n", + "plt.title(\"Apple Stock Price\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zO6Bo5bE07hx", + "outputId": "490b5ce2-87b4-452b-f974-a99f631fac01" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "DatetimeIndex: 2028 entries, 2010-01-04 to 2017-10-11\n", + "Freq: B\n", + "Data columns (total 1 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Close 1958 non-null float64\n", + "dtypes: float64(1)\n", + "memory usage: 96.2 KB\n" + ] + } + ], + "source": [ + "df_aapl=df_aapl[['Close']]\n", + "df_aapl.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Xacw3iug1SPL", + "outputId": "f78cdb5f-65c7-4f42-a2f0-491d945fa227" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2028, 1)\n" + ] + } + ], + "source": [ + "# vamos normalizar/escalar os dados\n", + "scaler = MinMaxScaler(feature_range=(-1, 1))\n", + "\n", + "df_aapl=df_aapl.fillna(method='ffill') # ffill: propaga a última observação válida\n", + "df_aapl['Close'] = scaler.fit_transform(df_aapl['Close'].values.reshape(-1,1))\n", + "print(df_aapl.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": { + "id": "j0la5XZN2Da4" + }, + "outputs": [], + "source": [ + "def load_data(df, look_back, test_size):\n", + " '''\n", + " Função que cria os conjuntos de treino e teste e define o comprimento da sequência de análise.\n", + " O comprimento da sequência é o período de tempo (em dias) da previsão.\n", + " Parâmetros:\n", + " df: Pandas DataFrame\n", + " look_back: comprimento da sequência (horizonte de previsão)\n", + " test_size: percentual do conjunto de dados total destinado ao conjunto de teste (0 < test_size < 1).\n", + " '''\n", + "\n", + " data_raw = df.values # extrai os valores somente\n", + " data = [] # lista para acrescentar dados\n", + "\n", + " # cria todas as sequências possíveis de comprimento (horizonte de previsão)\n", + " for index in range(len(data_raw) - look_back): \n", + " data.append(data_raw[index: index + look_back])\n", + "\n", + " data = np.array(data); # converte para numpy array\n", + " \n", + " # criação dos conjuntos de teste e treino\n", + " test_set_size = int(np.round(test_size*data.shape[0]));\n", + " train_set_size = data.shape[0] - (test_set_size);\n", + "\n", + " x_train = data[:train_set_size,:-1,:] # define um comprimento de 59 preços de ações\n", + " y_train = data[:train_set_size,-1,:] # e o 60º é a varível resposta\n", + "\n", + " x_test = data[train_set_size:,:-1]\n", + " y_test = data[train_set_size:,-1,:]\n", + "\n", + " # converte para pytorch tensors\n", + " x_train = torch.from_numpy(x_train).type(torch.Tensor)\n", + " x_test = torch.from_numpy(x_test).type(torch.Tensor)\n", + " y_train = torch.from_numpy(y_train).type(torch.Tensor)\n", + " y_test = torch.from_numpy(y_test).type(torch.Tensor)\n", + "\n", + " return [x_train, y_train, x_test, y_test]" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": { + "id": "oYp2B8b041Sz" + }, + "outputs": [], + "source": [ + "look_back = 60 # horizonte de previsão\n", + "x_train, y_train, x_test, y_test = load_data(df_aapl, look_back, 0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZGieQFz-5EZR", + "outputId": "8ca324bf-8f9b-4e67-bb6d-3ed1c1d1163d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1574, 1])\n", + "torch.Size([1574, 59, 1])\n", + "torch.Size([394, 1])\n", + "torch.Size([394, 59, 1])\n" + ] + } + ], + "source": [ + "print(y_train.size())\n", + "print(x_train.size())\n", + "print(y_test.size())\n", + "print(x_test.size())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I1cen-e_5Ipd" + }, + "source": [ + "## Modelagem" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": { + "id": "lu5hb_qvYgp2" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# defina a seed para garantir a reproducibilidade\n", + "\n", + "torch.manual_seed(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qoGq4smz5Qb0" + }, + "source": [ + "Estrutura do modelo LSTM Base" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": { + "id": "fWpuqmyV5GUx" + }, + "outputs": [], + "source": [ + "class LSTM_base(nn.Module):\n", + " \n", + " def __init__(self, input_dim, hidden_dim, num_layers, output_dim):\n", + " super(LSTM_base, self).__init__()\n", + " self.hidden_dim = hidden_dim # dimensões ocultas\n", + " self.num_layers = num_layers # número de camadas ocultas\n", + " self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) # batch_first=True faz com que os tensores tenham shape = (batch_dim, seq_dim, feature_dim)\n", + " self.fc = nn.Linear(hidden_dim, output_dim) # camada Fully Connected\n", + "\n", + " def forward(self, x):\n", + " # inicialização com zeros\n", + "\n", + " h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()\n", + " c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()\n", + "\n", + " # Precisamos fazer o detach, já que realizamos o backpropagation through time (BPTT) truncado.\n", + " # Se não fizermos isso, o backpropagation vai até o início da série\n", + " out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))\n", + "\n", + " # Só precisamos ficar com o hidden state do último passo:\n", + " out = self.fc(out[:, -1, :])\n", + "\n", + " return out" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": { + "id": "4kzhkufnLKzt" + }, + "outputs": [], + "source": [ + "# Parametros\n", + "\n", + "input_dim = 1\n", + "hidden_dim = 32\n", + "num_layers = 2\n", + "output_dim = 1\n", + "lr = 0.1\n", + "num_epochs = 5" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": { + "id": "We2C-0GiLdgM" + }, + "outputs": [], + "source": [ + "# Instancia o modelo\n", + "model = LSTM_base(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_4Wt5EoyLkI1", + "outputId": "21a3e61b-9d8e-42c3-9c39-0c8976068527" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Modelo:\n", + " LSTM_base(\n", + " (lstm): LSTM(1, 32, num_layers=2, batch_first=True)\n", + " (fc): Linear(in_features=32, out_features=1, bias=True)\n", + ")\n", + "Quantidade de parâmetros: 10\n", + "torch.Size([128, 1])\n", + "torch.Size([128, 32])\n", + "torch.Size([128])\n", + "torch.Size([128])\n", + "torch.Size([128, 32])\n", + "torch.Size([128, 32])\n", + "torch.Size([128])\n", + "torch.Size([128])\n", + "torch.Size([1, 32])\n", + "torch.Size([1])\n" + ] + } + ], + "source": [ + "print('Modelo:\\n', model)\n", + "\n", + "print('Quantidade de parâmetros: ', len(list(model.parameters())))\n", + "for i in range(len(list(model.parameters()))):\n", + " print(list(model.parameters())[i].size())" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": { + "id": "t45Vhz2ALogo" + }, + "outputs": [], + "source": [ + "# Define função de perda\n", + "# Lembrando que minimizar a MSE é equivalente a minimizar RMSE\n", + "loss_fn = torch.nn.MSELoss()\n", + "\n", + "# Define otimizador\n", + "optimizer = torch.optim.SGD(model.parameters(), lr=lr)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I-j72HzOMyi5" + }, + "source": [ + "### **Agora complemente a célula abaixo para implementar uma função que realize o treinamento e faça as previsões**" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "id": "GN5DHd_9MCEV" + }, + "outputs": [], + "source": [ + "def train_model(model, num_epochs, x_train, x_test, loss_fn, optimizer):\n", + " \n", + " # vetor para registrar as perdas ao longo das épocas\n", + " hist_train = np.zeros(num_epochs)\n", + " hist_test = np.zeros(num_epochs)\n", + "\n", + " for t in range(num_epochs):\n", + "\n", + " # implemente o passo forward\n", + " y_train_pred = model(x_train)\n", + "\n", + " # compute a perda\n", + " loss = loss_fn(y_train_pred, y_train)\n", + "\n", + " # print de algumas épocas\n", + " if t % 10 == 0 and t !=0:\n", + " print(\"Epoch \", t, \"MSE: \", loss.item())\n", + "\n", + " # armazena a perda de treinamento \n", + " hist_train[t] = loss.item()\n", + "\n", + " # limpe o gradiente\n", + " optimizer.zero_grad()\n", + "\n", + " # implemente o passo backward\n", + " loss.backward()\n", + "\n", + " # atualize os parâmetros\n", + " optimizer.step()\n", + "\n", + " # faça as previsões\n", + " y_test_pred = model(x_test)\n", + "\n", + " # armazena a perda de teste\n", + " hist_test[t] = loss_fn(y_test_pred, y_test).item() \n", + "\n", + " # plot da perda durante o treinamento\n", + " plt.plot(hist_train,label=\"Training loss\")\n", + " plt.plot(hist_test,label=\"Test loss\")\n", + " plt.legend()\n", + " plt.show()\n", + "\n", + " return y_train_pred, y_test_pred, hist_train" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 334 + }, + "id": "8vpYfUwuNJrt", + "outputId": "2cd41a8f-ef97-42a1-c568-582e4ba8eaf0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlNElEQVR4nO3dd3wUdf7H8dfupndCIAUCBAhNSqihYwlF0ROVE2wUFTwUlYuocKcgevfDgooKCqICogL2s6IQBaR3QSnSA0ICCaRDyu78/hgIhr6QsJvk/Xw89vHIfHdm9vNl2ew7M9/5jsUwDAMRERERN2Z1dQEiIiIiF6LAIiIiIm5PgUVERETcngKLiIiIuD0FFhEREXF7CiwiIiLi9hRYRERExO0psIiIiIjb83B1AaXB4XBw4MABAgMDsVgsri5HRERELoJhGGRnZxMVFYXVev5jKBUisBw4cIDo6GhXlyEiIiKXYN++fdSsWfO861SIwBIYGAiYHQ4KCnJxNSIiInIxsrKyiI6OLv4eP58KEVhOngYKCgpSYBERESlnLmY4hwbdioiIiNtTYBERERG3p8AiIiIibq9CjGG5GIZhUFRUhN1ud3Up4kY8PT2x2WyuLkNERC6gUgSWgoICDh48SF5enqtLETdjsVioWbMmAQEBri5FRETOo8IHFofDwe7du7HZbERFReHl5aXJ5QQwj7odPnyY/fv3ExsbqyMtIiJurMIHloKCAhwOB9HR0fj5+bm6HHEz1apVY8+ePRQWFiqwiIi4sUoz6PZCU/5K5aSjbSIi5YO+xUVERMTtKbBUMnXq1GHixIkXvf7ChQuxWCxkZGSUWU0AM2bMICQkpExfQ0REyi8FFjdlsVjO+3jmmWcuab+rV69m6NChF71+x44dOXjwIMHBwZf0eiIiIqWhwg+6La8OHjxY/PPcuXMZM2YM27ZtK27762W4hmFgt9vx8Ljw21mtWjWn6vDy8iIiIsKpbUREREqbjrC4qYiIiOJHcHAwFouleHnr1q0EBgby/fff07p1a7y9vVmyZAk7d+7k5ptvJjw8nICAANq2bcuCBQtK7Pf0U0IWi4V33nmHW265BT8/P2JjY/nqq6+Knz/9lNDJUzc//PADjRs3JiAggF69epUIWEVFRTzyyCOEhIRQtWpVnnzySQYOHEifPn2c+jd46623qFevHl5eXjRs2JBZs2YVP2cYBs888wy1atXC29ubqKgoHnnkkeLn33zzTWJjY/Hx8SE8PJy+ffs69doiInJC5p+weAL88G+XllEpA4thGOQVFLnkYRhGqfVj1KhRPP/882zZsoXmzZuTk5PDDTfcQFJSEuvXr6dXr17cdNNNJCcnn3c/48aN4/bbb2fjxo3ccMMN3HXXXRw5cuSc6+fl5TFhwgRmzZrF4sWLSU5OZuTIkcXPv/DCC3z44YdMnz6dpUuXkpWVxZdffulU37744gseffRRHnvsMX777TceeOABBg8ezM8//wzAZ599xquvvsrUqVPZvn07X375Jc2aNQNgzZo1PPLIIzz77LNs27aNefPm0bVrV6deX0SkUivKh98+h1m3wsSm8NNzsHIq5Ka7rKRKeUroWKGdJmN+cMlrb362J35epfPP/uyzz9K9e/fi5dDQUFq0aFG8/Nxzz/HFF1/w1VdfMXz48HPuZ9CgQdxxxx0A/N///R+vv/46q1atolevXmddv7CwkClTplCvXj0Ahg8fzrPPPlv8/BtvvMHo0aO55ZZbAJg0aRLfffedU32bMGECgwYN4sEHHwQgMTGRFStWMGHCBK655hqSk5OJiIggISEBT09PatWqRbt27QBITk7G39+fG2+8kcDAQGrXrk3Lli2den0RkUrp4K+w/gPY+DEczzjVXrsTxN0FXq6bz6xSHmGpKNq0aVNiOScnh5EjR9K4cWNCQkIICAhgy5YtFzzC0rx58+Kf/f39CQoK4tChQ+dc38/PrzisAERGRhavn5mZSWpqanF4ALDZbLRu3dqpvm3ZsoVOnTqVaOvUqRNbtmwB4O9//zvHjh2jbt26DBkyhC+++IKioiIAunfvTu3atalbty733HMPH374oW7LICJyLrnpsOIteKszTO0Kq942w0pQDegyEh5eB4O/g5Z3gaevy8qslEdYfD1tbH62p8teu7T4+/uXWB45ciTz589nwoQJ1K9fH19fX/r27UtBQcF59+Pp6Vli2WKx4HA4nFq/NE91XYzo6Gi2bdvGggULmD9/Pg8++CAvvfQSixYtIjAwkHXr1rFw4UJ+/PFHxowZwzPPPMPq1at16bSICIC9CHb+BOtnwbbvwVFottu8oFFvaHk31L0GrO4zA3ilDCwWi6XUTsu4k6VLlzJo0KDiUzE5OTns2bPnitYQHBxMeHg4q1evLh43YrfbWbduHXFxcRe9n8aNG7N06VIGDhxY3LZ06VKaNGlSvOzr68tNN93ETTfdxEMPPUSjRo3YtGkTrVq1wsPDg4SEBBISEhg7diwhISH89NNP3HrrraXWVxGRcidtB2z4ADbMhpyUU+2RLaDlPdD0NvALdV1951HxvrUrsdjYWD7//HNuuukmLBYLTz/99HmPlJSVhx9+mPHjx1O/fn0aNWrEG2+8wdGjR52aBv/xxx/n9ttvp2XLliQkJPD111/z+eefF1/1NGPGDOx2O/Hx8fj5+fHBBx/g6+tL7dq1+eabb9i1axddu3alSpUqfPfddzgcDho2bFhWXRYRcV/52fD7F7D+Q9i34lS7byg072ee6olo5rr6LpICSwXyyiuvcO+999KxY0fCwsJ48sknycrKuuJ1PPnkk6SkpDBgwABsNhtDhw6lZ8+eTt1csE+fPrz22mtMmDCBRx99lJiYGKZPn87VV18NQEhICM8//zyJiYnY7XaaNWvG119/TdWqVQkJCeHzzz/nmWee4fjx48TGxjJ79myuuuqqMuqxiIibMQzYu8wcQLv5Syg8MY7PYoX63c2Q0uB68PByaZnOsBhXevBBGcjKyiI4OJjMzEyCgoJKPHf8+HF2795NTEwMPj4+LqqwcnM4HDRu3Jjbb7+d5557ztXllKD/HyJSoWTuh19nm0dTju4+1V61vjkupXl/CIp0XX2nOd/39+l0hEVK3d69e/nxxx/p1q0b+fn5TJo0id27d3PnnXe6ujQRkYqn8Dhs+9Y8mrLzZ+DEcQivALjqFnNsSnQ7KOd3p1dgkVJntVqZMWMGI0eOxDAMmjZtyoIFC2jcuLGrSxMRqRgMAw5uMI+kbPrktDlTOpunfJrcDF7+59pDuaPAIqUuOjqapUuXuroMEZGKJzfNnNRtw4eQ+tup9qCaEHcHxN0JoXVdV18ZUmARERFxZ/Yi2Jl0Ys6UeX+ZM8UbGt9ozkBb92q3mjOlLCiwiIiIuKO07ea4lF/nnDZnSpw5gLZZX/Ct4rLyrjQFFhEREXdxPMucM2XDh7Bv5al2v6rmnClxd0FEU9fV50IKLCIiIq7kcMDepWZI2fy/knOmxPYwQ0qDXuVqzpSyoMAiIiLiChn7zDlTNnwIR/ecag9rYIaUFv0hMMJl5bkbBRYREZErpfA4bP3GDCkl5kwJhKa3mmNTarYt93OmlAUFFjmrPXv2EBMTw/r16526aaGIiJzGMODAejOkbPoEjmeeeq5OFzOkNL6pQs2ZUhYUWNzUhW4UOHbsWJ555plL3vcXX3xBnz59Lml7ERG5CLlpsHGuObnbod9PtQfVNOdLibsTQmNcV185o8Dipg4ePFj889y5cxkzZgzbtm0rbgsICHBFWSIicj72Itgx37wc+Y954Cgy223e5lGUlndBTLcKP2dKWbC6ugA5u4iIiOJHcHAwFoulRNucOXNo3LgxPj4+NGrUiDfffLN424KCAoYPH05kZCQ+Pj7Url2b8ePHA1CnTh0AbrnlFiwWS/HyxVi0aBHt2rXD29ubyMhIRo0aRVFRUfHzn376Kc2aNcPX15eqVauSkJBAbm4uAAsXLqRdu3b4+/sTEhJCp06d2Lt37+X/Q4mIuIPDf8D8MfBqE5jd3xyn4iiCqJbQ+2UYuQ36vgv1rlVYuUSV8wiLYZy6bOxK8/S77MFUH374IWPGjGHSpEm0bNmS9evXM2TIEPz9/Rk4cCCvv/46X331FR9//DG1atVi37597Nu3D4DVq1dTvXp1pk+fTq9evbDZLu6D8+eff3LDDTcwaNAg3n//fbZu3cqQIUPw8fHhmWee4eDBg9xxxx28+OKL3HLLLWRnZ/PLL79gGAZFRUX06dOHIUOGMHv2bAoKCli1atUFT3uJiLi141nw++fmKZ/9q061+4WZc6a0vAvCr3JdfRVM5QwshXnwf1Guee1/HbjsgVVjx47l5Zdf5tZbbwUgJiaGzZs3M3XqVAYOHEhycjKxsbF07twZi8VC7dq1i7etVq0aACEhIUREXPzlcm+++SbR0dFMmjQJi8VCo0aNOHDgAE8++SRjxozh4MGDFBUVceuttxa/XrNmzQA4cuQImZmZ3HjjjdSrVw9AN0IUkfLJ4YC9S8yQsvl/UHTMbLfYzDlTWt4FsT0r/ZwpZaFyBpZyLDc3l507d3LfffcxZMiQ4vaioiKCg4MBGDRoEN27d6dhw4b06tWLG2+8kR49elzW627ZsoUOHTqUOCrSqVMncnJy2L9/Py1atOC6666jWbNm9OzZkx49etC3b1+qVKlCaGgogwYNomfPnnTv3p2EhARuv/12IiMjL6smEZErJiMZNpyYMyXjL6ezwxqYV/k07w+B4a6rrxK4pMAyefJkXnrpJVJSUmjRogVvvPEG7dq1O+u6M2bMYPDgwSXavL29OX78ePGyYRiMHTuWadOmkZGRQadOnXjrrbeIjY29lPIuzNPPPNLhCp5+l7V5Tk4OANOmTSM+Pr7EcydP77Rq1Yrdu3fz/fffs2DBAm6//XYSEhL49NNPL+u1z8dmszF//nyWLVvGjz/+yBtvvMG///1vVq5cSUxMDNOnT+eRRx5h3rx5zJ07l6eeeor58+fTvn37MqtJROSyFB6Drd+aNx3ctYgSc6Y0uw3i7oaabTRnyhXidGCZO3cuiYmJTJkyhfj4eCZOnEjPnj3Ztm0b1atXP+s2QUFBJa5wOX3swosvvsjrr7/OzJkziYmJ4emnn6Znz55s3rwZHx8fZ0u8MIul3F7vHh4eTlRUFLt27eKuu+4653pBQUH069ePfv360bdvX3r16sWRI0cIDQ3F09MTu93u1Os2btyYzz77DMMwit+/pUuXEhgYSM2aNQHzfe3UqROdOnVizJgx1K5dmy+++ILExEQAWrZsScuWLRk9ejQdOnTgo48+UmAREfdiGHBgnXnKZ9OnkH/6nCn3nJgz5fL++BTnOR1YXnnlFYYMGVJ81GTKlCl8++23vPfee4waNeqs25y8wuVsDMNg4sSJPPXUU9x8880AvP/++4SHh/Pll1/Sv39/Z0us8MaNG8cjjzxCcHAwvXr1Ij8/nzVr1nD06FESExN55ZVXiIyMpGXLllitVj755BMiIiIICQkBzCuFkpKS6NSpE97e3lSpcuG7fT744INMnDiRhx9+mOHDh7Nt2zbGjh1LYmIiVquVlStXkpSURI8ePahevTorV67k8OHDNG7cmN27d/P222/zt7/9jaioKLZt28b27dsZMGBAGf9LiYhcpJzD5pwpGz6EQ5tPtQdHn5ozpUodl5UnTgaWgoIC1q5dy+jRo4vbrFYrCQkJLF++/Jzb5eTkULt2bRwOB61ateL//u//uOoqc+T07t27SUlJISEhoXj94OBg4uPjWb58+VkDS35+Pvn5+cXLWVlZznSj3Lv//vvx8/PjpZde4vHHH8ff359mzZoxYsQIAAIDA3nxxRfZvn07NpuNtm3b8t1332G1mlexv/zyyyQmJjJt2jRq1KjBnj17LviaNWrU4LvvvuPxxx+nRYsWhIaGct999/HUU08B5hGdxYsXM3HiRLKysqhduzYvv/wy119/PampqWzdupWZM2eSnp5OZGQkDz30EA888EBZ/ROJiFzYueZM8fAxj6LEnZwzRTOAuAOLYRjGxa584MABatSowbJly+jQoUNx+xNPPMGiRYtYuXLlGdssX76c7du307x5czIzM5kwYQKLFy/m999/p2bNmixbtoxOnTpx4MCBEoMwb7/9diwWC3Pnzj1jn8888wzjxo07oz0zM5OgoKASbcePH2f37t3ExMSUzeklKdf0/0OkEjq0FTZ8AL/OhdxDp9qjWpkDaJveBr4hLiuvMsnKyiI4OPis39+nK/OrhDp06FAi3HTs2JHGjRszdepUnnvuuUva5+jRo4vHRYDZ4ejo6MuuVUREKqjjmfDb5+bRlD/XnGr3CzPvihx3F4Q3cV19ckFOBZawsDBsNhupqakl2lNTUy96Tg9PT09atmzJjh07AIq3S01NLXGEJTU19Zw33fP29sbb29uZ0kVEpLIpnjPlA9j8Vck5Uxr0NI+mxPYAm6dr65SL4tSJOS8vL1q3bk1SUlJxm8PhICkpqcRRlPOx2+1s2rSpOJzExMQQERFRYp9ZWVmsXLnyovcpIiJSLCMZFj4Pr7eAmTeZg2mLjkFYQ+j+HCRugTtmQ6PeCivliNOnhBITExk4cCBt2rShXbt2TJw4kdzc3OKrhgYMGECNGjWK713z7LPP0r59e+rXr09GRgYvvfQSe/fu5f777wfMK4hGjBjBf/7zH2JjY4sva46KitLdhEVE5OIUHoMt35hzpuxeTPGcKd5B5piUlndDjdaaM6Ucczqw9OvXj8OHDzNmzBhSUlKIi4tj3rx5hIebM/wlJycXX40CcPToUYYMGUJKSgpVqlShdevWLFu2jCZNTp0rfOKJJ8jNzWXo0KFkZGTQuXNn5s2bp0GQIiJyboYBf64zB9Bu+qzknCkxXc05UxrdqDlTKginrhJyV+cbZXzyKpA6derg6+vrogrFXR07dow9e/boKiGR8iTnkHmaZ/2HcHjLqfbgWifmTLlDc6aUE251lZCreXqa5yfz8vIUWOQMBQUFABd912oRcRF7IWw/MWfK9h9OmzPlb+ZNB+t01ZwpFViFDyw2m42QkBAOHTKvtffz8zvj1gBSOTkcDg4fPoyfnx8eHhX+oyBSPhXPmTIHcg+faq/R2hyXctWtmjOlkqgUv6VPXjp9MrSInGS1WqlVq5ZCrIg7OZ4Jv312Ys6Utafa/atB835mUKne2HX1iUtUisBisViIjIykevXqFBYWuroccSNeXl4lBomLiIs4HLBnsTkuZctXUHTcbLd6QGxP85SP5kyp1CpFYDnJZrNprIKIiDs5uhc2fGQ+MpNPtVdrZB5Jad4PAqq7rj5xG5UqsIiIiBsoyIOtf50z5QTvIGjWF+LuhhqtNGeKlKDAIiIiZc8wzPEo6z8wx6fkZ516LqabOWdK4xvBU1dzytkpsIiISNkpPG4eSVn9Dhzeeqo9pJZ5w8EWd0CV2q6rT8oNBRYRESl9hcdg7QxYMhFyUsw2Dx9ocrMZVOp00Zwp4hQFFhERKT0FubBmOix9DXJPTCURVBM6PQot+oFPsGvrk3JLgUVERC5ffg6seReWvg55aWZbcC3okmhOl+/h7dr6pNxTYBERkUuXnw2rpsHySZCXbraF1IauI6F5f/Dwcm19UmEosIiIiPOOZ8Kqt2H5ZDh21GwLrQtdRkLz2zXBm5Q6BRYREbl4xzJg5VRYMdkMLQBV60PXx6FpX7Dpa0XKhv5niYjIheUdgRVvwcopp+ZQCWsAXZ+ApreCVbOIS9lSYBERkXPLO2KOT1n5NhRkm23VGkO3J8xLlBVU5ApRYBERkTPlpsGyN8wJ3wpyzLbwpmZQaXST5lCRK06BRURETsk5BMteh9XvQmGe2RbRHLo9CQ1vUFARl1FgERERyE4x51BZ8x4UHTPbolqaQaVBL92IUFxOgUVEpDLLOmDOSrt2BhQdN9tqtIZuoyC2u4KKuA0FFhGRyihzPyx5Fda9D/YCs61mO7j6Sah3nYKKuB0FFhGRyiQj+URQmQWOQrOtVgfz1E/dqxVUxG0psIiIVAZH98AvL8OGj8BRZLbV6WJe9VOni4KKuD0FFhGRiuzILlj8Mvw6Gwy72RbTzTyiUqeTa2sTcYICi4hIRZS2A36ZABs/PhVU6l1rBpVa7V1bm8glUGAREalIDm+DxRPgt0/BcJht9bubQSW6rWtrE7kMCiwiIhXBoS2w+CX47XPAMNsa9DLHqNRo7dLSREqDAouISHmW+jssehE2/4/ioNKwtxlUouJcWZlIqVJgEREpjw5uhMUvwpavT7U1/ht0fRwim7uuLpEyosAiIlKeHFhvHlHZ9t2JBgtc1ccMKuFXubIykTKlwCIiUh7sXwuLXoDtP5xosEDT26DrSKje2KWliVwJCiwiIu5s3yozqOxYYC5brNDs79BlJFRr4NraRK4gBRYREXe0d7kZVHb9bC5bbNC8n3lEpWo919Ym4gIKLCIi7mTPEjOo7F5sLls9oEV/6PIYhNZ1bW0iLqTAIiLiaoZhBpRFL8LeJWab1RPi7oQuiVCljkvLE3EH1kvZaPLkydSpUwcfHx/i4+NZtWrVRW03Z84cLBYLffr0KdE+aNAgLBZLiUevXr0upTQRkfLDMGDnTzD9enj/b2ZYsXlBm/vgkXXwt9cVVkROcPoIy9y5c0lMTGTKlCnEx8czceJEevbsybZt26hevfo5t9uzZw8jR46kS5cuZ32+V69eTJ8+vXjZ29vb2dJERMoHw4AdSeapn/0n/uCzeUGrgdB5BATXdGl5Iu7I6SMsr7zyCkOGDGHw4ME0adKEKVOm4Ofnx3vvvXfObex2O3fddRfjxo2jbt2zn4P19vYmIiKi+FGlShVnSxMRcW+GAX/8AO9cBx/eZoYVDx+IHwaP/gq9JyisiJyDU4GloKCAtWvXkpCQcGoHVisJCQksX778nNs9++yzVK9enfvuu++c6yxcuJDq1avTsGFDhg0bRnp6+jnXzc/PJysrq8RDRMRtGQZs/Q7evho+uh3+XAsevtBhuBlUrn8egqJcXaWIW3PqlFBaWhp2u53w8PAS7eHh4WzduvWs2yxZsoR3332XDRs2nHO/vXr14tZbbyUmJoadO3fyr3/9i+uvv57ly5djs9nOWH/8+PGMGzfOmdJFRK48hwO2fWue+knZZLZ5+kHb+6HjwxBw7tPoIlJSmV4llJ2dzT333MO0adMICws753r9+/cv/rlZs2Y0b96cevXqsXDhQq677roz1h89ejSJiYnFy1lZWURHR5du8SIil8rhgC1fmXdPTv3NbPMKgHZDzKMq/uf+fSgiZ+dUYAkLC8Nms5GamlqiPTU1lYiIiDPW37lzJ3v27OGmm24qbnM4HOYLe3iwbds26tU7cwKkunXrEhYWxo4dO84aWLy9vTUoV0Tcj8MOv39hBpXDJ446ewVC/APQ4SHwC3VtfSLlmFOBxcvLi9atW5OUlFR8abLD4SApKYnhw4efsX6jRo3YtGlTibannnqK7OxsXnvttXMeFdm/fz/p6elERkY6U56IiGs47PDbZ2ZQSfvDbPMOhvb/gPbDwFcXEYhcLqdPCSUmJjJw4EDatGlDu3btmDhxIrm5uQwePBiAAQMGUKNGDcaPH4+Pjw9NmzYtsX1ISAhAcXtOTg7jxo3jtttuIyIigp07d/LEE09Qv359evbseZndExEpQ/Yi2PQJ/DIB0neYbT4h5tGUdkPBN8SV1YlUKE4Hln79+nH48GHGjBlDSkoKcXFxzJs3r3ggbnJyMlbrxV98ZLPZ2LhxIzNnziQjI4OoqCh69OjBc889p9M+IuKe7IWwcS4sngBHd5ttvlXM8SnthoJPkGvrE6mALIZhGK4u4nJlZWURHBxMZmYmQUH6RSEiZaSoAH6dDb+8DBl7zTa/quYVP23vB+9A19YnUs448/2tewmJiFxIUT5s+BB+eRUyk802/2rQ8RFocy94B7i2PpFKQIFFRORcCo/D+lmwZCJk7TfbAsKh06PQejB4+bm0PJHKRIFFROR0hcdg3fuw5FXIPmi2BUZCpxHQeiB4+rq0PJHKSIFFROSkgjxYOwOWToScE/NNBdWAzv+ElveAp48rqxOp1BRYREQKcmH1u7Dsdcg9bLYFR58IKneDh65YFHE1BRYRqbzyc2D1NFj2BuSduOFqSC3o8hi0uBM8vFxbn4gUU2ARkcrneBasehuWT4ZjR8y2KjHQdSQ07wc2T9fWJyJnUGARkcrjWMapoHI8w2wLrQddH4dmfwebfiWKuCt9OkWk4jt2FFZMgRVvQX6m2VY1Fro9AVfdqqAiUg7oUyoiFVfeEVjxJqycCvlZZlu1RuYRlatuAavNtfWJyEVTYBGRiic3HZZPMk//FOSYbdWbmEdUGt8MTtzvTETcgwKLiFQcOYfNS5NXvwuFuWZbeDMzqDS6UUFFpBxTYBGR8i879VRQKTpmtkW2gG5PQsMbwGJxbX0ictkUWESk/Mo6CEtfg7XToei42RbVCq4eBbE9FFREKhAFFhEpfzL/NKfPXzsT7PlmW8220G0U1L9OQUWkAlJgEZHyI2OfeUPC9bPAXmC2RbeHq5+EutcoqIhUYAosIuL+ju6FJa/A+g/BUWi21e5kjlGJ6aqgIlIJKLCIiPvKz4afx8OqqeAoMtvqdDHHqNTp7NraROSKUmAREfdjGLDlK/h+FGQfMNvqXm0eUand0aWliYhrKLCIiHs5shu+exx2zDeXq9SBG16G2ASXliUirqXAIiLuoSjfnEtl8QTzEmWrJ3T+J3RJBE9fV1cnIi6mwCIirrd7MXyTCOnbzeWYrtD7FQiLdW1dIuI2FFhExHVyDsGPT8HGueayfzXoOR6a9dWVPyJSggKLiFx5Drs5O23Ss3A8E7BA2/vg2qfBN8TV1YmIG1JgEZEr6+Cv8M0/4c+15nJkC7jxVajR2rV1iYhbU2ARkSvjeBb8/F9Y9TYYDvAKhOuehrb3g9Xm6upExM0psIhI2TIM+P0LmDcaclLMtqtuhZ7/B0GRrq1NRMoNBRYRKTtHdsG3I2FnkrkcWhdumGDeoFBExAkKLCJS+oryYclE+OVl827KNi/onGjOq+Lp4+rqRKQcUmARkdK1ayF8+xik7zCX615tzlQbVt+VVYlIOafAIiKlIzsVfvw3bPrEXA4IN8epNL1Nc6qIyGVTYBGRy+Oww5r3IOk5yD8xp0q7IXDtU+AT7OrqRKSCUGARkUt3YL05p8qB9eZyZNyJOVVaubQsEal4FFhExHnHM+Gn/8Dqd8w5VbyD4Lox0OZezakiImVCgUVELp5hwG+fwQ//gpxUs61pX+j5XwiMcG1tIlKhWS9lo8mTJ1OnTh18fHyIj49n1apVF7XdnDlzsFgs9OnTp0S7YRiMGTOGyMhIfH19SUhIYPv27ZdSmoiUlfSdMKsPfHafGVZC68E9X0LfdxVWRKTMOR1Y5s6dS2JiImPHjmXdunW0aNGCnj17cujQofNut2fPHkaOHEmXLl3OeO7FF1/k9ddfZ8qUKaxcuRJ/f3969uzJ8ePHnS1PREpb4XH4eTy82cG8ZNnmDVf/C4Ytg3rXuLo6EakkLIZhGM5sEB8fT9u2bZk0aRIADoeD6OhoHn74YUaNGnXWbex2O127duXee+/ll19+ISMjgy+//BIwj65ERUXx2GOPMXLkSAAyMzMJDw9nxowZ9O/f/4I1ZWVlERwcTGZmJkFBQc50R0TOZ0cSfDfSnLEWoN615ky1Veu5ti4RqRCc+f526ghLQUEBa9euJSEh4dQOrFYSEhJYvnz5Obd79tlnqV69Ovfdd98Zz+3evZuUlJQS+wwODiY+Pv6c+8zPzycrK6vEQ0RKUdZB+GQwfHCrGVYCIqDvdLj7c4UVEXEJpwbdpqWlYbfbCQ8PL9EeHh7O1q1bz7rNkiVLePfdd9mwYcNZn09JSSnex+n7PPnc6caPH8+4ceOcKV1ELobDbl75k/QcFGSDxQrtHoBr/gU+OnopIq5zSYNuL1Z2djb33HMP06ZNIywsrNT2O3r0aDIzM4sf+/btK7V9i1Raf66DadfC90+YYaVGaxjyM1z/vMKKiLicU0dYwsLCsNlspKamlmhPTU0lIuLMqwR27tzJnj17uOmmm4rbHA6H+cIeHmzbtq14u9TUVCIjT91qPjU1lbi4uLPW4e3tjbe3tzOlX7JvNx6kyOHg5rgaV+T1RK64Yxnw03Ow+l3AAO9gSBgLrQdpThURcRtOBRYvLy9at25NUlJS8aXJDoeDpKQkhg8ffsb6jRo1YtOmTSXannrqKbKzs3nttdeIjo7G09OTiIgIkpKSigNKVlYWK1euZNiwYZfWq1Ly674MHpmzHsMwsDsMbm1V06X1iJQqw4BNn5pzquSeuMqveT/o8R8IqO7a2kRETuP0xHGJiYkMHDiQNm3a0K5dOyZOnEhubi6DBw8GYMCAAdSoUYPx48fj4+ND06ZNS2wfEhICUKJ9xIgR/Oc//yE2NpaYmBiefvppoqKizpiv5UprViOY29tEM3tVMo998itFDoPb20S7tCaRUpG23byj8u5F5nLVWOj9MtTt5tq6RETOwenA0q9fPw4fPsyYMWNISUkhLi6OefPmFQ+aTU5Oxmp1bmjME088QW5uLkOHDiUjI4POnTszb948fHx8nC2vVFmtFv7bpykeVguzVuzliU83YncY3NGulkvrErlkhcfgl1dg6USwF4CHD3QdCR0fAY8rc5pVRORSOD0Pizsq63lYDMNg3NebmbFsDwDP3XwV93SoU+qvI1Kmti8w51Q5uttcrt8dbngJQmNcW5eIVFrOfH/rXkIXwWKxMPamJnhYLbyzZDdP/+93ihwGgzvpF72UA1kHYN5o2PyluRwYCde/AI3/BhaLS0sTEblYCiwXyWKx8O/ejfGwWZmyaCfjvt6M3WFwf5e6ri5N5OzsRbB6Gvz031NzqsQPg2tGg3egq6sTEXGKAosTLBYLT/ZqiKfNwhs/7eA/326hyGHwj26a+VPczP418M0ISDlxlV6NNnDjqxDZ3KVliYhcKgUWJ1ksFh7r0RCb1cLEBdt5/vutFNkdDL821tWlicCxo5D0LKyZDhjgEwwJ46DVQHByMLyIiDtRYLlEIxIa4GG1MOHHP5jw4x8UOQxGJDRwdVlSWRkGbPwYfvw35B4221rcAd2fg4Bqrq1NRKQUKLBchuHXxmKzWnlh3lYmLtiO3WGQ2L0BFg1klCvp8B/wbSLs+cVcDmtozqkS08W1dYmIlCIFlss07Op6eNos/OfbLbzx0w4K7QZP9mqo0CJlr/AYLJ4AS18DR6E5p0q3J6DDw+Dh5erqRERKlQJLKbi/S11sVgvjvt7MlEU7sTsc/OuGxgotUnb++NGcUyVjr7kc2xNueBGq1HFpWSIiZUWBpZQM7hSDh9XC0//7nWm/7KbIYTDmxiYKLVK6Mv+EeaNgy1fmclANc06VRjdqThURqdAUWErRPR3qYLNa+dcXm5i+dA9FdoNxf7sKq1VfJHKZ7EWwair8/H9QkAMWG7QfBlePBu8AV1cnIlLmFFhK2Z3xtfCwWnjy843MWrGXIofBf/s0VWiRS7dvFXyTCKkn5lSp2c6cUyWi6fm3ExGpQBRYysDtbaOxWS08/umvzF6VjN3hYPytzbEptIgz8o5A0jhYO8Nc9gmB7s9Cy3s0p4qIVDoKLGXkttY18bBZ+OfcDXy8Zj9FDoOX+rZQaJELMwz4dTb8+DTkpZltcXeZYcU/zLW1iYi4iAJLGbo5rgY2q4VH52zg83V/YncYvPz3FnjY9NexnMOhrfDtY7B3iblcrRH0fgXqdHJtXSIiLqbAUsZubB6FzWLh4dnr+d+GAxQ5DCb2i8NToUX+qiAPFr8Iy94ARxF4+MLVT0L7hzSniogICixXxPXNInnTauGhj9bx7caDOBwGr/VviZeHQosA2+bB949DRrK53OB681LlKrVdW5eIiBvRN+YV0uOqCKbc3Rovm5Xvf0vhoY/WUVDkcHVZ4koZ+2DOXTC7nxlWgmpC/4/gzjkKKyIip1FguYKuaxzO2wNa4+VhZf7mVIZ9sJb8Irury5IrzV4IS1+HyfGw9RuwekDHR+ChldCot6urExFxSwosV9jVDavz7sA2eHtYSdp6iKHvr+V4oUJLpZG8AqZ2g/lPQ2Eu1OoAD/wCPZ7TBHAiIuehwOICXWKrMX1QW3w9bSz64zBD3l/DsQKFlgot7wj8bzi81xMO/Q6+ofC3STDoOwhv4urqRETcngKLi3SsH8aMwW3x87Lxy/Y07p2xmryCIleXJaXNMGD9B/BGa1g/y2xreQ8MXwOtNAGciMjF0m9LF4qvW5X3721HgLcHy3elM2j6anLzFVoqjNTNMP16+N9DcOwIVG8C9/4AN08C/6qurk5EpFxRYHGxNnVCef++dgR6e7Bq9xEGvreK7OOFri5LLkdBLswfA1O7QPJy8PQzZ6l9YDHUau/q6kREyiUFFjfQqlYVPrg/niAfD9bsPcqA91aRpdBSPm39zrz6Z+lr5gRwjW6Eh1ZBp0fB5unq6kREyi0FFjfRIjqEj4a0J9jXk/XJGdzzzkoy8xRayo2MZJh9B8y5AzL3QXAtuGMO9P8QQqJdXZ2ISLmnwOJGmtYIZvaQ9lTx8+TX/Znc9e4KjuYWuLosOR97ISyZaB5V2fadOadKpxHw0ApoeL2rqxMRqTAUWNxMk6ggZg9tT1V/L377M4s731nJEYUW97R3GUzpAgvGQmEe1OoI/1gC3ceBl7+rqxMRqVAUWNxQo4gg5gxtT1iAN1sOZnHntBWk5eS7uiw5KTcdvnzIvALo8Bbwqwo3vwmDv4PqjV1dnYhIhaTA4qZiwwOZM7Q91QO92ZqSzR1vr+BQ9nFXl1W5ORyw7n2Y1Bo2fGC2tRpozqnS8i6wWFxbn4hIBabA4sbqVw9g7gMdiAjyYfuhHPq/vYLULIUWl0j9Hab3gq8ehmNHIbwp3Psj/O118At1dXUiIhWeAoubiwnzZ+4D7akR4suuw7n0f3sFBzOPubqsyiM/B358yhyrsm8lePpDj//C0EVQK97V1YmIVBoKLOVA7ar+zBnanppVfNmdlku/qSv4M0OhpUwZBmz52rz6Z9kbYNih8U0wfBV0HA42D1dXKCJSqSiwlBPRoX7MfaADtUL9SD6SR7+py9l3JM/VZVVMR/fC7P4w927I2g8hteDOj6HfBxBc09XViYhUSgos5UiNEF/mPtCemDB/9h89Rv+3V7A3PdfVZVUcRQXwyyvmUZU/5oHVE7o8Bg+uhAY9XV2diEilpsBSzkQG+zJnaHvqVvPnz4xj9Ju6gt1pCi2Xbc8S894/SeOg6BjU7gzDlsJ1Y8DLz9XViYhUepcUWCZPnkydOnXw8fEhPj6eVatWnXPdzz//nDZt2hASEoK/vz9xcXHMmjWrxDqDBg3CYrGUePTq1etSSqsUwoN8mDO0PbHVA0jJOk6/qcvZeTjH1WWVT7lp8MUwmNEbDm8FvzC4ZSoM+gaqNXR1dSIicoLTgWXu3LkkJiYyduxY1q1bR4sWLejZsyeHDh066/qhoaH8+9//Zvny5WzcuJHBgwczePBgfvjhhxLr9erVi4MHDxY/Zs+efWk9qiSqB/owe2h7GoYHcig7n35TV7A9NdvVZZUfDgesmQ5vtIZfPwIs0HowDF8NLfprThURETdjMQzDcGaD+Ph42rZty6RJkwBwOBxER0fz8MMPM2rUqIvaR6tWrejduzfPPfccYB5hycjI4Msvv3Su+hOysrIIDg4mMzOToKCgS9pHeXUkt4C73lnJloNZVPX34sMh8TSKqFz/Bk5L2QTfJML+E0cGw5vBja9CdFvX1iUiUsk48/3t1BGWgoIC1q5dS0JCwqkdWK0kJCSwfPnyC25vGAZJSUls27aNrl27lnhu4cKFVK9enYYNGzJs2DDS09PPuZ/8/HyysrJKPCqrUH8vZg+Jp2mNINJzC7jj7RVsPlB5/z3OKz8b5v0LpnYzw4pXAPQcD0MXKqyIiLg5pwJLWloadrud8PDwEu3h4eGkpKScc7vMzEwCAgLw8vKid+/evPHGG3Tv3r34+V69evH++++TlJTECy+8wKJFi7j++uux2+1n3d/48eMJDg4ufkRHRzvTjQonxM+LD+9rT4uawRzNK+TOd1bw25+Zri7LfRgGbP4fTGoHKyabc6o0udk8/dPhQc2pIiJSDlyR39SBgYFs2LCBnJwckpKSSExMpG7dulx99dUA9O/fv3jdZs2a0bx5c+rVq8fChQu57rrrztjf6NGjSUxMLF7Oysqq9KEl2M+TWffHM/C9VaxPzuDOaSuYdV88LaJDXF2aa2UdgK9HwPYTY6aq1IEbJkBs9/NtJSIibsapIyxhYWHYbDZSU1NLtKemphIREXHuF7FaqV+/PnFxcTz22GP07duX8ePHn3P9unXrEhYWxo4dO876vLe3N0FBQSUeAkE+nrx/bzva1K5C1vEi7n5nJeuSj7q6LNfZ8g281dEMK1ZP6Po4PLhCYUVEpBxyKrB4eXnRunVrkpKSitscDgdJSUl06NDhovfjcDjIz88/5/P79+8nPT2dyMhIZ8oTINDHk5n3tqNdTCjZ+UUMeHcVa/YccXVZV1ZBLnz9KMy9y7xRYWQLc06Va58CT19XVyciIpfA6cuaExMTmTZtGjNnzmTLli0MGzaM3NxcBg8eDMCAAQMYPXp08frjx49n/vz57Nq1iy1btvDyyy8za9Ys7r77bgBycnJ4/PHHWbFiBXv27CEpKYmbb76Z+vXr07OnZhe9FP7eHswY3JaO9aqSk1/EgPdWsXLXuQcxVygHfzUH1a6dYS53fATuW6A5VUREyjmnx7D069ePw4cPM2bMGFJSUoiLi2PevHnFA3GTk5OxWk/loNzcXB588EH279+Pr68vjRo14oMPPqBfv34A2Gw2Nm7cyMyZM8nIyCAqKooePXrw3HPP4e3tXUrdrHz8vDx4d2Bbhs5awy/b0xg0fTXvDmxDx/phri6tbDgc5oDaBePAUQiBkXDLFKh7tasrExGRUuD0PCzuqDLPw3IhxwvtPDBrLYv+OIy3h5V3BrahS2w1V5dVurIOwpfDYNfP5nKjG+Fvb4BfqGvrEhGR8yqzeVik/PHxtPH2gNZc26g6+UUO7pu5hoXbzj4rcbm09TtzYO2un8HDF26caN5VWWFFRKRCUWCpBLw9bEy5uzXdm4RTUORg6Ptr+Wlr6oU3dGcFefDNP2HOHXDsCEQ0gwcWQZvBmlZfRKQCUmCpJLw8rLx5VyuubxpBgd3BA7PW8uPv557sz62lbIK3r4Y175nLHYbD/UkaWCsiUoEpsFQinjYrr9/Rkt7NIym0Gzz44Tq+33TQ1WVdPIcDlk+GaddC2jYIiIB7voCe/wUPDdAWEanINCd5JeNps/Javzg8rBb+t+EAw2ev5zXD4MbmUa4u7fyyU8yBtTt/Mpcb3gB/mwT+VV1bl4iIXBEKLJWQh83KK7fHYbNa+Hzdnzwyez12h8HNcTVcXdrZbZsH/3sQ8tLNgbU9/wtt7tVYFRGRSkSBpZKyWS281LcFHlYLH6/Zzz/nbqDIbnBb65quLu2UwmPw41Ow+h1zObwZ9H1XY1VERCohBZZKzGa18PytzbFZrcxelczIT3/F7jC4va0b3Egy5Tf47D44vNVcbv8QJIzVWBURkUpKgaWSs1ot/LdPUzysFmat2MsTn22kyGFwZ3wt1xRkGLByCswfA/YC8K8Ot7wF9RNcU4+IiLgFBRbBarXw7M1X4WGzMH3pHv71xSbsDgf3dKhzZQvJOWQOrN2xwFxu0Atungz+FfR2AiIictEUWAQAi8XCmBub4GG1MO2X3Tz9v98pchgM7hRzZQr44wf48kHISwMPH+jxH2h7vwbWiogIoMAif2GxWPjXDY3xsFl5a+FOxn29GbvD4P4udcvuRQuPmad/Vr1tLle/yhxYW71x2b2miIiUOwosUoLFYuGJng3xsFp446cd/OfbLRTaDYZdXa/0Xyz1d/jsfji02VyOHwYJz4CnT+m/loiIlGsKLHIGi8XCYz0a4mG18uqCP3hh3lbsDgfDr40tnRcwDFg59cTA2nxzYG2ftyBWA2tFROTsFFjknB5NiMVmhQk//sGEH/+gyGHw6HWxWC5nXEnOIXOsyo755nJsD7j5TQioVjpFi4hIhaTAIuc1/NpYPGxWnv9+KxMXbKfIbvBYjwaXFlq2zzevAso9DDZv6PEctBuqgbUiInJBCixyQf/oVg8Pq4X/fLuFST/voMhh8GSvhhcfWgqPw4Kx5vwqANWbwG3vQPhVZVe0iIhUKAosclHu71IXD6uFZ77ezJRFOymyO/h378YXDi2pm08MrP3dXG73AHQfB56+ZV+0iIhUGAosctEGdYrBZrPy9Je/8c6S3RQ5DMbe1OTsocUwYNU0mP80FB0H/2rmWJUGPa584SIiUu4psIhT7mlfGw+rhdGfb2LGsj3YHQbj/nYVVutfQkvOYfhqOPwxz1yu3x36vAkB1V1TtIiIlHsKLOK0O9rVwma18ORnG5m1Yi9FDoP/9mlqhpYdC+CLYZB7yBxY2/1ZiH9AA2tFROSyKLDIJbm9TTQeVgsjP/mV2auSsRQd4z+Bn2Nd+Za5QrVGcNu7ENHUtYWKiEiFoMAil+zWVjWxWS1M/vgb7vltFFZrsvlE2yHmJcsaWCsiIqVEgUUunWFwc+H33OjzNDZHPulGIJ9Fj+beXsPwsFldXZ2IiFQgCixyaXLT4KuHYdt32IDD4Z25ad9dpOwI5te5G5jYLw5PhRYRESkl+kYR5+38Cd7qCNu+A5sX9BxPtQe+5tm7rsXTZuHbjQd5+KP1FBQ5XF2piIhUEAoscvGK8uGHf8OsWyAn1RxYO+Qn6PAgWK30uCqCqfe0xstmZd7vKTz00Tryi+yurlpERCoABRa5OIe3wTvXwfJJ5nKb+2DIzxDRrMRq1zYK5+0BrfHysDJ/cyrDPljH8UKFFhERuTwKLHJ+hgGr34Wp3SBlE/iGQv/ZcOMr4OV31k2ublid9wa2xcfTyk9bD/HArLUKLSIiclkUWOTcctNhzl3wbSIUHYO618CDy6HRDRfctHNsGO8Naouvp41Ffxzm/plrOFag0CIiIpdGgUXObufPJwbWfgtWT+jxX7j7cwiMuOhddKwXxozBbfHzsrFkRxr3zlhNXkFRGRYtIiIVlQKLlFRUAD8+BbP6QE4KhDWAIUnQcThYnf/vEl+3Ku/f244Abw+W70pn0PTV5OQrtIiIiHMUWOSUw3+YA2uXvWEutx4MQxdBZIvL2m2bOqG8f187Ar09WLX7CIPeW0X28cJSKFhERCoLBRYxB9aumQ5Tu0LKRnNgbb8P4aaJ5xxY66xWtarw4ZB4gnw8WLP3KAPeW0WWQouIiFwkBZbKLu8IzL0bvhlhDqyN6QbDlkHjG0v9pZrXDOGjIe0J8fNkfXIGd7+zksw8hRYREbmwSwoskydPpk6dOvj4+BAfH8+qVavOue7nn39OmzZtCAkJwd/fn7i4OGbNmlViHcMwGDNmDJGRkfj6+pKQkMD27dsvpTRxxq6F5sDard+YA2u7Pwv3fAlBkWX2kk1rBPPR/e0J9fdi4/5M7nxnBUdzC8rs9UREpGJwOrDMnTuXxMRExo4dy7p162jRogU9e/bk0KFDZ10/NDSUf//73yxfvpyNGzcyePBgBg8ezA8//FC8zosvvsjrr7/OlClTWLlyJf7+/vTs2ZPjx49fes/k3IoKYP4YeL8PZB+EqvXh/gXQ6dFLGljrrCZRQcwe0p6q/l78fiCLO99ZSXpOfpm/roiIlF8WwzAMZzaIj4+nbdu2TJpkznjqcDiIjo7m4YcfZtSoURe1j1atWtG7d2+ee+45DMMgKiqKxx57jJEjRwKQmZlJeHg4M2bMoH///hfcX1ZWFsHBwWRmZhIUFORMdyqftB3w2X1wcIO53Gog9BoPXv5XvJTtqdncMW0laTn5NAwP5MMh8YQFeF/xOkRExDWc+f526s/pgoIC1q5dS0JCwqkdWK0kJCSwfPnyC25vGAZJSUls27aNrl27ArB7925SUlJK7DM4OJj4+Phz7jM/P5+srKwSD7kAw4C1M2FqFzOs+FaBfh/A3153SVgBiA0PZO4D7ake6M221GzueHsFh7J1VE1ERM7kVGBJS0vDbrcTHh5eoj08PJyUlJRzbpeZmUlAQABeXl707t2bN954g+7duwMUb+fMPsePH09wcHDxIzo62pluVD55R+DjAfD1I1CYBzFdTwysvcnVlVGvWgBzH+hAZLAP2w/l0P/tFaRmKbSIiEhJV+QqocDAQDZs2MDq1av573//S2JiIgsXLrzk/Y0ePZrMzMzix759+0qv2Ipm92J4qxNs+QqsHpAwDu75HwRFubqyYjFh/swd2oEaIb7sOpxL/7dXcDDzmKvLEhERN+JUYAkLC8Nms5GamlqiPTU1lYiIc0/ZbrVaqV+/PnFxcTz22GP07duX8ePHAxRv58w+vb29CQoKKvGQ0xQVwIJnYObfIPsAhNYzB9Z2HnFFBtY6q1ZVP+YMbU/NKr7sTsul39QV7D+a5+qyRETETTj1zeXl5UXr1q1JSkoqbnM4HCQlJdGhQ4eL3o/D4SA/37wqJCYmhoiIiBL7zMrKYuXKlU7tU/4ifSe81wOWvAoY0PIeeGAxRLV0dWXnFR3qx9wHOlC7qh/JR/LoN3UF+44otIiIyCWcEkpMTGTatGnMnDmTLVu2MGzYMHJzcxk8eDAAAwYMYPTo0cXrjx8/nvnz57Nr1y62bNnCyy+/zKxZs7j77rsBsFgsjBgxgv/85z989dVXbNq0iQEDBhAVFUWfPn1Kp5eVhWHAulkwpQscWA8+IXD7+3DzJPAOcHV1F6VGiC9zhrYnJsyfPzOO0W/qcvam57q6LBERcTEPZzfo168fhw8fZsyYMaSkpBAXF8e8efOKB80mJydj/csph9zcXB588EH279+Pr68vjRo14oMPPqBfv37F6zzxxBPk5uYydOhQMjIy6Ny5M/PmzcPHx6cUulhJHDsKXz8Km/9nLtfpArdMgeCarq3rEkQGm6Hlzmkr2HnYPD00+0SIERGRysnpeVjcUaWfh2XPEvj8Acjabw6svebfJyaBs7m6sstyODufO6etYPuhHKoHevPRkPbUr14+jhSJiMiFldk8LOJm7IWQ9CzMuNEMK6F14b4foUtiuQ8rANUCvZk9tD2NIgI5lJ1P/7dXsD0129VliYiICyiwlFfpO+G9nvDLy5gDa++GB36BGq1dXVmpCgswj6w0iQwiLccMLVtTNFGgiEhlo8BS3hgGrP8QpnaFP9eCTzD8fQbcPLncDKx1Vqi/Fx8NiadpjSDScwu44+0V/H4g09VliYjIFaTAUp4cOwqfDob/PQgFOVC7E/xjKVx1i6srK3Mhfl58eF97WtQM5mheIXdOW8lvfyq0iIhUFgos5cWepfBWZ/j9C7DY4NqnYeDXEFJ5bksQ7OfJrPvjaVkrhMxjhdw5bQW/7stwdVkiInIFKLC4O3sh/PQfmHliYG2VGLhvPnQdWSEG1joryMeT9+9tR5vaVcg6XsTd76xkXfJRV5clIiJlTIHFnR3ZBe/1gsUvgeGAuLvgH79AzYo1sNZZgT6ezLy3HfExoWTnFzHg3VWs2XPE1WWJiEgZUmBxR4YBG2abM9b+uQa8g6Hve9DnTfAOdHV1bsHf24Ppg9vSsV5VcvKLGPDeKlbsSnd1WSIiUkYUWNzNsQz47D748h/mwNpaHWDYEmh6m6srczt+Xh68O7AtXWLDyCuwM2j6KpbtSHN1WSIiUgYUWNzJ3uXmUZXfPjMH1l7zFAz6FkJquboyt+XrZWPagDZ0a1CN44UOBs9YzS/bD7u6LBERKWUKLO7AXgQ//Rdm3ACZyRBSG+79Abo9XikH1jrLx9PG2wNac12j6uQXObhv5hoWbjvk6rJERKQUKbC42pHdML0XLH7RHFjbvD/8YwlEt3V1ZeWKt4eNt+5uTY8m4RQUORj6/lqStqS6uiwRESklCiyu9Otc8xTQ/tXgHQS3vQu3TgWfSngDx1Lg5WFl8l2tuL5pBAV2B//4YC0//p7i6rJERKQUKLC4wvFM+Ox++GIoFGRDdHvzqEqzvq6urNzztFl5/Y6W3Ng8kkK7wYMfruP7TQddXZaIiFwmBZYrLXklTOkMmz4xB9Ze/S9zYG2V2q6urMLwtFmZ2C+OPnFRFDkMhs9ez8xleyi0O1xdmoiIXCKLYRiGq4u4XFlZWQQHB5OZmUlQkJueTrEXmRPAnRyrElLLPAUU3c7VlVVYdofBE59u5LN1+wGIDvXl4WtjubVlDTxsyuoiIq7mzPe3AsuVcHQvfD4E9q00l5vdDr0nmHdaljLlcBjMWLaHNxfuIC2nAIDaVf145NpYbo6LUnAREXEhBRZ3svET+DYR8rPAKxBufAWa3+7qqiqdvIIiPlixl6mLdpGeawaXmDB/Hr0ulptaRGGzWlxcoYhI5aPA4g6OZ8F3I2HjXHO5Zju4bRpUqePSsiq73Pwi3l++l7cX7+RoXiEA9ar582hCA3o3i1RwERG5ghRYXG3fKvMqoIy9YLFC1yeg6+Ng83B1ZXJCTn4RM5ft4e3Fu8g8ZgaX2OoBjEhowPVNI7AquIiIlDkFFldx2OGXl2Hh82DYIbiWeVSlVnvX1STnlX28kOlL9/DOL7vIOl4EQKOIQEYkxNKjiYKLiEhZUmBxhYxk+HwoJC83l5v2NceraGBtuZB5rJD3luzmvSW7yc43g0vjyCD+mRBL9ybhWCwKLiIipU2B5Urb9Cl8kwj5mebA2t4ToHk/0JdcuZOZV8g7S3Yxfekeck4El6Y1gvhnQgOubVRdwUVEpBQpsFwp+dnw3ePw62xzuWZbuHUahMZcuRqkTBzNLWDaL7uYsWwPeQV2AFrUDGZE9wZc3aCagouISClQYLkS9q+Bz+6Do3vMgbVdRkK3J8DmeWVeX66I9Jx83v5lF+8v28uxQjO4xEWHkNi9AV1iwxRcREQugwJLWXLY4ZdXYOH4EwNro+HWt6F2x7J9XXGptJx8pi7ayawVezleaE7x37p2FRK7N6BjvaoKLiIil0CBpaxk7DsxsHaZudz0Nuj9CviGlN1rils5lH2cKQt38eHKveQXmcGlXUwo/0xoQId6VV1cnYhI+aLAUhZ++xy+GWHeadkrAG6YAC36a2BtJZWadZy3Fu7ko5XJFJy4qWKHulX5Z/cGtIsJdXF1IiLlgwJLacrPhu+fhA0fmss1WsNt70Bo3dJ9HSmXDmYe482fdzJndTKFdvOj1Ll+GP/sHkvr2gouIiLno8BSWtK2w4d/h6O7AQt0eQyuHqWBtXKGPzOOMfnnHXy8eh9FDvMj1bVBNf6ZEEvLWlVcXJ2IiHtSYCktx7NgahewF5kDa+t0Kr19S4W070gek3/ewSdr92M/EVyuaViNf3ZvQPOaIa4tTkTEzSiwlKZDWyEwHHz1V7JcvOT0PN74aTufr/+zOLgkNK7OiIQGNK2h2Y9FRECBxdXliBTbk5bL6z9t58v1f3Iit9CjSTgjEhrQJEr/V0WkclNgEXEzOw/n8EbSdv736wFOfuKubxrBowmxNIrQ/1kRqZwUWETc1I5D2byWtINvNp4KLr2bRzLiulhiwwNdW5yIyBXmzPe39VJeYPLkydSpUwcfHx/i4+NZtWrVOdedNm0aXbp0oUqVKlSpUoWEhIQz1h80aBAWi6XEo1evXpdSmohbq189kDfuaMkPI7rSu1kkAN9uPEiPiYt5ZPZ6dhzKcXGFIiLuyenAMnfuXBITExk7dizr1q2jRYsW9OzZk0OHDp11/YULF3LHHXfw888/s3z5cqKjo+nRowd//vlnifV69erFwYMHix+zZ8++tB6JlAMNwgOZfFcrvn+0C72uisAw4KtfD9Dj1UX8c+4GdqflurpEERG34vQpofj4eNq2bcukSZMAcDgcREdH8/DDDzNq1KgLbm+326lSpQqTJk1iwIABgHmEJSMjgy+//NL5HqBTQlL+/X4gk4kLtjN/cyoAVgvc0rImj1xXn9pV/V1cnYhI2SizU0IFBQWsXbuWhISEUzuwWklISGD58uUXtY+8vDwKCwsJDS05C+jChQupXr06DRs2ZNiwYaSnp59zH/n5+WRlZZV4iJRnV0UFM21AG74e3pnrGlXHYcBn6/Zz7cuLeOLTX9l3JM/VJYqIuJRTgSUtLQ273U54eHiJ9vDwcFJSUi5qH08++SRRUVElQk+vXr14//33SUpK4oUXXmDRokVcf/312O32s+5j/PjxBAcHFz+io6Od6YaI22pWM5h3B7Xly4c6cXXDatgdBh+v2c81ExYy+vON7D+q4CIilZNTp4QOHDhAjRo1WLZsGR06dChuf+KJJ1i0aBErV6487/bPP/88L774IgsXLqR58+bnXG/Xrl3Uq1ePBQsWcN11153xfH5+Pvn5+cXLWVlZREdH65SQVDhr9x5l4oI/+GV7GgCeNgv92kbz0DX1iQz2dXF1IiKXp8xOCYWFhWGz2UhNTS3RnpqaSkRExHm3nTBhAs8//zw//vjjecMKQN26dQkLC2PHjh1nfd7b25ugoKASD5GKqHXtKsy6L55P/9GBTvWrUmg3+GBFMt1eXMjY//1GatZxV5coInJFOBVYvLy8aN26NUlJScVtDoeDpKSkEkdcTvfiiy/y3HPPMW/ePNq0aXPB19m/fz/p6elERkY6U55IhdWmTigf3t+euUPbEx8TSoHdwczle+ny4s+M+/p3Dim4iEgF5/RVQnPnzmXgwIFMnTqVdu3aMXHiRD7++GO2bt1KeHg4AwYMoEaNGowfPx6AF154gTFjxvDRRx/RqdOpmwcGBAQQEBBATk4O48aN47bbbiMiIoKdO3fyxBNPkJ2dzaZNm/D29r5gTbpKSCqbZTvTeHX+H6zecxQAbw8r97SvzQPd6lEt8MKfGRERd+DM97eHszvv168fhw8fZsyYMaSkpBAXF8e8efOKB+ImJydjtZ46cPPWW29RUFBA3759S+xn7NixPPPMM9hsNjZu3MjMmTPJyMggKiqKHj168Nxzz11UWBGpjDrWC6ND3aos3ZHOK/O3sS45g3eW7OaDlXsZ2KEOQ7vWpWqAPj8iUnFoan6Rcs4wDBZvT+OV+X/w674MAPy8bAzsWIehXepSxd/LtQWKiJyD7iUkUgkZhsHCbYd5Zf4fbPozEwB/LxuDO8Vwf5cYQvwUXETEvSiwiFRihmGQtOUQry74g98PmJMqBnp7MLhzDPd1jiHY19PFFYqImBRYRATDMPhxcyqvzv+DrSnZAAT6eHB/57oM7lyHIB8FFxFxLQUWESnmcBj88HsKry74gz9SzbtBB/t6MqRLDIM6xRDg7fTYexGRUqHAIiJncDgMvvvtIBMXbGfHITO4hPh5MrRrXQZ2qIO/gouIXGEKLCJyTnaHwTcbD/Ba0nZ2Hc4FINTfiwe61uWeDrXx81JwEZErQ4FFRC7I7jD46tc/eW3BdvakmzdVDAvw4h/d6nFXfG18vWwurlBEKjoFFhG5aEV2B19uOMDrSdtJPmIGl2qB3gzrVo8742vh46ngIiJlQ4FFRJxWaHfwxbo/ef2n7ew/egyA6oHePHRNffq1jVZwEZFSp8AiIpesoMjBZ+v2M+mnHfyZYQaXyGAfHrymPre3qYm3h4KLiJQOBRYRuWz5RXY+WbOfyT/v4GCmeTfoGiG+PHRNffq2romXh1M3excROYMCi4iUmuOFduau3sebC3eQmpUPQM0qvjx8bX1ubVUTT5uCi4hcGgUWESl1xwvtfLQymbcW7eRwthlcaoX68fC19bmlZQ08FFxExEkKLCJSZo4V2Plw5V6mLNpJWk4BAHWq+vHIdbHcHFcDm9Xi4gpFpLxQYBGRMpdXUMSs5XuZungXR3LN4FK3mj+PXhfLjc2jFFxE5IIUWETkisnNL2Lm8j28vXgXGXmFANSvHsCj18XSu1kkVgUXETkHBRYRueKyjxcyc9kepv2ym8xjZnBpGB7Iowmx9LoqQsFFRM6gwCIiLpN1vJDpS/bwzpJdZB8vAqBRRCAjEhrQ86pwLBYFFxExKbCIiMtlHivk3SW7mb5kN9n5ZnC5KiqIEQkNSGhcXcFFRBRYRMR9ZOQV8M4vu5m+dDe5BXYAmtcMZkRCLNc0VHARqcwUWETE7RzJLWDaL7uYuWwPeSeCS4voEP6ZEEu3BtUUXEQqIQUWEXFb6Tn5vL14F+8v38uxQjO4tKoVwj+7N6Bz/TAFF5FKRIFFRNze4ex8pi7ayawVe8kvcgDQtk4V/tm9AR3rhbm4OhG5EhRYRKTcOJR1nLcW7eTDlckUnAgu8TGh/LN7A9rXreri6kSkLCmwiEi5k5J5nLcW7mD2qn0U2M3g0rFeVf7ZvQFt64S6uDoRKQsKLCJSbh3IOMabC3cwd/U+Cu3mr6fO9cP4W4soOsWGUSPE18UVikhpUWARkXJv/9E8Jv+8k0/W7KPIcerXVJ2qfnSsH0bn+mF0qFuVKv5eLqxSRC6HAouIVBj7juTx8Zp9LNmRxsb9mdj/El4sFmgSGUSn+mF0qh9G2zpV8PPycGG1IuIMBRYRqZCyjheyctcRlu5IY9nONP5IzSnxvKfNQstaVehcP4xO9avSvGYInjari6oVkQtRYBGRSuFQ1nGW7Uxn6Y40lu5I40Dm8RLP+3vZiK9b9cQRmKo0DA/UPC8ibkSBRUQqHcMw2JOeV3z0ZdnOdDLyCkusExbgRcd6ZnjpWC+M6FA/F1UrIqDA4upyRMQNOBwGmw9mmUdfdqazanc6xwsdJdapFepXfPSlY70wQjWAV+SKUmARETlNfpGd9ckZLNuRxpIdafx62gBeODmAtyod64fRrk4o/t4awCtSlhRYREQuIPt4Iat2H2HpDnMMzLbU7BLPe9ostIyuQsf6VelcP4wW0RrAK1LaFFhERJx0ODufZTvTTgzgTefPjGMlnvf3stEuJrT4EuqG4YFYrRrAK3I5nPn+vqQ/FyZPnkydOnXw8fEhPj6eVatWnXPdadOm0aVLF6pUqUKVKlVISEg4Y33DMBgzZgyRkZH4+vqSkJDA9u3bL6U0EZFLUi3Qm5vjavBi3xYsefIaFj1+Nf93SzN6N4ukip8nuQV2ft52mP98u4XrX/uFtv9dwPCP1jFnVTL7juS5unyRCs/pIyxz585lwIABTJkyhfj4eCZOnMgnn3zCtm3bqF69+hnr33XXXXTq1ImOHTvi4+PDCy+8wBdffMHvv/9OjRo1AHjhhRcYP348M2fOJCYmhqeffppNmzaxefNmfHx8LliTjrCISFlyOAy2pGQVH31ZtfsIxwrtJdaJDvWlUz3z6EvHelWpGuDtompFyo8yPSUUHx9P27ZtmTRpEgAOh4Po6GgefvhhRo0adcHt7XY7VapUYdKkSQwYMADDMIiKiuKxxx5j5MiRAGRmZhIeHs6MGTPo37//BfepwCIiV1JBkYMN+zJYsiONZTvS2LAvo8TtAwAaRQSemMAujHYxGsArcjbOfH879QkqKChg7dq1jB49urjNarWSkJDA8uXLL2ofeXl5FBYWEhpq3n119+7dpKSkkJCQULxOcHAw8fHxLF++/KyBJT8/n/z8/OLlrKwsZ7ohInJZvDystIsJpV1MKIndG5CTX8Sq3enFA3i3pmQXP95ZshsPq4W46JDi8S9x0SF4eWgAr4gznAosaWlp2O12wsPDS7SHh4ezdevWi9rHk08+SVRUVHFASUlJKd7H6fs8+dzpxo8fz7hx45wpXUSkzAR4e3Bto3CubWT+HkvLyWfZznSW7Uhj6c409h05xpq9R1mz9yivJW3H7+QA3nphdKxflcYRQRrAK3IBV/QY5fPPP8+cOXNYuHDhRY1NOZfRo0eTmJhYvJyVlUV0dHRplCgictnCArz5W4so/tYiCoDk9DyWnrgCafnOdNJzC1i47TALtx0GINTfiw71qp4YA1OVWqF+uoWAyGmcCixhYWHYbDZSU1NLtKemphIREXHebSdMmMDzzz/PggULaN68eXH7ye1SU1OJjIwssc+4uLiz7svb2xtvbw1oE5HyoVZVP2pVrcUd7WrhcBhsTckuvoR65e4jHMkt4NuNB/l240EAalbxLT760rFeGNUC9ftOxKnA4uXlRevWrUlKSqJPnz6AOeg2KSmJ4cOHn3O7F198kf/+97/88MMPtGnTpsRzMTExREREkJSUVBxQsrKyWLlyJcOGDXOuNyIibs5qtdAkKogmUUHc36UuBUUOft2fYd4DaUc665KPsv/oMeau2cfcNfsAcwDvyXsgxdetSoAG8EoldEmXNQ8cOJCpU6fSrl07Jk6cyMcff8zWrVsJDw9nwIAB1KhRg/HjxwPmJctjxozho48+olOnTsX7CQgIICAgoHid559/vsRlzRs3btRlzSJS6eTmF7FqzxFz/MuOdDYfLHlRgYfVQovoEDrVM28h0LJWCN4eNhdVK3J5yuwqIYB+/fpx+PBhxowZQ0pKCnFxccybN6940GxycjJW66nR72+99RYFBQX07du3xH7Gjh3LM888A8ATTzxBbm4uQ4cOJSMjg86dOzNv3rzLGuciIlIe+Xt7cE3D6lzT0JzXKj0nn+W7Tl2BlHwkj7V7j7J271Fe/2kHvp422saE0qleVTrVD6NJpAbwSsWkqflFRMqRfUfyTox/SWfZzjTScgpKPF/Fz5MO9cyxL53rh1G7qgbwivvSvYRERCoBwzDYlppdfPRl5a50cgtKzsBbI8SXjvWq0jk2jA71qlI9UEeuxX0osIiIVEKFdgcb92ewdEc6S3aksT75KIX2kr/iG4QHFB99ia8bSqCPp4uqFVFgcXU5IiJuIa+giNV7jp64B1Iamw9m8dff+DarheY1g+lcP4yO9cJoVVsDeOXKUmAREZEzHM0tYPmu9OJ7IO1JL3mXaR9PK23rhJq3EKgXRpOoIGwawCtlSIFFREQuaP/RPJbtSD8xC286aTn5JZ4P9vWk44nLpzvVq0pMmL8G8EqpUmARERGnGIbB9kM5LNmexrKdaazYdYSc/KIS60QF+5jhpb55G4HqQRrAK5dHgUVERC5Lkd3Br/szi2/guG5vBgV2R4l1YqsH0Kl+GB3rVaV9vaoEaQCvOEmBRUREStWxAjur9xxh6U7zFgK/HcgsMYDXaoHmNUOKj760ql0FH08N4JXzU2AREZEylZFXwPKd6cUBZldabonnvT3MAbwd61elc/0wrooK1gBeOYMCi4iIXFEHMo6ZN3DcaV6FdDi75ABeX08btav6nXj4Uyv0xM+h/kSF+OBhs55jz1KRKbCIiIjLGIbBjkM55vwvO9NZsTOd7NMG8P6Vh9VCjSq+JUJMrRPhplaoH35eujt1RaXAIiIibqPI7iD5SB57j+SRnJ7HnvRcktNPLB/Jo6DIcd7tqwV6UzvUzwwxof5mkKnqR+1QP0L9vXSpdTlWpndrFhERcYaHzUrdagHUrRZwxnMOh0Fq9nH2puedCDG55s9H8tibnkfmsUIOZ+dzODufNXuPnrF9gLdH8ZGZEoEm1I+oEF+Nm6lAdIRFRETcVmZe4Wkh5tTPBzOPn3dbT5uFmlX8TgWaUHP8zMmfdRWT6+kIi4iIVAjBfp409wuhec2QM547Xmhn/1HzSEyJQHMkj/1HjlFgd7A7LZfdp13BdFJ4kPep8TInTzlV9ad2qB8hfp461eRmFFhERKRc8vG0Ub96IPWrB57xnN1hkJJ1nL1/HS/zl1NO2ceLSM3KJzUrn1V7jpyxfaCPR8kBwH8JNJFBPlh1qumK0ykhERGpVAzDICOvkL0njsicHmhSs/LPu72XzUrNUF9qh552iXZVP2pW0akmZ+iUkIiIyDlYLBaq+HtRxd+LuOiQM54/VmBn39E89qTlFg/+NQNNLvuPmqeadh3OZdfhXODwafuGiCCfv4SYknPOBPvp9gWXSkdYRERELlKR3cHBzOMnQsyJozN/CTS5Bfbzbh/s6/mXAcAl55wJD6x8p5o0D4uIiMgVZhgG6bkFJwYA5/7lUm0z1KTlnP9Uk7eHlehQP+pU9aPWafPN1Kzih5dHxZsNWKeERERErjCLxUJYgDdhAd60rl3ljOdz84uKTzElnzbfzJ8Zx8gvcrDjUA47DuWcsa3VApHBvsVjZWr9Zb6Z2lX9CKwEd8rWERYREREXK7Q7OJBxrMTppb8GmmOF5z/VFOrv9ZfTTH7UOjHfTO1QP6oFervtJdo6wiIiIlKOeNqsJya18z/jOcMwOJyTf8Z4mZNXNqXnFnDkxGPDvowztvf1tFEr9NTpJfNUkznfTI0qvniWkxtP6giLiIhIOZZ9vJDkI38dL5NbPJnewcxjOM7zLW+zWogK8Skx38xfTzn5e5ftcQ0dYREREakkAn08uSoqmKuigs94rqDIYc4GfDLQnDZ+Jr/Iwb4jx9h35BjsOHPfYQFexbc0qBXqx7Cr67lsnhkFFhERkQrKy+P8N548lJ1ffDuD5NNON2XkFZKWU0BaTgHrkjPw8rDy6HWxLuiFSYFFRESkErJaLUQE+xAR7EN83apnPJ95rLDE7QzyCopcOk+MAouIiIicIdjXk2Y1g2lW88xTTa5QPoYGi4iISKWmwCIiIiJuT4FFRERE3J4Ci4iIiLg9BRYRERFxewosIiIi4vYUWERERMTtXVJgmTx5MnXq1MHHx4f4+HhWrVp1znV///13brvtNurUqYPFYmHixIlnrPPMM89gsVhKPBo1anQppYmIiEgF5HRgmTt3LomJiYwdO5Z169bRokULevbsyaFDh866fl5eHnXr1uX5558nIiLinPu96qqrOHjwYPFjyZIlzpYmIiIiFZTTgeWVV15hyJAhDB48mCZNmjBlyhT8/Px47733zrp+27Zteemll+jfvz/e3t7n3K+HhwcRERHFj7CwMGdLExERkQrKqcBSUFDA2rVrSUhIOLUDq5WEhASWL19+WYVs376dqKgo6taty1133UVycvI5183PzycrK6vEQ0RERCoupwJLWloadrud8PDwEu3h4eGkpKRcchHx8fHMmDGDefPm8dZbb7F79266dOlCdnb2WdcfP348wcHBxY/o6OhLfm0RERFxf25xldD111/P3//+d5o3b07Pnj357rvvyMjI4OOPPz7r+qNHjyYzM7P4sW/fvitcsYiIiFxJTt2tOSwsDJvNRmpqaon21NTU8w6odVZISAgNGjRgx44dZ33e29u7xHgYwzAAdGpIRESkHDn5vX3ye/x8nAosXl5etG7dmqSkJPr06QOAw+EgKSmJ4cOHO1/pOeTk5LBz507uueeei1r/5KkjnRoSEREpf7KzswkODj7vOk4FFoDExEQGDhxImzZtaNeuHRMnTiQ3N5fBgwcDMGDAAGrUqMH48eMBc6Du5s2bi3/+888/2bBhAwEBAdSvXx+AkSNHctNNN1G7dm0OHDjA2LFjsdls3HHHHRdVU1RUFPv27SMwMBCLxeJsl84rKyuL6Oho9u3bR1BQUKnu2x1U9P5Bxe+j+lf+VfQ+VvT+QcXvY1n1zzAMsrOziYqKuuC6TgeWfv36cfjwYcaMGUNKSgpxcXHMmzeveCBucnIyVuupoTEHDhygZcuWxcsTJkxgwoQJdOvWjYULFwKwf/9+7rjjDtLT06lWrRqdO3dmxYoVVKtW7aJqslqt1KxZ09muOCUoKKhC/ic8qaL3Dyp+H9W/8q+i97Gi9w8qfh/Lon8XOrJyktOBBWD48OHnPAV0MoScVKdOnQuem5ozZ86llCEiIiKVhFtcJSQiIiJyPgosF+Dt7c3YsWPPO0tveVbR+wcVv4/qX/lX0ftY0fsHFb+P7tA/i3Ex1xKJiIiIuJCOsIiIiIjbU2ARERERt6fAIiIiIm5PgUVERETcngILMHnyZOrUqYOPjw/x8fGsWrXqvOt/8sknNGrUCB8fH5o1a8Z33313hSq9NM70b8aMGVgslhIPHx+fK1itcxYvXsxNN91EVFQUFouFL7/88oLbLFy4kFatWuHt7U39+vWZMWNGmdd5OZzt48KFC894Dy0Wy2XdUb0sjR8/nrZt2xIYGEj16tXp06cP27Ztu+B25eVzeCn9K0+fw7feeovmzZsXTyjWoUMHvv/++/NuU17eu5Oc7WN5ev/O5vnnn8disTBixIjzrnel38dKH1jmzp1LYmIiY8eOZd26dbRo0YKePXty6NChs66/bNky7rjjDu677z7Wr19Pnz596NOnD7/99tsVrvziONs/MGcyPHjwYPFj7969V7Bi5+Tm5tKiRQsmT558Uevv3r2b3r17c80117BhwwZGjBjB/fffzw8//FDGlV46Z/t40rZt20q8j9WrVy+jCi/PokWLeOihh1ixYgXz58+nsLCQHj16kJube85tytPn8FL6B+Xnc1izZk2ef/551q5dy5o1a7j22mu5+eab+f3338+6fnl6705yto9Qft6/061evZqpU6fSvHnz867nkvfRqOTatWtnPPTQQ8XLdrvdiIqKMsaPH3/W9W+//Xajd+/eJdri4+ONBx54oEzrvFTO9m/69OlGcHDwFaqudAHGF198cd51nnjiCeOqq64q0davXz+jZ8+eZVhZ6bmYPv78888GYBw9evSK1FTaDh06ZADGokWLzrlOefsc/tXF9K88fw4NwzCqVKlivPPOO2d9rjy/d391vj6W1/cvOzvbiI2NNebPn29069bNePTRR8+5rivex0p9hKWgoIC1a9eSkJBQ3Ga1WklISGD58uVn3Wb58uUl1gfo2bPnOdd3pUvpH5h3y65duzbR0dEX/CuivClP79/liouLIzIyku7du7N06VJXl3PRMjMzAQgNDT3nOuX5fbyY/kH5/Bza7XbmzJlDbm4uHTp0OOs65fm9g4vrI5TP9++hhx6id+/eZ7w/Z+OK97FSB5a0tDTsdnvxjRtPCg8PP+f5/pSUFKfWd6VL6V/Dhg157733+N///scHH3yAw+GgY8eO7N+//0qUXObO9f5lZWVx7NgxF1VVuiIjI5kyZQqfffYZn332GdHR0Vx99dWsW7fO1aVdkMPhYMSIEXTq1ImmTZuec73y9Dn8q4vtX3n7HG7atImAgAC8vb35xz/+wRdffEGTJk3Oum55fe+c6WN5e//AvKffunXrGD9+/EWt74r38ZJufigVV4cOHUr81dCxY0caN27M1KlTee6551xYmVyshg0b0rBhw+Lljh07snPnTl599VVmzZrlwsou7KGHHuK3335jyZIlri6lTFxs/8rb57Bhw4Zs2LCBzMxMPv30UwYOHMiiRYvO+YVeHjnTx/L2/u3bt49HH32U+fPnu/Xg4EodWMLCwrDZbKSmppZoT01NJSIi4qzbREREOLW+K11K/07n6elJy5Yt2bFjR1mUeMWd6/0LCgrC19fXRVWVvXbt2rl9CBg+fDjffPMNixcvpmbNmuddtzx9Dk9ypn+nc/fPoZeXF/Xr1wegdevWrF69mtdee42pU6eesW55fO/AuT6ezt3fv7Vr13Lo0CFatWpV3Ga321m8eDGTJk0iPz8fm81WYhtXvI+V+pSQl5cXrVu3JikpqbjN4XCQlJR0znOTHTp0KLE+wPz58897LtNVLqV/p7Pb7WzatInIyMiyKvOKKk/vX2nasGGD276HhmEwfPhwvvjiC3766SdiYmIuuE15eh8vpX+nK2+fQ4fDQX5+/lmfK0/v3fmcr4+nc/f377rrrmPTpk1s2LCh+NGmTRvuuusuNmzYcEZYARe9j2U2nLecmDNnjuHt7W3MmDHD2Lx5szF06FAjJCTESElJMQzDMO655x5j1KhRxesvXbrU8PDwMCZMmGBs2bLFGDt2rOHp6Wls2rTJVV04L2f7N27cOOOHH34wdu7caaxdu9bo37+/4ePjY/z++++u6sJ5ZWdnG+vXrzfWr19vAMYrr7xirF+/3ti7d69hGIYxatQo45577ilef9euXYafn5/x+OOPG1u2bDEmT55s2Gw2Y968ea7qwgU528dXX33V+PLLL43t27cbmzZtMh599FHDarUaCxYscFUXzmvYsGFGcHCwsXDhQuPgwYPFj7y8vOJ1yvPn8FL6V54+h6NGjTIWLVpk7N6929i4caMxatQow2KxGD/++KNhGOX7vTvJ2T6Wp/fvXE6/Ssgd3sdKH1gMwzDeeOMNo1atWoaXl5fRrl07Y8WKFcXPdevWzRg4cGCJ9T/++GOjQYMGhpeXl3HVVVcZ33777RWu2DnO9G/EiBHF64aHhxs33HCDsW7dOhdUfXFOXsJ7+uNknwYOHGh069btjG3i4uIMLy8vo27dusb06dOveN3OcLaPL7zwglGvXj3Dx8fHCA0NNa6++mrjp59+ck3xF+FsfQNKvC/l+XN4Kf0rT5/De++916hdu7bh5eVlVKtWzbjuuuuKv8gNo3y/dyc528fy9P6dy+mBxR3eR4thGEbZHb8RERERuXyVegyLiIiIlA8KLCIiIuL2FFhERETE7SmwiIiIiNtTYBERERG3p8AiIiIibk+BRURERNyeAouIiIi4PQUWERERcXsKLCIiIuL2FFhERETE7SmwiIiIiNv7f4iSScm4ffbcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#! mudar num_epochs\n", + "y_train_pred, y_test_pred, hist = train_model(model=model, num_epochs=num_epochs, x_train=x_train, x_test=x_test, loss_fn=loss_fn, optimizer=optimizer)" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": { + "id": "l9UmKppqNUN6" + }, + "outputs": [], + "source": [ + "def model_performance(y_train_pred, y_test_pred, mMscaler):\n", + " # mMscaler : MinMaxScaler usado originalmente para deixar o dataset dentro da escala mais simples de trabalhar\n", + " # aplique a transformação reversa para os dados voltarem à sua escala original\n", + "\n", + " ytr = mMscaler.inverse_transform(y_train.detach().numpy())\n", + " ytrp = mMscaler.inverse_transform(y_train_pred.detach().numpy())\n", + " yte = mMscaler.inverse_transform(y_test.detach().numpy())\n", + " ytep = mMscaler.inverse_transform(y_test_pred.detach().numpy())\n", + "\n", + " # calcule o RSME para os conjuntos de treino e teste\n", + " trainScore = np.sqrt(mean_squared_error(ytr, ytrp))\n", + " print('Train Score: %.2f RMSE' % (trainScore))\n", + " testScore = np.sqrt(mean_squared_error(yte, ytep))\n", + " print('Test Score: %.2f RMSE' % (testScore))\n", + "\n", + " # Plot dos resultados\n", + " figure, axes = plt.subplots(figsize=(15, 6))\n", + " axes.xaxis_date()\n", + "\n", + " axes.plot(df_aapl[len(df_aapl)-len(y_test):].index, y_test.detach().numpy(), color = 'red', label = 'Real Apple Stock Price')\n", + " axes.plot(df_aapl[len(df_aapl)-len(y_test):].index, y_test_pred.detach().numpy(), color = 'blue', label = 'Predicted Apple Stock Price')\n", + " plt.title('Apple Stock Price Prediction')\n", + " plt.xlabel('Time')\n", + " plt.ylabel('Apple Stock Price')\n", + " plt.legend()\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": { + "id": "raTU7J4AOsNU" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train Score: 28.21 RMSE\n", + "Test Score: 50.53 RMSE\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABO0AAAIjCAYAAABf6e/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAADC1ElEQVR4nOzdd3gU1dvG8e8mJCEJEHqPBIl06UVAQAQpIkVQEBBDtSCgFKVJ/ykKolhBKVJEmhSRKtKkSe+9945J6AnJvH+cdxNCCglsskm4P9e118zOzuw8m4Jw+5xzbJZlWYiIiIiIiIiIiEiy4eLsAkRERERERERERCQqhXYiIiIiIiIiIiLJjEI7ERERERERERGRZEahnYiIiIiIiIiISDKj0E5ERERERERERCSZUWgnIiIiIiIiIiKSzCi0ExERERERERERSWYU2omIiIiIiIiIiCQzCu1ERERERERERESSGYV2IiIikurZbDYGDRrk7DISzQsvvEDx4sWddn8/Pz/atGnjtPs7w4kTJ7DZbEycODHi2KBBg7DZbA67x6pVq7DZbKxatcph7ykiIiIph0I7ERERSTI//vgjNpuNihUrOruUxxISEsI333xD6dKlyZAhAxkzZqRYsWK8/fbbHDhwIOK89evXM2jQIAIDA51X7EO0adMGm80W8ciQIQMlS5Zk5MiR3L1719nlxSql1h2TH3/8MUr4JyIiIgKQxtkFiIiIyJNj6tSp+Pn5sWnTJo4cOYK/v7+zS3okTZs2ZfHixbRo0YKOHTsSGhrKgQMHWLBgAZUrV6Zw4cKACe0GDx5MmzZtyJgxo3OLjoOHhwfjxo0DIDAwkNmzZ9OzZ082b97M9OnTH3r9wYMHcXFJ+v8X/Lh1O9onn3xC7969E3zdjz/+SNasWaN1K1arVo3bt2/j7u7uoApFREQkJVFoJyIiIkni+PHjrF+/njlz5vDOO+8wdepUBg4c6OyyEmzz5s0sWLCATz/9lL59+0Z57fvvv0/WXXWxSZMmDW+++WbE806dOlGxYkVmzJjBV199Re7cuaNdY1kWd+7cwdPTEw8Pj6QsN8Lj1p0Y9aRJ47i/Xru4uJA2bVqHvZ+IiIikLBoeKyIiIkli6tSpZMqUifr16/Paa68xderUaOfY5wn78ssv+frrr8mXLx+enp5Ur16dPXv2RDm3TZs2pEuXjmPHjlGnTh28vb3JnTs3Q4YMwbKsh9Zz9uxZ2rVrR44cOfDw8KBYsWJMmDDhodcdPXoUgCpVqkR7zdXVlSxZsgBmfrOPPvoIgPz580cM4zxx4gQA9+7dY+jQoRQoUAAPDw/8/Pzo27dvjEM7Fy9eTPXq1UmfPj0ZMmSgfPny/Pbbb3HW+ddff+Hl5UWLFi24d+/eQz/X/VxcXHjhhRcAIur18/PjlVdeYenSpZQrVw5PT09++umniNce7BILDAykW7du+Pn54eHhQd68eXnrrbe4cuVKxDl3795l4MCB+Pv74+Hhga+vLx9//PEjD29NaN2BgYF8+OGH+Pr64uHhgb+/P1988QXh4eHRPkubNm3w8fEhY8aMBAQExBjOxjan3a+//kqFChXw8vIiU6ZMVKtWjb/++iuivr1797J69eqInxH7Z4htTrtZs2ZRtmxZPD09yZo1K2+++SZnz56Nco799+Ps2bM0btyYdOnSkS1bNnr27ElYWFgCv7IiIiLiDOq0ExERkSQxdepUmjRpgru7Oy1atGD06NFs3ryZ8uXLRzt38uTJXL9+nffff587d+7wzTff8OKLL7J7925y5MgRcV5YWBh169blueeeY/jw4SxZsoSBAwdy7949hgwZEmstFy9e5LnnnsNms9G5c2eyZcvG4sWLad++PcHBwXz44YexXpsvX76Iz1OlSpVYO6uaNGnCoUOHmDZtGl9//TVZs2YFIFu2bAB06NCBSZMm8dprr9GjRw82btzIsGHD2L9/P3Pnzo14n4kTJ9KuXTuKFStGnz59yJgxI9u3b2fJkiW0bNkyxnsvWLCA1157jebNmzNhwgRcXV1j/TyxsYeT9hASzDDYFi1a8M4779CxY0cKFSoU47U3btygatWq7N+/n3bt2lGmTBmuXLnC/PnzOXPmDFmzZiU8PJyGDRuydu1a3n77bYoUKcLu3bv5+uuvOXToEPPmzUtwzQmp+9atW1SvXp2zZ8/yzjvv8NRTT7F+/Xr69OnD+fPnGTVqFGA68xo1asTatWt59913KVKkCHPnziUgICBe9QwePJhBgwZRuXJlhgwZgru7Oxs3bmTFihXUrl2bUaNG0aVLF9KlS0e/fv0AovyMP2jixIm0bduW8uXLM2zYMC5evMg333zDunXr2L59e5Rh2GFhYdSpU4eKFSvy5Zdf8vfffzNy5EgKFCjAe++9l8CvrIiIiCQ5S0RERCSRbdmyxQKsZcuWWZZlWeHh4VbevHmtDz74IMp5x48ftwDL09PTOnPmTMTxjRs3WoDVrVu3iGMBAQEWYHXp0iXiWHh4uFW/fn3L3d3dunz5csRxwBo4cGDE8/bt21u5cuWyrly5EuX+b7zxhuXj42PdunUr1s8SHh5uVa9e3QKsHDlyWC1atLB++OEH6+TJk9HOHTFihAVYx48fj3J8x44dFmB16NAhyvGePXtagLVixQrLsiwrMDDQSp8+vVWxYkXr9u3b0eqwq169ulWsWDHLsixr9uzZlpubm9WxY0crLCws1s9hFxAQYHl7e1uXL1+2Ll++bB05csT67LPPLJvNZpUoUSLivHz58lmAtWTJkmjvkS9fPisgICDi+YABAyzAmjNnTrRz7XVPmTLFcnFxsdasWRPl9TFjxliAtW7dukSte+jQoZa3t7d16NChKMd79+5tubq6WqdOnbIsy7LmzZtnAdbw4cMjzrl3755VtWpVC7B++eWXiOMDBw607v/r9eHDhy0XFxfr1Vdfjfa9uP/7V6xYMat69erRPuPKlSstwFq5cqVlWZYVEhJiZc+e3SpevHiUn4cFCxZYgDVgwIAoXx/AGjJkSJT3LF26tFW2bNlo9xIREZHkR8NjRUREJNFNnTqVHDlyUKNGDQBsNhvNmzdn+vTpMQ7Va9y4MXny5Il4XqFCBSpWrMiiRYuindu5c+eIfXvnXEhICH///XeMtViWxezZs2nQoAGWZXHlypWIR506dQgKCmLbtm2xfhabzcbSpUv53//+R6ZMmZg2bRrvv/8++fLlo3nz5vGa087+Obp37x7leI8ePQBYuHAhAMuWLeP69ev07t072txmMQ3DnDZtGs2bN+edd97hp59+ivfiEDdv3iRbtmxky5YNf39/+vbtS6VKlaJ0/IEZ5lunTp2Hvt/s2bMpWbIkr776arTX7HXPmjWLIkWKULhw4SjfgxdffBGAlStXJmrds2bNomrVqmTKlCnK/WvVqkVYWBj//PMPYL5XadKkidKZ5urqSpcuXR5a37x58wgPD2fAgAHRvhcxff8eZsuWLVy6dIlOnTpF+XmoX78+hQsXjvi5ud+7774b5XnVqlU5duxYgu8tIiIiSU/DY0VERCRRhYWFMX36dGrUqMHx48cjjlesWJGRI0eyfPlyateuHeWaZ555Jtr7FCxYkJkzZ0Y55uLiwtNPPx3tPIic0+xBly9fJjAwkJ9//pmff/45xnMuXboU52fy8PCgX79+9OvXj/Pnz7N69Wq++eYbZs6ciZubG7/++muc1588eRIXF5doq+fmzJmTjBkzcvLkSSByqGfx4sXjfD8wC328+eabvP7663z33XcPPf9+adOm5c8//4z4bPnz5ydv3rzRzsufP3+83u/o0aM0bdo0znMOHz7M/v37I4YLP+hh3wN4vLoPHz7Mrl27Hnr/kydPkitXLtKlSxfl9diGBt/v6NGjuLi4ULRo0YeeGx/2n4uY7l24cGHWrl0b5VjatGmjfb5MmTLx33//OaQeERERSVwK7URERCRRrVixgvPnzzN9+nSmT58e7fWpU6dGC+0Sk32RgTfffDPWeclKlCgR7/fLlSsXb7zxBk2bNqVYsWLMnDmTiRMnxmsV0Ufptoqrjly5crFo0SK2bNlCuXLl4n2tq6srtWrVeuh5jlxxNTw8nGeffZavvvoqxtd9fX0f+h6PU3d4eDgvvfQSH3/8cYzX2MPflOxR5jIUERGR5EOhnYiIiCSqqVOnkj17dn744Ydor82ZM4e5c+cyZsyYKMHK4cOHo5176NAh/Pz8ohwLDw/n2LFjUQKWQ4cOAUQ71y5btmykT5+esLCweAU+8eXm5kaJEiU4fPgwV65cIWfOnLGGcvny5SM8PJzDhw9TpEiRiOMXL14kMDAwYrGLAgUKALBnz55oXXkPSps2LQsWLODFF1+kbt26rF69mmLFijno0yVMgQIFoq32G9M5O3fupGbNmg4NL+OrQIEC3Lhx46E/A/ny5WP58uXcuHEjSrfdwYMH43WP8PBw9u3bR6lSpWI9L76f3/5zcfDgwYhhxPfXY39dREREUgfNaSciIiKJ5vbt28yZM4dXXnmF1157Ldqjc+fOXL9+nfnz50e5bt68eZw9ezbi+aZNm9i4cSP16tWLdo/vv/8+Yt+yLL7//nvc3NyoWbNmjDW5urrStGlTZs+eHWOwdPny5Tg/0+HDhzl16lS044GBgWzYsIFMmTJFDEn09vaOeO1+L7/8MkDECqV29q6z+vXrA1C7dm3Sp0/PsGHDuHPnTpRzLcuKVoOPjw9Lly4le/bsvPTSSxHDa5Na06ZN2blzZ7S55SCy7mbNmnH27FnGjh0b7Zzbt29z8+bNRK2xWbNmbNiwgaVLl0Z7LTAwkHv37gHme3Xv3j1Gjx4d8XpYWFi8hiA3btwYFxcXhgwZEtHhaXf/98/b2ztecyGWK1eO7NmzM2bMGO7evRtxfPHixezfvz/i50ZERERSB3XaiYiISKKZP38+169fp2HDhjG+/txzz5EtWzamTp1K8+bNI477+/vz/PPP895773H37l1GjRpFlixZog1lTJs2LUuWLCEgIICKFSuyePFiFi5cSN++fWOdqwzg888/Z+XKlVSsWJGOHTtStGhRrl27xrZt2/j777+5du1arNfu3LmTli1bUq9ePapWrUrmzJk5e/YskyZN4ty5c4waNSpiWGLZsmUB6NevH2+88QZubm40aNCAkiVLEhAQwM8//0xgYCDVq1dn06ZNTJo0icaNG0cs2JEhQwa+/vprOnToQPny5WnZsiWZMmVi586d3Lp1i0mTJkWrL2vWrCxbtoznn3+eWrVqsXbt2iiLeiSFjz76iN9//53XX3+ddu3aUbZsWa5du8b8+fMZM2YMJUuWpHXr1sycOZN3332XlStXUqVKFcLCwjhw4AAzZ85k6dKlCRri+yg1zp8/n1deeYU2bdpQtmxZbt68ye7du/n99985ceIEWbNmpUGDBlSpUoXevXtz4sQJihYtypw5cwgKCnroPfz9/enXrx9Dhw6latWqNGnSBA8PDzZv3kzu3LkZNmwYYH5ORo8ezf/+9z/8/f3Jnj17tE46MN2cX3zxBW3btqV69eq0aNGCixcv8s033+Dn50e3bt0c/nUSERERJ3Lm0rUiIiKSujVo0MBKmzatdfPmzVjPadOmjeXm5mZduXLFOn78uAVYI0aMsEaOHGn5+vpaHh4eVtWqVa2dO3dGuS4gIMDy9va2jh49atWuXdvy8vKycuTIYQ0cONAKCwuLci5gDRw4MMqxixcvWu+//77l6+trubm5WTlz5rRq1qxp/fzzz3F+posXL1qff/65Vb16dStXrlxWmjRprEyZMlkvvvii9fvvv0c7f+jQoVaePHksFxcXC7COHz9uWZZlhYaGWoMHD7by589vubm5Wb6+vlafPn2sO3fuRHuP+fPnW5UrV7Y8PT2tDBkyWBUqVLCmTZsW8Xr16tWtYsWKRbnmyJEjVq5cuawiRYpYly9fjvXz2L+OD5MvXz6rfv36sb4WEBAQ5djVq1etzp07W3ny5LHc3d2tvHnzWgEBAdaVK1cizgkJCbG++OILq1ixYpaHh4eVKVMmq2zZstbgwYOtoKCgOOtxRN3Xr1+3+vTpY/n7+1vu7u5W1qxZrcqVK1tffvmlFRISEuWztG7d2sqQIYPl4+NjtW7d2tq+fbsFWL/88kvEeQMHDrRi+uv1hAkTrNKlS0d8xurVq1vLli2LeP3ChQtW/fr1rfTp01uAVb16dcuyLGvlypUWYK1cuTLK+82YMSPi/TJnzmy1atXKOnPmTLy+PrHVKCIiIsmPzbJiGFshIiIi4gQnTpwgf/78jBgxgp49e8Z5bps2bfj999+5ceNGElUnIiIiIpJ0NKediIiIiIiIiIhIMqPQTkREREREREREJJlRaCciIiIiIiIiIpLMaE47ERERERERERGRZEaddiIiIiIiIiIiIsmMQjsREREREREREZFkJo2zC0juwsPDOXfuHOnTp8dmszm7HBERERERERERcRLLsrh+/Tq5c+fGxSVxe+EU2j3EuXPn8PX1dXYZIiIiIiIiIiKSTJw+fZq8efMm6j0U2j1E+vTpAfPNyJAhg5OrERERERERERERZwkODsbX1zciL0pMCu0ewj4kNkOGDArtREREREREREQkSaZQ00IUIiIiIiIiIiIiyYxCOxERERERERERkWRGoZ2IiIiIiIiIiEgyozntHMCyLO7du0dYWJizSxGReHB1dSVNmjRJMgeBiIiIiIiIyKNQaPeYQkJCOH/+PLdu3XJ2KSKSAF5eXuTKlQt3d3dnlyIiIiIiIiISjUK7xxAeHs7x48dxdXUld+7cuLu7q3NHJJmzLIuQkBAuX77M8ePHeeaZZ3Bx0UwBIiIiIiIikrwotHsMISEhhIeH4+vri5eXl7PLEZF48vT0xM3NjZMnTxISEkLatGmdXZKIiIiIiIhIFGovcQB16YikPPq9FRERERERkeRM/2oVERERERERERFJZhTaiYiIiIiIiIiIJDMK7STRtGnThsaNGzu7DABOnDiBzWZjx44dzi7lkdhsNubNm5fo90lO3zMRERERERGRJ5lCuydQmzZtsNls2Gw23NzcyJ8/Px9//DF37txxWk2FCxfGw8ODCxcuOK2G+Bg7diwlS5YkXbp0ZMyYkdKlSzNs2LCI15NL6DVx4sSI77GLiwt58+albdu2XLp0Kc7rvvnmGyZOnJg0RYqIiIiIiIhIrLR67BOqbt26/PLLL4SGhrJ161YCAgKw2Wx88cUXSV7L2rVruX37Nq+99hqTJk2iV69eSV5DfEyYMIEPP/yQb7/9lurVq3P37l127drFnj17nF1ajDJkyMDBgwcJDw9n586dtG3blnPnzrF06dJo54aFhWGz2fDx8XFCpSIiIiIiIiLyIHXaOZJlwc2bznlYVoJK9fDwIGfOnPj6+tK4cWNq1arFsmXLIl4PDw9n2LBh5M+fH09PT0qWLMnvv/8e8XpYWBjt27ePeL1QoUJ88803j/RlGz9+PC1btqR169ZMmDAh2ut+fn4MHTqUFi1a4O3tTZ48efjhhx+inGOz2Rg9ejT16tXD09OTp59+Okq9MdmzZw/16tUjXbp05MiRg9atW3PlypVYz58/fz7NmjWjffv2+Pv7U6xYMVq0aMGnn34KwKBBg5g0aRJ//PFHRJfbqlWrANi9ezcvvvginp6eZMmShbfffpsbN25Eef8JEyZQrFgxPDw8yJUrF507d461loEDB5IrVy527doV6zk2m42cOXOSO3du6tWrR9euXfn777+5ffs2EydOJGPGjMyfP5+iRYvi4eHBqVOnonUKhoeHM3z4cPz9/fHw8OCpp56K+LwAp0+fplmzZmTMmJHMmTPTqFEjTpw4EcdXXURERERERETiI0WFdv/88w8NGjQgd+7c8Z7ja9WqVZQpUwYPDw/8/f0Td+jfrVuQLp1zHrduPXLZe/bsYf369bi7u0ccGzZsGJMnT2bMmDHs3buXbt268eabb7J69WrAhDl58+Zl1qxZ7Nu3jwEDBtC3b19mzpyZoHtfv36dWbNm8eabb/LSSy8RFBTEmjVrop03YsQISpYsyfbt2+nduzcffPBBlJARoH///jRt2pSdO3fSqlUr3njjDfbv3x/jfQMDA3nxxRcpXbo0W7ZsYcmSJVy8eJFmzZrFWmvOnDn5999/OXnyZIyv9+zZk2bNmlG3bl3Onz/P+fPnqVy5Mjdv3qROnTpkypSJzZs3M2vWLP7+++8oodzo0aN5//33efvtt9m9ezfz58/H398/2j0sy6JLly5MnjyZNWvWUKJEiVjrfZCnpyfh4eHcu3cPgFu3bvHFF18wbtw49u7dS/bs2aNd06dPHz7//HP69+/Pvn37+O2338iRIwcAoaGh1KlTh/Tp07NmzRrWrVtHunTpqFu3LiEhIfGuS0RERERERERiYKUgixYtsvr162fNmTPHAqy5c+fGef6xY8csLy8vq3v37ta+ffus7777znJ1dbWWLFkS73sGBQVZgBUUFBTttdu3b1v79u2zbt++bQ7cuGFZpuct6R83bsT7MwUEBFiurq6Wt7e35eHhYQGWi4uL9fvvv1uWZVl37tyxvLy8rPXr10e5rn379laLFi1ifd/333/fatq0aZT7NGrUKM5afv75Z6tUqVIRzz/44AMrICAgyjn58uWz6tatG+VY8+bNrXr16kU8B6x33303yjkVK1a03nvvPcuyLOv48eMWYG3fvt2yLMsaOnSoVbt27Sjnnz592gKsgwcPxljruXPnrOeee84CrIIFC1oBAQHWjBkzrLCwsDg/888//2xlypTJunHf92jhwoWWi4uLdeHCBcuyLCt37txWv379Yryv/fPNmjXLatmypVWkSBHrzJkzsZ5rWZb1yy+/WD4+PhHPDx06ZBUsWNAqV65cxOuAtWPHjijX3V9/cHCw5eHhYY0dOzbGe0yZMsUqVKiQFR4eHnHs7t27lqenp7V06dI460sOov3+ioiIiIiIiDxEXDmRo6WoOe3q1atHvXr14n3+mDFjyJ8/PyNHjgSgSJEirF27lq+//po6deo4vkAvL3hgyGOS8fJK0Ok1atRg9OjR3Lx5k6+//po0adLQtGlTAI4cOcKtW7d46aWXolwTEhJC6dKlI57/8MMPTJgwgVOnTnH79m1CQkIoVapUguqYMGECb775ZsTzN998k+rVq/Pdd9+RPn36iOOVKlWKcl2lSpUYNWpUtGMPPo9ttdidO3eycuVK0qVLF+21o0ePUrBgwWjHc+XKxYYNG9izZw///PMP69evJyAggHHjxrFkyRJcXGJuXN2/fz8lS5bE29s74liVKlUIDw/n4MGD2Gw2zp07R82aNWO83q5bt254eHjw77//kjVr1jjPBQgKCiJdunSEh4dz584dnn/+ecaNGxfxuru7e5ydevv37+fu3bux1rVz506OHDkS5fsEcOfOHY4ePfrQ+kRERERERFKc27chMNBs79yJ3Nr3vb2henWI5d+HIgmRokK7hNqwYQO1atWKcqxOnTp8+OGHsV5z9+5d7t69G/E8ODg4/je02cwvaArg7e0dMfxywoQJlCxZkvHjx9O+ffuIudYWLlxInjx5olzn4eEBwPTp0+nZsycjR46kUqVKpE+fnhEjRrBx48Z417Bv3z7+/fdfNm3aFGXxibCwMKZPn07Hjh0f92PG6saNGzRo0CDGhTdy5coV57XFixenePHidOrUiXfffZeqVauyevVqatSo8Ui1eHp6xuu8l156iWnTprF06VJatWr10PPTp0/Ptm3bcHFxIVeuXNHu4+npic1me+S6bty4QdmyZZk6dWq017Jly/bQ+kRERERERFKUjRuhRg0TzsVl6lRo2TJpapJULVVHvxcuXIiYf8suR44cBAcHczuWX7Jhw4bh4+MT8fD19U2KUp3KxcWFvn378sknn3D79u0oCxP4+/tHedi/HuvWraNy5cp06tSJ0qVL4+/vn+DuqvHjx1OtWjV27tzJjh07Ih7du3dn/PjxUc79999/oz0vUqRIgs+xK1OmDHv37sXPzy/aZ/ROQPBatGhRAG7evAmY7rWwsLAo5xQpUoSdO3dGnAPm6+fi4kKhQoVInz49fn5+LF++PM57NWzYkN9++40OHTowffr0h9bm4uKCv78/Tz/9dLyDwfs988wzeHp6xlpXmTJlOHz4MNmzZ4/2NdQqtCIiIiIikqqEhcF775nAzsXFNOxkyQJ58oC/PxQvbvYB/n9BQpHHlapDu0fRp08fgoKCIh6nT592dklJ4vXXX8fV1ZUffviB9OnT07NnT7p168akSZM4evQo27Zt47vvvmPSpEmACXS2bNnC0qVLOXToEP3792fz5s3xvl9oaChTpkyhRYsWEZ1r9keHDh3YuHEje/fujTh/3bp1DB8+nEOHDvHDDz8wa9YsPvjggyjvOWvWLCZMmMChQ4cYOHAgmzZtinUF1vfff59r167RokULNm/ezNGjR1m6dClt27aNFrrZvffeewwdOpR169Zx8uRJ/v33X9566y2yZcsWMTTXz8+PXbt2cfDgQa5cuUJoaCitWrUibdq0BAQEsGfPHlauXEmXLl1o3bp1RKg8aNAgRo4cybfffsvhw4cjvt4PevXVV5kyZQpt27Z96Oq4jytt2rT06tWLjz/+mMmTJ3P06FH+/fffiEC1VatWZM2alUaNGrFmzRqOHz/OqlWr6Nq1K2fOnEnU2kRERERERJLU2LGwfTtkzAgXLpipsa5cgTNn4PBh2L0bvvnGnLt1q1NLldQjVYd2OXPm5OLFi1GOXbx4kQwZMsTaeeTh4UGGDBmiPJ4EadKkoXPnzgwfPpybN28ydOhQ+vfvz7BhwyhSpAh169Zl4cKF5M+fH4B33nmHJk2a0Lx5cypWrMjVq1fp1KlTvO83f/58rl69yquvvhrttSJFilCkSJEo3XY9evRgy5YtlC5dmv/973989dVX0eYlHDx4MNOnT6dEiRJMnjyZadOmRXTCPSh37tysW7eOsLAwateuzbPPPsuHH35IxowZY52brlatWvz777+8/vrrFCxYkKZNm5I2bVqWL19OlixZAOjYsSOFChWiXLlyZMuWjXXr1uHl5cXSpUu5du0a5cuX57XXXqNmzZp8//33Ee8dEBDAqFGj+PHHHylWrBivvPIKhw8fjrGO1157jUmTJtG6dWvmzJkT9xf6MfXv358ePXowYMAAihQpQvPmzbl06RIAXl5e/PPPPzz11FM0adKEIkWK0L59e+7cufPE/N6IiIiIiMgT4Nw56NfP7A8dCrFNB1SmjNnu3g0hIUlTm6RqNsuyLGcX8ShsNhtz586lcePGsZ7Tq1cvFi1axO7duyOOtWzZkmvXrrFkyZJ43Sc4OBgfHx+CgoKiBRF37tzh+PHj5M+fn7Rp0z7S55CH8/Pz48MPP4xzLsL4/DyI3E+/vyIiIiIi8lCBgVCtmgniSpaELVsgTSzLA1iWGTL733+wbRvct5CjpB5x5USOlqI67W7cuBEx7xnA8ePH2bFjB6dOnQLM0Na33nor4vx3332XY8eO8fHHH3PgwAF+/PFHZs6cSbdu3ZxRvoiIiIiIiIikFGFh0KSJCexy5oS5c2MP7MAsTmnvttMQWXGAFBXa2YdHlv7/tLp79+6ULl2aAQMGAHD+/PmIAA8gf/78LFy4kGXLllGyZElGjhzJuHHjog2rFBERERERERGJYu1aWLnSLDqxeDH8/3RRcSpb1my3bUvc2uSJEEdEnPy88MILxDWad+LEiTFes3379kSsShLbiRMnHnpOCh3lLSIiIiIiIsnVsmVm27AhlCoVv2vUaScOlKI67UREREREREREksTff5vtSy/F/xp7p93OnRAa6via5Imi0E5ERERERERE5H7//QebN5v9WrXif93TT0OGDHD3LqxZkzi1yRNDoZ2IiIiIiIiIyP1WroTwcChUCHx943+diwuUL2/2a9aERo0gODhxapRUT6GdiIiIiIiIiKQcN25AYGDi3uNRhsbaff89vPqqWU12/nwYNMihpcmTQ6GdiIiIiIiIiKQM9+5ByZKmA+78+cS7j30RikcJ7QoXhjlzYOFC8/zbb2Hv3pjPDQuDjz6CmTMfrU5J1RTaiYiIiIiIiEjKsGcPHDsGly5Br16Jc4/Tp+HIEXB1hRdeePT3qVfPdNyFhUGXLmBZ0c/55x/48kt48004cODR7yWpkkI7SVRt2rShcePGEc9feOEFPvzwwySvY9WqVdhsNgITu4U6npz1dXCEB7+niSW5fc9ERERERCQZ2LAhcn/KFFi71vH3+Ocfsy1Txiwq8Ti++grSpjVz5NmH3N7v8GGzDQ2Fzp1jDvbkiaXQ7gnUpk0bbDYbNpsNd3d3/P39GTJkCPfu3Uv0e8+ZM4ehQ4fG61xnhTbDhg3D1dWVESNGJOl9E2rnzp00bNiQ7NmzkzZtWvz8/GjevDmXLl0CklfoZf95s9ls+Pj4UKVKFVasWBHnNZUrV+b8+fP4+PgkUZUiIiIiIpLs2UO79OnNNjGaIeyhXbVqj/9efn7QsaPZ//rr6K8fOxa5v3y5hslKFArtnlB169bl/PnzHD58mB49ejBo0KBYQ6qQkBCH3Tdz5sykt//hmkxNmDCBjz/+mAkTJji7lFhdvnyZmjVrkjlzZpYuXcr+/fv55ZdfyJ07Nzdv3nR2eTH65ZdfOH/+POvWrSNr1qy88sorHLv/P1D3CQ0Nxd3dnZw5c2Kz2ZK4UhERERERSbbsod2335rt1q2OX53VkaEdwAcfmEUpFi+G/fujvnb0qNn6+Zntp5865p6SKii0cyDLgps3nfNIaAeth4cHOXPmJF++fLz33nvUqlWL+fPnA5HDHz/99FNy585NoUKFADh9+jTNmjUjY8aMZM6cmUaNGnHixImI9wwLC6N79+5kzJiRLFmy8PHHH2M9UNiDw0Lv3r1Lr1698PX1xcPDA39/f8aPH8+JEyeoUaMGAJkyZcJms9GmTRsAwsPDGTZsGPnz58fT05OSJUvy+++/R7nPokWLKFiwIJ6entSoUSNKnXFZvXo1t2/fZsiQIQQHB7N+/foorw8aNIhSpUrx008/4evri5eXF82aNSMoKCjiHPvXb/DgwWTLlo0MGTLw7rvvxhl+3r17l549e5InTx68vb2pWLEiq1ativX8devWERQUxLhx4yhdujT58+enRo0afP311+TPnz/Or9/du3fp2rVrRIfe888/z+bNm6O8/969e3nllVfIkCED6dOnp2rVqhy1/8fkAZs3byZbtmx88cUXcX1pyZgxIzlz5qR48eKMHj2a27dvs+z/J3e12WyMHj2ahg0b4u3tzaeffhpjp+C6det44YUX8PLyIlOmTNSpU4f//vsPiN/PhYiIiIiIJEMhITBrFly/Hvd5ly+bueYAGjWCzJnN/smTjqvl0qXIueWqVHHMexYoYOoF+OabqK/ZGxkGDYI0aWD37sghs/LEU2jnQLduQbp0znncuvV4tXt6ekYJlZYvX87BgwdZtmwZCxYsIDQ0lDp16pA+fXrWrFnDunXrSJcuHXXr1o24buTIkUycOJEJEyawdu1arl27xty5c+O871tvvcW0adP49ttv2b9/Pz/99BPp0qXD19eX2bNnA3Dw4EHOnz/PN///h9uwYcOYPHkyY8aMYe/evXTr1o0333yT1atXAyZcbNKkCQ0aNGDHjh106NCB3r17x+vrMH78eFq0aIGbmxstWrRg/Pjx0c45cuQIM2fO5M8//2TJkiVs376dTp06RTln+fLl7N+/n1WrVjFt2jTmzJnD4MGDY71v586d2bBhA9OnT2fXrl28/vrr1K1bl8Ox/GGdM2dO7t27x9y5c6MFo0CcX7+PP/6Y2bNnM2nSJLZt24a/vz916tTh2rVrAJw9e5Zq1arh4eHBihUr2Lp1K+3atYtx+PSKFSt46aWX+PTTT+mVgElgPT09gahdnIMGDeLVV19l9+7dtGvXLto1O3bsoGbNmhQtWpQNGzawdu1aGjRoQFhYGPDwnwsREREREUmm+vaFZs1iHj56v3//NdvChSFTJsif3zyPZ5NGvNjnyCteHLJkcdz7dutmtpMmwZUrZt+yIjvtypWD/2+8YM4cx91XUjZL4hQUFGQBVlBQULTXbt++be3bt8+6ffu2ZVmWdeOGZZnfuqR/3LgR/88UEBBgNWrUyLIsywoPD7eWLVtmeXh4WD179ox4PUeOHNbdu3cjrpkyZYpVqFAhKzw8POLY3bt3LU9PT2vp0qWWZVlWrly5rOHDh0e8HhoaauXNmzfiXpZlWdWrV7c++OADy7Is6+DBgxZgLVu2LMY6V65caQHWf//9F3Hszp07lpeXl7V+/foo57Zv395q0aKFZVmW1adPH6to0aJRXu/Vq1e093pQUFCQ5enpae3YscOyLMvavn27lS5dOuv69esR5wwcONBydXW1zpw5E3Fs8eLFlouLi3X+/HnLsszXL3PmzNbNmzcjzhk9erSVLl06KywsLNrX4eTJk5arq6t19uzZKPXUrFnT6tOnT6z19u3b10qTJo2VOXNmq27dutbw4cOtCxcuRLwe09fvxo0blpubmzV16tSIYyEhIVbu3Lkjvnd9+vSx8ufPb4WEhMR4X/vPz5w5c6x06dJZ06dPj7VGO8CaO3euZVmWdfPmTatTp06Wq6urtXPnzojXP/zwwyjXPFh/ixYtrCpVqsT4/vH5uXjQg7+/IiIiIiLiBLdvW1bmzOYftq1bx31unz7mvLZtzfOmTc3zb7+N//1CQizrvn/PRfPBB+Y9O3WK/3vGR3i4ZZUpY977f/8zx65ejfxH/c2bljVmjNmvUMGx9xaHiisncjR12jmQlxfcuOGch5dXwmpdsGAB6dKlI23atNSrV4/mzZszaNCgiNefffZZ3N3dI57v3LmTI0eOkD59etKlS0e6dOnInDkzd+7c4ejRowQFBXH+/HkqVqwYcU2aNGkoV65crDXs2LEDV1dXqlevHu+6jxw5wq1bt3jppZci6kiXLh2TJ0+OGL65f//+KHUAVKpU6aHvPW3aNAoUKEDJkiUBKFWqFPny5WPGjBlRznvqqafIkydPlPcODw/n4MGDEcdKliyJ133flEqVKnHjxg1Onz4d7b67d+8mLCyMggULRvlMq1evjnVIKsCnn37KhQsXGDNmDMWKFWPMmDEULlyY3bt3x3rN0aNHCQ0Npcp9bd5ubm5UqFCB/f8/t8KOHTuoWrUqbm5usb7Pxo0bef3115kyZQrNmzeP9bz7tWjRgnTp0pE+fXpmz57N+PHjKVGiRMTrcf2s2OuqWbNmjK/F5+dCRERERESSoTlz4P9H/XD1atzn2uezs//7zj4PXHw67cLCTJdboUKQNy9Mmxb9nBs34P+n8HHYfHZ2Nltkt90PP5ghwfZ/q+TKZf5R36iROW/TJojh346AWYG2Qwe4b4omSb3SOLuA1MRmA29vZ1cRPzVq1GD06NG4u7uTO3du0qSJ+qPg/cAHuXHjBmXLlmXq1KnR3itbtmyPVIN9iGRC3LhxA4CFCxdGCc7AzNP3OMaPH8/evXujfC3Cw8OZMGEC7du3f6z3jsuNGzdwdXVl69atuLq6RnktXbp0cV6bJUsWXn/9dV5//XU+++wzSpcuzZdffsmkSZMeuZ74fF8KFChAlixZmDBhAvXr148z4LP7+uuvqVWrFj4+PjH+zDz4M5eQuhLz50JERERERBLR2LGR+/ZhozGxLNiyxew/95zZJiS0Gz7cDMO1+/hjaNwYPD3NfFNjxsDnn5t589zcHB/agRkC3KsXnDsHM2aAvVHm6afNNmdOM4/e2rUwdy507Rr1+iNH4NVXTbhYoAD06eP4GiVZUafdE8rb2xt/f3+eeuqpaIFdTMqUKcPhw4fJnj07/v7+UR4+Pj74+PiQK1cuNm7cGHHNvXv32Lp1a6zv+eyzzxIeHh7rnGP2Tj/7nGUARYsWxcPDg1OnTkWrw9fXF4AiRYqwadOmKO/1r33ug1js3r2bLVu2sGrVKnbs2BHxWLVqFRs2bOCAfSJS4NSpU5w7dy7Ke7u4uEQs2AGmM/H27dtRzrHP1feg0qVLExYWxqVLl6J9ppw5c8ZZ9/3c3d0pUKBAxOqxMX39ChQogLu7O+vWrYs4FhoayubNmylatCgAJUqUYM2aNYSGhsZ6r6xZs7JixQqOHDlCs2bN4jzXLmfOnPj7+z9yyFuiRAmWL18e42vx+bkQEREREZFk5vBhuH8Bvrg67U6fNmFVmjRmTjtIWGhn/zdQx47w1FNw5gyMGAHffWcCsB49TGBXoAD8/rvpfnM0d3fo3Nnsf/VVZKddgQKR5zRtarbz5kW9NiQEWrQwXwMwoZ6kegrtJF5atWpF1qxZadSoEWvWrOH48eOsWrWKrl27cubMGQA++OADPv/8c+bNm8eBAwfo1KlTlJU/H+Tn50dAQADt2rVj3rx5Ee85c+ZMAPLly4fNZmPBggVcvnyZGzdukD59enr27Em3bt2YNGkSR48eZdu2bXz33XcR3WXvvvsuhw8f5qOPPuLgwYP89ttvTJw4Mc7PN378eCpUqEC1atUoXrx4xKNatWqUL18+yoIUadOmJSAggJ07d7JmzRq6du1Ks2bNogRsISEhtG/fnn379rFo0SIGDhxI586dcXGJ/itXsGBBWrVqxVtvvcWcOXM4fvw4mzZtYtiwYSxcuDDGehcsWMCbb77JggULOHToEAcPHuTLL79k0aJFNPr/VYli+vp5e3vz3nvv8dFHH7FkyRL27dtHx44duXXrVkQ3YefOnQkODuaNN95gy5YtHD58mClTpkQZ/guQPXt2VqxYwYEDB2jRokWMC1U4Up8+fdi8eTOdOnVi165dHDhwgNGjR3PlypV4/VyIiIiIiEgyYx/J5e9vtnGFdv8/nQ8FC5pOOEhYaGf/90yLFjB0qNkfONB0s124APnywfjx5j4NGybkUyTMO++Y7r4dO2DKFHPs/tCufn2zXbs26mq6/fubTsOMGc0wv82bYx9CK6mGQjuJFy8vL/755x+eeuopmjRpQpEiRWjfvj137twhQ4YMAPTo0YPWrVsTEBBApUqVSJ8+Pa+++mqc7zt69Ghee+01OnXqROHChenYsWNEp1iePHkYPHgwvXv3JkeOHHT+//8jMXToUPr378+wYcMoUqQIdevWZeHCheT//5WDnnrqKWbPns28efMoWbIkY8aM4bPPPou1hpCQEH799Vea2v+PxgOaNm3K5MmTI7rJ/P39adKkCS+//DK1a9emRIkS/Pjjj1GuqVmzJs888wzVqlWjefPmNGzYMMqcgQ/65ZdfeOutt+jRoweFChWicePGbN68maeeeirG84sWLYqXlxc9evSgVKlSPPfcc8ycOZNx48bRunXrOL9+n3/+OU2bNqV169aUKVOGI0eOsHTpUjJlygSYIbcrVqzgxo0bVK9enbJlyzJ27NgYh8DmzJmTFStWsHv3blq1ahWlq8/RChYsyF9//cXOnTupUKEClSpV4o8//ojoFH3Yz4WIiIiIiCQzf/xhtu+8Y7aBgRBbM8C+fWb7/yOEABO0gZkTLzg49vuEhMDx42a/YEFo1QpKlTLP8+Y1Q2MPHYJ27SIDwcSSOTMEBJh9+4gu+/BYMAHm009DaCisXGmOLVtmhvcC/PKLGUIL0bvxJNWxWZZlObuI5Cw4OBgfHx+CgoIiwim7O3fucPz4cfLnz0/atGmdVKEkpUGDBjFv3jx27NgR6zlt2rQhMDCQefoDNFnT76+IiIiIiBOdOmVCNxcXOHsWcuc289ZdvAjZs0c/v2NHGDfOdJwNGRJ5PGtW06G3axc8+2zM9zpwAIoUMZPQX79uOtUuXYKNG6F2bUjqebAPHowc4guwfn3k4hoA778PP/4I770HgwZByZKmG/Ddd2H0aPj6a+jeHV54ITLYkyQTV07kaOq0ExEREREREZGkNX++2VaubBZgyJjRPI9tMYqYOu0gfkNk7UNjCxY0gR2YYLBBg6QP7MCsYGsfBgtRh8cC1KtntosXQ9u2JrArVszMgwdmMQqA1avN5yhWLO5OQ0mxFNqJiIiIiIiISNKyh3b/Pyc3WbKYbUzz2lnW44V2hw6Z7X2LBzpdt25mmzkzPLhY3wsvmEUrTpyARYtMsDhtmpkLD8xnfu4583W5fNl8bdavT8LiJakotBNJgEGDBsU5NBZg4sSJGhorIiIiIiISm6CgyFVj7Ys+ZM1qtjGFdhcumPnuXFxMt9z97KGdfc66mNg77ZJTaPfiizBpEsycGdn9Z5cuHVStGvl85MjoQ39nzzar3FarZp4fPpy49YpTKLQTERERERERkaSzfLlZaKFQocgQzt5pF9PwWHuXXYEC8OB81PaF5+I7PDa5sNngrbegZs2YX3/tNbNt1Ag6dYr+eu7c0LQpVKhgniu0S5UU2jmA1vIQSXn0eysiIiIi4iS7dplt5cqRx+LqtLOHdkWKRH/N3mm3fTusWRPz6rPJcXjsw7z9NqxdC7NmRe/Eu589iFRolyoptHsMbv+/FPStW7ecXImIJJT999YtsZd0FxERERGRqPbvN9v756eLa0672Oazg8gg78QJM1Q0Z07TwTZrllmcITDQrBQLyavT7mFcXKBKFXjYv1eeecZsFdqlSmmcXUBK5urqSsaMGbn0/38AeHl5YYsrARcRp7Msi1u3bnHp0iUyZsyIq6urs0sSEREREXmy2EO7+zvn4hoeu3ev2cYU2j39tFmsYepUs716FaZMMQ83N3jlFXNerlyQPr3jPkNyYQ/tTpwwQ47VlJCqKLR7TDlz5gSICO5EJGXImDFjxO+viIiIiIgkkbCwyOGq94d2sQ2P3bsX1q0z++XKxfye9eqZx7175tw//zSr0x4+DHPnmnNS0tDYhMidG7y84NYtsxhHSuomlIdSaPeYbDYbuXLlInv27ISGhjq7HBGJBzc3N3XYiYiIiIg4w/HjcPeuWVAiX77I47F12vXtC+Hh0KRJzHPa3S9NGqhe3Ty+/BLmzIF27cxqtcWKOfZzJBc2G/j7m3kCDx1SaJfKKLRzEFdXV4UAIiIiIiIiInGxz09XqBDc/2/omOa0W7fOdMy5usJnnyX8Xk2aQOnSZqhs27aPXnNy98wzJrTTvHapjkI7EREREREREXGMe/fMEFgPj5hfj2kRCog+PNayoFcvs9+u3aMPb82fHwYMeLRrUwqtIJtqafVYEREREREREXGMF180w16DgmJ+PaZFKCCy0+7aNTMcdsEC02mXNi0MHJh49aYGWkE21VJoJyIiIiIiIiKPz7Jgwwa4eBFWrYr5nIeFduHhptuuTx/z/IMPIE+eRCk31VBol2optBMRERERERGRx3f7thkeC7B6dfTXLSv20M7dHdKnN/ujRplVYzNlihwiK7Gzh3anTsGdO86tJSZ37pjVbSXBFNqJiIiIiIiIyOMLDo7cj6nT7uxZuH7dLCxhD5ruZ++2GzHCbPv0McGdxC17dhN4WhYcO+bsaozDh+HVV+Hpp8HLyywGIgmm0E5EREREREREHt/9od2OHRAYGPn87FkICDD7zzxjOuseZF+MIjQU8uaFzp0Tq9LUxWZLXotR3LoFDRvCvHlw/HjyChNTGIV2IiIiIiIiT4Lt28HPz0zqb1nOrkZSo/tDO8uCtWvN/u+/w7PPwooVpuvqiy9ivt7eaQcweDB4eiZeramNvXPx0KGku+cff8APP8CMGbB8OezcacLZbt3gwAHIlct8zy9ehM8/T7q6UpE0zi5AREREREREEpllQZcucPIkDBlijg0e7NyaJPW5P7QDWLgQ5syBX34xz8uVg6lTI7vCHmQP7YoUgbfeSrw6U6OkXoxi1y5o3DjucyZPhho1kqSc1EqhnYiIiIiISGo3fz6sWwdp0piFAoYMgdOnYdgwyJHD2dVJavFgaDdmjNnabGZ+ukGDwM0t9uubN4fNm2H0aPOzKvGX1KHd+vVmmzu3ufeVK+Zx9ar5M6Z/f6hVK2lqScU0PFZERERERCQ1u3cPevc2+x99BMOHm/1ffgF/f/jnH+fVdr+wMPjgg8j67CwLFi2CS5ecU5fEnz20K1w48li+fGYl2U8/jTuwAzMP2qFDUL164tWYWiV1aLdli9m2bWsWHdmzBy5cgJAQM6edvaNXHotCOxERERERkdTsl1/M/FJZskCvXia4W7sWihWDGzfM8MXk4Lff4NtvTY1XrkQenzIF6teH8uXh6FHn1ScPZw/tiheHAQOga1czz1nVqs6t60lgH3J89qwJzRKbPbQrVy7qcZtNcxE6kEI7ERERERGR1OrmTROegBmu5uNj9qtUiVzJ8+pV59R2v9DQqHPsrV5ttpYFX39t9k+dMh1YCu6SL3tolyGD+X5+803kz5wkrsyZzQPgyBHHv39oqOmEbNjQhP179pjjD4Z24lAK7URERERERFKrr782Q9by54d33436mn3S/+QQ2k2eHDWMW7nSbNevhx07IG1aM+Ty7Fmz+q0kT/eHdpL0EjpE9sABaNYM9u2L+fXbt82fHwA//gh//mkeI0aY4ew5ckCePI9ft8RKoZ2IiIiIiEhqdPly5Pxwn34KHh5RX08uod3du5HzX73wgtmuWGG2331ntq1ama4tgE2bkrQ8SQCFds5lD+0OHYrf+X36wKxZ0KNH9NdWrTLvlzcvDB0aNSz/4guzLVfODIeVRKPQTkREREREJDUaOhSuX4eyZc2qnA9KLqHd+PFm6Gvu3PDrryYE2L/fhHOzZ5tzOneG0qXN/uHD0VcpleRBoZ1zJaTT7r//zAIvAEuXwrFjZj80FD75BF580XS2hoWZIfZBQeDnZ865e9dsNTQ20Sm0ExERERERSW2OHIHRo83+8OHgEsM//ZJDaHf7tukCBOjb1wy1K1XKPK9b16x8+8IL5li2bODra17bsSPpa5WHU2jnXPbFKOIT2s2ebVZ6BTN35NixcOKEmTfy00/Nsfbt4csvwdXVhOm//goVK0a+h0K7RKfQTkREREREJLXp188EXnXrmo6ZmNhDu8BAc+7D/P67CQJv3HBYmfz0E5w7B089BR06mGM1apjtf/9B+vQmTLArU8Zst293XA3iOArtnCshnXZTp5pt5cpmO2YMlCwJGzaYxUNmzIBx48zQ2Z07zfEqVSJ/T8F08UqiUmgnIiIiIiKSmhw9CjNnms4Y+9xTMbGvNAkmIIvLgQPw+uvQqZMZIvfTT+b43r2QLx8UKgRt28LPP8Pu3WZI3cPcvAnDhpn9/v0j59yzh3Zg3s/fP/K5fYjstm0Pf39JegrtnKtgQUiTBi5ehGnTYj/vzJnIFZonTzZD0wMDzfevcmXTydqsWeT5xYpFdtg1bw7Fi0O9epArV2J9Evl/aZxdgIiIiIiIiDjQn3+abY0aUKJE7OelSWM6aoKCzBDZbNliP9c+1NbV1Zz77rtmyO0335j56MBMfj9xotnPkMF04aRLZ4bAHjoEd+6YubPsw1+//x4uXYKnn4aAgMh71a4Nb71lgoI33ohah73TTqFd8qTQzrnSp4devczw1g4dzO9/sWLRz5s3zwx/ff55KFDAzH/Zowd06WLmr0sTR1SUPr0J5iVJqNNOREREREQkpdu61az2CLBwodm+8srDr4vPvHY3b0aGcX/8EbnS5Ntvm067nDnN/Fj9+pmhuN7eJrxZudIEiH//bYK9S5fgs8/MtcHBkSvbDhoEbm6R93N3h0mT4OOPo9diD+327zdhoCSePXvg2WfNQiHxpdDO+QYPhlq14NYtaNIk5kVb9u4122rVzLZdO7h2zaziHFdgJ0lO3w0REREREZGULDDQLNZw4wYsXx457C2+od2xY3GHdr/9Zv7h7+9vhsTVq2eG4M6bZ4bgTpliQoImTcz59+6ZwGfnTrPv5mYeLVvCnDlmaN6ECSYkKFzYHI+v3Lkhe3YTAO7eDRUqxP9aiT/Lgq5dzfdx/HizIEF8KLRzPldX8ztbtqzpcG3b1sxHabNFnnPwoNkWKhR57P7XJdlQaCciIiIiIpKS/fpr5OIQr78OoaFmQnr7pPRxiavT7u5dMxn9kCHm+XvvRa5C++uv8MknJhioVSvqdWnSmCGw9mGwdmPGwD//mABoxQpzbNAgEzLEl81m5rVbutQMkVVolziWLDGdkmAC2vi4e9c8QKGds2XLZoK6qlVNUD5yJPTsGfn6oUNma19tVpItDY8VERERERFJqSzLLNZgd+2a2canyw5iDu0uXzZzXPn5mbnmzpyBvHmhTZvIc7y94euv4c03419rly5m+9dfpgPvjTdMyJhQmtcucYWFRR2afOlS/FYMvn49cj99esfXJQlToYKZcxLMPHf24fM3bsDZs2ZfoV2yp9BOREREREQkpdq40QwTTZs2aqhWv378rr8/tDt92kxe7+trJqO/cMEMR/3sM7Oa5P2rzT6KRo0gTx6zX6eOmbfO5RH+SarQLnGNH2+GxWbMGBm+HT/+8OvsQ2O9vDQvWnLxzjtmUZfwcLPq69mzcPiweS1r1sf/nZZEp9BOREREREQkpbJ32TVvDiNGmEUh/PzMsLj4yJrVbK9eNZ1w48ebIY7lysHUqXDiBPTpExnuPQ43N5g500yUP3u2WXDiUdhDu927zVBgcZwrV8z3G2DgwMhOrGPHHn6t5rNLfmw2s/JziRKmY/L99zU0NoVR/C0iIiIiIpJSLVpktm3bmgBu/37TvRbfQOz+Tjt759qvv5rFIRJjYvrKlc3jceTPDz4+EBQE+/ZByZKOqU1MYHftmgl5OneGDRvMysTxmddOoV3y5OVlFospWRIWL45cfOL+RSgk2VKnnYiIiIiISEoUGmq6ZwCKFDHbjBkTFprYQ7vjx83wWICXX07eK0naF6MADZF1pCNHYNw4s//DD2aI69NPm+fqtEvZnn3WfC9DQuCXX8wxddqlCArtREREREREUqJLl8xCFK6ukcNcE8oe2u3caba5c0OmTI6pLzFpXjvHW73abKtWheefN/sFCphtQkI7Hx/H1yaPx2aDevXM/uXLZqvQLkVQaCciIiIiIpISnT9vtjlyPNqCDhAZ2oWHm22xYo9fV1JQaOd4mzaZbaVKkcfUaZd6vPxy1OcaHpsiKLQTERERERFJiS5cMNtcuR79PR5cYKJ48Ud/r6RkD+127oSwMOfWklrYQ7sKFSKP2UO748cf/nVWaJe8vfCCWWUaTOedvYtSkrUUF9r98MMP+Pn5kTZtWipWrMgm+x8ssRg1ahSFChXC09MTX19funXrxp07d5KoWhERERERkURi77RzZGiXUjrtChY0E+zfvAmHDzu7mpTv1i2zGi9AxYqRx319zdx2ISFw7lzc76HQLnnz8oIaNcx+vnyRAZ4kaykqtJsxYwbdu3dn4MCBbNu2jZIlS1KnTh0u2SdffcBvv/1G7969GThwIPv372f8+PHMmDGDvn37JnHlIiIiIiIiDuaI0M7LCzw8Ip+nlNDO1TVy1VgNkX24zz6DcuXg1KmYX9+2zXTS5coFefJEHnd1BT8/s/+wIbIK7ZK/V14x2xIlnFuHxFuKCu2++uorOnbsSNu2bSlatChjxozBy8uLCRMmxHj++vXrqVKlCi1btsTPz4/atWvTokWLh3bniYiIiIiIJHv20C5nzkd/D5stardd0aKPV1NS0rx28XPlCgweDFu3Qs+eMZ9z/9DYB1cOtg+RPXo07vsotEv+3n4bvvsORo50diUSTykmtAsJCWHr1q3UqlUr4piLiwu1atViw4YNMV5TuXJltm7dGhHSHTt2jEWLFvHygxMw3ufu3bsEBwdHeYiIiIiIiCQ7jpjTDiJDu6eeSlmBiz20277duXUkd7/8Yoa3AsyaBWvXRj/HHtrdPzTWzj732cOGISu0S/7SpIHOncHf39mVSDylcXYB8XXlyhXCwsLIkSNHlOM5cuTgwIEDMV7TsmVLrly5wvPPP49lWdy7d4933303zuGxw4YNY/DgwQ6tXURERERExOEcMTwWIkO7lLIIhV3p0ma7bRtYVvQOMTGrAv/0k9n384MTJ+Cdd6BlS/DxgYwZzXb9enPO/YtQ2D37rNl+841ZWbZhw5jvpdBOxOFSTKfdo1i1ahWfffYZP/74I9u2bWPOnDksXLiQoUOHxnpNnz59CAoKinicPn06CSsWERERERGJJ0cMj4XI0C6lzGdnV6wYuLlBYKAJoyS6ZcvMsFYfH1ixAtKnh3374JNPoEsXaN3ahHCnT5vQs1y56O/Rpg3Urw+3b8Orr8LYsTHfS6GdiMOlmE67rFmz4urqysWLF6Mcv3jxIjlj+Y9U//79ad26NR06dADg2Wef5ebNm7z99tv069cPF5fomaWHhwce90/EKiIiIiIiktxYluOGxzZtCps3w2uvPX5dScnd3XSBbdtmHvnzO7ui5OXePRgyxOwHBJivz8KFMG8eBAWZsPP+bcOGJtx7kKenueadd2DCBDMv2vnz0L9/1O7GwECzTZ8+UT+WyJMkxYR27u7ulC1bluXLl9O4cWMAwsPDWb58OZ07d47xmlu3bkUL5lxdXQGwLCtR6xUREREREUk0//0XOU/Z43batWhhHilRmTImsNu+3YSPEql/fzPsNX166NbNHKta1TwSKk0aGDcOcueG//0PBg6Es2fhhx/MaxcvRs55V7Cg4z6DyBMuxYR2AN27dycgIIBy5cpRoUIFRo0axc2bN2nbti0Ab731Fnny5GHYsGEANGjQgK+++orSpUtTsWJFjhw5Qv/+/WnQoEFEeCciIiIiIpLi2IfGZs4MT/JIofvntZNICxfC55+b/QkTzHx2j8tmg6FDTWdn587w88+m23PmTFi0yJxTrtzjd36KSIQUFdo1b96cy5cvM2DAAC5cuECpUqVYsmRJxOIUp06ditJZ98knn2Cz2fjkk084e/Ys2bJlo0GDBnz66afO+ggiIiIiIiKPzz409nG77FI6+wqyW7dqMQq7kyfNXHVg5q1z9LDnTp3Mz13LljB/Powcab7+AK+84th7iTzhbJbGicYpODgYHx8fgoKCyKAJNUVEREREJDn49VcTzNSsCX//7exqnOfWLTP8MzzcDNfMndvZFTlXSAhUqwYbN0L58rBmTeJ1Yk6ebObKy5QJQkPhxg3YsgXKlk2c+4kkE0mZE6Xq1WNFRERERERSJfvw2Cd9KKKXFxQpYvaf9CGylgXvvWcCu4wZzbDVxBw63aoVFCpk5le8ccP8LNqHK4uIQyi0ExERERERSWk0PDZS8eJme+iQc+twtn79zPx1Li6mE9MR89jFxdUVBgyIfF6/vrm3iDiMfqNERERERERSGnXaRfL1NdszZ5xbhzONGgX/vyAjP/9sArSk0Lw5FC1q9ps0SZp7ijxBUtRCFCIiIiIiIoJCu/vlzWu2T2poN3UqdOtm9j/7DNq3T7p7u7rCX3/Bzp1Qr17S3VfkCaHQTkREREREJCW5fNnMWwZQoIBza0kOnuTQbvFiaNPG7H/4IfTunfQ15MljHiLicBoeKyIiIiIikpJ8/TXcvg3lypkVQp90T2po9++/8NprcO+eWRRi5Eiw2ZxdlYg4kEI7ERERERGRlOK//+D7783+J58opIHI0O7cOQgLc24tSeX8eTNv3a1bULdu5AIUIpKq6LdaREREREQkpfj+e7h+HZ59Fho0cHY1yUPOnGZutbAwuHjR2dUkjT//hGvXzCIQv/8O7u7OrkhEEoFCOxERERERkZTg+nWzSihA377qrLJzdY1ckOPsWefWklS2bzfbV14Bb2/n1iIiiUZ/youIiIiIiKQEY8aY7qpnnoHXX3d2NcnLkzavnT20K13auXWISKJSaCciIiIiIpJcXLsGnTrBunVRj9++bRYaAOjTx3SXSaQnKbS7dw927TL7Cu1EUjWFdiIiIiIiIsnFZ5/B6NFmcQF7NxXA+PFmvrannoI333RefcnV/aFdWBjcvevcehLTwYMmxPX2Nl2XIpJqKbQTERERERFJDm7dMuEcwI0b8PLLcPIkhITA8OHmeO/e4ObmvBqTq/tDuzfegBw54NQp59aUWOxhbqlSmtdQJJXTb7iIiIiIiEhyMG0aBAaCnx8ULw4XLkCzZjBhApw+bRZbaNvW2VUmT3nymO2mTWY11aAgmDv34ddduQIvvACTJz/83PBwmDXLBKghIY9V7mPRfHYiTwyFdiIiIiIiIs5mWfD992b//fdhwQLImNGEUJ07m+M9e0LatE4rMVmzd9odORJ5bNmyh183fz6sXg39+pnvQWzWrYNKlUyI2qsXvPde3OcnJoV2Ik8MhXYiIiIiIiLOtmUL7NhhQrl27SBfvsihsmFhkCULvPOOU0tM1uyh3f1WrXp4R9yFC2Z75gzs3g3BwfDll7B3rzl+7JhZqff5502A6u1thqROmBC5MAiYeeaOHXPIR4mTZSm0E3mCKLQTERERERFxtq1bzbZmTcic2ew3aRLZZdenjwmMJGa5c0d9niED3LwJ//4b93X20A5g0SLo3h0++sjMF/fqq1CkiBlu6+ICHTuaTr6vvzbn9+plhi0HBUHFilClCoSGOvRjRREebobxBgaaeQ2LFUu8e4lIsqDQTkRERERExNnsXVr+/lGPf/stHDhgwiSJnbu7WXwCzDDW+vXN/l9/xX3d+fOR+7/+ClOmmP1792DePNOp99JLpgvy558hZ07o0gXKlDEh2saNpvMtKMgEgIcOOfqTGUFBULUqtGljntevbz6ziKRqCu1ERERERESc7ehRs3366ajHbTYoVMhsJW5PPWW2r71mgjZ4+Lx293fa7d1rQrrnnjOLWLzxhum+W7oUnn028jybDcqWNfs7dsDOnZGv3b/vKGFh0KIFrF8P6dLBkCEmYBSRVC+NswsQERERERF54tk77R4M7ST+Bg+G2bPNMNagIHNsyxazQmzWrDFfY++0S5PGdNcB9OgBjRubR2xKlTLbHTsgW7bI47t2QcuWj/4ZYtKnDyxeDJ6eZtGMMmUc+/4ikmyp005ERERERMSZLEuhnSPUqwfjxkH69GZhCvsQ1p9/jv0ae6fdK6+Ybf78Zi67hylZ0mx37jTBnZ2jO+327YMRI8z+L78osBN5wii0ExERERERcaZr18yqpWBCI3GMbt3M9ttv4c6d6K/fuGEWqwD4/HNo0ADGjgVX14e/d4kSZmtfddZu167Hq/lBX31ltq++Cs2bO/a9RSTZU2gnIiIiIiLiTPYuu9y5zRBIcYzmzU3H3cWLMHVq9NftQ2O9vc28gfPnm9V74yN9+shFQ8LCIlf2PXfODMd1hIsXIxfG6NnTMe8pIimKQjsREREREUmZrl6NnLssJdPQ2MTh5gYffmj2R4404dr97ENjc+V6tPe3z2sHZthqgQJm31Hddj/8ELkwRuXKjnlPEUlRFNqJiIiIiEjKc+WK6Y4qUwZu3XJ2NY9HoV3i6dgRfHxg/36YNCnqa/ZOu5w5H+297fPagQnw7ENm7w/tLMvMczdmDJw9G/X6RYugTh04cSL6ex8/Dt99Z/Z79Hi0+kQkxVNoJyIiIiIiKc/06abT7tgx+P57Z1cTs4AAs2rp0aNxn6fQLvFkyAADBpj9vn0j5w4Ex3balSwZGeL9+68ZavvOO/DUU+a8996Dl16KnEPv3Dmzyuxff0WGc3a3bpk57AIDoXz5+C2MISKpkkI7ERERERFJPiwrfufZ5/oCs4hAchsmu38/TJ5sgsXhw+M+V6Fd4urcGQoWNHPEffZZ5HF7aPeonXb3h3b3d9rNmAGNGplVa8+cMfMU2rv9Onc2P+Pvvhv5M7t4ceT7WBZ06GC687Jnhzlz4rcwhoikSgrtRERERETE+UJDoWtX8PIyHWoHD8Z+7sGDsGmTCTOefhr++w++/DLpao2Pb7+N3J80CS5div1chXaJy93dzGkH8PXXkZ2P9uGxj9pplycP1K5tuuGefdbMPWdfSMTPD95/3wyBvXoV/vgDXFxg4kRz3Z9/mjn3XFxMmHfypLnuq69g2jRIkwZmzTILaYjIE0uhnYiIiIiIOFdQENSta4YJ3rljOtQKF4ZnnoG2bWH8eDhwILILz95lV6dOZBfbZ5/BuHHOqf9B//1nPgNAjhxw964JjZYsgd9+g7Vr4fRpszBCaCicOmXOVWiXeOrXNwFbSAh89JE59riddjYbLF1qAmR3dxP+7d4N+/ZFDtuuV88EedWrR3b52cPCQYOgUiWzv2QJ/P03fPyxef7111Ct2qPVJSKphs2y4tt//mQKDg7Gx8eHoKAgMmTI4OxyRERERERSn6FDzbxj3t7wxRdmnq8//4w+VDZrVtN5dOCACfemT4dmzcxQw59/Nue0bQsNGsCLL5ohic4wYoQJX0qUgE8+MTXGJE0aE/ScPg1p05q5zGy2pK31SbJ3r5l3LiwMVqyA7t1hxw7TDVevXtLUcPy4CXU9PU0w/dln5mfkuefg0CG4dg3atIEJE/SzIJJMJWVOpNDuIRTaiYiIiIgksmbNzFDAL7+MXCnzv/9gwwZYt850pm3aZII6O19fM0zW09OEe337mrnt7FxdTRdT7dqmI698+aQLQZ59FvbsMZ1/bdqY+c727DE1P/206aw7fRru3Yu8plIlWL8+aep7knXuDD/8YALV8+fh8mXYvj3q/HRJads2KFs28nm5crBmjQlxRSRZUmiXjCi0ExERERFJZOXKwdatZt6vhg1jPickxAQcV69C7txQqJCZ/+5+y5eb91i61HQt3a9oUdNZ1a5d4oZ3p0+bFUNdXMw8dlmymBVLL182gZ393mFhJjQ6edKsJFqpkuYvSwpXr5ph1//9F3ns/PlHHyL7uMLDzc/zxYtm4YktW0y4KyLJVlLmRGkS9d1FREREREQexr4wQFxzurm7myGEcalZ0zwATpwww2yXLjWPffvMqpxhYfD22w4pO0ZLlphtxYomsAPIkME87ufqakI6BXVJK0sWM5fcBx+Y5y4ukC2b8+pxcYEuXcz8dzNnKrATkSi0EIWIiIiIiDjPf/9BYKDZz5/fce/r52fCudmz4exZE9gBzJnjuHvEZNEis02qOdIk4d57D4oUMfvZs5sA1Zn69TPdllWrOrcOEUl2FNqJiIiIiIjzHDtmtjlzmoUoEoOPj+lmAjM/Xmho4twnJMSsAAoK7ZIzNzcYNcp0uZUu7exqDC06ISIx0PBYERERERFxHntoF9fQWEcoXtwMjbx6FTZvhsqVH/29Ll6Erl3NkF1/fyhQwDzOn4cbN0z3VpkyjqtdHK92bbOarLPmshMRiQeFdiIiIiIi4jxJFdq5uECNGvD777BixeOFdj/9ZOYfi03duuZ+krwVLuzsCkRE4qT/koiIiIiIiPPEZxEKR6lRw2xXrny899mwwWwbN4b27eGFF6IuIPDWW4/3/iIiIqjTTkREREREnCmpOu0AXnzRbNetg+++g9OnYeDA2OfSu30bOnY0ixb062eOhYfDv/+a/U8+gbJlI8+/c8c8MmZMtI8gIiJPDoV2IiIiIiLiPPbQrkCBxL9XoUJmDrMLF8ycdAAeHjB0aMzn//wzTJ1q9p97DmrWhEOHzGq3np5QokTU89OmNQ8REREH0PBYERERERF5fN27Q8WKEBQElgX9+8NHH0FYWOzXhIbCqVNmPyk67Ww2eP11s58rl9mOGgWXL0c/984d+OKLyOedOsHdu5FDY8uXN6uQioiIJBKFdiIiIiIi8niuXzfDTTdtgiVL4Phx+N//4MsvzTY2p0+bUC9t2qRbxXPECNi3z9y7TBmz2uvw4dHPGzfOrAabNy/kyGE67IYPjwztnnsuaeoVEZEnlobHioiIiIjI4/nnH7h3z+yvWQM3b0a+NngwFCsGr74Krq5Rr7MvQpE/f9KtturhYeaoAzMstn59GDnSDIW9n/0z9O0LPj7QqhUMGQKZM5vjlSolTb0iIvLEUmgnIiIiIiIPZ1lmGGm2bGaY6f2WL4/c/+cf03kHkCULXL1qhqT6+MDzz0O1auaRPz+MGWPOS4qhsTGpV8/MU7d8OQQHR3/9mWegXTtwd4d582DWLLh0ybymTjsREUlkNsuyLGcXkZwFBwfj4+NDUFAQGTJkcHY5IiIiIiJJb/9+6NLFhFt16pihsM88E/l6yZKwa1fk82zZTMD355/w++8we7YZhhqb336DFi0Sr/643LsHJ06YUPJBvr6RC0sEBUHp0mbor5+f2YqIyBMnKXMihXYPodBORERERJ5oa9dCjRqRw1/BdJ59/DH06WPCuBw5zPHcueHcObOfJo1ZZdXb21y7Y4cZOvvPP+Zx7ZoZNjtmjOnASwm2boU33oB33oGePZ1djYiIOIFCu2REoZ2IiIiIPNHeegumTDFDWgcONIsxLF1qXvPzM0NMR4823XYVK0bODffcc5GLNjwoPNws8pAzZ/R57kRERJKxpMyJtHqsiIiIiIjEzLLg77/N/oAB8OKLsHixGe7q62uGlY4ebV6vWdMEe3YvvBD7+7q4QJ48CuxERETioNBORERERCSluXHDzAE3Z07Mr//+u+mQO3Lk8e6zb5/piEubFqpUMcdsNmjSxMxz16uXGQYL0KBB1NCuevXHu7eIiMgTTqvHioiIiIikNHPnwvTppuutVi2wD88JDITOnWHqVPN83TozRPXUKThzBho1ir7ya1yWLTPbatUiF2Sw8/aGzz+Hjh3h7NnIwK5BAzh5MmqAJyIiIgmmTjsRERERkZTG3kEXFAQ//WT2V66EEiVMYOfiYlZwPXYMCheG8uXh1VdhxIiE3cce2tWqFfs5BQpEDejmz4edO8HLK2H3EhERkSjUaSciIiIiktLcP+z1q6/g4kWztSwTov36K2TODJUrw9WrJsQLD4e+faFSJahaNfp77tsHkyfD9u1w/LgZDrt6tXntpZeS5nOJiIhIBK0e+xBaPVZEREREkp3nnoONG6Mf79jRhHfp0pnn+/bBwoXwxhsmsPv1V8iVyywuUbQo3L4Ns2aZFV/XrYv5XtmywYULJvgTERF5wiVlTqROOxERERGRlMbeaffOO2Z4bLZsMG4cNGwY9byiRc0DzCqv27fD3r2m2+6118xCFoGB5nVXVzMf3SuvQPbsMGoUrFgBLVsqsBMREXECddo9hDrtRERERCRZ+e8/M/QV4Pp12LoViheHLFkefu3lyyas++efyGN+fqZDr00byJ078rhlmQUmcuQANzdHfgIREZEUS512IiIiIiISs6NHzTZnTjMMtnr1+F+bLZtZXKJ/fxPIvfWWWWQipk46mw3y5nVMzSIiIpJgCu1ERERERFISe2jn7/9o17u7wxdfOK4eERERSRSanEJEREREJCWxz2f3qKGdiIiIpAgpLrT74Ycf8PPzI23atFSsWJFNmzbFeX5gYCDvv/8+uXLlwsPDg4IFC7Jo0aIkqlZERERExMHsoV2BAs6tQ0RERBJVihoeO2PGDLp3786YMWOoWLEio0aNok6dOhw8eJDs2bNHOz8kJISXXnqJ7Nmz8/vvv5MnTx5OnjxJxowZk754ERERERFHUKediIjIEyFFrR5bsWJFypcvz/fffw9AeHg4vr6+dOnShd69e0c7f8yYMYwYMYIDBw7g9ogrXmn1WBERERFJVnLnhvPnYdMmKF/e2dWIiIg8UZIyJ0oxw2NDQkLYunUrtWrVijjm4uJCrVq12LBhQ4zXzJ8/n0qVKvH++++TI0cOihcvzmeffUZYWFis97l79y7BwcFRHiIiIiIiiWbDBvjsM7h58+Hn3rxpAjtQp52IiEgql2JCuytXrhAWFkaOHDmiHM+RIwcXLlyI8Zpjx47x+++/ExYWxqJFi+jfvz8jR47kf//7X6z3GTZsGD4+PhEPX19fh34OEREREZEIq1bBiy9Cv37Qq1fs5126BB07Qpky5nnmzJApU5KUKCIiIs6RYkK7RxEeHk727Nn5+eefKVu2LM2bN6dfv36MGTMm1mv69OlDUFBQxOP06dNJWLGIiIiIPDG2boUGDeDOHfP8xx9N151dYKA5Z/x4ePZZGDcODh0yrzVqlOTlioiISNJKMQtRZM2aFVdXVy5evBjl+MWLF8mZM2eM1+TKlQs3NzdcXV0jjhUpUoQLFy4QEhKCu7t7tGs8PDzw8PBwbPEiIiIiIg/68EO4ccN02uXKBVOnQrNmZs66o0fh6tWo5xcvDp9/bgI8jQYRERFJ9VJMp527uztly5Zl+fLlEcfCw8NZvnw5lSpVivGaKlWqcOTIEcLDwyOOHTp0iFy5csUY2ImIiIiIJIl9+2DtWnB1hSlT4JtvIFs2OHPGLDBhD+yyZ4fKlWHAANi8GerXh6eeApvNufWLiIhIoksxnXYA3bt3JyAggHLlylGhQgVGjRrFzZs3adu2LQBvvfUWefLkYdiwYQC89957fP/993zwwQd06dKFw4cP89lnn9G1a1dnfgwRERERedKNHWu2DRqYzjqAv/82Dz8/KFAAnn4a0qd3WokiIiLiXCkqtGvevDmXL19mwIABXLhwgVKlSrFkyZKIxSlOnTqFi0tk86Cvry9Lly6lW7dulChRgjx58vDBBx/QK65JfkVEREREEtOdOzBpktl/++3I4yVKmIeIiIgIYLMsy3J2EclZcHAwPj4+BAUFkSFDBmeXIyIiIiIpjWXB3r0wZ45ZLfbqVdi1ywxzPXbMDJEVERGRFCEpc6IU1WknIiIiIpJs3bkDvXqBuzt06GBWf50zB+bOhcOHo5//3nsK7ERERCRWCu1ERERERByhSxcYN87sf/ll1Nc8PKB2bTOHXbZs4O0NNWokfY0iIiKSYii0ExERERF5XGPHmsDOZjNh3MqVJph75RV49VWoV0+LSoiIiEiCKLQTEREREXkcgYHQtavZ//RT6NMHgoIgbVrTYSciIiLyCBTaiYiIiIg8jvXrzXx2BQpA797mmI+Pc2sSERGRFM/F2QWIiIiIiKRo69ebbdWqZnisiIiIiAM8Vmh3584dR9UhIiIiIpIy2UO7ypWdW4eIiIikKgkO7cLDwxk6dCh58uQhXbp0HDt2DID+/fszfvx4hxcoIiIiIpJs3bsHGzeafYV2IiIi4kAJDu3+97//MXHiRIYPH467u3vE8eLFizPOvsS9iIiIiMiTYNcuuHXLzGFXpIizqxEREZFUJMGh3eTJk/n5559p1aoVrq6uEcdLlizJgQMHHFqciIiIiEiyZh8aW6kSuGi6aBEREXGcBP/N4uzZs/j7+0c7Hh4eTmhoqEOKEhERERFJEdatM9sqVZxbh4iIiKQ6CQ7tihYtypo1a6Id//333yldurRDihIRERERSRG0CIWIiIgkkjQJvWDAgAEEBARw9uxZwsPDmTNnDgcPHmTy5MksWLAgMWoUEREREUl+9u6FU6fA3R0qVHB2NSIiIpLKJLjTrlGjRvz555/8/fffeHt7M2DAAPbv38+ff/7JSy+9lBg1ioiIiIgkPzNnmm2dOpAunXNrERERkVQnwZ12AFWrVmXZsmWOrkVEREREJGWwrMjQrlkz59YiIiIiqVKCO+02b97Mxo0box3fuHEjW7ZscUhRIiIiIiLJwoED8MknMGsWXLoUeXzPHvOahwc0bOi8+kRERCTVSnCn3fvvv8/HH39MxYoVoxw/e/YsX3zxRYyBnoiIiIhIitSmDdz/99uiReGFFyIDvLp1IUMGZ1QmIiIiqVyCQ7t9+/ZRpkyZaMdLly7Nvn37HFKUiIiIiIjTbdtmAjs3NyhcGHbvhn37zMNOQ2NFREQkkSQ4tPPw8ODixYs8/fTTUY6fP3+eNGkeaYo8EREREZHkZ/Ros23aFKZNgytXYM0aWLXKPDJmhEaNnFigiIiIpGY2y7KshFzQokULzp8/zx9//IGPjw8AgYGBNG7cmOzZszPTPiFvKhEcHIyPjw9BQUFk0NAHERERkSdDUBDkzg23bsHq1VCtmrMrEhERkWQgKXOiBLfGffnll1SrVo18+fJRunRpAHbs2EGOHDmYMmWKwwsUEREREUlyY8eawK5YMaha1dnViIiIyBMowaFdnjx52LVrF1OnTmXnzp14enrStm1bWrRogZubW2LUKCIiIiKSdHbuhP79zX7XrmCzObceEREReSIleHjsk0bDY0VERESeIMHBUK4cHD4ML78Mf/4JLi7OrkpERESSiWQ3PHb+/PnUq1cPNzc35s+fH+e5DRs2dEhhIiIiIiJJbuRIE9j5+sLkyQrsRERExGni1Wnn4uLChQsXyJ49Oy5x/MXFZrMRFhbm0AKdTZ12IiIiIk+QokVh/36YMgXefNPZ1YiIiEgyk+w67cLDw2PcFxERERFJNfbvNw83N2jQwNnViIiIyBMuQf3+oaGh1KxZk8OHDydWPSIiIiIizjF3rtnWqgU+Ps6tRURERJ54CQrt3Nzc2LVrV2LVIiIiIiLiPHPmmG2TJs6tQ0RERIQEhnYAb775JuPHj0+MWkREREREnOPECdi61Sw80aiRs6sRERERid+cdve7d+8eEyZM4O+//6Zs2bJ4e3tHef2rr75yWHEiIiIiIknCPjS2WjXIls25tYiIiIjwCKHdnj17KFOmDACHDh2K8prNZnNMVSIiIiIiSUlDY0VERCSZSXBot3LlysSoQ0RERETEOS5cgHXrzH7jxk4tRURERMQuQaHdjBkzmD9/PiEhIdSsWZN33303seoSEREREUkaf/wBlgUVKoCvr7OrEREREQESENqNHj2a999/n2eeeQZPT0/mzJnD0aNHGTFiRGLWJyIiIiKSuDQ0VkRERJKheK8e+/333zNw4EAOHjzIjh07mDRpEj/++GNi1iYiIiIikriuXIEVK8z+q686txYRERGR+8Q7tDt27BgBAQERz1u2bMm9e/c4f/58ohQmIiIiIpJoLlyAfv2gYEG4dw+KFTP7IiIiIslEvIfH3r17F29v74jnLi4uuLu7c/v27UQpTERERETEIT75BM6fh48+Ms9HjoQpU+DuXfPc3x/GjnVefSIiIiIxSNBCFP3798fLyyvieUhICJ9++ik+Pj4Rx7766ivHVSciIiIi8jhu34ZPPzX7EydCeHjka889Z4K8Ro3A1dUp5YmIiIjEJt6hXbVq1Th48GCUY5UrV+bYsWMRz202m+MqExERERF5XMHBkfv2wK5hQxPWVakC+vuriIiIJFPxDu1WrVqViGWIiIiIiCQCe2iXIQNs3Qpp0oCfn1NLEhEREYmPBA2PFRERERFJUa5fN9sMGczcdSIiIiIpRLxXjxURERERSXHsnXbp0zu3DhEREZEEUmgnIiIiIqnX/cNjRURERFIQhXYiIiIiknrZh8eq005ERERSmASHdqGhobG+duXKlccqRkRERETEodRpJyIiIilUgkO7N954A8uyoh2/ePEiL7zwgiNqEhERERFxDIV2IiIikkIlOLQ7deoUHTp0iHLswoULvPDCCxQuXNhhhYmIiIiIPDYNjxUREZEUKsGh3aJFi1i/fj3du3cH4Ny5c1SvXp1nn32WmTNnOrxAEREREZFHpk47ERERSaHSJPSCbNmy8ddff/H8888DsGDBAsqUKcPUqVNxcdG6FiIiIiKSjKjTTkRERFKoBId2AL6+vixbtoyqVavy0ksvMWXKFGw2m6NrExERERF5POq0ExERkRQqXqFdpkyZYgzlbt26xZ9//kmWLFkijl27ds1x1YmIiIiIPA6FdiIiIpJCxSu0GzVqVCKXISIiIiKSCDQ8VkRERFKoeIV2AQEBiV2HiIiIiIjjqdNOREREUqhHWj126dKl0Y7/9ddfLF682CFFiYiIiIg4hDrtREREJIVKcGjXu3dvwsLCoh0PDw+nd+/eDilKRERERMQh1GknIiIiKVSCQ7vDhw9TtGjRaMcLFy7MkSNHHFKUiIiIiMhjs6zITjuFdiIiIpLCJDi08/Hx4dixY9GOHzlyBG9vb4cUJSIiIiLy2G7eNMEdaHisiIiIpDgJDu0aNWrEhx9+yNGjRyOOHTlyhB49etCwYUOHFiciIiIi8sjsQ2NdXcHT07m1iIiIiCRQgkO74cOH4+3tTeHChcmfPz/58+enSJEiZMmShS+//DIxaozihx9+wM/Pj7Rp01KxYkU2bdoUr+umT5+OzWajcePGiVugiIiIiCQP9tAufXqw2Zxbi4iIiEgCpUnoBT4+Pqxfv55ly5axc+dOPD09KVGiBNWqVUuM+qKYMWMG3bt3Z8yYMVSsWJFRo0ZRp04dDh48SPbs2WO97sSJE/Ts2ZOqVasmeo0iIiIikkxoPjsRERFJwWyWZZ/oI/mrWLEi5cuX5/vvvwfMirW+vr506dIl1pVrw8LCqFatGu3atWPNmjUEBgYyb968eN8zODgYHx8fgoKCyKC/8ImIiIikHMuXQ61aULw47N7t7GpEREQkFUjKnCjBw2MBVq9eTYMGDfD398ff35+GDRuyZs0aR9cWRUhICFu3bqVWrVoRx1xcXKhVqxYbNmyI9bohQ4aQPXt22rdvH6/73L17l+Dg4CgPEREREUmB7J12WoRCREREUqAEh3a//vortWrVwsvLi65du9K1a1c8PT2pWbMmv/32W2LUCMCVK1cICwsjR44cUY7nyJGDCxcuxHjN2rVrGT9+PGPHjo33fYYNG4aPj0/Ew9fX97HqFhEREREnsf/PV42WEBERkRQowXPaffrppwwfPpxu3bpFHOvatStfffUVQ4cOpWXLlg4t8FFdv36d1q1bM3bsWLJmzRrv6/r06UP37t0jngcHByu4ExEREUmJ7l+IQkRERCSFSXBod+zYMRo0aBDteMOGDenbt69DiopJ1qxZcXV15eLFi1GOX7x4kZw5c0Y7/+jRo5w4cSJKreHh4QCkSZOGgwcPUqBAgWjXeXh44OHh4eDqRURERCTJaSEKERERScESPDzW19eX5cuXRzv+999/J2pHmru7O2XLlo1y7/DwcJYvX06lSpWinV+4cGF2797Njh07Ih4NGzakRo0a7NixQ91zIiIiIqmdhseKiIhICpbgTrsePXrQtWtXduzYQeXKlQFYt24dEydO5JtvvnF4gffr3r07AQEBlCtXjgoVKjBq1Chu3rxJ27ZtAXjrrbfIkycPw4YNI23atBQvXjzK9RkzZgSIdlxEREREUiEtRCEiIiIpWIJDu/fee4+cOXMycuRIZs6cCUCRIkWYMWMGjRo1cniB92vevDmXL19mwIABXLhwgVKlSrFkyZKIxSlOnTqFi8sjLYgrIiIiIqmNOu1EREQkBbNZlmU5u4jkLDg4GB8fH4KCgsigv/CJiIiIpByNG8Mff8CYMfDOO86uRkRERFKBpMyJEtxp9/TTT7N582ayZMkS5XhgYCBlypTh2LFjDitORERERCSCZcG//8KOHXD8OISEQHi4eYSFmW3OnNC9O/j4aCEKERERSdESHNqdOHGCsLCwaMfv3r3L2bNnHVKUiIiIiEg006ZBq1YPP2/WLJg/X8NjRUREJEWLd2g3f/78iP2lS5fi4+MT8TwsLIzly5fj5+fn0OJERERERCL8/bfZliwJNWqApye4uoKLi3kAjB0L+/dDhQqmMw+0EIWIiIikSPEO7Ro3bgyAzWYjICAgymtubm74+fkxcuRIhxYnIiIiIhJh82azHTIEGjaM+Zy33zZz2W3aFHlMnXYiIiKSAsV7qdXw8HDCw8N56qmnuHTpUsTz8PBw7t69y8GDB3nllVcSs1YREREReVLdvAn79pn9cuViPy9XLlizBvr0iezAy5UraWoUERERcaAEz2l3/PjxxKhDRERERCR227ebhSZy5zaPuLi7w2efwRtvQGAg5MiRJCWKiIiIOFK8O+02bNjAggULohybPHky+fPnJ3v27Lz99tvcvXvX4QWKiIiIiEQMjS1fPv7XlCgB1aolTj0iIiIiiSzeod2QIUPYu3dvxPPdu3fTvn17atWqRe/evfnzzz8ZNmxYohQpIiIiIk+4LVvMNq6hsSIiIiKpSLxDux07dlCzZs2I59OnT6dixYqMHTuW7t278+233zJz5sxEKVJEREREnnCP0mknIiIikoLFe067//77jxz3zQeyevVq6tWrF/G8fPnynD592rHViYiIiEjqc/06uLpC2rRmoYiYnD8P27bBnj1mIYnDh81xddqJiIjIEyLeoV2OHDk4fvw4vr6+hISEsG3bNgYPHhzx+vXr13Fzc0uUIkVEREQklXj7bRg71uxnywY9e0Ljxiac27Yt8nHxYvRr8+eHLFmStFwRERERZ4l3aPfyyy/Tu3dvvvjiC+bNm4eXlxdVq1aNeH3Xrl0UKFAgUYoUERERkWTq9Glo2RIaNICPP374uePHRz6/fBl69TKPB7m4QOHCUKwY7NhhOu2aNHFo6SIiIiLJWbxDu6FDh9KkSROqV69OunTpmDRpEu7u7hGvT5gwgdq1aydKkSIiIiKSTHXpAmvXmkf+/PD667GfO3YshIdD9erw558wdy4MGQKnTsGzz0Lp0lCmjHmUKAFeXuY6y4Jr1yBTpqT5TCIiIiLJgM2yLCshFwQFBZEuXTpcXV2jHL927Rrp0qWLEuSlBsHBwfj4+BAUFESGDBmcXY6IiIhI8vHnn9CwYeRzb2/TSVehAvj5gc0W+VpoKOTLZ+aqmzEDmjWLfC0szMxxJyIiIpLMJWVOFO9OOzsfH58Yj2fOnPmxixERERGRFODqVZg3DwYNMs979jTz0K1YAW+8YY6lT2+65UqUgCJF4ORJE9jlyGHmsLufAjsRERGRaBIc2omIiIjIE+zKFShVCs6eNc/9/Ex4d+cO9O8PGzbAvn1mhdh168zjfh06QCobmSEiIiKSGBTaiYiIiEj8TZtmArvcueG996B9ezMs1tsbfvzRnBMaCgcPws6dsGsXHDli5rLLnBl69HBu/SIiIiIphEI7EREREYm/X3812169oGvXmM9xc4Pixc2jVaukq01EREQkFXFxdgEiIiIikkIcOgSbNpk56Oxz14mIiIhIonik0G7KlClUqVKF3Llzc/LkSQBGjRrFH3/84dDiRERERCQZsXfZ1akD2bM7txYRERGRVC7Bod3o0aPp3r07L7/8MoGBgYSFhQGQMWNGRo0a5ej6RERERCQ5uHMHpkwx+61bO7cWERERkSdAgkO77777jrFjx9KvXz9cXV0jjpcrV47du3c7tDgRERFxsDVrIoMXkfi6dw9atIATJ8xiEg0bOrsiERERkVQvwQtRHD9+nNKlS0c77uHhwc2bNx1SlIiIiCSCAwfgpZfg7l0oUwaKFXN2RZISWJZZJXbePPDwgNmzwcvL2VWJiIiIpHoJ7rTLnz8/O3bsiHZ8yZIlFClSxBE1iYiIiKOFhUHbtiawA9i717n1SOKwLBg6FD7/3Ow7wiefwLhx4OIC06bBCy845n1FREREJE4J7rTr3r0777//Pnfu3MGyLDZt2sS0adMYNmwY48aNS4waRURE5Pp1mDABbt82XXKlS0O2bPG/ftQo+PffyOeHDjm8RHEwy4K1a+Hvv+HwYRPGFSgQ9zULFsCAAWbfywu6dn28Gr75Bj77zOz/9BO8+urjvZ+IiIiIxFuCQ7sOHTrg6enJJ598wq1bt2jZsiW5c+fmm2++4Y033kiMGkVERJ4MISEQHAxZs0Yeu3cPxo6FQYPg0qWo5/v6Qvfu8MEHYLPF/b7Dhpn9Z5+F3bsV2iV3N25AmzZmKKrdtWuwZEns14SHQ79+kc+7dzcrvJYqBc88A/fNRRwvU6fChx+a/U8/hQ4dEna9iIiIiDyWBA+PBWjVqhWHDx/mxo0bXLhwgTNnztC+fXtH1yYiIvJkadgQcueGX381XVbz55uQrVMnE9g98ww0a2a2AKdPQ7duJlj5/9XcY7RwIVy9at77k0/MMYV2ydf58/Dccyawc3c33/M0aWDpUli3Lvr59+7B5cumE3P3bvDxMR1xYWFm8YgiRUxnZkK+50uXmtAQTLdenz4O+WgiIiIiEn+PFNrZeXl5kT17dkfVIiIi8uQ6cMAEJaGh0Lq1GQLbqJE5niULfPedmYduxgwTvgQFwYgR5tpvv4X06c01gwfDqVNR33viRLNt3doEOAAHDzpuzjNxrA8+MN/rXLlg1SrzPW/b1rw2YADs2AHjx8P775twL31601HXsaM5p1cvs0Jw69bg7w+enibMK18e5s59+P0vXICWLSNXjP3667g7OUVEREQkUdgs6+F/Yy9dujS2eP5lbdu2bY9dVHISHByMj48PQUFBZMiQwdnliIhIatW7N3zxBWTKBP/9Z455eJhOut69TfdUTH77zazsGRwcecxmg9q1zXDG554DPz/TdbVvH+TLB97e5rzLl6MOxRXnW7kSXnzRLPqwbRuULGmOnzxpOixDQ+O+vmRJ041n/x6D6dxr3hzWrDHPP/7YDHdNc98sKaGhsGcPFC9uOvvmzTPDajduNN1+IiIiIgIkbU4UrzntGjdunKhFiIiIPNHu3YPJk83+uHEmZDl0CHr0gKeeivvali3h9dfh+HGz0MQvv5jurKVLzcPd3QR2FSpEdtn5+pqhtYcOKbRLDu7dM9+P48dNlx3Au+9GBnZgwtYPPzTdlT4+ULas6awsW9Y8ChQwQV9McuWC5ctN+PvVVzB8OGzaBNOnQ44ccO4cNG4MmzdDunRmPr00aUyHpgI7EREREaeJV6fdk0yddiIikugWLYL69U2Advbs4wclR46Y8O6XX0wACDB6tAmCAGrVMiHOL79EzlsmSceyzJDm+fPh2DET2N0/J2HmzCZQzZIl+nVXrpifk0cdrjprFrRrZ4K5XLmgWjXTgXfuXNTzBg2CgQMf7R4iIiIiqViy67SLyZYtW9i/fz8ARYsWpWzZsg4rSkRE5Imxa5eZgwygVSvHdDb5+5vhj4MHm9VGT5+OnO8MoGBBE9odPvz495KEmzkzclVWOw8PM4z56afNCrAPBnZggrps2R7v3q+/bhY3adIE9u838+WB6cL84w8zZPrMGXjttce7j4iIiIg8tgSHdmfOnKFFixasW7eOjBkzAhAYGEjlypWZPn06efPmdXSNIiIiqdPs2fDGG2Z4ZKZM0KWLY98/TRp45ZXoxwsWNFutIJv0goPNPIVgOh9btTJBXc6csQ9vdbTChc3w2NmzTT3p0kHTppAhQ+TKxCIiIiLidAkO7Tp06EBoaCj79++nUKFCABw8eJC2bdvSoUMHlixZ4vAiRUREUqWvvzaBXf36MHasGa6YFBTaJb1//oHFi2H7djNk+ZlnYNQo02HnDOnSQUCAc+4tIiIiIvGS4DntPD09Wb9+PaVLl45yfOvWrVStWpVbt245tEBn05x2IiLJ2IULMHcuvPqq6VRKScLCTGfTrVuwdy8ULZp09z582AR3np5mbrOk6vB6UoWHQ/bscPVq5LG//oKXXnJeTSIiIiLySJIyJ0rw39J9fX0JDQ2NdjwsLIzcuXM7pCgREZF4GTQIOnUyK2f27w9BQc6uKP4OHjSBnbc3/H/nepLx8zMdXrdvw+7dSXvvJ9GhQyawS5vWDI2dPFmBnYiIiIg8VIJDuxEjRtClSxe2bNkScWzLli188MEHfPnllw4tTkREJE5HjpjtrVvwv/+Z8O6rr+DOHefWFR9bt5ptqVLg6pq093Zzg5dfNvtTpybtvZ9Emzebbdmy5uezdWvn1iMiIiIiKUKCQ7s2bdqwY8cOKlasiIeHBx4eHlSsWJFt27bRrl07MmfOHPEQERFJVOfOme1HH5nJ9a9ehR49TOeafVXM5Moe2jlr9XV7cPTbb2aoriSeTZvMtnx559YhIiIiIilKgheiGDVqVCKUISIi8gjOnjXbdu3gs89g4kQzZPbUKbMq6zPPQJkyzqwwds4O7V5+GTJmNF/D1avhxRedU8eTwN5pV6GCc+sQERERkRQlwaFdgFYaExGR5ODGDQgONvu5c0OaNNChA7RqBY0awbJlZpGKB0O74GBo2BBKlzartzpDWJhZRRScF9p5eECzZvDzzzBlikI7R9u3z4ShAQGR32t12omIiIhIAiQ4tAOz6MTcuXPZv38/AEWLFqVRo0akSfNIbyciIpJw9qGx6dKZVVjtPD2hZUsT2i1cCEOHRr1u6lQTpti7yxo0SLqa7Q4dgps3wcvLDOt1ltatTWg3daqZD7BXLzPfnTyeoCCz0MS5c+bnMCQEMmUyX2MRERERkXhK8Jx2e/fupWDBggQEBDB37lzmzp1LQEAAzzzzDHv27EmMGkVERKKzh3YxrVxer57Zbt8eeZ7d5MmR+507m/AsKYWHw5o1Zt8Zi1Dcr3JlaN4cQkPN6rvlysF9C03JI+rdO/Lnbu5csy1fHmw259UkIiIiIilOgkO7Dh06UKxYMc6cOcO2bdvYtm0bp0+fpkSJErz99tuJUaOIiEh09vns8uSJ/lqOHJFDERcvjjx+6BD8+68JyvLmNXPfDR4c9302b4b3348cipsQlgUzZ0LfvvD661CypOkMfOcd87qzhsbaubjAtGmm0y5LFti1CypWhI8/NivySsL98w+MGWP2CxWKPK757EREREQkgRIc2u3YsYNhw4aRKVOmiGOZMmXi008/Zbt9zhYREZHEFlenHUD9+ma7cGHksSlTzLZOnchg5auvTFgVk/BwM0fejz/CuHEJr3HSJNPJNmwY/P67uc/t22b+veLFzQIazmazmeHE+/ebbXg4jBgBJUrAn3+a4FHi584d6NjR7HfoAHPmmO81aD47EREREUmwBId2BQsW5OLFi9GOX7p0CX9/f4cUJSIi8lBxddpBZGi3YIHpaKtaFb7/3hx76y3zepMmZlGId981YdWD/vwTDh82++vXJ6y+8HD44guz/8orZtGLhQtNt9+tW7B7txkem1xky2Y67v7803xNjx41C3aUKGG6E+Xhhgwx399cuUzwWbSoWdH4vfcih2yLiIiIiMSTzbIS9r/QFy1axMcff8ygQYN47rnnAPj3338ZMmQIn3/+Oc8//3zEuRnunxg8hQoODsbHx4egoKBU8XlERFKNZs1g1iwYNQo++CD66+HhZpEHe+hmlyULnD5tFqw4cwaKFDEr0f70Ezw4zUO1apHzz+XKZYLC+M5LNn++WcXWx8cMw01J/w0JDoZPP4XRo+H6dahdG5YudXZVydvOnSYcDgszHXavvursikREREQkESRlTpTg0M7FJbI5z/b//3Cxv8X9z202G2FhYY6q02kU2omIJFNVqpjut1mz4LXXYj4nMBB27DBDUm/dMo/y5aOu2DpqFHTrBhkzwoEDZj48gA0bzEINbm5miOi9e3DiBOTLF/UeQUHmtSxZIo/995/prlu/3qzI+vnnDvvYSWrjRnjuOciaFS5d0kIKsbl3z3ydtm6Fpk3NUGgRERERSZWSMidKk9ALVq5cmRh1iIiIJMzDhseCCeJeeCHu9+nc2awou3079Oxp5p/76iszjx1Aixawb59ZVXXDhsjQzrLMnHVduphg799/wd3dhHV795pz3N2ha9fH+ZTOVbKkWbTjyhXTlejr6+yKkqdRo0xglzEjfPeds6sRERERkVQiwaFd9erVY31tz549FC9e/LEKEhEReSjLevhCFPGVJo0ZGluxIvz6q1lN1d4pXrWq6ZIbNiwytHvjDdPB9847ZmVYu6ZNTV32wC5HDujR4/Hrc6a0ac28bLt3m1BToV10R4/CgAFm/8svzTBqEREREREHSPBCFA+6fv06P//8MxUqVKBkyZKOqElERCRuV65AaKjZd0RIUr48dOpk9sPCoHp1WLIEVq8271+pknltwwYzx13Jkiawc3WFTz4xAd2ePSawy53bDKO9cAE++ujxa3O2MmXMdts259aRXI0YYYZf16iRPFYDFhEREZFU45FDu3/++YeAgABy5crFl19+yYsvvsi/Wl1ORESSgr3LLls2MwTVEb76ygyT3bsXVq2COnUi53Czh3Zbt5rhtqdOQYECZs66oUMjAzxvb7P66oPz3qVkpUub7fbtzq0jNsOGmfkNM2UyXZCxTdV78KAJ1Z56ynTGXb/++Pe+ezey27JfP835JyIiIiIOlaDhsRcuXGDixImMHz+e4OBgmjVrxt27d5k3bx5FixZNrBpFRESiis98dgnl7g6tW8f8Wr58puPu/HnzPCDAzF2WPr15Xq2amffO29uxNSUHybnTbu9e6Ns38vmMGeZ7Ye+aBFP3sGEwe3ZkoDd0qJmzsGFDE/TVrv1o91+0yCw6kifPw+dOFBERERFJoHh32jVo0IBChQqxa9cuRo0axblz5/hOky2LiIgzOGo+u/iy2eDdd82cbtOmwcSJkYGdXcGCqS+wAzMUGMxCFFeuOLeWB61ZY7YVKsCgQWa/Z08ztHnxYqhXD8qWNau5WpYJ6caMgWeegatX4ZdfTEflwoWPdv9ffzXbli1Np6WIiIiIiAPFO7RbvHgx7du3Z/DgwdSvXx9X/eVUREScJTE67R5mwAAzLPaNN5LunslBhgwm5AIzHPjIkdiHoD5oyxZYuTL+5yfU2rVmW68e9O8PNWua+eXq1YOXXzbhnasrtGplFtP44w+zgMjevfDXX1C/vrl+1KiE3/u//2DBArMfW4emiIiIiMhjiHdot3btWq5fv07ZsmWpWLEi33//PVeS2/9xFxGRJ0NSd9o96ezz2jVqZAK8MWMefs3evWYuwBdfNN16ixc7vi57aPf88+DiYjogn3sO/PzMnIPvvguHDpmOuPtXt3dzg5degu+/N12Uf/9t5rxLiFmzICQESpSAZ5911CcSEREREYkQ79DuueeeY+zYsZw/f5533nmH6dOnkzt3bsLDw1m2bBnXHTGhs4iISHw4o9PuSfbgfG3jx8d9vmVB585w7555vnu3GULqyI6706fh5EnTSVexojmWN69Z4ff4cdMROHo0PP107O/h5wevvGL2R49O2P3tQ2PVZSciIiIiiSTBq8d6e3vTrl071q5dy+7du+nRoweff/452bNnp2HDholRo4iISFTqtEtaHTvC0qVmeKyLi1lF9/jx2M+fOdOswJs2rRkiCxAY6Ng58datM9tSpaLPL5gQ9kUrJk6Emzfjd82JE2Y+PZsNWrR49HuLiIiIiMQhwaHd/QoVKsTw4cM5c+YM06ZNc1RNkpyEhcGePWbVvc2bnV2NiIihTruklSaNWWG1UqXIrrvZs2M+17KgVy+z37evWQjCHq6eOOG4mu4fGvs4atc2Q2mDgsyCFfExdarZvviifgZFREREJNE8Vmhn5+rqSuPGjZk/f74j3i5OP/zwA35+fqRNm5aKFSuyadOmWM8dO3YsVatWJVOmTGTKlIlatWrFeb7EoG5dM1fPa69B5cqwf7+zKxKRJ11oKFy6ZPYVmCS9pk3NNraAa98+M2zV09Os5ApmGCokLLSzLLNi7c2bEB4O167BgQPwzz/m3kuXmvMeN7RzcYF27cz+hAnxq2vKFLOvobEiIiIikogcEtollRkzZtC9e3cGDhzItm3bKFmyJHXq1OGS/R9vD1i1ahUtWrRg5cqVbNiwAV9fX2rXrs1Ze4eGxO3CBTM5N0COHGZuon79nFuTiMj582br5gZZsji3lifRq6+aYaEbN5p55R60apXZVqligjuA/PnNNq4htQ/q1Qt8fSFdusjvdZEiUL06vP66mbPOfp/H9dZbJrz75x84fDjy+N278Oef8PbbMHmyObZli1m0wtMTmjR5/HuLiIiIiMQiRYV2X331FR07dqRt27YULVqUMWPG4OXlxYRY/s/41KlT6dSpE6VKlaJw4cKMGzeO8PBwli9fnsSVp1D2f3iVKgUrV5p/0Mydayb5FhFxFvv/eMmd2/y5JEkrV67I7rY2beC//6K+vnq12d6/eMWjdNrZ/6cRmE47AB8fs3ptlSomPBwzxtTzuPLmhTp1zP64cebe7dtDzpzQsCGMHWuenzwJX39tzmva9PHm0hMREREReYgU86+dkJAQtm7dSq1atSKOubi4UKtWLTbEM0S6desWoaGhZM6cOdZz7t69S3BwcJTHE8se2tWoYbob2rY1z3v3duwKgCIiCaFFKJzvf/8Db29YscLMc3f0qDluWZH/7ahePfL8hHbaWVbke27YYIbJ3rljFrM4dMjMZzdnDrzzjiM+jWEfIjt8OLz0khkqGxhoQsECBUy3+XvvwYwZ5rwePRx3bxERERGRGKSY0O7KlSuEhYWRI0eOKMdz5MjBhQsX4vUevXr1Infu3FGCvwcNGzYMHx+fiIevr+9j1Z2irVxptvZuiUGDzEqA//wDixc7qyoRedJpEQrnq1bNrN7q62uGilasaP7bsH8/XL5sho6WLx95fkI77a5eBfv/NCtZ0nyvPTwc+Qmia9AgsmsvSxYTCK5caYYA//KLOb54sen6q1PHdKGLiMj/tXfncTbXix/H32fMmMGYsY0Zk32nECOSRJKlsrWXFuXKdanUVV0llJtS2u7NbbFFKdK9lISEFKayDCJ7QhiyzTCDYeb7++PzO7Mwy5n1fL/nvJ6Px3l8v+f7/Z7v93O+n3HmzNtnAQAUI8eEdoX1yiuvaNasWZo7d65CQkJyPG7EiBFKSEhIf+zPbrwef3DwoGnNEBBg/jiTTPehxx4z6//4h5lZFgBKGi3t7KFFCzOu3VVXmZCtSxfpqafMvmuuyRqyuVva/f67Zy213a3soqMzxsUrbsHBJoj87jszbuJ775n/tCpVSurQwbQ6d3PPjgsAAAAUI8eEdlWqVFGpUqV0+PDhLNsPHz6sqKioXF87YcIEvfLKK/rmm2/UvHnzXI8NDg5WWFhYlodfcndvatlSqlAhY/s//mGe//KL9MknXigYgFylpkp33y21aSM98YS0dGnOIYllmXB+8WLT9c8paGlnH9Wqmd8Xt99uZvX9+muzPXPXWMn8p09AgOnietHv8Wy5Q7t69Yq0uHmqU8eUPSjo0n0vvmgCvOuuyzpeHwAAAFBMHBPalS5dWjExMVkmkXBPKtGuXbscX/fqq69q7NixWrRokVq3bl0SRfUNF3eNdatY0QR3kvT882ZmPQD2sWqVGXNrzRrprbdM66dmzaS33zZByE8/Sa+/bgbxj4yUGjWSunc3gYRT0NLOXsqWNT9zmWcXz9wqTZJKl84IWT3pIvvbb2ZZ0qFdbq691sxYu2CBmT0XAAAAKGaOCe0k6cknn9SkSZM0ffp0bd26VYMHD1ZSUpIe+v8JEh544AGNGDEi/fjx48fr+eef19SpU1W7dm3Fx8crPj5ep0+f9tZbcAbLMoOLS5f+4SWZLrKXXWZm0Xv33ZItG4DcffmlWXbsKA0caCYL2LJFGjZMql9fuvpqafhwad48M/ZYYKA5/l//yhhDzO5oaWc/AQFmcoovvzSzq7Zvf+kxmbvIZrZ7t/TSS+Z3SuZtkr1CO8mMzRca6u1SAAAAwE84KrS76667NGHCBI0aNUpXXnmlNmzYoEWLFqVPTrFv3z4dOnQo/fh3331XKSkpuv3221WtWrX0x4QJE7z1Fpxh1y7TyiEo6NIuTpIZX2jMGLP+0kvO+UMfcKpNm6S//c3MoJkby5K++MKsP/qo9MEH5jVvvWW69AUEmAH2e/UyM2SuWmX+/TZuLCUkSO+/L40fL/Xokfe1vImWdvbVs6cJiLNrieaejMI9g+yxY6YLd5Mm0siRWVt72jW0AwAAAEqQy7I8GRHafyUmJio8PFwJCQn+M77dO++YP/ivvz6jxd3FLlwwXe62bTPdZJ3UtQ5wkp07zaD+R4+accPmzMn52K1bpaZNTVfEo0el8uWz7j971gy2f3GgMnWqNGCACfXS0sy2hx+Wpkwp2vdSFE6dktyfxadO0erJScaMkV54QXrgAfP745//NGGx29VXS7GxZv2yy0w4+9NPZnxGAAAAwCZKMidyVEs7lJBFi8yye/ecjwkMzAjqPvqo+MsE+KPDh6Vu3UwAJ0mff266uubE3cruhhsuDewkKSQk+xZQ/fqZkCQtzQy0L0kzZkj79hWu/J76+Wfp2289O9bdyi4sjMDOadwt7WbMMLPMJiRIzZtLb7xhtu/caZZnzmTUMy3tAAAA4McI7ZDV2bMZk1DkFtpJJhiQzPhEjBMIFL3nnzddCevVk2680Wx76aWsx1iWtH+/CfSmTzfbevXK33WCg6VJk0zr2sWLpc6dTWvaV18t/HvIy+7dputujx5SfHzex7vHs6NrrPNkDuCio6Vp06T1683Yi5LpLnviRMYkFGFhUqVKJV9OAAAAwCYCvV0A2MzKlVJyslStmum+lJtKlaSoKPOH9q+/0oUJKEpHj2a0Yp02zbQqW7LEzNIZGSlFREhr15rug+5WSZJpKdezZ/6v16OHeUimm+yyZdLkyWbSCncLqeIwbFjGLNRbt5rPlNy43yuTUDhPu3ZmIqPoaDMEQ9myZntoqPmdc+iQaW3nDm/r1WOWVgAAAPg1QjtktWCBWXbr5tkfS5dfbv7A2rKF0A4oSu+/b1q+xsRI115r/j327m26wL71VtZjS5Uy3QzbtpX69Cl8oNWpk9Shg/TDDyYAXL06++62+RUfL339tWnFFxRkgsmvvsrYv2tX9jNWZ7Z/v1nS0s55AgOlt9/Ofl/9+hmh3Z9/mm10jQUAAICfI7RDhkmTpH/9y6zfcotnr2naVFq6NPdxtgDkT0qKNHGiWc88E+f06dJ//ytt3GgCr5YtTVAXE5PRaqkouFzSzJkmiN+8WbrzTtPqr0qVgp8zNtYEikeOXLqvbFnTwtc9Y2hutm83y4YNC14W2E+DBiYk3rkzYwxHQjsAAAD4OUI7f7NvnxQXZ7qYHTiQsTxwICN4GzBA6tvXs/NdfrlZEtoBRWfSJNPqKCrKBGZu4eFmVteSUKOGadXXsaOZnKZePTN5wBNPSOXK5e9cn34qPfSQ6QbboIEJ+8+dk44fN11927Qx4/ft2pX3ubZtM8vGjfP/nmBfDRqY5c6dGb9Pmjf3XnkAAAAAGyC08zeffWb+8M7Jc89JY8d6Po4QoR1QtDZtMuPISdKIEVLp0t4rS5s20jffmHHINmwwwdrEidKoUdJf/mK6uObGssws02PGmOe9epkWfBfP+uruIptXSzvLIrTzVe7QbtUqae9e8zvIPfkKAAAA4KcI7fxNgwbSVVeZ8aAuu8w83OsNGuR/wHl3aLd/v5SYaGb7A1Awp0+blnVnz0o33SQNHertEpmx7datMxNgjBxpZvb829+k11834eItt0jVq1/6urNnTavATz81z4cPl155xYy/dzF3N8hdu0wwl9N/Ghw+LCUkmIky3CEPfIO7PvfuNcvWrc1kKwAAAIAfc1mWZXm7EHaWmJio8PBwJSQkKIxAKnvR0aYrX2ysdPXV3i4N4FwPPijNmGH+TW3cWLgx5IpDSor0wQemNW7msemGDZPefDPj+bFjZgKL2Fgz+cC775qWeTk5e9aMa2dZJpirWjX745Yvlzp3NpMW7NxZJG8JNpGcnLXb9fPPm1aaAAAAgM2UZE4UUKxnh3+giyxQeNOnm8AuIMC0TrNbYCeZrrpDh5purK++KrVrZ7a/9Zb0yy8Zxw0ebAK7ChWkxYtzD+wkKSTEjKEn5T6uHV1jfVfZsllnPe7e3XtlAQAAAGyC0A6FR2gHFM7WrabLqSS98IJ03XXeLU9eQkPN2JirV2dMlPHKK2Y5f740Z47pBvvtt6ZlnCcyd5HNCaGdb3N3ka1Y0YynCAAAAPg5QjsUnju0W75cunDBu2UBnObMGRN8JSdLN9xgJp9wEnd5Z82S5s6Vhgwxz//+dykmxvPz1K9vlrlNRkFo59vcod2NN5pu1QAAAICfI7RD4d18s1S+vJldcvx4M/vl6NHSgQPeLhlgf8OGSZs3m3HcPv44+4ka7OzKK82kGWlp0q23mklp6tQxnwH5QUs7DBliArvnnvN2SQAAAABbILRD4UVHSxMnmvXRo6WWLc0A4o8/7t1yAXb3zTdmYgeXS5o5U4qK8naJCmbMGCk42Ixhd8cd0oIFZoyy/MirpV1SkrRvn1kntPNNLVqYfxPNm3u7JAAAAIAt0P8EReO++6SvvpI++yxj24IF0qlTphUe4O82bJCOHpW6dDHPU1KkRx816489lrHdia66yswYGxxc8G6NebW0277dLCMipMqVC3YNAAAAAHAQWtqhaLhc0uTJpnvsypVSw4bS2bNmUHrA36Wlmdkwu3WTduww295806xHRprJJ5yuXLnCjUNWv755/bFjZubZi7m7xjZqVPBrAAAAAICDENqh6JQvLz39tNS+fcaMkrNne7dMgB1s2yYdPmzCu2+/lRISpLFjzb5XX5XCw71bPjsIDZUeeMCsv/jipfvds1O7J74BAAAAAB9HaIficdddZrlokXTypFeLAnjdTz9lrC9fLi1caMZoa9jQdC2H8eyzZiKORYukn3/Oum/zZrO84oqSLxcAAAAAeAGhHYrHFVdITZuacbtuusm0KlqxQjpzxtslA0pe5tDuu++kL74w6337SgF8DKerVy8jxLy4tZ07tKOlHQAAAAA/wV+LKD6DBpllbKw0apTUqZOZXbJDB+m116QLF7xZOqDkZA7tjh6VPv/crPfq5Z3y2Nlzz5kgc8ECae1asy0pSdqzx6zT0g4AAACAnyC0Q/F57DEzDtXEiaa7bLVqpuXdypVm7LtXXvF2CYHil5Qkbdpk1t2txC5cMLOgtm3rvXLZVYMGUr9+Zt097t/WrZJlSVWrmvsGAAAAAH6A0A7Fq2lT6W9/k2bNkg4ckHbuzJgp88UXM8IMwFetW2cmoIiOzgijJOmWW8z4bbiUu7Xdl19KcXGMZwcAAADALxHaoeS4XFL9+tLzz5tugefPS/37000WvsGyTBfOo0fNupu7a+zVV0vXX5+xna6xOWvUSLr7brP+4ouMZwcAAADALxHaoeS5XNJ770kVK5pWNJMne7tEQOG9/LJUt67pvhkSItWpI7VvL73zjtnftq0UE2MmW6heXbrxRu+W1+5GjjSfFfPmSXPnmm20tAMAAADgRwjt4B3VqmV0kx09Wjp1yrvlAQrr448z1lNSpN9/l1avlvbtM9s6dJCCgjK6e5Yr55ViOkaTJmYsTEn67TezJLQDAAAA4EdclpW5HxculpiYqPDwcCUkJCgsLMzbxfEtKSmmu9uuXabL7IsvertEQMHs3SvVrm3GqDtwQDp71iwPHjSPypWzjmcHz2zZIjVrltHd+ORJKTzcq0UCAAAA4N9KMicKLNazA7kpXVoaP1667TZpwgTpmWdofQRnWrjQLNu1kyIjzXqtWt4rj6+4/HLp9tulOXNMl2ICOwAAAAB+hO6x8K6+faXQUOnMGdMiCXAid2jXo4d3y+GLxo6VatSQHnzQ2yUBAAAAgBJFSzt4l8tlJqQ4fdp0fQOc5tw5aelSs05oV/QaNcoYFxAAAAAA/Agt7eB97i5vCQneLQdQED/8ICUlSVFR0pVXers0AAAAAAAfQWgH76tQwSxpaQcn+v57s+za1bQcBQAAAACgCBDawftoaQcn+/NPs6xTx7vlAAAAAAD4FEI7eB8t7eBk7p9b988xAAAAAABFgNAO3kdoBycjtAMAAAAAFANCO3gf3WPhZIR2AAAAAIBiQGgH76OlHZyM0A4AAAAAUAwI7eB9tLSDk7lDu4oVvVoMAAAAAIBvIbSD99HSDk524oRZ0tIOAAAAAFCECO3gfYR2cKqzZ6Vz58w6oR0AAAAAoAgR2sH76B4Lp3IHzS6XVL68V4sCAAAAAPAthHbwPlrawancP7Ph4VIAH6cAAAAAgKIT6O0CAOmhXWKilJbmu+HHrl1SSopUpoxUtqx5lCkjBfLP0LGYhAIAAAAAUEx8NB2Bo7i7x1qWdOqUd8tSXD76SGrQQLr8cqluXSkqSgoLk4KCpNKlzT246ipp2zZvlxT54Q7tGM8OAAAAAFDECO3gfSEhUnCwWffFLrLnz0ujR5v18uVN67qL9ycmSmvXSr17++Y98FWEdgAAAACAYkJoB3vw5ckoZs6U9uyRIiKk+HgpOdl0A05Olo4dk/bvlzZulGrWlHbskPr1M/tR/A4ckCZOlJ57TurbV6pWTWrSxNSTJ06cMEtCOwAAAABAEWMwLdhDhQrSkSO+18osNVUaN86sDx9uxrGTzGyjZcqYR6VKUvXq0ty5Uvv20tdfS8uWSV26FOyax45Js2ZJt95qQijkrG9fac2arNvi46X77pMWL5ZKlcr99bS0AwAAAAAUE1rawR7coYevtbRbsEDaudMEc4MH535sq1bSvfea9YULC3Y9y5LuvlsaOtSMnzdrVsHO4w82bjSBXVCQuV8TJkj//a8JVpculV54wdzP3DARBQAAAACgmBDawR7c3WN9raXdsmVmedddZjy7vHTvbpYFDe0WLpS+/dasnzgh3XOPdOed0tGjBTufL/vwQ7Ps3Vv697+lv//dtE58912zfexY8/zgwZzPQUs7AAAAAEAxIbSDPbhDD18L7VatMssOHTw7/sYbTZfMrVulvXs9e01iovT666ZV3VNPmW2PPy6NGSMFBkpz5phWd19+me/i+6yUFOnjj816//5Z9z3wgOnSHBgozZsnNW0qTZ6cfas7QjsAAAAAQDFhTDvYgy92jz19WoqLM+vXXuvZaypUkK6+2oR9ixZJgwblfnxiotStm/TjjxnbKlUygV2FCtItt5gQ6tdfTYuyv/xFev99KcBP8vrUVOmHHy79ufrlF9P6MCrK3L+LjRgh3XyzuV9r1kgDB0qffCJ98IFUv37GcYR2AAAAAIBi4id/ucP2fLF77E8/mdCoZk2pRg3PX+dpF9mkJHPsjz+aMdVatzZdcN96KyNEiomR1q2Tnn7aTH4xebKZ6MJfTJ8uXX+91KdP1sfzz5v9999vWtRlp3lzKTbWtGIsU0Zavtxsmz074xhmjwUAAAAAFBNCO9iDL7a0W7nSLD1tZefWo4dZLl1qunHm5KWXTKhUsaI5ds0a0/Lu/vuzHhcSIo0fLz3yiHnuHvPOHyxdapZ16kjt2mV93Hyz9MQTub++VCnpySdNy7zOnaUzZ6Rhw6S0NLOfiSgAAAAAAMWE0A724Ist7dzj2bVvn7/XtWwpVatmutdOnZr9Mfv2SW++adanTjWvyUuXLmbpT6HdmjVm+e670urVWR9ffWXusyfq1TMtFENDpfh403pRonssAAAAAKDYENrBHnxtIooLF0wrOCn/Le0CAsyYapL0wgumG2xmlmX2nz0rdexoxqrzxPXXmy6yW7ZIhw7lr0xOdOKEtHOnWW/duvDnCw7OGP9u/nxTD4R2AAAAAIBiQmgHe/C17rGbNpmWcuHhZubW/Bo0yHTpjI+Xhg8346o9/LDUtq0UFmYmRZCkCRNMEOeJypUzWuQtW5b/MjnN2rVmWbeuee9FoWdPs5w/33SVPX/ePCe0AwAAAAAUMWaPhT34WvdY91hq115rxkXLr9KlpX/+U+rXT3rvvUv3BwaayRTy24KsSxdp/XrTRbZfv6z71qyRIiKk2rXzX147cneNveqqojvnTTeZkHTDBmnzZrOtVCmpXLmiuwYAAAAAACK0g134Wku7JUvM8sYbC36Ou+82465t2iQ1bWpa7LmXDRpIQUH5P+cNN0ivvip98YXUqpUJm2bMMOUdNEiKipJ27DCz0DrRn39Ko0ebWXWLI7SLiDCTWKxeLX38sdlWoYLnrR0BAAAAAPAQoR3sIXNLO8tydghy9qz0ww9mvTChXUBARjfYonLttaYV34kT5iGZLrPusDQ+XnrjDRN8Oc3p02ZG2DVrpMmTpbJlzfY2bYr2Oj17Zg3tmDkWAAAAAFAMHDem3cSJE1W7dm2FhISobdu2+vnnn3M9fs6cOWrcuLFCQkLUrFkzff311yVUUuSLe8yxlBQpMdG7ZSmslStNcBcdLTVp4u3SZFW2rPSf/0j33WeCrdatMwI794QZEyZIR454r4wFkZws3XFHRuu68+fN+woIMC0Ki9IDD5gWiu7Qk/HsAAAAAADFwFGh3ezZs/Xkk09q9OjRWr9+vVq0aKFu3brpSA4Bw+rVq3XPPfdowIABiouLU58+fdSnTx9tdo9FBfsoV06qWtWs//abd8tSWJm7xtqxxeCAAdJHH5nl999Lzz0njR8vrVhhQrzTp6WXXvJ2KT23datpTbdokVSmjOlSfNllZl/TpkU/3lx0tBlP0I3QDgAAAABQDBwV2r3xxhsaOHCgHnroITVt2lTvvfeeypYtq6lTp2Z7/Ntvv63u3bvrqaeeUpMmTTR27Fi1atVK77zzTgmXHB6pW9csfSm0s7syZcyEF08/bVqlvfKK2f7uu/avh/PnTXljYqQtW6TISGnhQtNF9tNPTbg2YEDxXHvYMDOuoERoBwAAAAAoFo4J7VJSUrRu3Tp16dIlfVtAQIC6dOmi2NjYbF8TGxub5XhJ6tatW47HS9K5c+eUmJiY5YES4guh3Z9/SnFxZv2inz1HuOEGEzaePy+NGuXt0uRs9WrT7XXECOnMGXOvN2yQOnY0+zt0kA4cMOFacQgOlqZMMT+zt91WPNcAAAAAAPg1x4R2R48eVWpqqiIjI7Nsj4yMVHx8fLaviY+Pz9fxkvTyyy8rPDw8/VGjRo3CFx6ecYd2u3d7txyFMX++WV55pWn55UTu1naffGKCsNycPGm61ZaU48elRx6R2reXNm82YyFOny59842Z+bYkdehgflbvvrtkrwsAAAAA8AuOCe1KyogRI5SQkJD+2L9/v7eL5D98oaXd55+b5e23e7cchdGqlQmiLMu0ZMvs7Flp3jwz7t2ZM6ZlW6dO0uzZhb/u779Lc+dKc+aY8enS0rLunzfPTOwxaZJ5/vDD0vbtZmIIO44dCAAAAABAIQR6uwCeqlKlikqVKqXDhw9n2X748GFF5dDCJioqKl/HS1JwcLCCg4MLX2DkX716ZunU0O7ECenbb826k0M7SRo71gSQixZJ331ngjlJGjRImjFDatFCatZM2rTJbH/tNenOOz0PzyxL2rHDTIThfuzbl/WYN96QnnjCrM+eLd17rwnymjSR3ntPuu66oninAAAAAADYkmNa2pUuXVoxMTFaunRp+ra0tDQtXbpU7dq1y/Y17dq1y3K8JC1ZsiTH4+Fl7pZ2e/dKFy54tywFMX++GQvuiiukRo28XZrCqV/fdEOVpGeeMSHbzp3Sxx+bbRs3ZqwHBUnr1kkrV3p27n37TF03bmyu8fHHZltgoGnl17KlOe6116Rz56QvvpD69TOB3cMPmy67BHYAAAAAAB/nmNBOkp588klNmjRJ06dP19atWzV48GAlJSXpoYcekiQ98MADGpGpO9/jjz+uRYsW6fXXX9e2bds0ZswYrV27VkOHDvXWW0BuoqOl0qVNYOfEbsn//a9ZOr2Vndvzz0vlykk//2wmXRg3zgRnHTpkhJJPPy3172/W33zTs/NOm2a6wgYHm/Dt+efNjLsnTpjwLzbW/CwcOmQCw3vukVJTpfvvN11jS5cujncLAAAAAICtOKZ7rCTddddd+vPPPzVq1CjFx8fryiuv1KJFi9Inm9i3b58CAjJyyGuuuUaffPKJRo4cqWeffVYNGjTQvHnzdMUVV3jrLSA3AQFSnTpmnLLffjPrTrFqlelKKvlOaBcVJf3979KLL0oDB2Zsf+016fLLTWu7a66Rtm41Ydq8eabe3C0mczJnjlm+/7704IOX7g8Olp58Uho+XHr7bbOtWzdp6lTzMwIAAAAAgB9wWZZlebsQdpaYmKjw8HAlJCQoLCzM28XxfTffLH39tfTBB1mDIjv79FPT2iwlRerc2Yxr5ysTI6SkSM89Z8Kz8+elrl2lxYsvPa57d7P98celt97K+Xxbt0pNm5outUeOSBUqZH/cqVNSzZpmdtr69U1rv4oVi+ANAQAAAABQcCWZE9FsBfaSnxlkU1KKtyx5sSzppZfMBAkpKVLfvmZcO18J7CTTFfW116QtW0z32OnTsz/OPWHE1KlSYmLO53PPrnvjjTkHdpJUvrwJ/zp0kL78ksAOAAAAAOB3CO1gL+7Qbvfu3I/76CPTjfKTT4q/TG6vvy61bi2tX29CuocflkaONPuGDzeBVNmyJVeektSggTRihOkym52uXU0LulOnzPh3OXF3jb3jjryv+eCDZlbZJk3yX14AAAAAAByO0A724mlLu2nTzHLsWNPirbglJUljxpiJEjp1kjp2lD78UCpVSnr3XdMazZ/HW3O5pGHDzPq//mUmjrjYli3SL7+YWWJ79y7R4gEAAAAA4DR+nDLAlho2NMuNG6VZs7I/5swZafVqs75tm/TDD8Vfrv/9Tzp92qyfOiX9+KPpwrlggfTXvxb/9Z3gvvukypXNzLDz5l26/5VXzLJnT7q7AgAAAACQB0I72EvjxlK/ftKFC9I995hWWxeLjZXOnct4/v77xVOWXbtM99cDB6QZM8y2Z5813WJbt5ZWrjSzmsIoUyYjwHzzzaz7du3K6Mr83HMlWy4AAAAAAByI0A724nKZgGzoUPP88cdNyJO5C+zSpWbZvLlZfv65dPRo0Zdl3Dgz0UT79hnXHDjQjNm2Zk3G9ZFhyBAzM+yqVeYeuY0bJ6WlSTfdJMXEeK98AAAAAAA4BKEd7CcgwLSwGzvWPB83zoRlFy6Y58uWmeWwYSYASkmRBgzI2vouJ2vWSDt2eFaOXbvMcu9eExp27CjVrp2fd+J/qlWT7r7brL/1llkePmwmDpGk55/3SrEAAAAAAHAaQjvYk8tluqZ+8IEJ8aZMkW67TTp4MKMFV+fOZgKIkBDpyy+lXr2kfftyPufKlVLbttI112SMT5cb97nCw83yL38p3HvyF088YZaffSb9+af07bcmcG3ZUrr6au+WDQAAAAAAhyC0g70NHGi6vwYHm2CuenUzM2m9elKtWtL115vJIMqWlb75xsw+e9ddZty7zFJSpEGDTIu5Y8ek6dNzv25qqvTHH2Z91SppyRIz1h7y1rKl1KKFCeoWL5aWLzfbb7jBu+UCAAAAAMBBCO1gf337ZgRy7rHtbrklY3/nztKKFWaZmmpaeF1zjWnVNWuWmUjiueekX381Lfgk0/02LS3nax46ZM4VGGgmx+jSJeO1yNvNN5vlggUZ3Zk7d/ZeeQAAAAAAcBiXZWUe4R8XS0xMVHh4uBISEhQWFubt4vg3y5J++03autW0sCtX7tJjNm2S3n5bmjkz+zHu3n9fevppKSHBBEo33ZT9tVavNhNQ1K4t7dlTpG/DL7jvX5ky0pkzUqlS0okTUvny3i4ZAAAAAAAFVpI5ES3t4Bwul+kWe8st2Qd2kpnRdcoUMx7diy9KkZHmdY0aSS+8YLrbDhhgjv33v3O+1t69ZlmzZtG+B3/Rtq1UqZIJ7CSpTRsCOwAAAAAA8oHQDr6palUzU+nBg1JysrRtmzRqlAnwHn7YHLNihekCmx33JBSEdgVTqpTUvXvG8+uv915ZAAAAAABwIEI7+LaAADO7bGaNG2d029y1K/vXuUO7WrWKt3y+zD2uncR4dgAAAAAA5BOhHfxPqVJSs2ZmfePG7I+hpV3hdesmhYaabrLXXOPt0gAAAAAA4CiEdvBPLVqYJaFd8alcWfr5Z+nHH03LRgAAAAAA4LFAbxcA8Iq8QjsmoigaTZp4uwQAAAAAADgSLe3gn5o3N8vsQruEBPOQCO0AAAAAAIBXENrBP7lDuz/+kI4fz7pv/36zrFTJjMkGAAAAAABQwgjt4J/Cw6Xatc36pk1Z9zGeHQAAAAAA8DJCO/iv7Ma1O37cTJwgEdoBAAAAAACvYSIK+K/mzaUvvpAmTpQ++0zasUM6ejRjf61a3isbAAAAAADwa4R28F8xMWa5c6d5uFWvLl1xhTR4sHfKBQAAAAAA/B6hHfzXLbdI48ZJ589LjRqZR4MGUrly3i4ZAAAAAADwc4R28F+lSkkjRni7FAAAAAAAAJdgIgoAAAAAAADAZgjtAAAAAAAAAJshtAMAAAAAAABshtAOAAAAAAAAsBlCOwAAAAAAAMBmCO0AAAAAAAAAmyG0AwAAAAAAAGyG0A4AAAAAAACwGUI7AAAAAAAAwGYI7QAAAAAAAACbIbQDAAAAAAAAbIbQDgAAAAAAALAZQjsAAAAAAADAZgjtAAAAAAAAAJshtAMAAAAAAABshtAOAAAAAAAAsBlCOwAAAAAAAMBmCO0AAAAAAAAAmyG0AwAAAAAAAGyG0A4AAAAAAACwGUI7AAAAAAAAwGYI7QAAAAAAAACbIbQDAAAAAAAAbIbQDgAAAAAAALAZQjsAAAAAAADAZgjtAAAAAAAAAJshtAMAAAAAAABshtAOAAAAAAAAsBlCOwAAAAAAAMBmCO0AAAAAAAAAmyG0AwAAAAAAAGyG0A4AAAAAAACwGUI7AAAAAAAAwGYcE9odP35c/fr1U1hYmCpUqKABAwbo9OnTuR7/6KOPqlGjRipTpoxq1qypxx57TAkJCSVYagAAAAAAACD/HBPa9evXT1u2bNGSJUv01Vdf6fvvv9cjjzyS4/EHDx7UwYMHNWHCBG3evFkffvihFi1apAEDBpRgqQEAAAAAAID8c1mWZXm7EHnZunWrmjZtqjVr1qh169aSpEWLFummm27SH3/8oejoaI/OM2fOHN13331KSkpSYGBgtsecO3dO586dS3+emJioGjVqKCEhQWFhYYV/MwAAAAAAAHCkxMREhYeHl0hO5IiWdrGxsapQoUJ6YCdJXbp0UUBAgH766SePz+O+oTkFdpL08ssvKzw8PP1Ro0aNQpUdAAAAAAAAyC9HhHbx8fGqWrVqlm2BgYGqVKmS4uPjPTrH0aNHNXbs2Fy71ErSiBEjlJCQkP7Yv39/gcsNAAAAAAAAFIRXQ7t//OMfcrlcuT62bdtW6OskJibq5ptvVtOmTTVmzJhcjw0ODlZYWFiWBwAAAAAAAFCScu4nWgL+/ve/q3///rkeU7duXUVFRenIkSNZtl+4cEHHjx9XVFRUrq8/deqUunfvrvLly2vu3LkKCgoqbLEBAAAAAIAPsSzzyLye321Ffayby5WxzG29oPuK4hzu5yhaXg3tIiIiFBERkedx7dq108mTJ7Vu3TrFxMRIkpYtW6a0tDS1bds2x9clJiaqW7duCg4O1pdffqmQkJAiKzsAAICdZDe12MXbcjsmpz8W8rs/rz9Q8ntMUZ4rt2PS0qTU1IxlQdfd53Ivc1rPbf/F9zW3ZX6OLcxrvPVayurZa7P7+c3reXY/c5nP6ekf+CW1XtLXvPg+5LatsM8L+hpPP+c83VZcxzrhWiha2f2b+uc/pX/8w3tlciqvhnaeatKkibp3766BAwfqvffe0/nz5zV06FDdfffd6TPHHjhwQDfccINmzJihNm3aKDExUV27dlVycrI+/vhjJSYmKjExUZIJC0uVKuXNt+Q1s2dLEyaY9fwm7p6sF/b1pUpJQUHZP0qXvnRbQIB5nXuZeT2vpXs9s+w+sC/e5snzzI+Lv6B7su7JsW55fbEpjn3FeZ28fuHm95dxQV+T27lyemSun5z2Z/7i7H5kvl7mZXbbctvn9OOz+/KUW53kdWxef4Dn9W85t+1231Zc58z82Zn5MzW7z9mL1y8+d3H/rPnqeQEAgG/I6e/pi7fl9r0387qdvitk9/0lLc07ZXE6R4R2kjRz5kwNHTpUN9xwgwICAnTbbbfpX//6V/r+8+fPa/v27UpOTpYkrV+/Pn1m2fr162c51549e1S7du0SK7udHDkirV3r7VIAAAB/ldsfJrk9PDmuMMcEBJj/PHQvc1rPbVtugbYn4XZ25fRkmZ9jC/Mab72Wsub9Gpcr+5/b3J5n93OX35CgpNZL+ppunvzHVmGfF/QcuX2eZbfd023FdSzXyrqtuOXnP7w9Pa6g+9zr5csXz3v1dS7LslMeaz+JiYkKDw9XQkKCT0xK8fvv0pYt9vkFfPF6aqp0/nzGIyUl6/OLt1lW7q3TPFle/KGZ3YdoXsdk9zy31n+F3ZbXF6qLl0W5r7iv48kvwfz+gizoa3I718WPnL70XnxM5i/Nmb88Z/7Zybz0t23Z3feLn3t6jMuV9x8r2fHkM8Bfj83pczS3z1j3oyh/Pop6m9POm9nF2wp7THb/pgqyP7d/qwAAAE5WkjmRY1raoWjUrm0eAAAAAAAAsK8c2hkAAAAAAAAA8BZCOwAAAAAAAMBmCO0AAAAAAAAAmyG0AwAAAAAAAGyG0A4AAAAAAACwGUI7AAAAAAAAwGYI7QAAAAAAAACbIbQDAAAAAAAAbIbQDgAAAAAAALAZQjsAAAAAAADAZgjtAAAAAAAAAJshtAMAAAAAAABshtAOAAAAAAAAsBlCOwAAAAAAAMBmCO0AAAAAAAAAmyG0AwAAAAAAAGyG0A4AAAAAAACwGUI7AAAAAAAAwGYCvV0Au7MsS5KUmJjo5ZIAAAAAAADAm9z5kDsvKk6Ednk4deqUJKlGjRpeLgkAAAAAAADs4NSpUwoPDy/Wa7iskogGHSwtLU0HDx5U+fLl5XK5vF0cv5SYmKgaNWpo//79CgsL83ZxUASoU99F3foe6tT3UKfORx36HurU91Cnvou69T35rVPLsnTq1ClFR0crIKB4R52jpV0eAgICVL16dW8XA5LCwsL4UPQx1Knvom59D3Xqe6hT56MOfQ916nuoU99F3fqe/NRpcbewc2MiCgAAAAAAAMBmCO0AAAAAAAAAmyG0g+0FBwdr9OjRCg4O9nZRUESoU99F3foe6tT3UKfORx36HurU91Cnvou69T12rlMmogAAAAAAAABshpZ2AAAAAAAAgM0Q2gEAAAAAAAA2Q2gHAAAAAAAA2AyhHQAAAAAAAGAzhHYokJdffllXXXWVypcvr6pVq6pPnz7avn17lmPOnj2rIUOGqHLlygoNDdVtt92mw4cPZznmscceU0xMjIKDg3XllVdmey3LsjRhwgQ1bNhQwcHBuuyyy/TSSy/lWcY5c+aocePGCgkJUbNmzfT1119n2d+/f3+5XK4sj+7du+fvRvgQX6jTi+vT/XjttdfydzN8jC/U7eHDh9W/f39FR0erbNmy6t69u3bu3Jm/G+FD7F6nW7Zs0W233abatWvL5XLprbfeuuSY77//Xj179lR0dLRcLpfmzZuXn1vgc0qqTseMGZPt52S5cuXyLOPEiRNVu3ZthYSEqG3btvr555+z7P/ggw/UqVMnhYWFyeVy6eTJk/m+D07mC3U4aNAg1atXT2XKlFFERIR69+6tbdu25f9m+AhfqNNOnTpdct6//vWv+b8ZPsLpdfr777/n+H13zpw5BbspPsLpdStJu3fvVt++fRUREaGwsDDdeeedl5TPn9i9Tj35Lvu///1PXbt2VeXKleVyubRhw4b83gZCOxTMihUrNGTIEP34449asmSJzp8/r65duyopKSn9mCeeeELz58/XnDlztGLFCh08eFC33nrrJed6+OGHddddd+V4rccff1yTJ0/WhAkTtG3bNn355Zdq06ZNruVbvXq17rnnHg0YMEBxcXHq06eP+vTpo82bN2c5rnv37jp06FD649NPP83nnfAdvlCnmevy0KFDmjp1qlwul2677bYC3BHf4fS6tSxLffr00W+//aYvvvhCcXFxqlWrlrp06ZLlPfgTu9dpcnKy6tatq1deeUVRUVHZHpOUlKQWLVpo4sSJHr5r31ZSdTp8+PBLPiubNm2qO+64I9fyzZ49W08++aRGjx6t9evXq0WLFurWrZuOHDmSfkxycrK6d++uZ599toB3wdl8oQ5jYmI0bdo0bd26VYsXL5ZlWeratatSU1MLeFeczRfqVJIGDhyY5dyvvvpqAe6Gb3B6ndaoUeOS877wwgsKDQ1Vjx49CnFnnM/pdZuUlKSuXbvK5XJp2bJlWrVqlVJSUtSzZ0+lpaUV4s44l93r1JPvsklJSbr22ms1fvx4D991NiygCBw5csSSZK1YscKyLMs6efKkFRQUZM2ZMyf9mK1bt1qSrNjY2EteP3r0aKtFixaXbP/111+twMBAa9u2bfkqz5133mndfPPNWba1bdvWGjRoUPrzBx980Ordu3e+zutPnFinF+vdu7fVuXPnfF3HHzitbrdv325JsjZv3py+PzU11YqIiLAmTZqUr2v5KrvVaWa1atWy3nzzzVyPkWTNnTu3wNfwRcVVpxfbsGGDJcn6/vvvcz2uTZs21pAhQ9Kfp6amWtHR0dbLL798ybHLly+3JFknTpzI8/q+zMl16LZx40ZLkrVr1648y+EPnFinHTt2tB5//PE8r+mvnFinF7vyyiuthx9+OM8y+Bun1e3ixYutgIAAKyEhIf2YkydPWi6Xy1qyZEme5fAHdqvTzPL6Lrtnzx5LkhUXF+fxOd1oaYcikZCQIEmqVKmSJGndunU6f/68unTpkn5M48aNVbNmTcXGxnp83vnz56tu3br66quvVKdOHdWuXVt/+ctfdPz48VxfFxsbm+XaktStW7dLrv3dd9+patWqatSokQYPHqxjx455XDZf59Q6dTt8+LAWLFigAQMGeFw2f+G0uj137pwkKSQkJH1/QECAgoODtXLlSo/L58vsVqcovOKq04tNnjxZDRs2VIcOHXI8JiUlRevWrcty7YCAAHXp0qVQ1/Z1Tq/DpKQkTZs2TXXq1FGNGjUKXD5f4tQ6nTlzpqpUqaIrrrhCI0aMUHJycoHL5mucWqdu69at04YNG/i+mw2n1e25c+fkcrkUHBycfkxISIgCAgL4vvv/7FSnJYnQDoWWlpamYcOGqX379rriiiskSfHx8SpdurQqVKiQ5djIyEjFx8d7fO7ffvtNe/fu1Zw5czRjxgx9+OGHWrdunW6//fZcXxcfH6/IyMhcr929e3fNmDFDS5cu1fjx47VixQr16NHDb7uAZObUOs1s+vTpKl++fLbNo/2ZE+vW/ct3xIgROnHihFJSUjR+/Hj98ccfOnTokMfl81V2rFMUTnHWaWZnz57VzJkz8/xj7+jRo0pNTc3XZ7C/c3Id/uc//1FoaKhCQ0O1cOFCLVmyRKVLly5Q+XyJU+v03nvv1ccff6zly5drxIgR+uijj3TfffcVqGy+xql1mtmUKVPUpEkTXXPNNQUqm69yYt1effXVKleunJ555hklJycrKSlJw4cPV2pqKt93Zb86LUmEdii0IUOGaPPmzZo1a1aRnzstLU3nzp3TjBkz1KFDB3Xq1ElTpkzR8uXLtX37du3bty/9i2VoaKjGjRvn8bnvvvtu9erVS82aNVOfPn301Vdfac2aNfruu++K/H04jVPrNLOpU6eqX79+WVpnwZl1GxQUpP/973/asWOHKlWqpLJly2r58uXq0aOHAgL4NebEOkXuirNOM5s7d65OnTqlBx98MH3bDz/8kKVOZ86cWaxl8FVOrsN+/fopLi5OK1asUMOGDXXnnXfq7NmzRV10x3FqnT7yyCPq1q2bmjVrpn79+mnGjBmaO3eudu/eXRzFdxSn1qnbmTNn9Mknn9gqXLALJ9ZtRESE5syZo/nz5ys0NFTh4eE6efKkWrVqxfddObNOi0pgiV4NPmfo0KH66quv9P3336t69erp26OiopSSkqKTJ09mSb4PHz6c46Dk2alWrZoCAwPVsGHD9G1NmjSRJO3bt0/XX399lhlY3E1lo6KiLpk1Jq9r161bV1WqVNGuXbt0ww03eFxGX+MLdfrDDz9o+/btmj17tsfl8gdOrtuYmBht2LBBCQkJSklJUUREhNq2bavWrVt7XD5fZNc6RcEVd51mNnnyZN1yyy1Z/ue/devWWeo0MjJSwcHBKlWqVL5/r/orp9dheHi4wsPD1aBBA1199dWqWLGi5s6dq3vuuadAZfQFTq/TzNq2bStJ2rVrl+rVq1egMvoCX6jTzz//XMnJyXrggQcKVC5f5eS67dq1q3bv3q2jR48qMDBQFSpUUFRUlOrWrVug8vkKO9ZpSSKyRYFYlqWhQ4dq7ty5WrZsmerUqZNlf0xMjIKCgrR06dL0be5WGe3atfP4Ou3bt9eFCxey/G/gjh07JEm1atVSYGCg6tevn/5w/8HYrl27LNeWpCVLluR67T/++EPHjh1TtWrVPC6fL/GlOp0yZYpiYmLUokULj8vly3ypbsPDwxUREaGdO3dq7dq16t27t8fl8yV2r1PkX0nVqduePXu0fPnyS1polClTJkudli9fXqVLl1ZMTEyWa6elpWnp0qUFurav8sU6tCxLlmWljy3qb3yxTt1/ePJ91/l1OmXKFPXq1UsRERH5Lpcv8qW6rVKliipUqKBly5bpyJEj6tWrV77L5wvsXKclKt9TVwCWZQ0ePNgKDw+3vvvuO+vQoUPpj+Tk5PRj/vrXv1o1a9a0li1bZq1du9Zq166d1a5duyzn2blzpxUXF2cNGjTIatiwoRUXF2fFxcVZ586dsyzLzKrTqlUr67rrrrPWr19vrV271mrbtq1144035lq+VatWWYGBgdaECROsrVu3WqNHj7aCgoKsX375xbIsyzp16pQ1fPhwKzY21tqzZ4/17bffWq1atbIaNGhgnT17tojvljM4vU7dEhISrLJly1rvvvtuEd0Z5/OFuv3ss8+s5cuXW7t377bmzZtn1apVy7r11luL8C45i93r9Ny5c+nnqlatmjV8+HArLi7O2rlzZ/oxp06dSj9GkvXGG29YcXFx1t69e4vwTjlHSdWp28iRI63o6GjrwoULHpVv1qxZVnBwsPXhhx9av/76q/XII49YFSpUsOLj49OPOXTokBUXF2dNmjQpfda1uLg469ixY4W4M87h9DrcvXu3NW7cOGvt2rXW3r17rVWrVlk9e/a0KlWqZB0+fLiQd8eZnF6nu3btsl588UVr7dq11p49e6wvvvjCqlu3rnXdddcV8s44l9PrNPP1XS6XtXDhwgLeCd/jC3U7depUKzY21tq1a5f10UcfWZUqVbKefPLJQtwVZ7N7nXryXfbYsWNWXFyctWDBAkuSNWvWLCsuLs46dOiQx/eB0A4FIinbx7Rp09KPOXPmjPW3v/3NqlixolW2bFmrb9++l/xwduzYMdvz7NmzJ/2YAwcOWLfeeqsVGhpqRUZGWv379/foD4DPPvvMatiwoVW6dGnr8ssvtxYsWJC+Lzk52eratasVERFhBQUFWbVq1bIGDhx4yS9Ef+L0OnV7//33rTJlylgnT54s8L3wNb5Qt2+//bZVvXp1KygoyKpZs6Y1cuTIS37R+hO716l7WvuLHx07dkw/Zvny5dke8+CDDxbBHXKekqzT1NRUq3r16tazzz6brzL++9//tmrWrGmVLl3aatOmjfXjjz9m2T969Og834Mvc3odHjhwwOrRo4dVtWpVKygoyKpevbp17733Wtu2bSvQ/fAFTq/Tffv2Wdddd51VqVIlKzg42Kpfv7711FNPWQkJCQW6H77A6XXqNmLECKtGjRpWampqvs7ty3yhbp955hkrMjLSCgoKsho0aGC9/vrrVlpaWr7vha+we5168l122rRp2R4zevRoj6/j+v+bAQAAAAAAAMAmGNMOAAAAAAAAsBlCOwAAAAAAAMBmCO0AAAAAAAAAmyG0AwAAAAAAAGyG0A4AAAAAAACwGUI7AAAAAAAAwGYI7QAAAAAAAACbIbQDAAAAAAAAbIbQDgAAAJKk/v37q0+fPt4uBgAAACQFersAAAAAKH4ulyvX/aNHj9bbb78ty7JKqEQAAADIDaEdAACAHzh06FD6+uzZszVq1Cht3749fVtoaKhCQ0O9UTQAAABkg+6xAAAAfiAqKir9ER4eLpfLlWVbaGjoJd1jO3XqpEcffVTDhg1TxYoVFRkZqUmTJikpKUkPPfSQypcvr/r162vhwoVZrrV582b16NFDoaGhioyM1P3336+jR4+W8DsGAABwNkI7AAAA5Gj69OmqUqWKfv75Zz366KMaPHiw7rjjDl1zzTVav369unbtqvvvv1/JycmSpJMnT6pz585q2bKl1q5dq0WLFunw4cO68847vfxOAAAAnIXQDgAAADlq0aKFRo4cqQYNGmjEiBEKCQlRlSpVNHDgQDVo0ECjRo3SsWPHtGnTJknSO++8o5YtW2rcuHFq3LixWrZsqalTp2r58uXasWOHl98NAACAczCmHQAAAHLUvHnz9PVSpUqpcuXKatasWfq2yMhISdKRI0ckSRs3btTy5cuzHR9v9+7datiwYTGXGAAAwDcQ2gEAACBHQUFBWZ67XK4s29yz0qalpUmSTp8+rZ49e2r8+PGXnKtatWrFWFIAAADfQmgHAACAItOqVSv997//Ve3atRUYyFdNAACAgmJMOwAAABSZIUOG6Pjx47rnnnu0Zs0a7d69W4sXL9ZDDz2k1NRUbxcPAADAMQjtAAAAUGSio6O1atUqpaamqmvXrmrWrJmGDRumChUqKCCAr54AAACeclmWZXm7EAAAAAAAAAAy8N+dAAAAAAAAgM0Q2gEAAAAAAAA2Q2gHAAAAAAAA2AyhHQAAAAAAAGAzhHYAAAAAAACAzRDaAQAAAAAAADZDaAcAAAAAAADYDKEdAAAAAAAAYDOEdgAAAAAAAIDNENoBAAAAAAAANkNoBwAAAAAAANjM/wFEaLJLNnUhCAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# execute essa célula\n", + "model_performance(y_train_pred, y_test_pred, scaler)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dEGAKKgCRuAP" + }, + "source": [ + "Agora crie uma nova rede LSTM. Você pode alterar a arquitetura original, configurar os parâmetros, defininir novas funções de custo e otimização etc. Deixe os resultados executados nas células abaixo e utilize as funções de treino e avaliação dos modelos definidas acima." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### LSTM Otimizada (Felipe e Diego)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Mudanças \n", + "\n", + "**Mudança de otimizador (SGD -> Adam)**\n", + "\n", + "> optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n", + "\n", + "O otimizador Adam fora escolhido por ser o preferido para a obtenção de melhores resultados empíricos, tomando o scheduling da learning rate como sendo dependente da loss landscape presente, sendo essa feita de uma maneira mais eficiente que momentum puro. Isso tudo nos dá maiores garantias de uma eficiência da exploração do espaço de busca, junto de uma mais suave convergência.\n", + "\n", + "**Manter sem dropout**\n", + "> dropout=0.0\n", + "\n", + "A princípio, com algumas mudanças na rede, chegamos no problema de claro de Overfitting, aonde o modelo não consegue generalizar bem. Então, para tentar resolver esse problema, adicionamos o Dropout, que é uma técnica de regularização que consiste em desligar aleatoriamente algumas unidades de uma camada durante o treinamento. Isso ajuda a evitar o overfitting, pois o modelo não pode depender de uma única unidade para fazer suas previsões. Porém, empiricamente não obtivemos bons resultados com o Dropout, no geral ele não alterava significantemente o erro (principalmente depois que achamos um learning rate adequado para melhorar o overfitting) e deixa a função de predição final com um cara meio *ruidosa*, devido ao dropout ser aplicado a cada passo da LSTM. Então, optamos por não utilizar o Dropout.\n", + "\n", + "**Tuning do Learning Rate**\n", + "\n", + "> lr = 1e-2\n", + "\n", + "A partir de um processo iterativo, tunamos o learning rate até chegar em 1e-2, que foi o que melhor convergiu para a resposta desejada. O primeiro passo foi diminuir significativamente o learning rate, optamos por 3e-4, depois, fomos aumentando devagar até ver qual solução melhor diminuia o erro RSME. Ao chegarmos no 1e-2 percebemos que a loss encontrava um mínimo local (muito bom) e se aumentavamos esse learning rate, o resultado era pior, por isso optamos por esse learning rate.\n", + "\n", + "Um processo curioso que percebemos, é que para um learning rate um pouco maior, para o nosso caso foi de 3e-2, a rede simplesmente aprendia que a média dos valores temporais era a melhor solução para diminuir o erro (mínimo local), e a função de predição saia de uma hora para outra desse formato visto no output no fim do código e ia para algo como uma linha reta direto no valor da média dos valores temporais. Isso é um problema, pois a rede não está aprendendo nada, e o erro não diminui. Então, percebemos o quão importante é que o learning rate seja adequado para que a rede aprenda e não fique presa em um mínimo local.\n", + "\n", + "**Adição de fator bidirecional**\n", + "\n", + "Explorando a documentação por parâmetros da LSTM padrão do pytorch que pudessem ser customizados, nos deparamos com este:\n", + "\n", + "> bidirectional – If True, becomes a bidirectional LSTM. Default: False\n", + "\n", + "Ao pesquisar sobre o assunto vimos que LSTMs bidirecionais são uma configuração especial de LSTM nas quais as entradas sequenciais são tomadas em duas frentes, uma em que a LSTM toma as entradas na ordem crescente e na outra de forma decrescente. Cada LSTM tem parâmetros de treino diferentes, sendo o equivalente a uma forma de combinação \"em paralelo\" das LSTMs. Ao final, as respostas de ambas sequências é combinada de forma a gerar a saída final.\n", + "\n", + "Não notou-se uma diferença positiva suficientemente grande nos testes para justificar a maior complexidade, que poderia levar a overfitting, sendo o treino e fine tunning mais difícil de convergir também, portanto, apesar de ter sido um experimento interessante, optamos por não utilizar este artifício." + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": { + "id": "tSw_MuU0RibG" + }, + "outputs": [], + "source": [ + "class LSTM_optim(nn.Module):\n", + "\n", + " def __init__(self, input_dim, hidden_dim, num_layers, output_dim, bidirectional = False):\n", + " super(LSTM_optim, self).__init__()\n", + " self.hidden_dim = hidden_dim # dimensões ocultas\n", + " self.num_layers = num_layers # número de camadas ocultas\n", + " self.lstm = nn.LSTM(input_dim, \n", + " hidden_dim, \n", + " num_layers=num_layers, \n", + " batch_first=True, # batch_first=True faz com que os tensores tenham shape = (batch_dim, seq_dim, feature_dim)\n", + " bidirectional=bidirectional, # bidirecional=False faz com que o LSTM seja unidirecional\n", + " dropout=0.0 # dropout=0.0 desativa o dropout\n", + " )\n", + " #self.dropout = nn.Dropout(0.001) # dropout para evitar overfitting\n", + " if self.lstm.bidirectional:\n", + " self.num_layers *= 2 # atualiza num_layers e hidden_dim para o caso bidirecional\n", + " self.hidden_dim *= 2\n", + "\n", + " self.fc = nn.Linear(hidden_dim, output_dim) # camada Fully Connected\n", + "\n", + " def forward(self, x):\n", + " # inicialização com zeros\n", + "\n", + " h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()\n", + " c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()\n", + "\n", + " # Precisamos fazer o detach, já que realizamos o backpropagation through time (BPTT) truncado.\n", + " # Se não fizermos isso, o backpropagation vai até o início da série\n", + " out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))\n", + "\n", + " #out = self.dropout(out)\n", + " \n", + " # Só precisamos ficar com o hidden state do último passo:\n", + " out = self.fc(out[:, -1, :])\n", + "\n", + " return out" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [], + "source": [ + "# Parametros\n", + "\n", + "input_dim = 1\n", + "hidden_dim = 32\n", + "num_layers = 2 #? empiricamente 2 é o melhor\n", + "output_dim = 1\n", + "lr = 1e-2 #? original: 0.1\n", + "num_epochs = 70" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LSTM_optim(\n", + " (lstm): LSTM(1, 32, num_layers=2, batch_first=True)\n", + " (fc): Linear(in_features=32, out_features=1, bias=True)\n", + ")" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Instancia o modelo otimizado\n", + "model = LSTM_optim(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)\n", + "model" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [], + "source": [ + "# Define função de perda\n", + "loss_fn = torch.nn.MSELoss()\n", + "\n", + "# Define otimizador\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=lr) #? original: SGD" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 10 MSE: 0.015655972063541412\n", + "Epoch 20 MSE: 0.006786006037145853\n", + "Epoch 30 MSE: 0.0017614254029467702\n", + "Epoch 40 MSE: 0.0016536235343664885\n", + "Epoch 50 MSE: 0.0010779384756460786\n", + "Epoch 60 MSE: 0.0008718801545910537\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWU0lEQVR4nO3deXxU9b3/8dfMJDPZF5YsQNgRgqyyNVK3Got1qdrWUq8tSJXeure59qfcVlC7xApycaFiqah1KVTrXkUxFVoVBUEUFRBlC5CFNSvJJDPn98eZmSSQbbKdSeb9fHge52TmzMxnDmPmne/5fr/HZhiGgYiIiIhF7FYXICIiIuFNYUREREQspTAiIiIillIYEREREUspjIiIiIilFEZERETEUgojIiIiYimFEREREbFUhNUFtIbX6+XgwYPEx8djs9msLkdERERawTAMysrK6NevH3Z70+0f3SKMHDx4kIyMDKvLEBERkTbIz89nwIABTd7fLcJIfHw8YL6ZhIQEi6sRERGR1igtLSUjIyPwPd6UbhFG/KdmEhISFEZERES6mZa6WKgDq4iIiFhKYUREREQspTAiIiIilmpTn5GlS5eycOFCCgsLGT9+PA899BBTp05tdN9zzz2XdevWnXL7RRddxD//+c+2vLyIiFjAMAxqa2vxeDxWlyIhwuFwEBER0e5pN4IOI6tWrSInJ4dly5Yxbdo0lixZwowZM9ixYwcpKSmn7P/CCy/gdrsDPx85coTx48dz5ZVXtqtwERHpOm63m4KCAiorK60uRUJMTEwM6enpOJ3ONj+HzTAMI5gHTJs2jSlTpvDwww8D5oRkGRkZ3Hzzzdxxxx0tPn7JkiXMnz+fgoICYmNjW/WapaWlJCYmUlJSotE0IiJdzOv1snPnThwOB3379sXpdGoCSsEwDNxuN4cOHcLj8TBixIhTJjZr7fd3UC0jbrebTZs2MW/evMBtdrud7Oxs1q9f36rneOyxx/jRj37UbBCprq6muro68HNpaWkwZYqISAdyu92BPzxjYmKsLkdCSHR0NJGRkezduxe3201UVFSbnieoDqyHDx/G4/GQmpra4PbU1FQKCwtbfPyGDRv47LPPuO6665rdLzc3l8TExMCi2VdFRKzX3HTeEr464nPRpZ+sxx57jLFjxzbZ2dVv3rx5lJSUBJb8/PwuqlBERES6WlBhpE+fPjgcDoqKihrcXlRURFpaWrOPraioYOXKlVx77bUtvo7L5QrMtqpZV0VEJFQMHjyYJUuWtHr/tWvXYrPZOH78eKfVBPDEE0+QlJTUqa/RmYIKI06nk0mTJpGXlxe4zev1kpeXR1ZWVrOPfe6556iurubHP/5x2yoVERFpJZvN1uxy1113tel5N27cyM9+9rNW73/mmWdSUFBAYmJim14vXAQ9tDcnJ4fZs2czefJkpk6dypIlS6ioqGDOnDkAzJo1i/79+5Obm9vgcY899hiXX345vXv37pjKRUREmlBQUBDYXrVqFfPnz2fHjh2B2+Li4gLbhmHg8XiIiGj5K7Fv375B1eF0Ols8cyBt6DMyc+ZMFi1axPz585kwYQJbtmxh9erVgU6t+/bta/AhANixYwfvvvtuq07RhLxDX8K7/wc1VVZXIiIiTUhLSwssiYmJ2Gy2wM/bt28nPj6eN954g0mTJuFyuXj33Xf5+uuvueyyy0hNTSUuLo4pU6bw9ttvN3jek0/T2Gw2/vKXv3DFFVcQExPDiBEjeOWVVwL3n3yaxn865c033yQzM5O4uDguvPDCBt+btbW13HLLLSQlJdG7d29uv/12Zs+ezeWXXx7UMXjkkUcYNmwYTqeTkSNH8tRTTwXuMwyDu+66i4EDB+JyuejXrx+33HJL4P4//elPjBgxgqioKFJTU/nBD34Q1GsHq00zsN50003cdNNNjd63du3aU24bOXIkQU5nErr+dQ9sexVi+8JEnXISkfBjGAYnaqyZhTU60tFhc5zccccdLFq0iKFDh5KcnEx+fj4XXXQRv//973G5XPz1r3/l0ksvZceOHQwcOLDJ57n77ru57777WLhwIQ899BBXX301e/fupVevXo3uX1lZyaJFi3jqqaew2+38+Mc/5rbbbuOZZ54B4I9//CPPPPMMjz/+OJmZmTzwwAO89NJLnHfeea1+by+++CK33norS5YsITs7m9dee405c+YwYMAAzjvvPP7xj3/wf//3f6xcuZLTTz+dwsJCPvnkEwA++ugjbrnlFp566inOPPNMjh49yn/+858gjmzw2hRGwlr5IXNduNXaOkRELHKixsPo+W9a8tpf3DODGGfHfHXdc889XHDBBYGfe/Xqxfjx4wM///a3v+XFF1/klVdeafIPcIBrrrmGq666CoA//OEPPPjgg2zYsIELL7yw0f1rampYtmwZw4YNA8w/8O+5557A/Q899BDz5s3jiiuuAODhhx/m9ddfD+q9LVq0iGuuuYYbbrgBMLtYfPDBByxatIjzzjuPffv2kZaWRnZ2NpGRkQwcODAw0nXfvn3ExsZyySWXEB8fz6BBg5g4cWJQrx8sDRoPVnWZuS7eZm0dIiLSLpMnT27wc3l5ObfddhuZmZkkJSURFxfHtm3b2LdvX7PPM27cuMB2bGwsCQkJFBcXN7l/TExMIIgApKenB/YvKSmhqKiowRQYDoeDSZMmBfXetm3bxvTp0xvcNn36dLZtM7+7rrzySk6cOMHQoUOZO3cuL774IrW1tQBccMEFDBo0iKFDh/KTn/yEZ555ptMvA6CWkWD5w8ih7dbWISJikehIB1/cM8Oy1+4oJ88Eftttt7FmzRoWLVrE8OHDiY6O5gc/+EGD66s1JjIyssHPNpsNr9cb1P5d3ZUhIyODHTt28Pbbb7NmzRpuuOEGFi5cyLp164iPj2fz5s2sXbuWt956i/nz53PXXXexcePGThs+rJaRYFX7pqYvL4LKo9bWIiJiAZvNRowzwpKlM6+J895773HNNddwxRVXMHbsWNLS0tizZ0+nvV5jEhMTSU1NZePGjYHbPB4PmzdvDup5MjMzee+99xrc9t577zF69OjAz9HR0Vx66aU8+OCDrF27lvXr17N1q9kFISIiguzsbO677z4+/fRT9uzZw7/+9a92vLPmqWUkGIZR1zIC5qmawdOb3l9ERLqNESNG8MILL3DppZdis9m48847m23h6Cw333wzubm5DB8+nFGjRvHQQw9x7NixoILYr371K374wx8yceJEsrOzefXVV3nhhRcCo4OeeOIJPB4P06ZNIyYmhqeffpro6GgGDRrEa6+9xq5duzj77LNJTk7m9ddfx+v1MnLkyM56y2oZCUpNJRj1epAfUr8REZGeYvHixSQnJ3PmmWdy6aWXMmPGDM4444wur+P222/nqquuYtasWWRlZREXF8eMGTOCugjd5ZdfzgMPPMCiRYs4/fTTefTRR3n88cc599xzAUhKSmL58uVMnz6dcePG8fbbb/Pqq6/Su3dvkpKSeOGFF/jWt75FZmYmy5Yt429/+xunn356J71jsBndYMxtay9B3OnKCuH+eslwynVw8f3W1SMi0gWqqqrYvXs3Q4YMafNVWaXtvF4vmZmZ/PCHP+S3v/2t1eWcornPR2u/v3WaJhj1T9EAFKsTq4iIdKy9e/fy1ltvcc4551BdXc3DDz/M7t27+a//+i+rS+s0Ok0TDH/nVT+dphERkQ5mt9t54oknmDJlCtOnT2fr1q28/fbbZGZmWl1ap1HLSDD8LSPJg+HYXqg8Yk6CFhfctQpERESakpGRccpImJ5OLSPB8IeRuFQzkAAUf2FZOSIiIj2BwkgwqnynaVzxkOIbq63Jz0RERNpFYSQY/pYRVzykjDK3NS28iIhIuyiMBCMQRhKgr68jkcKIiIhIuyiMBKO6/mkaXxg5tM2cmVVERETaRGEkGPVbRvqMAJsDqkrMydBERESkTRRGglG/z0iEC3oNNX/WiBoREalnz5492Gw2tmzZYnUp3YLCSDDqn6aBeqdqNKJGRCSU2Gy2Zpe77rqrXc/90ksvdVitoknPglO/ZQTMMLLtFXViFREJMQUFBYHtVatWMX/+fHbs2BG4LS4uzoqypAlqGQmGP4xE+S7201fDe0VEQlFaWlpgSUxMxGazNbht5cqVZGZmEhUVxahRo/jTn/4UeKzb7eamm24iPT2dqKgoBg0aRG5uLgCDBw8G4IorrsBmswV+bo1169YxdepUXC4X6enp3HHHHdTW1gbuf/755xk7dizR0dH07t2b7OxsKioqAFi7di1Tp04lNjaWpKQkpk+fzt69e9t/oEKEWkaCEThN4wsjgYnPdpgjamw2a+oSEelKhgE1lda8dmRMu3/XPvPMM8yfP5+HH36YiRMn8vHHHzN37lxiY2OZPXs2Dz74IK+88gp///vfGThwIPn5+eTn5wOwceNGUlJSePzxx7nwwgtxOBytes0DBw5w0UUXcc011/DXv/6V7du3M3fuXKKiorjrrrsoKCjgqquu4r777uOKK66grKyM//znPxiGQW1tLZdffjlz587lb3/7G263mw0bNmDrQd85CiPBOPk0Te9hYI8EdxmU7IekDOtqExHpKjWV8Id+1rz2/x4EZ2y7nmLBggXcf//9fO973wNgyJAhfPHFFzz66KPMnj2bffv2MWLECL75zW9is9kYNGhQ4LF9+5rXIktKSiItLa3Vr/mnP/2JjIwMHn74YWw2G6NGjeLgwYPcfvvtzJ8/n4KCAmpra/ne974XeL2xY8cCcPToUUpKSrjkkksYNmwYQI+7aJ5O07SWYZwaRhyR0Hu4ua1TNSIiIa+iooKvv/6aa6+9lri4uMDyu9/9jq+//hqAa665hi1btjBy5EhuueUW3nrrrXa/7rZt28jKymrQmjF9+nTKy8vZv38/48eP5/zzz2fs2LFceeWVLF++nGPHjgHQq1cvrrnmGmbMmMGll17KAw880KBPTE+glpHWqjkBXt+5PX8YAXNa+EPbzOW0b1tTm4hIV4qMMVsorHrtdigvLwdg+fLlTJs2rcF9/lMuZ5xxBrt37+aNN97g7bff5oc//CHZ2dk8//zz7Xrt5jgcDtasWcP777/PW2+9xUMPPcSvf/1rPvzwQ4YMGcLjjz/OLbfcwurVq1m1ahW/+c1vWLNmDd/4xjc6raaupJaR1vK3imCDyHpNhP5+I8Ua3isiYcJmM0+VWLG0s59Eamoq/fr1Y9euXQwfPrzBMmTIkMB+CQkJzJw5k+XLl7Nq1Sr+8Y9/cPToUQAiIyPxeDxBvW5mZibr16/HqDdj93vvvUd8fDwDBgzwHVYb06dP5+677+bjjz/G6XTy4osvBvafOHEi8+bN4/3332fMmDE8++yz7TkUIUUtI61Vf/ZVe70MFxhRo4nPRES6g7vvvptbbrmFxMRELrzwQqqrq/noo484duwYOTk5LF68mPT0dCZOnIjdbue5554jLS2NpKQkwBxRk5eXx/Tp03G5XCQnJ7f4mjfccANLlizh5ptv5qabbmLHjh0sWLCAnJwc7HY7H374IXl5eXz7298mJSWFDz/8kEOHDpGZmcnu3bv585//zHe/+1369evHjh072LlzJ7NmzerkI9V1FEZa6+QJz/z8E58d/hK83oZBRUREQs51111HTEwMCxcu5Fe/+hWxsbGMHTuWX/ziFwDEx8dz3333sXPnThwOB1OmTOH111/H7vv9fv/995OTk8Py5cvp378/e/bsafE1+/fvz+uvv86vfvUrxo8fT69evbj22mv5zW9+A5gtMf/+979ZsmQJpaWlDBo0iPvvv5/vfOc7FBUVsX37dp588kmOHDlCeno6N954I//93//dWYeoy9kMI/Sv8lZaWkpiYiIlJSUkJCRYU8SudfDX75pX673xg7rbPbVmr3JPNdyyBXoNafIpRES6o6qqKnbv3s2QIUOIioqyuhwJMc19Plr7/a0/41vr5JE0fo4I6HOaua0RNSIiIkFTGGmtpk7TgDmiBswRNSIiIhIUhZHWaqplBOr6jWhEjYiISNAURlrL3zIS1cg5r77+q/eqZURERCRYCiOtVX9o78kCp2m+BG9wY89FRETCncJIazV3miZpMEREmyNqju7u0rJERLpKNxh8KRboiM+FwkhrNRdG7HboO9Lc1qkaEelhIiMjAaistOhKvRLS/J8L/+ekLTTpWWtVNTOaBsxOrAVbzOG9mZd2WVkiIp3N4XCQlJREcXExADExMT3q8vXSNoZhUFlZSXFxMUlJSYFr+7SFwkhrNdcyAvVG1KhlRER6nrS0NIBAIBHxS0pKCnw+2kphpLWa68AKdSNqFEZEpAey2Wykp6eTkpJCTU2N1eVIiIiMjGxXi4hfm8LI0qVLWbhwIYWFhYwfP56HHnqIqVOnNrn/8ePH+fWvf80LL7zA0aNHGTRoEEuWLOGiiy5qc+FdLjDpWRNhpPcwc318LxhGu68sKSISihwOR4d8+YjUF3QYWbVqFTk5OSxbtoxp06axZMkSZsyYwY4dO0hJSTllf7fbzQUXXEBKSgrPP/88/fv3Z+/evYGrH3YbLZ2mifc1UdVUgru86f1ERESkgaDDyOLFi5k7dy5z5swBYNmyZfzzn/9kxYoV3HHHHafsv2LFCo4ePcr7778f6Gk7ePDg9lXd1Qyj5TDijAVnPLjLoKxIYURERKSVghra63a72bRpE9nZ2XVPYLeTnZ3N+vXrG33MK6+8QlZWFjfeeCOpqamMGTOGP/zhD3g8TU8OVl1dTWlpaYPFUrXV4PWdI20uZMT5WobKizq/JhERkR4iqDBy+PBhPB4PqampDW5PTU2lsLCw0cfs2rWL559/Ho/Hw+uvv86dd97J/fffz+9+97smXyc3N5fExMTAkpGREUyZHc/fXwQbOOOa3s9/qqa88WMhIiIip+r0Sc+8Xi8pKSn8+c9/ZtKkScycOZNf//rXLFu2rMnHzJs3j5KSksCSn5/f2WU2r/4pGnszhyzQMqKhbyIiIq0VVJ+RPn364HA4KCpqeBqiqKioyTHG6enppwz9yczMpLCwELfbjdPpPOUxLpcLl8sVTGmdq7qFCc/84nzHoEwtIyIiIq0VVMuI0+lk0qRJ5OXlBW7zer3k5eWRlZXV6GOmT5/OV199hdfrDdz25Zdfkp6e3mgQCUktdV71U8uIiIhI0II+TZOTk8Py5ct58skn2bZtG9dffz0VFRWB0TWzZs1i3rx5gf2vv/56jh49yq233sqXX37JP//5T/7whz9w4403dty76GytDSPqMyIiIhK0oIf2zpw5k0OHDjF//nwKCwuZMGECq1evDnRq3bdvH/Z6/SoyMjJ48803+eUvf8m4cePo378/t956K7fffnvHvYvOFmzLSJlG04iIiLRWm2Zgvemmm7jpppsavW/t2rWn3JaVlcUHH3zQlpcKDVUtzL7q5+8zoqG9IiIirdbpo2l6hFZ3YPUNea48DB5du0FERKQ1FEZao6WL5PnF9Aabb9RQxaHOrUlERKSHUBhpjdb2GbHb6/UbUSdWERGR1lAYaY3WhhGoO1Wj4b0iIiKtojDSGm0KI2oZERERaQ2Fkdbwd2CNaqHPCEC8WkZERESCoTDSGq0dTQOaEl5ERCRICiOt0drRNFBvSnjNNSIiItIaCiOtEUyfkXhNfCYiIhIMhZHWaFMHVoURERGR1lAYaUltNXjc5nYwYaSsCAyj8+oSERHpIRRGWuK/Lg2AM4gw4qmGqpLOqUlERKQHURhpiX8kjTPenGG1JZFREJVobutUjYiISIsURloSTH8Rv8CpGg3vFRERaYnCSEvaE0Y08ZmIiEiLFEZa0q4wopYRERGRliiMtKQtYURzjYiIiLSawkhLgrkujZ9/FtYyhREREZGWKIy0JJjr0vjFqWVERESktRRGWhLMdWn84jULq4iISGspjLSkXR1YFUZERERaojDSkvaEkRPHzOnkRUREpEkKIy1pSxiJTgaH09zWXCMiIiLNUhhpSVv6jNhsOlUjIiLSSgojLfFf7C6YMAJ1w3sVRkRERJqlMNKStpymgbrhvbo+jYiISLMURlrS5jCilhEREZHWUBhpSVvDiKaEFxERaRWFkebUVoPHNzS3rS0jmhJeRESkWQojzakur9tua58RtYyIiIg0S2GkOdW+kTTOOLA7gnushvaKiIi0isJIc9raXwTqXZ+mGLzejqtJRESkh1EYaU57wkisr8+It8acFl5EREQapTDSnPaEkQgnRPcyt3WqRkREpEkKI81py1Tw9QWG92riMxERkaYojDSnutRct6VlBOpNfKaL5YmIiDRFYaQ5Vf4w0saWEU0JLyIi0iKFkea0p88IqGVERESkFdoURpYuXcrgwYOJiopi2rRpbNiwocl9n3jiCWw2W4MlKiqqzQV3qfaGEfUZERERaVHQYWTVqlXk5OSwYMECNm/ezPjx45kxYwbFxU3/9Z+QkEBBQUFg2bt3b7uK7jLtbhmpN9eIiIiINCroMLJ48WLmzp3LnDlzGD16NMuWLSMmJoYVK1Y0+RibzUZaWlpgSU1NbVfRXcYfRqLa2mfE9z7VZ0RERKRJQYURt9vNpk2byM7OrnsCu53s7GzWr1/f5OPKy8sZNGgQGRkZXHbZZXz++efNvk51dTWlpaUNFku0ezSNpoQXERFpSVBh5PDhw3g8nlNaNlJTUyksbPyv/5EjR7JixQpefvllnn76abxeL2eeeSb79+9v8nVyc3NJTEwMLBkZGcGU2XGq2zmaxj8lfHUpuCs7piYREZEeptNH02RlZTFr1iwmTJjAOeecwwsvvEDfvn159NFHm3zMvHnzKCkpCSz5+fmdXWbj2ttnxJUAEb7OumodERERaVREMDv36dMHh8NBUVHDL9aioiLS0tJa9RyRkZFMnDiRr776qsl9XC4XLpcrmNI6R3vDiM1mnqo5vtfsxNprSMfVJiIi0kME1TLidDqZNGkSeXl5gdu8Xi95eXlkZWW16jk8Hg9bt24lPT09uEqt0N4wAvX6jagTq4iISGOCahkByMnJYfbs2UyePJmpU6eyZMkSKioqmDNnDgCzZs2if//+5ObmAnDPPffwjW98g+HDh3P8+HEWLlzI3r17ue666zr2nXS0WjfUVpnbbe0zAnX9RjS8V0REpFFBh5GZM2dy6NAh5s+fT2FhIRMmTGD16tWBTq379u3Dbq9rcDl27Bhz586lsLCQ5ORkJk2axPvvv8/o0aM77l10Bnd53XZHtIxoeK+IiEijbIZhGFYX0ZLS0lISExMpKSkhIaEdrRTBOLobHpwAkbHw64Ntf551C+Gd38HEn8BlD3dYeSIiIqGutd/fujZNUzqivwjUO02j0TQiIiKNURhpSkeFEU18JiIi0iyFkaZ0dBgpUxgRERFpjMJIU9p7XRo/fxipOAReT/ueS0REpAdSGGlKe69L4xfbF7CB4YHKI+0uS0REpKdRGGlK4DRNO1tGHBEQ28fcVr8RERGRUyiMNKWjWkYA4nxT5avfiIiIyCkURprSUR1YAeJSzLWmhBcRETmFwkhTOjKMJPiuw1PajsnTREREeiiFkaZ0VJ8RgKTB5vrY3vY/l4iISA+jMNKUjuwzkjzIXB/b0/7nEhER6WEURprSkS0jyYPN9XG1jIiIiJxMYaQpVR3ZMjLYXJfsh1p3+59PRESkB1EYaUpHdmCN7QuRMYABJfntfz4REZEeRGGkKR0ZRmy2utaRY7vb/3wiIiI9iMJIYzw1UHvC3G7vtWn8kvydWNVvREREpD6Fkcb4W0UAnB3QMgL1Wkb2dMzziYiI9BAKI43xh5HIGPPaMh1BYURERKRRCiON6cg5RvwURkRERBqlMNKYqhJz3aFhRH1GREREGqMw0phy39V141I77jn9HVirS+DEsY57XhERkW5OYaQxZZ0QRpwxdc+nUzUiIiIBCiONKS801/HpHfu86jciIiJyCoWRxpT5w0gHtoxAvblG9nTs84qIiHRjCiONKevslhF1YhUREfFTGGmMP4x0ZJ8R0GkaERGRRiiMNEZ9RkRERLqMwsjJak7UzTPS0X1G/GGkJB88tR373CIiIt2UwsjJ/KdoImPA1UEXyfOLTweHE7y1UHqgY59bRESkm1IYOVn9/iI2W8c+t90OSQPN7ePqxCoiIgIKI6fqrP4ifuo3IiIi0oDCyMk6a44RP4URERGRBhRGThY4TZPWOc+vic9EREQaUBg5WaBlpJPCiCY+ExERaUBh5GTlXRVG9nTO84uIiHQzCiMn81+xt9PCiO80TeVhqC7rnNcQERHpRhRGTlZWYK47q89IVCJEJ5vbOlUjIiKiMNJATRVUHTe3O6tlBOpO1WiuERERkbaFkaVLlzJ48GCioqKYNm0aGzZsaNXjVq5cic1m4/LLL2/Ly3Y+f3+RiCizBaOzqN+IiIhIQNBhZNWqVeTk5LBgwQI2b97M+PHjmTFjBsXFxc0+bs+ePdx2222cddZZbS6209XvL9LRs6/WpzAiIiISEHQYWbx4MXPnzmXOnDmMHj2aZcuWERMTw4oVK5p8jMfj4eqrr+buu+9m6NCh7Sq4U3V2fxE/hREREZGAoMKI2+1m06ZNZGdn1z2B3U52djbr169v8nH33HMPKSkpXHvtta16nerqakpLSxssXaK8k0fS+GniMxERkYCgwsjhw4fxeDykpjacKj01NZXCwsJGH/Puu+/y2GOPsXz58la/Tm5uLomJiYElIyMjmDLbzt8y0tlhJNCBdR94vZ37WiIiIiGuU0fTlJWV8ZOf/ITly5fTp0+fVj9u3rx5lJSUBJb8/PxOrLKezp5jxC9xANgcUFtV1xojIiISpiKC2blPnz44HA6Kihp+gRYVFZGWduoX+Ndff82ePXu49NJLA7d5fS0BERER7Nixg2HDhp3yOJfLhcvlCqa0jtFVfUYckWYgOb7XPFWT0ElXCBYREekGgmoZcTqdTJo0iby8vMBtXq+XvLw8srKyTtl/1KhRbN26lS1btgSW7373u5x33nls2bKl606/tFagz0gnXbG3vmT1GxEREYEgW0YAcnJymD17NpMnT2bq1KksWbKEiooK5syZA8CsWbPo378/ubm5REVFMWbMmAaPT0pKAjjl9pAQ6DPSBS0VyYNh97818ZmIiIS9oMPIzJkzOXToEPPnz6ewsJAJEyawevXqQKfWffv2Ybd3w4lda6vhxDFzO64rWkYGm2u1jIiISJizGYZhWF1ES0pLS0lMTKSkpISEhITOeZFje+GBceBwwW+KOnfSM4DP/gHP/xQGZsFPV3fua4mIiFigtd/f3bAJo5PU7y/S2UEEIGmwuVbLiIiIhDmFEb8y3zwpXdFfBOpO05QVQM2JrnlNERGREKQw4ucPI13RXwQgphc4483t4100j4qIiEgIUhjxK+/ilhGbTZ1YRUREUBipEzhN00UtI6C5RkRERFAYqdPVfUZALSMiIiIojNTp6j4jUO+CeZr4TEREwpfCiF+gz0gnX5emPrWMiIiIKIwAUOuGyiPmthWnaY7uhtCfe05ERKRTKIxA3YRnDidEJ3fd6yYNMl+zpkKnakREJGwpjEC9/iJpXTP7ql+EE/qOMrcLt3bd64qIiIQQhRGo11+kCzuv+qWNM9cKIyIiEqYURqDesN4u7Lzql+4LIwWfdv1ri4iIhACFEWh4mqarpY0112oZERGRMKUwAtYM6/VLHWOuS/dD5dGuf30RERGLKYyAtadpohIgeYi5XahTNSIiEn4URgDKfEN7rQgjoFM1IiIS1hRGAMoKzLUVfUZAI2pERCSsKYx4aqDysLndlbOv1udvGdGIGhERCUMKI/7ZV+2RENPLmhr8w3sPfwk1J6ypQURExCIKI/7+InGpXTv7an3x6RDTGwwPFG+zpgYRERGLKIz4+4tY1XkVzBAU6MSqUzUiIhJeFEasnGOkPnViFRGRMKUwYuUcI/UpjIiISJhSGLFyKvj6AqdpPgOvx9paREREupDCSKi0jPQZARHRUFMBR3dbW4uIiEgXUhgJlT4jdgekjja31YlVRETCiMKI1VPB16dp4UVEJAyFdxjx1ELFIXPb6j4jUK8Tq1pGREQkfIR3GKkoBgywR5iTjllNI2pERCQMhXcYCVwgLxXsIXAoUkcDNnOKev/pIxERkR4uBL6BLRRK/UUAnLHmqBpQ64iIiISNMA8j/paREAkjoGnhRUQk7IR3GPFfsTc+1do66tOIGhERCTPhHUYCF8lLt7aO+tQyIiIiYSbMw4ivZSQulFpGfCNqjnwN1eXW1iIiItIFwjyMhGDLSFyKrw+LAcVfWF2NiIhIpwvvMHLx/fD9x6DfBKsrach/qqbgE2vrEBER6QJtCiNLly5l8ODBREVFMW3aNDZs2NDkvi+88AKTJ08mKSmJ2NhYJkyYwFNPPdXmgjtUxlQqTrscd1QfqytpKF2Tn4mISPgIOoysWrWKnJwcFixYwObNmxk/fjwzZsyguLi40f179erFr3/9a9avX8+nn37KnDlzmDNnDm+++Wa7i2+vy5e+x+kL3mTT3mNWl9KQRtSIiEgYCTqMLF68mLlz5zJnzhxGjx7NsmXLiImJYcWKFY3uf+6553LFFVeQmZnJsGHDuPXWWxk3bhzvvvtuu4tvr/ioCAD2H6u0uJKT+DuxFn9hXj9HRESkBwsqjLjdbjZt2kR2dnbdE9jtZGdns379+hYfbxgGeXl57Nixg7PPPrvJ/aqrqyktLW2wdIYByTEA5B870SnP32bJQ8AZB7VVcGSn1dWIiIh0qqDCyOHDh/F4PKSmNhwKm5qaSmFhYZOPKykpIS4uDqfTycUXX8xDDz3EBRdc0OT+ubm5JCYmBpaMjIxgymy1jF7RAOw/GmItI3Y7pI4xt3WqRkREerguGU0THx/Pli1b2LhxI7///e/Jyclh7dq1Te4/b948SkpKAkt+fn6n1FXXMhJiYQTqOrEe2GxtHSIiIp0sIpid+/Tpg8PhoKio4RVli4qKSEtr+voudrud4cOHAzBhwgS2bdtGbm4u5557bqP7u1wuXC5XMKW1SUay2TKSfzTETtMADJgKG/4M+R9YXYmIiEinCqplxOl0MmnSJPLy8gK3eb1e8vLyyMrKavXzeL1eqqurg3npTpHRy2wZKSqrorrWY3E1JxnkO54Fn2omVhER6dGCahkByMnJYfbs2UyePJmpU6eyZMkSKioqmDNnDgCzZs2if//+5ObmAmb/j8mTJzNs2DCqq6t5/fXXeeqpp3jkkUc69p20Qe9YJ9GRDk7UeDhw7ARD+8ZZXVKdxAGQmAEl+XDgIxh6rtUViYiIdIqgw8jMmTM5dOgQ8+fPp7CwkAkTJrB69epAp9Z9+/Zht9c1uFRUVHDDDTewf/9+oqOjGTVqFE8//TQzZ87suHfRRjabjYxe0XxZVE5+qIURgIHfgK35sO8DhREREemxbIZhGFYX0ZLS0lISExMpKSkhISGhQ5/72ic2kre9mN9fMYarpw3q0Odut41/gX/+jxlEZr1sdTUiIiJBae33d3hfm4a6fiMh2Yl1oK/fSP5GTX4mIiI9VtiHkQH+ETWhOLy3bya4EqGmAgo/tboaERGRTqEw4ptrJOQmPgNz8rOB08ztfRriKyIiPVPYhxH/LKwhNyW8n/9Uzb6Wp9sXERHpjhRGfH1Gjla4qagOwX4ZgTDyAYR+X2MREZGghX0YSYiKJDE6EgjRfiP9JoLDCRXFcHSX1dWIiIh0uLAPI1D/gnkheKomMgr6nWFuq9+IiIj0QAojQEYoXzAPzMnPAPa9b20dIiIinUBhhBCfawQa9hsRERHpYRRGqHf13lBtGcmYaq6PfAXlh6ytRUREpIMpjFA310h+KM41AhDTC1JGm9v5ah0REZGeRWGEeh1Yj50gZC/VE+g3ojAiIiI9i8IIdS0j5dW1HK+ssbiaJmjyMxER6aEURoCoSAd9411ACPcb8beMFHwC7gpraxEREelACiM+/k6s+0N1WvjEDEjoD95a2P+R1dWIiIh0GIURn7rhvSHaMmKzqd+IiIj0SAojPiE/8Rmo34iIiPRICiM+gav3hurEZ1AXRvZvBE8IXtRPRESkDRRGfAZ0h5aRlExwJYK7HIo+s7oaERGRDqEw4uM/TbP/2Am83hCda8TuqJuNVf1GRESkh1AY8UlPisJuA3etl0Pl1VaX07RAJ1b1GxERkZ5BYcQn0mEnPdE/vDeET9XU78QaqrPFioiIBEFhpJ5u0Ym1/xlgj4TyIji22+pqRERE2k1hpJ6MUL9gHkBkNPSbaG7v+9DaWkRERDqAwkg9gYnPQvk0DcDAaeZa/UZERKQHUBipZ0ByNzhNA3X9RvLVMiIiIt2fwkg93aZlJMPXMnJoO1QetbYWERGRdlIYqcffZ6SgpIpaj9fiapoR2wd6jzC38zdYW4uIiEg7KYzUkxLvwhlhx+M1KCipsrqc5qnfiIiI9BAKI/XY7TYGJPn6jYT6qZrAfCOaiVVERLo3hZGTDPD1G9kf6p1YM3wzsR7cDDUh3oojIiLSDIWRk2Qkd5OWkd7DIKYPeNxQsMXqakRERNpMYeQkgRE1oTzxGYDNVu86NTpVIyIi3ZfCyEkCc40cC/HTNKAwIiIiPYLCyEm6xZTwfvUnP/OG8FBkERGRZiiMnMR/mqa4rJqqGo/F1bQgbRxERMGJo3Bkp9XViIiItInCyEmSYyKJdToAOHA8xE/VRDih/2RzW6dqRESkm1IYOYnNZus+nVih3uRnCiMiItI9tSmMLF26lMGDBxMVFcW0adPYsKHpKcmXL1/OWWedRXJyMsnJyWRnZze7fygY4O830i06sfonP9NMrCIi0j0FHUZWrVpFTk4OCxYsYPPmzYwfP54ZM2ZQXFzc6P5r167lqquu4p133mH9+vVkZGTw7W9/mwMHDrS7+M6S0cscUbO/O7SMDJgC2ODYbigrsroaERGRoAUdRhYvXszcuXOZM2cOo0ePZtmyZcTExLBixYpG93/mmWe44YYbmDBhAqNGjeIvf/kLXq+XvLy8dhffWQIjakJ94jOA6CRIGW1u5+tUjYiIdD9BhRG3282mTZvIzs6uewK7nezsbNavb91pgsrKSmpqaujVq1eT+1RXV1NaWtpg6Ur+uUb2dYeWEag338iH1tYhIiLSBkGFkcOHD+PxeEhNTW1we2pqKoWFha16jttvv51+/fo1CDQny83NJTExMbBkZGQEU2a7De0bB8DXxRV4vEaXvnabBMKI+o2IiEj306Wjae69915WrlzJiy++SFRUVJP7zZs3j5KSksCSn5/fhVXCkD6xuCLsnKjxdI/WEX8YKfwU3BXW1iIiIhKkoMJInz59cDgcFBU17ChZVFREWlpas49dtGgR9957L2+99Rbjxo1rdl+Xy0VCQkKDpSs57DZGpsUDsK2ga08RtUliBsT3A28tHNhkdTUiIiJBCSqMOJ1OJk2a1KDzqb8zalZWVpOPu++++/jtb3/L6tWrmTx5ctur7UKZaWYA6hZhRBfNExGRbizo0zQ5OTksX76cJ598km3btnH99ddTUVHBnDlzAJg1axbz5s0L7P/HP/6RO++8kxUrVjB48GAKCwspLCykvLy8495FJ8hM97eMlFlcSSspjIiISDcVEewDZs6cyaFDh5g/fz6FhYVMmDCB1atXBzq17tu3D7u9LuM88sgjuN1ufvCDHzR4ngULFnDXXXe1r/pONCq9G7WMQF0Yyd8AXg/YHdbWIyIi0ko2wzBCfrhIaWkpiYmJlJSUdFn/kZLKGsbf8xYAnyz4NonRkV3yum3mqYU/DgJ3Ofz8XUgba3VFIiIS5lr7/a1r0zQhMSaS/knmfCM7CrvBqRpHhG82VnSqRkREuhWFkWaM6k4jagAGnWmuv3rb2jpERESCoDDSjMzu1m8k87vm+qu3ofKotbWIiIi0ksJIMwJhpDucpgFIGQWpY8z5Rr542epqREREWkVhpBmjfMN7dxSWdo9p4QHG+kYtffYPa+sQERFpJYWRZgzuHUtUpJ2qGi97jnSTadbHfN9c73kXSg9aW4uIiEgrKIw0w5wW3jxVs727TH6WNBAypgEGfP6i1dWIiIi0SGGkBZndbUQNwBjfqZqtz1tbh4iISCsojLSg242oATj9crDZ4eBmOPK11dWIiIg0S2GkBf4wsr27jKgBiEuBoeea2+rIKiIiIU5hpAUjfadpDhw/QUlljcXVBKH+qZrQn/FfRETCmMJICxKj66aF31bYjU7VZF4CDhcc3gFFn1ldjYiISJMURlohcKqmO/UbiUqEEReY2+rIKiIiIUxhpBUy0/0jarpRvxGoNwHaCzpVIyIiIUthpBXqpoXvRi0jAKddCM44KNkH+RusrkZERKRRCiOt4A8jOwrLus+08ACR0TDqEnN763PW1iIiItIEhZFWGNgrhuhIB9W1XnYf7ibTwvv5T9V88RJ4ai0tRUREpDEKI61gTgvfDWdiBXO+keheUHEIdq+zuhoREZFTKIy0Ut3kZ90sjDgi4fQrzG1NgCYiIiFIYaSVuu2IGqg7VbPtVag5YW0tIiIiJ1EYaaVueY0av4xvmFfzrS6FT1ZaXY2IiEgDCiOt5O8zUlBSxfFKt8XVBMluh2nXm9vrHwav19p6RERE6lEYaaWEqEgGJPumhe+Op2rO+Am4EuHIV7DzTaurERERCVAYCUK3PlXjiofJc8zt9x+ythYREZF6FEaC0G1H1PhN+2+wR8De92D/JqurERERARRGgpKZ1vSIGsMwyD9aSXl1CE8sltAPxl5pbq9X64iIiISGCKsL6E4C08IXlVHr8WIAG3cfJW97MXnbithzpJLBvWN45eZvkhAVaW2xTcm6CT75G3zxMhzbA8mDra5IRETCnMJIEAb2iiHG6aDS7eG6v37Epr3HKKtq2BKy50glv3nxMx740QRsNptFlTYjbQwM+xZ8/S/4YBl8516rKxIRkTCn0zRBsNebFn7tjkOUVdXSO9bJDyYNYNmPz+Cpa6fisNt45ZODvLD5gMXVNiPrJnO9+a9w4pi1tYiISNhTy0iQbjpvOI+/t4fxGYmcn5nKhAFJ2O11LSC/OH8E96/5kvkvf8akQckM7hNrYbVNGPYtSDkdij+Hjx6Hs3KsrkhERMKYzTAMw+oiWlJaWkpiYiIlJSUkJCRYXU6zPF6Dq5Z/wIbdRxk3IJHnf34mzogQbIDa8jd46ecQlwa/+BQiXFZXJCIiPUxrv79D8Fuye3PYbSyZOYHE6Eg+3V/C4jVfWl1S48Z8H+LTobwQtj5vdTUiIhLGFEY6Qb+kaO793lgAHv3317z31WGLK2pEhNOcdwTMKeJDv4FMRER6KIWRTvKdselcNTUDw4BfrtrC0YoQvJ7NpDngjIPiL+DrPKurERGRMKUw0onuvGQ0w/rGUlxWzf97/hNCrntOdBKcMcvc/tfvdQE9ERGxhMJIJ4pxRvDgVRNxOuy8va2Yl7aE4HDf6beCMx4OboaPn7K6GhERCUMKI53s9H6J3Pyt4QA8um5X6LWOxKfBefPM7bfvgsqjlpYjIiLhR2GkC8zKGkyM08H2wjLe++qI1eWcaurPIGU0nDgKefdYXY2IiISZNoWRpUuXMnjwYKKiopg2bRobNmxoct/PP/+c73//+wwePBibzcaSJUvaWmu3lRgTyQ8nZwDwl3d3WVxNIxyRcNEic3vTE3Bgs6XliIhIeAk6jKxatYqcnBwWLFjA5s2bGT9+PDNmzKC4uLjR/SsrKxk6dCj33nsvaWlp7S64u5ozfTA2mzmN/M6iU6/6a7nB02HsDwEDXr9NnVlFRKTLBB1GFi9ezNy5c5kzZw6jR49m2bJlxMTEsGLFikb3nzJlCgsXLuRHP/oRLlf4zvI5qHcs3x6dCsCK93ZbXE0Tvv1bszPrgU3qzCoiIl0mqDDidrvZtGkT2dnZdU9gt5Odnc369es7rKjq6mpKS0sbLD3BdWcNBeAfmw9wpLza4moaoc6sIiJigaDCyOHDh/F4PKSmpja4PTU1lcLCwg4rKjc3l8TExMCSkZHRYc9tpcmDkhk/IBF3rZenP9hndTmNU2dWERHpYiE5mmbevHmUlJQElvz8fKtL6hA2m41rfa0jT32wh6oaj8UVNUKdWUVEpIsFFUb69OmDw+GgqKiowe1FRUUd2jnV5XKRkJDQYOkpvjMmjX6JURwud/PKJwetLqdx9Tuz/vN/wBuCoUlERHqMoMKI0+lk0qRJ5OXVXcfE6/WSl5dHVlZWhxfXE0U67FwzfTAAj/1nd+hNgubn78x6cDP8536rqxERkR4s6NM0OTk5LF++nCeffJJt27Zx/fXXU1FRwZw5cwCYNWsW8+bNC+zvdrvZsmULW7Zswe12c+DAAbZs2cJXX33Vce+im5k5ZSCxTgc7isp4NxSv6AtmZ9aLFprba3Nh1zpr6xERkR4r6DAyc+ZMFi1axPz585kwYQJbtmxh9erVgU6t+/bto6CgILD/wYMHmThxIhMnTqSgoIBFixYxceJErrvuuo57F91MYnQkP5zimwTtPyE6zBdgwlUw8cdgeOEf10FZUcuPERERCZLNCNnzBHVKS0tJTEykpKSkx/Qf2XekknMWvYNhwFu/PJvTUuOtLqlx7kr4y/lQ/AUMPgtmvQx2h9VViYhIN9Da7++QHE0TDgb2jmHGaLPT72Oh3DrijIErn4TIWNjzH1h7r9UViYhID6MwYqHrzhoCwHOb8nk1VEfWAPQ9DS59wNz+90L4Kq/5/UVERIKgMGKhSYOS+a9pA/Ea8ItVW1j9WUHLD7LKuCth0jWAAS/8DEpDuFYREelWFEYsZLPZ+N1lY/jeGf3xeA1u/tvH5G0L4U6iF94LqWOh8jA8/1Pw1FpdkYiI9AAKIxaz220s/MF4Lh3fjxqPwfVPb2bdl4esLqtxkdHwwyfN+Uf2vQ9vzoPQ7/8sIiIhTmEkBDjsNhb/cDwXnp6G2+PlZ3/9iPdDdf6R3sPgsofM7Q1/htd+oRlaRUSkXRRGQkSkw86DV00kOzOF6lov1z75ERt2h+hVc0+/Ar77MNjs5vVrXvxv8NRYXZWIiHRTCiMhxBlhZ+nVZ3D2aX05UeNhzuMb+OxAidVlNe6Mn8D3HwN7BGx9Dv4+C2qqrK5KRES6IYWREOOKcPDnn0zizGG9qXB7uOOFT/F4Q7RfxpjvwY+eBYcLdrwOz/4QqsutrkpERLoZhZEQFBXp4MGrJhIfFcFnB0pZtTHf6pKadtoM+PHz4IyD3evg6e/BieNWVyUiIt2IwkiI6hPn4pfZpwGw8M3tlFSGcJ+MIWeb08RHJUL+h/DEJVD4mdVViYhIN6EwEsJ+kjWI01LjOFZZw+I1O6wup3kDJsM1r0NsXyjaCo+eBf/8H6gM0U64IiISMhRGQlikw85dl54OwFMf7GV7YanFFbUgbQzMfQdGX25e6XfjX+DBifDhoxptIyIiTVIYCXFnDu/DRWPT8Bqw4OXPCfmLLCdlmBOjzX4NUsdA1XF44//Bsm/C1+9YXZ2IiIQghZFu4H8vyiQq0s6Hu4/y2qfd5JowQ86C//43XPJ/EN0LDm2Hpy6HFRfCR4/r9I2IiAQojHQDA5JjuP6c4QD84fVtVLq7yTVh7A6Y/FO4ZTNMux5sDti33py1ddFpsPJq+PwlzU8iIhLmbEbIt/tDaWkpiYmJlJSUkJCQYHU5lqiq8ZC9eB37j53gpvOGc9uMkVaXFLySA/DZ8/Dpc2YnVz9XAmReCiMugCHnQEwv62oUEZEO09rvb4WRbmT1Z4X8/OlNOB121uSczaDesVaX1HZFX8DWv5vBpHR/vTts0G8iDPuWuQyYAhFOy8oUEZG2UxjpgQzDYNaKDfxn52GyM1P4y+wpVpfUfl6veepm+z/h63/BoW0N74+MNecxGZENwy+A5EHW1CkiIkFTGOmhviou48Il/6HWa/DMddOYPryP1SV1rNKDsGutGUy+fgcqT7p6cZ/TzFAyIhsGTYcIlyVliohIyxRGerC7XvmcJ97fQ2Z6Aq/d/E0cdpvVJXUOr9fsW/LV27DzbXN2V8NTd39kLIy8EMZ8H4ZnK5iIiIQYhZEe7GiFm3MWvkNZVS0LfzCOKydnWF1S1zhx3Gw1+WqNGU7KC+vucyVC5iVw+vdg6DngiLSqShER8VEY6eEeXfc1uW9sJzXBxdrbziPa6bC6pK5lGHBgM3z+Anz2ApQdrLsvupd5ReEzZkP6OOtqFBEJcwojPVz9ob45F5zGLeePsLok63i95imcz/4BX7wEFYfq7ut3BkyabZ7KccVbVqKISDhSGAkDr35ykJv/9jExTgdrbzuXlIQoq0uynqcWdq+Dj5+Cba+B13dNHGec2Voy6RozoNh6aD+bruapNVulyoqg/OSlGKpKofaEObFdTSXUVkHNCfNaRREuiIyut8SY6+hkSMzwLQPqluhk/buJdDMKI2HAMAyu+NP7bMk/zlVTM8j9nk5JNFBxGLY8C5ufhCNf1d2ePh4mXwtjfwDObjxXS1fx1MLRXeYxPLYbju42fz62G47vA28XzQjsjIO+o8wLMqaOgbSxkHq6WrxEQpjCSJj4aM9RfrBsPXYbvHHr2YxMO/UXs7vWy98/yqeqxsNPpw/B3lNH3zTFMGDv+7DpCfjiZfBUm7e7EmD8j8xgkjLK0hJDgmFA6QEo3gZFn0PxF+Zy6Mu6Y9YYhxPi0iAuBeJSIT7VXMelQFSS2doREeVr+YiCiGizg7HHbbaW1Jyotz5hhsiS/VCSX7euf+rtZMlDzICZMc1c0sZqojyREKEwEkauf3oTb3xWyDmn9eXJn04N3G4YBmu+KCL3je3sPlwBwNXTBvK7y8dga0Vzd/7RSorLqpg0qAdNz15xBLY8Ax+tMP+y9xs0HSbNMUfkREZbV19XKi2Agx/Dwc2+9cdQeaTxfSNjofcw6DUUeg0x18m+dXw62Dv5Mlc1J8xWmKLPoXArFH1mrssauXBkRJR5Ki5jqm/5BsT27tz6RKRRCiNhZO+RCrIXr6PGY/DXn07l7NP68vnBEn732jbW7zK/XHrFOjlW6cYw4NpvDuE3F2c2G0je/LyQX6zcwokaD/O+M4r/PmdYV72druH1wq53zFCy4426+UtciTDmCphwtTkVfU/po+CuNENH/gbYv9EciVR/aLSfPQJ6j4CUTEgdDSm+JWlQ5weOtqg4AoWf1r23/A/hxLFT9+szEgZ+Awadaa6TBvWcf1uREKYwEmZ++9oXPPbubkamxjMhI4m/b8rHMMAZYWfuWUO4/tzhvP5pAf/vH58CcPO3hvM/3z71YnuGYfCX/+zmD29so/4n438vGsXPzu5hgcSv5IDZ4fXjZ6BkX93tvYfDhP+CcT+CxP7W1RcswzBbEfZvNL+c8zeYLQkn9+2w2aFvpnktoP4TzXXK6eaplO7KMODI17737VsObT91v/h+ZijJmGa2nqSN1dw0Ip1AYSTMHK90c87CtZScqAncdsm4dG6/cBQZvWICt/11/R7mv/w5AL+aMZIbzxseuK/G42XBK5/z7IfmF/LV0wbSJ87FA3k7Afj1RZnMPXtoV7wda3i9sPc98zTOFy+b/RgAsMGAyXDaheaSenpo/VVdUwUFW+paBvZvNEeznCw+3fziHTDVfD9p48AZc+p+PU3lUdj3Aex7H/auN4/VycEsIhr6T4KMKWZA6T8Z4vpaUq5IT6IwEoae/XAf//viVsZnJDH/kswm+3r4J0wDuPOS0Vz7zSGUnKjhpmc385+dh7HZ4DcXj+an0wdjs9n4vzVfBgLJby7O5LqzenAg8asuMwPJlmfNgFJfwgA4bQaM/A4M/mbX9jGprTY7lRZ8AgWfml+sBZ/WDWH2s0eYf+37//IfMNUcHhtKIcoq7ko48BHs87Wc7N8AVSWn7peY4Ws1OsNc95sIUYldX69IN6YwEqaOVrhJjolssYPqkre/ZMnbZsDIueA0Xv3kIDuLy4lxOnjgRxO5YHRqg/0Xr/mSB8MtkPiVHICdb8GXb5rT0deeqLvP5jCHm6aPM1sa0sebISCqnZ/TqlI4tqduObTDDCCHtjU+lDY2xRc6ppjrfhPDpyNue3m9cGRnvVM7G+DwTqCRX429htX9W6eNM7fjUrq8ZJHuQmFEmmUYBveu3s6j63YFbktNcPHY7CmM6X/qX3+GYfB/a77kwX+Z83X4W1TCjrsS9vwHvlxthpPSA43vlzzYHO4anXzSkmT2TXBXQk2FuXZXmNvV5eYw1mN7mh7VAubzpI/3BZ9x5umF5MFq9ehIVaVmq9OBzWbn2AMfN+xPVF9cqvnvkHq6uaRkmleX1oUbRRRGpGWGYXD3q1/wxPt7OL1fAo/NnkJaYtOdFw3DYPGaL3nIF0iunDSAyyb05xtDexHhaHykhddr8OHuo7z48X7e2XGIYX1jufG84XxzeJ9WDS8Oaf55OQo+NUd0+Ncl+R3z/DG9zZCRPNj3F7kvgOh0izXKD0HhJ+aQ4sKt5r/3ka9otAXF5oA+vlFJKaPNcNJ3pPnvqDlQJIwojEirGIbBl0XlDOkTizOi5aGbhmFw/1tf8vA7dTOa9op1MuP0NC4emx4IJjuLynjh4wO8/PEBDpZUnfI8EzKSuPlbw/nWqJTuH0pOVnnU7NdRecQcZhpYjptrT43ZcTQyxpwB1hnr246DhH51AaS9p3qk87kroOgLM6QUfWFOGFf8eeN9UMAMKb2GmEON+55mDqPuNdRc4lIUMqXHURiRTvXBriO8vOUgqz8r4FhlXefJXrFOUuJdbC8sC9wWHxXBxWPTuXBMGv/+8jDPbthLVY0XgMz0BG7+1nAuPD2tzTPDVrpr2V5YxraCUrYVlLK9oAy3x0ucK8JcoiKI960ToiIZ1DuWYX1jGdg7BldEmF3tWDqfYUDpwbpgUrwdDu8wZ7J1lzX9uMjYuknlkgfXuzZPf7PTdEwvhRXpdhRGpEvUerx8sOso/9x6kNWfFQaCSYTdxrkjU7hiYn/Oz0whKrLuS/9QWTWPvbubp9bvocJtTjY2tE8s3xqVQtaw3kwZ0ouEqMbnfKiq8bD1QAmb9x7jk/3H2VZQxp4jFbTlU2y3QUavGIb2iWVo3zjSE6OIc0UQ6wsu/jATFemgrKqGY5U1HKtwc6zSzbHKGo5XuimvquVEjcdc3B6qfNvuWi/JsU7SEqJITYgiLTEqsN0/KZr+ydE4wm1a/nBnGOaMsYd2wOEvzfXRXeZSkg+Gt/nHR0SbwSQ+HWL7QGxf3+LbjuljjvaJSjAvdeCMC82J6kKFp9bsjF5bbc7wW1ttXsjRv9T41p5q333V5iUMaqug1m1ue9xmh3KP22zx9NSYI9u8tb7F41t8Pxse83NgGL5/b9+6uV9gNpvZomazm/+eNnvdz45IsDvAHunbjgRHhHmJBv8S4Wq4HeEyZylubN17BLjiOvQwd2oYWbp0KQsXLqSwsJDx48fz0EMPMXXq1Cb3f+6557jzzjvZs2cPI0aM4I9//CMXXXRRq19PYaR7qPF4+WDXEQ6VVXPuyBR6xTZ/bvxYhZvH39/D4+/tpqyqboSI3QZj+yeSNawP3xjai/LqWjbtPcbmfcf54mAJNZ5TP7J9411kpieQmRZPZnoC8VERlFfXUlZVS3l1LRW+7WOVbnYfrmDXoQrKq7voAm+NiHTYAkFocO9YBvvWybGRgUAU64wgKtLe6Gksj9egxuPF7fFiGOYxs9ls2AC7zYbNZgbCpvrySIipdZsT1fnDybHd5nV5Sg+Y6+auzdMkmxlKohLNL5jA9YHqXyU5Chwusx9L4Ass0lzb/V90DvPLz+4wh4zbHHUtNDa7b9tWtw6o9/+pYZg/B76EqfsSNry+L2mv+cVteMwRToa33pd6Td2Xuqembu1xm/f5t/1rf2CorfL9XN0wbNScqJt1Wer89C0YOK1Dn7LTwsiqVauYNWsWy5YtY9q0aSxZsoTnnnuOHTt2kJJy6hC3999/n7PPPpvc3FwuueQSnn32Wf74xz+yefNmxowZ06FvRrqnsqoa/rW9mA92HWH910fYc6Sy2f37xLmYNCiJiQOTOb1fApnpCfSJC27kgmEYHCqr5utDFew6XM6uQxUcLq8OhBZ/gCmvruWE20NCdCRJMU6SYyJJjnGSHGuu46MiiI50EBXpINrpIDrSXCIcdo5WVFNYUkVhaTVFpVUUllRRVFrF/uMncNe28Fewj8NuI8bpwBVhx11rho8aj4HH27r/beOjIugV6yQ5xhlYJ8dEkhzrbHB7L9/7SYiua5Hy/2YwMDAMqK7xUuGuOy4V1R7Kq2uprjV/qdtsNuw2Mwz5w5Ezwm6GK2eEL2Q5iHVF4IpoPGT51Xq8VNV6zZYmt4fqWg9VNV68hlmL4fs3NHx1Ouy2wLGPirQT5fu3iOwpYaymygwmpQegvNgMJxWHT1ofgupScyTQyfPOSPMc9VoHIqN82ye1GvhDW0RUw5YHf0uEv3XCEWmGNntEvSBXb9tm84W4+kszraSBkOatWwKh7aRw5g9v/labWrevZcddF9JOCWf11v+10pyaoAN1WhiZNm0aU6ZM4eGHHwbA6/WSkZHBzTffzB133HHK/jNnzqSiooLXXnstcNs3vvENJkyYwLJlyzr0zUjPcPD4CdZ/fYT1u47w0Z6jxEVFcMbAZCYNSuaMgckMSI7u1p1evV6DgyUn2HO4kt1HKthz2Fz2Hq2k5EQNFdW1VLp79l9tDrsvsGDD95/5OxobtV5vo61fbX2dCLsNp8NOhMNsKYr0tRjZbQSCXa3XwOP1Uusxt/0BzM+/abeB02HHFenwre24Ihw4I+w4HTbf69lx2G1E+n522G14vAZew/y39xoGHsMMU4FwZdSFPv9rOWw2Ihw27DbzPdjtdWt/4HPYbA1CoNcw8HoNIrzVOD1luGrLcXnKcXpPEOGpIsJbTaS3Cqe3ikhvNZFGFRFGLRHUEmnUEkGNb7sGBx4ceLBj4DA82PFix4PDf3oBA5uvlcMW+NnA8P3kfyeBUGuz+/Y0W1EM7L61DcPmwLDZzQU7hu9L22OLwGtz4MVhrn3bHpuDWlskHlsktUTgsUVQa4vE61vX2p14bJF47E5z2+7EY3NSa3fhcbiotfnWdhdeu9NXW71/b6PuHdQP5fXfj1+gkQhbvW3/fU3/nvKH6ZOf02hsdJbv+f2v15rnb4trvzmkwYzdHaG1398RwTyp2+1m06ZNzJs3L3Cb3W4nOzub9evXN/qY9evXk5OT0+C2GTNm8NJLLzX5OtXV1VRX112yvLS0NJgypZvrlxTN9ycN4PuTBlhdSqew220MSI5hQHIM3xzRp9F9vF6DCrcZSsqra3HXen1fePbAOjLCTqTDhg1b3ReZ70vNa4C71mv2b6lwc7TCzfHKGo5Wmtv+vi9HK8z+L0fKqymtavm0ldNhJ9blIKZeS4e/P5BhEPhyNb9wjXqtKR4qqs3+NWCeZjK3Wg4drgg7UZFm65DD90UMvl/KvgDj8RpU1dT12fE3HHm8ZtiobmVLVGtU1XihFccqNEQCyb5FTB6g0rdIfd+d0K/Dw0hrBRVGDh8+jMfjITW14eycqampbN/eyMWogMLCwkb3Lyxs5IqhPrm5udx9993BlCbSo9jtNuKjIomPiiS15d0b5zJHN9HKS6zUeLxU+PrR+FssoO4vMX8LQHt4fCHrhNtz6ikXX4Dwn3LxB5BgR1kZhoHb46WqxjzN4671Uus1qPWd4vK3vBiGQYTD7utbY7Y6OOzmz4G/cOv95Wnz1e/2eHHXeqmu9VJd4wm8lsfrf516LS1es6XCZrMFWoPMVg0bdjv1gpUt8Br+l/T4WlFqPb61L1h5/a0svpYVr2HuaxhGg1aTwOvYzGNqszW8z2are12v7x/C6/tr3f+8GHWvVT9s1j8+da1adafqaHC7+Vr1g7L/eQ3/mrqWIq9RF2xbUr9Vwv9z/VYm/+eh7nNW9x6p915t2Bp5zrobbKfcZ27Uby0JVFuvVaXej5htRraTnqfuh5Y+5U09f/3XqNu38ffUkrQE6y6SGVQY6Srz5s1r0JpSWlpKRkaGhRWJ9HyRDjtJMZ07IZfDbiMhKrLJ0VIdwWaz4Ypw4IpwkBjdea8jIh0nqDDSp08fHA4HRUUNrwhaVFREWlpao49JS0sLan8Al8uFy6WplEVERMJBUG2uTqeTSZMmkZeXF7jN6/WSl5dHVlZWo4/JyspqsD/AmjVrmtxfREREwkvQp2lycnKYPXs2kydPZurUqSxZsoSKigrmzJkDwKxZs+jfvz+5ubkA3HrrrZxzzjncf//9XHzxxaxcuZKPPvqIP//5zx37TkRERKRbCjqMzJw5k0OHDjF//nwKCwuZMGECq1evDnRS3bdvH/Z6s/6deeaZPPvss/zmN7/hf//3fxkxYgQvvfRSq+cYERERkZ5N08GLiIhIp2jt93cPmZ5QREREuiuFEREREbGUwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIhedXek/nnZSstLbW4EhEREWkt//d2S/OrdoswUlZWBkBGRobFlYiIiEiwysrKSExMbPL+bjEdvNfr5eDBg8THx2Oz2TrseUtLS8nIyCA/Pz+sp5nXcdAxAB0DPx0HHQPQMfBr73EwDIOysjL69evX4Lp1J+sWLSN2u50BAwZ02vMnJCSE9YfNT8dBxwB0DPx0HHQMQMfArz3HobkWET91YBURERFLKYyIiIiIpcI6jLhcLhYsWIDL5bK6FEvpOOgYgI6Bn46DjgHoGPh11XHoFh1YRUREpOcK65YRERERsZ7CiIiIiFhKYUREREQspTAiIiIilgrrMLJ06VIGDx5MVFQU06ZNY8OGDVaX1Gn+/e9/c+mll9KvXz9sNhsvvfRSg/sNw2D+/Pmkp6cTHR1NdnY2O3futKbYTpKbm8uUKVOIj48nJSWFyy+/nB07djTYp6qqihtvvJHevXsTFxfH97//fYqKiiyquHM88sgjjBs3LjCJUVZWFm+88Ubg/nA4Bie79957sdls/OIXvwjc1tOPw1133YXNZmuwjBo1KnB/T3//9R04cIAf//jH9O7dm+joaMaOHctHH30UuL+n/34cPHjwKZ8Fm83GjTfeCHTNZyFsw8iqVavIyclhwYIFbN68mfHjxzNjxgyKi4utLq1TVFRUMH78eJYuXdro/ffddx8PPvggy5Yt48MPPyQ2NpYZM2ZQVVXVxZV2nnXr1nHjjTfywQcfsGbNGmpqavj2t79NRUVFYJ9f/vKXvPrqqzz33HOsW7eOgwcP8r3vfc/CqjvegAEDuPfee9m0aRMfffQR3/rWt7jsssv4/PPPgfA4BvVt3LiRRx99lHHjxjW4PRyOw+mnn05BQUFgeffddwP3hcP7Bzh27BjTp08nMjKSN954gy+++IL777+f5OTkwD49/ffjxo0bG3wO1qxZA8CVV14JdNFnwQhTU6dONW688cbAzx6Px+jXr5+Rm5trYVVdAzBefPHFwM9er9dIS0szFi5cGLjt+PHjhsvlMv72t79ZUGHXKC4uNgBj3bp1hmGY7zkyMtJ47rnnAvts27bNAIz169dbVWaXSE5ONv7yl7+E3TEoKyszRowYYaxZs8Y455xzjFtvvdUwjPD4LCxYsMAYP358o/eFw/v3u/32241vfvObTd4fjr8fb731VmPYsGGG1+vtss9CWLaMuN1uNm3aRHZ2duA2u91OdnY269evt7Aya+zevZvCwsIGxyMxMZFp06b16ONRUlICQK9evQDYtGkTNTU1DY7DqFGjGDhwYI89Dh6Ph5UrV1JRUUFWVlbYHYMbb7yRiy++uMH7hfD5LOzcuZN+/foxdOhQrr76avbt2weEz/sHeOWVV5g8eTJXXnklKSkpTJw4keXLlwfuD7ffj263m6effpqf/vSn2Gy2LvsshGUYOXz4MB6Ph9TU1Aa3p6amUlhYaFFV1vG/53A6Hl6vl1/84hdMnz6dMWPGAOZxcDqdJCUlNdi3Jx6HrVu3EhcXh8vl4uc//zkvvvgio0ePDqtjsHLlSjZv3kxubu4p94XDcZg2bRpPPPEEq1ev5pFHHmH37t2cddZZlJWVhcX799u1axePPPIII0aM4M033+T666/nlltu4cknnwTC7/fjSy+9xPHjx7nmmmuArvt/oVtctVeko91444189tlnDc6Rh5ORI0eyZcsWSkpKeP7555k9ezbr1q2zuqwuk5+fz6233sqaNWuIioqyuhxLfOc73wlsjxs3jmnTpjFo0CD+/ve/Ex0dbWFlXcvr9TJ58mT+8Ic/ADBx4kQ+++wzli1bxuzZsy2urus99thjfOc736Ffv35d+rph2TLSp08fHA7HKb2Bi4qKSEtLs6gq6/jfc7gcj5tuuonXXnuNd955hwEDBgRuT0tLw+12c/z48Qb798Tj4HQ6GT58OJMmTSI3N5fx48fzwAMPhM0x2LRpE8XFxZxxxhlEREQQERHBunXrePDBB4mIiCA1NTUsjkN9SUlJnHbaaXz11Vdh8zkASE9PZ/To0Q1uy8zMDJyyCqffj3v37uXtt9/muuuuC9zWVZ+FsAwjTqeTSZMmkZeXF7jN6/WSl5dHVlaWhZVZY8iQIaSlpTU4HqWlpXz44Yc96ngYhsFNN93Eiy++yL/+9S+GDBnS4P5JkyYRGRnZ4Djs2LGDffv29ajj0Biv10t1dXXYHIPzzz+frVu3smXLlsAyefJkrr766sB2OByH+srLy/n6669JT08Pm88BwPTp008Z4v/ll18yaNAgIHx+PwI8/vjjpKSkcPHFFwdu67LPQod1he1mVq5cabhcLuOJJ54wvvjiC+NnP/uZkZSUZBQWFlpdWqcoKyszPv74Y+Pjjz82AGPx4sXGxx9/bOzdu9cwDMO49957jaSkJOPll182Pv30U+Oyyy4zhgwZYpw4ccLiyjvO9ddfbyQmJhpr1641CgoKAktlZWVgn5///OfGwIEDjX/961/GRx99ZGRlZRlZWVkWVt3x7rjjDmPdunXG7t27jU8//dS44447DJvNZrz11luGYYTHMWhM/dE0htHzj8P//M//GGvXrjV2795tvPfee0Z2drbRp08fo7i42DCMnv/+/TZs2GBEREQYv//9742dO3cazzzzjBETE2M8/fTTgX3C4fejx+MxBg4caNx+++2n3NcVn4WwDSOGYRgPPfSQMXDgQMPpdBpTp041PvjgA6tL6jTvvPOOAZyyzJ492zAMc/janXfeaaSmphoul8s4//zzjR07dlhbdAdr7P0DxuOPPx7Y58SJE8YNN9xgJCcnGzExMcYVV1xhFBQUWFd0J/jpT39qDBo0yHA6nUbfvn2N888/PxBEDCM8jkFjTg4jPf04zJw500hPTzecTqfRv39/Y+bMmcZXX30VuL+nv//6Xn31VWPMmDGGy+UyRo0aZfz5z39ucH84/H588803DaDR99UVnwWbYRhGx7WziIiIiAQnLPuMiIiISOhQGBERERFLKYyIiIiIpRRGRERExFIKIyIiImIphRERERGxlMKIiIiIWEphRERERCylMCIiIiKWUhgRERERSymMiIiIiKUURkRERMRS/x+tc+Bfb9JOKwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train Score: 2.03 RMSE\n", + "Test Score: 5.49 RMSE\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOIAAAIjCAYAAACu4rRtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1JklEQVR4nOzdd3hTZRsG8DvduwU6gUILZZS9p+wtsgTBsgoyREBliQzZnyIoS2UoUBmyh8jeQ/YQyqbsDQWEtrTQmfP98Zi0oYO0pEnH/buuXOfk5OScJx0KN8/7vipFURQQERERERERERFRpjIzdQFERERERERERES5AYM4IiIiIiIiIiIiI2AQR0REREREREREZAQM4oiIiIiIiIiIiIyAQRwREREREREREZERMIgjIiIiIiIiIiIyAgZxRERERERERERERsAgjoiIiIiIiIiIyAgYxBERERERERERERkBgzgiIiLKdlQqFcaPH2/qMjJN/fr1UaZMGZPd38fHBz169DDZ/U3h9u3bUKlUWLRokfbY+PHjoVKpDHaP/fv3Q6VSYf/+/Qa7JhEREWUvDOKIiIgow+bMmQOVSoXq1aubupR3Ehsbi1mzZqFixYpwcnKCi4sLSpcujb59++LKlSva844cOYLx48cjLCzMdMW+RY8ePaBSqbQPJycnlC9fHtOmTUNMTIypy0tVdq07JXPmzNEJ9IiIiIg0LExdABEREWVfy5Ytg4+PD06cOIHr16/Dz8/P1CVlSPv27bFt2zYEBASgT58+iIuLw5UrV7B582bUqlULJUuWBCBB3IQJE9CjRw+4uLiYtug0WFtbY8GCBQCAsLAwrFu3DsOGDcPJkyexcuXKt74/JCQEZmbG//fad63b0L755huMGDEi3e+bM2cOXF1dk3UV1q1bF69fv4aVlZWBKiQiIqLshkEcERERZcitW7dw5MgRrF+/Hp9++imWLVuGcePGmbqsdDt58iQ2b96Mb7/9FqNGjdJ57ZdffsnS3W+psbCwQNeuXbXP+/fvj+rVq2PVqlWYPn068ufPn+w9iqIgOjoatra2sLa2Nma5Wu9ad2bUY2FhuD8um5mZwcbGxmDXIyIiouyHQ1OJiIgoQ5YtW4Y8efKgZcuW6NChA5YtW5bsHM28Wz/++CNmzJiBwoULw9bWFvXq1cOFCxd0zu3RowccHBxw8+ZNNGvWDPb29sifPz8mTpwIRVHeWs+DBw/wySefwMPDA9bW1ihdujSCgoLe+r4bN24AAGrXrp3sNXNzc+TLlw+AzBf21VdfAQB8fX21Qyhv374NAIiPj8ekSZNQtGhRWFtbw8fHB6NGjUpxWOW2bdtQr149ODo6wsnJCVWrVsXy5cvTrHPnzp2ws7NDQEAA4uPj3/q5kjIzM0P9+vUBQFuvj48PPvjgA+zYsQNVqlSBra0tfv31V+1rb3ZzhYWFYfDgwfDx8YG1tTUKFiyI7t2749mzZ9pzYmJiMG7cOPj5+cHa2hre3t4YPnx4hoeWprfusLAwDBo0CN7e3rC2toafnx+mTJkCtVqd7LP06NEDzs7OcHFxQWBgYIqBa2pzxP3xxx+oVq0a7OzskCdPHtStWxc7d+7U1nfx4kUcOHBA+zOi+QypzRG3Zs0aVK5cGba2tnB1dUXXrl3x4MEDnXM0vx8PHjxA27Zt4eDgADc3NwwbNgwJCQnp/MoSERGRqbAjjoiIiDJk2bJl+PDDD2FlZYWAgADMnTsXJ0+eRNWqVZOdu2TJErx8+RIDBgxAdHQ0Zs2ahYYNG+L8+fPw8PDQnpeQkIDmzZujRo0amDp1KrZv345x48YhPj4eEydOTLWW0NBQ1KhRAyqVCgMHDoSbmxu2bduGXr16ISIiAoMGDUr1vYULF9Z+ntq1a6faAfXhhx/i6tWrWLFiBWbMmAFXV1cAgJubGwCgd+/eWLx4MTp06IChQ4fi+PHjmDx5Mi5fvow///xTe51Fixbhk08+QenSpTFy5Ei4uLjgzJkz2L59Ozp37pzivTdv3owOHTqgU6dOCAoKgrm5eaqfJzWawFETLAIyBDUgIACffvop+vTpgxIlSqT43sjISNSpUweXL1/GJ598gkqVKuHZs2fYuHEj7t+/D1dXV6jVarRu3RqHDh1C37594e/vj/Pnz2PGjBm4evUqNmzYkO6a01P3q1evUK9ePTx48ACffvopChUqhCNHjmDkyJF49OgRZs6cCUA66Nq0aYNDhw6hX79+8Pf3x59//onAwEC96pkwYQLGjx+PWrVqYeLEibCyssLx48exd+9eNG3aFDNnzsTnn38OBwcHjB49GgB0fsbftGjRIvTs2RNVq1bF5MmTERoailmzZuHw4cM4c+aMzhDohIQENGvWDNWrV8ePP/6I3bt3Y9q0aShatCg+++yzdH5liYiIyCQUIiIionQ6deqUAkDZtWuXoiiKolarlYIFCypffvmlznm3bt1SACi2trbK/fv3tcePHz+uAFAGDx6sPRYYGKgAUD7//HPtMbVarbRs2VKxsrJSnj59qj0OQBk3bpz2ea9evRQvLy/l2bNnOvf/+OOPFWdnZ+XVq1epfha1Wq3Uq1dPAaB4eHgoAQEByuzZs5U7d+4kO/eHH35QACi3bt3SOR4cHKwAUHr37q1zfNiwYQoAZe/evYqiKEpYWJji6OioVK9eXXn9+nWyOjTq1aunlC5dWlEURVm3bp1iaWmp9OnTR0lISEj1c2gEBgYq9vb2ytOnT5WnT58q169fV7777jtFpVIp5cqV055XuHBhBYCyffv2ZNcoXLiwEhgYqH0+duxYBYCyfv36ZOdq6l66dKliZmamHDx4UOf1efPmKQCUw4cPZ2rdkyZNUuzt7ZWrV6/qHB8xYoRibm6u3L17V1EURdmwYYMCQJk6dar2nPj4eKVOnToKAOX333/XHh83bpyS9I/L165dU8zMzJR27dol+14k/f6VLl1aqVevXrLPuG/fPgWAsm/fPkVRFCU2NlZxd3dXypQpo/PzsHnzZgWAMnbsWJ2vDwBl4sSJOtesWLGiUrly5WT3IiIioqyJQ1OJiIgo3ZYtWwYPDw80aNAAAKBSqdCpUyesXLkyxWFybdu2RYECBbTPq1WrhurVq2Pr1q3Jzh04cKB2X9PhFhsbi927d6dYi6IoWLduHVq1agVFUfDs2TPto1mzZggPD8fp06dT/SwqlQo7duzA//73P+TJkwcrVqzAgAEDULhwYXTq1EmvOeI0n2PIkCE6x4cOHQoA2LJlCwBg165dePnyJUaMGJFsrrCUhkCuWLECnTp1wqeffopff/1V7wUUoqKi4ObmBjc3N/j5+WHUqFGoWbOmTmceIENsmzVr9tbrrVu3DuXLl0e7du2Svaape82aNfD390fJkiV1vgcNGzYEAOzbty9T616zZg3q1KmDPHny6Ny/cePGSEhIwN9//w1AvlcWFhY6HWTm5ub4/PPP31rfhg0boFarMXbs2GTfi5S+f29z6tQpPHnyBP3799f5eWjZsiVKliyp/blJql+/fjrP69Spg5s3b6b73kRERGQaHJpKRERE6ZKQkICVK1eiQYMGuHXrlvZ49erVMW3aNOzZswdNmzbVeU+xYsWSXad48eJYvXq1zjEzMzMUKVIk2XlA4hxhb3r69CnCwsLw22+/4bfffkvxnCdPnqT5maytrTF69GiMHj0ajx49woEDBzBr1iysXr0alpaW+OOPP9J8/507d2BmZpZs1VhPT0+4uLjgzp07ABKHWZYpUybN6wGyGEbXrl3x0Ucf4eeff37r+UnZ2Nhg06ZN2s/m6+uLggULJjvP19dXr+vduHED7du3T/Oca9eu4fLly9qhum962/cAeLe6r127hnPnzr31/nfu3IGXlxccHBx0Xk9tWG5SN27cgJmZGUqVKvXWc/Wh+blI6d4lS5bEoUOHdI7Z2Ngk+3x58uTBixcvDFIPERERZT4GcURERJQue/fuxaNHj7By5UqsXLky2evLli1LFsRlJs1E/F27dk11nq9y5crpfT0vLy98/PHHaN++PUqXLo3Vq1dj0aJFeq2emZGuqLTq8PLywtatW3Hq1ClUqVJF7/eam5ujcePGbz3PkCuNqtVqlC1bFtOnT0/xdW9v77de413qVqvVaNKkCYYPH57iezSBbnaWkbkBiYiIKGthEEdERETpsmzZMri7u2P27NnJXlu/fj3+/PNPzJs3TycsuXbtWrJzr169Ch8fH51jarUaN2/e1AlNrl69CgDJztVwc3ODo6MjEhIS9Apx9GVpaYly5crh2rVrePbsGTw9PVMN2goXLgy1Wo1r167B399fezw0NBRhYWHaBSGKFi0KALhw4UKy7rk32djYYPPmzWjYsCGaN2+OAwcOoHTp0gb6dOlTtGjRZKvcpnTO2bNn0ahRI4MGkvoqWrQoIiMj3/ozULhwYezZsweRkZE6XXEhISF63UOtVuPSpUuoUKFCqufp+/k1PxchISHaIbxJ69G8TkRERDkH54gjIiIivb1+/Rrr16/HBx98gA4dOiR7DBw4EC9fvsTGjRt13rdhwwY8ePBA+/zEiRM4fvw4WrRokewev/zyi3ZfURT88ssvsLS0RKNGjVKsydzcHO3bt8e6detSDIuePn2a5me6du0a7t69m+x4WFgYjh49ijx58miHA9rb22tfS+r9998HAO3KnBqa7rCWLVsCAJo2bQpHR0dMnjwZ0dHROucqipKsBmdnZ+zYsQPu7u5o0qSJdmirsbVv3x5nz55NNlcbkFh3x44d8eDBA8yfPz/ZOa9fv0ZUVFSm1tixY0ccPXoUO3bsSPZaWFgY4uPjAcj3Kj4+HnPnztW+npCQoNfw37Zt28LMzAwTJ07UdmJqJP3+2dvb6zW3YJUqVeDu7o558+YhJiZGe3zbtm24fPmy9ueGiIiIcg52xBEREZHeNm7ciJcvX6J169Ypvl6jRg24ublh2bJl6NSpk/a4n58f3nvvPXz22WeIiYnBzJkzkS9fvmTDCG1sbLB9+3YEBgaievXq2LZtG7Zs2YJRo0alOvcXAHz//ffYt28fqlevjj59+qBUqVJ4/vw5Tp8+jd27d+P58+epvvfs2bPo3LkzWrRogTp16iBv3rx48OABFi9ejIcPH2LmzJnaIYGVK1cGAIwePRoff/wxLC0t0apVK5QvXx6BgYH47bffEBYWhnr16uHEiRNYvHgx2rZtq13UwsnJCTNmzEDv3r1RtWpVdO7cGXny5MHZs2fx6tUrLF68OFl9rq6u2LVrF9577z00btwYhw4d0ln4whi++uorrF27Fh999BE++eQTVK5cGc+fP8fGjRsxb948lC9fHt26dcPq1avRr18/7Nu3D7Vr10ZCQgKuXLmC1atXY8eOHekaXpuRGjdu3IgPPvgAPXr0QOXKlREVFYXz589j7dq1uH37NlxdXdGqVSvUrl0bI0aMwO3bt1GqVCmsX78e4eHhb72Hn58fRo8ejUmTJqFOnTr48MMPYW1tjZMnTyJ//vyYPHkyAPk5mTt3Lv73v//Bz88P7u7uyTreAOm6nDJlCnr27Il69eohICAAoaGhmDVrFnx8fDB48GCDf52IiIjIxEy5ZCsRERFlL61atVJsbGyUqKioVM/p0aOHYmlpqTx79ky5deuWAkD54YcflGnTpine3t6KtbW1UqdOHeXs2bM67wsMDFTs7e2VGzduKE2bNlXs7OwUDw8PZdy4cUpCQoLOuQCUcePG6RwLDQ1VBgwYoHh7eyuWlpaKp6en0qhRI+W3335L8zOFhoYq33//vVKvXj3Fy8tLsbCwUPLkyaM0bNhQWbt2bbLzJ02apBQoUEAxMzNTACi3bt1SFEVR4uLilAkTJii+vr6KpaWl4u3trYwcOVKJjo5Odo2NGzcqtWrVUmxtbRUnJyelWrVqyooVK7Sv16tXTyldurTOe65fv654eXkp/v7+ytOnT1P9PJqv49sULlxYadmyZaqvBQYG6hz7999/lYEDByoFChRQrKyslIIFCyqBgYHKs2fPtOfExsYqU6ZMUUqXLq1YW1srefLkUSpXrqxMmDBBCQ8PT7MeQ9T98uVLZeTIkYqfn59iZWWluLq6KrVq1VJ+/PFHJTY2VuezdOvWTXFyclKcnZ2Vbt26KWfOnFEAKL///rv2vHHjxikp/XE5KChIqVixovYz1qtXT9m1a5f29cePHystW7ZUHB0dFQBKvXr1FEVRlH379ikAlH379ulcb9WqVdrr5c2bV+nSpYty//59vb4+qdVIREREWZNKUVIYB0FERERkALdv34avry9++OEHDBs2LM1ze/TogbVr1yIyMtJI1RERERERGRfniCMiIiIiIiIiIjICBnFERERERERERERGwCCOiIiIiIiIiIjICDhHHBERERERERERkRGwI46IiIiIiIiIiMgIGMQREREREREREREZgYWpCzA2tVqNhw8fwtHRESqVytTlEBERERERERGRCSmKgpcvXyJ//vwwM8vcnrVcF8Q9fPgQ3t7epi6DiIiIiIiIiIiykHv37qFgwYKZeo9cF8Q5OjoCkC+uk5OTiashIiIiIiIiIiJTioiIgLe3tzYzyky5LojTDEd1cnJiEEdERERERERERABglCnMuFgDERERERERERGRETCIIyIiIiIiIiIiMgIGcUREREREREREREaQ6+aI04eiKIiPj0dCQoKpSyEiPZmbm8PCwsIoY/qJiIiIiIiIMoJB3BtiY2Px6NEjvHr1ytSlEFE62dnZwcvLC1ZWVqYuhYiIiIiIiCgZBnFJqNVq3Lp1C+bm5sifPz+srKzYXUOUDSiKgtjYWDx9+hS3bt1CsWLFYGbGkfdERERERESUtTCISyI2NhZqtRre3t6ws7MzdTlElA62trawtLTEnTt3EBsbCxsbG1OXRERERERERKSDLSMpYCcNUfbE310iIiIiIiLKyvi3ViIiIiIiIiIiIiNgEEdERERERERERGQEDOIoXXr06IG2bduaugwAwO3bt6FSqRAcHGzqUjJEpVJhw4YNmX6frPQ9IyIiIiIiIsrNGMTlED169IBKpYJKpYKlpSV8fX0xfPhwREdHm6ymkiVLwtraGo8fPzZZDfqYP38+ypcvDwcHB7i4uKBixYqYPHmy9vWsEmQtWrRI+z02MzNDwYIF0bNnTzx58iTN982aNQuLFi0yTpFERERERERElCqumpqDNG/eHL///jvi4uLwzz//IDAwECqVClOmTDF6LYcOHcLr16/RoUMHLF68GF9//bXRa9BHUFAQBg0ahJ9++gn16tVDTEwMzp07hwsXLpi6tBQ5OTkhJCQEarUaZ8+eRc+ePfHw4UPs2LEj2bkJCQlQqVRwdnY2QaVERERERERE9CZ2xL2NogBRUaZ5KEq6SrW2toanpye8vb3Rtm1bNG7cGLt27dK+rlarMXnyZPj6+sLW1hbly5fH2rVrta8nJCSgV69e2tdLlCiBWbNmZejLtnDhQnTu3BndunVDUFBQstd9fHwwadIkBAQEwN7eHgUKFMDs2bN1zlGpVJg7dy5atGgBW1tbFClSRKfelFy4cAEtWrSAg4MDPDw80K1bNzx79izV8zdu3IiOHTuiV69e8PPzQ+nSpREQEIBvv/0WADB+/HgsXrwYf/31l7Ybbf/+/QCA8+fPo2HDhrC1tUW+fPnQt29fREZG6lw/KCgIpUuXhrW1Nby8vDBw4MBUaxk3bhy8vLxw7ty5VM9RqVTw9PRE/vz50aJFC3zxxRfYvXs3Xr9+jUWLFsHFxQUbN25EqVKlYG1tjbt37ybr6FOr1Zg6dSr8/PxgbW2NQoUKaT8vANy7dw8dO3aEi4sL8ubNizZt2uD27dtpfNWJiIiIiIiISB8mDeL+/vtvtGrVCvnz59d7vqz9+/ejUqVKsLa2hp+fX+YPuXv1CnBwMM3j1asMl33hwgUcOXIEVlZW2mOTJ0/GkiVLMG/ePFy8eBGDBw9G165dceDAAQAS0BQsWBBr1qzBpUuXMHbsWIwaNQqrV69O171fvnyJNWvWoGvXrmjSpAnCw8Nx8ODBZOf98MMPKF++PM6cOYMRI0bgyy+/1AkOAWDMmDFo3749zp49iy5duuDjjz/G5cuXU7xvWFgYGjZsiIoVK+LUqVPYvn07QkND0bFjx1Rr9fT0xLFjx3Dnzp0UXx82bBg6duyI5s2b49GjR3j06BFq1aqFqKgoNGvWDHny5MHJkyexZs0a7N69Wydomzt3LgYMGIC+ffvi/Pnz2LhxI/z8/JLdQ1EUfP7551iyZAkOHjyIcuXKpVrvm2xtbaFWqxEfHw8AePXqFaZMmYIFCxbg4sWLcHd3T/aekSNH4vvvv8eYMWNw6dIlLF++HB4eHgCAuLg4NGvWDI6Ojjh48CAOHz4MBwcHNG/eHLGxsXrXRUREREREREQpUExo69atyujRo5X169crAJQ///wzzfNv3ryp2NnZKUOGDFEuXbqk/Pzzz4q5ubmyfft2ve8ZHh6uAFDCw8OTvfb69Wvl0qVLyuvXrxMPRkYqivSmGf8RGan35woMDFTMzc0Ve3t7xdraWgGgmJmZKWvXrlUURVGio6MVOzs75ciRIzrv69WrlxIQEJDqdQcMGKC0b99e5z5t2rRJs5bffvtNqVChgvb5l19+qQQGBuqcU7hwYaV58+Y6xzp16qS0aNFC+xyA0q9fP51zqlevrnz22WeKoijKrVu3FADKmTNnFEVRlEmTJilNmzbVOf/evXsKACUkJCTFWh8+fKjUqFFDAaAUL15cCQwMVFatWqUkJCSk+Zl/++03JU+ePEpkku/Rli1bFDMzM+Xx48eKoihK/vz5ldGjR6d4X83nW7NmjdK5c2fF399fuX//fqrnKoqi/P7774qzs7P2+dWrV5XixYsrVapU0b4OQAkODtZ5X9L6IyIiFGtra2X+/Pkp3mPp0qVKiRIlFLVarT0WExOj2NraKjt27Eizvqwgxd9hIiIiIiIiojSklRUZmknniGvRogVatGih9/nz5s2Dr68vpk2bBgDw9/fHoUOHMGPGDDRr1ixzirSzA94Ybmg0dnbpOr1BgwaYO3cuoqKiMGPGDFhYWKB9+/YAgOvXr+PVq1do0qSJzntiY2NRsWJF7fPZs2cjKCgId+/exevXrxEbG4sKFSqkq46goCB07dpV+7xr166oV68efv75Zzg6OmqP16xZU+d9NWvWxMyZM5Mde/N5aquknj17Fvv27YODg0Oy127cuIHixYsnO+7l5YWjR4/iwoUL+Pvvv3HkyBEEBgZiwYIF2L59O8zMUm4avXz5MsqXLw97e3vtsdq1a0OtViMkJAQqlQoPHz5Eo0aNUny/xuDBg2FtbY1jx47B1dU1zXMBIDw8HA4ODlCr1YiOjsZ7772HBQsWaF+3srJKs6Pu8uXLiImJSbWus2fP4vr16zrfJwCIjo7GjRs33lofERERERFRtvPypYxIe/UKeP1aHkn3q1YF8uc3dZWUQ2SrxRqOHj2Kxo0b6xxr1qwZBg0alOp7YmJiEBMTo30eERGRvpuqVECSsCUrs7e31w59DAoKQvny5bFw4UL06tVLO3fZli1bUKBAAZ33WVtbAwBWrlyJYcOGYdq0aahZsyYcHR3xww8/4Pjx43rXcOnSJRw7dgwnTpzQWaAhISEBK1euRJ8+fd71Y6YqMjISrVq1SnFxCi8vrzTfW6ZMGZQpUwb9+/dHv379UKdOHRw4cAANGjTIUC22trZ6ndekSROsWLECO3bsQJcuXd56vqOjI06fPg0zMzN4eXklu4+trS1UKlWG64qMjETlypWxbNmyZK+5ubm9tT4iIiIiIqJspXt3YOnStM8pXhwICTFOPZTjZasg7vHjx9q5rDQ8PDwQERGB169fpxgyTJ48GRMmTDBWiVmGmZkZRo0ahSFDhqBz5846k/fXq1cvxfccPnwYtWrVQv/+/bXH0tsFtXDhQtStWzfZwgu///47Fi5cqBPEHTt2TOecY8eOwd/fP9mx7t276zxP2sGXVKVKlbBu3Tr4+PjAwiLjP9qlSpUCAERFRQGQLrOEhASdc/z9/bFo0SJERUVpu+IOHz4MMzMzlChRAo6OjvDx8cGePXvSDPNat26NVq1aoXPnzjA3N8fHH3+cZm1mZmYpzjOnr2LFisHW1hZ79uxB7969k71eqVIlrFq1Cu7u7nBycsrwfYiIiIiIiLK8w4d1QzhbWxmZZmub+Dh3Drh6FXj6FGBzAhlAjl81deTIkQgPD9c+7t27Z+qSjOajjz6Cubk5Zs+eDUdHRwwbNgyDBw/G4sWLcePGDZw+fRo///wzFi9eDEBCmlOnTmHHjh24evUqxowZg5MnT+p9v7i4OCxduhQBAQHaDjPNo3fv3jh+/DguXryoPf/w4cOYOnUqrl69itmzZ2PNmjX48ssvda65Zs0aBAUF4erVqxg3bhxOnDiR6sqjAwYMwPPnzxEQEICTJ0/ixo0b2LFjB3r27JksSNP47LPPMGnSJBw+fBh37tzRBn9ubm7aYbE+Pj44d+4cQkJC8OzZM8TFxaFLly6wsbFBYGAgLly4gH379uHzzz9Ht27dtGHx+PHjMW3aNPz000+4du2a9uv9pnbt2mHp0qXo2bPnW1eFfVc2Njb4+uuvMXz4cCxZsgQ3btzAsWPHsHDhQgBAly5d4OrqijZt2uDgwYO4desW9u/fjy+++AL379/P1NqIiIiIiIiMRlGAESNkv08fQK2W4ajPngH37kn4dvYsULSonHP+vOlqpRwlWwVxnp6eCA0N1TkWGhoKJyenVIfcWVtbw8nJSeeRW1hYWGDgwIGYOnUqoqKiMGnSJIwZMwaTJ0+Gv78/mjdvji1btsDX1xcA8Omnn+LDDz9Ep06dUL16dfz777863XFvs3HjRvz7779o165dstf8/f3h7++vDXwAYOjQoTh16hQqVqyI//3vf5g+fXqyuf4mTJiAlStXoly5cliyZAlWrFih7Vh7U/78+XH48GEkJCSgadOmKFu2LAYNGgQXF5dU53pr3Lgxjh07ho8++gjFixdH+/btYWNjgz179iBfvnwAgD59+qBEiRKoUqUK3NzccPjwYdjZ2WHHjh14/vw5qlatig4dOqBRo0b45ZdftNcODAzEzJkzMWfOHJQuXRoffPABrl27lmIdHTp0wOLFi9GtWzesX78+7S/0OxozZgyGDh2KsWPHwt/fH506dcKTJ08AAHZ2dvj7779RqFAhfPjhh/D390evXr0QHR2dq353iIiIiIgoh9u2DTh0CLCxAcaNk2mpUlK2rGwZxJGBqBRFUUxdBACoVCr8+eefaNu2barnfP3119i6dSvOJ/kF6Ny5M54/f47t27frdZ+IiAg4OzsjPDw8WbAQHR2NW7duwdfXFzY2Nhn6HKQfHx8fDBo0KM35/fT5mSBKir/DRERERET0Vv/+C1SpAty+DXz1FTB1aurnjh0LTJoE9OoFJFkoj3KWtLIiQzNpR1xkZCSCg4O1q2DeunULwcHBuHv3LgAZVpp0frB+/frh5s2bGD58OK5cuYI5c+Zg9erVGDx4sCnKJyIiIiIiIqLsJD4e6NRJQrgiRYBRo9I+nx1xZGAmDeI0wxI1k+8PGTIEFStWxNixYwEAjx490oZyAODr64stW7Zg165dKF++PKZNm4YFCxYkG85IRERERERERJTM1KnAnj2AvT2wYQPg4pL2+Zog7sIFmUeO6B1lmaGpxsKhqUQ5F3+HiYiIiIgoTRUqyCIM8+YBn3769vPj4wEHByAmBrh2DfDzy/QSyfhyzdBUIiIiIiIiIiKjCAsDzp2T/dat9XuPhQWgWTCQw1PJABjEEREREREREVHOd+QIoCjS1eblpf/7OE8cGRCDOCIiIiIiIiLK+f7+W7Z16qTvfZogTtNNR/QOGMQRERERERERUc538KBs0xvElS8v23XrgA8+kLniiDKIQRwRERERERER5WyvXwMnT8p+eoO4evWAnj0BMzNgyxYJ4+LiDF8j5QoM4oiIiIiIiIjIdG7eBDp3ztw52I4fl/DMywsoWjR977WyAoKCgMuXAVdX4OpVYNGi1M9Xq4Fnz96pXMq5GMRRuvXo0QNt27bVPq9fvz4GDRpk9Dr2798PlUqFsLAwo987Jab6OhjCm9/TzJLVvmdERERERJQFzJwJrFgBdO8uIVZmSDosVaXK2DWKFwdGj5b9CROkyy4lgwdL4LdjR8buQzkag7gcokePHlCpVFCpVLCysoKfnx8mTpyI+Pj4TL/3+vXrMWnSJL3ONVUQM3nyZJibm+OHH34w6n3T6+zZs2jdujXc3d1hY2MDHx8fdOrUCU+ePAGQtYIszc+bSqWCs7Mzateujb1796b5nlq1auHRo0dwdnY2UpVERERERJTlnTol2+BgYPXqzLnH0aOyrV373a7Trx9QqBDw4AEwe3bK5+zfD8THA0OGAAkJ73Y/ynEYxOUgzZs3x6NHj3Dt2jUMHToU48ePTzV4io2NNdh98+bNC0dHR4NdLzMEBQVh+PDhCAoKMnUpqXr69CkaNWqEvHnzYseOHbh8+TJ+//135M+fH1FRUaYuL0W///47Hj16hMOHD8PV1RUffPABbt68meK5cXFxsLKygqenJ1QZ/RcoIiIiIiLKWeLjJYDTGDPG8POvKQpw4oTs16jxbteysQHGjpX9n39OOWi7c0e2ly4BS5a82/0ox2EQ9xaKAkRFmeahKOmr1draGp6enihcuDA+++wzNG7cGBs3bgSQOPTw22+/Rf78+VGiRAkAwL1799CxY0e4uLggb968aNOmDW7fvq29ZkJCAoYMGQIXFxfky5cPw4cPh/JGYW8OyYyJicHXX38Nb29vWFtbw8/PDwsXLsTt27fRoEEDAECePHmgUqnQo0cPAIBarcbkyZPh6+sLW1tblC9fHmvXrtW5z9atW1G8eHHY2tqiQYMGOnWm5cCBA3j9+jUmTpyIiIgIHDlyROf18ePHo0KFCvj111/h7e0NOzs7dOzYEeHh4dpzNF+/CRMmwM3NDU5OTujXr1+agWZMTAyGDRuGAgUKwN7eHtWrV8f+/ftTPf/w4cMIDw/HggULULFiRfj6+qJBgwaYMWMGfH190/z6xcTE4IsvvtB20r333ns4qZmI9D8XL17EBx98ACcnJzg6OqJOnTq4ceNGirWcPHkSbm5umDJlSlpfWri4uMDT0xNlypTB3Llz8fr1a+zatQuAdMzNnTsXrVu3hr29Pb799tsUO/oOHz6M+vXrw87ODnny5EGzZs3w4sULAPr9XBARERERUTZ25YoM8XRwANzdgevXgZUrDXuPGzeAf/+Vud40K6C+i86dARcX4O5d4L+//2iFh8tDY+zY1IewUq7EIO4tXr2S/x6Y4vHq1bvVbmtrqxMU7dmzByEhIdi1axc2b96MuLg4NGvWDI6Ojjh48CAOHz4MBwcHNG/eXPu+adOmYdGiRQgKCsKhQ4fw/Plz/Pnnn2net3v37lixYgV++uknXL58Gb/++iscHBzg7e2NdevWAQBCQkLw6NEjzJo1C4AMHV2yZAnmzZuHixcvYvDgwejatSsOHDgAQALDDz/8EK1atUJwcDB69+6NESNG6PV1WLhwIQICAmBpaYmAgAAsXLgw2TnXr1/H6tWrsWnTJmzfvh1nzpxB//79dc7Zs2cPLl++jP3792PFihVYv349JkyYkOp9Bw4ciKNHj2LlypU4d+4cPvroIzRv3hzXUlnq2tPTE/Hx8fjzzz+ThZ0A0vz6DR8+HOvWrcPixYtx+vRp+Pn5oVmzZnj+/DkA4MGDB6hbty6sra2xd+9e/PPPP/jkk09SHLq8d+9eNGnSBN9++y2+/vrrVD/fm2xtbQHodluOHz8e7dq1w/nz5/HJJ58ke09wcDAaNWqEUqVK4ejRozh06BBatWqFhP/+VeltPxdERERERJTNnT4t24oVga5ddY8ZyvHjifewtn7369naAt26yf78+bqv3b0rWxcXwNsbuH8f+K9BhggAoOQy4eHhCgAlPDw82WuvX79WLl26pLx+/Vp7LDJSUaQ3zfiPyEj9P1dgYKDSpk0bRVEURa1WK7t27VKsra2VYcOGaV/38PBQYmJitO9ZunSpUqJECUWtVmuPxcTEKLa2tsqOHTsURVEULy8vZerUqdrX4+LilIIFC2rvpSiKUq9ePeXLL79UFEVRQkJCFADKrl27Uqxz3759CgDlxYsX2mPR0dGKnZ2dcuTIEZ1ze/XqpQQEBCiKoigjR45USpUqpfP6119/nexabwoPD1dsbW2V4OBgRVEU5cyZM4qDg4Py8uVL7Tnjxo1TzM3Nlfv372uPbdu2TTEzM1MePXqkKIp8/fLmzatERUVpz5k7d67i4OCgJCQkJPs63LlzRzE3N1cePHigU0+jRo2UkSNHplrvqFGjFAsLCyVv3rxK8+bNlalTpyqPHz/Wvp7S1y8yMlKxtLRUli1bpj0WGxur5M+fX/u9GzlypOLr66vExsameF/Nz8/69esVBwcHZeXKlanWqAFA+fPPPxVFUZSoqCilf//+irm5uXL27Fnt64MGDdJ5z5v1BwQEKLVr107x+vr8XLwppd9hIiIiIiIygYcP5fE2X3whfwEeNEhRfvpJ9tu3N2wtn38u1/3v72sGce6cXNPCQlGS/J1N2bRJjlesqCjDhsl+9+6Guy9lirSyIkOzMFkCmE3Y2QGRkaa7d3ps3rwZDg4OiIuLg1qtRufOnTF+/Hjt62XLloWVlZX2+dmzZ3H9+vVk87tFR0fjxo0bCA8Px6NHj1C9enXtaxYWFqhSpUqKHVuAdDiZm5ujXr16etd9/fp1vHr1Ck2aNNE5Hhsbi4oVKwIALl++rFMHANSsWfOt116xYgWKFi2K8v+1H1eoUAGFCxfGqlWr0KtXL+15hQoVQoECBXSurVarERISAk9PTwBA+fLlYZfkm1KzZk1ERkbi3r17KFy4sM59z58/j4SEBBQvXlzneExMDPLly5dqvd9++y2GDBmCvXv34vjx45g3bx6+++47/P333yhbtmyK77lx4wbi4uJQO8mko5aWlqhWrRouX74MQL4vderUgaWlZar3Pn78ODZv3oy1a9fqvYJqQEAAzM3N8fr1a7i5uWHhwoUoV66c9vUqVaqk+f7g4GB89NFHKb6mz88FERERERFlQVFRQKVKsn/7dtpdaP/8I9vKlQF7e9m/f9+w9Wg64t74O+U7KVtWrnf8OLBoEaAZTaSZH65wYaBFC+DHH4Ht22U1WDMOSiSAQdxbqFSJ/y3I6ho0aIC5c+fCysoK+fPnh4WF7rfX/o0PEhkZicqVK2PZsmXJruXm5pahGjTDE9Mj8r+kc8uWLTphGCDz3r2LhQsX4uLFizpfC7VajaCgIJ0gztAiIyNhbm6Of/75B+bm5jqvOTg4pPnefPny4aOPPsJHH32E7777DhUrVsSPP/6IxYsXZ7gefb4vRYsWRb58+RAUFISWLVumGdppzJgxA40bN4azs3OKPzNv/sylp67M/LkgIiIiIqJMtHEj8Pix7D95IkM0U5KQAJw5I/uVKiXOz3TvnuFqiY5OvIchgzgA6NNHgrgFC4DhwyVASBrEvfeezDv15InUULmyYe9P2RLj2BzE3t4efn5+KFSoULIQLiWVKlXCtWvX4O7uDj8/P52Hs7MznJ2d4eXlheOafz0AEB8fj380/2KRgrJly0KtVqc6h5emIy8hycoypUqVgrW1Ne7evZusDu///oPt7++PE5pVbv5z7NixND/f+fPncerUKezfvx/BwcHax/79+3H06FFcuXJFe+7du3fx8OFDnWubmZlpF7UApIPwdZJJNo8dO6ad++5NFStWREJCAp48eZLsM2k67PRhZWWFokWLaldNTenrV7RoUVhZWeHw4cPaY3FxcTh58iRKlSoFAChXrhwOHjyIuDRWH3J1dcXevXtx/fp1dOzYMc1zNTw9PeHn55fh4LZcuXLYs2dPiq/p83NBRERERERZ0PLlifv/LcSWopAQCd/s7YESJYCCBeX4o0f6r5x64YLM1/bf/NnJBAfLtVxdAV9f/a6pr06dJGi7fh3QLMyXNIizsgI0I3y2bk39Og8fShch5QoM4nKxLl26wNXVFW3atMHBgwdx69Yt7N+/H1988QXu/9cK/OWXX+L777/Hhg0bcOXKFfTv319nxcs3+fj4IDAwEJ988gk2bNigvebq1asBAIULF4ZKpcLmzZvx9OlTREZGwtHREcOGDcPgwYOxePFi3LhxA6dPn8bPP/+s7QLr168frl27hq+++gohISFYvnw5Fi1alObnW7hwIapVq4a6deuiTJky2kfdunVRtWpVnUUbbGxsEBgYiLNnz+LgwYP44osv0LFjR53QLDY2Fr169cKlS5ewdetWjBs3DgMHDoRZCu3FxYsXR5cuXdC9e3esX78et27dwokTJzB58mRs2bIlxXo3b96Mrl27YvPmzbh69SpCQkLw448/YuvWrWjTpk2qXz97e3t89tln+Oqrr7B9+3ZcunQJffr0watXr7RdfwMHDkRERAQ+/vhjnDp1CteuXcPSpUsREhKiU4O7uzv27t2LK1euICAgIMXFHAxp5MiROHnyJPr3749z587hypUrmDt3Lp49e6bXzwUREREREWUx//4rQzE1/ltALkWaRRkqVADMzWXVVEtLmTb90aO332viRHnvH38AgwfLCqxJ3bghq5YCQI0a0rFmSA4OQJcusq9ZtCFpEAfI8FQA2LYt5WscPQoUKQK0bGnY2ijLYhCXi9nZ2eHvv/9GoUKF8OGHH8Lf3x+9evVCdHQ0nJycAABDhw5Ft27dEBgYiJo1a8LR0RHt2rVL87pz585Fhw4d0L9/f5QsWRJ9+vTRdnQVKFAAEyZMwIgRI+Dh4YGBAwcCACZNmoQxY8Zg8uTJ8Pf3R/PmzbFlyxb4/vcvFoUKFcK6deuwYcMGlC9fXjt3WmpiY2Pxxx9/oH379im+3r59eyxZskTb9eXn54cPP/wQ77//Ppo2bYpy5cphzpw5Ou9p1KgRihUrhrp166JTp05o3bq1zhx8b/r999/RvXt3DB06FCVKlEDbtm1x8uRJFCpUKMXzS5UqBTs7OwwdOhQVKlRAjRo1sHr1aixYsADd/luRJ7Wv3/fff4/27dujW7duqFSpEq5fv44dO3YgT548AGS46969exEZGYl69eqhcuXKmD9/forDTz09PbF3716cP38eXbp00em+M7TixYtj586dOHv2LKpVq4aaNWvir7/+0nZ0vu3ngoiIiIiIspi1a4Gk/6CfVkfcpUuy1cyHbWaW2BX3tuGpDx4A48bJ8FZXVwnvNH9HDA+XoaL+/sCuXXLdvn0z9nnepk8f2a5bJyGkZtVUzd/7NEHcsWPyelIxMUCvXrI9cEA+E+V4KiW1WfdzqIiICDg7OyM8PFwbNmlER0fj1q1b8PX1hY2NjYkqJGMbP348NmzYgODg4FTP6dGjB8LCwrBhwwaj1UXpx99hIiIiIiITq1cP+PvvxOcLFwKffJLyuR99JMHd9OnS0QYAdesCBw8CK1YAH3+c+n327wcaNAD8/OTcqlWlq27iRGDmTODpUzmvaVO5funShvh0KatUSeaAmzIlcdGGJ08AzRQ+ZcvKENq1a4GkzSJjxwKTJiU+X7BAgjkyurSyIkNjRxwRERERERERvbvnzyVEAySQ0xxLzdWrsi1ePPGYZj7ot3XE3bgh26JFgSpVgObNpTtu9GgJ4UqUALZskWGymRnCAYldcVOnytbWVrr0NBo0kO2+fYnHzp0DJk+W/Ro1ZJva8FXKURjEEREREREREdG727NHhoiWLg2UKyfHUhuaqiiyyAEAFCuWeFwTxP03b3mqbt6UbdGish0/XuaXy5NHFm44fx54/33DzwuXks6dATu7xKGnhQvr3rd+fdlqFnRISAB695YhvO3aSQcfIMNo9V2kgrKtty+tSZTDjR8/Ps253gC8dWEIIiIiIiKiXG/nTtk2bQo4Osp+akHcw4eyYqq5ue5qpvrOEafpiCtSRLbVq0uw5+ICZPLQwmScnYGOHQHN3xs1CzVo1K0r24sXZcjqH38AJ0/K+2bPlkUq8uWTIO/YMaBOHaOWT8bFjjgiIiIiIiIiejeKohvE5c0r+6kNTdUMS/X1lU42DX2Hpr7ZEQfIAgnGDuE0NMNTgeRBnKtrYodgUBDwzTeyP20a4OUlYWSzZnJswAAJ4jZtyvyaySQYxKUgl61fQZRj8HeXiIiIiMhErl6VFUOtrKQDLE8eOZ5aR9y1a7JNOiwV0H9o6psdcaZWsyZQqpTsvxnEAYnDU0eNAl6/Bho21F3EomVL2Z4/Dxw6JAtMUI7EIC4Jy/9S+FevXpm4EiLKCM3vrmXSf1EjIiIiIqLMt2OHbOvUkfnS9A3iki7UACQOTQ0NBWJjU35vWFhip11WCeJUKmDOHAnUAgOTv64J4hRFFnP47TfdeeQ6dgS++w749FN5futWppdMpsE54pIwNzeHi4sLnjx5AgCws7ODyhgTOxLRO1EUBa9evcKTJ0/g4uICc3NzU5dERERERJS7JB2WCug/NPXNjjg3N+mqi40FHjzQnT9OQzMs1d0dcHB4t7oNqV69xNViU3pNpZIgbtIk3SG1AGBhAYwcCTx6BPz6qwzNjYvTHbZLOQKDuDd4enoCgDaMI6Lsw8XFRfs7TERERERERnTihGw1nV8Z7YhTqaQr7uZNGZ6aVhCXVbrh9JE3L/Djj/KZvvwy9fM8PQEbGyA6WsK47PQZSS8M4t6gUqng5eUFd3d3xHHZYKJsw9LSkp1wRERERESmEB4OPH0q+yVLylYTxIWFAWo1YJZkZqyEhMQ53t7siANknribN4GJE4F+/YD335fhnBopLdSQHQwZ8vZzVCrAxwe4ckU+J4O4HIdBXCrMzc35l3oiIiIiIiKit7l+Xbbu7omrlmqCOLUaePkScHZOPP/uXRl6amWVuDhDUo0aAQcOALt3y8PeHmjdGujUSVYXzWoLNRiar68EcZwnLkfiYg1ERERERERElHEprYBqY5PYxfbmPHEhIbL18wNSaoD55hvg1Cngq69kBdKoKGDFCqBtWwmp9u2T87JbR5y+NMNxGcTlSAziiIiIiIiIiCjjUgrigNTniVu8WLZVqqR8PZUKqFwZmDpVwqhjx4DBg4H8+YHHjxPvl1M74jSfi0FcjsQgjoiIiIiIiIgyLj1B3LVrwOrVsj948NuvrVIB1asD06fLSqtt2ya+5ueX4ZKzNHbE5WicI46IiIiIiIiIMk4zR9ybwZgmiEs6NHXKFJk3rmVLoEKF9N3H3h5Ytw745Rd57uWVoXKzPE0Qp1mUgnIUBnFERERERERElHGpdcTlzStbTUfcvXvAkiWyP2pUxu5lZgZ88UXG3ptdaIK4p0+ByEjAwcG09ZBBcWgqEREREREREaXs6VNg2DDg0qWUXw8LA549k/3UOuI0QdyPPwJxcUD9+kCtWplRbc7g4iIPALh924SFUGZgEEdEREREREREKVu+HJg2TVYyTYmmG87TE3B01H0t6dDUJ0+A+fPleUa74XITzhOXYzGIIyIiIiIiIqKUaeZ3O3oUUJTkr6c2LBXQHZo6cybw+jVQtSrQuHGmlJqjcOXUHItBHBERERERERGl7OVL2T5+DNy9m/z11BZqABI74m7dAmbPlv1Ro2QlVEpbVu6Ie/oUOH3a1FVkWwziiIiIiIiIiChlkZGJ+8eOJX89rY44TRC3ezcQEQGULg20bm34GnOirLZyqqLIXIGenoC7O9C0acodkvRWDOKIiIiIiIiIKGWajjggeRC3dCmwdq3s+/snf68miNMYNUpWPaW3y2odcUFBMldgaKg8d3aWcJXSjb8BRERERERE2dWECcD778tQMaLMkLQj7uhR2cbFAV98AXTvDkRHy8/gBx8kf69mjjhA5jzr2DFza81JkgZxxuo8i4oC9u4FTp6UYcjR0XL88WPphgOA8eMlnL1xQ8I4SjcLUxdAREREREREGXDxovylGADatJG/QNvYmLQkyoGSdsSdOQPcuQN06wYcPCjHxoyRn8OUOt2SdsSNGAFYMILQm4+PbCMjgX//BVxdM/+egwYBCxboHnN0BKysgLAwoHJlYPRofh/fETviiIiIiIiIsqPvvkvcP3oU6NpVOlqIDClpR1xsLFC2rIRwjo7Ahg3AxImpDzctVAjIn1/mhuve3Sjl5hg2NvK1A4w3PHX/ftm6ugKWlrL/8qUEgZaWwPz5DOEMgEEcERERERFRdnPtGrBypexPny5/SV63DihTBtizx7S1JRUfD/zzDyd1z840HXGa7raXL2U+uJMnpRMzLba2MoTxxAnA2jpz68yJjLlgQ2SkfK8A6baNiQFevABCQiR4vXABqFgx8+vIBRjEERERERERZTfffw+o1UDLlsDgwcDWrUDhwsDt2zJXV2ysqSsUQ4YAVaoAixbpHv/hB5lX7NEjk5RF6aDpiAsIkO2HHwLHjwMlSuj3fhsbwM4uc2rL6Yy5YMPFixKYe3jIqqgqFeDiAhQvDrz3nmzJIBjEERERERERZSd37gBLlsj+N9/ItnFj6VhRqWSC9efPTVefxuPHwK+/yv6WLYnH//1X5pnatg1o0QIIDzdNfaQfTUfcoEHyPV27VoalUubL7CBOUYCrVyXUP3tWjpUvnzn3Ii0GcURERERERNnJlCky5LNxY6BGjcTjDg7SwQLIkDJT+/nnxM68w4cTh6cuXy6rbgLyl/927SQIoKxHURI74hwdpVtKpTJtTblJZgdx338vnY3TpwPnzsmxcuUy516kxSCOiIiIiIgou3j4EFi4UPY13XBJaebxMnUQFxkJzJ2b+PzxYxk2CwC//y7bvn1lDrF9+4DgYGNXSPp49SoxQHVwMG0tuVF6gzhFAQIDZWGMlMJtRZHftVevgKdPExd8+fVXdsQZEYM4IiIiIiKi7OLHH6XL7L33gLp1k7+eVYK4hQulBj8/mSMOAI4ckb/snzkDWFlJCFCtmrx2/rzpaqXUaYalqlSc580UihSR7Z07QELC288/dUqGrS9dChw6pPva69cS0FWsKL+TQ4Ykdjtevy6/nwA74oyAQRwREREREVF28OQJMG+e7I8Zk/IQwawQxMXHAzNmyP6wYUCdOrJ/+HBiN1/r1kC+fEDZsvL8wgXj10lvpwlq7O0BM8YHRleggKyIHBcHPHjw9vP//DNxf+nSxP379yW4/+MPeX75cuK+n59s1Wq5V8mShqmdUsXfJCIiIiIiouxgxgzpaqlaFWjSJOVzskIQt2aNdPC4uUkHTu3acvyvvxKDxN69ZVumjGwZxGVNmo44Ls5gGubmQKFCsq/P8NSkQdyaNbJwy5Ej0gF36hSQNy+wbBng7y/n1K0rXbYa/v7SrUqZikEcERERERFRVvf8OfDLL7L/zTepT5ifniBOUWTeNn2GvOlLUYAffpD9zz+XOeBq1ZLnDx9KZ0/r1kDTpnJME8RxaGrWpOmI4/xwpqPvPHFXrsjD0hLw8pLViHv1AurXB0JDZcjpqVNA587SnTpvHrBuHdC8eeIiL5wfzigYxBEREREREWV1c+ZIKFKuHNCqVernpSeI+/ln+Ut+pUrAzp2Jx0+cACZOBLZvTwxi9LVnj8wBZ2cH9O8vx7y8EsMEFxcJADRBoiaIe/DA9PPaUXLsiDM9ze/O0aNpn6fphmvYUBZsABJXKG7fXsI3zbXy5AE+/RRwdQWsrYGuXeV4vXqGr5+SYRBHRERERESU1Wn+kj14cOrdcID+QZyiALNmyf65c0CzZsBPP8k8dO+/D4wbB7RoIcFZzZrAyJHAjh3A3bvy0Mz3dumS7nU13XC9eskccBrt2skcY7NnSzCn4ewMeHvLPoenZj3siDO99u1lO38+sH9/6udp/hvRrp0MCdf8d2LSJBmmmtb38McfZfXinj0NUjKlzcLUBRAREREREVEanj+XLjNAArO06BvEHToE3LwpnU6dOwO//goMHSp/Yf/3X6BgQcDCQoauHjsmj++/T36d/PnlHEtLWRF1504J3AYP1j1v6lTg668Bd/fk1yhbFrh3T4I4zcIOlDnCwuRnQ9MZ9TbsiDO9Zs1kTsUFC6TT7dw5CbCTio0F/vlH9t9/X8LtzZsBJydZYfltrK1lCCsZBTviiIiIiIiIspr796Wr5exZ6VRRFKB0ad1uspToG8QtXizbjz4C5s4FOnSQ1U4PHZIJ4jdskDmpbt0Cfv9dAoDChWUidysrCers7WXet+3b5VqaSd8/+ih50GNunnIIB3DBBmNJSJDJ+UuWlK5GfbAjLmuYPl1+p+7eBb78Mvnrd+/Kqqe2tvK7CUggp08IR0bHII6IiIiIiCirGT8eWLpUhort3i3HGjV6+/v0CeJevQJWr5b9wEAZwrZgAVCkiBwbNgyoXFn2fXyAHj2ARYuk8y0mRh737gF9+8o5v/8ur61cKc+/+krfTynKlpUtF2zIXKtXy9c4NhYIDtbvPeyIyxocHeW/B2ZmEqKvW6f7+o0bsi1SJO2h65QlMIgjIiIiIiLKSqKjgbVrZf/MGQnBAKBx47e/921B3OXLQLduErD4+CR2zDg7S+fdwoUyp5Q+NPNJbdoEfPihdNQ1bJgY4ukraUecoqTvvaQftRr49tvE53fu6Pc+dsRlHbVry/BuQBZaePQo8bWbN2WrCdMpS2MQR0RERERElJVs3QqEhyc+j46WoZ36rGiYWhB38SLw8ccyvHX9ejk2apR02GgUKgR88onM96aPsmUldIuPl8Awb17gt9/0e29SJUvK53vxQjdcIMP56y/5GdDQd2gqO+KylvHjgQoVZB7H3r0Tg2sGcdkKgzgiIiIiIqKsZNky2XbpIvOxAUDVqjLx+ttogrhXr2QI4vnzMmdbmTLAqlXyF/e2bWVi9z593r1WTVecubks9FC0aPqvYWMDFCsm+xyeanhqNTBhguxr5hhkR1z2ZGUlQ1StrSWw1wTfmiAuI79/ZHQM4oiIiIiIiLKKsDBZ7RCQudY0YVnr1vq939k5cY6oM2ekY00zzLVDB5kb7M8/gUqVDFPvJ58AAwbI/GMNG2b8OlywIfOsWCGLfjg5ARMnyjF9gzh2xGU9ZcoA330n+0OGyHyN7IjLVixMXQARERERERH9Z9s26WQrXRooVw6YMQNo1Ur/kMvMTMK4sDBg1y4gLk7+cv7XX4lhlyHZ2gK//PLu1ylbVgJDdsQZVkwM8M03sj9iBFCxouxz1dTsbdAgWRzl5EkJ1hnEZSvsiCMiIiIiIsoqNJ1KVatKZ5ulJdCsmf7ztgGJw1OPHZPte+9lTghnSOyIyxzz5smKtl5ewJdfAoULy/HHj2XuwbdhR1zWZGYGtGsn+2vXAhERsu/jY7KSSH8M4oiIiIiIiLKKJ09k6+6e8Wtogrjjx2VbosS71WQMmiDu0iUgIcG0teQkq1bJdtQowM4OyJdPuhgBGdL4NuyIy7o0XbIHD8q2QIHE7y1laQziiIiIiIiIsgpDBnHPnsk2OwRxRYvKog2vXycOs6N3k5AAnDsn+40ayValSuyK02d4Kjvisq7KlXW/LxyWmm0wiCMiIiIiIsoqDBnEaRQvnvFrGYu5OVCqlOxzeKphXL8OREVJl1TSnwFNEKfPgg3siMu6LCyAevUSnzOIyzYYxBEREREREWUVhg7iVCrAz+/dajKWsmVlywUbDCM4WLblyknQqVGokGz1CeLYEZe1JV3EhUFctmHyIG727Nnw8fGBjY0NqlevjhMnTqR5/syZM1GiRAnY2trC29sbgwcPRrQ+k0wSERERERFldYYO4goXzj7zRnHBBsM6c0a2FSroHtd3aGpsrDwAdsRlVQ0aJO4ziMs2TBrErVq1CkOGDMG4ceNw+vRplC9fHs2aNcMTzf983rB8+XKMGDEC48aNw+XLl7Fw4UKsWrUKo0aNMnLlREREREREBqZWA0+fyr6hgrjsMD+cBoM4/b14AXz4IbB4cernaDriKlbUPa7v0FTNsFSAQVxWVa4c4OYm+yVLmrYW0ptJg7jp06ejT58+6NmzJ0qVKoV58+bBzs4OQUFBKZ5/5MgR1K5dG507d4aPjw+aNm2KgICAt3bRERERERERZXlhYUB8vOxr/nKdEUmDuOwwP5yGZmjq1atATIxpa8nqfv0V+PNP4LPPgNDQ5K8rSuodcZqhqW/riNMMS7WykgdlPWZmwNq1wNy5QJUqpq6G9GSyIC42Nhb//PMPGjdunFiMmRkaN26Mo0ePpvieWrVq4Z9//tEGbzdv3sTWrVvx/vvvp3qfmJgYRERE6DyIiIiIiIiyHM3IIBeXdws+smtHXP788tkTEoArV0xdTdalKMDSpbL/+jUwdWrycx4/lp8nM7PEgFND0xF37550YaZG0xHH+eGytrp1gX79TF0FpYPJgrhnz54hISEBHh4eOsc9PDzw+PHjFN/TuXNnTJw4Ee+99x4sLS1RtGhR1K9fP82hqZMnT4azs7P24e3tbdDPQUREREREZBCGmB8OyL5BnErFBRv0cfo0cOmShGwAMGcO8OiR7jmabrgSJQA7O93XChSQxRtiY4FNm1K/j6YjjsNSiQzK5Is1pMf+/fvx3XffYc6cOTh9+jTWr1+PLVu2YNKkSam+Z+TIkQgPD9c+7t27Z8SKiYiIiIiI9JTbgziA88TpY8kS2XbsCNSqBURHS5ebhwfg7y/Hhg2Tc96cHw4ALCyAHj0Sr7F1a8r3YUccUaawMNWNXV1dYW5ujtA3xrOHhobC09MzxfeMGTMG3bp1Q+/evQEAZcuWRVRUFPr27YvRo0fDzCx5rmhtbQ1ra2vDfwAiIiIiIiJDMlQQ5+UlW2dn6X7KTjQdcQziUhYXByxfLvvdu0tI1rixzKn35Eniz5BGzZopX2fuXCA8XOYXa9cO2LABaNFC9xx2xOl48QLYuRPYvVumMbx3T6Z0VKmkOVGztbeXL2WHDkD58oClpakrp6zGZEGclZUVKleujD179qBt27YAALVajT179mDgwIEpvufVq1fJwjZzc3MAgKIomVovERERERFRpjJUEFegALBokWxTaFbI0jQdcRyamrIZM4Bnz6T7rUkT6W578UJW233xQvdhbg58/HHK17G0lEBPUYB16xLDuObNE8959ky2Tk6Z/rGysshI4PvvgWnTpPlQH+fOAVOmyJe5VCkJ5MqVk0fp0pKVq1SZWzdlXSYL4gBgyJAhCAwMRJUqVVCtWjXMnDkTUVFR6NmzJwCge/fuKFCgACZPngwAaNWqFaZPn46KFSuievXquH79OsaMGYNWrVppAzkiIiIiIqJsSRPEvTGPdoYEBr77NUxBE8TdvQtEROT6EEjHxYvAmDGyP3myhHAAYGsrK6FqVkPVl6UlsGKFhHXr1wNt2wJ//QU0ayav//23bHPxapx//gkMHAg8fCjP/f2Bli2BSpXky21tLVmmWp24vX8fWL1auudevgTOnpVHUra2QNGiuo8aNWQkMQO6nM+kQVynTp3w9OlTjB07Fo8fP0aFChWwfft27QIOd+/e1emA++abb6BSqfDNN9/gwYMHcHNzQ6tWrfDtt9+a6iMQEREREREZhqE64rKzPHmkk+/BAxmeWquWqSvKGuLiJFyNjQU++CBxjrd3ZWkJrFwJdOokqVObNrKAQ+PGwJ49ck6jRoa5VzYQHQ2cOgUcPgzs2pX4JShaFPjhB8kq9QnKOnaUYO7OHQnhzp2Tx9mzwI0bstjthQvJR2AXKAC0bi2PBg0k6KOcR6XksjGdERERcHZ2Rnh4OJz4rytERERERJRV1K0LHDwIrFkjE0zlVs2bAzt2AL/+CvTta+pqsoZJk4CxYyWovHgxcR5AQ4mNlfTor78ANzdg2zbphLOxkWGuNjaGvV8WEhwso3QPH5YQLjY28TVzc+Drr6UR0VBfgthYCehu3Eh8hIQABw4AUVGJ5zk6Au+/DwwZAlSrZph7U+qMmRWZtCOOiIiIiIiI/sOOOFG2rARxXLBBBAcDEyfK/i+/GD6EAwArKxlPWby4pER9+sjxOnVybAgXGSkB208/yZBSDQ8PoHZtebRsafiFh62sgGLF5JFUdDSwbx+wcaPkoY8eAatWyaN7d+CLL2RILIeuZn/ZbOZOIiIiIiKiHCo0VLa5PYjjgg2JXr2SFCY+HvjwQyAgIPPuZWUFfPml7J85I9vGjTPvfia0aZMsojBzpoRwH34ILF4MXL8uAdi6ddKJZugQLi02NrLa6ty5Ms/c0aPyrQeAJUukQdHHBxg0SKbvS0gwXm1kWByaSkREREREZGqxsYkTQv37L5A3r2nrMaVTp4CqVQFPT0lFcitFATp3ljnc3NykQzCzQ9qICMDbW7YA8M8/0oaVA7x8CWzZIkGXZh0KX195rlmfIis6cULmp9u2TXfoqpubTO33/feAvb3p6sspODSViIiIiIgoN3n6VLYWFoCLi0lLMbmCBWUbGiqdYBa59K+tU6dKCGdhAaxda5xOSScnGZY6bZqEwRUqZP49DSQhQUKrO3fk1ynp4949yRQ1XWTm5sDQocC4cYCdnWnrfptq1WTayNevZQGJ9eulo+/pUxmpHBoqw1c5ZDX7yKX/RSMiIiIiIspCNPPDubkBZrl8BiHN10Ctlq9L/vymrsj4tmwBRo6U/Z9/loU8jOWrr4CTJ4F27bLcz6KiSAB19aqsIWFuDty6BRw7BmzfDjx7lvb7ixQBunWTrLFAAePUbCi2tokrqsbFyVxyAQES0lWoAIwaZeoKSV8M4oiIiIiIiEzt4UPZ5vb54QBJVzw8ZFjqo0e5L4i7ckWGpCoK0K+fPIzJw0OW8DQhRZGRuFeuyIqiV68mbsPCUn9fnjxA+fKAq6vkuZqHuztQvTpQuLDRPkKmsrQE2reXjrhPPwW++QaoUQNo2NDUlZE+GMQRERERERGZ2qpVsq1Y0bR1ZBVeXolBXG4SFga0aSNztNWpA8yaZeqKjC4qSuY+27Il5ddVKqBQIQnY1GrJDatVA+rVky9ZbhrJ3LevNC8uWAAEBgLnzkkYSVlbLvoRJSIiIiIiyoIeP5a5wACgf3/T1pJVeHnJNjcFcQkJMtbw6lVJmtaulZVMc5Hnz4EPPpAVQ62tZZ2I4sVl9dLixeXh5yfDNEnMmAHs3y8rvvbvDyxfzvnisjoGcURERERERKb0228y6VPNmrJaKOXOIG7SJJnozNYW2LAh1w1Tfv4caNwYOHNGurq2bJFfCUqbgwPwxx9A7dqS5/v7A2PHmroqSkvWmnmRiIiIiIgoN4mNBebOlf0vvzRtLVlJbgziFi2S7Zw5uW6I8rNniSGcuzvw998M4dKjenVg5kzZHzcuV45ozlYYxBEREREREZnKmjUyNDV/fuDDD01dTdaR24K4iAjgzh3Zb93atLUY2blzMsebJoTbtw8oU8bUVWU/AwdKCAcAgwbJKOe3rSJLpsEgjoiIiIiIyFR++km2/fvLUogkclsQd+mSbPPnB/LmNW0tRpKQAMyeLZ1vt24BRYrIXGelSpm6suxr3DgZ4WxuLsNU3d1lfr2AAOCHH4A9e2QIMJkW54gjIiIiIiLKTGq1DEG1sdE9fuwYcOKEzErft69pasuqclsQd+GCbHN4K1hCAnD2LLB3L7BiBXD6tBxv2lSe55IMMtOoVMA338jXs29f+VpfvSoPzXowgMwn17s30K4d4OxsunpzKwZxREREREREmalpUyA4GDhwAChdOvG4phuuc2fAzc0kpWVZnp6yffwYUJScvwykJohL+vORQ9y7J2tP7N0rHW9hYYmvOTkB338PfPopYMbxegZTrZr8J+fpUxnye/o08M8/sr15Ezh8WB59+wINGkhXYoUK8ihcOPmvm6LI9+3OHQn3jh4FwsMlPKX0UymKopi6CGOKiIiAs7MzwsPD4eTkZOpyiIiIiIgoJwsOTpx4v1gx4ORJaUF5+FD+xhsfL387zmWT879VTExiB+GzZ8D589It5upq2royS+PGMm5w4ULgk09MXY3BhIQAVaoAkZGJxxwdgXr1JADq3DkxcyXjePgQWLIEWLwYuHIl+evW1hKKJiRIM29CggRxbzIzk6kN7e0zv2ZjMGZWxI44IiIiIiKizKJZCRMArl0DAgOBP/+UlVLj44E6dRjCpcTaWsYpPn8OzJsn4+3atpWvXU508aJsc9DQ1IQEyRQjI6XRr2tXCd8qVwYsmESYTP78wIgR8ggJAXbskH8vCA6WxsyYmNTf6+YGlCwJ1KghD3NzY1Wds/DHn4iIiIiIKDPExgLLlsn+hAnAt98Cf/0F/PqrPADgyy9NV18WolYD//4rI1FDQ2VIXYW8teH/fJPM6A8Au3ZJePm2FGfYMBkLeeSIzFafllu3ZIhw27bSpmUKz57JBwdy1EoFP/8s3wJHR2DrVqBQIVNXRG8qUUIeGrGxwIMHMjTV3Fy63szMZN/ePud0v5kagzgiIiIiIqLMsHWrhCyensCoUdLlNWKErJCqKIC3N9CmjamrNLr4eBkSt38/sGmTjDp98kQ6qJJSYQM+QRC+ezQK7gAQFSUTXlWtmvYNVq+Wicn++gvo0yflc+LigOnTJSB9/RpYsAA4dUo3lTAWTTecry/g4GD8+2eC69flRx6Q1ToZwmUPVlbyY0iZi0EcERERERFRZliyRLbdukkX19ChwJo1Mms6AAwYkO3H6CmKjB6NjZWumaQPCwvZhoUBu3fLWhVnzkjwFh2d8vVcXQEPD+m8OXHCDAvRG4dRG6dQBfZ4Bfz9d9pBnKJIqgfI6gB9+siQ4FevgPLl5fjx4zJL/blz8tzJSSa76thRVrK1tZXjL14AefIY5OuUphy2YqpaDfTqJflmw4ZcEJjoTdn7v/pERERERERZ1alTstV0vVlYyGT8VavKQgS9e5uutnSIiZHGvqdPZcXFixflcemSPI+KSv81HRxkEv+WLYH69WXeKjc3wNIy8ZyjXWejw7K2uAJ/fGU2DXPUn0kQN3Ro6hd++TJxkqu9eyVMq1ZN0sB+/SQZnDNHArt8+YBp04AmTWSevnPngP/9T4YQz54NDBwILF8OBASk/wPqS1FkCUogxwRxc+fKt8neXhoNc/qCt0TpxSCOiIiIiIjI0OLjZbIlAChSJPF4+fLSEWdpKUFQFhIaCmzbBhw8KEHb06fyePny7e9VqVJeWVGjXDnJu6pVk8yraFGZeyotNavEYfGyQDTBbsxV98P72IwPDh2SlqvU3qzphtPsjxwpIRwgiz5odO8uIZxmFdYpU4CePSW8A2QGe0DmpcusIO7uXWkd271bnlevnjn3MaIrV4Dhw2X/++85zJEoJQziiIiIiIiIDO3BAwmMrKxkrGVSZcuapqYURETIQqTLl0sepFanfJ65uWRW3t6yAqbmUayYHLOxkSAuISH5w9xcJuxPNy8vNMYeDMF0TMcQ9FEtwMXnpZD30qXUu8eePtV9rlkUo0cPmZTO2hr45RegcWPd8zTDXS9dkg+imbft0qUMFK6H16+lHfDCBalp9GigdevMuZeRxMRIZvnqlQxJ7d/f1BURZU0M4oiIiIiIiAzt7l3Zenu/vfUrk8XESHNY0sedOzJ88NChxJGcAFC5MtCokXSueXlJ+ObmBjg7v/1jqFQy+tZg095VrQpYWeHbFiewNQS4csUTQzAdi/7+O/UgLmlHnIatLTBjhswFp1KlPFayWDEpPCJCVhq4dUuOX74swZyhx1cOGSIhnIeHtCAWK2bY65vAV18BwcHyM7N0qcl/7ImyLAZxREREREREhnbnjmxNtFzkgwfSDLZokSwgmpaSJYHOnaWbyc/PKOXpp0gR4OFD2NjbI+gMULu2gsVKD3RaPB4tUuu20gRx+fMDDx/KfqdOgItL2veyspIw7PJlYN26xHG2ERHAo0dyPUPZtClxmOzSpTkihJszB/j5Z9n//XfDfrmIchoGcURERERERIam6YgrXNjot758GahRQzIkDUtLwN098eHhIV1vDRtKEJdlJ9T/bx69mjWBQd1fYMbivOh/IhAXrz2AXbECyc/XBHFNmgBbt8pQ1X799LtXqVLyxVuzRvf4pUuGTZa++062Q4dKndnYy5eyOPAXX8jz//0P+OAD09ZElNUxiCMiIiIiIjI0E3XERUcDH38sIVy5cjL1WJMm0hCWZcM2PU38JS/WrHyC2zG+mNzrACb9nUYQ5+UFbN8u3Wz6LoJQurR0w50+rXv88uXkc8pl1LlzwLFjMgx22DDDXNPIEhJkTYslS4D162VOOAD45BNg1CjT1kaUHTCIIyIiIiIiMjQTdcR99ZVkPW5ukkN5eRn19pnKwQGY+dlVdJjpjqkHa6DjmXiUrfjGX2k1izW4uwOVKqXvBqVL6z7Pkwd48cKwCzb89pts27YFPD0Nd10jeP5cFpf944/EUb+AjKzt3RsYPDj7h71ExsDpE4mIiIiIiAxNE8QZsSPu4EFZEBSQbqWcFMJpfDi5KppZ7kUsrFG1ugqjRsnwSC1NR5y7e/ovXqqU7vO2bWV7+XJGSk0uKkrmhAOAvn0Nc00DCwuTIHfnTllLIiFBjj96BNSpA0ydKiFcnjyyKuqxY0BICDB8uAx/JqK3YxBHRERERERZw5Il8jf8nTtNXcm7UZTEoalG6oiLi5NgBAD69AGaNzfKbY1OZWON3/seRSPsRkycOSZPBkqUABYvBtRqJAZxbm7pv3jx4oC5eeLzDh1km1IQFxaW2H2noSjA/Pmp//wGBcmY4SJFZGlaE4qPB86ele62r78G3n8fKFhQfv3KlweaNQPKlpXVcitVkgVsL10CChSQ0buPHgGzZ8uoX3bBEaWPSlE0y8HkDhEREXB2dkZ4eDicnJxMXQ4REREREWmUKwecPy9JwJkzWe9v+OHhwKBBQPv2ac9I//y5dpEBvH4N2NhkemnTpsmUY66uwJUribfPkR4/huJbBBujm2Co13LceGQPQMKiWddbouaLrfLzU6FC+q/t7y9fwLx5pavRwUGOP3smQdtffwFr1wK7d8tKq0ePys8tAKxcKUvPOjgA//4rr2uEhEii9eqVLC86cOC7fQ3eQWgo0LSpdL6lxM1NGgrv3AEiIxOP+/oCe/bIliinMWZWxI44IiIiIiIyvatXJYQDpFUnK3bF/fQTsGiRTIgVF5f6eZpuOA8Po4RwT54A48fL/pQpOTyEAwBPT6g+H4g22IiLHo0w5XsFDg7AyZPAey824gDqZmxoKpA4T1ypUoC9fWJHY5MmMqdb794y+V58vIRqPXvKz0JUlEzQB0h6dfJk4jVjY4HOneX8Ro0SWxdN4NkzWXfi3DnJC+vUkXLmzgUOHZJGvydPZFhqWJh0wW3aJM2qJ08yhCMyBAZxRERERESUeTZtAnbtkm6itKxbJ1tNF9yUKZlbV3qp1TK0EJCWor/+Sv1cI88PN3GiZD9VqgA9ehjllqY3fDjg4ADr4OMYXnwDrl0DPmgaCzXMMQLfQ8nnmrHrahZ40Gw188adOSMTplWoAPzvfzIhX548ssLq0KHAkCHA/fuJ19m3L3F/zBg5L29eGUNrZpq/hj95IiHchQtA/vzykf7+W4aY9usH1K4tQ1E1zM2lQfCDD4Bu3XJBwEtkJAziiIiIiIjI8BQFGDkSaN1axsE1aABs2yadQynRBHHffANYWEiQsWeP8ep9m337gNu3E5/Pm5f6uUacH+7qVeDXX2X/hx9MlvEYn6sr8OWXsj92LDzd1Zg/+jZs8QrHUBPb9lil/f7UDBwIzJkjP4eA/Ay3bQt8/z1w7ZqkV6NHA++9J0NMAdlqVkNt1ky2miBu7175xgDAggUyyZoJPHwI1K8vzaYeHvKr5ednklKIcj3OEUdERERERIY3eDAwc6bsW1nJ8DxAllasUUOG6DVqBFSrJp1ERYtKivT4sQQd8+cDjo6SGFStarKPodW5M7BiBdCyJbB1qwSNs2bJ2L18+aR+zWP6dGDGDOmSmjYt00q6fVs6lQ4dkrI2b860W2VNL17IWMnwcJmfzdMTX9U/gR/xFSpXlqGUmTrNoKIAo0Ylhm516gCffCJddDY2wM2b8rP74IGsoKEJ64zs7l35Vbt+XRZk2LNH1qUgokTGzIoYxBERERERkWGFh8uwPc0qkk2bSkfRli2JwzY1koZ09etLqPH6tSzjuH+/jJXr2hVo0waoV093Anxjef5cxvLFxACnTgFjx0oY9zYzZyZ2bRlQZCQwebJkfDExkvmcOpU4vVmuMnEiMG4cULIkMG4cngZ8Dl+zO4hS22HaNMlCjUpRAC8vGb5cqpQEtcWLy9BUe3sjFwPcuCEh3J07gI+PNOhxnjei5BjEZSIGcUREREREmezcOVn51NUVePo08biiSJfQnj3y2LtXZo8HACcn4I8/gFat5HlkJNC8OXD4cOL7nZ2BFi0klHv/fXmPMSxfDnTpIknX+fNSU5Mmkmi8/74Mt715U1KPO3dkIn8AOH5cOv4MRK0Gli6V0ZKPHsmxhg0l7ytb1mC3yV4iIuT78Py5dFoeO4Zfys/H52d7w8xM1lVo0sTINX38MbBqlexbWsrKqpUrG7kI+fXq2FEWcC1eXH7lChY0ehlE2YIxsyKLTL06ERERERHlPpo50t5crEClShy+2bevJEu3bgEuLjKRfdJxhA4O0h23Y4csjLBpk3QZrVwpD0dH4PPPpeUps2eR1ww9bNZManzvPVkBM6Vxj/HxwL178pqPj8FKCAmRxsBTp+R50aLSEde6dSYPv8zqnJxk4YYRI4BjxwAAA6qfwulKvfH77xJE7d8vubDRNGiQGMT9739GDeHi4iRwW7VKQtuEBFnEY9MmWfSViEwvt0zlSURERERExqIZfvq2xQrMzCRRypcv5TTJ0lKWbJw/X2abP3IE+PproFgx4OVL4LvvZNxdZg/y0QRxDRsmHkst/bKwkA4tA4ZwCQnSZHXqlOROP/wAXLwojYG5OoTTGDgQcHfXPlV5uGPuXKBWLSAsLHGlUKNp00bqadsWGDYs028XFyd5da9eshBDixbAokXyc9O1q6yMyhCOKOtgEEdERERERIaVWkfcuzAzA2rWlLnmrlwBNmyQydHOnpV2scxy964MOTU3l8n4TWDpUiA4WEbmXrok2Y61tUlKyZrs7aUjTsPdHdbWMiVhlSoy+rlePWD9eiPV4+kpY4fXr8/0ZWyPHQO8vWUUd1CQrF/h4QH07w8cOAAsWQLY2mZqCUSUTgziiIiIiIjIsPTtiMsoMzPpOtLMv3bkSObcB0jshqtSxXhz0iURFSWLyALAN98ABQoYvYTsoV8/WVAD0E6E5uIC7NwpPybPnwPt28u6IWPGAGvWSH6bkJBJ9ZiZZXq74p078msQGgq4uQGffSY/rg8eALNnA3XrsmOSKCviHHFERERERGRYmdERl5LatWXc3eHDwCefvNu1YmOBx48l6TI3TzyuCeIaNHi362fQzJkyKtfXV6bEo1TY2spcgps3Ay1bag/nyQMcPCgL3U6dCuzaJQ8NGxtZg6NOHRnSWbeuHMvqIiMlhHvyROa/O3RIplUkoqyPQRwRERERERlWZnfEadSqJVtDdMQ1aCDXsbaWOehKlgRKlJDJtzSvG1l4uCzIAADffsvhqG9VpYo83mBlJSOau3SRXPXcOVn89vx54PVr4J9/5DFzpuR5DRsCgwfL9INZUXy8LEJx9qwMQ924kSEcUXaiUpTMntk0azHmkrRERERERLlObKy0FCmKjJlLMom+wf37L+DqKvvPnmV89dTnz9N+r6WlTL5lb5+x62fQpEnSyVWqlIRHSRv16N0lJAA3bwKnT0uX3LZt0n2o0aoV8OmnEsxllXnWFEVqmj9fatq3D6he3dRVEWV/xsyK2BFHRERERESGc/++pAU2NjJxVWbKl086165cAY4elRVWM+L0adkWKSKJTEiIXDMkBLh2TYY6GjmECw8Hpk+X/bFjGcJlBnNzaX4sVgzo1El+bC9cABYsAObMATZtkoe1tYShZcrIo2xZ2RYsaPw52L7/XkI4MzNg5UqGcETZEYM4IiIiIiIynKTzwxkjpahVS0KzRYtkJdXmzYEOHVI/f8UKSbgWLZLJwQAZlwjIsMYiReTRokUmF562H38EwsIkAErr45DhqFQSss2aJQsf/PyzBHH37gFnzsgjqYIFZeGHnj2laTKzLVsGjBol+z/9BLRunfn3JCLD46qpRERERERkOMaaH05DM0/cunXAwoWSioSFpXxuTAwwZAhw6hQwYIC0QAGJHXGVKmV6ufq4fVuCOAD43//YDWcKJUvKyqN37khT5IYN8r34+GPphrOwkObPTz+VPHf1akCtzrx6Nm+WH20AGDZMfnyJKHtiEEdERERERMmFhsqQzE2b5PnDh8Do0ZI+pMVYK6ZqNG4sk2VZWAB588pykvPmpXzuypWyMioAHDgAbN0q+5qOuMqVM79ePQwfDkRHy/oQbduauprcTaUC/PxkhdLRo6Wh8vx54OVL6Upzc5OgrlMnoGpVYOfOxHzXEGJi5Me2fXsgLg4ICACmTDHc9YnI+BjEERERERFRckFBElRNnCjPJ08GvvtOkqG4uNTfZ+yOuMKFJRm5c0eWvQRkbGFMjO55igLMmCH7mpBw+HBZ8OHGDXmeBTriNm4E1qyROcBmzjT+HGSkHxsb4PPP5UdnwgTA0VEaK5s1A2rWBObOldfS2yUXFiaLRowaBdStCzg7S/gWGwt89BGwZIn8bBBR9sU54oiIiIiIKLmDB2V79qy0Zx0+LM//+UfG6E2YkPL7jN0RBwBFi8r2448lwbh/H+jSRbeG8HD5LHZ2wP79Mh/cpUtA797yuo+PdNSZ0P790lkFyNDDcuVMWg7pwdFRFtP47DPJqefMAY4flwcgzZr+/jLXX+nS8qhZM3GxX0WRwG7bNul8O3o0eUedm5v8aE+bJo2fRJS9qRTFkI2zWZ8xl6QlIiIiIsqWEhJkRdLwcHm+a5csgpCQIM/NzWVyrKZNZfyk5s/VajVQvLgkC/v2AfXrG7/26dOBoUNTf71/f5n869dfgX79Eo+3bw+sXZv59b3h7l0Zzrhzp8wD9vq1TMK/dq1xFgAgw3r8WIavrlwpue+bjZka/v7y/Q0NlUdSfn7Ae+8BderItlgxdkYSZTZjZkUM4oiIiIiIciO1Gli6VMa5demiO97t3DmgfPnE523bymz1BQtKuPbHH4mvmZsDNWoATZpI19yuXXLs7l0gf34jfZgk4uJkaOqzZ8lfs7eX8YQuLtJ21LgxsHevvPbdd8DIkUYp8dgxYPlyCd9CQnRfa9oU+OsvGfpI2Vt8PHDrFnDxojRfXrwIBAfLflJWVkD16pIFt28vv2ZEZFwM4jIRgzgiIiIiyvVu3AB69AAOHZLnDRrInHA+PvJ8zhzdZRlVKgmuOnSQVp/NmxPbuK5f1722ra3MYq8Z8pmV3boFlC0LREUBu3cDjRpl+i3XrQM6dkycO8zMLDHHbNpU9jkHWM4WGgqcOSPDTB0dZQiyra2pqyLK3YyZFXGEORERERFRbqJWS+Jz8ybg4CDP9+2TQGr6dAnQNAFdnToyV5zm3+5r1pRutzZt5AEAt29LF9yuXZIgjR8PlCxpik+Wfr6+wPbtwMmTQMOGmX67XbuAzp3lS96qFdCzp2SgLi6ZfmvKQjw8ZKQ3EeVO7IgjIiIiIspNLlyQ0M3eXvbj4yUR0oRvzZvL5FaPHgHr18tYOc1fGQ4fBmrVMl3t2dixYzISNioqsbHQ3NzUVREREWDcrIhNz0REREREucnff8u2Zk0ZiurnJ8t1TpsGWFtLh9ijR5ISNW0qs8oDMrN8pUqmqjpbO38eeP99CeGaNpUp9hjCERHlTgziiIiIiIiygn37gEmTZLGBN8XGyrxrGze++30OHpRtnTqJx8zNgSFDZOKqqlXlWI0a0jVXvbo8r1jRZCsIKIqsRnn8OLBqFTB1qkxxV7GiDPOzsQFKlAC+/FJ3JG1WsHevDD998UKyz/XrJe8kIqLciXPEERERERFlBZ9/LssqengAffsmHn/4EPjoI+DIEVk0Yft2aasKC5OZ3tPTWqUoiUFc3brJX/f3l/v89RdQubIc69QJ+P13ICAgwx8tIyIigO+/l+Dqzh0gOjrt869elcdPPwHFismXqFw5eZQpI9PhGYuiyMqYixYBM2YACQlAlSqyxoW9vfHqICKirIdzxBERERERmZqiAHZ2kjaVLStztKlUMoy0Y0dZZlGzcmnevLLE5urVQOvWwJ9/ymv6uHkTKFpUhpmGh+u/VGNUlNSn733e0cqV0t325EniMZUKKFAAKFw4cURtxYqy3oKjIxAcLA2Da9ZIuW8qWhSoUAH44ouUM8iMUBTgyhUJ3UJC5HH1qmxfvEg8r2tX4LffuDImEVFWZcysiEEcEREREZGpPX4MeHklPj9wAPjnH+Crr6SdqmxZYMUKGY956pTue3/9VbeDLilFAW7ckEnKAOD5c1kVtWZN6XzLYqKiJCgLCpLnxYvLaN0qVYCCBQErq7dfIzIS2LQJOH1aPva5czLlXVJt2kgDYv36GZ+r7cgRYOTIxCn33mRpCbRoAQQGAu3aGS3DJCKiDGAQl4kYxBERERFRlnPsmIRjGnnyJLZUdekiYZu9PXD3riy56ekpLV4zZ8qYy/PnpU1MIzoaWL4cmD5dhrtqWFjIKqlffy3jPrOQ/fuBXr2kaU+lAr75Rh76hG9v8+yZfIlWrwbmz5dsE5Bwr0sXCcs0a1K8zdOnMp3eH3/Icysr6bQrUUKCQ822WDFpIiQioqyPQVwmYhBHRERERFnOypUyB5unp3THARKazZgBDBiQcjtVQoK0dB06BJQqBezcKW1Yc+cCc+Ykjuu0tgZKl5aJ1v79V45t3gy0bGmUj/Y2CQkSuGlyQW9vYPFiWeAgM1y6JPPIrVol0+xpNG4soZyzsyz+oHlYW0t2+eKFDH1dvlzep1IBn3wCjBsnNRMRUfbFIC4TMYgjIiIioixnyhRgxAigWzdJfk6ckDCtdu2033frlqx++uAB4O4u877FxMhr3t4yzrN3b8DFRUK4ceNk8Yfly022AqqGWi2roI4fLxkiICNsf/gBMMYf02NiJI9cskS2arX+7y1XTjrrqlXLvPqIiMh4jJkVcdVUIiIiIiJTu31btoULy6Ro+vL1lY64Jk2A69flWNWqwNChwIcfSoecRr58wC+/GKzkjIiLkznV1q+XNSY0c7fZ2sq8cB9/bLxarK2B9u3lcecOMHu2TMsXHS0hXXR04sPCQoaZVqkiXXONG2d8bjkiIsrdGMQREREREZmaJohLOs+bvnx8gMOHgQULgHr1gFq1stzKAK9eAcOHy3oTz58nHndykhGyI0fKehSmUrgwMHWq6e5PRES5B4M4IiIiIiJTe5cgDpBhqaNGGaoag3r1SlYp3b1bnru6Am3bSsNew4bSmUZERJRbMIgjIiIiIjIlRZGxkUDGg7gs6vlz4KOPgL17ZXHXZcuA99+XoZ5ERES5kZmpC5g9ezZ8fHxgY2OD6tWr48SJE2meHxYWhgEDBsDLywvW1tYoXrw4tm7daqRqiYiIiIgM7OlT4PVrGU6aQ5bfTEgADhwAKldODOG2bQNat2YIR0REuds7/W8wOjoaNu+w2tKqVaswZMgQzJs3D9WrV8fMmTPRrFkzhISEwN3dPdn5sbGxaNKkCdzd3bF27VoUKFAAd+7cgYuLyzt8CiIiIiIiE9IMSy1QALCyMmkpGREbC9y9Kwu4BgdLAHfokCzgCgBFigDr1gEVKpiySiIioqwh3UGcWq3Gt99+i3nz5iE0NBRXr15FkSJFMGbMGPj4+KBXr156X2v69Ono06cPevbsCQCYN28etmzZgqCgIIwYMSLZ+UFBQXj+/DmOHDkCy/9WgPLJYe37RERERJTLJF0xNYtTFGD7dmDtWuDGDQnf7t8H1Ork5zo6Au3aAbNmAfx3cyIiIpHuoan/+9//sGjRIkydOhVWSf7FrkyZMliwYIHe14mNjcU///yDxo0bJxZjZobGjRvj6NGjKb5n48aNqFmzJgYMGAAPDw+UKVMG3333HRISElK9T0xMDCIiInQeRERERERZxrsu1GAEISGyqmi5cjLHW1CQdL7dvSshnK0t4O8vizBMmwacOiXzwy1ezBCOiIgoqXR3xC1ZsgS//fYbGjVqhH79+mmPly9fHleuXNH7Os+ePUNCQgI8PDx0jnt4eKR6nZs3b2Lv3r3o0qULtm7diuvXr6N///6Ii4vDuHHjUnzP5MmTMWHCBL3rIiIiIiJ6J7dvAwEBQOPGwKRJaZ+rKMDVq7KfBYO4+/eBoUOB1asTjzk4AD17AtWry7BTX1/Aw0OmuCMiIqK0pTuIe/DgAfz8/JIdV6vViIuLM0hRqVGr1XB3d8dvv/0Gc3NzVK5cGQ8ePMAPP/yQahA3cuRIDBkyRPs8IiIC3jlkElwiIiIiymIiIoBWrYALF4Bjx2R1gqpVk5+nVgPffQf8+GPiZGpZZGhqdDRw+jTw++/A8uXAq1eAmRnQpIl8nM6d2eVGRESUUekO4kqVKoWDBw+i8Bt/UFi7di0qVqyo93VcXV1hbm6O0NBQneOhoaHw9PRM8T1eXl6wtLSEubm59pi/vz8eP36M2NhYnaGyGtbW1rC2tta7LiIiIiKiDFEUSakuXEg8NngwcPCgtIup1dJiFhICzJwJbN0q51hYAFWqAB98YPSSnz8HTpwAzp5NfISEyKqnGrVrA7/8wsUWiIiIDCHdQdzYsWMRGBiIBw8eQK1WY/369QgJCcGSJUuwefNmva9jZWWFypUrY8+ePWjbti0A6Xjbs2cPBg4cmOJ7ateujeXLl0OtVsPMTKa3u3r1Kry8vFIM4YiIiIiIjGbfPmDLFsDGBlixQkK5w4eBFi2A0FAZgvrqVeL5NjbAnDlAly5GXS316VNZ3XTZMikzNjb5OXnzAs2bA59+CtSpw2GnREREhpLuIK5NmzbYtGkTJk6cCHt7e4wdOxaVKlXCpk2b0KRJk3Rda8iQIQgMDESVKlVQrVo1zJw5E1FRUdpVVLt3744CBQpg8uTJAIDPPvsMv/zyC7788kt8/vnnuHbtGr777jt88cUX6f0YRERERESGtWyZbLt3l1ULhg8HJkwAduxIPMfCAvDzA8qUAUaPNkqbWUSEZIQ7dgA7d8pqp0kVKwZUqgSULy+PcuWAAgUYvhEREWWGdAdxAFCnTh3s2rXrnW/eqVMnPH36FGPHjsXjx49RoUIFbN++XbuAw927d7WdbwDg7e2NHTt2YPDgwShXrhwKFCiAL7/8El9//fU710JERERElGHR0cDatbLfpYtsR44ErK0Bc3OgZEmgRAlZ3cDS0uC3j42VoO3WLRn9+uCBbO/fl5VN4+MTz1WpgKJFgVq1gP79ZdEFIiIiMg6VoihKet5w8uRJqNVqVH/j/9jHjx+Hubk5qlSpYtACDS0iIgLOzs4IDw+Hk5OTqcshIiIiopxg3TqgQwfA21tWTU3yj8mZSVGANWsk87t5M/Xz/PyAZs2Apk2B+vUB/jGYiIgokTGzonR3xA0YMADDhw9PFsQ9ePAAU6ZMwfHjxw1WHBERERFRlvbwobSh/fabPO/c2WghXFQU0Ls3sHKlPPf0lPncChQAChZM3Pr4yJaIiIhML91B3KVLl1CpUqVkxytWrIhLly4ZpCgiIiIioixDrdYN18LCpAPujz+AAwekLU1DMyw1k927B7RsCZw/L9POjR4NfPUVYG9vlNsTERFRBqU7iLO2tkZoaCiKFCmic/zRo0ewsMjQlHNERERERFnTN98AU6YAH30kq5/+9ReweTMQE5N4jq+vzAPXpAlQtmyml3TligwxvXcP8PAAVq8G6tbN9NsSERGRAaR7jriAgAA8evQIf/31F5ydnQEAYWFhaNu2Ldzd3bF69epMKdRQOEccEREREellxw6gefOUXytdGujaFQgIAAoXNlpJly9L6Pbsmaz9sHMnUKiQ0W5PRESUIxkzK0p3EPfgwQPUrVsX//77LypWrAgACA4OhoeHB3bt2gVvb+9MKdRQGMQRERER0Vs9eybdbY8fy7xvigJcuCArHnTtCpQrJ8uPGtGDB0DNmtIJV7kysG0b4OZm1BKIiIhypCy9WEOBAgVw7tw5LFu2DGfPnoWtrS169uyJgIAAWGbCUuxEREREREY3daqEcP7+wPz5gJ2dyUp5+lSGn86cKSFciRLA9u2Aq6vJSiIiIqIMytCkbvb29ujbt6+hayEiIiIiyhoOH5btqFEmCeFevQI2bgSWLZPQLT5ejufPLyNmGcIRERFlT3oFcRs3bkSLFi1gaWmJjRs3pnlu69atDVIYEREREZFJxMcDZ87IfrVqRr21ogATJwI//ghERiYer1xZRsR27coQjoiIKDvTa444MzMzPH78GO7u7jBLunT7mxdTqZCQkGDQAg2Nc8QRERERUZrOn5c54JycgBcvgDT+/GtoU6cCX38t+z4+Erx16QKULGm0EoiIiHKdLDdHnFqtTnGfiIiIiCjHOXVKtpUqGS2EUxRg4cLEEO7HH4EhQ4y+HgQRERFlsnT9ySIuLg6NGjXCtWvXMqseIiIiIiLT0gRxVaoY5Xb37gGtWgF9+sjzQYOAoUMZwhEREeVE6VqswdLSEufOncusWoiIiIiITM+IQdyGDUDPnkBYGGBpCYweDXzzTabfloiIiEwk3b32Xbt2xcKFCzOjFiIiIiIi04qNBc6elf1MDOISEoCvvgLatZMQrmpVue24cYC5eabdloiIiEwsXR1xABAfH4+goCDs3r0blStXhr29vc7r06dPN1hxRERERERGdfEiEBMDuLgARYpkyi0ePwY+/RTYuFGeDx0KfPcdYGWVKbcjIiKiLCTdQdyFCxdQqVIlAMDVq1d1XlNxIgsiIiIiys6SDks14J9tX7wA1q8HVq4E9u4F1GrA2hpYtAj4+GOD3YaIiIiyuHQHcfv27cuMOoiIiIiITG/PHtnWqPHOl1IUmQNu0SJg+3YZ9apRvTowa5ZsiYiIKPdIVxC3atUqbNy4EbGxsWjUqBH69euXWXURERERERlXXJwkZgDQsuU7X27mTGDIkMTnpUsDAQHSAVe06DtfnoiIiLIhvYO4uXPnYsCAAShWrBhsbW2xfv163LhxAz/88ENm1kdEREREZByHDgHh4YCbm6ye8A6OHweGD5f9zz4D+vcHypQxQI1ERESUrem9auovv/yCcePGISQkBMHBwVi8eDHmzJmTmbURERERERmeWi3Llr5p0ybZtmz5TkuXhoUBnToB8fHARx8Bs2czhCMiIiKhdxB38+ZNBAYGap937twZ8fHxePToUaYURkRERERkcE+eAPnzA/nyAR06APPnA3fvyoRumiCuVat3ukX//sCdO7Lo6vz5Bl3zgYiIiLI5vYemxsTEwN7eXvvczMwMVlZWeP36daYURkRERERkcEuXAqGhsr9unTwAoHhx4Pp1wMoKaNIkw5dftgxYsUIa6pYvB5ydDVAzERER5RjpWqxhzJgxsLOz0z6PjY3Ft99+C+ckf8KYPn264aojIiIiIjKkJUtkO3w4YG8vizMcPw5cvSrHGzQAHB0zdOk7d6QbDgDGjuWKqERERJScSlEURZ8T69evD9Vb+upVKhX27t1rkMIyS0REBJydnREeHg4nJydTl0NERERExnL2LFChgnS9PX4M5Mkjx58/B3bvBs6cAXr2lO64dEpIkAzv4EGgZk3g778Bi3T9kzcRERGZijGzIr3/eLB///5MLIOIiIiIKJMtXSrb1q0TQzgAyJsX6NhRHhk0daqEcA4OwB9/MIQjIiKilOm9WAMRERERUbYVEyMTuAFA9+4GvfSVKzIUFQB+/lkWaSAiIiJKCYM4IiIiIsr5xo2T4aheXkDz5ga7rKIAgwYB8fFAy5ZAYKDBLk1EREQ5EIM4IiIiIsrZjh0DfvhB9ufMASwtDXbpzZuBHTtk2rmZM4G3TKlMREREuRyDOCIiIiLKudRq4JNPZNu1K9C2rcEuvXs30K+f7A8ZAvj5GezSRERElEOlO4iLi4tL9bVnz569UzFERERERAZ15gxw+TJgbw/89JNBLhkWBvTqBTRpAjx8KIusjhplkEsTERFRDpfuIO7jjz+GoijJjoeGhqJ+/fqGqImIiIiIyDC2bZNt48a6K6Vm0IYNQKlSQFCQDEMdOBA4dQpwdHznSxMREVEukO4g7u7du+jdu7fOscePH6N+/fooWbKkwQojIiIiInpnmiCuRYt3usyzZ0DHjkC7dsCjR0CJEsDff8sqqQzhiIiISF/pDuK2bt2KI0eOYMiQIQCAhw8fol69eihbtixWr15t8AKJiIiIiDLk+XNZqAF45yCuUydgzRrA3BwYORIIDgbee+/dSyQiIqLcxSK9b3Bzc8POnTvx3n9/8ti8eTMqVaqEZcuWwcyMaz8QERERURaxc6cs0lC6NFCoUIYvc/IksHcvYGEBHD0KVKliwBqJiIgoV0l3EAcA3t7e2LVrF+rUqYMmTZpg6dKlUHGtdiIiIiLKSgw0LHX6dNkGBDCEIyIionejVxCXJ0+eFIO2V69eYdOmTciXL5/22PPnzw1XHRERERFRRqjVwPbtsv8OQdzduzIkFQD+m5mFiIiIKMP0CuJmzpyZyWUQERERERnQmTPAkyeAg8M7Teb2889AQgLQsCFQoYLhyiMiIqLcSa8gLjAwMLPrICIiIiIynK1bZdu4MWBllaFLREQAv/0m++yGIyIiIkPI0KqpO3bsSHZ8586d2KaZh4OIiIiIyJQMMD9cUJCEcSVLvvM0c0REREQAMhDEjRgxAgkJCcmOq9VqjBgxwiBFERERERFl2PPnwPHjsp/BBC0+Hpg1S/YHDwbM0v2nZiIiIqLk0v1HimvXrqFUqVLJjpcsWRLXr183SFFERERERBm2c6cs1lCmDODtnaFL/PkncPs24OoKdOtm2PKIiIgo90p3EOfs7IybN28mO379+nXY29sbpCgiIiIiogyJiwNWrZL9dxhPOn26bPv3B2xtDVAXERERETIQxLVp0waDBg3CjRs3tMeuX7+OoUOHonXr1gYtjoiIiIhILwkJwJIlgL8/sGGDHMvgn02PHgWOHQOsrSWIIyIiIjKUdAdxU6dOhb29PUqWLAlfX1/4+vrC398f+fLlw48//pgZNRIRERERJbp4EWjTBli8WCZzW7UKKF0aCAwEbtwA3N2BefOA997L0OWnTZNt166Ah4cB6yYiIqJcT6UoipLeNymKgl27duHs2bOwtbVFuXLlULdu3cyoz+AiIiLg7OyM8PBwODk5mbocIiIiIkqvESOAKVNk38UFCAuT/bx5geHDgYEDgQxOmXLzJlCsmEwxd+GC5HtERESUsxkzK7LIyJtUKhWaNm2Kpk2bGroeIiIiIqK0RUQk7oeFAc7OwNChwJdfAu/4h+dZsySEa96cIRwREREZXoYWYj9w4ABatWoFPz8/+Pn5oXXr1jh48KChayMiIiIiSi4yUrZDhwJLlwK3bgFjxrxzCBcWBixcKPtDhrxbiUREREQpSXcQ98cff6Bx48aws7PDF198gS+++AK2trZo1KgRli9fnhk1EhEREREl0gRxfn4ykVuePAa57Pz5QFQUULYs0LixQS5JREREpCPdQ1O//fZbTJ06FYMHD9Ye++KLLzB9+nRMmjQJnTt3NmiBREREREQ6NEGcg4PBLhkXB/z0k+wPGQKoVAa7NBEREZFWujvibt68iVatWiU73rp1a9y6dcsgRRERERERperlS9k6OhrkcooiI1vv3wc8PYGAAINcloiIiCiZdAdx3t7e2LNnT7Lju3fvhre3t0GKIiIiIiJKlQE74uLjgd69ExdhnTABsLZ+58sSERERpSjdQ1OHDh2KL774AsHBwahVqxYA4PDhw1i0aBFmzZpl8AKJiIiIiHQYKIiLigI6dQK2bAHMzIB584A+fQxQHxEREVEq0h3EffbZZ/D09MS0adOwevVqAIC/vz9WrVqFNm3aGLxAIiIiIiIdBgjinj0DPvgAOH4csLEBVq0CWrc2UH1EREREqVApiqKYughjioiIgLOzM8LDw+H0jkvcExEREZEJ2NoC0dHA7dtA4cLpfvvt20CzZsDVq0DevMCmTcB/Az2IiIgoFzJmVpTuOeKKFCmCf//9N9nxsLAwFClSxCBFERERERGlKD5eQjggQx1xYWHAe+9JCFeoEHDoEEM4IiIiMp50D029ffs2EhISkh2PiYnBgwcPDFIUEREREVGKoqIS9zMQxK1aBTx4APj6AgcPAgUKGLA2IiIiorfQO4jbuHGjdn/Hjh1wdnbWPk9ISMCePXvg4+Nj0OKIiIiIiHRo5oezsACsrNL99mXLZPvZZwzhiIiIyPj0DuLatm0LAFCpVAgMDNR5zdLSEj4+Ppg2bZpBiyMiIiIi0vHypWwdHQGVKl1vvXtXuuBUKiAgIBNqIyIiInoLvYM4tVoNAPD19cXJkyfh6uqaaUUREREREaXoHVZMXblStnXrAgULGrAmIiIiIj2le464W7duZUYdRERERERv9w5B3PLlsu3c2YD1EBEREaWD3qumHj16FJs3b9Y5tmTJEvj6+sLd3R19+/ZFTEyMwQskIiIiItLKYBB3+TJw9ixgaQl06JAJdRERERHpQe8gbuLEibh48aL2+fnz59GrVy80btwYI0aMwKZNmzB58uRMKZKIiIiICECGg7i1a2XbpAmQN6+BayIiIiLSk95BXHBwMBo1aqR9vnLlSlSvXh3z58/HkCFD8NNPP2H16tWZUiQREREREYB3DuLYDUdERESmpHcQ9+LFC3h4eGifHzhwAC1atNA+r1q1Ku7du2fY6oiIiIiIkspAEHf1KnDuHGBhAbRpk0l1EREREelB7yDOw8NDu1BDbGwsTp8+jRo1amhff/nyJSwtLQ1fIRERERGRhiaIc3TU+y2abrhGjTgslYiIiExL7yDu/fffx4gRI3Dw4EGMHDkSdnZ2qFOnjvb1c+fOoWjRoplSJBERERERAODlS9mmoyOOw1KJiIgoq7DQ98RJkybhww8/RL169eDg4IDFixfDyspK+3pQUBCaNm2aKUUSEREREQFI99DUGzeAM2cAc3OgbdvMK4uIiIhIH3oHca6urvj7778RHh4OBwcHmJub67y+Zs0aOKRz0lwiIiIionRJZxC3bp1sGzQAXF0zqSYiIiIiPek9NFXD2dk5WQgHAHnz5tXpkEuP2bNnw8fHBzY2NqhevTpOnDih1/tWrlwJlUqFtvznTSIiIqLcIZ1B3Jo1suWwVCIiIsoK0h3EGdqqVaswZMgQjBs3DqdPn0b58uXRrFkzPHnyJM333b59G8OGDdOZp46IiIiIcrh0BHG3bwOnTgFmZhyWSkRERFmDyYO46dOno0+fPujZsydKlSqFefPmwc7ODkFBQam+JyEhAV26dMGECRNQpEgRI1ZLRERERCaVjiBOMyy1bl3AwyMTayIiIiLSk0mDuNjYWPzzzz9o3Lix9piZmRkaN26Mo0ePpvq+iRMnwt3dHb169XrrPWJiYhAREaHzICIiIqJsKh1BnGZY6kcfZWI9REREROlg0iDu2bNnSEhIgMcb/0Tp4eGBx48fp/ieQ4cOYeHChZg/f75e95g8eTKcnZ21D29v73eum4iIiIhMRBPEOTqmedrdu8Dx44BKBbRrZ4S6iIiIiPSQoSBu6dKlqF27NvLnz487d+4AAGbOnIm//vrLoMW96eXLl+jWrRvmz58PVz2XvRo5ciTCw8O1j3v37mVqjURERESUiV6+lO1bOuLWr5fte+8BXl6ZXBMRERGRntIdxM2dOxdDhgzB+++/j7CwMCQkJAAAXFxcMHPmzHRdy9XVFebm5ggNDdU5HhoaCk9Pz2Tn37hxA7dv30arVq1gYWEBCwsLLFmyBBs3boSFhQVu3LiR7D3W1tZwcnLSeRARERFRNqXn0NS1a2XL1VKJiIgoK0l3EPfzzz9j/vz5GD16NMzNzbXHq1SpgvPnz6frWlZWVqhcuTL27NmjPaZWq7Fnzx7UrFkz2fklS5bE+fPnERwcrH20bt0aDRo0QHBwMIedEhEREeVkCQnA69eyn0YQ9+ABcPiw7Ldvb4S6iIiIiPRkkd433Lp1CxUrVkx23NraGlFRUekuYMiQIQgMDESVKlVQrVo1zJw5E1FRUejZsycAoHv37ihQoAAmT54MGxsblClTRuf9Li4uAJDsOBERERHlMEn/rJlGEKcZllqrFlCgQCbXRERERJQO6Q7ifH19ERwcjMKFC+sc3759O/z9/dNdQKdOnfD06VOMHTsWjx8/RoUKFbB9+3btAg53796FmZlJ15QgIiIioqxAMyzV3Bywtk7xlJcvgd9+k30OSyUiIqKsJt1B3JAhQzBgwABER0dDURScOHECK1aswOTJk7FgwYIMFTFw4EAMHDgwxdf279+f5nsXLVqUoXsSERERUTaTdH44lSrFl99/H7hwAXBxAT7+2LjlEREREb1NuoO43r17w9bWFt988w1evXqFzp07I3/+/Jg1axY+5p92iIiIiCizaII4R8cUX3r/feDQIcDZGdi1i6ulEhERUdaT7iAOALp06YIuXbrg1atXiIyMhLu7u6HrIiIiIqLcIDwcOHBA2tiePgXUalmUQbNVqYCOHYGGDVNdMTUqCvjgA+DgQcDJSUK4KlVM8FmIiIiI3iJDQZyGnZ0d7OzsDFULEREREeUmigLUrAlcvpz2efPny+O/OYSTBnGvXkkId+CAhHA7dwJVq2ZizURERETvQK8grmLFilClMA9HSk6fPv1OBRERERFRLhEaKiGcSgV06QIULCgLMZiZJW7PngXWrQN69QIaNJD3/RfEvXoFtGoF7N8vo1V37ACqVzfdxyEiIiJ6G72CuLZt22ZyGURERESU65w9K9tixYClS1M+R1GAr78GfvgB2LdPjv0XxI0eDezdK0+3bwdq1DBCzURERETvQK8gbty4cZldBxERERHlNpogrnz51M9RqYCpUyWsGzgQiI0FnJzw6hUQFCSnLFsG1KqV+eUSERERvasMzxF36tQpXP5vPo9SpUqhcuXKBiuKiIiIiHIBfYI4jT595LwffwQGDMDq1UBEBFCkiMwRR0RERJQdpDuIu3//PgICAnD48GG4uLgAAMLCwlCrVi2sXLkSBQsWNHSNRERERJQTpSeIA4Bq1YDVqwEAvw6VQ337ylRyRERERNlBuv/Y0rt3b8TFxeHy5ct4/vw5nj9/jsuXL0OtVqN3796ZUSMREdH/27vzOBvLN47jnzNmrMPYx052smUnhISyUyQV0uZnSdKiBa1SWiSpLFlaiFCIshNK1si+RPZ9BmObmef3x9WZMczKzJmZM9/363VezzPnPM859znPYObruu9LRLzNpUuwfbvtxzeI+8/vv9vN1xe6dUv8oYmIiIgklQRXxC1btoxVq1ZRpkyZiPvKlCnDyJEjqV+/fqIOTkRERES81LZtEBYGOXJYt9R42LULXngBfvzRvm7TBgIDk3CMIiIiIokswUFc4cKFuXr16g33h4WFUaBAgUQZlIiIiIh4uWunpbpcsR7qOPDll9C/P4SE2H1Nm8KIEUk8RhEREZFEluCpqe+//z59+vRh7dq1EfetXbuWZ555huHDhyfq4ERERETEi5w6BfPmwXffwfLldl8c01LDw61Z6tNPWwjXqBH8/Tf88gsULOiBMYuIiIgkIpfjOE5CTsiRIwchISGEhobi62sFde79LFmyRDn29OnTiTfSRBIcHExAQABBQUFky5YtuYcjIiIikrodPgzNm8Px45AlC7RvD6++Cpkzw19/wR9/RC7qtmvXjeePHw/du99wt+NY4PbGGzBtmhXNDRsGzz2n5gwiIiKSuDyZFSV4aurHH3+cBMMQERERkRRj1SpYsQL69YMMGWI/9osvYPPmyK+HD4exY60Zw6VLNx5furQ95+bN1m2hXr2IhxwH1q2DGTPghx9g5067388PJk+GTp1u/a2JiIiIJKcEB3Fdu3ZNinGIiIiISEoQFGRdEE6ehBMnLFiLSXg4TJpk+8OHw223wcsvw44ddl/27FCrFtSubbeaNSFnTnts5064ehVKlSI0FN591/K7/fsjnz5DBlsLbsAAaNAgSd6tiIiIiEclOIgDa8wwc+ZMtm3bBkD58uVp06ZNxFRVEREREUml3nvPQjiADz6Ae++Fu++O/tiVK+Gff8DfH3r2tOmorVrZ/fnzQ6lSMc8jLV0agDNnoHNnW/MN7Cnuuw86dIAWLSBr1sR9eyIiIiLJKcHJ2d9//03r1q05evQoZcqUAWDYsGHkyZOH2bNnU6FChUQfpIiIiIh4wMGD8OGHtl+9Oqxda/NB27Sxr2vUgIoVI6eruqvhHnjAEjSweaQNG8b6MqGhMHs2TJkC8+dDcLCdPnIkPPhg5FOJiIiIeJsEN2uoU6cOefLkYeLEieTIkQOAM2fO0K1bN06cOMGqVauSZKCJRc0aRERERK5z4YJ1Qpg82Src6tWzhKxWLeuYcC0/P6hUCQoUgMWL7dwlS+IM38AK7caOhc8+g3//jby/RAmYPh2qVEnMNyUiIiISP57MihIcxGXKlIm1a9dy++23R7l/y5Yt1KhRg4sXLybqABObgjgRERGR63TvDhMm2H6OHLBoEdxxh4VsCxZYZZz7dupU1HOLF7duqNdNQT1+3DK8a29//hnZvyF3bnjsMWjXzpaOUydUERERSS4pumtq6dKlOXbs2A1B3PHjxylZsmSiDUxEREREPODSJStHA5sb2q2brfkGkCULtG1rN7C2pvv3W2vTM2fA5YJGjSJStPBw+PJLePNNOHw4+perVg369LEZrxkzJuUbExEREUl5EhzEDR06lL59+zJkyBBq164NwO+//84bb7zBsGHDCA4OjjhWFWciIiIiKdzChXD+PBQsCP/7X+ylaS4XFCtmt+vs2QNPPGGzVN2H3nYb3H575K1yZahQwR4TERERSYsSHMS1bNkSgI4dO+L676co9+zWVq1aRXztcrkICwtLrHGKiIiISFKYMcO27drd1PzQq1dh1Ch45RUICbFGC++8A48/bgV1IiIiIhIpwUHcEvd/c4qIiIhI6nb1Kvz4o+136JCgUx0HvvkGBg+GvXvtvkaNrBlD8eKJPE4RERERL5HgIO6uu+6K8bEtW7ZQoUKFWxqQiIiIiHjI8uVw+rR1TqhXL96nnT5tjRbcGV7evLYu3OOPq+mCiIiISGxu+Uelc+fO8eWXX1KzZk0qV66cGGMSERERkaR2+TIMGmT7bduCb+z/PxseDitXQu/eUKaMhXDp08Pbb1tF3JNPKoQTERERictN/7i0fPlyunbtSv78+Rk+fDiNGzfm999/T8yxiYiISFxWrrRF9r/4IrlHIqmJ40CvXrBqFWTPDi++GONhGzbACy9Y44V69Ww9uJMnoXRpWL0aXn5Za8GJiIiIxFeCpqYePXqUCRMmMG7cOIKDg+nYsSOXL19m1qxZlC9fPqnGKCIiItG5csXmAh4+DFOmwFNPJfeIJLUYNQrGjbMStilToGTJGw4JC4MHHoCZMyPvy5rViuc6d4YmTcDPz3NDFhEREfEG8a6Ia9WqFWXKlOGvv/7i448/5vDhw4wcOTIpxyYiIiKx+eQT2L7d9t2r5Yv3mTULihWDOXMS5/mWLIF+/Wz/vfegWbNoD3vjDQvh/Pysj8P06XDsGEyaBPfeqxBORERE5Ga4HMdx4nOgr68vffv2pWfPnpQqVSrifj8/PzZt2pRqKuKCg4MJCAggKCiIbNmyJfdwREQkrXIcW2Rr7lyb41e7NlSrBpkzx+/8o0ehVCk4f96+drng0iVbtEtSrn/+ge+/h19/hdtvh48/tmsXk9BQ+/7Ytw9y5IC//oJChW7+9fftgxo14NQpePhhS9Wief1ffrGwzd0Z9aGHbv4lRURERFI6T2ZF8a6I++233zh37hzVqlWjVq1afPrpp5w8eTIpxyYiIpL6hYRYmnGtf/6B1q2hXTsYO9YW4GrQALJlg4YN4cCBuJ934kQL4apXt/DOcWD//qR4B5JY5s+38O3FF2HRIqto/O232M/5/nsLzwDOnIFu3WD3brh4MeGvf/48tGljIVz16vDll9GGcLt22dRTx4Gnn1YIJyIiIpKY4h3E1a5dmzFjxnDkyBGeeuoppkyZQoECBQgPD2fBggWcO3cuKccpIiKS+qxbZwvht2ljHSqvXoVhw6B8eZtm6OdnrSbbtYP8+W1RrmXLoHFjOHgw9uf+/nvbPvGEraIPkYGNpDzffQetWlkwW7OmBa4A778f8zmOA+++a/vdukGmTBbglSoFuXNbNVt8hYfbc2zeDPny2XTXTJluOOzMGWjZ0ra1a8NHH8X/JUREREQkbvGemhqdHTt2MG7cOCZPnszZs2e55557+OmnnxJzfIlOU1NFRMRjnn46sptps2YWrv39t319110wejSUK2dfOw7s3An33WfrveXNC/Xrw513WoCSI0fk8+7ZY4vrp0sHR45Ajx4we7Y939NPe/QtSjwcPmzX6+JF6NIFxo+30LRcObvu27ZZmLp+vbUhXb3a9kNCbAqyv79VSS5dCi+9ZN9HISH23K+/Dq+9Fvv0VoAxYyz0TZ/enqdOnRsOuXTJpqMuXQqFC8OaNZbZiYiIiHg7T2ZFtxTEuYWFhTF79mzGjx+vIE5ERARsba/8+eHkSQtJ3P/c5s4NH3wAjzwSfXhy4AA0ahS1+ULmzNC1K/TtC2XLWpXUwIHWtnLBAsKfeZbvPznC9NIvU65jJdq1gzvuiDubEQ/p1Qs++8zCr99+s06lYO1Hf/zR0q7Tp60LbnRee806J/znn73hrOo3lVOzV3GanJwuV4/TdzTm1Jl0ZMhgBZe1atm3R+bM2HOXLm1TUj/4APr3v+ElQkOtIcNPP1ln1OXLoUqVRP8kRERERFKkVBfEpSYK4kRExCMWLICmTS14GzsWnnnGvh46FHLliv3ckBBYuRI2bYLJk22BfsABzjTqwKHdFwn+9yzBfV7l9xz3MmPMSbYcyR3lKYoXh44d7ValikK5ZLN3L5QpY0nX0qVWCem2ciXUqxf5dZ48FtbVqWNJWvbskCEDlC1LaLgP33wDo0bBn3/G76UzpbtMg1xbqZV9O7V2TqZWmSBybFpKmI8f4eE2EzoszL69BgyA33+3l5s/P3LmrIiIiEhaoCAuCSmIExERj3j8cRg3Dp56Cj7/PMGnX71qMxhXrnQ4uOUsB3eGcPBCDi4SfVfVbATxVN5Z7KnXlXnzoq7lX7KkBXIPPxw5E1aSwOnTNr14167I7Zo1Ng31nnusU+r15syBoCBbkK148RsS0yNH4Ntvbdbxnj12n4+P5XQFC0KuCwfIuXAqua4eJWfBzJzr3ofNOzKwYOZ59ocWTNDwM2eGqVNtjTgRERGRtERBXBJSECciIknuyhWbbnjmjC2u37hxgk7/9Vfo3dtynOjkcp0iR7YwMhbOS8WK0KjMYToMqUDOgHA4e5YLF2DuXOvnMHeurf0F4Otr1U53332L709uNH68ha6hoTc+5utr675Vrx7vp9u715Z/+/pr67MAVlz5/PM2Szkw8JqD16+39OzIkYi7HOCvwKb8VrEnf6xNxxqfWuw4nTfa1/L1hUcfhTffhAIF4j1EEREREa+hIC4JKYgTEZEkdfCglZ4tW2YNFw4ftqYK8fT557akWHi4nd6rl1W0FSpkFVAFC0LGjNedFBICWbLY/unTURo7nD9vRVejR9u6X0WKWONM/ROYiE6ehBIlIDjYkqwyZayzqftWpQoULRrrU5w+DStW2LfNsmWwcWNkAFe3ri0p+PDD1rchWgcOwP33R85brVoVZs60C/6fc+eseW+6dFZVly6d3Xx9rYGviIiISFrlyazIN0mfXUREJC0JDoaaNa0yKUsW+PLLBIVw77wDr7xi+489Bh99FM/ALHNmq8A7etRKqapVi3jI3x8efNAKpipXtocHDLChSSJ56y279lWqwLp1kc0Y4hAWBm+/DdOnWzh6vaZN7alr1IjHkxUpAn/8YUkb2GJv101zzZrVbiIiIiKSfBTEiYiIJJaVKy2Ey5fPys9KlYr3qRMmRIZwgwfbLUENFooXjzaIc/P3h6++sl4BY8ZYh8xmzRLw/BLV+fMwYoR1Iv3sM7vv/ffjHcIBvPQSDB8e+XW5cnZ9GjSwW8GELfFm3zA3lEuKiIiISEqiIE5ERFKWNWuswqtCheQeScL9192Uu+5KUAi3ZAk88YTtv/IKDBlyE69dvDisWmVBXAwaNIC+feGTT6BHD9iyxRpzyk346it49dXIr5s2hSZN4n36pEmRIdxHH8FDD9lUZBERERHxbvH/b1sREZGkduIE3HknVKpkydTJk8k9ooRxzy+sWDHepxw7ZlNHQ0OhUyd4442bfO0SJWzrDgNj8M47tubcoUPw7LM3+VoSuRZbo0bw2msWzMXTli3w5JO2/8or0K+fQjgRERGRtEJBnIiIpBz79lki5TgwdiyULm3dC8LCkntk8eMOwSpVitfh4eHWAfP4ccvuvvoqQTMbo3K3Qv35Z+vaGoMsWex1XC6bDuvOkySBNm2ybb9+lp7Gs93opUtW/Xb5MjRvfgvBq4iIiIikSgriREQk5Th2zLZFilhngTNnoGdPqFXLFqJPya5cge3bbT8eFXH//APdu8Mvv9iyXlOmQKZMt/D6detCYCCcPQtLl8Z6aL161oETrFmAJNDly7B1q+1XqZKgU19+2Qon8+SxIPSmg1cRERERSZX045+IiKQcR4/atlIlWLvWFjPLls06UdaunbJbfe7YAVevWlvKokVjPax7d1tCbtIku2/ECChf/hZfP106aNvW9n/4Ic7DX37ZquJ+/DHO2axyvW3brHIzRw4oXDjep61YYevBgVUlBgYm0fhEREREJMVSECciIimHO4jLlw98faFPH9i50xZPA/jgg+jPu3TJjktO7vXhKlWKtt3pX3/ZWnDlylklVGiore2/dGnkemG3rEMH286aFed03rJl4YEHbF9VcQm0caNtK1eOd2vbS5fg8cdtv0cPaNEiaYYmIiIiIimbgjgREUk53FNT8+WLvC8w0NaJ8/GxsO3gwRvP690bypSBb77xzDij4y4ri2Za6syZNoNx6lRb/q51a5tpu2CBNVhNNA0bWpXW8eOwfHmch7/yim2nTYucVSsxOH3ags7PPosM4hIwLfWNN+zbN3/+yG6pIiIiIpL2KIgTEZGUw10Rd/2cvezZoXp121+0KOpjISHw3Xe2/8IL9nVyuLYi7hrnzllO6DhWBbVpk00HrVkzCcbg5wdt2tj+/fdbZVwsKlWywx3HuqlKLF57DWbMsOYM8+bZffEM4tavh/fes/3Ro+3bWURERETSJgVxIiKSclw7NfV6jRvb9vogbv78yPDt8OHIRbg8KSQksovmdRVxb75pwypeHKZPj3dD1Zv39tsWWp4+De3awf/+Bxcvxnj4q6/a9ttvYc+eJB5barVli1Vlgq0D6J4GXblynKdevWpTUcPCoGPHyJxURERERNImBXEiIpJyxBbE3X23bRctshIut+nTbXv77bZ9993IKa7RCQ+3uYHuqqaEOn7cFnl74QVo2dISNn9/OHTIHq9QIeLQLVsic8FPPrHuqEmuQAFYuRKef96+Hj0aatSwwUSjenVo3tyCotdfj/rRCvaBPPusfd/UqBF5v59fnB02QkNh4ECbyZozp30PiIiIiEjapiBORERSDneAFl07yTvvhAwZrLzMXZF06RLMnm37Y8ZYqnT+PAwZEvNr/PijhVSPPJLw1Mlx4J57rO3p++/D3Lmwb5/dnzs3PPdcxLzDy5ehSxcLY1q39vDi/OnT21zIX36xz/Lvv+2z+fTTaJs4uKviJk+2xqunTnlwrCnd7NmwcKF9plOm2EUF67qRPn2Mpy1ebDNX3f1FPv5YXVJFREREREGciIikFOfP2w2ir4jLlAnq1rX9AQNg8GCrVDp/HgoXhtq1I1fBHzMGtm2L/nW++MK2p05ZiJYQy5ZZU4bMmW3ht88+s7anx4/DiRNRVuF/+WU7NHfuyJf0uKZNbRDNm1sy2KePpUO//BLlsDvvhFGjLFf66Sebcbl0abKMOGW5fNnCVbDvteLFLeBs2TIyvbzO/v3Wjfbuuy3/zJXLvh0fftiD4xYRERGRFEtBnIiIpAzuarjMmW2qZ3SaNbPtnDnWhtK9blf79uByWQvSNm2s6uvFF288f98++PXXyK/XrUvYGEePtu3DD8PIkdCzp71mnjxRDps1Cz780PbHj48+V/SYvHmtcm/ECKvW27IFWrW6IYT83/+sk2uZMjbLtnFjGDTIKvrSrJEjYfduK2Vzt5gtUMCq5B54IMqhly/b1N6yZW22tI+PZbU7d8Ljj9u3p4iIiIiIgjgREUkZrp2WGlNq0bu3VZ09/7wlR127Wspxbeg2bBikS2dhyfVlXWPHRp2OmpAg7uhR65oJFsDFYP36yNmLffpY5pXsfHygb18L3ypUsA4Ca9bccFiVKvaRPPaYfUxvvmk5o3v5uzTl+HH7AMBaymbNGuvh/frZjOhLl+wz27DBcrycOZN8pCIiIiKSivgm9wBERESA2Bs1uGXJEjlVMCZlysBTT9m00QEDYM0awvHh0Ly/2PvZ35yiHecr1OG3LQEs/KQV4VOsoC1PHisey+Nzirx7f6dEp+qUvSuQsoXO4zP9e1tbLjTUpsBWqXLDy165AhMnwmuvWRPVpk0jq+JSjOzZbXrvli2weTN06nTDIVmywLhxthTeU0/BqlW2JN61hYRpwquvQnAwVK0K3brFeui2bfDll7Y/YQI8+qgq4EREREQkegriREQkZYhPEBdfgwfD5MmErNvK2NYL+WBpVQ5cqATMssfdDUQvAvttXa9IuYAWsMy+yu17lbtCs1GSOhSgKBnKdeHyJ1YldvBg1O2lS3ZOhQrw/ffgmxL/lXV3dY2hi6rbgw/aWnEVKsCCBbB1a5xNQr3Hxo1WPQnWZcEn9gkEAwdaU9W2ba1IU0REREQkJinxVwQREUmLYuuYmkBn0+fls9o/8fGC8pyYmxcAX65SLOsp8pbJQaasfpRbNpr7wueQ44dxnEiXjxPjfuT47D84QR6Oko9dlGKr63ZOhubgB+6PfPKvYn7d/PnhhRfgySdtqbsUKZ5BHFhj0LZtbUbuyJGRS+R5vf79bW5ux45Qv36sh65cacWSPj42g1VEREREJDYK4kREJGVIhIq448etgGnUKAgObgjAbezlxcq/0HVkdTLWrxF5cLXxtqDbmXnWXWHOHLv/mWegwW3QoRZXHD/WUJPfHxvDgSzlOHbMpqD6+kLBglCokG3d+0WKpNAquGu5g7i9e+HCBZuLGos+fSyImzTJgqYcOTwwxuS0YwcsWWIX8r33Yj3UcWy5QoAePSy4FBERERGJTUr/dUFERNKKWwjiTp60dfXHjIGLF+2+22+Hgc+E0Kl5JnwLR9NcoVo1C+KefNLmFWbIYE/wyCP2+JNPkv7LL6n3WmPqveFFCYt7Mbzjx21xs+rVYz38rrugYkVbUu6LL+Cll5J4fNu2WdeDNWvgzBn4+Wdb1+564eE2//ettywd/Phju6a3yt2Q4+67oWjRWA+dNQtWr4ZMmWzIIiIiIiJxUddUERFJGW5yaurVq3DvvfDJJxbC1ahhAclff0GXJzLjWzh/9Ce6Q5vwcCtn++23yBAObB7mtm3w+usJfy8pXQKmp7pcNlMTLOzcty8JxwX2eX//PfzzDwQFWVfcK1ciH3cc+OUXCxA7d4a//7ZrV6OGfT1jRtTjE8odxLVvH+thoaG2NhzY51OgwM2/pIiIiIikHQriREQkZbjJirh334W1a60h6IIF8Mcf0KZNnOvrQ/PmdtLdd8O6dTdWhvn4QNmy3tn+MgFBHFgX0AYNrBvs449bFpZk/vjDth9/bJV727bBBx/Yfb//Do0b27XbsAGyZrXg7qGHbFBTpkCHDlED1YTYv9++mVwuWxwvFqNG2SzW3LltXUARERERkfhQECciIsnPcW4qiNu4Ed54w/Y//RSaNElAbla0KJw4AQsXWuCTliQwiPPxgXHjbArm4sVWAXb1ahKM68QJq4RzuaBbNxg+3O5/7TX7vqhTB5YutWnEzz1n69wNGgTffGNTWf8r3Qv7fjp/zDrC+vVWaBnv4HDmTNvWrx/r98Tu3ZHVcG+9Bdmy3cybFREREZG0SEGciIgkv+BguHzZ9hMwNXXAAJsi2L69FUUlWIrvrJBE3EHcmjVWQTZoUJynlCwJ73deD1ixWoNal/j1VwgLS8Rx/fmnbcuUgYAAePhhaNrUXuTYMUsEH3sMdu2ykC537shza9TgxEsf8FKRbynCAWq3y0+1apbf5c9vBW7vvms53vnzMbz+Dz/YtkOHGIcYHm5DuHjRivOeeCIx3riIiIiIpBUux0nSCSYpTnBwMAEBAQQFBZFN/4UtIpIy7Nhh00CzZbN1weJhzRqoVcuytN2741xXX64VHGxB17V274YSJWI+58IFKFmSH47WpQfjCCI7YMvr9expPS+uzcVuypAhNtX0kUesTSvYem87d1oCljdvtBWToaHw0UdWnRYcbPdl9wkiU2A2jh1zER4e9XgfH6haFd5+23I+wCoyCxSw8rkDB6Bw4WiH+Mkn1lg3SxYrKCxW7Bbfs4iIiIgkO09mRaqIExGR5HcT01KHDrXtww8rhEuwbNng5ZehUSMrdQOYOzf2c0aOhKNH6VB0HZvKPkgvPiVHxhAOHoRXXrHc6okn4j3bNXruiriaNSPvS5/eKvgqVYr2++PQIVvm74UXLIS7o3IYMzJ05lh4Hg5PX83587BypS0zd//9FhyGh9tScM2aQY8eljEya5aFcDVrxhjC7d4d2TX2/fcVwomIiIhIwimIExGR5JfAjql//225icsFL76YdMPyam+/bQu+Pf20fR1bEHfmDAwbZvtvvUXRh+vzKX048sAzTJpk1WWXLsHYsVCxogVjixYlcDyOY2WOYB1QY3Dxog37tdegXj247TZYvhz8/W0du7Xr09GuU3rScxUmTCBTJqhb15aPmzYN/v3Xbn372vfP+PHQsCEc/W6JvUA03VLDwmD9elu2zj0l9amnEvj+RERERERQEJc27d4NU6daecDx48k9GhGRBFfEjRpl23btbEar3IL77rNtbIunjR8PZ89ayta5c0TFWIbD+3jkEasuW7HCKs58fCwou+cemD8/AePYvx9OngQ/P6hc+YaHf/gB7rorstHtW29ZpdvVq1bEtmGDrd3m44O1eXWfFE1XiUKFYMQIG2euXDb+GsuH8zVdCGvTnpAQWL3assf77oOcOaFaNXu9LFkscIyzK6+IiIiISDRSxI+Ro0aNolixYmTMmJFatWqxxv0/4tEYM2YM9evXJ0eOHOTIkYMmTZrEerxcZ948KFUKHnzQVjnXf+mLSEqQgCAuNBSmT7f9J59MwjGlFWXLWlnZlSuWTEVnxQrbdu0K6dJFTt3891/AKsvq1bOKs7174YEHrMCtSxfL1yJcvhwZ9jkOnD4NW7da+dzo0XZ/pUqQMWOUl//6a3vO5cttmAUK2HOPHQt79sDvv0fOsAWsxC0w0J5/4cIY33rDhnZu6XxBHKQwj/A1WaqUIksWq6J76SX7ZzM42Gbz3ncfzJljH5eIiIiIyM1I9iBu6tSp9O/fn8GDB7N+/XoqV65Ms2bNOB5DpdbSpUvp3LkzS5YsYfXq1RQuXJimTZty6NAhD488lZo927bFi9tvTrNm2RwvEZHklICpqUuXwokTVsnUuHHSDitNcLmgRQvbj256quNYeRhAnTq2vTaIu67nU9GiMHkyVK9uOVjHjrYmGydOWPvSrFmtrC1TJruIt98OTZrAe+/ZE9SqFeX5Zs2yKaGOA48/bn0bDh60cK5Hj8h/zqJIl87K8wCmTIn6WEiInfzaa3D+PCVLwvo7HmcoL5E948WI5r25c9ss1Y8/tmmpp0/bx9OwYZyfqIiIiIhIjJK9a2qtWrWoUaMGn376KQDh4eEULlyYPn368JJ7ReRYhIWFkSNHDj799FMedU9FiUWa75papQps2mTlJN9+CzNmWFnB118n98hEJC1r0QJ+/tlKnHr0iPXQJ56ww558Er74wkPj83bz58O990KOHLBsmU1Bddu717qp+vlZaVjGjLYgXKZM9vjJkxaoXWf/fituCw6GmTOhrd9caNnyxtfOkcMqIfPntxRv0KCILgh799o/W+fOQffuCZwSumIFNGhgpWzHjtl/Oo0bZ//2uTvzvvQS9OkDRYpAWBghf/7NoYDy5M1rp90Q8ImIiIiIV0ozXVOvXLnCunXraNKkScR9Pj4+NGnShNXu/32PQ0hICFevXiVnzpzRPn758mWCg4Oj3NKsc+dg82bbr1PHOuYBfPed/bYjIpJc4jk19epV+/8DgE6dknhMaUnjxtZx4cwZK/lydy+FyGq4qlUjp4xmzAh58tj+f9NTr1e0KPTubftDh4Lzz39zVJs1s+mo+/ZZ54Nrp6eOHx8RwoWGWkfcc+ds2uuXXyZwXbY774SCBS0JLFvWSvRGj7YQzj32L76wkrewMKhXj8zVy1OqFAQEKIQTERERkaSRrEHcyZMnCQsLI/C6qUiBgYEcdf9SFocXX3yRAgUKRAnzrjV06FACAgIiboXd02nSojVrbH5Q0aK2wE61atC8ud3n7oYnIpIc4jk1ddEiy20CA23hfkkk6dPbWmq1a9sHfPfdtiAb3Dgt1e26deKi07evZXZr1sCy39LZnaVLQ7lyFrhdtxbctd580146WzYr2vb1TeB78vGxebFg5XkZMlijiYUL4fBhm9N65gy8/74d06tXAl9ARERERCThkn2NuFvx7rvvMmXKFGbOnEnGGH6YHzhwIEFBQRG3f2P5hcHrrVpl27p1I+9zV8VNmABaZ09EkkN4eGQQF0dF3Lx5tm3b1pYBk0SUIwcsWGDVcefOWeXa/Pm3FMQFBlonU4ChS2vbTtGicQ7l118tiAMrYovHKdEbONDmMI8caeHbt99ayOjrC888E3lc3ry2IJyIiIiISBJL1iAud+7cpEuXjmPuX8D+c+zYMfLF8cvY8OHDeffdd/n111+pVKlSjMdlyJCBbNmyRbmlWdH9MlW/vt2uXIEPPkiecYlI7MLDYfduIlaR9zanT9s8RLBAJBZLl9o2hiJouVX+/taRoGVLWweudWvYuNEeu4kgDqxBt68v/Hq0MvNpFmeqduCALV3qOJahPfTQTb4XsCmoX3xhc2SvX8Kie3crtwNbeDB9+lt4IRERERGR+EnWIC59+vRUq1aNRYsWRdwXHh7OokWLqHP9D/zXeO+993jzzTeZP38+1atX98RQU7/w8Mgg7tqKOIBXXrHtF1/YotsikrIMHw6lSlmQcN99VqUUXZ+dS5ds7ubgwTB1qufHebPc/xmTM2esYcipU/DXX7bfoIEHxpVWZcxoC/F16mSL8oWH21pr1y/t4P764MFYn+6222yKKkBfPuFy/mLRHuc41iG1enX7p+iOO2DEiFt7K7HKmhU++wzatYNnn03CFxIRERERiZTQFVcSXf/+/enatSvVq1enZs2afPzxx1y4cIHu3bsD8Oijj1KwYEGGDh0KwLBhwxg0aBDffvstxYoVi1hLzt/fH39//2R7Hyne9u1w9ixkzmxt7K7VtKmtF7duHYwYwdnn3mTyZFs7/eWXIUuWZBmxiLh9951tQ0Jsbua8efZn9rHH7M/z8uUWwK1cGVk153JBzZqWgqR08WzU4F6y7Pbb4yyck1vl5wfffGP/AIwfb/9OXK9QIdvGY8mHwS9d5psPz7CL0vT89CIPBFsPhR07Im87d9qMWLCmrTNmxLqEXOLo0sVuIiIiIiIekuxBXKdOnThx4gSDBg3i6NGjVKlShfnz50c0cDhw4AA+17RJGz16NFeuXOH++++P8jyDBw9myJAhnhx66rJypW1r1LBfsK7lcsHLL/Nnh6F8Pqw0333gcPGitYtbsgR+/hmyZ/fscEXkP8eORU4NXLoUfvrJFs1at85u18uf3+YB/vsvFz8dx+n+bxEaajM/3b1aUtwMvHgGce5pqQ0bJuloxC1dOhg7Fp56CsqXv/HxmKamhoXZuqNXrkDPngBkC/qX93iDrkziqymZ+GpK9C+ZPj306wdvvGG9FUREREREvE2yB3EAvXv3pnfv3tE+ttT9m9d//vnnn6QfkDdyf47XtRm8cMGKbT7/vB3raA9XgatWcXL4sM1mbdQIVqywpYNEJBE4Dnz5pU3FfOCB2I9duNC2d9xhf37vugtefBEmT7Y/vP/+C3feaQvs3303l4qVZctny/lqwBYmfNiNkA+jPl327NCmjYVZ1apZ88oEd6NMbO4gLo6OqQrikoG7sjI6105NDQ+3LqVr11pwt369PXbffZb+7t/PI0yG/AX4ucG7/P23Lc9WpozdSpe2bYkSCuBERERExLsl969f4gmOc8NvsKdPw5AhMHGiTQ8CF+l9w3gg9Dt6Zp9C3T++Z/OezNxzjxXjDBoEH34Y7bOLSEJ98omV/fj4WJVqsWIxH/vrr7a9dmpg3rzw3HOceew5fv0V/v4btiyGv0daT4fw8LsAC93TEYofV/EllLBM/pw962LiRPuzDzb1r3JlC+Xq1IGOHZOhYi4eHVO1PlwKVLCgBXVXrsCePfZ9PWpU1PULd+2KCOJcwKOVNvJoDNVwIiIiIiJpQbI2axAP2b3bytvSp4fatQkOtt/pR460EK5ECXj/fTj0r8PXxV7jzrNzcf08l0qVIn9ZHzEC1qxJ3rch4hWWLIHnnrP98HD49NOYj3Wc6IM4rFCubFl48EF4802YOdPW2AoPhxw5oE25HSyiMVfx4yKZOUc2zr34NsuX28s3aGBr1V+6BH/8YWvWP/KIFTAFBSXC+3Qv9hUf8Zia+v33ttX6cCmIn1/kNata1b6XHcfWXHM3XNq3z7b799s2jo6pIiIiIiLeTkGcFxgyxDrSde0KbdvaDLVq1azJYuPG8NbzQaymNqG17mT7/ky0aWNLS+XObWu+79wJAwZA7ny+dgLAtm0ANG9uv1OFh8Pjj1sDPRG5SZcuQefOtoZWlSp239ixcP589Mdv3mwhVaZMNv30P++/b7nc8eMWpD/+OHz0ESxYYJn7qVMwa2kOGgduxVW5snVdBdJ98Rn1a11h+HBYtsz6t+zYYTNcn3vOpp8vWgT168fZCDN2334LAQFWIRUfcQRx27bZ31EA3brdwrgk8bmnp54/b//oLFwIX39tU6lBQZyIiIiIyHU0NdULfPIJnDkT/WO7d8MSqvMaq0m/KpQr5ez+rFlh/nwL7KIoXdq2O3dG3PXRR3bs5s32+/zAgYn/HkTShJkzbRpmoULw228WVuzaBePGwTPP2KKNv/9u7UGXL7d9sCnl/y2c9c478MordvcTT1i1aqZM0bxW3ry2fpyPjwV/H3wAR47A9Onw0EOAPVS6tN0efNDubtHC/qzXrm2NWq5vshynkBBLzRzHQpm+feM+xz01NZo14i5ehE6d7GnvvhuefTaB45Gk1aYNbN1q1/zFFyPbnLq79bqDOPf6rgriRERERCSNU0WcF+jTx34xHzYMPv/cilHmzrWKl89GOdyfcQ65OMmVMF/Sp4dmzez34xtCOIgM4nbsiLgrTx74+GPbf/31KBmdiCTEmDG27dEDsmSx8A1svbjAQOuk0KSJtYxcutQq6PLmjTju3XcjQ7i337Z+D9GGcG5+ftb5Mn36iO6VDBkS47TRqlWtQUu5cnDokFXGrV2bwPf46acW+EFk+BKXWCrinn3WgsG8ea3QKl26BI5HktbLL9tc5sGDI0M4uDGIU0WciIiIiAgALse5dlVl7xccHExAQABBQUFky5YtuYeT9FatgjvvJNwvA7vXniX/bRnJmjWW47dutUWYsmWzeWsuF2DFLffeC7/8AtWrw9SpULy4R96BiHfYvdum7rlcFlAVKWIVcC1aWFvi8HA7rlAhW8DNfStbFlwuhg2Dl16yQ956KzKQi7fTp60rw8GDNj32m28i/nxf78wZaN3aivZy54aVKyMz+iiCg+G112DvXvs6IMD+F+DsWfs6a1YLaWJ4HcBK3jJntv0TJ+wF//P991YN53LZ3z333JPA9yzJZ/16+9+evHltvnTGjBAaCgcORE5nFRERERFJITyZFWlqqjfbtAlatQLAp3VLSlfKGMcJ2IJTPj72C/bx4xFTxVwuq7arVMkqZMqXt5lIAwdaYY+IxGH8eNs2a2YhHNgfnqVLLZDbssVCi2LFogRXYWGWdQ0dal+/8cZNhHAAOXPaYnANG9q2eHF74v+mvF4rRw6bltqwoeUpzZpZha172IAtRNe8efQlc2XKwI4dHDyXjR+HXyRvscyUK2c55A0vd22IlytXlLufeML2X3pJIVyq466IO37cKqxDQ8HXFwoUSN5xiYiIiIgkM1XEpXbh4TBnjq0FdeBA1O2hQ/ZbfK1a1nkxvu+3RAn7LXjZMqvIuca2bbbk08KF9nWhQrZuXMeOsRe9iKRpJ0/afM+TJ22Ntg4d4jzFcSzjeuklWLzY7nv9dRg06BbH8t57tpYXWJnbyJE3dGR1O37cekTs3m25ytKl/4VxR45YMvb331bB9sYbNv31zBk4e5bTLR/lsyYzGHqhDyFEJvXp0ln+V64cNGoEvXuD788/2Tpj1apFhHpXrtjrrl1r26VLLcORVMRxbKp1cLBNX33nHSun/vPP5B6ZiIiIiMgNVBEn8edy2QrrFy5E/3j9+jB7dvxDOLBfzvfutcXgrgviypWzTG/mTOjf35b9efBBGD3alr8qVeoW3ouIt+rb10K48uVtzmcMHMfWQ5syxaZ/u4vFsmSx5qoPPpgIY3n+ecif37Y7d1q5W4cO8OGH15W8WYHe4sUWmu3ZAxUqQPUKl7hj68/cEVSFKnnyUnbRKHwrluPcOfjpJ/huKfwyDEJDbR5t1eJn8MuTg23bLJPZtctuP/1k/4/Qn932YiVKRLzuSy9ZCJcjh615qRAuFXK5LL3dtAkmTrT7GjZM1iGJiIiIiKQEataQ2rlctnhbu3b2y/7w4baw0urVthbUsmU25SshomnYcP1Ltm9v1XFDhtjSP8uWwX33weXLt/Z2RLzOrFk2FdTHByZMsAYK13E3Nb39dlvGbehQC+EyZ7bw7c8/EymEA/sD/Mgj9uf7mWdsXD/8YCn7O+9YYHiNwoWtIq1cOevxsGR1Rj4M6sEjfE3FE4vxr1GOrFkt63/4YVsiLjQUKgXs5xseYm3vifz+uy0bd+iQVdO6O5++8Qac3PxfY4eSJQH46y/r1Az2cV2XDUpq4p6eeuiQbRXEiYiIiIgoiPMK06bBjBkwYgQ89xw88ADUrg0FC97cfNEyZWwbR3vUTJmsUd62bbaU3O7dNgQR+c/p0/D007b//PNQo0a0h338sa25uG2braHWrp1VxB0/bhleuXJJMLaAAHvhDRugXj0ICbHF5wIDoWVLG/t/ChWCTZP/Yn2OuxnHY/TO/jV31riMv7+F7+fP23GlStnU2a1bYdNTn/EQ3+Ha/w9gfxUVKAB33w3vv2+BY1AQvLHoTjv5vyDu/fftywceiLV4UFIDdxAHFvjWr598YxERERERSSEUxMmN3BVxcQRxbsWKwbBhtv/mm9YgT0SwirNjx6zz6ZAh0R6yZ4/1TAA75Ngxy9U7dvRQI5RKlWD5cpg0CapUsfmic+faWnJuQUH4tWjKHWcW81iVDYzc2Yzf1mQgKMgC+F27rHfDjh22jl25cthfDGAdYq+TLp1VAAJ89m9LVlMbSpbkwAGblgvwwgtJ+J7FM64N4qpVS9gSCSIiIiIiXkpBnNzIHcTt2WNzzOLhkUesJ8T587a+k0iaN3s2fP21VQJ99ZXN4b6O41hn0IsXoXFjqyZL6EzyROGerrphg5XigS36ePGi7b/zjiWEpUvDkiWQJw9gb61ECStmy5nzugLcokVtG00QB1YZ1/H+MMLwpS2z2ONbhvfft79yGjWydf0llbs2iNO0VBERERERQEGcRKdQIZt3evUq7NsXr1N8fKz5IsDkybBqVRKOTySlO3MGnnrK9p97zqaKR2P+fMu1MmWCL79MIZ2HO3SwEO30aZsXu2+fTWEFK2PLnj1+z+OuiNu/P8ZDxr28lyps4DiBlKybl08/tftVDeclrg3iGjVKvnGIiIiIiKQgCuLkRj4+1h4RrFVjPNWoAY89Zvt9+9oMN5E06dln4cgRqyB7/fUYD3M3JXj66ShNQ5NXunTwv//Z/tChcP/9cOUKNGkCLVrE/3ncFXFnz9otGv5HdzObVhTwPQ7YVNxHH7VGruIFihe34DYgAO68M7lHIyIiIiKSIiiIk+gNGmTbDz6w9aK6dbMKn7CwWE975x1bBmjdOpuNJ5Lm/PwzTJxo5W1ffWXlbtHYvBkWLLDcu29fD48xLj162FTa3bth/Xp7Dx98kLCSvSxZIqawxlgVt3s3hTjE3836s3OnNW9wf3TiBTJlgpUrrURa68OJiIiIiAAK4iQmLVtaJUxYmO1PnGhz51avjvW0wMDINekHDoyxEEbEO129Cv362X6/flC3boyHuqvhOnSInMWZYuTKBcOHw113wRtvwF9/WVOHhIpjnTh27wYge/kClCplxXjiZcqXt5uIiIiIiAAK4iQ2I0ZEVjFkyGDbn36K87Teva1r4okTsc7KE0ndwsKsxefp05H3TZhgLUTz5In1m//YMfjmG9t/9tmkHeZN69ULli61lq4lS97cc8S1Ttx/QdxNP7+IiIiIiEgqoyBOYlaggE0r+vHHyHmms2fHeZqfn2V4YA0ctm5NwjGKJJexY6FzZxgwwL6+eDGyHPSVVyBr1hhP/ewzW3atdm2oUyfph5ps3B2YFy2K/nF3EJdiFsgTERERERFJWgriJHYVKkDr1nDffeDrC9u3W8VPHO65x04LC4MvvvDAOEU87bffbOsOmb74Ag4fhiJFrPtCDC5etCAOoH//JB5jcnv0UdvOnh0ZurldvQp799q+O7ATERERERHxcgriJH4CAqBBA9uPR1UcwMMP23bp0qQZkkiy2rDBtgcOwKFDMH26ff3CC5FTuaPxzTdw8qQtn9aunQfGmZzKlLFOq44TWSbrtncvhIZC5sxQsGDyjE9ERERERMTDFMRJ/LVubdvvvousZImFO7fbvDnqMloiqV5ICGzbFvn1/Pnw+++236JFjKeFh0c2aejb14pMvZ57EbyvvoravWXHDtuWLm2tY0VERERERNIA/fYj8deqlW3XrrU1nUqUsCl4M2ZE2x41MBDKlrVimBUrPDtUkSS1ebOlam7vvmvzsEuVirUF6s8/25qJWbNCjx5JP8wUoXFj67h64QKMGRN5vzuIK1s2ecYlIiIiIiKSDBTESfwVL24L1DdoYKU8e/faulgdOkCuXPD22zecctddtl22zMNjFUlK7mmp7pI29/pnTZvGetqwYbZ9+mmb7Z0muFzQr5/tf/KJrQ0HkUFcmTLJMiwREREREZHkoCBOEqZHD0vVTp+2teL69LGKlvBweO01WL8+yuEK4sQruYO4Dh2i3n/PPTGesmqV9XdInz4yl0ozOneGvHnh4EH44Qe7T0GciIiIiIikQQri5OZkzQotW1qFy7Zt8OCDNge1d+8oU/bcQdzGjRAUlDxDFUl07iCufXubgw2QLh00ahTt4adPw8sv2/4jj0CBAh4YY0qSMSP873+2/9FH9neFgjgREREREUmDFMRJ4nj/fciSBVavhq+/jri7QAEoWdKyOa0TJ6nO+fNWxRUWFnnf1avw11+2X7Uq1K1r+7VrQ7ZsUU53HJg82YpGly2zarjnn/fQ2FOanj2tm+yaNbZY3okTdn/p0sk7LhEREREREQ9SECeJo1Ahm5oKMGhQ5DpQRC6bNXJkMoxL5GYFB1tDksKFLUAqWhTq14f774fLl60qtHhxeOghO/667gs7dsDdd8Ojj1rmVL48LFqUhgvA8uaFLl1s/5lnbFuwIPj7J9+YREREREREPMzlOI6T3IPwpODgYAICAggKCiLbddUrcosuXoTbboNjx2DcOHjsMQD27bPw4epVWLIEGjZM3mGKxMtPP0GbNjE/3qgRLF5s+xcvQqZMAFy6BEOHWiPVK1fs7kGDoH9/q4hL07ZsgYoVI79u3NjSSRERERERkWTkyaxIFXGSeDJlghdesP2334bQUMCyuSeftLsHDrTpeiIp3pIltn38cZueumoVTJ1q07BfeAFGjIg89r8QDuCpp+CNNyyEu/de+PtveOklhXAAVKgQtaFFmi0PFBERERGRtEoVcZK4LlyAYsXg5EmYNMlWpgeOHLFZfhcvwo8/QuvWyTtMkThVqQKbNsGUKdCpU7xO2bIFKlWysPnbb62HicuVtMNMdebNg/vus/2PP46cpioiIiIiIpJMVBEnqVeWLPDEE7bvrigC8ueP/H37lVeiNFYVSXlOnrQQDhI0l/r11y2E69ABOndWCBetZs2sMg6gRo3kHYuIiIiIiIiHKYiTxFeokG2Dg6Pc/cILkD27VQ19953nhyUSb8uW2fb22yEwMF6n/PUXTJ9u4duQIUk3tFTPxwfmz7ebu+OsiIiIiIhIGqEgThKfu4zzuiAuR47IJeQGDbI1tERSJHc1Z6NG8T7l7bdt+8ADkQVfEoOCBa0yTkREREREJI1RECeJL4YgDqBvXysw2rvXGquKpEjubqiNG8fr8D17rBoObOq1iIiIiIiISHQUxEniy5rVttEEcVmywKuv2v6bb0JIiAfHJRIfly7Btm22X69evE758ENb97B5c2vWICIiIiIiIhIdBXGS+GKpiAN48klrrHrkCHz6qeeGJRIvZ8/a1uWCXLniPPzECfjqK9t3T70WERERERERiY6COEl8cQRx6dNbd0mAd9+Fc+c8NC6R+HB/32bNao0F4jB2LFy8CNWrJ6jBqoiIiIiIiKRBCuIk8bmDuHPnbL5eNLp0gSJF4MwZ+OMPD45NJC7uIC4gIF6HT5tm26eftiI6ERERERERkZgoiJPE5w7iAM6fj/aQdOmgalXb37rVA2MSia+gINte+30cg3/+gQ0brHCudeukHZaIiIiIiIikfgriJPFlzAi+vrYfw/RUgNtvt+3ff3tgTCLxlYCKuJkzbdugAeTJk4RjEhEREREREa+gIE4Sn8sV5zpxAOXL21YVcZKiJKAizh3EtWuXhOMRERERERERr6EgTpLGtevExeDaijjH8cCYROIjnhVxx47Bb7/ZvoI4ERERERERiQ8FcZI04lERV6aMra115oyFGiIpQjwr4n780QLk6tWhcGEPjEtERERERERSPQVxkjTiEcRlzAglSti+1omTFMP9PRtHEPfNN7Z94IEkHo+IiIiIiIh4DQVxkjTiEcSB1omTFCgeU1MPHIDly205xM6dPTQuERERERERSfUUxEnSiGcQ514nTkGcpBjxmJr63Xe2bdBA01JFREREREQk/hTESdJIYEWcpqZKihGPijj3tNQuXTwwHhEREREREfEavsk9APFSNxHEOY5N9Us1evWCOXMgc2bIkiVy675lzQrdu0O1ask9UkmIOCriVqyAzZshfXq4/34PjktERERERERSPQVxkjTiGcSVLWvh2+nT1jk1Xz4PjC0xrF8Pn30W93GTJsHGjVC8eJIPSRJJLM0aFi+GNm1sv317yJHDg+MSERERERGRVE9BnCSNeAZxmTJB6dKwYwds2pSKgrgRI2zbpg306wchIXDhgt3c+99/D2vX2mr+v/0Gfn7JOuQ0JzQUNmyAv/6y65Q7d/zOc1fEXTc1dfp0m4p65Qo0bgxffJHI4xURERERERGvpyBOkkY8gziAKlUsiNu4EZo1S9JRJY6jRyNX63/5ZahZM/rjOnWCypVhzRoYOpQjTwxiyxY4dAhKlbL3nSWLx0adNpw7Bz16WPh24ABcvGj3jxtnc0rTpYv7OaKpiBs92mYiO45NR/36a8iQIQnGLyIiIiIiIl5NQZwkjQQEcXfcAVOnWhCXKoweDVevQt26MYdwAEWKwMcfQ7dujPn0Mj3fgLCwyId9fGxqbrVqUL061KsHVatG8zzh4TBwoM3hHTTI1qKT6E2eDNOmRX6dPTtcvgyrV1sVY//+gGWpq1fbbds2OHsWAgPhvWEOxa9p1uA48PrrdgPo2RNGjoxfniciIiIiIiJyPQVxkjQSWBEHNoswVZg82bZ9+8Z9bLt2LOz+DT1PvE4YVglXuDBs3w6HD8PWrXZzP2WPHpYXRamUmzED3nvP9ufOtTmSZcoQEgK7dsHOnXDkiFUTlimTmG80FZo61bYDBsBTT8Ftt8H48Vx8si8TXvyHFQvPsnpbdv75J/rTFyyA8U47OjADJ2s2+vSBUaPssSFDLAdNVQ1FREREREREJEVxOY7jJPcgPCk4OJiAgACCgoLIFkNXREkEf/wBtWtDsWKwb1+sh7qbNLhcNrMwRU/XPH7cSqdcLiujiuN7aO9eqFr6HEFhWXnkzj1MXFEiIsg5cgTWrbPbn3/Czz/b1McSJWwaZPPmkN43nOB7O/HvnsvsdZVkp1OSnenKsSOgFgdPR62M8/W15eoGDwZ//6R5+yna4cNQqJB9iPv3W0UicPWKQ4sC61lwKrJ7rcvlUKGCizp1rAoxe3b45BNYtcoen+XTjkOfzKBXbxcul4VxPXsmw3sSERERERGRJOfJrEhBnCSNbdugfHnIlQtOnozz8AIFLJhavdryuxRr7lxo2RLKlbNStjh07gxTpkAdVrHk0QlkmPhljMcuXWrNAA4fjv9wcuRwKFPGha+v9YMAm+46bRpUqBD/5/EKI0dalWKdOhGJmuPA44/D+PGQJd1Fng97l7qsomb7wgSM/yhKQ4arV+F/nc8w9occ+HOeqxn8uXwZPvwQnn02ud6UiIiIiIiIJDVPZkU+SfrsknZlzWrb4GBLQ+Lgnp6a4teJ+/NP29aoEeehGzdaCAfwGf8jw4qFsR7fsKFle5+98A+1fNaQjSCyEkwgR6me/xAdOsDLL4UzocU0VlGHk+TidMlarP7+X1asgDlzoGBBm/Zas2bka3sdx7HOptff3G+4U6eIQ0eMsBDOxwemzkjP4KGZuCfdEgJmfGXfdKtXRxzr5wef9dtJQ5ZwHgvhWra0KkMRERERERGRxKAgTpKGO0G+etUWy49DqlknLgFB3Cuv2PbBDlepkm6LTdHdvz/WcwJO7KbnVzX5PbwWQXlLE+zKztH8VflzSyamT4e3h/rQdc4D1JnzKrlyODae/+ZMtmhhn98991iz0M6dbZrqiRO39I5TnmbNbC7p9Tf3vNL77wdg/Xp44QW766OPoEXrdPDSS7Bypa0d988/UL8+vPNORFjsd+Es03iAKhm3U7EifPWV1oQTERERERGRxKMgTpLGtYuUxbNzKqTwijjHgTVrbD+OIG7NGlvzLV06eGOoX+TxS5bEfFJ4ODzwgCVnVavCnj1w+rR1ZMiZM+qxLVrAr79GPufVqwDkyQPz5sFzz9lDb7wBefNag4jWrS2YmzUrXrOFU6aTJ62jQkwefhgKFuT8eQsir16Ftm2hT59rjqlVyxLLzp2tje0rr8Avv9hjwcHk5hTrqz/Jhg2QO3dSvhkRERERERFJaxTESdLw8Yk6PTUO7oq4v/6KyJRSnv37LQjy84PKlWM91N1ps0sX65RKw4Z2x5w5MZ80a5Ylkdmy2XH+/lbpFVP3iqpVIUcOCAmJUkqYLh0MH25TMkuVsvsOHoTZsy2Ya9fOGkKk+OrD6GzaZNvixa3S8vrbf+1nn3/euskWKgTjxkVT1RYQAN98A1272tdz59r2v+9VV/YA0qXzwPsRERERERGRNEVBnCQd9/TUeARxJUpY9dGlS1GW7UpZ3NNSK1WCjBljPOzUKZg61fb/97//7uzc2bYzZlhCdL3wcHj9ddvv2xfy5497PD4+UK+e7bs7NVyje3d7qaAgWL7c1kvr1s1mZQYHW/FdUFDcL5OiuIO4KlUgffobb1jB3Oef22ETJ95YTBjB5bIyQYCF/63f5/5A1MhFREREREREkoCCOEk6CQjifHxs6S+wqZUpUjzXh5swwYqzqlSxpgmAhXctW9r01mHDop5w4gR8+qmVA2bNmrAWnbEEcW7ZstlSaH372ppna9dC0aI287V793j10kg53HOX3SWU1zl7Fnr0sP1evaBx4zier3Fj++bbvt3KBt3fqwriREREREREJAkoiJOkk4AgDuDee22bYoO4P/6wbSxBXHg4fPGF7ffsed2UyJdftu2kSfDii7bOW8GCtojbM8/YY337xlLCFY1rg7h4Jmo5c8K0aVZANnOmVY2lGu6KuGimBoeFWeHhv/9aheX1eWe0smePvJ4LF0ZWxAUEJMpwRURERERERK6lIE6STgKDuKZNLbjatAkOH07Ccd2My5cjGzXUrRvtIWFhVo21a5cVtj300HUH1KkDjRpBaCi89551c3C/0VKl4OmnratnQlSrZtNkT5y4ccrr2bPw00+WDl6nRg1bLw6gXz84dChhL5ssLl+GrVtt/7qKuNBQGDAA5s+HTJng++9jXlrvBk2a2HbBAlXEiYiIiIiISJJSECdJJ4FBXJ48UL267bubWKYYa9faAnZ58kCZMjc8fPWqNWaYMMGaJXz5ZdTGsRFGjoT77oMnnrCODitX2uezcyeMHh3DSbHIkCFy/mv37ja2MWPsORs0gDZt4KOPoj31uefs1KAgeOwxC7NSpB9/tErBP/+0QWbPbm1ggb17relpkSLw8cd2+IQJ1sci3u65x7YLF1p4CaqIExERERERkSThm9wDEC+WwCAObHrqn3/a9NTu3ZNoXDdjxQrb1q9/QwvOS5egUycrPvPzgylToH37GJ7n9tsjO3Qmlnr1rBuDu8vFk0/avMw9e+zr99+3BdOuazDh62uh1R13wK+/WpD4zTd2f4rx229w//0WwM2eDcDlSjWY9b2LMWNg0aLIQ/PkgSFDoGPHBL5GnTqQOTMcPx651p4q4kRERERERCQJpIiKuFGjRlGsWDEyZsxIrVq1WOOeAhiDadOmUbZsWTJmzEjFihX5+eefPTRSSZDs2W17+nS8T2ne3La//GIBV4qxfLltGzSIcndIiDXe/Okny7lmzYolhEsqTz9t0yuffjqy0cOePRYu5csHx47B+PHRnlquHEyfbgHi999boHjhggfHHpuDByNDOIB//uEnWlFmwxQefNBCOJfLpjRPm2aHR3SpTYj06e2Ng4VxoCBOREREREREkkSyB3FTp06lf//+DB48mPXr11O5cmWaNWvGcfcvxNdZtWoVnTt3pkePHmzYsIG2bdvStm1btmzZ4uGRS5wKFbLtv//G+5RatWzWYXCwhVspQliYTSEFq4j7z7lzVsG3YIGtRzZ3rs069bjChW0Qo0fDhx/a1NQ77rCE7dVX7Zj33rP5s9Fo2RJ++MHCuBkzrEDs118ty7tyxYPv41o7dth6eseOQcWKXOn0CF34mjb8xP5zOcmf397a3r0W2t5/v+VpN23QoKhPoKmpIiIiIiIikgRcjhPPVotJpFatWtSoUYNPP/0UgPDwcAoXLkyfPn14KZqF6zt16sSFCxeYM2dOxH21a9emSpUqfP7553G+XnBwMAEBAQQFBZFNVS9Ja/p0eOABa27gDrLi4dVX4e23LeRKEcWOGzbYomNZs8KZM7YIHFaEtmiRFU/NmxdjD4fkdfEi3HabBVoTJkDXrjEe6p4FeuxY5H0ulxXVFSkCJUvaemzlyiXxmOfPt/anZ89C0aJcnLeUDn0LMm+hH75cZcATwbz6Ua74N2OIr2eegU8+sf116xK40JyIiIiIiIikVp7MipK1Iu7KlSusW7eOJu6uhYCPjw9NmjRhtXu9q+usXr06yvEAzZo1i/H4y5cvExwcHOUmHlK0qG3370/Qae6s6JdfUkj3VPe01DvvjAjh/vrLQrj06WHx4hQawoG1EO3f3/aHDrXqvhjUq2f504MPWs+HTJnAceDIEfjjD1s/rlkza9CaJEJCoHdvS2DPnoXatTn58xqaPlmMeQv9yJQxnJ9H7Gbol0kQwoGljP7+do0LFEiCFxAREREREZG0LlmDuJMnTxIWFkZgYGCU+wMDAzl69Gi05xw9ejRBxw8dOpSAgICIW+H/ui2KBxQpYtvDhxM0x7FUKcu8wsMt/El2y5bZ9pppqZMn27ZlS6hWLRnGlBBPP23r9e3YATNnxnpowYLw3XewfbutFXfihDWMnTEDSpe2WcYPPpgEHVbXrrUKtFGj7Os+fdg2eim1WuXlt9+s6vCXX324p28SluPlzWuVm7/+amWAIiIiIiIiIoks2deIS2oDBw4kKCgo4vZvAtYrk1uUN691MHAcOHQoQae6q+Leece6kCabK1dg4ULbv+cewIrKvv3W7nrkkWQaV0JkywZ9+9r+O+/Y9YhJeDiMGwdr1+JyQe7cFjS2a2cZXpYsVgH40UeJNLbQUHjzTVuYbscOKFAAZ/4vjKv8CdXvzMDevTazdvXqKDlo0qlUCRo39sALiYiIiIiISFqUrEFc7ty5SZcuHceuXZQKOHbsGPliqEjJly9fgo7PkCED2bJli3ITD3G5IqviEjg99aGHrHHD2bO2XFjnzglqvpp4VqywrgyBgRGlb4sXW5FfzpzJ1JzhZvTtaynahg22Btu15s61Re4ARoyAxx+HVq1uaO5Qvrw9DNb74fz5OF4zOBjmzLHmEWPGwNatUR4OP3KMtVWfZOKg3bwSOoSOhVZxR679ZO3QlMcft5mqd98Nv/9ury0iIiIiIiKS2iVrEJc+fXqqVavGokWLIu4LDw9n0aJF1KlTJ9pz6tSpE+V4gAULFsR4vCSzmwzismSxDGzQIFuya8oUqFjR1o3zqLlzbXvvveBjf1zc01I7dbrFTp2elCuXTVEF64Throrbts1Ct/vuszXSXnnF7j96NPK9X6NrV2vacPKkNWmNIizMFpN76y1o0MBes1UrePJJuzVoACEh7NgBr75wheLFwqixeTzdmMg7vMK0g3XYuNmXCxdsfbphw2yWaN68SfexiIiIiIiIiHhSsk9N7d+/P2PGjGHixIls27aNnj17cuHCBbp37w7Ao48+ysCBAyOOf+aZZ5g/fz4ffPAB27dvZ8iQIaxdu5bevXsn11uQ2LgbNhw4kOBT/fzg9ddh1Spbn+zwYWjeHHr1smopj3CHUS1aANZR9Pvv7a5HH/XQGBJL//6WHK5caSknWImbO5R75x3rsupOF8eMueEpfH0js7r337/mOowaBXnyQO3a8Npr9vyhoZbatW4NuXOz71RW6lcJpmxZePv99Oy/UoCsrnM0rh3C00/DBx/A7Nm2Pt3Zs/DCCxHZp4iIiIiIiIhXSPZfczt16sTw4cMZNGgQVapUYePGjcyfPz+iIcOBAwc4cuRIxPF169bl22+/5csvv6Ry5cpMnz6dWbNmUaFCheR6CxKbm6yIu1bNmjajsk8f+/qzz+CppxJhbHHZvRt27rT06b/14T79FC5ftjHVquWBMSSmAgXgscds/+234dQpmDTJvm7d2raZM1saBjaFNZo1Fbt0sXXbTpyw5d0IDbXw7cwZCAiADh3g889hzx7YtQt+/JE/HvyI2vzOb7vykc4nnBbMYYrvwxxbuIVFqzMzerTlhC1bWsfWVFNpKCIiIiIiIpIALseJbeV27xMcHExAQABBQUFaL84TJk6Ebt2gSRNYsOCWn+7nny2scRwr7Kpb99aHGKP33oMXX4RGjWDxYs6ft1zxzBmYPt3yplRn3z5rSxsWBiVKWFhWpQqsX2/rxBUqZA0LGjWCpUutJHHQoBueZsYMe/8uF8x/fzNNB1SyRfOOHLkhRfvhB3j4YYdLl1xUYQOzaEdR9sNXX9n3hoiIiIiIiEgy8mRWlOwVceLl3BVxNzE1NTr33RdZ1PXMM9bkM0lMmxY5B7N9ewDGj7cQrmRJaNs2iV43qd12m80B9fW1EA6gXz9L1O67z0I4gCeesO24cRbaXad9e+jZ0wLRhwfdxlLusnX00qfn9Gn480/47jt76vvvh0uXXLQotJHlNLAQrnPnyNa4IiIiIiIiImmEKuIkae3da5VXGTPagmIu1y0/5bFjtmZccLBNU+3ZMxHGea3Jk61SKzzc2rdOnEhwiC9lylgPgyR5TU/76y9Lyfz84KefIEOGqI9fumRTWc+csUq55s1veIpLl2xJuE2b7OvS+YM5cSkbZ87c+HK9e8NHj6zHt25NWzdw/XqbxioiIiIiIiKSzFQRJ96jUCEL3y5dskXFYrNunS0GF4fAQJsxCfDss5bp3LQjR+Dq1civv/zSKrXCw630btIk8PVlyBAL4UqWjKzIS9UqVYLFi60N7fUhHFhw+sgjtj92bLRPkTEjLBx/gN6MxI8r7DwSGcLlzw/161ue+d13MHIk+NasCps3W7mcQjgRERERERFJg1QRJ0mvYEFrebpmDdSoEf0xZ8/acWCNHXLnjvUpw8Nteujs2VCsGKxeDfnyJXBcGzdC9epQubKtXzd5slWJgZVwjRgBPj5s2WLLqIWFxVgc5p02b7bAztcXDh60BPR6o0ZB794crNmeTYN+oEgRKF4csmTx/HBFREREREREboYq4sS7FC1q29g6p65aZVNXQ0JsfbY4+PhYsVrx4vDPP1ChAnz7ra1ZFm8TJ1q6tn69JW3uEO755+GTT8DHh0uXoHt3O6xduzQUwgFUrGitYUND7bOKzg8/AFCoQy1atLBTFMKJiIiIiIiIRE9BnCS9UqVs++67VvkWnZUrI/e//jpeT5s9u3VRrVIFTp2CLl2sSu7w4XicHB5urU/B1kn791/bHzwYhg2LWMuud29Yu9Yago4YEa9heRd304axY29MObdsgSVLLBXt1MnzYxMRERERERFJZRTESdIbONCmmq5bZyVlwcE3HvPbb5H7q1ZFdvSMQ5kyNuP1zTcj+w6ULw9vvQXnzkVzwo8/wrJldtLBg5A1K6xYAXffbQuZDRnC1VAX8+bBgw9a01AfH5gyBQoXvrm3n6p16gT+/rBrFyxfHvUxdzLZvn1k1aOIiIiIiIiIxEhBnCS9smVh4UIrK/vjD7j33qgp2ZUrFoyBdUMA+OabeD+9nx+8+qrNMK1RA4KC4LXX4LbbrLjtwoX/Djx82OaXNm4M/fvbfa1aQa1ahP+6kJV39KZXL2sWet99MHWqHTJ0KNxzz619BKmWvz907mz7Y8ZE3n/ihK2pB5FTekVEREREREQkVgrixDPcDRGyZ7eKtxYtIhOyDRusq2quXJaggU2FPHkyQS9RoYI1bfj2Wyhd2qarvvSSBXIffggXt/1j0yvDw+1AgPvvZ/Nmq6yrVw8++8xeNm9e6NMHfv8dXngh0T6F1Mk9PXX6dDh92vbHjoXLl63ZRd26yTc2ERERERERkVREQZx4TtWq8OuvkC2bTQdt1cqaM7jXh7vzTujQweaA/vuvVc5FN431Wp9/bgHeihUApEtnBVx//239BYoXt+Kt556DOx6twDn8I8/NkoWjVZrTsiXs3m2zVLt2hV9+gUOHrF9DrVpJ9FmkJu7OspcvR1Yqzp1r26eeilhPT0RERERERERipyBOPKtGDUu6sma1hf6bNbMF2MCCuCxZLKzLndu6JNSuDd9/b21Lr3fkCAwYYFVaQ4dGecjXFx59FLZvt+KtwEDYcTgbAxkKrVvDc89x8qPJtO2ciQMHrILun39gwgRo2tTOl/+4XNCtm+3/9JMFcmvX2tcNGybXqERERERERERSHZfjXN8K0bsFBwcTEBBAUFAQ2bJlS+7hpF0rV1oIF7GAG9aw4c47bX/dOkvE3FMhy5WzheA6dbKyN4DHH7duCmBh0f79MXZUWLjQ1nlzEc7X937L6fseZsgQm76aI4ctXedu7irR2LoVbr8dMmaEefOgUSPIkweOHVNFnIiIiIiIiKRqnsyKVBEnyePOO61Bw3PPQcWKFrrVrBn5eLVqNl90yBBbV27bNujSxQK5L7+EDz6A8ePt2Ntus7XfJkyI8eWaNIHHbluCgw9d5j1Mnz4WwlWsCIsWKYSLU7lykC+freX3wQd2X926CuFEREREREREEkAVcZLyBQXBqFEWALkr5Nw6dbK15h5+GIoWhb17wSf6fPlMnfto+PtQDmctQ7kqGWnb1hoy+Pkl/VvwCl26WCcMt/feg+efT77xiIiIiIiIiCQCT2ZFWglLUr6AAHj5ZUvNRo+2NeUKFIA6daBfPwveAgJsaurSpdC4cbRPk+P4DjZRBX5eYS1SJWEaN44axKlbqoiIiIiIiEiCaGqqpB5Zs8ILL8D69TBnDrzyijV3yJQJWrSwY/74I/pzHcdaoQIULOiZ8Xqbu++O3E+f3qYPi4iIiIiIiEi8KYgT73D77bbdujX6x0+ftm6fYNV0knDFikHx4rZfrZo1bhARERERERGReFMQJ96hfHnbxhTEuavhcueGDBk8MyZv1LSpbe+6K3nHISIiIiIiIpIKaY048Q7uIG77dggPv7Fhg6alJo6334aSJeGJJ5J7JCIiIiIiIiKpjirixDsUL27rloWEwIEDNz6uIC5x5MwJzz0H6jgsIiIiIiIikmAK4sQ7+PpC6dK2H930VAVxIiIiIiIiIpLMFMSJ94htnTgFcSIiIiIiIiKSzBTEifcoV862CuJEREREREREJAVSECfew10Rt23bjY8piBMRERERERGRZKYgTrzHtVNTHSfy/qAgOHjQ9gsU8Py4REREREREREQA3+QegEiiKVUKfHwgOBh69YK9e2HLlshqOIBChZJvfCIiIiIiIiKSpimIE++RIYOFcTt2wOjRUR8rWBA6dYJcuZJnbCIiIiIiIiKS5imIE+/yzjswfjyUKAG33x55y549uUcmIiIiIiIiImmcgjjxLu3b201EREREREREJIVRswYREREREREREREPUBAnIiIiIiIiIiLiAQriREREREREREREPEBBnIiIiIiIiIiIiAcoiBMREREREREREfEABXEiIiIiIiIiIiIeoCBORERERERERETEAxTEiYiIiIiIiIiIeICCOBEREREREREREQ9QECciIiIiIiIiIuIBCuJEREREREREREQ8QEGciIiIiIiIiIiIByiIExERERERERER8QAFcSIiIiIiIiIiIh6gIE5ERERERERERMQDFMSJiIiIiIiIiIh4gII4ERERERERERERD1AQJyIiIiIiIiIi4gG+yT0AT3McB4Dg4OBkHomIiIiIiIiIiCQ3d0bkzoySUpoL4s6dOwdA4cKFk3kkIiIiIiIiIiKSUpw7d46AgIAkfQ2X44m4LwUJDw/n8OHDZM2aFZfLldzDSZOCg4MpXLgw//77L9myZUvu4Ugi0DX1Xrq23kfX1PvomqZ+uobeR9fU++iaei9dW+9zM9fUcRzOnTtHgQIF8PFJ2lXc0lxFnI+PD4UKFUruYQiQLVs2/UXnZXRNvZeurffRNfU+uqapn66h99E19T66pt5L19b7JPSaJnUlnJuaNYiIiIiIiIiIiHiAgjgREREREREREREPUBAnHpchQwYGDx5MhgwZknsokkh0Tb2Xrq330TX1PrqmqZ+uoffRNfU+uqbeS9fW+6T0a5rmmjWIiIiIiIiIiIgkB1XEiYiIiIiIiIiIeICCOBEREREREREREQ9QECciIiIiIiIiIuIBCuJEREREREREREQ8QEGcADB06FBq1KhB1qxZyZs3L23btmXHjh1Rjrl06RK9evUiV65c+Pv706FDB44dOxblmL59+1KtWjUyZMhAlSpVon0tx3EYPnw4pUuXJkOGDBQsWJC33347zjFOmzaNsmXLkjFjRipWrMjPP/8c5fFu3brhcrmi3Jo3b56wD8KLeMM1vf56um/vv/9+wj4ML+MN1/bYsWN069aNAgUKkDlzZpo3b86uXbsS9kF4kZR+Tf/++286dOhAsWLFcLlcfPzxxzccs3z5clq1akWBAgVwuVzMmjUrIR+B1/HUNR0yZEi0f09myZIlzjGOGjWKYsWKkTFjRmrVqsWaNWuiPP7ll1/SsGFDsmXLhsvl4uzZswn+HFI7b7iOTz31FCVKlCBTpkzkyZOHNm3asH379oR/GF7CG65pw4YNb3jep59+OuEfhpdI7df0n3/+ifFn3mnTpt3ch+IFUvt1BdizZw/t2rUjT548ZMuWjY4dO94wvrQkpV/T+PwsO2PGDJo2bUquXLlwuVxs3LgxoR8DoCBO/rNs2TJ69erF77//zoIFC7h69SpNmzblwoULEcc8++yzzJ49m2nTprFs2TIOHz5M+/btb3iuxx57jE6dOsX4Ws888wxjx45l+PDhbN++nZ9++omaNWvGOr5Vq1bRuXNnevTowYYNG2jbti1t27Zly5YtUY5r3rw5R44cibh99913CfwkvIc3XNNrr+WRI0cYP348LpeLDh063MQn4j1S+7V1HIe2bduyd+9efvzxRzZs2EDRokVp0qRJlPeQlqT0axoSEkLx4sV59913yZcvX7THXLhwgcqVKzNq1Kh4vmvv5qlrOmDAgBv+rixfvjwPPPBArOObOnUq/fv3Z/Dgwaxfv57KlSvTrFkzjh8/HnFMSEgIzZs35+WXX77JTyH184brWK1aNb766iu2bdvGL7/8guM4NG3alLCwsJv8VFI3b7imAE888USU537vvfdu4tPwDqn9mhYuXPiG53399dfx9/fn3nvvvYVPJnVL7df1woULNG3aFJfLxeLFi1m5ciVXrlyhVatWhIeH38Ink3ql9Gsan59lL1y4QL169Rg2bFg833UMHJFoHD9+3AGcZcuWOY7jOGfPnnX8/PycadOmRRyzbds2B3BWr159w/mDBw92KleufMP9W7dudXx9fZ3t27cnaDwdO3Z0WrRoEeW+WrVqOU899VTE1127dnXatGmToOdNS1LjNb1emzZtnMaNGyfoddKC1HZtd+zY4QDOli1bIh4PCwtz8uTJ44wZMyZBr+WtUto1vVbRokWdjz76KNZjAGfmzJk3/RreKKmu6fU2btzoAM7y5ctjPa5mzZpOr169Ir4OCwtzChQo4AwdOvSGY5csWeIAzpkzZ+J8fW+Xmq+j26ZNmxzA2b17d5zjSAtS4zW96667nGeeeSbO10yrUuM1vV6VKlWcxx57LM4xpCWp7br+8ssvjo+PjxMUFBRxzNmzZx2Xy+UsWLAgznGkBSntml4rrp9l9+3b5wDOhg0b4v2c11JFnEQrKCgIgJw5cwKwbt06rl69SpMmTSKOKVu2LEWKFGH16tXxft7Zs2dTvHhx5syZw2233UaxYsV4/PHHOX36dKznrV69OsprAzRr1uyG1166dCl58+alTJky9OzZk1OnTsV7bN4utV5Tt2PHjjF37lx69OgR77GlFant2l6+fBmAjBkzRjzu4+NDhgwZ+O233+I9Pm+W0q6p3LqkuqbXGzt2LKVLl6Z+/foxHnPlyhXWrVsX5bV9fHxo0qTJLb12WpDar+OFCxf46quvuO222yhcuPBNj8+bpNZr+s0335A7d24qVKjAwIEDCQkJuemxeZvUek3d1q1bx8aNG/Uz73VS23W9fPkyLpeLDBkyRByTMWNGfHx89PPuf1LSNfU0BXFyg/DwcPr168edd95JhQoVADh69Cjp06cne/bsUY4NDAzk6NGj8X7uvXv3sn//fqZNm8akSZOYMGEC69at4/7774/1vKNHjxIYGBjrazdv3pxJkyaxaNEihg0bxrJly7j33nvT7NSLa6XWa3qtiRMnkjVr1mhLk9Oy1Hht3f+gDhw4kDNnznDlyhWGDRvGwYMHOXLkSLzH561S4jWVW5OU1/Raly5d4ptvvonzl7eTJ08SFhaWoL+DJXVfx88++wx/f3/8/f2ZN28eCxYsIH369Dc1Pm+SWq/pQw89xNdff82SJUsYOHAgkydP5uGHH76psXmb1HpNrzVu3DjKlStH3bp1b2ps3ig1XtfatWuTJUsWXnzxRUJCQrhw4QIDBgwgLCxMP++S8q6ppymIkxv06tWLLVu2MGXKlER/7vDwcC5fvsykSZOoX78+DRs2ZNy4cSxZsoQdO3Zw4MCBiB8U/f39eeedd+L93A8++CCtW7emYsWKtG3bljlz5vDnn3+ydOnSRH8fqU1qvabXGj9+PF26dIlSRSWp89r6+fkxY8YMdu7cSc6cOcmcOTNLlizh3nvvxcdH/yylxmsqsUvKa3qtmTNncu7cObp27Rpx34oVK6Jc02+++SZJx+DNUvN17NKlCxs2bGDZsmWULl2ajh07cunSpcQeeqqTWq/pk08+SbNmzahYsSJdunRh0qRJzJw5kz179iTF8FOV1HpN3S5evMi3336b4kKD5JYar2uePHmYNm0as2fPxt/fn4CAAM6ePUvVqlX18y6p85omJl+Pv6KkaL1792bOnDksX76cQoUKRdyfL18+rly5wtmzZ6Mk1MeOHYtx4e7o5M+fH19fX0qXLh1xX7ly5QA4cOAAjRo1itJ5xF2mmi9fvhu6pcT12sWLFyd37tzs3r2bu+++O95j9DbecE1XrFjBjh07mDp1arzHlRak5mtbrVo1Nm7cSFBQEFeuXCFPnjzUqlWL6tWrx3t83iilXlO5eUl9Ta81duxYWrZsGeV/6KtXrx7lmgYGBpIhQwbSpUuX4H9X07LUfh0DAgIICAigVKlS1K5dmxw5cjBz5kw6d+58U2P0Bqn9ml6rVq1aAOzevZsSJUrc1Bi9gTdc0+nTpxMSEsKjjz56U+PyRqn5ujZt2pQ9e/Zw8uRJfH19yZ49O/ny5aN48eI3NT5vkRKvqacpihXAuhj27t2bmTNnsnjxYm677bYoj1erVg0/Pz8WLVoUcZ+7eqJOnTrxfp0777yT0NDQKP9jt3PnTgCKFi2Kr68vJUuWjLi5fwmsU6dOlNcGWLBgQayvffDgQU6dOkX+/PnjPT5v4k3XdNy4cVSrVo3KlSvHe1zezJuubUBAAHny5GHXrl2sXbuWNm3axHt83iSlX1NJOE9dU7d9+/axZMmSG6ooMmXKFOWaZs2alfTp01OtWrUorx0eHs6iRYtu6rW9mTdeR8dxcBwnYr3OtMYbr6n7F0r9zJv6r+m4ceNo3bo1efLkSfC4vI03XdfcuXOTPXt2Fi9ezPHjx2ndunWCx+cNUvI19bibavEgXqdnz55OQECAs3TpUufIkSMRt5CQkIhjnn76aadIkSLO4sWLnbVr1zp16tRx6tSpE+V5du3a5WzYsMF56qmnnNKlSzsbNmxwNmzY4Fy+fNlxHOsmU7VqVadBgwbO+vXrnbVr1zq1atVy7rnnnljHt3LlSsfX19cZPny4s23bNmfw4MGOn5+fs3nzZsdxHOfcuXPOgAEDnNWrVzv79u1zFi5c6FStWtUpVaqUc+nSpUT+tFKH1H5N3YKCgpzMmTM7o0ePTqRPJvXzhmv7/fffO0uWLHH27NnjzJo1yylatKjTvn37RPyUUpeUfk0vX74c8Vz58+d3BgwY4GzYsMHZtWtXxDHnzp2LOAZwPvzwQ2fDhg3O/v37E/GTSj08dU3dXn31VadAgQJOaGhovMY3ZcoUJ0OGDM6ECROcrVu3Ok8++aSTPXt25+jRoxHHHDlyxNmwYYMzZsyYiG5jGzZscE6dOnULn0zqktqv4549e5x33nnHWbt2rbN//35n5cqVTqtWrZycOXM6x44du8VPJ3VK7dd09+7dzhtvvOGsXbvW2bdvn/Pjjz86xYsXdxo0aHCLn0zqldqv6bWv73K5nHnz5t3kJ+FdvOG6jh8/3lm9erWze/duZ/LkyU7OnDmd/v3738Knkrql9Gsan59lT5065WzYsMGZO3euAzhTpkxxNmzY4Bw5ciRBn4WCOHEcx9rzRnf76quvIo65ePGi87///c/JkSOHkzlzZqddu3Y3fMPddddd0T7Pvn37Io45dOiQ0759e8ff398JDAx0unXrFq8f6r///nundOnSTvr06Z3bb7/dmTt3bsRjISEhTtOmTZ08efI4fn5+TtGiRZ0nnnjihn/g0pLUfk3dvvjiCydTpkzO2bNnb/qz8DbecG1HjBjhFCpUyPHz83OKFCnivPrqqzf845mWpPRr6m7Rfv3trrvuijhmyZIl0R7TtWvXRPiEUh9PXtOwsDCnUKFCzssvv5ygMY4cOdIpUqSIkz59eqdmzZrO77//HuXxwYMHx/kevF1qv46HDh1y7r33Xidv3ryOn5+fU6hQIeehhx5ytm/fflOfhzdI7df0wIEDToMGDZycOXM6GTJkcEqWLOk8//zzTlBQ0E19Ht4gtV9Tt4EDBzqFCxd2wsLCEvTc3sobruuLL77oBAYGOn5+fk6pUqWcDz74wAkPD0/wZ+EtUvo1jc/Psl999VW0xwwePDhBn4Xrvw9EREREREREREREkpDWiBMREREREREREfEABXEiIiIiIiIiIiIeoCBORERERERERETEAxTEiYiIiIiIiIiIeICCOBEREREREREREQ9QECciIiIiIiIiIuIBCuJEREREREREREQ8QEGciIiIiIiIiIiIByiIExEREfFi3bp1o23btsk9DBEREREBfJN7ACIiIiJyc1wuV6yPDx48mBEjRuA4jodGJCIiIiKxURAnIiIikkodOXIkYn/q1KkMGjSIHTt2RNzn7++Pv79/cgxNRERERKKhqakiIiIiqVS+fPkibgEBAbhcrij3+fv73zA1tWHDhvTp04d+/fqRI0cOAgMDGTNmDBcuXKB79+5kzZqVkiVLMm/evCivtWXLFu699178/f0JDAzkkUce4eTJkx5+xyIiIiKpm4I4ERERkTRm4sSJ5M6dmzVr1tCnTx969uzJAw88QN26dVm/fj1NmzblkUceISQkBICzZ8/SuHFj7rjjDtauXcv8+fM5duwYHTt2TOZ3IiIiIpK6KIgTERERSWMqV67Mq6++SqlSpRg4cCAZM2Ykd+7cPPHEE5QqVYpBgwZx6tQp/vrrLwA+/fRT7rjjDt555x3Kli3LHXfcwfjx41myZAk7d+5M5ncjIiIiknpojTgRERGRNKZSpUoR++nSpSNXrlxUrFgx4r7AwEAAjh8/DsCmTZtYsmRJtOvN7dmzh9KlSyfxiEVERES8g4I4ERERkTTGz88vytculyvKfe5urOHh4QCcP3+eVq1aMWzYsBueK3/+/Ek4UhERERHvoiBORERERGJVtWpVfvjhB4oVK4avr358FBEREblZWiNORERERGLVq1cvTp8+TefOnfnzzz/Zs2cPv/zyC927dycsLCy5hyciIiKSaiiIExEREZFYFShQgJUrVxIWFkbTpk2pWLEi/fr1I3v27Pj46MdJERERkfhyOY7jJPcgREREREREREREvJ3+C1NERERERERERMQDFMSJiIiIiIiIiIh4gII4ERERERERERERD1AQJyIiIiIiIiIi4gEK4kRERERERERERDxAQZyIiIiIiIiIiIgHKIgTERERERERERHxAAVxIiIiIiIiIiIiHqAgTkRERERERERExAMUxImIiIiIiIiIiHiAgjgREREREREREREP+D8IPVbv9LeSIAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# treinamento\n", + "y_train_pred, y_test_pred, hist = train_model(model=model, num_epochs=num_epochs, x_train=x_train, x_test=x_test, loss_fn=loss_fn, optimizer=optimizer)\n", + "# avaliacao\n", + "model_performance(y_train_pred, y_test_pred, scaler)" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Trabalho2/SCC0270-T2-11800910-11800584.zip b/Trabalho2/SCC0270-T2-11800910-11800584.zip new file mode 100644 index 0000000..15cb0ec Binary files /dev/null and b/Trabalho2/SCC0270-T2-11800910-11800584.zip differ diff --git a/Trabalho2/aapl.us.txt b/Trabalho2/aapl.us.txt new file mode 100644 index 0000000..30f67f4 --- /dev/null +++ b/Trabalho2/aapl.us.txt @@ -0,0 +1,8365 @@ +Date,Open,High,Low,Close,Volume,OpenInt +1984-09-07,0.42388,0.42902,0.41874,0.42388,23220030,0 +1984-09-10,0.42388,0.42516,0.41366,0.42134,18022532,0 +1984-09-11,0.42516,0.43668,0.42516,0.42902,42498199,0 +1984-09-12,0.42902,0.43157,0.41618,0.41618,37125801,0 +1984-09-13,0.43927,0.44052,0.43927,0.43927,57822062,0 +1984-09-14,0.44052,0.45589,0.44052,0.44566,68847968,0 +1984-09-17,0.45718,0.46357,0.45718,0.45718,53755262,0 +1984-09-18,0.45718,0.46103,0.44052,0.44052,27136886,0 +1984-09-19,0.44052,0.44566,0.43157,0.43157,29641922,0 +1984-09-20,0.43286,0.43668,0.43286,0.43286,18453585,0 +1984-09-21,0.43286,0.44566,0.42388,0.42902,27842780,0 +1984-09-24,0.42902,0.43157,0.42516,0.42516,22033109,0 +1984-09-25,0.42388,0.42388,0.41618,0.41618,46515020,0 +1984-09-26,0.41618,0.4354,0.41111,0.41111,30947546,0 +1984-09-27,0.41111,0.41366,0.41111,0.41111,29541971,0 +1984-09-28,0.41111,0.41111,0.39316,0.40081,65093531,0 +1984-10-01,0.39956,0.39956,0.39186,0.39186,27268068,0 +1984-10-02,0.39443,0.40853,0.39443,0.39443,32977801,0 +1984-10-03,0.40081,0.40724,0.40081,0.40081,33583772,0 +1984-10-04,0.40593,0.40853,0.40593,0.40593,34995586,0 +1984-10-05,0.40593,0.40593,0.39443,0.39699,27211851,0 +1984-10-08,0.39699,0.39956,0.39699,0.39699,13099922,0 +1984-10-09,0.39699,0.39956,0.39316,0.39316,34933112,0 +1984-10-10,0.39316,0.39316,0.38164,0.38164,101750813,0 +1984-10-11,0.38164,0.39186,0.37906,0.37906,50969114,0 +1984-10-12,0.37906,0.38164,0.35985,0.36241,74126674,0 +1984-10-15,0.38289,0.38674,0.38289,0.38289,67842205,0 +1984-10-16,0.38289,0.38419,0.38164,0.38164,32915346,0 +1984-10-17,0.39699,0.39956,0.39699,0.39699,43685142,0 +1984-10-18,0.40853,0.41111,0.40853,0.40853,68929180,0 +1984-10-19,0.40853,0.43668,0.40724,0.40853,90949795,0 +1984-10-22,0.40853,0.41491,0.40593,0.40593,32003288,0 +1984-10-23,0.41491,0.41874,0.41491,0.41491,51993625,0 +1984-10-24,0.41874,0.42388,0.41874,0.41874,46577491,0 +1984-10-25,0.41874,0.41874,0.40339,0.40339,44109940,0 +1984-10-26,0.40339,0.40339,0.39186,0.39316,32028264,0 +1984-10-29,0.39443,0.39699,0.39443,0.39443,14124427,0 +1984-10-30,0.39956,0.40339,0.39956,0.39956,20802447,0 +1984-10-31,0.39956,0.40339,0.39699,0.39699,16798133,0 +1984-11-01,0.39956,0.40339,0.39956,0.39956,13118654,0 +1984-11-02,0.39956,0.40081,0.39443,0.39699,7721268,0 +1984-11-05,0.39699,0.40593,0.39443,0.39443,29385798,0 +1984-11-06,0.41874,0.42134,0.41874,0.41874,62838381,0 +1984-11-07,0.41874,0.42134,0.41111,0.41111,64575036,0 +1984-11-08,0.41111,0.41111,0.39443,0.39443,24575618,0 +1984-11-09,0.39443,0.39699,0.36754,0.37138,82029108,0 +1984-11-12,0.38419,0.38674,0.38419,0.38419,31584733,0 +1984-11-13,0.38419,0.39316,0.37522,0.37522,35326680,0 +1984-11-14,0.37906,0.38289,0.37906,0.37906,29098422,0 +1984-11-15,0.37906,0.38289,0.37906,0.37906,29729373,0 +1984-11-16,0.37906,0.38419,0.36883,0.37138,46227662,0 +1984-11-19,0.37138,0.37394,0.34962,0.34962,64974836,0 +1984-11-20,0.36112,0.36241,0.36112,0.36112,73414508,0 +1984-11-21,0.36883,0.37138,0.36883,0.36883,49844653,0 +1984-11-23,0.37394,0.38419,0.37394,0.37906,38231510,0 +1984-11-26,0.38289,0.38289,0.38289,0.38289,28067691,0 +1984-11-27,0.39316,0.39699,0.39316,0.39316,35532822,0 +1984-11-28,0.41366,0.42388,0.41366,0.41366,114488422,0 +1984-11-29,0.41366,0.41366,0.40593,0.40593,48770186,0 +1984-11-30,0.40593,0.40853,0.39316,0.39443,30316603,0 +1984-12-03,0.39443,0.39699,0.38932,0.38932,27330541,0 +1984-12-04,0.39699,0.40593,0.39699,0.39699,33571272,0 +1984-12-05,0.41618,0.41618,0.41618,0.41618,73320817,0 +1984-12-06,0.43668,0.43927,0.43668,0.43668,88482241,0 +1984-12-07,0.43668,0.45335,0.43286,0.4354,137914578,0 +1984-12-10,0.4354,0.4354,0.42646,0.42646,31091217,0 +1984-12-11,0.42646,0.43286,0.42134,0.42134,34520809,0 +1984-12-12,0.42134,0.42134,0.40724,0.40724,30697671,0 +1984-12-13,0.41111,0.41874,0.41111,0.41111,18640984,0 +1984-12-14,0.41111,0.42516,0.41111,0.42134,26812043,0 +1984-12-17,0.43157,0.4354,0.43157,0.43157,34926875,0 +1984-12-18,0.45718,0.45845,0.45718,0.45718,94979083,0 +1984-12-19,0.45718,0.45845,0.43927,0.43927,88544707,0 +1984-12-20,0.43927,0.44694,0.43668,0.43668,38999900,0 +1984-12-21,0.43668,0.43927,0.42646,0.43157,34552047,0 +1984-12-24,0.43927,0.44052,0.43927,0.43927,18834649,0 +1984-12-26,0.44052,0.44566,0.44052,0.44052,18734702,0 +1984-12-27,0.44309,0.44566,0.44309,0.44309,27542935,0 +1984-12-28,0.44309,0.46103,0.44052,0.45845,46108958,0 +1984-12-31,0.46487,0.46742,0.46487,0.46487,57940741,0 +1985-01-02,0.46487,0.46487,0.44566,0.44566,48888858,0 +1985-01-03,0.45335,0.46487,0.45335,0.45335,46465028,0 +1985-01-04,0.45335,0.45589,0.44694,0.45335,38281489,0 +1985-01-07,0.45335,0.45589,0.45081,0.45081,47664469,0 +1985-01-08,0.45081,0.45589,0.44694,0.44694,39355963,0 +1985-01-09,0.45845,0.46487,0.45845,0.45845,46496285,0 +1985-01-10,0.47898,0.48027,0.47898,0.47898,77268906,0 +1985-01-11,0.47898,0.48291,0.46998,0.47512,57184863,0 +1985-01-14,0.48791,0.49298,0.48791,0.48791,75419782,0 +1985-01-15,0.48791,0.49685,0.47898,0.47898,73895529,0 +1985-01-16,0.48291,0.49056,0.48291,0.48291,52955655,0 +1985-01-17,0.48291,0.49056,0.44821,0.44821,152694928,0 +1985-01-18,0.44821,0.46742,0.44694,0.45718,98352467,0 +1985-01-21,0.46742,0.46998,0.46742,0.46742,90756134,0 +1985-01-22,0.48027,0.48291,0.48027,0.48027,118480242,0 +1985-01-23,0.48027,0.48291,0.47251,0.47251,120060735,0 +1985-01-24,0.47251,0.47251,0.46357,0.46357,110733964,0 +1985-01-25,0.46357,0.47251,0.45335,0.47251,88813324,0 +1985-01-28,0.48291,0.48791,0.48291,0.48291,114950679,0 +1985-01-29,0.48291,0.48671,0.47763,0.47763,62394851,0 +1985-01-30,0.47763,0.48671,0.47763,0.47763,137333627,0 +1985-01-31,0.47763,0.47898,0.46357,0.46357,77037771,0 +1985-02-01,0.46357,0.46487,0.45335,0.45718,38412687,0 +1985-02-04,0.46742,0.46872,0.46742,0.46742,60801850,0 +1985-02-05,0.46998,0.47898,0.46998,0.46998,52999380,0 +1985-02-06,0.47898,0.47898,0.47898,0.47898,54223780,0 +1985-02-07,0.47898,0.48535,0.47763,0.47763,68460656,0 +1985-02-08,0.47763,0.47898,0.46998,0.47763,36819699,0 +1985-02-11,0.48671,0.49056,0.48671,0.48671,96759474,0 +1985-02-12,0.48671,0.48791,0.47512,0.47512,63169469,0 +1985-02-13,0.47512,0.47512,0.45335,0.45335,146978950,0 +1985-02-14,0.45335,0.45718,0.44052,0.44052,119036199,0 +1985-02-15,0.44052,0.44821,0.43668,0.44694,48420341,0 +1985-02-19,0.44566,0.44566,0.44052,0.44052,41786041,0 +1985-02-20,0.44052,0.44309,0.42134,0.42134,61345349,0 +1985-02-21,0.42902,0.43157,0.42902,0.42902,85958457,0 +1985-02-22,0.42902,0.44566,0.42902,0.44052,63175710,0 +1985-02-25,0.44052,0.44309,0.4354,0.4354,27480461,0 +1985-02-26,0.4354,0.43668,0.42646,0.42646,52699519,0 +1985-02-27,0.42646,0.42646,0.40081,0.40081,112551851,0 +1985-02-28,0.40081,0.40081,0.39443,0.39443,88981989,0 +1985-03-01,0.39443,0.39699,0.38289,0.39699,69004139,0 +1985-03-04,0.40339,0.41491,0.40339,0.40339,42698113,0 +1985-03-05,0.41366,0.41366,0.41366,0.41366,36469866,0 +1985-03-06,0.41366,0.41366,0.39316,0.39316,53992643,0 +1985-03-07,0.39316,0.39443,0.35344,0.35344,204694810,0 +1985-03-08,0.35344,0.35344,0.33041,0.34319,132067403,0 +1985-03-11,0.35473,0.3573,0.35473,0.35473,79761443,0 +1985-03-12,0.36754,0.37138,0.36754,0.36754,61195418,0 +1985-03-13,0.36754,0.36754,0.34702,0.34702,70034906,0 +1985-03-14,0.34702,0.34962,0.34702,0.34702,67379925,0 +1985-03-15,0.34702,0.36883,0.34448,0.36112,50594286,0 +1985-03-18,0.36496,0.36883,0.36496,0.36496,34795683,0 +1985-03-19,0.36496,0.36883,0.35089,0.35089,47814386,0 +1985-03-20,0.35473,0.36112,0.35473,0.35473,112939166,0 +1985-03-21,0.36112,0.36754,0.36112,0.36112,45309357,0 +1985-03-22,0.36112,0.36754,0.35473,0.35473,22414173,0 +1985-03-25,0.35473,0.35473,0.34448,0.34448,30666419,0 +1985-03-26,0.35985,0.35985,0.35985,0.35985,33864887,0 +1985-03-27,0.35985,0.36241,0.34962,0.34962,31053747,0 +1985-03-28,0.34962,0.35473,0.34962,0.34962,36145026,0 +1985-03-29,0.34962,0.35473,0.34962,0.35344,24313240,0 +1985-04-01,0.35344,0.36112,0.34448,0.34448,31809629,0 +1985-04-02,0.34448,0.34702,0.33551,0.33551,63425588,0 +1985-04-03,0.33551,0.33681,0.33551,0.33551,67673532,0 +1985-04-04,0.33551,0.33681,0.32911,0.33297,45140683,0 +1985-04-08,0.33297,0.33551,0.31249,0.31249,55423212,0 +1985-04-09,0.31249,0.31507,0.31249,0.31249,73595683,0 +1985-04-10,0.33551,0.33938,0.33551,0.33551,63281919,0 +1985-04-11,0.34192,0.35089,0.34192,0.34192,40905235,0 +1985-04-12,0.34192,0.34192,0.33041,0.33297,20227720,0 +1985-04-15,0.34192,0.34448,0.34192,0.34192,16685685,0 +1985-04-16,0.34448,0.34702,0.34448,0.34448,18865893,0 +1985-04-17,0.36112,0.36496,0.36112,0.36112,34370888,0 +1985-04-18,0.36496,0.36754,0.36496,0.36496,56453959,0 +1985-04-19,0.36496,0.36496,0.3573,0.35985,26780809,0 +1985-04-22,0.35985,0.35985,0.34448,0.34448,28611169,0 +1985-04-23,0.35344,0.35473,0.35344,0.35344,32990296,0 +1985-04-24,0.35344,0.35985,0.35089,0.35089,22014360,0 +1985-04-25,0.35089,0.35344,0.35089,0.35089,24438183,0 +1985-04-26,0.35089,0.36112,0.34962,0.34962,33383865,0 +1985-04-29,0.34962,0.35089,0.33681,0.33681,17347867,0 +1985-04-30,0.33938,0.34192,0.33938,0.33938,26418474,0 +1985-05-01,0.33938,0.34192,0.33297,0.33297,15992269,0 +1985-05-02,0.32911,0.32911,0.30733,0.30733,91968038,0 +1985-05-03,0.30733,0.32142,0.30733,0.32018,44097428,0 +1985-05-06,0.32018,0.32272,0.31507,0.31507,15654933,0 +1985-05-07,0.32018,0.32018,0.32018,0.32018,30010503,0 +1985-05-08,0.3176,0.3176,0.3176,0.3176,40268035,0 +1985-05-09,0.32018,0.32142,0.32018,0.32018,35439126,0 +1985-05-10,0.32018,0.32785,0.32018,0.32272,37950406,0 +1985-05-13,0.32272,0.32525,0.32018,0.32018,24325744,0 +1985-05-14,0.32018,0.32142,0.31507,0.31507,33952331,0 +1985-05-15,0.32018,0.32525,0.32018,0.32018,36376160,0 +1985-05-16,0.34192,0.35089,0.34192,0.34192,64293923,0 +1985-05-17,0.34192,0.35344,0.33938,0.34702,59083943,0 +1985-05-20,0.34702,0.35473,0.34192,0.34192,54992169,0 +1985-05-21,0.33938,0.33938,0.33041,0.33041,42541932,0 +1985-05-22,0.33041,0.33297,0.32911,0.32911,33621242,0 +1985-05-23,0.32785,0.32785,0.31507,0.31507,66699004,0 +1985-05-24,0.31507,0.31507,0.28941,0.28941,164395532,0 +1985-05-28,0.28556,0.28556,0.26891,0.26891,142499861,0 +1985-05-29,0.27279,0.27535,0.27279,0.27279,68760507,0 +1985-05-30,0.28046,0.28556,0.28046,0.28046,87826303,0 +1985-05-31,0.28046,0.28814,0.27786,0.27786,103025194,0 +1985-06-03,0.27148,0.27148,0.2561,0.2561,160641102,0 +1985-06-04,0.27535,0.27786,0.27535,0.27535,112089572,0 +1985-06-05,0.27535,0.28299,0.26891,0.26891,79873905,0 +1985-06-06,0.27148,0.27148,0.27148,0.27148,75632194,0 +1985-06-07,0.27148,0.27148,0.26126,0.26126,132535934,0 +1985-06-10,0.26126,0.26381,0.25742,0.25742,88163639,0 +1985-06-11,0.25742,0.26381,0.25742,0.25742,83865702,0 +1985-06-12,0.25742,0.2587,0.25228,0.25228,69160316,0 +1985-06-13,0.25228,0.25355,0.2369,0.2369,105842594,0 +1985-06-14,0.2369,0.25228,0.23564,0.23564,157754993,0 +1985-06-17,0.2369,0.23949,0.2369,0.2369,65911889,0 +1985-06-18,0.24333,0.24715,0.24333,0.24333,73964239,0 +1985-06-19,0.24975,0.25355,0.24975,0.24975,47964306,0 +1985-06-20,0.25228,0.25228,0.25228,0.25228,53211785,0 +1985-06-21,0.25742,0.26381,0.25742,0.25742,46333854,0 +1985-06-24,0.27535,0.2792,0.27535,0.27535,57384755,0 +1985-06-25,0.2792,0.28556,0.2792,0.2792,81966629,0 +1985-06-26,0.28941,0.28941,0.28941,0.28941,36869682,0 +1985-06-27,0.29328,0.2958,0.29328,0.29328,53674051,0 +1985-06-28,0.29328,0.2958,0.28814,0.28814,37856706,0 +1985-07-01,0.28941,0.2907,0.28941,0.28941,28848554,0 +1985-07-02,0.28941,0.2907,0.27535,0.27535,21677030,0 +1985-07-03,0.2792,0.2792,0.2792,0.2792,19103271,0 +1985-07-05,0.28046,0.28299,0.28046,0.28046,10201316,0 +1985-07-08,0.28046,0.28299,0.28046,0.28046,25718819,0 +1985-07-09,0.28046,0.28299,0.28046,0.28046,41248811,0 +1985-07-10,0.28814,0.28814,0.28814,0.28814,29573204,0 +1985-07-11,0.28814,0.28941,0.28814,0.28814,18097505,0 +1985-07-12,0.28814,0.28814,0.28556,0.28556,13118654,0 +1985-07-15,0.28556,0.2907,0.28299,0.28299,21664520,0 +1985-07-16,0.28299,0.28556,0.2792,0.2792,39980668,0 +1985-07-17,0.28046,0.28556,0.28046,0.28046,32959059,0 +1985-07-18,0.28046,0.28046,0.27535,0.27535,49938360,0 +1985-07-19,0.27786,0.27786,0.27786,0.27786,32047020,0 +1985-07-22,0.27786,0.27786,0.26891,0.26891,53630326,0 +1985-07-23,0.26891,0.27279,0.26381,0.26381,47046009,0 +1985-07-24,0.26381,0.26768,0.2587,0.2587,47052251,0 +1985-07-25,0.26509,0.26768,0.26509,0.26509,87870023,0 +1985-07-26,0.26509,0.26768,0.26509,0.26509,36401157,0 +1985-07-29,0.26509,0.26509,0.2561,0.2561,21683262,0 +1985-07-30,0.2587,0.26126,0.2587,0.2587,24950431,0 +1985-07-31,0.2587,0.26126,0.25355,0.25355,22451651,0 +1985-08-01,0.25355,0.25742,0.25355,0.25355,14380555,0 +1985-08-02,0.25355,0.25355,0.25228,0.25228,27168123,0 +1985-08-05,0.25228,0.25355,0.24588,0.24588,25750047,0 +1985-08-06,0.24588,0.25228,0.24333,0.24333,17591496,0 +1985-08-07,0.24333,0.2561,0.2369,0.2369,42317047,0 +1985-08-08,0.24202,0.24333,0.24202,0.24202,41211327,0 +1985-08-09,0.24333,0.24333,0.24333,0.24333,16998043,0 +1985-08-12,0.24333,0.24333,0.23949,0.23949,15336331,0 +1985-08-13,0.24333,0.24715,0.24333,0.24333,11819300,0 +1985-08-14,0.24333,0.24333,0.23305,0.23305,80848426,0 +1985-08-15,0.23305,0.23564,0.23051,0.23051,29335821,0 +1985-08-16,0.23305,0.2369,0.23305,0.23305,23357459,0 +1985-08-19,0.23949,0.24333,0.23949,0.23949,13349798,0 +1985-08-20,0.24333,0.24333,0.24333,0.24333,18672225,0 +1985-08-21,0.24333,0.24333,0.24333,0.24333,21477124,0 +1985-08-22,0.24333,0.24333,0.2369,0.2369,34389635,0 +1985-08-23,0.2369,0.23949,0.23564,0.23564,12275315,0 +1985-08-26,0.24202,0.24202,0.24202,0.24202,9945186,0 +1985-08-27,0.24333,0.24333,0.24333,0.24333,11969213,0 +1985-08-28,0.24333,0.24588,0.24333,0.24333,11419481,0 +1985-08-29,0.24333,0.24333,0.2369,0.2369,15648669,0 +1985-08-30,0.23949,0.23949,0.23949,0.23949,11956721,0 +1985-09-03,0.23949,0.23949,0.23564,0.23564,10444953,0 +1985-09-04,0.2369,0.24202,0.2369,0.2369,13262346,0 +1985-09-05,0.2369,0.23949,0.2369,0.2369,9151833,0 +1985-09-06,0.23949,0.23949,0.23949,0.23949,25881231,0 +1985-09-09,0.24333,0.24588,0.24333,0.24333,36900911,0 +1985-09-10,0.24588,0.24975,0.24588,0.24588,33958590,0 +1985-09-11,0.24715,0.24975,0.24715,0.24715,24288253,0 +1985-09-12,0.25742,0.25742,0.25742,0.25742,31003756,0 +1985-09-13,0.25742,0.25742,0.25228,0.25228,19671735,0 +1985-09-16,0.25228,0.25228,0.24333,0.24333,10313774,0 +1985-09-17,0.24333,0.24333,0.24333,0.24333,51243979,0 +1985-09-18,0.2587,0.2587,0.2587,0.2587,33490067,0 +1985-09-19,0.27148,0.27148,0.27148,0.27148,51962383,0 +1985-09-20,0.27148,0.27279,0.26768,0.26768,37713009,0 +1985-09-23,0.26891,0.27279,0.26891,0.26891,33071516,0 +1985-09-24,0.26891,0.27535,0.26381,0.26381,24569372,0 +1985-09-25,0.26381,0.26381,0.25355,0.25355,29142168,0 +1985-09-26,0.25355,0.2561,0.25355,0.25355,14917801,0 +1985-09-27,0.25355,0.2561,0.25355,0.25355,1924068,0 +1985-09-30,0.25355,0.2561,0.25228,0.25228,10220051,0 +1985-10-01,0.25228,0.25355,0.25228,0.25228,24638089,0 +1985-10-02,0.25228,0.25355,0.24975,0.24975,5997095,0 +1985-10-03,0.24975,0.24975,0.24715,0.24715,13643404,0 +1985-10-04,0.24715,0.24715,0.23949,0.23949,19390627,0 +1985-10-07,0.23949,0.24333,0.23949,0.23949,25637600,0 +1985-10-08,0.24202,0.24202,0.24202,0.24202,24257025,0 +1985-10-09,0.24202,0.24333,0.23949,0.23949,23095089,0 +1985-10-10,0.25355,0.2561,0.25355,0.25355,72995960,0 +1985-10-11,0.2561,0.2587,0.2561,0.2561,32990296,0 +1985-10-14,0.26509,0.26509,0.26509,0.26509,43279072,0 +1985-10-15,0.27148,0.27279,0.27148,0.27148,81960383,0 +1985-10-16,0.28814,0.28941,0.28814,0.28814,80442370,0 +1985-10-17,0.2907,0.30475,0.2907,0.2907,97103057,0 +1985-10-18,0.2907,0.29328,0.28299,0.28299,64262686,0 +1985-10-21,0.28299,0.28299,0.27535,0.27535,33152737,0 +1985-10-22,0.28814,0.2907,0.28814,0.28814,118399008,0 +1985-10-23,0.28814,0.2958,0.28814,0.28814,41379992,0 +1985-10-24,0.29328,0.30095,0.29328,0.29328,76031993,0 +1985-10-25,0.29328,0.29328,0.28814,0.28814,17647720,0 +1985-10-28,0.28814,0.28941,0.28814,0.28814,16585731,0 +1985-10-29,0.28814,0.28814,0.28556,0.28556,36501103,0 +1985-10-30,0.30351,0.30351,0.30351,0.30351,63188204,0 +1985-10-31,0.30351,0.30733,0.29712,0.29712,43247843,0 +1985-11-01,0.29712,0.30351,0.29712,0.29712,25812525,0 +1985-11-04,0.29838,0.30475,0.29838,0.29838,43429003,0 +1985-11-05,0.29838,0.30475,0.29712,0.29712,29991754,0 +1985-11-06,0.30733,0.3099,0.30733,0.30733,55904228,0 +1985-11-07,0.31249,0.3176,0.31249,0.31249,88444752,0 +1985-11-08,0.32785,0.33041,0.32785,0.32785,82022862,0 +1985-11-11,0.32785,0.33041,0.32018,0.32018,49857149,0 +1985-11-12,0.32018,0.32272,0.3176,0.3176,48426600,0 +1985-11-13,0.3176,0.3176,0.3099,0.3099,28323810,0 +1985-11-14,0.32018,0.32142,0.32018,0.32018,38906185,0 +1985-11-15,0.32018,0.32272,0.3176,0.3176,22751507,0 +1985-11-18,0.3176,0.32018,0.3176,0.3176,18003791,0 +1985-11-19,0.3176,0.32018,0.30733,0.30733,26306034,0 +1985-11-20,0.30733,0.3099,0.30351,0.30351,27630402,0 +1985-11-21,0.30351,0.30733,0.30351,0.30351,28711116,0 +1985-11-22,0.30351,0.30733,0.30095,0.30351,35907642,0 +1985-11-25,0.30351,0.30733,0.30351,0.30475,27105642,0 +1985-11-26,0.30475,0.3112,0.30351,0.3099,45865321,0 +1985-11-27,0.3099,0.32142,0.30733,0.32018,53467909,0 +1985-11-29,0.32018,0.32142,0.3176,0.32142,27617900,0 +1985-12-02,0.32142,0.32272,0.32018,0.32272,27942742,0 +1985-12-03,0.32272,0.32525,0.32018,0.32142,43247843,0 +1985-12-04,0.32142,0.32911,0.32142,0.32785,46046495,0 +1985-12-05,0.32785,0.33041,0.32018,0.32142,34901871,0 +1985-12-06,0.32142,0.32142,0.31249,0.31507,18253682,0 +1985-12-09,0.31507,0.32018,0.30733,0.3099,39006155,0 +1985-12-10,0.3099,0.31249,0.30733,0.3112,56029170,0 +1985-12-11,0.3112,0.32142,0.3112,0.31507,66267962,0 +1985-12-12,0.3176,0.32272,0.3176,0.32018,34933112,0 +1985-12-13,0.32018,0.32272,0.31507,0.32018,70041147,0 +1985-12-16,0.32018,0.33938,0.32018,0.33297,80573558,0 +1985-12-17,0.33297,0.33551,0.32525,0.32911,30416541,0 +1985-12-18,0.34192,0.36496,0.34192,0.35473,156118276,0 +1985-12-19,0.35473,0.36241,0.35344,0.35985,75332329,0 +1985-12-20,0.35985,0.36241,0.35473,0.3573,57459722,0 +1985-12-23,0.3573,0.35985,0.34448,0.34962,39943192,0 +1985-12-24,0.34962,0.35089,0.34448,0.34702,18016293,0 +1985-12-26,0.34702,0.35089,0.34448,0.34702,12787572,0 +1985-12-27,0.34702,0.36112,0.34702,0.3573,34270933,0 +1985-12-30,0.3573,0.36112,0.35344,0.35473,30029235,0 +1985-12-31,0.35473,0.3573,0.35089,0.35089,24331982,0 +1986-01-02,0.35089,0.35473,0.34702,0.35473,32746660,0 +1986-01-03,0.35473,0.3573,0.35344,0.3573,67536112,0 +1986-01-06,0.3573,0.3573,0.34962,0.35473,51606303,0 +1986-01-07,0.35473,0.36754,0.35344,0.36754,131224078,0 +1986-01-08,0.36754,0.37522,0.36241,0.36496,169449346,0 +1986-01-09,0.36496,0.36754,0.34962,0.36112,124727201,0 +1986-01-10,0.36112,0.36883,0.36112,0.36241,42735602,0 +1986-01-13,0.36241,0.36883,0.35985,0.36754,60077213,0 +1986-01-14,0.36754,0.37906,0.35985,0.37138,76050726,0 +1986-01-15,0.37138,0.38289,0.36883,0.38164,118099161,0 +1986-01-16,0.38164,0.39443,0.38164,0.39186,149140406,0 +1986-01-17,0.39186,0.39443,0.38164,0.38289,96322191,0 +1986-01-20,0.38289,0.38289,0.37394,0.38164,35532822,0 +1986-01-21,0.38164,0.38419,0.37906,0.38289,42379524,0 +1986-01-22,0.38289,0.38419,0.3573,0.37394,39880726,0 +1986-01-23,0.37394,0.37522,0.36241,0.36754,43622665,0 +1986-01-24,0.36754,0.37394,0.36112,0.36112,31228660,0 +1986-01-27,0.36112,0.36241,0.35089,0.35344,108647478,0 +1986-01-28,0.35344,0.3573,0.35089,0.35473,61995033,0 +1986-01-29,0.35473,0.38932,0.35089,0.37651,164420523,0 +1986-01-30,0.37522,0.37522,0.36496,0.36754,66061821,0 +1986-01-31,0.36754,0.37138,0.36496,0.36883,41192585,0 +1986-02-03,0.36883,0.38289,0.36496,0.38164,97615308,0 +1986-02-04,0.38164,0.38932,0.37906,0.37906,72558675,0 +1986-02-05,0.37906,0.38164,0.37522,0.37906,54985915,0 +1986-02-06,0.37906,0.38674,0.37651,0.38419,37431901,0 +1986-02-07,0.38419,0.38419,0.37522,0.38289,36088810,0 +1986-02-10,0.38289,0.39186,0.37906,0.38164,31191161,0 +1986-02-11,0.38164,0.38289,0.37522,0.38164,42798051,0 +1986-02-12,0.38164,0.38289,0.37906,0.38289,37107060,0 +1986-02-13,0.38289,0.38289,0.37906,0.38164,30504003,0 +1986-02-14,0.38164,0.38419,0.37906,0.37906,38350214,0 +1986-02-18,0.37906,0.38289,0.37138,0.38164,41305033,0 +1986-02-19,0.38164,0.40724,0.38164,0.39956,100307772,0 +1986-02-20,0.39956,0.40593,0.39699,0.40081,38462654,0 +1986-02-21,0.40081,0.41111,0.40081,0.40339,52730756,0 +1986-02-24,0.40339,0.41111,0.39956,0.41111,68916687,0 +1986-02-25,0.41111,0.42134,0.40081,0.42134,62675941,0 +1986-02-26,0.42134,0.42646,0.41491,0.41491,45940294,0 +1986-02-27,0.41491,0.41618,0.40724,0.40853,30154170,0 +1986-02-28,0.40853,0.41366,0.39699,0.39956,34895639,0 +1986-03-03,0.39956,0.40081,0.39186,0.39316,30347825,0 +1986-03-04,0.39316,0.39956,0.39186,0.39316,24850494,0 +1986-03-05,0.39316,0.40724,0.38674,0.40339,49369886,0 +1986-03-06,0.40339,0.41111,0.40081,0.40593,28261339,0 +1986-03-07,0.40593,0.40593,0.39443,0.39443,26824524,0 +1986-03-10,0.39443,0.39699,0.39316,0.39316,21052325,0 +1986-03-11,0.39316,0.39699,0.39186,0.39699,28742357,0 +1986-03-12,0.39699,0.40081,0.39443,0.39443,23894691,0 +1986-03-13,0.39443,0.39956,0.38932,0.39443,32340620,0 +1986-03-14,0.39443,0.41874,0.39443,0.41618,107329357,0 +1986-03-17,0.41491,0.41491,0.40593,0.41491,33108999,0 +1986-03-18,0.41491,0.4354,0.41366,0.42902,69541377,0 +1986-03-19,0.42902,0.4354,0.42134,0.42388,52955655,0 +1986-03-20,0.44694,0.47251,0.44694,0.45081,252146868,0 +1986-03-21,0.45081,0.45845,0.43927,0.44052,72614901,0 +1986-03-24,0.44052,0.44052,0.42134,0.42646,82079071,0 +1986-03-25,0.42646,0.44566,0.42646,0.44566,78387113,0 +1986-03-26,0.44566,0.45845,0.44566,0.45081,61951295,0 +1986-03-27,0.45081,0.46357,0.45081,0.45081,61076730,0 +1986-03-31,0.45081,0.45589,0.44694,0.45081,52374685,0 +1986-04-01,0.45081,0.45081,0.43157,0.4354,62113731,0 +1986-04-02,0.4354,0.43668,0.41874,0.4354,90718651,0 +1986-04-03,0.4354,0.44052,0.42902,0.43157,58865301,0 +1986-04-04,0.43157,0.43157,0.42516,0.42646,35126781,0 +1986-04-07,0.42646,0.43927,0.41874,0.4354,33502562,0 +1986-04-08,0.4354,0.44309,0.4354,0.44052,53886451,0 +1986-04-09,0.44052,0.44309,0.42902,0.43286,37738009,0 +1986-04-10,0.43286,0.43668,0.42902,0.4354,30672682,0 +1986-04-11,0.4354,0.43927,0.43157,0.43157,21102303,0 +1986-04-14,0.43157,0.4354,0.42646,0.42902,23694795,0 +1986-04-15,0.42902,0.43927,0.42902,0.43668,36644795,0 +1986-04-16,0.43668,0.45589,0.43668,0.45081,58796577,0 +1986-04-17,0.45081,0.46487,0.44694,0.46357,75326097,0 +1986-04-18,0.46357,0.47763,0.45845,0.47512,69072864,0 +1986-04-21,0.47763,0.49056,0.47763,0.48535,76288117,0 +1986-04-22,0.48535,0.49931,0.47251,0.47763,91437054,0 +1986-04-23,0.47763,0.48535,0.46872,0.47251,72921002,0 +1986-04-24,0.47251,0.5021,0.46998,0.5007,127831961,0 +1986-04-25,0.5007,0.5209,0.5007,0.5148,72808561,0 +1986-04-28,0.5148,0.5223,0.5072,0.5111,40586631,0 +1986-04-29,0.5111,0.5148,0.42902,0.49931,37007111,0 +1986-04-30,0.49931,0.5046,0.48291,0.48291,38425187,0 +1986-05-01,0.48291,0.48291,0.47512,0.48291,71933979,0 +1986-05-02,0.48291,0.49551,0.48027,0.48671,26099896,0 +1986-05-05,0.48671,0.5186,0.48671,0.5125,41648620,0 +1986-05-06,0.5148,0.5302,0.5148,0.5209,60945541,0 +1986-05-07,0.5209,0.525,0.49931,0.5021,55441956,0 +1986-05-08,0.5021,0.5288,0.5021,0.5276,65081036,0 +1986-05-09,0.5276,0.5366,0.5223,0.5329,62051252,0 +1986-05-12,0.5329,0.5851,0.5302,0.5814,111671015,0 +1986-05-13,0.5814,0.5826,0.5621,0.575,131567648,0 +1986-05-14,0.575,0.5969,0.575,0.5877,134697392,0 +1986-05-15,0.5877,0.5903,0.5686,0.575,62063745,0 +1986-05-16,0.575,0.5789,0.561,0.575,89031968,0 +1986-05-19,0.575,0.5826,0.5659,0.5686,58428011,0 +1986-05-20,0.5686,0.5686,0.5466,0.5649,68548116,0 +1986-05-21,0.5649,0.5944,0.5597,0.5903,96697006,0 +1986-05-22,0.5903,0.5981,0.571,0.5865,61495279,0 +1986-05-23,0.5865,0.593,0.5814,0.5903,38999900,0 +1986-05-27,0.5903,0.5903,0.5814,0.5877,23607339,0 +1986-05-28,0.5877,0.5981,0.5865,0.5944,57765823,0 +1986-05-29,0.5944,0.5944,0.5826,0.5903,28286326,0 +1986-05-30,0.5903,0.5944,0.5826,0.5903,35539069,0 +1986-06-02,0.5903,0.5969,0.5865,0.593,55566897,0 +1986-06-03,0.593,0.6082,0.593,0.6043,90887318,0 +1986-06-04,0.6043,0.6199,0.6032,0.6185,83846970,0 +1986-06-05,0.6185,0.6248,0.6148,0.6199,41242575,0 +1986-06-06,0.6199,0.6199,0.5981,0.6032,49463602,0 +1986-06-09,0.6032,0.6043,0.5724,0.575,68891698,0 +1986-06-10,0.575,0.575,0.561,0.575,68854215,0 +1986-06-11,0.575,0.5789,0.5659,0.5764,52112308,0 +1986-06-12,0.5764,0.5814,0.575,0.575,36001340,0 +1986-06-13,0.575,0.5814,0.5621,0.5814,39880726,0 +1986-06-16,0.5814,0.5877,0.5686,0.5724,48414101,0 +1986-06-17,0.5724,0.575,0.5428,0.5466,61926314,0 +1986-06-18,0.5466,0.5545,0.5186,0.5466,119823330,0 +1986-06-19,0.5466,0.571,0.5404,0.5597,96116035,0 +1986-06-20,0.5597,0.5764,0.5597,0.575,44984508,0 +1986-06-23,0.575,0.5789,0.5532,0.5545,32440573,0 +1986-06-24,0.5545,0.561,0.5494,0.5559,39599607,0 +1986-06-25,0.5597,0.575,0.5597,0.5724,36807204,0 +1986-06-26,0.5724,0.5814,0.5659,0.5789,32609230,0 +1986-06-27,0.5789,0.5865,0.5659,0.5724,13999490,0 +1986-06-30,0.5724,0.5789,0.571,0.5724,19734214,0 +1986-07-01,0.5724,0.5764,0.5545,0.5649,24463173,0 +1986-07-02,0.5649,0.5789,0.5649,0.5764,40392970,0 +1986-07-03,0.5764,0.6032,0.5686,0.6005,50525574,0 +1986-07-07,0.6005,0.6032,0.5649,0.5686,50706733,0 +1986-07-08,0.5621,0.5621,0.5441,0.5466,76325607,0 +1986-07-09,0.5466,0.5545,0.5428,0.5532,101825781,0 +1986-07-10,0.5545,0.5649,0.5532,0.5649,58165646,0 +1986-07-11,0.5649,0.6032,0.5621,0.593,62469801,0 +1986-07-14,0.593,0.5969,0.5789,0.5789,66217990,0 +1986-07-15,0.5597,0.5597,0.5466,0.5559,83084841,0 +1986-07-16,0.5659,0.5686,0.5223,0.5342,150552226,0 +1986-07-17,0.5342,0.5392,0.5125,0.5148,69966181,0 +1986-07-18,0.5148,0.5186,0.49931,0.5072,86208320,0 +1986-07-21,0.5276,0.5392,0.5223,0.5342,63719202,0 +1986-07-22,0.5342,0.5532,0.5302,0.5532,66842688,0 +1986-07-23,0.5532,0.5532,0.5441,0.5441,50057055,0 +1986-07-24,0.5466,0.5494,0.5276,0.5288,40318011,0 +1986-07-25,0.5288,0.5428,0.5276,0.5428,60645679,0 +1986-07-28,0.5404,0.5428,0.5148,0.5173,68716796,0 +1986-07-29,0.5148,0.5148,0.49056,0.49931,166169679,0 +1986-07-30,0.49931,0.5021,0.47898,0.48671,71215576,0 +1986-07-31,0.48671,0.5021,0.48671,0.49931,78711955,0 +1986-08-01,0.49685,0.5072,0.49685,0.5007,41854766,0 +1986-08-04,0.5007,0.5021,0.48791,0.5021,36301209,0 +1986-08-05,0.5046,0.5173,0.5021,0.5125,32877850,0 +1986-08-06,0.5125,0.5125,0.49551,0.49685,51650029,0 +1986-08-07,0.49685,0.5209,0.49685,0.5072,48357875,0 +1986-08-08,0.5098,0.5173,0.5046,0.5046,30716405,0 +1986-08-11,0.5098,0.5342,0.5072,0.5342,51156527,0 +1986-08-12,0.5329,0.5494,0.5329,0.5466,68092082,0 +1986-08-13,0.5466,0.5789,0.5466,0.575,126813702,0 +1986-08-14,0.575,0.5903,0.575,0.575,64343893,0 +1986-08-15,0.5764,0.5826,0.5686,0.571,38256514,0 +1986-08-18,0.571,0.5724,0.5597,0.5649,41092632,0 +1986-08-19,0.561,0.5659,0.5532,0.5649,38425187,0 +1986-08-20,0.5621,0.5826,0.5621,0.5789,47776908,0 +1986-08-21,0.5764,0.5814,0.571,0.571,54286260,0 +1986-08-22,0.5724,0.5851,0.5724,0.5789,32271901,0 +1986-08-25,0.5826,0.5877,0.5814,0.5814,35251724,0 +1986-08-26,0.5814,0.5877,0.5814,0.5851,36601064,0 +1986-08-27,0.5851,0.5903,0.5789,0.5903,41005174,0 +1986-08-28,0.5903,0.6068,0.5877,0.6032,61270375,0 +1986-08-29,0.6005,0.6068,0.5877,0.5903,37713009,0 +1986-09-02,0.593,0.593,0.5545,0.5545,64968603,0 +1986-09-03,0.5545,0.5559,0.5441,0.5545,32765415,0 +1986-09-04,0.5597,0.5659,0.5545,0.5659,55441956,0 +1986-09-05,0.5686,0.5724,0.5597,0.561,27467974,0 +1986-09-08,0.5597,0.5597,0.5366,0.5545,35195500,0 +1986-09-09,0.5532,0.575,0.5532,0.571,42048418,0 +1986-09-10,0.5686,0.5724,0.5545,0.5597,21102303,0 +1986-09-11,0.5532,0.5545,0.5186,0.5209,37469391,0 +1986-09-12,0.5186,0.5223,0.5072,0.5072,63719202,0 +1986-09-15,0.5148,0.5288,0.5111,0.5288,62113731,0 +1986-09-16,0.5288,0.561,0.5186,0.5559,68716796,0 +1986-09-17,0.5559,0.5597,0.5466,0.5466,32590487,0 +1986-09-18,0.5466,0.5507,0.5392,0.5428,27617900,0 +1986-09-19,0.5392,0.5404,0.5302,0.5366,35589053,0 +1986-09-22,0.5342,0.5649,0.5342,0.5621,66842688,0 +1986-09-23,0.5621,0.5789,0.561,0.5764,94329412,0 +1986-09-24,0.5764,0.5814,0.5428,0.561,49326152,0 +1986-09-25,0.561,0.5621,0.5366,0.5507,52374685,0 +1986-09-26,0.5441,0.5494,0.5404,0.5466,19528058,0 +1986-09-29,0.5366,0.5404,0.5046,0.5186,58271825,0 +1986-09-30,0.525,0.5404,0.5209,0.5342,50419382,0 +1986-10-01,0.5329,0.5507,0.5329,0.5441,38650067,0 +1986-10-02,0.5392,0.5494,0.5342,0.5441,26443470,0 +1986-10-03,0.5494,0.5545,0.5329,0.5392,38693797,0 +1986-10-06,0.5392,0.5466,0.5366,0.5441,26356003,0 +1986-10-07,0.5428,0.5441,0.525,0.5276,35695262,0 +1986-10-08,0.525,0.5276,0.5148,0.5223,31116221,0 +1986-10-09,0.5223,0.5302,0.5209,0.5276,21739487,0 +1986-10-10,0.525,0.5329,0.5173,0.5302,16323368,0 +1986-10-13,0.5288,0.5532,0.5276,0.5532,27799075,0 +1986-10-14,0.5532,0.5621,0.5392,0.5428,55591868,0 +1986-10-15,0.5342,0.5342,0.5223,0.5329,57284809,0 +1986-10-16,0.5329,0.5404,0.5302,0.5366,37862938,0 +1986-10-17,0.5392,0.5428,0.5329,0.5366,42354521,0 +1986-10-20,0.5342,0.5366,0.525,0.525,41548671,0 +1986-10-21,0.5276,0.5276,0.5209,0.5223,31715930,0 +1986-10-22,0.5223,0.525,0.5148,0.5186,26349765,0 +1986-10-23,0.5186,0.5288,0.5186,0.5288,34339658,0 +1986-10-24,0.5288,0.5302,0.5223,0.5276,21008597,0 +1986-10-27,0.5342,0.5428,0.5302,0.5428,42167129,0 +1986-10-28,0.5428,0.5441,0.5276,0.5329,39668317,0 +1986-10-29,0.5342,0.5342,0.5288,0.5329,23825980,0 +1986-10-30,0.5342,0.5545,0.5329,0.5466,81835451,0 +1986-10-31,0.5466,0.5559,0.5466,0.5532,33827402,0 +1986-11-03,0.5545,0.561,0.5532,0.5597,42342033,0 +1986-11-04,0.5559,0.5724,0.5404,0.571,68716796,0 +1986-11-05,0.571,0.593,0.5659,0.5903,174290754,0 +1986-11-06,0.5851,0.5877,0.571,0.5764,92455307,0 +1986-11-07,0.575,0.5764,0.5559,0.571,39924442,0 +1986-11-10,0.5724,0.5724,0.561,0.5649,29529473,0 +1986-11-11,0.5659,0.571,0.5621,0.5659,13993238,0 +1986-11-12,0.571,0.5851,0.5686,0.5851,36532347,0 +1986-11-13,0.5826,0.5826,0.5659,0.5659,38350214,0 +1986-11-14,0.5659,0.5659,0.5559,0.5621,37681780,0 +1986-11-17,0.5621,0.5903,0.5597,0.5814,39512148,0 +1986-11-18,0.5814,0.5865,0.561,0.5649,47427079,0 +1986-11-19,0.561,0.5621,0.5507,0.5597,84334245,0 +1986-11-20,0.5559,0.5649,0.5559,0.5621,82460138,0 +1986-11-21,0.5621,0.5789,0.561,0.575,79961356,0 +1986-11-24,0.5789,0.6082,0.575,0.6068,104949264,0 +1986-11-25,0.6068,0.6455,0.6068,0.6417,236760548,0 +1986-11-26,0.6404,0.6583,0.6391,0.6467,141181756,0 +1986-11-28,0.6467,0.6493,0.6326,0.6391,61507772,0 +1986-12-01,0.6391,0.6404,0.6248,0.6404,96828199,0 +1986-12-02,0.6467,0.6671,0.6391,0.6621,103075167,0 +1986-12-03,0.6646,0.6864,0.6621,0.6826,93704692,0 +1986-12-04,0.6813,0.6826,0.6711,0.6788,74963772,0 +1986-12-05,0.6813,0.6991,0.6788,0.6991,73089672,0 +1986-12-08,0.6966,0.7004,0.6762,0.6788,96828199,0 +1986-12-09,0.6762,0.6813,0.6556,0.6762,84334245,0 +1986-12-10,0.6762,0.6991,0.6711,0.6942,68092082,0 +1986-12-11,0.6966,0.7004,0.6813,0.6839,63094507,0 +1986-12-12,0.6839,0.6864,0.6583,0.6583,50231960,0 +1986-12-15,0.6543,0.6671,0.6455,0.6671,58303063,0 +1986-12-16,0.6646,0.6788,0.6646,0.6788,42373271,0 +1986-12-17,0.6762,0.6788,0.6517,0.6583,42142127,0 +1986-12-18,0.6556,0.6685,0.6506,0.661,48820146,0 +1986-12-19,0.661,0.6788,0.661,0.6724,55523159,0 +1986-12-22,0.6711,0.6788,0.6671,0.6724,45840348,0 +1986-12-23,0.6735,0.6762,0.6685,0.6724,68092082,0 +1986-12-24,0.6711,0.6724,0.6646,0.6685,26705841,0 +1986-12-26,0.6685,0.6685,0.6543,0.6543,25062879,0 +1986-12-29,0.6543,0.6556,0.6417,0.6467,32809145,0 +1986-12-30,0.6467,0.6621,0.6455,0.6543,41317537,0 +1986-12-31,0.6543,0.661,0.6455,0.6467,36969630,0 +1987-01-02,0.6455,0.6556,0.6404,0.6517,33708708,0 +1987-01-05,0.6583,0.6902,0.6543,0.6864,66842688,0 +1987-01-06,0.6888,0.7031,0.6813,0.6991,90581216,0 +1987-01-07,0.7004,0.7158,0.6966,0.7144,121191411,0 +1987-01-08,0.7144,0.7196,0.7094,0.7144,81210743,0 +1987-01-09,0.7144,0.7313,0.7085,0.7248,66842688,0 +1987-01-12,0.7262,0.7313,0.7144,0.7262,64968603,0 +1987-01-13,0.7196,0.7248,0.7118,0.7118,59046467,0 +1987-01-14,0.7118,0.7696,0.7094,0.7683,140557067,0 +1987-01-15,0.7696,0.821,0.7671,0.7952,152426319,0 +1987-01-16,0.7978,0.7978,0.7619,0.7785,113695053,0 +1987-01-19,0.7785,0.8478,0.7646,0.8478,101201086,0 +1987-01-20,0.8785,0.89,0.8222,0.8235,216145513,0 +1987-01-21,0.8118,0.8171,0.7825,0.7825,148678129,0 +1987-01-22,0.7799,0.8401,0.7737,0.8375,131811290,0 +1987-01-23,0.8375,0.8466,0.8017,0.8017,128063102,0 +1987-01-26,0.7978,0.8055,0.7902,0.794,98077594,0 +1987-01-27,0.7978,0.8478,0.7952,0.8427,105573967,0 +1987-01-28,0.8466,0.89,0.8324,0.8835,115569136,0 +1987-01-29,0.8913,0.913,0.853,0.8644,155549813,0 +1987-01-30,0.8618,0.8913,0.8401,0.8861,114319734,0 +1987-02-02,0.8861,0.894,0.8656,0.8913,68716796,0 +1987-02-03,0.894,0.8966,0.8749,0.8861,49813419,0 +1987-02-04,0.8861,0.8861,0.8683,0.8785,60751888,0 +1987-02-05,0.8785,0.8796,0.8478,0.8591,94954105,0 +1987-02-06,0.8618,0.8618,0.8438,0.8618,81835451,0 +1987-02-09,0.8438,0.853,0.8337,0.8401,43785082,0 +1987-02-10,0.8375,0.8427,0.8235,0.8427,46515020,0 +1987-02-11,0.8466,0.9064,0.8427,0.9016,95578797,0 +1987-02-12,0.9105,0.9552,0.9105,0.936,198029276,0 +1987-02-13,0.936,0.9977,0.9259,0.9925,142431157,0 +1987-02-17,0.9925,1.0617,0.9873,1.0604,114319734,0 +1987-02-18,1.0629,1.0757,1.0118,1.0144,131186589,0 +1987-02-19,1.0144,1.0144,0.9861,0.9963,87457713,0 +1987-02-20,0.9963,0.9977,0.9671,0.977,53168054,0 +1987-02-23,0.972,1.0257,0.9514,1.0078,98077594,0 +1987-02-24,1.0091,1.0526,1.0078,1.045,99326999,0 +1987-02-25,1.045,1.109,1.0309,1.1038,126813702,0 +1987-02-26,1.109,1.1385,1.0847,1.1038,139307657,0 +1987-02-27,1.1038,1.1331,1.0821,1.1167,113070347,0 +1987-03-02,1.1218,1.1258,1.0694,1.077,110571554,0 +1987-03-03,1.077,1.0873,1.0334,1.0374,121816114,0 +1987-03-04,1.05,1.0899,1.0438,1.0796,124939592,0 +1987-03-05,1.077,1.1014,1.0731,1.0937,94329412,0 +1987-03-06,1.0731,1.0924,1.0654,1.0731,49188713,0 +1987-03-09,1.0617,1.0654,1.0295,1.0309,71215576,0 +1987-03-10,1.0295,1.0682,1.0295,1.0654,68092082,0 +1987-03-11,1.0731,1.0847,1.0579,1.0579,60926800,0 +1987-03-12,1.0526,1.0579,1.0155,1.0412,84334245,0 +1987-03-13,1.0412,1.0526,1.0144,1.0144,55110847,0 +1987-03-16,1.0144,1.0412,0.9977,1.0412,68716796,0 +1987-03-17,1.045,1.0847,1.0374,1.0694,68092082,0 +1987-03-18,1.0731,1.077,1.0334,1.0526,84334245,0 +1987-03-19,1.05,1.0937,1.045,1.0924,57653383,0 +1987-03-20,1.0899,1.114,1.0899,1.0899,96828199,0 +1987-03-23,1.0847,1.0899,1.0579,1.077,68716796,0 +1987-03-24,1.0821,1.0937,1.0579,1.0579,74963772,0 +1987-03-25,1.0617,1.0694,1.0412,1.0654,76213168,0 +1987-03-26,1.0654,1.0821,1.0617,1.0731,39886960,0 +1987-03-27,1.0731,1.077,1.0334,1.0374,37344441,0 +1987-03-30,1.0144,1.0257,0.9938,0.9977,72464970,0 +1987-03-31,0.9938,1.0334,0.9938,1.0295,76213168,0 +1987-04-01,1.0064,1.0694,0.9963,1.0654,60758132,0 +1987-04-02,1.0899,1.1462,1.0694,1.1462,216770219,0 +1987-04-03,1.1411,1.1474,1.1218,1.1462,150552226,0 +1987-04-06,1.1411,1.1615,1.1052,1.1167,80586047,0 +1987-04-07,1.114,1.1218,1.0821,1.0821,72464970,0 +1987-04-08,1.0821,1.1218,1.077,1.1014,64343893,0 +1987-04-09,1.0974,1.1411,1.0821,1.1331,66217990,0 +1987-04-10,1.1371,1.1411,1.114,1.1218,60751888,0 +1987-04-13,1.1167,1.1218,1.077,1.077,39662085,0 +1987-04-14,1.0654,1.114,1.0617,1.0847,113695053,0 +1987-04-15,1.109,1.1331,1.0974,1.1331,97452892,0 +1987-04-16,1.1371,1.1691,1.1331,1.1411,96828199,0 +1987-04-20,1.1411,1.1615,1.1294,1.1358,41598649,0 +1987-04-21,1.1218,1.1974,1.109,1.1935,120566729,0 +1987-04-22,1.2228,1.2294,1.1808,1.1858,112445643,0 +1987-04-23,1.1858,1.2334,1.1858,1.2128,84958933,0 +1987-04-24,1.2089,1.2217,1.1898,1.1935,71215576,0 +1987-04-27,1.1858,1.2013,1.1691,1.1974,106823356,0 +1987-04-28,1.2089,1.2433,1.205,1.2294,90581216,0 +1987-04-29,1.2334,1.273,1.2294,1.2407,81210743,0 +1987-04-30,1.2446,1.2768,1.2407,1.2653,70590875,0 +1987-05-01,1.2691,1.2768,1.2562,1.2768,37013351,0 +1987-05-04,1.2691,1.2819,1.2614,1.273,39630836,0 +1987-05-05,1.2768,1.2883,1.2446,1.2819,64343893,0 +1987-05-06,1.2859,1.3126,1.2653,1.2768,79961356,0 +1987-05-07,1.273,1.2933,1.273,1.2819,50419382,0 +1987-05-08,1.2859,1.2933,1.2614,1.2614,51518848,0 +1987-05-11,1.2321,1.2717,1.2267,1.2321,55017157,0 +1987-05-12,1.2154,1.2228,1.1999,1.2076,72464970,0 +1987-05-13,1.2115,1.2562,1.2076,1.2553,86833019,0 +1987-05-14,1.2512,1.2717,1.2512,1.2665,41411229,0 +1987-05-15,1.2665,1.2665,1.2459,1.2512,40705327,0 +1987-05-18,1.2512,1.2553,1.2076,1.2115,67467391,0 +1987-05-19,1.2115,1.2115,1.1601,1.1704,66842688,0 +1987-05-20,1.1679,1.1999,1.1589,1.191,80586047,0 +1987-05-21,1.1949,1.2115,1.191,1.191,48470325,0 +1987-05-22,1.1999,1.2076,1.1795,1.1858,27080662,0 +1987-05-26,1.191,1.2459,1.1833,1.2459,42460715,0 +1987-05-27,1.2459,1.2833,1.2396,1.2717,50394394,0 +1987-05-28,1.2717,1.2833,1.2553,1.278,42173356,0 +1987-05-29,1.2833,1.2872,1.2626,1.2626,25825027,0 +1987-06-01,1.2717,1.2717,1.2396,1.2433,23232518,0 +1987-06-02,1.2396,1.2459,1.2321,1.2347,38343967,0 +1987-06-03,1.2347,1.2717,1.2347,1.2433,47776908,0 +1987-06-04,1.2459,1.2588,1.2321,1.2553,42835533,0 +1987-06-05,1.2588,1.2588,1.2433,1.2433,36513597,0 +1987-06-08,1.2433,1.2459,1.2267,1.2433,56291540,0 +1987-06-09,1.2396,1.2717,1.2396,1.2553,35432868,0 +1987-06-10,1.2588,1.2833,1.2459,1.2553,40780289,0 +1987-06-11,1.2553,1.278,1.2459,1.2626,34964349,0 +1987-06-12,1.2626,1.2754,1.2588,1.2626,28380018,0 +1987-06-15,1.2626,1.2717,1.2396,1.2553,72464970,0 +1987-06-16,1.3269,1.3356,1.2154,1.3269,95578797,0 +1987-06-17,1.3269,1.3587,1.278,1.2944,83084841,0 +1987-06-18,1.2872,1.3356,1.2626,1.3269,64031535,0 +1987-06-19,1.3269,1.3356,1.2909,1.3104,34983090,0 +1987-06-22,1.319,1.3512,1.3075,1.3421,47164698,0 +1987-06-23,1.3421,1.3471,1.3037,1.319,22548469,0 +1987-06-24,1.3269,1.3829,1.2944,1.3421,33108999,0 +1987-06-25,1.3421,1.3587,1.2944,1.2944,33733696,0 +1987-06-26,1.3037,1.3269,1.278,1.2944,35607788,0 +1987-06-29,1.2944,1.3037,1.278,1.3037,28251978,0 +1987-06-30,1.2944,1.3104,1.2717,1.2944,40293037,0 +1987-07-01,1.3037,1.3037,1.2717,1.278,26446591,0 +1987-07-02,1.278,1.3104,1.2717,1.2985,22745259,0 +1987-07-06,1.3037,1.3356,1.2944,1.3037,23841592,0 +1987-07-07,1.2944,1.3104,1.2396,1.2553,56847518,0 +1987-07-08,1.2553,1.2553,1.1679,1.191,95266442,0 +1987-07-09,1.191,1.2396,1.191,1.2076,66842688,0 +1987-07-10,1.2154,1.2553,1.2076,1.2154,43728865,0 +1987-07-13,1.2459,1.3037,1.2396,1.2944,71215576,0 +1987-07-14,1.3104,1.3741,1.3104,1.3741,71840271,0 +1987-07-15,1.3741,1.4316,1.3512,1.4062,75588455,0 +1987-07-16,1.4062,1.4062,1.3829,1.4062,26377871,0 +1987-07-17,1.4151,1.4316,1.3676,1.3829,25712574,0 +1987-07-20,1.3741,1.3829,1.3269,1.3356,34670727,0 +1987-07-21,1.3421,1.3587,1.319,1.3229,30953781,0 +1987-07-22,1.3269,1.3676,1.319,1.3587,16991785,0 +1987-07-23,1.3741,1.3906,1.2944,1.3356,20843052,0 +1987-07-24,1.3269,1.3676,1.3269,1.3587,32796642,0 +1987-07-27,1.3587,1.3741,1.3421,1.3512,15795495,0 +1987-07-28,1.3587,1.3676,1.3356,1.3394,20718117,0 +1987-07-29,1.3421,1.3421,1.2944,1.3104,27561674,0 +1987-07-30,1.3104,1.3269,1.3037,1.3269,29085942,0 +1987-07-31,1.319,1.3421,1.319,1.319,20371403,0 +1987-08-03,1.3104,1.3269,1.2872,1.2872,17669582,0 +1987-08-04,1.2944,1.3512,1.278,1.3512,33733696,0 +1987-08-05,1.3512,1.3906,1.3421,1.3829,36232491,0 +1987-08-06,1.3829,1.4946,1.3676,1.479,70278539,0 +1987-08-07,1.479,1.5098,1.4704,1.4869,42479457,0 +1987-08-10,1.5443,1.5443,1.4651,1.5443,21751994,0 +1987-08-11,1.5853,1.6083,1.561,1.5853,75588455,0 +1987-08-12,1.5853,1.5932,1.5443,1.561,44978267,0 +1987-08-13,1.561,1.6083,1.5521,1.5687,54661080,0 +1987-08-14,1.5521,1.6006,1.5369,1.5687,29242113,0 +1987-08-17,1.5853,1.6006,1.561,1.5853,40605372,0 +1987-08-18,1.5766,1.5853,1.5443,1.561,66217990,0 +1987-08-19,1.5853,1.6006,1.5687,1.6006,18650363,0 +1987-08-20,1.6083,1.68,1.5932,1.657,49038791,0 +1987-08-21,1.657,1.7211,1.6496,1.6967,39043628,0 +1987-08-24,1.6967,1.7136,1.6725,1.6725,33733696,0 +1987-08-25,1.6892,1.7044,1.6648,1.6648,38106575,0 +1987-08-26,1.6967,1.7136,1.6648,1.6648,54661080,0 +1987-08-27,1.6725,1.6892,1.6496,1.6648,34670727,0 +1987-08-28,1.6648,1.68,1.6496,1.6648,26721465,0 +1987-08-31,1.6725,1.7366,1.657,1.7288,41854766,0 +1987-09-01,1.7531,1.7684,1.68,1.68,38731288,0 +1987-09-02,1.6648,1.7044,1.6251,1.6648,64031535,0 +1987-09-03,1.68,1.6892,1.6083,1.6403,51537584,0 +1987-09-04,1.6403,1.657,1.6006,1.6163,30241629,0 +1987-09-08,1.6083,1.6163,1.5521,1.5971,49038791,0 +1987-09-09,1.6083,1.6967,1.5853,1.6892,44041212,0 +1987-09-10,1.7044,1.7441,1.7006,1.7211,39043628,0 +1987-09-11,1.7288,1.7775,1.6892,1.7441,34670727,0 +1987-09-14,1.7531,1.7684,1.6892,1.6967,22842091,0 +1987-09-15,1.6967,1.6967,1.6496,1.657,29173402,0 +1987-09-16,1.657,1.684,1.6403,1.657,46852360,0 +1987-09-17,1.6648,1.6725,1.6328,1.6648,18628502,0 +1987-09-18,1.6648,1.6725,1.6457,1.657,19856027,0 +1987-09-21,1.657,1.6892,1.6083,1.6083,35920136,0 +1987-09-22,1.6163,1.7366,1.6083,1.7328,42791819,0 +1987-09-23,1.7328,1.7927,1.7211,1.7684,70996927,0 +1987-09-24,1.7684,1.8531,1.7684,1.8085,50912882,0 +1987-09-25,1.817,1.857,1.8085,1.8414,29707521,0 +1987-09-28,1.8414,1.8813,1.7775,1.7853,56847518,0 +1987-09-29,1.7927,1.7927,1.7366,1.7441,47789404,0 +1987-09-30,1.7366,1.825,1.7366,1.8085,34046036,0 +1987-10-01,1.817,1.8813,1.8085,1.8646,32484295,0 +1987-10-02,1.8646,1.8813,1.8414,1.8722,26911983,0 +1987-10-05,1.8722,1.9132,1.8492,1.8966,37481878,0 +1987-10-06,1.9057,1.9057,1.7775,1.7853,56222820,0 +1987-10-07,1.7775,1.7853,1.7366,1.7775,62469801,0 +1987-10-08,1.7775,1.7927,1.7044,1.7366,45915312,0 +1987-10-09,1.7366,1.7775,1.7288,1.7328,40605372,0 +1987-10-12,1.7366,1.7417,1.657,1.7044,55598119,0 +1987-10-13,1.7441,1.7531,1.7044,1.7441,45290609,0 +1987-10-14,1.7211,1.7288,1.6648,1.7044,72152636,0 +1987-10-15,1.7044,1.7441,1.657,1.6648,97140541,0 +1987-10-16,1.6725,1.6967,1.5213,1.5443,117130887,0 +1987-10-19,1.5443,1.5443,1.1371,1.1679,132748339,0 +1987-10-20,1.2321,1.3447,1.0438,1.1038,158673297,0 +1987-10-21,1.2321,1.3447,1.2167,1.2959,148990487,0 +1987-10-22,1.2562,1.2959,1.1526,1.1768,107448068,0 +1987-10-23,1.1449,1.1679,1.0961,1.1371,55285783,0 +1987-10-26,1.1038,1.1206,0.8847,0.8966,87457713,0 +1987-10-27,0.9453,1.0322,0.9284,0.9682,127126048,0 +1987-10-28,0.9849,1.0807,0.936,1.0731,116818529,0 +1987-10-29,1.0961,1.2808,1.0322,1.2653,92455307,0 +1987-10-30,1.2808,1.3769,1.2321,1.2361,117443222,0 +1987-11-02,1.2407,1.2653,1.2013,1.2407,52474640,0 +1987-11-03,1.2167,1.2321,1.0961,1.1601,87457713,0 +1987-11-04,1.1371,1.1921,1.1128,1.1526,65280946,0 +1987-11-05,1.1601,1.2407,1.1601,1.2167,71215576,0 +1987-11-06,1.2241,1.2653,1.1845,1.2089,52162289,0 +1987-11-09,1.1845,1.2013,1.1601,1.1921,58721611,0 +1987-11-10,1.1679,1.2013,1.1526,1.1601,64656255,0 +1987-11-11,1.1921,1.2241,1.1768,1.1921,51849940,0 +1987-11-12,1.2321,1.2808,1.2294,1.2407,68716796,0 +1987-11-13,1.2562,1.2653,1.1845,1.1921,43104161,0 +1987-11-16,1.2089,1.2321,1.1679,1.1768,51537584,0 +1987-11-17,1.1768,1.1845,1.1206,1.1206,74963772,0 +1987-11-18,1.1449,1.1679,1.1038,1.1601,74026714,0 +1987-11-19,1.1679,1.1679,1.0886,1.1038,50912882,0 +1987-11-20,1.0886,1.1526,1.0641,1.1371,69966181,0 +1987-11-23,1.1371,1.1601,1.1128,1.1601,27161873,0 +1987-11-24,1.1768,1.2089,1.1563,1.1845,54973428,0 +1987-11-25,1.1845,1.1845,1.1526,1.1679,25768798,0 +1987-11-27,1.1601,1.1679,1.1128,1.1206,19712358,0 +1987-11-30,1.0807,1.1038,0.9758,1.0566,116193834,0 +1987-12-01,1.0731,1.0886,1.0486,1.0641,50600549,0 +1987-12-02,1.0641,1.0731,1.0399,1.0399,39668317,0 +1987-12-03,1.0566,1.0694,0.9526,0.9758,89019468,0 +1987-12-04,0.9682,1.0001,0.9526,0.9849,68092082,0 +1987-12-07,0.9925,1.0641,0.9925,1.0566,56847518,0 +1987-12-08,1.0731,1.1167,1.0641,1.1038,70903218,0 +1987-12-09,1.1038,1.1601,1.0847,1.1206,49975844,0 +1987-12-10,1.0807,1.1526,1.0641,1.1128,77150220,0 +1987-12-11,1.1128,1.1128,1.0731,1.0886,34046036,0 +1987-12-14,1.1038,1.2013,1.0961,1.1921,95266442,0 +1987-12-15,1.2089,1.2241,1.1845,1.2013,83397183,0 +1987-12-16,1.2089,1.273,1.1921,1.2562,92142965,0 +1987-12-17,1.2959,1.305,1.2562,1.2562,90893563,0 +1987-12-18,1.2653,1.3202,1.2562,1.2959,84334245,0 +1987-12-21,1.2959,1.3366,1.2883,1.3366,52474640,0 +1987-12-22,1.3366,1.3366,1.2959,1.3294,35920136,0 +1987-12-23,1.3366,1.3689,1.3202,1.3524,47789404,0 +1987-12-24,1.3447,1.3769,1.3366,1.3638,19506189,0 +1987-12-28,1.3524,1.3599,1.2653,1.2883,64031535,0 +1987-12-29,1.2959,1.3524,1.2883,1.3486,33108999,0 +1987-12-30,1.3599,1.4012,1.3599,1.3894,43416522,0 +1987-12-31,1.3599,1.3769,1.3407,1.3447,32796642,0 +1988-01-04,1.3689,1.4327,1.3524,1.4327,92142965,0 +1988-01-05,1.4728,1.4803,1.4162,1.4282,86208320,0 +1988-01-06,1.4406,1.4406,1.4012,1.4012,74963772,0 +1988-01-07,1.3932,1.4327,1.3599,1.4243,59346301,0 +1988-01-08,1.4243,1.4486,1.2653,1.2808,135559473,0 +1988-01-11,1.2808,1.3689,1.273,1.3599,112757986,0 +1988-01-12,1.3769,1.3932,1.273,1.3447,111820947,0 +1988-01-13,1.3447,1.3841,1.3164,1.3524,59033965,0 +1988-01-14,1.3689,1.373,1.3447,1.3524,36857181,0 +1988-01-15,1.3932,1.4406,1.3599,1.373,95891142,0 +1988-01-18,1.3769,1.3769,1.3447,1.3689,34983090,0 +1988-01-19,1.3524,1.3841,1.3255,1.3689,76525502,0 +1988-01-20,1.3769,1.3769,1.2241,1.273,189908205,0 +1988-01-21,1.2959,1.305,1.2614,1.2844,137745929,0 +1988-01-22,1.2959,1.305,1.2241,1.2562,124314910,0 +1988-01-25,1.2653,1.3294,1.2653,1.3089,55910472,0 +1988-01-26,1.305,1.3126,1.2562,1.273,39980668,0 +1988-01-27,1.2883,1.2959,1.2407,1.273,72152636,0 +1988-01-28,1.2808,1.3294,1.273,1.3202,64968603,0 +1988-01-29,1.3294,1.3366,1.2883,1.3294,74026714,0 +1988-02-01,1.3366,1.3599,1.3255,1.3366,55598119,0 +1988-02-02,1.3294,1.3407,1.2959,1.3202,53411692,0 +1988-02-03,1.3126,1.3202,1.2562,1.2653,63094507,0 +1988-02-04,1.2653,1.2844,1.2485,1.273,55598119,0 +1988-02-05,1.2808,1.2933,1.2321,1.2361,36857181,0 +1988-02-08,1.2321,1.2562,1.2089,1.2407,56847518,0 +1988-02-09,1.2485,1.2768,1.2407,1.273,32484295,0 +1988-02-10,1.273,1.3294,1.273,1.3126,63719202,0 +1988-02-11,1.3126,1.3202,1.2883,1.2998,41230075,0 +1988-02-12,1.2998,1.3294,1.2959,1.3126,38418926,0 +1988-02-16,1.3126,1.3202,1.2808,1.3202,43104161,0 +1988-02-17,1.3202,1.3599,1.3202,1.3407,71527931,0 +1988-02-18,1.332,1.3689,1.3294,1.3366,39980668,0 +1988-02-19,1.3366,1.3447,1.3294,1.3366,25312765,0 +1988-02-22,1.3294,1.396,1.3294,1.3841,55910472,0 +1988-02-23,1.3841,1.4012,1.3524,1.3689,61532755,0 +1988-02-24,1.3689,1.3769,1.3447,1.3524,40605372,0 +1988-02-25,1.3447,1.3769,1.3366,1.3366,49975844,0 +1988-02-26,1.3447,1.3524,1.3202,1.3366,22963885,0 +1988-02-29,1.3366,1.3841,1.3294,1.3769,31234900,0 +1988-03-01,1.3841,1.3932,1.3599,1.3841,47789404,0 +1988-03-02,1.4012,1.4406,1.3932,1.4327,81523085,0 +1988-03-03,1.4243,1.5048,1.4243,1.4882,132123638,0 +1988-03-04,1.4728,1.5048,1.4572,1.5009,58409263,0 +1988-03-07,1.4969,1.5289,1.4882,1.5009,57784573,0 +1988-03-08,1.4969,1.5048,1.4728,1.4803,40293037,0 +1988-03-09,1.4803,1.5124,1.4803,1.4969,37481878,0 +1988-03-10,1.5048,1.5124,1.4486,1.4486,49351137,0 +1988-03-11,1.4572,1.4651,1.4243,1.4651,44041212,0 +1988-03-14,1.4651,1.4882,1.4572,1.4803,27364901,0 +1988-03-15,1.4728,1.4803,1.4327,1.4406,50600549,0 +1988-03-16,1.4366,1.4856,1.4243,1.4764,33108999,0 +1988-03-17,1.4803,1.4882,1.4327,1.4406,72777325,0 +1988-03-18,1.4406,1.4572,1.4162,1.4327,75900811,0 +1988-03-21,1.4216,1.4282,1.3769,1.405,63406847,0 +1988-03-22,1.4085,1.4243,1.3841,1.4085,33237055,0 +1988-03-23,1.4085,1.4085,1.3407,1.3599,58409263,0 +1988-03-24,1.3366,1.3599,1.2808,1.3089,89331829,0 +1988-03-25,1.305,1.3202,1.2808,1.2844,36544826,0 +1988-03-28,1.2808,1.3366,1.2653,1.3294,48101736,0 +1988-03-29,1.3294,1.3447,1.2998,1.3126,59658665,0 +1988-03-30,1.305,1.3202,1.2407,1.2653,103699870,0 +1988-03-31,1.273,1.2959,1.2562,1.2808,60595708,0 +1988-04-04,1.273,1.2959,1.2321,1.2407,50600549,0 +1988-04-05,1.2562,1.2653,1.2321,1.2562,41230075,0 +1988-04-06,1.2653,1.3366,1.2485,1.3366,53099330,0 +1988-04-07,1.3366,1.3575,1.305,1.305,45602956,0 +1988-04-08,1.305,1.3366,1.273,1.3126,56535163,0 +1988-04-11,1.3366,1.3447,1.3126,1.3294,41542410,0 +1988-04-12,1.3366,1.3524,1.3202,1.3366,48414101,0 +1988-04-13,1.3366,1.3447,1.3126,1.3202,39980668,0 +1988-04-14,1.2959,1.3294,1.2485,1.2653,52474640,0 +1988-04-15,1.273,1.2808,1.2321,1.2653,64968603,0 +1988-04-18,1.273,1.305,1.2562,1.2808,47477053,0 +1988-04-19,1.2844,1.3294,1.2844,1.2883,59215141,0 +1988-04-20,1.2883,1.2959,1.2562,1.273,59971011,0 +1988-04-21,1.2933,1.2959,1.2485,1.2653,49663495,0 +1988-04-22,1.273,1.2883,1.2653,1.2844,30019863,0 +1988-04-25,1.2883,1.3126,1.2808,1.3089,41854766,0 +1988-04-26,1.3126,1.3366,1.305,1.3294,49038791,0 +1988-04-27,1.3366,1.3447,1.3294,1.3366,35295446,0 +1988-04-28,1.3366,1.3447,1.3202,1.3255,27655383,0 +1988-04-29,1.3202,1.3294,1.2959,1.3126,25097250,0 +1988-05-02,1.305,1.3202,1.2959,1.3126,22923297,0 +1988-05-03,1.3126,1.3524,1.305,1.3366,34670727,0 +1988-05-04,1.3407,1.3807,1.3366,1.3447,62469801,0 +1988-05-05,1.3447,1.3524,1.3294,1.3366,19649872,0 +1988-05-06,1.332,1.3366,1.3202,1.3202,29851196,0 +1988-05-09,1.3202,1.3202,1.2959,1.305,21299084,0 +1988-05-10,1.2959,1.3126,1.2883,1.3089,26746428,0 +1988-05-11,1.2883,1.305,1.2653,1.2653,48726457,0 +1988-05-12,1.2653,1.2883,1.2653,1.273,23141937,0 +1988-05-13,1.2883,1.2959,1.2808,1.2959,19912244,0 +1988-05-16,1.2959,1.3255,1.2808,1.3202,20849305,0 +1988-05-17,1.3294,1.3447,1.2883,1.2959,54036376,0 +1988-05-18,1.2959,1.305,1.2653,1.273,48726457,0 +1988-05-19,1.2653,1.273,1.2321,1.2485,69653839,0 +1988-05-20,1.2562,1.2653,1.2407,1.2407,22795242,0 +1988-05-23,1.2321,1.2446,1.1974,1.2167,51225241,0 +1988-05-24,1.2167,1.2485,1.2089,1.2446,39668317,0 +1988-05-25,1.2485,1.273,1.2321,1.2321,37794242,0 +1988-05-26,1.2321,1.2653,1.2321,1.2614,23922812,0 +1988-05-27,1.2562,1.2808,1.2485,1.273,23413693,0 +1988-05-31,1.2808,1.3294,1.273,1.3294,34358392,0 +1988-06-01,1.3294,1.3599,1.3202,1.3599,64031535,0 +1988-06-02,1.3447,1.3599,1.3294,1.3366,37169539,0 +1988-06-03,1.3366,1.3841,1.3366,1.3769,49038791,0 +1988-06-06,1.3689,1.4085,1.3689,1.4085,45915312,0 +1988-06-07,1.4012,1.4486,1.3932,1.4085,86833019,0 +1988-06-08,1.4162,1.4572,1.4085,1.4406,72152636,0 +1988-06-09,1.4406,1.4486,1.3841,1.3932,75276112,0 +1988-06-10,1.3932,1.4327,1.3769,1.4243,49351137,0 +1988-06-13,1.4406,1.4486,1.4162,1.4406,41542410,0 +1988-06-14,1.4486,1.4728,1.4406,1.4486,81551209,0 +1988-06-15,1.4486,1.4651,1.4406,1.4651,34046036,0 +1988-06-16,1.4406,1.4486,1.4162,1.4243,29944893,0 +1988-06-17,1.4327,1.4327,1.4162,1.4327,26602760,0 +1988-06-20,1.4216,1.4327,1.4085,1.4123,21920651,0 +1988-06-21,1.4085,1.4406,1.405,1.4366,34467712,0 +1988-06-22,1.4572,1.4691,1.4406,1.4598,54539272,0 +1988-06-23,1.4651,1.4651,1.4406,1.4406,19909132,0 +1988-06-24,1.4406,1.4572,1.4243,1.4406,20836805,0 +1988-06-27,1.4243,1.4534,1.4243,1.4243,23319978,0 +1988-06-28,1.4327,1.4803,1.4243,1.4803,45337464,0 +1988-06-29,1.4728,1.4969,1.4651,1.4856,40005663,0 +1988-06-30,1.4803,1.4969,1.4728,1.4803,31984539,0 +1988-07-01,1.4882,1.5009,1.4803,1.4882,26365379,0 +1988-07-05,1.4882,1.5124,1.4764,1.5124,29129675,0 +1988-07-06,1.5085,1.5213,1.4764,1.4882,43660147,0 +1988-07-07,1.4882,1.4882,1.4486,1.4691,29451389,0 +1988-07-08,1.4572,1.4728,1.4406,1.4486,29392037,0 +1988-07-11,1.4572,1.4572,1.4366,1.4448,20533813,0 +1988-07-12,1.4406,1.4486,1.4243,1.4327,28139531,0 +1988-07-13,1.4327,1.4406,1.4162,1.4327,32118842,0 +1988-07-14,1.4327,1.4486,1.4243,1.4406,17516529,0 +1988-07-15,1.4406,1.4572,1.4327,1.4406,23154440,0 +1988-07-18,1.4534,1.4728,1.4486,1.4572,31653449,0 +1988-07-19,1.4406,1.4572,1.405,1.4327,34108514,0 +1988-07-20,1.4327,1.4406,1.4085,1.4162,33490067,0 +1988-07-21,1.4012,1.4085,1.3689,1.3769,41561159,0 +1988-07-22,1.3769,1.3841,1.3599,1.3599,28961001,0 +1988-07-25,1.3689,1.3841,1.3524,1.3689,29532601,0 +1988-07-26,1.3689,1.3841,1.3524,1.3689,28314436,0 +1988-07-27,1.3689,1.3841,1.3599,1.3689,32496782,0 +1988-07-28,1.3599,1.3769,1.3524,1.3638,25846889,0 +1988-07-29,1.3841,1.4243,1.3769,1.4216,44328560,0 +1988-08-01,1.4243,1.4651,1.4162,1.4406,23966530,0 +1988-08-02,1.4406,1.4572,1.4243,1.4282,33824269,0 +1988-08-03,1.4327,1.4327,1.4085,1.4327,30913177,0 +1988-08-04,1.4327,1.4486,1.4243,1.4282,19218829,0 +1988-08-05,1.4243,1.4406,1.4162,1.4162,14686650,0 +1988-08-08,1.4243,1.4327,1.4085,1.4085,8349093,0 +1988-08-09,1.4085,1.4162,1.3769,1.3932,47417704,0 +1988-08-10,1.4012,1.4012,1.3366,1.3407,41220703,0 +1988-08-11,1.3524,1.3841,1.3447,1.3841,29576330,0 +1988-08-12,1.3769,1.3769,1.3524,1.3599,21608303,0 +1988-08-15,1.3524,1.3524,1.2959,1.3202,46483778,0 +1988-08-16,1.3126,1.3841,1.305,1.3599,34233450,0 +1988-08-17,1.3599,1.3689,1.3366,1.3447,33171478,0 +1988-08-18,1.3447,1.3769,1.3366,1.3599,20655651,0 +1988-08-19,1.3599,1.3689,1.2959,1.305,63406847,0 +1988-08-22,1.2883,1.305,1.2653,1.273,47464561,0 +1988-08-23,1.273,1.2883,1.2562,1.2653,45618578,0 +1988-08-24,1.273,1.305,1.2653,1.305,34992464,0 +1988-08-25,1.2883,1.2959,1.2562,1.2844,35607788,0 +1988-08-26,1.2808,1.305,1.2808,1.2883,11197721,0 +1988-08-29,1.305,1.3126,1.2959,1.3089,15961041,0 +1988-08-30,1.305,1.3126,1.2808,1.3089,14102555,0 +1988-08-31,1.3126,1.3164,1.2653,1.2768,66286701,0 +1988-09-01,1.273,1.273,1.2321,1.2446,68810485,0 +1988-09-02,1.2653,1.2808,1.2485,1.273,51956136,0 +1988-09-06,1.2808,1.2808,1.2407,1.2446,40005663,0 +1988-09-07,1.2485,1.2653,1.2089,1.2241,49950846,0 +1988-09-08,1.2241,1.2653,1.2089,1.2407,57800195,0 +1988-09-09,1.2407,1.3126,1.2089,1.2959,65446497,0 +1988-09-12,1.3126,1.3366,1.2844,1.3126,41283173,0 +1988-09-13,1.2883,1.3202,1.2808,1.3126,33377617,0 +1988-09-14,1.3366,1.3575,1.3294,1.3447,66533466,0 +1988-09-15,1.3447,1.3689,1.3294,1.332,46227662,0 +1988-09-16,1.3294,1.3689,1.3255,1.3524,34514573,0 +1988-09-19,1.3447,1.3524,1.3202,1.3366,25693834,0 +1988-09-20,1.3366,1.3524,1.3255,1.3294,28636152,0 +1988-09-21,1.3366,1.3769,1.3294,1.3689,25475183,0 +1988-09-22,1.3769,1.4085,1.3689,1.4085,40624114,0 +1988-09-23,1.3932,1.4162,1.3932,1.4012,28301942,0 +1988-09-26,1.4012,1.4085,1.3599,1.3689,24272636,0 +1988-09-27,1.3599,1.3932,1.3599,1.3894,45453033,0 +1988-09-28,1.3932,1.4123,1.3841,1.3932,23619833,0 +1988-09-29,1.4012,1.4162,1.3932,1.4085,29582584,0 +1988-09-30,1.4085,1.4085,1.3841,1.3841,25906232,0 +1988-10-03,1.3769,1.3841,1.3447,1.3599,25315893,0 +1988-10-04,1.3524,1.3689,1.3164,1.3294,14405539,0 +1988-10-05,1.3202,1.3366,1.2959,1.3089,34358392,0 +1988-10-06,1.2959,1.3089,1.2562,1.273,46786762,0 +1988-10-07,1.2485,1.273,1.2294,1.273,127613317,0 +1988-10-10,1.2653,1.273,1.2013,1.2321,92767663,0 +1988-10-11,1.2241,1.2653,1.2241,1.2485,54258149,0 +1988-10-12,1.2321,1.2485,1.2167,1.2407,37075823,0 +1988-10-13,1.2321,1.273,1.2321,1.2485,45865321,0 +1988-10-14,1.2653,1.2653,1.2204,1.2407,43853799,0 +1988-10-17,1.2321,1.2485,1.2241,1.2321,26127995,0 +1988-10-18,1.2485,1.2653,1.2241,1.2614,39768288,0 +1988-10-19,1.273,1.305,1.2653,1.2808,77340747,0 +1988-10-20,1.2808,1.332,1.2808,1.3294,48376607,0 +1988-10-21,1.3202,1.3366,1.305,1.3126,34470834,0 +1988-10-24,1.3202,1.3202,1.2677,1.2808,37694279,0 +1988-10-25,1.2883,1.2883,1.273,1.2768,23757271,0 +1988-10-26,1.2808,1.2808,1.2321,1.2562,52630809,0 +1988-10-27,1.2407,1.2562,1.2241,1.2485,40071262,0 +1988-10-28,1.2485,1.2653,1.2321,1.2321,23560481,0 +1988-10-31,1.2407,1.2407,1.2013,1.2361,67742243,0 +1988-11-01,1.2321,1.2407,1.2089,1.2167,40074368,0 +1988-11-02,1.2241,1.2241,1.1768,1.1921,58153138,0 +1988-11-03,1.1921,1.2013,1.1768,1.1884,67617308,0 +1988-11-04,1.1768,1.2167,1.1768,1.2089,42891752,0 +1988-11-07,1.1921,1.2089,1.1845,1.2013,47433325,0 +1988-11-08,1.2013,1.2407,1.1974,1.2321,43094792,0 +1988-11-09,1.2241,1.2614,1.2167,1.2562,56257178,0 +1988-11-10,1.2653,1.273,1.2485,1.2653,27864651,0 +1988-11-11,1.2485,1.2677,1.2321,1.2321,30310357,0 +1988-11-14,1.2407,1.2485,1.2241,1.2446,23769755,0 +1988-11-15,1.2485,1.2562,1.2407,1.2485,22311079,0 +1988-11-16,1.2485,1.2562,1.2089,1.2167,41230075,0 +1988-11-17,1.2167,1.2321,1.2167,1.2241,22183025,0 +1988-11-18,1.2321,1.2321,1.2167,1.2167,16060988,0 +1988-11-21,1.2013,1.2089,1.1601,1.1718,61885712,0 +1988-11-22,1.1679,1.1808,1.1526,1.1563,41326894,0 +1988-11-23,1.1449,1.1845,1.1371,1.1808,52427789,0 +1988-11-25,1.1601,1.1768,1.1526,1.1679,13468484,0 +1988-11-28,1.1679,1.1768,1.1526,1.1679,38865590,0 +1988-11-29,1.1679,1.1768,1.1526,1.1768,25843762,0 +1988-11-30,1.1768,1.2167,1.1768,1.2037,46808620,0 +1988-12-01,1.2089,1.2485,1.2013,1.2407,59168283,0 +1988-12-02,1.2241,1.2768,1.2167,1.2562,93067526,0 +1988-12-05,1.2653,1.2808,1.2407,1.2653,43063557,0 +1988-12-06,1.2562,1.273,1.2485,1.2653,29263985,0 +1988-12-07,1.2485,1.2653,1.2407,1.2614,27368024,0 +1988-12-08,1.2562,1.2562,1.2407,1.2526,16582605,0 +1988-12-09,1.2562,1.2653,1.2407,1.2526,12537697,0 +1988-12-12,1.2562,1.2653,1.2321,1.2321,32874750,0 +1988-12-13,1.2321,1.2407,1.2241,1.2407,34177233,0 +1988-12-14,1.2321,1.2808,1.2321,1.273,53908328,0 +1988-12-15,1.2808,1.2959,1.2562,1.2653,31394205,0 +1988-12-16,1.2653,1.2959,1.2562,1.2844,51172134,0 +1988-12-19,1.2883,1.3126,1.2808,1.305,65349671,0 +1988-12-20,1.3126,1.3294,1.2998,1.3126,76466163,0 +1988-12-21,1.3126,1.3447,1.3126,1.3366,67479887,0 +1988-12-22,1.3366,1.3447,1.305,1.3126,29570085,0 +1988-12-23,1.3126,1.3255,1.3126,1.3164,11422602,0 +1988-12-27,1.3126,1.3294,1.2959,1.2959,16729408,0 +1988-12-28,1.2959,1.305,1.273,1.2883,14374305,0 +1988-12-29,1.2883,1.305,1.2883,1.2959,32855988,0 +1988-12-30,1.2959,1.3202,1.2883,1.2883,22782739,0 +1989-01-03,1.2883,1.2959,1.2808,1.2933,27892758,0 +1989-01-04,1.305,1.3486,1.2959,1.3447,66917654,0 +1989-01-05,1.3447,1.3841,1.3202,1.3524,85708573,0 +1989-01-06,1.3524,1.3932,1.3524,1.3638,55404471,0 +1989-01-09,1.3769,1.3807,1.3524,1.3769,22117422,0 +1989-01-10,1.3599,1.373,1.3294,1.3638,28814195,0 +1989-01-11,1.3524,1.3599,1.3202,1.3486,43541466,0 +1989-01-12,1.3524,1.3769,1.3447,1.3689,41920358,0 +1989-01-13,1.3689,1.3932,1.3575,1.3841,54076983,0 +1989-01-16,1.3841,1.4085,1.3769,1.4012,47017896,0 +1989-01-17,1.3841,1.3932,1.2808,1.2933,211004253,0 +1989-01-18,1.305,1.3164,1.2653,1.273,136074844,0 +1989-01-19,1.2959,1.3126,1.2808,1.2959,71390481,0 +1989-01-20,1.2959,1.3294,1.2883,1.3126,48451584,0 +1989-01-23,1.305,1.3202,1.305,1.3126,50347535,0 +1989-01-24,1.3126,1.3366,1.305,1.332,62273011,0 +1989-01-25,1.3366,1.3447,1.3126,1.3294,30938180,0 +1989-01-26,1.305,1.3486,1.2998,1.3366,79555280,0 +1989-01-27,1.2241,1.2562,1.1601,1.2037,593231984,0 +1989-01-30,1.2037,1.2167,1.1921,1.1974,163564696,0 +1989-01-31,1.1921,1.2089,1.1768,1.2089,128384825,0 +1989-02-01,1.2089,1.2677,1.1974,1.2562,135971776,0 +1989-02-02,1.2653,1.2883,1.2562,1.273,132048669,0 +1989-02-03,1.2808,1.2883,1.2485,1.2562,49894632,0 +1989-02-06,1.2653,1.2653,1.2241,1.2321,32556148,0 +1989-02-07,1.2241,1.2562,1.2241,1.2485,46058981,0 +1989-02-08,1.2485,1.2653,1.2167,1.2241,43788210,0 +1989-02-09,1.2241,1.2485,1.2167,1.2241,44847078,0 +1989-02-10,1.2241,1.2241,1.1845,1.1921,97146799,0 +1989-02-13,1.1768,1.1921,1.1768,1.1845,65590173,0 +1989-02-14,1.1808,1.1845,1.1283,1.1449,248645435,0 +1989-02-15,1.1449,1.1601,1.1371,1.1601,92205428,0 +1989-02-16,1.1601,1.1921,1.1526,1.1655,71309273,0 +1989-02-17,1.1601,1.1845,1.1601,1.1768,32587368,0 +1989-02-21,1.1808,1.2089,1.1768,1.2013,53143059,0 +1989-02-22,1.1921,1.2013,1.1679,1.1768,66464748,0 +1989-02-23,1.1679,1.1845,1.1601,1.1768,26596524,0 +1989-02-24,1.1845,1.1845,1.1526,1.1526,42426374,0 +1989-02-27,1.1526,1.1679,1.1449,1.1679,32328110,0 +1989-02-28,1.1679,1.1768,1.1526,1.1601,49088780,0 +1989-03-01,1.1601,1.1679,1.1371,1.1526,47445813,0 +1989-03-02,1.1449,1.1601,1.1128,1.1206,104952399,0 +1989-03-03,1.1283,1.1283,1.0886,1.1128,108144602,0 +1989-03-06,1.1206,1.1487,1.1038,1.1371,46996028,0 +1989-03-07,1.1371,1.1526,1.1206,1.1449,72702352,0 +1989-03-08,1.1399,1.1601,1.1283,1.1283,60320857,0 +1989-03-09,1.1283,1.1449,1.1038,1.1038,37213258,0 +1989-03-10,1.1038,1.1206,1.0961,1.1206,28645525,0 +1989-03-13,1.1206,1.1371,1.1128,1.1206,36563572,0 +1989-03-14,1.1206,1.1371,1.1167,1.1283,45162536,0 +1989-03-15,1.1283,1.1371,1.1128,1.1206,25115998,0 +1989-03-16,1.1206,1.1371,1.1038,1.1283,53611600,0 +1989-03-17,1.1038,1.1449,1.0886,1.1167,66130533,0 +1989-03-20,1.1206,1.1283,1.1038,1.1167,50603660,0 +1989-03-21,1.1371,1.1371,1.1128,1.1167,35751462,0 +1989-03-22,1.0961,1.1128,1.0807,1.0847,40396090,0 +1989-03-23,1.0886,1.1038,1.0807,1.1014,33162097,0 +1989-03-27,1.0961,1.1038,1.0731,1.0807,42295178,0 +1989-03-28,1.0886,1.1038,1.0886,1.0886,39393468,0 +1989-03-29,1.0886,1.1038,1.0886,1.0961,20749360,0 +1989-03-30,1.0961,1.1206,1.0886,1.1128,29351435,0 +1989-03-31,1.1206,1.1449,1.1128,1.1399,51690635,0 +1989-04-03,1.1371,1.1601,1.1128,1.1206,46374457,0 +1989-04-04,1.1038,1.1167,1.0847,1.1038,32275020,0 +1989-04-05,1.1038,1.1283,1.0961,1.1206,33536909,0 +1989-04-06,1.1128,1.1563,1.1038,1.1526,43610170,0 +1989-04-07,1.1526,1.2013,1.1526,1.1974,98999019,0 +1989-04-10,1.1921,1.2167,1.1768,1.1845,37753618,0 +1989-04-11,1.2013,1.2167,1.1845,1.2089,40867744,0 +1989-04-12,1.2241,1.2562,1.2128,1.2321,108182071,0 +1989-04-13,1.2407,1.2653,1.2241,1.2321,50553686,0 +1989-04-14,1.2485,1.2562,1.2241,1.2407,34402121,0 +1989-04-17,1.2321,1.2562,1.2167,1.2562,39084231,0 +1989-04-18,1.2653,1.2959,1.2562,1.2844,156449359,0 +1989-04-19,1.2808,1.332,1.273,1.3089,118770706,0 +1989-04-20,1.305,1.3294,1.2883,1.305,50147637,0 +1989-04-21,1.2959,1.3089,1.273,1.2844,32118842,0 +1989-04-24,1.2808,1.2883,1.2653,1.2844,30897562,0 +1989-04-25,1.2808,1.2959,1.273,1.2808,32399953,0 +1989-04-26,1.2808,1.2883,1.2526,1.273,51909286,0 +1989-04-27,1.2653,1.2808,1.2485,1.2614,38871836,0 +1989-04-28,1.2562,1.2653,1.2321,1.2485,28964126,0 +1989-05-01,1.2321,1.2562,1.2321,1.2485,22495380,0 +1989-05-02,1.2485,1.2883,1.2485,1.2768,60167791,0 +1989-05-03,1.273,1.305,1.273,1.2883,61504641,0 +1989-05-04,1.2883,1.3202,1.2808,1.3126,52683906,0 +1989-05-05,1.3599,1.3689,1.3294,1.3294,128497249,0 +1989-05-08,1.3294,1.3524,1.3294,1.3524,57428494,0 +1989-05-09,1.3447,1.3769,1.3447,1.3599,96709507,0 +1989-05-10,1.3769,1.3932,1.3599,1.3841,65380900,0 +1989-05-11,1.3841,1.4162,1.3769,1.405,83928182,0 +1989-05-12,1.4243,1.4406,1.4085,1.4406,130277649,0 +1989-05-15,1.4327,1.4803,1.4327,1.4728,88657148,0 +1989-05-16,1.4728,1.4803,1.4406,1.4534,63772293,0 +1989-05-17,1.4486,1.4572,1.4406,1.4486,69291498,0 +1989-05-18,1.4486,1.4572,1.4327,1.4327,58915280,0 +1989-05-19,1.4327,1.4803,1.4327,1.4651,92246040,0 +1989-05-22,1.4651,1.4803,1.4486,1.4728,53099330,0 +1989-05-23,1.4728,1.4728,1.4486,1.4572,37500626,0 +1989-05-24,1.4486,1.5289,1.4486,1.5289,82997375,0 +1989-05-25,1.5124,1.5687,1.5124,1.5443,64803052,0 +1989-05-26,1.5443,1.5687,1.5369,1.5521,31378577,0 +1989-05-30,1.5443,1.5687,1.5175,1.5213,31213031,0 +1989-05-31,1.5213,1.5408,1.5048,1.5289,32131336,0 +1989-06-01,1.5289,1.5766,1.5213,1.561,50060176,0 +1989-06-02,1.5521,1.5853,1.5521,1.5687,34714471,0 +1989-06-05,1.561,1.5687,1.4882,1.5048,34614511,0 +1989-06-06,1.4969,1.5048,1.4803,1.4969,40439818,0 +1989-06-07,1.4969,1.5521,1.4969,1.5443,48991948,0 +1989-06-08,1.5521,1.5687,1.5124,1.524,49644752,0 +1989-06-09,1.5124,1.5289,1.4882,1.5048,26331029,0 +1989-06-12,1.4969,1.5289,1.4803,1.5213,22551597,0 +1989-06-13,1.5213,1.561,1.5048,1.5521,64415735,0 +1989-06-14,1.5687,1.6083,1.5443,1.5878,70084868,0 +1989-06-15,1.5853,1.5932,1.5213,1.5213,45012610,0 +1989-06-16,1.4327,1.4572,1.3932,1.4243,151155056,0 +1989-06-19,1.4243,1.4327,1.3932,1.4085,51069076,0 +1989-06-20,1.4085,1.4085,1.3524,1.3769,37519361,0 +1989-06-21,1.3769,1.3932,1.3524,1.3599,36216861,0 +1989-06-22,1.3599,1.4012,1.3447,1.3841,38262746,0 +1989-06-23,1.3841,1.4162,1.3841,1.405,34552047,0 +1989-06-26,1.4085,1.4085,1.3841,1.3932,51268958,0 +1989-06-27,1.4012,1.4162,1.3599,1.3638,29501367,0 +1989-06-28,1.3524,1.3524,1.3126,1.3366,71680982,0 +1989-06-29,1.3126,1.3202,1.2808,1.2998,65124774,0 +1989-06-30,1.2959,1.3366,1.2653,1.3202,45943404,0 +1989-07-03,1.3366,1.3366,1.305,1.305,13484108,0 +1989-07-05,1.2959,1.305,1.2808,1.2959,33230806,0 +1989-07-06,1.305,1.3366,1.2883,1.3202,48504688,0 +1989-07-07,1.3202,1.3447,1.2959,1.3202,29591952,0 +1989-07-10,1.3126,1.3202,1.2808,1.2959,56806917,0 +1989-07-11,1.305,1.3126,1.273,1.273,68026490,0 +1989-07-12,1.273,1.2883,1.2653,1.2808,34617637,0 +1989-07-13,1.2808,1.3126,1.2653,1.2998,62869608,0 +1989-07-14,1.305,1.3126,1.273,1.305,71762180,0 +1989-07-17,1.305,1.3202,1.273,1.305,36504232,0 +1989-07-18,1.305,1.305,1.2407,1.2562,133113782,0 +1989-07-19,1.2653,1.305,1.2485,1.2959,66645907,0 +1989-07-20,1.305,1.3202,1.273,1.2808,65836922,0 +1989-07-21,1.273,1.2808,1.2485,1.2808,38899960,0 +1989-07-24,1.273,1.273,1.2562,1.2562,32346863,0 +1989-07-25,1.2562,1.273,1.2167,1.2407,58521703,0 +1989-07-26,1.2241,1.2321,1.2089,1.2241,65187238,0 +1989-07-27,1.2241,1.2653,1.2167,1.2562,48267297,0 +1989-07-28,1.2562,1.273,1.2485,1.2614,33280797,0 +1989-07-31,1.2562,1.2808,1.2485,1.273,31197418,0 +1989-08-01,1.273,1.2883,1.2562,1.2768,38915566,0 +1989-08-02,1.273,1.2959,1.2653,1.2959,28280064,0 +1989-08-03,1.2959,1.3294,1.2959,1.3202,48229807,0 +1989-08-04,1.3202,1.3689,1.3164,1.3689,51134658,0 +1989-08-07,1.3769,1.4085,1.3638,1.4012,46911701,0 +1989-08-08,1.3932,1.4327,1.3932,1.4123,57503459,0 +1989-08-09,1.4085,1.4651,1.405,1.4085,54426809,0 +1989-08-10,1.4085,1.4085,1.3689,1.3841,42491966,0 +1989-08-11,1.4085,1.4085,1.3202,1.3407,64165859,0 +1989-08-14,1.3294,1.3447,1.2959,1.305,28676775,0 +1989-08-15,1.305,1.3294,1.305,1.3255,45662300,0 +1989-08-16,1.3294,1.3366,1.2808,1.2933,33615006,0 +1989-08-17,1.2883,1.3202,1.2808,1.3126,42757456,0 +1989-08-18,1.3366,1.3599,1.3294,1.3524,23444913,0 +1989-08-21,1.3524,1.3841,1.3447,1.3524,38437674,0 +1989-08-22,1.3447,1.3769,1.3447,1.373,31188051,0 +1989-08-23,1.3769,1.4162,1.3599,1.4012,48426600,0 +1989-08-24,1.4012,1.4243,1.3932,1.4123,45437411,0 +1989-08-25,1.4085,1.4406,1.4085,1.4327,45009486,0 +1989-08-28,1.4243,1.4406,1.4085,1.4327,22773372,0 +1989-08-29,1.4327,1.4406,1.4012,1.4123,49335525,0 +1989-08-30,1.4085,1.4327,1.4085,1.4243,32378109,0 +1989-08-31,1.4243,1.4406,1.4162,1.4243,15698669,0 +1989-09-01,1.4243,1.4327,1.4162,1.4282,20671266,0 +1989-09-05,1.4243,1.4534,1.4243,1.4327,32022022,0 +1989-09-06,1.4327,1.4366,1.4085,1.4327,24194545,0 +1989-09-07,1.4327,1.4572,1.4327,1.4327,31762771,0 +1989-09-08,1.4327,1.4486,1.4243,1.4406,15570585,0 +1989-09-11,1.4327,1.4728,1.4243,1.4651,27496084,0 +1989-09-12,1.4572,1.4969,1.4406,1.4728,28889156,0 +1989-09-13,1.4803,1.4919,1.4406,1.4406,35888901,0 +1989-09-14,1.4406,1.4486,1.4243,1.4327,36613558,0 +1989-09-15,1.4406,1.4486,1.4162,1.4406,34823785,0 +1989-09-18,1.4243,1.4406,1.4085,1.4085,17613349,0 +1989-09-19,1.4162,1.4243,1.3769,1.3841,22532854,0 +1989-09-20,1.4085,1.4406,1.4012,1.4282,32949686,0 +1989-09-21,1.4406,1.4728,1.4162,1.4327,56044783,0 +1989-09-22,1.4327,1.4486,1.4162,1.4366,20218362,0 +1989-09-25,1.4327,1.4651,1.4327,1.4486,37972267,0 +1989-09-26,1.4406,1.4572,1.4327,1.4486,21564575,0 +1989-09-27,1.4162,1.4448,1.4085,1.4327,25134725,0 +1989-09-28,1.4406,1.4651,1.4406,1.4572,22148660,0 +1989-09-29,1.4486,1.4572,1.4243,1.4243,19468708,0 +1989-10-02,1.4243,1.4327,1.4012,1.4216,38318978,0 +1989-10-03,1.4162,1.4243,1.3807,1.396,47548893,0 +1989-10-04,1.4012,1.4282,1.3932,1.4162,44391036,0 +1989-10-05,1.4243,1.4882,1.4162,1.4572,68404431,0 +1989-10-06,1.4803,1.5443,1.4728,1.5408,100873118,0 +1989-10-09,1.5369,1.5932,1.5213,1.5853,54536144,0 +1989-10-10,1.5932,1.6137,1.5521,1.5853,80073783,0 +1989-10-11,1.561,1.5766,1.5369,1.5647,43772604,0 +1989-10-12,1.5687,1.5766,1.5521,1.561,23048231,0 +1989-10-13,1.561,1.5853,1.4406,1.4651,56088511,0 +1989-10-16,1.4327,1.4969,1.3599,1.4969,118502089,0 +1989-10-17,1.4728,1.561,1.4406,1.5124,69731923,0 +1989-10-18,1.4882,1.5443,1.4728,1.5443,40168097,0 +1989-10-19,1.5443,1.5853,1.5443,1.561,31206784,0 +1989-10-20,1.5289,1.5766,1.5213,1.5369,72930376,0 +1989-10-23,1.5369,1.5443,1.4803,1.4969,34011698,0 +1989-10-24,1.4803,1.5521,1.4486,1.524,60361463,0 +1989-10-25,1.5289,1.5289,1.4803,1.4882,33227687,0 +1989-10-26,1.4572,1.4882,1.4406,1.4486,47205303,0 +1989-10-27,1.4486,1.4651,1.4243,1.4486,36091928,0 +1989-10-30,1.4572,1.4728,1.4406,1.4651,24257025,0 +1989-10-31,1.4651,1.4882,1.4572,1.4882,25656358,0 +1989-11-01,1.4803,1.4969,1.4651,1.4764,17063617,0 +1989-11-02,1.4406,1.4406,1.3769,1.4085,126242107,0 +1989-11-03,1.4085,1.4243,1.3841,1.3841,48707717,0 +1989-11-06,1.3932,1.4085,1.3769,1.3841,34327151,0 +1989-11-07,1.3841,1.4243,1.3841,1.4085,42201475,0 +1989-11-08,1.4162,1.4486,1.4162,1.4406,39777646,0 +1989-11-09,1.4406,1.4728,1.4243,1.4728,24594367,0 +1989-11-10,1.4651,1.5048,1.4651,1.4969,18088130,0 +1989-11-13,1.4882,1.5124,1.4882,1.4882,18968954,0 +1989-11-14,1.4882,1.4969,1.4243,1.4327,23532365,0 +1989-11-15,1.4406,1.4486,1.4085,1.4162,27271209,0 +1989-11-16,1.4243,1.4327,1.4012,1.4327,26930735,0 +1989-11-17,1.4243,1.4486,1.4243,1.4327,24697451,0 +1989-11-20,1.4406,1.4572,1.4243,1.4486,30138551,0 +1989-11-21,1.4486,1.4882,1.4486,1.4486,39112346,0 +1989-11-22,1.4572,1.4651,1.4243,1.4327,27314913,0 +1989-11-24,1.4327,1.4406,1.4327,1.4327,7768110,0 +1989-11-27,1.4327,1.4486,1.4012,1.4085,29323327,0 +1989-11-28,1.4012,1.4162,1.3689,1.4123,37753618,0 +1989-11-29,1.3932,1.4162,1.3599,1.4085,42654392,0 +1989-11-30,1.4012,1.4243,1.3932,1.4162,17694568,0 +1989-12-01,1.4243,1.4406,1.396,1.4085,40780289,0 +1989-12-04,1.4012,1.4572,1.4012,1.4486,27152494,0 +1989-12-05,1.4486,1.4651,1.4243,1.4406,33958590,0 +1989-12-06,1.4406,1.4486,1.3126,1.3689,93420477,0 +1989-12-07,1.3524,1.3841,1.3447,1.3689,49757188,0 +1989-12-08,1.3599,1.3769,1.3202,1.3366,70440954,0 +1989-12-11,1.3126,1.3294,1.2294,1.2562,181277989,0 +1989-12-12,1.2562,1.2653,1.1206,1.1526,285971137,0 +1989-12-13,1.1526,1.1679,1.1371,1.1526,108697453,0 +1989-12-14,1.1449,1.1563,1.1038,1.1167,84990170,0 +1989-12-15,1.1128,1.1206,1.0399,1.0807,144508264,0 +1989-12-18,1.0807,1.1206,1.0807,1.1128,85674219,0 +1989-12-19,1.1038,1.1371,1.1038,1.1206,70053640,0 +1989-12-20,1.1449,1.1601,1.1283,1.1449,49638516,0 +1989-12-21,1.1449,1.1601,1.1371,1.1601,85005783,0 +1989-12-22,1.1601,1.1921,1.1526,1.1679,51478250,0 +1989-12-26,1.1768,1.1768,1.1283,1.1371,37728652,0 +1989-12-27,1.1371,1.1449,1.1206,1.1245,71674728,0 +1989-12-28,1.1206,1.1283,1.0961,1.1078,42182743,0 +1989-12-29,1.1128,1.1449,1.1014,1.1283,42504459,0 +1990-01-02,1.1283,1.2013,1.1206,1.1921,51090928,0 +1990-01-03,1.2167,1.2167,1.2013,1.2013,58006332,0 +1990-01-04,1.2241,1.2407,1.1921,1.2037,61776401,0 +1990-01-05,1.2089,1.2241,1.1845,1.2089,34389635,0 +1990-01-08,1.2013,1.2167,1.1845,1.2167,28326921,0 +1990-01-09,1.2167,1.2167,1.1845,1.2037,24022760,0 +1990-01-10,1.2037,1.2037,1.1449,1.1526,55698070,0 +1990-01-11,1.1601,1.1601,1.1038,1.1038,58859053,0 +1990-01-12,1.0961,1.1128,1.0807,1.1038,47939334,0 +1990-01-15,1.1038,1.1449,1.0961,1.0961,45106320,0 +1990-01-16,1.0731,1.1206,1.0486,1.1167,59749243,0 +1990-01-17,1.1128,1.1128,1.0566,1.0641,55023405,0 +1990-01-18,1.0566,1.0731,1.0322,1.0374,76216279,0 +1990-01-19,1.0807,1.1038,1.0731,1.0961,73942379,0 +1990-01-22,1.0886,1.1038,1.0641,1.0641,40608490,0 +1990-01-23,1.0807,1.0961,1.0566,1.0807,39287253,0 +1990-01-24,1.0399,1.0961,1.0322,1.0886,47352105,0 +1990-01-25,1.0961,1.1128,1.0886,1.0924,31106844,0 +1990-01-26,1.0886,1.0886,1.0322,1.0486,50547443,0 +1990-01-29,1.0566,1.0731,1.0282,1.0641,33446329,0 +1990-01-30,1.0641,1.1038,1.0566,1.0886,32474927,0 +1990-01-31,1.1038,1.1128,1.0566,1.0886,40143100,0 +1990-02-01,1.1038,1.1078,1.0731,1.0757,32649840,0 +1990-02-02,1.0641,1.1128,1.0641,1.0961,33040295,0 +1990-02-05,1.0961,1.1283,1.0886,1.1206,28376923,0 +1990-02-06,1.1128,1.1206,1.0886,1.1128,20615036,0 +1990-02-07,1.0566,1.0886,1.0399,1.0641,87136000,0 +1990-02-08,1.0641,1.0731,1.0322,1.0566,52049828,0 +1990-02-09,1.0731,1.1038,1.0641,1.0961,46874211,0 +1990-02-12,1.0961,1.1038,1.0807,1.0886,20893028,0 +1990-02-13,1.0886,1.1206,1.0807,1.1038,28492468,0 +1990-02-14,1.1038,1.1128,1.0807,1.0961,26790175,0 +1990-02-15,1.0807,1.0961,1.0731,1.0961,27321171,0 +1990-02-16,1.0961,1.1038,1.0807,1.0807,35476608,0 +1990-02-20,1.0731,1.0807,1.0566,1.0731,34370888,0 +1990-02-21,1.0486,1.0961,1.0399,1.0886,49057539,0 +1990-02-22,1.0886,1.1038,1.0566,1.0566,54433064,0 +1990-02-23,1.0486,1.0731,1.0486,1.0641,41820412,0 +1990-02-26,1.0566,1.0961,1.0566,1.0886,22201756,0 +1990-02-27,1.0886,1.0961,1.0731,1.0731,20624409,0 +1990-02-28,1.0731,1.0886,1.0641,1.0886,30491499,0 +1990-03-01,1.0731,1.1128,1.0641,1.0961,56863131,0 +1990-03-02,1.0731,1.1128,1.0641,1.0807,29254615,0 +1990-03-05,1.0731,1.1128,1.0731,1.1038,50887906,0 +1990-03-06,1.1206,1.1283,1.1038,1.1283,43510215,0 +1990-03-07,1.1206,1.1526,1.1206,1.1331,56953721,0 +1990-03-08,1.1449,1.1845,1.1206,1.1768,62426076,0 +1990-03-09,1.1768,1.2013,1.1601,1.1808,64275196,0 +1990-03-12,1.1921,1.2013,1.1601,1.1718,45724771,0 +1990-03-13,1.1679,1.1921,1.1601,1.1808,41436210,0 +1990-03-14,1.1768,1.1921,1.1679,1.1845,28386281,0 +1990-03-15,1.1679,1.2167,1.1679,1.1768,33530676,0 +1990-03-16,1.2808,1.305,1.2526,1.2883,179813082,0 +1990-03-19,1.2959,1.3599,1.2808,1.3575,120419918,0 +1990-03-20,1.3524,1.3769,1.305,1.3255,109131617,0 +1990-03-21,1.3202,1.3524,1.3202,1.332,42595030,0 +1990-03-22,1.3366,1.3524,1.305,1.305,64606277,0 +1990-03-23,1.3202,1.3769,1.3126,1.3524,63581775,0 +1990-03-26,1.3599,1.3894,1.3447,1.3524,35713996,0 +1990-03-27,1.3447,1.3524,1.3202,1.3447,23594838,0 +1990-03-28,1.3447,1.3486,1.3126,1.3202,28708002,0 +1990-03-29,1.3126,1.3294,1.305,1.3164,27021319,0 +1990-03-30,1.2808,1.3126,1.2808,1.2883,62288650,0 +1990-04-02,1.2808,1.2998,1.2653,1.2883,41489321,0 +1990-04-03,1.2959,1.3366,1.2959,1.3366,38962423,0 +1990-04-04,1.3294,1.3447,1.305,1.3202,41757938,0 +1990-04-05,1.3126,1.3202,1.2808,1.2883,30172911,0 +1990-04-06,1.2883,1.3202,1.273,1.2768,32974688,0 +1990-04-09,1.273,1.3294,1.2653,1.3164,29417026,0 +1990-04-10,1.3202,1.3447,1.3126,1.3202,36622927,0 +1990-04-11,1.3294,1.3769,1.3294,1.3599,59446269,0 +1990-04-12,1.3769,1.4085,1.3599,1.3841,59068323,0 +1990-04-16,1.3932,1.4162,1.3841,1.4012,63275649,0 +1990-04-17,1.3841,1.3932,1.3689,1.3841,36563572,0 +1990-04-18,1.3841,1.4012,1.3599,1.3841,53948930,0 +1990-04-19,1.3366,1.3807,1.2808,1.2883,134275717,0 +1990-04-20,1.3089,1.3294,1.273,1.2883,90225128,0 +1990-04-23,1.2883,1.2959,1.2653,1.273,35795201,0 +1990-04-24,1.2808,1.2959,1.2321,1.2407,84705923,0 +1990-04-25,1.2407,1.2485,1.2241,1.2407,36972766,0 +1990-04-26,1.2485,1.2653,1.2204,1.2446,39646449,0 +1990-04-27,1.2485,1.2653,1.2407,1.2526,32465561,0 +1990-04-30,1.2562,1.273,1.2485,1.2614,38037872,0 +1990-05-01,1.273,1.2808,1.2614,1.2677,45627943,0 +1990-05-02,1.273,1.2808,1.2562,1.273,37769237,0 +1990-05-03,1.273,1.2883,1.273,1.2808,46380719,0 +1990-05-04,1.2808,1.305,1.2562,1.2808,47280265,0 +1990-05-07,1.273,1.3366,1.273,1.3294,37925417,0 +1990-05-08,1.3126,1.3447,1.3126,1.3366,31362962,0 +1990-05-09,1.332,1.3447,1.3202,1.3407,27118144,0 +1990-05-10,1.3366,1.3366,1.2959,1.3255,49932114,0 +1990-05-11,1.3255,1.3689,1.305,1.3638,60027238,0 +1990-05-14,1.3689,1.3689,1.3202,1.3366,63135107,0 +1990-05-15,1.3255,1.3447,1.3126,1.3366,41661105,0 +1990-05-16,1.3366,1.3366,1.3126,1.332,24347597,0 +1990-05-17,1.3366,1.3524,1.3126,1.3294,42832430,0 +1990-05-18,1.3202,1.3294,1.2653,1.273,72080783,0 +1990-05-21,1.2653,1.2808,1.2407,1.2653,73202115,0 +1990-05-22,1.2844,1.3294,1.2808,1.3255,83968785,0 +1990-05-23,1.3202,1.3599,1.3202,1.3447,57872016,0 +1990-05-24,1.3524,1.3524,1.3294,1.3447,41311267,0 +1990-05-25,1.2653,1.305,1.2485,1.2808,90168920,0 +1990-05-29,1.2808,1.3202,1.2562,1.3126,67826590,0 +1990-05-30,1.332,1.3366,1.3202,1.3255,77200180,0 +1990-05-31,1.3294,1.3294,1.3126,1.3202,28748604,0 +1990-06-01,1.3255,1.3447,1.305,1.305,43850688,0 +1990-06-04,1.305,1.3126,1.273,1.305,50038329,0 +1990-06-05,1.3126,1.3126,1.2485,1.2653,83506502,0 +1990-06-06,1.2485,1.2653,1.2407,1.2653,59052707,0 +1990-06-07,1.2653,1.273,1.2321,1.2485,51993625,0 +1990-06-08,1.2321,1.2321,1.2013,1.2241,93114376,0 +1990-06-11,1.2089,1.2485,1.2089,1.2485,44034959,0 +1990-06-12,1.2526,1.2959,1.2407,1.2959,46024633,0 +1990-06-13,1.2933,1.305,1.273,1.273,38750013,0 +1990-06-14,1.2808,1.2883,1.2562,1.273,39134208,0 +1990-06-15,1.273,1.2808,1.2526,1.2653,40199324,0 +1990-06-18,1.2562,1.2653,1.2485,1.2562,31066227,0 +1990-06-19,1.2485,1.273,1.2294,1.2677,43847551,0 +1990-06-20,1.2768,1.2883,1.273,1.2808,43154145,0 +1990-06-21,1.2808,1.3447,1.2808,1.3407,58175005,0 +1990-06-22,1.3447,1.3638,1.3202,1.3294,79196094,0 +1990-06-25,1.3294,1.3366,1.2883,1.3202,34024168,0 +1990-06-26,1.3366,1.3447,1.2933,1.2998,35489085,0 +1990-06-27,1.305,1.3447,1.2883,1.3294,27115019,0 +1990-06-28,1.3689,1.3841,1.3366,1.3769,69703801,0 +1990-06-29,1.3769,1.4366,1.3689,1.4327,90690535,0 +1990-07-02,1.4243,1.4243,1.4012,1.4085,37762999,0 +1990-07-03,1.405,1.4243,1.4012,1.4085,27749075,0 +1990-07-05,1.4012,1.4162,1.3841,1.3932,29969901,0 +1990-07-06,1.3932,1.4406,1.3841,1.4327,58303063,0 +1990-07-09,1.4406,1.5048,1.4327,1.4919,87976227,0 +1990-07-10,1.5048,1.5213,1.4969,1.5048,100795033,0 +1990-07-11,1.4969,1.5048,1.4651,1.5048,68648054,0 +1990-07-12,1.4969,1.5213,1.4882,1.5175,50887906,0 +1990-07-13,1.5213,1.5289,1.4969,1.4969,64415735,0 +1990-07-16,1.4969,1.5085,1.4486,1.4598,50116400,0 +1990-07-17,1.4651,1.4728,1.4085,1.4162,38165922,0 +1990-07-18,1.4243,1.4406,1.3769,1.4282,80420509,0 +1990-07-19,1.305,1.3599,1.2808,1.3366,163421010,0 +1990-07-20,1.3447,1.3599,1.305,1.3126,53502265,0 +1990-07-23,1.3126,1.3366,1.2808,1.3294,75351080,0 +1990-07-24,1.3447,1.3524,1.3126,1.3486,54080111,0 +1990-07-25,1.3447,1.3841,1.3366,1.3524,29260855,0 +1990-07-26,1.3524,1.3599,1.3126,1.3255,22404786,0 +1990-07-27,1.3202,1.3366,1.2959,1.3255,17379106,0 +1990-07-30,1.305,1.3599,1.305,1.3575,23832234,0 +1990-07-31,1.3599,1.3689,1.3294,1.3447,26774568,0 +1990-08-01,1.3447,1.3689,1.3294,1.3575,26078017,0 +1990-08-02,1.3202,1.4012,1.3202,1.3932,62226170,0 +1990-08-03,1.3932,1.4012,1.273,1.3202,75010606,0 +1990-08-06,1.2485,1.2959,1.2321,1.2653,50103907,0 +1990-08-07,1.2883,1.2998,1.2407,1.2653,55366989,0 +1990-08-08,1.2653,1.305,1.2653,1.2844,28595562,0 +1990-08-09,1.2883,1.2959,1.2562,1.2653,26880753,0 +1990-08-10,1.2407,1.2562,1.2241,1.2407,28642405,0 +1990-08-13,1.2167,1.2808,1.2128,1.2768,43538324,0 +1990-08-14,1.2808,1.2808,1.2562,1.273,27377381,0 +1990-08-15,1.2808,1.2883,1.2562,1.2562,25671957,0 +1990-08-16,1.2485,1.2677,1.2321,1.2321,34552047,0 +1990-08-17,1.2321,1.2321,1.1449,1.1679,68635574,0 +1990-08-20,1.1679,1.2013,1.1601,1.1768,20933622,0 +1990-08-21,1.1449,1.1768,1.1283,1.1601,44912669,0 +1990-08-22,1.1845,1.1845,1.1167,1.1245,34224083,0 +1990-08-23,1.0961,1.1206,1.0731,1.1038,40074368,0 +1990-08-24,1.1283,1.1526,1.1128,1.1371,20474477,0 +1990-08-27,1.1768,1.2167,1.1601,1.2089,32759166,0 +1990-08-28,1.2013,1.2294,1.1921,1.2204,22364189,0 +1990-08-29,1.2167,1.2204,1.1768,1.1921,42092156,0 +1990-08-30,1.1921,1.2013,1.1526,1.1601,34189723,0 +1990-08-31,1.1526,1.1921,1.1526,1.1845,27736594,0 +1990-09-04,1.1679,1.2013,1.1679,1.1845,23076349,0 +1990-09-05,1.1921,1.1921,1.1449,1.1526,17863242,0 +1990-09-06,1.1371,1.1526,1.1283,1.1449,24438183,0 +1990-09-07,1.1371,1.1768,1.1245,1.1655,16223405,0 +1990-09-10,1.1845,1.1845,1.1449,1.1449,21189754,0 +1990-09-11,1.1526,1.1563,1.0807,1.0886,49716590,0 +1990-09-12,1.1038,1.1038,1.0731,1.0886,28002102,0 +1990-09-13,1.1038,1.1128,1.0566,1.0807,27124383,0 +1990-09-14,1.0731,1.0961,1.0641,1.0886,31769011,0 +1990-09-17,1.0886,1.1283,1.0731,1.0807,21661395,0 +1990-09-18,1.0807,1.0807,1.0566,1.0694,34751954,0 +1990-09-19,1.0641,1.0807,1.0245,1.0399,50884774,0 +1990-09-20,1.0322,1.0322,1.0001,1.0132,28148890,0 +1990-09-21,1.0245,1.0399,0.9925,1.0091,42910514,0 +1990-09-24,1.0091,1.0091,0.9526,0.9682,38625073,0 +1990-09-25,0.9758,0.9849,0.936,0.9604,44050587,0 +1990-09-26,0.9604,0.9758,0.9526,0.9526,26252938,0 +1990-09-27,0.9604,0.9758,0.8966,0.9039,39696436,0 +1990-09-28,0.9117,0.9284,0.8723,0.9284,49095013,0 +1990-10-01,0.9453,0.9925,0.936,0.9758,43410269,0 +1990-10-02,0.9925,1.0245,0.9453,0.949,75572850,0 +1990-10-03,0.9526,0.9526,0.8567,0.8644,74807587,0 +1990-10-04,0.8567,0.8966,0.8401,0.8966,59539957,0 +1990-10-05,0.8644,0.9209,0.8644,0.8966,27745976,0 +1990-10-08,0.9209,0.936,0.9039,0.9321,17160452,0 +1990-10-09,0.9117,0.9284,0.8886,0.8966,33627496,0 +1990-10-10,0.8723,0.8966,0.8324,0.8478,41248811,0 +1990-10-11,0.8567,0.8926,0.8171,0.8886,57444114,0 +1990-10-12,0.9039,0.9117,0.8644,0.9039,63766044,0 +1990-10-15,0.9117,0.9209,0.853,0.8886,56060397,0 +1990-10-16,0.8809,0.8809,0.776,0.8003,85124486,0 +1990-10-17,0.808,0.8478,0.8003,0.8478,86192707,0 +1990-10-18,0.8478,0.9209,0.8478,0.9117,87848162,0 +1990-10-19,1.0001,1.0167,0.9682,1.0039,260402240,0 +1990-10-22,1.0091,1.0091,0.9758,0.9963,70484670,0 +1990-10-23,0.9925,1.0091,0.9682,0.9925,46586853,0 +1990-10-24,0.9849,0.9925,0.9604,0.9758,39552750,0 +1990-10-25,0.9682,1.0001,0.949,0.9604,42798051,0 +1990-10-26,0.9526,1.0001,0.9526,0.9604,37425662,0 +1990-10-29,0.9682,0.9758,0.9526,0.9565,34436480,0 +1990-10-30,0.9526,0.9849,0.9247,0.972,27343032,0 +1990-10-31,0.9758,1.0208,0.9682,0.9849,41486203,0 +1990-11-01,0.9758,0.9925,0.9526,0.9758,25281530,0 +1990-11-02,0.9758,1.0374,0.9758,1.0167,41445591,0 +1990-11-05,1.0322,1.0731,1.0245,1.0641,51447017,0 +1990-11-06,1.0731,1.1038,1.0641,1.0731,51528218,0 +1990-11-07,1.0731,1.0807,1.0438,1.0641,56607017,0 +1990-11-08,1.0566,1.1206,1.0566,1.1038,55566897,0 +1990-11-09,1.1206,1.1449,1.1038,1.1371,55282643,0 +1990-11-12,1.1371,1.1768,1.1283,1.1601,40452323,0 +1990-11-13,1.1601,1.1679,1.1449,1.1526,39587108,0 +1990-11-14,1.1449,1.1921,1.1449,1.1845,53196139,0 +1990-11-15,1.1768,1.1845,1.1371,1.1526,45115690,0 +1990-11-16,1.1449,1.1526,1.1128,1.1245,51037825,0 +1990-11-19,1.1371,1.1655,1.1283,1.1655,62444805,0 +1990-11-20,1.1679,1.1768,1.1283,1.1371,42844916,0 +1990-11-21,1.1283,1.1601,1.1128,1.1563,34361515,0 +1990-11-23,1.1601,1.1845,1.1526,1.1655,14836582,0 +1990-11-26,1.1526,1.1845,1.1526,1.1768,22717149,0 +1990-11-27,1.1845,1.2241,1.1768,1.2013,45899684,0 +1990-11-28,1.2089,1.2321,1.1768,1.1768,48779554,0 +1990-11-29,1.1845,1.1845,1.1601,1.1768,35336039,0 +1990-11-30,1.1601,1.1921,1.1601,1.1768,33886755,0 +1990-12-03,1.1921,1.2241,1.1845,1.2204,46127694,0 +1990-12-04,1.2013,1.2407,1.2013,1.2321,42432615,0 +1990-12-05,1.2321,1.2883,1.2128,1.2844,60904946,0 +1990-12-06,1.3202,1.3366,1.2959,1.3202,148434507,0 +1990-12-07,1.3126,1.3689,1.3126,1.3599,91936819,0 +1990-12-10,1.3524,1.3599,1.3294,1.3366,69884968,0 +1990-12-11,1.3202,1.3294,1.2808,1.2808,97018727,0 +1990-12-12,1.273,1.2808,1.2485,1.2677,67589209,0 +1990-12-13,1.2653,1.3126,1.2653,1.305,44825200,0 +1990-12-14,1.2883,1.2959,1.2653,1.2768,24282012,0 +1990-12-17,1.2485,1.2959,1.2485,1.2844,36563572,0 +1990-12-18,1.3126,1.3599,1.305,1.3524,61629584,0 +1990-12-19,1.3599,1.3599,1.3164,1.3407,39227915,0 +1990-12-20,1.3202,1.4243,1.3202,1.4085,111852181,0 +1990-12-21,1.4162,1.4486,1.3932,1.4406,96531474,0 +1990-12-24,1.4327,1.4406,1.4085,1.4085,16376456,0 +1990-12-26,1.4085,1.4162,1.3769,1.4012,28745486,0 +1990-12-27,1.3841,1.4085,1.3841,1.3932,27233714,0 +1990-12-28,1.3841,1.3932,1.3689,1.3769,17828892,0 +1990-12-31,1.3769,1.3841,1.3689,1.3769,12347160,0 +1991-01-02,1.3689,1.4085,1.3447,1.3932,43222865,0 +1991-01-03,1.3932,1.4162,1.3769,1.3769,41882881,0 +1991-01-04,1.3769,1.4162,1.3769,1.3841,39468433,0 +1991-01-07,1.3769,1.4486,1.3769,1.3841,86676847,0 +1991-01-08,1.4012,1.405,1.3599,1.3841,60989265,0 +1991-01-09,1.4162,1.4728,1.4012,1.4486,130312019,0 +1991-01-10,1.4651,1.5124,1.4651,1.5085,121403812,0 +1991-01-11,1.5048,1.5124,1.4728,1.5048,85799146,0 +1991-01-14,1.4728,1.4969,1.4728,1.4803,58799704,0 +1991-01-15,1.4882,1.4969,1.4728,1.4969,53561609,0 +1991-01-16,1.5048,1.6006,1.4969,1.5932,108941092,0 +1991-01-17,1.68,1.6892,1.5687,1.6403,165007735,0 +1991-01-18,1.561,1.6251,1.5521,1.6083,263054088,0 +1991-01-21,1.5932,1.6496,1.5932,1.6251,90443778,0 +1991-01-22,1.6328,1.68,1.6163,1.6403,119286082,0 +1991-01-23,1.6403,1.6725,1.6328,1.657,68120206,0 +1991-01-24,1.6496,1.6892,1.6496,1.6687,65240335,0 +1991-01-25,1.6648,1.7159,1.6648,1.7136,62416697,0 +1991-01-28,1.7044,1.7684,1.7044,1.7441,76269384,0 +1991-01-29,1.7366,1.7441,1.6725,1.7211,60114688,0 +1991-01-30,1.7044,1.7853,1.7044,1.7775,93920247,0 +1991-01-31,1.7775,1.7927,1.7531,1.7775,67654800,0 +1991-02-01,1.7775,1.8531,1.7775,1.7853,123977582,0 +1991-02-04,1.7853,1.7927,1.7611,1.7684,74698274,0 +1991-02-05,1.7684,1.857,1.7531,1.8492,99314495,0 +1991-02-06,1.8492,1.8646,1.8085,1.821,62069985,0 +1991-02-07,1.825,1.8813,1.7853,1.8492,145067360,0 +1991-02-08,1.8414,1.9286,1.8414,1.9169,87445220,0 +1991-02-11,1.9209,1.9696,1.9132,1.9657,90087692,0 +1991-02-12,1.9532,1.9606,1.9018,1.9209,62679076,0 +1991-02-13,1.9209,1.9286,1.857,1.9209,71268687,0 +1991-02-14,1.9209,1.9209,1.817,1.8288,105327211,0 +1991-02-15,1.8326,1.8722,1.8326,1.8442,101963208,0 +1991-02-19,1.8414,1.9286,1.8377,1.9209,63097623,0 +1991-02-20,1.9057,1.9773,1.8966,1.9532,59580588,0 +1991-02-21,1.9606,1.9926,1.8813,1.8887,53230518,0 +1991-02-22,1.8887,1.9773,1.8722,1.9132,64859274,0 +1991-02-25,1.9286,1.9363,1.8414,1.857,100195325,0 +1991-02-26,1.8414,1.8813,1.8085,1.8646,69725670,0 +1991-02-27,1.8646,1.8722,1.8414,1.8646,48629614,0 +1991-02-28,1.8646,1.8722,1.8005,1.8326,63406847,0 +1991-03-01,1.825,1.8887,1.825,1.8492,35176750,0 +1991-03-04,1.857,1.8813,1.825,1.8696,24641210,0 +1991-03-05,1.8887,2.0246,1.8887,2.0208,123112383,0 +1991-03-06,2.0489,2.1016,2.0131,2.0171,146123125,0 +1991-03-07,2.0337,2.1616,2.0246,2.1526,89731629,0 +1991-03-08,2.1695,2.1846,2.081,2.081,89856565,0 +1991-03-11,2.0643,2.0733,1.9926,2.0337,48907591,0 +1991-03-12,2.0171,2.0414,2.0003,2.0131,65168490,0 +1991-03-13,2.0093,2.1284,2.0093,2.1208,48679593,0 +1991-03-14,2.1373,2.1616,2.0643,2.0885,63325655,0 +1991-03-15,2.1053,2.1284,2.0885,2.1208,57125513,0 +1991-03-18,2.1053,2.1846,2.1053,2.1695,59683643,0 +1991-03-19,2.1284,2.2487,2.1053,2.2257,117743089,0 +1991-03-20,2.2167,2.2257,2.1413,2.1695,100873118,0 +1991-03-21,2.1846,2.2012,2.0414,2.0733,82772494,0 +1991-03-22,2.0489,2.0733,1.9926,2.0246,94298170,0 +1991-03-25,2.0337,2.081,2.0246,2.0643,37887943,0 +1991-03-26,2.0733,2.2487,2.0733,2.2411,93042528,0 +1991-03-27,2.2411,2.2487,2.1926,2.2167,53049351,0 +1991-03-28,2.2167,2.2411,2.1695,2.1771,21948769,0 +1991-04-01,2.1771,2.2257,2.1616,2.1926,32887229,0 +1991-04-02,2.2091,2.3291,2.1926,2.3291,81691757,0 +1991-04-03,2.3205,2.3291,2.2411,2.2411,66967629,0 +1991-04-04,2.2411,2.3051,2.2257,2.2899,46974157,0 +1991-04-05,2.2973,2.2973,2.2012,2.2205,43341558,0 +1991-04-08,2.2167,2.2411,2.2012,2.2411,20212106,0 +1991-04-09,2.2333,2.2411,2.1846,2.2012,33312018,0 +1991-04-10,2.1926,2.2167,2.1373,2.1413,60352085,0 +1991-04-11,2.1695,2.2846,2.1616,2.2731,99167690,0 +1991-04-12,2.2899,2.3448,2.2333,2.2973,102550437,0 +1991-04-15,1.9773,2.0643,1.9209,1.9926,474208280,0 +1991-04-16,2.0246,2.0643,2.0003,2.0567,173125695,0 +1991-04-17,2.081,2.081,1.9849,2.0246,89912789,0 +1991-04-18,2.0093,2.0171,1.9452,1.9532,68985414,0 +1991-04-19,1.9532,1.9696,1.9057,1.9079,80123761,0 +1991-04-22,1.9057,1.9849,1.8813,1.9696,71677855,0 +1991-04-23,1.9926,2.0171,1.9286,1.9696,66177395,0 +1991-04-24,1.9773,1.9849,1.9363,1.9452,29407658,0 +1991-04-25,1.9132,1.9132,1.8722,1.8722,87954357,0 +1991-04-26,1.8722,1.8887,1.8492,1.8762,34876898,0 +1991-04-29,1.8722,1.9286,1.8646,1.8646,57647134,0 +1991-04-30,1.8492,1.8646,1.7441,1.7611,198410341,0 +1991-05-01,1.5369,1.5687,1.5048,1.5124,521057510,0 +1991-05-02,1.5289,1.5932,1.5213,1.5687,226209406,0 +1991-05-03,1.5687,1.5853,1.5443,1.5687,67967147,0 +1991-05-06,1.5521,1.6163,1.5443,1.6083,59215141,0 +1991-05-07,1.6328,1.6403,1.6163,1.6199,75432286,0 +1991-05-08,1.6251,1.6251,1.5766,1.5932,49301169,0 +1991-05-09,1.6006,1.6496,1.5932,1.6251,66433520,0 +1991-05-10,1.6496,1.7044,1.6251,1.6403,67414281,0 +1991-05-13,1.6725,1.7136,1.6496,1.6892,68310723,0 +1991-05-14,1.6892,1.7211,1.68,1.7136,60502000,0 +1991-05-15,1.6496,1.6648,1.5687,1.6163,144558245,0 +1991-05-16,1.6328,1.6403,1.5521,1.5687,106570367,0 +1991-05-17,1.561,1.561,1.4882,1.5048,131370874,0 +1991-05-20,1.5124,1.5213,1.4085,1.4162,73114648,0 +1991-05-21,1.4486,1.4882,1.4327,1.4486,97552844,0 +1991-05-22,1.4651,1.4882,1.4572,1.4803,63381866,0 +1991-05-23,1.4882,1.4969,1.4327,1.4448,58190613,0 +1991-05-24,1.4572,1.4728,1.4406,1.4691,27086902,0 +1991-05-28,1.4728,1.4803,1.4486,1.4728,47811250,0 +1991-05-29,1.4803,1.5289,1.4691,1.5048,107091980,0 +1991-05-30,1.5048,1.5289,1.4882,1.524,44159902,0 +1991-05-31,1.5213,1.5289,1.4803,1.5048,60758132,0 +1991-06-03,1.5048,1.5853,1.4969,1.5766,61373458,0 +1991-06-04,1.5853,1.5853,1.5521,1.5726,51393903,0 +1991-06-05,1.5766,1.5766,1.5289,1.5369,37172657,0 +1991-06-06,1.5443,1.5443,1.4882,1.4919,46992898,0 +1991-06-07,1.4803,1.5048,1.4598,1.4764,42598158,0 +1991-06-10,1.4728,1.5085,1.4651,1.4728,46696164,0 +1991-06-11,1.4406,1.4572,1.4162,1.4282,52587073,0 +1991-06-12,1.4085,1.4327,1.3202,1.3575,121491264,0 +1991-06-13,1.3599,1.3769,1.3366,1.3486,58946508,0 +1991-06-14,1.3689,1.3689,1.305,1.3164,62829014,0 +1991-06-17,1.3126,1.3524,1.3126,1.3447,46461918,0 +1991-06-18,1.3524,1.3841,1.3294,1.3486,68238886,0 +1991-06-19,1.3366,1.3524,1.3202,1.3366,49904006,0 +1991-06-20,1.3202,1.3447,1.305,1.3447,40171213,0 +1991-06-21,1.3447,1.3599,1.3366,1.3447,57453476,0 +1991-06-24,1.3366,1.3524,1.3202,1.3366,58003205,0 +1991-06-25,1.3447,1.3769,1.3366,1.3575,63563019,0 +1991-06-26,1.3689,1.3932,1.3524,1.3769,69844367,0 +1991-06-27,1.3599,1.3689,1.3366,1.3599,42167129,0 +1991-06-28,1.3524,1.3599,1.2883,1.3294,63206935,0 +1991-07-01,1.3524,1.3769,1.3366,1.3599,54333102,0 +1991-07-02,1.3524,1.3689,1.3366,1.3524,33505679,0 +1991-07-03,1.3524,1.3932,1.3366,1.3807,86558159,0 +1991-07-05,1.3769,1.4728,1.3689,1.4598,92464680,0 +1991-07-08,1.4486,1.5124,1.4406,1.4969,85639856,0 +1991-07-09,1.5124,1.5443,1.4882,1.5009,63150722,0 +1991-07-10,1.5213,1.5443,1.4969,1.5124,43666393,0 +1991-07-11,1.5048,1.5124,1.4728,1.4969,40692831,0 +1991-07-12,1.5124,1.5124,1.4803,1.4969,37022728,0 +1991-07-15,1.4969,1.4969,1.4572,1.4572,38481402,0 +1991-07-16,1.4572,1.4651,1.3932,1.4012,62188704,0 +1991-07-17,1.3932,1.4243,1.3524,1.3599,58268714,0 +1991-07-18,1.4085,1.4448,1.3769,1.4366,111083804,0 +1991-07-19,1.4486,1.4803,1.4406,1.4728,35813944,0 +1991-07-22,1.4651,1.4803,1.4572,1.4728,30307229,0 +1991-07-23,1.4803,1.4882,1.4243,1.4406,37107060,0 +1991-07-24,1.4486,1.4651,1.4243,1.4406,36660400,0 +1991-07-25,1.4486,1.4651,1.4406,1.4486,18350500,0 +1991-07-26,1.4651,1.4651,1.4327,1.4366,20702486,0 +1991-07-29,1.4486,1.4572,1.4243,1.4572,14864698,0 +1991-07-30,1.4572,1.4969,1.4572,1.4882,25618852,0 +1991-07-31,1.4882,1.5009,1.4406,1.4803,28670511,0 +1991-08-01,1.4728,1.5766,1.4651,1.5726,125058302,0 +1991-08-02,1.5932,1.6083,1.5687,1.6006,76138186,0 +1991-08-05,1.5932,1.5932,1.5443,1.5521,28102034,0 +1991-08-06,1.561,1.6083,1.5289,1.5853,61473410,0 +1991-08-07,1.5853,1.6328,1.5815,1.6137,59015232,0 +1991-08-08,1.6251,1.657,1.6006,1.6163,52833852,0 +1991-08-09,1.6163,1.6328,1.5932,1.6251,43060439,0 +1991-08-12,1.6251,1.6725,1.6163,1.657,39749540,0 +1991-08-13,1.6648,1.7288,1.6648,1.7136,79923873,0 +1991-08-14,1.7531,1.7611,1.7249,1.7571,55976064,0 +1991-08-15,1.7611,1.7611,1.6967,1.7044,40589759,0 +1991-08-16,1.6892,1.7366,1.6725,1.7044,44287971,0 +1991-08-19,1.5853,1.6521,1.5521,1.6163,89934650,0 +1991-08-20,1.6496,1.657,1.6163,1.6328,55616851,0 +1991-08-21,1.68,1.7328,1.6648,1.7211,62294889,0 +1991-08-22,1.7288,1.7531,1.7211,1.7366,46196417,0 +1991-08-23,1.7288,1.7775,1.6892,1.6967,67048836,0 +1991-08-26,1.6967,1.7136,1.68,1.6967,28333176,0 +1991-08-27,1.6967,1.7288,1.6892,1.7288,27986464,0 +1991-08-28,1.7288,1.7366,1.7006,1.7044,30004241,0 +1991-08-29,1.7044,1.7249,1.68,1.6967,31612846,0 +1991-08-30,1.6967,1.7044,1.6725,1.6967,18444210,0 +1991-09-03,1.6892,1.7044,1.6648,1.68,19068906,0 +1991-09-04,1.6892,1.6892,1.6457,1.6496,33405734,0 +1991-09-05,1.6496,1.657,1.6251,1.6328,21720752,0 +1991-09-06,1.6328,1.657,1.6163,1.6496,22108065,0 +1991-09-09,1.657,1.7136,1.6496,1.7044,35273569,0 +1991-09-10,1.6892,1.7097,1.5932,1.6045,50990974,0 +1991-09-11,1.6251,1.6328,1.5853,1.6163,49641626,0 +1991-09-12,1.6403,1.6403,1.5932,1.6199,33246429,0 +1991-09-13,1.6006,1.6083,1.5521,1.5561,46499399,0 +1991-09-16,1.5766,1.5766,1.4882,1.5124,57387893,0 +1991-09-17,1.5048,1.5687,1.4969,1.5687,37762999,0 +1991-09-18,1.561,1.6163,1.5521,1.6045,33843010,0 +1991-09-19,1.6083,1.6163,1.5853,1.5932,49735332,0 +1991-09-20,1.5932,1.6328,1.5853,1.6199,52471521,0 +1991-09-23,1.6006,1.6251,1.5766,1.5853,24447556,0 +1991-09-24,1.5853,1.6137,1.5443,1.6083,29588819,0 +1991-09-25,1.6083,1.6163,1.5766,1.6163,15189527,0 +1991-09-26,1.6083,1.6083,1.5687,1.6006,19862276,0 +1991-09-27,1.6006,1.6251,1.561,1.5687,17516529,0 +1991-09-30,1.5766,1.5932,1.5687,1.5853,17625857,0 +1991-10-01,1.5766,1.6403,1.5687,1.6251,36638540,0 +1991-10-02,1.657,1.657,1.5853,1.5932,5016326,0 +1991-10-03,1.6006,1.6006,1.5213,1.5289,50478718,0 +1991-10-04,1.5369,1.561,1.5213,1.5443,22136166,0 +1991-10-07,1.5369,1.561,1.5213,1.5408,18044394,0 +1991-10-08,1.5408,1.5521,1.4882,1.5443,48039280,0 +1991-10-09,1.5443,1.561,1.5289,1.5369,37019615,0 +1991-10-10,1.561,1.5687,1.4969,1.5289,43844424,0 +1991-10-11,1.5408,1.5647,1.4882,1.5521,33480690,0 +1991-10-14,1.5687,1.6083,1.561,1.5971,31200539,0 +1991-10-15,1.6163,1.68,1.6006,1.68,80376779,0 +1991-10-16,1.68,1.7288,1.6725,1.7136,56019801,0 +1991-10-17,1.6967,1.7044,1.6496,1.6774,42282691,0 +1991-10-18,1.7649,1.7775,1.7441,1.7611,124649120,0 +1991-10-21,1.7684,1.7891,1.7366,1.7531,32543653,0 +1991-10-22,1.7775,1.8005,1.7441,1.7441,58065688,0 +1991-10-23,1.7611,1.7684,1.6892,1.7006,47083492,0 +1991-10-24,1.6967,1.7044,1.6496,1.6687,49613518,0 +1991-10-25,1.657,1.6725,1.6251,1.6403,29832463,0 +1991-10-28,1.6496,1.657,1.6251,1.6496,21714498,0 +1991-10-29,1.6496,1.6648,1.6251,1.657,28233236,0 +1991-10-30,1.6648,1.6892,1.5853,1.5932,41342511,0 +1991-10-31,1.6251,1.657,1.6006,1.6496,64646873,0 +1991-11-01,1.6403,1.6648,1.6163,1.6328,56129114,0 +1991-11-04,1.6251,1.6251,1.5521,1.5932,54464291,0 +1991-11-05,1.5932,1.6163,1.561,1.561,60127183,0 +1991-11-06,1.5687,1.5766,1.5213,1.5369,66036818,0 +1991-11-07,1.5521,1.6163,1.5443,1.5932,82753753,0 +1991-11-08,1.6403,1.7211,1.6328,1.7044,104811834,0 +1991-11-11,1.7136,1.7441,1.7044,1.7211,45999645,0 +1991-11-12,1.7366,1.7531,1.7211,1.7441,46486896,0 +1991-11-13,1.7288,1.7441,1.7136,1.7328,51849940,0 +1991-11-14,1.7366,1.7684,1.7288,1.7531,52430909,0 +1991-11-15,1.7441,1.7531,1.5932,1.6006,71659106,0 +1991-11-18,1.6006,1.68,1.6006,1.6687,66580324,0 +1991-11-19,1.657,1.657,1.5932,1.6403,79617765,0 +1991-11-20,1.6403,1.6648,1.6083,1.6163,46880473,0 +1991-11-21,1.6163,1.657,1.6163,1.6328,29788718,0 +1991-11-22,1.6328,1.657,1.6083,1.6403,27286809,0 +1991-11-25,1.6328,1.6725,1.6328,1.6403,21873796,0 +1991-11-26,1.6496,1.6648,1.6006,1.6496,38840593,0 +1991-11-27,1.6403,1.6496,1.6163,1.6328,17635226,0 +1991-11-29,1.6163,1.6496,1.6163,1.6251,9507909,0 +1991-12-02,1.6251,1.6648,1.6006,1.657,33158969,0 +1991-12-03,1.6648,1.6648,1.6083,1.6163,28686142,0 +1991-12-04,1.6251,1.6251,1.6006,1.6163,22464143,0 +1991-12-05,1.6163,1.6328,1.5766,1.6006,27664758,0 +1991-12-06,1.5853,1.5932,1.5521,1.561,54935937,0 +1991-12-09,1.5687,1.6006,1.561,1.5726,27283683,0 +1991-12-10,1.5687,1.5853,1.5521,1.5726,34195969,0 +1991-12-11,1.5766,1.5932,1.5521,1.5687,23582365,0 +1991-12-12,1.5815,1.5932,1.5687,1.5815,25587645,0 +1991-12-13,1.5932,1.6251,1.5932,1.6137,26527802,0 +1991-12-16,1.6137,1.6251,1.6006,1.6163,21527084,0 +1991-12-17,1.6163,1.6328,1.6083,1.6163,27286809,0 +1991-12-18,1.6083,1.6648,1.6006,1.657,52040468,0 +1991-12-19,1.6403,1.657,1.6251,1.6251,32162580,0 +1991-12-20,1.6403,1.6496,1.6083,1.6083,35748352,0 +1991-12-23,1.6163,1.657,1.6006,1.6496,28770461,0 +1991-12-24,1.6648,1.7211,1.657,1.6725,52587073,0 +1991-12-26,1.6892,1.7611,1.6725,1.7571,37509986,0 +1991-12-27,1.7531,1.7853,1.7441,1.7611,46780520,0 +1991-12-30,1.7611,1.8326,1.7611,1.817,51215862,0 +1991-12-31,1.8377,1.857,1.7927,1.8058,37378804,0 +1992-01-02,1.7853,1.9132,1.7775,1.9057,65156010,0 +1992-01-03,1.9209,1.9286,1.8646,1.8887,53058734,0 +1992-01-06,1.8813,1.8887,1.8492,1.857,31859598,0 +1992-01-07,1.8414,1.9057,1.8414,1.8926,39452811,0 +1992-01-08,1.8722,1.9606,1.8722,1.9363,64909238,0 +1992-01-09,1.9363,1.9926,1.9286,1.9926,58150017,0 +1992-01-10,1.9696,2.0003,1.9532,1.9926,54723543,0 +1992-01-13,1.9926,2.0093,1.9696,1.9849,30079204,0 +1992-01-14,1.9926,2.0733,1.9926,2.0643,76359954,0 +1992-01-15,2.0643,2.081,2.0171,2.0337,90843586,0 +1992-01-16,2.0414,2.0567,2.0003,2.0093,81860428,0 +1992-01-17,2.1695,2.2091,2.0733,2.0733,236591899,0 +1992-01-20,2.0643,2.0885,2.0489,2.0489,58471734,0 +1992-01-21,2.0567,2.0567,1.9532,1.9568,54126953,0 +1992-01-22,1.9696,2.0414,1.9606,2.0337,51225241,0 +1992-01-23,2.0567,2.0733,2.0171,2.0643,38584471,0 +1992-01-24,2.0643,2.1053,2.0489,2.0695,49532320,0 +1992-01-27,2.0733,2.0885,2.0567,2.0643,23273121,0 +1992-01-28,2.0733,2.0925,2.0171,2.0885,48448457,0 +1992-01-29,2.0733,2.1053,2.0246,2.0246,40314893,0 +1992-01-30,2.0337,2.0414,2.0093,2.0414,24294500,0 +1992-01-31,2.0489,2.0885,2.0337,2.0733,40314893,0 +1992-02-03,2.0733,2.1208,2.0643,2.1053,44100566,0 +1992-02-04,2.1053,2.1208,2.081,2.1053,53805247,0 +1992-02-05,2.1208,2.1373,2.0849,2.1169,45040737,0 +1992-02-06,2.1053,2.113,2.0489,2.0528,25974944,0 +1992-02-07,2.0567,2.0733,2.0093,2.0489,41145738,0 +1992-02-10,2.0489,2.0567,2.0171,2.0208,24107099,0 +1992-02-11,2.0171,2.0414,1.9926,2.0131,34027295,0 +1992-02-12,2.0414,2.0978,2.0171,2.0885,38475156,0 +1992-02-13,2.0885,2.0885,2.0414,2.0567,21199130,0 +1992-02-14,2.0414,2.0567,2.0246,2.0528,20243356,0 +1992-02-18,2.0567,2.0643,2.0093,2.0093,19062665,0 +1992-02-19,2.0093,2.0171,1.9773,1.9849,26680852,0 +1992-02-20,2.0003,2.0733,1.9926,2.0695,36494863,0 +1992-02-21,2.0733,2.0978,2.0643,2.081,42273317,0 +1992-02-24,2.1208,2.1284,2.1053,2.1169,47801890,0 +1992-02-25,2.1208,2.1926,2.0885,2.1926,63366252,0 +1992-02-26,2.1846,2.2411,2.1846,2.2373,63887866,0 +1992-02-27,2.2411,2.2411,2.1771,2.1926,34071034,0 +1992-02-28,2.1926,2.2091,2.1451,2.1616,25209692,0 +1992-03-02,2.1695,2.1926,2.1526,2.1526,24891089,0 +1992-03-03,2.1695,2.1771,2.1208,2.1247,27686618,0 +1992-03-04,2.1208,2.1373,2.0733,2.081,32175074,0 +1992-03-05,2.0643,2.0978,2.0171,2.0337,66018082,0 +1992-03-06,2.0337,2.0489,2.0171,2.0489,37450643,0 +1992-03-09,2.0414,2.0567,2.0337,2.0414,30382196,0 +1992-03-10,2.0489,2.0733,2.0414,2.0414,34217831,0 +1992-03-11,2.0414,2.0567,2.0171,2.0246,36716627,0 +1992-03-12,2.0246,2.0414,1.9696,2.0093,42641889,0 +1992-03-13,2.0246,2.0414,1.9849,2.0208,22083078,0 +1992-03-16,2.0093,2.0337,1.9773,2.0297,15698669,0 +1992-03-17,2.0337,2.0414,2.0093,2.0131,23732287,0 +1992-03-18,2.0246,2.0489,2.0171,2.0414,22598446,0 +1992-03-19,2.0414,2.0414,2.0093,2.0171,33052775,0 +1992-03-20,2.0171,2.0246,2.0171,2.0246,15105201,0 +1992-03-23,2.0171,2.0414,2.0171,2.0171,13965121,0 +1992-03-24,2.0337,2.081,2.0246,2.081,58403014,0 +1992-03-25,2.081,2.081,2.0567,2.0643,33899234,0 +1992-03-26,2.0733,2.0885,2.0414,2.0489,34308415,0 +1992-03-27,2.0449,2.0489,1.9363,1.9532,73773715,0 +1992-03-30,1.9606,1.9606,1.8492,1.8609,94551173,0 +1992-03-31,1.8646,1.9132,1.857,1.8646,59299459,0 +1992-04-01,1.8326,1.8966,1.8326,1.8887,44525346,0 +1992-04-02,1.8887,1.9057,1.8696,1.8813,37363190,0 +1992-04-03,1.8813,1.8966,1.8722,1.8887,32478058,0 +1992-04-06,1.8887,1.9532,1.8887,1.9452,28442497,0 +1992-04-07,1.9532,1.9606,1.8326,1.8326,64203344,0 +1992-04-08,1.825,1.825,1.7531,1.7891,102356761,0 +1992-04-09,1.7927,1.8646,1.7684,1.8326,53583471,0 +1992-04-10,1.8326,1.8414,1.7611,1.7775,76431809,0 +1992-04-13,1.7775,1.817,1.7684,1.8085,34255311,0 +1992-04-14,1.8492,1.8966,1.8326,1.8813,40271162,0 +1992-04-15,1.857,1.9492,1.8414,1.9363,60617586,0 +1992-04-16,1.9286,1.9452,1.8722,1.8887,72143245,0 +1992-04-20,1.8887,1.8887,1.7927,1.817,57462849,0 +1992-04-21,1.825,1.8326,1.7927,1.8005,50300694,0 +1992-04-22,1.8005,1.857,1.8005,1.8442,47836252,0 +1992-04-23,1.8414,1.8646,1.7927,1.825,50984722,0 +1992-04-24,1.825,1.8646,1.7927,1.8085,27408617,0 +1992-04-27,1.7927,1.8005,1.7611,1.7853,39118589,0 +1992-04-28,1.7684,1.7853,1.6967,1.7366,48560905,0 +1992-04-29,1.7366,1.825,1.7366,1.825,55470061,0 +1992-04-30,1.8326,1.9286,1.8085,1.9249,72583664,0 +1992-05-01,1.9209,1.9452,1.8646,1.8966,37475632,0 +1992-05-04,1.9057,1.9606,1.8966,1.9363,34367762,0 +1992-05-05,1.9363,1.9401,1.9057,1.9363,50222600,0 +1992-05-06,1.9452,1.9889,1.9363,1.9773,49638516,0 +1992-05-07,1.9696,1.9926,1.9363,1.9452,48067397,0 +1992-05-08,1.9696,2.0131,1.9532,1.9849,55413832,0 +1992-05-11,1.9849,2.0093,1.9696,1.9926,25350233,0 +1992-05-12,1.9926,2.0171,1.9773,1.9926,21486489,0 +1992-05-13,2.0003,2.0246,1.9926,2.0093,27183737,0 +1992-05-14,2.0093,2.0171,1.9286,1.9657,43763218,0 +1992-05-15,1.9532,1.9606,1.9363,1.9401,33830524,0 +1992-05-18,1.9696,1.9696,1.9209,1.9336,36001340,0 +1992-05-19,1.9452,1.9452,1.8887,1.9018,36722873,0 +1992-05-20,1.9132,1.9286,1.8966,1.9209,48304771,0 +1992-05-21,1.9286,1.9286,1.8813,1.8926,38400184,0 +1992-05-22,1.8887,1.9132,1.8887,1.9057,12959363,0 +1992-05-26,1.9057,1.9132,1.8813,1.8966,26665234,0 +1992-05-27,1.8966,1.9286,1.8887,1.9286,42972986,0 +1992-05-28,1.9209,1.9286,1.8887,1.9057,35485973,0 +1992-05-29,1.9132,1.9401,1.9057,1.9132,49710353,0 +1992-06-01,1.8326,1.9057,1.7927,1.8414,69175931,0 +1992-06-02,1.8414,1.8414,1.8005,1.8085,43416522,0 +1992-06-03,1.8085,1.8085,1.7288,1.7328,83825099,0 +1992-06-04,1.7366,1.7531,1.7136,1.7441,50241341,0 +1992-06-05,1.7531,1.7684,1.7366,1.7571,31437936,0 +1992-06-08,1.7611,1.7611,1.7288,1.7366,29098422,0 +1992-06-09,1.7366,1.7366,1.7136,1.7288,28245723,0 +1992-06-10,1.7288,1.7531,1.7136,1.7211,35307938,0 +1992-06-11,1.7211,1.7366,1.7136,1.7249,39187296,0 +1992-06-12,1.7441,1.7611,1.7366,1.7479,26915109,0 +1992-06-15,1.7288,1.7288,1.68,1.684,52761977,0 +1992-06-16,1.657,1.6648,1.561,1.5766,101891362,0 +1992-06-17,1.5687,1.5766,1.5048,1.5213,84849605,0 +1992-06-18,1.5213,1.5687,1.4327,1.4486,120957169,0 +1992-06-19,1.4728,1.4728,1.4012,1.4327,119204873,0 +1992-06-22,1.4085,1.4327,1.3689,1.4162,108747428,0 +1992-06-23,1.4406,1.4572,1.4243,1.4486,86886121,0 +1992-06-24,1.4572,1.4728,1.4486,1.4728,58862177,0 +1992-06-25,1.4882,1.4882,1.4486,1.4598,44790846,0 +1992-06-26,1.4651,1.4728,1.4243,1.4486,30778869,0 +1992-06-29,1.4651,1.5085,1.4486,1.4969,52549605,0 +1992-06-30,1.4969,1.5443,1.4882,1.5369,53920815,0 +1992-07-01,1.5369,1.5853,1.5289,1.5687,40027529,0 +1992-07-02,1.5687,1.5687,1.4651,1.4803,71574766,0 +1992-07-06,1.4882,1.4969,1.4572,1.4803,34024168,0 +1992-07-07,1.4803,1.4803,1.3932,1.4162,57753337,0 +1992-07-08,1.4085,1.4651,1.4085,1.4651,54648593,0 +1992-07-09,1.4728,1.4882,1.4651,1.4691,46237027,0 +1992-07-10,1.4728,1.4803,1.4366,1.4651,40102491,0 +1992-07-13,1.4651,1.5085,1.4486,1.5048,35017445,0 +1992-07-14,1.5048,1.5369,1.5048,1.5213,35136150,0 +1992-07-15,1.5213,1.5687,1.5124,1.5369,48654620,0 +1992-07-16,1.5289,1.5687,1.5124,1.561,38987410,0 +1992-07-17,1.4406,1.4728,1.4282,1.4406,118146028,0 +1992-07-20,1.4327,1.4486,1.4085,1.4327,53580349,0 +1992-07-21,1.4572,1.4803,1.4406,1.4651,36797844,0 +1992-07-22,1.4486,1.4572,1.4085,1.4162,45171913,0 +1992-07-23,1.4243,1.4327,1.4012,1.4327,47833113,0 +1992-07-24,1.4243,1.4803,1.4085,1.4691,37641170,0 +1992-07-27,1.4651,1.4882,1.4486,1.4486,668424,0 +1992-07-28,1.4572,1.4882,1.4486,1.4882,37438158,0 +1992-07-29,1.4919,1.5289,1.4882,1.5124,69934939,0 +1992-07-30,1.5124,1.5213,1.4969,1.5124,38456423,0 +1992-07-31,1.5124,1.5213,1.4969,1.4969,25297149,0 +1992-08-03,1.4969,1.5124,1.4572,1.4651,19115778,0 +1992-08-04,1.4406,1.4651,1.4327,1.4572,33386984,0 +1992-08-05,1.4572,1.4572,1.4243,1.4327,38837491,0 +1992-08-06,1.4162,1.4243,1.3689,1.4085,71943360,0 +1992-08-07,1.3447,1.4012,1.3294,1.3894,61120442,0 +1992-08-10,1.3841,1.4243,1.3769,1.4123,25503299,0 +1992-08-11,1.4243,1.4243,1.3769,1.3932,33830524,0 +1992-08-12,1.4012,1.4162,1.3841,1.4123,33852392,0 +1992-08-13,1.4243,1.4572,1.4162,1.4327,47686328,0 +1992-08-14,1.4406,1.4486,1.4243,1.4327,37956654,0 +1992-08-17,1.4162,1.4327,1.4012,1.4327,35895147,0 +1992-08-18,1.4243,1.4486,1.4243,1.4327,31322350,0 +1992-08-19,1.4282,1.4486,1.4243,1.4243,47561387,0 +1992-08-20,1.4327,1.4406,1.4162,1.4327,30372828,0 +1992-08-21,1.4327,1.4486,1.4085,1.4282,30528991,0 +1992-08-24,1.4162,1.4327,1.3841,1.3841,42438844,0 +1992-08-25,1.3841,1.4243,1.3841,1.4216,36913407,0 +1992-08-26,1.4162,1.4243,1.3841,1.4162,33761802,0 +1992-08-27,1.4327,1.4448,1.4162,1.4243,23076349,0 +1992-08-28,1.4162,1.4486,1.4085,1.4406,17079247,0 +1992-08-31,1.4406,1.4803,1.4327,1.4728,33777418,0 +1992-09-01,1.4803,1.4882,1.4651,1.4882,16813748,0 +1992-09-02,1.4882,1.561,1.4882,1.5521,52958779,0 +1992-09-03,1.5687,1.5766,1.5289,1.5289,59083943,0 +1992-09-04,1.5443,1.5443,1.4969,1.5124,17635226,0 +1992-09-08,1.4969,1.5369,1.4882,1.5289,19521818,0 +1992-09-09,1.5369,1.5766,1.5289,1.5687,43841314,0 +1992-09-10,1.5369,1.5853,1.5213,1.5766,63634862,0 +1992-09-11,1.5687,1.5766,1.5213,1.524,50166377,0 +1992-09-14,1.5687,1.6006,1.5521,1.5853,59871057,0 +1992-09-15,1.5766,1.5766,1.5289,1.5443,60942405,0 +1992-09-16,1.5289,1.5443,1.4882,1.5048,49841535,0 +1992-09-17,1.5124,1.5124,1.4534,1.4728,48089265,0 +1992-09-18,1.4651,1.5009,1.4486,1.4882,32240664,0 +1992-09-21,1.4969,1.5289,1.4803,1.4882,25009776,0 +1992-09-22,1.4969,1.4969,1.4486,1.4651,31106844,0 +1992-09-23,1.4728,1.5213,1.4572,1.5213,34573907,0 +1992-09-24,1.5124,1.5289,1.4803,1.4803,35042441,0 +1992-09-25,1.4803,1.4882,1.4486,1.4572,38337710,0 +1992-09-28,1.4406,1.4406,1.4012,1.4327,41698597,0 +1992-09-29,1.4243,1.4572,1.4085,1.4366,43860061,0 +1992-09-30,1.4406,1.4572,1.4243,1.4448,27902141,0 +1992-10-01,1.4327,1.4448,1.4162,1.4162,34227205,0 +1992-10-02,1.4243,1.4327,1.3769,1.4012,31665935,0 +1992-10-05,1.3841,1.4012,1.3294,1.3932,73892403,0 +1992-10-06,1.4012,1.4406,1.3689,1.4327,31637837,0 +1992-10-07,1.4406,1.4486,1.3932,1.4012,31600345,0 +1992-10-08,1.4085,1.4162,1.3769,1.3932,35411000,0 +1992-10-09,1.3932,1.4085,1.3769,1.3894,16382719,0 +1992-10-12,1.3841,1.4162,1.3841,1.4085,19977843,0 +1992-10-13,1.4327,1.4728,1.4085,1.4534,41045774,0 +1992-10-14,1.4486,1.4803,1.4406,1.4728,26696474,0 +1992-10-15,1.4651,1.4728,1.4486,1.4572,21033585,0 +1992-10-16,1.4969,1.5853,1.4882,1.5687,125873539,0 +1992-10-19,1.5687,1.5766,1.5521,1.5687,54673566,0 +1992-10-20,1.5687,1.6006,1.5521,1.5726,80108151,0 +1992-10-21,1.5766,1.5853,1.5369,1.5521,31862716,0 +1992-10-22,1.5521,1.5766,1.5443,1.561,23557363,0 +1992-10-23,1.5766,1.5853,1.5443,1.561,25497052,0 +1992-10-26,1.561,1.6496,1.5521,1.6496,69913083,0 +1992-10-27,1.6496,1.68,1.6328,1.6496,59112053,0 +1992-10-28,1.6403,1.6892,1.6251,1.6725,54826631,0 +1992-10-29,1.6725,1.7288,1.6496,1.7044,59652424,0 +1992-10-30,1.7136,1.7136,1.6648,1.68,36207497,0 +1992-11-02,1.68,1.6892,1.657,1.6725,47436438,0 +1992-11-03,1.68,1.68,1.6496,1.6648,31444182,0 +1992-11-04,1.6648,1.6892,1.6648,1.68,39590233,0 +1992-11-05,1.68,1.7611,1.68,1.7611,83122325,0 +1992-11-06,1.7531,1.8085,1.7531,1.7853,73617544,0 +1992-11-09,1.7927,1.7927,1.7531,1.7684,31494145,0 +1992-11-10,1.7611,1.8085,1.7531,1.8005,34086641,0 +1992-11-11,1.8085,1.8646,1.8005,1.817,39162317,0 +1992-11-12,1.825,1.8414,1.8058,1.821,30007368,0 +1992-11-13,1.825,1.8326,1.7927,1.8005,23635455,0 +1992-11-16,1.8005,1.8492,1.7927,1.8377,18837778,0 +1992-11-17,1.8326,1.8414,1.7571,1.7684,47077237,0 +1992-11-18,1.7927,1.8646,1.7775,1.8492,85005783,0 +1992-11-19,1.8492,1.9057,1.8492,1.8646,67083199,0 +1992-11-20,1.8722,1.8813,1.825,1.8414,43363426,0 +1992-11-23,1.8085,1.825,1.8005,1.817,42591912,0 +1992-11-24,1.825,1.8414,1.8085,1.8414,43735113,0 +1992-11-25,1.825,1.8326,1.7927,1.8085,32724804,0 +1992-11-27,1.8085,1.8326,1.8005,1.8085,13162390,0 +1992-11-30,1.8005,1.8414,1.7801,1.8414,44762737,0 +1992-12-01,1.8326,1.8887,1.817,1.8646,36294956,0 +1992-12-02,1.8646,1.8722,1.825,1.8326,27268068,0 +1992-12-03,1.8085,1.8442,1.7965,1.8414,52315342,0 +1992-12-04,1.8326,1.8414,1.8085,1.821,26712096,0 +1992-12-07,1.817,1.8492,1.817,1.8492,40221194,0 +1992-12-08,1.8492,1.8813,1.8492,1.8609,54839120,0 +1992-12-09,1.8492,1.857,1.8326,1.8442,44456642,0 +1992-12-10,1.8326,1.8442,1.8085,1.8326,39096734,0 +1992-12-11,1.8326,1.8646,1.8326,1.8414,33518168,0 +1992-12-14,1.8414,1.8492,1.817,1.8326,30819471,0 +1992-12-15,1.817,1.825,1.7775,1.8058,50906642,0 +1992-12-16,1.8005,1.825,1.7441,1.7611,63007052,0 +1992-12-17,1.7684,1.8414,1.7684,1.821,65221594,0 +1992-12-18,1.8414,1.8966,1.8326,1.8646,65665132,0 +1992-12-21,1.8646,1.9209,1.857,1.9079,71412362,0 +1992-12-22,1.9132,1.9606,1.9132,1.9401,78134115,0 +1992-12-23,1.9286,1.9363,1.8966,1.9132,31328614,0 +1992-12-24,1.9209,1.9209,1.8887,1.8887,12818800,0 +1992-12-28,1.8966,1.9132,1.8966,1.9057,19646754,0 +1992-12-29,1.9057,1.9452,1.9057,1.9079,32428079,0 +1992-12-30,1.9132,1.9132,1.8813,1.8813,28052056,0 +1992-12-31,1.8813,1.9209,1.8813,1.9132,25721955,0 +1993-01-04,1.9057,1.9209,1.8492,1.8646,36013849,0 +1993-01-05,1.857,1.8966,1.8326,1.8966,51943633,0 +1993-01-06,1.9452,1.9849,1.9363,1.9773,78477691,0 +1993-01-07,1.9773,2.0003,1.9401,1.9532,75894571,0 +1993-01-08,1.9452,2.0171,1.9132,1.9926,89503611,0 +1993-01-11,1.9849,2.0605,1.9773,2.0528,76338104,0 +1993-01-12,2.0093,2.0414,1.9696,1.9696,96537699,0 +1993-01-13,1.9696,2.0489,1.9606,2.0337,55676218,0 +1993-01-14,2.0489,2.0885,2.0414,2.081,102575418,0 +1993-01-15,1.9532,1.9926,1.9209,1.9286,251728311,0 +1993-01-18,1.9057,1.9209,1.857,1.9057,93045647,0 +1993-01-19,1.9132,1.9363,1.8966,1.9132,76425552,0 +1993-01-20,1.9132,1.9286,1.9057,1.9209,44269230,0 +1993-01-21,1.9132,1.9286,1.8813,1.9209,51431394,0 +1993-01-22,1.9286,1.9286,1.8887,1.9057,40980199,0 +1993-01-25,1.8966,1.9363,1.8966,1.9209,56410219,0 +1993-01-26,1.9363,1.9849,1.9363,1.9452,79655247,0 +1993-01-27,1.9532,1.9773,1.8813,1.9286,63200715,0 +1993-01-28,1.9209,1.9286,1.8966,1.9169,51325190,0 +1993-01-29,1.9286,1.9606,1.8887,1.9057,74210991,0 +1993-02-01,1.8966,1.9606,1.8966,1.9606,67086317,0 +1993-02-02,1.9452,1.9696,1.9286,1.9286,50850425,0 +1993-02-03,1.9532,1.9532,1.8722,1.9209,73676881,0 +1993-02-04,1.9209,1.9286,1.8887,1.9057,58050064,0 +1993-02-05,1.8966,1.9057,1.8005,1.8326,102522312,0 +1993-02-08,1.825,1.8414,1.7775,1.8085,78387113,0 +1993-02-09,1.825,1.8377,1.8085,1.821,66558457,0 +1993-02-10,1.825,1.8326,1.7611,1.7853,74820081,0 +1993-02-11,1.7853,1.8005,1.7611,1.7649,46927309,0 +1993-02-12,1.7611,1.7775,1.7211,1.7249,76803499,0 +1993-02-16,1.7136,1.7136,1.6496,1.6967,113710659,0 +1993-02-17,1.7044,1.7288,1.6648,1.7249,69603863,0 +1993-02-18,1.7611,1.7684,1.7136,1.7611,78121616,0 +1993-02-19,1.7684,1.7775,1.7531,1.7611,49585402,0 +1993-02-22,1.7611,1.7927,1.7531,1.7649,27542935,0 +1993-02-23,1.7611,1.7684,1.7288,1.7366,54123835,0 +1993-02-24,1.6687,1.7249,1.6687,1.7159,79917619,0 +1993-02-25,1.7044,1.7531,1.7044,1.7531,46636830,0 +1993-02-26,1.7366,1.7366,1.6725,1.6967,82238362,0 +1993-03-01,1.6967,1.7136,1.6892,1.7044,33271417,0 +1993-03-02,1.6967,1.7441,1.6967,1.7366,41189467,0 +1993-03-03,1.7288,1.7611,1.7044,1.7479,56528924,0 +1993-03-04,1.7441,1.7684,1.7136,1.7611,52524618,0 +1993-03-05,1.7531,1.7853,1.7531,1.7611,31128698,0 +1993-03-08,1.7611,1.817,1.7611,1.8085,49363639,0 +1993-03-09,1.8085,1.8414,1.8085,1.817,43179126,0 +1993-03-10,1.817,1.8326,1.7927,1.817,36950886,0 +1993-03-11,1.825,1.8326,1.8005,1.821,40330499,0 +1993-03-12,1.817,1.817,1.7775,1.8005,35332916,0 +1993-03-15,1.7927,1.8326,1.7734,1.825,37937919,0 +1993-03-16,1.8326,1.8492,1.8085,1.8085,28245723,0 +1993-03-17,1.8085,1.825,1.7611,1.7649,49145007,0 +1993-03-18,1.7611,1.7801,1.7441,1.7441,29613812,0 +1993-03-19,1.7611,1.7684,1.7136,1.7211,42976098,0 +1993-03-22,1.7136,1.7249,1.6892,1.7044,46071482,0 +1993-03-23,1.7044,1.7288,1.684,1.6892,28595562,0 +1993-03-24,1.6892,1.7366,1.68,1.7211,39899461,0 +1993-03-25,1.7211,1.7531,1.7136,1.7531,47701931,0 +1993-03-26,1.7531,1.7531,1.68,1.7044,42323284,0 +1993-03-29,1.6725,1.68,1.6251,1.6328,72986601,0 +1993-03-30,1.6366,1.6725,1.6083,1.6725,73639412,0 +1993-03-31,1.68,1.6892,1.6403,1.6496,62201176,0 +1993-04-01,1.6403,1.6648,1.6328,1.657,30176041,0 +1993-04-02,1.6163,1.6403,1.5853,1.6045,70778292,0 +1993-04-05,1.6006,1.6163,1.5853,1.6006,41601761,0 +1993-04-06,1.6006,1.6083,1.561,1.561,46955425,0 +1993-04-07,1.5687,1.6251,1.5521,1.6163,45415548,0 +1993-04-08,1.6006,1.6163,1.5687,1.5932,45577969,0 +1993-04-12,1.5853,1.6328,1.5853,1.6006,25949956,0 +1993-04-13,1.6163,1.6403,1.5443,1.5521,45871575,0 +1993-04-14,1.5443,1.561,1.524,1.561,47427079,0 +1993-04-15,1.5443,1.5443,1.4969,1.5124,60992389,0 +1993-04-16,1.5443,1.561,1.5175,1.5408,191535547,0 +1993-04-19,1.5521,1.5853,1.5443,1.5521,63547416,0 +1993-04-20,1.561,1.6083,1.5443,1.6006,66945762,0 +1993-04-21,1.6083,1.6251,1.5766,1.5878,57247334,0 +1993-04-22,1.5766,1.6163,1.5687,1.6006,43972488,0 +1993-04-23,1.5932,1.6083,1.561,1.5766,37410041,0 +1993-04-26,1.5766,1.5932,1.5521,1.5687,28670511,0 +1993-04-27,1.561,1.6083,1.561,1.6083,36163757,0 +1993-04-28,1.5932,1.6648,1.5932,1.6457,45524879,0 +1993-04-29,1.6496,1.657,1.6045,1.6251,22992014,0 +1993-04-30,1.6251,1.68,1.6251,1.6403,36907165,0 +1993-05-03,1.6403,1.6648,1.6328,1.6609,18178711,0 +1993-05-04,1.6725,1.7366,1.6648,1.7097,47639463,0 +1993-05-05,1.6967,1.7775,1.6967,1.7441,70575257,0 +1993-05-06,1.7441,1.7531,1.7136,1.7211,19649872,0 +1993-05-07,1.7136,1.7531,1.7136,1.7531,22838950,0 +1993-05-10,1.7611,1.7891,1.7611,1.7611,38465789,0 +1993-05-11,1.7611,1.7684,1.7288,1.7441,44169285,0 +1993-05-12,1.7366,1.7531,1.6967,1.7044,29345187,0 +1993-05-13,1.7136,1.7853,1.7136,1.7775,100879365,0 +1993-05-14,1.7684,1.7927,1.7611,1.7775,32743554,0 +1993-05-17,1.7775,1.7927,1.7611,1.7853,19421857,0 +1993-05-18,1.7775,1.8005,1.7611,1.7775,45590452,0 +1993-05-19,1.7531,1.8414,1.7441,1.8326,48182974,0 +1993-05-20,1.8326,1.8887,1.8326,1.8813,81023337,0 +1993-05-21,1.8813,1.8926,1.817,1.8414,41330024,0 +1993-05-24,1.817,1.8813,1.817,1.8442,41920358,0 +1993-05-25,1.817,1.8414,1.7853,1.8058,50400632,0 +1993-05-26,1.7927,1.8492,1.7734,1.8492,33902369,0 +1993-05-27,1.8492,1.8722,1.8326,1.8414,55020279,0 +1993-05-28,1.825,1.8414,1.8005,1.812,51300211,0 +1993-06-01,1.8085,1.8492,1.8085,1.825,37669301,0 +1993-06-02,1.817,1.8646,1.7927,1.825,55910472,0 +1993-06-03,1.825,1.8326,1.7927,1.8058,43744472,0 +1993-06-04,1.7853,1.8005,1.7441,1.7571,59593071,0 +1993-06-07,1.7441,1.7531,1.6137,1.6251,134506853,0 +1993-06-08,1.561,1.6006,1.5369,1.5853,173213144,0 +1993-06-09,1.4406,1.4598,1.4085,1.4162,328641141,0 +1993-06-10,1.3932,1.4327,1.3689,1.4243,154419114,0 +1993-06-11,1.4406,1.4486,1.3894,1.4012,67579838,0 +1993-06-14,1.4085,1.4327,1.3932,1.4282,69578866,0 +1993-06-15,1.4486,1.4486,1.3407,1.3447,125030188,0 +1993-06-16,1.3524,1.3841,1.3294,1.3524,98468021,0 +1993-06-17,1.3599,1.3599,1.2959,1.3202,114185433,0 +1993-06-18,1.332,1.3486,1.273,1.3126,86814277,0 +1993-06-21,1.2959,1.2959,1.2653,1.2677,76297499,0 +1993-06-22,1.3089,1.3447,1.273,1.3255,93810905,0 +1993-06-23,1.3366,1.3366,1.2808,1.2959,50400632,0 +1993-06-24,1.2959,1.3366,1.2808,1.3366,62144975,0 +1993-06-25,1.2933,1.305,1.2653,1.2808,71718450,0 +1993-06-28,1.2959,1.2959,1.2407,1.2844,98617952,0 +1993-06-29,1.2883,1.2883,1.2321,1.2485,82066575,0 +1993-06-30,1.2407,1.273,1.2321,1.2653,55848003,0 +1993-07-01,1.2485,1.273,1.2167,1.2167,60842467,0 +1993-07-02,1.2241,1.2407,1.2089,1.2321,53442920,0 +1993-07-06,1.2241,1.2485,1.2013,1.2089,43297819,0 +1993-07-07,1.2013,1.2128,1.1601,1.1679,63316268,0 +1993-07-08,1.1679,1.2013,1.1601,1.1679,38756261,0 +1993-07-09,1.1845,1.1921,1.1679,1.1768,43750727,0 +1993-07-12,1.1768,1.2204,1.1601,1.2167,48492186,0 +1993-07-13,1.2407,1.2407,1.1845,1.1921,44094310,0 +1993-07-14,1.1768,1.2013,1.1449,1.1921,68688672,0 +1993-07-15,1.1921,1.2089,1.1283,1.1449,94273182,0 +1993-07-16,0.9117,0.949,0.8478,0.8809,591398510,0 +1993-07-19,0.8966,0.9209,0.8171,0.821,224844438,0 +1993-07-20,0.8401,0.8886,0.8246,0.8605,148340799,0 +1993-07-21,0.8324,0.8567,0.8171,0.8401,127144796,0 +1993-07-22,0.8324,0.8644,0.8246,0.8478,58893402,0 +1993-07-23,0.8644,0.8809,0.8324,0.8401,65196614,0 +1993-07-26,0.8567,0.8809,0.8324,0.8605,42620034,0 +1993-07-27,0.8567,0.8809,0.8401,0.8478,55388850,0 +1993-07-28,0.8401,0.8644,0.8401,0.8605,25600117,0 +1993-07-29,0.8644,0.8809,0.8567,0.8723,33849272,0 +1993-07-30,0.8809,0.9039,0.8644,0.8886,59805459,0 +1993-08-02,0.9039,0.936,0.8966,0.9117,60323957,0 +1993-08-03,0.9284,0.936,0.9209,0.9284,49216822,0 +1993-08-04,0.936,0.9758,0.9284,0.9682,67767247,0 +1993-08-05,0.9849,0.9849,0.9284,0.9453,58390528,0 +1993-08-06,0.936,0.9682,0.936,0.936,35117422,0 +1993-08-09,0.936,0.9682,0.9284,0.9526,45015741,0 +1993-08-10,0.9453,0.9526,0.9039,0.9117,42607532,0 +1993-08-11,0.9117,0.9117,0.8644,0.8809,46564984,0 +1993-08-12,0.8809,0.8886,0.8324,0.8478,94310655,0 +1993-08-13,0.8478,0.8886,0.8401,0.8762,38712554,0 +1993-08-16,0.8809,0.8966,0.8723,0.8809,28570565,0 +1993-08-17,0.8886,0.9117,0.8723,0.9078,30169787,0 +1993-08-18,0.9284,0.9526,0.9039,0.9117,52630809,0 +1993-08-19,0.9209,0.9209,0.8809,0.8809,42426374,0 +1993-08-20,0.8886,0.8966,0.8644,0.8966,27870903,0 +1993-08-23,0.8966,0.9209,0.8809,0.9078,25428326,0 +1993-08-24,0.9039,0.9209,0.8886,0.8966,28239476,0 +1993-08-25,0.8966,0.9039,0.8567,0.8723,40652230,0 +1993-08-26,0.8723,0.8723,0.8478,0.8605,49123130,0 +1993-08-27,0.8644,0.8644,0.8401,0.8478,52031102,0 +1993-08-30,0.8478,0.8478,0.8286,0.8324,76341220,0 +1993-08-31,0.8478,0.8567,0.8324,0.8478,35660884,0 +1993-09-01,0.8478,0.8567,0.8246,0.8362,62907091,0 +1993-09-02,0.8324,0.8401,0.808,0.8246,78718196,0 +1993-09-03,0.8324,0.8324,0.808,0.8246,45440546,0 +1993-09-07,0.8324,0.8644,0.8246,0.8401,40030652,0 +1993-09-08,0.8401,0.8644,0.8324,0.8567,63203827,0 +1993-09-09,0.8567,0.8644,0.8324,0.8324,41701725,0 +1993-09-10,0.8401,0.8401,0.8118,0.8401,37506875,0 +1993-09-13,0.8401,0.8478,0.7928,0.808,71334278,0 +1993-09-14,0.776,0.8003,0.7683,0.776,77150220,0 +1993-09-15,0.7837,0.8003,0.7531,0.7837,71874633,0 +1993-09-16,0.776,0.8003,0.776,0.7928,23972784,0 +1993-09-17,0.7799,0.8171,0.776,0.808,47976802,0 +1993-09-20,0.808,0.8171,0.7928,0.7965,30966274,0 +1993-09-21,0.7928,0.808,0.7646,0.7837,40855248,0 +1993-09-22,0.776,0.8171,0.776,0.8171,30813230,0 +1993-09-23,0.8171,0.8171,0.7837,0.7928,36519847,0 +1993-09-24,0.8003,0.808,0.7837,0.8003,21355307,0 +1993-09-27,0.8003,0.808,0.776,0.7928,31562863,0 +1993-09-28,0.7928,0.8003,0.776,0.7928,26368505,0 +1993-09-29,0.776,0.7965,0.7606,0.7646,66024337,0 +1993-09-30,0.7683,0.7683,0.7363,0.748,76666063,0 +1993-10-01,0.7288,0.7363,0.7196,0.7288,93701582,0 +1993-10-04,0.7248,0.7363,0.7045,0.7288,53780251,0 +1993-10-05,0.7363,0.7683,0.7363,0.7531,49169973,0 +1993-10-06,0.7606,0.7683,0.748,0.757,48882613,0 +1993-10-07,0.7531,0.7606,0.7288,0.7363,37622435,0 +1993-10-08,0.7439,0.7439,0.7118,0.7248,38878084,0 +1993-10-11,0.7288,0.7683,0.7288,0.7606,44940769,0 +1993-10-12,0.7683,0.8003,0.7606,0.7683,85433698,0 +1993-10-13,0.776,0.776,0.7531,0.7683,49363639,0 +1993-10-14,0.7683,0.7837,0.7531,0.7606,44812723,0 +1993-10-15,0.8886,0.9117,0.8567,0.9039,266402468,0 +1993-10-18,0.8966,0.9209,0.8886,0.9078,92867603,0 +1993-10-19,0.9039,0.9117,0.8723,0.8886,59561846,0 +1993-10-20,0.8966,0.9039,0.8723,0.8886,38600091,0 +1993-10-21,0.8809,1.0001,0.8723,0.9682,174890462,0 +1993-10-22,0.9758,1.0091,0.9526,0.9682,110459111,0 +1993-10-25,0.9682,0.9758,0.949,0.9604,61111084,0 +1993-10-26,0.9526,0.9604,0.9284,0.9526,62045003,0 +1993-10-27,0.9604,1.0322,0.9526,1.0167,128025619,0 +1993-10-28,1.0167,1.0322,0.9925,0.9925,68176415,0 +1993-10-29,0.9925,1.0167,0.9758,0.9849,38169052,0 +1993-11-01,0.9849,1.0091,0.9682,1.0091,29554472,0 +1993-11-02,1.0001,1.0566,0.9925,1.0486,62538518,0 +1993-11-03,1.0566,1.0566,0.9925,1.0132,49351137,0 +1993-11-04,1.0091,1.0322,0.9849,1.0322,51696899,0 +1993-11-05,1.0208,1.0322,0.9849,1.0208,105427164,0 +1993-11-08,1.0245,1.0282,0.9758,0.9849,46571239,0 +1993-11-09,0.9925,1.0001,0.9526,0.9644,47758176,0 +1993-11-10,0.9682,0.9849,0.9604,0.9849,21467754,0 +1993-11-11,0.9849,1.0245,0.9758,1.0039,39721421,0 +1993-11-12,1.0091,1.0245,0.9758,1.0167,40065007,0 +1993-11-15,1.0091,1.0486,1.0091,1.0245,43813197,0 +1993-11-16,1.0245,1.0961,1.0167,1.0886,84524780,0 +1993-11-17,1.0886,1.1206,1.0486,1.0731,84396705,0 +1993-11-18,1.0731,1.0807,1.0566,1.0731,31906447,0 +1993-11-19,1.0566,1.0731,1.0399,1.0566,34292795,0 +1993-11-22,1.0486,1.0566,1.0322,1.0399,42001576,0 +1993-11-23,1.0399,1.0566,1.0001,1.0566,51918646,0 +1993-11-24,1.0486,1.0731,1.0438,1.0566,25222185,0 +1993-11-26,1.0486,1.0566,1.0322,1.0438,12116017,0 +1993-11-29,1.0322,1.0399,1.0091,1.0167,26971357,0 +1993-11-30,1.0167,1.0438,1.0091,1.0091,31419195,0 +1993-12-01,1.0245,1.0322,1.0001,1.0091,31016259,0 +1993-12-02,1.0167,1.0245,0.9925,1.0167,28070795,0 +1993-12-03,1.0167,1.0245,0.9925,1.0091,33596260,0 +1993-12-06,1.0091,1.0399,1.0001,1.0322,43778833,0 +1993-12-07,1.0245,1.0322,1.0091,1.0322,17807017,0 +1993-12-08,1.0245,1.0322,1.0091,1.0208,11041551,0 +1993-12-09,1.0167,1.0245,0.9526,0.9604,50969114,0 +1993-12-10,0.9682,0.9758,0.8886,0.9039,138676706,0 +1993-12-13,0.9039,0.9453,0.8886,0.9453,68138946,0 +1993-12-14,0.936,0.9526,0.9284,0.9321,81897913,0 +1993-12-15,0.9284,0.9526,0.9284,0.9526,34548933,0 +1993-12-16,0.9453,0.9526,0.9284,0.9399,35242342,0 +1993-12-17,0.9453,0.9526,0.9321,0.9453,40480445,0 +1993-12-20,0.936,0.9526,0.9039,0.9117,52718267,0 +1993-12-21,0.9117,0.9209,0.8723,0.8809,70034906,0 +1993-12-22,0.8723,0.9117,0.8644,0.8966,50581806,0 +1993-12-23,0.8723,0.8723,0.8478,0.8723,63294406,0 +1993-12-27,0.8886,0.9209,0.8723,0.9117,44603439,0 +1993-12-28,0.9209,0.9453,0.9117,0.9321,44481623,0 +1993-12-29,0.936,0.936,0.9117,0.9117,29938655,0 +1993-12-30,0.9117,0.9682,0.9117,0.9526,87723213,0 +1993-12-31,0.9526,0.9682,0.936,0.936,44890808,0 +1994-01-03,0.9453,0.9604,0.9284,0.9565,50625523,0 +1994-01-04,0.9682,1.0091,0.9604,1.0091,79530313,0 +1994-01-05,1.0167,1.0847,1.0167,1.0807,170714359,0 +1994-01-06,1.0807,1.0886,1.0399,1.0486,102213091,0 +1994-01-07,1.0245,1.0641,1.0001,1.0604,83328466,0 +1994-01-10,1.0566,1.0847,1.0486,1.0757,56219710,0 +1994-01-11,1.0731,1.0807,1.0167,1.0208,99114602,0 +1994-01-12,1.0322,1.0322,0.9758,0.9758,122462673,0 +1994-01-13,0.9604,0.9849,0.9526,0.9809,148253339,0 +1994-01-14,0.9849,1.0167,0.9758,0.9925,59824201,0 +1994-01-17,0.9925,1.0091,0.9604,0.972,40636608,0 +1994-01-18,0.9682,0.9682,0.9284,0.9399,101179221,0 +1994-01-19,0.936,0.9526,0.9209,0.936,78530788,0 +1994-01-20,0.9453,0.9849,0.9453,0.9565,74763865,0 +1994-01-21,1.0641,1.0731,1.0322,1.0694,273342873,0 +1994-01-24,1.0641,1.1283,1.0641,1.1206,193028571,0 +1994-01-25,1.1128,1.1206,1.0641,1.0847,123359118,0 +1994-01-26,1.0807,1.0886,1.0641,1.0731,46240147,0 +1994-01-27,1.0731,1.0961,1.0566,1.0924,36882168,0 +1994-01-28,1.0961,1.1128,1.0807,1.0886,38050353,0 +1994-01-31,1.0731,1.0807,1.0486,1.0486,66480363,0 +1994-02-01,1.0566,1.0731,1.0322,1.0641,43706997,0 +1994-02-02,1.0641,1.0641,1.0399,1.0566,40842761,0 +1994-02-03,1.0566,1.0757,1.0399,1.0731,38484523,0 +1994-02-04,1.0731,1.1206,1.0641,1.0731,98727281,0 +1994-02-07,1.0731,1.1884,1.0731,1.1679,202314703,0 +1994-02-08,1.1526,1.1679,1.1283,1.1449,79589657,0 +1994-02-09,1.1449,1.1679,1.1283,1.1601,52146662,0 +1994-02-10,1.1601,1.2013,1.1526,1.1679,84231148,0 +1994-02-11,1.1601,1.2013,1.1601,1.1845,45805984,0 +1994-02-14,1.1845,1.2167,1.1768,1.1845,68479397,0 +1994-02-15,1.1768,1.2013,1.1601,1.1884,36191891,0 +1994-02-16,1.2013,1.2013,1.1768,1.1768,34030430,0 +1994-02-17,1.1921,1.2128,1.1601,1.1845,40480445,0 +1994-02-18,1.1679,1.1845,1.1601,1.1601,41573653,0 +1994-02-22,1.1601,1.2013,1.1449,1.1921,59839828,0 +1994-02-23,1.1921,1.2241,1.1845,1.1921,72658629,0 +1994-02-24,1.1845,1.1921,1.1601,1.1718,55179590,0 +1994-02-25,1.1845,1.1921,1.1371,1.1526,66046198,0 +1994-02-28,1.1601,1.1845,1.1526,1.1679,34533320,0 +1994-03-01,1.1768,1.1768,1.1449,1.1601,59087056,0 +1994-03-02,1.1283,1.1601,1.1128,1.1399,82032223,0 +1994-03-03,1.1449,1.1601,1.1371,1.1449,52562107,0 +1994-03-04,1.1526,1.2013,1.1449,1.1768,63263176,0 +1994-03-07,1.1845,1.2204,1.1768,1.2128,86564400,0 +1994-03-08,1.2167,1.2167,1.1768,1.1845,51887430,0 +1994-03-09,1.1718,1.2013,1.1526,1.2013,69313376,0 +1994-03-10,1.1921,1.2037,1.1768,1.1921,40093117,0 +1994-03-11,1.1845,1.2089,1.1768,1.1921,45134439,0 +1994-03-14,1.2321,1.2321,1.2089,1.2204,123184207,0 +1994-03-15,1.2241,1.2241,1.1921,1.2037,57044297,0 +1994-03-16,1.2013,1.2089,1.1679,1.1768,41042657,0 +1994-03-17,1.1768,1.1845,1.1601,1.1679,43569574,0 +1994-03-18,1.1768,1.1768,1.1449,1.1655,62379212,0 +1994-03-21,1.1655,1.1679,1.1283,1.1371,68748023,0 +1994-03-22,1.1283,1.1371,1.1038,1.1206,67720380,0 +1994-03-23,1.1283,1.1371,1.0961,1.1245,60430172,0 +1994-03-24,1.1245,1.1283,1.0886,1.1078,52455897,0 +1994-03-25,1.1128,1.1128,1.0486,1.0486,95834917,0 +1994-03-28,1.0566,1.0886,1.0486,1.0641,78805662,0 +1994-03-29,1.0641,1.0807,1.0322,1.0486,59546215,0 +1994-03-30,1.0399,1.0641,1.0167,1.0399,47361488,0 +1994-03-31,1.0399,1.0731,1.0091,1.0641,58303063,0 +1994-04-04,1.0322,1.0641,1.0167,1.0641,46936683,0 +1994-04-05,1.0807,1.0961,1.0731,1.0731,27302438,0 +1994-04-06,1.0886,1.0886,1.0486,1.0731,36001340,0 +1994-04-07,1.0731,1.0807,1.0486,1.0694,21577076,0 +1994-04-08,1.0807,1.0886,1.0641,1.0731,49319910,0 +1994-04-11,1.0731,1.0731,1.0399,1.0731,29791854,0 +1994-04-12,1.0694,1.0694,1.0167,1.0245,38159671,0 +1994-04-13,1.0322,1.0399,1.0001,1.0167,65018566,0 +1994-04-14,0.9758,1.0167,0.9604,1.0091,61910702,0 +1994-04-15,1.0001,1.0091,0.9604,0.9682,52527729,0 +1994-04-18,0.9758,0.9758,0.936,0.949,64225196,0 +1994-04-19,0.9526,0.9604,0.9117,0.9284,46365089,0 +1994-04-20,0.936,0.9604,0.8966,0.9039,78602636,0 +1994-04-21,0.9117,0.9758,0.8644,0.949,114491526,0 +1994-04-22,1.0001,1.0245,0.9117,0.9526,194612174,0 +1994-04-25,0.9526,0.9925,0.9453,0.9925,100185943,0 +1994-04-26,1.0091,1.0091,0.9925,1.0001,45799730,0 +1994-04-28,0.9925,1.0001,0.9526,0.9682,28020835,0 +1994-04-29,0.9604,0.9758,0.9526,0.9604,26434104,0 +1994-05-02,0.9604,1.0001,0.9604,0.9925,34364633,0 +1994-05-03,0.9925,1.0001,0.9453,0.9682,37063336,0 +1994-05-04,0.9925,1.0641,0.9758,1.0566,101557169,0 +1994-05-05,1.0641,1.0807,1.0322,1.0526,80411141,0 +1994-05-06,1.0322,1.0486,1.0001,1.0348,52368439,0 +1994-05-09,1.0322,1.0399,0.9849,1.0001,39174819,0 +1994-05-10,1.0167,1.0245,0.9925,0.9925,40952075,0 +1994-05-11,0.9925,1.0091,0.9526,0.9682,40583504,0 +1994-05-12,0.9758,0.9849,0.9453,0.9502,29869929,0 +1994-05-13,0.9526,0.9758,0.936,0.9604,25828133,0 +1994-05-16,0.9604,0.9758,0.9453,0.9453,37756751,0 +1994-05-17,0.9526,0.9526,0.9209,0.9399,50228847,0 +1994-05-18,0.9526,0.9849,0.936,0.9809,34542679,0 +1994-05-19,0.9849,1.0399,0.9758,1.0282,76297499,0 +1994-05-20,1.0167,1.0322,0.9925,0.9938,27371143,0 +1994-05-23,0.9925,1.0001,0.9604,0.9758,33452592,0 +1994-05-24,0.9925,1.0001,0.9682,0.9849,35264203,0 +1994-05-25,0.9682,1.0167,0.9604,1.0001,37959786,0 +1994-05-26,1.0091,1.0091,0.9682,0.9758,20368285,0 +1994-05-27,0.9682,0.9849,0.9453,0.9591,30310357,0 +1994-05-31,0.9453,0.9453,0.9117,0.936,71784043,0 +1994-06-01,0.9117,0.9171,0.8926,0.9039,107582376,0 +1994-06-02,0.9078,0.9117,0.8683,0.8762,107348105,0 +1994-06-03,0.8683,0.8966,0.8567,0.8847,98636693,0 +1994-06-06,0.8809,0.8886,0.8644,0.8762,35148641,0 +1994-06-07,0.8723,0.8886,0.8723,0.8809,39112346,0 +1994-06-08,0.8809,0.8847,0.8324,0.8362,76459907,0 +1994-06-09,0.821,0.8644,0.8171,0.8644,81860428,0 +1994-06-10,0.8683,0.8762,0.8438,0.8478,39805762,0 +1994-06-13,0.8438,0.8697,0.8438,0.8644,25909354,0 +1994-06-14,0.8723,0.8762,0.853,0.8656,43047929,0 +1994-06-15,0.8644,0.8966,0.8605,0.8913,44475377,0 +1994-06-16,0.8886,0.8886,0.8362,0.8438,60858081,0 +1994-06-17,0.8324,0.8567,0.8286,0.8478,62607235,0 +1994-06-20,0.8401,0.8723,0.8324,0.8683,55748056,0 +1994-06-21,0.8605,0.8723,0.8246,0.8324,67845330,0 +1994-06-22,0.8401,0.8567,0.8324,0.8401,31753403,0 +1994-06-23,0.8401,0.8401,0.7965,0.8044,56863131,0 +1994-06-24,0.8044,0.8362,0.7928,0.8197,81673017,0 +1994-06-27,0.808,0.8401,0.7888,0.8401,71381119,0 +1994-06-28,0.8401,0.8683,0.821,0.8567,48589006,0 +1994-06-29,0.8567,0.8683,0.8286,0.8362,37806722,0 +1994-06-30,0.8401,0.8605,0.8401,0.8478,28370652,0 +1994-07-01,0.8438,0.8478,0.8118,0.8246,49997713,0 +1994-07-05,0.821,0.8567,0.821,0.8478,23941563,0 +1994-07-06,0.8401,0.8478,0.8324,0.8362,27158755,0 +1994-07-07,0.8286,0.8644,0.8171,0.8591,47452051,0 +1994-07-08,0.8478,0.8847,0.8478,0.8656,58071939,0 +1994-07-11,0.8683,0.8762,0.853,0.8644,29679405,0 +1994-07-12,0.8644,0.9105,0.8438,0.9078,67576715,0 +1994-07-13,0.9117,0.9682,0.9117,0.9502,125570553,0 +1994-07-14,0.949,0.9526,0.9039,0.9171,50385011,0 +1994-07-15,0.9039,0.9171,0.8809,0.9039,26484073,0 +1994-07-18,0.9005,0.9284,0.8966,0.9078,21314697,0 +1994-07-19,0.9171,0.9209,0.8762,0.8861,32453058,0 +1994-07-20,0.8762,0.8847,0.8438,0.853,60620697,0 +1994-07-21,0.853,0.9117,0.8478,0.8966,80729723,0 +1994-07-22,1.0132,1.0233,0.9604,0.9925,219362713,0 +1994-07-25,0.9963,1.0208,0.9849,1.0144,117871145,0 +1994-07-26,1.0167,1.0245,0.9963,1.0039,52655790,0 +1994-07-27,1.0001,1.0039,0.9809,0.9938,37310086,0 +1994-07-28,0.9925,1.0282,0.9886,1.0208,68413806,0 +1994-07-29,1.0208,1.0886,1.0208,1.0784,154993818,0 +1994-08-01,1.0757,1.0807,1.0486,1.0694,63940977,0 +1994-08-02,1.0731,1.0757,1.0374,1.0426,75176174,0 +1994-08-03,1.0486,1.0641,1.0282,1.0604,63263176,0 +1994-08-04,1.0604,1.0807,1.0604,1.0641,51525093,0 +1994-08-05,1.0526,1.0694,1.0526,1.0641,24266406,0 +1994-08-08,1.0604,1.0886,1.0566,1.0807,39399697,0 +1994-08-09,1.0731,1.0847,1.0604,1.0757,21920651,0 +1994-08-10,1.0757,1.1167,1.0641,1.1078,70715820,0 +1994-08-11,1.0961,1.1245,1.0847,1.0988,83131692,0 +1994-08-12,1.1014,1.1245,1.0847,1.1128,50100786,0 +1994-08-15,1.1128,1.1206,1.0961,1.1078,33486932,0 +1994-08-16,1.1014,1.1128,1.0886,1.1128,43432130,0 +1994-08-17,1.1167,1.1331,1.1078,1.1206,79811426,0 +1994-08-18,1.1128,1.1283,1.1038,1.1078,57522203,0 +1994-08-19,1.1128,1.1206,1.0961,1.1167,36407396,0 +1994-08-22,1.1128,1.1206,1.1078,1.1167,42507572,0 +1994-08-23,1.1167,1.1487,1.1128,1.1206,59805459,0 +1994-08-24,1.1128,1.1206,1.1014,1.1167,47851869,0 +1994-08-25,1.0961,1.1655,1.0961,1.1232,83328466,0 +1994-08-26,1.1283,1.1563,1.1283,1.1449,56947471,0 +1994-08-29,1.1449,1.1563,1.1283,1.1331,42420113,0 +1994-08-30,1.1283,1.1655,1.1245,1.1601,50778578,0 +1994-08-31,1.1526,1.1974,1.1449,1.1577,98121318,0 +1994-09-01,1.1331,1.1449,1.1078,1.1206,56972462,0 +1994-09-02,1.1283,1.1371,1.1206,1.1331,28251978,0 +1994-09-06,1.1283,1.1399,1.1206,1.1385,25497052,0 +1994-09-07,1.1399,1.1718,1.1331,1.1563,56863131,0 +1994-09-08,1.1526,1.1601,1.1399,1.1563,44297330,0 +1994-09-09,1.1449,1.1526,1.1331,1.1449,43850688,0 +1994-09-12,1.1399,1.1449,1.1331,1.1449,25250302,0 +1994-09-13,1.1449,1.1601,1.1399,1.1474,29067195,0 +1994-09-14,1.1399,1.1449,1.1206,1.1245,27633506,0 +1994-09-15,1.1245,1.1563,1.1245,1.1526,72218212,0 +1994-09-16,1.1487,1.1921,1.1371,1.1655,101554040,0 +1994-09-19,1.1655,1.1768,1.1371,1.1371,48623375,0 +1994-09-20,1.1245,1.1331,1.1014,1.1065,55010911,0 +1994-09-21,1.1038,1.1078,1.0807,1.0924,65493344,0 +1994-09-22,1.0961,1.0961,1.0757,1.0847,40783411,0 +1994-09-23,1.0847,1.1038,1.0847,1.0859,37057082,0 +1994-09-26,1.0847,1.1038,1.0757,1.0859,39518403,0 +1994-09-27,1.0807,1.0924,1.0694,1.0847,30422813,0 +1994-09-28,1.0886,1.1014,1.0757,1.0847,22664038,0 +1994-09-29,1.0807,1.1014,1.0694,1.0924,30504003,0 +1994-09-30,1.0924,1.1038,1.0757,1.0784,19996575,0 +1994-10-03,1.0757,1.0807,1.0399,1.0604,36141898,0 +1994-10-04,1.0641,1.0886,1.0566,1.0807,45287486,0 +1994-10-05,1.0757,1.2204,1.0694,1.2128,197951181,0 +1994-10-06,1.1974,1.1999,1.1526,1.1601,146947714,0 +1994-10-07,1.1563,1.1871,1.1371,1.1845,101622750,0 +1994-10-10,1.1884,1.2677,1.1845,1.2446,145970073,0 +1994-10-11,1.3255,1.3407,1.2614,1.2677,234905205,0 +1994-10-12,1.2677,1.3638,1.2526,1.3486,166581982,0 +1994-10-13,1.3638,1.373,1.2998,1.3164,146497944,0 +1994-10-14,1.3294,1.3447,1.3089,1.3164,49098142,0 +1994-10-17,1.3089,1.3294,1.2446,1.273,84777784,0 +1994-10-18,1.2998,1.332,1.2959,1.3202,130708685,0 +1994-10-19,1.3126,1.3486,1.3126,1.3202,97912037,0 +1994-10-20,1.3202,1.3394,1.2959,1.3126,60836214,0 +1994-10-21,1.305,1.3689,1.305,1.3638,89997128,0 +1994-10-24,1.3689,1.3807,1.3407,1.3524,57031813,0 +1994-10-25,1.332,1.3638,1.3294,1.3638,84078113,0 +1994-10-26,1.3638,1.3841,1.3638,1.3841,54876602,0 +1994-10-27,1.3841,1.4012,1.3599,1.3689,44456642,0 +1994-10-28,1.3575,1.373,1.3366,1.3486,76225654,0 +1994-10-31,1.3447,1.3894,1.3294,1.3821,99255144,0 +1994-11-01,1.373,1.392,1.3575,1.3807,60823726,0 +1994-11-02,1.3807,1.3841,1.3255,1.3255,61004885,0 +1994-11-03,1.3366,1.3447,1.3126,1.3294,30822605,0 +1994-11-04,1.3294,1.332,1.2808,1.2933,53558474,0 +1994-11-07,1.2933,1.3202,1.2844,1.305,31525396,0 +1994-11-08,1.2998,1.3638,1.2883,1.3524,97321708,0 +1994-11-09,1.3689,1.3769,1.3126,1.332,113320234,0 +1994-11-10,1.3366,1.3407,1.3126,1.3229,42663748,0 +1994-11-11,1.3202,1.3294,1.3126,1.3164,17366608,0 +1994-11-14,1.3202,1.3689,1.3202,1.3599,38940556,0 +1994-11-15,1.3599,1.3769,1.3202,1.3255,46746173,0 +1994-11-16,1.305,1.3307,1.2998,1.3104,52262238,0 +1994-11-17,1.3089,1.3126,1.2768,1.2808,41954719,0 +1994-11-18,1.2808,1.2959,1.2677,1.2808,41005174,0 +1994-11-21,1.2808,1.2883,1.2167,1.2204,56500823,0 +1994-11-22,1.2089,1.2526,1.1921,1.1974,62563516,0 +1994-11-23,1.1845,1.2128,1.1655,1.1808,91421436,0 +1994-11-25,1.1808,1.2089,1.1768,1.2089,23488652,0 +1994-11-28,1.2037,1.2241,1.1949,1.2115,38675050,0 +1994-11-29,1.2167,1.2321,1.2089,1.2241,40196190,0 +1994-11-30,1.2294,1.2614,1.1845,1.1921,87020447,0 +1994-12-01,1.1845,1.2037,1.1526,1.1577,86264544,0 +1994-12-02,1.1679,1.1768,1.1399,1.1704,48039280,0 +1994-12-05,1.1679,1.1974,1.1563,1.1898,50275689,0 +1994-12-06,1.1845,1.2294,1.1808,1.2026,66399149,0 +1994-12-07,1.2013,1.2115,1.1549,1.1718,38290861,0 +1994-12-08,1.1808,1.1845,1.1449,1.1487,47370854,0 +1994-12-09,1.1487,1.1655,1.1128,1.1601,72711718,0 +1994-12-12,1.1655,1.1768,1.1371,1.1679,62491670,0 +1994-12-13,1.1718,1.182,1.1601,1.1655,33243307,0 +1994-12-14,1.1679,1.2204,1.1679,1.2128,86851758,0 +1994-12-15,1.2167,1.2294,1.1808,1.1884,63472436,0 +1994-12-16,1.1921,1.2089,1.1768,1.1921,50138262,0 +1994-12-19,1.1921,1.2614,1.1921,1.2526,92817633,0 +1994-12-20,1.2526,1.2562,1.2294,1.2321,48845146,0 +1994-12-21,1.2128,1.2321,1.2013,1.2294,43906913,0 +1994-12-22,1.2321,1.2446,1.2241,1.2361,37113298,0 +1994-12-23,1.2321,1.2614,1.2321,1.2446,26184227,0 +1994-12-27,1.2562,1.273,1.2446,1.2526,22845212,0 +1994-12-28,1.2526,1.2562,1.2241,1.2526,24866114,0 +1994-12-29,1.2562,1.2768,1.2526,1.2653,33839897,0 +1994-12-30,1.2614,1.2768,1.2407,1.2485,20383900,0 +1995-01-03,1.2446,1.2446,1.2128,1.2294,28967264,0 +1995-01-04,1.2361,1.2677,1.2361,1.2614,44253608,0 +1995-01-05,1.2562,1.2614,1.2407,1.2446,20536941,0 +1995-01-06,1.332,1.3807,1.3164,1.3447,300251742,0 +1995-01-09,1.332,1.3407,1.3126,1.319,76438048,0 +1995-01-10,1.3202,1.4085,1.3202,1.3987,171454628,0 +1995-01-11,1.4012,1.5394,1.3663,1.4969,243694708,0 +1995-01-12,1.4764,1.4856,1.4327,1.4534,153881867,0 +1995-01-13,1.4764,1.4764,1.4216,1.4366,97993256,0 +1995-01-16,1.4366,1.4486,1.4162,1.4243,52702655,0 +1995-01-17,1.4243,1.4572,1.4123,1.4406,92061738,0 +1995-01-18,1.4406,1.4598,1.4327,1.4598,35601539,0 +1995-01-19,1.4572,1.4728,1.4406,1.4691,87651374,0 +1995-01-20,1.5048,1.5048,1.3599,1.3638,278983903,0 +1995-01-23,1.3407,1.3638,1.3126,1.3524,111146272,0 +1995-01-24,1.3524,1.3575,1.3255,1.332,60823726,0 +1995-01-25,1.2653,1.3447,1.2653,1.3112,144202170,0 +1995-01-26,1.3089,1.3294,1.2562,1.2653,68713657,0 +1995-01-27,1.2768,1.2933,1.2485,1.2768,83265993,0 +1995-01-30,1.2844,1.2959,1.2768,1.2844,64306425,0 +1995-01-31,1.2959,1.3089,1.2808,1.2933,59340073,0 +1995-02-01,1.305,1.305,1.2768,1.2844,44166148,0 +1995-02-02,1.2844,1.3407,1.2844,1.332,56775673,0 +1995-02-03,1.3447,1.3486,1.2933,1.2959,89022599,0 +1995-02-06,1.305,1.305,1.2653,1.2959,67776606,0 +1995-02-07,1.2933,1.3126,1.2808,1.3075,56222820,0 +1995-02-08,1.3126,1.3575,1.3089,1.355,112351936,0 +1995-02-09,1.3486,1.405,1.3486,1.396,132579659,0 +1995-02-10,1.396,1.4136,1.3894,1.4012,97877696,0 +1995-02-13,1.3932,1.4243,1.3841,1.4012,79027423,0 +1995-02-14,1.4012,1.4123,1.3638,1.3741,46187043,0 +1995-02-15,1.3841,1.3932,1.3599,1.3626,51447017,0 +1995-02-16,1.3807,1.3841,1.3638,1.3821,61014258,0 +1995-02-17,1.373,1.3769,1.3599,1.3599,33964839,0 +1995-02-21,1.3638,1.3689,1.3089,1.3126,84106220,0 +1995-02-22,1.2998,1.3126,1.2844,1.3075,81829193,0 +1995-02-23,1.3164,1.3407,1.2808,1.2859,87766944,0 +1995-02-24,1.2844,1.2933,1.2321,1.2485,158632694,0 +1995-02-27,1.2241,1.2485,1.2204,1.2241,74966884,0 +1995-02-28,1.2321,1.2768,1.2167,1.2653,62182441,0 +1995-03-01,1.273,1.2844,1.2626,1.2808,62594742,0 +1995-03-02,1.2844,1.305,1.273,1.2808,74948150,0 +1995-03-03,1.273,1.3025,1.2653,1.2883,40652230,0 +1995-03-06,1.273,1.2808,1.2653,1.273,37013351,0 +1995-03-07,1.2768,1.2768,1.2241,1.2267,42051547,0 +1995-03-08,1.2407,1.2844,1.2089,1.2665,101757076,0 +1995-03-09,1.2768,1.2933,1.2614,1.273,54851606,0 +1995-03-10,1.2677,1.2933,1.2614,1.2653,38322103,0 +1995-03-13,1.2677,1.2677,1.2167,1.2204,90846708,0 +1995-03-14,1.2241,1.2241,1.1038,1.1206,202989393,0 +1995-03-15,1.1371,1.1601,1.1167,1.1206,203854575,0 +1995-03-16,1.1283,1.1526,1.1206,1.1283,88332295,0 +1995-03-17,1.1371,1.1371,1.1167,1.1245,60139684,0 +1995-03-20,1.1245,1.1399,1.1206,1.1283,52955655,0 +1995-03-21,1.1371,1.1768,1.1283,1.1601,85161961,0 +1995-03-22,1.1601,1.2653,1.1601,1.2192,133626031,0 +1995-03-23,1.2128,1.2167,1.1833,1.1884,47436438,0 +1995-03-24,1.1974,1.2128,1.1921,1.2089,35729589,0 +1995-03-27,1.2037,1.2037,1.1718,1.1898,39824504,0 +1995-03-28,1.1601,1.1642,1.0924,1.1014,192372645,0 +1995-03-29,1.0886,1.1167,1.0847,1.1014,138570519,0 +1995-03-30,1.1078,1.1371,1.1038,1.1331,76250634,0 +1995-03-31,1.1245,1.1399,1.1128,1.1283,51103416,0 +1995-04-03,1.1371,1.1449,1.1245,1.1371,43032322,0 +1995-04-04,1.1449,1.1487,1.0757,1.0847,119417272,0 +1995-04-05,1.0924,1.1128,1.0807,1.1128,73864294,0 +1995-04-06,1.1921,1.2167,1.1371,1.1768,201583820,0 +1995-04-07,1.1845,1.1884,1.1601,1.1768,82472624,0 +1995-04-10,1.1808,1.1845,1.1563,1.1718,32852867,0 +1995-04-11,1.1768,1.2128,1.1718,1.2089,59824201,0 +1995-04-12,1.2241,1.2677,1.1974,1.2485,132389122,0 +1995-04-13,1.2562,1.2562,1.2128,1.2241,48626504,0 +1995-04-17,1.2204,1.2614,1.2128,1.2294,58234350,0 +1995-04-18,1.2321,1.2361,1.2013,1.2013,64459467,0 +1995-04-19,1.2013,1.2013,1.1399,1.1655,77927956,0 +1995-04-20,1.1884,1.2321,1.1718,1.2037,91893088,0 +1995-04-21,1.1921,1.2653,1.1884,1.2526,185910139,0 +1995-04-24,1.2485,1.2677,1.2321,1.2485,75922672,0 +1995-04-25,1.2526,1.2614,1.1921,1.2089,76313121,0 +1995-04-26,1.2037,1.2407,1.1974,1.2241,64265812,0 +1995-04-27,1.2321,1.2321,1.2089,1.2128,39006155,0 +1995-04-28,1.2167,1.2294,1.2013,1.2241,54470544,0 +1995-05-01,1.2241,1.2407,1.2167,1.2241,49629132,0 +1995-05-02,1.2241,1.2294,1.2013,1.2204,33468197,0 +1995-05-03,1.2241,1.2361,1.2167,1.2204,47070986,0 +1995-05-04,1.2241,1.2768,1.2167,1.2321,84680938,0 +1995-05-05,1.2407,1.2526,1.2204,1.2446,58009469,0 +1995-05-08,1.2768,1.3126,1.273,1.2959,107919705,0 +1995-05-09,1.2998,1.3255,1.2808,1.3202,90059600,0 +1995-05-10,1.3294,1.3407,1.305,1.3269,76712922,0 +1995-05-11,1.332,1.332,1.2933,1.3126,146029410,0 +1995-05-12,1.3089,1.3987,1.2959,1.396,180703279,0 +1995-05-15,1.3807,1.4012,1.3599,1.396,109700097,0 +1995-05-16,1.3807,1.4216,1.3599,1.4012,92733301,0 +1995-05-17,1.4012,1.4216,1.3932,1.4085,73386402,0 +1995-05-18,1.4123,1.4123,1.3841,1.3894,103624912,0 +1995-05-19,1.373,1.4012,1.3638,1.3689,89965886,0 +1995-05-22,1.3599,1.4123,1.3524,1.4123,103712371,0 +1995-05-23,1.4123,1.4216,1.3932,1.405,77156445,0 +1995-05-24,1.4012,1.4162,1.373,1.3932,73811204,0 +1995-05-25,1.3841,1.4085,1.3769,1.3894,50997228,0 +1995-05-26,1.3769,1.3807,1.3524,1.3663,31947048,0 +1995-05-30,1.3638,1.373,1.3294,1.3447,54767272,0 +1995-05-31,1.3486,1.3486,1.3126,1.3307,44490999,0 +1995-06-01,1.3407,1.3599,1.3366,1.3499,52074832,0 +1995-06-02,1.3407,1.3575,1.3294,1.3486,29476369,0 +1995-06-05,1.3575,1.3932,1.3486,1.3932,71018802,0 +1995-06-06,1.396,1.4216,1.3932,1.4085,87923131,0 +1995-06-07,1.4123,1.4123,1.3807,1.3807,34726957,0 +1995-06-08,1.3894,1.3894,1.3486,1.3741,37966027,0 +1995-06-09,1.396,1.4012,1.3807,1.3932,52046723,0 +1995-06-12,1.4085,1.4243,1.405,1.4136,59155790,0 +1995-06-13,1.4243,1.4282,1.405,1.4085,35123639,0 +1995-06-14,1.405,1.405,1.3894,1.396,32921595,0 +1995-06-15,1.396,1.4012,1.3894,1.396,25868743,0 +1995-06-16,1.405,1.4085,1.3932,1.405,24878592,0 +1995-06-19,1.405,1.4486,1.3932,1.4216,130946077,0 +1995-06-20,1.4728,1.5289,1.4728,1.5175,205962945,0 +1995-06-21,1.524,1.6045,1.4969,1.5815,174584363,0 +1995-06-22,1.5687,1.5878,1.5561,1.5726,132167363,0 +1995-06-23,1.561,1.5687,1.5289,1.561,64690593,0 +1995-06-26,1.5443,1.5521,1.524,1.5408,42607532,0 +1995-06-27,1.5175,1.5443,1.4856,1.4856,60545724,0 +1995-06-28,1.4728,1.5213,1.4534,1.4919,74282829,0 +1995-06-29,1.4856,1.5408,1.4728,1.5124,64856150,0 +1995-06-30,1.5124,1.5329,1.4764,1.4869,46152687,0 +1995-07-03,1.4882,1.5085,1.4803,1.5022,10985311,0 +1995-07-05,1.5009,1.5329,1.4882,1.4882,49379247,0 +1995-07-06,1.4882,1.5048,1.4651,1.5048,51340806,0 +1995-07-07,1.5009,1.5766,1.4969,1.5561,107960298,0 +1995-07-10,1.5561,1.5971,1.5408,1.5561,83087970,0 +1995-07-11,1.5289,1.5561,1.5073,1.5085,59874171,0 +1995-07-12,1.5124,1.5369,1.4764,1.5048,79149241,0 +1995-07-13,1.5175,1.561,1.5085,1.524,98258746,0 +1995-07-14,1.5175,1.5687,1.5048,1.561,77509413,0 +1995-07-17,1.5647,1.5932,1.5561,1.5687,63072636,0 +1995-07-18,1.5687,1.5866,1.5289,1.5408,71012549,0 +1995-07-19,1.5048,1.5369,1.4406,1.4572,145307878,0 +1995-07-20,1.4728,1.5175,1.4406,1.5073,92386589,0 +1995-07-21,1.3769,1.4366,1.3769,1.4012,211360332,0 +1995-07-24,1.4085,1.4572,1.4012,1.4534,59855445,0 +1995-07-25,1.4728,1.4856,1.4598,1.4651,73492610,0 +1995-07-26,1.4803,1.4803,1.4534,1.4534,47814386,0 +1995-07-27,1.4572,1.5213,1.4572,1.4995,90687417,0 +1995-07-28,1.4969,1.5124,1.4406,1.4572,72771078,0 +1995-07-31,1.4572,1.4598,1.4327,1.4406,44209886,0 +1995-08-01,1.4366,1.4366,1.3932,1.3932,58821563,0 +1995-08-02,1.405,1.4406,1.4012,1.4216,76728542,0 +1995-08-03,1.4123,1.4598,1.405,1.4406,59661789,0 +1995-08-04,1.4406,1.4448,1.4012,1.4162,53633444,0 +1995-08-07,1.4123,1.4282,1.3807,1.3894,54036376,0 +1995-08-08,1.396,1.4012,1.3575,1.3599,65424628,0 +1995-08-09,1.3638,1.4012,1.3599,1.3807,102912760,0 +1995-08-10,1.3807,1.3841,1.3638,1.3689,45743520,0 +1995-08-11,1.373,1.3807,1.3407,1.3795,57709606,0 +1995-08-14,1.3769,1.4012,1.373,1.3894,46686804,0 +1995-08-15,1.405,1.4123,1.3807,1.411,88647781,0 +1995-08-16,1.4085,1.4243,1.396,1.4243,81610559,0 +1995-08-17,1.4282,1.4572,1.4123,1.4282,68854215,0 +1995-08-18,1.4366,1.4448,1.4012,1.4366,67254982,0 +1995-08-21,1.4366,1.4534,1.4123,1.4123,75794616,0 +1995-08-22,1.4216,1.4448,1.4123,1.4327,60530119,0 +1995-08-23,1.4366,1.4691,1.4282,1.4572,70781403,0 +1995-08-24,1.4598,1.4803,1.4572,1.4651,80298686,0 +1995-08-25,1.4691,1.4691,1.4282,1.4327,37466258,0 +1995-08-28,1.4366,1.4406,1.3769,1.3769,67779740,0 +1995-08-29,1.3769,1.3841,1.3599,1.3807,88422870,0 +1995-08-30,1.3841,1.4012,1.3807,1.3894,42801186,0 +1995-08-31,1.3894,1.3932,1.3769,1.3769,24503772,0 +1995-09-01,1.3769,1.3932,1.373,1.3741,27436742,0 +1995-09-05,1.3932,1.3932,1.3689,1.3932,50191358,0 +1995-09-06,1.405,1.4136,1.3932,1.4012,55988559,0 +1995-09-07,1.4085,1.4509,1.4012,1.4327,73158384,0 +1995-09-08,1.4327,1.4366,1.4243,1.4327,48742064,0 +1995-09-11,1.4366,1.4572,1.4162,1.4162,48104879,0 +1995-09-12,1.4243,1.4366,1.3638,1.3741,90987262,0 +1995-09-13,1.373,1.3894,1.3447,1.3575,90009608,0 +1995-09-14,1.3255,1.332,1.273,1.2808,153541409,0 +1995-09-15,1.1974,1.2768,1.1371,1.1487,337996000,0 +1995-09-18,1.1655,1.1795,1.1487,1.1744,173322466,0 +1995-09-19,1.1768,1.1884,1.1563,1.1768,136658945,0 +1995-09-20,1.1921,1.1974,1.1679,1.1718,89747228,0 +1995-09-21,1.1679,1.2013,1.1655,1.1845,96865677,0 +1995-09-22,1.1808,1.1921,1.1655,1.1871,111174393,0 +1995-09-25,1.2241,1.2241,1.1974,1.2013,87907514,0 +1995-09-26,1.2089,1.2128,1.1884,1.1974,69972420,0 +1995-09-27,1.2013,1.2013,1.1128,1.1601,125842293,0 +1995-09-28,1.1679,1.2128,1.1679,1.2089,92361607,0 +1995-09-29,1.2167,1.2241,1.1808,1.1921,79039918,0 +1995-10-02,1.2089,1.2321,1.2013,1.2037,109322159,0 +1995-10-03,1.2204,1.2321,1.1884,1.2037,80826541,0 +1995-10-04,1.1718,1.1845,1.1526,1.1655,74398411,0 +1995-10-05,1.1601,1.1718,1.1487,1.1679,68067111,0 +1995-10-06,1.1768,1.1845,1.1399,1.1424,86186460,0 +1995-10-09,1.1331,1.1449,1.1014,1.1153,103902904,0 +1995-10-10,1.1014,1.1206,1.0757,1.1103,111627308,0 +1995-10-11,1.1283,1.1399,1.0924,1.1167,92833262,0 +1995-10-12,1.1206,1.1331,1.1128,1.1307,45193781,0 +1995-10-13,1.1449,1.1808,1.1371,1.1526,65590173,0 +1995-10-16,1.1601,1.1845,1.1487,1.1563,50775461,0 +1995-10-17,1.1679,1.1808,1.1487,1.1718,49813419,0 +1995-10-18,1.1845,1.2665,1.1768,1.1974,142899676,0 +1995-10-19,1.1487,1.1563,1.1128,1.1128,263516383,0 +1995-10-20,1.1283,1.1283,1.1078,1.1245,107741667,0 +1995-10-23,1.1245,1.1245,1.1128,1.1245,55163953,0 +1995-10-24,1.1371,1.1371,1.1167,1.1245,59539957,0 +1995-10-25,1.1283,1.1331,1.1128,1.1128,37175769,0 +1995-10-26,1.1167,1.1206,1.1038,1.1167,35101775,0 +1995-10-27,1.1167,1.1167,1.0924,1.1128,43007326,0 +1995-10-30,1.1167,1.1283,1.1078,1.1283,48982574,0 +1995-10-31,1.1283,1.1718,1.1245,1.1628,80657893,0 +1995-11-01,1.1718,1.1884,1.1371,1.1718,53889572,0 +1995-11-02,1.1808,1.1808,1.1601,1.1718,42601293,0 +1995-11-03,1.1768,1.1808,1.1487,1.1679,50041442,0 +1995-11-06,1.1679,1.2407,1.1655,1.2204,86948593,0 +1995-11-07,1.2089,1.2959,1.2013,1.2677,205366358,0 +1995-11-08,1.273,1.3126,1.2407,1.2446,100070370,0 +1995-11-09,1.273,1.2808,1.2446,1.2614,72539934,0 +1995-11-10,1.2614,1.2883,1.2446,1.273,62223042,0 +1995-11-13,1.2883,1.3202,1.2808,1.3089,88510346,0 +1995-11-14,1.3126,1.3599,1.3126,1.3294,113582597,0 +1995-11-15,1.3447,1.3447,1.2844,1.3126,69200928,0 +1995-11-16,1.3089,1.3294,1.2653,1.278,63091376,0 +1995-11-17,1.2808,1.2933,1.273,1.2844,35845177,0 +1995-11-20,1.2883,1.2883,1.2321,1.2361,41401861,0 +1995-11-21,1.2407,1.2407,1.2128,1.2361,53436657,0 +1995-11-22,1.2361,1.2562,1.2321,1.2361,27555435,0 +1995-11-24,1.2446,1.2933,1.2407,1.2859,30663293,0 +1995-11-27,1.2998,1.2998,1.2614,1.2614,32315636,0 +1995-11-28,1.2614,1.2844,1.2562,1.2808,49163738,0 +1995-11-29,1.2844,1.2844,1.2485,1.2562,29357682,0 +1995-11-30,1.2446,1.2485,1.2167,1.2204,48763925,0 +1995-12-01,1.2167,1.2241,1.1884,1.2037,56950593,0 +1995-12-04,1.2844,1.2844,1.2485,1.2653,134053948,0 +1995-12-05,1.2321,1.2768,1.2241,1.2653,101400980,0 +1995-12-06,1.273,1.2768,1.2294,1.2407,56085400,0 +1995-12-07,1.2407,1.2407,1.2128,1.2347,39580867,0 +1995-12-08,1.2407,1.2614,1.2128,1.2614,39421571,0 +1995-12-11,1.2653,1.2677,1.2294,1.2361,31138072,0 +1995-12-12,1.2361,1.2361,1.2167,1.2167,49516682,0 +1995-12-13,1.2241,1.2485,1.1768,1.2294,191007669,0 +1995-12-14,1.2446,1.2614,1.2167,1.2241,93008173,0 +1995-12-15,1.1371,1.1718,1.1014,1.1283,202714512,0 +1995-12-18,1.1245,1.1283,1.0208,1.0322,185885140,0 +1995-12-19,1.0486,1.0641,1.0322,1.0486,120160672,0 +1995-12-20,1.0731,1.0757,1.0399,1.0438,101997569,0 +1995-12-21,1.0486,1.0486,1.0132,1.0399,92833262,0 +1995-12-22,1.0438,1.0526,1.0282,1.0322,65443376,0 +1995-12-26,1.0399,1.0399,1.0167,1.027,38906185,0 +1995-12-27,1.0282,1.0694,1.0208,1.0374,74898171,0 +1995-12-28,1.0282,1.0486,1.0208,1.0245,69719432,0 +1995-12-29,1.0245,1.0374,1.0132,1.0208,84818377,0 +1996-01-02,1.0322,1.0322,1.0167,1.0282,38846848,0 +1996-01-03,1.0245,1.0526,1.0208,1.0282,119873305,0 +1996-01-04,1.0374,1.0374,1.0039,1.0105,83715786,0 +1996-01-05,1.0132,1.0961,1.0039,1.0961,124361758,0 +1996-01-08,1.1038,1.1371,1.0886,1.1078,33839897,0 +1996-01-09,1.1078,1.1078,1.0486,1.0486,70059886,0 +1996-01-10,1.0399,1.1128,1.0322,1.0961,101913236,0 +1996-01-11,1.0438,1.1206,1.0374,1.1206,211041736,0 +1996-01-12,1.1128,1.1128,1.0641,1.0847,112070838,0 +1996-01-15,1.0807,1.1038,1.0694,1.0924,101257311,0 +1996-01-16,1.1014,1.1128,1.0757,1.1065,98421172,0 +1996-01-17,1.1014,1.1014,1.0807,1.0886,65930622,0 +1996-01-18,1.0526,1.0694,0.972,1.0233,194768358,0 +1996-01-19,0.9925,1.0167,0.9399,0.9565,231256962,0 +1996-01-22,0.9526,0.9925,0.936,0.9758,139370135,0 +1996-01-23,1.0807,1.0886,0.9925,1.0132,275616769,0 +1996-01-24,1.0282,1.0322,1.0167,1.0322,182917841,0 +1996-01-25,1.0167,1.0245,0.9644,0.9682,124158727,0 +1996-01-26,0.972,1.0001,0.9171,0.9809,205188325,0 +1996-01-29,0.9284,0.9526,0.9209,0.9321,92755146,0 +1996-01-30,0.8644,0.9005,0.8591,0.8749,173700407,0 +1996-01-31,0.8886,0.8966,0.8762,0.8847,91490152,0 +1996-02-01,0.8809,0.9078,0.8809,0.9078,92880104,0 +1996-02-02,0.9247,0.949,0.9209,0.936,155053172,0 +1996-02-05,0.9502,0.9526,0.9284,0.936,88888283,0 +1996-02-06,0.936,0.9604,0.936,0.949,63088250,0 +1996-02-07,0.9526,0.9526,0.8886,0.9039,100488925,0 +1996-02-08,0.8809,0.9005,0.8809,0.8926,73392656,0 +1996-02-09,0.8926,0.9117,0.8847,0.8886,57362894,0 +1996-02-12,0.9005,0.9117,0.8966,0.9078,54180058,0 +1996-02-13,0.8966,0.9247,0.8926,0.9005,63725457,0 +1996-02-14,0.9039,0.9039,0.8785,0.8847,45509252,0 +1996-02-15,0.8847,0.9005,0.8762,0.8966,34046036,0 +1996-02-16,0.9005,0.9078,0.8809,0.8809,43628903,0 +1996-02-20,0.8966,0.9453,0.8966,0.9284,105114824,0 +1996-02-21,0.9399,0.9526,0.9321,0.949,61866971,0 +1996-02-22,0.9604,0.9644,0.949,0.9565,51365794,0 +1996-02-23,0.9565,0.9682,0.949,0.9565,48326656,0 +1996-02-26,0.9604,0.9644,0.9453,0.9453,32987183,0 +1996-02-27,0.9565,0.9565,0.9117,0.9171,41598649,0 +1996-02-28,0.9247,0.9247,0.8847,0.8886,52405921,0 +1996-02-29,0.8809,0.8886,0.8723,0.8809,31481658,0 +1996-03-01,0.8847,0.8847,0.853,0.8605,64459467,0 +1996-03-04,0.8723,0.8762,0.8401,0.8401,52305975,0 +1996-03-05,0.8478,0.8567,0.8401,0.853,33030907,0 +1996-03-06,0.8567,0.8605,0.8362,0.8375,27624139,0 +1996-03-07,0.8401,0.8438,0.8118,0.8273,72527434,0 +1996-03-08,0.8246,0.8401,0.8003,0.8324,41554911,0 +1996-03-11,0.8401,0.8438,0.8246,0.8286,35420382,0 +1996-03-12,0.8324,0.8438,0.821,0.8273,26815164,0 +1996-03-13,0.8286,0.8362,0.821,0.8246,27799075,0 +1996-03-14,0.8286,0.8286,0.8171,0.821,26037418,0 +1996-03-15,0.8324,0.8324,0.8171,0.8286,28273833,0 +1996-03-18,0.8311,0.8362,0.8246,0.8362,30435285,0 +1996-03-19,0.8438,0.8478,0.821,0.8246,34683245,0 +1996-03-20,0.8246,0.8246,0.8044,0.808,32346863,0 +1996-03-21,0.8171,0.8171,0.8003,0.8044,30672682,0 +1996-03-22,0.808,0.8118,0.7965,0.8118,29998000,0 +1996-03-25,0.8171,0.8246,0.7683,0.7683,45840348,0 +1996-03-26,0.7683,0.7837,0.757,0.7646,44843950,0 +1996-03-27,0.7439,0.808,0.7363,0.808,119723376,0 +1996-03-28,0.7928,0.821,0.7724,0.7737,82519489,0 +1996-03-29,0.776,0.7928,0.7606,0.7864,46440048,0 +1996-04-01,0.8044,0.8286,0.7851,0.8171,44241114,0 +1996-04-02,0.821,0.821,0.7965,0.8003,28289454,0 +1996-04-03,0.8044,0.8044,0.7785,0.7864,20146508,0 +1996-04-04,0.7888,0.7888,0.7683,0.7724,23997778,0 +1996-04-08,0.7646,0.7837,0.7606,0.7799,47083492,0 +1996-04-09,0.7965,0.8478,0.7799,0.8324,65558938,0 +1996-04-10,0.8362,0.8478,0.8286,0.8324,48738944,0 +1996-04-11,0.8362,0.8401,0.8171,0.8246,27405521,0 +1996-04-12,0.8286,0.8286,0.8118,0.8171,22710901,0 +1996-04-15,0.8171,0.8246,0.8003,0.8246,42969842,0 +1996-04-16,0.8286,0.8324,0.821,0.8286,28283213,0 +1996-04-17,0.8286,0.8324,0.8044,0.808,23819739,0 +1996-04-18,0.8118,0.8132,0.776,0.7928,60586349,0 +1996-04-19,0.7888,0.8044,0.7888,0.8017,28389408,0 +1996-04-22,0.808,0.8171,0.7965,0.8044,30988143,0 +1996-04-23,0.8044,0.808,0.7888,0.7928,47395844,0 +1996-04-24,0.7888,0.7928,0.7737,0.776,35792075,0 +1996-04-25,0.7799,0.7965,0.7724,0.7965,48638982,0 +1996-04-26,0.8003,0.8044,0.7888,0.7928,52671411,0 +1996-04-29,0.8003,0.8003,0.7837,0.7928,33758686,0 +1996-04-30,0.7965,0.7965,0.7724,0.7799,38112823,0 +1996-05-01,0.7799,0.7928,0.7724,0.7799,31431681,0 +1996-05-02,0.7837,0.7837,0.7531,0.7606,52515241,0 +1996-05-03,0.7724,0.7724,0.7531,0.7646,30247878,0 +1996-05-06,0.7965,0.8286,0.7928,0.821,80732850,0 +1996-05-07,0.8438,0.8762,0.8401,0.8605,98596092,0 +1996-05-08,0.8723,0.8723,0.821,0.8567,52093575,0 +1996-05-09,0.8438,0.8478,0.8246,0.8362,27352400,0 +1996-05-10,0.8401,0.8762,0.8324,0.8723,30841354,0 +1996-05-13,0.8683,0.8847,0.853,0.8656,52156035,0 +1996-05-14,0.8886,0.8966,0.8809,0.8809,55113992,0 +1996-05-15,0.8926,0.9247,0.8886,0.9117,81535584,0 +1996-05-16,0.9039,0.9171,0.8926,0.9078,36276201,0 +1996-05-17,0.9078,0.9078,0.8809,0.8847,34386502,0 +1996-05-20,0.8926,0.9005,0.8847,0.8953,23569863,0 +1996-05-21,0.8966,0.9005,0.8683,0.8683,31900200,0 +1996-05-22,0.8762,0.8762,0.8246,0.8337,56300906,0 +1996-05-23,0.8362,0.853,0.8246,0.8401,34595778,0 +1996-05-24,0.8401,0.8605,0.8362,0.8567,31581603,0 +1996-05-28,0.8567,0.8723,0.8438,0.8438,28405013,0 +1996-05-29,0.8401,0.8401,0.7928,0.7965,61220399,0 +1996-05-30,0.7965,0.8246,0.7928,0.8171,28854800,0 +1996-05-31,0.821,0.853,0.8171,0.8362,45359311,0 +1996-06-03,0.8286,0.8324,0.7928,0.7928,34989321,0 +1996-06-04,0.7683,0.7799,0.7646,0.7737,212575360,0 +1996-06-05,0.8118,0.8171,0.776,0.8044,142259357,0 +1996-06-06,0.8003,0.808,0.7724,0.776,100982432,0 +1996-06-07,0.7683,0.7799,0.7531,0.7799,74676396,0 +1996-06-10,0.7799,0.7837,0.7683,0.7724,29663783,0 +1996-06-11,0.776,0.776,0.7683,0.7683,42685618,0 +1996-06-12,0.7837,0.7837,0.7683,0.776,42367016,0 +1996-06-13,0.7799,0.7978,0.7683,0.7888,53383568,0 +1996-06-14,0.7928,0.7928,0.7646,0.7671,40427330,0 +1996-06-17,0.7724,0.7724,0.757,0.757,31494145,0 +1996-06-18,0.757,0.7606,0.7248,0.7288,62254278,0 +1996-06-19,0.7402,0.748,0.7248,0.7402,37500626,0 +1996-06-20,0.748,0.748,0.7196,0.7288,41020800,0 +1996-06-21,0.7324,0.7324,0.7158,0.7248,45137549,0 +1996-06-24,0.7248,0.7248,0.7085,0.7118,34236563,0 +1996-06-25,0.7085,0.7118,0.6517,0.661,68872964,0 +1996-06-26,0.661,0.6646,0.6286,0.6365,112761128,0 +1996-06-27,0.6404,0.6724,0.6326,0.661,63931604,0 +1996-06-28,0.6685,0.6724,0.661,0.6724,32262533,0 +1996-07-01,0.6762,0.6888,0.6724,0.6888,36807204,0 +1996-07-02,0.6839,0.6888,0.6724,0.6724,24822376,0 +1996-07-03,0.6517,0.6517,0.6199,0.6199,80489220,0 +1996-07-05,0.6199,0.6326,0.6159,0.6248,29604439,0 +1996-07-08,0.6286,0.6365,0.6082,0.6123,52683906,0 +1996-07-09,0.6248,0.6286,0.6082,0.6082,52380940,0 +1996-07-10,0.6123,0.6248,0.6005,0.6005,47239673,0 +1996-07-11,0.6005,0.6043,0.5559,0.5724,81198248,0 +1996-07-12,0.5877,0.5877,0.5518,0.5777,75016862,0 +1996-07-15,0.5801,0.5801,0.548,0.5494,37153918,0 +1996-07-16,0.5559,0.5559,0.5125,0.5404,80657893,0 +1996-07-17,0.5559,0.561,0.5329,0.5404,65146635,0 +1996-07-18,0.6888,0.6966,0.6517,0.6685,250172825,0 +1996-07-19,0.6685,0.6724,0.6646,0.6646,74176652,0 +1996-07-22,0.6685,0.6685,0.6404,0.6479,42448218,0 +1996-07-23,0.6556,0.661,0.6479,0.6556,36288702,0 +1996-07-24,0.6404,0.6724,0.6365,0.6671,73645645,0 +1996-07-25,0.6762,0.6839,0.6646,0.6724,31912703,0 +1996-07-26,0.6888,0.7045,0.6762,0.7045,34492693,0 +1996-07-29,0.7045,0.7196,0.6966,0.7118,54576748,0 +1996-07-30,0.7248,0.7288,0.6801,0.6839,52821341,0 +1996-07-31,0.6801,0.7045,0.6801,0.7045,25874991,0 +1996-08-01,0.7045,0.7045,0.6762,0.6801,30722645,0 +1996-08-02,0.6928,0.7045,0.6801,0.6928,35682754,0 +1996-08-05,0.6928,0.7004,0.6685,0.6724,28170752,0 +1996-08-06,0.6724,0.6888,0.6646,0.6888,26099896,0 +1996-08-07,0.6966,0.7248,0.6928,0.7158,69291498,0 +1996-08-08,0.7158,0.7158,0.7004,0.7085,28311322,0 +1996-08-09,0.7118,0.748,0.7085,0.7402,64362633,0 +1996-08-12,0.748,0.757,0.7158,0.7363,42207725,0 +1996-08-13,0.7324,0.7402,0.7158,0.7196,28867292,0 +1996-08-14,0.7248,0.7363,0.7248,0.7288,20040322,0 +1996-08-15,0.7248,0.7288,0.7118,0.7118,30013628,0 +1996-08-16,0.7248,0.7248,0.7085,0.7196,39534010,0 +1996-08-19,0.7158,0.757,0.7158,0.757,63116373,0 +1996-08-20,0.7646,0.7646,0.748,0.7531,59055843,0 +1996-08-21,0.7531,0.757,0.7324,0.7363,31609715,0 +1996-08-22,0.7363,0.7439,0.7324,0.7439,24453811,0 +1996-08-23,0.7363,0.7683,0.7363,0.7646,56741335,0 +1996-08-26,0.7646,0.7724,0.7531,0.7724,25009776,0 +1996-08-27,0.7724,0.8003,0.7683,0.7952,80682873,0 +1996-08-28,0.7965,0.8003,0.7837,0.7965,45624827,0 +1996-08-29,0.7965,0.7965,0.7799,0.7837,29819960,0 +1996-08-30,0.7928,0.7928,0.776,0.776,29485751,0 +1996-09-03,0.7724,0.7799,0.7646,0.7724,19047043,0 +1996-09-04,0.7646,0.7888,0.7646,0.7724,28292581,0 +1996-09-05,0.7531,0.7606,0.7324,0.7324,77971690,0 +1996-09-06,0.7402,0.7439,0.7248,0.7363,67164403,0 +1996-09-09,0.7248,0.7288,0.7004,0.7045,41342511,0 +1996-09-10,0.7085,0.7085,0.6888,0.6888,43425884,0 +1996-09-11,0.6888,0.6966,0.6724,0.6762,41052030,0 +1996-09-12,0.6724,0.6762,0.6479,0.6517,72764830,0 +1996-09-13,0.6517,0.6801,0.6517,0.6724,46465028,0 +1996-09-16,0.6888,0.7363,0.6839,0.7158,68229513,0 +1996-09-17,0.7324,0.7402,0.7196,0.7363,58334298,0 +1996-09-18,0.7363,0.7724,0.7324,0.7531,98546115,0 +1996-09-19,0.757,0.757,0.748,0.748,33318273,0 +1996-09-20,0.748,0.7531,0.7288,0.7324,41595523,0 +1996-09-23,0.7324,0.7324,0.7158,0.7158,12762583,0 +1996-09-24,0.7158,0.7324,0.7158,0.7196,40099369,0 +1996-09-25,0.7196,0.7248,0.7045,0.7158,30410310,0 +1996-09-26,0.7158,0.7196,0.7118,0.7158,28804830,0 +1996-09-27,0.7118,0.7158,0.7085,0.7144,22748384,0 +1996-09-30,0.7085,0.7158,0.7085,0.7094,23829107,0 +1996-10-01,0.7045,0.7928,0.7045,0.7888,150386688,0 +1996-10-02,0.757,0.7888,0.7402,0.757,77200180,0 +1996-10-03,0.757,0.7606,0.7158,0.7158,63506795,0 +1996-10-04,0.7324,0.7402,0.7085,0.7313,37219509,0 +1996-10-07,0.7363,0.748,0.7324,0.7402,26693347,0 +1996-10-08,0.7531,0.776,0.7439,0.7439,53108704,0 +1996-10-09,0.748,0.757,0.7324,0.7363,23763501,0 +1996-10-10,0.7646,0.7837,0.7606,0.7737,77165836,0 +1996-10-11,0.7799,0.7888,0.7683,0.776,33658730,0 +1996-10-14,0.7837,0.8118,0.776,0.808,75210515,0 +1996-10-15,0.8246,0.8286,0.8003,0.808,101251050,0 +1996-10-16,0.808,0.8362,0.7888,0.8246,93354885,0 +1996-10-17,0.8809,0.8886,0.8438,0.8438,286308489,0 +1996-10-18,0.8478,0.853,0.8324,0.8504,106717170,0 +1996-10-21,0.8478,0.853,0.8171,0.821,52321590,0 +1996-10-22,0.821,0.821,0.776,0.7965,59602447,0 +1996-10-23,0.7928,0.808,0.7799,0.7928,44637794,0 +1996-10-24,0.8003,0.8003,0.7837,0.7928,23529261,0 +1996-10-25,0.7965,0.8003,0.7837,0.7837,21630166,0 +1996-10-28,0.8044,0.8044,0.7837,0.7837,33465063,0 +1996-10-29,0.7888,0.7928,0.7402,0.7439,55673082,0 +1996-10-30,0.7531,0.7683,0.7324,0.7324,71687234,0 +1996-10-31,0.7439,0.748,0.7118,0.7363,54164442,0 +1996-11-01,0.748,0.776,0.7402,0.776,58937138,0 +1996-11-04,0.7799,0.7837,0.7606,0.7799,25453329,0 +1996-11-05,0.7837,0.8286,0.7837,0.8171,105449024,0 +1996-11-06,0.821,0.8246,0.7965,0.8171,50285057,0 +1996-11-07,0.8118,0.8324,0.808,0.8286,43247843,0 +1996-11-08,0.8286,0.8401,0.8246,0.8401,52627684,0 +1996-11-11,0.8438,0.8438,0.8286,0.8324,25806265,0 +1996-11-12,0.8362,0.8401,0.8044,0.808,39868225,0 +1996-11-13,0.8118,0.8286,0.8003,0.8184,23316851,0 +1996-11-14,0.8171,0.8246,0.8118,0.821,13534099,0 +1996-11-15,0.8286,0.8324,0.8003,0.8003,36454253,0 +1996-11-18,0.8003,0.8044,0.7837,0.7928,42623149,0 +1996-11-19,0.7965,0.8044,0.7888,0.7965,34701977,0 +1996-11-20,0.7965,0.8118,0.7965,0.8003,28751721,0 +1996-11-21,0.7965,0.8003,0.7799,0.7837,19690484,0 +1996-11-22,0.7837,0.808,0.7837,0.808,28998484,0 +1996-11-25,0.8118,0.8171,0.8003,0.8003,22017496,0 +1996-11-26,0.7965,0.8003,0.7683,0.776,31509766,0 +1996-11-27,0.7724,0.7888,0.7724,0.7837,24831743,0 +1996-11-29,0.7837,0.7888,0.7683,0.7724,11794295,0 +1996-12-02,0.7724,0.8044,0.7646,0.8044,48798288,0 +1996-12-03,0.808,0.8171,0.8003,0.8044,76840982,0 +1996-12-04,0.8044,0.8118,0.7965,0.8003,53218023,0 +1996-12-05,0.8003,0.808,0.8003,0.8003,39640212,0 +1996-12-06,0.7799,0.8118,0.7683,0.8044,63972197,0 +1996-12-09,0.808,0.8118,0.7952,0.8003,44244240,0 +1996-12-10,0.7965,0.8003,0.776,0.7837,51393903,0 +1996-12-11,0.7606,0.776,0.7606,0.7683,45559221,0 +1996-12-12,0.7724,0.776,0.7646,0.7646,24263278,0 +1996-12-13,0.7606,0.7646,0.7439,0.7439,24847364,0 +1996-12-16,0.7531,0.7531,0.7196,0.7248,41620495,0 +1996-12-17,0.7158,0.7196,0.7118,0.7196,43853799,0 +1996-12-18,0.7288,0.7402,0.7248,0.7402,57191098,0 +1996-12-19,0.7363,0.7439,0.7118,0.7118,38175293,0 +1996-12-20,0.7196,0.757,0.6839,0.7531,152391963,0 +1996-12-23,0.7683,0.776,0.7439,0.7439,92673956,0 +1996-12-24,0.7439,0.748,0.7324,0.7402,16067226,0 +1996-12-26,0.7439,0.7439,0.7324,0.7363,23672937,0 +1996-12-27,0.7324,0.7606,0.7324,0.7402,38206535,0 +1996-12-30,0.7402,0.7439,0.6966,0.6966,73011581,0 +1996-12-31,0.6839,0.6888,0.6646,0.6685,107020136,0 +1997-01-02,0.6762,0.6801,0.6646,0.6724,39911970,0 +1997-01-03,0.6762,0.7118,0.6724,0.6966,33386984,0 +1997-01-06,0.5649,0.5865,0.5518,0.5724,525089934,0 +1997-01-07,0.5801,0.5839,0.561,0.561,272449548,0 +1997-01-08,0.5839,0.5877,0.5559,0.5649,306807942,0 +1997-01-09,0.5686,0.5724,0.561,0.5686,124564789,0 +1997-01-10,0.5649,0.5839,0.5649,0.5839,98646061,0 +1997-01-13,0.5916,0.5916,0.5801,0.5801,85268156,0 +1997-01-14,0.5877,0.5877,0.5686,0.5724,71331136,0 +1997-01-15,0.5764,0.5764,0.548,0.5518,120782244,0 +1997-01-16,0.548,0.548,0.5329,0.5366,187215755,0 +1997-01-17,0.5366,0.548,0.5329,0.5366,90678043,0 +1997-01-20,0.5404,0.548,0.5366,0.5428,81329446,0 +1997-01-21,0.5441,0.5518,0.5404,0.5518,79433480,0 +1997-01-22,0.5559,0.561,0.5441,0.5494,57344153,0 +1997-01-23,0.5518,0.5559,0.548,0.5518,48064262,0 +1997-01-24,0.5518,0.5518,0.5404,0.5404,52508988,0 +1997-01-27,0.548,0.5518,0.5329,0.5329,59693018,0 +1997-01-28,0.5441,0.5441,0.5276,0.5329,58721611,0 +1997-01-29,0.5329,0.5366,0.5276,0.5329,42307671,0 +1997-01-30,0.5366,0.5366,0.5276,0.5366,39024895,0 +1997-01-31,0.5329,0.5329,0.5276,0.5329,55673082,0 +1997-02-03,0.5404,0.5441,0.5198,0.5223,102659742,0 +1997-02-04,0.5198,0.5237,0.48398,0.49298,198744559,0 +1997-02-05,0.48791,0.49931,0.48791,0.48791,110015557,0 +1997-02-06,0.48791,0.5161,0.48791,0.5125,111414899,0 +1997-02-07,0.5276,0.5276,0.5046,0.5072,65612029,0 +1997-02-10,0.5161,0.5161,0.49931,0.49931,51706267,0 +1997-02-11,0.5084,0.5125,0.49685,0.5021,39065506,0 +1997-02-12,0.5046,0.5084,0.49685,0.5046,49157479,0 +1997-02-13,0.5046,0.5161,0.49685,0.5161,54614214,0 +1997-02-14,0.5198,0.5237,0.5125,0.5223,66164907,0 +1997-02-18,0.5329,0.5724,0.5198,0.5724,102706600,0 +1997-02-19,0.5724,0.5724,0.548,0.5649,67292480,0 +1997-02-20,0.5649,0.5649,0.5441,0.5441,34845652,0 +1997-02-21,0.5404,0.5441,0.5125,0.5237,58868415,0 +1997-02-24,0.5198,0.5404,0.5198,0.5329,32793523,0 +1997-02-25,0.5441,0.5559,0.5404,0.5404,38509505,0 +1997-02-26,0.5441,0.548,0.5366,0.548,28773593,0 +1997-02-27,0.5441,0.548,0.5366,0.5441,28723618,0 +1997-02-28,0.5404,0.5404,0.5198,0.5198,33989828,0 +1997-03-03,0.5276,0.5276,0.5125,0.5161,36382409,0 +1997-03-04,0.5198,0.5276,0.5125,0.5276,28779827,0 +1997-03-05,0.5329,0.5441,0.5276,0.5441,26818290,0 +1997-03-06,0.5441,0.5441,0.5276,0.5329,32431204,0 +1997-03-07,0.5366,0.5366,0.5237,0.5276,19693610,0 +1997-03-10,0.5329,0.5366,0.5263,0.5329,27661630,0 +1997-03-11,0.5329,0.5329,0.5125,0.5237,27471097,0 +1997-03-12,0.5198,0.5366,0.5161,0.5198,19799810,0 +1997-03-13,0.5237,0.5237,0.5161,0.5237,29307705,0 +1997-03-14,0.5237,0.5366,0.5198,0.5302,64259566,0 +1997-03-17,0.5198,0.5276,0.5125,0.5276,53755262,0 +1997-03-18,0.5237,0.5276,0.5161,0.5198,35439126,0 +1997-03-19,0.5237,0.5237,0.5084,0.5161,58071939,0 +1997-03-20,0.5125,0.561,0.5084,0.5518,88416649,0 +1997-03-21,0.561,0.561,0.5237,0.5329,38056607,0 +1997-03-24,0.5276,0.5329,0.5198,0.5276,19862276,0 +1997-03-25,0.5329,0.5329,0.5148,0.5276,31391076,0 +1997-03-26,0.5237,0.5404,0.5198,0.5366,29794965,0 +1997-03-27,0.561,0.6159,0.5518,0.5969,317621468,0 +1997-03-31,0.5969,0.6199,0.5518,0.5839,270584839,0 +1997-04-01,0.5649,0.571,0.5559,0.561,61426561,0 +1997-04-02,0.5724,0.5777,0.5649,0.5764,62032515,0 +1997-04-03,0.5916,0.6123,0.5839,0.6043,153066623,0 +1997-04-04,0.6123,0.6286,0.6082,0.6159,132539063,0 +1997-04-07,0.6326,0.6365,0.6159,0.6248,71187459,0 +1997-04-08,0.6286,0.6286,0.5969,0.6123,54055116,0 +1997-04-09,0.6159,0.6159,0.6043,0.6082,68323233,0 +1997-04-10,0.6082,0.6123,0.5916,0.6043,32624860,0 +1997-04-11,0.6043,0.6043,0.5801,0.5839,22189264,0 +1997-04-14,0.5877,0.6043,0.5764,0.6005,31334853,0 +1997-04-15,0.6123,0.6159,0.5801,0.5903,37941020,0 +1997-04-16,0.5969,0.6082,0.5877,0.5944,24044629,0 +1997-04-17,0.5839,0.6123,0.5801,0.6082,61204791,0 +1997-04-18,0.6123,0.6123,0.5877,0.5877,39446556,0 +1997-04-21,0.5969,0.5969,0.5764,0.5764,24862987,0 +1997-04-22,0.5801,0.5916,0.5724,0.5916,26396613,0 +1997-04-23,0.5877,0.5916,0.5801,0.5801,15195773,0 +1997-04-24,0.5916,0.5916,0.5686,0.5724,20899283,0 +1997-04-25,0.5649,0.5724,0.5559,0.561,24369472,0 +1997-04-28,0.5686,0.5724,0.561,0.5649,13043703,0 +1997-04-29,0.5764,0.5764,0.561,0.5659,14433647,0 +1997-04-30,0.5441,0.5518,0.5366,0.5441,71849638,0 +1997-05-01,0.5404,0.548,0.5366,0.5441,20174624,0 +1997-05-02,0.5441,0.548,0.5366,0.5441,28442497,0 +1997-05-05,0.5441,0.548,0.5366,0.5441,27467974,0 +1997-05-06,0.5441,0.548,0.5366,0.5404,23188803,0 +1997-05-07,0.5404,0.5441,0.5237,0.5276,31853348,0 +1997-05-08,0.5329,0.548,0.5276,0.5441,23129445,0 +1997-05-09,0.5441,0.561,0.5441,0.5455,52533990,0 +1997-05-12,0.5518,0.5649,0.5441,0.5621,46009014,0 +1997-05-13,0.561,0.5724,0.5441,0.5621,54945311,0 +1997-05-14,0.5724,0.5764,0.561,0.5659,37828591,0 +1997-05-15,0.5686,0.5764,0.561,0.5686,27611653,0 +1997-05-16,0.561,0.5649,0.5518,0.5518,26018675,0 +1997-05-19,0.561,0.5649,0.5441,0.5441,14574197,0 +1997-05-20,0.5441,0.5585,0.5366,0.5518,23657307,0 +1997-05-21,0.548,0.548,0.5276,0.5404,34092886,0 +1997-05-22,0.5366,0.5404,0.5276,0.5329,21408405,0 +1997-05-23,0.5329,0.5441,0.5329,0.5404,18694087,0 +1997-05-27,0.5366,0.5559,0.5366,0.5518,22892061,0 +1997-05-28,0.5559,0.561,0.5441,0.5441,24413195,0 +1997-05-29,0.548,0.548,0.5329,0.5329,31006892,0 +1997-05-30,0.5276,0.5441,0.5237,0.5329,49454234,0 +1997-06-02,0.5441,0.5441,0.5366,0.5428,11597528,0 +1997-06-03,0.5366,0.5428,0.5329,0.5342,18194332,0 +1997-06-04,0.5329,0.5366,0.5276,0.5329,22423536,0 +1997-06-05,0.5329,0.548,0.5302,0.5342,18019426,0 +1997-06-06,0.5329,0.5366,0.5276,0.5366,14745988,0 +1997-06-09,0.5342,0.5428,0.5329,0.5329,20861798,0 +1997-06-10,0.5366,0.5366,0.5136,0.5198,38778130,0 +1997-06-11,0.5223,0.5263,0.5198,0.5223,29395165,0 +1997-06-12,0.5237,0.5237,0.5125,0.5136,21945633,0 +1997-06-13,0.5136,0.5161,0.5046,0.5072,36832208,0 +1997-06-16,0.5084,0.5084,0.49298,0.49685,37372551,0 +1997-06-17,0.49805,0.5276,0.49685,0.5223,39671460,0 +1997-06-18,0.5161,0.5198,0.5046,0.5098,30578976,0 +1997-06-19,0.5125,0.5125,0.5021,0.5046,33752438,0 +1997-06-20,0.5021,0.5046,0.49685,0.49805,30728899,0 +1997-06-23,0.49685,0.49931,0.49298,0.49298,27761584,0 +1997-06-24,0.49421,0.49805,0.48791,0.49056,30997518,0 +1997-06-25,0.49056,0.49298,0.48027,0.48398,55395097,0 +1997-06-26,0.48398,0.48398,0.46742,0.46998,106529756,0 +1997-06-27,0.46998,0.47512,0.46742,0.46998,44050587,0 +1997-06-30,0.47251,0.47251,0.44821,0.45589,47739428,0 +1997-07-01,0.44566,0.44821,0.42007,0.42134,125686113,0 +1997-07-02,0.42388,0.42902,0.41618,0.41874,69710056,0 +1997-07-03,0.42007,0.44436,0.41618,0.43797,52090445,0 +1997-07-07,0.44566,0.45589,0.44052,0.44309,53399191,0 +1997-07-08,0.44436,0.44821,0.43797,0.44052,26687109,0 +1997-07-09,0.44309,0.44436,0.4354,0.43797,39605847,0 +1997-07-10,0.41235,0.42902,0.40853,0.42388,137352360,0 +1997-07-11,0.42902,0.49685,0.42646,0.48535,204963429,0 +1997-07-14,0.48791,0.49931,0.47632,0.49931,114622725,0 +1997-07-15,0.5046,0.5125,0.49931,0.5098,116671736,0 +1997-07-16,0.5072,0.5276,0.49931,0.5263,124452342,0 +1997-07-17,0.5441,0.5801,0.5263,0.561,208121279,0 +1997-07-18,0.5724,0.575,0.5455,0.5545,88563440,0 +1997-07-21,0.5621,0.5659,0.5125,0.5173,98980278,0 +1997-07-22,0.5237,0.5342,0.5223,0.5302,64515694,0 +1997-07-23,0.5366,0.5404,0.5125,0.5161,39402827,0 +1997-07-24,0.5161,0.5161,0.49931,0.5072,37228880,0 +1997-07-25,0.5084,0.5302,0.5046,0.5198,60786243,0 +1997-07-28,0.5263,0.5276,0.5198,0.5263,30819471,0 +1997-07-29,0.5263,0.5329,0.5237,0.5276,19868515,0 +1997-07-30,0.5428,0.5659,0.5366,0.5559,104387052,0 +1997-07-31,0.5559,0.5686,0.5518,0.561,73573799,0 +1997-08-01,0.5649,0.6135,0.5621,0.6135,134397546,0 +1997-08-04,0.6135,0.6352,0.6135,0.6326,170486334,0 +1997-08-05,0.6391,0.6404,0.6236,0.6326,68919814,0 +1997-08-06,0.808,0.8886,0.8003,0.8427,1168653844,0 +1997-08-07,0.9209,0.9466,0.9078,0.9334,1047328117,0 +1997-08-08,0.8913,0.9078,0.8362,0.8591,505939805,0 +1997-08-11,0.8427,0.8466,0.7531,0.7864,432547182,0 +1997-08-12,0.7696,0.776,0.7004,0.7058,292380542,0 +1997-08-13,0.7118,0.7646,0.6543,0.757,335056792,0 +1997-08-14,0.757,0.776,0.7262,0.7363,121160182,0 +1997-08-15,0.7402,0.7504,0.7313,0.7439,72777325,0 +1997-08-18,0.7467,0.7606,0.7288,0.757,60751888,0 +1997-08-19,0.7581,0.7837,0.7467,0.7825,80642263,0 +1997-08-20,0.7825,0.8044,0.7737,0.7888,90443778,0 +1997-08-21,0.7837,0.7902,0.7646,0.7683,72308800,0 +1997-08-22,0.7504,0.7683,0.748,0.757,63481816,0 +1997-08-25,0.757,0.7581,0.735,0.7376,38662563,0 +1997-08-26,0.7248,0.7363,0.7085,0.7118,63085131,0 +1997-08-27,0.7158,0.7288,0.7004,0.7262,53164919,0 +1997-08-28,0.7085,0.7196,0.7045,0.7045,26680852,0 +1997-08-29,0.6991,0.7045,0.6888,0.6966,30585214,0 +1997-09-02,0.7045,0.7223,0.7031,0.7158,51884299,0 +1997-09-03,0.7158,0.7439,0.7144,0.7196,79239825,0 +1997-09-04,0.7223,0.7324,0.7118,0.7196,34174105,0 +1997-09-05,0.7248,0.7324,0.7045,0.7094,38125324,0 +1997-09-08,0.7118,0.7118,0.6864,0.6888,48848264,0 +1997-09-09,0.6826,0.7004,0.6801,0.6991,44350435,0 +1997-09-10,0.6966,0.7402,0.6942,0.735,76431809,0 +1997-09-11,0.7324,0.7363,0.7058,0.7158,58531077,0 +1997-09-12,0.7094,0.7118,0.6864,0.7058,31703427,0 +1997-09-15,0.7004,0.7085,0.6888,0.6888,27027557,0 +1997-09-16,0.7058,0.7094,0.6966,0.7031,37431901,0 +1997-09-17,0.7045,0.7045,0.6942,0.6991,24197678,0 +1997-09-18,0.6888,0.7196,0.6888,0.7144,47177193,0 +1997-09-19,0.7094,0.7094,0.6966,0.7031,26474715,0 +1997-09-22,0.7085,0.7376,0.7045,0.7313,55879240,0 +1997-09-23,0.7118,0.7118,0.6942,0.6966,55926081,0 +1997-09-24,0.6942,0.6966,0.6839,0.6888,62032515,0 +1997-09-25,0.6826,0.6966,0.6724,0.6762,62298016,0 +1997-09-26,0.6888,0.7031,0.6762,0.6826,58096921,0 +1997-09-29,0.6942,0.7118,0.6902,0.7058,46639962,0 +1997-09-30,0.7045,0.7144,0.6942,0.6942,39202934,0 +1997-10-01,0.6942,0.6966,0.6839,0.6888,36385534,0 +1997-10-02,0.6864,0.7045,0.6839,0.7031,37762999,0 +1997-10-03,0.7045,0.7118,0.6942,0.7085,45243758,0 +1997-10-06,0.7094,0.7118,0.6942,0.7031,26018675,0 +1997-10-07,0.7004,0.7045,0.6991,0.6991,30479011,0 +1997-10-08,0.6966,0.6991,0.6826,0.6888,30354078,0 +1997-10-09,0.6801,0.7196,0.6775,0.6966,52243505,0 +1997-10-10,0.6888,0.7288,0.6888,0.7262,75410414,0 +1997-10-13,0.7288,0.7324,0.7094,0.7262,44237986,0 +1997-10-14,0.7262,0.7288,0.7094,0.7262,46243268,0 +1997-10-15,0.7085,0.7928,0.7085,0.7633,226137570,0 +1997-10-16,0.6762,0.7058,0.6685,0.6888,206147233,0 +1997-10-17,0.6762,0.6762,0.6365,0.6441,122337738,0 +1997-10-20,0.6441,0.6455,0.5969,0.5981,114853858,0 +1997-10-21,0.6043,0.6185,0.5981,0.6096,132545303,0 +1997-10-22,0.6096,0.6159,0.5916,0.5944,42160875,0 +1997-10-23,0.5764,0.5814,0.5686,0.5686,52090445,0 +1997-10-24,0.5801,0.5877,0.5276,0.5302,108272664,0 +1997-10-27,0.5366,0.5801,0.5366,0.5366,91852485,0 +1997-10-28,0.5125,0.5916,0.5084,0.5801,95744353,0 +1997-10-29,0.5903,0.5916,0.5518,0.561,49526066,0 +1997-10-30,0.5455,0.5621,0.5276,0.5276,52696402,0 +1997-10-31,0.5559,0.5559,0.5329,0.5455,74485862,0 +1997-11-03,0.5621,0.5686,0.5455,0.5559,35142384,0 +1997-11-04,0.5686,0.5801,0.561,0.575,47017896,0 +1997-11-05,0.5839,0.5969,0.5777,0.5877,107960298,0 +1997-11-06,0.6043,0.6248,0.6043,0.6082,172094947,0 +1997-11-07,0.6043,0.6404,0.6005,0.6326,221883377,0 +1997-11-10,0.6724,0.6888,0.5916,0.5981,389945880,0 +1997-11-11,0.6082,0.6082,0.5801,0.5877,92723924,0 +1997-11-12,0.5777,0.5916,0.5621,0.5649,58025072,0 +1997-11-13,0.5764,0.5777,0.561,0.5764,71818411,0 +1997-11-14,0.5839,0.5916,0.5764,0.5903,37659924,0 +1997-11-17,0.6043,0.6068,0.5865,0.5916,57178611,0 +1997-11-18,0.5916,0.5916,0.5777,0.5777,40895867,0 +1997-11-19,0.5724,0.5865,0.5724,0.5839,22195526,0 +1997-11-20,0.5814,0.5969,0.5801,0.5916,35745218,0 +1997-11-21,0.5969,0.5981,0.5764,0.5814,27268068,0 +1997-11-24,0.5621,0.5764,0.561,0.5649,43881923,0 +1997-11-25,0.5659,0.5724,0.5404,0.5559,57291063,0 +1997-11-26,0.5559,0.5659,0.5518,0.561,16848111,0 +1997-11-28,0.5649,0.5724,0.5585,0.5686,11522556,0 +1997-12-01,0.5659,0.575,0.5518,0.5686,24328870,0 +1997-12-02,0.5559,0.561,0.5084,0.5084,110665260,0 +1997-12-03,0.5136,0.5161,0.5021,0.5046,95672507,0 +1997-12-04,0.5125,0.5125,0.49931,0.49931,55676218,0 +1997-12-05,0.49805,0.5125,0.49805,0.5072,61763897,0 +1997-12-08,0.49805,0.5046,0.49298,0.49805,37253863,0 +1997-12-09,0.49685,0.5021,0.48027,0.48791,67782852,0 +1997-12-10,0.48291,0.48291,0.46357,0.47251,54348731,0 +1997-12-11,0.46232,0.46613,0.44436,0.46613,71655994,0 +1997-12-12,0.47251,0.47632,0.44821,0.45205,44778366,0 +1997-12-15,0.45205,0.45589,0.44052,0.44566,46265129,0 +1997-12-16,0.44821,0.46103,0.44821,0.45845,51768729,0 +1997-12-17,0.45845,0.46613,0.44566,0.44566,73986110,0 +1997-12-18,0.44821,0.44821,0.44052,0.44309,56347764,0 +1997-12-19,0.43415,0.44436,0.42388,0.43797,53158675,0 +1997-12-22,0.44436,0.44821,0.42134,0.42646,44475377,0 +1997-12-23,0.42007,0.42646,0.41366,0.41366,127960013,0 +1997-12-24,0.41618,0.42388,0.41618,0.42007,27283683,0 +1997-12-26,0.41874,0.42902,0.41618,0.42646,30085453,0 +1997-12-29,0.42646,0.43029,0.41235,0.42007,77584374,0 +1997-12-30,0.41618,0.43029,0.40853,0.42134,95519461,0 +1997-12-31,0.42007,0.4354,0.41366,0.42007,113326464,0 +1998-01-02,0.4354,0.5198,0.43286,0.5198,200268820,0 +1998-01-05,0.5276,0.5302,0.48535,0.5084,181796495,0 +1998-01-06,0.5098,0.6404,0.47251,0.6068,505468160,0 +1998-01-07,0.6032,0.6082,0.5545,0.561,290490822,0 +1998-01-08,0.5585,0.5969,0.5428,0.5814,215861280,0 +1998-01-09,0.5801,0.6199,0.561,0.5814,247242985,0 +1998-01-12,0.5585,0.5969,0.548,0.5839,144014755,0 +1998-01-13,0.5969,0.6286,0.5916,0.6248,177607894,0 +1998-01-14,0.6365,0.6391,0.6159,0.6326,164336196,0 +1998-01-15,0.6135,0.6326,0.5969,0.6135,155971489,0 +1998-01-16,0.6224,0.6224,0.5981,0.6032,68704291,0 +1998-01-20,0.6096,0.6185,0.5969,0.6096,67367431,0 +1998-01-21,0.6005,0.6096,0.5944,0.6043,53046226,0 +1998-01-22,0.5981,0.6326,0.5969,0.6159,91955553,0 +1998-01-23,0.6199,0.63,0.6159,0.6248,65024821,0 +1998-01-26,0.6224,0.6261,0.6032,0.6224,40839638,0 +1998-01-27,0.6135,0.63,0.6082,0.6123,31300491,0 +1998-01-28,0.6135,0.6199,0.5969,0.6135,42145261,0 +1998-01-29,0.6068,0.6123,0.5916,0.5916,59090182,0 +1998-01-30,0.5865,0.6043,0.5839,0.5865,45303102,0 +1998-02-02,0.5916,0.5916,0.5559,0.5659,177576665,0 +1998-02-03,0.5659,0.5969,0.5659,0.5865,112283218,0 +1998-02-04,0.5777,0.5916,0.5764,0.5839,47464561,0 +1998-02-05,0.5839,0.5916,0.5764,0.5865,66449134,0 +1998-02-06,0.5877,0.5981,0.5839,0.5916,56428984,0 +1998-02-09,0.5877,0.6248,0.5877,0.6135,137955189,0 +1998-02-10,0.6123,0.6261,0.6096,0.6224,117693112,0 +1998-02-11,0.6248,0.6248,0.6043,0.6082,59030846,0 +1998-02-12,0.6123,0.6224,0.6096,0.6199,56822537,0 +1998-02-13,0.6135,0.6365,0.6082,0.6248,58006332,0 +1998-02-17,0.6248,0.6326,0.6248,0.6286,50965987,0 +1998-02-18,0.6261,0.6646,0.6261,0.6583,137933336,0 +1998-02-19,0.6685,0.6711,0.6404,0.6543,111458620,0 +1998-02-20,0.6556,0.6583,0.6352,0.6404,90753008,0 +1998-02-23,0.6441,0.6928,0.6404,0.6801,133163751,0 +1998-02-24,0.6826,0.6839,0.6646,0.6826,127335314,0 +1998-02-25,0.6826,0.7288,0.6711,0.7144,198750798,0 +1998-02-26,0.7144,0.7542,0.7004,0.7531,165972905,0 +1998-02-27,0.7467,0.7646,0.7223,0.757,144908086,0 +1998-03-02,0.7542,0.7542,0.7118,0.7288,111677265,0 +1998-03-03,0.7004,0.7414,0.6928,0.7402,93167455,0 +1998-03-04,0.7324,0.7928,0.7324,0.7825,228077244,0 +1998-03-05,0.7439,0.776,0.7402,0.7696,188280877,0 +1998-03-06,0.7646,0.7837,0.748,0.7825,185866407,0 +1998-03-09,0.7606,0.7785,0.7196,0.7288,160338130,0 +1998-03-10,0.7363,0.7837,0.735,0.7696,198816389,0 +1998-03-11,0.8044,0.8375,0.7864,0.8362,338658171,0 +1998-03-12,0.8362,0.8644,0.8184,0.8644,207590288,0 +1998-03-13,0.8723,0.8723,0.8401,0.8683,157892432,0 +1998-03-16,0.8683,0.8723,0.8375,0.8543,112211383,0 +1998-03-17,0.8478,0.8543,0.8286,0.8427,114413443,0 +1998-03-18,0.8324,0.863,0.8324,0.863,77250158,0 +1998-03-19,0.8605,0.863,0.8504,0.8567,44637794,0 +1998-03-20,0.8543,0.8605,0.8324,0.8438,60092827,0 +1998-03-23,0.8311,0.8401,0.7888,0.8362,115662852,0 +1998-03-24,0.8438,0.8966,0.8401,0.8966,188505751,0 +1998-03-25,0.8847,0.8886,0.8438,0.8697,108032148,0 +1998-03-26,0.8567,0.8644,0.8466,0.8504,56603882,0 +1998-03-27,0.853,0.8749,0.8438,0.863,71281174,0 +1998-03-30,0.8567,0.8809,0.8567,0.8785,69916198,0 +1998-03-31,0.8785,0.8913,0.8723,0.8809,74432767,0 +1998-04-01,0.8785,0.8913,0.8656,0.8809,52118559,0 +1998-04-02,0.8749,0.8785,0.863,0.8749,54189431,0 +1998-04-03,0.8683,0.8723,0.8591,0.8656,56631997,0 +1998-04-06,0.8644,0.8644,0.8375,0.8401,96937531,0 +1998-04-07,0.8273,0.8324,0.7965,0.8171,81629299,0 +1998-04-08,0.808,0.8118,0.7902,0.8003,62804016,0 +1998-04-09,0.8017,0.8286,0.8003,0.821,47495788,0 +1998-04-13,0.821,0.8543,0.8003,0.8466,80401760,0 +1998-04-14,0.8438,0.8723,0.8438,0.863,91430794,0 +1998-04-15,0.8697,0.8809,0.853,0.8785,155481094,0 +1998-04-16,0.936,0.949,0.9016,0.9171,512574106,0 +1998-04-17,0.9143,0.9171,0.8861,0.8953,165145187,0 +1998-04-20,0.8847,0.9453,0.8822,0.9284,144398956,0 +1998-04-21,0.9296,0.9321,0.9117,0.9284,97059338,0 +1998-04-22,0.9209,0.9284,0.8809,0.8809,79467827,0 +1998-04-23,0.8785,0.9284,0.8697,0.8861,132551550,0 +1998-04-24,0.8886,0.9039,0.8809,0.8953,60111575,0 +1998-04-27,0.8567,0.8886,0.8567,0.8886,114285388,0 +1998-04-28,0.8926,0.8966,0.8401,0.863,66143034,0 +1998-04-29,0.863,0.8785,0.8567,0.8644,52858818,0 +1998-04-30,0.8762,0.8847,0.8656,0.8762,50185120,0 +1998-05-01,0.8809,0.9039,0.8605,0.8966,51334566,0 +1998-05-04,0.9247,0.9453,0.9247,0.9296,159282388,0 +1998-05-05,0.936,0.9565,0.9321,0.9502,116930980,0 +1998-05-06,0.9565,0.9745,0.936,0.9708,250160321,0 +1998-05-07,0.9783,0.9809,0.9565,0.9657,154194210,0 +1998-05-08,0.9618,0.9758,0.9591,0.9745,75525989,0 +1998-05-11,0.9886,1.0132,0.9849,0.9913,185463473,0 +1998-05-12,0.9783,0.9849,0.9591,0.9644,71899618,0 +1998-05-13,0.9618,0.9873,0.949,0.9745,87685740,0 +1998-05-14,0.972,0.9745,0.9526,0.9618,45368685,0 +1998-05-15,0.9618,0.972,0.936,0.9466,76019490,0 +1998-05-18,0.9399,0.9466,0.9078,0.9117,64809290,0 +1998-05-19,0.9271,0.9426,0.9234,0.9399,60870583,0 +1998-05-20,0.949,0.9565,0.9209,0.9466,53036864,0 +1998-05-21,0.9466,0.9502,0.9171,0.9247,36532347,0 +1998-05-22,0.9209,0.9209,0.8749,0.8926,74348443,0 +1998-05-26,0.898,0.9039,0.853,0.8543,86948593,0 +1998-05-27,0.8222,0.8591,0.821,0.8567,103240729,0 +1998-05-28,0.8567,0.8926,0.8567,0.8785,83244138,0 +1998-05-29,0.8809,0.8822,0.8466,0.853,60439540,0 +1998-06-01,0.8478,0.8847,0.821,0.8401,89156903,0 +1998-06-02,0.8466,0.8749,0.8324,0.8605,50003944,0 +1998-06-03,0.8683,0.8723,0.8375,0.8427,40477302,0 +1998-06-04,0.853,0.8605,0.8273,0.8591,43544572,0 +1998-06-05,0.8605,0.8723,0.8438,0.8605,34392749,0 +1998-06-08,0.8644,0.8861,0.8591,0.8723,35314188,0 +1998-06-09,0.8762,0.9117,0.8762,0.9039,76900341,0 +1998-06-10,0.8966,0.9284,0.8847,0.898,63928478,0 +1998-06-11,0.9016,0.9171,0.8913,0.8913,50231960,0 +1998-06-12,0.8847,0.9039,0.8762,0.9005,62429200,0 +1998-06-15,0.8723,0.9039,0.8723,0.8809,38112823,0 +1998-06-16,0.8861,0.9005,0.8749,0.8966,36166894,0 +1998-06-17,0.8966,0.9143,0.8953,0.9005,52199759,0 +1998-06-18,0.8886,0.898,0.8697,0.8749,33465063,0 +1998-06-19,0.8762,0.8785,0.8567,0.8656,38362710,0 +1998-06-22,0.8644,0.8822,0.8567,0.8762,37528728,0 +1998-06-23,0.8785,0.9005,0.8723,0.8913,64437599,0 +1998-06-24,0.8886,0.9171,0.8749,0.9039,76356852,0 +1998-06-25,0.9143,0.9234,0.9064,0.9143,53492890,0 +1998-06-26,0.9117,0.9171,0.8886,0.9016,30988143,0 +1998-06-29,0.9039,0.9234,0.898,0.9184,46346349,0 +1998-06-30,0.9171,0.9234,0.9005,0.9184,36551090,0 +1998-07-01,0.9247,0.9604,0.9117,0.9591,87601399,0 +1998-07-02,0.9502,0.9618,0.9284,0.9284,83137946,0 +1998-07-06,0.9453,0.972,0.9321,0.972,75563473,0 +1998-07-07,0.972,0.9886,0.9604,0.9758,67342441,0 +1998-07-08,0.9849,1.0539,0.9823,1.0426,260146130,0 +1998-07-09,1.0539,1.0757,1.0064,1.0144,158017366,0 +1998-07-10,1.0295,1.0438,1.0167,1.027,84368591,0 +1998-07-13,1.0233,1.0924,1.0208,1.0859,199509819,0 +1998-07-14,1.0859,1.0886,1.0604,1.0706,152976051,0 +1998-07-15,1.0784,1.1103,1.0731,1.1026,165926041,0 +1998-07-16,1.2128,1.2204,1.1449,1.2013,714317208,0 +1998-07-17,1.1921,1.1921,1.1577,1.1808,175571385,0 +1998-07-20,1.1704,1.1718,1.1371,1.1601,107060745,0 +1998-07-21,1.1563,1.1845,1.1385,1.1399,91893088,0 +1998-07-22,1.118,1.1399,1.0961,1.1206,78290276,0 +1998-07-23,1.1153,1.1399,1.1128,1.118,70593999,0 +1998-07-24,1.1331,1.1371,1.0833,1.1103,75657180,0 +1998-07-27,1.0961,1.1167,1.0641,1.1026,59746123,0 +1998-07-28,1.0911,1.1078,1.0566,1.0757,62853995,0 +1998-07-29,1.0807,1.1487,1.0784,1.1245,124861515,0 +1998-07-30,1.1474,1.1768,1.1371,1.1679,101038672,0 +1998-07-31,1.1718,1.1768,1.1038,1.1078,51065940,0 +1998-08-03,1.0961,1.1385,1.0641,1.1245,84156196,0 +1998-08-04,1.1371,1.1526,1.0886,1.0937,81969758,0 +1998-08-05,1.0807,1.1526,1.0731,1.1526,126635661,0 +1998-08-06,1.1232,1.1808,1.1167,1.1808,122322115,0 +1998-08-07,1.1898,1.1974,1.1526,1.1679,83112952,0 +1998-08-10,1.1628,1.2192,1.1601,1.2142,136262263,0 +1998-08-11,1.2089,1.3126,1.1974,1.2485,490687826,0 +1998-08-12,1.273,1.3104,1.264,1.2833,192366390,0 +1998-08-13,1.278,1.305,1.2614,1.2626,108981686,0 +1998-08-14,1.3025,1.305,1.2653,1.2959,125714245,0 +1998-08-17,1.3126,1.3715,1.2768,1.3421,259605761,0 +1998-08-18,1.3587,1.3894,1.3524,1.3626,168990189,0 +1998-08-19,1.3932,1.4012,1.3126,1.3126,135534494,0 +1998-08-20,1.3126,1.3164,1.2883,1.2998,109300291,0 +1998-08-21,1.2808,1.3946,1.2485,1.3769,226837230,0 +1998-08-24,1.3906,1.3932,1.2844,1.3176,170167745,0 +1998-08-25,1.3575,1.3575,1.2909,1.3075,138205068,0 +1998-08-26,1.2768,1.3164,1.2653,1.2933,113360836,0 +1998-08-27,1.2562,1.2562,1.1399,1.2013,310743544,0 +1998-08-28,1.1884,1.2321,1.0924,1.0937,259989953,0 +1998-08-31,1.1128,1.1167,0.9925,0.9977,242132952,0 +1998-09-01,1.0039,1.1331,0.9809,1.0924,242370349,0 +1998-09-02,1.1371,1.1974,1.1283,1.1385,235098867,0 +1998-09-03,1.1206,1.1245,1.0886,1.1078,114272891,0 +1998-09-04,1.1371,1.1667,1.0807,1.1245,105214768,0 +1998-09-08,1.2167,1.2241,1.1768,1.2241,112333202,0 +1998-09-09,1.2192,1.2204,1.1845,1.1974,98917814,0 +1998-09-10,1.1601,1.2241,1.1449,1.2204,146938360,0 +1998-09-11,1.2321,1.2677,1.1808,1.2037,98246260,0 +1998-09-14,1.2241,1.2433,1.1884,1.1898,68904192,0 +1998-09-15,1.1768,1.2347,1.1679,1.2217,120938422,0 +1998-09-16,1.2361,1.2407,1.1845,1.1949,72196348,0 +1998-09-17,1.1549,1.1884,1.1487,1.1526,75101187,0 +1998-09-18,1.1549,1.1768,1.1385,1.1768,85080749,0 +1998-09-21,1.1424,1.182,1.1307,1.182,82513244,0 +1998-09-22,1.1884,1.2037,1.1655,1.1845,71933979,0 +1998-09-23,1.1921,1.2294,1.1704,1.2267,80295560,0 +1998-09-24,1.2128,1.2665,1.2089,1.2321,134656790,0 +1998-09-25,1.2217,1.254,1.2037,1.2407,63666106,0 +1998-09-28,1.273,1.2859,1.2167,1.2512,113064100,0 +1998-09-29,1.2512,1.2808,1.2204,1.2653,85096363,0 +1998-09-30,1.2407,1.2562,1.2167,1.2204,46624335,0 +1998-10-01,1.1768,1.2167,1.1331,1.1424,103246957,0 +1998-10-02,1.1371,1.1601,1.0924,1.1232,132629635,0 +1998-10-05,1.0886,1.1065,1.0091,1.0295,153909979,0 +1998-10-06,1.0784,1.0988,1.0399,1.0426,111514846,0 +1998-10-07,1.0374,1.0668,1.0208,1.0233,132011183,0 +1998-10-08,0.9925,0.9977,0.9117,0.9873,192210214,0 +1998-10-09,1.0167,1.1283,0.9849,1.1245,186359916,0 +1998-10-12,1.2013,1.2307,1.1704,1.1986,173716036,0 +1998-10-13,1.2192,1.254,1.1526,1.2407,262604302,0 +1998-10-14,1.273,1.3229,1.1795,1.1974,635858258,0 +1998-10-15,1.1601,1.1921,1.1371,1.1718,234449159,0 +1998-10-16,1.1884,1.2192,1.1679,1.1744,171670137,0 +1998-10-19,1.1744,1.2192,1.1487,1.2013,132685858,0 +1998-10-20,1.2142,1.2217,1.1526,1.1549,106557863,0 +1998-10-21,1.1768,1.1986,1.1449,1.1884,120091948,0 +1998-10-22,1.1808,1.2037,1.1601,1.1768,88510346,0 +1998-10-23,1.1768,1.1808,1.1245,1.1371,99276996,0 +1998-10-26,1.1549,1.2089,1.1371,1.1986,132704594,0 +1998-10-27,1.2167,1.2459,1.1232,1.1283,150093070,0 +1998-10-28,1.1283,1.1845,1.1245,1.1795,101432219,0 +1998-10-29,1.1667,1.1986,1.1474,1.1667,96097303,0 +1998-10-30,1.1795,1.2013,1.1601,1.1884,88585308,0 +1998-11-02,1.2013,1.2089,1.1921,1.2037,70772037,0 +1998-11-03,1.1974,1.2241,1.1949,1.2115,103312570,0 +1998-11-04,1.2347,1.2526,1.2204,1.2384,175105970,0 +1998-11-05,1.2294,1.2614,1.2192,1.2217,169315025,0 +1998-11-06,1.2128,1.2241,1.1921,1.2192,222364393,0 +1998-11-09,1.2063,1.2204,1.1371,1.1718,184282781,0 +1998-11-10,1.1577,1.1601,1.1206,1.1245,246527715,0 +1998-11-11,1.1449,1.1474,1.0486,1.0744,264522152,0 +1998-11-12,1.0604,1.1026,1.0526,1.0886,165963530,0 +1998-11-13,1.118,1.1549,1.1103,1.1424,220824510,0 +1998-11-16,1.1501,1.1768,1.1345,1.1526,107238784,0 +1998-11-17,1.1449,1.1474,1.1128,1.1153,58768458,0 +1998-11-18,1.1258,1.1526,1.1167,1.1345,91936819,0 +1998-11-19,1.1371,1.1898,1.1345,1.1449,96640793,0 +1998-11-20,1.1667,1.1768,1.1128,1.1307,111336815,0 +1998-11-23,1.1385,1.1795,1.1258,1.1601,161181460,0 +1998-11-24,1.1563,1.1768,1.1449,1.1501,89172524,0 +1998-11-25,1.1487,1.1549,1.118,1.1245,84724680,0 +1998-11-27,1.1232,1.1245,1.1128,1.1232,42698113,0 +1998-11-30,1.1065,1.1153,1.0167,1.0233,156589939,0 +1998-12-01,1.0245,1.1153,1.0132,1.0924,241439537,0 +1998-12-02,1.0924,1.1808,1.0731,1.1526,268420253,0 +1998-12-03,1.1628,1.1679,1.0757,1.0784,174593745,0 +1998-12-04,1.0988,1.1026,1.0245,1.0486,201177755,0 +1998-12-07,1.0694,1.0807,1.0486,1.0807,158014258,0 +1998-12-08,1.0859,1.0859,1.0245,1.027,189670819,0 +1998-12-09,1.0462,1.0526,1.0132,1.0245,165354456,0 +1998-12-10,1.0462,1.0539,1.0208,1.0245,109112884,0 +1998-12-11,1.0322,1.0886,1.0245,1.0807,192428862,0 +1998-12-14,1.0526,1.0668,1.0322,1.0399,139844908,0 +1998-12-15,1.0486,1.0757,1.0486,1.0744,73823684,0 +1998-12-16,1.0807,1.0937,1.0438,1.0513,104399531,0 +1998-12-17,1.0539,1.0807,1.0486,1.0706,92202303,0 +1998-12-18,1.0694,1.1331,1.0641,1.1258,220733930,0 +1998-12-21,1.1331,1.1399,1.0961,1.1232,99686188,0 +1998-12-22,1.1655,1.2204,1.1526,1.2167,320938620,0 +1998-12-23,1.2361,1.2959,1.2294,1.2754,344430382,0 +1998-12-24,1.2768,1.2808,1.254,1.2562,55773037,0 +1998-12-28,1.2485,1.3164,1.2485,1.3089,202277236,0 +1998-12-29,1.3164,1.3294,1.2883,1.3075,108025916,0 +1998-12-30,1.2844,1.3164,1.2808,1.2833,66196121,0 +1998-12-31,1.2959,1.3255,1.2653,1.3104,75769630,0 +1999-01-04,1.3486,1.3524,1.2808,1.3202,265743417,0 +1999-01-05,1.3421,1.4062,1.3294,1.3866,393256788,0 +1999-01-06,1.4123,1.4123,1.3126,1.3366,376093218,0 +1999-01-07,1.3524,1.4434,1.3486,1.4406,398529244,0 +1999-01-08,1.4907,1.5009,1.4085,1.4406,189314735,0 +1999-01-11,1.4651,1.4751,1.4366,1.4691,156446256,0 +1999-01-12,1.4829,1.4919,1.4123,1.4764,228889354,0 +1999-01-13,1.373,1.515,1.3524,1.4882,292218130,0 +1999-01-14,1.4572,1.4728,1.3151,1.3255,480755111,0 +1999-01-15,1.3394,1.3486,1.2808,1.3229,280558133,0 +1999-01-19,1.3421,1.355,1.2933,1.3089,149171636,0 +1999-01-20,1.3151,1.3447,1.2959,1.2985,217004480,0 +1999-01-21,1.2944,1.2985,1.2013,1.2433,167465937,0 +1999-01-22,1.2063,1.2653,1.1871,1.2407,96428386,0 +1999-01-25,1.2562,1.2665,1.2433,1.2614,107463668,0 +1999-01-26,1.278,1.3089,1.2677,1.2959,156187003,0 +1999-01-27,1.3126,1.3255,1.278,1.2844,101778927,0 +1999-01-28,1.3089,1.3202,1.2909,1.3089,93782793,0 +1999-01-29,1.3176,1.3307,1.2808,1.3176,67689154,0 +1999-02-01,1.3344,1.3421,1.2909,1.3104,77784277,0 +1999-02-02,1.2933,1.305,1.2485,1.254,85661716,0 +1999-02-03,1.2485,1.2985,1.2407,1.2859,94469970,0 +1999-02-04,1.2859,1.2883,1.2089,1.2128,129340613,0 +1999-02-05,1.2241,1.2294,1.1371,1.1628,216748356,0 +1999-02-08,1.1744,1.2142,1.1601,1.2089,130580633,0 +1999-02-09,1.2142,1.2512,1.1871,1.1898,195539860,0 +1999-02-10,1.1808,1.2384,1.1526,1.2267,157186521,0 +1999-02-11,1.2407,1.273,1.2347,1.2677,157623804,0 +1999-02-12,1.2526,1.2526,1.1845,1.2063,119614046,0 +1999-02-16,1.2446,1.2446,1.2128,1.2267,83728286,0 +1999-02-17,1.2204,1.2384,1.182,1.1845,82566332,0 +1999-02-18,1.2026,1.2128,1.1385,1.1526,139488838,0 +1999-02-19,1.1601,1.2063,1.1577,1.1898,100869991,0 +1999-02-22,1.1974,1.2446,1.1921,1.2307,83294110,0 +1999-02-23,1.2347,1.2665,1.2142,1.2307,89850318,0 +1999-02-24,1.2433,1.2485,1.1974,1.1986,59333830,0 +1999-02-25,1.1949,1.2063,1.1679,1.182,73792455,0 +1999-02-26,1.1679,1.1845,1.1038,1.1153,186085049,0 +1999-03-01,1.1153,1.1153,1.0757,1.0807,136046734,0 +1999-03-02,1.0924,1.1307,1.0807,1.1078,190492290,0 +1999-03-03,1.1128,1.1245,1.0731,1.0937,81810444,0 +1999-03-04,1.1038,1.1038,1.0374,1.0706,102425494,0 +1999-03-05,1.0988,1.0988,1.0374,1.0617,130527527,0 +1999-03-08,1.0641,1.1103,1.0617,1.1014,153572646,0 +1999-03-09,1.0988,1.1014,1.0731,1.0924,89156903,0 +1999-03-10,1.0937,1.0937,1.0387,1.0426,152348225,0 +1999-03-11,1.0322,1.0847,1.0245,1.0295,132095540,0 +1999-03-12,1.0348,1.0731,1.0348,1.0617,75688408,0 +1999-03-15,1.0668,1.1206,1.0641,1.0911,98211897,0 +1999-03-16,1.1206,1.1385,1.118,1.1371,111505479,0 +1999-03-17,1.1501,1.1549,1.0859,1.0911,102159987,0 +1999-03-18,1.1014,1.1399,1.0961,1.1371,63328762,0 +1999-03-19,1.1501,1.1526,1.0526,1.0731,149621428,0 +1999-03-22,1.0886,1.1258,1.0539,1.1232,165548098,0 +1999-03-23,1.1026,1.1026,1.0486,1.0566,115890868,0 +1999-03-24,1.0641,1.0807,1.0399,1.0784,111596065,0 +1999-03-25,1.1014,1.1167,1.0694,1.0833,111542962,0 +1999-03-26,1.0807,1.0833,1.0566,1.0641,70790786,0 +1999-03-29,1.0731,1.1345,1.0706,1.1331,158648302,0 +1999-03-30,1.1206,1.1655,1.1206,1.1487,154647121,0 +1999-03-31,1.1655,1.1884,1.1487,1.1501,117786821,0 +1999-04-01,1.1549,1.1744,1.1449,1.1549,73083426,0 +1999-04-05,1.1526,1.2128,1.1526,1.1871,128547241,0 +1999-04-06,1.1795,1.2267,1.1795,1.2167,175302773,0 +1999-04-07,1.2192,1.2241,1.1655,1.1884,114847614,0 +1999-04-08,1.1808,1.1871,1.1526,1.1808,82663165,0 +1999-04-09,1.1601,1.1921,1.1501,1.1768,74891928,0 +1999-04-12,1.1206,1.1808,1.1167,1.1601,110387282,0 +1999-04-13,1.1628,1.1795,1.1038,1.1078,115006909,0 +1999-04-14,1.1283,1.1871,1.1206,1.1371,189926945,0 +1999-04-15,1.1331,1.1577,1.0988,1.1449,483716187,0 +1999-04-16,1.1487,1.1549,1.1283,1.1345,140060424,0 +1999-04-19,1.1424,1.1526,1.0731,1.0847,257078863,0 +1999-04-20,1.0847,1.1128,1.0731,1.0911,146094998,0 +1999-04-21,1.0886,1.1014,1.0731,1.1014,97999502,0 +1999-04-22,1.1232,1.1718,1.1232,1.1655,206422097,0 +1999-04-23,1.1601,1.2626,1.1601,1.254,291946371,0 +1999-04-26,1.2653,1.3202,1.2562,1.3104,258784288,0 +1999-04-27,1.3769,1.4678,1.3769,1.4651,587341084,0 +1999-04-28,1.4282,1.4624,1.396,1.411,266330633,0 +1999-04-29,1.3841,1.4216,1.3381,1.3769,220124840,0 +1999-04-30,1.4085,1.5085,1.4085,1.4728,410607763,0 +1999-05-03,1.4751,1.6006,1.4651,1.5866,410079900,0 +1999-05-04,1.5443,1.5561,1.4778,1.4882,226240650,0 +1999-05-05,1.4829,1.5048,1.4282,1.5048,161556287,0 +1999-05-06,1.4907,1.5009,1.4085,1.4243,120797858,0 +1999-05-07,1.4282,1.4691,1.3689,1.4691,121235147,0 +1999-05-10,1.4969,1.5022,1.4282,1.4486,109600151,0 +1999-05-11,1.4366,1.4778,1.3946,1.4327,127894428,0 +1999-05-12,1.4366,1.4882,1.4123,1.4882,110193606,0 +1999-05-13,1.4869,1.4995,1.4572,1.4778,82416409,0 +1999-05-14,1.4448,1.4678,1.4216,1.4216,63203827,0 +1999-05-17,1.4012,1.4304,1.3769,1.4216,58777821,0 +1999-05-18,1.4354,1.4728,1.4216,1.4486,116677983,0 +1999-05-19,1.4572,1.4651,1.3932,1.4461,83184782,0 +1999-05-20,1.4547,1.4651,1.3599,1.3599,116493687,0 +1999-05-21,1.3769,1.4189,1.3626,1.4062,129175050,0 +1999-05-24,1.396,1.4189,1.3407,1.3421,72767936,0 +1999-05-25,1.3307,1.3587,1.3104,1.3294,102213091,0 +1999-05-26,1.3366,1.4216,1.3202,1.411,122025399,0 +1999-05-27,1.3821,1.4012,1.3663,1.3932,93917102,0 +1999-05-28,1.3866,1.4189,1.3807,1.411,56091633,0 +1999-06-01,1.4406,1.4509,1.4216,1.4354,128572229,0 +1999-06-02,1.4243,1.5344,1.4085,1.4907,145314132,0 +1999-06-03,1.5009,1.5369,1.4995,1.5187,136237269,0 +1999-06-04,1.524,1.542,1.5124,1.5408,102819055,0 +1999-06-07,1.5408,1.5687,1.5213,1.566,116652985,0 +1999-06-08,1.561,1.5634,1.5228,1.5265,87473343,0 +1999-06-09,1.5187,1.5521,1.5187,1.5509,98664808,0 +1999-06-10,1.5329,1.5443,1.515,1.5408,88419765,0 +1999-06-11,1.5408,1.5521,1.4803,1.4869,51606303,0 +1999-06-14,1.4882,1.4919,1.4448,1.4547,43806958,0 +1999-06-15,1.4461,1.4969,1.4448,1.4751,36363682,0 +1999-06-16,1.4856,1.5394,1.4856,1.5344,62754040,0 +1999-06-17,1.524,1.5369,1.4651,1.4856,62582242,0 +1999-06-18,1.4534,1.5124,1.4461,1.5085,58025072,0 +1999-06-21,1.5048,1.5124,1.4728,1.4882,37691154,0 +1999-06-22,1.4829,1.5022,1.4534,1.4534,42132758,0 +1999-06-23,1.4434,1.4448,1.3946,1.3987,148225224,0 +1999-06-24,1.396,1.396,1.3524,1.355,120857208,0 +1999-06-25,1.3599,1.3663,1.3471,1.3499,82029108,0 +1999-06-28,1.3587,1.3741,1.3575,1.3626,77443806,0 +1999-06-29,1.3676,1.4586,1.3638,1.4534,106083096,0 +1999-06-30,1.4624,1.5022,1.4379,1.4829,95731857,0 +1999-07-01,1.4829,1.4907,1.4486,1.4509,41614249,0 +1999-07-02,1.4572,1.5009,1.4461,1.4829,34492693,0 +1999-07-06,1.4704,1.524,1.4678,1.5175,126560711,0 +1999-07-07,1.5175,1.6251,1.5048,1.5971,306536203,0 +1999-07-08,1.6366,1.7635,1.629,1.7441,453196562,0 +1999-07-09,1.7441,1.7801,1.6967,1.7801,169755457,0 +1999-07-12,1.7775,1.7801,1.7342,1.7441,84755905,0 +1999-07-13,1.7136,1.7342,1.693,1.7187,78996182,0 +1999-07-14,1.7441,1.812,1.7441,1.7904,174178307,0 +1999-07-15,1.7891,1.7904,1.6431,1.7044,471815682,0 +1999-07-16,1.7159,1.7441,1.6967,1.6993,114760146,0 +1999-07-19,1.7261,1.788,1.6751,1.743,156536841,0 +1999-07-20,1.7466,1.7775,1.6892,1.693,123287278,0 +1999-07-21,1.7315,1.7749,1.693,1.7315,200284432,0 +1999-07-22,1.7159,1.7249,1.6366,1.6774,113429554,0 +1999-07-23,1.6917,1.7211,1.6867,1.707,63878506,0 +1999-07-26,1.693,1.6967,1.629,1.6303,97940159,0 +1999-07-27,1.684,1.7261,1.68,1.7187,110412255,0 +1999-07-28,1.7249,1.7734,1.6967,1.7417,91727545,0 +1999-07-29,1.7097,1.7684,1.7006,1.7249,76825362,0 +1999-07-30,1.7441,1.7965,1.7441,1.7827,106851487,0 +1999-08-02,1.7801,1.857,1.7775,1.7853,101079266,0 +1999-08-03,1.817,1.839,1.7159,1.7684,102734714,0 +1999-08-04,1.7661,1.7891,1.7044,1.7236,103584292,0 +1999-08-05,1.7136,1.7571,1.6687,1.7531,89950272,0 +1999-08-06,1.7315,1.7709,1.7136,1.7328,121469397,0 +1999-08-09,1.7403,1.7661,1.7366,1.743,65059177,0 +1999-08-10,1.7288,1.7927,1.7159,1.7734,116078268,0 +1999-08-11,1.7927,1.9132,1.7904,1.9105,237144748,0 +1999-08-12,1.8912,1.9657,1.8762,1.9209,185766453,0 +1999-08-13,1.9401,1.9849,1.9169,1.9236,83228518,0 +1999-08-16,1.9157,1.9427,1.9057,1.9363,77231417,0 +1999-08-17,1.9311,1.9336,1.8864,1.9311,89503611,0 +1999-08-18,1.9236,1.9849,1.9079,1.9249,130677457,0 +1999-08-19,1.9157,1.9363,1.8748,1.8813,153391480,0 +1999-08-20,1.8966,1.9018,1.8621,1.8941,91458911,0 +1999-08-23,1.9018,1.9657,1.8993,1.9452,99161443,0 +1999-08-24,1.9336,1.9452,1.9182,1.9336,140072918,0 +1999-08-25,1.9427,1.9696,1.9249,1.9657,82316447,0 +1999-08-26,1.9568,2.0208,1.9568,1.9889,112804840,0 +1999-08-27,2.0093,2.081,2.0068,2.0733,124614773,0 +1999-08-30,2.081,2.081,1.9849,1.9875,93870247,0 +1999-08-31,2.0041,2.109,1.9875,2.0885,176964448,0 +1999-09-01,2.1451,2.2027,2.113,2.1974,219934321,0 +1999-09-02,2.1657,2.2872,2.1413,2.2591,249641828,0 +1999-09-03,2.3025,2.4088,2.2565,2.3537,456048309,0 +1999-09-07,2.3615,2.4946,2.3537,2.4447,274642251,0 +1999-09-08,2.4395,2.4871,2.3846,2.3846,212565988,0 +1999-09-09,2.4178,2.4308,2.3652,2.419,148946747,0 +1999-09-10,2.4333,2.4871,2.391,2.4793,127941280,0 +1999-09-13,2.4676,2.4676,2.3949,2.4012,70278539,0 +1999-09-14,2.3922,2.5126,2.391,2.4906,108288286,0 +1999-09-15,2.5252,2.5331,2.4088,2.4126,100279641,0 +1999-09-16,2.4355,2.4998,2.3652,2.4588,123234174,0 +1999-09-17,2.4753,2.4894,2.4408,2.4627,77328253,0 +1999-09-20,2.4651,2.565,2.4614,2.5316,127357200,0 +1999-09-21,2.3435,2.3448,2.2091,2.2167,936366131,0 +1999-09-22,2.2333,2.2936,2.2091,2.2512,313232972,0 +1999-09-23,2.2767,2.2808,2.0171,2.027,318973937,0 +1999-09-24,2.0297,2.1451,2.0171,2.0784,329047196,0 +1999-09-27,2.1247,2.1373,1.9582,1.9631,264434688,0 +1999-09-28,1.9696,1.9849,1.839,1.9079,394609253,0 +1999-09-29,1.9286,1.9606,1.857,1.8912,183305146,0 +1999-09-30,1.907,2.0555,1.8966,2.027,253249459,0 +1999-10-01,1.9889,1.9991,1.9057,1.9761,171454628,0 +1999-10-04,1.9977,2.0772,1.9977,2.067,128106824,0 +1999-10-05,2.1016,2.1808,2.0733,2.1744,227068369,0 +1999-10-06,2.2205,2.2296,2.1451,2.1514,224297826,0 +1999-10-07,2.1913,2.1974,2.0772,2.1247,168971441,0 +1999-10-08,2.1194,2.1234,2.0337,2.0991,106757774,0 +1999-10-11,2.113,2.1846,2.113,2.1346,73380155,0 +1999-10-12,2.1731,2.2296,2.1451,2.1671,157220889,0 +1999-10-13,2.1334,2.2257,2.0414,2.0503,177573537,0 +1999-10-14,2.2167,2.3473,2.2091,2.3435,529544025,0 +1999-10-15,2.2767,2.4268,2.2474,2.387,327179353,0 +1999-10-18,2.3652,2.3768,2.2767,2.3448,216526586,0 +1999-10-19,2.2936,2.4012,2.1913,2.1926,285180910,0 +1999-10-20,2.2411,2.4088,2.2411,2.4051,301585459,0 +1999-10-21,2.3229,2.4676,2.3167,2.4369,221280541,0 +1999-10-22,2.469,2.4728,2.3485,2.3666,116993436,0 +1999-10-25,2.3768,2.4369,2.3615,2.3846,91080977,0 +1999-10-26,2.3984,2.4178,2.3473,2.4039,100798146,0 +1999-10-27,2.3807,2.4538,2.351,2.4447,123565286,0 +1999-10-28,2.4676,2.5294,2.4355,2.4933,140582048,0 +1999-10-29,2.5228,2.5959,2.5228,2.565,145870127,0 +1999-11-01,2.5612,2.5831,2.4768,2.4857,77690570,0 +1999-11-02,2.4972,2.6151,2.4753,2.5689,111339927,0 +1999-11-03,2.6137,2.665,2.5933,2.6099,91602585,0 +1999-11-04,2.628,2.7328,2.5817,2.6779,105720765,0 +1999-11-05,2.7098,2.8287,2.6891,2.8274,116240683,0 +1999-11-08,2.8096,3.1288,2.7775,3.0849,265196822,0 +1999-11-09,3.021,3.0246,2.8174,2.8698,225665925,0 +1999-11-10,2.8251,2.9851,2.8214,2.9276,161165846,0 +1999-11-11,2.9328,2.9658,2.8776,2.9531,75263627,0 +1999-11-12,2.9427,2.9456,2.7968,2.9019,77824886,0 +1999-11-15,2.8698,2.9737,2.8326,2.8635,72483712,0 +1999-11-17,2.9032,3.0339,2.8814,2.8893,101672735,0 +1999-11-18,2.9159,2.9171,2.8312,2.8698,101732076,0 +1999-11-19,2.8662,2.9737,2.8201,2.9594,87154741,0 +1999-11-22,2.9375,2.9375,2.8569,2.9019,56435210,0 +1999-11-23,2.9375,3.0489,2.8326,2.9711,151520495,0 +1999-11-24,2.9775,3.0416,2.9351,3.0312,59989745,0 +1999-11-26,3.0339,3.0582,3.0134,3.0441,36832208,0 +1999-11-29,3.0174,3.1936,2.9851,3.0273,129446805,0 +1999-11-30,3.1413,3.322,3.1169,3.1336,235148826,0 +1999-12-01,3.2335,3.345,3.2042,3.3001,172507237,0 +1999-12-02,3.3014,3.5422,3.2579,3.528,158226647,0 +1999-12-03,3.5919,3.6999,3.582,3.6819,180693911,0 +1999-12-06,3.6675,3.7561,3.568,3.7138,130177704,0 +1999-12-07,3.7318,3.7779,3.6498,3.7713,124108763,0 +1999-12-08,3.7214,3.7738,3.5062,3.5242,114997535,0 +1999-12-09,3.5535,3.5535,3.2298,3.3694,238500344,0 +1999-12-10,3.3717,3.4975,3.1696,3.2976,177860898,0 +1999-12-13,3.2785,3.281,3.1667,3.1696,147797314,0 +1999-12-14,3.1491,3.1936,3.0339,3.0379,121556871,0 +1999-12-15,2.9851,3.1132,2.9159,3.1056,173737895,0 +1999-12-16,3.1374,3.1491,3.0094,3.1478,129353106,0 +1999-12-17,3.2298,3.2656,3.1533,3.2018,138048890,0 +1999-12-20,3.1873,3.19,3.0941,3.1374,79199218,0 +1999-12-21,3.1437,3.3001,3.1349,3.281,85783538,0 +1999-12-22,3.2938,3.3475,3.1618,3.1991,91215286,0 +1999-12-23,3.2591,3.3372,3.236,3.3144,64012810,0 +1999-12-27,3.3412,3.3439,3.1772,3.1798,46961677,0 +1999-12-28,3.1734,3.19,3.0416,3.1437,69044750,0 +1999-12-29,3.099,3.2719,3.0582,3.2234,79342898,0 +1999-12-30,3.2719,3.3336,3.19,3.2117,57768951,0 +1999-12-31,3.2309,3.2938,3.1862,3.2912,45684169,0 +2000-01-03,3.3577,3.6011,3.2554,3.5833,149424648,0 +2000-01-04,3.4652,3.5422,3.2399,3.281,142893423,0 +2000-01-05,3.322,3.5397,3.2976,3.3295,217060697,0 +2000-01-06,3.3975,3.4257,3.0416,3.0416,214174602,0 +2000-01-07,3.089,3.2335,3.0582,3.1862,128491019,0 +2000-01-10,3.2656,3.2731,3.0339,3.1301,140853786,0 +2000-01-11,3.0708,3.1811,2.8968,2.9697,123140484,0 +2000-01-12,3.0416,3.0582,2.7688,2.7918,272209046,0 +2000-01-13,3.0246,3.1618,2.9608,3.0977,287998280,0 +2000-01-14,3.2018,3.2731,3.1811,3.2155,108869246,0 +2000-01-18,3.2335,3.3938,3.2155,3.3269,128056854,0 +2000-01-19,3.3822,3.4819,3.3091,3.4116,166672553,0 +2000-01-20,3.6984,3.8906,3.6343,3.6343,510671907,0 +2000-01-21,3.6576,3.6576,3.528,3.5641,138305021,0 +2000-01-24,3.4718,3.6102,3.3653,3.4014,122953076,0 +2000-01-25,3.3618,3.6215,3.277,3.5933,138645485,0 +2000-01-26,3.5218,3.6562,3.5143,3.528,102394260,0 +2000-01-27,3.4832,3.6177,3.4257,3.5218,94860402,0 +2000-01-28,3.4638,3.5498,3.2222,3.2541,118064804,0 +2000-01-31,3.2335,3.3257,3.0246,3.322,195686650,0 +2000-02-01,3.3295,3.3618,3.2018,3.2094,88694631,0 +2000-02-02,3.2261,3.2694,3.1056,3.163,129456178,0 +2000-02-03,3.2117,3.3372,3.2094,3.3078,132523447,0 +2000-02-04,3.3269,3.5218,3.318,3.4578,118614552,0 +2000-02-07,3.4578,3.6576,3.391,3.6524,123006173,0 +2000-02-08,3.6498,3.7176,3.5615,3.678,113963664,0 +2000-02-09,3.6537,3.7497,3.5998,3.6063,83487769,0 +2000-02-10,3.6137,3.6459,3.5218,3.6343,84496662,0 +2000-02-11,3.6381,3.6537,3.4652,3.4819,59193264,0 +2000-02-14,3.4997,3.71,3.4783,3.7073,102500461,0 +2000-02-15,3.6896,3.8394,3.6881,3.8097,135465762,0 +2000-02-16,3.7699,3.7816,3.5898,3.6537,105486509,0 +2000-02-17,3.6881,3.6984,3.6215,3.678,80735969,0 +2000-02-18,3.6703,3.6933,3.5498,3.5615,65102913,0 +2000-02-22,3.5256,3.7433,3.4155,3.6433,117771192,0 +2000-02-23,3.6254,3.8097,3.5535,3.7214,131939353,0 +2000-02-24,3.7561,3.8137,3.5778,3.6881,104980507,0 +2000-02-25,3.6754,3.7457,3.5256,3.5333,69482041,0 +2000-02-28,3.5256,3.6819,3.4692,3.6254,91565119,0 +2000-02-29,3.6355,3.7536,3.6037,3.6703,102897126,0 +2000-03-01,3.7959,4.2285,3.7931,4.1721,300357934,0 +2000-03-02,4.066,4.0954,3.8636,3.906,86804909,0 +2000-03-03,3.998,4.1056,3.8419,4.098,90181410,0 +2000-03-06,4.0339,4.1338,4.002,4.0237,58721611,0 +2000-03-07,4.0479,4.0799,3.8778,3.934,76138186,0 +2000-03-08,3.934,3.9675,3.7959,3.906,75641559,0 +2000-03-09,3.87,4.002,3.7857,3.9135,77172075,0 +2000-03-10,3.8955,4.0954,3.8741,4.0263,69332109,0 +2000-03-13,3.9098,4.0494,3.8263,3.884,84768398,0 +2000-03-14,3.8802,3.9776,3.6498,3.6576,119523483,0 +2000-03-15,3.7023,3.8496,3.6537,3.7214,123715195,0 +2000-03-16,3.7561,3.906,3.6653,3.892,105445914,0 +2000-03-17,3.8455,4.002,3.8303,4.002,85071376,0 +2000-03-20,3.9545,4.0416,3.9175,3.9378,57028692,0 +2000-03-21,3.9238,4.3783,3.8946,4.3197,146226190,0 +2000-03-22,4.2516,4.6218,4.212,4.6167,158404695,0 +2000-03-23,4.5462,4.8138,4.4821,4.5244,156889792,0 +2000-03-24,4.5602,4.6076,4.3388,4.4398,124636627,0 +2000-03-27,4.4065,4.6345,4.3822,4.468,77859242,0 +2000-03-28,4.394,4.5462,4.3899,4.4541,56603882,0 +2000-03-29,4.4618,4.4644,4.2838,4.3517,66886426,0 +2000-03-30,4.2758,4.4079,4.016,4.0263,115569136,0 +2000-03-31,4.0799,4.394,4.0339,4.3477,112845453,0 +2000-04-03,4.3388,4.4667,4.1442,4.2682,91630718,0 +2000-04-04,4.2465,4.2579,3.7381,4.0759,184154733,0 +2000-04-05,4.0479,4.2542,3.9699,4.1735,127635173,0 +2000-04-06,4.1827,4.3056,3.9456,4.0083,72405631,0 +2000-04-07,4.0736,4.2222,4.0186,4.2185,67611060,0 +2000-04-10,4.2158,4.2503,3.994,4.002,59196378,0 +2000-04-11,3.9545,3.998,3.7805,3.824,151105079,0 +2000-04-12,3.8097,3.8097,3.3577,3.4975,262466873,0 +2000-04-13,3.5704,3.8419,3.4732,3.6433,147759826,0 +2000-04-14,3.4997,3.7779,3.4897,3.582,186188124,0 +2000-04-17,3.5062,3.9675,3.4923,3.9662,114219789,0 +2000-04-18,3.9545,4.0621,3.8215,4.0621,109022298,0 +2000-04-19,4.0403,4.1696,3.8342,3.8778,145061134,0 +2000-04-20,3.9597,3.994,3.7483,3.8058,201387030,0 +2000-04-24,3.6819,3.8573,3.674,3.8573,123718331,0 +2000-04-25,3.9098,4.1224,3.9084,4.1082,109222205,0 +2000-04-26,4.0545,4.098,3.8419,3.884,102325540,0 +2000-04-27,3.7522,4.066,3.7318,4.0581,91084096,0 +2000-04-28,4.0699,4.0825,3.884,3.9723,69603863,0 +2000-05-01,3.998,4.0058,3.9019,3.9802,63082010,0 +2000-05-02,3.9456,4.0416,3.7626,3.7738,65936876,0 +2000-05-03,3.8072,3.8815,3.5743,3.6844,136596473,0 +2000-05-04,3.6857,3.6896,3.5397,3.5434,111418026,0 +2000-05-05,3.5473,3.674,3.5449,3.6215,79224204,0 +2000-05-08,3.5884,3.6395,3.5218,3.5256,51565709,0 +2000-05-09,3.532,3.5615,3.3577,3.3758,91234035,0 +2000-05-10,3.3322,3.3618,3.1618,3.1798,149227867,0 +2000-05-11,3.2451,3.3372,3.1696,3.2912,139370135,0 +2000-05-12,3.3938,3.5371,3.3539,3.4461,85592997,0 +2000-05-15,3.4603,3.4603,3.2055,3.2335,189342837,0 +2000-05-16,3.3463,3.4923,3.2899,3.3833,122834366,0 +2000-05-17,3.318,3.3193,3.2129,3.2451,111021323,0 +2000-05-18,3.2976,3.3592,3.2222,3.2261,104240225,0 +2000-05-19,3.1772,3.1772,2.9889,3.0094,206559527,0 +2000-05-22,3.0018,3.0018,2.7533,2.879,210698145,0 +2000-05-23,2.8968,2.9889,2.7417,2.747,144345853,0 +2000-05-24,2.7596,2.8735,2.6572,2.8071,189211672,0 +2000-05-25,2.8326,2.9658,2.7533,2.7943,113435786,0 +2000-05-26,2.8174,2.8776,2.729,2.7648,50519321,0 +2000-05-30,2.8058,2.8214,2.6174,2.8034,198860128,0 +2000-05-31,2.7813,2.9211,2.6829,2.6891,120897818,0 +2000-06-01,2.6174,2.8673,2.573,2.853,252065657,0 +2000-06-02,3.0018,3.1936,2.8493,2.9632,221111876,0 +2000-06-05,2.9877,3.0489,2.871,2.9236,90265740,0 +2000-06-06,2.9441,3.0977,2.8914,2.9737,146547905,0 +2000-06-07,2.998,3.1056,2.9341,3.0914,93988940,0 +2000-06-08,3.1261,3.1533,2.9814,3.035,66520979,0 +2000-06-09,3.0977,3.1349,3.021,3.0658,70378485,0 +2000-06-12,3.0849,3.0876,2.9095,2.9196,80970233,0 +2000-06-13,2.9196,3.0312,2.8237,3.0246,98015118,0 +2000-06-14,3.0312,3.0812,2.8852,2.8955,77375109,0 +2000-06-15,2.9211,2.9889,2.8493,2.957,69322742,0 +2000-06-16,2.9941,3.0018,2.8518,2.9196,84659080,0 +2000-06-19,2.8994,3.1336,2.8749,3.0941,109881256,0 +2000-06-20,3.1533,3.3269,3.1491,3.2412,139829290,0 +2000-06-21,3.2335,3.6459,3.2222,3.5615,136652690,0 +2000-06-22,3.5704,3.6896,3.4297,3.4421,130436964,0 +2000-06-23,3.4434,3.4975,3.2541,3.3091,57161428,0 +2000-06-26,3.3618,3.5062,3.3372,3.4652,51692204,0 +2000-06-27,3.4434,3.5535,3.3055,3.3144,56744438,0 +2000-06-28,3.4142,3.5461,3.2976,3.4859,79880137,0 +2000-06-29,3.3975,3.4539,3.2694,3.281,56797543,0 +2000-06-30,3.3822,3.5179,3.3091,3.3539,90106441,0 +2000-07-03,3.3372,3.4783,3.3372,3.4142,19752955,0 +2000-07-05,3.4089,3.5333,3.2502,3.3055,73964239,0 +2000-07-06,3.3618,3.3897,3.1772,3.318,86327023,0 +2000-07-07,3.3679,3.5102,3.3372,3.4859,73514470,0 +2000-07-10,3.4638,3.7292,3.4421,3.6576,110938574,0 +2000-07-11,3.6498,3.7931,3.5498,3.6459,99811130,0 +2000-07-12,3.7214,3.7738,3.6102,3.7699,62869608,0 +2000-07-13,3.7457,3.8815,3.5062,3.6177,124286804,0 +2000-07-14,3.6576,3.7779,3.642,3.6933,53064967,0 +2000-07-17,3.7292,3.7666,3.6576,3.7344,72510266,0 +2000-07-18,3.7457,3.7699,3.642,3.6653,88797697,0 +2000-07-19,3.5333,3.6381,3.3144,3.3731,127692962,0 +2000-07-20,3.5218,3.6537,3.4652,3.5292,129840381,0 +2000-07-21,3.4806,3.5615,3.3897,3.4297,54726676,0 +2000-07-24,3.3653,3.3858,3.0416,3.1169,114947559,0 +2000-07-25,3.2222,3.2412,3.1413,3.2055,59013666,0 +2000-07-26,3.1911,3.281,3.1533,3.2055,58696628,0 +2000-07-27,3.2018,3.4089,3.1936,3.3295,82266486,0 +2000-07-28,3.3475,3.3618,3.0018,3.0941,66344492,0 +2000-07-31,3.1478,3.3055,3.1221,3.2541,43310322,0 +2000-08-01,3.2222,3.2756,3.1533,3.1579,38286182,0 +2000-08-02,3.1374,3.1978,3.021,3.0246,45278113,0 +2000-08-03,2.9171,3.0774,2.8326,3.0735,94791684,0 +2000-08-04,3.1667,3.281,2.9658,3.0339,73380155,0 +2000-08-07,3.0658,3.1413,3.021,3.0697,52248188,0 +2000-08-08,3.0697,3.0735,2.9658,2.9941,49271493,0 +2000-08-09,3.0812,3.1016,3.0246,3.0416,105875389,0 +2000-08-10,3.0735,3.1016,3.0339,3.0454,70198884,0 +2000-08-11,2.9992,3.0735,2.9171,3.053,66389781,0 +2000-08-14,3.0477,3.053,2.9658,3.0134,43689815,0 +2000-08-15,3.0246,3.0697,2.9775,2.9889,31848670,0 +2000-08-16,3.0018,3.1374,2.998,3.1056,40068135,0 +2000-08-17,3.0977,3.3577,3.0941,3.2938,75549419,0 +2000-08-18,3.2899,3.318,3.1936,3.2018,53036864,0 +2000-08-21,3.2168,3.3014,3.1772,3.2335,37500626,0 +2000-08-22,3.2412,3.3822,3.2261,3.3091,77195502,0 +2000-08-23,3.295,3.5062,3.2694,3.4783,66057135,0 +2000-08-24,3.5011,3.6254,3.4179,3.5919,86667472,0 +2000-08-25,3.6177,3.6819,3.6102,3.6381,93275232,0 +2000-08-28,3.6653,3.7779,3.6537,3.7176,100120367,0 +2000-08-29,3.7061,3.8058,3.6933,3.7894,74470235,0 +2000-08-30,3.7779,3.8419,3.7587,3.8097,79591201,0 +2000-08-31,3.7752,3.9378,3.7738,3.9019,117018447,0 +2000-09-01,3.9264,4.0736,3.9135,4.0621,71637245,0 +2000-09-05,4.0122,4.1056,3.9855,3.998,83286302,0 +2000-09-06,3.9304,3.994,3.6984,3.7421,99116155,0 +2000-09-07,3.7857,4.0058,3.7292,3.9699,60647239,0 +2000-09-08,3.9456,3.9456,3.7457,3.7699,54526770,0 +2000-09-11,3.7573,3.866,3.7214,3.7421,52257559,0 +2000-09-12,3.6714,3.8455,3.6498,3.6984,52429349,0 +2000-09-13,3.6343,3.8097,3.6343,3.7138,85333753,0 +2000-09-14,3.7497,3.8176,3.6381,3.6409,118958107,0 +2000-09-15,3.6984,3.7252,3.4732,3.5358,110023379,0 +2000-09-18,3.5371,3.8906,3.5256,3.884,118395903,0 +2000-09-19,3.8263,3.8741,3.7497,3.8381,75719645,0 +2000-09-20,3.8034,3.934,3.7497,3.9084,63414662,0 +2000-09-21,3.7457,3.8176,3.5371,3.6294,142367119,0 +2000-09-22,3.2222,3.3577,3.2018,3.3412,202664535,0 +2000-09-25,3.3784,3.5535,3.3336,3.4257,121467845,0 +2000-09-26,3.4142,3.5062,3.2899,3.2938,81137345,0 +2000-09-27,3.3144,3.3784,3.089,3.1336,112183264,0 +2000-09-28,3.1579,3.4461,3.0812,3.4257,273189804,0 +2000-09-29,1.8058,1.857,1.6251,1.6496,2069769775,0 +2000-10-02,1.7097,1.7136,1.5048,1.5521,676232487,0 +2000-10-03,1.5971,1.6006,1.4216,1.4282,568397135,0 +2000-10-04,1.4327,1.5213,1.4012,1.5124,408849240,0 +2000-10-05,1.5048,1.5687,1.4085,1.4123,243466696,0 +2000-10-06,1.4534,1.4691,1.3447,1.4216,170859601,0 +2000-10-09,1.4486,1.4651,1.3524,1.3932,166650689,0 +2000-10-10,1.3841,1.4366,1.3126,1.3366,192736525,0 +2000-10-11,1.2883,1.3447,1.2241,1.2562,334219692,0 +2000-10-12,1.2998,1.332,1.2485,1.2808,332167564,0 +2000-10-13,1.2959,1.4162,1.2808,1.4123,347977113,0 +2000-10-16,1.4282,1.4882,1.3689,1.3769,228733192,0 +2000-10-17,1.3894,1.405,1.2614,1.2883,167809506,0 +2000-10-18,1.2446,1.3486,1.2013,1.2883,232662543,0 +2000-10-19,1.2267,1.2677,1.1718,1.2128,420200007,0 +2000-10-20,1.2204,1.305,1.2128,1.2485,220669898,0 +2000-10-23,1.2971,1.3164,1.2446,1.305,153745990,0 +2000-10-24,1.3255,1.3366,1.2037,1.2089,224347797,0 +2000-10-25,1.2204,1.2294,1.1808,1.1845,185169865,0 +2000-10-26,1.2037,1.2089,1.1206,1.1845,201312071,0 +2000-10-27,1.2089,1.2294,1.1449,1.1884,207629338,0 +2000-10-30,1.2241,1.2768,1.2013,1.2361,178259146,0 +2000-10-31,1.2653,1.2959,1.2321,1.2526,247057145,0 +2000-11-01,1.2446,1.3366,1.2446,1.3126,160459927,0 +2000-11-02,1.3524,1.4366,1.3486,1.4282,164734430,0 +2000-11-03,1.4728,1.4728,1.405,1.4243,143853896,0 +2000-11-06,1.4366,1.4486,1.3366,1.373,109734452,0 +2000-11-07,1.3769,1.396,1.332,1.3638,84212416,0 +2000-11-08,1.3689,1.373,1.2677,1.2844,117713413,0 +2000-11-09,1.273,1.3126,1.2204,1.2933,132981031,0 +2000-11-10,1.2396,1.273,1.2204,1.2204,117758711,0 +2000-11-13,1.2013,1.2808,1.1679,1.2407,120426164,0 +2000-11-14,1.2768,1.3126,1.2526,1.2959,114063610,0 +2000-11-15,1.2833,1.2933,1.2321,1.273,78744753,0 +2000-11-16,1.2485,1.2677,1.2089,1.2167,66756788,0 +2000-11-17,1.2294,1.2321,1.1679,1.1845,124432040,0 +2000-11-20,1.1898,1.2485,1.1679,1.2128,113802814,0 +2000-11-21,1.2294,1.2485,1.2013,1.2037,84209294,0 +2000-11-22,1.2037,1.2241,1.1768,1.1845,78235615,0 +2000-11-24,1.2076,1.2485,1.2037,1.2361,44881426,0 +2000-11-27,1.273,1.2768,1.1845,1.1974,72172921,0 +2000-11-28,1.1974,1.2167,1.1487,1.1549,75054345,0 +2000-11-29,1.1577,1.1718,1.1038,1.1245,137252396,0 +2000-11-30,1.0694,1.0886,1.0322,1.0566,225783053,0 +2000-12-01,1.0886,1.1206,1.0757,1.0924,107566745,0 +2000-12-04,1.1014,1.1014,1.0526,1.0694,103610851,0 +2000-12-05,1.0847,1.1167,1.0486,1.0886,171228176,0 +2000-12-06,0.936,0.9604,0.8966,0.9171,383314715,0 +2000-12-07,0.9247,0.9526,0.8966,0.9171,114040183,0 +2000-12-08,0.949,0.9809,0.9247,0.9644,121488152,0 +2000-12-11,0.972,0.9849,0.9526,0.972,92731726,0 +2000-12-12,0.9758,1.0245,0.9604,0.9849,107721367,0 +2000-12-13,0.9963,0.9963,0.9526,0.9604,96183202,0 +2000-12-14,0.9618,0.9758,0.9247,0.9247,73434819,0 +2000-12-15,0.9321,0.9399,0.8966,0.9005,143330712,0 +2000-12-18,0.9321,0.936,0.8926,0.9117,90862315,0 +2000-12-19,0.9209,0.9758,0.8966,0.8966,104304265,0 +2000-12-20,0.8822,0.936,0.8723,0.9209,157661285,0 +2000-12-21,0.9117,0.9604,0.8886,0.9005,102306791,0 +2000-12-22,0.9039,0.9604,0.9039,0.9604,88699310,0 +2000-12-26,0.9526,0.9604,0.9117,0.9399,60466088,0 +2000-12-27,0.9184,0.949,0.9078,0.949,90767052,0 +2000-12-28,0.9209,0.9565,0.9171,0.949,85108857,0 +2000-12-29,0.9399,0.9604,0.9284,0.9526,175790027,0 +2001-01-02,0.9526,0.9758,0.9321,0.9526,126142146,0 +2001-01-03,0.9284,1.0694,0.9247,1.0486,227867985,0 +2001-01-04,1.1615,1.1845,1.0757,1.0924,206205023,0 +2001-01-05,1.0847,1.1128,1.0282,1.0486,114999104,0 +2001-01-08,1.0847,1.0873,1.0208,1.0604,104218373,0 +2001-01-09,1.0757,1.1294,1.0604,1.1014,164242473,0 +2001-01-10,1.0694,1.0886,1.0282,1.0604,161970152,0 +2001-01-11,1.0399,1.1845,1.0399,1.1526,224147897,0 +2001-01-12,1.1449,1.1526,1.0924,1.1014,118072614,0 +2001-01-16,1.1167,1.1679,1.0886,1.0961,85371235,0 +2001-01-17,1.1245,1.1245,1.0566,1.0757,234505405,0 +2001-01-18,1.1399,1.2013,1.1283,1.1974,342192412,0 +2001-01-19,1.2446,1.2526,1.1974,1.2485,216598425,0 +2001-01-22,1.2204,1.2562,1.1808,1.2321,144831573,0 +2001-01-23,1.2361,1.3407,1.2204,1.3126,245286128,0 +2001-01-24,1.3202,1.3255,1.2526,1.3126,199984579,0 +2001-01-25,1.3164,1.3164,1.2653,1.2768,136571493,0 +2001-01-26,1.2485,1.2677,1.2204,1.2526,134650529,0 +2001-01-29,1.2526,1.3932,1.2526,1.3894,238592491,0 +2001-01-30,1.3807,1.4085,1.3366,1.3932,193105095,0 +2001-01-31,1.3769,1.4406,1.373,1.3841,203781185,0 +2001-02-01,1.3255,1.3769,1.3126,1.3524,103101726,0 +2001-02-02,1.3524,1.405,1.3126,1.3202,119178331,0 +2001-02-05,1.3126,1.3164,1.2653,1.2933,79792683,0 +2001-02-06,1.2909,1.3702,1.2808,1.3524,129042310,0 +2001-02-07,1.3229,1.3366,1.2677,1.3294,109848462,0 +2001-02-08,1.3164,1.3486,1.2933,1.3294,168481059,0 +2001-02-09,1.3126,1.332,1.1974,1.2241,164564197,0 +2001-02-12,1.2204,1.2808,1.2037,1.2614,76447431,0 +2001-02-13,1.2768,1.3089,1.2167,1.2241,66114918,0 +2001-02-14,1.2294,1.2562,1.1845,1.2485,86208320,0 +2001-02-15,1.2614,1.3164,1.2614,1.2844,86848648,0 +2001-02-16,1.2167,1.2485,1.2013,1.2167,73600356,0 +2001-02-20,1.2294,1.2446,1.1655,1.1718,87818481,0 +2001-02-21,1.1679,1.2768,1.1679,1.2089,108836458,0 +2001-02-22,1.2204,1.2407,1.1526,1.2037,120466766,0 +2001-02-23,1.1921,1.2089,1.1679,1.2037,81954129,0 +2001-02-26,1.2204,1.2614,1.1884,1.2485,57572157,0 +2001-02-27,1.2347,1.2446,1.1974,1.2407,97195206,0 +2001-02-28,1.2407,1.2446,1.1601,1.1679,141737727,0 +2001-03-01,1.1399,1.2013,1.1014,1.2013,92160141,0 +2001-03-02,1.1718,1.3089,1.1679,1.2321,113282744,0 +2001-03-05,1.2407,1.3126,1.2321,1.305,90406309,0 +2001-03-06,1.3269,1.4123,1.3255,1.3769,204087294,0 +2001-03-07,1.3638,1.3841,1.3294,1.3599,117002810,0 +2001-03-08,1.3255,1.3524,1.3089,1.332,57131760,0 +2001-03-09,1.3202,1.3255,1.2808,1.2959,83423739,0 +2001-03-12,1.2614,1.273,1.1601,1.1921,109048845,0 +2001-03-13,1.2089,1.2526,1.1655,1.2526,123637119,0 +2001-03-14,1.1845,1.3126,1.1808,1.3089,133243413,0 +2001-03-15,1.3366,1.3689,1.2614,1.2614,147617701,0 +2001-03-16,1.2167,1.2998,1.2089,1.2562,131163168,0 +2001-03-19,1.2653,1.3202,1.2485,1.3164,99284818,0 +2001-03-20,1.3269,1.3407,1.2614,1.2614,139220205,0 +2001-03-21,1.2665,1.3366,1.2407,1.2883,103570254,0 +2001-03-22,1.305,1.3932,1.2933,1.3841,201716552,0 +2001-03-23,1.4123,1.5085,1.4085,1.4728,263513248,0 +2001-03-26,1.4803,1.5213,1.3524,1.3946,204825995,0 +2001-03-27,1.405,1.4764,1.4025,1.4651,151662625,0 +2001-03-28,1.4136,1.4406,1.3769,1.4202,163052424,0 +2001-03-29,1.3932,1.5009,1.3769,1.4434,170973601,0 +2001-03-30,1.4448,1.4547,1.3663,1.4136,111650724,0 +2001-04-02,1.4136,1.4509,1.3702,1.3821,95074348,0 +2001-04-03,1.3676,1.3702,1.2883,1.2959,102820608,0 +2001-04-04,1.2653,1.2959,1.2013,1.2485,191170088,0 +2001-04-05,1.319,1.4406,1.2808,1.3366,124594456,0 +2001-04-06,1.332,1.3471,1.2743,1.3176,90606197,0 +2001-04-09,1.3255,1.3663,1.2844,1.3151,74345308,0 +2001-04-10,1.3381,1.4534,1.3307,1.411,127553972,0 +2001-04-11,1.4717,1.4728,1.3626,1.396,93173704,0 +2001-04-12,1.3715,1.4738,1.3537,1.4354,83367515,0 +2001-04-16,1.4136,1.434,1.3356,1.373,79544361,0 +2001-04-17,1.3575,1.3587,1.2553,1.3065,191090443,0 +2001-04-18,1.3821,1.542,1.3499,1.4586,307006299,0 +2001-04-19,1.6366,1.6496,1.5112,1.647,522534919,0 +2001-04-20,1.5958,1.6403,1.5752,1.6033,193378395,0 +2001-04-23,1.5587,1.6006,1.5369,1.5521,151022314,0 +2001-04-24,1.5574,1.5853,1.506,1.5394,105177280,0 +2001-04-25,1.5509,1.5918,1.5098,1.5827,92249152,0 +2001-04-26,1.6122,1.6713,1.5804,1.5815,223021878,0 +2001-04-27,1.6137,1.6829,1.5853,1.6774,126337380,0 +2001-04-30,1.7097,1.7366,1.5932,1.6315,137984864,0 +2001-05-01,1.6275,1.6967,1.6137,1.6596,119153334,0 +2001-05-02,1.6867,1.7097,1.6496,1.702,102775317,0 +2001-05-03,1.6622,1.68,1.584,1.5984,84095300,0 +2001-05-04,1.5521,1.6558,1.5344,1.6496,78380857,0 +2001-05-07,1.6403,1.6496,1.5906,1.5984,77125208,0 +2001-05-08,1.6237,1.629,1.5329,1.574,87969963,0 +2001-05-09,1.5454,1.5726,1.5162,1.5355,90606197,0 +2001-05-10,1.5509,1.5687,1.4691,1.4728,80590739,0 +2001-05-11,1.4738,1.5035,1.4572,1.4637,56625758,0 +2001-05-14,1.4664,1.5162,1.4572,1.4907,86236435,0 +2001-05-15,1.4969,1.6328,1.4751,1.4844,66102415,0 +2001-05-16,1.4894,1.5687,1.4637,1.5431,89892494,0 +2001-05-17,1.5521,1.5574,1.4882,1.5085,92622414,0 +2001-05-18,1.4956,1.5138,1.4803,1.5073,44356681,0 +2001-05-21,1.5124,1.5315,1.4764,1.5085,128564409,0 +2001-05-22,1.5369,1.5443,1.4983,1.5048,115155267,0 +2001-05-23,1.5213,1.5213,1.4637,1.4882,78377739,0 +2001-05-24,1.4907,1.4919,1.4486,1.4856,75788371,0 +2001-05-25,1.4856,1.4907,1.4406,1.4572,44270790,0 +2001-05-29,1.4294,1.4406,1.332,1.3741,143900761,0 +2001-05-30,1.3294,1.3294,1.2361,1.2665,216713993,0 +2001-05-31,1.2677,1.2959,1.2473,1.2768,123515287,0 +2001-06-01,1.2883,1.3499,1.2793,1.3381,127191641,0 +2001-06-04,1.3499,1.3512,1.3104,1.3229,78622935,0 +2001-06-05,1.332,1.3512,1.3037,1.3407,131575462,0 +2001-06-06,1.3394,1.3394,1.3011,1.3282,62240224,0 +2001-06-07,1.3269,1.3894,1.3089,1.3866,90687417,0 +2001-06-08,1.3854,1.3854,1.3269,1.365,95552244,0 +2001-06-11,1.3486,1.3499,1.2768,1.2833,81991627,0 +2001-06-12,1.2653,1.3255,1.2653,1.2998,84723109,0 +2001-06-13,1.3715,1.392,1.2844,1.3104,142645113,0 +2001-06-14,1.2833,1.3089,1.2653,1.273,82925530,0 +2001-06-15,1.2872,1.3294,1.2396,1.3089,126787143,0 +2001-06-18,1.3075,1.3356,1.2808,1.3011,96468996,0 +2001-06-19,1.3356,1.3702,1.2819,1.2933,89545774,0 +2001-06-20,1.2808,1.3999,1.2793,1.3879,120371507,0 +2001-06-21,1.3807,1.4728,1.3512,1.4392,95191500,0 +2001-06-22,1.4392,1.4728,1.3932,1.4257,79767689,0 +2001-06-25,1.4406,1.5369,1.4366,1.5355,122582936,0 +2001-06-26,1.4946,1.5213,1.4738,1.5213,76074162,0 +2001-06-27,1.5252,1.5369,1.4406,1.4946,104338627,0 +2001-06-28,1.4764,1.5315,1.4691,1.5073,97165539,0 +2001-06-29,1.515,1.6072,1.4856,1.4882,143733651,0 +2001-07-02,1.5138,1.5521,1.4817,1.5302,64156488,0 +2001-07-03,1.506,1.548,1.5048,1.5265,31386385,0 +2001-07-05,1.5112,1.5213,1.4738,1.4856,42471656,0 +2001-07-06,1.4572,1.4704,1.3906,1.411,84479473,0 +2001-07-09,1.4136,1.4728,1.3879,1.4534,94113876,0 +2001-07-10,1.4691,1.4778,1.3344,1.3537,110234215,0 +2001-07-11,1.3471,1.4448,1.3447,1.4434,131216261,0 +2001-07-12,1.4919,1.5878,1.4919,1.56,171457743,0 +2001-07-13,1.5443,1.6018,1.5265,1.5918,126819954,0 +2001-07-16,1.5932,1.6072,1.5315,1.5344,77715558,0 +2001-07-17,1.5355,1.6149,1.4738,1.6072,180668916,0 +2001-07-18,1.3946,1.4586,1.3075,1.3307,317093611,0 +2001-07-19,1.3599,1.3715,1.2653,1.278,240157347,0 +2001-07-20,1.2614,1.2844,1.2473,1.2793,123986941,0 +2001-07-23,1.2859,1.3126,1.2499,1.2512,67311223,0 +2001-07-24,1.242,1.2754,1.1999,1.2217,97156164,0 +2001-07-25,1.2241,1.2361,1.1501,1.182,123790166,0 +2001-07-26,1.1833,1.2037,1.1437,1.1898,102947111,0 +2001-07-27,1.2013,1.2321,1.1845,1.2142,93184652,0 +2001-07-30,1.2241,1.2396,1.1858,1.2115,67868745,0 +2001-07-31,1.2334,1.2433,1.1858,1.2026,65544876,0 +2001-08-01,1.2178,1.2665,1.2128,1.2204,84818377,0 +2001-08-02,1.2575,1.273,1.2334,1.2691,70303509,0 +2001-08-03,1.2743,1.2743,1.2167,1.2485,51887430,0 +2001-08-06,1.2192,1.2588,1.2167,1.2241,27791261,0 +2001-08-07,1.2373,1.2601,1.2154,1.2321,47005393,0 +2001-08-08,1.2334,1.2614,1.1871,1.2102,77019031,0 +2001-08-09,1.2142,1.2254,1.1986,1.2204,55962009,0 +2001-08-10,1.2192,1.2373,1.1898,1.2178,52140422,0 +2001-08-13,1.2228,1.2373,1.2013,1.2217,41273799,0 +2001-08-14,1.2294,1.2396,1.1962,1.1999,63850392,0 +2001-08-15,1.2013,1.2128,1.1655,1.1808,80675071,0 +2001-08-16,1.1691,1.2013,1.1501,1.1935,80343985,0 +2001-08-17,1.1526,1.1808,1.1513,1.1577,58126600,0 +2001-08-20,1.1615,1.1679,1.1399,1.1601,70362871,0 +2001-08-21,1.1615,1.1615,1.1331,1.1474,51789024,0 +2001-08-22,1.1487,1.1679,1.1271,1.1667,48518734,0 +2001-08-23,1.1655,1.1744,1.1258,1.1399,60539492,0 +2001-08-24,1.1526,1.1921,1.1294,1.1898,80968665,0 +2001-08-27,1.191,1.2361,1.1628,1.2115,48984126,0 +2001-08-28,1.2102,1.2254,1.1782,1.1782,47894045,0 +2001-08-29,1.1808,1.205,1.1411,1.1411,66923886,0 +2001-08-30,1.1358,1.1642,1.1065,1.1411,102822177,0 +2001-08-31,1.1358,1.191,1.1294,1.1884,60491066,0 +2001-09-04,1.1845,1.2217,1.1642,1.1679,97110865,0 +2001-09-05,1.1679,1.2128,1.1601,1.1884,100413951,0 +2001-09-06,1.1782,1.2115,1.1294,1.1345,78747871,0 +2001-09-07,1.1206,1.1589,1.1014,1.1065,67442383,0 +2001-09-10,1.0886,1.1206,1.0833,1.1128,86131811,0 +2001-09-17,1.0245,1.0937,1.0078,1.0873,127730444,0 +2001-09-18,1.0821,1.1345,1.0361,1.0426,91223094,0 +2001-09-19,1.0566,1.095,0.999,1.0899,104112187,0 +2001-09-20,1.0426,1.0847,0.9925,1.0039,114669565,0 +2001-09-21,0.9479,1.0399,0.9399,1.0078,159107468,0 +2001-09-24,1.0309,1.0784,1.0208,1.0526,82141550,0 +2001-09-25,1.0334,1.0387,0.9823,0.995,104415154,0 +2001-09-26,1.0132,1.018,0.9552,0.9708,137711558,0 +2001-09-27,0.9758,1.0091,0.9733,0.9925,89867508,0 +2001-09-28,1.0064,1.0194,0.9861,0.9925,101822659,0 +2001-10-01,0.9925,1.0245,0.9758,0.995,58065688,0 +2001-10-02,0.9873,1.0144,0.9526,0.9644,65783834,0 +2001-10-03,0.9565,0.9837,0.9502,0.9591,190489174,0 +2001-10-04,0.9823,1.0399,0.9604,1.0167,111866238,0 +2001-10-05,0.9861,1.0334,0.9604,1.0334,95569416,0 +2001-10-08,0.9977,1.0474,0.9925,1.0374,58003205,0 +2001-10-09,1.0282,1.0374,1.0014,1.0245,48532789,0 +2001-10-10,1.0309,1.0796,1.0208,1.077,85828835,0 +2001-10-11,1.0833,1.1358,1.0796,1.1358,93192468,0 +2001-10-12,1.1078,1.1577,1.0796,1.1539,80265891,0 +2001-10-15,1.1487,1.1768,1.1487,1.1513,88894524,0 +2001-10-16,1.1577,1.1655,1.1371,1.1539,56599195,0 +2001-10-17,1.1744,1.1795,1.0859,1.0873,79631813,0 +2001-10-18,1.1065,1.1679,1.1065,1.1526,170836179,0 +2001-10-19,1.1487,1.1782,1.1449,1.1718,46515020,0 +2001-10-22,1.1667,1.2217,1.1577,1.2178,109304989,0 +2001-10-23,1.2241,1.2433,1.1449,1.1615,191029537,0 +2001-10-24,1.1563,1.2217,1.1371,1.2128,104421399,0 +2001-10-25,1.1808,1.2321,1.1628,1.2294,71101566,0 +2001-10-26,1.2076,1.2321,1.1921,1.1962,77798324,0 +2001-10-29,1.1898,1.1962,1.1271,1.1283,66703700,0 +2001-10-30,1.1128,1.1526,1.0924,1.1271,77184568,0 +2001-10-31,1.1358,1.1782,1.1167,1.1245,76344341,0 +2001-11-01,1.1294,1.2026,1.1038,1.1898,87289058,0 +2001-11-02,1.1858,1.2076,1.1628,1.1898,54996857,0 +2001-11-05,1.2063,1.2321,1.191,1.2217,65758838,0 +2001-11-06,1.2142,1.2562,1.1871,1.254,88132398,0 +2001-11-07,1.2459,1.2883,1.2373,1.254,106809307,0 +2001-11-08,1.2562,1.2743,1.1898,1.1986,95417935,0 +2001-11-09,1.191,1.2321,1.1884,1.1986,37452220,0 +2001-11-12,1.1949,1.2281,1.1501,1.2013,56194706,0 +2001-11-13,1.2217,1.242,1.1986,1.2407,62657208,0 +2001-11-14,1.254,1.2743,1.2254,1.2553,61674877,0 +2001-11-15,1.2446,1.2743,1.2321,1.2446,59410360,0 +2001-11-16,1.2334,1.2347,1.1782,1.2142,64328293,0 +2001-11-19,1.2167,1.2844,1.2142,1.2808,92753593,0 +2001-11-20,1.2691,1.2933,1.2485,1.2512,77134585,0 +2001-11-21,1.2553,1.2677,1.2334,1.2601,56218150,0 +2001-11-23,1.2626,1.2768,1.254,1.2705,16734103,0 +2001-11-26,1.2768,1.3807,1.273,1.3689,128478517,0 +2001-11-27,1.3575,1.3782,1.3126,1.3447,74895047,0 +2001-11-28,1.3356,1.3587,1.3075,1.3151,69891215,0 +2001-11-29,1.319,1.3255,1.2933,1.3075,56547664,0 +2001-11-30,1.3104,1.373,1.2959,1.3638,84755905,0 +2001-12-03,1.3486,1.3626,1.319,1.3486,50524024,0 +2001-12-04,1.3486,1.4448,1.3269,1.434,106092470,0 +2001-12-05,1.4316,1.5394,1.4202,1.5213,158567094,0 +2001-12-06,1.5035,1.5048,1.4177,1.4586,94523059,0 +2001-12-07,1.4379,1.4547,1.4085,1.4434,56756941,0 +2001-12-10,1.4269,1.4717,1.4243,1.4434,47413009,0 +2001-12-11,1.4521,1.4637,1.3854,1.3946,57303545,0 +2001-12-12,1.4012,1.4036,1.3599,1.3756,53674051,0 +2001-12-13,1.3756,1.3807,1.3126,1.3447,55174888,0 +2001-12-14,1.3282,1.3332,1.2859,1.3065,52955655,0 +2001-12-17,1.3065,1.3447,1.2933,1.3202,48445336,0 +2001-12-18,1.3381,1.365,1.2944,1.346,65604220,0 +2001-12-19,1.3176,1.3879,1.3104,1.3841,80864039,0 +2001-12-20,1.3702,1.3741,1.3202,1.3241,61595224,0 +2001-12-21,1.346,1.3795,1.332,1.3447,71487312,0 +2001-12-24,1.3381,1.373,1.3381,1.3676,14119740,0 +2001-12-26,1.3676,1.4282,1.3537,1.3756,40828695,0 +2001-12-27,1.3821,1.4243,1.3821,1.4136,53408565,0 +2001-12-28,1.4062,1.4728,1.4062,1.4354,83420620,0 +2001-12-31,1.4421,1.4509,1.3973,1.4025,38425187,0 +2002-01-02,1.4123,1.4919,1.4062,1.4919,147667679,0 +2002-01-03,1.4728,1.5213,1.4572,1.5098,170678441,0 +2002-01-04,1.4946,1.5329,1.4717,1.5175,114335372,0 +2002-01-07,1.5187,1.5369,1.4572,1.4664,123986941,0 +2002-01-08,1.4572,1.4764,1.4379,1.4474,125508082,0 +2002-01-09,1.4598,1.4678,1.3626,1.3854,91427689,0 +2002-01-10,1.3587,1.3741,1.2959,1.3599,126260848,0 +2002-01-11,1.3702,1.3987,1.319,1.3486,97274851,0 +2002-01-14,1.346,1.3702,1.3381,1.3537,116014242,0 +2002-01-15,1.365,1.3932,1.3587,1.3894,80965546,0 +2002-01-16,1.3715,1.3715,1.3126,1.3307,158097010,0 +2002-01-17,1.4062,1.4558,1.4012,1.4392,184223461,0 +2002-01-18,1.4085,1.4474,1.4062,1.4202,94488710,0 +2002-01-22,1.4257,1.4327,1.3973,1.3973,91282430,0 +2002-01-23,1.396,1.4751,1.3821,1.4738,123623056,0 +2002-01-24,1.4678,1.506,1.4664,1.4869,95936437,0 +2002-01-25,1.4664,1.4995,1.4509,1.4882,51848382,0 +2002-01-28,1.4983,1.5085,1.4547,1.4894,51996746,0 +2002-01-29,1.4869,1.5073,1.4637,1.4778,67022286,0 +2002-01-30,1.4778,1.5454,1.4691,1.542,131514552,0 +2002-01-31,1.5469,1.584,1.5431,1.5827,130641533,0 +2002-02-05,1.6059,1.6634,1.6059,1.629,127418097,0 +2002-02-06,1.6392,1.6634,1.5454,1.5804,166653811,0 +2002-02-07,1.5777,1.6189,1.542,1.5561,97004673,0 +2002-02-08,1.5623,1.5777,1.4969,1.5394,99095845,0 +2002-02-11,1.5315,1.6006,1.5201,1.5995,111163461,0 +2002-02-12,1.579,1.6033,1.5647,1.5827,62547893,0 +2002-02-13,1.584,1.6163,1.5777,1.6018,87254694,0 +2002-02-14,1.6045,1.6163,1.561,1.5752,72557117,0 +2002-02-15,1.5713,1.5995,1.5276,1.5302,72561796,0 +2002-02-19,1.5213,1.5289,1.4392,1.4486,108836458,0 +2002-02-20,1.4572,1.4856,1.4316,1.4803,79605280,0 +2002-02-21,1.4678,1.4728,1.373,1.3769,124591339,0 +2002-02-22,1.3866,1.4691,1.3769,1.4558,113359268,0 +2002-02-25,1.4637,1.5827,1.4316,1.524,119040902,0 +2002-02-26,1.5315,1.561,1.4882,1.5162,72546166,0 +2002-02-27,1.5329,1.5521,1.3407,1.4062,287293929,0 +2002-02-28,1.4177,1.4461,1.3676,1.3894,127432149,0 +2002-03-01,1.4036,1.5048,1.3973,1.5009,97327950,0 +2002-03-04,1.4894,1.574,1.4572,1.5547,97123360,0 +2002-03-05,1.5454,1.5634,1.4983,1.5073,76609832,0 +2002-03-06,1.5035,1.5587,1.4678,1.542,63085131,0 +2002-03-07,1.5408,1.5713,1.5112,1.561,72021439,0 +2002-03-08,1.584,1.6059,1.5561,1.579,75235514,0 +2002-03-11,1.5752,1.6097,1.5431,1.6045,73286445,0 +2002-03-12,1.5701,1.584,1.5431,1.5827,70851699,0 +2002-03-13,1.561,1.5918,1.5454,1.5674,55990127,0 +2002-03-14,1.5561,1.5752,1.5289,1.5634,60600397,0 +2002-03-15,1.566,1.5984,1.5521,1.5971,67183145,0 +2002-03-18,1.5971,1.6045,1.5574,1.584,84935504,0 +2002-03-19,1.5815,1.6199,1.5561,1.5918,67586073,0 +2002-03-20,1.579,1.6097,1.5687,1.5958,82080647,0 +2002-03-21,1.5276,1.5561,1.4894,1.5534,171890335,0 +2002-03-22,1.5509,1.5726,1.5289,1.542,56388368,0 +2002-03-25,1.542,1.542,1.4882,1.4956,73298940,0 +2002-03-26,1.4856,1.5138,1.4728,1.5022,71907423,0 +2002-03-27,1.4956,1.5187,1.4894,1.5022,35614018,0 +2002-03-28,1.5175,1.5289,1.5022,1.5162,30246317,0 +2002-04-01,1.4969,1.5815,1.4907,1.566,55510674,0 +2002-04-02,1.5369,1.5561,1.5289,1.542,56835017,0 +2002-04-03,1.5408,1.5674,1.5112,1.5213,59828894,0 +2002-04-04,1.5162,1.6045,1.5162,1.5945,94401238,0 +2002-04-05,1.5971,1.6137,1.5431,1.584,77626530,0 +2002-04-08,1.5469,1.5804,1.5228,1.5726,72931937,0 +2002-04-09,1.574,1.6006,1.5382,1.5431,53414798,0 +2002-04-10,1.5509,1.5971,1.5382,1.579,62743108,0 +2002-04-11,1.6033,1.6137,1.5853,1.5918,113576342,0 +2002-04-12,1.6018,1.6122,1.574,1.6045,89309960,0 +2002-04-15,1.6045,1.6097,1.5878,1.6006,83489316,0 +2002-04-16,1.6097,1.6634,1.6083,1.6483,171395279,0 +2002-04-17,1.6596,1.6762,1.6251,1.6713,110507506,0 +2002-04-18,1.6328,1.634,1.5932,1.6275,112030228,0 +2002-04-19,1.6315,1.6315,1.5958,1.5995,104694706,0 +2002-04-22,1.5906,1.5958,1.5521,1.5713,75138685,0 +2002-04-23,1.5713,1.5866,1.542,1.5521,65110713,0 +2002-04-24,1.5561,1.5687,1.5162,1.5213,39168556,0 +2002-04-25,1.5085,1.5587,1.5085,1.5443,54159765,0 +2002-04-26,1.5547,1.561,1.4728,1.4738,85054209,0 +2002-04-29,1.4829,1.5408,1.4778,1.5344,75936739,0 +2002-04-30,1.5302,1.561,1.5213,1.5534,78355876,0 +2002-05-01,1.5547,1.5547,1.4956,1.5355,59877305,0 +2002-05-02,1.524,1.5587,1.5112,1.5175,66748981,0 +2002-05-03,1.5098,1.5382,1.4995,1.506,64361080,0 +2002-05-06,1.4956,1.5048,1.4379,1.4498,69627284,0 +2002-05-07,1.4691,1.4691,1.4177,1.4379,67698511,0 +2002-05-08,1.4856,1.5701,1.4751,1.561,121783319,0 +2002-05-09,1.5521,1.56,1.524,1.5494,62641606,0 +2002-05-10,1.5547,1.5547,1.4717,1.4932,65647959,0 +2002-05-13,1.506,1.542,1.4691,1.5329,74073568,0 +2002-05-14,1.5647,1.6442,1.5509,1.6392,146833713,0 +2002-05-15,1.6251,1.6634,1.5906,1.6189,93656300,0 +2002-05-16,1.6045,1.629,1.5853,1.6149,63320946,0 +2002-05-17,1.6315,1.6507,1.5752,1.6018,65954068,0 +2002-05-20,1.574,1.5958,1.5713,1.584,75274562,0 +2002-05-21,1.5892,1.6006,1.4983,1.5022,78363683,0 +2002-05-22,1.4969,1.561,1.4932,1.5574,81120164,0 +2002-05-23,1.5647,1.6163,1.542,1.6122,103018949,0 +2002-05-24,1.5995,1.5995,1.5344,1.5454,46343222,0 +2002-05-28,1.5175,1.5494,1.4995,1.5355,41753255,0 +2002-05-29,1.5315,1.5647,1.5009,1.5355,61854484,0 +2002-05-30,1.5213,1.561,1.506,1.5494,54765712,0 +2002-05-31,1.542,1.5521,1.4907,1.4919,101930420,0 +2002-06-03,1.4983,1.5009,1.4461,1.4678,65568311,0 +2002-06-04,1.4651,1.4751,1.4202,1.4586,97001561,0 +2002-06-05,1.4611,1.4611,1.4316,1.4547,77273589,0 +2002-06-06,1.4704,1.4882,1.411,1.4189,72508691,0 +2002-06-07,1.3932,1.405,1.3394,1.3702,170781506,0 +2002-06-10,1.3756,1.3987,1.3663,1.3756,77411016,0 +2002-06-11,1.3854,1.3894,1.3075,1.3104,97468511,0 +2002-06-12,1.3075,1.3294,1.2768,1.2859,147450602,0 +2002-06-13,1.2819,1.2844,1.2407,1.2512,98190043,0 +2002-06-14,1.2321,1.3037,1.1589,1.2872,118497408,0 +2002-06-17,1.2959,1.3202,1.2717,1.3151,90528114,0 +2002-06-18,1.3075,1.3176,1.2793,1.2896,98546115,0 +2002-06-19,1.1128,1.1271,1.0807,1.0961,476741414,0 +2002-06-20,1.1,1.1271,1.0796,1.095,110615281,0 +2002-06-21,1.0859,1.1193,1.0744,1.0796,124152486,0 +2002-06-24,1.0731,1.1358,1.0694,1.1052,120458967,0 +2002-06-25,1.114,1.132,1.0796,1.0974,84000019,0 +2002-06-26,1.0757,1.1065,1.0233,1.0604,155882476,0 +2002-06-27,1.0744,1.1052,1.0513,1.0924,70183263,0 +2002-06-28,1.095,1.1411,1.0886,1.1345,75258940,0 +2002-07-01,1.1345,1.1449,1.0924,1.0924,62104363,0 +2002-07-02,1.0911,1.0988,1.077,1.0847,85111992,0 +2002-07-03,1.0757,1.132,1.0731,1.1245,55505979,0 +2002-07-05,1.1345,1.2013,1.1345,1.1999,45081339,0 +2002-07-08,1.1858,1.191,1.132,1.1539,58901219,0 +2002-07-09,1.1577,1.1704,1.118,1.1232,63236622,0 +2002-07-10,1.1345,1.1642,1.1038,1.109,57695553,0 +2002-07-11,1.1052,1.1757,1.0859,1.1718,104212124,0 +2002-07-12,1.1884,1.2026,1.1052,1.1218,123682414,0 +2002-07-15,1.1153,1.191,1.0757,1.1679,82547596,0 +2002-07-16,1.1615,1.1898,1.1271,1.1437,124596023,0 +2002-07-17,1.0322,1.0374,0.972,1.0014,338978332,0 +2002-07-18,0.9925,0.9963,0.9453,0.9604,156024578,0 +2002-07-19,0.9413,0.9708,0.9296,0.9577,107427759,0 +2002-07-22,0.9453,0.972,0.9348,0.9552,120170040,0 +2002-07-23,0.954,0.9694,0.9247,0.9271,111522667,0 +2002-07-24,0.9184,0.9745,0.9117,0.9733,113392072,0 +2002-07-25,0.9552,0.9565,0.8966,0.9196,133683831,0 +2002-07-26,0.9259,0.9296,0.8835,0.9184,57925120,0 +2002-07-29,0.9271,0.9671,0.9196,0.9618,76681672,0 +2002-07-30,0.9502,0.9925,0.9321,0.9873,98958410,0 +2002-07-31,0.9861,0.9873,0.954,0.977,86648739,0 +2002-08-01,0.9671,0.9873,0.9439,0.9479,63851946,0 +2002-08-02,0.9439,0.9604,0.9117,0.9247,49936800,0 +2002-08-05,0.9284,0.9413,0.8953,0.8966,56899064,0 +2002-08-06,0.9105,0.9758,0.9016,0.9439,75871133,0 +2002-08-07,0.9657,0.9837,0.9184,0.9618,93000351,0 +2002-08-08,0.9453,0.9849,0.9453,0.9796,63403734,0 +2002-08-09,0.9758,0.9758,0.9453,0.9604,57370710,0 +2002-08-12,0.954,0.9618,0.9399,0.9604,50133567,0 +2002-08-13,0.954,0.9745,0.9321,0.9334,75262052,0 +2002-08-14,0.9386,0.9823,0.9309,0.9708,111297764,0 +2002-08-15,0.9758,1.0091,0.9604,0.999,89822209,0 +2002-08-16,0.9886,1.0309,0.9783,1.0132,68388825,0 +2002-08-19,1.0105,1.0399,1.0064,1.0233,60394248,0 +2002-08-20,1.0233,1.0295,0.9938,1.0194,52046723,0 +2002-08-21,1.0257,1.0399,0.9886,1.0322,56453959,0 +2002-08-22,1.0374,1.0399,1.0027,1.0233,72038610,0 +2002-08-23,1.018,1.0194,0.9886,1.0078,45526432,0 +2002-08-26,1.0208,1.0208,0.9708,0.9938,52979081,0 +2002-08-27,1.0064,1.0078,0.9426,0.9502,73131820,0 +2002-08-28,0.9479,0.9682,0.9386,0.9413,69155629,0 +2002-08-29,0.9386,0.9657,0.9284,0.9413,45784130,0 +2002-08-30,0.9439,0.9694,0.9334,0.9453,53969223,0 +2002-09-03,0.9284,0.9321,0.9005,0.9005,77232969,0 +2002-09-04,0.9092,0.9466,0.9064,0.9271,117315166,0 +2002-09-05,0.9105,0.9196,0.9005,0.9078,63077331,0 +2002-09-06,0.9284,0.9386,0.9117,0.9209,50642709,0 +2002-09-09,0.9143,0.9296,0.9064,0.9196,44131788,0 +2002-09-10,0.9234,0.9284,0.9039,0.9184,69572609,0 +2002-09-11,0.9184,0.9348,0.9064,0.9143,56449270,0 +2002-09-12,0.9092,0.9284,0.9039,0.9052,75251126,0 +2002-09-13,0.9052,0.9184,0.9005,0.9064,78910288,0 +2002-09-16,0.9052,0.9348,0.9039,0.9284,79939481,0 +2002-09-17,0.9334,0.9618,0.9334,0.9479,119361056,0 +2002-09-18,0.9399,0.9657,0.9296,0.9618,91652578,0 +2002-09-19,0.9453,0.9479,0.9271,0.9334,57434733,0 +2002-09-20,0.936,0.9565,0.9296,0.9514,98386824,0 +2002-09-23,0.9453,0.9577,0.9247,0.9502,73544133,0 +2002-09-24,0.9221,0.949,0.9221,0.9373,69905270,0 +2002-09-25,0.9399,0.9708,0.9386,0.9552,71026600,0 +2002-09-26,0.9671,0.972,0.9321,0.9413,58187509,0 +2002-09-27,0.9284,0.9502,0.9271,0.9426,57492511,0 +2002-09-30,0.9221,0.9334,0.9052,0.9284,66289844,0 +2002-10-01,0.9334,0.9348,0.8966,0.9284,95496028,0 +2002-10-02,0.9184,0.9373,0.9028,0.9064,63961272,0 +2002-10-03,0.9078,0.9348,0.9005,0.9157,60767500,0 +2002-10-04,0.9196,0.9221,0.8966,0.898,53218023,0 +2002-10-07,0.8953,0.9105,0.8809,0.8809,68242014,0 +2002-10-08,0.89,0.894,0.8554,0.8762,126513845,0 +2002-10-09,0.8669,0.8861,0.8591,0.8697,99473785,0 +2002-10-10,0.8735,0.9105,0.8697,0.9028,89681653,0 +2002-10-11,0.9117,0.9466,0.9028,0.9284,82180600,0 +2002-10-14,0.9321,0.9591,0.9247,0.9453,54215982,0 +2002-10-15,0.9745,0.9758,0.9466,0.9708,113092218,0 +2002-10-16,0.9514,0.9694,0.89,0.9321,85791344,0 +2002-10-17,0.9105,0.9209,0.8953,0.9028,130878926,0 +2002-10-18,0.8966,0.9184,0.8913,0.9184,80401760,0 +2002-10-21,0.913,0.9373,0.8966,0.9321,66519405,0 +2002-10-22,0.9271,0.9526,0.913,0.9413,60837770,0 +2002-10-23,0.9373,0.9591,0.9284,0.9526,58296830,0 +2002-10-24,0.9618,0.9745,0.9321,0.9399,48734256,0 +2002-10-25,0.9399,0.9886,0.9334,0.9873,77828013,0 +2002-10-28,0.9963,1.0208,0.9758,0.999,97413848,0 +2002-10-29,0.9977,1.0167,0.9577,0.9886,72280682,0 +2002-10-30,0.9925,1.0486,0.9913,1.0233,75486948,0 +2002-10-31,1.0245,1.0526,1.0194,1.0295,82503868,0 +2002-11-01,1.0208,1.0566,1.018,1.0474,52940032,0 +2002-11-04,1.0566,1.1128,1.0474,1.0821,105088274,0 +2002-11-05,1.0731,1.0859,1.0474,1.0821,58759086,0 +2002-11-06,1.0937,1.109,1.0694,1.1026,60347392,0 +2002-11-07,1.0847,1.095,1.0132,1.0245,93754679,0 +2002-11-08,1.0257,1.0374,0.9938,1.0144,53005629,0 +2002-11-11,1.0078,1.018,0.9682,0.9708,42662187,0 +2002-11-12,0.9809,1.027,0.9783,1.0014,62412010,0 +2002-11-13,0.9925,1.0295,0.9783,0.9977,64628140,0 +2002-11-14,1.018,1.0513,1.0105,1.0438,39521515,0 +2002-11-15,1.0399,1.0399,1.0091,1.0208,44898615,0 +2002-11-18,1.0374,1.0374,0.9938,1.0027,45898114,0 +2002-11-19,0.9963,1.0091,0.9604,0.977,58830924,0 +2002-11-20,0.9796,1.0053,0.9758,0.9938,58214048,0 +2002-11-21,1.018,1.0526,1.0091,1.0474,116707641,0 +2002-11-22,1.0295,1.0438,1.018,1.0257,63545850,0 +2002-11-25,1.027,1.0334,1.0064,1.0233,55616851,0 +2002-11-26,1.0144,1.018,0.977,0.9873,67005112,0 +2002-11-27,0.999,1.0155,0.9886,1.0064,79983218,0 +2002-11-29,1.0105,1.0167,0.9873,0.9925,40000978,0 +2002-12-02,1.018,1.0309,0.9604,0.972,111202504,0 +2002-12-03,0.9733,0.9823,0.9671,0.9708,63548964,0 +2002-12-04,0.972,0.972,0.9284,0.9591,90848266,0 +2002-12-05,0.9618,0.9657,0.9296,0.9373,67879703,0 +2002-12-06,0.9386,0.972,0.9296,0.9565,68426294,0 +2002-12-09,0.9565,0.9565,0.9386,0.9453,65840053,0 +2002-12-10,0.9453,0.9886,0.9439,0.9783,86066211,0 +2002-12-11,0.9796,0.9925,0.9657,0.9925,70697079,0 +2002-12-12,0.9925,0.9963,0.9604,0.972,41648620,0 +2002-12-13,0.9694,0.9708,0.9386,0.9466,45954340,0 +2002-12-16,0.949,0.9671,0.9348,0.9502,70173888,0 +2002-12-17,0.9502,0.972,0.9386,0.9657,62096548,0 +2002-12-18,0.9479,0.9514,0.9284,0.9334,42028112,0 +2002-12-19,0.9296,0.9552,0.9028,0.9092,96917213,0 +2002-12-20,0.9143,0.9321,0.8822,0.9052,88711819,0 +2002-12-23,0.9064,0.9321,0.9039,0.9284,35090858,0 +2002-12-24,0.9247,0.9271,0.9157,0.9196,10971265,0 +2002-12-26,0.9234,0.949,0.9143,0.9221,23822861,0 +2002-12-27,0.9171,0.9209,0.8966,0.9005,22320462,0 +2002-12-30,0.9016,0.9064,0.8861,0.9016,43238470,0 +2002-12-31,0.8966,0.9196,0.8926,0.9184,55979190,0 +2003-01-02,0.9196,0.9552,0.9184,0.9479,50597419,0 +2003-01-03,0.9479,0.9552,0.9334,0.954,41122310,0 +2003-01-06,0.9618,0.9849,0.9526,0.954,108912984,0 +2003-01-07,0.9466,0.9604,0.9271,0.9502,95474166,0 +2003-01-08,0.9334,0.9426,0.9247,0.9321,64044044,0 +2003-01-09,0.936,0.9552,0.9284,0.9399,60030347,0 +2003-01-10,0.9334,0.949,0.9284,0.9426,48832651,0 +2003-01-13,0.954,0.954,0.9196,0.9373,49904006,0 +2003-01-14,0.9399,0.949,0.9284,0.9348,52112308,0 +2003-01-15,0.9334,0.9413,0.913,0.9234,103501536,0 +2003-01-16,0.9105,0.9453,0.9105,0.936,155915263,0 +2003-01-17,0.9321,0.9321,0.9016,0.9028,74395293,0 +2003-01-21,0.9105,0.9234,0.8966,0.898,70684593,0 +2003-01-22,0.8953,0.9064,0.8835,0.8886,59999127,0 +2003-01-23,0.9005,0.9196,0.8926,0.9064,63656724,0 +2003-01-24,0.9117,0.9117,0.8683,0.8835,85190079,0 +2003-01-27,0.8762,0.9284,0.8749,0.9052,109156614,0 +2003-01-28,0.9117,0.9399,0.9064,0.9334,79831719,0 +2003-01-29,0.9321,0.9671,0.9157,0.9552,104035639,0 +2003-01-30,0.9591,0.9657,0.9143,0.9171,113521686,0 +2003-01-31,0.9078,0.9321,0.9005,0.9196,95161810,0 +2003-02-03,0.9234,0.9552,0.9184,0.9386,73843992,0 +2003-02-04,0.9247,0.9386,0.9171,0.9348,88521270,0 +2003-02-05,0.9426,0.9552,0.9247,0.9247,61804500,0 +2003-02-06,0.9196,0.9334,0.9105,0.9234,49961798,0 +2003-02-07,0.9321,0.9348,0.9016,0.9064,75215210,0 +2003-02-10,0.913,0.9334,0.9005,0.9184,46821115,0 +2003-02-11,0.9284,0.9373,0.9092,0.9184,45954340,0 +2003-02-12,0.913,0.9348,0.913,0.9221,63776993,0 +2003-02-13,0.9234,0.9373,0.9117,0.9309,58145332,0 +2003-02-14,0.9348,0.9426,0.9184,0.9386,67851583,0 +2003-02-18,0.9453,0.9796,0.9426,0.977,81126411,0 +2003-02-19,0.9657,0.9708,0.9399,0.9502,67034791,0 +2003-02-20,0.9502,0.9577,0.9426,0.9453,62568186,0 +2003-02-21,0.949,0.9644,0.9386,0.9604,43908464,0 +2003-02-24,0.9514,0.9618,0.8835,0.9439,50269458,0 +2003-02-25,0.9399,0.9657,0.9334,0.9618,52608949,0 +2003-02-26,0.9604,0.9618,0.9271,0.9284,60544171,0 +2003-02-27,0.9334,0.9604,0.9284,0.9514,43043250,0 +2003-02-28,0.9514,0.9657,0.9453,0.9604,54409634,0 +2003-03-03,0.9604,0.9708,0.9321,0.9386,56825659,0 +2003-03-04,0.9439,0.949,0.9247,0.9321,35254828,0 +2003-03-05,0.9348,0.9479,0.9296,0.936,35329794,0 +2003-03-06,0.9334,0.9348,0.9221,0.9321,27849044,0 +2003-03-07,0.9271,0.9426,0.9171,0.9296,56051029,0 +2003-03-10,0.9284,0.9386,0.9157,0.9196,37530295,0 +2003-03-11,0.9196,0.9284,0.9039,0.9117,44953263,0 +2003-03-12,0.9064,0.9221,0.9005,0.9105,62068432,0 +2003-03-13,0.9271,0.9479,0.9064,0.9426,93550089,0 +2003-03-14,0.9399,0.9604,0.9373,0.9466,42696546,0 +2003-03-17,0.954,0.9657,0.9426,0.9604,111528908,0 +2003-03-18,0.9604,0.9657,0.949,0.9604,64137752,0 +2003-03-19,0.9657,0.9708,0.9466,0.9565,39410642,0 +2003-03-20,0.9552,0.9604,0.9348,0.9552,45507691,0 +2003-03-21,0.9657,0.9708,0.949,0.9604,83092650,0 +2003-03-24,0.9386,0.9479,0.9184,0.9196,44928290,0 +2003-03-25,0.9234,0.9502,0.9196,0.9321,46768013,0 +2003-03-26,0.9321,0.9321,0.9157,0.9234,49736900,0 +2003-03-27,0.9171,0.9413,0.9171,0.9284,34133505,0 +2003-03-28,0.9221,0.936,0.9196,0.9334,40522607,0 +2003-03-31,0.9184,0.9296,0.8993,0.9052,71577902,0 +2003-04-01,0.9092,0.9171,0.9016,0.9064,43043250,0 +2003-04-02,0.9234,0.9453,0.9171,0.9386,47792515,0 +2003-04-03,0.9321,0.9413,0.9184,0.9259,40637921,0 +2003-04-04,0.9296,0.9386,0.9221,0.9234,40626083,0 +2003-04-07,0.9502,0.9565,0.9234,0.9284,54908653,0 +2003-04-08,0.9284,0.9386,0.9196,0.9247,35958462,0 +2003-04-09,0.9296,0.936,0.9052,0.9078,40923653,0 +2003-04-10,0.9092,0.9221,0.9092,0.9196,30479350,0 +2003-04-11,0.9005,0.9247,0.8273,0.8452,388897334,0 +2003-04-14,0.8785,0.8809,0.8644,0.8697,140618375,0 +2003-04-15,0.8697,0.871,0.8517,0.8579,85045192,0 +2003-04-16,0.8324,0.8749,0.8273,0.8478,284293200,0 +2003-04-17,0.8452,0.8478,0.8145,0.8401,172196447,0 +2003-04-21,0.8413,0.8438,0.8311,0.8413,42693701,0 +2003-04-22,0.8438,0.8723,0.8375,0.8644,84853174,0 +2003-04-23,0.8656,0.8735,0.8554,0.8697,58751885,0 +2003-04-24,0.8656,0.871,0.8324,0.8605,91115505,0 +2003-04-25,0.8618,0.8697,0.8478,0.8543,57461567,0 +2003-04-28,0.8543,0.894,0.8543,0.8875,178118121,0 +2003-04-29,0.8953,0.9064,0.8697,0.9005,128168221,0 +2003-04-30,0.8913,0.9184,0.8861,0.9105,128072386,0 +2003-05-01,0.9117,0.9221,0.8966,0.9196,95850621,0 +2003-05-02,0.9259,0.9334,0.9184,0.9247,89843331,0 +2003-05-05,0.9453,1.0807,0.9453,1.0295,434445506,0 +2003-05-06,1.0322,1.1462,1.0309,1.1206,423079427,0 +2003-05-07,1.109,1.1679,1.095,1.1294,294526394,0 +2003-05-08,1.1331,1.1577,1.1078,1.1526,192134374,0 +2003-05-09,1.1731,1.1782,1.1449,1.1718,164405071,0 +2003-05-12,1.1615,1.1999,1.1601,1.1884,117270869,0 +2003-05-13,1.1795,1.2142,1.1487,1.1962,124979428,0 +2003-05-14,1.205,1.2063,1.1795,1.1884,99441872,0 +2003-05-15,1.191,1.2076,1.182,1.1999,79866509,0 +2003-05-16,1.1898,1.2167,1.1704,1.2037,94069639,0 +2003-05-19,1.1871,1.1935,1.1563,1.1589,124591981,0 +2003-05-20,1.1589,1.1628,1.1271,1.1385,116368335,0 +2003-05-21,1.1385,1.1577,1.132,1.1437,85352801,0 +2003-05-22,1.1462,1.1782,1.1358,1.1679,50218838,0 +2003-05-23,1.1667,1.182,1.1501,1.1731,57759218,0 +2003-05-27,1.1501,1.2102,1.1474,1.2089,80960278,0 +2003-05-28,1.1845,1.1949,1.1615,1.1704,95090756,0 +2003-05-29,1.1704,1.1845,1.1462,1.1589,93087617,0 +2003-05-30,1.1601,1.1642,1.1232,1.1487,106767161,0 +2003-06-02,1.1589,1.1691,1.1052,1.1167,116738193,0 +2003-06-03,1.1167,1.132,1.0899,1.1078,100637892,0 +2003-06-04,1.1078,1.1385,1.0974,1.1271,75634855,0 +2003-06-05,1.1167,1.1358,1.109,1.1294,57353626,0 +2003-06-06,1.1358,1.1549,1.0974,1.0974,67751663,0 +2003-06-09,1.0847,1.0911,1.0641,1.0744,72497287,0 +2003-06-10,1.0821,1.1065,1.0731,1.1,49264643,0 +2003-06-11,1.0974,1.1218,1.0757,1.1167,62781761,0 +2003-06-12,1.1245,1.1449,1.1167,1.1371,70446524,0 +2003-06-13,1.1371,1.1487,1.0961,1.1153,53336623,0 +2003-06-16,1.1271,1.1691,1.1167,1.1691,66632950,0 +2003-06-17,1.1795,1.1845,1.1513,1.1655,49501309,0 +2003-06-18,1.1808,1.2473,1.1718,1.2241,126888971,0 +2003-06-19,1.2396,1.2553,1.2013,1.2254,106568552,0 +2003-06-20,1.2396,1.254,1.2102,1.2294,100271567,0 +2003-06-23,1.2361,1.2614,1.2013,1.2204,85718707,0 +2003-06-24,1.2459,1.2601,1.2013,1.2026,143718841,0 +2003-06-25,1.2026,1.242,1.1986,1.2217,91980474,0 +2003-06-26,1.1974,1.2373,1.1974,1.2347,44540035,0 +2003-06-27,1.2361,1.2361,1.1833,1.1999,102014065,0 +2003-06-30,1.1962,1.2307,1.1898,1.2204,62256538,0 +2003-07-01,1.2089,1.2281,1.1858,1.2217,50475837,0 +2003-07-02,1.2192,1.242,1.2178,1.2334,90721189,0 +2003-07-03,1.2167,1.2512,1.2154,1.2241,38422524,0 +2003-07-07,1.2334,1.2922,1.2241,1.273,79836652,0 +2003-07-08,1.2499,1.3126,1.2473,1.3065,71600582,0 +2003-07-09,1.2944,1.3089,1.2743,1.2743,59596744,0 +2003-07-10,1.273,1.2768,1.2407,1.254,47804600,0 +2003-07-11,1.2588,1.2808,1.2512,1.2717,38168024,0 +2003-07-14,1.2819,1.3065,1.273,1.2743,52544014,0 +2003-07-15,1.2819,1.2959,1.2433,1.2553,57630752,0 +2003-07-16,1.2553,1.2808,1.2407,1.273,70042466,0 +2003-07-17,1.2933,1.3407,1.2883,1.3381,209502563,0 +2003-07-18,1.3381,1.3563,1.3065,1.3356,83342190,0 +2003-07-21,1.3255,1.3307,1.2998,1.319,51196778,0 +2003-07-22,1.3366,1.3421,1.3126,1.332,54992446,0 +2003-07-23,1.3407,1.3421,1.3104,1.3307,39891042,0 +2003-07-24,1.3471,1.3769,1.305,1.3137,63931253,0 +2003-07-25,1.3075,1.3821,1.3065,1.3795,60429395,0 +2003-07-28,1.3769,1.3769,1.3356,1.3434,47510327,0 +2003-07-29,1.3434,1.3499,1.3137,1.3269,54974830,0 +2003-07-30,1.3294,1.3381,1.2922,1.2985,48412540,0 +2003-07-31,1.3282,1.3676,1.3176,1.3499,82206509,0 +2003-08-01,1.3447,1.3611,1.3214,1.3282,41722546,0 +2003-08-04,1.3151,1.3769,1.2985,1.3587,64176758,0 +2003-08-05,1.3676,1.3702,1.2872,1.305,69565523,0 +2003-08-06,1.2844,1.2922,1.2485,1.2562,68456168,0 +2003-08-07,1.264,1.2859,1.2433,1.2754,48631392,0 +2003-08-08,1.2872,1.2883,1.2553,1.2575,38443979,0 +2003-08-11,1.2691,1.2754,1.2499,1.2588,38270845,0 +2003-08-12,1.2653,1.2677,1.2459,1.2614,45859708,0 +2003-08-13,1.2717,1.3025,1.254,1.2922,78960818,0 +2003-08-14,1.2944,1.3011,1.2768,1.278,53712570,0 +2003-08-15,1.278,1.2859,1.2588,1.264,35102944,0 +2003-08-18,1.2717,1.3075,1.2626,1.3025,53761903,0 +2003-08-19,1.305,1.3089,1.2808,1.3011,37283882,0 +2003-08-20,1.2922,1.3611,1.2896,1.346,76226020,0 +2003-08-21,1.3471,1.3906,1.3407,1.3879,71392397,0 +2003-08-22,1.396,1.4085,1.3214,1.3366,69794590,0 +2003-08-25,1.3307,1.3394,1.3112,1.3381,38425337,0 +2003-08-26,1.3294,1.3499,1.3037,1.3486,46004683,0 +2003-08-27,1.3394,1.3756,1.3229,1.3756,62945066,0 +2003-08-28,1.365,1.4229,1.365,1.4216,89138393,0 +2003-08-29,1.4216,1.4637,1.4123,1.4474,73390500,0 +2003-09-02,1.4509,1.4664,1.434,1.4637,67259111,0 +2003-09-03,1.4598,1.4932,1.4572,1.4691,74996015,0 +2003-09-04,1.4829,1.4882,1.4572,1.4611,58002028,0 +2003-09-05,1.4558,1.4817,1.4354,1.4406,66975602,0 +2003-09-08,1.4392,1.4586,1.4379,1.4558,46642539,0 +2003-09-09,1.4434,1.4521,1.4162,1.4327,50303417,0 +2003-09-10,1.4243,1.4474,1.4151,1.4202,62718908,0 +2003-09-11,1.4243,1.4586,1.4151,1.4448,59640039,0 +2003-09-12,1.4421,1.4817,1.4282,1.479,50200374,0 +2003-09-15,1.479,1.479,1.4162,1.4229,63262685,0 +2003-09-16,1.4229,1.4534,1.4216,1.4316,75020683,0 +2003-09-17,1.4327,1.4327,1.3999,1.4162,80707756,0 +2003-09-18,1.4151,1.4717,1.405,1.4651,70530189,0 +2003-09-19,1.4651,1.4764,1.4354,1.4461,57436352,0 +2003-09-22,1.4202,1.4406,1.4036,1.4136,50149084,0 +2003-09-23,1.4096,1.4379,1.4012,1.4354,36938321,0 +2003-09-24,1.4229,1.4282,1.3499,1.365,84022342,0 +2003-09-25,1.3663,1.3689,1.2959,1.3075,160198886,0 +2003-09-26,1.2998,1.3715,1.2896,1.3255,96672331,0 +2003-09-29,1.3756,1.3756,1.3214,1.3638,101987562,0 +2003-09-30,1.3499,1.3587,1.3089,1.3269,79599516,0 +2003-10-01,1.3269,1.3512,1.2933,1.3307,65847859,0 +2003-10-02,1.332,1.332,1.2985,1.3176,56907147,0 +2003-10-03,1.3434,1.3999,1.3381,1.3894,83552108,0 +2003-10-06,1.3879,1.4294,1.3821,1.4269,74832165,0 +2003-10-07,1.4123,1.4995,1.4036,1.4869,116622743,0 +2003-10-08,1.4882,1.5073,1.4558,1.4764,119547052,0 +2003-10-09,1.4932,1.5162,1.4586,1.5009,96980633,0 +2003-10-10,1.5048,1.524,1.4969,1.5162,48758766,0 +2003-10-13,1.5201,1.5634,1.5187,1.56,78049505,0 +2003-10-14,1.5574,1.584,1.5494,1.5726,76809584,0 +2003-10-15,1.5918,1.6018,1.574,1.5892,170611976,0 +2003-10-16,1.524,1.5252,1.4354,1.4882,272296035,0 +2003-10-17,1.4969,1.5035,1.4354,1.4572,100344000,0 +2003-10-20,1.4474,1.4946,1.4327,1.4869,77847314,0 +2003-10-21,1.4919,1.4983,1.4572,1.4844,49211016,0 +2003-10-22,1.4844,1.4856,1.4521,1.4572,45066913,0 +2003-10-23,1.4558,1.4817,1.4461,1.4717,46074492,0 +2003-10-24,1.4448,1.4637,1.4243,1.4474,61314293,0 +2003-10-27,1.4572,1.4664,1.4392,1.4474,45181340,0 +2003-10-28,1.4448,1.5213,1.434,1.5187,70197585,0 +2003-10-29,1.506,1.5302,1.4946,1.5175,74483424,0 +2003-10-30,1.5355,1.5369,1.4651,1.4778,72555272,0 +2003-10-31,1.4919,1.4956,1.4586,1.4664,60838408,0 +2003-11-03,1.4611,1.4919,1.4586,1.4817,84457018,0 +2003-11-04,1.4778,1.479,1.4461,1.4678,69506476,0 +2003-11-05,1.4611,1.4803,1.4379,1.4751,89931484,0 +2003-11-06,1.4678,1.4817,1.4498,1.4803,110744515,0 +2003-11-07,1.4856,1.4882,1.4366,1.4406,58649659,0 +2003-11-10,1.4366,1.4498,1.3987,1.4025,65334244,0 +2003-11-11,1.4025,1.4096,1.3756,1.3795,59980185,0 +2003-11-12,1.3756,1.4547,1.3756,1.4294,83814090,0 +2003-11-13,1.4294,1.4448,1.4036,1.4354,59337500,0 +2003-11-14,1.4392,1.4474,1.3626,1.3741,66130956,0 +2003-11-17,1.3676,1.3689,1.3407,1.3524,63656097,0 +2003-11-18,1.3587,1.3663,1.3037,1.3075,74843921,0 +2003-11-19,1.3164,1.3214,1.2971,1.3075,96111202,0 +2003-11-20,1.2872,1.3499,1.2872,1.305,66823303,0 +2003-11-21,1.3025,1.3176,1.2717,1.2985,67670749,0 +2003-11-24,1.3126,1.3611,1.3112,1.3537,106484420,0 +2003-11-25,1.3599,1.3599,1.319,1.3241,75710582,0 +2003-11-26,1.3381,1.3537,1.2959,1.3269,68362149,0 +2003-11-28,1.3269,1.3499,1.3137,1.3394,21221349,0 +2003-12-01,1.3471,1.3999,1.3471,1.3906,100826342,0 +2003-12-02,1.3829,1.4025,1.3715,1.3795,61367577,0 +2003-12-03,1.3795,1.3987,1.3421,1.3471,53596262,0 +2003-12-04,1.3471,1.3563,1.3294,1.3537,49623638,0 +2003-12-05,1.3381,1.3537,1.3282,1.3356,51921242,0 +2003-12-08,1.3307,1.3499,1.3075,1.3486,41340443,0 +2003-12-09,1.3563,1.3599,1.3065,1.3089,37689020,0 +2003-12-10,1.3089,1.319,1.278,1.305,75670382,0 +2003-12-11,1.2959,1.3663,1.2944,1.3587,51147106,0 +2003-12-12,1.365,1.365,1.3255,1.3381,53733430,0 +2003-12-15,1.3756,1.3756,1.2859,1.2922,108458781,0 +2003-12-16,1.2933,1.3112,1.2819,1.2883,104288779,0 +2003-12-17,1.2859,1.2883,1.2665,1.273,76485972,0 +2003-12-18,1.2743,1.2922,1.2743,1.2833,92285321,0 +2003-12-19,1.2933,1.3075,1.2562,1.2614,126490008,0 +2003-12-22,1.2575,1.2743,1.2321,1.2717,105155800,0 +2003-12-23,1.2754,1.2768,1.2553,1.2677,86034362,0 +2003-12-24,1.2626,1.3176,1.2575,1.3075,49493710,0 +2003-12-26,1.3037,1.3394,1.3025,1.3307,28917494,0 +2003-12-29,1.3394,1.355,1.3356,1.3537,65106836,0 +2003-12-30,1.3563,1.3769,1.3537,1.3626,57129937,0 +2003-12-31,1.3676,1.3795,1.3563,1.3689,48650864,0 +2004-01-02,1.3807,1.3932,1.3563,1.3626,40337960,0 +2004-01-05,1.3715,1.434,1.3715,1.4202,110162906,0 +2004-01-06,1.4243,1.4354,1.3906,1.4136,142064667,0 +2004-01-07,1.4151,1.4611,1.4036,1.4461,163666889,0 +2004-01-08,1.4624,1.5201,1.4498,1.4956,128370388,0 +2004-01-09,1.4882,1.5443,1.4586,1.4728,119202215,0 +2004-01-12,1.4829,1.5369,1.479,1.5201,135958469,0 +2004-01-13,1.5815,1.5906,1.5276,1.5443,189365094,0 +2004-01-14,1.5623,1.5713,1.5228,1.5494,172918404,0 +2004-01-15,1.4678,1.4983,1.4406,1.4637,283953280,0 +2004-01-16,1.4728,1.4751,1.4474,1.4547,103971758,0 +2004-01-20,1.4521,1.4598,1.4243,1.4558,88121806,0 +2004-01-21,1.4534,1.4704,1.4354,1.4474,63210722,0 +2004-01-22,1.4448,1.4611,1.4202,1.4202,57172078,0 +2004-01-23,1.4243,1.4558,1.4243,1.4448,63353063,0 +2004-01-26,1.4379,1.4764,1.4354,1.4738,75652149,0 +2004-01-27,1.4751,1.4882,1.4598,1.4778,85635459,0 +2004-01-28,1.4624,1.4969,1.4354,1.4421,76804038,0 +2004-01-29,1.4486,1.4598,1.4216,1.4521,59317305,0 +2004-01-30,1.4558,1.4651,1.4354,1.4448,51675180,0 +2004-02-02,1.4379,1.4598,1.4136,1.4294,80159510,0 +2004-02-03,1.4282,1.434,1.4085,1.4257,50424959,0 +2004-02-04,1.4085,1.4136,1.3894,1.3946,85213282,0 +2004-02-05,1.3973,1.4678,1.396,1.4354,98402543,0 +2004-02-06,1.4366,1.4664,1.434,1.4547,53917961,0 +2004-02-09,1.4486,1.4637,1.4406,1.4521,52501772,0 +2004-02-10,1.4486,1.4803,1.4366,1.4717,71210733,0 +2004-02-11,1.4778,1.5289,1.4764,1.524,97201602,0 +2004-02-12,1.5162,1.5355,1.5112,1.5201,51310414,0 +2004-02-13,1.5276,1.5431,1.4611,1.4728,88120238,0 +2004-02-17,1.479,1.5035,1.479,1.4829,47675634,0 +2004-02-18,1.4844,1.5009,1.4764,1.4894,39495893,0 +2004-02-19,1.4919,1.5138,1.4354,1.4379,90101224,0 +2004-02-20,1.4406,1.4421,1.4229,1.434,77417347,0 +2004-02-23,1.4366,1.4379,1.4025,1.4216,54125296,0 +2004-02-24,1.4177,1.4558,1.4085,1.4316,72241588,0 +2004-02-25,1.4229,1.4664,1.4229,1.4598,77054932,0 +2004-02-26,1.4624,1.4844,1.4598,1.4751,55332179,0 +2004-02-27,1.4704,1.5382,1.4691,1.5315,130757715,0 +2004-03-01,1.542,1.5561,1.5289,1.5382,89851360,0 +2004-03-02,1.5344,1.5431,1.5213,1.524,71585037,0 +2004-03-03,1.5112,1.5494,1.5112,1.5315,62784562,0 +2004-03-04,1.5344,1.6149,1.5315,1.6109,184123933,0 +2004-03-05,1.5971,1.7596,1.5945,1.7124,429645502,0 +2004-03-08,1.7149,1.7149,1.6521,1.6648,145818671,0 +2004-03-09,1.6582,1.7441,1.6496,1.7355,172450816,0 +2004-03-10,1.7274,1.8016,1.7249,1.7721,280824876,0 +2004-03-11,1.7454,1.7951,1.7342,1.738,166231613,0 +2004-03-12,1.7491,1.7788,1.7403,1.7649,91814658,0 +2004-03-15,1.7315,1.7519,1.6815,1.693,134342188,0 +2004-03-16,1.7006,1.7032,1.6264,1.6534,168030781,0 +2004-03-17,1.6622,1.6892,1.6507,1.6774,114740151,0 +2004-03-18,1.6609,1.6687,1.6379,1.6442,89542701,0 +2004-03-19,1.6457,1.7249,1.6354,1.6558,113944512,0 +2004-03-22,1.6251,1.6762,1.6163,1.6558,116860229,0 +2004-03-23,1.6596,1.6648,1.6149,1.6189,107512986,0 +2004-03-24,1.6199,1.6496,1.6176,1.6328,119030564,0 +2004-03-25,1.6713,1.7236,1.6582,1.7211,157971731,0 +2004-03-26,1.7236,1.7519,1.7236,1.7315,117087499,0 +2004-03-29,1.7544,1.7916,1.7417,1.788,93919305,0 +2004-03-30,1.784,1.7891,1.7506,1.788,100290055,0 +2004-03-31,1.784,1.7916,1.7249,1.7315,108403786,0 +2004-04-01,1.7223,1.7454,1.7044,1.7355,86968613,0 +2004-04-02,1.7761,1.788,1.7441,1.7611,76127903,0 +2004-04-05,1.7596,1.817,1.7571,1.8133,107556865,0 +2004-04-06,1.7761,1.8016,1.7557,1.7814,71949609,0 +2004-04-07,1.7684,1.7734,1.7236,1.7479,71147169,0 +2004-04-08,1.7868,1.7927,1.7417,1.7635,67186502,0 +2004-04-12,1.7611,1.7991,1.7596,1.7951,64292775,0 +2004-04-13,1.7927,1.7951,1.7187,1.7236,121702212,0 +2004-04-14,1.7124,1.7342,1.684,1.7058,178310848,0 +2004-04-15,1.857,1.8941,1.8031,1.8762,491211763,0 +2004-04-16,1.8621,1.8762,1.825,1.8682,112370000,0 +2004-04-19,1.8005,1.8414,1.7814,1.8157,198662660,0 +2004-04-20,1.8072,1.8196,1.7649,1.7761,98868583,0 +2004-04-21,1.7673,1.8005,1.7531,1.7761,90880591,0 +2004-04-22,1.7649,1.8045,1.7355,1.7788,96098109,0 +2004-04-23,1.7788,1.7927,1.7328,1.7734,88078836,0 +2004-04-26,1.7661,1.7697,1.7288,1.7366,64457906,0 +2004-04-27,1.7441,1.7571,1.7097,1.7249,79164091,0 +2004-04-28,1.7173,1.7301,1.6867,1.693,64468626,0 +2004-04-29,1.693,1.7288,1.6634,1.7136,128505274,0 +2004-04-30,1.7223,1.7261,1.6315,1.6507,130098752,0 +2004-05-03,1.6648,1.6854,1.6483,1.6702,83003847,0 +2004-05-04,1.6687,1.7006,1.6328,1.6737,78081989,0 +2004-05-05,1.6774,1.7136,1.6622,1.7058,66233538,0 +2004-05-06,1.6917,1.7136,1.6582,1.702,73501475,0 +2004-05-07,1.702,1.7661,1.7006,1.7084,116854402,0 +2004-05-10,1.6815,1.7032,1.6609,1.6829,69714572,0 +2004-05-11,1.6904,1.7417,1.6904,1.738,85107058,0 +2004-05-12,1.7149,1.7506,1.68,1.7479,68443062,0 +2004-05-13,1.7366,1.7749,1.7223,1.7417,64101612,0 +2004-05-14,1.7355,1.7491,1.693,1.7328,71895302,0 +2004-05-17,1.7097,1.7328,1.6878,1.7058,83787910,0 +2004-05-18,1.7261,1.7466,1.7159,1.7328,57467136,0 +2004-05-19,1.7544,1.7611,1.6917,1.6943,104744861,0 +2004-05-20,1.7044,1.7288,1.6943,1.711,54739002,0 +2004-05-21,1.7223,1.7417,1.7124,1.7355,50168542,0 +2004-05-24,1.7441,1.7868,1.7355,1.7506,65704861,0 +2004-05-25,1.7611,1.8262,1.7466,1.8196,89236420,0 +2004-05-26,1.812,1.8428,1.7927,1.8262,89846095,0 +2004-05-27,1.8235,1.8315,1.7814,1.8045,65808018,0 +2004-05-28,1.7979,1.8099,1.7801,1.7965,40637173,0 +2004-06-01,1.7788,1.8058,1.7673,1.7965,50793365,0 +2004-06-02,1.7951,1.8682,1.7801,1.8517,88882207,0 +2004-06-03,1.839,1.8556,1.811,1.8182,69978795,0 +2004-06-04,1.8288,1.8722,1.8262,1.8428,111304415,0 +2004-06-07,1.8595,1.9197,1.8442,1.9079,82520608,0 +2004-06-08,1.9157,1.9492,1.9094,1.9438,115909586,0 +2004-06-09,1.9262,1.9669,1.9209,1.9336,97386113,0 +2004-06-10,1.9336,1.9824,1.9336,1.9682,71832548,0 +2004-06-14,1.9618,1.9644,1.8887,1.9286,68042972,0 +2004-06-15,1.9376,1.9939,1.9376,1.9657,123999584,0 +2004-06-16,1.9606,2.1334,1.9555,2.0964,253684221,0 +2004-06-17,2.0964,2.1221,2.063,2.1016,153752752,0 +2004-06-18,2.0861,2.1385,2.0758,2.1066,113384176,0 +2004-06-21,2.1208,2.1451,2.0567,2.0695,108822986,0 +2004-06-22,2.0695,2.1194,2.067,2.113,100539916,0 +2004-06-23,2.113,2.1657,2.1066,2.1576,109005750,0 +2004-06-24,2.1564,2.1576,2.1117,2.1247,70422013,0 +2004-06-25,2.113,2.1576,2.113,2.1576,90197303,0 +2004-06-28,2.1708,2.1886,2.063,2.081,145375634,0 +2004-06-29,2.0555,2.113,2.0119,2.081,164693857,0 +2004-06-30,2.081,2.1104,2.0425,2.0836,104063099,0 +2004-07-01,2.0542,2.0798,2.0425,2.0682,95659998,0 +2004-07-02,1.9492,1.9965,1.9044,1.9901,254004467,0 +2004-07-06,1.9914,2.0119,1.9722,1.981,97324656,0 +2004-07-07,1.9722,2.0079,1.9286,1.9465,110991701,0 +2004-07-08,1.9286,1.9644,1.9169,1.9301,65085083,0 +2004-07-09,1.9376,1.9532,1.9236,1.9236,58246879,0 +2004-07-12,1.9224,1.9236,1.8517,1.8658,142681355,0 +2004-07-13,1.8722,1.8954,1.8582,1.8708,88175232,0 +2004-07-14,1.8542,1.9182,1.8401,1.8941,233280438,0 +2004-07-15,2.0836,2.154,2.0555,2.1078,492987698,0 +2004-07-16,2.1078,2.1078,2.0567,2.0618,136129674,0 +2004-07-19,2.0515,2.063,2.027,2.0462,148705962,0 +2004-07-20,2.0437,2.0618,2.0208,2.0618,90286823,0 +2004-07-21,2.0682,2.0951,2.0068,2.0246,84014126,0 +2004-07-22,2.0068,2.0325,1.9889,2.0285,93179949,0 +2004-07-23,2.0297,2.0337,1.9518,1.9657,76293200,0 +2004-07-26,1.9761,2.0131,1.9709,2.0016,109860040,0 +2004-07-27,2.0337,2.0978,2.0221,2.0758,118529072,0 +2004-07-28,2.0695,2.0747,1.9952,2.067,79494873,0 +2004-07-29,2.081,2.1016,2.058,2.0899,61955192,0 +2004-07-30,2.0925,2.113,2.0489,2.0708,67798677,0 +2004-08-02,2.0003,2.0618,1.9926,2.0221,101816881,0 +2004-08-03,2.0171,2.0312,1.9939,2.003,59018788,0 +2004-08-04,1.9977,2.0567,1.9965,2.035,77107901,0 +2004-08-05,2.0337,2.0682,2.0003,2.0106,68186131,0 +2004-08-06,1.9787,1.9914,1.9018,1.907,137290881,0 +2004-08-09,1.9118,1.9492,1.9079,1.9401,81112140,0 +2004-08-10,1.9465,2.0194,1.9438,2.0182,97897988,0 +2004-08-11,1.9914,1.9926,1.9376,1.9864,89908664,0 +2004-08-12,1.9568,1.9761,1.9388,1.9452,63083326,0 +2004-08-13,1.9631,2.003,1.9465,1.9749,91485985,0 +2004-08-16,1.9773,2.0312,1.9618,1.9709,121501956,0 +2004-08-17,1.9595,1.9926,1.9438,1.9773,90068459,0 +2004-08-18,1.9542,2.0401,1.9518,2.0325,101695059,0 +2004-08-19,2.0182,2.0401,1.9438,1.9669,108469305,0 +2004-08-20,1.9696,1.9837,1.9518,1.9722,88343343,0 +2004-08-23,1.9722,2.0016,1.9595,1.9901,71019062,0 +2004-08-24,2.0016,2.0449,1.9977,2.0449,104338972,0 +2004-08-25,2.0437,2.1221,2.0325,2.1155,141009074,0 +2004-08-26,2.1234,2.2525,2.0964,2.2193,266571456,0 +2004-08-27,2.2154,2.2257,2.1771,2.2001,108433365,0 +2004-08-30,2.1782,2.2231,2.1744,2.1846,60838840,0 +2004-08-31,2.1821,2.2386,2.1771,2.2091,105565400,0 +2004-09-01,2.1961,2.3051,2.1886,2.2961,143866801,0 +2004-09-02,2.2731,2.2936,2.2296,2.2833,113316330,0 +2004-09-03,2.2436,2.2998,2.2411,2.2552,81851077,0 +2004-09-07,2.2669,2.3167,2.2552,2.2899,84210293,0 +2004-09-08,2.286,2.3423,2.2846,2.3279,95945708,0 +2004-09-09,2.3115,2.3242,2.2591,2.286,128674805,0 +2004-09-10,2.2846,2.3192,2.2706,2.2961,91476293,0 +2004-09-13,2.2961,2.3102,2.2616,2.2795,78640126,0 +2004-09-14,2.2603,2.2755,2.2271,2.2731,71064429,0 +2004-09-15,2.2731,2.2731,2.2282,2.2537,65048091,0 +2004-09-16,2.2537,2.3537,2.2462,2.3279,139974651,0 +2004-09-17,2.3399,2.3935,2.3305,2.3781,140606879,0 +2004-09-20,2.3628,2.432,2.3602,2.4152,68324882,0 +2004-09-21,2.414,2.4883,2.3984,2.4333,107831912,0 +2004-09-22,2.4395,2.4421,2.3579,2.364,112023624,0 +2004-09-23,2.3719,2.4012,2.364,2.387,110851426,0 +2004-09-24,2.3949,2.4333,2.3781,2.387,103043556,0 +2004-09-27,2.3666,2.432,2.3579,2.4039,110910800,0 +2004-09-28,2.4012,2.4512,2.3984,2.4355,98497235,0 +2004-09-29,2.428,2.4883,2.4217,2.4768,76276842,0 +2004-09-30,2.4972,2.5152,2.4627,2.482,118529995,0 +2004-10-01,2.5049,2.5087,2.4704,2.4768,129808279,0 +2004-10-04,2.5087,2.5087,2.482,2.4832,160232568,0 +2004-10-05,2.469,2.5407,2.4588,2.5204,113277056,0 +2004-10-06,2.5294,2.6099,2.5266,2.6022,124466074,0 +2004-10-07,2.5959,2.6201,2.5266,2.5369,118873894,0 +2004-10-08,2.5316,2.5472,2.4871,2.5011,100181366,0 +2004-10-11,2.4845,2.5011,2.446,2.4715,90330265,0 +2004-10-12,2.4651,2.4704,2.4103,2.4512,128468462,0 +2004-10-13,2.4857,2.5459,2.4807,2.5459,328720788,0 +2004-10-14,2.7559,2.9301,2.7239,2.8801,772150250,0 +2004-10-15,2.8735,2.9196,2.8287,2.9133,286700416,0 +2004-10-18,2.8673,3.0582,2.8624,3.0582,335290047,0 +2004-10-19,3.0799,3.0964,3.0299,3.0364,223666039,0 +2004-10-20,3.016,3.0477,2.9864,3.039,171751849,0 +2004-10-21,3.0503,3.0824,3.0324,3.0697,202054294,0 +2004-10-22,3.035,3.053,3.0106,3.035,135065085,0 +2004-10-25,3.0222,3.0632,3.0148,3.0441,109501234,0 +2004-10-26,3.039,3.0762,3.0068,3.0708,165772637,0 +2004-10-27,3.1156,3.2412,3.0849,3.2207,332844617,0 +2004-10-28,3.2004,3.3439,3.1696,3.3412,241034063,0 +2004-10-29,3.3193,3.4066,3.3169,3.3551,226037520,0 +2004-11-01,3.3618,3.4103,3.3322,3.3592,168171793,0 +2004-11-02,3.3566,3.4628,3.3551,3.4257,203584137,0 +2004-11-03,3.4859,3.5919,3.4578,3.5422,335833659,0 +2004-11-04,3.5242,3.5562,3.4806,3.4871,259044445,0 +2004-11-05,3.5153,3.5218,3.3322,3.5038,336160914,0 +2004-11-08,3.4758,3.5512,3.4487,3.4819,146962135,0 +2004-11-09,3.4704,3.4923,3.4179,3.4603,132715879,0 +2004-11-10,3.4552,3.5473,3.4514,3.5062,141872605,0 +2004-11-11,3.5192,3.5485,3.4718,3.541,113652516,0 +2004-11-12,3.5218,3.5653,3.5115,3.5535,110353307,0 +2004-11-15,3.5267,3.5512,3.4806,3.5371,104888770,0 +2004-11-16,3.532,3.5345,3.4885,3.5179,82300564,0 +2004-11-17,3.5333,3.5512,3.4718,3.5153,111195361,0 +2004-11-18,3.4769,3.5512,3.4758,3.5473,128484271,0 +2004-11-19,3.5535,3.6433,3.4897,3.5333,213470022,0 +2004-11-22,3.7151,4.098,3.7073,3.9289,716980304,0 +2004-11-23,3.9878,3.9994,3.9098,3.9238,253913297,0 +2004-11-24,3.9494,4.1748,3.9405,4.1005,387949220,0 +2004-11-26,4.1837,4.2107,4.1197,4.1324,153459161,0 +2004-11-29,4.4184,4.4541,4.3157,4.3822,477900707,0 +2004-11-30,4.4053,4.4053,4.2926,4.2926,286991158,0 +2004-12-01,4.2926,4.3517,4.2427,4.3415,223374648,0 +2004-12-02,4.2339,4.2838,4.1402,4.1748,275632386,0 +2004-12-03,4.1338,4.1619,3.9545,4.0135,345664821,0 +2004-12-06,4.1134,4.2415,4.0314,4.212,348091861,0 +2004-12-07,4.2222,4.2735,4.0058,4.0275,295055696,0 +2004-12-08,4.0391,4.1261,3.9723,4.0519,192964449,0 +2004-12-09,4.0186,4.1236,3.9749,4.098,206918912,0 +2004-12-10,4.1646,4.2285,4.1427,4.1721,216385322,0 +2004-12-13,4.2094,4.2196,4.1364,4.1556,110193410,0 +2004-12-14,4.1827,4.2185,4.1632,4.1814,116023886,0 +2004-12-15,4.1837,4.1915,4.1402,4.1788,111147638,0 +2004-12-16,4.2415,4.3223,4.2285,4.2645,314090672,0 +2004-12-17,4.2838,4.2926,4.1556,4.1607,227541404,0 +2004-12-20,4.2005,4.226,3.9545,4.016,325777402,0 +2004-12-21,4.0699,4.0837,3.9444,4.0773,297292293,0 +2004-12-22,4.1095,4.1211,4.0595,4.0825,157822853,0 +2004-12-23,4.0825,4.1134,4.0725,4.0994,68585590,0 +2004-12-27,4.1469,4.1721,4.0263,4.0442,156165143,0 +2004-12-28,4.0545,4.1134,3.9723,4.1095,170662716,0 +2004-12-29,4.0918,4.1607,4.0712,4.1261,125388393,0 +2004-12-30,4.1469,4.1646,4.1121,4.1491,96309465,0 +2004-12-31,4.1556,4.1619,4.1005,4.1236,77710221,0 +2005-01-03,4.1529,4.1685,4.0083,4.0519,193279926,0 +2005-01-04,4.0825,4.1915,4.0314,4.094,306165093,0 +2005-01-05,4.094,4.1775,4.094,4.13,189804833,0 +2005-01-06,4.1491,4.1556,4.0545,4.1324,196766476,0 +2005-01-07,4.1646,4.4578,4.1469,4.4336,623374174,0 +2005-01-10,4.4757,4.5271,4.3466,4.4157,481739953,0 +2005-01-11,4.3695,4.4283,4.1068,4.1338,729158970,0 +2005-01-12,4.1915,4.2196,4.0533,4.1915,547180055,0 +2005-01-13,4.7307,4.7652,4.4654,4.4692,883558526,0 +2005-01-14,4.4977,4.5925,4.4296,4.4951,493905099,0 +2005-01-18,4.4796,4.5271,4.431,4.5244,280936639,0 +2005-01-19,4.5206,4.5757,4.4667,4.4745,209902579,0 +2005-01-20,4.4605,4.5629,4.4476,4.5117,255198897,0 +2005-01-21,4.5629,4.5845,4.4821,4.5129,254326762,0 +2005-01-24,4.554,4.5961,4.5168,4.5309,235287161,0 +2005-01-25,4.5718,4.664,4.5424,4.6128,270546786,0 +2005-01-26,4.6537,4.6591,4.5602,4.6258,207570917,0 +2005-01-27,4.6205,4.6691,4.5807,4.6512,138434248,0 +2005-01-28,4.6487,4.737,4.6384,4.737,223630965,0 +2005-01-31,4.7895,4.988,4.7717,4.9239,469653202,0 +2005-02-01,4.9331,4.9792,4.9034,4.9652,189309189,0 +2005-02-02,4.9943,5.1161,4.9739,5.098,285657133,0 +2005-02-03,5.0737,5.0868,4.9508,4.9829,204319014,0 +2005-02-04,4.9943,5.0544,4.9652,5.0485,157169600,0 +2005-02-07,5.0585,5.0801,4.9624,5.0544,146420851,0 +2005-02-08,5.0701,5.2108,5.0458,5.1803,248256408,0 +2005-02-09,5.1994,5.2494,5.0008,5.0419,332859415,0 +2005-02-10,5.0431,5.0762,4.9086,5.0174,304842711,0 +2005-02-11,5.1198,5.2353,5.0544,5.1994,335099133,0 +2005-02-14,5.298,5.4301,5.2532,5.418,354695552,0 +2005-02-15,5.5554,5.7037,5.5065,5.6605,647793735,0 +2005-02-16,5.6438,5.7753,5.5925,5.7705,457070204,0 +2005-02-17,5.8051,5.819,5.6,5.623,423434961,0 +2005-02-18,5.622,5.6256,5.5219,5.5591,324411319,0 +2005-02-22,5.5348,5.654,5.4619,5.4619,340038882,0 +2005-02-23,5.554,5.6643,5.4772,5.6499,375007448,0 +2005-02-24,5.6499,5.7192,5.6183,5.6951,425376517,0 +2005-02-25,5.7411,5.7564,5.6461,5.6975,255345043,0 +2005-02-28,5.7192,5.7807,5.6295,5.7449,182064525,0 +2005-03-01,5.7753,5.7768,5.6553,5.6987,130906953,0 +2005-03-02,5.6653,5.7486,5.6451,5.6499,127769264,0 +2005-03-03,5.6861,5.6871,5.2786,5.3518,393686024,0 +2005-03-04,5.3518,5.5078,5.3518,5.4823,210891321,0 +2005-03-07,5.4823,5.5389,5.4235,5.4746,125688166,0 +2005-03-08,5.3631,5.3989,5.1353,5.1903,284832101,0 +2005-03-09,5.0701,5.1585,4.9726,5.0391,368655054,0 +2005-03-10,5.0701,5.156,5.0073,5.1007,216651374,0 +2005-03-11,5.1406,5.198,5.0968,5.1573,175363191,0 +2005-03-14,5.189,5.2235,5.0611,5.1635,168811933,0 +2005-03-15,5.2059,5.2685,5.1546,5.2453,142565244,0 +2005-03-16,5.2774,5.418,5.2223,5.2735,194688663,0 +2005-03-17,5.3209,5.4914,5.2914,5.4106,223864044,0 +2005-03-18,5.5426,5.5631,5.4427,5.5016,267630167,0 +2005-03-21,5.5476,5.6309,5.4888,5.5963,150909694,0 +2005-03-22,5.6,5.6295,5.4659,5.4849,153824003,0 +2005-03-23,5.4427,5.5579,5.3813,5.4491,170221155,0 +2005-03-24,5.504,5.5065,5.4427,5.4427,98439294,0 +2005-03-28,5.4746,5.5016,5.4386,5.4466,76349185,0 +2005-03-29,5.4466,5.4849,5.3147,5.3465,128646798,0 +2005-03-30,5.3774,5.481,5.3556,5.481,109881234,0 +2005-03-31,5.4361,5.4454,5.3261,5.3364,177446775,0 +2005-04-01,5.3901,5.4016,5.1955,5.2366,178626772,0 +2005-04-04,5.2235,5.2901,5.1428,5.2621,161757381,0 +2005-04-05,5.2748,5.4094,5.2621,5.3645,155700131,0 +2005-04-06,5.4301,5.4823,5.3978,5.4209,115875061,0 +2005-04-07,5.4209,5.6025,5.4106,5.5782,141597901,0 +2005-04-08,5.5861,5.6923,5.5759,5.6013,181285925,0 +2005-04-11,5.6653,5.6665,5.367,5.3684,229275996,0 +2005-04-12,5.4441,5.5308,5.38,5.4632,274084040,0 +2005-04-13,5.504,5.5052,5.1724,5.2556,392996341,0 +2005-04-14,4.9687,5.1198,4.7178,4.7717,769047131,0 +2005-04-15,4.6884,4.7704,4.5182,4.5271,482438341,0 +2005-04-18,4.4911,4.6487,4.3538,4.5615,370169445,0 +2005-04-19,4.6821,4.7948,4.5938,4.7497,303124477,0 +2005-04-20,4.8227,4.8332,4.5384,4.5476,266453208,0 +2005-04-21,4.6591,4.7652,4.5974,4.7615,212976462,0 +2005-04-22,4.7125,4.7382,4.4692,4.5462,234139228,0 +2005-04-25,4.6727,4.7409,4.6244,4.7358,208444405,0 +2005-04-26,4.7064,4.8036,4.6258,4.6345,226668409,0 +2005-04-27,4.5845,4.6564,4.5476,4.6038,171368346,0 +2005-04-28,4.6463,4.6537,4.5129,4.5513,160641789,0 +2005-04-29,4.6167,4.6396,4.5102,4.6177,187399760,0 +2005-05-02,4.6422,4.6933,4.6128,4.6653,129954717,0 +2005-05-03,4.6615,4.7052,4.6141,4.637,138580983,0 +2005-05-04,4.6422,4.7637,4.6231,4.7575,126218196,0 +2005-05-05,4.7637,4.7729,4.6703,4.6972,108044030,0 +2005-05-06,4.7358,4.7806,4.7114,4.7691,91044836,0 +2005-05-09,4.7717,4.7961,4.7064,4.7344,99190182,0 +2005-05-10,4.6959,4.7704,4.6525,4.664,124488615,0 +2005-05-11,4.5143,4.568,4.2401,4.5602,572078532,0 +2005-05-12,4.5358,4.5576,4.3538,4.3708,270744354,0 +2005-05-13,4.3862,4.5117,4.363,4.4528,196689936,0 +2005-05-16,4.4398,4.5732,4.4219,4.5526,132290797,0 +2005-05-17,4.4988,4.5411,4.4231,4.5282,164419133,0 +2005-05-18,4.5462,4.8098,4.4809,4.5899,177573060,0 +2005-05-19,4.5845,4.8253,4.5819,4.8086,221611987,0 +2005-05-20,4.7819,4.8216,4.7626,4.8086,126332850,0 +2005-05-23,4.865,5.1097,4.8471,5.0918,291180906,0 +2005-05-24,5.0518,5.1213,4.9982,5.0842,165695531,0 +2005-05-25,5.0737,5.1161,5.0354,5.0943,115818917,0 +2005-05-26,5.1224,5.2427,4.9687,5.2173,146564901,0 +2005-05-27,5.2235,5.2235,5.1238,5.1942,88153399,0 +2005-05-31,5.2122,5.2173,5.0689,5.0918,112725720,0 +2005-06-01,5.1097,5.2199,5.1047,5.1611,126666104,0 +2005-06-02,5.1367,5.1635,5.0714,5.1275,104349496,0 +2005-06-03,4.8868,4.9406,4.8369,4.8973,267013051,0 +2005-06-06,4.9187,4.9469,4.8098,4.8562,226525416,0 +2005-06-07,4.8319,4.8319,4.6677,4.6795,208220412,0 +2005-06-08,4.6907,4.7704,4.6832,4.728,115229808,0 +2005-06-09,4.7382,4.8586,4.7151,4.8216,108913865,0 +2005-06-10,4.7895,4.7895,4.5487,4.5858,189387246,0 +2005-06-13,4.5988,4.6884,4.5872,4.5974,121567036,0 +2005-06-14,4.6141,4.6294,4.5781,4.6102,97548419,0 +2005-06-15,4.71,4.7766,4.6487,4.755,157118398,0 +2005-06-16,4.7626,4.8768,4.7151,4.8637,154511983,0 +2005-06-17,4.9278,4.9356,4.8445,4.906,166475795,0 +2005-06-20,4.8537,4.878,4.7961,4.8165,90687155,0 +2005-06-21,4.8075,4.8906,4.7868,4.8484,103450911,0 +2005-06-22,4.9098,4.9433,4.8841,4.9368,119734681,0 +2005-06-23,4.9739,5.0943,4.9497,4.9803,188157265,0 +2005-06-24,5.006,5.0099,4.8253,4.8355,115865908,0 +2005-06-27,4.7217,4.8791,4.6972,4.7512,167664516,0 +2005-06-28,4.8011,4.8138,4.76,4.7781,97962542,0 +2005-06-29,4.7704,4.7754,4.6258,4.6576,126673007,0 +2005-06-30,4.6884,4.7587,4.6499,4.7137,116551667,0 +2005-07-01,4.7164,4.7344,4.6473,4.6742,69942386,0 +2005-07-05,4.6871,4.8854,4.6742,4.8637,126687338,0 +2005-07-06,4.8394,4.8868,4.7637,4.7882,111345368,0 +2005-07-07,4.7125,4.8355,4.7125,4.819,107163730,0 +2005-07-08,4.8484,4.9022,4.7985,4.8984,81121389,0 +2005-07-11,4.9139,4.9497,4.8382,4.8791,108907602,0 +2005-07-12,4.8959,4.9174,4.8548,4.8973,108155388,0 +2005-07-13,4.8973,4.9304,4.8537,4.9111,214155362,0 +2005-07-14,5.2275,5.38,5.1519,5.2184,584584424,0 +2005-07-15,5.2314,5.3235,5.1816,5.3209,191832481,0 +2005-07-18,5.3147,5.3915,5.298,5.3134,163840286,0 +2005-07-19,5.3339,5.5363,5.2596,5.5308,187248178,0 +2005-07-20,5.4902,5.609,5.4619,5.5874,126658581,0 +2005-07-21,5.6025,5.6398,5.494,5.5437,113082587,0 +2005-07-22,5.5631,5.6347,5.5566,5.6347,84157752,0 +2005-07-25,5.6374,5.6706,5.6,5.6103,82264050,0 +2005-07-26,5.6347,5.6487,5.5528,5.5874,74921649,0 +2005-07-27,5.6025,5.6438,5.4645,5.6334,79149666,0 +2005-07-28,5.6322,5.6347,5.5449,5.609,70852736,0 +2005-07-29,5.5834,5.6836,5.4118,5.4619,157219733,0 +2005-08-01,5.4553,5.5172,5.3888,5.4746,88075776,0 +2005-08-02,5.4927,5.5707,5.4567,5.5308,82918991,0 +2005-08-03,5.5308,5.5464,5.4772,5.5348,72951250,0 +2005-08-04,5.504,5.5065,5.4154,5.4695,76184388,0 +2005-08-05,5.4454,5.5528,5.3813,5.5052,67611269,0 +2005-08-08,5.5065,5.5389,5.4567,5.4619,49312217,0 +2005-08-09,5.5052,5.6207,5.4949,5.6116,108057501,0 +2005-08-10,5.6347,5.6848,5.5464,5.5554,101379479,0 +2005-08-11,5.5566,5.6499,5.5389,5.6347,76003131,0 +2005-08-12,5.5657,5.9191,5.5528,5.9036,260130637,0 +2005-08-15,5.9623,6.1894,5.9488,6.1059,303022029,0 +2005-08-16,6.0715,6.0829,5.9177,5.9228,150163756,0 +2005-08-17,5.9522,6.0753,5.9383,6.0381,141460054,0 +2005-08-18,6.019,6.019,5.859,5.9292,123422177,0 +2005-08-19,5.9228,5.9805,5.8614,5.8691,106504647,0 +2005-08-22,5.9126,5.9868,5.7961,5.8743,108173172,0 +2005-08-23,5.8856,5.9036,5.8036,5.8576,82448915,0 +2005-08-24,5.8409,6.0343,5.8383,5.8614,159500136,0 +2005-08-25,5.906,5.9535,5.8663,5.8986,77043026,0 +2005-08-26,5.9177,5.9345,5.8089,5.8576,72802432,0 +2005-08-29,5.8036,5.8946,5.7961,5.8703,71339545,0 +2005-08-30,5.8895,5.9921,5.8806,5.9638,144650701,0 +2005-08-31,5.9972,6.0227,5.9256,6.0049,112376006,0 +2005-09-01,6.019,6.0407,5.9025,5.9243,99352590,0 +2005-09-02,5.9446,5.9933,5.906,5.9191,62007559,0 +2005-09-06,5.9791,6.2596,5.9612,6.2492,228209875,0 +2005-09-07,6.2839,6.3263,6.1366,6.2341,268406042,0 +2005-09-08,6.3237,6.4183,6.2932,6.3748,195927825,0 +2005-09-09,6.4033,6.5762,6.3763,6.5708,171695677,0 +2005-09-12,6.5566,6.6116,6.4773,6.5823,126205513,0 +2005-09-13,6.544,6.5683,6.4439,6.5083,137444725,0 +2005-09-14,6.5543,6.5556,6.3341,6.3534,132304903,0 +2005-09-15,6.4033,6.4263,6.3174,6.3864,112889017,0 +2005-09-16,6.4313,6.5581,6.3965,6.5581,164771845,0 +2005-09-19,6.5375,6.7735,6.5375,6.7411,218488130,0 +2005-09-20,6.7874,6.8911,6.7769,6.8117,228763721,0 +2005-09-21,6.7874,6.7936,6.6415,6.6733,121023080,0 +2005-09-22,6.6529,6.7193,6.5723,6.6462,129321885,0 +2005-09-23,6.672,6.8512,6.6387,6.8129,155727470,0 +2005-09-26,6.9384,6.9871,6.8282,6.8948,152418192,0 +2005-09-27,6.9151,6.946,6.8423,6.8436,95282512,0 +2005-09-28,6.7962,6.8014,6.4788,6.5413,313859506,0 +2005-09-29,6.5566,6.7348,6.507,6.7029,177605826,0 +2005-09-30,6.7053,6.8706,6.6439,6.8654,148030444,0 +2005-10-03,6.9359,6.9844,6.8742,6.9714,141517615,0 +2005-10-04,7.0398,7.0884,6.8693,6.8835,150428307,0 +2005-10-05,6.9575,6.9615,6.7553,6.759,170303943,0 +2005-10-06,6.8268,6.8501,6.5144,6.621,211205526,0 +2005-10-07,6.6258,6.6502,6.4733,6.5695,189042294,0 +2005-10-10,6.6462,6.6475,6.4391,6.4504,141505636,0 +2005-10-11,6.5657,6.6425,6.4543,6.6066,338562315,0 +2005-10-12,6.229,6.4414,6.1301,6.307,751820583,0 +2005-10-13,6.3428,6.9092,6.3096,6.8822,519953389,0 +2005-10-14,6.8822,6.9604,6.7601,6.9151,288777529,0 +2005-10-17,6.9151,6.9447,6.7463,6.8436,172007646,0 +2005-10-18,6.8194,6.9092,6.6847,6.686,169958934,0 +2005-10-19,6.6682,7.0385,6.5581,7.0359,281225314,0 +2005-10-20,6.9999,7.2355,6.9604,7.1895,378487355,0 +2005-10-21,7.2971,7.2971,7.0896,7.1278,221522567,0 +2005-10-24,7.1138,7.2728,7.0551,7.2728,170578017,0 +2005-10-25,7.2225,7.2803,7.1318,7.1846,130023884,0 +2005-10-26,7.2076,7.3711,7.1614,7.3034,176447614,0 +2005-10-27,7.2983,7.3008,7.0958,7.0958,114915650,0 +2005-10-28,7.1779,7.2266,6.9372,6.9755,214728236,0 +2005-10-31,7.0741,7.425,7.0114,7.3752,263084340,0 +2005-11-01,7.3327,7.4457,7.2829,7.3636,209483745,0 +2005-11-02,7.3942,7.6837,7.3763,7.6773,240592728,0 +2005-11-03,7.7542,7.9807,7.6928,7.9207,246540209,0 +2005-11-04,7.7337,7.8425,7.6352,7.831,244879684,0 +2005-11-07,7.7925,7.8975,7.7017,7.7132,177810390,0 +2005-11-08,7.6773,7.7325,7.5684,7.6709,132038217,0 +2005-11-09,7.7027,7.8385,7.6837,7.6977,148455396,0 +2005-11-10,7.7694,7.8374,7.557,7.8347,186246267,0 +2005-11-11,7.8758,7.9538,7.8552,7.8808,118545663,0 +2005-11-14,7.8808,7.9372,7.8004,7.8695,103128186,0 +2005-11-15,7.8886,8.0784,7.8707,7.9757,150758829,0 +2005-11-16,8.1,8.3318,8.0796,8.3176,218223908,0 +2005-11-17,8.4009,8.4369,8.2281,8.2627,188541219,0 +2005-11-18,8.3636,8.3789,8.2433,8.2677,146342787,0 +2005-11-21,8.3012,8.3484,8.1602,8.319,142584326,0 +2005-11-22,8.3228,8.5495,8.2627,8.5186,150663168,0 +2005-11-23,8.5699,8.7056,8.5402,8.5943,135469074,0 +2005-11-25,8.6444,8.9054,8.6444,8.8799,110162197,0 +2005-11-28,9.0588,9.1005,8.8452,8.921,283877472,0 +2005-11-29,8.9636,9.0023,8.625,8.7209,248452151,0 +2005-11-30,8.7635,8.8171,8.6469,8.6853,165644525,0 +2005-12-01,8.8221,9.1867,8.8118,9.1704,226435371,0 +2005-12-02,9.2345,9.3146,9.054,9.3004,249726299,0 +2005-12-05,9.2162,9.2878,9.1557,9.1977,161051681,0 +2005-12-06,9.4739,9.582,9.3931,9.4849,238354819,0 +2005-12-07,9.506,9.534,9.3634,9.4719,188686785,0 +2005-12-08,9.3723,9.4989,9.2966,9.4889,219470631,0 +2005-12-09,9.506,9.551,9.3931,9.516,154868905,0 +2005-12-12,9.6,9.651,9.547,9.593,146400006,0 +2005-12-13,9.591,9.666,9.503,9.601,137622629,0 +2005-12-14,9.2976,9.3861,8.9995,9.2219,404061552,0 +2005-12-15,9.3067,9.3313,9.1369,9.2444,156393442,0 +2005-12-16,9.2384,9.2586,9.0995,9.1063,185897396,0 +2005-12-19,9.0966,9.2966,9.0966,9.1417,147457351,0 +2005-12-20,9.1674,9.2693,9.1072,9.2345,133547797,0 +2005-12-21,9.2917,9.4267,9.2888,9.413,131732602,0 +2005-12-22,9.467,9.538,9.4258,9.4819,103351853,0 +2005-12-23,9.4969,9.51,9.3861,9.3931,64059818,0 +2005-12-27,9.4839,9.628,9.4719,9.506,164601939,0 +2005-12-28,9.519,9.572,9.389,9.4228,110919913,0 +2005-12-29,9.4557,9.4557,9.1462,9.15,136655807,0 +2005-12-30,9.0814,9.2751,9.0081,9.2064,174081204,0 +2006-01-03,9.2722,9.571,9.2526,9.571,224233638,0 +2006-01-04,9.628,9.73,9.54,9.6,172662101,0 +2006-01-05,9.591,9.591,9.4458,9.523,124912881,0 +2006-01-06,9.637,9.823,9.545,9.769,196417600,0 +2006-01-09,9.835,9.886,9.7,9.739,188213509,0 +2006-01-10,9.764,10.485,9.711,10.356,635685920,0 +2006-01-11,10.737,10.859,10.577,10.744,416203660,0 +2006-01-12,10.879,11.065,10.708,10.794,356865841,0 +2006-01-13,10.888,11.015,10.833,10.959,216310030,0 +2006-01-17,10.965,11.062,10.74,10.848,232661139,0 +2006-01-18,10.641,10.764,10.48,10.565,332713712,0 +2006-01-19,10.424,10.458,10.083,10.122,472861708,0 +2006-01-20,10.154,10.25,9.711,9.742,317157060,0 +2006-01-23,9.752,10.189,9.731,9.946,295519535,0 +2006-01-24,10.088,10.169,9.704,9.738,318070991,0 +2006-01-25,9.917,9.925,9.3792,9.502,355727991,0 +2006-01-26,9.562,9.662,9.2122,9.2626,328984852,0 +2006-01-27,9.3342,9.4258,9.1043,9.2237,265924867,0 +2006-01-30,9.1282,9.809,9.0749,9.604,388283817,0 +2006-01-31,9.671,9.775,9.4458,9.672,254411304,0 +2006-02-01,9.604,9.79,9.558,9.66,145338449,0 +2006-02-02,9.647,9.652,9.2267,9.2335,197102201,0 +2006-02-03,9.2556,9.3215,9.0966,9.1995,193012150,0 +2006-02-06,9.2414,9.2849,8.5469,8.6186,460627942,0 +2006-02-07,8.7516,8.8977,8.5391,8.6569,386911118,0 +2006-02-08,8.7671,8.8466,8.4521,8.8118,265774594,0 +2006-02-09,8.8632,8.8656,8.2639,8.3176,320518384,0 +2006-02-10,8.3406,8.666,8.055,8.6199,490534811,0 +2006-02-13,8.5186,8.5482,8.2779,8.287,246305917,0 +2006-02-14,8.338,8.7209,8.3241,8.6621,323721270,0 +2006-02-15,8.6199,8.9156,8.5482,8.8644,319780928,0 +2006-02-16,8.9636,9.093,8.8977,9.0369,264382770,0 +2006-02-17,9.0043,9.0774,8.9147,9.0013,160611426,0 +2006-02-21,9.0447,9.0654,8.7952,8.8466,217343065,0 +2006-02-22,8.8426,9.1787,8.7083,9.1331,272787728,0 +2006-02-23,9.1924,9.3489,9.1472,9.1896,238898288,0 +2006-02-24,9.2276,9.3342,9.1178,9.152,149120330,0 +2006-02-27,9.2228,9.2365,9.0474,9.09,220603158,0 +2006-02-28,9.1704,9.2712,8.7209,8.7708,352990588,0 +2006-03-01,8.8364,8.899,8.711,8.8492,212775717,0 +2006-03-02,8.8389,8.9636,8.7937,8.9147,174344973,0 +2006-03-03,8.8785,8.9529,8.648,8.6722,205588060,0 +2006-03-06,8.6569,8.6722,8.3161,8.3855,254456317,0 +2006-03-07,8.4215,8.5673,8.3341,8.4917,243243543,0 +2006-03-08,8.4983,8.606,8.3687,8.4084,181885134,0 +2006-03-09,8.4637,8.5124,8.1717,8.1871,222814141,0 +2006-03-10,8.2064,8.259,7.9975,8.0921,290860787,0 +2006-03-13,8.338,8.4877,8.297,8.4112,240137202,0 +2006-03-14,8.425,8.6212,8.388,8.6212,179026268,0 +2006-03-15,8.6853,8.7136,8.3906,8.4816,248753704,0 +2006-03-16,8.5661,8.5673,8.2343,8.2356,208901227,0 +2006-03-17,8.2905,8.3931,8.2103,8.2806,226426802,0 +2006-03-20,8.3509,8.383,8.1791,8.1947,168796439,0 +2006-03-21,8.2343,8.2396,7.8616,7.9154,374628693,0 +2006-03-22,7.9732,8.1,7.8465,7.8975,375312303,0 +2006-03-23,7.9002,7.9272,7.6339,7.7041,397822515,0 +2006-03-24,7.7182,7.8041,7.5595,7.6786,298928443,0 +2006-03-27,7.7132,7.8604,7.6071,7.6209,308428049,0 +2006-03-28,7.6439,7.7017,7.4596,7.5187,381497781,0 +2006-03-29,7.5724,8.0062,7.3854,7.9822,652507842,0 +2006-03-30,8.0488,8.1064,7.8796,8.0359,387195087,0 +2006-03-31,8.0988,8.1459,7.9706,8.032,226141936,0 +2006-04-03,8.1524,8.2116,8.0181,8.023,227495440,0 +2006-04-04,7.9538,7.9681,7.818,7.8334,259885126,0 +2006-04-05,8.287,8.6071,8.215,8.6071,622535329,0 +2006-04-06,8.7465,9.2267,8.7339,9.1235,741695172,0 +2006-04-07,9.0794,9.1187,8.7681,8.9371,430915952,0 +2006-04-10,8.9957,9.0824,8.7659,8.7937,251933041,0 +2006-04-11,8.8399,8.8747,8.5891,8.707,261920672,0 +2006-04-12,8.7259,8.73,8.4905,8.543,206262018,0 +2006-04-13,8.4905,8.6364,8.4278,8.511,204875670,0 +2006-04-17,8.5175,8.5596,8.2408,8.2997,201207768,0 +2006-04-18,8.3241,8.5124,8.297,8.4804,221406133,0 +2006-04-19,8.5571,8.5801,8.3843,8.4073,299730791,0 +2006-04-20,8.9003,8.9645,8.4778,8.6609,464772054,0 +2006-04-21,8.7681,8.7901,8.5124,8.5852,220010056,0 +2006-04-24,8.5699,8.5699,8.388,8.4201,197137617,0 +2006-04-25,8.4481,8.5276,8.3957,8.4739,147397311,0 +2006-04-26,8.5289,8.7439,8.5032,8.7274,198226556,0 +2006-04-27,8.6748,8.9462,8.625,8.8826,235896757,0 +2006-04-28,8.8682,9.1311,8.8619,9.0137,211664380,0 +2006-05-01,9.0635,9.1615,8.8568,8.9127,209203761,0 +2006-05-02,8.9842,9.2182,8.9787,9.1724,215024377,0 +2006-05-03,9.2132,9.2132,8.9881,9.11,191525089,0 +2006-05-04,9.0985,9.3342,9.0232,9.1081,239941811,0 +2006-05-05,9.2084,9.2526,9.1109,9.2064,156978095,0 +2006-05-08,9.3352,9.4527,9.1857,9.2064,165851949,0 +2006-05-09,9.1953,9.2917,9.0437,9.0958,148225167,0 +2006-05-10,9.1311,9.135,8.9147,9.0407,128253590,0 +2006-05-11,9.0514,9.0711,8.6505,8.7274,225979072,0 +2006-05-12,8.7274,8.7966,8.5621,8.6698,178977080,0 +2006-05-15,8.5956,8.7571,8.5956,8.6812,147508789,0 +2006-05-16,8.7404,8.7404,8.2918,8.3216,261213272,0 +2006-05-17,8.2984,8.4138,8.2049,8.3574,207766699,0 +2006-05-18,8.4009,8.4854,8.0831,8.0909,183558785,0 +2006-05-19,8.0909,8.3088,8.0448,8.2614,274925184,0 +2006-05-22,8.1704,8.1947,8.0384,8.1167,200333908,0 +2006-05-23,8.3062,8.3484,8.0679,8.0871,193654365,0 +2006-05-24,8.0615,8.1511,7.8835,8.1112,255456642,0 +2006-05-25,8.2294,8.2534,8.105,8.2382,129224146,0 +2006-05-26,8.2343,8.2677,8.0856,8.1371,120732452,0 +2006-05-30,8.0856,8.1064,7.8385,7.8399,157000249,0 +2006-05-31,7.9092,7.9128,7.516,7.6543,357139520,0 +2006-06-01,7.6644,7.9757,7.6221,7.9617,262836804,0 +2006-06-02,8.064,8.0808,7.7966,7.8962,191223272,0 +2006-06-05,7.831,7.831,7.6798,7.6837,168902698,0 +2006-06-06,7.7146,7.7643,7.5443,7.6478,202479562,0 +2006-06-07,7.6901,7.7349,7.4724,7.4992,208945143,0 +2006-06-08,7.4737,7.8028,7.3189,7.7811,389578248,0 +2006-06-09,7.8359,7.8835,7.5684,7.5864,216356184,0 +2006-06-12,7.612,7.6492,7.2945,7.2996,200128458,0 +2006-06-13,7.3776,7.5684,7.3457,7.4698,301127099,0 +2006-06-14,7.4698,7.5274,7.2597,7.3776,244827075,0 +2006-06-15,7.3571,7.6503,7.2677,7.6043,331944922,0 +2006-06-16,7.5544,7.5801,7.365,7.3711,233702130,0 +2006-06-19,7.4019,7.4505,7.2996,7.325,196421711,0 +2006-06-20,7.3776,7.4724,7.3367,7.3596,187432927,0 +2006-06-21,7.3969,7.5187,7.338,7.4097,240704518,0 +2006-06-22,7.4366,7.6517,7.4366,7.6299,269417104,0 +2006-06-23,7.6478,7.7055,7.5212,7.5339,184050428,0 +2006-06-26,7.576,7.5812,7.475,7.5544,130041821,0 +2006-06-27,7.5712,7.5839,7.3507,7.3545,152995106,0 +2006-06-28,7.338,7.338,7.0958,7.1739,237190726,0 +2006-06-29,7.2728,7.5674,7.2212,7.5516,243081258,0 +2006-06-30,7.3725,7.3957,7.2355,7.3339,205692461,0 +2006-07-03,7.3433,7.4505,7.3433,7.4212,54318807,0 +2006-07-05,7.3123,7.3763,7.2432,7.2996,144500022,0 +2006-07-06,7.325,7.3507,7.1215,7.142,176570109,0 +2006-07-07,7.1163,7.2418,7.0012,7.0945,222831763,0 +2006-07-10,7.1369,7.2342,6.9795,7.0434,147582157,0 +2006-07-11,7.0551,7.17,6.9834,7.1266,230066263,0 +2006-07-12,7.0663,7.0741,6.7758,6.7821,258400110,0 +2006-07-13,6.6654,6.9309,6.5838,6.6912,348524593,0 +2006-07-14,6.7219,6.7735,6.4236,6.4888,276849590,0 +2006-07-17,6.6143,6.8014,6.6143,6.7066,285724411,0 +2006-07-18,6.8117,6.896,6.6401,6.7744,279206670,0 +2006-07-19,6.7808,7.0537,6.7053,6.9282,387459617,0 +2006-07-20,7.8066,7.8875,7.6478,7.7478,549994902,0 +2006-07-21,7.6478,7.831,7.6376,7.776,248733555,0 +2006-07-24,7.8385,7.9526,7.7389,7.8656,201557145,0 +2006-07-25,7.914,7.9513,7.7835,7.9295,164269916,0 +2006-07-26,7.9451,8.2779,7.8989,8.1791,250546553,0 +2006-07-27,8.2601,8.3267,8.05,8.1192,204990178,0 +2006-07-28,8.1883,8.4112,8.132,8.3996,192836918,0 +2006-07-31,8.5584,8.7888,8.4877,8.703,248996662,0 +2006-08-01,8.6085,8.699,8.4444,8.6031,198097896,0 +2006-08-02,8.6595,8.7952,8.6456,8.7287,153567749,0 +2006-08-03,8.6906,8.9645,8.6825,8.9117,234536065,0 +2006-08-04,8.5827,8.7864,8.319,8.7465,516715761,0 +2006-08-07,8.6761,8.9127,8.4917,8.6071,347318741,0 +2006-08-08,8.5929,8.5943,8.2614,8.2957,278228723,0 +2006-08-09,8.3687,8.4009,8.1192,8.1434,266480460,0 +2006-08-10,8.0871,8.2997,8.0295,8.2049,194571588,0 +2006-08-11,8.0988,8.2129,8.0142,8.1511,216809551,0 +2006-08-14,8.1871,8.3522,8.1445,8.1883,200099251,0 +2006-08-15,8.3537,8.5162,8.2984,8.5098,240208980,0 +2006-08-16,8.5865,8.7171,8.4943,8.7056,217878211,0 +2006-08-17,8.7083,8.7925,8.6031,8.6556,160732524,0 +2006-08-18,8.6711,8.7595,8.6133,8.6964,149567697,0 +2006-08-21,8.6199,8.6199,8.471,8.5238,146715505,0 +2006-08-22,8.5316,8.7491,8.5162,8.6595,160867551,0 +2006-08-23,8.7149,8.7914,8.5725,8.6199,148998938,0 +2006-08-24,8.7016,8.7325,8.4867,8.6839,182662425,0 +2006-08-25,8.6212,8.8426,8.6199,8.8042,151685941,0 +2006-08-28,8.7646,8.7864,8.5391,8.5776,205853968,0 +2006-08-29,8.5776,8.6133,8.3393,8.5136,264192324,0 +2006-08-30,8.6122,8.6853,8.5391,8.5751,189701849,0 +2006-08-31,8.6045,8.7465,8.5365,8.6892,160253963,0 +2006-09-01,8.7681,8.7914,8.6853,8.7571,113921390,0 +2006-09-05,8.8131,9.1567,8.7786,9.1538,282278178,0 +2006-09-06,9.1033,9.1817,8.9256,8.9683,271642103,0 +2006-09-07,9.0464,9.41,8.9967,9.3225,353598821,0 +2006-09-08,9.3899,9.4228,9.2093,9.2859,249843094,0 +2006-09-11,9.2859,9.4429,9.1462,9.2839,264623429,0 +2006-09-12,9.3245,9.406,9.15,9.3004,469796238,0 +2006-09-13,9.3332,9.516,9.2586,9.502,319625217,0 +2006-09-14,9.4517,9.561,9.408,9.4989,223578145,0 +2006-09-15,9.572,9.601,9.3841,9.4899,273817900,0 +2006-09-18,9.4527,9.586,9.3861,9.4637,196685002,0 +2006-09-19,9.4749,9.521,9.3225,9.4488,198019474,0 +2006-09-20,9.527,9.692,9.504,9.638,229356551,0 +2006-09-21,9.647,9.74,9.4819,9.558,221459485,0 +2006-09-22,9.515,9.518,9.2946,9.3489,185483697,0 +2006-09-25,9.4527,9.714,9.4419,9.701,239542181,0 +2006-09-26,9.745,9.961,9.745,9.938,307573695,0 +2006-09-27,9.89,9.921,9.71,9.783,225987295,0 +2006-09-28,9.868,9.922,9.726,9.862,201736518,0 +2006-09-29,9.89,9.928,9.82,9.858,113162818,0 +2006-10-02,9.605,9.716,9.514,9.586,198682281,0 +2006-10-03,9.526,9.597,9.3723,9.4889,220496232,0 +2006-10-04,9.4739,9.666,9.3683,9.655,231038469,0 +2006-10-05,9.54,9.752,9.4939,9.582,187951156,0 +2006-10-06,9.533,9.609,9.4537,9.504,130208917,0 +2006-10-09,9.4527,9.615,9.4168,9.556,122211350,0 +2006-10-10,9.55,9.55,9.3586,9.4537,148197243,0 +2006-10-11,9.4208,9.4769,9.2966,9.3772,159455164,0 +2006-10-12,9.4448,9.656,9.4258,9.638,165314129,0 +2006-10-13,9.69,9.847,9.569,9.607,190779523,0 +2006-10-16,9.612,9.717,9.575,9.657,141856990,0 +2006-10-17,9.616,9.64,9.4839,9.513,134086943,0 +2006-10-18,9.575,10.064,9.467,9.543,312852054,0 +2006-10-19,10.15,10.238,10.009,10.117,422699152,0 +2006-10-20,10.113,10.243,10.074,10.238,178321095,0 +2006-10-23,10.245,10.486,10.213,10.433,232009453,0 +2006-10-24,10.424,10.46,10.27,10.38,129135896,0 +2006-10-25,10.413,10.5,10.375,10.46,135140806,0 +2006-10-26,10.476,10.579,10.391,10.525,120653241,0 +2006-10-27,10.474,10.559,10.246,10.297,165890124,0 +2006-10-30,10.245,10.361,10.18,10.298,139419046,0 +2006-10-31,10.436,10.46,10.273,10.384,139807017,0 +2006-11-01,10.387,10.423,10.034,10.14,170449700,0 +2006-11-02,10.098,10.157,10.053,10.115,129812684,0 +2006-11-03,10.158,10.184,9.962,10.025,120438924,0 +2006-11-06,10.118,10.253,10.043,10.209,119991965,0 +2006-11-07,10.309,10.374,10.26,10.31,146649709,0 +2006-11-08,10.245,10.59,10.232,10.559,192636060,0 +2006-11-09,10.629,10.845,10.516,10.674,257380888,0 +2006-11-10,10.706,10.706,10.566,10.644,104252983,0 +2006-11-13,10.655,10.814,10.584,10.802,125671372,0 +2006-11-14,10.859,10.886,10.744,10.886,164230914,0 +2006-11-15,10.892,11,10.757,10.764,182479917,0 +2006-11-16,10.871,11.052,10.835,10.963,193495187,0 +2006-11-17,10.893,11.006,10.886,10.993,130067085,0 +2006-11-20,10.937,11.14,10.911,11.074,158307687,0 +2006-11-21,11.196,11.345,11.154,11.345,173594100,0 +2006-11-22,11.399,11.622,11.251,11.564,187393383,0 +2006-11-24,11.463,11.919,11.462,11.736,144759207,0 +2006-11-27,11.842,11.928,11.462,11.466,299726737,0 +2006-11-28,11.578,11.778,11.514,11.757,288933742,0 +2006-11-29,11.91,11.928,11.556,11.757,322654810,0 +2006-11-30,11.809,11.868,11.662,11.74,242722561,0 +2006-12-01,11.757,11.823,11.539,11.693,221733731,0 +2006-12-04,11.77,11.789,11.589,11.669,197902465,0 +2006-12-05,11.738,11.823,11.638,11.687,184809018,0 +2006-12-06,11.608,11.703,11.483,11.505,177784590,0 +2006-12-07,11.527,11.589,11.128,11.146,280207427,0 +2006-12-08,11.156,11.448,11.14,11.302,218660737,0 +2006-12-11,11.382,11.437,11.277,11.364,139324957,0 +2006-12-12,11.345,11.377,10.954,11.031,288424195,0 +2006-12-13,11.266,11.407,11.16,11.405,238666152,0 +2006-12-14,11.399,11.526,11.302,11.338,232014661,0 +2006-12-15,11.396,11.427,11.184,11.235,206288072,0 +2006-12-18,11.235,11.271,10.831,10.946,201209834,0 +2006-12-19,10.842,11.101,10.708,11.053,254127334,0 +2006-12-20,11.073,11.099,10.852,10.854,158418211,0 +2006-12-21,10.854,10.947,10.526,10.617,251986616,0 +2006-12-22,10.693,10.762,10.45,10.526,170538803,0 +2006-12-26,10.516,10.575,10.36,10.439,136692465,0 +2006-12-27,10.008,10.5,9.833,10.44,539722232,0 +2006-12-28,10.257,10.405,10.201,10.357,312288577,0 +2006-12-29,10.751,10.937,10.676,10.864,300160879,0 +2007-01-03,11.049,11.087,10.486,10.731,345302870,0 +2007-01-04,10.78,11.007,10.733,10.969,236252357,0 +2007-01-05,10.992,11.038,10.807,10.893,232773093,0 +2007-01-08,11.011,11.081,10.922,10.946,222149027,0 +2007-01-09,11.075,11.907,10.906,11.854,933759387,0 +2007-01-10,12.135,12.526,11.968,12.42,820730037,0 +2007-01-11,12.289,12.394,12.178,12.267,401661844,0 +2007-01-12,12.107,12.174,11.939,12.117,366027068,0 +2007-01-16,12.257,12.452,12.222,12.433,346840092,0 +2007-01-17,12.489,12.499,12.143,12.161,453218702,0 +2007-01-18,11.782,11.796,11.405,11.407,659349162,0 +2007-01-19,11.348,11.48,11.285,11.331,379744435,0 +2007-01-22,11.418,11.419,10.968,11.116,402540763,0 +2007-01-23,10.977,11.207,10.951,10.974,336685388,0 +2007-01-24,11.024,11.16,11.024,11.103,258728936,0 +2007-01-25,11.159,11.331,11.018,11.045,252639719,0 +2007-01-26,11.149,11.189,10.885,10.935,275130377,0 +2007-01-29,11.045,11.097,10.954,11.006,251405514,0 +2007-01-30,11.077,11.077,10.917,10.956,160943141,0 +2007-01-31,10.86,11.014,10.802,10.978,238301361,0 +2007-02-01,11.031,11.048,10.852,10.852,185223259,0 +2007-02-02,10.776,10.917,10.717,10.852,173327711,0 +2007-02-05,10.797,10.915,10.75,10.75,161405362,0 +2007-02-06,10.814,10.817,10.612,10.777,240961071,0 +2007-02-07,10.821,11.062,10.7,11.032,297417155,0 +2007-02-08,10.967,11.08,10.938,11.036,189370669,0 +2007-02-09,10.998,11.038,10.656,10.664,239880362,0 +2007-02-12,10.811,10.909,10.709,10.87,201764456,0 +2007-02-13,10.909,10.923,10.796,10.846,161936755,0 +2007-02-14,10.837,10.967,10.83,10.924,141666808,0 +2007-02-15,10.915,10.964,10.856,10.912,101411579,0 +2007-02-16,10.897,10.938,10.841,10.863,111474825,0 +2007-02-20,10.83,11.034,10.779,11,172235557,0 +2007-02-21,11.021,11.461,11.008,11.424,322183882,0 +2007-02-22,11.628,11.63,11.335,11.463,233763003,0 +2007-02-23,11.433,11.569,11.378,11.407,144427846,0 +2007-02-26,11.507,11.526,11.22,11.352,171792585,0 +2007-02-27,11.048,11.15,10.683,10.748,319442902,0 +2007-02-28,10.828,10.961,10.629,10.834,256409965,0 +2007-03-01,10.757,11.308,10.724,11.149,394757858,0 +2007-03-02,11.112,11.211,10.912,10.938,239815763,0 +2007-03-05,10.991,11.352,10.982,11.053,233181782,0 +2007-03-06,11.245,11.308,11.193,11.293,201682723,0 +2007-03-07,11.271,11.394,11.199,11.235,174620479,0 +2007-03-08,11.344,11.36,11.2,11.271,142484159,0 +2007-03-09,11.371,11.378,11.193,11.267,125660350,0 +2007-03-12,11.271,11.525,11.27,11.509,203423631,0 +2007-03-13,11.448,11.601,11.32,11.32,241977610,0 +2007-03-14,11.345,11.526,11.261,11.526,222120710,0 +2007-03-15,11.526,11.571,11.438,11.47,155920572,0 +2007-03-16,11.472,11.525,11.438,11.473,159438492,0 +2007-03-19,11.555,11.725,11.473,11.67,198842082,0 +2007-03-20,11.695,11.761,11.662,11.715,136404395,0 +2007-03-21,11.782,12.037,11.738,12.022,191659295,0 +2007-03-22,12.01,12.083,11.91,12.033,157625132,0 +2007-03-23,11.949,12.046,11.949,11.977,125828992,0 +2007-03-26,12.04,12.281,11.949,12.274,241161364,0 +2007-03-27,12.254,12.399,12.167,12.223,257947727,0 +2007-03-28,12.153,12.217,11.928,11.94,264554993,0 +2007-03-29,12.06,12.061,11.811,12.006,202352424,0 +2007-03-30,12.078,12.125,11.878,11.899,167475178,0 +2007-04-02,12.056,12.069,11.912,11.993,139963969,0 +2007-04-03,12.054,12.196,12.007,12.102,162849037,0 +2007-04-04,12.16,12.184,12.053,12.072,132966739,0 +2007-04-05,12.05,12.125,11.977,12.125,99148054,0 +2007-04-09,12.194,12.204,11.915,11.993,115261788,0 +2007-04-10,11.997,12.069,11.964,12.069,98296930,0 +2007-04-11,12.026,12.032,11.823,11.857,153101090,0 +2007-04-12,11.791,11.821,11.617,11.806,183654688,0 +2007-04-13,11.645,11.704,11.533,11.555,200863594,0 +2007-04-16,11.601,11.718,11.556,11.708,169955276,0 +2007-04-17,11.786,11.82,11.487,11.57,209655898,0 +2007-04-18,11.545,11.635,11.474,11.577,129386385,0 +2007-04-19,11.548,11.684,11.505,11.559,118787486,0 +2007-04-20,11.664,11.677,11.596,11.651,146139118,0 +2007-04-23,11.737,12.013,11.707,11.975,217645137,0 +2007-04-24,12.04,12.346,11.691,11.94,294295025,0 +2007-04-25,12.071,12.217,12.013,12.209,330909950,0 +2007-04-26,13.008,13.126,12.588,12.657,484683536,0 +2007-04-27,12.568,12.8,12.511,12.796,195052719,0 +2007-04-30,12.813,12.933,12.763,12.78,171930349,0 +2007-05-01,12.753,12.852,12.621,12.739,148507151,0 +2007-05-02,12.761,12.877,12.739,12.858,140893052,0 +2007-05-03,12.896,12.99,12.808,12.859,160657926,0 +2007-05-04,12.904,13.011,12.872,12.91,106532846,0 +2007-05-07,12.942,13.363,12.934,13.309,240269953,0 +2007-05-08,13.245,13.467,13.244,13.455,218657961,0 +2007-05-09,13.436,13.698,13.433,13.686,200159564,0 +2007-05-10,13.66,13.937,13.566,13.747,333857993,0 +2007-05-11,13.772,13.977,13.673,13.926,181623757,0 +2007-05-14,14.048,14.085,13.86,14.007,181816520,0 +2007-05-15,14.033,14.11,13.636,13.77,266201390,0 +2007-05-16,13.891,13.936,13.244,13.747,314369576,0 +2007-05-17,13.735,14.069,13.722,14.017,205483554,0 +2007-05-18,14.114,14.168,14.058,14.087,173116817,0 +2007-05-21,14.123,14.399,14.09,14.337,178454750,0 +2007-05-22,14.405,14.565,14.341,14.54,159634682,0 +2007-05-23,14.602,14.728,14.419,14.459,254159331,0 +2007-05-24,14.449,14.659,14.132,14.175,247469972,0 +2007-05-25,14.341,14.569,14.282,14.549,176492317,0 +2007-05-29,14.672,14.711,14.432,14.644,180070735,0 +2007-05-30,14.639,15.225,14.538,15.211,412371353,0 +2007-05-31,15.377,15.642,15.308,15.519,361617762,0 +2007-06-01,15.507,15.519,15.148,15.162,246601470,0 +2007-06-04,15.193,15.591,15.098,15.538,247259754,0 +2007-06-05,15.548,15.713,15.431,15.71,256806653,0 +2007-06-06,15.667,15.885,15.616,15.833,310164573,0 +2007-06-07,16.006,16.341,15.776,15.886,534344969,0 +2007-06-08,16.089,16.112,15.659,15.944,346277112,0 +2007-06-11,16.137,16.156,15.308,15.392,522698680,0 +2007-06-12,15.285,15.589,15.151,15.417,397844813,0 +2007-06-13,15.511,15.519,14.778,15.048,480137758,0 +2007-06-14,15.009,15.295,14.91,15.208,271426767,0 +2007-06-15,15.443,15.451,15.351,15.431,226221000,0 +2007-06-18,15.788,16.03,15.693,16.017,253942219,0 +2007-06-19,15.974,16.008,15.742,15.836,263011080,0 +2007-06-20,15.863,15.966,15.561,15.568,250306692,0 +2007-06-21,15.579,15.916,15.457,15.866,241756386,0 +2007-06-22,15.861,15.939,15.671,15.752,176219294,0 +2007-06-25,15.905,16.017,15.503,15.666,269232607,0 +2007-06-26,15.877,15.878,15.203,15.322,374081367,0 +2007-06-27,15.448,15.628,15.272,15.61,271833544,0 +2007-06-28,15.684,15.686,15.369,15.439,233910600,0 +2007-06-29,15.623,15.878,15.507,15.628,316362049,0 +2007-07-02,15.509,15.633,15.276,15.529,277528323,0 +2007-07-03,15.623,16.315,15.561,16.285,324196349,0 +2007-07-05,16.495,17.028,16.481,16.999,404690317,0 +2007-07-06,17.052,17.076,16.7,16.943,243805189,0 +2007-07-09,16.943,17.02,16.543,16.692,277427270,0 +2007-07-10,16.527,17.223,16.497,16.95,349719688,0 +2007-07-11,16.904,17.124,16.816,16.955,228826496,0 +2007-07-12,17.137,17.192,16.955,17.167,196391708,0 +2007-07-13,17.288,17.656,17.224,17.639,252948977,0 +2007-07-16,17.744,17.925,17.611,17.684,260952496,0 +2007-07-17,17.709,17.88,17.611,17.788,197627504,0 +2007-07-18,17.696,17.727,17.423,17.686,211062111,0 +2007-07-19,17.965,18.032,17.887,17.927,204095535,0 +2007-07-20,18.144,18.464,17.927,18.409,324422187,0 +2007-07-23,18.366,18.598,18.049,18.401,288496408,0 +2007-07-24,17.781,18.058,17.18,17.271,500393811,0 +2007-07-25,17.596,17.717,17.288,17.578,418343924,0 +2007-07-26,18.688,19.018,17.539,18.696,609713291,0 +2007-07-27,18.715,19.071,18.411,18.421,322997313,0 +2007-07-30,18.476,18.628,17.876,18.112,308938917,0 +2007-07-31,18.314,18.374,16.843,16.873,490674255,0 +2007-08-01,17.111,17.34,16.363,17.288,487845317,0 +2007-08-02,17.531,17.539,17.18,17.477,237703871,0 +2007-08-03,17.338,17.41,16.84,16.884,188995834,0 +2007-08-06,17.02,17.325,16.431,17.323,257826874,0 +2007-08-07,17.278,17.575,16.984,17.291,264743117,0 +2007-08-08,17.514,17.526,16.904,17.16,225182326,0 +2007-08-09,16.79,17.032,16.017,16.188,313384801,0 +2007-08-10,15.752,16.36,15.408,16.006,393062029,0 +2007-08-13,16.457,16.564,16.201,16.366,209871835,0 +2007-08-14,16.43,16.431,15.841,15.882,205582841,0 +2007-08-15,15.719,15.991,15.322,15.355,276360162,0 +2007-08-16,14.97,15.175,14.295,14.989,519423293,0 +2007-08-17,15.623,15.815,15.346,15.63,333047893,0 +2007-08-20,15.878,15.945,15.431,15.649,223957303,0 +2007-08-21,15.648,16.516,15.494,16.336,362635238,0 +2007-08-22,16.815,16.999,16.692,16.969,292681523,0 +2007-08-23,17.065,17.076,16.618,16.784,241472936,0 +2007-08-24,16.716,17.338,16.624,17.328,253888243,0 +2007-08-27,17.088,17.244,16.917,16.936,197001364,0 +2007-08-28,16.757,16.958,16.216,16.24,328245497,0 +2007-08-29,16.631,17.184,16.588,17.17,325045062,0 +2007-08-30,16.977,17.703,16.943,17.447,399939244,0 +2007-08-31,17.875,17.887,17.598,17.732,244094374,0 +2007-09-04,17.927,18.662,17.908,18.462,365720853,0 +2007-09-05,18.585,18.674,17.43,17.514,647417491,0 +2007-09-06,17.366,17.621,16.993,17.29,529504287,0 +2007-09-07,16.906,16.943,16.648,16.875,398554970,0 +2007-09-10,17.543,17.677,17.154,17.507,414352649,0 +2007-09-11,17.661,17.709,17.129,17.353,270375496,0 +2007-09-12,17.416,17.853,17.386,17.525,285182768,0 +2007-09-13,17.772,17.801,17.499,17.571,182992127,0 +2007-09-14,17.487,17.798,17.441,17.776,169371181,0 +2007-09-17,17.8,18.003,17.624,17.723,220975432,0 +2007-09-18,17.795,18.295,17.653,18.048,296192315,0 +2007-09-19,18.315,18.334,17.853,18.025,286043490,0 +2007-09-20,17.945,18.156,17.843,17.967,191903497,0 +2007-09-21,18.068,18.524,17.967,18.461,317434345,0 +2007-09-24,18.781,19.189,18.781,18.99,292461723,0 +2007-09-25,18.804,19.62,18.804,19.615,331618710,0 +2007-09-26,19.776,19.849,19.368,19.565,271691797,0 +2007-09-27,19.698,19.79,19.507,19.787,182925326,0 +2007-09-28,19.644,19.798,19.562,19.653,171131375,0 +2007-10-01,19.802,20.16,19.586,20.02,233145108,0 +2007-10-02,20.079,20.31,19.964,20.292,220543979,0 +2007-10-03,20.234,20.387,20.107,20.223,192841867,0 +2007-10-04,20.229,20.243,19.657,20.008,182716015,0 +2007-10-05,20.282,20.692,20.194,20.675,261664740,0 +2007-10-08,20.894,21.504,20.87,21.504,232735102,0 +2007-10-09,21.783,21.914,21.345,21.497,307868594,0 +2007-10-10,21.464,21.5,21.208,21.358,185672389,0 +2007-10-11,21.706,22.01,19.619,20.776,455246229,0 +2007-10-12,20.895,21.422,20.72,21.419,275185100,0 +2007-10-15,21.511,21.714,20.938,21.382,300342626,0 +2007-10-16,21.184,21.792,21.148,21.715,296293365,0 +2007-10-17,22.116,22.159,21.668,22.125,314097892,0 +2007-10-18,21.961,22.307,21.907,22.218,229374861,0 +2007-10-19,22.303,22.365,21.771,21.824,359678702,0 +2007-10-22,21.789,22.398,21.765,22.33,443542508,0 +2007-10-23,24.14,24.152,23.405,23.84,499663734,0 +2007-10-24,23.8,23.974,22.954,23.812,358751843,0 +2007-10-25,23.673,23.807,23.262,23.407,270734530,0 +2007-10-26,23.69,23.738,23.42,23.653,196930829,0 +2007-10-29,23.781,23.895,23.653,23.703,150676483,0 +2007-10-30,23.836,24.249,23.656,23.949,261833218,0 +2007-10-31,24.041,24.347,23.686,24.327,232166600,0 +2007-11-01,24.152,24.346,23.051,24.003,224376046,0 +2007-11-02,24.223,24.259,23.496,24.059,279360391,0 +2007-11-05,23.728,24.198,23.594,23.843,224072318,0 +2007-11-06,23.953,24.588,23.725,24.56,266027068,0 +2007-11-07,24.382,24.675,23.836,23.857,276595039,0 +2007-11-08,23.885,23.935,21.486,22.469,526696031,0 +2007-11-09,21.88,22.428,21.157,21.179,425162196,0 +2007-11-12,21.13,21.479,19.291,19.691,492362604,0 +2007-11-13,20.615,21.897,19.691,21.765,484373501,0 +2007-11-14,22.733,22.739,20.97,21.274,403585172,0 +2007-11-15,21.28,21.717,20.528,21.04,414487458,0 +2007-11-16,21.193,21.388,20.405,21.309,385660112,0 +2007-11-19,21.262,21.54,20.758,20.996,321694225,0 +2007-11-20,21.247,22,20.942,21.623,429930531,0 +2007-11-21,21.195,22.072,21.086,21.572,339509885,0 +2007-11-23,22.027,22.033,21.739,21.967,129891462,0 +2007-11-26,22.268,22.7,22.072,22.097,363869639,0 +2007-11-27,22.439,22.511,21.772,22.387,366923874,0 +2007-11-28,22.669,23.128,22.456,23.08,320237489,0 +2007-11-29,22.959,23.714,22.943,23.6,291924936,0 +2007-11-30,24.016,24.039,23.012,23.335,331057965,0 +2007-12-03,23.282,23.584,22.755,22.908,267838964,0 +2007-12-04,22.679,23.167,22.667,23.027,215691856,0 +2007-12-05,23.435,23.819,23.361,23.755,248378681,0 +2007-12-06,23.847,24.346,23.834,24.327,250866121,0 +2007-12-07,24.401,24.972,24.081,24.883,297123533,0 +2007-12-10,24.79,25.057,24.675,24.873,201210463,0 +2007-12-11,24.947,25.207,23.996,24.145,308945448,0 +2007-12-12,24.779,24.905,23.787,24.441,341155751,0 +2007-12-13,24.346,24.604,24.053,24.565,241126701,0 +2007-12-14,24.369,25.612,24.273,24.381,188026204,0 +2007-12-17,24.423,24.672,23.433,23.615,285267629,0 +2007-12-18,23.916,23.989,22.872,23.433,340716873,0 +2007-12-19,23.447,23.644,23.167,23.451,230164023,0 +2007-12-20,23.748,24.054,23.477,23.974,215053709,0 +2007-12-21,24.336,24.833,24.319,24.833,277136695,0 +2007-12-24,24.973,25.527,24.944,25.459,133938457,0 +2007-12-26,25.486,25.735,25.205,25.478,196023777,0 +2007-12-27,25.478,25.992,25.331,25.429,221610714,0 +2007-12-28,25.681,25.811,25.213,25.591,193249555,0 +2007-12-31,25.58,25.675,25.323,25.368,149767323,0 +2008-01-02,25.547,25.646,24.658,24.951,300780650,0 +2008-01-03,25.034,25.278,24.675,24.964,234652068,0 +2008-01-04,24.527,24.715,22.91,23.057,405631839,0 +2008-01-07,23.213,23.51,21.799,22.748,577574252,0 +2008-01-08,23.06,23.368,21.874,21.932,424241367,0 +2008-01-09,21.961,22.986,21.552,22.973,505605195,0 +2008-01-10,22.748,23.181,22.463,22.796,413104626,0 +2008-01-11,22.537,22.774,21.771,22.116,343006974,0 +2008-01-14,22.743,22.976,22.434,22.898,306290012,0 +2008-01-15,22.767,22.952,21.085,21.648,653218753,0 +2008-01-16,21.144,21.644,20.068,20.443,617221901,0 +2008-01-17,20.672,21.178,20.287,20.604,490056992,0 +2008-01-18,20.709,21.228,20.438,20.664,478705168,0 +2008-01-22,18.941,20.488,18.696,19.93,668204384,0 +2008-01-23,17.439,17.927,16.154,17.81,939695278,0 +2008-01-24,17.927,18.016,16.906,17.366,558747916,0 +2008-01-25,17.804,17.813,16.598,16.65,432827562,0 +2008-01-28,16.393,17.058,16.195,16.65,410897690,0 +2008-01-29,16.802,17.004,16.528,16.845,306592896,0 +2008-01-30,16.84,17.349,16.648,16.928,346000509,0 +2008-01-31,16.608,17.499,16.57,17.337,374807167,0 +2008-02-01,17.454,17.49,16.928,17.129,281707026,0 +2008-02-04,17.19,17.403,16.83,16.86,250535180,0 +2008-02-05,16.7,17.159,16.507,16.565,317853612,0 +2008-02-06,16.759,16.895,15.597,15.623,437605500,0 +2008-02-07,15.364,15.981,15.017,15.526,580659389,0 +2008-02-08,15.632,16.097,15.574,16.07,377878653,0 +2008-02-11,16.399,16.646,16.29,16.577,334732316,0 +2008-02-12,16.744,16.774,15.83,15.991,341619552,0 +2008-02-13,16.231,16.62,16.087,16.57,269675765,0 +2008-02-14,16.578,16.751,16.265,16.322,265982495,0 +2008-02-15,16.173,16.273,15.886,15.962,250737774,0 +2008-02-19,16.142,16.232,15.552,15.644,279953599,0 +2008-02-20,15.649,15.958,15.584,15.856,269429202,0 +2008-02-21,16.149,16.198,15.476,15.567,261418619,0 +2008-02-22,15.687,15.689,14.839,15.296,426218780,0 +2008-02-25,15.186,15.391,14.94,15.335,350160432,0 +2008-02-26,15.066,15.507,14.784,15.258,417111822,0 +2008-02-27,15.143,15.758,15.122,15.748,407279206,0 +2008-02-28,16.282,16.929,16.106,16.636,450691198,0 +2008-02-29,16.559,16.676,15.984,16.009,347604195,0 +2008-03-03,15.932,16.134,15.112,15.591,444179020,0 +2008-03-04,15.621,15.993,15.42,15.961,497707051,0 +2008-03-05,15.827,16.024,15.653,15.942,339718950,0 +2008-03-06,15.995,16.328,15.47,15.484,410732148,0 +2008-03-07,15.431,15.749,15.247,15.653,343135737,0 +2008-03-10,15.641,15.811,15.285,15.328,278980325,0 +2008-03-11,15.843,16.325,15.623,16.308,324881375,0 +2008-03-12,16.264,16.48,16.028,16.14,295393929,0 +2008-03-13,15.871,16.582,15.752,16.385,352229888,0 +2008-03-14,16.647,16.687,15.906,16.213,322574554,0 +2008-03-17,15.697,16.468,15.694,16.23,298973888,0 +2008-03-18,16.561,17.032,16.479,17.009,335975837,0 +2008-03-19,17.043,17.197,16.605,16.605,281724859,0 +2008-03-20,16.754,17.069,16.543,17.066,253287048,0 +2008-03-24,17.167,18.038,17.116,17.872,297599035,0 +2008-03-25,17.926,18.326,17.588,18.055,293513679,0 +2008-03-26,18.041,18.663,18.009,18.579,329588666,0 +2008-03-27,18.554,18.61,17.926,17.958,278205997,0 +2008-03-28,18.16,18.524,18.133,18.315,199318317,0 +2008-03-31,18.339,18.66,18.251,18.377,213931597,0 +2008-04-01,18.736,19.166,18.392,19.148,287519306,0 +2008-04-02,19.079,19.363,18.675,18.887,290735661,0 +2008-04-03,18.839,19.673,18.826,19.415,293199532,0 +2008-04-04,19.492,19.811,19.306,19.603,238196737,0 +2008-04-07,20.001,20.448,19.864,19.964,322998125,0 +2008-04-08,19.654,20.033,19.507,19.574,282722188,0 +2008-04-09,19.637,19.708,19.269,19.394,243557848,0 +2008-04-10,19.352,19.903,19.286,19.792,266538010,0 +2008-04-11,19.546,19.629,18.748,18.843,335743874,0 +2008-04-14,18.782,19.113,18.51,18.924,235659480,0 +2008-04-15,19.132,19.172,18.661,19.003,193859954,0 +2008-04-16,19.433,19.734,19.289,19.682,221690612,0 +2008-04-17,19.746,19.977,19.637,19.786,196087503,0 +2008-04-18,20.368,20.781,20.282,20.623,286176516,0 +2008-04-21,20.791,21.576,20.716,21.534,289503500,0 +2008-04-22,21.441,21.514,20.244,20.515,400204854,0 +2008-04-23,21.009,21.11,20.628,20.86,419493319,0 +2008-04-24,21.175,21.768,20.388,21.636,473335824,0 +2008-04-25,21.86,21.913,21.312,21.736,276783580,0 +2008-04-28,21.739,22.25,21.661,22.057,219367063,0 +2008-04-29,21.914,22.496,21.802,22.418,257241562,0 +2008-04-30,22.564,23.051,22.144,22.275,317442129,0 +2008-05-01,22.405,23.051,22.393,23.051,251633136,0 +2008-05-02,23.075,23.294,22.865,23.173,277738755,0 +2008-05-05,23.294,23.73,23.188,23.656,238104028,0 +2008-05-06,23.647,23.962,23.33,23.905,255948722,0 +2008-05-07,23.825,24.103,23.523,23.609,195738103,0 +2008-05-08,23.533,23.884,23.445,23.699,250554038,0 +2008-05-09,23.457,23.596,23.226,23.491,187593127,0 +2008-05-12,23.72,24.186,23.417,24.097,228261727,0 +2008-05-13,24.152,24.517,24.057,24.329,229128499,0 +2008-05-14,24.497,24.619,23.765,23.853,255441462,0 +2008-05-15,23.919,24.32,23.59,24.298,243325898,0 +2008-05-16,24.369,24.369,23.949,24.028,213366015,0 +2008-05-19,24.062,24.164,23.218,23.51,263760564,0 +2008-05-20,23.284,23.84,23.065,23.807,270241158,0 +2008-05-21,23.769,24.075,22.57,22.819,322612253,0 +2008-05-22,22.948,23.222,22.027,22.673,336519572,0 +2008-05-23,23.148,23.304,22.767,23.202,252938866,0 +2008-05-27,23.41,23.875,23.285,23.875,220113009,0 +2008-05-28,24.01,24.069,23.526,23.95,207308665,0 +2008-05-29,23.939,24.103,23.755,23.908,180316589,0 +2008-05-30,24.012,24.273,23.995,24.171,169927452,0 +2008-06-02,24.14,24.287,23.631,23.831,189380334,0 +2008-06-03,23.935,24.103,23.353,23.738,209303027,0 +2008-06-04,23.564,23.959,23.465,23.717,202738767,0 +2008-06-05,23.853,24.313,23.781,24.258,210204143,0 +2008-06-06,24.075,24.327,23.762,23.774,269046995,0 +2008-06-09,23.682,23.685,22.505,23.257,526264929,0 +2008-06-10,23.095,23.919,22.926,23.774,318040510,0 +2008-06-11,23.607,23.819,22.996,23.156,267941514,0 +2008-06-12,23.236,23.387,21.926,22.189,364403085,0 +2008-06-13,21.961,22.303,21.171,22.074,375180778,0 +2008-06-16,21.932,22.781,21.653,22.647,293123381,0 +2008-06-17,22.817,23.304,22.719,23.233,250860097,0 +2008-06-18,23.181,23.333,22.712,22.894,226169454,0 +2008-06-19,22.857,23.353,22.642,23.167,220848579,0 +2008-06-20,22.929,23.181,22.411,22.446,247567738,0 +2008-06-23,22.383,22.523,21.97,22.174,180076401,0 +2008-06-24,22.033,22.509,21.978,22.187,173441356,0 +2008-06-25,22.346,22.904,22.268,22.716,179458876,0 +2008-06-26,22.302,22.39,21.515,21.546,242173913,0 +2008-06-27,21.314,21.842,21.022,21.78,289785857,0 +2008-06-30,21.774,22.027,21.336,21.444,190779913,0 +2008-07-01,21.009,22.376,21.002,22.37,309727561,0 +2008-07-02,22.418,22.724,21.537,21.537,233567418,0 +2008-07-03,21.717,22.047,21.228,21.785,145977693,0 +2008-07-07,22.154,22.685,22.012,22.432,228559086,0 +2008-07-08,22.462,23.012,22.123,22.993,247711824,0 +2008-07-09,23.084,23.168,22.302,22.315,249550627,0 +2008-07-10,22.399,22.71,21.947,22.621,234103082,0 +2008-07-11,22.458,22.682,21.9,22.103,259219811,0 +2008-07-14,22.954,22.962,22.164,22.268,246917000,0 +2008-07-15,22.065,22.249,21.309,21.723,289877701,0 +2008-07-16,21.779,22.146,21.59,22.133,208531685,0 +2008-07-17,22.294,22.408,21.948,22.002,210793201,0 +2008-07-18,21.542,21.724,21.13,21.148,240622373,0 +2008-07-21,21.373,21.451,20.633,21.295,355311216,0 +2008-07-22,19.07,20.844,18.767,20.749,523327034,0 +2008-07-23,21.148,21.56,20.689,21.29,295362486,0 +2008-07-24,21.04,21.164,20.292,20.366,234088625,0 +2008-07-25,20.538,20.874,20.319,20.761,176473261,0 +2008-07-28,20.769,20.805,19.724,19.773,217660487,0 +2008-07-29,19.883,20.42,19.676,20.117,190706395,0 +2008-07-30,20.195,20.555,19.989,20.473,201962288,0 +2008-07-31,20.194,20.772,20.103,20.356,177591108,0 +2008-08-01,20.482,20.489,19.946,20.062,151903672,0 +2008-08-04,20.052,20.221,19.584,19.622,164769142,0 +2008-08-05,19.914,20.592,19.827,20.572,191884653,0 +2008-08-06,20.486,21.44,20.232,21.028,220670153,0 +2008-08-07,20.86,21.28,20.682,20.948,187434681,0 +2008-08-08,20.991,21.724,20.971,21.711,199068558,0 +2008-08-11,21.785,22.603,21.727,22.227,248378005,0 +2008-08-12,22.219,22.961,22.219,22.633,233132531,0 +2008-08-13,22.8,23.051,22.525,22.962,234899860,0 +2008-08-14,22.815,23.109,22.773,22.963,198233593,0 +2008-08-15,22.932,23.019,22.418,22.504,197505890,0 +2008-08-18,22.456,22.769,22.26,22.461,153762598,0 +2008-08-19,22.324,22.676,22.002,22.222,171720613,0 +2008-08-20,22.386,22.661,22.233,22.517,141359624,0 +2008-08-21,22.358,22.468,22.011,22.321,150505318,0 +2008-08-22,22.533,22.73,22.483,22.641,122599625,0 +2008-08-25,22.527,22.567,21.983,22.098,135053284,0 +2008-08-26,22.113,22.395,22.106,22.236,124228804,0 +2008-08-27,22.174,22.507,22.049,22.369,132908992,0 +2008-08-28,22.449,22.57,22.125,22.249,120173705,0 +2008-08-29,22.136,22.218,21.648,21.708,167105545,0 +2008-09-02,22.098,22.218,21.13,21.282,217702749,0 +2008-09-03,21.385,21.6,21.002,21.379,204907079,0 +2008-09-04,21.226,21.504,20.593,20.646,207165081,0 +2008-09-05,20.277,20.798,20.189,20.513,219297935,0 +2008-09-08,21.073,21.115,19.396,20.223,291658981,0 +2008-09-09,20.088,20.485,19.181,19.424,346969505,0 +2008-09-10,19.529,19.848,19.057,19.415,271372446,0 +2008-09-11,19.415,19.594,18.696,19.549,270335199,0 +2008-09-12,19.308,19.326,18.762,19.073,221108652,0 +2008-09-15,18.182,18.911,17.974,17.974,256372856,0 +2008-09-16,17.113,18.248,16.923,17.914,334214072,0 +2008-09-17,17.715,17.736,16.369,16.369,334510649,0 +2008-09-18,16.717,17.927,15.453,17.172,467053093,0 +2008-09-19,18.029,18.467,17.454,18.046,398994981,0 +2008-09-22,17.901,17.958,16.732,16.781,238697990,0 +2008-09-23,16.853,17.391,16.22,16.243,356621023,0 +2008-09-24,16.315,16.769,16.026,16.484,291932018,0 +2008-09-25,16.654,17.26,16.46,16.897,279601969,0 +2008-09-26,16.006,16.622,15.752,16.422,313910215,0 +2008-09-29,15.302,15.326,12.882,13.48,730561989,0 +2008-09-30,13.866,14.728,13.611,14.553,453452613,0 +2008-10-01,14.326,14.388,13.754,13.976,361512816,0 +2008-10-02,13.837,13.93,12.807,12.818,448680865,0 +2008-10-03,13.321,13.638,12.121,12.428,639757618,0 +2008-10-06,11.782,12.65,11.211,12.568,587522817,0 +2008-10-07,12.872,12.997,11.392,11.419,523860280,0 +2008-10-08,11.013,12.337,10.971,11.499,615651966,0 +2008-10-09,11.974,12.267,11.09,11.363,451023268,0 +2008-10-10,10.973,12.807,10.886,12.396,618829489,0 +2008-10-13,13.42,14.155,12.935,14.118,429130693,0 +2008-10-14,14.904,14.907,13.207,13.33,552442840,0 +2008-10-15,13.298,13.702,12.538,12.547,441257577,0 +2008-10-16,12.776,13.245,11.75,13.049,550850676,0 +2008-10-17,12.734,13.068,10.999,12.473,491122629,0 +2008-10-20,12.777,12.811,11.992,12.605,431324163,0 +2008-10-21,12.413,12.54,11.674,11.717,571544296,0 +2008-10-22,12.468,12.965,11.901,12.403,626569693,0 +2008-10-23,12.362,12.71,11.768,12.579,466807754,0 +2008-10-24,11.567,12.54,11.54,12.344,443250825,0 +2008-10-27,12.175,12.503,11.764,11.793,337146846,0 +2008-10-28,12.221,12.872,11.829,12.794,455823303,0 +2008-10-29,12.902,14.029,12.798,13.387,544514103,0 +2008-10-30,13.879,14.365,13.783,14.222,456651818,0 +2008-10-31,13.751,14.187,13.466,13.78,459331042,0 +2008-11-03,13.564,13.973,13.429,13.698,295013372,0 +2008-11-04,14.084,14.315,13.66,14.215,390048641,0 +2008-11-05,13.947,14.051,13.189,13.228,350386539,0 +2008-11-06,12.938,13.161,12.553,12.691,367694616,0 +2008-11-07,12.697,12.787,12.257,12.58,305554493,0 +2008-11-10,12.846,12.859,12.102,12.278,313353655,0 +2008-11-11,12.145,12.442,11.815,12.137,341407188,0 +2008-11-12,11.844,11.94,11.527,11.541,328012870,0 +2008-11-13,11.526,12.352,11.017,12.352,517036639,0 +2008-11-14,11.991,12.036,11.526,11.555,391611734,0 +2008-11-17,11.331,11.596,11.175,11.287,324174165,0 +2008-11-18,11.474,11.654,11.122,11.514,337326468,0 +2008-11-19,11.484,11.729,11.04,11.05,326763102,0 +2008-11-20,10.896,11.071,10.245,10.307,478380668,0 +2008-11-21,10.496,10.773,10.137,10.576,437504267,0 +2008-11-24,10.899,12.14,10.864,11.903,402164449,0 +2008-11-25,12.117,12.129,11.29,11.628,344471972,0 +2008-11-26,11.539,12.198,11.507,12.167,250924090,0 +2008-11-28,12.128,12.136,11.764,11.867,84001102,0 +2008-12-01,11.695,11.816,11.388,11.389,257554120,0 +2008-12-02,11.526,11.864,11.078,11.841,320308356,0 +2008-12-03,11.444,12.325,11.371,12.281,373319724,0 +2008-12-04,12.083,12.194,11.406,11.706,304352143,0 +2008-12-05,11.563,12.101,11.379,12.037,291040322,0 +2008-12-08,12.438,12.909,12.267,12.77,330201108,0 +2008-12-09,12.548,13.269,12.448,12.814,335616400,0 +2008-12-10,12.53,12.742,12.361,12.576,261554018,0 +2008-12-11,12.439,12.964,12.145,12.167,290183330,0 +2008-12-12,11.897,12.678,11.849,12.584,290360303,0 +2008-12-15,12.292,12.322,11.91,12.135,248296843,0 +2008-12-16,12.037,12.358,11.878,12.221,304842113,0 +2008-12-17,11.655,11.666,11.274,11.419,360827582,0 +2008-12-18,11.462,11.632,11.325,11.453,238829666,0 +2008-12-19,11.525,11.647,11.371,11.526,223540440,0 +2008-12-22,11.526,11.53,10.845,10.979,235579006,0 +2008-12-23,11.139,11.254,11,11.062,177070536,0 +2008-12-24,11.025,11.045,10.828,10.892,75705547,0 +2008-12-26,11.084,11.196,10.916,10.988,85982781,0 +2008-12-29,11.093,11.221,10.896,11.091,191306231,0 +2008-12-30,11.196,11.277,10.849,11.05,269510759,0 +2008-12-31,11.014,11.238,10.93,10.931,169432011,0 +2009-01-02,10.959,11.659,10.907,11.622,208043955,0 +2009-01-05,11.923,12.318,11.872,12.112,329453938,0 +2009-01-06,12.289,12.442,11.831,11.912,359535607,0 +2009-01-07,11.732,11.844,11.558,11.656,209985787,0 +2009-01-08,11.584,11.928,11.531,11.871,184843882,0 +2009-01-09,11.936,11.96,11.543,11.598,152459734,0 +2009-01-12,11.583,11.654,11.213,11.353,171579281,0 +2009-01-13,11.311,11.493,11.058,11.233,222068162,0 +2009-01-14,11.044,11.174,10.849,10.928,282121166,0 +2009-01-15,10.309,10.773,10.252,10.679,510782667,0 +2009-01-16,10.792,10.806,10.295,10.543,292005908,0 +2009-01-20,10.496,10.5,10.014,10.014,253140675,0 +2009-01-21,10.18,10.614,10.156,10.608,298112397,0 +2009-01-22,11.271,11.526,10.989,11.314,386943024,0 +2009-01-23,11.134,11.509,11.078,11.314,211775201,0 +2009-01-26,11.382,11.651,11.307,11.479,193041670,0 +2009-01-27,11.539,11.725,11.493,11.619,169941977,0 +2009-01-28,11.801,12.167,11.718,12.063,240218267,0 +2009-01-29,11.92,12.081,11.858,11.91,164466842,0 +2009-01-30,11.861,11.989,11.527,11.543,181673776,0 +2009-02-02,11.399,11.782,11.385,11.719,155622254,0 +2009-02-03,11.755,11.96,11.56,11.907,162584114,0 +2009-02-04,11.951,12.327,11.921,11.98,224281427,0 +2009-02-05,11.882,12.452,11.861,12.355,204875865,0 +2009-02-06,12.428,12.807,12.42,12.77,188065177,0 +2009-02-09,12.807,13.19,12.743,13.127,197915319,0 +2009-02-10,12.954,13.127,12.427,12.53,233751877,0 +2009-02-11,12.347,12.59,12.263,12.397,187137663,0 +2009-02-12,12.271,12.773,12.271,12.713,225165155,0 +2009-02-13,12.692,12.798,12.565,12.699,169016433,0 +2009-02-17,12.42,12.424,12.074,12.106,184181312,0 +2009-02-18,12.185,12.274,11.873,12.085,190124683,0 +2009-02-19,11.951,12.069,11.54,11.606,251460545,0 +2009-02-20,11.461,11.833,11.399,11.679,209116481,0 +2009-02-23,11.732,11.782,11.08,11.134,209811560,0 +2009-02-24,11.174,11.641,11.14,11.556,210814219,0 +2009-02-25,11.508,11.9,11.431,11.674,227961051,0 +2009-02-26,11.796,11.9,11.393,11.422,172113392,0 +2009-02-27,11.271,11.691,11.228,11.438,196215342,0 +2009-03-02,11.27,11.679,11.228,11.264,212888353,0 +2009-03-03,11.411,11.62,11.256,11.315,201029452,0 +2009-03-04,11.545,11.88,11.456,11.676,206612596,0 +2009-03-05,11.556,11.765,11.326,11.377,196656849,0 +2009-03-06,11.31,11.32,10.543,10.924,281668441,0 +2009-03-09,10.764,11.218,10.575,10.642,194747028,0 +2009-03-10,10.856,11.421,10.803,11.349,235466311,0 +2009-03-11,11.513,12.046,11.472,11.868,236044586,0 +2009-03-12,11.898,12.37,11.782,12.34,214312799,0 +2009-03-13,12.334,12.446,12.168,12.285,167664420,0 +2009-03-16,12.362,12.471,12.06,12.219,222349209,0 +2009-03-17,12.195,12.766,12.175,12.762,219600784,0 +2009-03-18,12.79,13.252,12.77,13,222004745,0 +2009-03-19,13.057,13.214,12.839,13.014,139491556,0 +2009-03-20,13.08,13.204,12.88,13.01,194000264,0 +2009-03-23,13.148,13.849,13.031,13.79,185846682,0 +2009-03-24,13.59,14.017,13.497,13.638,178689921,0 +2009-03-25,13.769,13.874,13.302,13.637,180333974,0 +2009-03-26,13.822,14.082,13.779,14.069,171794055,0 +2009-03-27,13.894,13.897,13.626,13.682,137454186,0 +2009-03-30,13.332,13.449,13.139,13.379,140166551,0 +2009-03-31,13.512,13.763,13.447,13.463,158814361,0 +2009-04-01,13.326,13.96,13.305,13.918,164106299,0 +2009-04-02,14.09,14.697,14.059,14.435,225918240,0 +2009-04-03,14.587,14.873,14.537,14.854,176589216,0 +2009-04-06,14.721,15.208,14.507,15.169,183127138,0 +2009-04-07,14.91,14.941,14.622,14.728,149361805,0 +2009-04-08,14.758,14.955,14.675,14.896,126895071,0 +2009-04-09,15.169,15.369,15.106,15.312,147799978,0 +2009-04-13,15.369,15.492,15.24,15.397,108481314,0 +2009-04-14,15.309,15.391,15.016,15.151,126616397,0 +2009-04-15,14.983,15.144,14.824,15.065,115071612,0 +2009-04-16,15.265,15.773,15.213,15.554,165149905,0 +2009-04-17,15.5,15.912,15.401,15.807,138694239,0 +2009-04-20,15.596,15.751,15.259,15.431,130056791,0 +2009-04-21,15.233,15.64,15.187,15.596,130890809,0 +2009-04-22,15.701,16.052,15.521,15.562,257317120,0 +2009-04-23,16.219,16.29,15.816,16.059,263002275,0 +2009-04-24,15.945,16.024,15.749,15.866,150644934,0 +2009-04-27,15.735,16.006,15.71,15.974,133998857,0 +2009-04-28,15.794,16.164,15.785,15.866,126864351,0 +2009-04-29,15.988,16.244,15.857,16.024,127674324,0 +2009-04-30,16.185,16.264,15.997,16.112,138856146,0 +2009-05-01,16.112,16.386,16.109,16.295,110839216,0 +2009-05-04,16.417,16.936,16.351,16.913,170001745,0 +2009-05-05,16.873,17.014,16.791,16.993,111002870,0 +2009-05-06,17.095,17.097,16.677,16.967,132025508,0 +2009-05-07,16.916,16.955,16.379,16.529,147928018,0 +2009-05-08,16.532,16.805,16.171,16.544,130488888,0 +2009-05-11,16.3,16.769,16.278,16.592,112808484,0 +2009-05-12,16.61,16.61,15.784,15.935,169302193,0 +2009-05-13,15.77,15.88,15.286,15.301,165438241,0 +2009-05-14,15.338,15.819,15.329,15.746,124307466,0 +2009-05-15,15.641,15.961,15.576,15.676,102253291,0 +2009-05-18,15.858,16.226,15.57,16.219,127559713,0 +2009-05-19,16.243,16.559,16.103,16.322,103622672,0 +2009-05-20,16.363,16.547,16.045,16.118,108188460,0 +2009-05-21,16.006,16.235,15.739,15.903,113614655,0 +2009-05-22,15.89,15.903,15.594,15.687,83099873,0 +2009-05-26,15.987,16.755,15.952,16.748,176495854,0 +2009-05-27,16.875,17.285,16.763,17.037,180237132,0 +2009-05-28,17.097,17.34,16.909,17.297,135575655,0 +2009-05-29,17.342,17.403,17.142,17.391,127185699,0 +2009-06-01,17.462,17.926,17.417,17.848,125687897,0 +2009-06-02,17.8,18.104,17.715,17.866,126436357,0 +2009-06-03,17.938,18.074,17.81,18.051,156896778,0 +2009-06-04,17.94,18.464,17.932,18.407,152417259,0 +2009-06-05,18.635,18.748,18.341,18.526,176213719,0 +2009-06-08,18.428,18.471,17.858,18.421,259379840,0 +2009-06-09,18.416,18.512,17.997,18.28,188369794,0 +2009-06-10,18.182,18.228,17.709,17.958,191809218,0 +2009-06-11,17.882,18.128,17.742,17.922,146172301,0 +2009-06-12,17.783,17.814,17.423,17.54,156683309,0 +2009-06-15,17.414,17.535,17.273,17.428,150459127,0 +2009-06-16,17.496,17.73,17.43,17.459,142500382,0 +2009-06-17,17.507,17.604,17.226,17.363,159098967,0 +2009-06-18,17.417,17.673,17.364,17.4,118664677,0 +2009-06-19,17.681,17.868,17.531,17.865,200782896,0 +2009-06-22,18.007,18.128,17.457,17.592,176560169,0 +2009-06-23,17.461,17.538,17.017,17.16,196616724,0 +2009-06-24,17.346,17.611,17.268,17.443,135042807,0 +2009-06-25,17.391,17.951,17.317,17.911,164035027,0 +2009-06-26,17.897,18.384,17.897,18.241,122261905,0 +2009-06-29,18.37,18.435,18.126,18.179,158245731,0 +2009-06-30,18.271,18.414,18.157,18.24,121020836,0 +2009-07-01,18.379,18.526,18.251,18.292,115459047,0 +2009-07-02,18.1,18.292,17.902,17.93,103058843,0 +2009-07-06,17.761,17.8,17.447,17.749,138825367,0 +2009-07-07,17.732,17.889,17.313,17.342,128453557,0 +2009-07-08,17.406,17.677,17.213,17.573,160314544,0 +2009-07-09,17.649,17.671,17.407,17.461,95613983,0 +2009-07-10,17.468,17.797,17.456,17.737,123875873,0 +2009-07-13,17.869,18.228,17.615,18.228,134454415,0 +2009-07-14,18.193,18.336,18.081,18.219,96688569,0 +2009-07-15,18.552,18.826,18.481,18.81,134892203,0 +2009-07-16,18.681,18.955,18.642,18.89,109475298,0 +2009-07-17,19.103,19.466,19.037,19.433,167694654,0 +2009-07-20,19.611,19.855,19.323,19.584,204041432,0 +2009-07-21,19.648,19.648,19.176,19.402,237744145,0 +2009-07-22,20.171,20.328,19.991,20.072,243625531,0 +2009-07-23,20.042,20.29,19.92,20.211,146542134,0 +2009-07-24,20.098,20.489,20.041,20.489,122251087,0 +2009-07-27,20.489,20.603,20.14,20.503,120531469,0 +2009-07-28,20.358,20.503,20.182,20.489,101259881,0 +2009-07-29,20.35,20.55,20.265,20.493,106532023,0 +2009-07-30,20.708,21.092,20.682,20.849,130613874,0 +2009-07-31,20.874,21.13,20.861,20.924,117828265,0 +2009-08-03,21.148,21.339,21.114,21.314,109642291,0 +2009-08-04,21.134,21.204,21.03,21.201,110197725,0 +2009-08-05,21.257,21.438,21.03,21.144,117799553,0 +2009-08-06,21.201,21.321,20.884,20.991,95198560,0 +2009-08-07,21.104,21.334,21.104,21.195,107914153,0 +2009-08-10,21.181,21.334,20.959,21.092,83680714,0 +2009-08-11,20.952,21.05,20.73,20.852,98995451,0 +2009-08-12,20.808,21.348,20.804,21.171,123799117,0 +2009-08-13,21.338,21.598,21.319,21.566,122622508,0 +2009-08-14,21.492,21.544,21.198,21.357,85240018,0 +2009-08-17,20.951,20.951,20.416,20.436,145880412,0 +2009-08-18,20.714,21.034,20.671,21.002,118441894,0 +2009-08-19,20.839,21.169,20.803,21.078,114933050,0 +2009-08-20,21.115,21.349,21.079,21.3,95255093,0 +2009-08-21,21.492,21.692,21.36,21.674,115811581,0 +2009-08-24,21.771,21.861,21.548,21.651,113303873,0 +2009-08-25,21.699,21.891,21.661,21.695,90300371,0 +2009-08-26,21.636,21.711,21.354,21.441,84584279,0 +2009-08-27,21.589,21.714,21.108,21.702,124932801,0 +2009-08-28,22.033,22.09,21.58,21.776,126455321,0 +2009-08-31,21.524,21.623,21.319,21.542,86708769,0 +2009-09-01,21.515,21.771,21.122,21.169,130624266,0 +2009-09-02,21.066,21.467,21.018,21.152,101504685,0 +2009-09-03,21.322,21.399,21.13,21.326,81937776,0 +2009-09-04,21.413,21.86,21.398,21.809,104123044,0 +2009-09-08,22.081,22.171,22.027,22.146,87605228,0 +2009-09-09,22.12,22.343,21.731,21.919,226094802,0 +2009-09-10,22.03,22.187,21.874,22.1,136781932,0 +2009-09-11,22.15,22.177,21.882,22.046,97171761,0 +2009-09-14,21.88,22.269,21.802,22.246,89671831,0 +2009-09-15,22.287,22.494,22.23,22.432,115716905,0 +2009-09-16,22.795,23.404,22.779,23.289,209360761,0 +2009-09-17,23.304,23.92,23.301,23.634,225547841,0 +2009-09-18,23.807,23.889,23.66,23.693,167689392,0 +2009-09-21,23.621,23.713,23.257,23.567,121920175,0 +2009-09-22,23.704,23.74,23.417,23.625,99456536,0 +2009-09-23,23.736,24.19,23.694,23.755,165055181,0 +2009-09-24,23.981,24.039,23.407,23.54,153114007,0 +2009-09-25,23.324,23.755,23.234,23.357,124114601,0 +2009-09-28,23.541,23.907,23.477,23.839,94029276,0 +2009-09-29,23.905,23.998,23.603,23.74,96179740,0 +2009-09-30,23.824,23.877,23.389,23.736,150370039,0 +2009-10-01,23.753,23.849,23.141,23.161,146027646,0 +2009-10-02,23.227,23.813,23.225,23.679,154140665,0 +2009-10-05,23.846,23.929,23.597,23.822,117824527,0 +2009-10-06,24.042,24.335,23.984,24.335,168409190,0 +2009-10-07,24.31,24.403,24.207,24.362,129589592,0 +2009-10-08,24.435,24.517,24.188,24.238,121959746,0 +2009-10-09,24.19,24.421,24.155,24.392,81700686,0 +2009-10-12,24.456,24.526,24.285,24.436,80314974,0 +2009-10-13,24.406,24.482,24.294,24.336,96434231,0 +2009-10-14,24.614,24.629,24.359,24.497,104675281,0 +2009-10-15,24.28,24.449,24.272,24.403,103995553,0 +2009-10-16,24.235,24.378,24.056,24.083,119451697,0 +2009-10-19,24.056,24.333,23.762,24.314,252962555,0 +2009-10-20,25.672,25.836,25.336,25.453,315927685,0 +2009-10-21,25.564,26.73,25.513,26.244,332235445,0 +2009-10-22,26.191,26.617,25.934,26.28,220430696,0 +2009-10-23,26.347,26.355,26.026,26.117,117132170,0 +2009-10-26,26.089,26.478,25.626,25.931,134722762,0 +2009-10-27,25.823,25.973,25.159,25.275,210785035,0 +2009-10-28,25.274,25.36,24.473,24.639,227883167,0 +2009-10-29,24.958,25.204,24.607,25.145,158941910,0 +2009-10-30,25.123,25.204,23.827,24.14,200003753,0 +2009-11-02,24.31,24.701,23.765,24.244,189191189,0 +2009-11-03,24.075,24.271,23.81,24.171,144773618,0 +2009-11-04,24.422,24.826,24.359,24.436,135888499,0 +2009-11-05,24.676,24.973,24.564,24.849,106500168,0 +2009-11-06,24.715,24.997,24.639,24.887,81430908,0 +2009-11-09,25.221,25.857,25.134,25.797,146741649,0 +2009-11-10,25.751,26.252,25.742,25.994,111677570,0 +2009-11-11,26.204,26.255,25.848,26.026,123772293,0 +2009-11-12,26.041,26.237,25.794,25.867,99884842,0 +2009-11-13,25.993,26.232,25.876,26.181,95364107,0 +2009-11-16,26.309,26.635,26.256,26.462,134307133,0 +2009-11-17,26.389,26.565,26.255,26.509,110417860,0 +2009-11-18,26.414,26.509,26.126,26.374,104191012,0 +2009-11-19,26.19,26.202,25.587,25.677,150676027,0 +2009-11-20,25.399,25.663,25.325,25.601,113388616,0 +2009-11-23,26.011,26.38,25.991,26.364,132146129,0 +2009-11-24,26.281,26.364,25.984,26.18,88470890,0 +2009-11-25,26.316,26.334,26.093,26.149,79886756,0 +2009-11-27,25.498,25.992,25.404,25.688,82342167,0 +2009-11-30,25.731,25.829,25.454,25.6,118212877,0 +2009-12-01,25.9,25.967,25.207,25.224,129007274,0 +2009-12-02,25.491,25.793,25.068,25.129,198970575,0 +2009-12-03,25.339,25.482,25.135,25.164,124850514,0 +2009-12-04,25.574,25.598,24.366,24.756,230456323,0 +2009-12-07,24.756,24.816,24.163,24.197,198876720,0 +2009-12-08,24.209,24.632,24.166,24.316,192047034,0 +2009-12-09,24.491,25.377,24.371,25.331,190088789,0 +2009-12-10,25.573,25.574,25.115,25.156,136360533,0 +2009-12-11,25.323,25.357,24.772,24.928,119634386,0 +2009-12-14,25.032,25.284,24.66,25.225,137253182,0 +2009-12-15,25.069,25.295,24.749,24.867,116853268,0 +2009-12-16,24.973,25.166,24.913,24.976,98395839,0 +2009-12-17,24.956,24.973,24.46,24.57,107910666,0 +2009-12-18,24.728,25.036,24.666,25.028,169420485,0 +2009-12-21,25.1,25.58,25.059,25.387,169794290,0 +2009-12-22,25.586,25.723,25.44,25.659,97240661,0 +2009-12-23,25.763,25.918,25.717,25.881,96121858,0 +2009-12-24,26.052,26.811,26.041,26.771,139689157,0 +2009-12-28,27.039,27.398,26.843,27.099,179408229,0 +2009-12-29,27.232,27.242,26.732,26.779,123601979,0 +2009-12-30,26.735,27.148,26.675,27.103,114583249,0 +2009-12-31,27.292,27.321,26.965,26.988,98076551,0 +2010-01-04,27.341,27.47,27.199,27.406,137045797,0 +2010-01-05,27.508,27.609,27.31,27.454,167718021,0 +2010-01-06,27.454,27.563,26.99,27.017,153403690,0 +2010-01-07,27.108,27.148,26.772,26.968,132861904,0 +2010-01-08,26.946,27.148,26.774,27.147,124730848,0 +2010-01-11,27.274,27.277,26.694,26.907,128596375,0 +2010-01-12,26.806,26.861,26.434,26.601,165445130,0 +2010-01-13,26.652,27.013,26.137,26.978,168558442,0 +2010-01-14,26.897,26.952,26.769,26.819,120618898,0 +2010-01-15,27.073,27.098,26.363,26.37,165632148,0 +2010-01-19,26.687,27.558,26.54,27.539,203292657,0 +2010-01-20,27.523,27.603,26.829,27.114,170447716,0 +2010-01-21,27.187,27.316,26.536,26.645,169277070,0 +2010-01-22,26.482,26.572,25.247,25.323,244552522,0 +2010-01-25,25.975,26.214,25.637,26.006,289960128,0 +2010-01-26,26.362,27.369,25.943,26.371,518775663,0 +2010-01-27,26.486,26.968,25.551,26.62,479989843,0 +2010-01-28,26.294,26.316,25.445,25.521,326739489,0 +2010-01-29,25.782,25.894,24.362,24.595,347019110,0 +2010-02-01,24.663,25.1,24.498,24.937,208526168,0 +2010-02-02,25.091,25.141,24.765,25.081,194614229,0 +2010-02-03,25.005,25.639,24.897,25.513,171291523,0 +2010-02-04,25.209,25.404,24.534,24.594,210843961,0 +2010-02-05,24.676,25.1,24.441,25.032,236896963,0 +2010-02-08,25.06,25.341,24.845,24.86,132939624,0 +2010-02-09,25.161,25.294,24.938,25.125,176376562,0 +2010-02-10,25.076,25.177,24.877,24.989,102981576,0 +2010-02-11,24.944,25.58,24.853,25.441,153276052,0 +2010-02-12,25.379,25.823,25.036,25.661,179472736,0 +2010-02-16,25.862,26.087,25.806,26.048,151049757,0 +2010-02-17,26.156,26.162,25.724,25.939,121252456,0 +2010-02-18,25.821,26.111,25.732,25.988,117498584,0 +2010-02-19,25.849,26.022,25.754,25.827,115810902,0 +2010-02-22,25.927,25.933,25.509,25.666,108886263,0 +2010-02-23,25.6,25.782,25.063,25.237,160372350,0 +2010-02-24,25.42,25.794,25.335,25.698,128335773,0 +2010-02-25,25.276,25.978,25.213,25.868,185411336,0 +2010-02-26,25.928,26.275,25.868,26.203,141391337,0 +2010-03-01,26.348,26.829,26.311,26.765,153182943,0 +2010-03-02,26.887,27.001,26.604,26.748,157845894,0 +2010-03-03,26.788,26.875,26.628,26.808,103577606,0 +2010-03-04,26.814,27.012,26.72,26.985,99979302,0 +2010-03-05,27.533,28.136,27.486,28.039,250646277,0 +2010-03-08,28.171,28.187,27.949,28.055,119742939,0 +2010-03-09,27.938,28.814,27.906,28.559,256471788,0 +2010-03-10,28.65,28.876,28.583,28.794,166125926,0 +2010-03-11,28.668,28.878,28.6,28.878,112917672,0 +2010-03-12,29.076,29.162,28.908,29.019,115842250,0 +2010-03-15,28.878,28.878,28.207,28.666,137414405,0 +2010-03-16,28.708,28.811,28.495,28.742,124556803,0 +2010-03-17,28.788,29,28.593,28.7,125612274,0 +2010-03-18,28.675,28.814,28.507,28.769,95279565,0 +2010-03-19,28.834,28.845,28.33,28.463,155870050,0 +2010-03-22,28.237,28.941,28.194,28.783,127168635,0 +2010-03-23,28.899,29.299,28.698,29.244,167881707,0 +2010-03-24,29.178,29.481,29.135,29.371,166720433,0 +2010-03-25,29.565,29.579,28.975,29.027,151255488,0 +2010-03-26,29.326,29.703,29.269,29.57,178628136,0 +2010-03-29,29.826,29.951,29.661,29.759,146987188,0 +2010-03-30,30.309,30.415,29.999,30.204,146507281,0 +2010-03-31,30.204,30.301,30.025,30.094,119860348,0 +2010-04-01,30.437,30.575,29.807,30.219,167998179,0 +2010-04-05,30.093,30.544,30.064,30.543,190081552,0 +2010-04-06,30.513,30.766,30.35,30.674,124314844,0 +2010-04-07,30.7,30.98,30.566,30.812,175046812,0 +2010-04-08,30.787,30.933,30.481,30.729,159664127,0 +2010-04-09,30.923,30.976,30.793,30.963,93094513,0 +2010-04-12,31.108,31.128,30.966,31.027,92855667,0 +2010-04-13,31.02,31.095,30.877,31.046,85021830,0 +2010-04-14,31.396,31.479,31.257,31.464,112521787,0 +2010-04-15,31.498,31.891,31.439,31.876,104752497,0 +2010-04-16,31.886,32.159,31.318,31.681,209178636,0 +2010-04-19,31.573,31.746,30.96,31.64,157948326,0 +2010-04-20,31.916,31.917,31.114,31.324,200685233,0 +2010-04-21,33.073,33.329,32.748,33.196,273412455,0 +2010-04-22,33.064,34.16,32.81,34.126,220735303,0 +2010-04-23,34.194,34.856,34.192,34.682,221913211,0 +2010-04-26,34.829,34.892,34.345,34.514,0,0 +2010-04-27,34.192,34.302,33.362,33.557,197418134,0 +2010-04-28,33.679,33.808,32.837,33.502,211280491,0 +2010-04-29,33.687,34.578,33.553,34.401,155654752,0 +2010-04-30,34.543,34.648,33.425,33.437,151080134,0 +2010-05-03,33.861,34.306,33.665,34.109,126452987,0 +2010-05-04,33.611,33.716,32.879,33.126,201559659,0 +2010-05-05,32.385,33.059,31.853,32.783,245853211,0 +2010-05-06,32.526,33.072,25.516,31.537,356678860,0 +2010-05-07,31.247,31.576,28.84,30.206,467412793,0 +2010-05-10,32.164,32.611,31.829,32.525,273913801,0 +2010-05-11,32.272,33.281,32.081,32.853,236583753,0 +2010-05-12,33.249,33.698,33.129,33.564,182270065,0 +2010-05-13,33.712,33.938,32.836,33.085,167009626,0 +2010-05-14,32.685,32.847,31.951,32.503,211277784,0 +2010-05-17,32.549,32.807,31.723,32.555,212416438,0 +2010-05-18,32.918,33.111,32.05,32.318,217450772,0 +2010-05-19,31.948,32.39,31.356,31.804,285695555,0 +2010-05-20,30.914,31.228,30.248,30.448,356516332,0 +2010-05-21,29.665,31.311,29.626,31.032,341125358,0 +2010-05-24,31.664,32.129,31.539,31.599,210033965,0 +2010-05-25,30.722,31.599,30.373,31.402,291611812,0 +2010-05-26,32.042,32.289,31.214,31.263,236801306,0 +2010-05-27,32.107,32.512,31.901,32.444,184445735,0 +2010-05-28,33.19,33.22,32.444,32.896,227189876,0 +2010-06-01,33.257,34.058,33.164,33.402,243767892,0 +2010-06-02,33.903,33.91,33.34,33.803,191547624,0 +2010-06-03,33.962,34.007,33.349,33.697,181103236,0 +2010-06-04,33.1,33.539,32.609,32.779,210950520,0 +2010-06-07,33.087,33.187,32.086,32.133,246864784,0 +2010-06-08,32.449,32.502,31.458,31.927,278816796,0 +2010-06-09,32.216,32.26,31.054,31.144,237748884,0 +2010-06-10,31.35,32.139,31.016,32.083,215879053,0 +2010-06-11,31.782,32.509,31.677,32.466,151893082,0 +2010-06-14,32.795,33.187,32.528,32.562,167863475,0 +2010-06-15,32.731,33.276,32.719,33.256,162738889,0 +2010-06-16,33.425,34.29,33.377,34.223,218210272,0 +2010-06-17,34.666,34.95,34.514,34.816,243048874,0 +2010-06-18,34.863,35.218,34.76,35.098,218587226,0 +2010-06-21,35.569,35.73,34.413,34.6,215547246,0 +2010-06-22,34.863,35.341,34.769,35.069,199562574,0 +2010-06-23,35.161,35.174,34.309,34.7,214053876,0 +2010-06-24,34.7,34.986,34.335,34.447,199112595,0 +2010-06-25,34.581,34.612,34.039,34.155,152492625,0 +2010-06-28,34.191,34.545,33.874,34.36,163083315,0 +2010-06-29,33.856,33.856,32.565,32.806,315472195,0 +2010-06-30,32.877,33.036,32.02,32.212,205878957,0 +2010-07-01,32.542,32.629,31.147,31.823,285057573,0 +2010-07-02,32.103,32.132,31.144,31.623,193495389,0 +2010-07-06,31.623,32.375,31.527,31.842,171357527,0 +2010-07-07,32.095,33.139,31.984,33.125,182036901,0 +2010-07-08,33.626,33.668,32.641,33.052,205559578,0 +2010-07-09,32.899,33.282,32.678,33.247,120771554,0 +2010-07-12,33.108,33.532,32.637,32.95,156720330,0 +2010-07-13,32.811,32.836,31.559,32.248,331165575,0 +2010-07-14,31.91,32.756,31.887,32.365,226423690,0 +2010-07-15,31.795,32.909,31.667,32.2,228822034,0 +2010-07-16,32.407,32.653,31.813,32.004,289535967,0 +2010-07-19,31.982,32.001,30.683,31.449,285432579,0 +2010-07-20,31.052,32.388,30.737,32.26,295145985,0 +2010-07-21,33.936,33.955,32.526,32.556,330180600,0 +2010-07-22,33.004,33.295,32.695,33.171,179777113,0 +2010-07-23,32.939,33.347,32.82,33.288,148640952,0 +2010-07-26,33.293,33.309,33.003,33.204,116242953,0 +2010-07-27,33.382,33.91,33.336,33.82,161964837,0 +2010-07-28,33.768,34.065,33.329,33.419,144771462,0 +2010-07-29,33.387,33.634,32.797,33.055,179422840,0 +2010-07-30,32.75,33.257,32.643,32.944,124974375,0 +2010-08-02,33.352,33.627,33.247,33.532,118919147,0 +2010-08-03,33.532,33.712,33.223,33.544,116136901,0 +2010-08-04,33.649,33.843,33.337,33.677,117191873,0 +2010-08-05,33.485,33.703,33.366,33.513,80608260,0 +2010-08-06,33.257,33.486,32.991,33.307,123996524,0 +2010-08-09,33.486,33.572,33.242,33.52,84312659,0 +2010-08-10,33.276,33.353,32.984,33.221,125925550,0 +2010-08-11,32.676,32.742,31.992,32.04,172348213,0 +2010-08-12,31.579,32.412,31.521,32.246,148982213,0 +2010-08-13,32.146,32.259,31.898,31.9,98812016,0 +2010-08-16,31.725,32.02,31.582,31.714,88596378,0 +2010-08-17,32.03,32.609,31.911,32.267,117743597,0 +2010-08-18,32.342,32.614,32.219,32.408,94319941,0 +2010-08-19,32.372,32.461,31.847,32.001,118845562,0 +2010-08-20,31.933,32.516,31.887,31.969,106898327,0 +2010-08-23,32.241,32.272,31.406,31.478,115245205,0 +2010-08-24,31.12,31.12,30.564,30.726,167541735,0 +2010-08-25,30.726,31.246,30.379,31.106,166163230,0 +2010-08-26,31.435,31.471,30.772,30.772,129747353,0 +2010-08-27,30.932,31.07,30.168,30.943,152871506,0 +2010-08-30,30.83,31.471,30.821,31.056,106719439,0 +2010-08-31,30.963,31.32,30.78,31.132,117131468,0 +2010-09-01,31.696,32.202,31.541,32.059,194067146,0 +2010-09-02,32.192,32.293,31.833,32.293,115606232,0 +2010-09-03,32.647,33.141,32.591,33.139,145073927,0 +2010-09-07,32.852,33.237,32.817,33.016,95518506,0 +2010-09-08,33.263,33.856,33.181,33.67,146586649,0 +2010-09-09,33.951,34.132,33.67,33.689,122041288,0 +2010-09-10,33.706,33.872,33.475,33.732,108042462,0 +2010-09-13,34.059,34.357,34.034,34.198,108258155,0 +2010-09-14,34.086,34.47,34.004,34.329,113033814,0 +2010-09-15,34.32,34.626,34.302,34.605,119158388,0 +2010-09-16,34.612,35.43,34.514,35.419,181311801,0 +2010-09-17,35.54,35.595,35.048,35.263,176792499,0 +2010-09-20,35.359,36.341,35.326,36.272,183634089,0 +2010-09-21,36.346,36.799,36.214,36.341,185863595,0 +2010-09-22,36.23,36.878,36.164,36.85,163074523,0 +2010-09-23,36.688,37.492,36.625,37,218880803,0 +2010-09-24,37.394,37.591,37.207,37.434,180700270,0 +2010-09-27,37.649,37.742,37.268,37.286,134559719,0 +2010-09-28,37.356,37.366,35.218,36.736,288423047,0 +2010-09-29,36.775,37.114,36.625,36.802,130794640,0 +2010-09-30,37.009,37.138,36.017,36.338,187626938,0 +2010-10-01,36.667,36.7,36.03,36.18,124958134,0 +2010-10-04,36.074,36.23,35.572,35.685,121198179,0 +2010-10-05,36.158,37.067,36.092,37.003,139347081,0 +2010-10-06,37.1,37.393,36.532,37.035,186552224,0 +2010-10-07,37.181,37.199,36.742,37.039,113648160,0 +2010-10-08,37.363,37.713,37.138,37.661,183161680,0 +2010-10-11,37.751,38.064,37.727,37.825,119007634,0 +2010-10-12,37.83,38.355,37.456,38.231,155312748,0 +2010-10-13,38.424,38.668,38.394,38.437,173411240,0 +2010-10-14,38.62,38.736,38.469,38.716,120875146,0 +2010-10-15,39.371,40.339,39.048,40.306,255794739,0 +2010-10-18,40.786,40.852,40.247,40.725,300733323,0 +2010-10-19,38.865,40.182,38.422,39.635,342566876,0 +2010-10-20,39.572,40.242,39.299,39.767,200182777,0 +2010-10-21,39.995,40.306,39.289,39.639,152647556,0 +2010-10-22,39.573,39.703,39.224,39.375,103181882,0 +2010-10-25,39.587,39.906,39.499,39.551,107334999,0 +2010-10-26,39.299,39.667,39.142,39.45,108427835,0 +2010-10-27,39.381,39.688,39.135,39.421,109484950,0 +2010-10-28,39.438,39.444,38.533,39.09,152982625,0 +2010-10-29,38.974,39.172,38.529,38.544,118831596,0 +2010-11-01,38.754,39.135,38.7,38.953,117788345,0 +2010-11-02,39.346,39.721,39.315,39.617,120415588,0 +2010-11-03,39.89,40.068,39.509,40.058,141618450,0 +2010-11-04,40.353,41.003,40.344,40.758,178707730,0 +2010-11-05,40.724,40.926,40.563,40.611,100569152,0 +2010-11-08,40.612,40.95,40.565,40.802,78085593,0 +2010-11-09,41.109,41.146,40.275,40.477,106621694,0 +2010-11-10,40.556,40.821,40.154,40.729,106340742,0 +2010-11-11,40.341,40.773,40.242,40.551,100625257,0 +2010-11-12,40.403,40.533,38.884,39.447,221703816,0 +2010-11-15,39.504,39.769,39.22,39.319,112241660,0 +2010-11-16,39.128,39.392,38.331,38.622,183202560,0 +2010-11-17,38.557,38.932,38.131,38.483,133480982,0 +2010-11-18,39.119,39.657,39.018,39.498,137362764,0 +2010-11-19,39.444,39.494,39.09,39.28,107226342,0 +2010-11-22,39.276,40.131,39.171,40.131,109211046,0 +2010-11-23,39.763,39.922,39.259,39.537,144353615,0 +2010-11-24,39.954,40.391,39.922,40.314,115360838,0 +2010-11-26,40.154,40.687,40.075,40.339,66303040,0 +2010-11-29,40.497,40.658,39.875,40.577,123294325,0 +2010-11-30,40.153,40.257,39.81,39.848,139645622,0 +2010-12-01,40.425,40.694,40.339,40.519,128119713,0 +2010-12-02,40.66,40.852,40.326,40.743,129074477,0 +2010-12-03,40.586,40.806,40.511,40.653,95387655,0 +2010-12-06,40.792,41.279,40.776,40.998,124021004,0 +2010-12-07,41.477,41.49,40.739,40.752,108707858,0 +2010-12-08,40.95,41.112,40.608,41.111,89431362,0 +2010-12-09,41.293,41.3,40.854,40.948,81864668,0 +2010-12-10,40.935,41.117,40.799,41.05,73169401,0 +2010-12-13,41.537,41.626,41.109,41.193,122382295,0 +2010-12-14,41.235,41.304,40.852,41.017,97867364,0 +2010-12-15,40.994,41.364,40.876,41.026,115789234,0 +2010-12-16,41.12,41.312,40.994,41.139,89597178,0 +2010-12-17,41.156,41.21,41.01,41.057,107757003,0 +2010-12-20,41.159,41.395,40.754,41.263,107103042,0 +2010-12-21,41.376,41.541,41.241,41.517,71347019,0 +2010-12-22,41.537,41.713,41.435,41.641,74128316,0 +2010-12-23,41.619,41.639,41.385,41.442,62194516,0 +2010-12-27,41.389,41.676,41.174,41.581,69518402,0 +2010-12-28,41.739,41.833,41.626,41.68,48970020,0 +2010-12-29,41.765,41.807,41.632,41.657,45487326,0 +2010-12-30,41.67,41.686,41.37,41.45,43900753,0 +2010-12-31,41.364,41.425,41.148,41.307,53933874,0 +2011-01-03,41.6,42.293,41.6,42.204,123930383,0 +2011-01-04,42.579,42.579,42.023,42.426,86135637,0 +2011-01-05,42.26,42.817,42.196,42.772,70669988,0 +2011-01-06,42.902,42.932,42.632,42.739,83619699,0 +2011-01-07,42.787,43.073,42.503,43.045,86506108,0 +2011-01-10,43.393,43.956,43.179,43.855,124888228,0 +2011-01-11,44.176,44.178,43.473,43.752,123434986,0 +2011-01-12,43.98,44.109,43.795,44.108,84228710,0 +2011-01-13,44.202,44.389,44.032,44.267,82692975,0 +2011-01-14,44.31,44.627,44.11,44.627,85758149,0 +2011-01-18,41.882,44.152,41.748,43.624,519250098,0 +2011-01-19,44.641,44.644,43.14,43.394,315973540,0 +2011-01-20,43.053,43.321,42.275,42.605,213000203,0 +2011-01-21,42.772,42.887,41.829,41.84,210098152,0 +2011-01-24,41.884,43.216,41.84,43.216,159818476,0 +2011-01-25,43.055,43.728,42.845,43.722,151729717,0 +2011-01-26,43.912,44.257,43.735,44.032,141187316,0 +2011-01-27,44.039,44.143,43.903,43.953,79363530,0 +2011-01-28,44.095,44.105,42.712,43.042,164845124,0 +2011-01-31,43.019,43.544,42.811,43.455,105100636,0 +2011-02-01,43.74,44.263,43.666,44.187,118639079,0 +2011-02-02,44.112,44.212,43.994,44.093,72126671,0 +2011-02-03,44.017,44.084,43.354,43.982,109654099,0 +2011-02-04,44.003,44.398,43.991,44.373,89631241,0 +2011-02-07,44.566,45.237,44.521,45.062,135033597,0 +2011-02-08,45.273,45.528,45.096,45.487,105968656,0 +2011-02-09,45.486,45.974,45.446,45.867,134431388,0 +2011-02-10,45.822,46.103,44.566,45.402,258619915,0 +2011-02-11,45.443,45.819,45.276,45.7,102387624,0 +2011-02-14,45.694,46.038,45.681,45.997,86453965,0 +2011-02-15,46.001,46.1,45.788,46.09,78920774,0 +2011-02-16,46.193,46.729,46.167,46.502,132504931,0 +2011-02-17,45.725,46.138,45.656,45.884,147628447,0 +2011-02-18,45.884,46.039,44.76,44.893,226822552,0 +2011-02-22,43.78,44.231,43.251,43.363,242751565,0 +2011-02-23,43.367,44.136,43.363,43.877,187108091,0 +2011-02-24,44.053,44.2,43.331,43.91,139227855,0 +2011-02-25,44.223,44.622,44.157,44.586,105730163,0 +2011-02-28,44.971,45.469,44.965,45.232,112123406,0 +2011-03-01,45.497,45.553,44.525,44.734,126873419,0 +2011-03-02,44.815,45.38,44.618,45.093,167793742,0 +2011-03-03,45.774,46.074,45.578,46.046,139053578,0 +2011-03-04,46.046,46.14,45.813,46.103,126243026,0 +2011-03-07,46.307,46.315,44.99,45.509,152071247,0 +2011-03-08,45.436,45.769,45.11,45.559,99239925,0 +2011-03-09,45.422,45.431,44.898,45.139,126365146,0 +2011-03-10,44.691,44.793,44.169,44.394,141426489,0 +2011-03-11,44.185,45.118,44.184,45.078,131125594,0 +2011-03-14,45.19,45.651,44.99,45.278,121587212,0 +2011-03-15,43.775,44.547,43.552,44.235,200879074,0 +2011-03-16,43.776,43.927,41.783,42.261,321588398,0 +2011-03-17,43.148,43.492,42.346,42.854,183661658,0 +2011-03-18,43.142,43.308,42.26,42.346,209933174,0 +2011-03-21,43.046,43.509,42.934,43.452,115188315,0 +2011-03-22,43.871,43.877,43.432,43.696,90914326,0 +2011-03-23,43.445,43.567,43.023,43.436,103974616,0 +2011-03-24,43.778,44.31,43.397,44.179,112801888,0 +2011-03-25,44.569,45.085,44.437,45.019,125144508,0 +2011-03-28,45.236,45.375,44.877,44.877,86105688,0 +2011-03-29,44.503,44.945,44.319,44.945,98204189,0 +2011-03-30,44.913,44.933,44.494,44.646,91654832,0 +2011-03-31,44.363,44.796,44.319,44.631,76361672,0 +2011-04-01,44.962,45.026,43.965,44.126,116578655,0 +2011-04-04,44.126,44.13,43.333,43.695,128013527,0 +2011-04-05,43.096,43.829,43.03,43.401,134597626,0 +2011-04-06,43.725,44.039,43.174,43.291,112097187,0 +2011-04-07,43.293,43.596,43.033,43.294,104047515,0 +2011-04-08,43.538,43.559,42.765,42.908,105087992,0 +2011-04-11,42.842,42.985,42.262,42.364,111197871,0 +2011-04-12,42.349,42.739,42.285,42.568,118560905,0 +2011-04-13,42.882,43.048,42.582,43.046,96488049,0 +2011-04-14,42.855,43.03,42.523,42.57,84067872,0 +2011-04-15,42.724,42.727,41.85,41.936,126431215,0 +2011-04-18,41.758,42.545,41,42.498,170639622,0 +2011-04-19,42.677,43.283,42.478,43.267,116689014,0 +2011-04-20,44.019,44.277,43.735,43.849,188630738,0 +2011-04-21,45.381,45.479,44.633,44.911,210011452,0 +2011-04-25,44.887,45.302,44.861,45.208,74101997,0 +2011-04-26,45.281,45.46,44.737,44.875,94120468,0 +2011-04-27,45.114,45.122,44.449,44.842,99046966,0 +2011-04-28,44.336,44.79,44.247,44.405,100571683,0 +2011-04-29,44.44,45.327,44.394,44.84,280139206,0 +2011-05-02,44.785,44.882,44.244,44.347,123151513,0 +2011-05-03,44.555,44.808,44.258,44.59,87368985,0 +2011-05-04,44.603,45.055,44.423,44.766,108922776,0 +2011-05-05,44.609,44.943,44.317,44.405,93538461,0 +2011-05-06,44.802,44.821,44.338,44.392,78084356,0 +2011-05-09,44.55,44.72,44.376,44.515,57064697,0 +2011-05-10,44.67,44.784,44.392,44.752,79495683,0 +2011-05-11,44.713,44.821,44.21,44.466,93163889,0 +2011-05-12,44.369,44.452,43.83,44.382,89190397,0 +2011-05-13,44.282,44.343,43.586,43.605,90877142,0 +2011-05-16,43.438,43.699,42.593,42.682,125320086,0 +2011-05-17,42.516,43.048,42.354,43.048,126105977,0 +2011-05-18,43.093,43.676,43.03,43.524,93163074,0 +2011-05-19,43.801,43.849,43.37,43.609,72674966,0 +2011-05-20,43.51,43.663,42.904,42.928,94239446,0 +2011-05-23,42.266,43.027,42.186,42.824,106580666,0 +2011-05-24,42.961,43.016,42.433,42.541,89743004,0 +2011-05-25,42.682,43.356,42.626,43.127,81937417,0 +2011-05-26,43.001,43.141,42.83,42.902,62051609,0 +2011-05-27,42.875,43.238,42.813,43.21,56764443,0 +2011-05-31,43.708,44.545,43.668,44.545,116196483,0 +2011-06-01,44.708,45.094,44.137,44.246,154338759,0 +2011-06-02,44.379,44.563,44.092,44.325,94459350,0 +2011-06-03,43.947,44.223,43.797,43.982,87320278,0 +2011-06-06,44.27,44.442,43.262,43.291,128587248,0 +2011-06-07,43.303,43.309,42.503,42.521,147655387,0 +2011-06-08,42.516,42.875,42.345,42.546,92985601,0 +2011-06-09,42.68,42.73,42.356,42.452,76679412,0 +2011-06-10,42.337,42.472,41.686,41.735,120988800,0 +2011-06-13,41.901,42.043,41.628,41.827,91873734,0 +2011-06-14,42.266,42.677,42.172,42.573,93150072,0 +2011-06-15,42.182,42.298,41.605,41.843,110395909,0 +2011-06-16,41.849,42.091,40.764,41.641,141495642,0 +2011-06-17,42.143,42.164,40.899,41.013,171474094,0 +2011-06-20,40.634,40.687,39.763,40.381,178379402,0 +2011-06-21,40.536,41.721,40.366,41.658,137379006,0 +2011-06-22,41.621,42.12,41.286,41.312,108730070,0 +2011-06-23,40.844,42.476,40.739,42.418,155729276,0 +2011-06-24,42.453,42.665,41.631,41.793,122605730,0 +2011-06-27,41.956,42.758,41.908,42.521,94613258,0 +2011-06-28,42.72,43.115,42.701,42.934,81863228,0 +2011-06-29,43.052,43.076,42.501,42.776,98306133,0 +2011-06-30,42.827,43.046,42.624,42.985,90013064,0 +2011-07-01,43.021,43.989,42.798,43.96,122640579,0 +2011-07-05,43.922,44.799,43.862,44.749,98925488,0 +2011-07-06,44.692,45.346,44.399,45.046,123826128,0 +2011-07-07,45.437,45.845,45.334,45.744,111209088,0 +2011-07-08,45.273,46.103,45.102,46.064,136477568,0 +2011-07-11,45.651,46.071,45.184,45.334,123360936,0 +2011-07-12,45.271,45.806,44.646,45.302,125760005,0 +2011-07-13,45.889,46.103,45.639,45.848,108946852,0 +2011-07-14,46.218,46.308,45.634,45.815,119636953,0 +2011-07-15,46.229,46.742,45.996,46.73,134729826,0 +2011-07-18,46.798,47.98,46.779,47.868,159233208,0 +2011-07-19,48.397,48.491,47.808,48.259,223877469,0 +2011-07-20,50.72,50.747,49.433,49.548,262089246,0 +2011-07-21,49.563,49.951,49.164,49.598,146676261,0 +2011-07-22,49.729,50.59,49.657,50.367,143511789,0 +2011-07-25,49.967,51.224,49.895,51.034,164189669,0 +2011-07-26,51.224,51.803,51.182,51.659,132729065,0 +2011-07-27,51.266,51.566,50.219,50.276,183392773,0 +2011-07-28,50.152,50.84,49.703,50.176,165501080,0 +2011-07-29,49.627,50.605,49.174,50.006,176122513,0 +2011-08-01,50.968,51.161,50.249,50.808,170311809,0 +2011-08-02,50.947,50.954,49.732,49.805,178043558,0 +2011-08-03,50.083,50.397,48.951,50.273,204282731,0 +2011-08-04,49.845,50.114,48.325,48.328,241636354,0 +2011-08-05,48.651,49.111,46.432,47.846,335646044,0 +2011-08-08,46.28,47.096,45.209,45.232,318020359,0 +2011-08-09,46.33,47.974,45.462,47.897,301440424,0 +2011-08-10,47.512,47.98,46.422,46.575,244802300,0 +2011-08-11,47.452,48.081,46.706,47.855,206716645,0 +2011-08-12,48.459,48.614,47.924,48.278,147400799,0 +2011-08-15,48.62,49.301,48.418,49.1,128218830,0 +2011-08-16,48.854,49.096,48.16,48.725,139019116,0 +2011-08-17,48.967,49.241,48.407,48.719,122825663,0 +2011-08-18,47.472,47.722,46.279,46.877,237102519,0 +2011-08-19,46.323,46.999,45.588,45.592,216219314,0 +2011-08-22,46.697,46.726,45.475,45.645,149071936,0 +2011-08-23,46.141,47.849,45.718,47.844,182939544,0 +2011-08-24,47.826,48.532,47.459,48.176,163242890,0 +2011-08-25,46.743,48.081,46.742,47.858,242767964,0 +2011-08-26,47.534,49.15,47.485,49.123,178673726,0 +2011-08-29,49.709,50.135,49.687,49.939,112854433,0 +2011-08-30,49.72,50.179,49.459,49.941,116360732,0 +2011-08-31,50.07,50.211,48.902,49.282,145657843,0 +2011-09-01,49.42,49.604,48.758,48.795,95695032,0 +2011-09-02,48.017,48.407,47.617,47.901,122378780,0 +2011-09-06,47.01,48.706,46.93,48.628,141829851,0 +2011-09-07,49.356,49.378,48.919,49.168,97469791,0 +2011-09-08,48.973,49.766,48.961,49.193,115834547,0 +2011-09-09,49.191,49.433,48.025,48.341,157483238,0 +2011-09-12,47.831,48.778,47.626,48.656,130245831,0 +2011-09-13,48.938,49.459,48.695,49.254,122789824,0 +2011-09-14,49.563,50.226,49.4,49.856,148981888,0 +2011-09-15,50.145,50.413,49.931,50.322,115696168,0 +2011-09-16,50.714,51.288,50.588,51.288,194047962,0 +2011-09-19,50.828,52.918,50.611,52.714,229042385,0 +2011-09-20,53.191,54.15,52.658,52.947,215933121,0 +2011-09-21,53.75,53.988,52.762,52.779,168477126,0 +2011-09-22,51.353,52.483,50.801,51.456,269774087,0 +2011-09-23,51.257,52.088,51.206,51.776,152263430,0 +2011-09-26,51.237,51.735,50.112,51.631,226515830,0 +2011-09-27,52.373,52.409,50.974,51.129,176027843,0 +2011-09-28,51.284,51.703,50.776,50.843,119722770,0 +2011-09-29,51.478,51.508,49.459,50.017,181445267,0 +2011-09-30,49.576,49.802,48.815,48.831,152700185,0 +2011-10-03,48.709,49.004,47.789,47.973,186284083,0 +2011-10-04,48.011,48.894,45.364,47.704,343735715,0 +2011-10-05,47.108,48.64,46.141,48.44,219177331,0 +2011-10-06,47.774,49.275,47.615,48.328,226333493,0 +2011-10-07,48.121,48.375,47.189,47.356,149312946,0 +2011-10-10,48.559,49.793,48.434,49.793,122947396,0 +2011-10-11,50.274,51.633,50.135,51.262,168665435,0 +2011-10-12,52.174,52.409,51.243,51.505,173321900,0 +2011-10-13,51.87,52.304,51.591,52.304,118153365,0 +2011-10-14,53.402,54.043,53.181,54.043,159450387,0 +2011-10-17,53.968,54.645,53.264,53.786,190991217,0 +2011-10-18,53.988,54.402,53.27,54.075,240888318,0 +2011-10-19,51.411,52.302,50.943,51.05,307564028,0 +2011-10-20,51.224,51.27,50.487,50.623,153130629,0 +2011-10-21,51.008,51.114,50.04,50.311,172906566,0 +2011-10-24,50.723,52.059,50.635,51.964,139963135,0 +2011-10-25,51.873,52.065,50.889,50.939,119901221,0 +2011-10-26,51.478,51.553,50.347,51.301,127051612,0 +2011-10-27,52.229,52.378,51.465,51.826,137831561,0 +2011-10-28,51.608,52.04,51.547,51.858,89898816,0 +2011-10-31,51.494,52.418,51.359,51.838,107509269,0 +2011-11-01,50.905,51.161,50.357,50.776,148177380,0 +2011-11-02,51.245,51.28,50.599,50.893,91325063,0 +2011-11-03,51.131,51.658,50.629,51.618,123096729,0 +2011-11-04,51.528,51.663,51.116,51.256,84118437,0 +2011-11-07,51.214,51.224,50.728,51.189,75203074,0 +2011-11-08,51.508,52.248,51.423,52.023,111450134,0 +2011-11-09,50.842,51.339,50.489,50.621,155503300,0 +2011-11-10,50.856,50.869,48.939,49.334,207622351,0 +2011-11-11,49.529,49.777,48.697,49.254,182195095,0 +2011-11-14,49.187,49.337,48.432,48.57,120687460,0 +2011-11-15,48.768,49.88,48.592,49.796,120066631,0 +2011-11-16,49.873,50.092,49.217,49.274,97180914,0 +2011-11-17,49.167,49.249,48.086,48.333,133785074,0 +2011-11-18,48.524,48.663,48.009,48.017,103705732,0 +2011-11-21,47.413,47.597,46.86,47.258,124808869,0 +2011-11-22,47.547,48.398,47.503,48.217,114021111,0 +2011-11-23,47.985,48.131,46.984,46.998,119387777,0 +2011-11-25,47.151,47.532,46.528,46.56,71048015,0 +2011-11-28,47.685,48.244,47.426,48.168,96542787,0 +2011-11-29,48.101,48.515,47.409,47.794,104755245,0 +2011-11-30,48.793,48.957,48.445,48.945,113089269,0 +2011-12-01,48.977,49.817,48.762,49.678,106954755,0 +2011-12-02,49.973,50.409,49.763,49.905,105667860,0 +2011-12-05,50.39,50.763,49.994,50.328,99583616,0 +2011-12-06,50.27,50.535,49.864,50.065,79031632,0 +2011-12-07,49.905,50.064,49.53,49.828,84948476,0 +2011-12-08,50.133,50.649,49.973,50.028,104844659,0 +2011-12-09,50.291,50.463,50.077,50.407,82753983,0 +2011-12-12,50.158,50.446,49.874,50.179,83412983,0 +2011-12-13,50.309,50.635,49.573,49.793,94404265,0 +2011-12-14,49.522,49.608,48.366,48.689,113224348,0 +2011-12-15,49.09,49.143,48.447,48.53,71442867,0 +2011-12-16,48.712,49.194,48.607,48.793,117455858,0 +2011-12-19,48.98,49.285,48.725,48.947,65393948,0 +2011-12-20,49.624,50.725,49.594,50.707,93898733,0 +2011-12-21,50.778,50.88,50.202,50.767,73046809,0 +2011-12-22,50.842,51.113,50.725,51.041,56284285,0 +2011-12-23,51.184,51.683,51.161,51.649,75114441,0 +2011-12-27,51.63,52.39,51.612,52.062,73888680,0 +2011-12-28,52.108,52.282,51.397,51.566,63708896,0 +2011-12-29,51.64,51.948,51.289,51.88,59990650,0 +2011-12-30,51.671,52.028,51.67,51.865,50136156,0 +2012-01-03,52.488,52.827,52.378,52.663,84271282,0 +2012-01-04,52.516,53.105,52.414,52.946,72548556,0 +2012-01-05,53.14,53.599,52.849,53.534,75572081,0 +2012-01-06,53.757,54.138,53.687,54.094,88773291,0 +2012-01-09,54.491,54.778,53.959,54.008,109831110,0 +2012-01-10,54.541,54.553,53.978,54.2,72006166,0 +2012-01-11,54.124,54.148,53.696,54.113,59991538,0 +2012-01-12,54.08,54.154,53.624,53.963,59288947,0 +2012-01-13,53.749,53.843,53.613,53.763,63044768,0 +2012-01-17,54.323,54.551,54.163,54.386,67711941,0 +2012-01-18,54.676,54.999,54.593,54.951,77112610,0 +2012-01-19,55.09,55.24,54.62,54.778,72924928,0 +2012-01-20,54.744,54.746,53.754,53.824,115317280,0 +2012-01-23,54.122,54.868,54.083,54.734,85258042,0 +2012-01-24,54.441,54.441,53.728,53.838,151563229,0 +2012-01-25,58.195,58.197,56.826,57.201,267182941,0 +2012-01-26,57.43,57.472,56.75,56.942,90359283,0 +2012-01-27,56.889,57.435,56.831,57.28,83585001,0 +2012-01-30,57.079,58.13,57.036,58.012,105670407,0 +2012-01-31,58.365,58.682,58.02,58.459,109287526,0 +2012-02-01,58.705,58.78,58.339,58.42,75172830,0 +2012-02-02,58.383,58.548,58.139,58.283,52069108,0 +2012-02-03,58.563,58.908,58.34,58.866,79960558,0 +2012-02-06,58.701,59.546,58.676,59.416,69602482,0 +2012-02-07,59.583,60.157,59.495,60.04,88094362,0 +2012-02-08,60.252,61.058,60.15,61.045,113627149,0 +2012-02-09,61.564,63.614,61.539,63.158,246303027,0 +2012-02-10,62.881,63.726,62.565,63.189,175945151,0 +2012-02-13,63.997,64.521,63.658,64.365,144163163,0 +2012-02-14,64.608,65.257,64.289,65.242,128562424,0 +2012-02-15,65.855,67.397,63.633,63.733,419648021,0 +2012-02-16,62.943,64.658,62.319,64.314,263308348,0 +2012-02-17,64.429,65.026,64.071,64.303,149304893,0 +2012-02-21,64.935,65.932,64.559,65.932,168601389,0 +2012-02-22,65.706,66.016,65.191,65.701,134675490,0 +2012-02-23,65.963,66.314,65.248,66.129,158353395,0 +2012-02-24,66.529,66.965,66.418,66.902,115772790,0 +2012-02-27,66.733,67.682,66.113,67.331,152490708,0 +2012-02-28,67.61,68.565,67.342,68.565,167187636,0 +2012-02-29,69.318,70.129,68.602,69.466,265334683,0 +2012-03-01,70.179,70.204,68.994,69.724,190434717,0 +2012-03-02,69.723,70.024,69.477,69.818,120139889,0 +2012-03-05,69.852,70.111,67.362,68.277,225402056,0 +2012-03-06,67.1,68.345,66.106,67.905,225692077,0 +2012-03-07,68.708,68.871,67.017,67.962,182629048,0 +2012-03-08,68.507,69.536,68.145,69.408,143803822,0 +2012-03-09,69.72,70.145,69.552,69.817,116715832,0 +2012-03-12,70.306,70.69,70.049,70.69,113583532,0 +2012-03-13,71.4,72.761,71.169,72.75,192666483,0 +2012-03-14,74.022,76.162,73.687,75.502,395690066,0 +2012-03-15,76.792,76.838,74.092,74.987,323412488,0 +2012-03-16,74.876,75.454,74.019,74.989,230214534,0 +2012-03-19,76.627,77.064,75.436,76.977,251339192,0 +2012-03-20,76.765,77.721,74.532,77.601,227754910,0 +2012-03-21,77.187,78.073,77.017,77.159,179612258,0 +2012-03-22,76.553,77.412,76.264,76.753,174059708,0 +2012-03-23,76.898,77.067,76.12,76.334,120050525,0 +2012-03-26,76.81,77.753,76.23,77.731,166049661,0 +2012-03-27,77.628,78.922,77.613,78.692,169120783,0 +2012-03-28,79.191,79.584,78.157,79.095,182651334,0 +2012-03-29,78.476,78.957,77.764,78.099,169337333,0 +2012-03-30,77.961,78.189,76.574,76.779,203713476,0 +2012-04-02,77.066,79.242,76.886,79.225,166688516,0 +2012-04-03,80.333,80.962,79.72,80.591,232462865,0 +2012-04-04,79.957,80.151,79.015,79.952,159628517,0 +2012-04-05,80.292,81.275,79.832,81.099,141675996,0 +2012-04-09,80.185,81.941,80.075,81.477,152048347,0 +2012-04-10,81.952,82.472,80.167,80.48,247839768,0 +2012-04-11,81.473,81.559,79.827,80.193,194150180,0 +2012-04-12,80.038,80.85,79.463,79.753,171199452,0 +2012-04-13,79.926,80.001,77.287,77.507,239666018,0 +2012-04-16,78.125,78.153,74.051,74.292,292895119,0 +2012-04-17,74.139,78.116,73.238,78.08,285907107,0 +2012-04-18,78.593,79.432,77.183,77.905,265988323,0 +2012-04-19,76.865,77.443,74.855,75.23,232616632,0 +2012-04-20,75.734,76.148,73.048,73.377,287419933,0 +2012-04-23,73.071,73.849,71.281,73.214,269440442,0 +2012-04-24,72.051,72.7,71.074,71.75,298806670,0 +2012-04-25,78.841,79.14,77.606,78.116,252408247,0 +2012-04-26,78.666,78.718,77.111,77.823,149379716,0 +2012-04-27,77.487,77.628,76.901,77.22,113431674,0 +2012-04-30,76.555,76.633,74.662,74.783,141045190,0 +2012-05-01,74.904,76.422,74.434,74.55,170331260,0 +2012-05-02,74.306,75.225,74.13,75.042,119895853,0 +2012-05-03,75.622,75.736,74.314,74.508,111532735,0 +2012-05-04,73.901,74.065,72.376,72.385,148216462,0 +2012-05-07,71.907,73.349,71.873,72.931,129219230,0 +2012-05-08,72.942,73.189,71.553,72.761,139977993,0 +2012-05-09,72.187,73.504,71.824,72.89,134016919,0 +2012-05-10,73.582,73.749,72.796,73.06,95030992,0 +2012-05-11,72.355,73.567,72.273,72.572,111140951,0 +2012-05-14,72.045,72.677,71.407,71.486,99661109,0 +2012-05-15,71.901,72.126,70.658,70.84,132751937,0 +2012-05-16,70.952,71.316,69.288,69.932,157929227,0 +2012-05-17,69.835,70.114,67.888,67.888,171977014,0 +2012-05-18,68.381,69.591,66.871,67.922,204140944,0 +2012-05-21,68.449,71.911,68.391,71.88,178418391,0 +2012-05-22,72.939,73.492,70.764,71.326,193655248,0 +2012-05-23,71.396,73.353,70.846,73.066,163963929,0 +2012-05-24,73.748,73.828,71.873,72.393,119668412,0 +2012-05-25,72.305,72.464,71.519,72.009,91485862,0 +2012-05-29,73.11,73.507,72.392,73.286,106056526,0 +2012-05-30,72.892,74.275,72.554,74.17,147575076,0 +2012-05-31,74.371,74.468,73.183,73.985,137139854,0 +2012-06-01,72.887,73.334,71.782,71.844,145222442,0 +2012-06-04,71.907,72.677,70.24,72.264,155252189,0 +2012-06-05,71.879,72.543,71.499,72.08,108188875,0 +2012-06-06,72.71,73.488,72.418,73.183,102652353,0 +2012-06-07,73.929,73.933,73.058,73.217,105884325,0 +2012-06-08,73.203,74.351,72.866,74.317,96831448,0 +2012-06-11,75.263,75.365,73.074,73.145,164804407,0 +2012-06-12,73.567,73.842,72.571,73.784,121431894,0 +2012-06-13,73.574,74.083,73.044,73.272,81907980,0 +2012-06-14,73.155,73.445,72.644,73.193,96403492,0 +2012-06-15,73.123,73.586,72.939,73.523,93389881,0 +2012-06-18,73.117,75.284,73.042,75.015,122695162,0 +2012-06-19,74.712,75.555,74.672,75.226,100721665,0 +2012-06-20,75.326,75.461,74.378,75.011,100128718,0 +2012-06-21,74.973,75.328,73.948,73.979,91018536,0 +2012-06-22,74.153,74.556,73.689,74.546,79368233,0 +2012-06-25,73.93,74.25,73.042,73.093,79747477,0 +2012-06-26,73.168,73.57,72.654,73.255,77136810,0 +2012-06-27,73.636,73.858,73.24,73.571,56600431,0 +2012-06-28,73.21,73.507,72.433,72.871,78906736,0 +2012-06-29,74.019,74.785,73.539,74.785,117433735,0 +2012-07-02,74.883,76.002,74.737,75.88,111514548,0 +2012-07-03,76.182,76.837,76.071,76.762,67409572,0 +2012-07-05,76.909,78.674,76.793,78.109,135015162,0 +2012-07-06,77.747,77.918,77.038,77.591,116839858,0 +2012-07-09,77.516,78.616,77.362,78.615,105738948,0 +2012-07-10,79.136,79.382,77.517,77.887,142529946,0 +2012-07-11,77.62,77.818,76.481,77.404,130794921,0 +2012-07-12,76.868,77.281,75.901,76.697,119281197,0 +2012-07-13,77.214,77.759,76.837,77.474,86874978,0 +2012-07-16,77.493,78.323,77.481,77.722,84028911,0 +2012-07-17,78.22,78.31,77.24,77.728,81901129,0 +2012-07-18,77.681,77.905,77.293,77.637,70373779,0 +2012-07-19,78.281,78.802,77.606,78.673,121700750,0 +2012-07-20,78.507,78.688,77.312,77.389,110788366,0 +2012-07-23,76.12,77.594,75.262,77.329,135964917,0 +2012-07-24,77.783,78.076,76.646,76.955,156714649,0 +2012-07-25,73.567,74.378,72.996,73.633,244598938,0 +2012-07-26,74.244,74.327,73.041,73.62,113411792,0 +2012-07-27,73.637,75.022,73.202,74.938,112654849,0 +2012-07-30,75.677,76.765,75.277,76.201,105688963,0 +2012-07-31,77.252,78.333,77.183,78.217,128854850,0 +2012-08-01,78.876,78.937,77.219,77.709,107181633,0 +2012-08-02,77.198,78.207,76.869,77.833,92638591,0 +2012-08-03,78.583,79.139,78.317,78.848,96106259,0 +2012-08-06,79.052,80.022,78.79,79.726,84263406,0 +2012-08-07,79.753,80.038,79.145,79.515,81000819,0 +2012-08-08,79.318,79.895,79.029,79.381,68092939,0 +2012-08-09,79.463,79.962,79.456,79.832,61563343,0 +2012-08-10,79.574,79.966,79.573,79.959,54142786,0 +2012-08-13,80.177,81.026,80.159,81.026,77330902,0 +2012-08-14,81.266,82.136,81.052,81.243,94400781,0 +2012-08-15,81.193,81.539,80.736,81.132,71471229,0 +2012-08-16,81.182,81.896,81.088,81.841,70708281,0 +2012-08-17,82.313,83.363,82.157,83.353,122891350,0 +2012-08-20,83.596,85.547,83.585,85.547,170259907,0 +2012-08-21,86.276,86.796,83.639,84.377,225254471,0 +2012-08-22,84.165,86.041,83.353,86.025,156877150,0 +2012-08-23,85.668,86.155,85.032,85.222,116606271,0 +2012-08-24,84.822,86.103,84.312,85.297,120072048,0 +2012-08-27,87.452,87.57,86.626,86.903,118473315,0 +2012-08-28,86.81,86.954,86.256,86.785,74150624,0 +2012-08-29,86.847,87.157,86.503,86.616,56244743,0 +2012-08-30,86.253,86.368,85.25,85.38,83999199,0 +2012-08-31,85.816,85.99,84.53,85.559,93912572,0 +2012-09-04,85.624,86.831,85.463,86.809,102073975,0 +2012-09-05,86.889,86.985,86.119,86.2,93331425,0 +2012-09-06,86.577,87.234,86.273,86.974,108639222,0 +2012-09-07,87.204,87.775,86.915,87.512,91480196,0 +2012-09-10,87.513,87.88,85.153,85.237,135388853,0 +2012-09-11,85.541,86.181,84.433,84.962,139860956,0 +2012-09-12,85.765,86.155,84.37,86.142,197668083,0 +2012-09-13,87.12,88.163,86.781,87.841,166050817,0 +2012-09-14,88.738,89.64,88.471,88.907,166659568,0 +2012-09-17,89.944,90,89.335,89.997,110528823,0 +2012-09-18,90.012,90.327,89.568,90.275,103615560,0 +2012-09-19,90.063,90.541,89.973,90.297,90703419,0 +2012-09-20,89.921,90.036,89.207,89.86,93373157,0 +2012-09-21,90.336,90.68,89.945,90.04,158597399,0 +2012-09-24,88.338,89.402,87.843,88.846,177515299,0 +2012-09-25,88.518,89.101,86.555,86.626,143990474,0 +2012-09-26,86.007,86.515,85.036,85.551,160104730,0 +2012-09-27,85.436,87.735,84.929,87.626,164862285,0 +2012-09-28,87.294,87.599,85.753,85.797,148520167,0 +2012-10-01,86.318,87.037,84.433,84.807,150857426,0 +2012-10-02,85.117,85.7,83.68,85.05,174320895,0 +2012-10-03,85.51,86.41,85.223,86.356,117741381,0 +2012-10-04,86.33,86.716,85.596,85.759,102893871,0 +2012-10-05,85.554,85.655,83.763,83.931,164861476,0 +2012-10-08,83.197,83.285,81.811,82.077,177093384,0 +2012-10-09,82.139,82.373,80.196,81.776,232772786,0 +2012-10-10,82.28,82.951,81.925,82.429,141614440,0 +2012-10-11,83.144,83.238,80.782,80.782,151561751,0 +2012-10-12,80.969,81.718,80.421,80.99,127697746,0 +2012-10-15,81.328,81.684,80.234,81.638,120015938,0 +2012-10-16,81.717,83.635,81.154,83.571,152612285,0 +2012-10-17,83.452,83.957,82.828,82.903,108046799,0 +2012-10-18,82.258,82.578,81.026,81.366,132300097,0 +2012-10-19,81.161,81.254,78.404,78.434,206563056,0 +2012-10-22,78.765,81.718,78.551,81.544,151713892,0 +2012-10-23,81.154,81.527,78.673,78.885,196244630,0 +2012-10-24,79.925,80.582,78.536,79.33,154980421,0 +2012-10-25,79.737,79.997,77.88,78.393,181812810,0 +2012-10-26,78.379,78.967,76.008,77.681,282744263,0 +2012-10-31,76.509,77.418,75.585,76.565,141622825,0 +2012-11-01,76.938,77.552,76.417,76.722,100370713,0 +2012-11-02,76.639,76.774,73.92,74.185,166440141,0 +2012-11-05,75.047,75.595,74.286,75.191,146954789,0 +2012-11-06,75.91,75.976,74.607,74.962,104065398,0 +2012-11-07,74.139,74.231,71.803,72.094,219105455,0 +2012-11-08,72.433,72.639,69.158,69.477,291720281,0 +2012-11-09,69.823,71.689,68.955,70.678,257020990,0 +2012-11-12,71.597,71.639,69.594,70.135,142539425,0 +2012-11-13,69.629,71.123,69.298,70.143,147344021,0 +2012-11-14,70.478,70.731,69.275,69.365,131818638,0 +2012-11-15,69.448,69.701,67.523,67.91,218229394,0 +2012-11-16,67.856,68.478,65.34,68.177,350204372,0 +2012-11-19,69.859,73.32,69.752,73.09,227389256,0 +2012-11-20,73.892,73.896,71.65,72.47,177617260,0 +2012-11-21,72.901,73.302,71.911,72.569,103124238,0 +2012-11-23,73.279,73.901,72.69,73.837,75416902,0 +2012-11-26,74.406,76.227,74.123,76.166,174030221,0 +2012-11-27,76.169,76.28,74.949,75.553,147326954,0 +2012-11-28,74.582,75.684,73.936,75.314,143999894,0 +2012-11-29,76.256,76.776,75.615,76.145,142187251,0 +2012-11-30,75.741,76.021,75.28,75.619,108075345,0 +2012-12-03,76.699,76.821,75.645,75.734,100626197,0 +2012-12-04,75.165,75.17,73.919,74.401,154110067,0 +2012-12-05,73.503,73.547,69.611,69.613,288540981,0 +2012-12-06,68.338,71.486,67.006,70.703,325279989,0 +2012-12-07,71.498,71.73,68.478,68.895,217634858,0 +2012-12-10,67.829,69.575,67.385,68.452,174216164,0 +2012-12-11,69.737,71.003,69.427,69.948,163451165,0 +2012-12-12,70.773,70.8,69.288,69.639,134581946,0 +2012-12-13,68.625,69.462,67.932,68.436,172750127,0 +2012-12-14,66.504,66.942,65.323,65.862,278959027,0 +2012-12-17,65.755,67.182,64.759,67.032,209577804,0 +2012-12-18,67.829,69.111,67.215,68.978,172789056,0 +2012-12-19,68.665,68.952,67.893,68.001,124129447,0 +2012-12-20,68.478,68.502,67.039,67.407,131211299,0 +2012-12-21,66.217,67.141,65.921,67.098,164854230,0 +2012-12-24,67.229,67.735,67.017,67.204,48581683,0 +2012-12-26,67.055,67.115,66.037,66.278,83532447,0 +2012-12-27,66.348,66.697,65.2,66.547,125717789,0 +2012-12-28,65.928,66.469,65.649,65.839,97870604,0 +2012-12-31,65.903,69.172,65.764,68.754,182167904,0 +2013-01-02,71.553,71.705,69.978,70.935,154865509,0 +2013-01-03,70.745,71.017,69.896,70.039,97488400,0 +2013-01-04,69.375,69.591,67.936,68.088,164191192,0 +2013-01-07,67.446,68.386,66.566,67.689,133721724,0 +2013-01-08,68.375,68.721,67.346,67.871,126651168,0 +2013-01-09,67.533,67.83,66.664,66.808,112611881,0 +2013-01-10,68.287,68.31,66.607,67.636,166038770,0 +2013-01-11,67.331,67.872,67.057,67.222,96900287,0 +2013-01-14,64.945,65.568,64.407,64.827,202815867,0 +2013-01-15,64.382,64.47,62.452,62.781,242045402,0 +2013-01-16,63.907,65.82,63.63,65.383,190827569,0 +2013-01-17,65.931,65.99,64.862,64.945,125178052,0 +2013-01-18,64.407,64.887,64.133,64.601,130744810,0 +2013-01-22,65.188,65.617,64.165,65.216,127334286,0 +2013-01-23,65.739,66.537,65.216,66.411,237111514,0 +2013-01-24,59.431,60.171,58.17,58.204,403617999,0 +2013-01-25,58.359,58.944,56.203,56.834,333813084,0 +2013-01-28,56.566,58.556,56.313,58.12,216935263,0 +2013-01-29,59.238,59.458,58.413,59.208,157788647,0 +2013-01-30,59.044,59.766,58.721,59.022,115265298,0 +2013-01-31,59.041,59.339,58.783,58.846,88226409,0 +2013-02-01,59.317,59.365,57.926,58.607,149077967,0 +2013-02-04,58.644,58.907,57.107,57.148,131820063,0 +2013-02-05,57.37,59.398,57.135,59.151,158410285,0 +2013-02-06,58.975,60.271,58.473,59.09,163969146,0 +2013-02-07,60.203,61.076,59.014,60.845,193075926,0 +2013-02-08,61.597,62.222,60.849,61.725,173919690,0 +2013-02-11,61.921,63.017,61.501,62.369,142116427,0 +2013-02-12,62.313,62.688,60.784,60.804,167111380,0 +2013-02-13,60.716,61.548,60.198,60.689,130528184,0 +2013-02-14,60.365,61.289,60.301,60.634,97666569,0 +2013-02-15,60.927,61.098,59.766,59.798,107675202,0 +2013-02-19,59.921,60.133,58.98,59.776,119714613,0 +2013-02-20,59.479,59.479,58.322,58.329,130823949,0 +2013-02-21,57.958,58.37,57.544,57.966,122781947,0 +2013-02-22,58.381,58.685,58.036,58.584,90807897,0 +2013-02-25,58.98,59.142,57.512,57.541,102261994,0 +2013-02-26,57.678,58.678,56.874,58.346,137689988,0 +2013-02-27,58.274,58.795,57.262,57.772,161369210,0 +2013-02-28,57.705,58.201,57.36,57.36,88603115,0 +2013-03-01,56.919,56.944,55.878,55.942,151714021,0 +2013-03-04,55.593,55.645,54.452,54.585,159925050,0 +2013-03-05,54.772,56.554,54.677,56.027,175360752,0 +2013-03-06,56.465,56.563,55.157,55.314,126449262,0 +2013-03-07,55.167,56.141,54.718,55.954,128660807,0 +2013-03-08,55.854,56.585,55.699,56.103,107598393,0 +2013-03-11,55.842,57.049,55.248,56.9,130331904,0 +2013-03-12,56.609,57.031,55.564,55.676,128044372,0 +2013-03-13,55.679,56.464,55.276,55.666,111528781,0 +2013-03-14,56.247,56.481,55.939,56.206,83512928,0 +2013-03-15,56.909,57.727,56.823,57.657,176977045,0 +2013-03-18,57.366,59.448,57.336,59.221,166598826,0 +2013-03-19,59.714,59.903,58.283,59.06,144771276,0 +2013-03-20,59.442,59.472,58.423,58.75,84828139,0 +2013-03-21,58.507,59.516,58.49,58.833,105328271,0 +2013-03-22,59.073,60.052,58.882,60.027,108585162,0 +2013-03-25,60.386,61.069,60.009,60.243,137724822,0 +2013-03-26,60.484,60.537,59.846,59.926,80879706,0 +2013-03-27,59.317,59.364,58.574,58.75,91080036,0 +2013-03-28,58.456,58.715,57.389,57.523,121743329,0 +2013-04-01,57.459,57.663,55.584,55.74,107028495,0 +2013-04-02,55.568,56.939,55.413,55.852,145557726,0 +2013-04-03,56.057,56.827,55.92,56.138,99768431,0 +2013-04-04,56.368,56.529,55.262,55.582,98519648,0 +2013-04-05,55.167,55.221,54.537,54.995,105265358,0 +2013-04-08,55.211,55.555,54.905,55.389,82705260,0 +2013-04-09,55.407,55.685,54.939,55.488,84281124,0 +2013-04-10,55.645,56.797,55.363,56.621,103269685,0 +2013-04-11,56.364,56.918,56.035,56.442,90264574,0 +2013-04-12,56.42,56.42,55.761,55.854,65581532,0 +2013-04-15,55.491,55.605,54.521,54.56,87163362,0 +2013-04-16,54.783,55.438,54.656,55.392,83893729,0 +2013-04-17,54.616,54.661,51.735,52.346,259637011,0 +2013-04-18,52.624,52.732,50.648,50.946,183049763,0 +2013-04-19,50.417,51.929,50.043,50.749,167392732,0 +2013-04-22,51.071,52.267,50.847,51.81,118083211,0 +2013-04-23,52.501,53.069,51.827,52.778,181573630,0 +2013-04-24,51.142,53.961,51.005,52.69,266505649,0 +2013-04-25,53.439,53.793,52.891,53.069,105544301,0 +2013-04-26,53.255,54.42,53.051,54.216,210008006,0 +2013-04-29,54.653,56.35,54.578,55.895,175893584,0 +2013-04-30,56.543,57.862,56.147,57.538,189945171,0 +2013-05-01,57.756,57.82,56.451,57.087,139335780,0 +2013-05-02,57.411,58.295,57.259,57.897,115954547,0 +2013-05-03,58.647,58.897,58.368,58.475,99336255,0 +2013-05-06,59.22,60.064,59.039,59.87,136422129,0 +2013-05-07,60.425,60.527,58.958,59.604,132861539,0 +2013-05-08,59.653,60.476,59.234,60.277,129824587,0 +2013-05-09,60.149,60.565,59.596,59.751,108809587,0 +2013-05-10,59.908,60.136,58.929,59.255,91374242,0 +2013-05-13,59.062,59.9,59.06,59.488,86536358,0 +2013-05-14,59.371,59.545,57.838,58.064,122016276,0 +2013-05-15,57.449,57.69,55.249,56.098,202406194,0 +2013-05-16,55.367,57.276,54.796,56.849,164727339,0 +2013-05-17,57.435,57.568,56.382,56.674,116841489,0 +2013-05-20,56.497,58.316,56.261,57.94,123157148,0 +2013-05-21,57.315,58.274,56.799,57.512,124551615,0 +2013-05-22,58.088,58.649,57.324,57.733,120995087,0 +2013-05-23,57.026,58.365,57.007,57.837,96414361,0 +2013-05-24,57.672,58.298,57.603,58.233,75413013,0 +2013-05-28,58.85,59.012,57.672,57.743,105341929,0 +2013-05-29,57.557,58.54,57.478,58.204,90271911,0 +2013-05-30,58.297,59.455,58.147,59.072,96536505,0 +2013-05-31,59.193,59.794,58.801,58.83,104896197,0 +2013-06-03,58.961,59.174,57.885,58.96,101611562,0 +2013-06-04,59.286,59.445,58.525,58.777,81219730,0 +2013-06-05,58.297,58.96,58.042,58.227,79253126,0 +2013-06-06,58.273,58.473,56.779,57.355,113844438,0 +2013-06-07,57.099,57.98,56.612,57.794,110478249,0 +2013-06-10,58.175,58.747,57.139,57.413,122922550,0 +2013-06-11,57.001,57.919,56.683,57.24,78124569,0 +2013-06-12,57.492,57.72,56.447,56.536,72410954,0 +2013-06-13,56.576,57.184,56.086,57.027,78073763,0 +2013-06-14,56.956,57.073,56.053,56.254,74231979,0 +2013-06-17,56.439,56.995,56.297,56.51,70826350,0 +2013-06-18,56.453,56.888,56.276,56.48,53253269,0 +2013-06-19,56.433,56.465,55.334,55.334,84900606,0 +2013-06-20,54.851,55.726,54.31,54.528,97571131,0 +2013-06-21,54.743,54.941,53.384,54.093,131373254,0 +2013-06-24,53.292,53.458,52.068,52.656,131201439,0 +2013-06-25,53.07,53.345,52.173,52.668,85798615,0 +2013-06-26,52.837,52.952,51.758,52.07,100421751,0 +2013-06-27,52.225,52.507,51.478,51.511,92086911,0 +2013-06-28,51.492,52.665,51.167,52.174,157038434,0 +2013-07-01,52.677,53.93,52.485,53.532,106782954,0 +2013-07-02,53.627,55.157,53.566,54.743,128310205,0 +2013-07-03,55.052,55.332,54.607,55.046,65778191,0 +2013-07-05,54.992,55.373,54.33,54.603,74822054,0 +2013-07-08,54.954,55.071,53.719,54.295,81408010,0 +2013-07-09,54.104,55.4,53.683,55.248,96272163,0 +2013-07-10,54.889,55.569,54.712,55.037,76762108,0 +2013-07-11,55.326,56.018,55.094,55.895,89091585,0 +2013-07-12,55.943,56.223,55.389,55.792,76341543,0 +2013-07-15,55.595,56.442,55.569,55.915,66057635,0 +2013-07-16,55.793,56.341,55.488,56.275,59047139,0 +2013-07-17,56.211,56.54,56.015,56.29,54331236,0 +2013-07-18,56.691,56.884,56.329,56.478,59767782,0 +2013-07-19,56.654,56.77,55.511,55.587,73376842,0 +2013-07-22,56.18,56.217,55.658,55.766,56758813,0 +2013-07-23,55.729,55.852,54.772,54.809,100344971,0 +2013-07-24,57.418,58.157,56.939,57.624,161614519,0 +2013-07-25,57.652,57.74,57.01,57.36,62696972,0 +2013-07-26,56.944,57.693,56.818,57.69,54660341,0 +2013-07-29,57.665,58.863,57.584,58.577,67772196,0 +2013-07-30,58.859,59.801,58.766,59.3,84455163,0 +2013-07-31,59.517,59.828,58.792,59.195,88104757,0 +2013-08-01,59.601,59.754,59.291,59.739,56271954,0 +2013-08-02,59.913,60.545,59.737,60.506,74882462,0 +2013-08-05,60.787,61.568,60.457,61.41,87002474,0 +2013-08-06,61.224,61.73,60.46,60.86,91429189,0 +2013-08-07,60.671,61.089,60.404,60.824,81575272,0 +2013-08-08,61.077,61.109,60.301,60.705,69398648,0 +2013-08-09,60.389,60.631,59.735,59.841,72550376,0 +2013-08-12,60.159,61.711,60.127,61.538,98783625,0 +2013-08-13,62.011,65.134,61.631,64.464,238766895,0 +2013-08-14,65.557,66.398,64.969,65.641,205035729,0 +2013-08-15,65.366,66.153,64.401,65.561,132937506,0 +2013-08-16,65.856,66.229,65.687,66.143,98193588,0 +2013-08-19,66.411,67.648,66.364,66.857,138397683,0 +2013-08-20,67.118,67.23,65.946,65.981,97177688,0 +2013-08-21,66.311,66.782,65.999,66.147,91012161,0 +2013-08-22,66.492,66.576,65.6,66.23,66170157,0 +2013-08-23,66.271,66.278,65.755,65.974,60347161,0 +2013-08-26,65.936,67.179,65.903,66.23,89722850,0 +2013-08-27,65.574,66.168,64.036,64.333,114980660,0 +2013-08-28,63.993,65.285,63.993,64.642,83358341,0 +2013-08-29,64.737,65.376,64.669,64.744,64955661,0 +2013-08-30,65.162,65.289,64.435,64.529,73441655,0 +2013-09-03,64.928,65.915,64.172,64.332,90061942,0 +2013-09-04,65.782,66.132,65.346,65.665,93457251,0 +2013-09-05,65.869,65.926,65,65.216,64045054,0 +2013-09-06,65.632,65.759,64.515,65.603,97395330,0 +2013-09-09,66.494,66.881,66.297,66.649,92247478,0 +2013-09-10,66.653,66.818,64.454,65.131,201381996,0 +2013-09-11,61.496,62.374,61.205,61.586,243602913,0 +2013-09-12,61.689,62.599,61.361,62.244,109494212,0 +2013-09-13,61.801,62.129,61.19,61.216,81010241,0 +2013-09-16,60.703,60.783,58.888,59.27,148654192,0 +2013-09-17,58.986,60.533,58.927,59.954,108268776,0 +2013-09-18,60.991,61.407,60.659,61.187,123653234,0 +2013-09-19,61.981,62.654,61.788,62.189,109532530,0 +2013-09-20,62.943,63.011,61.36,61.544,189486492,0 +2013-09-23,65.327,65.432,63.547,64.607,206436374,0 +2013-09-24,65.163,65.241,64.234,64.404,98395445,0 +2013-09-25,64.447,64.474,63.394,63.407,85916079,0 +2013-09-26,63.993,64.33,63.719,64.024,64209217,0 +2013-09-27,63.702,63.82,63.3,63.566,61799628,0 +2013-09-30,63.209,63.793,62.832,63.144,70054799,0 +2013-10-01,63,64.407,62.991,64.254,95834066,0 +2013-10-02,63.945,64.759,63.698,64.463,78239935,0 +2013-10-03,64.588,64.832,63.303,63.652,87499474,0 +2013-10-04,63.714,63.811,63.018,63.602,70181642,0 +2013-10-07,64.07,64.872,63.909,64.224,84575112,0 +2013-10-08,64.513,64.607,63.275,63.328,78690301,0 +2013-10-09,63.816,64.229,62.978,64.074,81780985,0 +2013-10-10,64.695,64.836,64.13,64.474,75327135,0 +2013-10-11,64.124,65.026,63.884,64.89,72543831,0 +2013-10-14,64.499,65.521,64.435,65.318,70939202,0 +2013-10-15,65.511,66.1,65.248,65.663,86611099,0 +2013-10-16,65.942,66.171,65.737,65.986,67932110,0 +2013-10-17,65.836,66.465,65.795,66.43,68581262,0 +2013-10-18,66.624,67.057,66.592,67.009,78736831,0 +2013-10-21,67.385,69.038,67.355,68.652,107479988,0 +2013-10-22,69.316,69.585,66.897,68.455,144756990,0 +2013-10-23,68.339,69.217,68.339,69.126,85003666,0 +2013-10-24,69.131,70.114,68.793,70.04,104264177,0 +2013-10-25,69.962,70.212,69.144,69.257,91559954,0 +2013-10-28,69.661,69.921,68.894,69.773,148557120,0 +2013-10-29,70.614,71.007,67.752,68.034,172429868,0 +2013-10-30,68.393,69.462,68.078,69.119,96044079,0 +2013-10-31,69.533,69.862,69.04,69.228,74342353,0 +2013-11-01,69.051,69.105,67.924,68.478,74523668,0 +2013-11-04,68.616,69.371,68.313,69.361,66254698,0 +2013-11-05,69.07,69.644,68.869,69.188,71969237,0 +2013-11-06,69.42,69.514,68.635,68.991,60179071,0 +2013-11-07,68.816,69.296,67.863,67.876,70759975,0 +2013-11-08,68.154,69.02,67.889,68.945,75200409,0 +2013-11-11,68.873,69.096,68.13,68.744,61238751,0 +2013-11-12,68.562,69.39,68.475,68.876,55096757,0 +2013-11-13,68.625,69.167,68.469,68.954,53108867,0 +2013-11-14,69.243,70.1,69.12,69.954,76137223,0 +2013-11-15,69.743,70.074,69.466,69.532,85689577,0 +2013-11-18,69.532,69.825,68.635,68.691,65960448,0 +2013-11-19,68.741,69.319,68.602,68.812,56325427,0 +2013-11-20,68.768,68.927,68.121,68.212,52299532,0 +2013-11-21,68.552,69.031,68.033,69.021,70627891,0 +2013-11-22,68.808,69.156,68.677,68.848,60271546,0 +2013-11-25,69.005,69.65,69.002,69.366,61838610,0 +2013-11-26,69.41,71.01,69.401,70.645,108093005,0 +2013-11-27,71.032,72.316,70.645,72.311,97875204,0 +2013-11-29,72.774,73.948,72.554,73.65,85784777,0 +2013-12-02,73.904,74.742,72.954,73.008,127378358,0 +2013-12-03,73.945,75.012,73.861,75.006,121442841,0 +2013-12-04,74.899,75.386,74.278,74.832,101776136,0 +2013-12-05,75.845,76.175,75.016,75.216,120550905,0 +2013-12-06,74.937,75.063,74.113,74.173,92774029,0 +2013-12-09,74.289,75.439,74.289,75.019,86349511,0 +2013-12-10,74.644,75.213,74.328,74.904,74866930,0 +2013-12-11,75.097,75.622,74.129,74.349,96933561,0 +2013-12-12,74.463,74.877,74.174,74.24,70680718,0 +2013-12-13,74.547,74.552,73.33,73.433,89649953,0 +2013-12-16,73.51,74.518,73.509,73.837,76133485,0 +2013-12-17,73.614,74.096,73.293,73.506,61879032,0 +2013-12-18,72.804,73.037,71.362,72.948,152480161,0 +2013-12-19,72.759,72.844,72.014,72.111,86456519,0 +2013-12-20,72.238,73.056,72.159,72.715,117510402,0 +2013-12-23,75.23,75.588,74.534,75.505,135046926,0 +2013-12-24,75.48,75.741,74.968,75.187,45181907,0 +2013-12-26,75.242,75.428,74.618,74.685,54960420,0 +2013-12-27,74.675,74.753,74.104,74.182,60845998,0 +2013-12-30,73.832,74.182,73.152,73.445,68315985,0 +2013-12-31,73.398,74.338,73.374,74.303,60185593,0 +2014-01-02,73.596,73.776,73.112,73.259,63381747,0 +2014-01-03,73.224,73.334,71.579,71.649,105949677,0 +2014-01-06,71.181,72.421,70.671,72.041,111371946,0 +2014-01-07,72.092,72.311,71.247,71.526,85837203,0 +2014-01-08,71.363,72.257,71.347,71.979,69742195,0 +2014-01-09,72.421,72.429,70.905,71.059,75296626,0 +2014-01-10,71.496,71.626,70.343,70.584,82293116,0 +2014-01-13,70.186,71.852,70.182,70.953,102208792,0 +2014-01-14,71.284,72.411,71.21,72.366,90221824,0 +2014-01-15,73.31,74.196,73.063,73.819,106000094,0 +2014-01-16,73.494,73.753,73.066,73.408,61901334,0 +2014-01-17,73.041,73.119,71.506,71.609,116852625,0 +2014-01-21,71.639,72.854,71.577,72.723,88608305,0 +2014-01-22,72.964,73.809,72.554,73.044,102612534,0 +2014-01-23,72.837,73.705,72.157,73.663,108796944,0 +2014-01-24,73.374,73.588,72.151,72.324,116677005,0 +2014-01-27,72.907,73.48,72.283,72.911,153946079,0 +2014-01-28,67.38,68.212,66.494,67.084,287513027,0 +2014-01-29,66.758,67.197,66.038,66.323,135707442,0 +2014-01-30,66.562,67.084,65.786,66.195,183051179,0 +2014-01-31,65.593,66.425,65.368,66.301,125399329,0 +2014-02-03,66.57,67.246,66.129,66.425,108441037,0 +2014-02-04,66.996,67.476,66.591,67.384,101619608,0 +2014-02-05,67.088,68.246,67.05,67.889,88655086,0 +2014-02-06,67.959,68.417,67.66,68.285,69118384,0 +2014-02-07,69.43,69.674,68.935,69.24,100349532,0 +2014-02-10,69.021,70.882,69.017,70.481,92647341,0 +2014-02-11,70.697,71.647,70.551,71.41,75715859,0 +2014-02-12,71.541,71.89,71.049,71.405,82624900,0 +2014-02-13,71.238,72.593,71.174,72.539,82460844,0 +2014-02-14,72.279,72.745,72.11,72.481,73373818,0 +2014-02-18,72.733,73.44,72.696,72.747,69951104,0 +2014-02-19,72.58,72.865,71.194,71.599,84194209,0 +2014-02-20,70.988,71.549,70.482,70.77,82022735,0 +2014-02-21,70.962,71.225,69.896,69.983,74764289,0 +2014-02-24,69.701,70.606,69.608,70.289,77490655,0 +2014-02-25,70.539,70.56,69.417,69.559,62349200,0 +2014-02-26,69.87,69.951,68.699,68.931,74079480,0 +2014-02-27,68.902,70.452,68.755,70.305,80967174,0 +2014-02-28,70.493,70.981,69.567,70.115,99751584,0 +2014-03-03,69.683,70.703,69.659,70.318,64072608,0 +2014-03-04,70.75,70.966,70.319,70.781,69522755,0 +2014-03-05,70.738,71.25,70.5,70.931,53655882,0 +2014-03-06,70.986,71.207,70.364,70.716,49737443,0 +2014-03-07,70.84,70.881,70.09,70.674,59366890,0 +2014-03-10,70.399,71.059,70.397,70.738,47918092,0 +2014-03-11,71.344,71.781,70.96,71.427,75267090,0 +2014-03-12,71.216,71.597,70.884,71.495,53819509,0 +2014-03-13,71.608,71.903,70.504,70.703,69087181,0 +2014-03-14,70.453,70.735,69.682,69.908,63579800,0 +2014-03-17,70.249,70.613,70.062,70.183,53487828,0 +2014-03-18,70.068,70.879,69.976,70.802,56191210,0 +2014-03-19,70.918,71.446,70.482,70.784,60225016,0 +2014-03-20,70.617,70.97,70.261,70.442,55860392,0 +2014-03-21,70.874,71.116,70.128,70.998,100370851,0 +2014-03-24,71.742,72.016,71.29,71.843,95345170,0 +2014-03-25,72.149,72.715,71.895,72.612,75668667,0 +2014-03-26,72.816,73.148,71.797,71.918,80352724,0 +2014-03-27,71.933,72.149,71.297,71.611,59515262,0 +2014-03-28,71.723,71.807,71.181,71.531,53761202,0 +2014-03-31,71.847,72.058,71.406,71.513,45120078,0 +2014-04-01,71.649,72.196,71.518,72.168,53756949,0 +2014-04-02,72.266,72.411,71.981,72.29,48236882,0 +2014-04-03,72.133,72.283,71.634,71.787,43575329,0 +2014-04-04,71.946,71.946,70.693,70.858,73750958,0 +2014-04-07,70.385,70.736,69.534,69.746,77608565,0 +2014-04-08,69.975,70.099,69.113,69.741,65359845,0 +2014-04-09,69.619,70.68,69.553,70.658,55224337,0 +2014-04-10,70.707,70.915,69.704,69.747,64210843,0 +2014-04-11,69.192,69.66,68.902,69.231,72865944,0 +2014-04-14,69.521,69.572,68.912,69.505,55141578,0 +2014-04-15,69.319,69.5,68.128,69.011,71395004,0 +2014-04-16,69.023,69.429,68.503,69.15,57571857,0 +2014-04-17,69.304,70.318,69.176,69.942,76225876,0 +2014-04-21,69.995,70.902,69.813,70.773,48937241,0 +2014-04-22,70.393,70.859,70.151,70.842,54306219,0 +2014-04-23,70.494,70.767,69.876,69.917,105031141,0 +2014-04-24,75.707,75.945,74.711,75.648,203605444,0 +2014-04-25,75.218,76.211,75.141,76.203,104551267,0 +2014-04-28,76.319,79.376,76.285,79.154,179365028,0 +2014-04-29,79.108,79.408,78.544,78.921,90348130,0 +2014-04-30,78.961,79.866,78.583,78.621,122417131,0 +2014-05-01,78.877,79.252,78.125,78.806,65429177,0 +2014-05-02,78.942,79.168,78.571,78.952,51295837,0 +2014-05-05,78.627,80.074,78.609,80.068,76869322,0 +2014-05-06,80.183,80.532,79.198,79.198,100362399,0 +2014-05-07,79.306,79.581,78.307,78.921,75755285,0 +2014-05-08,78.815,79.641,78.566,78.779,61329017,0 +2014-05-09,78.316,78.545,77.754,78.454,77701371,0 +2014-05-12,78.713,79.54,78.701,79.429,56840197,0 +2014-05-13,79.315,79.657,79.141,79.553,42568593,0 +2014-05-14,79.375,80.041,79.282,79.569,44314309,0 +2014-05-15,79.68,79.935,78.786,78.891,61473971,0 +2014-05-16,78.866,80.057,78.434,80.056,73643793,0 +2014-05-19,80.1,81.371,80.031,81.006,84639303,0 +2014-05-20,80.996,81.247,80.488,81.02,62516532,0 +2014-05-21,80.9,81.286,80.665,81.235,52478753,0 +2014-05-22,81.273,81.709,80.938,81.364,53517596,0 +2014-05-23,81.361,82.362,81.256,82.283,61841671,0 +2014-05-27,82.487,83.855,82.483,83.823,92959721,0 +2014-05-28,83.874,84.387,83.575,83.604,84112408,0 +2014-05-29,84.121,85.331,84.11,85.13,100301688,0 +2014-05-30,85.478,86.307,84.26,84.813,150300491,0 +2014-06-02,84.939,85.054,83.404,84.228,98405789,0 +2014-06-03,84.202,85.581,84.174,85.417,78047724,0 +2014-06-04,85.403,86.805,85.227,86.394,89398150,0 +2014-06-05,86.578,87.002,86.097,86.733,80934610,0 +2014-06-06,87.075,87.256,86.346,86.494,93342815,0 +2014-06-09,86.938,88.048,86.051,87.879,80295914,0 +2014-06-10,88.846,89.147,87.757,88.394,66883772,0 +2014-06-11,88.282,88.872,87.662,88.03,48658211,0 +2014-06-12,88.189,88.273,86.19,86.556,58320003,0 +2014-06-13,86.473,86.697,85.234,85.608,58118984,0 +2014-06-16,85.824,86.986,85.769,86.473,37895837,0 +2014-06-17,86.574,86.938,86.096,86.358,31676565,0 +2014-06-18,86.537,86.556,85.674,86.454,35716386,0 +2014-06-19,86.556,86.565,85.665,86.151,37860944,0 +2014-06-20,86.142,86.799,85.251,85.261,107532634,0 +2014-06-23,85.646,85.928,84.973,85.186,46568517,0 +2014-06-24,85.113,86.041,84.589,84.671,41613569,0 +2014-06-25,84.608,85.064,84.08,84.746,39299432,0 +2014-06-26,84.756,85.392,84.221,85.251,34768469,0 +2014-06-27,85.177,86.286,85.13,86.266,68252052,0 +2014-06-30,86.377,87.895,86.368,87.157,52861317,0 +2014-07-01,87.709,88.225,87.345,87.709,40725631,0 +2014-07-02,88.03,88.215,87.307,87.671,30350622,0 +2014-07-03,87.851,88.255,87.41,88.189,24408182,0 +2014-07-07,88.292,90.026,88.255,90.006,60137317,0 +2014-07-08,90.29,90.785,88.084,89.427,69499690,0 +2014-07-09,89.509,89.989,88.872,89.462,38832141,0 +2014-07-10,87.933,89.615,87.709,89.137,42298257,0 +2014-07-11,89.436,89.933,88.966,89.304,36251885,0 +2014-07-14,89.905,90.87,89.707,90.458,45599128,0 +2014-07-15,90.785,90.832,89.127,89.399,48635107,0 +2014-07-16,90.936,91.067,88.853,88.891,56993284,0 +2014-07-17,89.127,89.361,86.818,87.307,61033713,0 +2014-07-18,87.804,88.853,87.24,88.564,53258066,0 +2014-07-21,89.089,89.098,87.895,88.103,41588495,0 +2014-07-22,88.798,88.994,88.273,88.837,58640916,0 +2014-07-23,89.49,91.798,89.256,91.151,99020557,0 +2014-07-24,91.011,91.273,90.43,91.002,48739410,0 +2014-07-25,90.832,91.761,90.636,91.601,46330790,0 +2014-07-28,91.741,93.074,91.49,92.869,58914302,0 +2014-07-29,93.159,93.262,92.146,92.267,45964362,0 +2014-07-30,92.324,92.567,91.601,92.052,35187956,0 +2014-07-31,91.124,91.395,89.408,89.661,60546841,0 +2014-08-01,89.004,90.617,88.921,90.158,51711818,0 +2014-08-04,90.382,90.579,89.256,89.652,42582820,0 +2014-08-05,89.436,89.734,88.498,89.21,59603481,0 +2014-08-06,88.862,89.548,88.827,89.059,41075935,0 +2014-08-07,89.474,90.437,88.693,89.05,49506505,0 +2014-08-08,88.845,89.373,87.919,89.295,44397365,0 +2014-08-11,89.797,90.558,89.392,90.474,38777694,0 +2014-08-12,90.523,91.313,90.116,90.456,35843833,0 +2014-08-13,90.624,91.653,90.523,91.653,33844029,0 +2014-08-14,91.735,91.963,91.238,91.898,29809389,0 +2014-08-15,92.273,92.547,91.294,92.349,51895143,0 +2014-08-18,92.831,93.659,92.349,93.462,50442748,0 +2014-08-19,93.698,94.904,93.612,94.762,73588829,0 +2014-08-20,94.685,95.271,94.209,94.798,55845077,0 +2014-08-21,94.798,95.128,94.359,94.806,35506462,0 +2014-08-22,94.529,95.635,94.437,95.492,46837483,0 +2014-08-25,95.957,96.304,95.453,95.703,42651286,0 +2014-08-26,95.585,95.664,95.06,95.09,35148584,0 +2014-08-27,95.203,96.682,94.924,96.266,50529216,0 +2014-08-28,95.75,96.885,95.721,96.372,72606328,0 +2014-08-29,96.91,96.998,96.332,96.613,47291611,0 +2014-09-02,97.144,97.778,96.826,97.357,56799272,0 +2014-09-03,97.173,97.261,92.914,93.255,132973538,0 +2014-09-04,93.171,94.341,92.172,92.482,90877484,0 +2014-09-05,93.122,93.678,92.662,93.284,61989515,0 +2014-09-08,93.593,93.603,92.418,92.706,49137848,0 +2014-09-09,93.385,97.153,90.615,92.359,201284504,0 +2014-09-10,92.378,95.289,92.142,95.184,106928476,0 +2014-09-11,94.645,95.605,93.897,95.595,66170138,0 +2014-09-12,95.385,96.323,95.261,95.814,66492385,0 +2014-09-15,96.91,97.134,95.605,95.788,65021888,0 +2014-09-16,94.065,95.433,93.207,95.06,70954298,0 +2014-09-17,95.443,95.947,94.815,95.74,64628387,0 +2014-09-18,96.13,96.469,95.721,95.938,39549055,0 +2014-09-19,96.362,96.469,95.08,95.148,75183589,0 +2014-09-22,95.947,96.276,94.806,95.243,55962429,0 +2014-09-23,94.825,97.036,94.771,96.75,67229669,0 +2014-09-24,96.295,96.949,95.375,95.898,63786691,0 +2014-09-25,94.742,94.933,92.105,92.244,106124440,0 +2014-09-26,92.869,94.967,92.745,94.967,66137193,0 +2014-09-29,92.983,94.665,92.963,94.359,52777909,0 +2014-09-30,95.012,95.703,94.762,94.967,58608757,0 +2014-10-01,94.815,94.914,93.028,93.482,54606482,0 +2014-10-02,93.564,94.463,92.408,94.159,50644838,0 +2014-10-03,93.726,94.454,93.348,93.897,46100381,0 +2014-10-06,94.209,94.874,93.708,93.897,39284946,0 +2014-10-07,93.717,94.369,93.057,93.075,44640757,0 +2014-10-08,93.084,95.289,92.662,95.002,60880729,0 +2014-10-09,95.703,96.499,94.835,95.203,82050763,0 +2014-10-10,94.914,96.169,94.539,94.952,70335317,0 +2014-10-13,95.502,95.928,94.075,94.075,56785539,0 +2014-10-14,94.626,94.752,92.904,93.075,67552864,0 +2014-10-15,92.34,93.452,89.71,91.936,107047620,0 +2014-10-16,90.059,92.105,89.928,90.729,76540345,0 +2014-10-17,91.898,93.313,91.247,92.057,72278875,0 +2014-10-20,92.716,94.218,92.576,94.027,82008266,0 +2014-10-21,97.104,97.104,95.443,96.584,100342644,0 +2014-10-22,96.94,98.132,96.71,97.085,72394711,0 +2014-10-23,98.102,99.014,97.67,98.806,75378691,0 +2014-10-24,99.143,99.423,98.518,99.173,49878793,0 +2014-10-27,98.826,99.413,98.686,99.074,36271985,0 +2014-10-28,99.343,100.6,99.303,100.6,50990915,0 +2014-10-29,100.52,101.21,100.24,101.18,55900054,0 +2014-10-30,100.8,101.19,99.82,100.82,43133355,0 +2014-10-31,101.8,101.83,101.05,101.79,47360766,0 +2014-11-03,102.01,103.96,101.8,103.11,55411077,0 +2014-11-04,103.07,103.19,101.53,102.35,44070830,0 +2014-11-05,102.81,103.01,101.92,102.59,39689849,0 +2014-11-06,102.71,102.97,102.06,102.88,36913586,0 +2014-11-07,102.93,103.49,102.74,103.18,35579243,0 +2014-11-10,103.19,103.5,102.85,103.01,28715933,0 +2014-11-11,102.89,103.91,102.6,103.86,28975210,0 +2014-11-12,103.55,105.48,103.54,105.3,49565600,0 +2014-11-13,105.84,107.39,105.65,106.81,62848423,0 +2014-11-14,107.1,108.09,107.01,108.08,46514993,0 +2014-11-17,108.17,111.03,107.24,107.91,49355439,0 +2014-11-18,107.86,109.52,107.82,109.32,46700497,0 +2014-11-19,109.29,109.57,107.73,108.54,44193084,0 +2014-11-20,108.78,110.62,108.72,110.1,45810221,0 +2014-11-21,111.23,111.29,109.83,110.25,60391456,0 +2014-11-24,110.63,112.44,110.39,112.3,50094566,0 +2014-11-25,112.73,113.34,111.18,111.32,72696667,0 +2014-11-26,111.64,112.76,111.53,112.66,43101440,0 +2014-11-28,112.91,113.02,111.75,112.6,26213573,0 +2014-12-01,112.47,112.89,105.32,108.94,88523014,0 +2014-12-02,107.44,109.57,106.74,108.51,62668871,0 +2014-12-03,109.57,110.14,108.98,109.73,45449566,0 +2014-12-04,109.58,110.95,109.14,109.34,44522535,0 +2014-12-05,109.79,109.88,108.52,108.87,40469204,0 +2014-12-08,108,108.52,105.67,106.39,60872177,0 +2014-12-09,104.32,108.2,103.52,108.02,63577767,0 +2014-12-10,108.3,108.72,105.59,105.99,47045201,0 +2014-12-11,106.27,107.73,105.39,105.67,43789936,0 +2014-12-12,104.57,105.91,103.74,103.89,59159400,0 +2014-12-15,104.77,105.65,100.66,102.44,70959092,0 +2014-12-16,100.68,104.3,100.59,101.05,64100708,0 +2014-12-17,101.42,103.98,101.12,103.58,56384329,0 +2014-12-18,105.91,106.64,104.74,106.64,62279357,0 +2014-12-19,106.27,107.18,105.71,105.82,93393464,0 +2014-12-22,106.18,107.43,106.01,106.92,47699142,0 +2014-12-23,107.17,107.27,106.45,106.53,27476050,0 +2014-12-24,106.57,106.7,106.04,106.04,15296050,0 +2014-12-26,106.13,108.4,106.04,107.91,35610489,0 +2014-12-29,107.72,108.64,107.63,107.84,29133164,0 +2014-12-30,107.57,107.84,106.14,106.51,31555587,0 +2014-12-31,106.81,107.09,104.34,104.49,43715939,0 +2015-01-02,105.44,105.49,101.62,103.5,56196458,0 +2015-01-05,102.51,102.83,99.79,100.58,67880159,0 +2015-01-06,100.97,101.69,99.044,100.59,69460979,0 +2015-01-07,101.49,102.42,100.99,102.01,42324520,0 +2015-01-08,103.4,106.17,102.88,105.93,62679241,0 +2015-01-09,106.66,107.19,104.34,106.04,56712884,0 +2015-01-12,106.59,106.62,102.98,103.42,52421263,0 +2015-01-13,105.48,106.79,103.09,104.35,70853466,0 +2015-01-14,103.21,104.59,102.7,103.95,51653023,0 +2015-01-15,104.14,104.2,100.96,101.12,63283616,0 +2015-01-16,101.33,101.84,99.59,100.32,82925523,0 +2015-01-20,102.1,102.96,100.8,102.9,86996261,0 +2015-01-21,103.13,105.12,102.49,103.72,57995531,0 +2015-01-22,104.4,106.46,103.88,106.39,80829941,0 +2015-01-23,106.33,107.68,105.58,106.96,53300672,0 +2015-01-26,107.67,108.26,106.79,107.06,58694780,0 +2015-01-27,106.41,106.47,103.2,103.31,100510975,0 +2015-01-28,111.34,111.82,109.16,109.16,155781252,0 +2015-01-29,110.11,112.84,109.4,112.57,89138209,0 +2015-01-30,112.08,113.58,110.61,110.91,88431556,0 +2015-02-02,111.75,112.82,109.88,112.3,66181590,0 +2015-02-03,112.17,112.75,111.33,112.32,54824287,0 +2015-02-04,112.17,114.08,111.99,113.17,74030839,0 +2015-02-05,114.06,114.26,113.31,113.99,44438620,0 +2015-02-06,114.06,114.28,112.59,113.02,45964935,0 +2015-02-09,112.68,113.89,112.57,113.77,40895791,0 +2015-02-10,114.21,116.07,114.2,115.96,65164771,0 +2015-02-11,116.67,118.71,116.42,118.67,77332011,0 +2015-02-12,119.8,121.15,119.34,120.19,78330856,0 +2015-02-13,120.96,120.96,119.42,120.77,56927581,0 +2015-02-17,121.16,122.47,120.61,121.49,66393629,0 +2015-02-18,121.3,122.37,121.12,122.31,47218044,0 +2015-02-19,122.1,122.61,121.97,122.07,39279445,0 +2015-02-20,122.22,123.07,121.71,123.07,51474822,0 +2015-02-23,123.59,126.4,123.23,126.4,74617465,0 +2015-02-24,126.34,126.97,124.65,125.61,72791386,0 +2015-02-25,125.03,125.07,121.79,122.38,78560740,0 +2015-02-26,122.38,124.36,120.33,123.93,96020337,0 +2015-02-27,123.57,124.07,121.88,122.08,65231155,0 +2015-03-02,122.83,123.82,121.94,122.67,50608817,0 +2015-03-03,122.55,123.09,121.74,122.94,39791443,0 +2015-03-04,122.68,123.13,121.96,122.16,33320315,0 +2015-03-05,122.19,122.35,119.53,120.14,59469141,0 +2015-03-06,122.02,122.95,119.99,120.32,76646735,0 +2015-03-09,121.62,123.14,118.85,120.82,93152478,0 +2015-03-10,120.14,120.9,117.66,118.32,72453061,0 +2015-03-11,118.53,118.57,116.03,116.16,72539762,0 +2015-03-12,116.23,118.69,115.58,116.79,50910842,0 +2015-03-13,118.22,119.17,116.5,117.47,54534273,0 +2015-03-16,117.73,118.74,116.77,118.74,37748111,0 +2015-03-17,119.67,121,119.42,120.73,53688174,0 +2015-03-18,120.69,122.74,120.1,122.09,68680174,0 +2015-03-19,122.35,122.83,121.07,121.17,48202149,0 +2015-03-20,121.91,122.02,118.95,119.67,72283235,0 +2015-03-23,120.8,121.51,120.24,120.89,39679274,0 +2015-03-24,120.91,121.7,120.28,120.4,34557741,0 +2015-03-25,120.26,120.52,117.27,117.27,54353186,0 +2015-03-26,116.66,118.67,116.52,118.07,50057655,0 +2015-03-27,118.41,118.5,116.81,117.14,41611700,0 +2015-03-30,117.89,120.13,117.85,120.1,49559739,0 +2015-03-31,119.83,120.21,118.18,118.24,44289056,0 +2015-04-01,118.62,118.91,116.99,118.08,42743165,0 +2015-04-02,118.82,119.33,118.02,119.1,33903042,0 +2015-04-06,118.28,121.18,118.15,121.02,39136637,0 +2015-04-07,121.31,121.77,119.73,119.76,36819494,0 +2015-04-08,119.62,120.13,118.76,119.37,39279005,0 +2015-04-09,119.62,120.3,118.46,120.28,34132932,0 +2015-04-10,119.7,120.89,119.04,120.78,42287023,0 +2015-04-13,121.99,122.19,120.33,120.54,38264547,0 +2015-04-14,120.69,120.97,119.67,120.03,26857714,0 +2015-04-15,120.14,120.81,119.76,120.48,30457939,0 +2015-04-16,120.01,120.78,119.85,119.91,29850770,0 +2015-04-17,119.32,119.88,118.27,118.55,54670854,0 +2015-04-20,119.32,121.77,118.96,121.27,49502951,0 +2015-04-21,121.75,121.84,120.38,120.6,34094920,0 +2015-04-22,120.69,122.46,120.05,122.22,39585604,0 +2015-04-23,121.94,123.94,121.78,123.24,48161636,0 +2015-04-24,123.99,124.13,122.81,123.82,46851616,0 +2015-04-27,125.74,126.53,124.63,126.06,102018381,0 +2015-04-28,127.78,127.86,123.14,124.06,125135690,0 +2015-04-29,123.72,125.06,121.94,122.24,66696822,0 +2015-04-30,121.17,121.54,118.38,118.94,87540921,0 +2015-05-01,119.84,123.69,119.08,122.54,61568872,0 +2015-05-04,123.07,124.07,121.9,122.3,53651452,0 +2015-05-05,121.79,122.07,119.55,119.57,51844979,0 +2015-05-06,120.28,120.45,117.25,118.8,75857987,0 +2015-05-07,119.07,120.33,118.35,119.55,45652779,0 +2015-05-08,120.89,121.79,120.35,121.79,58208702,0 +2015-05-11,121.58,121.74,119.89,120.54,44047350,0 +2015-05-12,119.86,121.08,119.12,120.12,50464764,0 +2015-05-13,120.39,121.39,120.13,120.26,36354556,0 +2015-05-14,121.6,123.07,121.36,123.07,47366643,0 +2015-05-15,123.18,123.6,122.35,122.89,40021590,0 +2015-05-18,122.51,124.75,122.49,124.23,53256393,0 +2015-05-19,124.72,124.9,123.74,124.11,46769197,0 +2015-05-20,124.04,125,123.45,124.1,38199509,0 +2015-05-21,124.11,125.61,123.89,125.41,41631624,0 +2015-05-22,125.6,126.9,125.42,126.49,47777927,0 +2015-05-26,126.54,126.84,123.23,123.72,74044081,0 +2015-05-27,124.37,126.22,124.09,126.01,48026583,0 +2015-05-28,125.83,125.92,125.12,125.75,32191239,0 +2015-05-29,125.25,125.47,123.95,124.31,53319512,0 +2015-06-01,125.22,125.41,124.09,124.57,33649578,0 +2015-06-02,123.92,124.68,123.43,124,35247319,0 +2015-06-03,124.69,124.96,123.95,124.16,32466240,0 +2015-06-04,123.68,124.61,123.03,123.47,40290158,0 +2015-06-05,123.63,123.79,122.49,122.77,37331747,0 +2015-06-08,123.02,123.32,121.03,121.97,55195489,0 +2015-06-09,120.91,122.22,119.88,121.61,58732198,0 +2015-06-10,122.09,123.45,122,123,40948345,0 +2015-06-11,123.29,124.22,122.6,122.71,37084550,0 +2015-06-12,122.32,122.46,121.31,121.37,38579953,0 +2015-06-15,120.34,121.43,119.97,121.12,46094023,0 +2015-06-16,121.22,122,120.59,121.78,33001274,0 +2015-06-17,121.89,122.03,120.95,121.49,34493316,0 +2015-06-18,121.43,122.44,121.42,122.03,37101639,0 +2015-06-19,121.92,121.98,120.62,120.81,57335314,0 +2015-06-22,121.68,122.2,121.28,121.78,35668278,0 +2015-06-23,121.67,121.78,121.08,121.23,31717403,0 +2015-06-24,121.41,123.87,121.32,122.25,57926303,0 +2015-06-25,122.98,123.31,121.69,121.69,33466523,0 +2015-06-26,121.84,122.14,120.73,120.96,46175652,0 +2015-06-29,119.73,120.69,118.79,118.84,51514057,0 +2015-06-30,119.83,120.36,119.16,119.7,46494077,0 +2015-07-01,121.1,121.14,120.24,120.81,31685901,0 +2015-07-02,120.65,120.9,120.03,120.66,28513099,0 +2015-07-06,119.23,120.46,119.15,120.25,29403250,0 +2015-07-07,120.15,120.39,118.11,119.95,49193474,0 +2015-07-08,118.79,118.95,116.94,116.97,63669393,0 +2015-07-09,118.19,118.38,113.77,114.59,82356224,0 +2015-07-10,116.37,118.19,115.67,117.65,64290561,0 +2015-07-13,119.32,120.01,118.63,119.92,43423667,0 +2015-07-14,120.29,120.59,119.33,119.87,33279159,0 +2015-07-15,119.98,121.35,119.84,121.02,35239317,0 +2015-07-16,121.94,122.69,121.54,122.63,37955852,0 +2015-07-17,123.19,123.72,122.44,123.72,48373947,0 +2015-07-20,124.99,126.9,124.73,126.03,61718915,0 +2015-07-21,126.78,126.85,124.35,124.78,80429635,0 +2015-07-22,116.42,119.77,116.42,119.51,120975577,0 +2015-07-23,120.43,121.29,119.35,119.45,53440014,0 +2015-07-24,119.61,120,118.23,118.81,44180009,0 +2015-07-27,117.48,117.97,116.55,117.17,46582952,0 +2015-07-28,117.75,118.24,116.95,117.75,35226815,0 +2015-07-29,117.54,117.87,116.68,117.39,38782874,0 +2015-07-30,116.73,116.97,116.14,116.78,35237502,0 +2015-07-31,117,117.04,115.4,115.76,44937189,0 +2015-08-03,115.95,116.97,112.15,113.02,73291498,0 +2015-08-04,112.06,112.33,108.07,109.41,130079349,0 +2015-08-05,107.8,112.08,106.98,110.13,104065281,0 +2015-08-06,111.17,111.68,109.4,110.37,55158515,0 +2015-08-07,109.84,111.44,109.76,110.74,40338410,0 +2015-08-10,111.71,115.04,111.71,114.78,57321780,0 +2015-08-11,112.93,113.28,108.64,108.8,101212493,0 +2015-08-12,107.88,110.64,105.09,110.47,106071713,0 +2015-08-13,111.24,111.58,109.8,110.38,50629240,0 +2015-08-14,109.59,111.49,109.31,111.16,44781223,0 +2015-08-17,111.24,112.79,110.72,112.32,42648223,0 +2015-08-18,111.61,112.6,111.21,111.68,36051444,0 +2015-08-19,111.3,111.7,109.93,110.25,50369291,0 +2015-08-20,109.37,109.62,107.01,107.98,71456351,0 +2015-08-21,105.87,107.27,101.28,101.4,133808438,0 +2015-08-24,90.948,104.32,88.196,98.855,169159067,0 +2015-08-25,106.51,106.51,99.213,99.452,108070357,0 +2015-08-26,102.64,105.34,100.7,105.15,100948881,0 +2015-08-27,107.59,108.55,105.47,108.25,88265831,0 +2015-08-28,107.54,108.62,106.93,108.6,55457595,0 +2015-08-31,107.4,109.79,107.37,108.09,58654593,0 +2015-09-01,105.6,107.25,102.91,103.26,80160471,0 +2015-09-02,105.68,107.7,104.6,107.7,64558315,0 +2015-09-03,107.84,108.11,105.49,105.81,55530094,0 +2015-09-04,104.47,105.89,104.03,104.74,52152843,0 +2015-09-08,107.03,107.91,105.76,107.67,57209226,0 +2015-09-09,109.07,109.32,105.23,105.6,88677659,0 +2015-09-10,105.72,108.59,105.35,107.92,65588130,0 +2015-09-11,107.16,109.49,107.13,109.49,52068455,0 +2015-09-14,111.76,112.06,110.11,110.54,60880851,0 +2015-09-15,111.15,111.71,109.69,111.47,45210576,0 +2015-09-16,111.44,111.72,110.66,111.59,38776840,0 +2015-09-17,110.88,111.67,109.03,109.22,66878079,0 +2015-09-18,107.57,109.57,107.24,108.76,77489421,0 +2015-09-21,108.98,110.59,108.97,110.44,52388174,0 +2015-09-22,108.69,109.46,107.87,108.71,52517731,0 +2015-09-23,108.94,109.97,108.61,109.59,37299049,0 +2015-09-24,108.56,110.72,107.73,110.24,52307402,0 +2015-09-25,111.62,111.86,109.32,109.96,58573958,0 +2015-09-28,109.15,109.83,107.8,107.8,54334671,0 +2015-09-29,108.16,108.82,103.4,104.55,76529838,0 +2015-09-30,105.62,106.93,104.25,105.74,69340249,0 +2015-10-01,104.56,105.08,102.86,105.04,66686622,0 +2015-10-02,103.55,106.41,103.1,105.82,60522325,0 +2015-10-05,105.33,106.77,104.56,106.2,54302250,0 +2015-10-06,106.06,107.11,105.22,106.71,50964296,0 +2015-10-07,107.11,107.14,104.87,106.2,48782741,0 +2015-10-08,105.64,105.64,103.74,104.96,64652927,0 +2015-10-09,105.45,107.64,104.95,107.49,55008109,0 +2015-10-12,108.06,108.08,106.84,106.99,31773458,0 +2015-10-13,106.24,107.81,106.11,107.16,34474745,0 +2015-10-14,106.69,106.91,105.02,105.66,46380294,0 +2015-10-15,106.35,107.47,105.93,107.23,39298405,0 +2015-10-16,107.15,107.37,105.97,106.44,40924861,0 +2015-10-19,106.22,107.12,105.56,107.1,31042788,0 +2015-10-20,106.74,109.45,106.24,109.08,51079941,0 +2015-10-21,109.3,110.8,109.01,109.07,44152631,0 +2015-10-22,109.6,110.72,109.39,110.72,43450707,0 +2015-10-23,111.87,114.3,111.51,114.16,61927636,0 +2015-10-26,113.19,113.24,110.17,110.51,69194942,0 +2015-10-27,110.62,111.72,109.29,109.81,72898797,0 +2015-10-28,112.1,114.37,111.26,114.34,89241471,0 +2015-10-29,113.79,115.7,113.37,115.54,53436940,0 +2015-10-30,115.97,116.2,114.51,114.56,51494522,0 +2015-11-02,114.92,116.34,114.67,116.16,33585292,0 +2015-11-03,115.8,118.38,115.71,117.51,47482394,0 +2015-11-04,118.04,118.69,116.59,116.95,46788462,0 +2015-11-05,117.32,118.12,115.7,116.42,41082805,0 +2015-11-06,116.6,117.28,116.12,116.56,34320534,0 +2015-11-09,116.46,117.28,115.57,116.07,35181795,0 +2015-11-10,112.56,113.67,111.74,112.43,61415434,0 +2015-11-11,112.04,113.03,110.92,111.79,46967285,0 +2015-11-12,111.93,112.48,111.34,111.41,33783843,0 +2015-11-13,110.91,111.26,108.08,108.15,47584787,0 +2015-11-16,107.23,109.98,106.87,109.92,39580968,0 +2015-11-17,110.63,110.76,109.11,109.46,28685340,0 +2015-11-18,111.45,113.1,111.19,112.91,48480343,0 +2015-11-19,113.25,115.29,112.42,114.36,44970842,0 +2015-11-20,114.77,115.45,114.42,114.86,35613492,0 +2015-11-23,114.83,115.27,112.95,113.35,33739180,0 +2015-11-24,112.95,114.91,112.77,114.45,44451376,0 +2015-11-25,114.78,114.79,113.52,113.63,22215769,0 +2015-11-27,113.89,114.01,113.21,113.41,13551137,0 +2015-11-30,113.59,114.97,113.35,113.9,40696103,0 +2015-12-01,114.33,114.38,112.52,112.95,36200728,0 +2015-12-02,112.7,113.71,111.76,111.95,34660013,0 +2015-12-03,112.21,112.45,109.96,110.91,43169645,0 +2015-12-04,111,114.81,110.82,114.6,60012168,0 +2015-12-07,114.55,115.4,113.41,113.88,33325471,0 +2015-12-08,113.13,114.19,112.52,113.83,35636755,0 +2015-12-09,113.25,113.29,110.79,111.31,48154922,0 +2015-12-10,111.72,112.6,111.2,111.84,30342878,0 +2015-12-11,110.9,111.1,108.64,108.97,48700025,0 +2015-12-14,107.99,108.47,105.71,108.29,67497102,0 +2015-12-15,107.78,108.59,106.24,106.37,55386059,0 +2015-12-16,106.94,107.83,104.74,107.19,58414146,0 +2015-12-17,107.85,108.06,104.91,104.91,46504966,0 +2015-12-18,104.84,105.44,101.87,102.09,100184873,0 +2015-12-21,103.28,103.37,101.63,103.33,49431782,0 +2015-12-22,103.4,103.72,102.49,103.23,34053824,0 +2015-12-23,103.27,104.78,103.2,104.56,33920744,0 +2015-12-24,104.93,104.93,103.93,104.01,14122706,0 +2015-12-28,103.59,103.69,102.22,102.83,27737339,0 +2015-12-29,102.97,105.35,102.87,104.68,32127908,0 +2015-12-30,104.53,104.64,103.18,103.32,23107102,0 +2015-12-31,103.02,103.04,100.91,101.35,40331735,0 +2016-01-04,98.786,101.46,98.211,101.44,65260163,0 +2016-01-05,101.81,101.91,98.597,98.885,54763789,0 +2016-01-06,96.816,98.558,96.149,96.949,69848688,0 +2016-01-07,95.003,96.4,92.839,92.857,79584675,0 +2016-01-08,94.879,95.417,93.157,93.349,72263364,0 +2016-01-11,95.283,95.369,93.715,94.86,51663692,0 +2016-01-12,96.806,96.94,95.159,96.238,48788856,0 +2016-01-13,96.584,97.417,93.675,93.762,63633079,0 +2016-01-14,94.31,96.74,92.175,95.814,64047546,0 +2016-01-15,92.618,94.071,91.807,93.512,81347795,0 +2016-01-19,94.745,94.977,91.943,93.059,55141551,0 +2016-01-20,91.557,94.532,89.941,93.184,72332171,0 +2016-01-21,93.445,94.235,91.404,92.712,48343798,0 +2016-01-22,94.957,97.68,94.707,97.641,66786882,0 +2016-01-25,97.739,97.748,95.517,95.736,51552663,0 +2016-01-26,96.209,97.124,94.418,96.266,62947239,0 +2016-01-27,92.463,93.029,89.863,89.941,136183663,0 +2016-01-28,90.295,91,88.948,90.585,57221872,0 +2016-01-29,91.258,93.715,90.835,93.715,64001873,0 +2016-02-01,92.876,93.108,91.847,92.839,39944544,0 +2016-02-02,91.867,92.463,90.769,90.961,36704829,0 +2016-02-03,91.462,93.233,90.575,92.761,46169095,0 +2016-02-04,92.79,94.214,92.142,93.506,46932646,0 +2016-02-05,93.429,93.816,90.69,91.009,44587215,0 +2016-02-08,90.148,92.636,90.06,91.968,54462376,0 +2016-02-09,91.27,92.868,90.923,91.948,43358326,0 +2016-02-10,92.849,93.264,91.087,91.252,42513754,0 +2016-02-11,90.786,91.688,89.625,90.7,47475842,0 +2016-02-12,91.174,91.474,90.031,90.98,40597943,0 +2016-02-16,91.977,93.749,91.579,93.545,46978971,0 +2016-02-17,93.575,95.065,93.07,94.979,43799633,0 +2016-02-18,95.675,95.724,93.013,93.177,38283311,0 +2016-02-19,92.926,93.66,92.732,92.965,33669312,0 +2016-02-22,93.226,93.798,92.849,93.778,34204278,0 +2016-02-23,93.314,93.41,91.523,91.659,30704980,0 +2016-02-24,90.97,93.294,90.331,93.022,35993405,0 +2016-02-25,92.975,93.66,92.202,93.66,25516566,0 +2016-02-26,94.087,94.884,93.488,93.808,28393158,0 +2016-02-29,93.758,95.085,93.555,93.594,31134115,0 +2016-03-01,94.522,97.542,94.299,97.309,50578114,0 +2016-03-02,97.289,97.661,96.449,97.522,33443244,0 +2016-03-03,97.357,98.459,97.232,98.26,35928675,0 +2016-03-04,99.093,100.42,98.132,99.73,45219857,0 +2016-03-07,99.113,99.54,97.729,98.607,33651382,0 +2016-03-08,97.552,98.508,97.183,97.797,31433660,0 +2016-03-09,98.072,98.338,97.055,97.885,25017401,0 +2016-03-10,98.171,98.964,96.94,97.935,34622277,0 +2016-03-11,98.964,99.004,98.26,98.984,26173003,0 +2016-03-14,98.646,99.62,98.518,99.233,25905632,0 +2016-03-15,100.63,101.81,100.52,101.24,41393259,0 +2016-03-16,101.27,102.9,101.25,102.57,39570655,0 +2016-03-17,102.14,103.06,101.59,102.41,35559413,0 +2016-03-18,102.93,103.09,101.82,102.53,45667572,0 +2016-03-21,102.54,104.21,101.77,102.52,36677182,0 +2016-03-22,101.88,103.86,101.84,103.3,33517703,0 +2016-03-23,103.07,103.65,102.51,102.73,26553819,0 +2016-03-24,102.1,102.84,101.53,102.28,26997489,0 +2016-03-28,102.6,102.78,101.69,101.82,18989484,0 +2016-03-29,101.53,104.34,101.53,104.24,30594055,0 +2016-03-30,105.17,106.89,105.12,106.05,45807935,0 +2016-03-31,106.21,106.38,105.39,105.5,24742478,0 +2016-04-01,105.3,106.47,104.73,106.46,25945411,0 +2016-04-04,106.89,108.59,106.74,107.56,35942137,0 +2016-04-05,106.01,107.18,105.92,106.3,25609378,0 +2016-04-06,106.7,107.43,105.71,107.41,25984596,0 +2016-04-07,106.42,106.89,104.65,105.06,30475096,0 +2016-04-08,105.42,106.26,104.7,105.18,23790775,0 +2016-04-11,105.48,107.07,105.34,105.53,27359835,0 +2016-04-12,105.84,106.97,105.18,106.91,27011785,0 +2016-04-13,107.25,108.74,107.25,108.44,32986760,0 +2016-04-14,108.04,108.79,107.77,108.5,25034296,0 +2016-04-15,108.51,108.7,106.22,106.34,45477740,0 +2016-04-18,105.4,105.46,103.52,104.04,60827213,0 +2016-04-19,104.43,104.54,102.82,103.49,31809676,0 +2016-04-20,103.22,104.62,102.66,103.71,27283535,0 +2016-04-21,103.51,103.51,102.14,102.57,30241777,0 +2016-04-22,101.64,103.07,101.28,102.29,33801240,0 +2016-04-25,101.63,102.26,101.17,101.71,27531875,0 +2016-04-26,100.58,101.93,100.58,101.01,40792313,0 +2016-04-27,92.926,95.55,92.617,94.678,112434674,0 +2016-04-28,94.484,94.746,91.232,91.792,81721131,0 +2016-04-29,90.98,91.688,89.548,90.739,69258022,0 +2016-05-02,90.957,91.068,89.441,90.641,48928736,0 +2016-05-03,91.184,92.676,90.68,92.132,57833504,0 +2016-05-04,92.152,92.829,90.816,91.174,39613522,0 +2016-05-05,91.543,91.612,90.259,90.804,35564617,0 +2016-05-06,90.931,91.008,89.449,90.296,43943729,0 +2016-05-09,90.57,91.32,90.171,90.366,31804157,0 +2016-05-10,90.891,91.125,89.704,90.979,33492603,0 +2016-05-11,91.037,91.125,90.044,90.093,24986431,0 +2016-05-12,90.296,90.356,87.133,87.979,76624902,0 +2016-05-13,87.649,89.274,87.649,88.154,43567098,0 +2016-05-16,89.976,91.924,89.255,91.427,61321587,0 +2016-05-17,92.08,92.225,90.579,91.047,45087968,0 +2016-05-18,91.701,92.722,91.437,92.09,42224835,0 +2016-05-19,92.168,92.168,91.125,91.737,30385734,0 +2016-05-20,92.168,92.937,92.05,92.732,30922310,0 +2016-05-23,93.364,94.65,93.171,93.909,37195696,0 +2016-05-24,94.68,95.528,94.309,95.342,30438731,0 +2016-05-25,96.092,97.134,95.547,96.998,35401739,0 +2016-05-26,97.075,98.102,96.063,97.787,56007085,0 +2016-05-27,96.841,97.846,96.652,97.729,35434339,0 +2016-05-31,96.998,97.778,96.239,97.251,40046258,0 +2016-06-01,96.432,96.94,95.761,95.886,28795510,0 +2016-06-02,95.049,95.283,94.105,95.167,39671824,0 +2016-06-03,95.235,95.703,94.904,95.361,26032342,0 +2016-06-06,95.429,99.223,95,96.054,23399089,0 +2016-06-07,96.657,97.261,96.374,96.442,21261857,0 +2016-06-08,96.432,96.959,96.101,96.354,19634691,0 +2016-06-09,95.926,97.377,95.886,97.046,26357497,0 +2016-06-10,95.955,96.75,95.906,96.258,26692624,0 +2016-06-13,96.11,96.531,94.563,94.796,36532227,0 +2016-06-14,94.777,95.901,94.222,94.914,31680335,0 +2016-06-15,95.265,95.838,94.495,94.602,26709300,0 +2016-06-16,93.929,95.195,93.56,95,31329507,0 +2016-06-17,94.095,94.125,92.81,92.839,56080025,0 +2016-06-20,93.492,94.046,92.546,92.616,34353316,0 +2016-06-21,92.459,93.832,92.204,93.404,32787026,0 +2016-06-22,93.735,94.359,92.859,93.063,26879714,0 +2016-06-23,93.433,93.774,92.761,93.589,31379225,0 +2016-06-24,90.482,92.183,90.229,90.96,64987579,0 +2016-06-27,90.57,90.619,89.109,89.635,45491756,0 +2016-06-28,90.472,91.213,89.732,91.145,39565203,0 +2016-06-29,91.515,92.08,91.184,91.934,32943084,0 +2016-06-30,91.973,93.267,91.836,93.102,34702639,0 +2016-07-01,92.995,93.944,92.839,93.384,25603482,0 +2016-07-05,92.898,92.907,91.99,92.556,27859251,0 +2016-07-06,92.128,93.161,91.906,93.034,30109590,0 +2016-07-07,93.199,93.979,93.122,93.433,24360033,0 +2016-07-08,93.969,94.359,93.54,94.154,27265101,0 +2016-07-11,94.222,95.099,94.213,94.445,23269626,0 +2016-07-12,94.63,95.148,94.583,94.874,22288127,0 +2016-07-13,94.864,95.118,94.309,94.339,22399014,0 +2016-07-14,94.845,96.403,94.777,96.199,36057603,0 +2016-07-15,96.334,96.706,95.926,96.199,30331958,0 +2016-07-18,96.12,97.512,96.025,97.222,36732486,0 +2016-07-19,96.959,97.387,96.745,97.261,22690490,0 +2016-07-20,97.387,97.836,97.129,97.347,25320799,0 +2016-07-21,97.222,98.369,96.541,96.831,30952856,0 +2016-07-22,96.666,96.706,95.742,96.082,26506075,0 +2016-07-25,95.683,96.258,94.388,94.796,39095508,0 +2016-07-26,94.289,95.41,93.899,94.144,41543558,0 +2016-07-27,101.53,101.62,100.07,100.26,92280275,0 +2016-07-28,100.15,101.72,100.14,101.61,38147287,0 +2016-07-29,101.47,101.82,100.97,101.49,25483464,0 +2016-08-01,101.68,103.38,101.68,103.28,37755686,0 +2016-08-02,103.28,103.3,101.29,101.75,32274886,0 +2016-08-03,102.08,103.07,102.04,103.02,28107157,0 +2016-08-04,103.38,103.79,103.08,103.67,25774059,0 +2016-08-05,104.06,105.4,103.97,105.23,34200101,0 +2016-08-08,105.28,106.11,104.92,106.11,26154976,0 +2016-08-09,105.98,106.67,105.76,106.54,26028603,0 +2016-08-10,106.44,106.63,105.51,105.75,22767897,0 +2016-08-11,106.26,106.66,105.6,105.68,23833284,0 +2016-08-12,105.53,106.18,105.53,105.93,18276547,0 +2016-08-15,105.89,107.25,105.83,107.19,25003629,0 +2016-08-16,107.34,107.93,106.94,107.1,33480899,0 +2016-08-17,106.83,107.09,106.08,106.93,23217740,0 +2016-08-18,106.96,107.31,106.75,106.81,19296763,0 +2016-08-19,106.5,107.4,106.1,107.08,25057769,0 +2016-08-22,106.59,106.77,105.6,106.25,25105654,0 +2016-08-23,106.33,107.04,106.27,106.58,19390253,0 +2016-08-24,106.3,106.48,105.43,105.78,23001540,0 +2016-08-25,105.15,105.63,104.46,105.32,23392897,0 +2016-08-26,105.17,105.7,104.1,104.7,27370509,0 +2016-08-29,104.4,105.2,104.08,104.59,23921658,0 +2016-08-30,103.6,104.29,103.3,103.78,22815497,0 +2016-08-31,103.46,104.35,103.44,103.89,27265644,0 +2016-09-01,103.93,104.57,103.42,104.5,25052908,0 +2016-09-02,105.45,105.75,104.59,105.48,26313135,0 +2016-09-06,105.65,106.04,105.27,105.45,23740653,0 +2016-09-07,105.58,106.49,104.83,106.1,39707231,0 +2016-09-08,105.01,105.03,103.04,103.32,50719791,0 +2016-09-09,102.46,103.52,100.98,100.98,44964056,0 +2016-09-12,100.51,103.52,100.39,103.24,41785747,0 +2016-09-13,105.27,106.52,105,105.7,62547232,0 +2016-09-14,106.46,110.66,106.34,109.44,108613122,0 +2016-09-15,111.49,113.31,111.12,113.15,90447884,0 +2016-09-16,112.72,113.71,111.67,112.53,71964632,0 +2016-09-19,112.79,113.76,110.88,111.21,47369748,0 +2016-09-20,110.68,111.75,110.17,111.2,34656540,0 +2016-09-21,111.48,111.62,110.1,111.18,33923980,0 +2016-09-22,111.97,112.55,111.63,112.23,30131295,0 +2016-09-23,112.04,112.4,109.23,110.36,52802745,0 +2016-09-26,109.32,111.02,109.23,110.52,29240653,0 +2016-09-27,110.63,110.81,110,110.72,24405226,0 +2016-09-28,111.32,112.25,111.06,111.58,29459822,0 +2016-09-29,110.79,111.43,109.47,109.85,35383410,0 +2016-09-30,110.12,111,109.47,110.68,34063033,0 +2016-10-03,110.36,110.68,109.94,110.18,21290000,0 +2016-10-04,110.69,111.93,110.28,110.63,29927280,0 +2016-10-05,111.03,111.29,110.34,110.68,20421419,0 +2016-10-06,111.33,111.96,110.76,111.52,28654697,0 +2016-10-07,111.93,112.17,111.14,111.69,24470377,0 +2016-10-10,112.63,114.31,112.33,113.63,36107269,0 +2016-10-11,115.25,116.21,113.78,113.88,63602119,0 +2016-10-12,114.91,115.51,114.31,114.9,37745045,0 +2016-10-13,114.35,115,113.3,114.54,34806734,0 +2016-10-14,115.43,115.7,114.69,115.18,35191224,0 +2016-10-17,114.89,115.39,114.34,115.11,22473663,0 +2016-10-18,115.71,115.74,115.01,115.03,22508257,0 +2016-10-19,114.81,115.31,111.43,114.68,19945147,0 +2016-10-20,114.42,114.94,113.91,114.62,24118935,0 +2016-10-21,114.37,114.47,113.86,114.17,22320703,0 +2016-10-24,114.66,115.29,114.56,115.2,23201534,0 +2016-10-25,115.48,115.89,114.87,115.78,39372794,0 +2016-10-26,111.93,113.28,110.94,113.17,65731885,0 +2016-10-27,112.97,113.44,111.73,112.1,28622558,0 +2016-10-28,111.5,112.81,111.08,111.35,35517569,0 +2016-10-31,111.28,111.85,110.83,111.17,26982072,0 +2016-11-01,111.09,111.4,108.23,109.17,44759202,0 +2016-11-02,109.08,110.01,108.91,109.27,28935110,0 +2016-11-03,109.23,109.7,107.82,108.09,27365705,0 +2016-11-04,106.82,108.5,106.4,107.11,31332886,0 +2016-11-07,108.33,108.76,107.73,108.66,32097231,0 +2016-11-08,108.56,109.95,107.96,109.31,23340607,0 +2016-11-09,108.14,109.56,106.34,109.13,56639402,0 +2016-11-10,109.34,109.34,104.16,106.08,57233876,0 +2016-11-11,105.42,107.14,104.86,106.72,34260819,0 +2016-11-14,106.01,106.1,102.43,104.04,51998455,0 +2016-11-15,104.88,105.98,104.48,105.41,32783355,0 +2016-11-16,105.01,108.48,104.91,108.25,59075293,0 +2016-11-17,108.07,108.6,107.1,108.21,26926203,0 +2016-11-18,107.98,108.79,107.92,108.31,26701564,0 +2016-11-21,108.37,110.22,108.27,109.96,27750355,0 +2016-11-22,110.18,110.63,109.64,110.03,22763071,0 +2016-11-23,109.6,109.75,108.58,109.47,25113722,0 +2016-11-25,109.38,110.1,109.2,110.02,11243972,0 +2016-11-28,109.67,110.68,109.63,109.81,25507986,0 +2016-11-29,109.03,110.26,108.32,109.7,28114816,0 +2016-11-30,109.84,110.42,108.52,108.77,33487474,0 +2016-12-01,108.62,109.19,107.3,107.76,35443246,0 +2016-12-02,107.44,108.34,107.12,108.16,24243808,0 +2016-12-05,108.26,108.29,106.54,107.38,32817489,0 +2016-12-06,107.77,108.61,107.46,108.21,25593403,0 +2016-12-07,107.53,109.43,107.43,109.28,29781884,0 +2016-12-08,109.11,110.64,108.85,110.35,26299711,0 +2016-12-09,110.53,112.88,110.53,112.15,33899172,0 +2016-12-12,111.5,113.17,110.7,111.51,26334256,0 +2016-12-13,112.04,114.09,111.95,113.36,42609408,0 +2016-12-14,113.21,114.36,113.15,113.36,32880126,0 +2016-12-15,113.55,114.89,113.4,113.99,44092267,0 +2016-12-16,114.63,114.66,113.82,114.14,39326480,0 +2016-12-19,113.97,115.51,113.92,114.8,26726101,0 +2016-12-20,114.9,115.63,114.84,115.11,19184853,0 +2016-12-21,114.96,115.53,114.94,115.21,21988995,0 +2016-12-22,114.51,114.67,113.81,114.45,25566176,0 +2016-12-23,113.76,114.68,113.76,114.68,13998412,0 +2016-12-27,114.68,115.93,114.65,115.41,17786684,0 +2016-12-28,115.65,116.15,114.36,114.92,19619378,0 +2016-12-29,114.61,115.26,114.56,114.89,14988280,0 +2016-12-30,114.81,115.35,113.6,113.99,31078121,0 +2017-01-03,113.97,114.49,112.93,114.31,28186251,0 +2017-01-04,114.02,114.67,113.92,114.19,20850505,0 +2017-01-05,114.09,115.02,113.98,114.77,22044719,0 +2017-01-06,114.94,116.29,114.63,116.04,31419514,0 +2017-01-09,116.08,117.54,116.07,117.11,32145605,0 +2017-01-10,116.89,117.49,116.43,117.23,21526096,0 +2017-01-11,116.86,118.03,116.72,117.86,26871766,0 +2017-01-12,117.01,117.41,116.34,117.37,27099166,0 +2017-01-13,117.23,117.73,116.93,117.16,25804433,0 +2017-01-17,116.47,118.33,116.35,118.1,32437894,0 +2017-01-18,118.1,118.59,117.82,118.09,22940226,0 +2017-01-19,117.51,118.19,117.48,117.89,24226408,0 +2017-01-20,118.54,118.54,117.85,118.1,28871584,0 +2017-01-23,118.1,118.9,117.88,118.19,19773986,0 +2017-01-24,117.66,118.2,117.61,118.07,22955721,0 +2017-01-25,118.51,120.17,118.37,119.95,32181237,0 +2017-01-26,119.74,120.51,119.68,120.01,25763704,0 +2017-01-27,120.21,120.42,119.68,120.02,20442567,0 +2017-01-30,119.02,119.7,118.75,119.7,30221237,0 +2017-01-31,119.23,119.47,118.71,119.43,40551991,0 +2017-02-01,125.02,128.43,125,126.7,112035964,0 +2017-02-02,125.95,127.34,125.76,126.5,32642923,0 +2017-02-03,126.28,127.14,126.14,127.03,24901403,0 +2017-02-06,127.08,128.44,126.87,128.23,26535136,0 +2017-02-07,128.48,130,128.39,129.44,36819227,0 +2017-02-08,129.27,130.13,129.14,129.95,21807865,0 +2017-02-09,130.13,130.91,129.6,130.89,24315896,0 +2017-02-10,130.93,131.4,130.53,130.6,19547142,0 +2017-02-13,131.54,132.27,131.21,131.75,22372021,0 +2017-02-14,131.93,133.52,131.71,133.45,31422950,0 +2017-02-15,133.95,134.7,133.07,133.94,34025535,0 +2017-02-16,134.1,134.33,133.28,133.78,21789666,0 +2017-02-17,133.53,134.26,133.53,134.15,21373610,0 +2017-02-21,134.66,135.17,134.41,135.12,22189166,0 +2017-02-22,134.86,135.54,134.54,135.53,17802516,0 +2017-02-23,135.79,135.88,134.73,134.92,18825464,0 +2017-02-24,134.34,135.08,133.71,135.08,21476672,0 +2017-02-27,135.56,135.84,134.71,135.35,19361217,0 +2017-02-28,135.5,135.84,135.12,135.41,21396929,0 +2017-03-01,136.29,138.52,136,138.18,35409768,0 +2017-03-02,138.37,138.65,137.16,137.36,25867137,0 +2017-03-03,137.18,138.22,136.99,138.17,20213907,0 +2017-03-06,137.75,138.16,137,137.73,19165899,0 +2017-03-07,137.46,138.35,137.19,137.91,16882562,0 +2017-03-08,137.35,138.19,137.22,137.4,18180205,0 +2017-03-09,137.14,137.19,135.47,137.08,20855801,0 +2017-03-10,137.65,137.74,137.04,137.54,18704430,0 +2017-03-13,137.56,137.82,137.22,137.6,17625458,0 +2017-03-14,137.7,138.04,137.24,137.39,15488099,0 +2017-03-15,137.8,139.12,137.42,138.83,25992231,0 +2017-03-16,139.09,139.39,138.63,139.06,19456910,0 +2017-03-17,139.37,139.37,138.27,138.36,38384215,0 +2017-03-20,138.77,139.87,138.6,139.83,21793966,0 +2017-03-21,140.48,141.14,138.12,138.23,39992202,0 +2017-03-22,138.23,139.97,138.15,139.79,26162591,0 +2017-03-23,139.63,139.95,138.98,139.29,20584245,0 +2017-03-24,139.87,140.11,138.72,139.01,21671446,0 +2017-03-27,137.78,139.59,137.02,139.25,22479436,0 +2017-03-28,139.28,142.38,138.99,142.14,33139331,0 +2017-03-29,142.02,142.83,141.53,142.46,28380855,0 +2017-03-30,142.53,142.84,141.84,142.27,18920203,0 +2017-03-31,142.06,142.61,141.35,142,19012588,0 +2017-04-03,142.05,142.46,141.39,142.04,20219441,0 +2017-04-04,141.59,143.22,141.51,143.1,19657127,0 +2017-04-05,142.56,143.77,142.15,142.36,27332311,0 +2017-04-06,142.63,142.86,141.79,142,20534685,0 +2017-04-07,142.07,142.52,141.61,141.68,16867174,0 +2017-04-10,141.94,142.22,141.24,141.51,16881122,0 +2017-04-11,141.28,141.69,138.43,140,30734653,0 +2017-04-12,139.97,140.51,139.38,140.17,20112357,0 +2017-04-13,140.28,140.73,139.42,139.42,17342580,0 +2017-04-17,139.85,140.25,139.24,140.2,15807795,0 +2017-04-18,139.78,140.41,139.48,139.57,14228494,0 +2017-04-19,140.25,140.37,138.82,139.05,16712357,0 +2017-04-20,139.59,141.26,139.53,140.79,22650719,0 +2017-04-21,140.79,141.02,140.22,140.63,16824648,0 +2017-04-24,141.84,142.29,141.52,141.98,17318652,0 +2017-04-25,142.25,143.23,142.21,142.87,18890350,0 +2017-04-26,142.81,142.94,141.72,142.02,20251016,0 +2017-04-27,142.26,142.5,141.65,142.13,14373797,0 +2017-04-28,142.43,142.64,141.61,141.99,21104313,0 +2017-05-01,143.41,145.5,143.28,144.89,33919167,0 +2017-05-02,145.84,146.37,145.15,145.81,44952316,0 +2017-05-03,143.9,145.79,142.61,145.37,46142971,0 +2017-05-04,144.83,145.45,144.12,144.84,23619320,0 +2017-05-05,145.07,147.26,145.07,147.24,27647313,0 +2017-05-08,147.31,151.92,147.31,151.24,49253481,0 +2017-05-09,152.09,153.09,151.67,152.21,39488435,0 +2017-05-10,151.85,152.16,150.35,151.49,26082077,0 +2017-05-11,151.31,152.92,151.17,152.8,27444703,0 +2017-05-12,153.54,155.25,153.51,154.93,32675245,0 +2017-05-15,154.84,155.48,153.89,154.53,26110341,0 +2017-05-16,154.77,154.89,153.56,154.31,20146922,0 +2017-05-17,152.45,153.42,148.59,149.12,51061768,0 +2017-05-18,150.14,152.19,150,151.4,33821183,0 +2017-05-19,152.23,152.83,151.49,151.91,27091159,0 +2017-05-22,152.85,153.43,151.76,152.84,23107230,0 +2017-05-23,153.74,153.74,152.16,152.65,20058989,0 +2017-05-24,152.69,153.02,151.53,152.19,19351686,0 +2017-05-25,152.58,153.2,151.88,152.72,19363914,0 +2017-05-26,152.85,153.09,152.16,152.46,22056974,0 +2017-05-30,152.27,153.28,152.18,152.52,20270624,0 +2017-05-31,152.82,153.02,151.24,151.61,24640098,0 +2017-06-01,152.02,152.18,151.08,152.03,16507879,0 +2017-06-02,152.43,154.29,151.74,154.29,27913007,0 +2017-06-05,153.19,153.3,152.31,152.78,25475184,0 +2017-06-06,152.75,154.64,152.63,153.3,26794401,0 +2017-06-07,153.86,154.81,153.33,154.21,21178774,0 +2017-06-08,154.09,154.38,153.25,153.83,21306003,0 +2017-06-09,154.03,154.03,144.93,147.87,65276866,0 +2017-06-12,144.65,145,141.44,144.33,72746935,0 +2017-06-13,146.05,146.34,144.06,145.5,34353487,0 +2017-06-14,146.39,146.39,142.77,144.07,31693046,0 +2017-06-15,142.25,143.39,141.14,143.22,31901027,0 +2017-06-16,142.71,143.41,141.13,141.2,50646574,0 +2017-06-19,142.59,145.65,142.59,145.25,32710986,0 +2017-06-20,145.78,145.78,143.85,143.92,25073708,0 +2017-06-21,144.43,144.98,143.52,144.78,21426008,0 +2017-06-22,144.68,145.61,144.03,144.54,19229949,0 +2017-06-23,144.04,146.05,144.02,145.19,35690628,0 +2017-06-26,146.06,147.17,144.29,144.73,25872700,0 +2017-06-27,143.92,145.07,142.55,142.66,24917773,0 +2017-06-28,143.4,145.02,142.09,144.74,22222273,0 +2017-06-29,143.62,144.04,141.21,142.61,31691561,0 +2017-06-30,143.36,143.87,142.71,142.95,23177479,0 +2017-07-03,143.79,144.21,142.03,142.43,14385444,0 +2017-07-05,142.62,143.7,141.66,143.02,21713608,0 +2017-07-06,141.95,142.43,141.34,141.66,24292414,0 +2017-07-07,141.83,143.66,141.83,143.11,18860161,0 +2017-07-10,143.04,144.86,142.3,143.97,21239601,0 +2017-07-11,143.64,144.76,143.3,144.44,19871415,0 +2017-07-12,144.78,145.09,143.73,144.65,25050830,0 +2017-07-13,144.41,147.38,144.35,146.66,25270495,0 +2017-07-14,146.86,148.22,146.22,147.93,20268831,0 +2017-07-17,147.71,149.77,147.46,148.44,23949714,0 +2017-07-18,148.09,149,147.56,148.95,17984885,0 +2017-07-19,149.35,150.29,148.82,149.89,21068251,0 +2017-07-20,150.37,150.61,149.06,149.21,17330058,0 +2017-07-21,148.86,149.31,147.77,149.14,25310545,0 +2017-07-24,149.45,151.3,148.78,150.96,21630982,0 +2017-07-25,150.67,152.69,150.67,151.6,18971925,0 +2017-07-26,152.2,152.78,151.91,152.31,15852949,0 +2017-07-27,152.6,152.84,146.19,149.43,32678443,0 +2017-07-28,148.77,149.1,148.08,148.39,17325849,0 +2017-07-31,148.78,149.2,147.02,147.62,19862378,0 +2017-08-01,147.99,149.09,147.3,148.92,34393966,0 +2017-08-02,158.09,158.56,154.99,155.97,70262267,0 +2017-08-03,155.88,156.04,153.86,154.4,26825418,0 +2017-08-04,154.9,156.22,154.52,155.22,20675691,0 +2017-08-07,155.89,157.73,155.5,157.62,21994093,0 +2017-08-08,157.41,160.62,157.09,158.88,36405476,0 +2017-08-09,158.07,160.06,157.92,159.86,26260901,0 +2017-08-10,159.33,159.43,154.08,154.76,39801107,0 +2017-08-11,156.04,158,155.51,156.92,26331467,0 +2017-08-14,158.75,159.64,158.18,159.28,22154486,0 +2017-08-15,160.08,161.61,159.57,161.02,29485832,0 +2017-08-16,161.36,161.93,159.58,160.37,27722910,0 +2017-08-17,159.95,160.13,157.27,157.29,27595336,0 +2017-08-18,157.29,158.93,156.16,156.94,27496898,0 +2017-08-21,156.94,157.32,154.55,156.65,26435558,0 +2017-08-22,157.66,159.43,157.45,159.21,21646375,0 +2017-08-23,158.5,159.9,158.31,159.41,19448353,0 +2017-08-24,159.86,160.16,157.98,158.7,19874496,0 +2017-08-25,159.08,159.98,158.7,159.29,25559215,0 +2017-08-28,159.57,161.42,159.36,160.89,25790449,0 +2017-08-29,159.53,162.54,159.43,162.33,29563743,0 +2017-08-30,163.21,163.3,162.03,162.76,27320985,0 +2017-08-31,163.05,163.93,162.89,163.41,26842382,0 +2017-09-01,164.21,164.35,163.04,163.46,16635257,0 +2017-09-05,163.16,163.66,159.98,161.5,29611447,0 +2017-09-06,162.13,162.41,159.95,161.33,21690060,0 +2017-09-07,161.51,161.66,159.79,160.68,21986050,0 +2017-09-08,160.28,160.57,157.96,158.06,28527517,0 +2017-09-11,159.93,161.47,159.32,160.92,31630174,0 +2017-09-12,162.03,163.37,158.2,160.28,71864833,0 +2017-09-13,159.3,159.39,157.34,159.08,45029308,0 +2017-09-14,158.42,158.83,157.52,157.71,23724888,0 +2017-09-15,157.9,160.39,157.43,159.31,49024732,0 +2017-09-18,159.54,159.93,157.43,158.1,28260649,0 +2017-09-19,158.94,159.2,157.87,158.16,20668366,0 +2017-09-20,157.33,157.69,153.28,155.51,52386815,0 +2017-09-21,155.24,155.24,152.2,152.84,37504252,0 +2017-09-22,151.48,151.72,150.02,151.35,46750753,0 +2017-09-25,149.45,151.29,148.63,150.01,44528320,0 +2017-09-26,151.24,153.37,151.15,152.59,36757890,0 +2017-09-27,153.25,154.16,152.99,153.68,25494693,0 +2017-09-28,153.34,153.73,152.15,152.73,22063341,0 +2017-09-29,152.66,153.58,151.46,153.57,26359485,0 +2017-10-02,153.71,153.9,152.17,153.26,18749860,0 +2017-10-03,153.46,154.53,153.36,153.92,16277486,0 +2017-10-04,153.08,153.31,151.91,152.93,20188277,0 +2017-10-05,153.63,154.88,153.5,154.83,21341803,0 +2017-10-06,154.41,154.93,154.01,154.74,17448243,0 +2017-10-09,155.25,156.17,154.93,155.28,16302190,0 +2017-10-10,155.5,157.43,154.54,155.34,15659866,0 +2017-10-11,155.41,156.42,155.19,155.99,16942261,0 +2017-10-12,155.79,156.81,155.17,155.44,16440001,0 +2017-10-13,156.17,156.72,155.85,156.43,16432666,0 +2017-10-16,157.33,159.43,157.09,159.31,24182814,0 +2017-10-17,159.21,160.29,158.66,159.9,19040557,0 +2017-10-18,159.85,160.13,159.03,159.19,16314850,0 +2017-10-19,156.19,156.52,154.46,155.42,42539211,0 +2017-10-20,156.05,157.18,155.4,155.69,23997615,0 +2017-10-23,156.33,157.13,154.94,155.61,22039067,0 +2017-10-24,155.73,156.86,155.64,156.54,17701740,0 +2017-10-25,156.35,156.99,154.71,155.85,21253629,0 +2017-10-26,156.67,157.26,156.22,156.85,16993593,0 +2017-10-27,158.72,163.01,158.13,162.47,44561025,0 +2017-10-30,163.3,167.47,163.13,166.12,44861465,0 +2017-10-31,167.3,169.04,166.34,168.43,36176411,0 +2017-11-01,169.26,169.33,165.02,166.29,33758685,0 +2017-11-02,167.04,167.9,164.69,167.51,41542177,0 +2017-11-03,173.38,173.64,170.51,171.88,59612161,0 +2017-11-06,171.75,174.36,171.1,173.63,34901241,0 +2017-11-07,173.29,174.51,173.29,174.18,24424877,0 +2017-11-08,174.03,175.61,173.71,175.61,24451166,0 +2017-11-09,174.48,175.46,172.52,175.25,29533086,0 +2017-11-10,175.11,175.38,174.27,174.67,25130494,0 diff --git a/Trabalho3/SCC0270-T3-11800910-11800584.ipynb b/Trabalho3/SCC0270-T3-11800910-11800584.ipynb new file mode 100644 index 0000000..df18abe --- /dev/null +++ b/Trabalho3/SCC0270-T3-11800910-11800584.ipynb @@ -0,0 +1,2302 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "MOpkPhvGuaZ5" + }, + "source": [ + "# SCC0270 - Redes Neurais e Aprendizado Profundo\n", + "## Trabalho Prático 3 - Detecção de bullying em tweets" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Vaf3nFrXugNb" + }, + "source": [ + "NOME: Felipe Andrade Garcia Tommaselli \n", + "\n", + "NUSP: 11800910\n", + "\n", + "---\n", + "\n", + "\n", + "NOME: Diego Fleury Corrêa De Moraes\n", + "\n", + "NUSP: 11800584" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t4ZEL_o4lq3S" + }, + "source": [ + "## Ambiente\n", + "\n", + "**Atenção**: recomenda-se o uso de **GPU** para rodar os modelos de redes neurais abaixo. Se não estiver disponível no seu hardware, sugere-se utilizar um IDE que forneça este recurso gratuitamente, como o **Google Colab**.\n", + "\n", + "Se for utilizar o **Colab**, basta que selecione `Ambiente de execução` no menu horizontal superior, depois selecione a opção `Alterar o tipo de ambiente de execução`, então escolha **GPU** na opção `Acelerador de hardware` e clique em **Salvar**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EJy7yGlpnBiR" + }, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yojnxVQiuj7P" + }, + "source": [ + "Neste trabalho vamos explorar e aplicar técnicas de Processamento de Linguagem Natural (PLN) para tratar textos (em Inglês) e prepará-los para servir de input em modelos de aprendizado de máquina (ML), com intuito de identificar e classificar tweets com conteúdo de bullying.\n", + "\n", + "As classes são tipos de bullying: *religion*, *age*, *ethnicity*, *gender*, *other_cyberbullying* e *not_cyberbullying*.\n", + "\n", + "Os algoritmos de ML que iremos explorar são: Naive Bayes, LSTM e BERT (Transformers).\n", + "\n", + "A base de dados fornecida contém os textos dos tweets e a classe a eles atribuída." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nhe4n_QXTSPc" + }, + "source": [ + "## Contexto\n", + "\n", + "Você é um cientista de dados que trabalha para uma rede social muito famosa. Você faz parte do departamento de Processamento de Linguagem Natural (PLN) que trata textos em inglês e os prepara para servir de input em modelos de aprendizado de máquina (ML).\n", + "\n", + "Certo dia, um bilionário resolveu comprar a rede social que você trabalha. Mas não contente, Melon Rusk, o novo dono, resolveu dar uma de thanos e demitir metade dos funcionários do seu departamento. Com isso, você e seu colega tiveram que herdar uma tarefa inacabada.\n", + "\n", + "Esses seus colegas, que foram demitidos, estavam trabalhando em um novo sistema de detecção e classificação de mensagens com conteúdo de bullying, onde cada classe representa um tipo de bullying: *religion*, *age*, *ethnicity*, *gender*, *other_cyberbullying* e *not_cyberbullying*.\n", + "\n", + "Porém, seus colegas não prestavam atenção nas aulas e não usaram o git corretamente. O notebook que eles estavam desenvolvendo, que continha os códigos mais atualizados, foram perdidos, restando apenas os resultados e as métricas obtidos.\n", + "\n", + "Para que vocês não sejam demitidos também, Melon Rusk exigiu que vocês continuassem o trabalho de detecção de bullying e espera receber um notebook que funcione, em duas semanas. E mais ainda, ele passou o desafio adicional de fazer melhor do que o seu colega que fora demitido.\n", + "\n", + "Uma boa notícia é que diversos comentários ficaram pelo meio caminho, indicando algumas possíveis maneiras de melhorar os resultados." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PbtMEqsTYocj" + }, + "source": [ + "## Avaliação\n", + "\n", + "Utilize os conhecimentos obtidos nas aulas do Moacir para fazer um trabalho fenomenal e obter modelos que atinjam as melhores métricas possíveis. As métricas que você obter, serão comparadas com duas outras: uma feita pelo estagiário (valor base), e outra feita pelos seus colegas demitidos (valor referência).\n", + "\n", + "A nota final do trabalho, será dada segundo a fórmula:\n", + "\n", + "> Nota_final = (N_naive + N_lstm + N_bert) / 3\n", + ">\n", + "> Nota_final *= 10 # pra ficar no padrão USP de 0 a 10\n", + "\n", + "e cada N_i, onde i = {naive, lstm, bert}, é dada segundo a função:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "B2nLYycaJJjB" + }, + "outputs": [], + "source": [ + "def nota(valor_base, valor_referencia, valor_aluno):\n", + " return np.minimum(1, np.maximum(0, 1 - (valor_referencia - valor_aluno) / (valor_referencia - valor_base)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UblCr775Jx8C" + }, + "source": [ + "Ou seja, estamos avaliando o quanto você consegue fazer cada um dos modelos desempenhar melhor do que o modelo base.\n", + "\n", + "Se para um dado modelo, a sua acurácia ficar menor do que a acurácia base, então sua nota para aquele modelo será 0. E se para um dado modelo, sua acurácia ficar maior do que a acurácia de referência, então sua nota para o modelo será 10.\n", + "\n", + "Nos casos intermediários, sua nota é a porcentagem de melhoria para cada modelo.\n", + "\n", + "A nota final do trabalho é composta pela média aritmética dos três modelos.\n", + "\n", + "No final do notebook, sua nota será calculada automaticamente, mas vale ressaltar que para se tornar oficial, o seu trabalho será corrigido manualmente pelo Professor, PAEs e monitores da disciplina, e a nota final oficial será publicada no moodle." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_A5DTdOuurYu" + }, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 482 + }, + "id": "5YuNfpgsuxqD", + "outputId": "81a8c0be-943d-48f8-c1b2-f20383f79306" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Requirement already satisfied: emoji in /usr/local/lib/python3.7/dist-packages (2.2.0)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", + "[nltk_data] Package stopwords is already up-to-date!\n", + "[nltk_data] Downloading package punkt to /root/nltk_data...\n", + "[nltk_data] Package punkt is already up-to-date!\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.7/dist-packages (4.24.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from transformers) (6.0)\n", + "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.13.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.8.0)\n", + "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.64.1)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.10.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.11.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2022.6.2)\n", + "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.13.0)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.21.6)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.10.0->transformers) (4.1.1)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.10.0)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2022.9.24)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)\n", + "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Libraries for general purpose\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "#Text cleaning\n", + "import re, string\n", + "!pip install emoji\n", + "import emoji\n", + "import nltk\n", + "from nltk.stem import WordNetLemmatizer, PorterStemmer\n", + "from nltk.corpus import stopwords\n", + "nltk.download('stopwords')\n", + "nltk.download('punkt')\n", + "stop_words = set(stopwords.words('english'))\n", + "\n", + "#Data preprocessing\n", + "from sklearn import preprocessing\n", + "from sklearn.model_selection import train_test_split\n", + "from imblearn.over_sampling import RandomOverSampler\n", + "\n", + "#Naive Bayes\n", + "from sklearn.feature_extraction.text import CountVectorizer\n", + "from sklearn.feature_extraction.text import TfidfTransformer\n", + "from sklearn.naive_bayes import MultinomialNB\n", + "\n", + "#PyTorch for NN\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n", + "\n", + "#Tokenization\n", + "from collections import Counter\n", + "from gensim.models import Word2Vec\n", + "\n", + "#Transformers library for BERT\n", + "!pip install transformers\n", + "import transformers\n", + "from transformers import BertModel\n", + "from transformers import BertTokenizer\n", + "from transformers import AdamW, get_linear_schedule_with_warmup\n", + "\n", + "# Performance\n", + "from sklearn.metrics import classification_report, confusion_matrix\n", + "\n", + "#Seed for reproducibility\n", + "import random\n", + "\n", + "seed_value=42\n", + "random.seed(seed_value)\n", + "np.random.seed(seed_value)\n", + "torch.manual_seed(seed_value)\n", + "torch.cuda.manual_seed_all(seed_value)\n", + "\n", + "import time\n", + "\n", + "#set style for plots\n", + "sns.set_style(\"whitegrid\")\n", + "sns.despine()\n", + "plt.style.use(\"seaborn-whitegrid\")\n", + "plt.rc(\"figure\", autolayout=True)\n", + "plt.rc(\"axes\", labelweight=\"bold\", labelsize=\"large\", titleweight=\"bold\", titlepad=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "At6U3gpyu400" + }, + "source": [ + "## Preparação dos Dados\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "j7JwIQJOu58j" + }, + "outputs": [], + "source": [ + "# download and unzip the file from a Google Drive repository\n", + "!gdown --id 1ue-_eeS2imcSeLiEofh0rzBo3fnyuZ7r\n", + "!unzip cyberbullying_tweets.csv.zip" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "r9Ov12TdxZzh" + }, + "outputs": [], + "source": [ + "# Import into a PandasDataframe \n", + "df = pd.read_csv('/content/cyberbullying_tweets.csv')\n", + "print(df.shape)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "m4WIUS36xdcy" + }, + "outputs": [], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FAw2SvyExfhh" + }, + "outputs": [], + "source": [ + "# rename columns\n", + "df = df.rename(columns={'tweet_text': 'text', 'cyberbullying_type': 'sentiment'})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-ixrKAYq1RXf" + }, + "outputs": [], + "source": [ + "# check for duplicated rows and eliminate them\n", + "# ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Vg0lBB0m1e7c" + }, + "outputs": [], + "source": [ + "# Class distribution\n", + "print(df.sentiment.value_counts(normalize=True))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YXOiJtbg1-XG" + }, + "source": [ + "As classes estão balanceadas?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3vsEcYiO2Cvu" + }, + "source": [ + "## Tratamento dos dados textuais" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cp4kBZadOsg5" + }, + "source": [ + "Dedique uma boa parte do tempo na limpeza do texto, algumas opções são: stemming, remover emojis, remover espaços duplos, etc..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9ReFcHYF1m4j" + }, + "outputs": [], + "source": [ + "#Clean emojis from text\n", + "def remove_emoji(text):\n", + " emoji_pattern = re.compile(\n", + " '['\n", + " u'\\U0001F600-\\U0001F64F' # emoticons\n", + " u'\\U0001F300-\\U0001F5FF' # symbols & pictographs\n", + " u'\\U0001F680-\\U0001F6FF' # transport & map symbols\n", + " u'\\U0001F1E0-\\U0001F1FF' # flags (iOS)\n", + " u'\\U00002702-\\U000027B0'\n", + " u'\\U000024C2-\\U0001F251'\n", + " ']+',\n", + " flags=re.UNICODE)\n", + " return emoji_pattern.sub(r'', text)\n", + "\n", + "#Remove punctuations, links, stopwords, mentions and \\r\\n new line characters\n", + "def strip_all_entities(text): \n", + " \n", + " return text\n", + "\n", + "#remove contractions\n", + "def decontract(text):\n", + " \n", + " return text\n", + "\n", + "# ... seu código aqui\n", + "\n", + "#Then we apply all the defined functions in the following order\n", + "def deep_clean(text):\n", + " text = remove_emoji(text)\n", + " text = decontract(text)\n", + " text = strip_all_entities(text)\n", + " # ... seu código aqui\n", + " return text" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jR_A1PRC2dbM" + }, + "outputs": [], + "source": [ + "texts_new = []\n", + "for t in df.text:\n", + " texts_new.append(deep_clean(t))\n", + "df['text_clean'] = texts_new" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ggAxl-8E2g46" + }, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kA8bLXNr2iqP" + }, + "outputs": [], + "source": [ + "# check for duplicated rows and eliminate them\n", + "# ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nl0rGP_b2xSY" + }, + "outputs": [], + "source": [ + "# Class distribution\n", + "df.sentiment.value_counts(normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zO6ZpHpz3Byu" + }, + "source": [ + "Note que a classe 'other_cyberbullying' acabou com menos elementos do que as demais após os tratamentos até aqui aplicados. Vamos optar por excluir os registros da base de dados com esta classificação." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DT7d32gO3aBW" + }, + "outputs": [], + "source": [ + "#df = # ... seu código aqui\n", + "print(df.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "A246DEEF3dGI" + }, + "outputs": [], + "source": [ + "# class labels\n", + "sentiments = [\"religion\", \"age\", \"ethnicity\", \"gender\", \"not bullying\", \"other cyberbullying\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1V37qzUH3le_" + }, + "source": [ + "## Análise Exploratória dos dados e Engenharia de Variáveis" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YSB6TlgM3ujm" + }, + "source": [ + "Vamos definir uma nova variável que contém o comprimento dos tweets em termos de número de palavras." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yDDGbHpb3iav" + }, + "outputs": [], + "source": [ + "text_len = []\n", + "for text in df.text_clean:\n", + " tweet_len = len(text.split())\n", + " text_len.append(tweet_len)\n", + "df['text_len'] = text_len" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wqfKeOtr4QzY" + }, + "outputs": [], + "source": [ + "# Short tweets\n", + "plt.figure(figsize=(7,5))\n", + "ax = sns.countplot(x='text_len', data=df[df['text_len']<10], palette='mako')\n", + "plt.title('Count of tweets with less than 10 words', fontsize=20)\n", + "plt.ylabel('count')\n", + "plt.xlabel('')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nJgpzlPQ4VqQ" + }, + "source": [ + "Vamos remover tweets muito curtos (menos de 4 palavras)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2timBstp4Tko" + }, + "outputs": [], + "source": [ + "#remover tweets curtos\n", + "#df = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "m4PgMrqG4ufb" + }, + "outputs": [], + "source": [ + "# Long tweets\n", + "plt.figure(figsize=(16,5))\n", + "ax = sns.countplot(x='text_len', data=df[(df['text_len']<=1000) & (df['text_len']>10)], palette='Blues_r')\n", + "plt.title('Count of tweets with high number of words', fontsize=25)\n", + "plt.ylabel('count')\n", + "plt.xlabel('')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jdW7lQPZ40Mm" + }, + "source": [ + "Também vamos remover tweets muito longos (mais do que 100 palavras)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "22wQ6Pqp4wrJ" + }, + "outputs": [], + "source": [ + "#Remover tweets longos\n", + "#df = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RQRvxX6t45_6" + }, + "outputs": [], + "source": [ + "# Extract max length\n", + "max_len = np.max(df['text_len'])\n", + "print(max_len)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kIeUS7LUTu-h" + }, + "source": [ + "É necessário realizar um encoding para a variável target." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "z43d01UR5BhC" + }, + "outputs": [], + "source": [ + "# Encoding the target column: sentiment\n", + "df['sentiment'] = df['sentiment'].replace({'religion':0,'age':1,'ethnicity':2,'gender':3, 'other_cyberbullying':4, 'not_cyberbullying':5}) # está correto a qtd de classes?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8RNaXVSOT15h" + }, + "source": [ + "Separação do conjunto de dados em subconjuntos de treino, validação e teste." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UVnw9Fs-5w7b" + }, + "outputs": [], + "source": [ + "# Splitting data into train and test subsets and then trian into train (again) and validation\n", + "X = df['text_clean']\n", + "y = df['sentiment']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=seed_value)\n", + "\n", + "X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.1, stratify=y_train, random_state=seed_value)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FT77sGX-6Db5" + }, + "outputs": [], + "source": [ + "# target distribution\n", + "(unique, counts) = np.unique(y_train, return_counts=True)\n", + "np.asarray((unique, counts)).T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8ge4Xq0h6IN9" + }, + "source": [ + "As classes não estão muito balanceadas, então vamos aplicar uma técnica de ______ para equilibrá-las." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LT53FEhT6Ese" + }, + "outputs": [], + "source": [ + "tecnica = # ... seu código aqui\n", + "X_train, y_train = tecnica.fit_resample(np.array(X_train).reshape(-1, 1), np.array(y_train).reshape(-1, 1))\n", + "train_os = pd.DataFrame(list(zip([x[0] for x in X_train], y_train)), columns = ['text_clean', 'sentiment'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "e53qsk7F614A" + }, + "outputs": [], + "source": [ + "X_train = train_os['text_clean'].values\n", + "y_train = train_os['sentiment'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2-auNbAI63qN" + }, + "outputs": [], + "source": [ + "# checking if classes are well balanced\n", + "(unique, counts) = np.unique(y_train, return_counts=True)\n", + "np.asarray((unique, counts)).T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1QPzqFlj7Bf-" + }, + "source": [ + "## Modeling" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-_8UGi-g7-P7" + }, + "outputs": [], + "source": [ + "# function to print and plot confusion matrix\n", + "def conf_matrix(y, y_pred, title, labels):\n", + " fig, ax =plt.subplots(figsize=(7.5,7.5))\n", + " ax=sns.heatmap(confusion_matrix(y, y_pred), annot=True, cmap=\"Purples\", fmt='g', cbar=False, annot_kws={\"size\":30})\n", + " plt.title(title, fontsize=25)\n", + " ax.xaxis.set_ticklabels(labels, fontsize=16) \n", + " ax.yaxis.set_ticklabels(labels, fontsize=14.5)\n", + " ax.set_ylabel('Real', fontsize=25)\n", + " ax.set_xlabel('Predicted', fontsize=25)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SHEcFqLz7Ds1" + }, + "source": [ + "### Naive Bayes\n", + "Vamos implementar um modelo base utilizando o algoritmo Naive Bayes. Outros modelos também poderiam ser testados aqui, como Random Forest, Support Vector Machines etc." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DcYS7vDq65Gf" + }, + "outputs": [], + "source": [ + "# create a bag of words with CountVectorizer()\n", + "clf = # ... seu código aqui\n", + "X_train_cv = # ... seu código aqui\n", + "X_test_cv = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EjFa6M1U7jjV" + }, + "outputs": [], + "source": [ + "# apply TF-IFD transformation to associate weigths to the different words based on their frequency (rarer words will be given more importance).\n", + "tf_transformer = # ... seu código aqui\n", + "X_train_tf = # ... seu código aqui\n", + "X_test_tf = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "U0qCsGfN7zj1" + }, + "outputs": [], + "source": [ + "# instantiate Naive Bayes model\n", + "nb_clf = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hhL4y5rQ736s" + }, + "outputs": [], + "source": [ + "# train...\n", + "nb_clf.fit(X_train_cv, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Kb_VQ10Z76sS" + }, + "outputs": [], + "source": [ + "# and predict\n", + "nb_pred = nb_clf.predict(X_test_cv)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "75qljJwP8Maa" + }, + "outputs": [], + "source": [ + "report_naivebayes = classification_report(y_test, nb_pred, target_names=sentiments, output_dict=True)\n", + "print('Classification Report for Naive Bayes:\\n', classification_report(y_test, nb_pred, target_names=sentiments))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IEpLqXwM8Qg-" + }, + "outputs": [], + "source": [ + "conf_matrix(y_test,nb_pred,'Naive Bayes Sentiment Analysis\\nConfusion Matrix', sentiments)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0mP-N3re8WB4" + }, + "source": [ + "O modelo criado com o algoritmo Naive Bayes teve xxx desempenho, com acurácia geral de xxxxxx. Apesar do xxxx aplicado, a classe que originalmente apresentava menor representação nos dados foi a que teve xxxxx desempenho." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7genSngM88jI" + }, + "source": [ + "### Bidirectional LSTM\n", + "Da mesma forma que fizemos com Naive Bayes, precisamos pré-processar os dados. As frases serão convertidas em vetores numéricos com preenchimento (*padding*) para o número máximo de palavras em uma frase." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RKwWSYy38TCQ" + }, + "outputs": [], + "source": [ + "def Tokenize(column, seq_len):\n", + " ##Create vocabulary of words from text column\n", + " corpus = [word for text in column for word in text.split()]\n", + " count_words = Counter(corpus)\n", + " sorted_words = count_words.most_common()\n", + " vocab_to_int = {w:i+1 for i, (w,c) in enumerate(sorted_words)}\n", + "\n", + " ##Tokenize the columns text using the vocabulary\n", + " text_int = []\n", + " for text in column:\n", + " r = [vocab_to_int[word] for word in text.split()]\n", + " text_int.append(r)\n", + " \n", + " ##Add padding to tokens\n", + " features = np.zeros((len(text_int), seq_len), dtype = int)\n", + " for i, review in enumerate(text_int):\n", + " if len(review) <= seq_len:\n", + " zeros = list(np.zeros(seq_len - len(review)))\n", + " new = zeros + review\n", + " else:\n", + " new = review[: seq_len]\n", + " features[i, :] = np.array(new)\n", + "\n", + " return sorted_words, features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-wRTfxDj9rny" + }, + "outputs": [], + "source": [ + "vocabulary, tokenized_column = Tokenize(df['text_clean'], max_len)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "m0nuGhdf9vUz" + }, + "outputs": [], + "source": [ + "# example of the vectorized text\n", + "print('Original sentence:\\n')\n", + "print(df['text_clean'].iloc[100])\n", + "print('\\n Vectorized text:\\n')\n", + "tokenized_column[100]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "B94ygxUA91wc" + }, + "outputs": [], + "source": [ + "# check the TOP 20 most common words\n", + "keys = []\n", + "values = []\n", + "for key, value in vocabulary[:20]:\n", + " keys.append(key)\n", + " values.append(value)\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "ax = sns.barplot(x=keys, y=values, palette='mako')\n", + "plt.title('Top 20 most common words', size=25)\n", + "plt.ylabel(\"Words count\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iO1PBtpL-l6u" + }, + "source": [ + "#### Word Embedding by Word2Vec\n", + "Em seguida vamos utilizar um modelo pré treinado para criar uma matriz de representação numérica dos tweets. Anteriormente utilizamos a técnica Tf-idf. Agora utilizaremos a técnica Word2Vec." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "srA0ejmn-hus" + }, + "outputs": [], + "source": [ + "# text preparation\n", + "word2vec_train_data = list(map(lambda x: x.split(), X_train))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uKIWk1q3_lqR" + }, + "outputs": [], + "source": [ + "# dimension of the vectors created by the method\n", + "EMBEDDING_DIM = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5_Yrk0gc_r7O" + }, + "outputs": [], + "source": [ + "word2vec_model = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sxXmPN6k_xir" + }, + "outputs": [], + "source": [ + "print(f\"Vocabulary size: {len(vocabulary) + 1}\")\n", + "VOCAB_SIZE = len(vocabulary) + 1 #+1 for the padding" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7AAjxPK_ADeA" + }, + "outputs": [], + "source": [ + "#define empty embedding matrix\n", + "embedding_matrix = # ... seu código aqui\n", + " \n", + "#fill the embedding matrix with the pre trained values from word2vec\n", + "for word, token in vocabulary:\n", + " if word2vec_model.wv.__contains__(word):\n", + " embedding_matrix[token] = word2vec_model.wv.__getitem__(word)\n", + "\n", + "print(\"Embedding Matrix Shape:\", embedding_matrix.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SRrZvUwVAEWu" + }, + "outputs": [], + "source": [ + "# use the tokenized sentences to create a training, validation and test datasets\n", + "X = tokenized_column\n", + "y = df['sentiment'].values\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=seed_value)\n", + "X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.1, stratify=y_train, random_state=seed_value)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UreBs19SAUqc" + }, + "outputs": [], + "source": [ + "# check the balance of the target classes\n", + "(unique, counts) = np.unique(y_train, return_counts=True)\n", + "np.asarray((unique, counts)).T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pRcWMZnwAcoX" + }, + "source": [ + "Dados desbalanceados. Novamente aplicaremos xxxxx." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GFNh01SHAZeE" + }, + "outputs": [], + "source": [ + "# ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6zI_TaadAkJZ" + }, + "outputs": [], + "source": [ + "# transform to tensor and prepare dataloaders to extract the data in batches for the LSTM training, validation and testing.\n", + "train_data = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train))\n", + "test_data = TensorDataset(torch.from_numpy(X_test), torch.from_numpy(y_test))\n", + "valid_data = TensorDataset(torch.from_numpy(X_valid), torch.from_numpy(y_valid))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9JHTOMmtA0Fh" + }, + "outputs": [], + "source": [ + "BATCH_SIZE = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wBg_Ao3xA1I2" + }, + "outputs": [], + "source": [ + "train_loader = DataLoader(train_data, shuffle=False, batch_size=BATCH_SIZE, drop_last=True) \n", + "valid_loader = DataLoader(valid_data, shuffle=False, batch_size=BATCH_SIZE, drop_last=True)\n", + "test_loader = DataLoader(test_data, shuffle=False, batch_size=BATCH_SIZE, drop_last=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZDPpd4iwBHPf" + }, + "source": [ + "#### Modeling" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "obkihUkMA437" + }, + "outputs": [], + "source": [ + "# Hyperparameters\n", + "\n", + "# number of classes\n", + "NUM_CLASSES = # ... seu código aqui\n", + "\n", + "# number of neurons of the internal state (internal neural network in the LSTM)\n", + "HIDDEN_DIM = # ... seu código aqui\n", + "\n", + "#Number of stacked LSTM layers\n", + "LSTM_LAYERS = # ... seu código aqui\n", + "\n", + "# Learning rate\n", + "LR = # ... seu código aqui\n", + "\n", + "#LSTM Dropout\n", + "DROPOUT = # ... seu código aqui\n", + "\n", + "#Boolean value to choose if to use a bidirectional LSTM or not\n", + "BIDIRECTIONAL = # ... seu código aqui\n", + "\n", + "#Number of training epoch\n", + "EPOCHS = # ... seu código aqui\n", + "\n", + "# set GPU if available\n", + "DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'\n", + "print(DEVICE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IkB_8Ja0Bt0V" + }, + "outputs": [], + "source": [ + "class BiLSTM_Sentiment_Classifier(nn.Module):\n", + "\n", + " def __init__(self, vocab_size, embedding_dim, hidden_dim, num_classes, lstm_layers, bidirectional,batch_size, dropout):\n", + " super(BiLSTM_Sentiment_Classifier,self).__init__()\n", + " \n", + " # ... seu código aqui\n", + " \n", + " def forward(self, x, hidden):\n", + " self.batch_size = x.size(0)\n", + " ##EMBEDDING LAYER\n", + " # ... seu código aqui\n", + " #LSTM LAYERS\n", + " # ... seu código aqui\n", + " #Extract only the hidden state from the last LSTM cell\n", + " out = out[:,-1,:]\n", + " #FULLY CONNECTED LAYERS\n", + " out = self.fc(out)\n", + " out = self.softmax(out)\n", + "\n", + " return out, hidden\n", + "\n", + " def init_hidden(self, batch_size):\n", + " #Initialization of the LSTM hidden and cell states\n", + " h0 = torch.zeros((self.lstm_layers*self.num_directions, batch_size, self.hidden_dim)).detach().to(DEVICE)\n", + " c0 = torch.zeros((self.lstm_layers*self.num_directions, batch_size, self.hidden_dim)).detach().to(DEVICE)\n", + " hidden = (h0, c0)\n", + " return hidden" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZpIvQs2OCVVh" + }, + "outputs": [], + "source": [ + "model = BiLSTM_Sentiment_Classifier(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, NUM_CLASSES, LSTM_LAYERS, BIDIRECTIONAL, BATCH_SIZE, DROPOUT)\n", + "model = model.to(DEVICE)\n", + "\n", + "#Initialize embedding with the previously defined embedding matrix\n", + "model.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))\n", + "\n", + "#Allow the embedding matrix to be fined tuned to better adapt to out dataset and get higher accuracy\n", + "model.embedding.weight.requires_grad=True\n", + "\n", + "print(model)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "blymMR5LCknG" + }, + "outputs": [], + "source": [ + "criterion = nn.NLLLoss()\n", + "optimizer = torch.optim.AdamW(model.parameters(), lr=LR, weight_decay = 5e-6)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bn3_pwSDDMz2" + }, + "source": [ + "Agora vamos definir um loop de treinamento, onde incluímos uma funcionalidade *early stopping* e salvamos apenas os melhores modelos em termos de precisão de validação." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GJLAkx3-Cq56" + }, + "outputs": [], + "source": [ + "total_step = len(train_loader)\n", + "total_step_val = len(valid_loader)\n", + "\n", + "early_stopping_patience = 4\n", + "early_stopping_counter = 0\n", + "\n", + "valid_acc_max = 0 # Initialize best accuracy top 0\n", + "\n", + "for e in range(EPOCHS):\n", + "\n", + " #lists to host the train and validation losses of every batch for each epoch\n", + " train_loss, valid_loss = [], []\n", + "\n", + " #lists to host the train and validation accuracy of every batch for each epoch\n", + " train_acc, valid_acc = [], []\n", + "\n", + " #lists to host the train and validation predictions of every batch for each epoch\n", + " y_train_list, y_val_list = [], []\n", + "\n", + " #initalize number of total and correctly classified texts during training and validation\n", + " correct, correct_val = 0, 0\n", + " total, total_val = 0, 0\n", + " running_loss, running_loss_val = 0, 0\n", + "\n", + " ###################################################################\n", + " ############### TRAINING LOOP ######################\n", + " ###################################################################\n", + "\n", + " model.train()\n", + "\n", + " for inputs, labels in train_loader:\n", + " inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) #load features and targets in device\n", + "\n", + " h = model.init_hidden(labels.size(0))\n", + "\n", + " model.zero_grad() #reset gradients \n", + "\n", + " output, h = model(inputs,h) #get output and hidden states from LSTM network\n", + " \n", + " loss = criterion(output, labels)\n", + " loss.backward()\n", + " \n", + " running_loss += loss.item()\n", + " \n", + " optimizer.step()\n", + "\n", + " #get tensor of predicted values on the training set\n", + " y_pred_train = torch.argmax(output, dim=1)\n", + "\n", + " #transform tensor to list and the values to the list\n", + " y_train_list.extend(y_pred_train.squeeze().tolist()) \n", + " \n", + " #count correctly classified texts per batch\n", + " correct += torch.sum(y_pred_train==labels).item()\n", + " \n", + " #count total texts per batch\n", + " total += labels.size(0) \n", + "\n", + " train_loss.append(running_loss / total_step)\n", + " train_acc.append(100 * correct / total)\n", + "\n", + "\n", + " ###################################################################\n", + " ############## VALIDATION LOOP #####################\n", + " ###################################################################\n", + " \n", + " with torch.no_grad():\n", + " \n", + " model.eval()\n", + " \n", + " for inputs, labels in valid_loader:\n", + " inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)\n", + "\n", + " val_h = model.init_hidden(labels.size(0))\n", + "\n", + " output, val_h = model(inputs, val_h)\n", + "\n", + " val_loss = criterion(output, labels)\n", + " running_loss_val += val_loss.item()\n", + "\n", + " y_pred_val = torch.argmax(output, dim=1)\n", + " y_val_list.extend(y_pred_val.squeeze().tolist())\n", + "\n", + " correct_val += torch.sum(y_pred_val==labels).item()\n", + " total_val += labels.size(0)\n", + "\n", + " valid_loss.append(running_loss_val / total_step_val)\n", + " valid_acc.append(100 * correct_val / total_val)\n", + "\n", + " #Save model if validation accuracy increases\n", + " if np.mean(valid_acc) >= valid_acc_max:\n", + " torch.save(model.state_dict(), './state_dict.pt')\n", + " print(f'Epoch {e+1}:Validation accuracy increased ({valid_acc_max:.6f} --> {np.mean(valid_acc):.6f}). Saving model ...')\n", + " valid_acc_max = np.mean(valid_acc)\n", + " early_stopping_counter=0 #reset counter if validation accuracy increases\n", + " else:\n", + " print(f'Epoch {e+1}:Validation accuracy did not increase')\n", + " early_stopping_counter+=1 #increase counter if validation accuracy does not increase\n", + " \n", + " if early_stopping_counter > early_stopping_patience:\n", + " print('Early stopped at epoch :', e+1)\n", + " break\n", + " \n", + " print(f'\\tTrain_loss : {np.mean(train_loss):.4f} Val_loss : {np.mean(valid_loss):.4f}')\n", + " print(f'\\tTrain_acc : {np.mean(train_acc):.3f}% Val_acc : {np.mean(valid_acc):.3f}%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-dgHWFnCEGzQ" + }, + "outputs": [], + "source": [ + "# Loading the best model\n", + "model.load_state_dict(torch.load('./state_dict.pt'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QF53Y_0YHOHI" + }, + "outputs": [], + "source": [ + "# LSTM Testing\n", + "\n", + "model.eval()\n", + "y_pred_list = []\n", + "y_test_list = []\n", + "for inputs, labels in test_loader:\n", + " inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)\n", + " test_h = model.init_hidden(labels.size(0))\n", + "\n", + " output, val_h = model(inputs, test_h)\n", + " y_pred_test = torch.argmax(output, dim=1)\n", + " y_pred_list.extend(y_pred_test.squeeze().tolist())\n", + " y_test_list.extend(labels.squeeze().tolist())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "i83pVIXcHSkO" + }, + "outputs": [], + "source": [ + "report_bilstm = classification_report(y_test_list, y_pred_list, target_names=sentiments, output_dict=True)\n", + "print('Classification Report for Bi-LSTM :\\n', classification_report(y_test_list, y_pred_list, target_names=sentiments))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bnJOq7E6HSO_" + }, + "outputs": [], + "source": [ + "conf_matrix(y_test_list,y_pred_list,'PyTorch Bi-LSTM Sentiment Analysis\\nConfusion Matrix', sentiments)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "v2Z2IIgjHeZE" + }, + "source": [ + "O modelo LSTM apresentou melhora significativa na performance. A acurácia geral xxxx para xx% e o numero geral de acertos também aumentou, especialmente na classe xxxxx." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L_7QkjQwK1wV" + }, + "source": [ + "### BERT" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ESsvHXLVX8SI" + }, + "source": [ + "#### Train - validation - test split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Tg-9iOd1X50Q" + }, + "outputs": [], + "source": [ + "X = df['text_clean'].values\n", + "y = df['sentiment'].values\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=seed_value)\n", + "\n", + "X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.1, stratify=y_train, random_state=seed_value)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "c-O4D6S9YEJQ" + }, + "outputs": [], + "source": [ + "(unique, counts) = np.unique(y_train, return_counts=True)\n", + "np.asarray((unique, counts)).T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rjyA4f1yYPdY" + }, + "source": [ + "Vamos aplicar o xx para balancear as classes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dx4WIJToYLzq" + }, + "outputs": [], + "source": [ + "# ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PPUdhbT0YYcY" + }, + "outputs": [], + "source": [ + "# ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xu8v68AVYZQM" + }, + "outputs": [], + "source": [ + "(unique, counts) = np.unique(y_train, return_counts=True)\n", + "np.asarray((unique, counts)).T" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MrVczwQaYcD4" + }, + "source": [ + "#### BERT Tokenization\n", + "\n", + "A implementação do BERT da biblioteca Transformers possui seu próprio método de tokenização, que nos ajuda a extrair \"*input ids*\" e a \"*attention mask*\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3odRmMQ9Ya4d" + }, + "outputs": [], + "source": [ + "tokenizer = # ... seu código aqui" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xY2H2QGAZ1fk" + }, + "source": [ + "Agora definimos a função para tokenização utilizando o tokenizador carregado acima." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Cy3irUTcZtjd" + }, + "outputs": [], + "source": [ + "def bert_tokenizer(data, MAX_LEN):\n", + "\n", + " input_ids = []\n", + " attention_masks = []\n", + " \n", + " for sentiment in data:\n", + " encoded_sent = tokenizer.encode_plus(\n", + " text=sentiment,\n", + " add_special_tokens = True, # Add `[CLS]` and `[SEP]` special tokens\n", + " max_length = max_len, # Choose max length to truncate/pad\n", + " pad_to_max_length = True, # Pad sentence to max length \n", + " return_attention_mask = True # Return attention mask\n", + " )\n", + " \n", + " input_ids.append(encoded_sent.get('input_ids'))\n", + " attention_masks.append(encoded_sent.get('attention_mask'))\n", + "\n", + " # Convert lists to tensors\n", + " input_ids = torch.tensor(input_ids)\n", + " attention_masks = torch.tensor(attention_masks)\n", + "\n", + " return input_ids, attention_masks" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xpry576gayqP" + }, + "source": [ + "Como precisamos especificar o comprimento da sentença tokenizada mais longa, tokenizamos os tweets do conjunto de treino usando o método \"encode\" do tokenizer BERT original e verificamos a sentença mais longa." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Z1thD7J8aXo_" + }, + "outputs": [], + "source": [ + "# Tokenize train tweets\n", + "encoded_tweets = [tokenizer.encode(sentiment, add_special_tokens=True) for sentiment in X_train]\n", + "\n", + "# Find the longest tokenized tweet\n", + "max_len = max([len(sent) for sent in encoded_tweets])\n", + "print('Max length: ', max_len)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x7W3Oy1eb_t_" + }, + "source": [ + "Vamos \"arredondar\" o max length..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7g51Oq_ia3MN" + }, + "outputs": [], + "source": [ + "MAX_LEN = # ... seu código aqui" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nNtuwUQCsWLt" + }, + "source": [ + "Agora aplicamos o tokenizador definido" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9uONWwmPcJWp" + }, + "outputs": [], + "source": [ + "train_inputs, train_masks = bert_tokenizer(# ... seu código aqui\n", + "val_inputs, val_masks = bert_tokenizer(# ... seu código aqui\n", + "test_inputs, test_masks = bert_tokenizer(# ... seu código aqui" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eBoCWROXspLQ" + }, + "source": [ + "Então criaremos os dataloaders a partir dos arrays convertidos em tensores " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cNR6Y77_sdwG" + }, + "outputs": [], + "source": [ + "# Convert target columns to pytorch tensors format\n", + "train_labels = torch.from_numpy(y_train)\n", + "val_labels = torch.from_numpy(y_valid)\n", + "test_labels = torch.from_numpy(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZcSBz_Cxs23b" + }, + "outputs": [], + "source": [ + "batch_size = # ... seu código aqui\n", + "\n", + "# Create the DataLoader for our training set\n", + "train_data = TensorDataset(train_inputs, train_masks, train_labels)\n", + "train_sampler = RandomSampler(train_data)\n", + "train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)\n", + "\n", + "# Create the DataLoader for our validation set\n", + "val_data = TensorDataset(val_inputs, val_masks, val_labels)\n", + "val_sampler = SequentialSampler(val_data)\n", + "val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=batch_size)\n", + "\n", + "# Create the DataLoader for our test set\n", + "test_data = TensorDataset(test_inputs, test_masks, test_labels)\n", + "test_sampler = SequentialSampler(test_data)\n", + "test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uTRHV6cFKxq2" + }, + "source": [ + "Agora podemos criar um classificador BERT personalizado, incluindo o modelo original e camadas densas adicionais para executar a tarefa de classificação." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YIYtHBlZUi3U" + }, + "outputs": [], + "source": [ + "class Bert_Classifier(nn.Module):\n", + "\n", + " def __init__(self, n_input, n_hidden, n_output, freeze_bert=False):\n", + " super(Bert_Classifier, self).__init__()\n", + " # Specify hidden size of BERT, hidden size of the classifier, and number of labels\n", + " n_input = n_input\n", + " n_hidden = n_hidden\n", + " n_output = n_output\n", + "\n", + " # Instantiate BERT model\n", + " self.bert = BertModel.from_pretrained('bert-base-uncased')\n", + "\n", + " # Add dense layers to perform the classification\n", + " self.classifier = nn.Sequential(\n", + " nn.Linear(n_input, n_hidden),\n", + " nn.ReLU(),\n", + " nn.Linear(n_hidden, n_output)\n", + " )\n", + "\n", + " # Add possibility to freeze the BERT model\n", + " if freeze_bert:\n", + " for param in self.bert.parameters():\n", + " param.requires_grad = False\n", + " \n", + " def forward(self, input_ids, attention_mask):\n", + " # Feed input data to BERT\n", + " outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)\n", + " \n", + " # Extract the last hidden state of the token `[CLS]` for classification task\n", + " last_hidden_state_cls = outputs[0][:, 0, :]\n", + "\n", + " # Feed input to classifier to compute logits\n", + " logits = self.classifier(last_hidden_state_cls)\n", + "\n", + " return logits" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FP4NGZkxVvBw" + }, + "source": [ + "Além do classificador também vamos definir uma função para inicializar alguns parâmetros da rede." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Og5UQ7uIVuV4" + }, + "outputs": [], + "source": [ + "def initialize_model(epochs=4, lr=1e-3, eps=1e-6, n_input=768, n_hidden=50, n_output=5):\n", + "\n", + " # Instantiate Bert Classifier\n", + " bert_classifier = Bert_Classifier(freeze_bert=False, n_input=n_input, n_hidden=n_hidden, n_output=n_output)\n", + " \n", + " bert_classifier.to(device)\n", + "\n", + " # Set up optimizer\n", + " optimizer = AdamW(bert_classifier.parameters(),\n", + " lr=lr, # learning rate, set to default value\n", + " eps=eps # decay, set to default value\n", + " )\n", + " \n", + " # Calculate total number of training steps\n", + " total_steps = len(train_dataloader) * epochs\n", + "\n", + " # Set up learning rate scheduler\n", + " scheduler = get_linear_schedule_with_warmup(optimizer,\n", + " num_warmup_steps=0,\n", + " num_training_steps=total_steps)\n", + " return bert_classifier, optimizer, scheduler" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QrK9Y0CXtY9l" + }, + "source": [ + "Utilizamos a GPU se estiver disponível para acelerar o processamento" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Xd9Fu0oOtQ4D" + }, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n", + "print(device)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-BuEWbSlUrKQ" + }, + "outputs": [], + "source": [ + "# BERT Parameters\n", + "n_input = # ... seu código aqui\n", + "n_hidden = # ... seu código aqui\n", + "n_output = # ... seu código aqui\n", + "EPOCHS = # ... seu código aqui\n", + "lr = # ... seu código aqui\n", + "eps = # ... seu código aqui" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nsN6J_KEtynk" + }, + "outputs": [], + "source": [ + "# intialize the BERT model calling the \"initialize_model\"\n", + "bert_classifier, optimizer, scheduler = initialize_model(epochs=EPOCHS, lr=lr, eps=eps, n_input=n_input, n_hidden=n_hidden, n_output=n_output)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tUIv8QlQu1vE" + }, + "source": [ + "#### Training" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hYjM_i8Jt4bj" + }, + "outputs": [], + "source": [ + "# Define Cross entropy Loss function for the multiclass classification task\n", + "loss_fn = nn.CrossEntropyLoss()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "x0yXRbqPu5KN" + }, + "outputs": [], + "source": [ + "def bert_train(model, train_dataloader, val_dataloader=None, epochs=4, evaluation=False):\n", + "\n", + " print(\"Start training...\\n\")\n", + " for epoch_i in range(epochs):\n", + " print(\"-\"*10)\n", + " print(\"Epoch : {}\".format(epoch_i+1))\n", + " print(\"-\"*10)\n", + " print(\"-\"*38)\n", + " print(f\"{'BATCH NO.':^7} | {'TRAIN LOSS':^12} | {'ELAPSED (s)':^9}\")\n", + " print(\"-\"*38)\n", + "\n", + " # Measure the elapsed time of each epoch\n", + " t0_epoch, t0_batch = time.time(), time.time()\n", + "\n", + " # Reset tracking variables at the beginning of each epoch\n", + " total_loss, batch_loss, batch_counts = 0, 0, 0\n", + " \n", + " ###TRAINING###\n", + "\n", + " # Put the model into the training mode\n", + " model.train()\n", + "\n", + " for step, batch in enumerate(train_dataloader):\n", + " batch_counts +=1\n", + " \n", + " b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)\n", + "\n", + " # Zero out any previously calculated gradients\n", + " model.zero_grad()\n", + "\n", + " # Perform a forward pass and get logits.\n", + " logits = model(b_input_ids, b_attn_mask)\n", + "\n", + " # Compute loss and accumulate the loss values\n", + " loss = loss_fn(logits, b_labels)\n", + " batch_loss += loss.item()\n", + " total_loss += loss.item()\n", + "\n", + " # Perform a backward pass to calculate gradients\n", + " loss.backward()\n", + "\n", + " # Clip the norm of the gradients to 1.0 to prevent \"exploding gradients\"\n", + " torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n", + "\n", + " # update model parameters\n", + " optimizer.step()\n", + " # update learning rate\n", + " scheduler.step()\n", + "\n", + " # Print the loss values and time elapsed for every 100 batches\n", + " if (step % 100 == 0 and step != 0) or (step == len(train_dataloader) - 1):\n", + " # Calculate time elapsed for batches\n", + " time_elapsed = time.time() - t0_batch\n", + " \n", + " print(f\"{step:^9} | {batch_loss / batch_counts:^12.6f} | {time_elapsed:^9.2f}\")\n", + "\n", + " # Reset batch tracking variables\n", + " batch_loss, batch_counts = 0, 0\n", + " t0_batch = time.time()\n", + "\n", + " # Calculate the average loss over the entire training data\n", + " avg_train_loss = total_loss / len(train_dataloader)\n", + "\n", + " ###EVALUATION###\n", + " \n", + " # Put the model into the evaluation mode\n", + " model.eval()\n", + " \n", + " # Define empty lists to host accuracy and validation for each batch\n", + " val_accuracy = []\n", + " val_loss = []\n", + "\n", + " for batch in val_dataloader:\n", + " batch_input_ids, batch_attention_mask, batch_labels = tuple(t.to(device) for t in batch)\n", + " \n", + " # We do not want to update the params during the evaluation,\n", + " # So we specify that we dont want to compute the gradients of the tensors by calling the torch.no_grad() method\n", + " with torch.no_grad():\n", + " logits = model(batch_input_ids, batch_attention_mask)\n", + "\n", + " loss = loss_fn(logits, batch_labels)\n", + "\n", + " val_loss.append(loss.item())\n", + "\n", + " # Get the predictions starting from the logits (get index of highest logit)\n", + " preds = torch.argmax(logits, dim=1).flatten()\n", + "\n", + " # Calculate the validation accuracy \n", + " accuracy = (preds == batch_labels).cpu().numpy().mean() * 100\n", + " val_accuracy.append(accuracy)\n", + "\n", + " # Compute the average accuracy and loss over the validation set\n", + " val_loss = np.mean(val_loss)\n", + " val_accuracy = np.mean(val_accuracy)\n", + " \n", + " # Print performance over the entire training data\n", + " time_elapsed = time.time() - t0_epoch\n", + " print(\"-\"*61)\n", + " print(f\"{'AVG TRAIN LOSS':^12} | {'VAL LOSS':^10} | {'VAL ACCURACY (%)':^9} | {'ELAPSED (s)':^9}\")\n", + " print(\"-\"*61)\n", + " print(f\"{avg_train_loss:^14.6f} | {val_loss:^10.6f} | {val_accuracy:^17.2f} | {time_elapsed:^9.2f}\")\n", + " print(\"-\"*61)\n", + " print(\"\\n\")\n", + " \n", + " print(\"Training complete!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oc7HbbS1voTi" + }, + "outputs": [], + "source": [ + "bert_train(bert_classifier, train_dataloader, val_dataloader, epochs=EPOCHS)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aazDgE0UnnMC" + }, + "source": [ + "Agora definimos uma função para realizar as previsões com o BERT treinado." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wbrJ-YHJvuLa" + }, + "outputs": [], + "source": [ + "def bert_predict(model, test_dataloader):\n", + " \n", + " # Define empty list to save the predictions\n", + " preds_list = []\n", + " \n", + " # Put the model into evaluation mode\n", + " model.eval()\n", + " \n", + " for batch in test_dataloader:\n", + " batch_input_ids, batch_attention_mask = tuple(t.to(device) for t in batch)[:2]\n", + " \n", + " # Avoid gradient calculation of tensors by using \"no_grad()\" method\n", + " with torch.no_grad():\n", + " logit = model(batch_input_ids, batch_attention_mask)\n", + " \n", + " # Get index of highest logit\n", + " pred = torch.argmax(logit,dim=1).cpu().numpy()\n", + " # Append predicted class to list\n", + " preds_list.extend(pred)\n", + "\n", + " return preds_list" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lAgtNZ31nyD4" + }, + "outputs": [], + "source": [ + "# BERT predictions\n", + "bert_preds = bert_predict(bert_classifier, test_dataloader)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dRKu-SSvEpq-" + }, + "outputs": [], + "source": [ + "report_bert_reference = classification_report(y_test, bert_preds, target_names=sentiments, output_dict=True)\n", + "print('Classification Report for BERT :\\n', classification_report(y_test, bert_preds, target_names=sentiments))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ueywIwTIoJmY" + }, + "outputs": [], + "source": [ + "conf_matrix(y_test, bert_preds,' BERT Sentiment Analysis\\nConfusion Matrix', sentiments)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0QunJFzBoXlb" + }, + "source": [ + "O modelo BERT conseguiu resultados ainda melhores do que a rede Bi-LSTM, com f1-score superior para todos as classes, maior número de acertos geral e também por classes (com excessão da classe 'not bullyng') e melhora de 1 ponto percentual na acurácia." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nNWbnVVBjaaP" + }, + "source": [ + "# Avaliação\n", + "\n", + "Não altere as células a seguir, apenas as execute" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "qyU9qVfaoMzm" + }, + "outputs": [], + "source": [ + "# Valores Base e Referência obtidos anteriormente\n", + "br = 0.95\n", + "lr = 0.93\n", + "nr = 0.86\n", + "\n", + "bb = 0.60\n", + "lb = 0.33\n", + "nb = 0.77" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GjsY-Ml-pnou" + }, + "outputs": [], + "source": [ + "# Valores obtidos pelo aluno\n", + "\n", + "ba = round(report_bert['accuracy'], 2)\n", + "la = round(report_bilstm['accuracy'], 2)\n", + "na = round(report_naivebayes['accuracy'], 2)\n", + "\n", + "ba, la, na" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "c1JRyfk9R3Ym" + }, + "outputs": [], + "source": [ + "# Exemplo de valores obtidos pelo aluno\n", + "#ba, la, na = .8, .8, .8" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 531 + }, + "id": "aq_AMe83nt5b", + "outputId": "4e11cd51-05ca-41f7-8641-116341f5e255" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAHwCAYAAAC7apkrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3xNV/7/8fdJBHUpCYliUFQlIjQoQ1RdYqimZRpGFMlMpi5fDK0oQYNJJaiGQbVTSgdV9BKXVCfamLY6xC1VJU1V04rELYm4hUSS4/z+6M+ZfUrE7ZwkvJ6PRx/ssy/rc/Y3a77vLGuvbbJYLBYBAAAAkCQ5lXYBAAAAQFlCQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAzAoXr16qXmzZtrwYIFdm/r/fffV+fOnbV9+/YSj921a5eaN2+uJUuW3FGbQ4cOlY+Pzx1d43Z1795dvXv3LpW2fys2NlbNmzfX5s2bb3jc3brvAHA3EZABOMz333+vI0eO6Pe//73i4+Pt2lZGRoYyMjK0adMm+fn5lXi8t7e31q1bp759+9q1LgBA2UdABuAw//73v+Xu7q7Ro0fr559/1qFDh6z7rly5osWLF6t79+56/PHHFRYWpnPnzkm6dmS0d+/e6t69u6T/jVQuXrxYHTp00N69e5Wenq5p06ZpzZo16t+/v9avX28996efftLQoUPl6+urp556Slu2bJEkJScna+DAgdq4caMk6ejRowoODpavr6+6d+9ucw2jtLQ0Pfvss2rdurUmTpwos9lss3/JkiXq3r27WrdurRdffFGXLl267nUSEhIUEBAgX19fDR482HpvLl++rEmTJql9+/bq0KGDZs6cqavvd9q/f7969OghX19fvfbaazbXu9F5RosWLVLz5s21fv16PfHEE/Lz89OOHTs0c+ZMay1nz56VJF28eFHTpk1Tu3bt1Lp1a40aNUqZmZmSJLPZrGnTpqlVq1Z65plndPjwYZt29u/fr4EDB+qxxx7T008/rX379l33PtyoDQBwFAIyAIeJj4+Xv7+/2rZtKzc3N5tR5I8//lgLFy5Uv3799Oqrr2rLli2aNWvWLV07JiZGjzzyiKZPn67k5GQtXLhQDRs2VEREhE6fPq3CwkKNHDlSmZmZWrhwoRo3bqywsDAdOXLkmutNmzZNKSkpWrBggR5++GHrNX4rIiJCaWlpev3119WiRQub4Pfpp58qJiZGXbp0UUxMjHbs2KG33377mmv8/PPPGjt2rBo1aqRFixYpKytLo0aN0pUrV7Rs2TJt2LBB48ePV2BgoFatWqWEhARZLBZNmDBBeXl5euONN2SxWHTixAnrNYs7rzj//ve/NXnyZJ07d04vvfSSqlevrpCQEO3du1exsbGSpJkzZ+qjjz7SSy+9pFmzZmnXrl166aWXJElxcXFat26dAgMDNXXqVOsvHpJ06dIljRw5UhcuXNDChQtVv359vfTSS7py5co1ddyoDQBwlAqlXQCA+0NycrKOHj2qMWPGKCsrS+3bt1d8fLzGjRsnSdq8ebOqV6+uMWPGyMnJSbVr11ZhYeFNX79fv37q3LmzJOnll19WpUqV1KRJE6WnpysxMVG//PKLJCk9PV3h4eF64okn1KJFC3333XeqXLnyNdebMmWKKlasqAYNGig9PV3bt2/XL7/8olq1almPKSgo0O7du9WtWzf17NlTkrRy5UplZWVJkj7//HNJ0rhx41S9enV1795dn3zyyTWBLz4+XmazWaNGjZK3t7feeustHT16VAUFBXr22WfVrVs3Pfroo0pNTdWyZct0+PBhPfLIIzp69KiGDh0qPz8/Pf7441q1apX1msWdd7XO3/rTn/4kf39/vfPOOzpy5IjGjBmj/Px8vfXWW/rll19kNpsVFxenjh07avDgwZJ+nT+8du1anTx5Ul9//bUk6cUXX1SNGjX0xz/+UW+88YYkae/evcrJydHw4cPVqVMnubi46M9//rOSkpJsaiipjYceeqjEnwMAuBsIyAAc4t///rckaeLEiTafHzp0SM2bN9epU6fk6uoqJ6df/2GrXbt2t3R9Dw8P69937dqlf/3rX8rOzrZOKzCbzdYRYDc3N0lSrVq11K1bN0m/TpUw+uKLL/Svf/1LOTk51s9+O33izJkzslgs1utJkru7uzUgnz9/XpL0+9//3rrf2dlZV65csX5PSTp16pS1Hklq2rSpmjZtKklKTU1VdHS00tLSbL7LmTNnbL5LxYoVVbNmTes1izuvOLVr15YkVa1aVTVr1pSzs7OqVq0qSSosLNSZM2dUWFioOnXq2HxXScrMzNSZM2fk7OysGjVq2Owz3ofZs2dr9uzZ1s8zMjJUr149m/t5ozYIyAAchYAMwCHi4+PVpk0bDR8+XNKvYW3cuHGKj49X8+bNVbt2bX3//fcym81ydnbW1q1bdfbsWQUGBsrFxUX5+fmSfp2rfPr0aVWvXt3m+lcDZ3p6umbNmqWAgADNmTNH7733nnWqxtUQeDXAZmVlacuWLerQoYPNtdLS0jRv3jx17NhRY8eOVUJCgpYtW3bNd3J1dZXJZFJ2drYkXTPN4WpoX7NmjVxcXIq9N78NgQcPHtS3336rZ599VhEREbJYLFq+fLnOnj1rHX12dXWVJGvbeXl5OnPmjKpVqyZJxZ53u9zc3FSxYkVrmJdk/a516tSRq6urzGazcnJy5ObmpuPHj1uPuxp4R4wYYTOCXa9ePf3000833QYAOApzkAHY3YEDB5Senq5evXqpW7du6tatm/z9/eXj42Odh/zUU08pNzdXCxYsUHx8vCZMmKAdO3ZIkh5++GGdOHFCmzZt0uLFi2849eLixYuSpNOnT2vbtm2Ki4uT9Os/87do0UJ169bV2rVrtW3bNkVFRWnWrFkymUw218jLy5MkVahQQefPn7fOK967d68uX75sPa5ixYpq27atduzYoY0bN2rRokU2I869evWS9OsvB2fPntW8efP04Ycf2oweXz3OyclJixcv1n//+1+Fh4dr2bJlqlKlivLz8+Xs7Cyz2aytW7eqcuXK+uGHH1S9enXVr19fmzdvVkJCwjXfo7jzrgbqW+Xk5KSAgADt3LlTH3zwgeLi4vTpp5/Kz89PderUUceOHSVJr7/+uhISEqwPO0pSq1atVLduXX311Vc6e/asPv30U0VGRtrcy5tpAwAchYAMwO6uhuCrc4Sv6ty5s3U1i4EDB2rkyJHauHGjXnnlFT355JOKiIiQ9Osc3iZNmmj69OkqKipSy5Yti23L09NTAwYM0Lfffqv58+crMjJSXl5eWr58uXJzc/XPf/5TtWvX1rhx45SSkqLXX39djzzyyHWvsXfvXsXExOiVV16xXuPq1IarZsyYobp162ratGnKzMy0WVKua9eumjx5shISEjR27FgVFRXpL3/5yzU1N2vWTDExMdY52tWrV9dbb72lChUqWB/Emzx5snr06KG+fftq27Zt2rt3r2bNmiUXFxdNnDhRtWvXVuPGja3XvNF5t2vq1Kn64x//qDlz5mjatGnq0qWLXn/9dUlS3759FRAQoLi4OC1atMg6h1iSKlWqpDfffFMPPPCA/va3v+nzzz9XUFCQzfSKm2kDABzFZLneuj8AAADAfYoRZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABhVKu4CbkZSUVNolAAAA4C5o27ZtaZdQonIRkKXycTPLk5SUFHl5eZV2GQD+P/okULbQJ+2jvAx6MsUCAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAPeRnJwcPf3004qJibnpc9544w317dtXW7duveX2lixZon379t3yeddTWFiosLAwDRo0SEOGDFF6evo1x6xdu1aBgYEKCgrSli1bJEmxsbF68sknNXToUA0dOlRvvfXWDdspNy8KAQAAwJ1LTU1Vo0aNFBYWdlPHX7hwQT4+Pho9erTi4+Nvub3hw4ff8jnF+eSTT/Tggw8qJiZG//3vfxUTE6N//OMf1v2nT5/W8uXLFRcXJ0kKCQnRk08+KUnq06ePJk2adFPtEJABAADuEbGxsdq2bZsyMzM1f/58JSQkKC4uTk5OTvL391doaKhmzZql48ePKyYmRkOGDNHUqVNVWFgoZ2dnzZw5U/Xq1dMf/vAHtWjRQn5+fvL19dWyZcu0fPlyVa1aVX5+fjp//rzCw8PVoEEDHTp0SF5eXoqKitKxY8cUHh4us9msevXqac6cOZo6dap69eqlxx9/XHPnzpWLi4vy8/MVERGhVq1aWWs/ePCg5syZY/N9unfvrr/85S/W7cTERPXr10+S1KlTJ02ZMsXm+GPHjqlJkyaqVKmSJMnT01P79++/5ftIQAYAALiHnDhxQmvXrlVGRobi4+O1Zs0aSdKgQYPUu3dvTZo0SatXr1ZYWJimTJmi0NBQderUSV999ZXefPNNzZw5U+np6Vq8eLGaNWumkJAQRUZG6uGHH9bq1au1evVqPfPMM0pOTtb8+fNVq1YtdenSRefPn9f8+fP15z//WT169NBrr72mgwcPWuvKyspS165dNXLkSCUmJmrp0qVatGiRdX/Lli21atWqG3637Oxsubm5SZKcnJxkMplUUFCgihUrSpIaNmyoH3/8UTk5OapUqZL27dun9u3bS5J2796tv/71ryoqKtKkSZPUokWLYtshIAMAANxDfHx8ZDKZdODAAaWlpSk4OFiSdPHiRR07dszm2H379umXX37RW2+9JbPZbA2fDzzwgJo1ayZJ+u677xQRESFJKigokI+Pj6Rfw6i7u7skycPDQxcuXND333+vqVOnSpImTpwoSdaAXrt2be3Zs0dfffWVCgoKVKVKlTv+rhaLxWa7Zs2aevnllzVq1Ci5u7vrkUcekcViUevWreXm5qauXbtq3759mjRpknUaxvUQkAEAAO4hLi4u1j+7du2qyMhIm/27du2yOXbBggXy8PC47jWkX8PyypUrZTKZrJ9lZGTI2dnZ5hyLxSJnZ+drQutVK1askKurq5YtW6YDBw7otddes9l/M1MsPDw8lJWVJU9PTxUWFspisVhHj6966qmn9NRTT0mSxo8fr/r166tp06Zq2rSpJMnX11c5OTkym83XfIerWMUCAADgHuTt7a1du3YpLy9PFotFM2fOVH5+vs0xrVu3VkJCgqRf5/deb1TV09NT27ZtkyRt3rxZiYmJxbbZsmVL7dy5U5K0YMEC7dixw7rvzJkzqlOnjiQpISFBhYWF15y7atUqm/+M4ViS/Pz8rA8KfvHFF+rQoYPN/qKiIg0dOlSXL19WVlaWUlJS1LJlSy1dulSffPKJJOnHH3+Um5tbseFYIiADAADck+rVq6fg4GANHjxYf/rTn+Tu7q7KlSvbHDNmzBht3bpVgwcP1uLFi/XYY49dc52pU6fq7bff1pAhQxQbGysvL69i2xw7dqw++OADDRkyRBkZGTYBtm/fvvr0008VGhqqVq1aKSsrSx9//PEtfac+ffroypUrGjRokHUetfS/peQqVKig3r17a+DAgRo+fLimTZumChUq6JlnntG6des0ZMgQTZs2TVFRUTdsx2Qpbhy8DElKSlLbtm1Lu4x7SkpKyg1/wAE4Fn0SKFvok/ZRXjIdI8gAALu6H19KcPr0ab3wwgsaOnSogoKCbmuZKQClh4AMALCr230pwYYNG1RQUHDL7Q0fPly+vr63fN71XH0pwZo1azRy5MhrQv7VlxK8//77WrFihd59913l5+dr06ZN6tu3r1atWqXx48drwYIFd6UeAI7BKhYAgNtW1l9KEBYWpkuXLjn8pQTGa5w4ccL6YNK9YOXKlVq+fHlpl2F3ly5duivLkJVloaGh1iXgYIuADAC4I2X5pQQDBgyQv79/qbyUICsrSyNHjtTFixe1YsWKu3rPAdgXARkAcEfK8ksJ3nzzTS1btszhLyWQJHd3d3388cf66quvNHny5Htm1DU4OPi+GHXkIb37GwEZAHBHyvJLCerUqaO5c+c6/KUEu3fvVvPmzVWjRg09+eST1vAOoHzgIT0AwF1RFl9K0LBhQ0mOfynBZ599pvXr10uSDh06pLp16xb7HQCUPQRkAMBdURZfSvDuu++WyksJRo0apR07dmjw4MF65ZVXNGPGjFtqF0Dp4kUh9ynmVgFlC30SKFvok/ZRXjIdI8gAAACAAQ/pASjTWHP13sGaqwDKC0aQAQAAAANGkAGUaay5CgBwNEaQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjLuOTk5OXr66acVExNz0+e88cYb6tu3r7Zu3XrL7S1ZskT79u275fOup7CwUGFhYRo0aJCGDBmi9PT0a46ZP3++goKCNHDgQC1dutT6eXR0tJ577jkFBQVd9zwAAHBzCMi456SmpqpRo0YKCwu7qeMvXLggHx8fbdiwQQUFBbfc3vDhw+Xr63vL513PJ598ogcffFBr1qzRyJEjrwn5P/74o3bt2qW1a9dqzZo1io2NVVZWlr766iulp6crNjZWI0aM0Pbt2+9KPQAA3I8qlHYBwK2IjY3Vtm3blJmZqfnz5yshIUFxcXFycnKSv7+/QkNDNWvWLB0/flwxMTEaMmSIpk6dqsLCQjk7O2vmzJmqV6+e/vCHP6hFixby8/OTr6+vli1bpuXLl6tq1ary8/PT+fPnFR4ergYNGujQoUPy8vJSVFSUjh07pvDwcJnNZtWrV09z5szR1KlT1atXLz3++OMKCwvTpUuXlJ+fr4iICLVq1cpa+8GDBzVnzhyb79O9e3f95S9/sW4nJiaqX79+kqROnTppypQpNsdXr15dly9fVkFBgcxms5ycnPTAAw/oP//5j5555hlJUrdu3ex1+wEAuC8QkFHunDhxQmvXrlVGRobi4+O1Zs0aSdKgQYPUu3dvTZo0SatXr1ZYWJimTJmi0NBQderUSV999ZXefPNNzZw5U+np6Vq8eLGaNWumkJAQRUZG6uGHH9bq1au1evVqPfPMM0pOTtb8+fNVq1YtdenSRefPn9f8+fP15z//WT169NBrr72mgwcPWuvKysrSgAED5O/vr8TERC1dulSLFi2y7m/ZsqVWrVp1w++WnZ0tNzc3SZKTk5NMJpMKCgpUsWJFSVLdunXVu3dvdevWTWazWaNHj1a1atV07NgxJScna926dapcubKmTZum+vXr3+1bDwDAfYGAjHLHx8dHJpNJBw4cUFpamoKDgyVJFy9e1LFjx2yO3bdvn3755Re99dZbMpvN1vD5wAMPqFmzZpKk7777ThEREZKkgoIC+fj4SJIaNmwod3d3SZKHh4cuXLig77//XlOnTpUkTZw4UZKsAb127dp68803tWzZMhUUFKhKlSp3/F0tFovNdnp6uj7//HMlJCSoqKhIQUFB6tOnjywWi2rUqKEVK1Zo48aNmjNnjhYuXHjH7QMAcD8iIKPccXFxsf7ZtWtXRUZG2uzftWuXzbELFiyQh4fHda8h/RqWV65cKZPJZP0sIyNDzs7ONudYLBY5OztfE1qvWrFiherUqaO5c+fqwIEDeu2112z238wUCw8PD2VlZcnT01OFhYWyWCzW0WNJOnDggFq3bq0HHnhAktS8eXP9+OOPql27th5//HFJ0hNPPKG33377ujUCAICS8ZAeyi1vb2/t2rVLeXl5slgsmjlzpvLz822Oad26tRISEiT9Or83Li7umut4enpq27ZtkqTNmzcrMTGx2DZbtmypnTt3SpIWLFigHTt2WPedOXNGDRs2lCQlJCSosLDwmnNXrVpl858xHEuSn5+f4uPjJUlffPGFOnToYLO/YcOGOnjwoK5cuaLCwkL9+OOPatCggbp06aKvv/5a0q9BvHHjxsV+BwAAcGMEZJRb9erVU3BwsAYPHqw//elPcnd3V+XKlW2OGTNmjLZu3arBgwdr8eLFeuyxx665ztSpU/X2229ryJAhio2NlZeXV7Ftjh07Vh988IGGDBmijIwMmwDbt29fvfvuuwoNDVWrVq2UlZWljz/++Ja+U58+fXTlyhUNGjTIOo9a+t9Sci1btpSfn5+ef/55DR06VP3799fvfvc79e7dW9nZ2QoKCtKSJUs0YcKEW2oXAAD8j8lS3L8XlyFJSUlq27ZtaZdxT0lJSblhEATgWPRJoGyhT9pHecl0jCADAAAABgRkAAAAwIBVLH5j5cqVWr58eWmXYXeXLl26K8uQlXWhoaHWZeAAAABuBiPIAAAAgAEjyL8RHBx8X4w48vABAADA9TGCDAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMKpR2AeVJ9+7dFRcXp6pVqzq03RMnTmjixIkym81yd3fX3LlzVbFiRev+ixcvatKkSTp37pwKCws1evRoPfHEEw6tESgN9EmgbKFP4l7BCHI5sHDhQj3//PN6//331ahRI3300Uc2+9evX6/GjRtr1apVWrBggaKiokqpUuD+QJ8Eyhb6JO42AvJ15ObmasSIERo6dKgGDBig7777zmZ/eHi4vvjiC0nSF198ofDwcGVkZGjIkCGaPHmynnvuOU2dOlWSdPLkSYWGhmro0KEKDg5Wenq6zbU+/PBDDR061Oa/xMREm2N27dqlHj16SJK6det2zX5XV1edPXtWknT+/Hm5urrevZsBlAH0SaBsoU/iXscUi+vIysrSgAED5O/vr8TERC1dulSLFi0q8bzk5GTNnz9ftWrVUpcuXXT+/HktWLBA/fv3V58+fRQfH6833nhDc+bMsZ4zYMAADRgw4IbXzcvLs/5TUa1atZSVlWWz/+mnn1ZsbKx69uyp8+fP6+23376Nbw2UXfRJoGyhT+JexwjyddSuXVtbtmzRoEGD9Prrr1t/6yxJw4YN5e7uLicnJ3l4eOjChQs6ePCg2rdvL0nq0KGDvv/++zuqzWKxXPPZxo0bVa9ePX3++edasWKFIiMj76gNoKyhTwJlC30S9zpGkK9jxYoVqlOnjubOnasDBw7otddes9lvMpmsfy8qKrL+3dnZ2eY4i8Uik8lk7ayFhYVycrL9neTDDz/Upk2bbD4bNWqUOnbsaN2uUqWK8vPzVblyZZ06dUoeHh42x3/zzTfq3LmzJMnT01OZmZkym83X1AOUV/RJoGyhT+JeR0C+jjNnzqh58+aSpISEBBUWFtrsr1q1qvWfb5KSkm54LR8fH+3atUsBAQHas2ePWrZsabP/Zv7pqFOnTtqyZYv69u2rzz777Jonbxs1aqT9+/erV69eOnbsmKpWrUqnxz2FPgmULfRJ3OuYYnEdffv21bvvvqvQ0FC1atVKWVlZ+vjjj232L1u2TH/9619VocKNf8cYO3asNmzYoODgYMXGxmrs2LG3XM/f/vY3bdiwQc8//7zOnj2rfv36SZJeeukl5efna+DAgTp27JiGDBmisLAwzZgx45bbAMoy+iRQttAnca8zWa43Wecui46O1v79+2UymTRlyhS1atXKum/16tXatGmTnJyc1LJlS+tTrUZJSUlq27atvcu8r6SkpMjLy6u0ywDw/9EngbKFPmkf5SXT2X0Eeffu3UpLS9O6desUFRVls/Zgbm6uli1bptWrV2vNmjVKTU3Vt99+a++SAAAAgGLZPSAnJibK399fktS0aVOdO3dOubm5kiQXFxe5uLjo0qVLKioqUl5enmrUqGHvkgAAAIBi2T0gZ2dn2yzI7ebmZp24X6lSJY0ePVr+/v7q1q2bWrdurcaNG9u7JAAAAKBYDl/FwjjlOTc3V2+//bbi4+NVrVo1hYSE6IcffpCnp+c156WkpDiyzFvS8OEmqvpApdIu45aU13lVF/Mu6+iRn0u7DJRxzRo3UIXK1Uq7jFtSXvtkUX6uDv+SXvKBuG81bNJQVStVLe0ybll57ZMXL1/U0Z+PlnYZ5Z7dA7KHh4eys7Ot25mZmXJ3d5ckpaamqkGDBnJzc5MktWvXTgcPHrxuQC7rP6gPh28u7RLuC/PaX9bhw4c1adKkUq3jRg+enjp1ShMmTLBup6enKywsTBkZGdqxY4ck6cqVK8rOztaWLVscXvt9YwbTtRyhwoxzZf5/n1H6fFb4lHYJ940DIQfKdJ8sadm/ssLuAdnPz0+LFi1SUFCQkpOT5eHhoWrVfh3ZqV+/vlJTU62Lex88eFBPPvmkvUsC7ojxwdPU1FRNmTJF69ats+6vU6eOVq1aJenXBfKHDh2q7t27q2rVqvq///s/SdL69et1+vTpUqkfAADcmN0Dcps2beTt7a2goCCZTCZNnz5dsbGxql69unr27Km//vWvCg4OlrOzs3x9fdWuXTt7l4RyLiMjQ8OGDdPJkycVEhKi/v37a9OmTXrvvffk5OSkZs2a6dVXX9Xx48f18ssvy8nJSWazWXPnztVDDz2kiIgIpaenq6ioSGPHjrV5G9NvR3+lXxexnzhxonW7uAdPr/7iZ7R+/Xr16tVLVav+758Xi4qKtGbNGq1cufJu3xoAAHAXOGQO8m8Dh3EKRVBQkIKCghxRBu4RR44cUWxsrHJzc9W3b18FBgYqLy9P77zzjh588EENHjxYhw4d0o4dO9SpUyeNHj1aycnJysrK0p49e+Tu7q7o6Gjl5OQoJCREcXFx1msbR3+Lk52dLW9vb+v21QdPrxeQP/zwQy1fvtzms88++0ydO3dW5cqV7/BOAAAAe+BV0yh32rRpIxcXF7m6uqpatWo6c+aMatSooVGjRkn6dW772bNn5efnpzFjxujChQvq1auXfH19tX79eiUlJembb76RJF2+fFkFBQWqWLHibddT3Lt29u3bpyZNmlwTnD/++GP9/e9/v2WfNf4AACAASURBVO32AACAfRGQUe6YTCab7StXrigyMlIbN26Uu7u7RowYIUl69NFHtXHjRm3fvl3z5s1TYGCgXFxcNHLkSAUEBFz32jczxeJGD54affnllzbTNyTp0qVLOnnypH73u9/d2pcGAAAOQ0BGufPtt9/KbDbr3LlzysvLk7Ozs5ydneXu7q4TJ07o4MGDKiws1ObNm9WgQQP5+/urZs2aio+PV+vWrbV161YFBATo9OnTWrFihcaPH2+99s1MsbjRg6dGBw4cUJ8+fWw+++GHH9SkSZO7cyMAAIBdEJBR7jRp0kTjxo1TWlqaXnzxRbm6usrPz0+BgYHy9PTUCy+8oFmzZik6OlqRkZGqUqWKnJ2d9corr6hRo0bauXOngoKCZDabNWbMmFtu/3oPnkqyefhUkrKyslSrVi2bc7OysqzLGgIAgLLJZCluAmUZkpSUpLZt25Z2GTfEOsiOcWT206VdAsoL1kF2jBnnSrsClAOsg+w4B0IOlHYJN1QeMp3kgFdNAwAAAOUJUyx+Y+XKldcsy3UzTv7MSx8coevOubd0fGhoqIKDg+1UDQAAuBcxggwAAAAYMIL8G8HBwbc14sgcZMf4kjnIAADAzhhBBgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAIB7RGxsrObMmVPaZSg6OloDBw5UUFCQvvvuu2v2nzhxQoMGDVL//v01bdq0UqjwxgjIAAAAuGt2796ttLQ0rVu3TlFRUYqKirrmmNmzZys0NFQfffSRnJ2ddfz48VKotHgVSrsAAAAA3D0ZGRkaNmyYTp48qZCQEPXv31+bNm3Se++9JycnJzVr1kyvvvqqjh8/rpdffllOTk4ym82aO3euHnroIUVERCg9PV1FRUUaO3asOnbsaL32qVOnNGHCBJv2fHx8NHHiROt2YmKi/P39JUlNmzbVuXPnlJubq2rVqkmSrly5oqSkJM2bN0+SNH36dHvfkltGQAYAALiHHDlyRLGxscrNzVXfvn0VGBiovLw8vfPOO3rwwQc1ePBgHTp0SDt27FCnTp00evRoJScnKysrS3v27JG7u7uio6OVk5OjkJAQxcXFWa9dp04drVq16obtZ2dny9vb27rt5uamrKwsa0DOyclR1apVNWvWLCUnJ6tdu3YKCwuzz824TQRkAACAe0ibNm3k4uIiV1dXVatWTWfOnFGNGjU0atQoSVJqaqrOnj0rPz8/jRkzRhcuXFCvXr3k6+ur9evXKykpSd98840k6fLlyyooKFDFihVvux6LxXLN9qlTpxQcHKz69etr+PDh+vLLL9W1a9fbbuNuIyADAADcQ0wmk832lStXFBkZqY0bN8rd3V0jRoyQJD366KPauHGjtm/frnnz5ikwMFAuLi4aOXKkAgICrnvtm5li4eHhoezsbOt2Zmam3N3drduurq6qV6+eGjZsKEnq2LGjDh8+TEAGAACAfXz77bcym806d+6c8vLy5OzsLGdnZ7m7u+vEiRM6ePCgCgsLtXnzZjVo0ED+/v6qWbOm4uPj1bp1a23dulUBAQE6ffq0VqxYofHjx1uvfTNTLPz8/LRo0SIFBQUpOTlZHh4e1ukVklShQgU1aNBAR44c0cMPP6zk5GQ9/fTTdrsft4OADAAAcA9p0qSJxo0bp7S0NL344otydXWVn5+fAgMD5enpqRdeeEGzZs1SdHS0IiMjVaVKFTk7O+uVV15Ro0aNtHPnTgUFBclsNmvMmDG33H6bNm3k7e2toKAgmUwm60N4sbGxyszMVNu2bTVlyhSFh4fLYrHo0UcfVffu3e/2bbgjJstvJ4aUQUlJSWrbtm1pl3FDD4dvLu0S7gtHZpet3zBRhs2oUdoV3B9mnCvtClAO+KzwKe0S7hsHQg6Udgk3VB4yneSgEeTo6Gjt379fJpNJU6ZMUatWraz7Tpw4ofHjx6uwsFAtWrRQZGSkI0oCAAAArsvuLwopabHosr5QNAAAAO4vdh9BvtFi0eVhoWgAAPA/K1eu1PLly2/pnJ9P/mynavBbXd/tetPHhoaGKjg42H7FlGN2D8g3Wiz6VhaKTklJsXept83Ly6u0S7ivlOWfBZQN9EnHok/eX44fP65Lly7d9PFVqlSxYzW4npv9v8/x48fpv8Vw+CoWxmcCb2WhaP4fHq7iZwEoW+iT9xcvLy+Fh4ff0jk8pOc4X4Z8Wdol3FBSUlJpl3BT7D4H+UaLRRsXinZ2drYuFA0AAACUFrsHZD8/P23ZskWSrlks2rhQ9NX9jRs3tndJAAAAQLHsPsXieotFx8bGqnr16urZs2eZXygaAAAA9xeHzEH+7Tu7PT09rX9v1KiR1qxZ44gyAAAAgBLZfYoFAAAAUJ4QkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMLitgFxQUKBTp07d7VoAAACAUlfhZg7KycnRkSNHZDabJUl79+7V8uXLtWfPHrsWBwAAADhaiQF5w4YNioiIUFFRkc3nnp6edisKAAAAKC0lTrFYuHCh2rdvr1deeUUWi0WhoaHy9fVVdHS0I+oDAAAAHKrEgHzmzBmFhoZq0KBBkqSePXtqxIgRmjRpkt2LAwAAABytxCkWPj4+Gj9+vD788EO5ublp4cKFqlChgtLT0x1RHwAAAOBQJY4gz5w5Uy1atFBBQYFCQkK0Y8cObdu2TQEBAY6oDwAAAHCoEkeQGzZsqHfffVeS9Mgjj+ipp55SXl6emjdvbvfiAAAAAEcrNiAvXbpU/fr104YNG667/+uvv9YLL7xgt8IAAACA0lBsQI6JiVGHDh0UExNz3f0mk4mADAAAgHtOsQF55cqVatKkiVauXOnIegAAAIBSVWxAbt++vfXPo0ePqlKlSqpTp45SU1MlSU2bNnVMhQAAAIADlbiKxWeffaann35aP/zwgyRp586d6tu3rz777DO7FwcAAAA4WokB+R//+Ie6dOkiHx8fSVKvXr3k7++v+fPn2704AAAAwNFKDMgnT57U888/Lzc3N0lS7dq1FRgYqFOnTtm9OAAAAMDRSlwH2dvbWzNnzlRQUJDc3NyUlZWltWvXytPT0xH1AQAAAA5VYkCeMWOGRowYoVmzZlk/q1u3rqZPn27XwgAAAIDSUGJAbtq0qeLj47V//36dOnVK7u7u8vLy0sWLFx1RHwAAAOBQJc5BlqTz58/LZDLJ3d1dkrRq1SoFBATYtTAAAACgNBQ7gpyYmKiOHTtqw4YNioiIUFFRkc1+5iADAADgXlTsCPLEiRN19uxZLVy4UO3atVNERIScnZ01adIkeXt7Kzo62pF1AgAAAA5RbEAeNWqUli5dqnPnzmnYsGF6/vnn5eTkpODgYI0ePVqTJk1yZJ0AAACAQxQ7xWLQoEE6duyYUlJSNGHCBL3//vuqVauWwsPDlZ2drfT0dEfWCQAAADjEDR/Sq1+/viIjI+Xl5aX8/HyFhIRo06ZN2rFjh5555hlH1QgAAAA4TInLvJ06dUrz5s1TjRo15OnpqR49eujSpUtq3ry5I+oDAAAAHKrEZd5GjRql77//3rrdoEEDwjEAAADuWSWOIIeEhGjWrFl67rnn5O7uLpPJZN3Xp08fuxYHAAAAOFqJAXnhwoWSpNmzZ1vDscVikclkIiADAADgnlNiQI6OjrYZNQYAAADuZSUG5Oeee84RdQAAAABlQokBuUePHtf93GQyKSEh4a4XBAAAAJSmEgOyi4uLzRSL06dPq7CwUC1btrRrYQAAAEBpKDEgx8fH22xbLBYtXrxYZrPZbkUBAAAApaXEdZB/y2QyqVGjRlq5cqU96gEAAABKVYkjyL9dyi0/P18nTpxQkyZN7FYUAAAAUFpKDMj5+fk22y4uLnryySc1btw4uxUFAAAAlJYSA/J//vMfR9QBAAAAlAklzkG+cOGCJk+erF27dkmSYmNjNXHiRJ0/f97uxQEAAACOVmJAnjFjhuLi4uTi4iJJqlmzpj7//HP9/e9/t3txAAAAgKOVGJC//vprzZs3T23atJEkde/eXbNmzdLXX39t9+IAAAAARysxIFerVk0//vijddtisSglJUVVq1a1a2EAAABAaSjxIb3AwEAtWrRIK1eulKurq3JycpSbm6sRI0Y4oj4AAADAoUoMyKNGjZKHh4c2b96szMxMeXl5qU+fPvL19XVEfQAAAIBDlTjFwmQyacCAAfrXv/6lf/zjH2rXrp1WrVqlfv36OaI+AAAAwKFKHEE+fPiw4uPjFR8fr59//lnOzs7y8fHR6NGjHVEfAAAA4FDFBuRFixYpPj5eqampcnNzU/v27ZWamqoFCxaoR48ejqwRAAAAcJhip1gsXrxYHh4eeu+99/Tf//5XkydPliRVqFDioDMAAABQbhWbdhs1aqTExET99NNP+sMf/qDHHntMJpPJkbUBAAAADldsQN6yZYtSUlL06aefasuWLVq9erUkacmSJTp69Kg6deqkpk2bOqxQAAAAwBFuOF/Cy8tLXl5eCgsLU3JysvVhvaioKJlMJqWkpDiqTgAAAMAhbnpCsbe3t7y9vRUWFqYDBw5oy5Yt9qwLAAAAKBW39cSdj4+PfHx87nYtAAAAQKkr8UUhAAAAwP2EgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADhwTk6OhoDRw4UEFBQfruu++ue0xMTIyGDh3qiHIAAACAYtk9IO/evVtpaWlat26doqKiFBUVdc0xP/30k/bs2WPvUgAAAIAS2T0gJyYmyt/fX5LUtGlTnTt3Trm5uTbHzJ49Wy+99JK9SwEAAABKVMHeDWRnZ8vb29u67ebmpqysLFWrVk2SFBsbq/bt26t+/fo3vE5KSopd67wTXl5epV3CfaUs/yygbKBPOhZ9EjdCf3Q8+uSds3tA/i2LxWL9+9mzZxUbG6t3331Xp06duuF5dDBcxc8CULbQJ4GypSz3yaSkpNIu4abYfYqFh4eHsrOzrduZmZlyd3eXJO3cuVM5OTkaPHiwxowZo+TkZEVHR9u7JAAAAKBYdg/Ifn5+2rJliyQpOTlZHh4e1ukVvXv31qeffqoPPvhAb7zxhry9vTVlyhR7lwQAAAAUy+5TLNq0aSNvb28FBQXJZDJp+vTpio2NVfXq1dWzZ097Nw8AAADcEofMQZ4wYYLNtqen5zXH/O53v9OqVascUQ4AAABQLN6kBwAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAQYXSLgAAUH7Fxsbq8OHDmjRpUqnWER0drf3798tkMmnKlClq1aqVzf4PPvhAH330kZycnOTp6anp06crPz9f4eHhOn36tC5fvqxRo0apW7dupfQNAJQlBGQAQLm2e/dupaWlad26dUpNTdWUKVO0bt066/68vDxt3rxZq1evlouLi4KDg7Vv3z6dPHlSLVu21LBhw3Ts2DGFhoYSkAFIIiADAO5QRkaGhg0bppMnTyokJET9+/fXpk2b9N5778nJyUnNmjXTq6++quPHj+vll1+Wk5OTzGaz5s6dq4ceekgRERFKT09XUVGRxo4dq44dO1qvferUKU2YMMGmPR8fH02cONG6nZiYKH9/f0lS06ZNde7cOeXm5qpatWqSpAceeEArVqyQ9GtYzs3Nlbu7u9q0aWO9xokTJ1SnTh273SMA5QsBGQBwR44cOaLY2Fjl5uaqb9++CgwMVF5ent555x09+OCDGjx4sA4dOqQdO3aoU6dOGj16tJKTk5WVlaU9e/bI3d1d0dHRysnJUUhIiOLi4qzXrlOnjlatWnXD9rOzs+Xt7W3ddnNzU1ZWljUgX7VkyRKtXLlSwcHBatCggfXzoKAgnTx5Uv/85z/v0h0BUN4RkAEAd6RNmzZycXGRq6urqlWrpjNnzqhGjRoaNWqUJCk1NVVnz56Vn5+fxowZowsXLqhXr17y9fXV+vXrlZSUpG+++UaSdPnyZRUUFKhixYq3XY/FYrnu58OHD1dwcLCGDRumtm3bqm3btpKktWvXKiUlRS+//LI2bdokk8l0220DuDcQkAEAd+S3gfLKlSuKjIzUxo0b5e7urhEjRkiSHn30UW3cuFHbt2/XvHnzFBgYKBcXF40cOVIBAQHXvfbNTLHw8PBQdna2dTszM1Pu7u7W7bNnz+rw4cN6/PHHVblyZXXp0kXffPONKlWqpFq1aqlu3bry8vKS2WxWTk6OatWqdcf3BED5RkAGANyRb7/9VmazWefOnVNeXp6cnZ3l7Owsd3d3nThxQgcPHlRhYaE2b96sBg0ayN/fXzVr1lR8fLxat26trVu3KiAgQKdPn9aKFSs0fvx467VvZoqFn5+fFi1apKCgICUnJ8vDw8NmekVRUZHCw8O1adMmVa1aVQcOHNCzzz6rvXv36tixY5o6daqys7N16dIlubq62u0+ASg/CMgAgDvSpEkTjRs3TmlpaXrxxRfl6uoqPz8/BQYGytPTUy+88IJmzZql6OhoRUZGqkqVKnJ2dtYrr7yiRo0aaefOnQoKCpLZbNaYMWNuuf02bdrI29tbQUFBMplMmj59uqRfl6CrXr26evbsqdGjRys4OFgVKlRQ8+bN1aNHD12+fFlTp07V888/r/z8fE2bNk1OTrweAIBkshQ3WasMSUpKss4VK6seDt9c2iXcF47Mfrq0S0B5MaNGaVdwf5hxrrQrQDngs8KntEu4bxwIOVDaJdxQech0Em/SAwAAAGwwxQJAmbZy5UotX7781k88cvHuF4Nrfdn1pg8NDQ1VcHCw/WoBgLuEEWQAAADAgBFkAGVacHDw7Y06MgfZMWZ8WdoVAMBdxwgyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIBBBUc0Eh0drf3798tkMmnKlClq1aqVdd/OnTs1b948OTk5qXHjxoqKipKTE7kdAAAApcPuSXT37t1KS0vTunXrFBUVpaioKJv906ZN08KFC7V27VpdvHhRX3/9tb1LAgAAAIpl94CcmJgof39/SVLTpk117tw55ebmWvfHxsbqoYcekiS5ubnpzJkz9i4JAAAAKJbdp1hkZ2fL29vbuu3m5qasrCxVq1ZNkqx/ZmZmavv27Ro3btx1r5OSkmLvUm+bl5dXaZdwXynLPwsoG+iTjkWfxI3QHx2PPnnnHDIH2chisVzz2enTpzVy5EhNnz5drq6u1z2PDoar+FkAyhb6JFC2lOU+mZSUVNol3BS7T7Hw8PBQdna2dTszM1Pu7u7W7dzcXA0bNkwvvviiOnfubO9yAAAAgBuye0D28/PTli1bJEnJycny8PCwTquQpNmzZyskJERdunSxdykAAABAiew+xaJNmzby9vZWUFCQTCaTpk+frtjYWFWvXl2dO3fWhg0blJaWpo8++kiSFBAQoIEDB9q7LAAAAOC6HDIHecKECTbbnp6e1r8fPHjQESUAAAAAN4U3cgAAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAAAAwIyAAAAYEBABgAAAAwIyAAAAIABARkAAAAwICADAAAABgRkAAAAwICADAAAABgQkAEAAAADAjIAAABgQEAGAAAADAjIAAAAgAEBGQAAADAgIAMAAAAGBGQAAADAgIAMAAAAGBCQAQAAAAMCMgAAAGBAQAYAAAAMCMgAAACAAQEZAAAAMCAgAwAAAAYEZAAAAMCAgAwAAAAYEJABAAD+X3v3HlRV9b9x/H24aQUWBCJ5nzJs4hKhmYOFIkqIkKhIN8wys8yaLobkGOVdulGCZo3lbUpTESkYs2OImBCJGXmZnKw0NEUx0URUwPP7w3H/zhE1roLfnteMf5y1917rM4yL87DPOnuJWFFAFhERERGxooAsIiIiImJFAVlERERExIoCsoiIiIiIFQVkERERERErCsgiIiIiIlYUkEVERERErCggi4iIiIhYUUAWEREREbGigCwiIiIiYkUBWURERETEigKyiIiIiIgVBWQRERERESsKyCIiIiIiVhSQRURERESsKCCLiIiIiFhRQBYRERERsXJVAvLMmTOJjY3loYce4ueff7Y5lpeXx/Dhw4mNjWXu3LlXoxwRERERkctq8oD8ww8/sG/fPr744gtmzJjBjBkzbI5Pnz6dlJQUli1bxubNm9mzZ09TlyQiIiIicllNHpDz8/MJDQ0F4NZbb+X48eOcPHkSgOLiYm688Ua8vLyws7MjODiY/Pz8pi5JREREROSyHJp6gNLSUu68807jtZubG0eOHMHZ2ZkjR47g5uZmc6y4uPiS/WzdurWpS22QtJh2zV3Cf0JL/38gLUhkdnNX8N+gOSm1sMhnUXOX8J+h98nG0eQB+WIWi6XO1wQGBjZBJSIiIiIiNTX5Eou2bdtSWlpqvD58+DAeHh6XPFZSUkLbtm2buiQRERERkctq8oAcFBTEunXrANi5cydt27bF2dkZgA4dOnDy5En2799PVVUVGzZsICgoqKlLEhERERG5LJOlPmse6uidd96hsLAQk8nEG2+8wa5du3BxcWHAgAFs2bKFd955B4CBAwcyevTopi5HREREROSyrkpAlvoLCwsjMjKS8ePHN3cpInIRX19fpkyZwtChQ5u7FBERaUQKyE0gLi6OLVu28Nlnn9X4gmFCQgIAs2fPbo7SbBQUFDBy5EgcHR0xmUyYTCZcXFzw9/fnhRdeoHv37s1dokiziYuLo7CwEAeH899ldnR0xMvLi8jISMaOHYvJZPrXPlJSUli5ciW5ubmXPae4uJh58+bx/fffc/ToUezt7fH29mbUqFE88MADwPkgfkF1dTXV1dU4OTkZbc8++yzjxo0jJCSEAwcO8NVXX3H77bfbjGOxWAgNDWX//v18++23dOjQoU4/D5FrQW3m7cXnXCwvLw8XF5dLnufk5ESXLl0YNWoUkZGRQO3np1xbrvpTLP4rXF1dSUxMJD093WaitERZWVl07twZOP9YvqlTp/Lkk0+Sk5PT4msXaUoRERHGErCqqiry8vIYP348rVu3ZtSoUQ3u/9SpUzz22GPcfffdLF26lPbt21NeXk5aWhovvvgiH330EcHBwWzfvt245t9Ct4eHB6tWrWLSpEk27QUFBZw+fbrBNYu0dLWZt9bn1LYvgNOnT7N27VoSEhJwcnIiLCysTvNTrh1XZavp/6KYmBgAPv744yueV1RURFxcHPfccw89e/ZkzJgxNs+CDgkJITk5me+++w5vb28OHDhgc31CQgIPP/wwAMeOHWPixIkEBwfj7+9PdHQ0GzdurFPd7u7uREZGcvToUcrLy432Tz75hLCwMAICAggODiY5ORmLxcLJkycJCAhgxYoVNv2sXbsWX19fysrKqK6uJjU1lbCwMPz9/enfvz8LFiwwzj1z5gxvvvkmffr0wd/fn5CQEObPn1+vRwKKNBUHBwfuv/9+unTpYsxRb29vVq5cWe8+f/31Vw4dOsTo0aPp0KEDJpMJZ2dnHn/8cZKTk2nfvn2d++zbty9ffvkllZWVNu3p6en069ev3rWKXIsuNW8bonXr1kRHR3PvvfeSnp7eCBVKS6WA3EQcHR2ZOnUqH3/8Mb/90SpwFAAAC3FJREFU9tslzzl79ixPP/00/v7+5OXlkZ2dTXV1Na+99lqNc3v37o2Hhwdr1661ud5sNhMdHQ3A+PHjOX78OGlpaWzZsoXhw4czbty4Wv9SsFgsHDhwgOXLl9OvXz9cXV0BWLduHcnJybz77rts27aNuXPnsmjRIlavXo2zszODBg0iLS3Npq+srCwGDBjATTfdRGpqKmvWrGHOnDn8+OOPJCUl8eGHH7JmzRoAFi9ezNatW0lPT6eoqIgPPviAJUuWsGnTplrVLXI1XLhzVFxcTERERKP02bFjR1q3bs3cuXNrzNPw8HBuu+22OvcZEBBAmzZtyM7+/41SysvL+eabbxqtbpFrRVPMWzj//tu6detG609aHgXkJhQYGMjQoUOZPHnyJe+GOjk5YTabeeGFF3BwcMDFxYX+/ftTVFRU41x7e3sGDx5sE5A3btxIZWUl4eHh/PLLLxQWFjJx4kTc3d1xcnLi0Ucfxdvbu0Z4vVhERAS+vr74+voSEhJCWVmZsVYaIDQ0lE2bNuHj4wOAj48P3bp1M+qMjY3lp59+Ys+ePQD8888/bNy4kWHDhnHu3Dk+//xzxowZg7e3N/b29vTo0YOYmBjjrvOJEyews7Mzftn4+vqyefNm7r///rr8uEUaXVZWljE37rrrLuLj4xk3bhwBAQGN0r+bmxtz5sxh9+7dhIaGEhYWRkJCAhkZGZw6dapefZpMJoYNG8aqVauMtq+//hofHx86duzYKHWLtGS1mbfW51j/mzx58hX7PnnyJJ9//jmFhYX6cu7/OK1BbmITJkwgPDycZcuW8cgjj9Q4npOTw8KFC9m7dy9VVVWcO3eOqqqqS/b14IMPsnDhQoqLi+nYsSOZmZmEhobi4uLC77//DkBUVJTNNRaL5V/vQlmvQT5x4gQZGRkMHTqUhQsX4u/vz9mzZ0lJSeHbb7/l77//BqCystLo18/Pj+7du7Nq1SoSEhIwm814eHjQu3dv/v77b8rKypg2bRrTp0+3qevChjGPPvoomzZt4r777qNnz54EBQURGRnJzTffXJsfsUiTuXgt4549e0hMTGT79u3MmTOnUcYIDg5m/fr17Nixgx9//JHCwkLefPNNZs+ezfz58/H3969zn0OGDCE1NZWSkhI8PT1JT09n+PDhjVKvSEtXm3lb2zXIWVlZxl4OcP7OsY+PDykpKbqJ8z9Od5CbmLOzM4mJibz77ruUlJTYHCsoKCA+Pp6oqCi+++47tm/fzuuvv37Zvu644w66devG2rVrKS8vJycnhyFDhgDQqlUrAKOfC/927NjBW2+9Vet627RpQ1xcHL6+vixZsgSAqVOnYjabSUlJ4aeffmL79u013rRHjBhBRkYGVVVVZGVlMXToUJu7wsnJyTXq2rBhAwBeXl5kZGSwZMkSAgMDycjIYODAgTZffBBpbg4ODnTv3p34+HjWrVvHH3/8YXO8LnehLmZnZ4efnx+jRo0iNTWVnJwcPD096zR3rXl6ehIUFER6ejrFxcXs3r3beCKGyH/Jv83bfxMREWG8bxUVFREQEICHhwehoaFNVLG0FArIV8GAAQO49957mTp1qk17UVERN9xwA0888QQ33HCD0XYlUVFRmM1msrOzcXFxMXYe7NKlCwC7du2yOb+4uLjeX3a78BHvtm3bCAsLw8/PD3t7e8rLy43lFNZ1VVRUkJmZSUFBgbEu2tnZGXd39xp1lZSUcPbsWWOc06dP4+fnxzPPPMPq1au54447yMjIqFfdIldDRUWFzWvrPwCtPy25ErPZzNy5c2u033jjjQQGBhqf2NRHTEwMX331FV9++SXh4eFaLylCzXlbF3Z2dsyaNYv8/HyWL1/eiFVJS6SAfJUkJiby/fffk5eXZ7R17NiRiooKdu7cSXl5OcuWLTP+uv3rr78u2U9kZCS7du1ixYoVREVFYW9vD8Ctt95Knz59SEpKYt++fVRXV2M2m4mIiGDr1q21rvPMmTOsWbOGrVu3Gh/JdurUiV27dnHq1CkOHDjA5MmTueWWWzh48KARvl1cXAgPD2fatGncc889Nt++f/zxx/nss8/Iz8+nurqaX375hUceeYRPPvkEgOeee45JkyZx9OhRAPbt28fBgwfp2rVrresWuRqKi4uZM2eOsayooa6//nrmzZvHBx98QElJCRaLhYqKCtavX09mZqbxCVF99O3blxMnTpCWlsawYcMaXKvItaox523Xrl156aWXSEpKYu/evY1ToLRIWoN8lXh6evLKK68wZcoUo23gwIFER0czcuRInJyciI6OZt68ecTFxTF48OBLPkLGy8uLwMBACgoKSExMtDn29ttvM3PmTGJiYqisrKRz584kJSXRo0ePK9YWERFhbHrQqlUrbrvtNt5//3369+8PQHx8PBMnTqR379506NCBiRMnUlFRwWuvvcaYMWOMR7bFxMSwevXqGmsdR48ebZx/9OhR2rZtS3R0NGPHjgXOb5oybdo0wsPDOXPmDB4eHkRFRRmPrxNpLtbrD00mE25ubvTr14/nn38eO7va3V8oKSmx2Ujggg0bNhAUFMSCBQtYvHgxw4YN4/jx4zg4ONCtWzcmTJhgPC6yPuzt7YmOjiY7O7te65hFrlW1mbcXry22Nm3atCv+cTpy5Ei++eYbXn31VZYtW3bZDUfk2qad9KTRfP3118yYMYPs7GwcHR2buxwRERGRetESC2kUv/32G0lJSYwfP17hWERERK5p+lxAGmz06NHs2LGDESNGMGLEiOYuR0RERKRBtMRCRERERMSKlliIiIiIiFhRQBYRERERsaKALCIiIiJiRQFZRKQeCgoK8Pb2xtvbm59//tloN5vNRvv+/fvr1GdISEittoS+sB28iIg0DQVkEZEGcHR0JDc313idm5urRx2KiFzjFJBFRBrAz8+PnJwc43Vubi4+Pj7G67y8PAYPHoyPjw8hISGkpaUZx4qKiujfvz8BAQG89dZbNv1WV1cza9Ys7rvvPgICApgyZQrV1dWXrOFKY4iISN0pIIuINEDPnj3ZsWMHpaWl7N69m0OHDtGrVy/gfMh9+umncXV1Zf78+dx1111MmjSJ/Px8LBYLEyZMoKKigtTUVCwWCwcPHjT6/fTTT1m0aBGxsbFMmTKFlStXXjL47tu377JjiIhI/Sggi4g0QI8ePbjuuuvIzc1l48aNdOrUic6dOwOQmZlJZWUlL7/8Mn369GHSpElG+969e/nzzz8ZNGgQQUFBvPTSS9jb2xv9ms1m2rRpwzPPPMOgQYMICAggMzOzxvhXGkNEROpHO+mJiDSAk5MTvXr1YvPmzRw5coTg4GDj2LZt2wBo164dAO7u7tjZ2XH48GGOHTsGgJubm9HPTTfdZFx7/PhxTpw4wZ133mm0tW/fvsb4hw8fvuwYIiJSPwrIIiIN1LdvX1JSUvjnn3946qmnKC0tBSAwMJBNmzZRUlKCl5cXhw4d4ty5c7Rr1w5XV1cA49yKigqOHTuGs7MzAJ6enpSVlbFgwQJjHAeHmr+yLwTjS40hIiL1oyUWIiINFBwcTGlpKXZ2dsb6Y4CIiAgcHR1577332Lx5MzNnzgRgyJAhdOnShfbt25OVlcX69euZNWsWJpPJuDYsLIyysjLy8/M5cuQI06dPZ/369TXGvtIYIiJSPwrIIiIN5OXlhbe3N7169aJVq1ZGu52dHfPmzaO0tJSxY8eyc+dO3nvvPQIDAzGZTMyaNQtHR0fi4+Nxd3ena9euxrWxsbGMHTuWpUuX8uqrr+Lq6srDDz9cY+xOnTpddgwREakfk8VisTR3ESIiIiIiLYXuIIuIiIiIWFFAFhERERGxooAsIiIiImJFAVlERERExIoCsoiIiIiIFQVkERERERErCsgiIiIiIlYUkEVERERErPwfaUmx/9NbZn8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10 , 7))\n", + "\n", + "# results_ = [base, referencia, aluno]\n", + "results_bert = [bb, br, ba]\n", + "results_lstm = [lb, lr, la]\n", + "results_naiv = [nb, nr, na]\n", + "\n", + "xcol = 1\n", + "\n", + "for rm in [results_naiv, results_lstm, results_bert]:\n", + " rb = rm[0]\n", + " rr = rm[1] \n", + " ra = rm[2]\n", + "\n", + " plt.bar(xcol + 0.5, ra)\n", + " plt.annotate(f'aluno = {ra}', xy=[xcol , ra + 0.01], fontsize=10)\n", + "\n", + " plt.annotate(f'base = {rb}', xy=[xcol + 0.9, rb + 0.01], fontsize=10)\n", + " plt.plot([xcol, xcol+1], [rb, rb], color='black')\n", + "\n", + " plt.annotate(f'referência = {rr}', xy=[xcol + 0.9, rr + 0.01], fontsize=10)\n", + " plt.plot([xcol, xcol+1], [rr, rr], color='black')\n", + "\n", + " xcol += 2\n", + "\n", + "plt.xticks([1.5, 3.5, 5.5], ['Naive Bayes', 'Bi-LSTM', 'BERT'], fontsize=15)\n", + "\n", + "plt.xlabel('Modelo')\n", + "plt.ylabel('Acurácia')\n", + "plt.title('Acurácia de cada modelo')\n", + "\n", + "plt.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 531 + }, + "id": "C7xrBFNzxpsE", + "outputId": "70e3464e-724f-4155-c7a0-edf09e854ba4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.6\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAHwCAYAAAC7apkrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVf7H8fekExJKICGQQgmQhCYIqIjSQ1FQQZEaRBBcZfcnKEhR17ILIiso6loQ3FWaFAFFpSggNgREBMGEDpkESKEkE9Iz8/sjSwQJpE1JJp/X8+TRuXPvOd/hJg+fHM49x2CxWCyIiIiIiAgALo4uQERERESkIlFAFhERERG5ggKyiIiIiMgVFJBFRERERK6ggCwiIiIicgUFZBERERGRKyggi4jcwM6dOwkPD6dTp05cunSp8Hh0dDTR0dElamPt2rXExMSUqt81a9YQHh5+zdejjz4KQHh4OGPHji1Vm3/25ptvEh4ezq+//lqudn755RcGDBhA69atGThwIPv37y/yvO+++44BAwbQrl07Ro0ahdFoLFe/IiK2ooAsIlIC58+f56OPPir1dRkZGbz44oulDsiXPfHEE6xYsaLwa+rUqQCsWLGCGTNmlKlNazKZTDz22GMEBATwxhtvkJ6ezvz58685Lz09nUmTJuHn58e8efM4cuQIL7zwgv0LFhEpAQVkEZESiIyM5IMPPiA1NfWa93Jzc3nttdfo1KkTrVu3Jjo6mhMnTgDQrl07MjMzmT59OtOmTQNg0aJFdOnShXbt2vHoo49y/vz56/bbsGFD2rZtW/jVpEkTAIYMGcKsWbOAP0aCv/zyS3r37s2tt97KwoULC9tYt24dvXr1om3btowYMYJTp04V+3mLGr0ODw+/5rwtW7Zw8eJFnn76abp3785XX33FokWLrjnvp59+wmQy8eCDD9K9e3eioqL48ccfMZlMxdYiImJvCsgiIiUwevRoMjMziwx/7733Hu+++y4jRoxg/vz5xMXFMW7cOPLy8vj73/8OwGOPPcbjjz/Ozz//zJw5c+jWrRsvvfQS27dv5+23375uv2azmby8vMIvs9l83XOXL1/OM888Q2BgIK+99hrnz58nPj6eGTNm0KxZM15//XUOHjzI7Nmzi/28V45aX/n1Z7GxsQCsWrWKDh06EBUVxY4dO645Ly4uDoCAgIDC/5rN5sLjIiIViZujCxARqQzq16/PkCFDWLx4MaNGjbrqvXXr1tGoUSP++te/AnD06FHmzp3Lr7/+StOmTQEIDQ0lNDQUHx8f1q1bR0hICF5eXrz88sscPXr0uv1OnjyZyZMnF74eMWJEYej+sxEjRtC1a1dOnjzJrFmzOHnyJM2bN+eTTz6hXr161KhRg2bNmt2wv8tatWpV7DkAaWlpAFy6dIm5c+fyzDPPMHnyZLZt24aHh0fheZmZmQC4uRX8tePu7n7VcRGRikQBWUSkhP7yl7+wevVq3n333auOJyUl0a5du8LXl0dJk5KSqFOnzlXnpqen8+KLL3LgwAFyc3MByM/Pv26fkyZNonPnzoWv/9zelQIDAwHw9fUFCqZ+5OTkMHfuXHbt2kV2djYAQUFBxX7Wli1bFnn80KFDV7329PQEYMKECQQHB3PXXXfx4YcfYjQaCQsLKzyvWrVqAOTl5RXWBuDt7V1sLSIi9qaALCJSQv7+/gwfPpwlS5bQqFEjatWqBRQE08TExMLzTp8+XXj8chC87I033mDv3r3MmTOHJk2a8PDDD9+wz5CQEFq3bl3mmj/88EO+++47pkyZwi233MK0adPIysoq9rrVq1eXqP3GjRsDFK7wcXkKyJWjx1AwlxrgzJkzACQkJODq6kpoaGjJPoiIiB1pDrKISCmMGzcOd3d3Dh8+XHjsnnvu4cSJE7z77rt8/fXXLFu2jLCwMG666Sa8vLwA2L59OzExMYXh1M3Nja1bt+Lq6kpCQgLHjx+3Sb2X+3N3d2ffvn2cP3+eCxcucPDgwRte17p16yK//qxPnz54eXkxf/58tm7dyoYNG2jSpAlBQUEsWLCADh068Ntvv9GpUydq1arFqlWr+Oabb9i2bRvdunXDx8fHJp9bRKQ8FJBFRErBz8+Phx566Kpj48ePZ9y4cfznP/9h0qRJNG/enPfeew9XV1ciIyO5+eab2bJlC4sXL2bcuHGEhoby7LPPkpOTw/Tp00lJSeHjjz+2Sb0jRowgPDycefPmceDAAf71r38B3PDBwNKoV68eb7zxBsePH+fJJ5+kUaNGvPnmm7i4uJCdnY3JZCI/Px9vb29ef/11Lly4wKRJk4iMjOT555+3Sg0iItZmsFgsFkcXISIiIiJSUWgEWURERETkCgrIIiIiIiJXUEAWEREREbmCArKIiIiIyBUUkEVERERErqCALCIiIiJyBQVkEREREZErKCCLiIiIiFzBzdEFlMSePXscXYKIiIiIOKH27dtfc6xSBGQounhbi4mJITIy0u79iv3oHjs/3WPnp3vs3HR/nZ8j7/H1BmE1xUJERERE5AoKyCIiIiIiV1BAFhERERG5ggKyiIiIiMgVFJBFRERERK6ggCwiIiIicgUFZBERERGRKyggi4iIiIhcodJsFFIRxcfHM2DAAFq1agVATk4OU6ZMIS4ujvnz5xMaGlp4bv369ZkzZw7Tpk3j4MGD1KpVC4vFQm5uLlOmTKFJkyY88cQTQMGC2Q0bNsTb25v+/fszZMgQh3w+ERERkapIAbmcGjduzOLFiwHYvXs377zzDnfffTd33XUXU6dOLfKaJ598ku7duwMQFxfHuHHj2LRpU2E70dHRPPfcczRv3tw+H0JERERECmmKhRWlpKQQEBBQqmtCQ0NJT08nPz/fRlWJiIiISGk4xQjyJ3viWfmz0aptPtghhBbexZ934sQJoqOjyc7OJjExkUWLFrF///4S97N79278/f1xdXUtR7UiIiIiYi1OEZAd6copFseOHWPixImMGjWKL7/8kgMHDhSe169fP4YPHw7AvHnz+OCDD7hw4QLe3t7MnTvXIbWLiIiIyLWcIiDf3z6Y+9sHW73dmJiYUp0fFhaGp6cnLi4uJZqDHBsbyzPPPEPjxo2tUa6IiIiIWIHmIFvRxYsXSU5OJi8vr0TnR0RE0LJlS5YvX27jykRERESkpOwygnz48GEef/xxRo8ezciRI69678cff2TevHm4urrSpUsXJkyYYI+SrObyHGSA7OxsnnvuOdLS0q6ZYgGwaNGia66fOHEiDzzwAH379qVOnTp2qVlERERErs/mATkjI4N//OMfdOrUqcj3//nPf7Jo0SLq1avHyJEj6dOnD02bNrV1WVYRHBzM3r17i3xv0KBBRR6fPXv2Va/9/PzYunXrVccuz2kWEREREfuzeUD28PDg/fff5/3337/mPaPRSM2aNalfvz4AXbt2ZceOHZUmIIuIiIgU5XjqcT46+BG55lxHl/KHS8lw7jhgLtHpZgukZuaSb7bYtKzqFh/mNFuPm5u7TfspDZsHZDc3N9zciu4mOTkZPz+/wtd+fn4YjUUv11baB+asISsryyH9iv3oHjs/3WPnp3vs3Crj/Y3PjOfFmBfJMmdRw62Go8vBgBmXHBOuuRlYDAYwlOwRNLPFggVs/sRarXwTB38/gIe7l207KoVKs4pFZGSk3fuMiYlxSL9iP7rHzk/32PnpHju3ynZ/T6SeYNamWbi5ubGq7yoa13TgSlUWC+xfAZuegcwL0Olx6DYdPKrf8LLcfDN/W7aXjQfP8o97WxLdqZFNy3TkPd6zZ0+Rxx0akAMCAkhJSSl8nZiYWOqd6EREREQqglNpp3hk0yOYLWY+6POBY8NxyhH4fBKc/A6CO0L/TyGwVbGX5eWbeXLlPjYePMtz/VvYPBxXVA5d5i04OJj09HTi4+PJy8tj27ZtdO7c2ZEliYiIiJSaMc3ImE1jyDXnsrD3QsJqhTmmkNws2DYL3rkdzu6H/q/BmM0lCsf5ZgtPr97P+n2nmd4vgrF3VN19Gmw+gnzgwAFeeeUVEhIScHNzY9OmTfTo0YPg4GCioqJ44YUXeOqppwC46667tGmGiIiIVCrxpnjGbB5DTn4OC3svpFntZo4p5Ng2+OJJOH8cWj8IfWaCT8n+Zd5stjBjzW+s2ZvAU1HNebSrgwJ+BWHzgNyqVasbLlvWsWNHVqxYYesybCI+Pp4BAwbQqlXBb2U5OTlMmTKFX375hY4dO9KuXburzo+Ojua5556jefPmVx1funQpn376KR4eHmRlZfHkk08SERHBE088ARTMzWnYsCHe3t70798fd3d3Zs2axY8//oiHhwcAqampdO7cmZdeeum6S8yJiIiIdZ1OP80jmx8hIzeDRX0WEe4Xbv8i0pNg0wz4bRX4NYHodRDWvcSXWywWnvv0ACt+NvJ/PZryt54OCvgVSKV5SK+iaty4ceEvALt37+add94pckOQ64mPj2flypWsXr0ad3d3Tp48ybPPPsuSJUsK2/1zsF6zZg21atVi+/btREVFAbB582YCAwOt/OlERETkes5eOsuYTWNIy0ljYe+FRPhF2LcAsxn2/Ae+fhHyMqHrVLjjSSjFahAWi4UX1//O0p1x/KVrGJOimhd/URWgraatKCUlhYCAAKZNm8a2bdtKdE16ejrZ2dnk5hask9ioUSOWLFlS7HVdu3Zl/fr1ha83bNjA7bffXrbCRUREpFQSLyUyZtMYUrNTWRC1gBZ1Wti3gLwcWD6kYEpF/Tbw2I/QfUapw/HLG2L5748nGdO5MVP7hmMwGGxYdOXhHCPIvy6HvcWHylJpNxI82xZ72uWtprOzs0lMTGTRokUsXLiwxN1ERETQpk0bevbsSdeuXenSpQu9e/e+7trRl7Vs2ZJFixaRnp5OVlYWubm5+Pv7l7hfERERKZvkjGTGbh7L+azzLIhaQKu6xT8AZ1XmfFj7KBzZDP3mwC3joQzBdu7mwyz49jjRtzXkuf6RCsdXcI6A7EBXTrE4duwYEydOJDy8dPOP5syZw7Fjx/juu+9YuHAhy5cv56OPPir2G7Vr1658/fXXpKen07NnT0wmU5k/h4iIiBQvJTOFsZvHkpyRzHtR79HGv419C7BYYMPTcHAN9HoRbn20TM28seUIb207yrBbQnjxnpYKx3/iHAG57bCCL2sr5c49YWFheHp64urqCsCyZcvYsGEDtWvX5o033ijyGovFQk5ODmFhYYSFhREdHU2/fv04ffo0QUFBN+yvb9++vP3221y6dIk5c+awevXqUtUrIiIiJXcu8xyPbHqEs5fO8m6vd2kbUPy/NFvdN7Nh90K4/W9wx8QyNfH2N0eZ99VhHmgfzMz7WuPionD8Z84RkCuIixcvkpycTMOGDQEYPnw4w4cPv+E1q1evZvfu3bzyyisYDAZMJhNms5k6deoU21+bNm1ISEjAx8eH+vXrW+UziIiIyLXOZ53nkc2PkJCewNu93ubmejfbv4idC2D7bGg7AqL+UaYmFn53nDkbD3Fv2wa8cn8bhePrUEAup8tzkAGys7N57rnn+Prrr697/vTp0/H29gbg1ltv5bHHHuP48eMMHjwYb29v8vLyePbZZ/HyKtkk+zvuuKNEYVpERETK7uWdL2M0Gfl3z3/TMbCj/Qv4bTVsmALhd8GAN8o053jjgbP884sY7modyNzBN+GqcHxdBovFYnF0EcXZs2cP7du3t3u/lW3/dyk93WPnp3vs/HSPnVtFub/91/YnvHY4c7vNtX/nR74uWLEi5FYY+Qm4Vyt1E7n5ZnrN2041d1fW/+0O3F0rzkJmjrzH18uYFedPR0RERKQCyjfnk5CeQIhviP07N+6CldEQEAnDlpcpHAN8vCuOU+cyeLpveIUKxxWV/oREREREbuBsxlnyzHmE1gi1b8dJMbB0MPgGwsg14FWzTM1cys5j/paj3NLIj+7hJdt6uqpTQBYRERG5gbi0OAD7jiBfOAWLB4KbF0SvBZ+yB9sPvj9BSno2U/tFaDm3EtJDeiIiIiI3YDQZATsG5PTkgnCcmwEPb4Dajcrc1PlLObz37XF6t6hH+4a1rVejk1NAFhEREbmBeFM8Hi4eBHjbYXpCVhosGQRpp2HUp1CvZbmae2vrUTJy8ni6b+k2MavqFJBFREREbsBoMhLsG4yLwcYzU3Oz4OPhkPQ7DF0OobeWq7n4Cxks+ekUD7QPpmmAr5WKrBo0B7kc4uPjiYyMJDY2tvDYmjVrWLNmTZHnL1iwgL1799qrPBEREbGCOFOc7adX5OfBJ2Ph5Hdw3zvQvHe5m5z31WEMBpjYq7kVCqxaFJDLqWnTpsydW7I1EcePH0+7du1sXJGIiIhYi8ViwWgy2jYgWyzw+USI/Rz6vgJtHix3k7Fn01i7N4HRtzeiQa2yLQ1XlSkgl1PLli3x9vZmx44dVx1/+eWXGTZsGIMGDWLVqlUATJs2jW3btjFw4EBOnz4NQEJCAoMGDSI/P58ZM2YQHR3NsGHDrmlPRERE7O9c1jky8zJtG5C/fgH2LoYuT8Ntf7FKk3M2HsLX043HuoVZpb2qxinmIH927DPWHllr1TYHNhtIM5qV6NxJkyYxdepUbrvtNqBgy+mgoCCmT59OVlYWvXr1YvDgwYXn9+rVi23btjFixAi2bNlC7969Wb9+Pf7+/syaNYvz58/z0EMPsX79eqt+JhERESkdm69g8cMb8MPr0GEMdJ9hlSZ3nTjP1tgknu4bTi1vD6u0WdU4RUB2tEaNGtGiRQu+/PJLADw9PUlJSWHo0KG4u7tz4cKFq87v3bs3s2fPLgzIL7zwAv/973/Zs2cPv/zyC1AQsnNycvDw0De2iIiIo9g0IO9dCl89By0Hwl2vghXWKLZYLMzeEEO9Gp48fHtjKxRZNTlFQL4n7B7uCbvH6u3GxMSU+NwJEyYwduxYRowYQVJSEj/99BOLFy/G3d39mnnHzZo1IykpiTNnzmAymWjcuDHu7u785S9/oX///tb+GCIiIlJGRpMRF4MLQT5B1m049gv47G/QpDsMfA9cXK3S7ObfE/kl7iIvD2pNNQ/rtFkVaQ6yldStW5devXrx8ccf4+3tTWBgIO7u7mzZsoX8/HxycnKuOr9bt2689tpr9OjRA4CbbrqJLVu2AHDu3DnmzZtn988gIiIiV4tLi6N+9fq4u7pbr9GT38Oqh6FBWxiyBNw8rdJsXr6Zf206RBP/6gxuH2yVNqsqBWQrGjNmDGfPnsXV1ZVTp04xcuRIjEYj3bp144UXXrjq3KioKD7//HP69u0LQL9+/fD29mbo0KH85S9/oX379g74BCIiInKleFM8wb5WDJtn9sHyYVC7IQxfBZ4+Vmt6zS8JHE1K5+k+4bi5KuKVh1NMsXCU4OBgZs+eXfi6evXq/PjjjwA89NBDhcdHjx59zbVt2rTh999/L3zt5ubGzJkzbVesiIiIlJrRZKRXw17WaezcMVhyP3jWgOi1UL2OddoFsnLzee3rw7QNqUWfloFWa7eq0q8XIiIiIkUw5Zi4kH3BOg/opZ2BxfeBOb8gHNe07hSID388yZnULKb2jcBghYf9qjqNIIuIiIgUwWorWGRegCWD4NI5GL0e/K27s11qZi5vf3OMrs396RRmvVHpqkwBWURERKQIVgnIORmwbAicOwrDV0KQ9Z8xenf7MdKycpnaN8LqbVdVCsgiIiIiRSh3QM7PhZWjwLgLBv8Xwrpbr7j/OZuaxX9+OMG9NzWgRYMaVm+/qlJAFhERESmC0WSkjlcdvN29S3+x2QzrHoejX0H/16HlfdYvEJi/5TD5ZgtP9Q63SftVlR7SExERESmC0WQs2+ixxQKbpsNvK6HHc9DhYesXBxxLTmflz/GMuLUhIX5lCPFyXQrIZRQfH09kZCSxsbGFx9asWcOaNWuue83p06fZv39/idrfuXMnt912G9HR0YVfCxYs4Ntvv2XZsmWlrnXQoEGlukZERKSqM5qMhNYILf2F374KO9+F2x6HO5+yfmH/8+qmQ3i5ufDXHk1t1kdVpSkW5dC0aVPmzp3L+++/X6Lzf/rpJzIyMmjTpk2Jzr/lllt44403ylOiiIiIlEF2fjaJlxJLv0nI7kWw7Z/QZij0ngk2WnJtb9wFNhw4y8RezajrY52d+OQPCsjl0LJlSzIzM9mxYwedOnW66r0PP/yQL7/8EoCePXvywAMP8NZbb+Hm5kb9+vWpVq0a8+fPx93dnRo1avD666/j4eFRbJ9r1qzhyJEjjBgxgmnTphESEsKhQ4eIjIxk5syZxMbG8uKLL+Lm5oaLiwvz58+3yWcXERFxZgmmBCxYSjfF4sAa+OIpaNYH7n0LXGzzD/UWi4VXNsZSp7oHj9zZxCZ9VHXOEZA/+gg++MC6bY4ZAx07FnvapEmTmDp1KrfddlvhMaPRyNq1a1m9ejUAgwcPpm/fvgwcOJDatWvTs2dPNmzYwKuvvkpISAhPP/0033//PT169ChViQcPHuS1116jTp06dOnShbS0NM6dO8dzzz1HixYtmD9/PuvXr6d7d+s/NSsiIuLMLq9gEepbwikWx7bCmvEQelvBihWu7jarbfvhZH46fp4X72mJj6dzRLmKRn+q5dSoUSNatGhROFoMEBMTw0033YSbW8Ef780333zVXGUAPz8/nn32WfLz8zEajVcF7Mt27dpFdHR04et77rkHV1fXwtehoaH4+/sDEBAQgMlkok6dOrz66qtkZWWRlJTEgAEDrPp5RUREqoI4UxxQwiXe4n+Gj0eCfzgM+xg8bPfAnNls4ZWNhwj182bYLWWYHy0l4hwBedSogi9ri4kp0WkTJkxg7NixjBgxAjc3NwwGAxaLpfD93NxcXP70zywzZsxgwYIFhIWF8dJLLxXZblFzkK98CPDKsAwF/+Qyc+ZMxo0bR5cuXVi0aBEZGRkl+gwiIiLyB6PJiI+7D7U8a934xORDsPQB8PGHkZ9AtWLOL6fP9p0m5kwa84e2xcNNay3Yiv5kraBu3br06tWLjz/+GIDIyEh+/fVX8vLyyMvLY9++fURGRmIwGMjLywMgPT2d+vXrk5aWxs6dO8nNzbVKLRcvXiQ0NJScnBy2b99utXZFRESqkstLvBlu9JDdRSMsHggu7hC9FnwDbVpTTp6ZuV8dokX9Ggxo08CmfVV1zjGCXAGMGTOG5cuXAxAcHMyQIUMYOXIkFouFwYMHExQURLt27Zg6dSp+fn4MHz6cYcOG0ahRIx555BHefPNNunfvTkBAQLnqGDlyJBMmTCAkJITo6Gheeukl7rrrLmt8RBERkSrDaDISXvsGm29cSikIx9np8PAX4Gf7h+WW7TyF8XwmH45pjYuLbVbHkAIGy5VzASqoPXv20L699fcuL05MTAyRkZF271fsR/fY+ekeOz/dY+fmiPubb86nw9IOPNTiISa2n3jtCdkm+HAAJMUUjBw3vN3mNaVn59F1zjaa1/Nl2bhbbzyyXck48mf4ehlTI8giIiIiVzibcZY8c17RD+jlZcPHw+HMfhi6zC7hGOD9b49z7lIOU/tFOFU4rqgUkEVERESuULjE25930TPnwyePwIlv4b53IbyvXepJNmWz8Lvj3NU6kLYhtn0IUAroIT0RERGRK8SlFbHEm8UCn0+CmM+gzyxoO8xu9by19QhZeWYm977BnGixKgVkERERkSvEm+LxcPEgwPuKB+e3/gN++RDueBI6TbBbLXHnMli2K44HO4TQxN/Hbv1WdQrIIiIiIlcwmowE+wbjYvhfTNrxb/huLtz8EPT8u11rmfvVIVxdDEzs1cyu/VZ1CsgiIiIiV4gzxf0xveLX5bBpBkTeA/1fAzs+IHcgIZVPfz3NmM6NqVfDy279igKyiIiISCGLxVK4SQiHNsKnE6BxF7h/Ibi4Ft+AFc3ZdIia1dx5tGuYXfsVBWQRERGRQueyzpGZl0lIbh6segjqtylYzs3N0651/Hg0hW8PJ/PX7k2pWc3drn2LArKIiIhIoctLvIXsXAQ1Q2DEavD0tWsNFouFVzbG0qCmF9GdGtq1bymggCwiIiLyP8YzvwAQ4uJVsEte9bp2r2HDgbPsi09lYlRzvNztO61DCiggi4iIiACYEjH+9DouFgtBw1ZCrSJ20rOx3Hwzr246RLMAH+6/Odju/UsBBWQRERGRzIuw5H7izNnUr+aPe71WDilj5c9Gjqdc4um+Ebi6aEtpR1FAFhERkaotNxOWD4PkWOIDmhNc2zGrRmTm5DP/6yN0aFibXpEBxV8gNqOALCIiIlVXfh6sehjidsCgBRhz067eYtqOPvjhBEmmbKb2i8Bgx/WW5VoKyCIiIlI1mc3w2d/g8Aa4+1VMzaO4kH2BUN9Qu5dy4VIO735zjF6RAXRs5Gf3/uVqCsgiIiJS9Vgs8NVzsG8ZdH8GOj7yxxJvDhhBfvubo6Tn5DGlT4Td+5ZrKSCLiIhI1fP9a7DjLbjlUegyBcBhATnhYiYf7jjFoHbBhAfad81lKZoCsoiIiFQtez6ELS9C68HQdzb8b76vowLy618dBuDJ3s3t2q9cnwKyiIiIVB2/fwafT4SmUXDv2+DyRxQymozU8aqDt7u33co5nGjik1/iGXVbQ4JqVbNbv3JjCsgiIiJSNRzfDp+MhaAO8OCH4OZx1dtGk9Huo8dzNh6iuocbE7o3tWu/cmMKyCIiIuL8Tu+Fj4eDXxgMXwEe1a85xWgyElrDfitY/HzyPF/HJPJo1ybUru5R/AViNwrIIiIi4txSjsCS+8HbD6LXFPz3T7Lzs0m8lEiwr322d7ZYLMzeEIu/rydj7mhslz6l5BSQRURExHmlJsDigWBwgeh1UKNBkaclmBKwYLHbFIstMUn8fOoCT/RshreHm136lJLTHRERERHnlHEelgyCrFQY/TnUuf4W0vZcwSLfbGHOplga163OkI6O2bVPbkwjyCIiIuJ8stNh6WA4fwKGLYf6N93w9MsB2R676K3dm8DhxHQm9w7H3VVRrCLSCLKIiIg4l7wcWBkNp3+BBxdDozuKvSTOFIePuw+1PGvZtLSs3HzmbT5Em+Ca3NU60KZ9Sdnp1xYRERFxHuZ8WElBPLcAACAASURBVPsoHNsK97wJkf1LdNnlJd4M/9s0xFaW/HSK06lZTO0bYfO+pOwUkEVERMQ5WCyw4Wk4uAaiXoJ2I0t8abwp3ubzj9Oycnlr21HubFaXzk3r2rQvKR8FZBEREXEO38yG3Qvh9v+Dzk+U+LJ8cz7x6bYPyO9tP8bFjFym9o2waT9SfgrIIiIiUvntXADbZxeMGke9VKpLz2acJc+cZ9OAnJSWxaLvTzDgpga0Cqpps37EOhSQRUREpHL7bXXB1IqI/tB/PpRybm/hChY23EVv/pYj5OVbeCqquc36EOtRQBYREZHK68jXBQ/lNewM9y8C19Iv0BWXFgfYbg3k48npfLzbyPBbQ2lU99otrqXiscsyb7NmzWLfvn0YDAZmzJhBmzZtCt9bunQpn332GS4uLrRq1YpnnnnGHiWJiIhIZWfcBStGQkALGLYM3L3K1Ey8KR4PFw8CvAOsXGCBuZsP4+nmwt96NLNJ+2J9Nh9B3rVrF6dOnWLFihXMnDmTmTNnFr6Xnp7OokWLWLp0KcuXL+fYsWP8+uuvti5JREREKrukmIKNQGrUh5GfgFfZ5/UaTUaCfINwMVg/Fu2Pv8gXv53hkTsa4+/rafX2xTZsHpB37NhBr169AAgLCyM1NZX09HQA3N3dcXd3JyMjg7y8PDIzM6lZUxPXRURE5AYunILFA8G9GkSvA5/yjfzGmeJssoOexWJh9oZY/Kp7MK5LE6u3L7Zj8ykWKSkptGzZsvC1n58fycnJ+Pj44OnpyYQJE+jVqxeenp7cfffdNG7cuMh2YmJibF3qNbKyshzSr9iP7rHz0z12frrHzu3P99c16zyNtozHNecSp7q/Q/bZDDhb9vtvsVg4lXqKph5Nrf59tCchgx+PnePRjnWIP3HUqm07k4r4M2z3raYtFkvh/6enp/Pee++xceNGfHx8eOihh4iNjSUi4tr1ASMjI+1ZJlAQyh3Rr9iP7rHz0z12frrHzu2q+5uVBv8dD9nnYdSnNAm5pdztp2SmkL07mzYN21j1+8hstjD5q+8Jrl2NJ+/tiKebq9XadjaO/Bnes2dPkcdtPsUiICCAlJSUwtdJSUn4+/sDcOzYMUJCQvDz88PDw4MOHTpw4MABW5ckIiIilU1uFiwfBkm/w4OLwQrhGAoe0AOsPsXi89/OcPB0Gk/1bq5wXAnZPCB37tyZTZs2AXDw4EECAgLw8fEBICgoiGPHjpGVlQXAgQMHaNSoka1LEhERkcokPw8+GQunvof73oVmvazWdJzJ+ku85eSZmbv5EBGBvtx7U5DV2hX7sfkUi5tvvpmWLVsydOhQDAYDzz//PGvWrMHX15eoqCjGjh3LqFGjcHV1pV27dnTo0MHWJYmIiEgFt/S3pTyz5RniUuMIda/OzJw8RvR7HdoMtmo/RpMRF4MLQT7WC7If747j1LkM/jO6Iy4updu0RCoGu8xBnjx58lWvr5xjPHToUIYOHWqPMkRERKQSWPrbUsavH09GbgYAp3LTGe/qDt4+jLByX0aTkfrV6+Pu6m6V9i5l5/HGliPc2tiPbuH+VmlT7E876YmIiEiF8syWZwrD8WUZ5lye2WL9zcSMaUaCfYOt1t6i70+Qkp7D1H4RGEq55bVUHArIIiIiUqHEpcaV6nh5GE1Gq80/PpeezXvbj9GnZT1uDq1tlTbFMRSQRUREpEIJ9a5b9PGa1l1pwpRj4kL2BautYPHWtqNk5uYzpU+4VdoTx1FAFhERkYrjxHfMzMjC+0/bPnu7ezOz50yrdmU0GQHrrGBhPJ/Bkp9O8WCHEJoG+Ja7PXEsBWQRERGpGM7sg+XDGFEnggV3vUPDmg0xYKBhzYYsGLCAEa2t+4ieNQPyvK8O42IwMLFX83K3JY5n9530RERERK5x7hgsuR+q1YLotYyoGcSIDuNtusva5YBc3of0Ys6kse7XBMZ3aUJgTS9rlCYOphFkERERcay0M7D4PrCYIXod1LTP5hpGk5E6XnWo7l69XO3M2RiLr6cbj3dtaqXKxNEUkEVERMRxMi/AkkGQcR5GfgJ17RcyrbGCxU/Hz7HtUDKPd29KTW/rrKUsjqeALCIiIo6RcwmWDYFzR2HoMmjQzq7dlzcgWywWZm+IJbCGF6Nvb2S9wsThFJBFRETE/vJzYeVDEL8b7l8ETbratfvs/GwSLyUSUqPsAXnTwUR+NV5kUlQzvNxdrVidOJoe0hMRERH7Mpth3WNw9CsYMB9a3GP3EhJMCViwlHkEOS/fzL82xRLmX537b7beTnxSMWgEWUREROzHYoGN0+C3VdDzeWg/2iFllHeJt9V74jmWfIkpfSJwc1Wccja6oyIiImI/3/4Ldr0Hnf4Kd0xyWBmXA3JZdtHLys3n9a+P0C60Fn1a1rN2aVIBKCCLiIiIfexeCNtmwk3DIOofYDA4rJQ4Uxw+7j7U8qxV6mv/++NJzqZlMa1vBAYHfgaxHQVkERERsb0Da+CLydC8H9zzJrg4NoJcXsGitAE3NSOXt7cdpXu4P7c2qWOj6sTRFJBFRETEto5ugTXjIbQTDP4PuDp+veB4U3yZdtB7e/tRTNl5PN03wgZVSUWhgCwiIiK2E/8zrIgG/wgYthzcqzm6IvLN+cSnx5d6/vGZ1Ez++8NJBrYNIrJ+DRtVJxWBArKIiIjYRlIsLH0AfPwLdsmrVvr5vrZwNuMseea8Uq9g8fpXR7BYYFJUcxtVJhWFArKIiIhY30VjwRbSrh4QvQ58K85qD2VZ4u1okolVe4yMuC2UED9vW5UmFYQ2ChERERHrupQCiwdCdjo8/CX4NXZ0RVeJS4sDILRGyadY/GvTIbw93Phr96a2KksqEI0gi4iIiPVkmwqmVaQaYfgKCGzl6IquEW+Kx8PFgwDvgBKd/0vcBTYdTGR8lybU8fG0cXVSEWgEWURERKwjLxs+Hg5n9hc8kNewk6MrKpLRZCTINwgXQ/HjhBaLhdkbYqnr48nYOyrWSLjYjkaQRUREpPzM+fDJI3DiW7jvbWjex9EVXZfRZCzxChbfHEpm14nzPNGzKdU9Na5YVSggi4iISPlYLPD5JIj5DPq8DDcNdXRF12WxWIgzxZXoAb18s4VXNsbSsI43Q28p/ZbUUnkpIIuIiEj5bP0H/PIh3PkUdHrc0dXc0Lmsc2TmZZZok5BPf00g9qyJp3qH4+6qyFSV6G6LiIhI2e34N3w3F9qPhh7PObqaYsWb4gGKnWKRnZfP3M2HaRVUg/6t69ujNKlAFJBFRESkbH5dDptmQIt74e55YDA4uqJixZkKlngrborF0p/iSLiYydS+Ebi4VPzPJdalgCwiIiKld2gjfDoBGneFQe+Di6ujKyoRo8mIi8GFIJ+g655jysrlrW1H6dy0Dnc287djdVJRKCCLiIhI6Zz6EVY9BPXbwNCl4FZ51gY2mowEegfi7up+3XPe//Y45y/lMLVvhB0rk4pEAVlERERK7uwBWDYUaobAiE/A09fRFZWKMc1ISI3rT69INmWz8PsT3N2mPm2Ca9mxMqlIFJBFRESkZM4fhyWDwNMHotdC9TqOrqjUjCbjDecfv7n1CDl5Zib3DrdjVVLRaMVrERERKZ7pLCweCPm58NB6qFX8OsIVjSnHxIXsC9cNyCdTLrFsZxxDOobQuG51O1cnFYkCsoiIiNxY5kVYcj+kJxeEY//KObpqNBmB6y/xNverw7i7uvBEz2b2LEsqIE2xEBERkevLyYDlQyH5EAxdAsHtHV1RmV0OyEWNIB9ISGX9vtOMvaMxATW87F2aVDAaQRYREZGi5efC6och7icY/B8I6+HoisrlckAuahe9VzbGUtvbnfFdm9i7LKmANIIsIiIi1zKb4bO/weGNcPdcaDnQ0RWVW7wpnjpedajufvX84h+OpvDdkRQmdG9KDa/rL/8mVYcCsoiIiFzNYoHNz8K+5dD9Weg41tEVWUWcKe6a6RVms4XZG2IJqlWNkbc1dFBlUtEoIIuIiMjVvp8HP/0bbv0LdJns6Gqspqgl3r48cIbfElKZFNUcL/fKsRug2J4CsoiIiPxhz39hy0vQ+kHo8zIYDI6uyCqy87NJvJR4VUDOzTfz6qZDhNfzZWC76289LVWPArKIiIgU+P1T+HwSNI2C+94GF+eJCQmmBCxYrtpFb8VuIyfPZfB033BcXZzjFwGxDuf5zhcREZGyO74dPnkEgjvCgx+Bq3M9rPbnJd4ycvKYv+UIHRvVpkdEgCNLkwpIAVlERKSqS/gFPh4OdZrC8BXg4e3oiqzuzwH5g+9PkGzKZlq/CAxOMo1ErEcBWUREpCpLOQJLHwBvPxi5BqrVdnRFNhFnisPH3YfanrW5cCmH97YfJ6pFPdo39HN0aVIBKSCLiIhUVakJsHggGFwgeh3UqO/oimzm8goWBoOBf287yqWcPKb0qZxbZovtKSCLiIhURRnnC8JxViqM/ATqhDm6IpuKN8UT7BtM/IUMPtpxivtvDqZ5PV9HlyUVlAKyiIhIVZOdXjCt4sJJGLYc6t/k6IpsKt+cT3x6PKG+obz21REwwKSo5o4uSyowBWQREZGqJC8bVoyE03th8H+g0R2OrsjmzmacJc+ch7ulLmv2xjP69kY0qFXN0WVJBebm6AJERETETsz5sPZROL4N7v03RNzt6Irs4vIKFt8cMOPj6cbj3Zx7OomUn0aQRUREqgKLBb6cAgfXQtQ/oN1IR1dkN5cD8s9HXXmsWxi1vD0cXJFUdArIIiIiVcE3L8PPi6DzROj8f46uxq7i0uIwWNzw9/bn4dsbO7ocqQQUkEVERJzdT+/C9legXTT0esHR1djdntNHycupzcSeEVTzcHV0OVIJKCCLiIg4s/0rYeNUiOgP/V+HKrZrXL7ZQkzyCaoRwIMdgh1djlQSCsgiIiLO6shXsO4xaHQn3L8IXKves/mr9xjJdUnmluDmuLkq9kjJ6DtFRETEGcXthBXRUK8lDF0G7l6OrsjusnLzeW3rLxhccrijkXbNk5JTQBYREXE2iQdh2WCo0QBGfAJeNRxdkUMs3nGKpKzTAITUCHFwNVKZKCCLiIg4kwsnYfEgcPeGUevAx9/RFTlEamYub207SovQHABCfUMdXJFUJgrIIiIiziI9CRYPhLwsiF4LtapuKHxv+zFSM3Pp0NSMi8GFIJ8gR5cklYgCsoiIiDPISoUlg8B0FkasgoBIR1fkMIlpWXzwwwnubduALJII9A7E3dXd0WVJJaKALCIiUtnlZsHy4ZAUAw8uhpBbHF2RQ73+9RHyzRaeigrHaDJq/rGUmgKyiIhIZZafB6vHwKkfYOB70KyXoytyqGPJ6az82ciIWxsSWscbY5qREF8FZCmdqrcgooiIiLOwWGD9E3DoC7jrVWj9gKMrcri5mw/h5ebCX3s0JT0nnQvZFxSQpdQ0giwiIlJZffV3+HUJdJ0Gt4xzdDUO96vxIl/+dpZxXZpQ18cTo8kIaAULKT0FZBERkcro+9fhxzeg4zjoNs3R1TicxWLhlQ2x1KnuwSN3NgEgzhQHoBFkKTUFZBERkcrml8Xw9fPQ6n7oNwcMBkdX5HDfHklhx/Fz/K1HU3w8C2aQXh5BDvYNdmRpUgkpIIuIiFQmMZ/D+v+DsJ5w37vgor/KzeaC0eMQv2oMv7Vh4fF4Uzx+Xn5Ud6/uwOqkMtJPlYiISGVx4ruCFSuC2sOQxeDm4eiKKoT1+0/z+5k0JvcOx8Ptj2gTZ4rT/GMpEwVkERGRyuD0r7B8GPg1huErwUOjogA5eWbmbj5MZP0aDGjT4Kr3jCYt8SZlo4AsIiJS0aUchSX3Q7XaBVtIe/s5uqIKY/muOOLOZzC1bzguLn/Mxc7OzybxUqICspSJArKIiEhFlnYaFg8s+P/otVCjwY3Pr0LSs/N4c+sROjWpQ9fm/le9l2BKwIJFu+hJmSggi4iIVFQZ52HxIMi8ACNXQ92mjq6oQln43XFS0nOY2i8Cw59W8ri8goVGkKUs7LKT3qxZs9i3bx8Gg4EZM2bQpk2bwvfOnDnDk08+SW5uLi1atOCll16yR0kiIiIVW84lWDYEzh+DkZ9Ag3aOrqhCSUnP5v1vj9OvVSBtQ2pd874CspSHzUeQd+3axalTp1ixYgUzZ85k5syZV70/e/ZsxowZw+rVq3F1deX06dO2LklERKRiy8uBlaMg4Wd44ANo3MXRFVU4b209Slaemcl9wot832gy4uPuQ23P2nauTJyBwWKxWGzZwfz582nQoAGDBw8GoG/fvqxevRofHx/MZjNdunRh+/btuLq6XreNPXv20P6pp2xZZpEuZWRQ3dvb7v2K/egeOz/dY+fnlPc4+RBcSoY6TcE30NHVOFRR9zcr18y++Iv4+3rSpG7Rq3kcvnCYXHMeLeu0sEeZUg6O/BneM3cu7du3v+a4zadYpKSk0LJly8LXfn5+JCcn4+Pjw/nz56levTovv/wyBw8epEOHDjx1nSB8KSPD1qVew2w2O6RfsR/dY+ene+z8nO0ee5iMuGcmk+PTgFzXGuBEn60sirq/xtQcAOp4Xj8fZOZm4eXq6VTfG86qIv4M22UO8pWuHLC2WCwkJiYyatQogoKCGD9+PN988w3dunW75rrqu3bZscoCMTExREZG2r1fsR/dY+ene+z8nOoef/MKfDMLOk3Fo/c/8dAW0tfc34OnU+n/5vc81jWMW/tGFHlNvjmf0Us78FCLh5jYfqK9SpUycujP8J49RR62+RzkgIAAUlJSCl8nJSXh71+wFEvt2rVp0KABoaGhuLq60qlTJ44cOWLrkkRERCqe3QsLwvFNw6H3P0HhuEhzNh6ihpc7j3YNu+45ZzPOkmfO0wN6UmY2D8idO3dm06ZNABw8eJCAgAB8fHwAcHNzIyQkhJMnTxa+37hxY1uXJCIiUrEc+AS+mAzhd8E9byocX8eOY+fYfjiZCd3DqFnN/brnaQULKS+bT7G4+eabadmyJUOHDsVgMPD888+zZs0afH19iYqKYsaMGUybNg2LxULz5s3p0aOHrUsSERGpOI5ugTWPQsPbC1ascLX77MdKwWKxMHtjLPVrejGqU6MbnquALOVll5/CyZMnX/U6IuKPOUMNGzZk+fLl9ihDRESkYjHuhhUjwT8Chi0H92qOrqjC2njgLPuMF5nzQBu83K+/8hWAMc2Ih4sH9arXs1N14my0k56IiIgjJMXCssHgUw+i14BXTUdXVGHl5Zv51+ZDNAvw4f6bg4s932gyEuQbhItBMUfKRt85IiIi9nYxDhYPBFcPiF4LPgGOrqhCW7UnnuPJl5jSJxxXl+LnZxtNRk2vkHJRQBYREbGnSykF4Tj3EoxcA356OL0oS39bSqPXG9FyZUtGb+iIf8BuoloUP2XCYrEQZ4oj1DfUDlWKs1JAFhERsZdsEyy5H1ITYPhKCGzl6IoqpKW/LWX8+vGcSj2FBQs5JHEgYw7LDiwr9tpzWefIzMsk2Lf4qRgi16OALCIiYg952fDxcDj7Gzz4IYTe5uiKKqxntjxDRu7VO6tl5WfyzJZnir023hQPaAULKR+tJSMiImJr5nz4ZCyc+BYGLoDmfRxdUYUWlxpXquNXurzEm6ZYSHloBFlERMSWLBb4fCLErIe+s+GmIY6uqMILrVl0uL3e8SvFmeJwMbgQ5BNk7bKkClFAFhERsaUtL8EvH0GXKXDbY46uplKY2XMmbgavq455u3szs+fMYq81mowEegfi7nr9nfZEiqOALCIiYis/vgXfz4P2D0P34ufPSoFbAu6hVvYEanrUx4CBhjUbsmDAAka0HlHstUaTkZAamn8s5VPmOcgWiwWD9ooXEREp2q/LYPMz0OJeuHsu6O/MEpuz6RCBblFs/79ZJMYdIzIyssTXGtOM9GzY04bVSVVQ4hHkxMRETp8+zenTp1m1ahWdO3e2ZV0iIiKV16EN8OlfoUk3GPQ+uNx4a2T5w55T5/nq90Qe7doEv+oepbo2PSedC9kXtIKFlFuxI8jffvstU6ZMIS0t7arj9evXt1lRIiIildbJH2DVaKh/EwxZCm6ejq6o0rBYLLyy4RD+vp6MuaP0G6hcXsFCAVnKq9gR5JdffpnAwEDGjBmDxWJhwIABhIWF8fbbb9ujPhERkcrjzH5YPhRqhcKI1eDp4+iKKpVth5LYdfI8T/RshrdH6WeBxpkKloHTEm9SXsUG5DNnzjB9+nSeeuopAEaOHMkTTzzBSy+9ZPPiREREKo3zxwt2yfOsAdFroXodR1dUqeSbC0aPG9etzpCOZRsBvjyCrF30pLyKDchNmzbl+eefJzExEV9fX5YsWcLWrVuJiYmxR30iIiIVn+ksfHQfmPMKwnFNBbTSWrc3gUOJJp7q3Rx317ItshVvisfPy4/q7tWtXJ1UNcV+Bz7//PNYLBZSU1O57777+Oyzz1i7di233aYtMkVERMi8AIsHwaUUGLka/Js7uqJKJys3n3lfHaZNcE3ualX2Z5ziTHGaXiFWUewEn9atW7N582YsFgszZsygR48eZGZmcsstt9ijPhERkYorJwOWDYVzR2D4Sghq7+iKKqUlP50i4WImcx5og4tL2ZfDM5qMdKzX0YqVSVVV7AhyZGQk+/fvx2AwYDAY6NSpEy4uLvTpo33kRUSkCsvPLVitwrizYCm3sO6OrqhSSsvK5d/bjnJns7p0blq3zO3k5OeQeClRK1iIVVx3BHnt2rWsXbsWi8XCCy+8gI/PH0/injhxgoyMDLsUKCIiUuGYzfDpBDiyCfq/Bi3vc3RFldb73x7nQkYuU/tGlKud+PR4LFi0i55YxXUDcmRkJDt37gQgKSmJixcvFr7n6+vL2LFjbV+diIhIRWOxwKYZsH8F9HgWOoxxdEWVVlJaFgu/O8GAmxrQKqhmudoypmkNZLGe6wbkiIgIZs+ejcFg4PHHHyckRN9wIiIifPcq7HwHbnsc7pzs6GoqtTe2HiE338xTUeV/sFGbhIg1FfuQ3ssvv8zOnTtZsGABSUlJBAYGMnDgQNq2bWuP+kRERCqOnz+Arf+ENkOg90wwlP2BsqruRMolPt5lZNgtoTSqW/5l2YwmI9Xdq1Pbs7YVqpOqrtiAvHbtWqZPnw6Ai4sLZrOZlStXMm/ePPr162fzAkVERCqEg+vg8yehWR+499/gUra1eqXAq5sP4eHmwt96NrVKe5eXeDPolxaxgmJ/ut98803uvvtufvjhB37//Xe++eYboqKimDdvnj3qExERcbxj2+CTRyDkVhj8X3B1d3RFldpv8al8sf8Mj9zRmABfL6u0GW+K1w56YjXFBuSkpCTuv/9+6tQp2DIzMDCQoUOHcvbsWZsXJyIi4nAJe+DjEVC3OQxfAR7ejq6o0ntlYyx+1T0Y16WJVdrLN+cTnx6v+cdiNcVOsWjcuDHvvfcePj4+1KtXj8TERBYsWEDDhg3tUZ+IiIjjJB+GJQ9A9boQvQaq1XJ0RZXed0eS+f5oCn/v3wJfL+uMxJ/NOEueOU+76InVFBuQp0+fzvjx4xkyZEjhMVdXV959912bFiYiIuJQqfGw+D5wcYPoteAb6OiKKj2z2cIrG2MJrl2NEbdZL8xqBQuxtmID8u23384XX3zB559/TnJyMoGBgdx9991a9k1ERJzXpXOweCBkm2D0F1AnzNEVOYUvfjvDgYQ05j14E55urlZrVwFZrK3YgAwQGhrKgw8+SG5ubuGx06dP06BBA5sVJiIi4hDZJlj6AFyMg5FroH4bR1fkFHLzzby6+RARgb7c2zbIqm0bTUY8XDyoV72eVduVqqvYgLx+/XpmzpxJamrqNe/FxMTYpCgRERGHyMuGFSPhzD4YsgQadXZ0RU7j411xnDqXwX9Gd8TVxbpLsRnTjAT5BuFi0NJ7Yh3FBuRXXnkFLy8v7r33Xnx9fe1Rk4iIiP2Z82HNeDj+Ddz3DkTc5eiKnMal7DzmbznKLY396Bbub/X2jSajpleIVRUbkF1dXXnxxRfp2rWrPeoRERGxP4sFvngKfl8Hvf8JbYc7uiKn8sH3J0hJz2bBqPZW38jDYrFgNBnpGNjRqu1K1VZsQH7++edZt24d/v7+1Kt39dyey2sji4iIVGrbZsKe/0DniXD73xxdjVM5fymH9749Tp+W9bg51PrbQJ/LOkdGXoY2CRGrKjYgT5gwAYCNGzdeddxgMPD777/bpioRERF7+ekd+PZf0C4aer3g6Gqczltbj5KRk8eUPuE2aT/eFA9oBQuxrmID8r333qt9zUVExDntWwEbp0FEf+j/OujvO6uKv5DBkp9OMbh9CE0DbPMck5Z4E1soNiDPnj3bHnWIiIjY1+HN8Onj0OhOuH8RuJZo5VMphXlfHcZggIlRzWzWR5wpDheDC0E+1l06Tqo2rYciIiJVT9xPsHIU1GsJQ5eBu5ejK3I6MWfSWLs3gdGdG1G/ZjWb9WM0GQn0DsTD1cNmfUjVo4AsIiJVS+JBWPYg1AyCEZ+AVw1HV+SU/rXpEL6ebjzetalN+9ESb2ILZQrI6enp7N+/39q1iIiI2NaFk7B4ELh7Q/Ra8LH+mrwCO4+fY2tsEo93b0pNb3eb9mVMMxJSQwFZrKtEE65iY2M5cuQI+fn5AOzfv5+1a9eyd+9emxYnIiJiNelJ8NF9kJcFYzZCrVBHV+SULBYLszfGEljDi9G3N7JpX+k56VzIvqARZLG6YgPy+++/z7x58wpfWywWDAYDd955p00LExERsZqs/2/vvsOjrBK3j39TCSQBEkgoobeEojQBFRTpYEUFQkfFggWRFRRYFXdXUFxQUbHr6gICKgFEEEQElSJNuqFDMoOQQkIKIaQ97x95yS+sdDJzJjP357q8LmYmzHPLSblz5sw5aYUzx5kJMPRbCG9sOpHb+uGPBLbGn+S1+64jwM/HodfSDhbiKJdcYvHFF19w1113POXpogAAIABJREFU8f7772NZFuPHj+e2227jkUcecUY+ERGRa5N7GuYMgKRY6DcTaurENUfJyy/g38v3Uj8skD6tHX9wx9mCXCtYrwZIybpkQc7OzqZ79+5FR003a9aMQYMGMWHCBIeHExERuSb5efDNQxC3Du79EBp2NZ3Irc3/3c6BxEzG9ojC18fx+wDEZ8QD6BQ9KXGXXGLRtm1bnnnmGRYtWkTVqlX517/+hY+PD6mpqc7IJyIicnUsCxY/DXuXwu1T4bo+phO5tezcfN5csZ+WtSrSo2kVp1zTnmEnNCCUQL9Ap1xPPMclf72bNGkSvXv3xtfXl5EjR7J//352797NAw884IR4IiIiV8GyYMWLsG02dBwHbbUs0NG+WHeE4+nZPN8zymkn8NoybFpeIQ5xyRnkkJAQXnnlFQBq167NXXfdRU5ODkFBQQ4PJyIiclXWvgXr3oE2j8Bt40yncXtpWbnMWHWATpFh3FivktOuG58RT5sqWlMuJe+SBXn8+PHnvd/Ly4vJkyeXeCAREZFr8vt/4ceXodn90Ot1cNJspid7/+eDZJzJ47meUU67Zk5+DgmnErSDhTjEJQvyggULznu/t7e3CrKIiLiW2MWweBTU7wK9PwBvHRjraMfTsvnP2sP0bhFB42rOO5XQnmnHwtIb9MQhLlmQ16xZc87txMREPv30U7p37+6wUCIiIlfs8C+FO1ZEtIbomeDrbzqRR5i+ch+WBX/r1sip17Wl//8t3sprDbKUvEsW5MqVK//ldr9+/Rg7diw9evRwWDAREZHL9uc2mDMQQuvDwK/AX7saOMOBxEzmbbIx7OY61Awt59Rr65AQcaRLFuSXX375nNvZ2dl/mVUWERExxT8jHhY/AWVDYEgMlAs1HcljTF2+l3L+vjzVqYHTr23LsBHoF0hImRCnX1vc3yUL8ty5c/9yX3BwMH//+98dEkhEROSypf9JrdVPF/55yAIoX91sHg/ye3wqy3Yf52/dGlEpqIzTrx+fEU+t4FpO21JOPMslC/LKlSvPue3n50flypXx1hsfRETEpKwUmHkv3jnp8NBSqOz8WUxPZVkWU77fQ+WgMgzvUNdIBnuGnYYhDY1cW9zfRVuuzWajQoUKREREEBYWxqpVq/jiiy9Yt26ds/KJiIj8Vc4p+LIfpBzC3uHfUL2l6UQeZfW+JDYcTuHpLg0ILHPJubYSl1+Qjz3TrvXH4jAXLMjLli2jV69e7Ny5E4CxY8cyadIkPv30Ux555BEWL17stJAiIiJF8nJg3hA4ugX6fEZWldamE3mUgoLC2eNaoeXo38bMDhIJWQnkFeTpFD1xmAsW5I8++oi6detSvXp1EhISWL58OQ0aNCAmJoZevXrxySefODOniIgIFBTAwsfh4Eq4azo0vst0Io+zaPtR9hzPYEyPSPx9zSy3jM+IB7SDhTjOBT+zDx8+zJgxY6hduzZr164FYOjQoTRp0oS+ffty+PBhp4UUERHBsmDZ87DrG+j6D2g11HQij3MmL59pP+yjafXy3HldNWM5tMWbONoFC7Kvr2/RG/HWrl2Ll5cX7du3ByA3Nxc/Pz/nJBQREQH4eQps/AhuHgkdnjGdxiN9uSEee+ppnu8Zhbe3ud0jbBk2/Lz9CC8XbiyDuLcLrqxv0qQJb775Jps3by5aXlG9enVSU1P5/PPPqVvXzLtWRUTEA238GFa/Ci0GQbd/mU7jkTKyc3nnpwO0b1CJWxpWvvRfcCBbuo0awTXw8fYxmkPc1wVnkEePHo3NZuPDDz/E19eXcePGATBv3jzWrVvHgw8+6LSQIiLiwXZ+A0vHQuTtcNfboH1vjfj418OknMrh+Z5RxvcetmXYtLxCHOqCM8gtWrRg5cqVHD58mNq1a1OxYkUAbrnlFho3bkzHjh2dFlJERDzUgR9hwWNQ+2bo8xn4OH9LMYGkjDN88ush7riuGtfXqGg0i2VZ2DJs3FD1BqM5xL1d9DtN+fLlad68+Tn3NW3a1KGBREREALBtKtzOLbwxDJgDfmVNJ/JY7/60nzN5BYzpEWk6CieyT5CVl6UZZHEoHYcnIiKuJzEWZveB4KowOAYCKphO5LHiTpxi9oZ4+repSd3KgabjYM+wA9rBQhxLBVlERFxLahzMvBd8A2DIAgjSTgUmTfthH34+3ozq4hrHOmuLN3EGFWQREXEdmUmF5Tg3C4bEQEgd04k82q6jaXy7/U+Gd6hLePkA03GAwkNCvL28iQiKMB1F3Jje7SAiIq4hOx1m3w/pf8LQRVBF73kxbcqyPYSU8+PRjvVMRyliy7BRtVxV/H38TUcRN6YZZBERMS83G+YOhITd0O+/UKud6UQeb92BZH7dn8yTnRpQPsB1DgfTFm/iDCrIIiJiVn4ezB8OR36F3u9Do+6mE3k8y7J4bdkeqlcIYPCNtU3HOYc9w07N8irI4lgqyCIiYo5lwXfPwJ7voOcUuL6f6UQCLN15nB32NP7WPZIAP9c5rS4zJ5OU7BTNIIvDqSCLiIg5P74MW2fCrWPhxhGm0wiQm1/A1B/2ElklmHtbutYb4bSDhTiLUwry5MmTiY6Opn///uzYseO8HzNt2jSGDBnijDgiIuIK1r4Na9+CGx6CTn83nUb+v6822zicfIqxPSLx8XatY71VkMVZHF6QN27cSFxcHPPmzWPSpElMmjTpLx9z4MABNm3a5OgoIiLiKrbOhhUvQtN74fap4OVaRcxTZeXkMf3H/bSpE0KXxq63/3R8RjyggiyO5/CCvH79erp27QpA/fr1SUtLIzMz85yPee211xg9erSjo4iIiCvYsxS+HQn1boN7PwRv11nj6un+s/YIiRlnGNcrCi8X/KXFnmEnNCCUQD/zJ/qJe3P4PsjJyck0bfp/e1mGhoaSlJREUFAQADExMbRt25aIiIuvc4qNjXVozvPJzs42cl1xHo2x+9MYu5Zyib9T8+dnOBMSSVyLl7D2H7rm59QYl4z07Hxm/BTPjTXLUS4rgdjYBNORgHPHd8/xPVT2razxdjOu+DXs9INCLMsq+vPJkyeJiYnhP//5DwkJF/9CbNy4saOj/UVsbKyR64rzaIzdn8bYhRzbDgvHQWgdyj74HVGBlUrkaTXGJWPSkj/IzrP4Z58baFQl2HScIsXH98TuE7Sp0kbj7WZMfg1v2bLlvPc7fIlFeHg4ycnJRbcTExMJCwsD4LfffiMlJYVBgwbx1FNPsXv3biZPnuzoSCIi4mwnDsKs+6FMeRiyAEqoHEvJOHryNF+si+P+VjVcqhwXl5OfQ8KpBK0/FqdweEFu3749y5cvB2D37t2Eh4cXLa/o2bMnS5cu5auvvuLdd9+ladOmTJgwwdGRRETEmdKPwczeUJBfWI4r1DCdSP7Hmyv2gReM7tbIdJQLsmfasbCoEazPH3E8hy+xaNWqFU2bNqV///54eXkxceJEYmJiCA4Oplu3bo6+vIiImHQ6FWbdB6dOwAOLIcx1C5in2ns8g5jf7QzvUJfqFcuajnNBtvTCLd5qla9lOIl4AqesQR4zZsw5t6Oiov7yMTVq1GDmzJnOiCMiIs6QkwVfRsOJAzDwK4hobTqRnMe/l+8hsIwvT9zWwHSUi9IeyOJMOklPRERKXn4ufDUUbBvhvo+hfifTieQ8Nh1J4cfYREZ0rE9IoL/pOBdly7AR6BdISJkQ01HEAzh9FwsREXFzBQWw8Ak4sALufAua9jadSM7DsiymfL+H8OAyPNS+ruk4l2TLsFEzuKZL7s8s7kczyCIiUnIsC5aPh51fQecX4YYHTSeSC1gZm8jmuFSe6dqIsv6uf1jL2YIs4gwqyCIiUnJ+mQobPoAbn4BbnjWdRi4gv8Di9eV7qFc5kH43uP6uEPkF+dgz7SrI4jQqyCIiUjI2fQqrXoHro6H7JNBL4S4r5nc7+xIyGdMjEl8f168CCVkJ5BXkqSCL07j+V4WIiLi+3QtgybPQsAfcMwO89ePFVWXn5vPmin00r1mRXs2qmo5zWeIz4gGoFawt3sQ59B1MRESuzcGfYP4jULMd9P0cfPxMJ5KLmLk+jj/Tsnm+Z2SpecObtngTZ1NBFhGRq2ffAnMHQ+VGMHAe+JcznUguIj07lxmrD3BrozBurl/ZdJzLZsuw4eftR3i5cNNRxEOoIIuIyNVJ2guz+0BgZRgSA2Urmk4kl/Dhzwc5mZXL8z0jTUe5IrZ0GzWCa+Dj7fq7bYh7UEEWEZErd9IGM+8Fb18YuhCCS8daVk+WkJ7Np2sOc0+L6jStXsF0nCuiLd7E2VSQRUTkypw6UViOz2TA4PkQWs90IrkM01fuJ7/A4tlupWv22LIsFWRxOhVkERG5fGcyCpdVpNlgwFyodr3pRHIZDiVlMm+TjYFta1GrUulaJ56Wl0ZWXpYKsjiVjpoWEZHLk3cG5g6CY9uh/2yo0950IrlMU3/YS4CvNyO7NDQd5YolZCcA2sFCnEszyCIicmkF+RDzCBz+Ge55FyJ7mU4kl2m77SRLdx7n4VvqUTmojOk4VyzhjAqyOJ8KsoiIXJxlwZK/wR+LCk/IazHQdCK5TJZlMWXZHioF+vPIraVzrfjx7ON44UVEUITpKOJBVJBFROTifnoFtnwOHUbDzU+ZTiNX4Nf9yaw7eIKRnRsQVKZ0rqo8fuY41QKr4e/jbzqKeBAVZBERubD178GvU6HVUOgy0XQauQIFBRavfb+HmqFlGdiutuk4Vy0hO0HLK8TpVJBFROT8ts+F5eOh8V1w51tQSo4llkKLd/zJH8fSebZbJP6+pe/H/eyds6nzVh0W7F7AN9u+YfbO2aYjiQcpna+3iIiIY+1bDgufgDq3wH2fgE4wK1Vy8gqY9sM+Glcrz93Nq5uOc8Vm75zNo4sfJSs3C4C07DQeXfwoAIOuG2QymniI0vcrpYiIOFbcevhqGFS9Dvp/CX4BphPJFZqzMZ74lCye7xmJt3fpm/n/+8q/F5Xjs7Jys/j7yr8bSiSeRgVZRET+z/Fd8GU0VIiAQd9AQHnTieQKnTqTxzs/7efGeqF0bBRmOs5ViU+Lv6L7RUqaCrKIiBRKOQyz7gP/QBiyAIJKZ7nydJ/8epjkzBye7xmFVyldN16rQq0rul+kpKkgi4gIZCTAzN6Qn1NYjiuqiJRGJzLP8NEvB+nVrCota4WYjnPVJnWZRDm/c4/ELudXjkldJhlKJJ5GBVlExNOdPgmz7ofMRBj4NYRHmU4kV+mdnw6QnVfAmB6RpqNck0HXDeKjuz4i0D8QgNoVavPRXR/pDXriNNrFQkTEk+WehjkDIGkPDJwLNduYTiRXyZaSxewNcfS7oQb1w4JMx7lmg64bxBd7v6BhQENm3DnDdBzxMJpBFhHxVPl58PWDEL8e7vsQGnQ1nUiuwRsr9uHj7cWoLo1MRykROfk5HD91nCoBVUxHEQ+kgiwi4okKCuDbkbDve7hjKjS733QiuQZ//JnOwm1HebB9XapWcI9t+eyZdiwsqpRRQRbnU0EWEfE0lgUrXoTtX8JtE6DNw6YTyTV6ffkeygf4MaJjfdNRSow9ww5A1TJVDScRT6SCLCLiada8CevfhbaPQsfnTKeRa7T+4AlW703iyU71qVDWz3ScEhOfXrjncdUAFWRxPhVkERFPsuVzWPkPaNYHek6BUrpPrhSyLIvXlu2hWoUAht5Ux3ScEmXLsBHoF0iwb7DpKOKBVJBFRDzFH9/Cd6ML34zX+33w1o+A0m757uNst51kdNdGBPj5mI5TomwZNmoG1yy1h51I6abvjiIinuDQzzB/OETcAP3+C77+phPJNcrLL+D15XtpGB7Efa0iTMcpcWcLsogJKsgiIu7uz60wdyCE1oeB8wqPkpZS7+stdg4lnWJsj0h8fdzrx3l+QT72TLsKshjjXl9RIiJyruT9hafklQ2FITFQLtR0IikBp3PyeevHfbSuHUK3Ju63DVpCVgJ5BXkqyGKMCrKIiLtKOwr/7Q1e3jB0IZSvbjqRlJDP1x0hIf0Mz/eMcss1uvEZhTtY1AquZTiJeCoVZBERd5SVAjPvhew0GDwfKrnP/rie7mRWDu+tPkCXqHDa1nXPVwRsGTYAzSCLMSrIIiLu5kwmzO4LqUdgwByo1tx0IilB768+SOaZPMb2jDQdxWFsGTb8vP0ILxduOop4KF/TAUREpATl5cBXQ+DP36HfTKh7i+lEUoKOpZ3m83VHuLdlBFFVy5uO4zD2DDsRQRH4eLvX1nVSeqggi4i4i4J8WPAYHPwJ7n4XGt9pOpGUsLdW7Mey4G/dGpmO4lDx6fFaXiFGaYmFiIg7sCz4/jnYHQPd/gmthphOJCVsf0IGX2+xMeSm2tQIKWc6jsNYloUtw0at8nqDnpijgiwi4g5WvwqbPoGbn4b2o0ynEQf49/K9BPr78mSnBqajOFRKdgpZeVmaQRajVJBFREq7DR/Cz1OgxeDC2WNxO1viUvnhjwQe61iP0ED3PgVRO1iIK1BBFhEpzXZ8Xbi0IvIOuGs6uOGeuJ7OsiymfL+HsOAyPNShruk4DqeCLK5ABVlEpLTavwIWjoDaHaDPZ+Cj9127o1V7E9l4JIWnuzSknL/7j7Etw4YXXkQERZiOIh5MBVlEpDSybYR5QyC8MQz4EvwCTCcSB8gvsHh92V7qVCpH/zaeMaManxFPtcBq+Pu491IScW0qyCIipU3CH4UHgZSvBoNjIKCC6UTiIAu3HmXP8QzG9IjEz8czfmTbMmxaXiHGecZXm4iIu0iNg1n3gW8ADFkIQTppzF2dycvnjRX7uC6iArc3q2Y6jtPYM+zUCK5hOoZ4OBVkEZHSIjMRZvaG3CwYsgBCaptOJA4067d4jp48zfM9o/D29ow3X2bmZJKSnaI9kMU491/tLyLiDrLTYNb9kH4Mhi6CKk1MJxIHSs/O5d2f9nNLw8p0aFjZdByn0Q4W4ipUkEVEXF1uNswZCIl/wIC5UKud6UTiYB//cojUrFye7xllOopTqSCLq1BBFhFxZfl5MH84xK2B+z6Bht1MJxIHS8zI5pNfD3Pn9dVoFuFZb8CMz4gHVJDFPK1BFhFxVZYF342CPd9Br9fh+r6mE4kTvLPyALn5BYzpHmk6itPZM+yEBoQS6BdoOop4OBVkERFX9eNE2DoLbn0O2j1mOo04wZHkU8zZGM+AtrWoU9nzSqK2eBNXoYIsIuKK1k4v/O+G4dBpguk04iRTf9iLn483I7s0MB3FCBVkcRUqyCIirmbrLFjxEjS9D27/N3h5xhZfnm6nPY3vdhzjkVvqEh7seScj5uTncPzUcWoFa4s3MU8FWUTElexZAt+OhHqd4N4PwdvHdCJxkinL9hAa6M8jt9YzHcUIe6YdC0uHhIhLUEEWEXEVR9bA1w9C9ZYQPQt8/U0nEidZsz+ZNQeSebJTA4ID/EzHMcKeYQe0g4W4BhVkERFXcGw7fNkfQurAoG+gTJDpROIkBQUWU5btIaJiWQbf6LnLC+LTC7d40yl64gpUkEVETDtxsPCUvIAKMCQGyoWaTiROtGTnMXYeTePZ7o0o4+u5S2psGTYC/QIJKRNiOoqICrKIiFHpx2Bmb7AKYMgCqKD1l54kN7+AaT/sJapqMPe0iDAdx6izO1h46U2p4gJUkEVETDmdCrPug6yUwmUVYY1MJxInm7vJxpETWTzXMxIfb88uhtriTVyJCrKIiAk5p+DLaDhxAPrPhohWphOJk506k8f0H/fTtm4onSLDTccxKr8gH3umXQVZXIYKsoiIs+XnwlfDwL4J7v8E6t1mOpEY8NmawyRnnmFcryiPX1aQkJVAXkGeCrK4DF/TAUREPEpBASx8HA6sgLumQ5N7TCcSA1JO5fDhL4fo3qQKrWrpTWnxGYU7WKggi6vQDLKIiLNYFiwbBzu/hi4vQesHTCcSQ2asOkBWTh7P9Yw0HcUl2DJsADpFT1yGCrKIiLP88m/Y+CHc+CR0+JvpNGKIPTWLmevj6Nu6Jg3Cg03HcQm2DBt+3n6El/PstdjiOlSQRUScYdMnsGoSNB8A3V8BD19z6sneWLEPLy94pltD01Fchj3DTkRQBD46Wl1chAqyiIij7YqBJWOgUU+4+x3w1rdeT7XneDoLth7lgZvrUK1CWdNxXEZ8erxO0BOXou/SIiKOdGAlxDwKtW6Cvp+Dj5/pRGLQ68v2ElzGl8dvq286isuwLEt7IIvLccouFpMnT2b79u14eXkxYcIErr/++qLHfvvtN9544w28vb2pW7cukyZNwluzKyLiDuybYd5gCIuCAXPATzOGnmzj4RR+2pPI8z2jqFjO33Qcl5GSnUJWXpYKsrgUhzfRjRs3EhcXx7x585g0aRKTJk065/GXXnqJt99+m7lz53Lq1Cl+/fVXR0cSEXG8xD0wuw8EhcPg+VC2oulEYpBlWbz2fSxVypfhgZvrmI7jUs7uYKGCLK7E4QV5/fr1dO3aFYD69euTlpZGZmZm0eMxMTFUrVoVgNDQUFJTUx0dSUTEsU7Gw8x7wccfhiyE4CqmE4lhK/5I4Pf4k4zu2oiy/nojWnEqyOKKHF6Qk5OTCQn5v03QQ0NDSUpKKrodFBQEQGJiImvXrqVjx46OjiQi4jinkgvLcc4pGBwDoXVNJxLD8vILeH35XuqHBdKndQ3TcVyOLcOGF15EBEWYjiJSxOkn6VmW9Zf7Tpw4wYgRI5g4ceI5Zbq42NhYR0f7i+zsbCPXFefRGLs/Z46xd+4paq16kjLpNuI7Tud0qg+k6vPL0Vz963j5/nQOJGbywm1V2L9vr+k4LmenfSeV/CtxcN/B8z7u6uMr184Vx9jhBTk8PJzk5OSi24mJiYSFhRXdzszM5JFHHuGZZ56hQ4cOF3yexo0bOzTn+cTGxhq5rjiPxtj9OW2Mc7Phy75wcj8MmEOdRj0cf00BXPvrODs3n3kLV9OiZkWG92iNl/a//ov0w+nUD61/wTF05fGVkmFyjLds2XLe+x2+xKJ9+/YsX74cgN27dxMeHl60rALgtddeY9iwYdx6662OjiIi4hgF+RDzMBz+BXq/ByrH8v99se4Ix9KyGdcrSuX4AuwZdmoEa+mJuBaHzyC3atWKpk2b0r9/f7y8vJg4cSIxMTEEBwfToUMHFi5cSFxcHN988w0Ad955J9HR0Y6OJSJSMiwLvhsNsYuhx6vQvL/pROIi0k7n8t7qg9wWGcaN9SqZjuOSMnMySclO0Rv0xOU4ZQ3ymDFjzrkdFRVV9Oddu3Y5I4KIiGOs/Cf8/gXc8izc9ITpNOJCPvj5IOnZuTzXI+rSH+yhzu5goVP0xNXoRA4Rkau1fgaseQNaPwCdXzSdRlzI8bRsPltzmN4tImhSvbzpOC5LW7yJq1JBFhG5GtvmwPIJ0PhuuOMN0PpSKWb6yn0UWBZ/69bIdBSXFp8RD6ggi+tRQRYRuVJ7v4dFT0LdjnD/J+Ctgx/k/xxIzOSrzXYGtatNzdBypuO4NHuGndCAUAL9Ak1HETmHCrKIyJWIWwdfPwDVrof+s8G3jOlE4mKmLt9LgK83T3VuYDqKy7Nl2DR7LC5JBVlE5HId3wlfRkOFmjBoPpQJNp1IXMzW+FSW7T7Oo7fWp3KQfnm6FBVkcVUqyCIilyPlEMy8r7AUD1kAgdq2S85lWRZTlu2hcpA/D9+iI8YvJSc/h+OnjlMrWDtYiOtRQRYRuZSM4zDzXijIKyzHFTXjJX/1874kfjuUwsjODQks45RdVEs1e6YdC0uHhIhL0lewiMjFnD4Js+6HzCQYthjCIk0nEhdUUGAxZdleaoWWY0BbzYheDnuGHdAOFuKaNIMsInIhOVkwpz8k7YX+s6BGa9OJxEV9u/1PYo+l82z3Rvj76kfr5YhP1xZv4ro0gywicj75ufDNgxD/G/T5DOp3Np1IXNSZvHym/rCXptXLc9f11U3HKTVsGTYC/QIJDQg1HUXkL/RrrojI/yoogEVPwb5lcMc0aHaf6UTiwr7cEI899TTP9YzC21sHxlyusztYeOmQHXFBKsgiIsVZFvzwAuyYC53+Dm2Gm04kLizzTB7v/nSAm+tX4taGlU3HKVW0xZu4MhVkEZHi1rwBv82AdiPg1rGm04iL+/iXQ5w4lcPzPaM0E3oF8gvysWfaVZDFZakgi4ictfk/sPKfcF0/6PEqqPDIRSRlnOHjXw9x+3VVaV6zouk4pUpCVgJ5BXkqyOKyVJBFRAD+WARL/gYNukHv98Bb3x7l4t79aT9n8goY011b/12p+AztYCGuTT8BREQOrYb5D0ONNtDvv+DjZzqRuLj4E1l8uTGe6DY1qRcWZDpOqWPLsAHoFD1xWSrIIuLZjv4OcwdBpQYwcB74lzOdSEqBaSv24uPtxaguDU1HKZVsGTb8vP0ILxduOorIeakgi4jnStoHs/tAuVAYHANlQ0wnklJg19E0Fm37k4fa16VK+QDTcUolW7qNiKAIfLx9TEcROS8VZBHxTGl2mHkveHnDkIVQvprpRFJKvL58LxXL+fFYx/qmo5RatgwbtcpreYW4LhVkEfE8WSkw8z44kw6D50MlFR25POsOJPPLviSevK0BFcpqrfrVsCxLeyCLy9NR0yLiWc5kFi6rSD0CQ2KgWnPTiaSUsCyLKcv2UL1CAENuqm06TqmVkp1CVl6WCrK4NM0gi4jnyDsD8wbDn1uh73+gTgfTiaQU+X7Xcbbb0xjdrREBflo7e7XO7mChgiyuTDPIIuIZCvJhwWNwaBXcMwOi7jCdSEqR3PwCpi7fS6MqQdzXqobpOKWaCrKUBppBFhH3Z1mwdAzsXgDd/gUtB5tOJKXMV5ttHEo+xdgeUfh464TFa2HLsOGFFxFBEaajiFyQCrKIuL9Vk2HzZ9B+FLR/2nQaKWVO5+Qz/cf93FA7hK6NtW/vtYrPiKdqYFX8ffxNRxG5IC2xEBG3FrJvHmx9s3DJ7q/PAAAZgUlEQVTWuOs/TMeRUuiztYdJzDjDe4Na4eWl2eNrZcuw6QQ9cXmaQRYR97XjK6pufROi7oQ7p4PKjVyh1FM5fLD6IF0bh3NDnVDTcdyCPcNOjWCt4xbXpoIsIu5p/wpY+DinwlvB/Z+Cj14wkyv33uoDnMrJY2yPKNNR3EJmTiYp2Sl6g564PBVkEXE/8Rtg3hAIb4K9w7/BT8cBy5U7evI0X6yP475WNYisGmw6jls4u4OFTtETV6eCLCLuJWE3fNkXyleHwTEU+AWaTiSl1Fsr9gEwulsjw0nch7Z4k9JCBVlE3EfqkcIjpP3KwZAFEBRmOpGUUvsSMpj/u52hN9YmomJZ03HcRnxGPKCCLK5Pi/JExD1kJsLMeyEvGx78HkJ0FLBcvdeX7SXQ35cnOzUwHcWt2DPshAaEEqhXdsTFaQZZREq/7DSYdR9kHIdBX0OVJqYTSSm2+UgKP8YmMOK2+oQEaq/ekmTLsGn2WEoFFWQRKd1ys2HOQEiMhX4zoWZb04mkFLMsi9e+30NYcBkebF/HdBy3o4IspYUKsoiUXvl58M1DELcW7v0QGnY1nUhKuZWxiWyOS+WZrg0p569ViCUpJz+H46eOqyBLqaCvfhEpnSwLFo+CvUug17/huj6mE0kpl19g8fryPdStHEi/G1TiSpo9046FpYIspYJmkEWkdFrxEmybBR2fh3aPmk4jbiDmdzv7EjIZ0z0SPx/9eCxp9gw7oB0spHTQdwARKX3WvAXr3oY2D8Nt402nETeQnZvPmyv2cX2NCtx+XVXTcdxSfLq2eJPSQwVZREqX32fCjxOh6X2FSyu8vEwnEjcw67c4/kzLZlzPKLz0OeUQtgwbgX6BhAaEmo4ickkqyCJSesR+B4ufhvqdC9+U561vYXLt0rNzeXfVAW5pWJmbG1Q2Hcdtnd3BQr+ASGmgny4iUjoc/rVwx4rqrSB6Fvhqf1opGR/+fJCTWbk83zPKdBS3pi3epDRRQRYR1/fnNpgzAELqFB4E4q9TuKRkJKZn8+maw9zdvDrNIiqYjuO28gvysWfaVZCl1FBBFhHXlnwAZt0PZSvCkAVQTusXpeRMX7mfvHyLZ7s3Mh3FrSVkJZBXkKeCLKWGCrKIuK70P2HmvYAFQxZChQjTicSNHErKZO4mGwPb1aJ2Jb0q4UjxGdrBQkoXHRQiIq4pKwVm3genU+CB76ByA9OJxM1M+2EfZXy9Gdm5oekobs+WYQOgVnAtw0lELo9mkEXE9eScgi/7QcpBGDAHqrc0nUjczHbbSZbsPMbDt9QjLLiM6Thuz5Zhw8/bj/By4aajiFwWzSCLiGvJy4GvhsLRLdD3C6h7q+lE4mYsy2LKsj2EBvrzyC11TcfxCLZ0GxFBEfh4+5iOInJZNIMsIq6joAAWPg4HfoQ734Imd5tOJG7o1/3JrDt4gpGdGxAc4Gc6jkfQFm9S2qggi4hrsCxY9jzs+ga6TITWw0wnEjdUUFA4e1wjpCwD22k9rDNYloUtw0at8vr3ltJDBVlEXMPPU2DjR3DTU9BhtOk04qa+23mM3X+m82z3RpTx1cv9zrD7xG6y8rKoV6Ge6Sgil00FWUTM2/gxrH4Vmg+E7q+AjqIVB8jJK2Dq8r00rlaee5pry0BnmbFtBhXKVOD2urebjiJy2VSQRcSsnd/A0rEQeTvc/Y7KsTjM3E3xxKdk8VzPSLy99XnmDNsSt7Hm6BoeaPoAQf5BpuOIXDYVZBEx58CPsOAxqH0z9PkMfLSxjjjGqTN5vL1yP+3qhnJbozDTcTzGu9veJTQglIFRA01HEbkiKsgiYoZtE8wbAmGNC/c69itrOpG4sU9+PUxyZg7P94rCS69SOMWm45vYcGwDDzV7iHJ+5UzHEbkiKsgi4nyJsfBlXwiqAoPnQ0AF04nEjZ3IPMNHvxykZ9OqtKoVYjqOR7AsixnbZhBWNozoyGjTcUSumAqyiDjXyfjCI6R9/GHIAgiuYjqRuLl3Vx3gdG4+Y3pEmo7iMX479htbErbw8HUPE+AbYDqOyBXTgj8RcZ7MJJh5b+FR0g8uhVCdYiaOZUvJYtZvcfS7oSYNwvUmMWewLIt3t71LlXJVuL/R/abjiFwVzSCLiHNkp8Ps+yHtKAycB1WbmU4kHuCNFfvw9vLima6NTEfxGGuOrmFH0g4evf5RyviUMR1H5KqoIIuI4+Vmw9yBcHwX9PsCat9kOpF4gNhj6SzcdpQH29elagW9zO8MZ9ceRwRFcG+De03HEblqKsgi4lj5eTB/OBz5FXq/D416mE4kHuBMXj4vLdpFcBlfHu9Y33Qcj7HKtordJ3bz2PWP4efjZzqOyFXTGmQRcRzLgu+egT3fQc/XoLnezS6OV1Bg8exX29l0JJXp/VtQoZyKmjMUWAXM2DaDWsG1uKv+XabjiFwTzSCLiGNYFqz8B2ydCbeMgRsfN51IPMTkpbF8t+MY43pFcU8LHSntLD/G/ci+1H2MaD4CX2/Nv0npps9gESl5BQXwwwvw2wxo/SB0fsF0IvEQn/x6iE/WHOaBm+vw2K31TMfxGPkF+by37T3qVajH7XVvNx1H5JppBllESlZeDsQ8UliO242AO94AnVwmTrBo21FeWRLLHddV46U7m+jEPCdadmQZB9MO8niLx/Hx9jEdR+SaaQZZRErOmYzC46MPrYIuE6HDaJVjcYq1B5IZ8/V22tUNZVq/5nh76/POWfIK8nh/+/s0DGlI99rdTccRKREqyCJSMjKTYHYfOL4T7nkPWg4ynUg8xMGUM4z7YQv1Kgfx0dAbCPDTDKYzfXfoO+LS43jrtrfw9tIL0+IeVJBF5NqlHIZZ90H6MRgwR1u5idPYUrJ48cfjBAf48flDbahQVjtWOFNuQS4fbP+AxqGN6Vyrs+k4IiVGBVlErs2x7TCrDxTkwrDFULON6UTiIVJP5TDsPxvJzbeY91BbqlUoazqSx1l0YBFHM48yocsErfkWt6KCLCJX79DPMHcQlK0Ig7+DsEjTicRDnM7JZ/gXm7CnnmZS1yo0qhJsOpLHycnP4cMdH3J95eu5JeIW03FESpQWC4nI1dk1H2bdDxVrwvAfVI7FafLyCxg5ZytbbSd5u38LmlXRzLEJ8/fP5/ip4zzZ4knNHovbcUpBnjx5MtHR0fTv358dO3ac89i6devo06cP0dHRzJgxwxlxRORabfgQvhkONdrAg99D+eqmE4mHsCyLFxft5sfYBP5xd1N6NqtmOpJHys7L5pMdn9AqvBU3Vb/JdByREufwgrxx40bi4uKYN28ekyZNYtKkSec8/sorr/DOO+8wZ84c1q5dy4EDBxwdSUSulmXBj/+A75+DqDtgSEzh8goRJ3l75QHmbIznidvqM/SmOqbjeKyv931N4ulEnmr5lGaPxS05fA3y+vXr6dq1KwD169cnLS2NzMxMgoKCsNlsVKhQgWrVCmcAOnbsyPr162nQoIGjY13SiZPH2XHwZxJO7TEdRRwo4XiCxvgKVNg7n6Ajy8iIupcTrZ6GI3tNR7ok+3E7dt8zpmNICdhmO8n7vx6ke4sq9G7rzf7U/QDEZ8Xjm6q31DhLvpXPJzs/oV3VdrSpqjflinty+HeU5ORkmjZtWnQ7NDSUpKQkgoKCSEpKIjQ09JzHbDaboyNdltHz7mJrQDacMJ1EHE5jfGVqVIMzW2D9MNNJLl+86QBSUgLrwfozcP/i/3lgl5E4Hu3Jlk+ajiDiME7/lduyrKv6e7GxsSWc5OL6NXiWZvZf8NaRmW6toCBfY3wFsn2DSQ+oaTrGFcnLz8PXR7OL7sDHG+qF+uPrfe7qwJycHPz9/Q2l8kzlfcsTcCKA2BOO/9mcnZ3t9A4gzuWKY+zwnxrh4eEkJycX3U5MTCQsLOy8jyUkJBAeHn7e52ncuLFjg57nevVjmzv9uuJcsbGxGmM3pzF2fxpj96bxdX8mx3jLli3nvd/hb9Jr3749y5cvB2D37t2Eh4cTFBQEQI0aNcjMzMRut5OXl8eqVato3769oyOJiIiIiFyQw2eQW7VqRdOmTenfvz9eXl5MnDiRmJgYgoOD6datGy+//DLPPvssALfffjt169Z1dCQRERERkQtyysK8MWPGnHM7Kiqq6M9t2rRh3rx5zoghIiIiInJJOklPRERERKQYFWQRERERkWJUkEVEREREilFBFhEREREpRgVZRERERKQYFWQRERERkWJUkEVEREREilFBFhEREREpRgVZRERERKQYFWQRERERkWJUkEVEREREilFBFhEREREpRgVZRERERKQYFWQRERERkWK8LMuyTIe4lC1btpiOICIiIiJuqHXr1n+5r1QUZBERERERZ9ESCxERERGRYlSQRURERESKUUEWERERESlGBRmYPHky0dHR9O/fnx07dpzz2Lp16+jTpw/R0dHMmDHDUEK5Vhcb499++41+/frRv39/xo8fT0FBgaGUci0uNsZnTZs2jSFDhjg5mZSUi43xsWPHGDBgAH369OGll14ylFCu1cXGePbs2URHRzNgwAAmTZpkKKFcq3379tG1a1dmzZr1l8dcqnNZHm7Dhg3Wo48+almWZR04cMDq16/fOY/36tXL+vPPP638/HxrwIAB1v79+03ElGtwqTHu1q2bdezYMcuyLGvkyJHW6tWrnZ5Rrs2lxtiyLGv//v1WdHS0NXjwYGfHkxJwqTF++umnrR9++MGyLMt6+eWXraNHjzo9o1ybi41xRkaG1alTJys3N9eyLMt68MEHra1btxrJKVfv1KlT1uDBg60XXnjBmjlz5l8ed6XO5fEzyOvXr6dr164A1K9fn7S0NDIzMwGw2WxUqFCBatWq4e3tTceOHVm/fr3JuHIVLjbGADExMVStWhWA0NBQUlNTjeSUq3epMQZ47bXXGD16tIl4UgIuNsYFBQVs2bKFzp07AzBx4kSqV69uLKtcnYuNsZ+fH35+fmRlZZGXl8fp06epUKGCybhyFfz9/fn4448JDw//y2Ou1rk8viAnJycTEhJSdDs0NJSkpCQAkpKSCA0NPe9jUnpcbIwBgoKCAEhMTGTt2rV07NjR6Rnl2lxqjGNiYmjbti0REREm4kkJuNgYp6SkEBgYyKuvvsqAAQOYNm2aqZhyDS42xmXKlOHJJ5+ka9eudOrUiebNm1O3bl1TUeUq+fr6EhAQcN7HXK1zeXxB/l+WtoV2e+cb4xMnTjBixAgmTpx4zjdoKZ2Kj/HJkyeJiYnhwQcfNJhISlrxMbYsi4SEBIYOHcqsWbP4448/WL16tblwUiKKj3FmZiYffvghy5YtY+XKlWzfvp09e/YYTCfuzuMLcnh4OMnJyUW3ExMTCQsLO+9jCQkJ531ZQFzbxcYYCr/xPvLIIzzzzDN06NDBRES5Rhcb499++42UlBQGDRrEU089xe7du5k8ebKpqHKVLjbGISEhVK9enVq1auHj48NNN93E/v37TUWVq3SxMT548CA1a9YkNDQUf39/brjhBnbt2mUqqjiAq3Uujy/I7du3Z/ny5QDs3r2b8PDwopfca9SoQWZmJna7nby8PFatWkX79u1NxpWrcLExhsK1qcOGDePWW281FVGu0cXGuGfPnixdupSvvvqKd999l6ZNmzJhwgSTceUqXGyMfX19qVmzJkeOHCl6XC+/lz4XG+OIiAgOHjxIdnY2ALt27aJOnTqmoooDuFrn0lHTwNSpU9m8eTNeXl5MnDiRP/74g+DgYLp168amTZuYOnUqAN27d2f48OGG08rVuNAYd+jQgTZt2tCyZcuij73zzjuJjo42mFauxsW+js+y2+2MHz+emTNnGkwqV+tiYxwXF8e4ceOwLItGjRrx8ssv4+3t8XNApc7Fxnju3LnExMTg4+NDy5Ytee6550zHlSu0a9cupkyZwtGjR/H19aVKlSp07tyZGjVquFznUkEWERERESlGv16LiIiIiBSjgiwiIiIiUowKsoiIiIhIMSrIIiIiIiLFqCCLiIiIiBSjgiwiHqdHjx5ERkYyffp0h1/ryy+/pEOHDqxdu/aSH7thwwYiIyP56KOPrumaQ4YM4brrrrum5yhJ77zzDpGRkWzbtu2iHxcTE0NkZCRLlixxUjIRkfNTQRYRj/LHH39w5MgRbrzxRpYtW+bQa9ntdux2O99+++1lbXjftGlT5s2bxz333OPQXCIicnEqyCLiUb7//nvCwsJ48sknOXToEHv37i16rKCggBkzZtC5c2fatGnDs88+S1paGgCdO3emZ8+eRR/bs2dPOnfuDPzfzOeMGTNo164dmzdvxmaz8dJLLzFnzhz69OnDggULiv7ugQMHGDJkCC1btqRXr17nnB4WHR3NokWLAIiPj2fo0KG0bNmSzp07n/McxcXFxXH33XfTvHlznnvuOfLz8895fPHixXTt2pVmzZrRs2dPfv755/M+z7hx44iKimLJkiW0a9eOLl26sGvXLkaNGkWLFi144oknyMnJAeDEiROMGjWKli1b0rp1a8aPH09mZiYAp0+f5sknn+T666+nf//+JCQknHOd1atXc88999C8eXP69u3LoUOHzpvnYtcQEXEkFWQR8SjLli2ja9eutG7dmtDQ0HNmkefPn8/bb79N7969+de//sXy5ct59dVXr+i5p02bRoMGDZg4cSK7d+/m7bffplatWrz44oucOHGC3NxcRowYQWJiIm+//TZ169bl2WefLTomubiXXnqJ2NhYpk+fTp06dYqe43+9+OKLxMXFMXXqVJo0acLWrVuLHtu4cSNjxoyhSZMmfPDBB1StWpXHH3/8vNcDsCyLNWvWMHr0aOx2Ow8//DBt27bljjvuYOXKlaxatQqAZ555hl9//ZV//OMfPP/883z77bf885//BODTTz/lxx9/ZMSIEYwYMaLoFwCAY8eOMXLkSIKCgpgxYwYFBQUXPPr7YtcQEXEkX9MBREScZffu3cTHx/PUU0+RlJRE27ZtWbZsGaNGjQJgyZIlBAcH89RTT+Ht7U3lypXJzc297Ofv3bs3HTp0AGDs2LGUKVOGevXqYbPZWL9+PYcPHwbAZrMxbtw4brnlFpo0acKOHTsICAj4y/NNmDABf39/atasic1mY+3atRw+fJhKlSoVfUxOTg4bN26kU6dORcdq//e//yUpKQmAhQsXAvDCCy8QHh5OcHAw/fr1Y+nSpTzxxBPn/f8YNmwYUVFRvPnmm1SqVIlBgwaxb98+vvnmGw4fPsyxY8fYuHEj0dHR3H333QD88MMPLF26lNdee401a9ZQvnx5RowYgbe3N126dCma/V69ejU5OTkMGzaMG2+8kYEDBzJhwgT+/PPPczJc6ho6RlpEHEkFWUQ8xvfffw/Ac889d879e/fuJTIykoSEBEJCQorK1w033HBFzx8eHl705w0bNvD555+TnJyMZVkA5OfnF80Ah4aGAlCpUiU6deoEFC6VKG7VqlV8/vnnpKSkFN33v8snUlNTsSyr6PkAwsLCigpyYmIi3t7eRdnCwsKK7r+QswU8MDCw6HnLlSsHQG5ubtHfrVKlyjnXzM3NJTU1ldTUVCpWrFj073j2mgDp6ekAjBw58pxr2u32c25f6hrFf0kQESlp+hVcRDzGsmXLaNWqFR988AEffPABM2bMwNfXt2iZReXKlUlJSSkqoStXrmT+/PkA+Pn5kZ2dDRSuVT7fUoezhdBms/Hqq6/SunVrtm3bxtixY4s+pnLlygBFBTYpKYlZs2axf//+c54rLi6ON954g8jISObMmcPw4cPP+/8UEhKCl5cXycnJQOESiWPHjhU9XrVqVQoKCoqud3amtmrVqpf97/a/zv7d4muLjx07hr+/PyEhIYSEhJzz71h8dvhs4X3hhRf45ptviv5r3LjxFV1DRMSRNIMsIh5h586d2Gw2Bg8eXDRjC3DdddcVLbPo1asXGzduZPr06TRp0oTx48fTuXNn7r//furUqcPq1av59ttviYuLu+jSi1OnTgGFbzL75ZdfWLx4MQCbN29m2LBhVKtWjblz59KoUSNiYmJYsWJF0Rvzzjp9+jQAvr6+pKenF60r3rx5My1atKBMmTIA+Pv707p1a9atW8eiRYuIi4sjJSUFLy8vAO655x6+/vprJk+eTJ8+fXjvvffw8/PjjjvuuOp/yypVqtCuXTu+++47brzxRlJTU9mwYQN9+vTB29ubm266ia1bt/L222/TsGHDc94U2KFDB8qVK8dPP/1EvXr1WLJkCTabjQ8++OCKriEi4kj6LiMiHuHsLPHZNcJndejQoWg3i+joaEaMGMGiRYt44YUX6NixIy+++CIAo0aNol69ekycOJG8vDyaNWt2wWtFRUXRt29ftm3bxptvvsk///lPGjduzGeffUZmZiYffPABlStXZtSoUcTGxjJ16lQaNGhw3ufYvHkz06ZN44UXXih6jtTU1HM+9uWXX6ZatWq89NJLJCYmnrOlXJs2bZgyZQrbt2/nscceIy0tjY8//piaNWte07/ntGnTaN++PePHj+fNN9+kb9++jB8/HoDhw4dz88038+mnnzJ37lz69+9f9PcqV67Me++9R0pKCk888QTbt29n+PDhBAYGXtE1REQcycs6uzhOREREREQ0gywiIiIiUpwKsoiIiIhIMSrIIiIiIiLFqCCLiIiIiBSjgiwiIiIiUowKsoiIiIhIMSrIIiIiIiLFqCCLiIiIiBTz/wBpVmo3YCeLuwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 7))\n", + "\n", + "x = np.linspace(0, 1)\n", + "\n", + "# valores base e referencia\n", + "plt.plot(x, nota(bb, br, x), label='BERT')\n", + "plt.plot(x, nota(lb, lr, x), label='Bi-LSTM')\n", + "plt.plot(x, nota(nb, nr, x), label='Naive')\n", + "\n", + "# nota do aluno\n", + "nota_bert = nota(bb, br, ba)\n", + "nota_lstm = nota(lb, lr, la)\n", + "nota_naive = nota(nb, nr, na)\n", + "\n", + "plt.plot(ba, nota_bert, 'go')\n", + "plt.plot(la, nota_lstm, 'go')\n", + "plt.plot(na, nota_naive, 'go')\n", + "\n", + "nota_final = round((nota_bert + nota_lstm + nota_naive) / 3, 1)\n", + "print(nota_final)\n", + "plt.axhline(nota_final, color='r', label='Nota Final')\n", + "\n", + "plt.legend()\n", + "plt.ylabel('Sua nota')\n", + "plt.xlabel('Acurácia do modelo')\n", + "plt.title(f'Nota Final = {nota_final*10}')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SAutWOJi4aIX" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [], + "toc_visible": true + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)]" + }, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/bloco5_regularizacao/NN_fooled.png b/bloco5_regularizacao/NN_fooled.png new file mode 100644 index 0000000..a4e2168 Binary files /dev/null and b/bloco5_regularizacao/NN_fooled.png differ diff --git a/bloco5_regularizacao/ajuste_fino.png b/bloco5_regularizacao/ajuste_fino.png new file mode 100644 index 0000000..2887d69 Binary files /dev/null and b/bloco5_regularizacao/ajuste_fino.png differ diff --git a/bloco5_regularizacao/aula6_teo.ipynb b/bloco5_regularizacao/aula6_teo.ipynb new file mode 100644 index 0000000..19060fe --- /dev/null +++ b/bloco5_regularizacao/aula6_teo.ipynb @@ -0,0 +1,273 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AULA 6 TEORIA- egularização, Normalização e Transferência de Aprendizado\n", + "\n", + "05/10 - Aula presencial\n", + "\n", + "---\n", + "\n", + "## Regularização, Normalização e Transferência de Aprendizado\n", + "\n", + "- Generalização e complexidade de modelos\n", + "- Overfitting/underfitting\n", + "- Técnicas de regularização: funções de custo regularizadas, dropout\n", + "- Early stopping\n", + "- Data augmentation\n", + "- Normalização por batch e camada\n", + "- Transferência de aprendizado\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Treinamento de redes profundas em cenários reais\n", + "\n", + "### Suposições para convergência e aprendizado\n", + "\n", + "- **suposições Dados de treinamento**:\n", + " - Limpos\n", + " - Representativos e bem definidos\n", + " - Baixa taxa de erro de rótulo\n", + " - Quantidade de dados é suficiente\n", + "\n", + "* E se não for possível?\n", + " * overfitting, baixa generalização, dificuldade de treinamento\n", + "\n", + "- **Complexidade de modelos**:\n", + " - algoritmo ajusta uma f a partir de um espço de funções F\n", + " - *\"muitas\" funções:* mais graus de liberdade, menor garantia de convergência, possível overfitting\n", + " - *\"poucas\" funções:* menos graus de liberdade, maior garantia de convergência, possível underfitting\n", + " - \n", + "\n", + "* ou seja:\n", + " * mais funções -> mais opções para conter a função ótima do problema, porém, mais dificil será achar a melhor função do conjunto escolhido.\n", + " * menos funções -> mais fácil achar a melhor função do conjunto, porém, talvez ela não seja ótima o suficiente\n", + "\n", + "- obs: complexidade de modelos = \"viés\" segundo a Teoria do Aprendizado Estatístico\n", + "\n", + "* exemplo com KNN (K nearst neighboughrsj):\n", + " * ver slide (ta sem explicacao mas era sobre overfitting e underfitting)\n", + "\n", + "- **viés x variância**:\n", + " - complexidade baixa: pouca variancia e muito viés\n", + " - underfitting\n", + " - complexidade alta: muita variancia e pouco viés\n", + " - overfitting\n", + " - complexidade ótima: erro de generalizaçaõ minimo\n", + " - \n", + "\n", + "* **overparametrization**:\n", + " * expansão do conceito anterior -> dependencia dos parametros\n", + " * proposta inteira EMPÍRICA (sem comprovaçaõ matemática ainda)\n", + " * a rede enquanto \"underparametrized\", quanto mais complexidade de funções, mais ela DECORA o dataset, até que chegamos no \"interpolation threshhold\", em que a rede decora tudo que há de dataset e a partir daí aprende a interpolar as respostas com o dataset decorado. \n", + " * a rede volta aprender e reduzir seu regime, voltando a ter uma generalização aceitável \n", + " * \n", + "\n", + "- **Hipótese do bilhete de loteria**:\n", + " - inicializar aleatoriamente uma rede densa com Θo\n", + " - treinar a rede até atingir convergência com parâmetros Θ\n", + " - Podar Θ e criar uma máscara m\n", + " - A configuração de inicialização “winning ticket” é Θ ⊗ m (produto interno)\n", + "\n", + "* **Ataques adversariais**:\n", + " * enganar a rede neural com alguns pixels e coódigos de pixels que traduzem features aprendidas de forma \"artifical\", podendo confundir a rede \n", + " * \n", + " * \n", + " * note que adicionar um ponto em cada imagem era muito influente na rede, de tal forma que o ponto branco no centro deu para a rede a certeza falsa de que era um avião\n", + "\n", + "- Zhang et al (2017): \"... nossos experimentos estabeleceram que redes convolucionais profundas do estado da arte (...) facilmente ajustam rótulos aleatórios nos dados de treinamento.\"\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Estratégias para melhorar a generalização\n", + "\n", + "- Regularização\n", + " - Regularização L2\n", + " - Regularização L1\n", + " - Dropout\n", + " - Early stopping\n", + " - Data augmentation\n", + " - Normalização por batch e camada\n", + " - Transferência de aprendizado\n", + "\n", + "* **[I]: Relgularização L2 (Tikonox)**:\n", + " * \n", + " * Objetivo: limitar a capacidade do modelo de se especializar demais nos dados (decorar o dataset)\n", + " * Regularização: \n", + " * Global -> na função de perda ponderada por um hiperparâmetro λ\n", + " * Definido -> na função de perda de cada camada\n", + "\n", + "- **[II]: Dropout**:\n", + " - \n", + " - Objetivo: limitar a capacidade de certos parâmetros do modelo a memorizarem os dados\n", + " - implementado na forma de \"camada\"\n", + " - em cada iteração desliga aleatoriamente uma porção dos neurônios da camada\n", + "\n", + "* **[III]: Early Stopping**:\n", + " * Objetivo: evitar que o modelo se especialize demais nos dados de treinamento \n", + " * Parar o treinamento quando a função de custo de validação não melhora mais\n", + "\n", + "- **[IV]: Coletar mais dados**:\n", + " - Objetivo: aumentar a quantidade de dados de treinamento e impedir que o treinamento considere apenas um conjunto limitado de exemplos\n", + " - Baseado na lei dos grandes números, quanto maior a amostra,teremos um melhor estimador\n", + "\n", + "* **[V]: Data Augmentation**:\n", + " * Objetivo: aumentar a quantidade de dados de treinamento *> gerar exemplos artificiais na *esperança* de que melhore as propriedades de convergência\n", + " * Gera novos dados a partir de transformações aleatórias nos dados de treinamento\n", + " * Implementado por meio da manipulação de exemplos existentes, ou sua combinação\n", + " * Exemplos:\n", + " * rotação\n", + " * zoom\n", + " * translação\n", + " * espelhamento\n", + " * mudança de brilho\n", + " * mudança de contraste\n", + " * Dropout na camada de entrada: eliminando features caleatoriamente a cada iteração\n", + " * etc\n", + "\n", + "- *obs: Dica para melhoria de performance final*\n", + " - para cada exemplo de teste:\n", + " - 1) Gerar m exemplos com data augmentation\n", + " - 2) Predizer o resultado dos m exemplos\n", + " - 3) Combinar as predições (média, maioria etc)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Normalização de dados\n", + "\n", + "* exemplos de normalização:\n", + " * **Normalizaçaõ z-score:** valores com média 0 e desvio padrão 1\n", + " * **Normalizaçaõ min-max:** valores entre 0 e 1\n", + " * **Normalizaçaõ por batch:** normaliza os dados de cada batch de forma independente\n", + "\n", + "- Objetivo: evitar que os dados de entrada sejam muito grandes ou muito pequenos -> evitar que o gradiente exploda ou desapareça -> otimização \n", + " - suaviza as ativações dos neurônios, reduzindo a varianca do gradiente\n", + " - ataca o problema de \"vanishing gradient\"\n", + "\n", + "* tipos de normalização baseada em camadas!\n", + " * batch \n", + " * camada \n", + " * instância\n", + "\n", + "- Normalização de Dados\n", + " - Normalização por batch\n", + " - Normalização por camada\n", + " - Normalização por instância\n", + " - \n", + "\n", + "* **Batch normalization (BN):** para cada batch\n", + " * média e desvio calculados por canal (total C)\n", + " * normalização por canal (ao longo de N instancias do batch)\n", + " * funciona melhor com batchsize > 32\n", + "\n", + "- **Layer normalization (LN):** para cada camada\n", + " * média e desvio calculados por instancia (total N)\n", + " * normalização por instancia (ao longo de todas as ativações do batch)\n", + " * Independe do tamanho do batch, mais comum em redes recorrentes e adversariais\n", + "\n", + "- **Instance normalization (IN):** para cada instância\n", + " * média e desvio calculados por instancia e canal (total N*C)\n", + " * normalização por instancia (ao longo de cada canal)\n", + " * Independe do tamanho do batch, mais comum em redes recorrentes e adversariais\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Transferência de aprendizado\n", + "\n", + "- **Transferência de aprendizado:** Utilizar modelo treinado em uma determinada tarefa ou domínio, aproveitando o aprendizado para uma outra tarefa ou domínio alvo\n", + " - **Transferência de aprendizado entre tarefas:** transferir o conhecimento de uma tarefa para outra\n", + " - **Transferência de aprendizado entre domínios:** transferir o conhecimento de um domínio para outro\n", + "\n", + "* Modos mais comuns:\n", + " * ajuste-fino/ adaptação de parâmetros\n", + " * transferência de aprendizado por *feature extraction*\n", + "\n", + "- **Ajuste-fino/ adaptação de parâmetros:**\n", + " - Transferencia de aprendizado\n", + " - Inicializar o modelo com os pesos pré-treinados\n", + " - treinamento a partir dos pesos pré-treinados\n", + " - Permitir adaptação apenas da últimas camadas, congelando as demais\n", + " - Ajuste fino\n", + " - Inicializar o modelo com os pesos pré-treinados (feito após o anterior)\n", + " - treinamento a partir dos pesos pré-treinados\n", + " - Permitir adaptação de todos os pesos (principalmente das ultimas camadas até o meio, do começo depende da disponibilidade de dados)\n", + " - \n", + "\n", + "* *Dicas*: \n", + " * CNNs com menos parâmetros costumam generalizar melhor para dados muito diferentes do treinamento\n", + " * Exemplos: MobileNet, SqueezeNet, etc. funcionam melhor em imagens médicas do que ResNet e Inception.\n", + " * Ajuste-fino pode não convergir se tivermos poucos dados, ex.menos de 100 instâncias por classe.\n", + "\n", + "- **Transferência de aprendizado por *feature extraction*:**\n", + " - Características para dados não estruturados\n", + " - Carregar rede neural treinada em grande base de dados\n", + " - Passar exemplos de sua base de dados pela rede para predição (não treinamento!)\n", + " - Obter os mapas de ativação de alguma camada\n", + " - \n", + "\n", + "* *Dicas*:\n", + " * Aplicar redução de dimensionalidade baseada em PCA,Product Quantization ou outra\n", + " * Treinar modelo de aprendizado raso com maiores garantias de aprendizado com poucos dados: SVM, árvore de decisão, etc\n", + " * Essas características também são efetivas para recuperação baseada em conteúdo\n", + " * Podem ser usados métodos de projeção para as características aprendidas: tSNE, UMAP, PCA\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusão\n", + "\n", + "- Deep Learning não pode ser tratado como panacéia\n", + "- Há ainda preocupações sobre sua capacidade de generalização\n", + "- Grande utilidade está no aprendizado de representações em particular para dados não estruturados\n", + " - representações que parecem ter excelente cpaacidade de transferẽncia de aprendizado\n", + "\n", + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bloco5_regularizacao/dropout.png b/bloco5_regularizacao/dropout.png new file mode 100644 index 0000000..f6b16e0 Binary files /dev/null and b/bloco5_regularizacao/dropout.png differ diff --git a/bloco5_regularizacao/espaco_funcoes.png b/bloco5_regularizacao/espaco_funcoes.png new file mode 100644 index 0000000..8c04e1e Binary files /dev/null and b/bloco5_regularizacao/espaco_funcoes.png differ diff --git a/bloco5_regularizacao/feature_extraction.png b/bloco5_regularizacao/feature_extraction.png new file mode 100644 index 0000000..781db50 Binary files /dev/null and b/bloco5_regularizacao/feature_extraction.png differ diff --git a/bloco5_regularizacao/normalizacao.png b/bloco5_regularizacao/normalizacao.png new file mode 100644 index 0000000..b52855c Binary files /dev/null and b/bloco5_regularizacao/normalizacao.png differ diff --git a/bloco5_regularizacao/overparametrization.png b/bloco5_regularizacao/overparametrization.png new file mode 100644 index 0000000..5518ad4 Binary files /dev/null and b/bloco5_regularizacao/overparametrization.png differ diff --git a/bloco5_regularizacao/pixel_attack2.png b/bloco5_regularizacao/pixel_attack2.png new file mode 100644 index 0000000..0eaf588 Binary files /dev/null and b/bloco5_regularizacao/pixel_attack2.png differ diff --git a/bloco5_regularizacao/regularizacaoL2.png b/bloco5_regularizacao/regularizacaoL2.png new file mode 100644 index 0000000..553473f Binary files /dev/null and b/bloco5_regularizacao/regularizacaoL2.png differ diff --git a/bloco5_regularizacao/vies_variancia.png b/bloco5_regularizacao/vies_variancia.png new file mode 100644 index 0000000..1c84208 Binary files /dev/null and b/bloco5_regularizacao/vies_variancia.png differ diff --git a/bloco6_autoenconders/L1_overcompleted.jpg b/bloco6_autoenconders/L1_overcompleted.jpg new file mode 100644 index 0000000..0b80fc2 Binary files /dev/null and b/bloco6_autoenconders/L1_overcompleted.jpg differ diff --git a/bloco6_autoenconders/aula7_dem1.ipynb b/bloco6_autoenconders/aula7_dem1.ipynb new file mode 100644 index 0000000..ec7ade1 --- /dev/null +++ b/bloco6_autoenconders/aula7_dem1.ipynb @@ -0,0 +1,334 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AULA 7 DEMONSTRAÇÃO 1- Autoencders\n", + "\n", + "Aula 7- Aula Assíncrona\n", + "> https://www.youtube.com/watch?v=2EBt0sS7kwI&ab_channel=MoacirAntonelliPonti\n", + "\n", + "---\n", + "\n", + "## Autoencoder em pytorch\n", + "\n", + "- utilizar o minist como exemnplo de dataset\n", + "\n", + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "\n", + "from torchvision import datasets, transforms\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podemos carregar um dataset já existente, utilizando os seguintes parâmetros:\n", + "- `root`: caminho onde os dados serão armazenados localmente\n", + "- `train`: variável binária que define se carregar os dados de treinamento (`True`) o teste (`False`)\n", + "- `download`: se `True` faz download da Internet caso os dados não estejam disponíveis localmente\n", + "- `transform` e `target_transform` especifica transformações para as features e labels." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "# tranforma imagens em tensores\n", + "tensor_transform = transforms.ToTensor()\n", + "\n", + "# Download e carregamento do dataset MNIST\n", + "dataset = datasets.MNIST(root='./data', train=True, download=True, transform=tensor_transform)\n", + "\n", + "# Cria um DataLoader para o dataset\n", + "dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "class Autoencoder(nn.Module):\n", + " \n", + " def __init__(self):\n", + " super().__init__()\n", + " # Encoder\n", + " self.encoder = nn.Sequential(\n", + " nn.Linear(28*28, 128), # 28*28 = 784 -> 128\n", + " nn.ReLU(),\n", + " nn.Linear(128, 32), # 128 -> 32\n", + " nn.ReLU(),\n", + " ) # saida do encoder: 32\n", + " # Decoder\n", + " self.decoder = nn.Sequential(\n", + " nn.Linear(32, 128), # 32 -> 128\n", + " nn.ReLU(),\n", + " nn.Linear(128, 28*28), # 128 -> 28*28 = 784\n", + " nn.Sigmoid(), # simoid para normalizar os valores entre 0 e 1\n", + " ) # saida do decoder: 784\n", + "\n", + " def forward(self, x):\n", + " z = self.encoder(x)\n", + " x_hat = self.decoder(z)\n", + " return x_hat\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Autoencoder(\n", + " (encoder): Sequential(\n", + " (0): Linear(in_features=784, out_features=128, bias=True)\n", + " (1): ReLU()\n", + " (2): Linear(in_features=128, out_features=32, bias=True)\n", + " (3): ReLU()\n", + " )\n", + " (decoder): Sequential(\n", + " (0): Linear(in_features=32, out_features=128, bias=True)\n", + " (1): ReLU()\n", + " (2): Linear(in_features=128, out_features=784, bias=True)\n", + " (3): Sigmoid()\n", + " )\n", + ")\n" + ] + } + ], + "source": [ + "net = Autoencoder()\n", + "print(net)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "# função custo\n", + "loss_function = nn.MSELoss()\n", + "optim = torch.optim.Adam(net.parameters(), lr=2e-3, weight_decay=1e-7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> com os parametros da rede definidos, vamos fazer o treinamento agora" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 1 2 3 4 5 6 7 8 9 " + ] + } + ], + "source": [ + "epochs = 10\n", + "outputs = []\n", + "losses = []\n", + "\n", + "for epoch in range(epochs):\n", + " print(f'{epoch} ', end='')\n", + " for (image, _) in dataloader:\n", + " # como autoencoder é denso, redimensiona as imagens para 1D\n", + " image = image.reshape(-1, 28*28)\n", + " # saída do autoencoder\n", + " reconstructed = net(image)\n", + " # calcula a função custo\n", + " loss = loss_function(reconstructed, image)\n", + " # zera os gradientes\n", + " optim.zero_grad()\n", + " # backpropagation\n", + " loss.backward()\n", + " # atualiza os pesos\n", + " optim.step()\n", + " losses.append(loss)\n", + " \n", + " outputs.append((epoch, image, reconstructed))" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18750\n" + ] + } + ], + "source": [ + "# extraindo os valores de MSE para as epocas\n", + "losses_val = [l.item() for l in losses]\n", + "\n", + "print(len(losses_val))" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF20lEQVR4nO3dd3hUVeLG8XeSkAYpQCAFAqH3XmIoghpN0FVRdwX0J4iu2BuoiAVsK6isui6sqLuKrqugq+KuYFyIgCABpPceCC2hppM65/cHZmBMKIEwd5L5fp5nHjP3nnvnnFxgXs8591ybMcYIAADAg3hZXQEAAABXIwABAACPQwACAAAehwAEAAA8DgEIAAB4HAIQAADwOAQgAADgcXysroA7stvtOnDggIKCgmSz2ayuDgAAOA/GGOXk5CgqKkpeXmfv4yEAVeDAgQOKjo62uhoAAOAC7N27V40bNz5rGQJQBYKCgiSd/AUGBwdbXBsAAHA+srOzFR0d7fgePxsCUAXKhr2Cg4MJQAAAVDPnM32FSdAAAMDjEIAAAIDHIQABAACPQwACAAAehwAEAAA8DgEIAAB4HAIQAADwOAQgAADgcQhAAADA4xCAAACAxyEAAQAAj0MAAgAAHoeHobpQdkGxsk8UK9DXR/Vq+1pdHQAAPBY9QC70z5Q96vfafE36frPVVQEAwKMRgCxgjNU1AADAsxGAXMhms7oGAABAIgBZgg4gAACsRQByIZvoAgIAwB0QgFyobAiMOUAAAFiLAGQBwyAYAACWIgC5EANgAAC4BwKQFegAAgDAUgQgF+I2eAAA3AMByIXK7gKjAwgAAGsRgAAAgMchALnQqdvg6QMCAMBKBCALEH8AALAWAQgAAHgcApAL2X4dA2MEDAAAaxGAAACAxyEAuVDZMkB0AAEAYC0CkAW4CwwAAGsRgFyIlaABAHAPBCAXYggMAAD3QAACAAAehwDkQjbHUtDW1gMAAE9HAAIAAB6HAORCpzqA6AICAMBKBCAXckyCJv8AAGApAhAAAPA4BCBX4llgAAC4BQIQAADwOAQgFzq1ECJdQAAAWIkA5EI8CgMAAPdAALIAc4AAALAWAciFbL8OgpF/AACwFgEIAAB4HAKQCzlWgqYLCAAASxGAXIg50AAAuAcCkCXoAgIAwEoEIBfiNngAANwDAcgCzAECAMBaBCAX4jZ4AADcAwHIlRgCAwDALRCALGAYAwMAwFIEIBeiAwgAAPdAALIA/T8AAFiLAORCNu6DBwDALbhFAJo6dapiYmLk7++v2NhYLV++/IxlP/jgA/Xv319169ZV3bp1FR8fX668MUbjx49XZGSkAgICFB8fr+3bt1/qZpw3pgABAGAtywPQzJkzNXr0aE2YMEGrVq1Sly5dlJCQoEOHDlVYfsGCBRo2bJjmz5+vlJQURUdH65prrtH+/fsdZV5//XW98847mjZtmpYtW6batWsrISFBBQUFrmpWhej/AQDAPdiMxbckxcbGqlevXpoyZYokyW63Kzo6Wg8//LCefvrpcx5fWlqqunXrasqUKRo+fLiMMYqKitKYMWP0xBNPSJKysrIUHh6u6dOna+jQoeXOUVhYqMLCQsf77OxsRUdHKysrS8HBwVXUUumrlfs05su1GtC6gT6+q3eVnRcAAJz8/g4JCTmv729Le4CKioq0cuVKxcfHO7Z5eXkpPj5eKSkp53WO/Px8FRcXq169epKk1NRUpaenO50zJCREsbGxZzznxIkTFRIS4nhFR0dfRKvOjREwAACsZWkAOnLkiEpLSxUeHu60PTw8XOnp6ed1jrFjxyoqKsoReMqOq8w5x40bp6ysLMdr7969lW3KeWEONAAA7sHH6gpcjEmTJmnGjBlasGCB/P39L/g8fn5+8vPzq8KanR0LIQIAYC1Le4DCwsLk7e2tjIwMp+0ZGRmKiIg467GTJ0/WpEmT9L///U+dO3d2bC877kLOeanRAwQAgHuwNAD5+vqqR48eSk5Odmyz2+1KTk5WXFzcGY97/fXX9fLLLyspKUk9e/Z02tesWTNFREQ4nTM7O1vLli076zkBAIDnsHwIbPTo0RoxYoR69uyp3r176+2331ZeXp5GjhwpSRo+fLgaNWqkiRMnSpJee+01jR8/Xp999pliYmIc83rq1KmjOnXqyGaz6bHHHtMrr7yiVq1aqVmzZnr++ecVFRWlwYMHW9VMAADgRiwPQEOGDNHhw4c1fvx4paenq2vXrkpKSnJMYk5LS5OX16mOqnfffVdFRUX6/e9/73SeCRMm6IUXXpAkPfXUU8rLy9OoUaOUmZmpfv36KSkp6aLmCVUFGysBAQDgFixfB8gdVWYdgcqYtXq/Hpu5Rv1bhemfd8dW2XkBAEA1WgfIUxE5AQCwFgHIhbgLDAAA90AAsoBhLWgAACxFAAIAAB6HAAQAADwOAcgCTIIGAMBaBCAXsjELGgAAt0AAsgA9QAAAWIsA5EL0/wAA4B4IQAAAwOMQgCzAOkAAAFiLAORCzIEGAMA9EIAswCRoAACsRQByIRvToAEAcAsEIAAA4HEIQBZgBAwAAGsRgFyISdAAALgHApAV6AICAMBSBCAXogMIAAD3QAACAAAehwBkAVaCBgDAWgQgF2ISNAAA7oEABAAAPA4ByAI8CgMAAGsRgFyKMTAAANwBAcgCdAABAGAtApALMQkaAAD3QAACAAAehwBkAcMsaAAALEUAciFGwAAAcA8EIAvQ/wMAgLUIQC5kYxY0AABugQAEAAA8DgHIAsyBBgDAWgQgF2IADAAA90AAsgAdQAAAWIsA5ELMgQYAwD0QgAAAgMchAFmBWdAAAFiKAORCDIEBAOAeCEAWoP8HAABrEYBcyMaN8AAAuAUCEAAA8DgEIAswBxoAAGsRgFyJETAAANwCAQgAAHgcApAFDPeBAQBgKQKQCzECBgCAeyAAWYBJ0AAAWIsA5EI2loIGAMAtEIAAAIDHIQBZgCEwAACsRQByIQbAAABwDwQgC9ABBACAtQhALsQcaAAA3AMBCAAAeBwCkAUMs6ABALAUAciFbEyDBgDALRCAAACAxyEAuRCToAEAcA8EIAAA4HEIQBZgDjQAANYiALkQI2AAALgHywPQ1KlTFRMTI39/f8XGxmr58uVnLLtx40bdcsstiomJkc1m09tvv12uzAsvvCCbzeb0atu27SVsAQAAqG4sDUAzZ87U6NGjNWHCBK1atUpdunRRQkKCDh06VGH5/Px8NW/eXJMmTVJERMQZz9uhQwcdPHjQ8Vq8ePGlasIFMTwMAwAAS1kagN58803dc889GjlypNq3b69p06YpMDBQH374YYXle/XqpTfeeENDhw6Vn5/fGc/r4+OjiIgIxyssLOxSNaFyGAMDAMAtWBaAioqKtHLlSsXHx5+qjJeX4uPjlZKSclHn3r59u6KiotS8eXPdfvvtSktLO2v5wsJCZWdnO70uJSZBAwBgLcsC0JEjR1RaWqrw8HCn7eHh4UpPT7/g88bGxmr69OlKSkrSu+++q9TUVPXv3185OTlnPGbixIkKCQlxvKKjoy/488+GlaABAHAPlk+CrmqDBg3SH/7wB3Xu3FkJCQmaM2eOMjMz9cUXX5zxmHHjxikrK8vx2rt3rwtrDAAAXM3Hqg8OCwuTt7e3MjIynLZnZGScdYJzZYWGhqp169basWPHGcv4+fmddU5RVWMEDAAAa1nWA+Tr66sePXooOTnZsc1utys5OVlxcXFV9jm5ubnauXOnIiMjq+ycF4pHYQAA4B4s6wGSpNGjR2vEiBHq2bOnevfurbffflt5eXkaOXKkJGn48OFq1KiRJk6cKOnkxOlNmzY5ft6/f7/WrFmjOnXqqGXLlpKkJ554Qtdff72aNm2qAwcOaMKECfL29tawYcOsaWQFDLOgAQCwlKUBaMiQITp8+LDGjx+v9PR0de3aVUlJSY6J0WlpafLyOtVJdeDAAXXr1s3xfvLkyZo8ebIGDBigBQsWSJL27dunYcOG6ejRo2rQoIH69eunpUuXqkGDBi5tW0XoAAIAwD3YDN0R5WRnZyskJERZWVkKDg6usvMu23VUQ95fqhYNait5zMAqOy8AAKjc93eNuwusOiBxAgBgLQKQC9mYBQ0AgFsgAFmBLiAAACxFAHIhOoAAAHAPBCAAAOBxCEAWYAQMAABrEYBciBEwAADcAwHIAiy9BACAtQhALsQkaAAA3AMBCAAAeBwCkAUYAAMAwFoEIJdiDAwAAHdAAAIAAB6HAGQBbgIDAMBaBCAX4i4wAADcAwHIAoZp0AAAWIoA5EJ0AAEA4B4IQAAAwOMQgCzAJGgAAKxFAHIhG7OgAQBwCwQgC9ADBACAtQhALkT/DwAA7oEABAAAPA4BCAAAeBwCkAsxBxoAAPdAALKAYRY0AACWIgC5kI1p0AAAuAUCEAAA8DgEIAswAAYAgLUIQC7EJGgAANzDBQWgjz/+WLNnz3a8f+qppxQaGqo+ffpoz549VVa5moo50AAAWOuCAtCrr76qgIAASVJKSoqmTp2q119/XWFhYXr88certIIAAABVzedCDtq7d69atmwpSZo1a5ZuueUWjRo1Sn379tXAgQOrsn4AAABV7oJ6gOrUqaOjR49Kkv73v//p6quvliT5+/vrxIkTVVe7GsowDRoAAEtdUA/Q1VdfrT/+8Y/q1q2btm3bpmuvvVaStHHjRsXExFRl/WoUJkEDAOAeLqgHaOrUqYqLi9Phw4f11VdfqX79+pKklStXatiwYVVaQQAAgKp2QT1AoaGhmjJlSrntL7744kVXyBNwFxgAANa6oB6gpKQkLV682PF+6tSp6tq1q2677TYdP368yipX0/AoDAAA3MMFBaAnn3xS2dnZkqT169drzJgxuvbaa5WamqrRo0dXaQVrIjqAAACw1gUNgaWmpqp9+/aSpK+++kq/+93v9Oqrr2rVqlWOCdEoj0nQAAC4hwvqAfL19VV+fr4kad68ebrmmmskSfXq1XP0DAEAALirC+oB6tevn0aPHq2+fftq+fLlmjlzpiRp27Ztaty4cZVWsCZiEjQAANa6oB6gKVOmyMfHR//+97/17rvvqlGjRpKk77//XomJiVVawZqEITAAANzDBfUANWnSRN9991257W+99dZFV8gz0AUEAICVLigASVJpaalmzZqlzZs3S5I6dOigG264Qd7e3lVWuZqG2+ABAHAPFxSAduzYoWuvvVb79+9XmzZtJEkTJ05UdHS0Zs+erRYtWlRpJQEAAKrSBc0BeuSRR9SiRQvt3btXq1at0qpVq5SWlqZmzZrpkUceqeo61jhMggYAwFoX1AO0cOFCLV26VPXq1XNsq1+/viZNmqS+fftWWeVqGiZBAwDgHi6oB8jPz085OTnltufm5srX1/eiK1XT0QEEAIC1LigA/e53v9OoUaO0bNkyGWNkjNHSpUt133336YYbbqjqOtYYdAABAOAeLigAvfPOO2rRooXi4uLk7+8vf39/9enTRy1bttTbb79dxVUEAACoWhc0Byg0NFTffvutduzY4bgNvl27dmrZsmWVVq6mMsyCBgDAUucdgM71lPf58+c7fn7zzTcvvEY1GJOgAQBwD+cdgFavXn1e5Wx8ywMAADd33gHo9B4eXBwGwAAAsNYFTYLGhaJ3DAAAd0AAsgBzoAEAsBYByIWYHgUAgHsgAAEAAI9DALIA6wABAGAtApALMQIGAIB7IABZgP4fAACsRQByIRaJBADAPRCAAACAx7E8AE2dOlUxMTHy9/dXbGysli9ffsayGzdu1C233KKYmBjZbLYzPnm+Mue0BGNgAABYytIANHPmTI0ePVoTJkzQqlWr1KVLFyUkJOjQoUMVls/Pz1fz5s01adIkRUREVMk5XYkBMAAA3IOlAejNN9/UPffco5EjR6p9+/aaNm2aAgMD9eGHH1ZYvlevXnrjjTc0dOhQ+fn5Vck5rUAHEAAA1rIsABUVFWnlypWKj48/VRkvL8XHxyslJcWl5ywsLFR2drbT61JgDjQAAO7BsgB05MgRlZaWKjw83Gl7eHi40tPTXXrOiRMnKiQkxPGKjo6+oM8HAADVg+WToN3BuHHjlJWV5Xjt3bv3kn4eK0EDAGAtH6s+OCwsTN7e3srIyHDanpGRccYJzpfqnH5+fmecU1SVbEyDBgDALVjWA+Tr66sePXooOTnZsc1utys5OVlxcXFuc85Lgf4fAACsZVkPkCSNHj1aI0aMUM+ePdW7d2+9/fbbysvL08iRIyVJw4cPV6NGjTRx4kRJJyc5b9q0yfHz/v37tWbNGtWpU0ctW7Y8r3NaiUnQAAC4B0sD0JAhQ3T48GGNHz9e6enp6tq1q5KSkhyTmNPS0uTldaqT6sCBA+rWrZvj/eTJkzV58mQNGDBACxYsOK9zAgAA2AwzcsvJzs5WSEiIsrKyFBwcXGXn3XssX/1fn6+AWt7a/HJilZ0XAABU7vubu8AAAIDHIQABAACPQwCygOE+MAAALEUAciHuAgMAwD0QgCzAtHMAAKxFAHIhG11AAAC4BQIQAADwOAQgCzACBgCAtQhALsQAGAAA7oEAZAW6gAAAsBQByIWYAw0AgHsgAFmgqNSuzPwiq6sBAIDHIgBZ5LGZa6yuAgAAHosA5EK206ZBL9h62MKaAADg2QhAAADA4xCAXIhJ0AAAuAcCEAAA8DgEIAAA4HEIQC7ECBgAAO6BAAQAADwOAQgAAHgcApArMQYGAIBbIAABAACPQwByIRtdQAAAuAUCEAAA8DgEIBeyG2N1FQAAgAhALlVYbLe6CgAAQAQglzKiBwgAAHdAAHIhJkEDAOAeCEAWyjpRbHUVAADwSAQgC/190S6rqwAAgEciALmQ7TcjYEUlTIoGAMAKBCAL5RWVWF0FAAA8EgHIQp8uTbO6CgAAeCQCEAAA8DgEIAAA4HEIQC7020nQAADAGgQgAADgcQhAAADA4xCAAACAxyEAAQAAj0MAAgAAHocABAAAPA4ByIUiQwKsrgIAABAByKW8vWz667BuVlcDAACPRwACAAAehwDkYnZjrK4CAAAejwDkYuQfAACsRwBysVI7CQgAAKsRgFyslC4gAAAsRwByMftveoD2Hsu3qCYAAHguApCLJXSIcHp/KKfAopoAAOC5CEAuVre2r9P7UrtFFQEAwIMRgCxWQgICAMDlCEAWW7c/y+oqAADgcQhAFohvF+74eeehXAtrAgCAZyIAWWBQx1MToW02CysCAICHIgBZ4PQb4VelZVpVDQAAPBYByAKnPw9sB0NgAAC4HAHIAobVoAEAsBQByALc+Q4AgLUIQBbgeWAAAFiLAGSBbtGhVlcBAACPRgCyQMdGIVZXAQAAj+YWAWjq1KmKiYmRv7+/YmNjtXz58rOW//LLL9W2bVv5+/urU6dOmjNnjtP+O++8UzabzemVmJh4KZsAAACqEcsD0MyZMzV69GhNmDBBq1atUpcuXZSQkKBDhw5VWH7JkiUaNmyY7r77bq1evVqDBw/W4MGDtWHDBqdyiYmJOnjwoOP1+eefu6I5F6SguNTqKgAA4FEsD0Bvvvmm7rnnHo0cOVLt27fXtGnTFBgYqA8//LDC8n/5y1+UmJioJ598Uu3atdPLL7+s7t27a8qUKU7l/Pz8FBER4XjVrVv3jHUoLCxUdna208uVcgpKXPp5AAB4OksDUFFRkVauXKn4+HjHNi8vL8XHxyslJaXCY1JSUpzKS1JCQkK58gsWLFDDhg3Vpk0b3X///Tp69OgZ6zFx4kSFhIQ4XtHR0RfRqsrr9ad5mr3uoEs/EwAAT2ZpADpy5IhKS0sVHh7utD08PFzp6ekVHpOenn7O8omJifrkk0+UnJys1157TQsXLtSgQYNUWlrxUNO4ceOUlZXleO3du/ciW1Z5T3+1zuWfCQCAp/KxugKXwtChQx0/d+rUSZ07d1aLFi20YMECXXXVVeXK+/n5yc/Pz5VVBAAAFrK0BygsLEze3t7KyMhw2p6RkaGIiIgKj4mIiKhUeUlq3ry5wsLCtGPHjouv9CXC0ogAALiOpQHI19dXPXr0UHJysmOb3W5XcnKy4uLiKjwmLi7OqbwkzZ0794zlJWnfvn06evSoIiMjq6biAACgWrP8LrDRo0frgw8+0Mcff6zNmzfr/vvvV15enkaOHClJGj58uMaNG+co/+ijjyopKUl//vOftWXLFr3wwgtasWKFHnroIUlSbm6unnzySS1dulS7d+9WcnKybrzxRrVs2VIJCQmWtBEAALgXy+cADRkyRIcPH9b48eOVnp6url27KikpyTHROS0tTV5ep3Janz599Nlnn+m5557TM888o1atWmnWrFnq2LGjJMnb21vr1q3Txx9/rMzMTEVFRemaa67Ryy+/zDwfAAAgSbIZw5M5fys7O1shISHKyspScHDwJfmMmKdnl9u2e9J1l+SzAADwBJX5/rZ8CMxTDWzTwOoqAADgsQhAFhmb2LbctpyCYgtqAgCA5yEAWaTUXn7k8dU5my2oCQAAnocA5Ebmba74AbAAAKBqEYAs0j6y/OSswzmFWrH7mAW1AQDAsxCALOLlZatw+7sLdrq4JgAAeB4CkJuxsyoBAACXHAHIzZRUMDkaAABULQKQm1m0/YjVVQAAoMYjAAEAAI9DAHJDo79YY3UVAACo0QhAbujrVftZFRoAgEuIAGSh/q3CzrjveB4BCACAS4UAZKG/j+h5xn0Tv+exGAAAXCoEIAv5+Xifcd8PG9NdWBMAADwLAchNsRwQAACXDgHIYmF1/M64z04KAgDgkiAAWezHJwaccd/+zBMurAkAAJ6DAGSxYP9aevGGDhXu6//6fC1P5enwAABUNQKQGxge1/SM+259L8WFNQEAwDMQgNyAzWazugoAAHgUAlA1kFdYYnUVAACoUQhA1cCjM1ZbXQUAAGoUAlA1MG/zIQ19P0XFpXarqwIAQI1AAKomlu46phEfLre6GgAA1Ag+VlcA52/JzqOKeXq24/3IvjGacH3Ft9ADAIAzowfITSx66opKH/PRz7uVmV+k/CImSQMAUBkEIDcRXS9QXaNDK31c15fmqv34H7Rw2+GqrxQAADUUAciN/Pu+uAs+9oFPV+rvi3bpWF5RFdYIAICaiQDkRny8vXRnn5gLOjavqFSvzN6s7i/P1Yb9Wdp7LJ+HqQIAcAZMgnYzLRrUvuhz/O6vix0/T/u/HkrsGCFJKi61q5Y3mRcAAAKQm+kZU69Kz3ffpyvVK6auftl9XJI0blBb3TugRZV+BgAA1Q3dAW6mXWSw3rujh/q0qF9l5ywLP5I08fstSjuarxnL0yq9sOLsdQc1Y3laldULAACr0APkhhI6RCihw8lhq9PX/akql78xX5KUeaJY91XQG5RTUCybzaY6fs5/PB78bNXJ41s3UFRoQJXXCwAAV6EHyIOl7Dzq+LmguFTpWQUqKrGr0wv/U8cJP6j0tEnUxpz6OetEsUvrCQBAVSMAubmqmBR9Jgu3HXY8XuPqtxbqsonJWrrLORRtTc/RsPeXasWeU8No5hw3l5Vy9xkAwM0xBObmggNqXdLzL9x2WG/+b6v2HjshSRp+2vPGOkz4wfHzH6alOH7OLTy58vTKPceVtOGgHr+6tQJ9T/5RGvf1On239qB+fGKgGgT5SZL2Hc9X2tF89WkZ5vTZdrtRYYldAb7el6ZxAACcAT1A0Ds/7qhU+VvfS9F/1h7QLe8u0QeLUvWXedsd+z5fvlc5hSXq9ad5jmGzfq/N121/X6YVu485nef//rFM7cYn6VB2wXl97rJdR/Xtmv2VqmtlmHN1bcHJrNX7Nf3nVKurAQAXhADk5i5rXnV3g1WlRz5f7fj5vZ92Kebp2Uo9kudU5kiu86rUv5+WooLiUsf7Jb/OQfrvuoOav/WQBv1lkQb9ZZH6vfajFm47XO4utSHvL9WjM9ZoS3p2lbQh7Wi+7v90pdbszdSHi1PV85V52p6RUyXn9gSPzVyjF/67SXuP5VtdFQCoNIbA3NyjV7VSeJCfSuxGr8zebHV1zuqKyQuc3n+Sslu39ox22tb2+SS1alhHU2/v7tj2p9mb9NtpQ2Vzkx66oqXaRQbreP6pMJX49iIN6hihyJAAPf+7drLZbBXWxxhzxn3Sybva1u/P0vcb0h3bnv92g2aMuvBHklTW+n1Zmrc5Q/cPbCH/WieHAt9J3q5AX2/9sX9zl9XjYmSdKFb0uYsBgFshALk5/1reurNvM0nSbbFN1H78D+c4wn389ccd+msFw2vbD+Xqmrd+crw/25zpKfMrHp4rCy316/jKv5a3Fm47rKcS2shmO7le0fs/7VKpMXrh+g66tWe08otKFOjrI/9aXsrILlREiL/W788qd97lqce0fl+WOjUOKbfvbIHqeF6RFu84oqvbhzuCzPm4fsqpVbsfv7q10rMK9ObcbZKkEX1izrlyd0Fxqf6+aJeuaNtQHaLK17lMYUmp1qRlqnvTujV+NXC73cjL68zBFwAkAlC1Eujro0k3d9J7P+3S5D900aHsAt3/r1VWV8tSb/yw1fHzT9sOl9s/4T8bNeE/Gx3vw+r46Uhu4RnPZzenQom3l03PXddOV7UN1+6jeY4J4nMe6S+/Wl56+btNuqlbI13fOUrDPliqLek5ahDkpy6NQ/T20G7l1lH6rTv+sczxc9mwXmHJqSHCUrtRWZZavP2IXpm9SVe0bag7+8QoPNhfkvTBT7v057nbNPl/27R70nVn/Kyn/r1O3645oDv7xOiFGzo4PsvP5+InoLvT1Km1ezP1f39fpicT22h4XIzV1QHgxmyGmZ/lZGdnKyQkRFlZWQoODra6Omd1OKdQvf40z+pqeLRAX2/lF5WW2/7jmAGa+P0Wzd2UIUnq0jhEgb4+SjltqYHTvXxjB3l52fTsNxskSY9c2VJN6tfWBz/t0tbfzE1KnXitbDabRn2yQv/79fz39G+mBwa2VEFJqe74x3INj2vqCAGnL6j5xu87K8DXWw99tlq3dG+s6zpHaGDrhmftNSkptWvPsXy1aFDHsa3snP99qF+FPWZnYrcbvfTdJjWuG+A0zJeRXaCQgFrn1YNWajfyrqC+V/15gXYePjkX7fRAWFH5klK7HvxslZqF1dHTg9pW+DnnGkb9Lbvd6Fh+kcLq+J33MWeSdaJYz8/aoJu6NdIVbRtW6tijuYWq7edTqd5Id/HFir1qFlZbvS7ysUAZ2QXaeyy/yh8vBPdWme9vAlAFqlMAKvPTtsP679oD+nLlPqurAhdp0aC29h4/oaIS58niN3VrpG9Wn7xbrl1ksDYfPPek8bqBtXRj10bKLijW04PaqkEdP8cXf3ZBseJeTVberyFvxqjL1Cg0QP1fP7mi+H8f6qd2kUEqNUbfrj6gBdsOKSSglq5sG66r24c7fc4nKbs1/ttTPXJ9W9ZXwyB/PXxlS13554WKCPbX4G6NdDinUHf3a6b2UcHaczRPb83dpuYN6uiRq1rpl93H9IdpKWoTHqSkx/o7BZT4Nxdqx6FcSVL/VmF689au+u/aA3rpu02Kb9dQY65po12H83Rtpwhd985ibfr1d/PV/XHq1ChUy1OPqWdMXfnX8tYD/1qp/cdP6OsH+lYYtipSFgo/uau3+rUMU0ZOgSJDTq2avmL3Mb09b7smXN9ercKDyh0/df4O/bjlkP55d2+9nrRV05fslqSz9u6VyS0s0fG8Iv1n7QG98cNW1avtq1XPX33G8t+vP6hJSVs09bbu6tgoRMacXJbiXKEpp6BYx/KK1LR+1a9RtnLPcd3y7hJJ5ducdjRfDYL8znvZjLJr8fUDfdS9Sd2qrSjcFgHoIlXHAHS6sr/4A1o30HWdI/XUv9dZXCNUR34+Xgryr3XWIcMyvt5eKqrg2XJ39olxfIlPua2bHvpsdbkyZ9MgyE+Hc059/o1do7R011FlZJ/aFt+uod67o6cm/2+r3l2w0+n4RqEB2p954pyf89KNHbTjUK4+SdkjSfrPQ311w5SfJUmTbu6kDQey9MiVrdQw2F9b0rOV+PYidYkO1awH+shms2nJziP6fn26/rl0T7lzxzarp/fu6CFvL5s6vfA/x/bFY69Q47qBjvfGGDUbN0eSdP/AFtpxKNfRe1gWBj5J2a26gb5q2bCOfLxsjhBVUFyqts8nlfvs3ZOuk91u9MJ/N+pwTqHe+EMXx9Bs2b8T0fUCtOipK3XfP1cqaWO6Fj11hQqKS/XL7uMKD/bTVe1Ohtj0rAKFB/up44QflFdUqjmP9Ff7qGAVldj1w8Z09WlRX8fyinQop1D16/hq1Z5M3dA1ymko2Bij7IIS+fl46WBWgZqF1dbhnELtOZqnLtGh+m7dAT0+c61TmyVp3b5M3TDlZzWuG6DFY690amNBcan8fLxks9mUW1iijxanalCnSMW/uVCS9My1bTXq8so/AHrf8XzdNf0XjezbTMN6N6mwTE5Bser4+aiwxC5jpABfbx3PK9KXK/fqxq6NHEPVrlTZXsusE8U6mluo5qf17kon2xbkf2nXobsUCEAXqboHoNzCEhWV2FWvtq8k6bWkLZr5y1799+F+6jvpR4trB1RfN3dvpK9XnVqL6uO7euvNudu0dm/mBZ3P18dLdfx8FNe8vpalHi23dMS5NAzyU73avso+UawDWedeT2tQxwi9+389NGf9QT1w2vzBh69s6bhhIcjPRzm/LnYqSUH+PhraK1ofLErVsN5N9PlpD0R+MqGNYx5e/dq+OprnXP9uTUL12R8vU4Cvt4pK7Gr93PdO+6eP7KU7P/rF8X7yH7roiS9PBqCbuzfSuEHttOlgtpbsPKL3Fu6SJP305BUK8vfRj1sOKcjfR6P+uVKS9OINHbTz8KkQe7oPhvfUwDYNyt0A8MPGdN376/Fhdfz0y7NXyWazafeRPN350XLtPnpyiYctLydqzvqDurx1A8fw5unDz2Veu6WT/rl0jzbsP9mz+KebOuq23k1ks9lUWFKqOesPqm/LMDUMOhmMjuYWqscrJ6cwbHgxody8wQOZJ/Tlin26/bImCqtz8n8GyhaYLWOM0bp9WWoTEaTDOYW66W9LNLJvjG7u3khf/LJPiR0jNPH7zRraq4myThSpc+NQtYs89b3W4pk5KrUbzRs9QC0bngxBny1L0zPfrNdLN3bQbb2bKHnLIbUOD1LDID9lnSjWVyv36fc9G2ve5kM6nlekh69sqc+Wpyk9q0BjrmlT7vdfFsp2H8lTvTq+Cr6EwYoAdJGqewCqSNmdMXdP/0U/bj2kob2ilX2iRCm7jupYXuX+0QWA6uyuvs0UElBLb83bdl7l+7cK06LtRySdfBh0HT9vzVmffo6jTvGv5aXwYH/t+TVQTby5k8Z9vd6pjJ+Plz65q7dim9fXqrTjKiy2a9gHSyVJcc3rq0+L+vrzr3eIBtTy1olf11S7vkuU/rv2QLl6nk27yGA1rhugD4b3dPQEvnpTJw3rHa2/LdjpdHPJbwX5+yinoMRp2+WtGzhuQvni3jh1ahSiHq/MVXGpXa8M7qixXzm3tXlYbX3zYF+FXIInHRCALlJNDEBljDEyRk4TXk+fIPvK4I7q3DjE0f0PAKiZRl3eXO//tMuyz1/9/NWq++tIRVWpzPd3zV4QBOXYbLZyd/vMGHWZejatq+8f7a//u6ypOjcO1aKnrnDs/13nSO340yA9mVC+axMAUD1ZGX4kqdvLcy39fHqAKlCTe4Aq40wLyh3JLVTPV07dev+327sr9UjeWbtNz+bpQW016fstF1xPAED1dD53OFZGZb6/WQgRZ3SmdWHC6vhpzfir1fWlk+m9S3Soru0UqQevaOko88WKvWoY5Kcg/1oa88Uax2TC013dPlzv39FD0sk1O6Yv2e1YVG9sYlu9lkQoAgBcGvQAVYAeoPPzr2V7lFdYcl63mE5buFNT5+9wTJ5rEOSnX56NL1fOGKMTxaUK9PVRSalds9cf1KMz1mhor2j96aZO2n4oR+v2ZalL41A9P2uDWobX0VMJbRxhTJLuG9BC0xaevB368fjWurp9uNKzTyj1SL5e/m5TFbUeAHCxrOwBIgBVgAB06bR57nsVlth1TftwvT+853kdk5FdoIZBfmdd26Kk1K7sghKFBtSSzXbySfR1/HzKLZp2+oTvXa9eq6JSuz5blqaXfg1Gcx7pr2vfWaSr24frg+E9VVRi1+fL05wep1Fmy8uJyswv1raMHPVuVs+xDsvyZ67S6z9s1b9ZlBIAzooA5GYIQJfOzsO5+vfKfbqnf3PHOkWulLLzqOPW0tP/4s38JU31avvp6vbhyi8qUUAtb6fA9fOOI2oUGqDggFrq/vJcNW9QWz+OGeh07qO5hfL2sik08FS7Pl6yWxP+s1FTbuumg5kFatGwtkZ9slIldqO3h3TV4G6NHCsbP5nQRg9e0VKr0o4r60SxtqbnaNbq/dqSnqPvH+2vg1kn9PjMtQoO8FFWfrGyC0r00cheeubr9Tr46xowzcNqa9eRvEr9Tno0rasv7o3TkdxC/WtZmjKyCrQy7bjahAdp9vqDkqQP7+ypFg3qaNQnK50ey/Hcde30yuzNZz3/AwNbKMi/1jmHNN+7o4djTZbT/XVYNz38+ZkXUIwI9ld69qk1cG7t2VhfrKhc+Hzpxg5OK1QDuPTaRQbr+0f7V+k5CUAXiQBUs83fckjNG9S+4KX8cwqKFVDLWz7n+VT1guJSp8cLpGcVaOOBLF3ZtqEjZBWV2OXrc2E3ZaZnFejLFXs1LPbkYmkf/ZyqqfN3yMfLS20igvTeHT0cnz9/6yEt2nZE465te15Phd+wP0tFpXbHowSMMbpr+i9auy9LS56+UlvSczR46sklE355Nl6jv1ijiGB/vXBDB/n6eOlEcalj0bNVacd189+WOJ1/0VNXaPqS3bqrXzM1Cg3QK99t0t8Xp2rmqMvkX8tbrcLrKNDXR6V2o4NZJ9S4bqCy8osVHOCj/ZkntONQrga2aaj9mSd07z9X6K6+zXRz98YqKbXrSG6RJvxngwa0bqgr2jZQ3MRTi4B+dX+clqUeU9N6tWU3Rtd3iVJJqV0tnz25UN+9lzdXXlGJSu1Gny/fq/h24SoqteunbYf1+i2d9dRXZ19dvZa3Tf1bNdCPWw6V2+fr7aUXb+ygrBPFmrE8TXMe7a9AXx9H72SzsNqa/8RAHcouUO9Xk8/4Ga/d0kkD2zRU7BnKTPu/HjqYdUJDekXrL/O264NFu2Sv5L/2XRqH6Hh+sdKOlZ/DB1ysTS8lKNC3aqciE4AuEgEIOD/GnHywaZN6gRrZt9k5yx/JLdRz32zQvsx8Tbq5szo2Kv8Q1bzCEtX2q/r7M259L0XLU4+pd0w9fXFfXIVlMvOL9Mvu4xWuGnw6Y4yyT5Ro6oIdjluJN76YoNeStujq9uHq1zJMNptN87ccUm5hia5o21DFJXalHctXl+jQCs/59rxtenvedn16d6z6tQqTJCVtOKjj+cX6eccRfbfuZG/cU4lt1DumntNDPl+ds9lRj68f6KMWDepUuMjcN6v3qbDYrqG/Ptrh9CFhSWoTHuTo4bu8dQN9cldvSSefUbZw62F9MLynSuwnH4y7cvdxNQjy0+86R2rupgz1iKmrtXuz9PGS3Xrvjh7ad/yEDuec7BUd9sFS3dStkUb0idGnS/fo3yv3KbpegMZc3UY3do1SRnahHp+5psIHBX80spdG/rpa9F19m+n+gS20+2ieGoUGaMr8Hfps2cmVqR+9qpVmrdmvP/Zvrht+DbQ9TrtbNb5dQ/19RC9J0n/WHtAjn6/We3f0UL3avnrgX6s0uGuUikrseiKhjd5J3q76dfx0x2VNtW5floZ9sFRdo0PVqVGI8otKNeGG9ioqsSusjp/2Z57QgcwTFT68dX/mCUUG+2vXkTxNnLNZyb8G4jXjr9aXK/Yp0M9bw3o10a4judqWkatrO0U6rsnDV7bUzd0b60DmCd3+92VO561f21c+3jaF1fFTZEiA5m3OKPfZZZIe66+SUqPf/XWx0/Z/3xenYR8sVXGp0djEtrqleyOt3pupqfN3aN2+LElSz6Z1tWLPcUnS/13WRIdzCvXDxoxyf1ZOn3d5uicT2uiP/Zvp/YW7HIs4ltn+p0Hn9T9hlUUAukgEIKDmMcYoM7+4Shdeyyss0V+StyuxY0SVPHDzRFHpGR/2WfbFWNEjE6STPZOZ+cWKrhdYbt+Z3Dj1Z8djPP4ytKtu7HryQbSLdxzWtZ0i5efj2qfJn/48tCvaNNAHw3uetae1oLhUczdlqF/LsAqva0Z2gWyS1u/P0mXN619wsM4tLFFtX+9KPWOrIl+v2qdSu9Efekafscyeo3lannpMN3Vr5Gh7RQvYVqTUbpRfVKJAXx99tmyPesbUczz2Ytj7S3Usr0h/H9FTpXajmLCKe8BzCoqVsvOoLmtRX3V8fXQs/+STAsoeAbLpQLbCgnw1a/V+vTpni7pGh2rWg3311cp9GvPlWjVvUFt/H95Ty1KPaUjPaKc6nygq1R8/+UVXtQ3XXf3O/T9MF4IAdJEIQADczfG8IhWX2tWwCh+wmVtYonX7MtU6PMjxBWe1T5fu0T8Wp+qTu3pXKszBtUrtRkt3HVXnxiEK8q8lY4xW7DmuNhFBl/RZX+dCALpIBCAAAKofHoUBAABwFgQgAADgcQhAAADA4xCAAACAx3GLADR16lTFxMTI399fsbGxWr58+VnLf/nll2rbtq38/f3VqVMnzZkzx2m/MUbjx49XZGSkAgICFB8fr+3bt1/KJgAAgGrE8gA0c+ZMjR49WhMmTNCqVavUpUsXJSQk6NCh8iuoStKSJUs0bNgw3X333Vq9erUGDx6swYMHa8OGDY4yr7/+ut555x1NmzZNy5YtU+3atZWQkKCCgoIKzwkAADyL5bfBx8bGqlevXpoyZYokyW63Kzo6Wg8//LCefvrpcuWHDBmivLw8fffdd45tl112mbp27app06bJGKOoqCiNGTNGTzzxhCQpKytL4eHhmj59uoYOHXrOOnEbPAAA1U+1uQ2+qKhIK1euVHx8vGObl5eX4uPjlZKSUuExKSkpTuUlKSEhwVE+NTVV6enpTmVCQkIUGxt7xnMWFhYqOzvb6QUAAGouSwPQkSNHVFpaqvDwcKft4eHhSk9Pr/CY9PT0s5Yv+29lzjlx4kSFhIQ4XtHRZ16mHAAAVH+WzwFyB+PGjVNWVpbjtXfvXqurBAAALiFLA1BYWJi8vb2VkeH8JNuMjAxFRERUeExERMRZy5f9tzLn9PPzU3BwsNMLAADUXJYGIF9fX/Xo0UPJycmObXa7XcnJyYqLi6vwmLi4OKfykjR37lxH+WbNmikiIsKpTHZ2tpYtW3bGcwIAAM/iY3UFRo8erREjRqhnz57q3bu33n77beXl5WnkyJGSpOHDh6tRo0aaOHGiJOnRRx/VgAED9Oc//1nXXXedZsyYoRUrVuj999+XJNlsNj322GN65ZVX1KpVKzVr1kzPP/+8oqKiNHjwYKuaCQAA3IjlAWjIkCE6fPiwxo8fr/T0dHXt2lVJSUmOScxpaWny8jrVUdWnTx999tlneu655/TMM8+oVatWmjVrljp27Ogo89RTTykvL0+jRo1SZmam+vXrp6SkJPn7+7u8fQAAwP1Yvg6QO8rKylJoaKj27t3LfCAAAKqJ7OxsRUdHKzMzUyEhIWcta3kPkDvKycmRJG6HBwCgGsrJyTlnAKIHqAJ2u10HDhxQUFCQbDZblZ67LJ16Su8S7a3ZaG/NRntrtprYXmOMcnJyFBUV5TR9piL0AFXAy8tLjRs3vqSf4Wm329Pemo321my0t2arae09V89PGRZCBAAAHocABAAAPA4ByMX8/Pw0YcIE+fn5WV0Vl6C9NRvtrdlob83mae39LSZBAwAAj0MPEAAA8DgEIAAA4HEIQAAAwOMQgAAAgMchALnQ1KlTFRMTI39/f8XGxmr58uVWV+mcJk6cqF69eikoKEgNGzbU4MGDtXXrVqcyAwcOlM1mc3rdd999TmXS0tJ03XXXKTAwUA0bNtSTTz6pkpISpzILFixQ9+7d5efnp5YtW2r69OmXunnlvPDCC+Xa0rZtW8f+goICPfjgg6pfv77q1KmjW265RRkZGU7nqC5tLRMTE1OuzTabTQ8++KCk6n99f/rpJ11//fWKioqSzWbTrFmznPYbYzR+/HhFRkYqICBA8fHx2r59u1OZY8eO6fbbb1dwcLBCQ0N19913Kzc316nMunXr1L9/f/n7+ys6Olqvv/56ubp8+eWXatu2rfz9/dWpUyfNmTPHpe0tLi7W2LFj1alTJ9WuXVtRUVEaPny4Dhw44HSOiv5MTJo0qdq1V5LuvPPOcm1JTEx0KlNTrq+kCv8u22w2vfHGG44y1en6XlIGLjFjxgzj6+trPvzwQ7Nx40Zzzz33mNDQUJORkWF11c4qISHBfPTRR2bDhg1mzZo15tprrzVNmjQxubm5jjIDBgww99xzjzl48KDjlZWV5dhfUlJiOnbsaOLj483q1avNnDlzTFhYmBk3bpyjzK5du0xgYKAZPXq02bRpk/nrX/9qvL29TVJSkkvbO2HCBNOhQwenthw+fNix/7777jPR0dEmOTnZrFixwlx22WWmT58+1bKtZQ4dOuTU3rlz5xpJZv78+caY6n9958yZY5599lnz9ddfG0nmm2++cdo/adIkExISYmbNmmXWrl1rbrjhBtOsWTNz4sQJR5nExETTpUsXs3TpUrNo0SLTsmVLM2zYMMf+rKwsEx4ebm6//XazYcMG8/nnn5uAgADz3nvvOcr8/PPPxtvb27z++utm06ZN5rnnnjO1atUy69evd1l7MzMzTXx8vJk5c6bZsmWLSUlJMb179zY9evRwOkfTpk3NSy+95HTNT/87X13aa4wxI0aMMImJiU5tOXbsmFOZmnJ9jTFO7Tx48KD58MMPjc1mMzt37nSUqU7X91IiALlI7969zYMPPuh4X1paaqKioszEiRMtrFXlHTp0yEgyCxcudGwbMGCAefTRR894zJw5c4yXl5dJT093bHv33XdNcHCwKSwsNMYY89RTT5kOHTo4HTdkyBCTkJBQtQ04hwkTJpguXbpUuC8zM9PUqlXLfPnll45tmzdvNpJMSkqKMaZ6tfVMHn30UdOiRQtjt9uNMTXr+v72C8Nut5uIiAjzxhtvOLZlZmYaPz8/8/nnnxtjjNm0aZORZH755RdHme+//97YbDazf/9+Y4wxf/vb30zdunUd7TXGmLFjx5o2bdo43t96663muuuuc6pPbGysuffee6u0jaer6Avyt5YvX24kmT179ji2NW3a1Lz11ltnPKY6tXfEiBHmxhtvPOMxNf363njjjebKK6902lZdr29VYwjMBYqKirRy5UrFx8c7tnl5eSk+Pl4pKSkW1qzysrKyJEn16tVz2v6vf/1LYWFh6tixo8aNG6f8/HzHvpSUFHXq1Enh4eGObQkJCcrOztbGjRsdZU7//ZSVseL3s337dkVFRal58+a6/fbblZaWJklauXKliouLnerZtm1bNWnSxFHP6tbW3yoqKtKnn36qu+66y+lBwDXp+p4uNTVV6enpTnULCQlRbGys0zUNDQ1Vz549HWXi4+Pl5eWlZcuWOcpcfvnl8vX1dZRJSEjQ1q1bdfz4cUcZd/wdZGVlyWazKTQ01Gn7pEmTVL9+fXXr1k1vvPGG05BmdWvvggUL1LBhQ7Vp00b333+/jh496thXk69vRkaGZs+erbvvvrvcvpp0fS8UD0N1gSNHjqi0tNTpC0KSwsPDtWXLFotqVXl2u12PPfaY+vbtq44dOzq233bbbWratKmioqK0bt06jR07Vlu3btXXX38tSUpPT6+w7WX7zlYmOztbJ06cUEBAwKVsmkNsbKymT5+uNm3a6ODBg3rxxRfVv39/bdiwQenp6fL19S33RREeHn7OdpTtO1sZV7e1IrNmzVJmZqbuvPNOx7aadH1/q6x+FdXt9Lo3bNjQab+Pj4/q1avnVKZZs2blzlG2r27dumf8HZSdwwoFBQUaO3ashg0b5vQwzEceeUTdu3dXvXr1tGTJEo0bN04HDx7Um2++Kal6tTcxMVE333yzmjVrpp07d+qZZ57RoEGDlJKSIm9v7xp9fT/++GMFBQXp5ptvdtpek67vxSAA4bw9+OCD2rBhgxYvXuy0fdSoUY6fO3XqpMjISF111VXauXOnWrRo4epqXpRBgwY5fu7cubNiY2PVtGlTffHFF5YGE1f5xz/+oUGDBikqKsqxrSZdX5xSXFysW2+9VcYYvfvuu077Ro8e7fi5c+fO8vX11b333quJEydWu8cmDB061PFzp06d1LlzZ7Vo0UILFizQVVddZWHNLr0PP/xQt99+u/z9/Z2216TrezEYAnOBsLAweXt7l7tbKCMjQxERERbVqnIeeughfffdd5o/f74aN2581rKxsbGSpB07dkiSIiIiKmx72b6zlQkODrY0eISGhqp169basWOHIiIiVFRUpMzMTKcyp1/H6tzWPXv2aN68efrjH/941nI16fqW1e9sfzcjIiJ06NAhp/0lJSU6duxYlVx3K/4NKAs/e/bs0dy5c516fyoSGxurkpIS7d69W1L1a+/pmjdvrrCwMKc/vzXt+krSokWLtHXr1nP+fZZq1vWtDAKQC/j6+qpHjx5KTk52bLPb7UpOTlZcXJyFNTs3Y4weeughffPNN/rxxx/LdYtWZM2aNZKkyMhISVJcXJzWr1/v9I9M2T+67du3d5Q5/fdTVsbq309ubq527typyMhI9ejRQ7Vq1XKq59atW5WWluaoZ3Vu60cffaSGDRvquuuuO2u5mnR9mzVrpoiICKe6ZWdna9myZU7XNDMzUytXrnSU+fHHH2W32x1hMC4uTj/99JOKi4sdZebOnas2bdqobt26jjLu8DsoCz/bt2/XvHnzVL9+/XMes2bNGnl5eTmGiqpTe39r3759Onr0qNOf35p0fcv84x//UI8ePdSlS5dzlq1J17dSrJ6F7SlmzJhh/Pz8zPTp082mTZvMqFGjTGhoqNOdM+7o/vvvNyEhIWbBggVOt0zm5+cbY4zZsWOHeemll8yKFStMamqq+fbbb03z5s3N5Zdf7jhH2W3S11xzjVmzZo1JSkoyDRo0qPA26SeffNJs3rzZTJ061ZJbw8eMGWMWLFhgUlNTzc8//2zi4+NNWFiYOXTokDHm5G3wTZo0MT/++KNZsWKFiYuLM3FxcdWyracrLS01TZo0MWPHjnXaXhOub05Ojlm9erVZvXq1kWTefPNNs3r1asddT5MmTTKhoaHm22+/NevWrTM33nhjhbfBd+vWzSxbtswsXrzYtGrVyuk26czMTBMeHm7uuOMOs2HDBjNjxgwTGBhY7rZhHx8fM3nyZLN582YzYcKES3Lb8NnaW1RUZG644QbTuHFjs2bNGqe/02V3/CxZssS89dZbZs2aNWbnzp3m008/NQ0aNDDDhw+vdu3NyckxTzzxhElJSTGpqalm3rx5pnv37qZVq1amoKDAcY6acn3LZGVlmcDAQPPuu++WO766Xd9LiQDkQn/9619NkyZNjK+vr+ndu7dZunSp1VU6J0kVvj766CNjjDFpaWnm8ssvN/Xq1TN+fn6mZcuW5sknn3RaJ8YYY3bv3m0GDRpkAgICTFhYmBkzZowpLi52KjN//nzTtWtX4+vra5o3b+74DFcaMmSIiYyMNL6+vqZRo0ZmyJAhZseOHY79J06cMA888ICpW7euCQwMNDfddJM5ePCg0zmqS1tP98MPPxhJZuvWrU7ba8L1nT9/foV/hkeMGGGMOXkr/PPPP2/Cw8ONn5+fueqqq8r9Ho4ePWqGDRtm6tSpY4KDg83IkSNNTk6OU5m1a9eafv36GT8/P9OoUSMzadKkcnX54osvTOvWrY2vr6/p0KGDmT17tkvbm5qaesa/02XrPq1cudLExsaakJAQ4+/vb9q1a2deffVVp8BQXdqbn59vrrnmGtOgQQNTq1Yt07RpU3PPPfeU+x/PmnJ9y7z33nsmICDAZGZmlju+ul3fS8lmjDGXtIsJAADAzTAHCAAAeBwCEAAA8DgEIAAA4HEIQAAAwOMQgAAAgMchAAEAAI9DAAIAAB6HAAQAADwOAQiAyw0cOFCPPfaY1dVwYrPZNGvWLKurAcBFWAkagMsdO3ZMtWrVUlBQkGJiYvTYY4+5LBC98MILmjVrluOhrmXS09NVt25d+fn5uaQeAKzlY3UFAHieevXqVfk5i4qK5Ovre8HHR0REVGFtALg7hsAAuFzZENjAgQO1Z88ePf7447LZbLLZbI4yixcvVv/+/RUQEKDo6Gg98sgjysvLc+yPiYnRyy+/rOHDhys4OFijRo2SJI0dO1atW7dWYGCgmjdvrueff17FxcWSpOnTp+vFF1/U2rVrHZ83ffp0SeWHwNavX68rr7xSAQEBql+/vkaNGqXc3FzH/jvvvFODBw/W5MmTFRkZqfr16+vBBx90fJYk/e1vf1OrVq3k7++v8PBw/f73v78Uv04AF4AABMAyX3/9tRo3bqyXXnpJBw8e1MGDByVJO3fuVGJiom655RatW7dOM2fO1OLFi/XQQw85HT958mR16dJFq1ev1vPPPy9JCgoK0vTp07Vp0yb95S9/0QcffKC33npLkjRkyBCNGTNGHTp0cHzekCFDytUrLy9PCQkJqlu3rn755Rd9+eWXmjdvXrnPnz9/vnbu3Kn58+fr448/1vTp0x2BasWKFXrkkUf00ksvaevWrUpKStLll19e1b9CABfK2ofRA/BEAwYMMI8++qgxxpimTZuat956y2n/3XffbUaNGuW0bdGiRcbLy8ucOHHCcdzgwYPP+VlvvPGG6dGjh+P9hAkTTJcuXcqVk2S++eYbY4wx77//vqlbt67Jzc117J89e7bx8vIy6enpxhhjRowYYZo2bWpKSkocZf7whz+YIUOGGGOM+eqrr0xwcLDJzs4+Zx0BuB5zgAC4nbVr12rdunX617/+5dhmjJHdbldqaqratWsnSerZs2e5Y2fOnKl33nlHO3fuVG5urkpKShQcHFypz9+8ebO6dOmi2rVrO7b17dtXdrtdW7duVXh4uCSpQ4cO8vb2dpSJjIzU+vXrJUlXX321mjZtqubNmysxMVGJiYm66aabFBgYWKm6ALg0GAID4HZyc3N17733as2aNY7X2rVrtX37drVo0cJR7vSAIkkpKSm6/fbbde211+q7777T6tWr9eyzz6qoqOiS1LNWrVpO7202m+x2u6STQ3GrVq3S559/rsjISI0fP15dunRRZmbmJakLgMqhBwiApXx9fVVaWuq0rXv37tq0aZNatmxZqXMtWbJETZs21bPPPuvYtmfPnnN+3m+1a9dO06dPV15eniNk/fzzz/Ly8lKbNm3Ouz4+Pj6Kj49XfHy8JkyYoNDQUP3444+6+eabK9EqAJcCPUAALBUTE6OffvpJ+/fv15EjRySdvJNryZIleuihh7RmzRpt375d3377bblJyL/VqlUrpaWlacaMGdq5c6feeecdffPNN+U+LzU1VWvWrNGRI0dUWFhY7jy33367/P39NWLECG3YsEHz58/Xww8/rDvuuMMx/HUu3333nd555x2tWbNGe/bs0SeffCK73V6pAAXg0iEAAbDUSy+9pN27d6tFixZq0KCBJKlz585auHChtm3bpv79+6tbt24aP368oqKiznquG264QY8//rgeeughde3aVUuWLHHcHVbmlltuUWJioq644go1aNBAn3/+ebnzBAYG6ocfftCxY8fUq1cv/f73v9dVV12lKVOmnHe7QkND9fXXX+vKK69Uu3btNG3aNH3++efq0KHDeZ8DwKXDStAAAMDj0AMEAAA8DgEIAAB4HAIQAADwOAQgAADgcQhAAADA4xCAAACAxyEAAQAAj0MAAgAAHocABAAAPA4BCAAAeBwCEAAA8Dj/D4Rj7meKM3oJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.xlabel('iterations')\n", + "plt.ylabel('loss')\n", + "plt.plot(losses_val)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> podemos reconstruir as imagens para saber como fica" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'Line2D' object has no property 'cmap'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mc:\\Users\\felip\\Documents\\RedesNeurais\\bloco7_autoenconders\\aula7_dem1.ipynb Célula: 13\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 2\u001b[0m item \u001b[39m=\u001b[39m item\u001b[39m.\u001b[39mreshape(\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m, \u001b[39m28\u001b[39m, \u001b[39m28\u001b[39m)\n\u001b[0;32m 3\u001b[0m plt\u001b[39m.\u001b[39msubplot(\u001b[39m211\u001b[39m)\n\u001b[1;32m----> 4\u001b[0m plt\u001b[39m.\u001b[39;49mplot(item[\u001b[39m0\u001b[39;49m], cmap\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mgray\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[0;32m 6\u001b[0m \u001b[39mfor\u001b[39;00m i, item \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(reconstructed):\n\u001b[0;32m 7\u001b[0m item \u001b[39m=\u001b[39m item\u001b[39m.\u001b[39mreshape(\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m, \u001b[39m28\u001b[39m, \u001b[39m28\u001b[39m)\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\pyplot.py:2769\u001b[0m, in \u001b[0;36mplot\u001b[1;34m(scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2767\u001b[0m \u001b[39m@_copy_docstring_and_deprecators\u001b[39m(Axes\u001b[39m.\u001b[39mplot)\n\u001b[0;32m 2768\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mplot\u001b[39m(\u001b[39m*\u001b[39margs, scalex\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, scaley\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, data\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m-> 2769\u001b[0m \u001b[39mreturn\u001b[39;00m gca()\u001b[39m.\u001b[39mplot(\n\u001b[0;32m 2770\u001b[0m \u001b[39m*\u001b[39margs, scalex\u001b[39m=\u001b[39mscalex, scaley\u001b[39m=\u001b[39mscaley,\n\u001b[0;32m 2771\u001b[0m \u001b[39m*\u001b[39m\u001b[39m*\u001b[39m({\u001b[39m\"\u001b[39m\u001b[39mdata\u001b[39m\u001b[39m\"\u001b[39m: data} \u001b[39mif\u001b[39;00m data \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39melse\u001b[39;00m {}), \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\axes\\_axes.py:1632\u001b[0m, in \u001b[0;36mplot\u001b[1;34m(self, scalex, scaley, data, *args, **kwargs)\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\axes\\_base.py:312\u001b[0m, in \u001b[0;36m__call__\u001b[1;34m(self, data, *args, **kwargs)\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\axes\\_base.py:538\u001b[0m, in \u001b[0;36m_plot_args\u001b[1;34m(self, tup, kwargs, return_kwargs)\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\axes\\_base.py:538\u001b[0m, in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\axes\\_base.py:531\u001b[0m, in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\axes\\_base.py:351\u001b[0m, in \u001b[0;36m_makeline\u001b[1;34m(self, x, y, kw, kwargs)\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\lines.py:393\u001b[0m, in \u001b[0;36mLine2D.__init__\u001b[1;34m(self, xdata, ydata, linewidth, linestyle, color, marker, markersize, markeredgewidth, markeredgecolor, markerfacecolor, markerfacecoloralt, fillstyle, antialiased, dash_capstyle, solid_capstyle, dash_joinstyle, solid_joinstyle, pickradius, drawstyle, markevery, **kwargs)\u001b[0m\n\u001b[0;32m 389\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mset_markeredgewidth(markeredgewidth)\n\u001b[0;32m 391\u001b[0m \u001b[39m# update kwargs before updating data to give the caller a\u001b[39;00m\n\u001b[0;32m 392\u001b[0m \u001b[39m# chance to init axes (and hence unit support)\u001b[39;00m\n\u001b[1;32m--> 393\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mupdate(kwargs)\n\u001b[0;32m 394\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpickradius \u001b[39m=\u001b[39m pickradius\n\u001b[0;32m 395\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mind_offset \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\matplotlib\\artist.py:1064\u001b[0m, in \u001b[0;36mupdate\u001b[1;34m(self, props)\u001b[0m\n", + "\u001b[1;31mAttributeError\u001b[0m: 'Line2D' object has no property 'cmap'" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAADZCAYAAAAHQrtXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAYfklEQVR4nO3df2xV9f3H8VdbuLcYacF1vS3d1Q6cooIUW7krSIzLnU0kdfyx2ImhXSMwtTPKzSZUoBVRypySJlJsRB3+oStqgBhpquxOYtQuxEITnIDBou2M90LnuJcVbaH38/1j8fqttNhT+4NP7/ORnD/64fM55315U84r5557bpIxxggAAMACyWNdAAAAwGARXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANRwHl3feeUfFxcWaNm2akpKStHv37u9ds2/fPt1www1yu9268sortX379iGUCgAAEp3j4NLV1aU5c+aorq5uUPOPHz+uRYsW6ZZbblFra6sefPBBLVu2TG+++abjYgEAQGJL+iFfspiUlKRdu3Zp8eLFA85ZtWqV9uzZow8//DA+9pvf/EanTp1SU1PTUA8NAAAS0ISRPkBzc7P8fn+fsaKiIj344IMDrunu7lZ3d3f851gspi+//FI/+tGPlJSUNFKlAgCAYWSM0enTpzVt2jQlJw/PbbUjHlxCoZA8Hk+fMY/Ho2g0qq+++kqTJk06b01NTY3Wr18/0qUBAIBR0NHRoZ/85CfDsq8RDy5DUVlZqUAgEP85Eono8ssvV0dHh9LS0sawMgAAMFjRaFRer1eTJ08etn2OeHDJyspSOBzuMxYOh5WWltbv1RZJcrvdcrvd542npaURXAAAsMxw3uYx4s9xKSwsVDAY7DO2d+9eFRYWjvShAQDAOOM4uPz3v/9Va2urWltbJf3v486tra1qb2+X9L+3eUpLS+Pz77nnHrW1temhhx7SkSNHtHXrVr3yyitauXLl8LwCAACQMBwHlw8++EBz587V3LlzJUmBQEBz585VVVWVJOmLL76IhxhJ+ulPf6o9e/Zo7969mjNnjp566ik999xzKioqGqaXAAAAEsUPeo7LaIlGo0pPT1ckEuEeFwAALDES52++qwgAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGCNIQWXuro65ebmKjU1VT6fT/v377/g/NraWl199dWaNGmSvF6vVq5cqa+//npIBQMAgMTlOLjs2LFDgUBA1dXVOnDggObMmaOioiKdOHGi3/kvv/yyVq9ererqah0+fFjPP/+8duzYoYcffvgHFw8AABKL4+CyefNmLV++XOXl5br22mtVX1+vSy65RC+88EK/899//30tWLBAS5YsUW5urm699Vbdeeed33uVBgAA4LscBZeenh61tLTI7/d/u4PkZPn9fjU3N/e7Zv78+WppaYkHlba2NjU2Nuq2224b8Djd3d2KRqN9NgAAgAlOJnd2dqq3t1cej6fPuMfj0ZEjR/pds2TJEnV2duqmm26SMUbnzp3TPffcc8G3impqarR+/XonpQEAgAQw4p8q2rdvnzZu3KitW7fqwIED2rlzp/bs2aMNGzYMuKayslKRSCS+dXR0jHSZAADAAo6uuGRkZCglJUXhcLjPeDgcVlZWVr9r1q1bp6VLl2rZsmWSpNmzZ6urq0srVqzQmjVrlJx8fnZyu91yu91OSgMAAAnA0RUXl8ul/Px8BYPB+FgsFlMwGFRhYWG/a86cOXNeOElJSZEkGWOc1gsAABKYoysukhQIBFRWVqaCggLNmzdPtbW16urqUnl5uSSptLRUOTk5qqmpkSQVFxdr8+bNmjt3rnw+n44dO6Z169apuLg4HmAAAAAGw3FwKSkp0cmTJ1VVVaVQKKS8vDw1NTXFb9htb2/vc4Vl7dq1SkpK0tq1a/X555/rxz/+sYqLi/X4448P36sAAAAJIclY8H5NNBpVenq6IpGI0tLSxrocAAAwCCNx/ua7igAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKwxpOBSV1en3Nxcpaamyufzaf/+/Recf+rUKVVUVCg7O1tut1tXXXWVGhsbh1QwAABIXBOcLtixY4cCgYDq6+vl8/lUW1uroqIiHT16VJmZmefN7+np0S9/+UtlZmbqtddeU05Ojj777DNNmTJlOOoHAAAJJMkYY5ws8Pl8uvHGG7VlyxZJUiwWk9fr1f3336/Vq1efN7++vl5//vOfdeTIEU2cOHFIRUajUaWnpysSiSgtLW1I+wAAAKNrJM7fjt4q6unpUUtLi/x+/7c7SE6W3+9Xc3Nzv2tef/11FRYWqqKiQh6PR7NmzdLGjRvV29s74HG6u7sVjUb7bAAAAI6CS2dnp3p7e+XxePqMezwehUKhfte0tbXptddeU29vrxobG7Vu3To99dRTeuyxxwY8Tk1NjdLT0+Ob1+t1UiYAABinRvxTRbFYTJmZmXr22WeVn5+vkpISrVmzRvX19QOuqaysVCQSiW8dHR0jXSYAALCAo5tzMzIylJKSonA43Gc8HA4rKyur3zXZ2dmaOHGiUlJS4mPXXHONQqGQenp65HK5zlvjdrvldrudlAYAABKAoysuLpdL+fn5CgaD8bFYLKZgMKjCwsJ+1yxYsEDHjh1TLBaLj3388cfKzs7uN7QAAAAMxPFbRYFAQNu2bdOLL76ow4cP695771VXV5fKy8slSaWlpaqsrIzPv/fee/Xll1/qgQce0Mcff6w9e/Zo48aNqqioGL5XAQAAEoLj57iUlJTo5MmTqqqqUigUUl5enpqamuI37La3tys5+ds85PV69eabb2rlypW6/vrrlZOTowceeECrVq0avlcBAAASguPnuIwFnuMCAIB9xvw5LgAAAGOJ4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGCNIQWXuro65ebmKjU1VT6fT/v37x/UuoaGBiUlJWnx4sVDOSwAAEhwjoPLjh07FAgEVF1drQMHDmjOnDkqKirSiRMnLrju008/1R/+8ActXLhwyMUCAIDE5ji4bN68WcuXL1d5ebmuvfZa1dfX65JLLtELL7ww4Jre3l7dddddWr9+vaZPn/6DCgYAAInLUXDp6elRS0uL/H7/tztITpbf71dzc/OA6x599FFlZmbq7rvvHtRxuru7FY1G+2wAAACOgktnZ6d6e3vl8Xj6jHs8HoVCoX7XvPvuu3r++ee1bdu2QR+npqZG6enp8c3r9TopEwAAjFMj+qmi06dPa+nSpdq2bZsyMjIGva6yslKRSCS+dXR0jGCVAADAFhOcTM7IyFBKSorC4XCf8XA4rKysrPPmf/LJJ/r0009VXFwcH4vFYv878IQJOnr0qGbMmHHeOrfbLbfb7aQ0AACQABxdcXG5XMrPz1cwGIyPxWIxBYNBFRYWnjd/5syZOnTokFpbW+Pb7bffrltuuUWtra28BQQAABxxdMVFkgKBgMrKylRQUKB58+aptrZWXV1dKi8vlySVlpYqJydHNTU1Sk1N1axZs/qsnzJliiSdNw4AAPB9HAeXkpISnTx5UlVVVQqFQsrLy1NTU1P8ht329nYlJ/NAXgAAMPySjDFmrIv4PtFoVOnp6YpEIkpLSxvrcgAAwCCMxPmbSyMAAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWGFJwqaurU25urlJTU+Xz+bR///4B527btk0LFy7U1KlTNXXqVPn9/gvOBwAAGIjj4LJjxw4FAgFVV1frwIEDmjNnjoqKinTixIl+5+/bt0933nmn3n77bTU3N8vr9erWW2/V559//oOLBwAAiSXJGGOcLPD5fLrxxhu1ZcsWSVIsFpPX69X999+v1atXf+/63t5eTZ06VVu2bFFpaemgjhmNRpWenq5IJKK0tDQn5QIAgDEyEudvR1dcenp61NLSIr/f/+0OkpPl9/vV3Nw8qH2cOXNGZ8+e1WWXXeasUgAAkPAmOJnc2dmp3t5eeTyePuMej0dHjhwZ1D5WrVqladOm9Qk/39Xd3a3u7u74z9Fo1EmZAABgnBrVTxVt2rRJDQ0N2rVrl1JTUwecV1NTo/T09Pjm9XpHsUoAAHCxchRcMjIylJKSonA43Gc8HA4rKyvrgmuffPJJbdq0SW+99Zauv/76C86trKxUJBKJbx0dHU7KBAAA45Sj4OJyuZSfn69gMBgfi8ViCgaDKiwsHHDdE088oQ0bNqipqUkFBQXfexy32620tLQ+GwAAgKN7XCQpEAiorKxMBQUFmjdvnmpra9XV1aXy8nJJUmlpqXJyclRTUyNJ+tOf/qSqqiq9/PLLys3NVSgUkiRdeumluvTSS4fxpQAAgPHOcXApKSnRyZMnVVVVpVAopLy8PDU1NcVv2G1vb1dy8rcXcp555hn19PTo17/+dZ/9VFdX65FHHvlh1QMAgITi+DkuY4HnuAAAYJ8xf44LAADAWCK4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWGNIwaWurk65ublKTU2Vz+fT/v37Lzj/1Vdf1cyZM5WamqrZs2ersbFxSMUCAIDE5ji47NixQ4FAQNXV1Tpw4IDmzJmjoqIinThxot/577//vu68807dfffdOnjwoBYvXqzFixfrww8//MHFAwCAxJJkjDFOFvh8Pt14443asmWLJCkWi8nr9er+++/X6tWrz5tfUlKirq4uvfHGG/Gxn//858rLy1N9ff2gjhmNRpWenq5IJKK0tDQn5QIAgDEyEufvCU4m9/T0qKWlRZWVlfGx5ORk+f1+NTc397umublZgUCgz1hRUZF279494HG6u7vV3d0d/zkSiUj6318AAACwwzfnbYfXSC7IUXDp7OxUb2+vPB5Pn3GPx6MjR470uyYUCvU7PxQKDXicmpoarV+//rxxr9frpFwAAHAR+Pe//6309PRh2Zej4DJaKisr+1ylOXXqlK644gq1t7cP2wvH0ESjUXm9XnV0dPC23RijFxcPenFxoR8Xj0gkossvv1yXXXbZsO3TUXDJyMhQSkqKwuFwn/FwOKysrKx+12RlZTmaL0lut1tut/u88fT0dP4RXiTS0tLoxUWCXlw86MXFhX5cPJKTh+/pK4725HK5lJ+fr2AwGB+LxWIKBoMqLCzsd01hYWGf+ZK0d+/eAecDAAAMxPFbRYFAQGVlZSooKNC8efNUW1urrq4ulZeXS5JKS0uVk5OjmpoaSdIDDzygm2++WU899ZQWLVqkhoYGffDBB3r22WeH95UAAIBxz3FwKSkp0cmTJ1VVVaVQKKS8vDw1NTXFb8Btb2/vc0lo/vz5evnll7V27Vo9/PDD+tnPfqbdu3dr1qxZgz6m2+1WdXV1v28fYXTRi4sHvbh40IuLC/24eIxELxw/xwUAAGCs8F1FAADAGgQXAABgDYILAACwBsEFAABY46IJLnV1dcrNzVVqaqp8Pp/2799/wfmvvvqqZs6cqdTUVM2ePVuNjY2jVOn456QX27Zt08KFCzV16lRNnTpVfr//e3uHwXP6e/GNhoYGJSUlafHixSNbYAJx2otTp06poqJC2dnZcrvduuqqq/h/apg47UVtba2uvvpqTZo0SV6vVytXrtTXX389StWOX++8846Ki4s1bdo0JSUlXfA7CL+xb98+3XDDDXK73bryyiu1fft25wc2F4GGhgbjcrnMCy+8YP75z3+a5cuXmylTpphwONzv/Pfee8+kpKSYJ554wnz00Udm7dq1ZuLEiebQoUOjXPn447QXS5YsMXV1debgwYPm8OHD5re//a1JT083//rXv0a58vHHaS++cfz4cZOTk2MWLlxofvWrX41OseOc0150d3ebgoICc9ttt5l3333XHD9+3Ozbt8+0traOcuXjj9NevPTSS8btdpuXXnrJHD9+3Lz55psmOzvbrFy5cpQrH38aGxvNmjVrzM6dO40ks2vXrgvOb2trM5dccokJBALmo48+Mk8//bRJSUkxTU1Njo57UQSXefPmmYqKivjPvb29Ztq0aaampqbf+XfccYdZtGhRnzGfz2d+97vfjWidicBpL77r3LlzZvLkyebFF18cqRITxlB6ce7cOTN//nzz3HPPmbKyMoLLMHHai2eeecZMnz7d9PT0jFaJCcNpLyoqKswvfvGLPmOBQMAsWLBgROtMNIMJLg899JC57rrr+oyVlJSYoqIiR8ca87eKenp61NLSIr/fHx9LTk6W3+9Xc3Nzv2uam5v7zJekoqKiAedjcIbSi+86c+aMzp49O6xfqJWIhtqLRx99VJmZmbr77rtHo8yEMJRevP766yosLFRFRYU8Ho9mzZqljRs3qre3d7TKHpeG0ov58+erpaUl/nZSW1ubGhsbddttt41KzfjWcJ27x/zboTs7O9Xb2xt/8u43PB6Pjhw50u+aUCjU7/xQKDRidSaCofTiu1atWqVp06ad948TzgylF++++66ef/55tba2jkKFiWMovWhra9Pf//533XXXXWpsbNSxY8d033336ezZs6qurh6NsselofRiyZIl6uzs1E033SRjjM6dO6d77rlHDz/88GiUjP9noHN3NBrVV199pUmTJg1qP2N+xQXjx6ZNm9TQ0KBdu3YpNTV1rMtJKKdPn9bSpUu1bds2ZWRkjHU5CS8WiykzM1PPPvus8vPzVVJSojVr1qi+vn6sS0s4+/bt08aNG7V161YdOHBAO3fu1J49e7Rhw4axLg1DNOZXXDIyMpSSkqJwONxnPBwOKysrq981WVlZjuZjcIbSi288+eST2rRpk/72t7/p+uuvH8kyE4LTXnzyySf69NNPVVxcHB+LxWKSpAkTJujo0aOaMWPGyBY9Tg3l9yI7O1sTJ05USkpKfOyaa65RKBRST0+PXC7XiNY8Xg2lF+vWrdPSpUu1bNkySdLs2bPV1dWlFStWaM2aNX2+Ww8ja6Bzd1pa2qCvtkgXwRUXl8ul/Px8BYPB+FgsFlMwGFRhYWG/awoLC/vMl6S9e/cOOB+DM5ReSNITTzyhDRs2qKmpSQUFBaNR6rjntBczZ87UoUOH1NraGt9uv/123XLLLWptbZXX6x3N8seVofxeLFiwQMeOHYuHR0n6+OOPlZ2dTWj5AYbSizNnzpwXTr4JlIav6htVw3budnbf8MhoaGgwbrfbbN++3Xz00UdmxYoVZsqUKSYUChljjFm6dKlZvXp1fP57771nJkyYYJ588klz+PBhU11dzcehh4nTXmzatMm4XC7z2muvmS+++CK+nT59eqxewrjhtBffxaeKho/TXrS3t5vJkyeb3//+9+bo0aPmjTfeMJmZmeaxxx4bq5cwbjjtRXV1tZk8ebL561//atra2sxbb71lZsyYYe64446xegnjxunTp83BgwfNwYMHjSSzefNmc/DgQfPZZ58ZY4xZvXq1Wbp0aXz+Nx+H/uMf/2gOHz5s6urq7P04tDHGPP300+byyy83LpfLzJs3z/zjH/+I/9nNN99sysrK+sx/5ZVXzFVXXWVcLpe57rrrzJ49e0a54vHLSS+uuOIKI+m8rbq6evQLH4ec/l78fwSX4eW0F++//77x+XzG7Xab6dOnm8cff9ycO3dulKsen5z04uzZs+aRRx4xM2bMMKmpqcbr9Zr77rvP/Oc//xn9wseZt99+u9///7/5+y8rKzM333zzeWvy8vKMy+Uy06dPN3/5y18cHzfJGK6VAQAAO4z5PS4AAACDRXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDX+Dy8WrjBWc6pnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for i, item in enumerate(image):\n", + " item = item.reshape(-1, 28, 28)\n", + " plt.subplot(211)\n", + " plt.imgshow(item[0], cmap='gray')\n", + "\n", + "for i, item in enumerate(reconstructed):\n", + " item = item.reshape(-1, 28, 28)\n", + " plt.subplot(212)\n", + " plt.imgshow(item[0].detach().numpy(), cmap='gray')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> podemos também utilizar APENAS o encoder treinado para obter feautures das iamgens" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = net.encoder(image)\n", + "\n", + "features[0].detach().numpy()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bloco6_autoenconders/aula7_teo.ipynb b/bloco6_autoenconders/aula7_teo.ipynb new file mode 100644 index 0000000..3fde3d2 --- /dev/null +++ b/bloco6_autoenconders/aula7_teo.ipynb @@ -0,0 +1,178 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AULA 7 TEORIA- Redes Auto-enconders/auto-associativas\n", + "\n", + "Semana 10-14/10 - Aula assíncrona\n", + "> https://www.youtube.com/watch?v=O6C6wl357-o&ab_channel=MoacirAntonelliPonti\n", + "\n", + "\n", + "Auto-encoder e tarefa de reconstrução\n", + "Denoising Autoencoders\n", + "Variational Autoencoders\n", + "\n", + "---\n", + "\n", + "## Regularização, Normalização e Transferência de Aprendizado\n", + "\n", + "- Autoenconders\n", + "- Undercomplete\n", + "- Overcomplete\n", + "- Denoising Autoencoders\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Autoencoders\n", + "\n", + "- Autoencoders são redes neurais que tem como objetivo aprender uma representação compacta dos dados de entrada.\n", + " - redes neurais que buscam aprender SEM RÓTULOS -> **NÃO SUPERVISIONADO**\n", + "\n", + "* autoenconders associam a entrada e a saída (representação compacta)\n", + " * x -> encoder -> x^ (representação compacta)\n", + " * \n", + "\n", + "- **Encoder:** aprende um *códigos* que representa a entrada (também chamado de *representação latente* ou *feature embedding*)\n", + " - h = s(Wx + b) = f(x)\n", + "\n", + "* **Decoder:** aprende a reconstruir a entrada a partir do código\n", + " * x^ = s(W^Th + b^T) = g(h)\n", + "\n", + "- exemplo: digito\n", + " - entrada: 28x28 = 784 pixels\n", + " - saída: 28x28 = 784 pixels\n", + " - representação latente: 10 dimensões\n", + " - código resistringiu em 10 o espaço de representações -> menor resolução\n", + " - \n", + "\n", + "* saída x^ = g(f(x)), com isso minimizamos o erro na recostrução da entrada com:\n", + " * L(x, x^) = L(x, g(f(x)))\n", + " * exemplo: L(x,x^) = ||x - x^||^2 (mean squadred error)\n", + "\n", + "- **tipos de autoenconder:**\n", + " - **undercomplete:** número de neurônios na camada oculta é menor que o número de neurônios na camada de entrada\n", + " - a camada do código é chamada de gargalo ou \"bottleneck\" por ser restrita\n", + " - **overcomplete:** número de neurônios na camada oculta é maior que o número de neurônios na camada de entrada\n", + " - há diferentes versões desse tipo para compensar a falta de restrição do código\n", + "\n", + "* *por que usar um autoenconder?*\n", + " * a fubnção h do código ela aprende as característica de x, enquanto isso ela pode diminuir a dimensionalidade dos dados (restrição)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Undercomplete\n", + "\n", + "- código é uma compressão cm perdas da entrada\n", + " - camada de código é chamada de bottheneck\n", + " - código produz boa representaçaõ dos dados de treinamento em particular para reconstrução\n", + " - exemplo:\n", + " - \n", + " - note que ela reconstroi ruido tentando montar um padrão de digito, pq foi isso que ela aprendeu a fazer\n", + "\n", + "* **vantagens:**\n", + " * redução de dimensionalidade\n", + " * aprendizado de representações não supervisionado\n", + " * aprendizado de representações não lineares\n", + " * aprendizado de representações invariantes a ruído\n", + "\n", + "* **desvantagens:**\n", + " * possibilidade de decorar features muito específicas se o modelo tiver ma alta capacidade de representação\n", + "\n", + "- Um autoencoder denso com uma única camada encoder/decoder tem relações com o método \"Principal Component Analysis\" (PCA)\n", + "\n", + "* *obs:* Os autoenconders podem ser profundos, isto é, podem adimitir camada não densas (conv, pooling, etc), porém, a camada do CÓDIGO é comumente **densa** (Fully Connected) para permitir a projeção dos dados\n", + "\n", + "- exemplo: UNET\n", + " - \n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overcomplete\n", + "\n", + "- **Overcomplete:** número de neurônios na camada oculta é maior que o número de neurônios na camada de entrada\n", + " - uma implementação simples permitira a cópia simples (e perfeita) dos dados de forma que x = x^\n", + " - \n", + "\n", + "* NÃO QUEREMOS CÓPIA PERFEITA, para isso, podemos utilizar uma regularização (exemplo L1)\n", + " * no fim, a ideia é que a funçaõ de custo tente manter um baixo numero de ativações por entrada\n", + " * dropout também pode ser usado, nesse caso imediatamente antes da camada do código (para impedir que ele confie na cópia como sendo perfeita)\n", + " * \n", + " * note que os neuorios em preto estão zerados (ou com valores muito baixos) \n", + " \n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Denoising Autoencoders\n", + "\n", + "* regularização **adicionando ruido na entrada** -> x~ = N(x) (ruido)\n", + " * note que a perda é computada usando a função NÃO ruidosa x\n", + " * e o autoenconder tenta reconstruir x a partir de x~\n", + " * o encoder deve aprender a remover o ruido mantendo apenas as informações essenciais n ocódigos, permitindo que o decoder reconstrua a entrada\n", + " * \n", + " * obs: como há o ruido, é possivel usar overcompleted sem perigo de ele copiar a entrada\n", + "\n", + "- Adicioanr ruído:\n", + " - comulmente: Ruído Gaussiano/Normal com média 0 e variância >= 1\n", + " - pode ser usado outros tipos de ruído (ex: salt and pepper/impulsivo)\n", + " - Ruído impulsivo: atribuir zero a uma porcentagem da entrada, com probabilidade p (dropout na entrada)\n", + "\n", + "* técnicas de regularização também podem ser usadas em Denoising Autoencoders\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusão \n", + "\n", + "* AEs podem ser boa escolha com dados não supervisionados para aprendizado de manifolds e agrupamento\n", + " * Representam uma nova tarefa: reconstrução que pode ser acoplada a outras arquiteturas\n", + "\n", + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bloco6_autoenconders/denoising.jpg b/bloco6_autoenconders/denoising.jpg new file mode 100644 index 0000000..0d82631 Binary files /dev/null and b/bloco6_autoenconders/denoising.jpg differ diff --git a/bloco6_autoenconders/digito.jpg b/bloco6_autoenconders/digito.jpg new file mode 100644 index 0000000..1972608 Binary files /dev/null and b/bloco6_autoenconders/digito.jpg differ diff --git a/bloco6_autoenconders/encoder_decoder.jpg b/bloco6_autoenconders/encoder_decoder.jpg new file mode 100644 index 0000000..81adfa3 Binary files /dev/null and b/bloco6_autoenconders/encoder_decoder.jpg differ diff --git a/bloco6_autoenconders/exemplo_undercomplete.jpg b/bloco6_autoenconders/exemplo_undercomplete.jpg new file mode 100644 index 0000000..8c8e32e Binary files /dev/null and b/bloco6_autoenconders/exemplo_undercomplete.jpg differ diff --git a/bloco6_autoenconders/simplees_overcomplete.jpg b/bloco6_autoenconders/simplees_overcomplete.jpg new file mode 100644 index 0000000..0313b3c Binary files /dev/null and b/bloco6_autoenconders/simplees_overcomplete.jpg differ diff --git a/bloco6_autoenconders/unet.jpg b/bloco6_autoenconders/unet.jpg new file mode 100644 index 0000000..42f7af6 Binary files /dev/null and b/bloco6_autoenconders/unet.jpg differ diff --git a/bloco7_geradoras/ELBO.png b/bloco7_geradoras/ELBO.png new file mode 100644 index 0000000..230f359 Binary files /dev/null and b/bloco7_geradoras/ELBO.png differ diff --git a/bloco7_geradoras/GAN.png b/bloco7_geradoras/GAN.png new file mode 100644 index 0000000..900668b Binary files /dev/null and b/bloco7_geradoras/GAN.png differ diff --git a/bloco7_geradoras/VAE_matematicamente.png b/bloco7_geradoras/VAE_matematicamente.png new file mode 100644 index 0000000..3fe7613 Binary files /dev/null and b/bloco7_geradoras/VAE_matematicamente.png differ diff --git a/bloco7_geradoras/VAExdifusao.png b/bloco7_geradoras/VAExdifusao.png new file mode 100644 index 0000000..3b97169 Binary files /dev/null and b/bloco7_geradoras/VAExdifusao.png differ diff --git a/bloco7_geradoras/aritmetica.png b/bloco7_geradoras/aritmetica.png new file mode 100644 index 0000000..e27b26e Binary files /dev/null and b/bloco7_geradoras/aritmetica.png differ diff --git a/bloco7_geradoras/aula8_teo.ipynb b/bloco7_geradoras/aula8_teo.ipynb new file mode 100644 index 0000000..7ba9bea --- /dev/null +++ b/bloco7_geradoras/aula8_teo.ipynb @@ -0,0 +1,207 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AULA 8 TEORIA- Modelos geradores\n", + "\n", + "19/10 - Aula assíncrona\n", + "> https://www.youtube.com/watch?v=1LLDe8VheUs&ab_channel=MoacirAntonelliPonti\n", + "> https://www.youtube.com/watch?v=1jjHO5_8lQk&ab_channel=MoacirAntonelliPonti\n", + "\n", + "\n", + "* Redes Geradoras\n", + "* Autoencoders Variacionais\n", + "* Redes adversariais: Discriminador e Gerador\n", + "* Redes baseadas em Difusão\n", + "\n", + "---\n", + "\n", + "## Redes Geradoras\n", + "\n", + "- Modelos geradores\n", + "- Autoencoders variacionais (VAEs)\n", + "- Redes adversárias geradoras (GANs)\n", + "- Modelos baseados em difusão\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modelos geradores\n", + "\n", + "* Redes geradoras são modelos que aprendem a gerar novos dados\n", + " * tipo aquelas que geram faces de pessoas a partir de fotos reais\n", + "\n", + "- rede tenta aprender a distribuição que \"gera\" os dados para amostrar novos dados a partir dela\n", + " - aprender como é a distribuição dos dados, no exemplo é tipo uma gaussiana, logo a maior densidade de dados é no pico dela, e a menor nas extremidades\n", + " - \n", + "\n", + "* **tipos de métodos:**\n", + " * **Função de densidade explítica:** buscar a função densidade igual no exemplo acima\n", + " * Fully Visible Belief Networks (FVBNs)\n", + " * Boltzmann Machines (BM)\n", + " * Variational Autoencoders (VAEs) - *mais comum*\n", + " * **Função de densidade implícita:** aprender a gerar dados sem saber a distribuição (intui a forma que os dados são gerados)\n", + " * Monte Carlo\n", + " * Likehood-free inference via classification\n", + " * Generative Adversarial Networks (GANs) - *mais comum*\n", + "\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Autoencoders variacionais (VAEs)\n", + "\n", + "* relembrando: autoenconders tradicionais tentam codificar atributos de forma discreta, e depois decodificar para reconstruir uma estimativa do dado original\n", + " * obs: eles aprendem os atributos da imgem principal, e não a imagem em si (exemplo sorriso, cor da pele...) \n", + " * \n", + " * *disentaglement: separar os atributos da imagem principal* \n", + "\n", + "- VAEs são autoencoders que aprendem a distribuição dos dados (mesma ideia acima)\n", + " - \n", + " - para cada atributo, dado pelo encoder a rede vai tentar aprender a média e desvio padrão da distribuição\n", + " - vai ser amostrado um dado dessa distribuição \n", + " - essa amostra será decodificada pelo decoder\n", + "\n", + "* diferenças: o autoencoder codifica a imagem e tenta reconstruir ela a partir dos proprios dados, decodificando esses dados\n", + " * o VAE codifica a imagem e tenta reconstruir ela a partir de uma amostra da distribuição dos dados que a rede está tentando aprender\n", + " * \n", + "\n", + "- depois que a rede já estiver boa, é possível assumir as distribuições aprendidas são boas e podemos jogar a parte do codificador fora\n", + " - assim, podemos só a partir de amostrar da distribuição, gerar novos dados\n", + "\n", + "* Função custo ELBO (Evidence Lower Bound)\n", + " * L = reconstrução + divergência Kullback-Leibler (KL)\n", + " * L = MSE/Binary_Cross_Entropy + KL\n", + "\n", + "- a divergença KL é uma medida de similaridade entre duas distribuições\n", + " - enquanto a reconstrução tenta olhar pros valores específicos de entrada e saída, a divergencia KL olha pras distribuições inteiras\n", + " - \n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Redes adversárias geradoras (GANs)\n", + "\n", + "- adversárias: componentes que disputam entre si\n", + "\n", + "* Gerador G: redecebe um exemplo z' obtido da distribuição e gera x por meio de uma função:\n", + " * x = G(z')\n", + " * G projeta no espaço x um ponto específico de z (z -G-> x)\n", + "\n", + "- Discriminador D\n", + " - recebe um exemplo x e tenta classificar se ele é da distribuição original ou pela aproximaão do gerador (real ou artificial)\n", + "\n", + "* Paralelo: Casa da moeda e o ladrão\n", + " * casa da moeda e ladrão geram células, cabe a polícia descobrir qual é real e qual é falsa -> punição ou melhoria...\n", + " * \n", + " * \n", + " * duas fontes: gerador (artificial) e dados de treinamento (real) -> discriminador tenta definir qual é qual\n", + "\n", + "- formulação clássica:\n", + " - \n", + " - maximizar D e minimar G (minimax)\n", + " - primeiro termo WEx[ log(D(x))]: \n", + " - referente aos dados reais (x)\n", + " - entropia cruzada: 1 * log(D(X)), onde 1 é o valor esperado de D(x) (se for real)\n", + " - segundo termo: Ez[ log(1 - D(G(z)))]:\n", + " \n", + " - referente aos dados gerados (G(z))\n", + " - entropia cruzada: 1 * log(1 - D(G(z))\n", + " - x^ = G(z) é o dado gerado\n", + "\n", + "* a perda clássica acima causa um comportamento muito ocilatório na função de perda, fazendo com que **seja dificl otimizar GANs**\n", + "\n", + "- aritimetica de esppaço latente\n", + " - \n", + " - sem mulheres com oculos no espaço, é possível gerar esse tipo de imagem -> pegar as features HOMEM e OCULOS, subtrair HOMEM SEM OCULOS e adcionar MULHER SEM OCULOS\n", + " - aritimetica: HOMEM - HOMEM cancela, SEM OCULOS - SEM OCULOS cancela, sobra MULHER COM OCULOS\n", + " - isso tuod com as features extraidas que se comportam como esses atributos\n", + "\n", + "* obs: as imagens \"as vezes\" são realistas, elas chegam a gerar boas imagens, mas também algumas muito ruins\n", + " * as GANs não são boas em entender varios padrões/classes diferentes em uma mesma imagem\n", + "\n", + "- modelos relevantes: SAGAN (2019), StyleGAN (2021), Diffusion-based Model (2021)...\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modelos baseados em difusão\n", + "\n", + "* adicionar ruido em um dado até ele se perder por completo\n", + " * difusão dos features de entrada até virar puro ruido\n", + " * x0 (imagem rea) -> xT (puro ruido)\n", + "\n", + "\n", + "- ideia similar do VAE: codificar e decodificar\n", + " - no caso é a difusão foward e backward (codificar e decodificar)\n", + " - \n", + " - \n", + "\n", + "* diferença da difusão e VAE: \n", + " * VAE: codifica e decodifica a partir de uma amostra da distribuição\n", + " * difusão: codifica e decodifica a partir de um dado específico\n", + " * difusão não precisa aprender a CODIFICAR, só a decodificar, enquanto VAEs precisam aprender os dois\n", + " * \n", + "\n", + "- perda nos modelos de difusão (não tem mais reconstrução e KL):\n", + " - olha basicamente pro processo de remoção de ruido da imagem\n", + " - \n", + "\n", + "* modelo mais importante atualmente: BigGAN\n", + " * \n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LSTMs e GRUs\n", + "\n", + "* pra um tempo curto o sumário consegue segurar bem a memória (curto prazo), pra longo prazo é necessário usar uma LSTM\n", + " * Long Short Termo Unit (LSTM)\n", + " * \n", + "\n", + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bloco7_geradoras/autoencoder.png b/bloco7_geradoras/autoencoder.png new file mode 100644 index 0000000..9b1e7b6 Binary files /dev/null and b/bloco7_geradoras/autoencoder.png differ diff --git a/bloco7_geradoras/autoencoder2.png b/bloco7_geradoras/autoencoder2.png new file mode 100644 index 0000000..cf26b04 Binary files /dev/null and b/bloco7_geradoras/autoencoder2.png differ diff --git a/bloco7_geradoras/backward_difusao.png b/bloco7_geradoras/backward_difusao.png new file mode 100644 index 0000000..8abf04f Binary files /dev/null and b/bloco7_geradoras/backward_difusao.png differ diff --git a/bloco7_geradoras/bigGAN.png b/bloco7_geradoras/bigGAN.png new file mode 100644 index 0000000..d9432bd Binary files /dev/null and b/bloco7_geradoras/bigGAN.png differ diff --git a/bloco7_geradoras/distribuicao_dados.png b/bloco7_geradoras/distribuicao_dados.png new file mode 100644 index 0000000..4eca583 Binary files /dev/null and b/bloco7_geradoras/distribuicao_dados.png differ diff --git a/bloco7_geradoras/formula.png b/bloco7_geradoras/formula.png new file mode 100644 index 0000000..f116633 Binary files /dev/null and b/bloco7_geradoras/formula.png differ diff --git a/bloco7_geradoras/forward_difusao.png b/bloco7_geradoras/forward_difusao.png new file mode 100644 index 0000000..3e9768b Binary files /dev/null and b/bloco7_geradoras/forward_difusao.png differ diff --git a/bloco7_geradoras/loss_difusao.png b/bloco7_geradoras/loss_difusao.png new file mode 100644 index 0000000..3d7e906 Binary files /dev/null and b/bloco7_geradoras/loss_difusao.png differ diff --git a/bloco7_geradoras/moeda.png b/bloco7_geradoras/moeda.png new file mode 100644 index 0000000..6e33cd1 Binary files /dev/null and b/bloco7_geradoras/moeda.png differ diff --git a/bloco7_geradoras/vae.png b/bloco7_geradoras/vae.png new file mode 100644 index 0000000..2187c0a Binary files /dev/null and b/bloco7_geradoras/vae.png differ diff --git a/bloco8_recorrentes/GRU.png b/bloco8_recorrentes/GRU.png new file mode 100644 index 0000000..d863fa2 Binary files /dev/null and b/bloco8_recorrentes/GRU.png differ diff --git a/bloco8_recorrentes/LSTM.png b/bloco8_recorrentes/LSTM.png new file mode 100644 index 0000000..0368606 Binary files /dev/null and b/bloco8_recorrentes/LSTM.png differ diff --git a/bloco8_recorrentes/RNN.png b/bloco8_recorrentes/RNN.png new file mode 100644 index 0000000..5bcaa69 Binary files /dev/null and b/bloco8_recorrentes/RNN.png differ diff --git a/bloco8_recorrentes/aula9_teo.ipynb b/bloco8_recorrentes/aula9_teo.ipynb new file mode 100644 index 0000000..67d43fd --- /dev/null +++ b/bloco8_recorrentes/aula9_teo.ipynb @@ -0,0 +1,151 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AULA 9 TEORIA- Redes Recorrentes\n", + "\n", + "19/10 - Aula assíncrona\n", + "> https://www.youtube.com/watch?v=OzC_vwAqRTU&ab_channel=MoacirAntonelliPonti\n", + "\n", + "* Redes neurais para dados sequenciais e diferentes tipos de problemas\n", + "* Camada recorrente\n", + "* LSTM\n", + "* GRU\n", + "* \"Lookback\" no treinamento de redes recorrentes\n", + "\n", + "---\n", + "\n", + "## Redes Recorrentes\n", + "\n", + "- Dados sequenciais (recorrência)\n", + "- Camada recorrente básica (RNN)\n", + "- LSTMs e GRUs\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dados sequenciais (recorrência)\n", + "\n", + "* dados recorrentes -> depênn de um contexto anterior (ex: texto, áudio, vídeo, TEMPO...)\n", + "\n", + "- redes neurais convencionais não são capazes de lidar com dados sequenciais\n", + " - cada entrada é independente da anterior no modelo original\n", + " - Camadas densas e convolucionais consideram apenas o exemplo atual para computar a saída\n", + " - para isso -> usamos **redes recorrentes**\n", + "\n", + "* redes recorrentes tem \"memória\" dos dados passados -> a ordem dos elementos de entrada IMPORTA\n", + " * possibilidades de RNNs:\n", + " * 1 entrada, saida sequencial\n", + " * ex: imagem de entrada e saida, sequencial de palavras descevendo a imagem \"casa\", \"com\", \"sol\", \"azul\".\n", + " * entrada sequencial, 1 saida\n", + " * ex: texto com opinião e a saida é classificaçaõ de sentimento (positivo ou negativo)\n", + " * entrada sequencial, saida sequencial\n", + " * ex: tradução de texto de um idioma para outro\n", + "\n", + "- *obs:* em tradução de texto é interssante por um atraso, para que acumulem algumas palavras e ele não faça uma tradução literal palavra pro palavra, mas sim por um contexto local \n", + "\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Camada recorrente básica (RNN)\n", + "\n", + "* \n", + "\n", + "* ut = Wh * ht-1 + Wx * xt + b\n", + " * ht-1 = saída da camada anterior\n", + " * xt = entrada atual\n", + " * Wh = pesos da camada recorrente\n", + " * Wx = pesos da camada de entrada\n", + " * b = bias\n", + "\n", + "- ht = f(ut)\n", + " - f = função de ativação (ex: tanh, sigmoid, relu, etc)\n", + " - ht é chamado de variável de memória ou sumário\n", + "\n", + "* y = Wy * ht + by\n", + " * ht = saída da camada recorrente\n", + " * Wy = pesos da camada de saída\n", + " * by = bias da camada de saída\n", + "\n", + "- **Exemplo:** Predizer próximo caracter \n", + " - definimos uma codificação one-hot para os caracteres\n", + " - h = [1,0,0,0]\n", + " - e = [0,1,0,0]\n", + " - l = [0,0,1,0]\n", + " - o = [0,0,0,1]\n", + " - rede para predizer:\n", + " - \n", + "\n", + "### LSTM (Long Short Term Memory)\n", + "\n", + "> https://colah.github.io/posts/2015-08-Understanding-LSTMs/\n", + "\n", + "- Funcionamento básico\n", + " - \n", + " - **Cell State**: Responsável pela memória longa (contribuiçaõ ao longo da iteração anterior)\n", + " - **Forget State**: Decide qual elementos de C serão esquecidos (zerados) com base no sumário anterior e a entrada atual\n", + " - algo entre 0 (esquecer) e 1 (manter) para cada dimensão de C\n", + " - **Input Gate**: Decide quais elementos de C serão atualizados (o que será adicionado)\n", + " - **Update State**: Atualiza o sumário com base no novo C\n", + " - **Output Gate**: Decide quais elementos de C (qual sumário) serão usados para gerar a saída\n", + " - igual uma RNN (essa parte)\n", + "\n", + "### GRU (Gated Recurrent Unit)\n", + "\n", + "* facilitar a LSTM (menos parametros e menos complexidade)\n", + " * proposta mais recente\n", + "\n", + "- Funcionamento básico\n", + " - \n", + " - não possui cell state\n", + " - **Reset Gate r:** filtra qual parte de ht-1 será utilizada para compor o novo sumário candidato em conjunto com xt\n", + " - **Update Gate z:** pondera partes do sumário anterior de forma complementar ao novo estado candidato\n", + " - h~t é o sumário \"candidato\"\n", + "\n", + "### GRU x LSTM \n", + "\n", + "- não há consenso sobre qual é melhor\n", + " - LSTM é mais complexa e mais lenta\n", + " - GRU é mais simples e mais rápida\n", + " - GRU em muitos casos tem resultados simalar ao LSTM, só que com menos parametros\n", + " - ultimamente não se usa mais as RNNs clássicas\n", + "\n", + "* há uma versão recente, **JANET** que simplificou aidna mais o modelom removendo o \"Reset Gate\"\n", + " * existem também as **Temporal Convolutional Networks**, que utiliam convoliuções 1D para aprender posiconamento local de elementos sequenciais, elas também se mostram eficientes em alguns cenários\n", + "\n", + "\n", + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bloco8_recorrentes/caracter.png b/bloco8_recorrentes/caracter.png new file mode 100644 index 0000000..84f938e Binary files /dev/null and b/bloco8_recorrentes/caracter.png differ diff --git a/bloco9_seq2seq_e_atencao/BERT_ELMo.jpg b/bloco9_seq2seq_e_atencao/BERT_ELMo.jpg new file mode 100644 index 0000000..aa53711 Binary files /dev/null and b/bloco9_seq2seq_e_atencao/BERT_ELMo.jpg differ diff --git a/bloco9_seq2seq_e_atencao/arq_TransfNEt.jpg b/bloco9_seq2seq_e_atencao/arq_TransfNEt.jpg new file mode 100644 index 0000000..e000918 Binary files /dev/null and b/bloco9_seq2seq_e_atencao/arq_TransfNEt.jpg differ diff --git a/bloco9_seq2seq_e_atencao/arq_atencao.jpg b/bloco9_seq2seq_e_atencao/arq_atencao.jpg new file mode 100644 index 0000000..788a590 Binary files /dev/null and b/bloco9_seq2seq_e_atencao/arq_atencao.jpg differ diff --git a/bloco9_seq2seq_e_atencao/atencao.jpg b/bloco9_seq2seq_e_atencao/atencao.jpg new file mode 100644 index 0000000..0e47bf6 Binary files /dev/null and b/bloco9_seq2seq_e_atencao/atencao.jpg differ diff --git a/bloco9_seq2seq_e_atencao/atencao2.jpg b/bloco9_seq2seq_e_atencao/atencao2.jpg new file mode 100644 index 0000000..030ae29 Binary files /dev/null and b/bloco9_seq2seq_e_atencao/atencao2.jpg differ diff --git a/bloco9_seq2seq_e_atencao/aula10_teo.ipynb b/bloco9_seq2seq_e_atencao/aula10_teo.ipynb new file mode 100644 index 0000000..ebe4952 --- /dev/null +++ b/bloco9_seq2seq_e_atencao/aula10_teo.ipynb @@ -0,0 +1,115 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AULA 10 TEORIA- Sequence-to-Sequence e Mecanismo de Atenção \n", + "\n", + "09/11 - Aula presencial\n", + "\n", + "- Métodos sequence-to-sequence\n", + "- Atenção: cues, pooling e funções de scoring\n", + "- Mecanismo básico de atenção\n", + "- Multi-head attention\n", + "- Self-attention\n", + "\n", + "---\n", + "\n", + "## Word2Vec, Sequence2Sequence e Mecanismo de Atenção\n", + "\n", + "- Word2Vec: representações para texto\n", + "- Sequence to Sequence e Mecanismo de atenção\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Word2Vec\n", + "\n", + "* Representação (embedding) para palavras\n", + " * função custo para aprender essa representação: p((w1, w2, ..., wn) | wt)\n", + " * primeiro todas as palavras do contexto de t e depois a palavra alvo\n", + " * otimiza em função de palavras que devem estar próximas se tiverem o mesmo **contexto**\n", + "\n", + "- **Skip-Grams (SG)**\n", + " - predição de palavras em uma certa janela de proximdiade m de uma palavra t\n", + " - formuçação do problema: p(wt | w1, ..., wm)\n", + " - softmax:\n", + " - \n", + "\n", + "* Skip gram com one-hot de uma plaavra: W * wt = vc\n", + " * \n", + " * W aprende representação (nas colunas) opara cada palavra quando são centrais\n", + " * Uo aprende representações (nas linhas) para cada palavra quando são contexto (ou seja, quando são vizinhas)\n", + "\n", + "- Outros\n", + " - **GloVe**\n", + " > https://nlp.stanford.edu/projects/glove/\n", + " - NILC (ICMC)\n", + " > http://www.nilc.icmc.usp.br/embeddings\n", + "\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sequence-to-Sequence e Mecanismo de atenção\n", + "\n", + "### Sequence-to-Sequence\n", + "\n", + "- Sequence to sequence: tradução de uma sequência para outra\n", + " - \n", + "\n", + "\n", + "### Mecanismo de atenção\n", + "\n", + "* Encontrar qual parte de uma sequência é mais importante para predizer uma certa saída\n", + " * Em unidades recorrentes, cada entrada perturba a memória prejudicando conhecimento de dados anteriores\n", + "\n", + "- Exemplos\n", + " - imagens\n", + " - \n", + " - rede faz o highlight dos mencanismo de atenção\n", + " - previsão tá horrível\n", + " - texto\n", + " - \n", + " - cada linha é um vetor de atenção -> matriz de atenção\n", + " - entende as relações entre as palavras \n", + "\n", + "* implementação \n", + " * Computar o alinhamento/similaridade entre o sumário atual do decoder, si com sumários anteriores do encoder, hj\n", + " * Usa softmax para obter pesos na forma de probabilidades\n", + " * Atenção produz um vetor de \"contexto\" a ser usado para produzir a saída atual\n", + "\n", + "\n", + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bloco9_seq2seq_e_atencao/aula11_teo.ipynb b/bloco9_seq2seq_e_atencao/aula11_teo.ipynb new file mode 100644 index 0000000..d7d8e82 --- /dev/null +++ b/bloco9_seq2seq_e_atencao/aula11_teo.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AULA 11 TEORIA- Arquitetura Transformer e BERT\n", + "\n", + "16/11 - Aula assíncrona\n", + "> https://www.youtube.com/watch?v=ksseZzTegWk&ab_channel=MoacirAntonelliPonti\n", + "\n", + "\n", + "- Arquitetura Transformer\n", + "- BERT - Bidirectional Encoder Representations from Transformers\n", + "\n", + "---\n", + "\n", + "## Transformer Networks e BERT\n", + "\n", + "- Arquitetura Transformer\n", + "- BERT - Bidirectional Encoder Representations from Transformers\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Transformer Networks\n", + "\n", + "### RNN vs Transforme Nets\n", + "\n", + "* RNNs\n", + " * podem não funcionar com **dependencias longas**\n", + " * recorrencia dificulta **computação paralela** (pontos da sequencia não podem ser porcessadas em paralelo)\n", + " * podem sofrer com exlosão ou desaparecimento de gradiente\n", + "\n", + "- Transformer Networks\n", + " - não tem recorrência (apenas atenção)\n", + " - captura dependencias longas \n", + " - processamento paralelo: atençaõ é invariante a permutação\n", + "\n", + "### Arquitetura\n", + "\n", + "- arquitetura\n", + " - \n", + " - explicação na aula\n", + " - diferencial: **POsitional Encoding** e **Multi-Head Attention**\n", + "\n", + "* Multi-Head Attention (atenção)\n", + " - \n", + " - não só mais a combinação linear de todos elementos de entrada\n", + " - \n", + " - Recuperar um valor vi para uma consulta/query q baseada numa chave/key ki\n", + " - A similaridade entre uma consulta e todas as chaves, ponderadas pelos valores\n", + " - Somar ao longo de todas as chaves/valores, produz uma distribuição de pesos relacionando consulta e todos os valores\n", + " - \n", + "\n", + "- **Transformer Huggingface**\n", + " - https://transformer.huggingface.co/\n", + " - https://huggingface.co/transformers/model_doc/transformer.html\n", + "\n", + "* Após transformer\n", + " * GPT e GPT2\n", + " * BERT\n", + " * Lambda Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### BERT \n", + "\n", + "- Bidirectional Encoder Representations from Transformers\n", + " - https://arxiv.org/pdf/1810.04805.pdf (copilot que sugeriu essa brincadeira aqui)\n", + "\n", + "* Método para **pré-treinar** encoders do tipo Transformer\n", + " * Modelo Base:\n", + " * 12 camadas Transformer\n", + " * Embedding com 768 dimensões\n", + " * 110 milhões de parametros\n", + " * Large:\n", + " * 24 camadas Transformer\n", + " * Embedding com 1024 dimensões\n", + " * 340 milhões de parametros\n", + "\n", + "- Embeddings BERT \n", + " - \n", + " - cada pedaço da frase é separado em 3 embeddings: Token, Segment e Positional\n", + " - OBS: o bert não separa exatamete em palavras, ele separa os geundios (play ##ing) por exemplo\n", + "\n", + "* Exemplo de Embeddings: GloVe\n", + " * vetor fixo por palavra independente do contexto\n", + "\n", + "- BERT utiliza o ELMo -> olha para a setença inteira antes de atribuir o vetor\n", + " - usa LSTM bidirecional para criar o embedding\n", + " - aprende (sem labels) a predizer a prox palavra (e a anterior)\n", + " - BERT usa essa ideia, mas transformer\n", + " - LSTM bidirecional: faz uma predição do comeõ da frase pra frente e do fim da frase pra trás\n", + " - BERT: faz uma predição utiilizando todas as palavras da frase \n", + " - palavra 3: usa a palvra 1, 2, 4... N\n", + " - \n", + "\n", + "* BERT: ULM-FIT\n", + " * https://arxiv.org/pdf/1801.06146.pdf (copilot que sugeriu)\n", + " * metodos afetivos para pré trienamento para alem \n", + " * de words embeddings\n", + " * de words embeddings contextualizado\n", + " * modelo de linguagem + estratégia par aajustar modelo para várias tarefas\n", + " * descongelamento gradual: última camada até a primeira\n", + "\n", + "- \n", + "\n", + "---" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/bloco9_seq2seq_e_atencao/embeddings_BERT.jpg b/bloco9_seq2seq_e_atencao/embeddings_BERT.jpg new file mode 100644 index 0000000..0846732 Binary files /dev/null and b/bloco9_seq2seq_e_atencao/embeddings_BERT.jpg differ diff --git a/bloco9_seq2seq_e_atencao/matriz_mec_atencao.jpg b/bloco9_seq2seq_e_atencao/matriz_mec_atencao.jpg new file mode 100644 index 0000000..c8f83bc Binary files /dev/null and b/bloco9_seq2seq_e_atencao/matriz_mec_atencao.jpg differ diff --git a/bloco9_seq2seq_e_atencao/mec_atencao.jpg b/bloco9_seq2seq_e_atencao/mec_atencao.jpg new file mode 100644 index 0000000..b72e62f Binary files /dev/null and b/bloco9_seq2seq_e_atencao/mec_atencao.jpg differ diff --git a/bloco9_seq2seq_e_atencao/onehot.jpg b/bloco9_seq2seq_e_atencao/onehot.jpg new file mode 100644 index 0000000..73a52cd Binary files /dev/null and b/bloco9_seq2seq_e_atencao/onehot.jpg differ diff --git a/bloco9_seq2seq_e_atencao/s2s_enc_dec.jpg b/bloco9_seq2seq_e_atencao/s2s_enc_dec.jpg new file mode 100644 index 0000000..8e4815b Binary files /dev/null and b/bloco9_seq2seq_e_atencao/s2s_enc_dec.jpg differ diff --git a/bloco9_seq2seq_e_atencao/softmax_skipgram.jpg b/bloco9_seq2seq_e_atencao/softmax_skipgram.jpg new file mode 100644 index 0000000..365fafc Binary files /dev/null and b/bloco9_seq2seq_e_atencao/softmax_skipgram.jpg differ diff --git a/cuda.ipynb b/cuda.ipynb new file mode 100644 index 0000000..0331ffd --- /dev/null +++ b/cuda.ipynb @@ -0,0 +1,72 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Is CUDA supported by this system? False\n", + "CUDA version: None\n" + ] + }, + { + "ename": "AssertionError", + "evalue": "Torch not compiled with CUDA enabled", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32mc:\\Users\\felip\\Documents\\RedesNeurais\\cuda.ipynb Célula: 1\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mCUDA version: \u001b[39m\u001b[39m{\u001b[39;00mtorch\u001b[39m.\u001b[39mversion\u001b[39m.\u001b[39mcuda\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 6\u001b[0m \u001b[39m# Storing ID of current CUDA device\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m cuda_id \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39;49mcuda\u001b[39m.\u001b[39;49mcurrent_device()\n\u001b[0;32m 8\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mID of current CUDA device:\u001b[39m\u001b[39m{\u001b[39;00mtorch\u001b[39m.\u001b[39mcuda\u001b[39m.\u001b[39mcurrent_device()\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 10\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mName of current CUDA device:\u001b[39m\u001b[39m{\u001b[39;00mtorch\u001b[39m.\u001b[39mcuda\u001b[39m.\u001b[39mget_device_name(cuda_id)\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\torch\\cuda\\__init__.py:482\u001b[0m, in \u001b[0;36mcurrent_device\u001b[1;34m()\u001b[0m\n\u001b[0;32m 480\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mcurrent_device\u001b[39m() \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mint\u001b[39m:\n\u001b[0;32m 481\u001b[0m \u001b[39mr\u001b[39m\u001b[39m\"\"\"Returns the index of a currently selected device.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 482\u001b[0m _lazy_init()\n\u001b[0;32m 483\u001b[0m \u001b[39mreturn\u001b[39;00m torch\u001b[39m.\u001b[39m_C\u001b[39m.\u001b[39m_cuda_getDevice()\n", + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\torch\\cuda\\__init__.py:211\u001b[0m, in \u001b[0;36m_lazy_init\u001b[1;34m()\u001b[0m\n\u001b[0;32m 207\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[0;32m 208\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCannot re-initialize CUDA in forked subprocess. To use CUDA with \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 209\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mmultiprocessing, you must use the \u001b[39m\u001b[39m'\u001b[39m\u001b[39mspawn\u001b[39m\u001b[39m'\u001b[39m\u001b[39m start method\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 210\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mhasattr\u001b[39m(torch\u001b[39m.\u001b[39m_C, \u001b[39m'\u001b[39m\u001b[39m_cuda_getDeviceCount\u001b[39m\u001b[39m'\u001b[39m):\n\u001b[1;32m--> 211\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mAssertionError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mTorch not compiled with CUDA enabled\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 212\u001b[0m \u001b[39mif\u001b[39;00m _cudart \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 213\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mAssertionError\u001b[39;00m(\n\u001b[0;32m 214\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mlibcudart functions unavailable. It looks like you have a broken build?\u001b[39m\u001b[39m\"\u001b[39m)\n", + "\u001b[1;31mAssertionError\u001b[0m: Torch not compiled with CUDA enabled" + ] + } + ], + "source": [ + "\n", + "import torch\n", + "\n", + "print(f\"Is CUDA supported by this system? {torch.cuda.is_available()}\")\n", + "print(f\"CUDA version: {torch.version.cuda}\")\n", + "\n", + "# Storing ID of current CUDA device\n", + "cuda_id = torch.cuda.current_device()\n", + "print(f\"ID of current CUDA device:{torch.cuda.current_device()}\")\n", + " \n", + "print(f\"Name of current CUDA device:{torch.cuda.get_device_name(cuda_id)}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 64-bit (microsoft store)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a33b474888067a6169f866e52f630d6f3672d35114c8362b477a93e2a003ce7e" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}